
REPORT DOCUMENTATION PAGE
APRL-SR-BL-TR-01-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including tl
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send cc
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, I
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwoi

3. REPORT TYPE AND DATES üuvencu

^Jfe3
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

Final Technical Report 1 Dec 99 - 30 Nov 00
4. TITLE AND SUBTITLE
Dynamic Spectrum Allocation Algorithms

6. AUTHOR(S)

Bala Kalyanasundaram

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Pittsburgh
Office of Research
350 Thackeray Hall
Pittsburgh, PA 15260

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
801 N. Randolph St, Rm 732
Arlington, VA 22203-1977

5. FUNDING NUMBERS
F49620-00-1-0011

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F49620-00-1-0011

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

!SSf^m

CflaesE

13. ABSTRACT (Maximum 200 words)
The setting for the spectrum allocation problems that we are currently considering consists of n tasks (i.e. flight tests). Each

task has a bandwidth requirement, and a length. Thus each test can be thought of as a rectangle, with the vertical height of the
rectangle being the bandwidth requirement. The scheduling space is a larger rectangle space, with height equal to the total
spectrum available and length equal to the time period to be scheduled (e.g. a day). In order to avoid interference, two tasks
must be placed in such a way that they do not overlap in this space. See figures 1 and 2 for example schedules. Additionally
we assume that for each task there is a range of times at which it may be scheduled (e.g. it may be specified that a task should
be scheduled between 10AM and 3PM), and an optional integer benefit/priority for the schedule (in our tests to date, all jobs
have had equal priorities).

20010810 103
14. SUBJECT TERMS 15. NUMBER OF PAGES

8
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
2-89) (EG)

Des1ghed~us'ng¥erförm'Prö7 WHS/DIOR, Oct 94

Standard Form 298 (Rev.
Prescribed by ANSI Std. 239.18..

V/-OC// y^b^c'Ct

Dynamic Spectrum Allocation Algorithms:
Technical Report for AFOSR grant F49620010011

Bala Kalyanasundaram and Kirk Pruhs
University of Pittsburgh

Introduction

The setting for the spectrum allocation problems that we are currently
considering consists of n tasks (i.e. flight tests). Each task has a bandwidth
requirement, and a length. Thus each test can be thought of as a rectangle, with
the vertical height of the rectangle being the bandwidth requirement. The
scheduling space is a la.cer rectangle space, with height equal to the total
spectrum available and iength equal to the time period to be scheduled (e.g. a
day). In order to avoid interference, two tasks must be placed in such a way that
they do not overlap in this space. See figures 1 and 2 for example schedules.
Additionally we assume that for each task there is a range of times at which it
may be scheduled (e.g. it may be specified that a task should be scheduled
between 10AM and 3PM), and an optional integer benefit/priority for the schedule
(in our tests to date, all jobs have had equal priorities).

-[^■■■■■■■^■■■■■■■■■■■■■{^■■[^■■■■■■■^^■■■^■■E]!^
Failed Requests

B;I32
6 117
t>~439
tT3l2
IT359

JotT26

JOCT254

JotT240

JOb~243

Jot) 456. Time 2 01:20 - 2 05 20. BandwidtM 232-260

Add Request

Figure 1: The schedule of 319 intervals scheduled by the algorithm Random
simulating untrained human placement

HI l-lDlxl

Failed Requests

Add Request

Figu-e 2: The schedule of 459 intervals scheduled by the algorithm heuristic
algorithm Timeline

We consider two settings. In the offline setting, the scheduler is given all the
tasks at one time. For example, the scheduler is given all the requests for tests
on a particular day a week away and must produce a schedule for that day. In
the online setting, the scheduler is given tasks one by one, and must either
schedule, or reject the tasks, as they arrive. The online setting models the case
that some requests arrive a 2 weeks ahead of time, and some arrive 1 week
ahead of time, etc. And the scheduler must give an answer to the requests as
they arrive. In our tests to date, we have assumed that the scheduler's goal is to
maximize the number of scheduled tasks.

Computing the optimal spectrum allocation is a known computationally infeasible
problem. Thus for instances of even moderate size, one needs to fall back to
computing near optimal schedules. We are currently conducting theoretical
research on algorithms for spectrum allocation (e.g. mathematically analyzing the
performance guarantees of various algorithms), and conducting
experimental/empirical research on various algorithms in the literature, and on
algorithms that we have designed.

Th<^ general goal of any good scheduler is to avoid fragmentation of the
scheduling space. Roughly speaking, fragmentation is when the unused space is
divided into lots of small regions (as opposed to a few larger regions).
Fragmented space is less useful since future moderate sized requests can be fit
into the small regions, and thus may be rejected.

One of our initial goals was to determine to what extent simple heuristics could
improve upon untrained independent human schedulers. We modeled an

untrained human scheduler as follows. We assume that the tasks are scheduled
in an arbitrary order, and that each task is placed randomly in the schedule. At
first blush this may seem overly pessimistic, since one might think that humans
would produce a placement better than random. But anecdotal evidence
suggests that just the opposite might be true. That is, the placement that is
easiest for a human to detect visually, is one in the center of a large unscheduled
region, but this is also exactly the sort of strategy that will maximize
fragmentation.

We now summarize our initial findings (we go into more detail in subsequent
sections). The standard online scheduling method to avoid fragmentation is
called First Fit, which roughly speaking tries to schedule every task as early in
time and as low in the spectrum as possible. We find that for the input
distributions that we tested, First Fit does not perform appreciably better than
random placement. We then considered offline algorithms that consider the jobs
in some predefined order. We also give some theoretical evidence of the difficulty
of producing good schedules in the online setting[2J. More precisely, we showed
that if one is given a sequence of tasks that can be fit into a spectrum of size B,
there is no online algorithm that can fit these tasks into spectrum of size c*B, for
any constant c. In the offline setting, we have found that, among the simple
heuristic algorithms, the best are those that in some sense try to schedule the
jobs from earliest in time to latest in time. On the inputs we tested these
algorithms were consistently able to schedule 5% to 10% more jobs than
Random. One can easily see difference visually in figures 1 and 2, which
represent the schedules produced by Random and a heuristic that we call
Timeline, respectively, on a randomly generated instance of 500 intervals. While
a 5% to 10% improvement may seem modest, one needs to ask oneself about
the benefit of being able to schedule a few more tests per day relative to the cost
of the system required to produce such a schedule.

There are many scheduling problems that arise in manufacturing settings. In
these settings, the method that seems to produce the best schedules is to have a
trained human scheduler using a computer system as a tool. The system suggest
an initial reasonable schedule, and the human can manipulate the schedule,
probably also using the computer system to investigate possibilities (e.g. the
human could query the system to see if you schedule more tasks if swapped the
placement of two particular tasks.) We have developed a visual interface
displaying the schedules (from which figures 1 and 2 were produced) using the
Java programming language. It would be relatively easy to add an interface to
allow the user to manipulate the schedule.

There are two obvious deficiencies to the simple heuristics that we have tested to
date. First, jobs that that use more resources (e.g. the large bandwidth jobs, the
longer jobs, and the lower laxity jobs) should be intuitively be scheduled first if
they are going to be scheduled; That is, jobs that are harder to place, should be
placed first. On the other hand, if not all jobs can be scheduled, the obvious jobs

to reject are those that use most resources. Thus these two heuristic
observations conflict on whether high resources jobs should be considered early
or late in the scheduling process. Second, there are several parameters that
make a job desirable, e.g. short duration, low bandwidth requirement, high
benefit, and these parameters may be conflicting. For example, it is not clear
which is preferable, a short-duration high-bandwidth job, or a long-duration low-
bandwidth job.

Recently some algorithms have been proposed in the literature that surmount
these deficiencies [1, 3]. These algorithms have several additional benefits. One
is that easily generalize to arbitrary integer benefits. Another is that allow for
several scheduling ranges for each job, e.g. it is allowable to specify that a job
should be scheduled Monday AM, Tuesday PM, or on Thursday. In these papers
it was proven that the benefit achieved by the schedules produced by these
algorithms is at least a constant fraction of the optimal benefit. Unfortunately the
constants are too large to be considered good in practice. However, these
algorithms have to date no been empirically/experimentally tested. We helieve
that these algorithms will likely perform much better in practice. We wi'l test this
hypothesis experimentally.

In the rest of the paper, we described the input distributions on which we tested
the algorithms, the algorithms tested, and the results.

Input Distributions

The first input distribution that we one where essentially all parameters are
uniformly generated from the range of possible values.

Input Distribution A:

Parameters:
B = total spectrum
T = total schedule time
N = Number of tasks
L = laxity. Laxity is the difference between the earliest time that a task
can be scheduled and the latest time that a task can be scheduled.
X = maximum task length
B = maximum task bandwidth

Each task is generated in the following way: The bandwidth of the task is
selected uniformly at random from the range [1, B]. The length of the task is
selected uniformly at random from the range [1, X]. The laxity of the task is
selected uniformly at random from the range from 0 to L times the length of the
job. The earliest time that the task can be scheduled is selected uniformly at
random from the range [0, T\.

This input distribution generally assumes that all values of the parameters are
equally likely to occur in practice. One difficulty with this distribution is that, while
one can compare various candidate algorithms against each other, one generally
can not determine how the schedules produced by the candidate algorithms
compare against the optimal schedules. This is because the problem of
computing the optimal schedules is a known infeasible problem (technically it is
an NP-hard problem).

The standard method for circumventing this difficulty is to generate input
instances with known optimal solutions. We adopt this approach for our second
input distribution. Basically, the idea is to take a large rectangle, and cut it into
smaller sub-rectangles that will be the tasks. The tasks' placements in the larger
rectangle represent the optimal solution. To attempt to confuse the candidate
algorithms, we added randomly generated time ranges when these tasks can be
scheduled and feed them to the candidate algorithms in some random order.

INPUT DISTRIBTION B:

Parameters:
B = total spectrum
T = total schedule time
N = number of tasks
L = laxity parameter
C = Bandwidth of original rectangle
S = length of original rectangle

Each task is generated in the following way: We start with one task that takes up
the entire time S and bandwidth C. We then recursively go through the list of
current tasks. For each recursion, we take all of the tasks generated by the
previous level and divide them roughly in half. The division alternates every
round between a bandwidth division and a length division. The first division is
always a bandwidth division. This allows the durations of the job set to be less
regular (otherwise many jobs will either start or end along a single point in time).
The actual division takes place uniformly in random in the middle half of the
task to be divided (this guarantees that each partition has at least 1/4 of the
original task). Also, if the input is too small to be divided (i.e. the side to be
divided is less than or equal to 3 units), the job is not divided. At the end of every
round, the job order is randomized. This recursive process will continue until N
jobs are created.

The current placement is an optimal schedule. We have already set the length
and bandwidth of each job. We now set the release date and deadline. The laxity
I is selected uniformly at random from the range 0 to the length of the job times
the laxity parameter L. A numbers p is generated uniformly at random from the
range 0 to the laxity I of the job. The earliest time that the task can then be

scheduled is then p time units before the job's placement in the optimal schedule
(or zero, which ever is larger).

The Greedy Algorithms

The algorithms simple heuristic algorithms that we tested are as follows:

Random: This is an online algorithm that considers the tasks in an arbitrary
order. All of the possible places where the current task fits in the current
schedule are found. The final assignment of the tasks is selected uniformly at
from these placements. If no valid placement exists, the task is rejected. This
algorithm is meant to model a non-careful human scheduler.

First Fit: This is the standard online heuristic to avoid fragmentation. The task is
scheduled at the earliest time that is can be scheduled, and then at this time the
task is scheduled as low as possible in the spectrum. Thus intuitively this
algorithm tries to place every task as low and to the left as possible. If a job can
not be scheduled, then it is rejected.

We also consider a collection of offline greedy algorithms. These greedy
algorithms order the jobs in some particular order, and then process the jobs in
this order. Each job is then scheduled, or rejected, using First Fit.
The sorting keys that we tried are:

Earliest deadline first
Largest bandwidth first
Smallest bandwidth first
Largest laxity first
Smallest laxity first
Largest laxity/length first
Smallest laxity/length first

Timeline: This algorithm moves down the timeline of the request area. At every
point of time on the timeline, the algorithm checks to see if an unscheduled task
can be scheduled at this time. If more than one can be scheduled, the one with
the earliest deadline is scheduled first. The selected job is then scheduled as low
in the spectrum as possible.

Generally speaking the best algorithm among the ones that we tested was the
Earliest Deadline First algorithm (although Timeline was essentially as good as
Earliest Deadline First). We believe that the reason for this is that these
algorithms essentially ignore the resource requirements of a job.

Experimental Results

We now give more detailed account of the results. The most important feature of
these results is that Earliest Deadline First schedules 5% to 10% more intervals
than does Random. Other unsurprising trends can also be seen. For example,
larger the laxity parameter L, which specifies the flexibility of when tasks can be
scheduled in time, the better the schedules produced. Another is that the lower
the load parameter C in distribution B is, the more tasks are scheduled. A couple
of cautionary notes are in order. First, note that the percentages in figure 3, it
may not be the case one can optimally schedule 100% of the tasks in these
tests. Second, note that the percentages are only really useful for comparison
purposes. The actual percentages that will be seen in practice depends upon the
input distributions.

L= 1/2 L = 1 L = 2 L=4
Random 67% 68.5% 75% 74.5%
First Fit 70% 72.5% 74% 75.5%
Earlier
Deadl;ne First

77% 80% 83% 83.5%

Best of
Remaining
Algorithms

74% 76.5% 80% 83.5%

Figure 3: Results for input distribution A with N=200

L = 1/2 L = 1 L = 2 L=4
Random 69.6% 72% 74.4% 70.8%
First Fit 67.6% 72.4% 75.2% 77.6%
Earliest
Deadline First

75.6% 81.2% 84.5% 86%

Best of
Remaining
Algorithms

74% 79.6% 84.8% 88%

Figure 3: Results for input distribution B with N=250

L= 1/2 L=1 L = 2 L=4
Ranuom 78% 75.2% 81.6% 76.5%
First Fit 76.8% 77.2% 79.6% 80%
Earliest
Deadline First
Best of
Remaining
Algorithms

83.6%

82.4%

85.6%

85.6%

87.6%

86.8%

89.6%

90%

Figure 3: Results for input distribution C with N=250

References:

1. A. Barnoy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber, "A unified
approach to approximating resource allocation and scheduling", ACM
Symposium on Theory of Computing, 2000.

2. B. Kalyanasundaram, and K. Pruhs, "Dynamic spectrum allocation: the
impotency of duration notification", special issue of Journal of Scheduling
devoted to approximation algorithms, 3(5), 289 - 296, 2000

3. S. Leonardi, A. Marchetti-Spaccamela and A. Vitaletti, "Approximation
algorithms for bandwidth and storage allocation problems under real time
constraints", Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), 2000.

