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Dynamic Spectrum Allocation Algorithms: 
Technical Report for AFOSR grant F49620010011 

Bala Kalyanasundaram and Kirk Pruhs 
University of Pittsburgh 

Introduction 

The setting for the spectrum allocation problems that we are currently 
considering consists of n tasks (i.e. flight tests). Each task has a bandwidth 
requirement, and a length. Thus each test can be thought of as a rectangle, with 
the vertical height of the rectangle being the bandwidth requirement. The 
scheduling space is a la.cer rectangle space, with height equal to the total 
spectrum available and iength equal to the time period to be scheduled (e.g. a 
day). In order to avoid interference, two tasks must be placed in such a way that 
they do not overlap in this space. See figures 1 and 2 for example schedules. 
Additionally we assume that for each task there is a range of times at which it 
may be scheduled (e.g. it may be specified that a task should be scheduled 
between 10AM and 3PM), and an optional integer benefit/priority for the schedule 
(in our tests to date, all jobs have had equal priorities). 
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Figure 1: The schedule of 319 intervals scheduled by the algorithm Random 
simulating untrained human placement 



HI l-lDlxl 

Failed Requests 

Add Request 

Figu-e 2: The schedule of 459 intervals scheduled by the algorithm heuristic 
algorithm Timeline 

We consider two settings. In the offline setting, the scheduler is given all the 
tasks at one time. For example, the scheduler is given all the requests for tests 
on a particular day a week away and must produce a schedule for that day. In 
the online setting, the scheduler is given tasks one by one, and must either 
schedule, or reject the tasks, as they arrive. The online setting models the case 
that some requests arrive a 2 weeks ahead of time, and some arrive 1 week 
ahead of time, etc. And the scheduler must give an answer to the requests as 
they arrive. In our tests to date, we have assumed that the scheduler's goal is to 
maximize the number of scheduled tasks. 

Computing the optimal spectrum allocation is a known computationally infeasible 
problem. Thus for instances of even moderate size, one needs to fall back to 
computing near optimal schedules. We are currently conducting theoretical 
research on algorithms for spectrum allocation (e.g. mathematically analyzing the 
performance guarantees of various algorithms), and conducting 
experimental/empirical research on various algorithms in the literature, and on 
algorithms that we have designed. 

Th<^ general goal of any good scheduler is to avoid fragmentation of the 
scheduling space. Roughly speaking, fragmentation is when the unused space is 
divided into lots of small regions (as opposed to a few larger regions). 
Fragmented space is less useful since future moderate sized requests can be fit 
into the small regions, and thus may be rejected. 

One of our initial goals was to determine to what extent simple heuristics could 
improve upon untrained independent human schedulers. We modeled an 



untrained human scheduler as follows. We assume that the tasks are scheduled 
in an arbitrary order, and that each task is placed randomly in the schedule. At 
first blush this may seem overly pessimistic, since one might think that humans 
would produce a placement better than random. But anecdotal evidence 
suggests that just the opposite might be true. That is, the placement that is 
easiest for a human to detect visually, is one in the center of a large unscheduled 
region, but this is also exactly the sort of strategy that will maximize 
fragmentation. 

We now summarize our initial findings (we go into more detail in subsequent 
sections). The standard online scheduling method to avoid fragmentation is 
called First Fit, which roughly speaking tries to schedule every task as early in 
time and as low in the spectrum as possible. We find that for the input 
distributions that we tested, First Fit does not perform appreciably better than 
random placement. We then considered offline algorithms that consider the jobs 
in some predefined order. We also give some theoretical evidence of the difficulty 
of producing good schedules in the online setting[2J. More precisely, we showed 
that if one is given a sequence of tasks that can be fit into a spectrum of size B, 
there is no online algorithm that can fit these tasks into spectrum of size c*B, for 
any constant c. In the offline setting, we have found that, among the simple 
heuristic algorithms, the best are those that in some sense try to schedule the 
jobs from earliest in time to latest in time. On the inputs we tested these 
algorithms were consistently able to schedule 5% to 10% more jobs than 
Random. One can easily see difference visually in figures 1 and 2, which 
represent the schedules produced by Random and a heuristic that we call 
Timeline, respectively, on a randomly generated instance of 500 intervals. While 
a 5% to 10% improvement may seem modest, one needs to ask oneself about 
the benefit of being able to schedule a few more tests per day relative to the cost 
of the system required to produce such a schedule. 

There are many scheduling problems that arise in manufacturing settings. In 
these settings, the method that seems to produce the best schedules is to have a 
trained human scheduler using a computer system as a tool. The system suggest 
an initial reasonable schedule, and the human can manipulate the schedule, 
probably also using the computer system to investigate possibilities (e.g. the 
human could query the system to see if you schedule more tasks if swapped the 
placement of two particular tasks.) We have developed a visual interface 
displaying the schedules (from which figures 1 and 2 were produced) using the 
Java programming language. It would be relatively easy to add an interface to 
allow the user to manipulate the schedule. 

There are two obvious deficiencies to the simple heuristics that we have tested to 
date. First, jobs that that use more resources (e.g. the large bandwidth jobs, the 
longer jobs, and the lower laxity jobs) should be intuitively be scheduled first if 
they are going to be scheduled; That is, jobs that are harder to place, should be 
placed first. On the other hand, if not all jobs can be scheduled, the obvious jobs 



to reject are those that use most resources. Thus these two heuristic 
observations conflict on whether high resources jobs should be considered early 
or late in the scheduling process. Second, there are several parameters that 
make a job desirable, e.g. short duration, low bandwidth requirement, high 
benefit, and these parameters may be conflicting. For example, it is not clear 
which is preferable, a short-duration high-bandwidth job, or a long-duration low- 
bandwidth job. 

Recently some algorithms have been proposed in the literature that surmount 
these deficiencies [1, 3]. These algorithms have several additional benefits. One 
is that easily generalize to arbitrary integer benefits. Another is that allow for 
several scheduling ranges for each job, e.g. it is allowable to specify that a job 
should be scheduled Monday AM, Tuesday PM, or on Thursday. In these papers 
it was proven that the benefit achieved by the schedules produced by these 
algorithms is at least a constant fraction of the optimal benefit. Unfortunately the 
constants are too large to be considered good in practice. However, these 
algorithms have to date no been empirically/experimentally tested. We helieve 
that these algorithms will likely perform much better in practice. We wi'l test this 
hypothesis experimentally. 

In the rest of the paper, we described the input distributions on which we tested 
the algorithms, the algorithms tested, and the results. 

Input Distributions 

The first input distribution that we one where essentially all parameters are 
uniformly generated from the range of possible values. 

Input Distribution A: 

Parameters: 
B = total spectrum 
T = total schedule time 
N = Number of tasks 
L = laxity. Laxity is the difference between the earliest time that a task 
can be scheduled and the latest time that a task can be scheduled. 
X = maximum task length 
B = maximum task bandwidth 

Each task is generated in the following way: The bandwidth of the task is 
selected uniformly at random from the range [1, B]. The length of the task is 
selected uniformly at random from the range [1, X]. The laxity of the task is 
selected uniformly at random from the range from 0 to L times the length of the 
job. The earliest time that the task can be scheduled is selected uniformly at 
random from the range [0, T\. 



This input distribution generally assumes that all values of the parameters are 
equally likely to occur in practice. One difficulty with this distribution is that, while 
one can compare various candidate algorithms against each other, one generally 
can not determine how the schedules produced by the candidate algorithms 
compare against the optimal schedules. This is because the problem of 
computing the optimal schedules is a known infeasible problem (technically it is 
an NP-hard problem). 

The standard method for circumventing this difficulty is to generate input 
instances with known optimal solutions. We adopt this approach for our second 
input distribution. Basically, the idea is to take a large rectangle, and cut it into 
smaller sub-rectangles that will be the tasks. The tasks' placements in the larger 
rectangle represent the optimal solution. To attempt to confuse the candidate 
algorithms, we added randomly generated time ranges when these tasks can be 
scheduled and feed them to the candidate algorithms in some random order. 

INPUT DISTRIBTION B: 

Parameters: 
B = total spectrum 
T = total schedule time 
N = number of tasks 
L = laxity parameter 
C = Bandwidth of original rectangle 
S = length of original rectangle 

Each task is generated in the following way: We start with one task that takes up 
the entire time S and bandwidth C. We then recursively go through the list of 
current tasks. For each recursion, we take all of the tasks generated by the 
previous level and divide them roughly in half. The division alternates every 
round between a bandwidth division and a length division. The first division is 
always a bandwidth division. This allows the durations of the job set to be less 
regular (otherwise many jobs will either start or end along a single point in time). 
The actual division takes place uniformly in random in the middle half of the 
task to be divided (this guarantees that each partition has at least 1/4 of the 
original task). Also, if the input is too small to be divided (i.e. the side to be 
divided is less than or equal to 3 units), the job is not divided. At the end of every 
round, the job order is randomized. This recursive process will continue until N 
jobs are created. 

The current placement is an optimal schedule. We have already set the length 
and bandwidth of each job. We now set the release date and deadline. The laxity 
I is selected uniformly at random from the range 0 to the length of the job times 
the laxity parameter L. A numbers p is generated uniformly at random from the 
range 0 to the laxity I of the job. The earliest time that the task can then be 



scheduled is then p time units before the job's placement in the optimal schedule 
(or zero, which ever is larger). 

The Greedy Algorithms 

The algorithms simple heuristic algorithms that we tested are as follows: 

Random: This is an online algorithm that considers the tasks in an arbitrary 
order. All of the possible places where the current task fits in the current 
schedule are found. The final assignment of the tasks is selected uniformly at 
from these placements. If no valid placement exists, the task is rejected. This 
algorithm is meant to model a non-careful human scheduler. 

First Fit: This is the standard online heuristic to avoid fragmentation. The task is 
scheduled at the earliest time that is can be scheduled, and then at this time the 
task is scheduled as low as possible in the spectrum. Thus intuitively this 
algorithm tries to place every task as low and to the left as possible. If a job can 
not be scheduled, then it is rejected. 

We also consider a collection of offline greedy algorithms. These greedy 
algorithms order the jobs in some particular order, and then process the jobs in 
this order. Each job is then scheduled, or rejected, using First Fit. 
The sorting keys that we tried are: 

Earliest deadline first 
Largest bandwidth first 
Smallest bandwidth first 
Largest laxity first 
Smallest laxity first 
Largest laxity/length first 
Smallest laxity/length first 

Timeline: This algorithm moves down the timeline of the request area. At every 
point of time on the timeline, the algorithm checks to see if an unscheduled task 
can be scheduled at this time. If more than one can be scheduled, the one with 
the earliest deadline is scheduled first. The selected job is then scheduled as low 
in the spectrum as possible. 

Generally speaking the best algorithm among the ones that we tested was the 
Earliest Deadline First algorithm (although Timeline was essentially as good as 
Earliest Deadline First). We believe that the reason for this is that these 
algorithms essentially ignore the resource requirements of a job. 

Experimental Results 



We now give more detailed account of the results. The most important feature of 
these results is that Earliest Deadline First schedules 5% to 10% more intervals 
than does Random. Other unsurprising trends can also be seen. For example, 
larger the laxity parameter L, which specifies the flexibility of when tasks can be 
scheduled in time, the better the schedules produced. Another is that the lower 
the load parameter C in distribution B is, the more tasks are scheduled. A couple 
of cautionary notes are in order. First, note that the percentages in figure 3, it 
may not be the case one can optimally schedule 100% of the tasks in these 
tests. Second, note that the percentages are only really useful for comparison 
purposes. The actual percentages that will be seen in practice depends upon the 
input distributions. 

L= 1/2 L = 1 L = 2 L=4 
Random 67% 68.5% 75% 74.5% 
First Fit 70% 72.5% 74% 75.5% 
Earlier 
Deadl;ne First 

77% 80% 83% 83.5% 

Best of 
Remaining 
Algorithms 

74% 76.5% 80% 83.5% 

Figure 3: Results for input distribution A with N=200 

L = 1/2 L = 1 L = 2 L=4 
Random 69.6% 72% 74.4% 70.8% 
First Fit 67.6% 72.4% 75.2% 77.6% 
Earliest 
Deadline First 

75.6% 81.2% 84.5% 86% 

Best of 
Remaining 
Algorithms 

74% 79.6% 84.8% 88% 

Figure 3: Results for input distribution B with N=250 

L= 1/2 L=1 L = 2 L=4 
Ranuom 78% 75.2% 81.6% 76.5% 
First Fit 76.8% 77.2% 79.6% 80% 
Earliest 
Deadline First 
Best of 
Remaining 
Algorithms 

83.6% 

82.4% 

85.6% 

85.6% 

87.6% 

86.8% 

89.6% 

90% 



Figure 3: Results for input distribution C with N=250 
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