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CHAPTER 1 

INTRODUCTION 

This research program began with a suite of penetration experiments into Indiana 

limestone targets with ogive-nose, steel rod projectiles. Three sets of experiments were 

conducted with geometrically similar projectiles that had length-to-diameter ratios often 

and 7.1, 12.7, and 25.4-mm-diameters. A comparison of these data and a previously 

developed analytical penetration model (Forrestal, Altaian, Cargile, and Hanchak, 1994) 

showed that the target resistance depended on the projectile shank diameter. This scale 

effect was observed by others (Warren and Forrestal, 1998) and strongly suggested a 

strain-rate dependence of the target material strength. Data from these penetration 

experiments and discussion of the results are presented in Chapter 2. 

In order to study the strain-rate effect of Indiana limestone, improved 

experimental and analytic techniques for the dynamic testing of brittle materials in 

uniaxial compression were required. As a first step, a split Hopkinson pressure bar 

(SHPB) or Kolsky bar facility was designed and built for dynamic compression testing of 

brittle materials. In Chapter 3, the theory and experimental set-up for the SHPB 

apparatus is described, preliminary results from a conventional SHPB experiment are 

presented, and the critical experimental modifications that are necessary for valid tests 

with brittle materials are discussed. Brittle samples loaded dynamically with a SHPB 

apparatus should be in dynamic stress equilibrium and have a nearly constant strain rate 

over the test duration. 



In Chapter 4, two analytic models that predict the evolutionary process for sample 

equilibrium and constant strain rate in brittle materials that have a linear stress-strain 

response to failure are presented. These models and subsequent experiments show that a 

ramp stress pulse in the incident bar is required to obtain sample equilibrium and constant 

strain rate over most of the duration of the experiment. The first model assumes that the 

sample is in dynamic stress equilibrium and predicts strain and strain-rate versus time. 

The second model uses a wave propagation analysis on the interaction of the sample with 

the incident and transmission bars to predict the stress-time histories on either side of the 

sample. Model predictions for an Indiana limestone and a machineable glass ceramic, 

Macor are presented in later chapters and are shown to be in good agreement with data. 

In Chapter 5, pulse shaping techniques that are used to shape the incident stress 

pulse and obtain valid compressive stress-strain data for brittle materials with the 

modified SHPB apparatus are presented. The conventional SHPB apparatus is modified 

by placing a thin disk of annealed or hard Cl 1000 copper on the impact surface of the 

incident bar. After impact by the striker bar, the copper disk deforms plastically and 

spreads the pulse in the incident bar. An analytic model and data show that a wide 

variety of incident strain pulses can be produced by varying the geometry of the copper 

disks and the length and striking velocity of the striker bar. Model predictions are in 

good agreement with measurements. 

Another benefit to pulse shaping is that the loading durations can be controlled 

such that samples are unloaded just prior to catastrophic failure. Thus, intact samples that 

experience strains beyond the elastic region and post-peak stresses can be retrieved for 



microstructural evaluation.   This soft-recovery loading technique is demonstrated with 

experiments on an Indiana limestone and a machineable glass ceramic material, Macor. 

In Chapter 6, unconfined compressive  strength data on Indiana limestone 

S 9 1 specimens for strain rates between 10" to 3 x 10 s" are presented. The dynamic 

unconfined compressive strength for this material is about double that obtained from the 

quasi-static experiments. Possible mechanisms for this large strength enhancement are 

discussed. In addition, the versatility of these methods are shown in Chapter 7 where 

experimental and model results are presented for the machineable glass ceramic, Macor. 

In Chapter 8, the results of this thesis are summarized. 



CHAPTER 2 

PENETRATION EXPERIMENTS WITH LIMESTONE TARGETS AND OGIVE- 
NOSE STEEL PROJECTILES 

2.1  BACKGROUND 

Several authors have written review articles that discuss the many analytical, 

computational, and experimental methods used to study the broad field of penetration 

mechanics (Backman and Goldsmith, 1978; Anderson and Bodner, 1988; Hohler and 

Stilp, 1990; Recht, 1990; Corbett, Reid, and Johnson, 1996). The responses of the 

projectiles and targets depend strongly on the problem geometry, materials, and impact 

conditions. Because many penetration mechanisms are possible, experimental 

observations usually precede and guide analytical or computational models. For this 

study with limestone targets, post-test target observations showed a conical entry crater 

with a depth of two or more projectile diameters followed by a circular penetration 

channel or tunnel with nearly the projectile diameter. For recent penetration studies with 

6061-T6511 aluminum targets (Warren and Forrestal, 1998; Piekutowski, Forrestal, 

Poormon, and Warren, 1999), post-test radiographs of the penetration channels could be 

obtained. However, we made post-test observations of the limestone penetration 

channels only after the targets were split with the techniques used by stone masons. The 

projectiles recovered from the targets had small mass losses due to abrasion, but the 

overall nose shapes prior to and after penetration looked very similar. We previously 

observed similar post-test, target channels and abraded projectiles with our studies on 



concrete targets (Forrestal, Frew, Hanchak, and Brar, 1996; Frew, Hanchak, Green, and 

Forrestal, 1998). However, the concrete targets abraded the nose tips more severely than 

the limestone targets. 

The limestone targets used in this study were quarried and cut by the Elliot Stone 

Company, Bedford, IN. In the rock mechanics literature, this particular limestone is often 

called Salem, Indiana, or Bedford limestone. For this study, we conducted unconfined 

compressive tests and some triaxial compression tests on samples cored from 

representative blocks. Material properties from our targets are nearly the same as those 

reported by Fossum, Senseny, Pfeifle, and Mellegard (1995). 

Based on data sets from three projectile scales, we developed an empirical 

penetration equation that describes the target by its density and an empirical strength 

constant determined from penetration depth versus striking velocity data. While this 

methodology provides an accurate and convenient engineering equation, the detailed 

response mechanisms for the target are not modeled. We are not aware of any rigorous 

target models for rock penetration problems, but Lagrangian computational models that 

use adaptive meshing techniques (Ortiz, 1996; Camacho and Ortiz, 1997) and particle 

dynamic simulations (Mastilovic and Krajcinovic, 1999) have shown promise for brittle 

targets. Detailed computational approaches that model target responses also require a 

broad array of quasi-static and dynamic material properties data. For limestone, 

examples of some materials experiments and data include (1) quasi-static, triaxial 

compression experiments (Fossum, Senseny, Pfeifle, and Mellegard, 1995), (2) split 

Hopkinson bar experiments (Green and Perkins, 1968; Lindholm, Yeakley, and Nagy, 

1974; and Lipkin, Grady, and Campbell, 1977), (3) plane shock wave studies (Larson and 



Anderson, 1979), (4) dynamic tensile failure with planar-impact techniques (Grady and 

Hollenbach, 1979; Ahrens and Rubin, 1993), and (5) compression-shear loading with 

plate impact experiments (Aidun and Gupta, 1995). Data from other experimental 

techniques may also be required for a careful target analysis. 

Next, we describe the penetration model, discuss the experiments, and present our 

results and conclusions. 

2.2      PENETRATION MODEL 

For both limestone and concrete targets, post-test observations showed a conical 

entry crater with a depth of two or more projectile diameters followed by a circular 

channel or tunnel with nearly the projectile diameter. The limestone penetration 

equations are similar to the previously published concrete penetration equations. From 

Forrestal, Altaian, Cargile, and Hanchak (1994), depth of penetration P for an ogive-nose 

projectile and a concrete target is given by 

P = r In 
2;ra2pN 

'1+NpV^ 

v R 
+ 4a, forP>4a (2.1a) 

N=*4, v,' =mV-;t,'R <2-lb> 



in which the ogive-nose rod projectile is described by mass m, shank radius a, and 

caliber-radius-head v|/. The target is described by density p and the target strength 

constant R. The strength constant is determined from 

R- 
,    47ia Np 
1 + — 

m     j 
exp 

2ra2(P-4a)Np 
m 

(2.2) 

where Vs is striking velocity. For a set of experiments, we hold all parameters constant 

and vary striking velocity. From each experiment, we measure striking velocity Vs and 

penetration depth P, so R can be determined from eq (2.2) for each experiment. We then 

take the average value of R from each experiment in the data set and compare the 

prediction from eq (2.1) with the individual measured values of Vs and P. For the 

concrete penetration equations (Forrestal, Altaian, Cargile, and Hanchak, 1994), we 

found it convenient to let R = Sfc where fc is the unconfmed compressive strength of 

the concrete target and S is a dimensionless parameter. 

Frew, Hanchak, Green, and Forrestal (1998) showed that for concrete targets with 

nearly equal unconfmed compressive strengths, ogive-nose steel rod projectiles had 

I 

nearly the same constant value of R = Sfc for 20.3- and 30.5-mm-diameter projectiles 

with a length-to-diameter ratio of ten. However, for this study with limestone targets, 

ogive-nose steel rod projectiles with 7.1, 12.7, and 25.4-mm-diameters and a length-to- 

diameter often have values of R = 913, 787, and 693 MPa, respectively. Thus, the target 



resistance decreases as projectile shank diameter increases. Warren and Forrestal (1998) 

studied the effects of strain hardening and strain-rate effects on the penetration of 

aluminum targets. Results from that study show the same dependence of projectile 

diameter on target strength. Guided by the models in Warren and Forrestal (1998), we 

found that for these limestone targets 

R = K + k(2a0/2a) (2.3) 

in which K and k are constants obtained from data fits, 2a0 is a reference projectile 

diameter, and 2a is the projectile diameter. We show later that with K = 607 MPa, k = 86 

MPa, and 2a0 = 25.4 mm, we recover the measured values of R for each of the three data 

sets. 

In summary, the procedure used to calculate R from penetration depth data for a 

fixed projectile is the same for concrete or limestone targets. However, for limestone 

targets, R depends on the projectile shank diameter. Thus, we can use the penetration eqs 

(2.la) and (2.lb) for limestone when R is given by eq (2.3). 

2.3       EXPERIMENTS 

We conducted three sets of penetration experiments (a total of 30 experiments) with 

ogive-nose, steel rod projectiles and limestone targets. All projectiles had a total length- 

to-diameter ratio of ten and 3.0 caliber-radius-head (CRH) nose shapes.   The shank 



diameters and masses for each of the three sets of experiments were 7.1 mm, 0.020 kg; 

12.7 mm, 0.117 kg; and 25.4 mm, 0.931 kg. 

2.3.1    Limestone Targets 

The limestone targets were quarried and cut by the Elliot Stone Company of 

Bedford, Indiana. We obtained the targets in three batches from nearby sites. Nominal 

material properties for the three target batches given in Table 2.1 show minimal 

variations among the batches. 

Table 2.1 Nominal material properties for the limestone targets 

Unconfined 
Density Porosity Strength 

Batch p (Mg/m ) Tl    (%) CToKMPa) 

1 2.32 14.4 60 
3 2.30 15.1 63 
4 2.31 14.8 61 

Figure 2.1 shows data from triaxial material tests for samples from batch 3. For 

these experiments a 51-mm-diameter, 108-mm-long cylinder of limestone is loaded with 

two stress paths: isotropic compression followed by triaxial shear (Farmer, 1983, and 

Jaeger and Cook, 1979). The limestone cylinders are loaded with axial stress <ja and 

radial stress ar. For the triaxial data shown in Fig. 2.1, the limestone cylinders are first 

loaded with isotropic compression, aa = ar, and then the axial stress aa is increased while 

the radial stress csr is held constant. Figure 2.1 shows plots of principal stress difference 

(true stress), aa - ar, versus axial strain (engineering strain) for ar = 20, 50, and 100 MPa. 
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For a radial stress or confining pressure of 20 MPa, the principal stress difference, aa - 

Gr, reaches a maximum at about 96 MPa, and then the sample fractures. For radial 

stresses of 50 and 100 MPa, the sample deforms with a ductile response. The brittle to 

ductile transition confining pressure is about 50 MPa. 

250 

200 

g    150 
c 

c 
•c 
Pa 

100 

50 

Confining Pressure 
20 MPa 
50 MPa 

— -—— 100 MPa 

„^ 

^ s ___ __- — 

fS 
! / 

i J_ _L 

2.5 7.5 10 

Axial Strain (Percent) 

12.5 15 

Figure 2.1 Batch 3 limestone triaxial compression data 

2.3.2    12.7-mm-Diameter, 0.117 kg, 3.0 CRH Projectiles 

17.5 

Our first set of experiments was conducted with steel projectiles machined from 

4340 Re 45 (Brown, Mindlin, and Ho, 1996) round stock. Figure 2.2 shows the projectile 

geometry, and for this set of experiments 2a = 12.7 mm, L = 106 mm, and / = 21 mm. 

The limestone target impact surface was 0.51-m-square, and the target lengths and other 
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data are given in Table 2.2. The sides and bottom of the targets were surrounded by 0.10- 

m-thick concrete placed between a steel form and the limestone. Six unconfined 

compressive tests were conducted with 51-mm-diameter, 107-mm-long samples cored 

from a representative limestone block from Batch 1 and the average strength was ac/ = 

60 MPa. 

T 
2a 
J_ 

Figure 2.2 Projectile geometries 

Table 2.2 Penetration data for the 12.7-mm-diameter, 0.117 kg projectiles. For 
pitch and yaw, D=down, U=up, R=right, L=left 

Target Striking Pitch Penetration Projectile 
Shot, Batch Length Velocity Yaw Depth Mass Loss R 

Number H (m/s) (degrees) (m) (%) (GPa) 

1-0370, 1 0.61 459 1.9D, 3.0L 0.141 0.16 0.733 
1-0371, 1 0.61 608 1.0U, 1.0R 0.232 0.24 0.734 
1-0372, 1 0.91 853 0,0 0.362 0.96 0.875 
1-0377, 1 0.91 956 0, 0.3L 0.523 1.29 0.719 
1-0373, 1 0.91 1134 1.0U, 1.9R 0.562 2.59 0.930 
1-0376, 1 1.22 1269 0,0 0.812 3.87 0.745 
1-0375, 1 1.22 1404 0, 0.7R 0.924 5.25 0.775 
1-0374. 1 1.22 1502 0.7U, 0 1.017 5.90 0.783 
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A 32-mm-diameter powder gun launched the 0.117 kg projectiles to the striking 

velocities recorded in Table 2.2. An additional experiment was conducted at Vs = 1605 

m/s, but the trajectory was curved and the projectile exited the side of the target at a depth 

of about 0.65 m. The projectiles were fitted with sabots and obturators that separated 

from the projectiles prior to impact. Four laser diode systems measured striking 

velocities and orthogonal radiographs measured pitch and yaw angles. The target 

resistance R was calculated from eq (2.2) for each experiment and recorded in Table 2.2. 

The average target resistance parameter for this set of experiments is R = 787 MPa. 

2.3.3    7.1-mm-Diameter, 0.020 kg, 3.0 CRH Projectiles 

Our second set of experiments was conducted with steel projectiles machined from 

both 4340 Re 45 and Aer Met 100 Re 53 (Dahl, 1991) round stock. Figure 2.2 shows the 

projectile geometry, and for this set of experiments 2a = 7.11 mm, L = 59.3 mm, and / = 

11.8 mm. A 20-mm-powder gun launched the 0.020 kg projectiles to striking velocities 

of 1230 m/s. For the larger striking velocities recorded in Table 2.3, a two-stage, 50/20 

mm, light-gas gun launched the projectiles. The same target geometries and ballistics 

measurements as those described for the 12.7-mm-diameter, 0.117 kg projectiles were 

used for this set of experiments. 
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Table 2.3 Penetration data for the 7.1-mm-diameter, 4340 (HRC = 44-46) or Aer Met 100 (HRC = 53) 
(Shots 4-1847 and 4-1846), 0.0205 kg, 3.0 CRH projectiles. For pitch and yaw: D = 

down, U = up, R = right, L = left 
Taget Striking Pitch Penetration Projectile Compressive 

Shot, Batch Length Velocity Yaw Depth NfessLoss R Strength 

Number (m) (m/s) (degrees) (m) (%) (GPa) atf(MPa) 

1-0422,3 0.30 497             0,0.75R 0.067 0.34 1.033 
1-0418,3 0.61 597              0.5U,0 0.105 0.34 0.895 64.7 
1-0419,3 0.61 787             0,1.25R 0.165 0.78 0.937 
1-0420,3 0.61 1037 0.75U.0.5R 0.271 2.11 0.927 
4-1835,3 1.02 1365 2.0D, 1.6R 0.430 4.90 0.926 582 
4-1836,3 1.02 1516 0.9U, 1.1R 0.516 7.34 0.903 

1-0439,1 0.46 795              0.5U,0 0.178 0.83 0.877 60.1 
1-0440,1 0.61 1060 0.25U,0.5R 0.294 2.49 0.877 60.3 
1-0441,1 0.61 1230            0,0.25R 0.392 3.76 0.837 55.7 
4-1845,1 1.02 1340 1.75D, 1.0L 0.437 4.84 0.870 57.5 

4-1847,3 1.02 1266 1.0D, 1.5R 0.379 4.59 0.925 63.8 
4-1846.3 1.02 1674 0.5U.0 0.581 10.85 0.944 6S$_ 

For this second set of experiments, we performed unconfined compressive tests on 

two samples cored from the targets. The compressive strengths listed in Table 2.3 are the 

average of two, unconfined compression tests conducted with 50-mm-diameter, 107-mm- 

long cores. In addition, we conducted penetration experiments from both Batch 1 and 

Batch 3 limestone targets to compare results from the two batches. We show later 

negligible differences in the penetration data from both batches. The average target 

resistance parameter for this set of experiments is R = 913 MPa. 

We also conducted an experiment with a 4340 (HRC = 45) projectile at Vs = 1649 

m/s. That projectile severely bent and turned within the target. Table 2.3 shows two 

experiments conducted with Aer Met 100 (HRC = 53) projectiles. Shot 4-1846 with a 

striking velocity of 1674 m/s had a nearly straight trajectory. We then conducted 

experiments at Vs = 1749, 1826, and 1863 m/s with Aer Met 100 (HRC = 53) projectiles 



14 

and these projectiles severely bent and turned within the targets. Piekutowski, Forrestal, 

Poormon, and Warren (1999) discusses in detail the better performance of the Aer Met 

100 HRC 53 projectiles. 

2.3.4   The 25.4-mm-Diameter, 0.931 kg, 3.0 CRH Projectiles 

Our third set of experiments was conducted with steel projectiles machined from 

4340 Re 45 round stock. Figure 2.2 shows the projectile geometry, and for this set of 

experiments 2a = 25 A mm, L = 212 mm, and / = 42 mm. The limestone target impact 

surface was 1.02-m-square and the target lengths are given in Table 2.4. An 83-mm 

powder gun launched the 0.931 kg projectiles to the striking velocities recorded in Table 

2.4. The same experimental methods used for the other data sets were also used to obtain 

the results given in Table 2.4. Data in Table 2.4 were limited to Vs = 1177 m/s because of 

the size and mass of the targets. The average value of R for this set of experiments was R 

= 693 MPa. 

Table 2.4 Penetration data for the 25.4-mm-diameter, 4340 (HRC = 45-46), 0.931 kg, 3.0 CRH 
 projectiles. For pitch and yaw: D = down, U = up, R = right, L = left  

Tkget       Striking Pitch Penetration       Projectile Compressive 

Shot,Bateh        Length      Velocity Yaw Depth MBSLOSS R Strength 

Mmter (m) (nVs) (degrees) (m) (%) (GPa) ocf(Mfa) 

LROD99-l,4 0.61 407 0.4D,0.5L 0.260 0.00 0.617 56.2 

LROD99-2,4 0.76 566 0.6U0 0.390 0.10 0.769 61.9 

LROD99-3,4 1.07 800 0.6D,0.1L 0.790 0.30 0.693 66.7 

LROD99-6,4 1.52 917 -,0.3R 1.020 1.10 0.681 59.8 

LROD99-7.4 1.98 1177 0.0.3R 1.500 280 0.705 61.2 
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2.4      RESULTS AND DISCUSSION 

As previously discussed, post-test target observation for the experiments 

summarized in Tables 2.2, 2.3, and 2.4 showed a conical entry crater with a depth of two 

or more projectile diameters followed by a circular penetration tunnel with nearly the 

projectile diameter. However, we made post-test observations only after the targets were 

split with the techniques used by stone masons. Figure 2.3 shows post-test photographs 

of the 25.4-mm-diameter projectiles, and mass losses are given in Table 2.4. These 

recovered projectiles lost mass due to abrasion, but the nose shapes prior to and after 

penetration have similar shapes. Post-test projectiles from the other data sets (Tables 2.2 

and 2.3) had shapes similar to those shown in Fig. 2.3. 

Figure 2.4 shows depth of penetration P versus striking velocity Vs for the data in 

Tables 2.2,2.3, and 2.4. For the model, we use the average value of R calculated from eq 

(2.2) for the experiments in each data set. For the 7.1, 12.7, and 25.4-mm-diameter 

projectiles the average target resistance parameter is R = 913, 787, and 693 MPa, 

respectively. As discussed in section 2.2, these diameter dependent results suggest a 

strain-rate effect for the target resistance. For projectile diameters not tested in this study, 

we recommend eq (2.3) be used to calculate R. Equation (2.3) with K = 607 MPa, k = 86 

MPa, and 2a0 = ISA mm recover the measured values of R from each of the three data 

sets. We hypothesize that the penetration eqs (2.1, 2.2, and 2.3) for this limestone target 

will be reasonably accurate for larger scale projectiles, but data from much more 

expensive field tests with larger diameter projectiles must be obtained to confirm our 

hypothesis. 
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As previously discussed, our current penetration model contains a target strength 

constant that is determined from penetration depth versus striking velocity data. Thus, 

the detailed response mechanisms for the target are not modeled. As a first step towards 

providing a mechanics based understanding of the target response, a new split Hopkinson 

pressure bar (SHPB) facility was designed and built to study the dynamic behavior of 

brittle materials. The remainder of this research will be devoted towards developing the 

appropriate experimental methods for testing brittle materials, such as limestone, with the 

SHPB technique. In addition, dynamic stress-strain and failure data for brittle materials 

over a broad range of strain rates will be presented. 
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Figure 2.3 Post-test photographs of the 25.4-mm-diameter projectiles 
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Figure 2.4 Data and model predictions for limestone targets 



CHAPTER 3 

SPLIT HOPKINSON PRESSURE BAR OR KOLSKY BAR 

3.1  BACKGROUND 

The split Hopkinson pressure bar (SHPB) technique originally developed by 

Kolsky (1949, 1963) has been used by many investigators to obtain dynamic compression 

properties of solid materials. The evolution of this experimental method and recent 

advances are discussed by Lindolm (1964), Nicholas (1982), Follansbee (1985), Nemat- 

Nasser, Isaacs, and Starrett (1991), Ramesh and Narasimhan (1996), Gray (1999), and 

Gray and Blumenthal (1999). This technique has mostly been used to study the plastic 

flow stress of metals that undergo large strains at strain rates between 102 — 104 s_1. As 

discussed by Yadav, Chichili, and Ramesh (1995), data for the compressive flow stress of 

metals are typically obtained for strains larger than a few percent because the technique is 

not capable of measuring the elastic and early yield behavior. By contrast, most of the 

material behavior of interest for relatively brittle materials such as ceramics and rocks 

occurs at strains less than about 1.0 percent. 

This chapter discusses elastic wave propagation in long cylindrical bars, describes 

the split Hopkinson pressure bar (SHPB) technique and experimental set-up, shows 

preliminary results from a conventional SHPB experiment with a limestone specimen, 

and discusses critical experimental modifications to the conventional SHPB apparatus 

that are necessary for valid tests with brittle materials. 
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3.2       ONE-DIMENSIONAL STRESS WAVES IN A BAR 

Figure 3.1 shows a differential element of a long, cylindrical bar under a transient 

compressive load P. If we assume that the cross-sections of the element remain plane 

during loading and the lateral inertial effects are neglected, the equation of motion is 

given by 

-^Ax = pAAx^, (3-D 
ax at2 

where A is the area of cross section and p the mass density of the bar.   With the 

definitions of axial stress, axial strain, and Hooke's Law 

P 
x     A 

du 

(3.2a) 

(3.2b) 

<r   = Es, (3.2c) 
X "X 

eq (3.1) can be written as 

p^ = E^. (3-3) 
H at2      ax2 
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Undeformed 
Bar 

x x+Ax 

Deformed 
Bar 

5uA x+u      x+Ax+u+—Ax 
dx 

X 

dp
A P+^Ax 

ox 

Figure 3.1 Differential element in cylindrical bar 

Equation (3.3) reduces to the classical wave equation in displacement 

82u_   2 d2u 

dt2 ~c° dx2 
(3.4) 

by defining the one-dimensional wave speed in the bar as c0 = (E / p) \  Equation (3.4) 

has a general solution 
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u(x,t) = f(c0t + x) + F(c0t-x) (3.5) 

in which f and F are independent arbitrary functions for left and right travelling waves, 

respectively. For simplicity, we consider only a compressive stress wave travelling to the 

right in the bar. Differentiating eq (3.5) with respect to x yields 

^- = -F(c0t-x) (3.6) 
dx ° 

where F'(c0t - x) is the derivative with respect to the argument of F.    Taking the 

derivative of eq (3.5) with respect to t yields 

^ = c0F(c0t-x). (3.7) 
at 

Substituting eqs (3.2) and (3.6) into eq (3.7) results in the following expression for the 

axial stress in the bar 

a,=^ (3-8) 
c„ dt 

which simplifies to 

*,=pc„f. 0.9) 
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The term du/öt in eq (3.9) is the particle velocity v in the x-direction in the bar and should 

not be contused with the wave propagation velocity c0. As their names state, v is the 

velocity of an individual particle in the medium, while c0 is the velocity at which waves 

propagate through the medium. Quantitatively, v is several orders of magnitude less than 

c0. As shown in eq (3.9), the elementary theory of wave propagation yields a linear 

relationship between stress and particle velocity. Equation (3.9) will be used extensively 

throughout this work. 

3.3      IMPACT OF TWO CYLINDRICAL BARS 

In the previous section, the elementary equations for a stress pulse propagating 

through an elastic, circular bar were derived. The following analysis describes the 

compressive pulses that are created in a traditional SHPB, by the impact of two 

cylindrical bars. We build on these analyses in Chapter 5 to develop a pulse shaping 

model. 

A short bar with length L, circular cross-section area Ast, mass density pst, and bar 

wave speed cst is propelled into one end of a longer, stationary bar having a cross- 

sectional area Ai, mass density pi and bar wave speed c;. The short bar is designated as 

the striker bar and the long bar the incident. 

Figure 3.2a shows the striker bar travelling from left to right toward the free end 

of the stationary incident bar with some known rigid body velocity, V0. Before the bars 

impact, t < 0, the bars are stress free and the particle velocity in the striker bar is equal to 

its rigid body velocity, 
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v = V. (3.10) o 

After impact, t > 0, compressive waves travel into the striker and incident bars as 

shown in Fig. 3.2b. In this formulation, we define stress as positive in compression and 

particle velocities as positive when travelling to the right. Two conditions must be 

satisfied at the interface between the striker and incident bars. The first is the condition 

of continuity, which requires that the two bars to stay in contact during loading. If the 

interface velocity after impact is defined as v, then the particle velocity in the striker bar 

at the striker/ incident bar interface is 

v = V0-vst. (3.11) 

The particle velocity in the incident bar at the striker/ incident bar interface is 

v = v- (3.12) 

Combining eqs (3.12) and (3.11), yields 

v,=V-vt. (3.13) 
' St 
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Striker Bar 

Est> Agp Psj, c^ 

E.> A, pi9 c, 

Incident Bar 

(Valid for t < 0) 

a)   Striker and incident bars before impact 

(Valid for 0<t<L/cst) 

b)   Striker and incident bars after impact 

Figure 3.2 Impact of two cylindrical bars 

The second interface condition is that the forces across the interface must be 

equal, i.e. 

P  =P (3.14) 

where Pst and P, are the axial compressive forces in the striker and incident bars, 

respectively. Combining eqs (3.2), (3.9), (3.13), and (3.14) yields the following 

expressions for v; and vst 
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Ps,As«CstV0 

'    pA{c,+pstAstcs 

(3.15a) 

v   = PiAiCjV° . (3.15b) 
PiAici+PsAtcst 

From eq (3.9), the striker and incident bar stresses at the interface are given by 

a   =p c   PiAi°iVo  (3.16a) 

a. = Pic{      
P«A«C«V°      . (3.16b) 

pA^i+PstK^st 

If the two bars have the same material and cross-sectional area, the relationships 

simplify to 

PstCsA« = Pici Ai = PcoA (3-17) 

<Tst =CJ{   =<7 (3.18) 

vst=v,=iv0 (3.19) 

ast=a,=ipc0V0. (3.20) 
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The stress pulse duration T can be determined by examining the pressure pulse as 

it propagates through the striker bar. Figure 3.3a shows the impact stress wave as it 

travels from right to left in the striker bar at times, 0 < t < L/c0. As the leading edge of 

the pulse reaches the free end of the striker bar, at t = L/c0, the entire bar will be 

travelling to the right with a particle velocity 

v„ = ^V0. (3.21) 

Since the free end of the striker bar cannot support stress, a reflected tensile wave will 

travel from left to right in the striker bar. The superposition of these two stress waves 

satisfies the boundary condition at the free end. 

The superposition of stresses at some later time, L/c0 < t < 2L/c0, is illustrated in 

Fig. 3.3b. Figure 3.3b shows the left travelling compressive stress wave being cancelled 

by the right travelling tensile wave. When the tensile wave reaches the striker bar/ 

incident bar interface at t = 2L/c0, the stress and the particle velocity of the entire striker 

bar will be zero. The striker bar will therefore separate from the incident bar because the 

impact surface of the incident bar has particle velocity Vj. The duration x of the pressure 

pulse from the impact of two bars with the same impedance pCoA is therefore equal to 

two wave transit times in the striker bar, 

T = —. (3.22) 
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Thus for bars with the same impedances, a square, stress pulse propagates to the 

right at wave velocity c0. As shown by eqs (3.20) and (3.22), the amplitude is controlled 

by the striking velocity and the duration is controlled by the striker bar length. 
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3.4      SPLIT HOPKINSON PRESSURE BAR TECHNIQUE 

As shown in Fig. 3.4, a conventional split Hopkinson pressure bar (SHPB) 

consists of a striker bar, an incident bar, a transmission bar, and a sample placed between 

the incident and transmission bars. A gas gun launches the striker bar at the incident bar 

and that impact causes an elastic compression wave to travel in the incident bar towards 

the sample. When the impedance of the sample is less than that of the bars, an elastic 

tensile wave (Graff (1975)) is reflected into the incident bar and an elastic compression 

wave is transmitted into the transmission bar through the specimen. If the elastic stress 

pulses in the bars are nondispersive, the elementary theory for wave propagation in bars 

can be used to calculate the sample response from measurements taken with strain gages 

mounted on the incident and transmission bars. Strain gages mounted on the incident bar 

measure the incident ej and reflected er strain pulses, and strain gages mounted on the 

transmission bar measure the transmitted st strain pulse. Nicholas (1982), Follansbee 

(1985), and Gray (1999) present equations that describe the sample response in terms of 

the measured strain signals. 

For this study the incident and transmission bars were made from the same 

material with equal cross-sectional areas. As shown in Fig. 3.1, the incident and 

transmission bars have density p, Young's modulus E, bar wave speed c, and cross- 

sectional area A. Since we only focus on limestone and ceramic samples that have failure 

strains less than about 1.0 percent, we need only use engineering stress, strain, and strain- 

rate measures. In addition, we take stress positive in compression, strain positive in 

contraction, and particle velocity positive to the right in Fig. 3.4.  Figure 3.4 also shows 
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the sample has cross-sectional area As and initial length 10. We take subscripts 1 and 2 to 

represent the locations of the ends of the sample. 

Specimen 

(Ps> cs> As) 
Striker 

Bar 

(PsP Cst> A) 

Incident Bar 1 Transmission Bar 

ff q=p    v 
\           1 ' 
\       £i> Sr                      ^ 

(p, c, A) 

1'     \ 
lo                     (P.C.A) 

2 

Figure 3.4 Schematic of a conventional split Hopkinson pressure bar (SHPB) or Kolsky bar 

For homogeneous deformation, strain rate of the sample is given by 

d£s = 
vl~v2 

dt L 
(3.23) 

where vi and v2 are the particle velocities at the sample/bar interfaces.  In terms of the 

measured strain pulses 

-^- = -^(£i-£r-£t). 
dt ln 

(3.24) 

Forces at the ends of the sample are 

P1 = EA(ei+er) (3.25a) 
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P2 = EA£t (3.25b) 

and the average force is 

EA/ 
Pa=—fe+er+^t)- (3-25C) 

Similarly, stresses at the ends of the sample are 

<7!= (si+£r) (3.26a) 
As 

<y2= -— St (3.26b) 
Ac 

and the average sample stress is 

<ra = (fij +sT + st). (3.26c) 
2AS 

If Pi = P2, the forces on both ends of the sample are equal and Si + 8r = st.   So if the 

sample is in dynamic stress equilibrium, the stress, strain rate, and strain are given by 
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EA 
crc  = s        A 

dgs _ - 2c 

dt "   10  "
r 

■fit (3-27) 

er (3.28) 

«s=-i^K(T)dT. (3-29) 
Ao    0 

As discussed in detail by Ravichandran and Subash (1994), Gray (1999), and Gray and 

Blumenthal (1999), eqs (3.27), (3.28), and (3.29) assume that the sample is in dynamic 

stress equilibrium. Equilibrium should first be examined by comparing the stresses CTI 

and a2 at the ends of the sample given by eqs (3.26a) and (3.26b). If G1 and o2 are in 

reasonable agreement, only then it is reasonable to use eqs (3.27), (3.28), and (3.29) to 

calculate sample stress, strain rate, and strain. The dynamic stress equilibrium condition 

for the sample will be discussed in detail in Chapter 4. 

3.5       EXPERIMENTAL SET-UP 

A split Hopkinson pressure bar was built at the U.S. Army Engineer Research and 

Development Center, Waterways Experiment Station (WES). The system, shown in 

Figure 3.5, was designed and built from the ground up for dynamic compression testing 

of metallic and geologic materials at strain rates ranging from 5 to 6,000 s"1. Figure 3.6 is 

a schematic of the split Hopkinson pressure bar (SHPB). 
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Figure 3.5 Photograph of WES split Hopkinson pressure bar facility 

_ Compressed 
Gas Tank 

Barrel and Bar Supports 

Incident Bar 

Spool Valve - 
Supports 

- Support Legs 
Wide Flange 
Beams 

Transmission 
Bar 

Figure 3.6 Split Hopkinson pressure bar schematic 
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The bars are supported by a frame consisting of 4, 203-mm-wide by 1.5-m-long, 

steel I-beams that rest on a total of 8 support legs. Extra stiffness was added to each 

beam by welding 8, 12.7-mm-thick, steel plates between the flanges. The tops of the 

beams were then machined flat to within 0.08 mm/m (0.001 in/ft). The support legs 

contact the ground through adjustable leveling pads. During assembly, the pads were 

used to adjust the height of each of the beams top surface until they were all level to the 

ground and parallel to one another to within 0.04 mm/m (0.0005 in/ft). 

The barrel of the gas gun and the incident and transmission bars rest on aluminum 

supports with centers 241.3 mm above the top surface of the I-beams. Figure 3.7 shows a 

diagram of a support that contains a brass bushing for the barrel and bars to rest in. The 

bar bushings were designed to have a 0.08-mm diametrical clearance with the bar in 

order to carry the load of the bar but not inhibit the stress pulses travelling through. The 

bar supports were spaced along the length of the bars approximately every 200 mm. The 

striker and incident bars were aligned with one another by adjusting the positions of the 

barrel and incident bar supports until the faces of the bars were flush with one another 

and the incident bar slid freely through all the bushings. The supports were then fixed to 

the top surface of the I-beam with 100 mm "C" clamps. The transmission bar was 

aligned with the incident bar following the same procedure. 
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Figure 3.7 Barrel and bar support diagram 

The gas gun assembly is composed of a gas tank, fast acting spool-valve, barrel, 

striker bar, and laser velocity system. The volume of the gas tank is 0.0125 m with a 

maximum pressure rating of 7 MPa (1,000 psi). Operating pressure is provided to the gas 

tank via compressed air or nitrogen. The gas pressure is controlled through a 20 MPa 

(3,000 psi) Standard Pneumatic, Hemet, CA regulator (LC-2-98) and a differential 

pressure transducer (Model Z) and digital readout (Model GM) both from Sensotec, Inc., 

Columbus, OH. Resolution of the pressure transducer and digital readout is 2.58xl0"3 

MPa (0.38 psi) and 6.89xl0"5 MPa (0.01 psi), respectively. 
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A normally closed 50-mm-diarneter spool valve connects the gas tank to the 

barrel of the gun and is initiated through an electrical command. The Model 498 valve 

from SECO-DYN, Inc., Rancho Cucamonga, CA, is capable of completely opening 

within 1.5 ms regardless of the inlet (tank) pressure. Combining the performance of the 

valve with the resolution of the controls used for inlet pressure, the gas gun system can 

consistently produce striker bar velocities ranging from 3 to 75 m/s. 

The gun barrel is a 38.1-mm-outside-diameter by 1.524-m-long tube of 1026 

steel. The tube was straightened and then honed to a final inside diameter of 25.43 mm. 

A total of 20,19-mm-diameter, venting holes were drilled near the muzzle of the barrel to 

vent the gas from behind the striker bar. The striker bar is loaded from the muzzle end of 

the barrel, and pushed in with a flexible hose until the striker rests on a collar placed 

between the spool valve and the tank end of the barrel. The barrel can accept striker bars 

up to 25.4-mm in diameter and lengths up to 500 mm. 

A schematic of the laser velocity system used to measure the striking velocity of 

the striker bar is shown in Figure 3.8. The system consists of a pair of 0.8 mW helium- 

neon lasers (F61318) from Edmund Scientific, Barrington, NJ and photo detector units 

from the University of Dayton, Dayton, OH. Each laser and photo detector is positioned 

perpendicular to the flight path of the striker bar between the muzzle of the barrel and the 

free end of the incident bar. As the striker bar exits the muzzle of the barrel, its leading 

edge will begin to disrupt the laser signal for detector #1. Further down range and at 

some later time, detector #2 will trigger in the same manner. The output signals are 

recorded on a two channel, 100MHz Tektronix TDS220 digital oscilloscope. The photo 

detector units have a light-to-dark response time of about 1.5 us, and by accurately 
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measuring the distance, X, between the two laser beams and the time difference between 

the two triggers, the striking velocity of the striker bar can be accurately measured to 

within 0.01 m/s. 

Laser Table 

Wide Flange Beam 

Barrel Support -' p^th \   I ^ Bar Supports 

Photo Detectors ■ 

Figure 3.8 Schematic of laser velocity measurement system 

The bars were made of VascoMax C-350 maraging steel (HRC = 58) having a 

uniaxial compressive yield strength, Young's modulus, and density of 2.7 GPa, 200 GPa 

and 8100 kg/m3 (Vasco-Pacific, 1998), respectively. The diameters of all the bars were 

centerless ground and straight to within 0.42-mm/m. After grinding, the bars were faced 

to length and end-faces polished to a mirror finish. Striker bar lengths for these studies 

varied from 38.1 mm to 398.4 mm based on the desired shape and duration of the 

incident pulse. The striker bar is fitted with a shrunk fit nylon sabot that is machined to 

have an outside diameter of 25.36 + .03 mm. The tight tolerance of the sabot diameter 

helps align the striker bar for impact with the incident bar. 
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Diametrically opposed strain gages positioned on the incident and transmission 

bars form part of two Wheatstone half-bridges. The output signals from the bridges are 

recorded using a 4 channel Tektronix 420A digitizing oscilloscope with ADA400A 

differential preamplifiers. The gages used in this study were manufactured by 

Measurements Group, Inc., Raleigh, NC (WK-06-250BF-10C) and had a nominal 

resistance of 1000 Q. The 30 Volt DC excitation for the Wheatstone bridge was 

provided by an Hewlett Packard (Englewood, CO) E3611A power supply. 

3.6       CONVENTIONAL SPLIT HOPKINSON PRESSURE BAR RESULTS 

We present results from a conventional SHPB experiment with an Indiana 

limestone sample. Pettijohn (1975), and Podnieks, Chamberlain, and Thill (1972) 

describe this limestone as a carbonate rock that contains over 90 percent calcite and less 

than 10 percent quartz, having a porosity of about 15 percent, and a grain size ranging 

between 0.15 and 1.0 mm. For this study, the limestone samples had density ps = 2300 

kg/m3, Young's modulus Es = 24 GPa, and bar wave velocity cs = 3200 m/s. Young's 

modulus was estimated from quasi-static compression data shown in Chapter 6. 

Limestone cores, 13-mm in diameter, were drilled from a block perpendicular to 

the bedding plane, with a thin walled diamond core barrel. The core was cut to a rough 

length and the ends ground flat and parallel to within ±0.025 mm. The outside diameter 

and length of the sample was then machined to 12.7 mm with the sides perpendicular to 

the ends of the sample to within 0.1°.   A photograph of a prepared limestone sample is 
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shown in Figure 3.9.   To maximize the magnitude of the strain pulse transmitted from 

this weak specimen, the bar diameter was chosen as the sample diameter. 

Figure 3.9 Pretest photograph of Indiana limestone sample 

The strain gages shown in Fig. 3.4 are located at 1060 mm from the impact 

surface on the incident bar and 229 mm from the sample/ bar interface on the 

transmission bar. Figure 3.10 shows incident, reflected, and transmitted strain-time 

signals for a limestone test with a striking velocity of 8.05 m/s. The incident pulse has a 

fast rise time of about 10 JJ,S and a pulse width of about 60 |^s that corresponds to the two 

wave transit times in the striker bar. Figure 3.11 shows stress versus time at the ends of 

the sample calculated from eqs (3.26a) and (3.26b) and the average strain rate calculated 

from eq (3.24). For an ideal SHPB experiment, the sample should be in equilibrium and 

should deform at a constant strain rate over most of the duration of the test. However, 

Fig. 3.11 shows that CTI and a2 are not in close agreement and that the strain rate is not 

constant over the duration of the test.   It is therefore apparent that improved testing 
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techniques need to be developed in order to conduct valid SHPB experiments on brittle 

materials. 

In the next chapters, we present models and experimental results that show a ramp 

incident pulse is required to obtain sample equilibrium and constant strain rate over most 

of the test duration for Indiana limestone samples. The ramp incident pulse is produced 

by placing a thin copper disk on the impact surface of the incident bar. We will also 

describe the details of pulse shaping techniques in Chapter 5. 
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Figure 3.10 Strain-time signals for a conventional SHPB experiment with a limestone sample 
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CHAPTER 4 

SAMPLE EQUILIBRIUM AND CONSTANT STRAIN RATE MODELS 

In this chapter, we develop models that show the evolutionary process for sample 

equilibrium and constant strain rate for brittle materials that have a linear stress-strain 

response until failure. These models and subsequent experiments show that a ramp stress 

pulse in the incident bar is required in order to obtain sample equilibrium and constant 

strain rate over most of the duration of the experiment. The first model assumes that the 

sample is in dynamic stress equilibrium and predicts strain and strain rate versus time. 

For the second model, we perform a wave propagation analysis on the interaction of the 

sample with the incident and transmission bars. This second model predicts the stress- 

time histories on either side of the sample. 

4.1 DYNAMIC STRESS EQUILIBRIUM MODEL 

Consider a second order polynomial, stress pulse propagating in the incident bar 

given by 

cri(x,t)=[cr0 + M-(t-x/c) + N-(t-x/c)2]H(t-x/c) (4.1) 
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where CT0, M, and N are polynomial constants and H is the Heaviside unit function. We 

take x = 0 at the interface between the incident bar and the sample labeled as station 1 in 

Fig. 3.4. If the sample is in equilibrium, ci = 02, we can neglect wave propagation in the 

sample. The sample is assumed to have a linear stress-strain response to failure given by 

crs = Es ss (4.2) 

where Es is the Young's modulus for the sample. 

When the incident stress pulse reaches the sample, a tensile pulse is reflected back 

into the incident bar and a compressive pulse is transmitted into the transmission bar. As 

before, we take stress positive in compression, strain positive in contraction, and particle 

velocity positive to the right in Fig. 3.4. From the equations of elementary bar theory 

(Graff, 1975), strain rate in the sample, given by eq (3.23), can be written in terms of the 

incident a,, reflected ar, and transmitted at stress pulses in the bars as 

d£°        !   -(«Ti-^-a,). (4.3) 
dt     pcl0 

For a sample in equilibrium, cjj + ar = at, and 

% = -V<*i-*t)- (4-4) dt     pcl0 



The incident and transmitted stresses in the bars are 
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<Xj(t) = <r0 +Mt + Nt2 (4.5a) 

ASES£S (4.5b) 

From eqs (4.4) and (4.5), 

2gt(t) 
dt   ' pcAl0 ~s     pcl0 

de.     2A,E 
+ s     s   „    _ 

fcs — (4.6) 

which has solutions 

d£s      2<yj 

dt Esrt0 

exp 
f   lx\ 

VrtoV 

yM 
1-exp 

'-2^ 

vrtoy 
+ 

Nyt0r 1     2t • 1 + + exp 
rt„ 

'-2^ 

Vrt°v 
(4.7a) 

So  = 
<*o/ 1-exp 

f   lx\ 

vrt.y 
+ 

/M 
.-^ 1 -exp 

^_2t^ 

Nr(rt0)
2 

2E. 
1 + 

'-2^ 

vrtoy 

/"   x   "N 

+ 2 
vrto; 

-exp 

vrtoy 
+ 

vrtoy 
(4.7b) 

A Ape 

As ps c 
K=t (4.7c) 
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Equations (4.7a) and (4.7b) give closed-form solutions for the strain rate and 

strain in a sample that is in dynamic stress equilibrium. Qualitatively, we can use eq 

(4.7a) to predict the required incident pulse necessary to test a quasi-linear, brittle sample 

at a constant strain rate. 

First consider the incident pulse from a conventional SHPB experiment (described 

in section 3.6) that consists of a very sharp rise to a flat plateau (see Fig. 3.10). The 

shape of such a pulse can be approximated as a step input, so eq (4.5a) reduces to 

CTi(t) = <70 (4.8) 

and eq (4.7a) simplifies to 

des      la j 
—-= ——exp 
dt       Esrt0 

'-20 
Vrto/ 

(4.9) 

Figure 4.1 shows a prediction of the normalized strain rate from eq (4.9). The 

strain rate is exponentially decaying and not constant. The strain rate will not reach a 

constant level during the experiment and thus results from such a test can not be used to 

describe the dynamic response of the test material at constant strain rate. Other incident 

pulse shapes must therefore be investigated to find an input that will produce valid SHPB 

results for these types of materials. 

Now consider the case where we apply a linear ramp input into the sample. 

Equation (4.5a) is given by 



<Tj(t) = Mt 
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(4.10) 

and eq (4.7a) takes the form 

de 
dt 

s     
/M 1-exp 

/-2t> 

vrtoy 
(4.11) 

Figure 4.2 shows the model prediction of normalized strain rate from eq (4.11). Unlike 

the case of a step input, the ramp input predicts that the strain rate in the sample will 

approach a constant value after some normalized time. We will show later, in Chapter 6, 

that experimental results on Indiana limestone correlate well with model predictions for a 

linear ramp input. 
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Figure 4.1 Sample equilibrium model for strain rate using a step input 

Figure 4.2 Sample equilibrium model for strain rate using a linear ramp input 
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4.2 WAVE ANALYSIS MODEL 

For the second model, we perform a wave propagation analysis on the interaction 

of the sample with the incident and transmission bars. Ravichandran and Subhash (1994) 

present a method of characteristics solution for this problem and show results for ceramic 

materials. Our analysis of this same problem provides general, closed-form equations 

that we find more convenient for numerical applications. 

We use the elementary theory of wave propagation in bars to calculate the stress- 

time histories at the ends of the sample. Ravichandran and Subhash (1994) and Graff 

(1975) present equations for the reflected and transmitted stresses at the interfaces shown 

in Fig. 3.4. At the incident bar/ sample interface (location 1 in Fig. 3.4), the stresses 

transmitted to the specimen ot and reflected in the incident bar crr are 

{r + lj 

<xr =- 
fr-n 
vr + ly 

(4.12b) 

in which r is given by eq (4.7c) and CT; is the incident pulse given by eq (4.1). As before, 

we take x = 0 at station 1 in Fig. 3.4, and the stress in the sample at station 1 is 

o-i = -^-^(t), 0<t<2to.   (4.13) 
r + 1 
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At t = to, the stress wave in the sample reaches the sample/ transmission bar interface 

(location 2 in Fig. 3.4). When the stress wave in the sample interacts with the 

transmission bar, the stresses transmitted into the transmission bar at and reflected into 

the sample are 

2r 
0\ =— -CTjCt-T), 1     7(r + l) 

t0<t<3t0    (4.14a) 

or. 
vr + ly 

<7,(t-r), t0 < t<3t0    (4.14b) 

where GI is given by eq (4.13).   The stress in the sample at station 2 consists of the 

incident and reflected stress waves and is given by 

o-2(t) = -^Z
7o-i(t-t0) + 

r + 1 

'r-O 
vr + ly r + 1 

CTi(t-t0),t0<t<3t0.   (4.15) 

We repeat this interaction process several times and obtain the stresses in the sample at 

interface 1 shown in Fig. 3.4 are 

2r 
<7l=-^(t), 

r + 1 
0<t<2to    (4.16a) 

2r 
o-1=-^-a,(t) + 

r + 1 

27 Vr-n 
U+iJ + U+iJ 

2" 

r + 1 
cri(t-2t0),2t0<t<4t0    (4.16b) 



50 

2Y    ™, 2r <71=-*-CTi(t) + 
r + 1 r + 1 

2y 

+ 
r + 1 

r + 1 

^r_lV    ^_iV 

vr + ly 
+ 

vr + ly 

r-1 

vr + ly 

C7;(t-2t0) + 

cji(t-4t0),4t0<t<6t0    (4.16c) 

and that at interface 2 are 

<72 = 0, 0 < t < t0   (4.17a) 

27 

r + 1 
1 + 

Ar-0 

vr + ly 
^(t-tj,       t0 < t < 3t0    (4.17b) 

27 

r + 1 
1 + (— 

<r + l, 
ffs(t-t0) + 

27 

r + 1 

rr-iV rr-i^3 

vr + ly 
+ ^(1-30, 

vr + ly 

3t0<t<5t0.    (4.17c) 

The nth term for eqs (4.16) and (4.17) is 

27 

r + 1 

r-1 

r + 1 

' r-1N 

vr + ly 

c7;(t-nt0),    fornt0<t<(n + 2)t0, 

where to is given by eq (4.7c) and corresponds to one wave travel time through the 

sample. Therefore, en and a2 can easily be calculated for times greater than those given 

by eqs (4.16) and (4.17). 
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For the polynomial incident stress pulse given by eq (4.1), we obtain 

er, = 
2y_ 

r + 1 
{<r0+Mt + Nt2}, 0<t<2to (4.18a) 

Cl = 
r + l [     {x + lj    U + l 

2y N 

r + l 

+ 
2/M 

r + l 
t + 

'r-n rr-o2 

r + l 
+ (t-2t0)   + 

t2 + 
^r-n    fr-O2 

+ 
r + U    lr + 1 

(t-2t0)
2 

Vr + ly 

,   2t0<t<4t0   (4.18b) 

°i = 
2ycr0 

r + l 

2/M 

r + l 

2/N 

r + l 

1 + 

t + 

rT-i\ 
Vr + ly 

'r-0 

+ 
vr + ly 

+ r-1 
+ 

r-1 \
4> 

t2 + 

vr + l, 

(r-1 

V r + l 

+ 

+ 

—T 

vr + ly 

.r + l. 

(t-2t0) + 

(t-2t0)
2 + 

+ 
r + l. 

vr + ly 
+ 

vr + ly 

vr + ly 

fr-n 

(t-4t0) > + 

^r_lV    '     -4 

+ (t-4t0)
2 

vr + ly 

4t0<t<6t0    (4.18c) 

and 

a, =0, 0<t<to    (4.19a) 

CT2 = 
27Q-Q 

r + l 
1 + 

'r-1^ 

Vr + ly 

2/N 

r + l 

+ 

1 + 

2)M 

r + l{ 

•-n 

r-1 

vr + ly 
(t-tj2l, t„<t<3t0(4.19b) 



52 

o-, 
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2    /,   iV 
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The nth term for eqs (4.18) and (4.19) is 

r + 1 U + ly 

n      2/M Vr-n 
y + ij r + 1 

—T 
r + lj 

(t-nt0) + 
2/N 
r + 1 

/._iY-1 

vr + ly 
+ r-1 

r + 1 

\n 

(t-nt0)
2 

for the time interval nto < t < (n+2)t0. 

Figures 4.3 and 4.4 show model predictions for sample stresses and strain rate 

versus time for a linear ramp incident pulse. These predictions correspond to 

experiments with steel bars and limestone samples (r = 5.5) and with equal sample and 

bar diameters (y = 1). In addition, we know from test data that the sample fails or starts 

to fail at a sample stress as > 120 MPa. For Fig. 4.3, the incident ramp pulse, given by eq 

(4.10), has a loading rate M = 3.3 MPa/>s and corresponds to the loading on a limestone 

sample discussed in Chapter 6. Figure 4.3 shows that the stresses at the incident bar/ 

sample interface oi and the sample/ transmission bar interface o2 are nearly equal for 

t/to > 2. In addition, the sample stress predicted by the model that assumes sample 

equilibrium given by eqs (4.2) and (4.7b) lies between ai and a2. The strain rate rapidly 
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increases from 0 < t/to < 4 and is nearly constant for 4 < t/to < 12, so the strain rate is 

nearly constant for a sample stress between about 20 and 120 MPa. Figure 4.4 shows 

model predictions for stresses and strain rate versus time for a stress loading rate of M = 

9.9 MPa/|us. A comparison of the results in Figs. 4.3 and 4.4 show that as the loading 

rate increases from 3.3 to 9.9 MPa/|as, the interface stresses ai and C2 begin to differ 

from each other and the strain rate varies significantly over most of the duration of the 

test. Figure 4.4 also suggests that it is easier to obtain sample equilibrium than a nearly 

constant strain rate over most of the test duration. In Chapter 6, we will compare these 

model predictions with experimental data. 
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Figure 4.3 Stress and strain rate model predictions for a limestone sample loaded by a ramp incident 
pulse with a stress loading rate of M= 3.3 MPa/(xs 
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CHAPTER 5 

PULSE SHAPING 

5.1 BACKGROUND 

For an ideal Kolsky compression bar experiment, the sample should be in 

dynamic stress equilibrium and deform at a nearly constant strain rate over most of the 

test duration. To approximate these ideal conditions for brittle materials, Nemat-Nasser, 

Isaacs, and Starrett (1991) modified the conventional Kolsky compression bar by placing 

an oxygen-free-copper (OFHC) disk on the impact surface of the incident bar. When the 

striker bar impacts the copper disk, the large plastic deformation of the disk spreads the 

pulse in the incident bar and allows time for the brittle sample to achieve dynamic stress 

equilibrium. Thus, shaping the pulse in the incident bar is an essential modification for 

testing brittle materials with the compression Kolsky bar technique. Experiments that 

attempt to obtain high-rate, stress-strain data for ceramic materials at constant strain rates 

are reported by Rogers and Nemat-Nasser (1990), and Chen and Ravichandran (1997). In 

addition, Nemat-Nasser, Isaacs, and Starrett (1991) present a model that predicts the 

strain pulse in the incident bar for an OFHC (Lewis, 1979) copper pulse shaper, and 

Ravichandran and Subhash (1994) present a sample equilibrium model for ceramic 

materials. 

While pulse shaping techniques have been successfully used to achieve the goals 

of many different experiments, pulse shapers are usually designed by experimental trials 
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that exclude a model to guide the design parameters. For example, Duffy, Campbell, and 

Hawley (1971) used a pulse shaper to smooth pulses generated by explosive loading for 

torsional Hopkinson bar experiments, and Wu and Gorham (1997) used paper on the 

impact surface of the incident bar to eliminate high frequency oscillations in the incident 

pulse for Kolsky compression bar experiments. Togami, Baker, and Forrestal (1996) 

used a thin, plexiglass disk to produce nondispersive compression pulses in an incident 

bar, and Chen, Zhang, and Forrestal (1999) used a polymer disk to spread the incident 

compressive pulses for experiments with elastomers. Christensen, Swanson, and Brown 

(1972) used striker bars with a truncated cone on the impact end in an attempt to produce 

ramp pulses. In contrast to other pulse shaping studies, Nemat-Nasser, Isaacs, and 

Starre« (1991) model the plastic deformation of an OFHC copper pulse shaper, predict 

the incident strain pulse, and show good agreement with some measured incident strain 

pulses. 

In this chapter, we extend the analytical model of Nemat-Nasser, Isaacs, and 

Starre« (1991) and present new data for annealed and hard Cl 1000 (Lewis, 1979) copper 

pulse shapers. Experiments conducted with both OFHC and C11000 copper pulse 

shapers showed a superior performance by the C11000 materials. In particular, the 

C11000 pulse shapers could be driven to larger strains without breakup or fracture and 

remained more circular after deformation. We found that with both annealed and hard 

C11000 pulse shapers, we could obtain a broad range of strain rates for testing brittle 

ceramic and rock (Frew, Forrestal, and Chen, 2000) materials. The previous model 

(Nemat-Nasser, Isaacs, and Starre«, 1991) was extended to accommodate the large 

strains obtained in the Cl 1000 copper materials. In addition, we modified the equations 
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that govern wave propagation in the striker bar to incorporate the added mass from the 

sabot and include elastic, rather than rigid, unloading in the pulse shaping analysis. 

Incident stress pulse model predictions are shown to be in good agreement with 

measurements from several tests. 

5.2 PULSE SHAPING MODEL 

Figure 5.1 shows a schematic of the impact end of the SHPB apparatus with a pulse 

shaper that is attached with a light coating of grease. In Fig. 5.1, pst, cst, and A are the 

density, bar wave velocity, and cross-sectional area of the striker bar, respectively; V0 is 

the striker velocity at impact; ao and ho are the initial cross-sectional area and thickness of 

the pulse shaper; and p, c, A, and E are the properties for the incident bar, respectively. 

When the striker bar impacts the pulse shaper, compressive forces are gradually 

transferred from the pulse shaper to the incident bar. The deformation of the pulse shaper 

increases its load carrying capacity by increasing its cross-sectional area and by the strain 

hardening of the pulse shaping material. As will be shown later, the monotonic increase 

of the load carrying capacity of the pulse shaper causes longer duration loading pulses in 

the incident bar. 
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Figure 5.1 Schematic of the loading end of a SHPB with a pulse shaper 

For   an   incompressible   material   and   a   homogeneous   deformation,   mass 

conservation gives 

a0h0 = a(t)h(t), (5.1) 

where a(t) and h(t) are the current cross-sectional area and thickness of the pulse shaper. 

The axial engineering strain in the pulse shaper is given by 

p h„ h„ 
(5.2) 

which is positive in contraction. From eqs (5.1) and (5.2), the current cross-sectional area 

of the pulse shaper can be written in terms of the original area and axial strain in the pulse 

shaper. Thus, 

a(t) = 
l-£p(t) 

(5.3) 
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The axial force exerted by the pulse shaper on the ends of the striker and incident 

bars is 

T(t) = ap(t)a(t) = CTi(t)A = ast(t)A, (5.4) 

where ap(t) is the true axial stress in the pulse shaper, Gj(t) is from the compressive stress 

wave travelling to the right in the incident bar, and ast(t) is from the compressive stress 

wave travelling to the left in the striker bar. From eq (5.4), the bar stresses at the pulse 

shaper/ bar interfaces are 

<Tn(t)a(t) 

For now, let ap(t) be defined by the general form of a one-dimensional stress-strain 

relationship 

CTp=crog(epX (5-6) 

where CT0 is a constant and g(sp) is a function of the pulse shaper engineering axial strain. 

From eqs (5.2), (5.5), and (5.6) 

A    (l-£p) 
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Since the incident and striker bars remain elastic, the axial strains in the bars at the bars/ 

pulse shaper interfaces can be written as 

^-•«^<S <5Jb) 

The engineering strain rate in the pulse shaper is given by 

s,(t) = 
V-(l),-''(1). (5.8) 

where v3(t) and v4(t) are the particle velocities at the striker bar/pulse shaper (3) and 

incident bar/pulse shaper (4) interfaces, respectively shown in Fig. 5.2. From the 

equations that relate stress and particle velocity in the bars, v3(t) and v4(t) are given by 

v3(t) = V0-vst(t) = V0-^- (5.9a) 
PstCst 

V4(t) = Vl(t) = ^, (5.9b) 
pc 

where vst(t) and v;(t) are the particle velocities in the striker and incident bars. As shown 

in Figs. 5.1, and 5.2, the bar areas are equal. However, the striker bar is supported by a 

nylon sabot that fits into the gun barrel. As will be shown later, this sabot mass must be 
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included in the wave analysis for the striker bar. Thus, the density and wave speed for 

the striker bar are denoted as pst and cst, respectively. 

Striker Bar 
p, c, A, E Jft Incident Bar 

Free 
Surface 

/ Strain Gage 
Pulse Shaper 

Figure 5.2 Schematic of striker bar, pulse shaper, and incident bar 

From eqs (5.4), (5.8), and (5.9) 

vK(t)=i-K 
1 1 

— +  
PC       Ps.Cs 

g(*„) 
l-£„ 

forO<t<T   (5.10) 

which has a solution 

V0 oJ 
1-K 

" 1      1 

.PC      PstCs,. 

g(x)~ 
(l-x)_ 

K '        °o -2-,   and   x 
_2L 

AV, 

dx,   forO<t<T   (5.11a) 

(5.11b) 
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where x is equal to two wave transit times in the striker bar. Once sp(t) is calculated from 

eq (5.11a), the strain in the incident bar can be obtained from eq (5.7b). In addition, eq 

(5.1 la) is valid only as long as the pulse shaper does not expand beyond the bar surfaces. 

Equation (5.3) shows that the engineering strain in the pulse shaper is limited for a given 

initial pulse shaper area ao, such that a(t) < A. 

Equation (5.1 la) does not explicitly give values for strain in the pulse shaper as a 

function of time for 0 < t < x. However, we can obtain closed-form equations for some of 

the features of the sp versus t curve. For small enough values of sp, the second term in eq 

(5.10) can be neglected and 

£«^1   fort«l. (5.12a) 

Also, the integral in eq (5.11a) must remain positive because time is always positive. 

Thus, the largest value of strain in the pulse shaper spm is given by 

JEÜnL = ___J . (5.12b) 
(i-O pm'     K 

1 1 — +  
PC    pstcs 

From eqs (5.7a) and (5.12b) the maximum possible stress in the incident bar is given by 
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a;„ =-p ^ =r. (5.12c) 
1 1 

— +  
PC      Ps,Cs 

Equation (5.12c) gives the value of incident stress for the problem without a pulse shaper. 

So if the striker bar is long enough, the stress in the incident bar will approach but not 

exceed tfim given by (5.12c). 

We now examine the pulse shaper response for x < t < 2x. At t = x 12, the 

compressive wave travelling to the left in the striker bar shown in Fig. 5.2 reaches the 

free surface and reflects as a tensile pulse travelling to the right. At t = x, this right 

travelling tensile pulse reaches the striker bar/ pulse shaper interface and causes 

additional reflected and transmitted waves to propagate in the striker and incident bars. 

We define -ost(t-x) as the interface stress from the right travelling tensile pulse. The 

additional reflected and transmitted interface stresses are defined as crr (t-x) and at (t-x), 

respectively. Thus, the axial force in the pulse shaper is given by 

T(t) = ap(t)a(t) = [tTiO + o-.'Ct -T)]A (5.13) 

= [<Tst(t)-«rst(t-T) + ar
I(t-T)]A. 

Particle velocities at the pulse shaper/ bar interfaces shown in Fig. 5.2 are 



V3(t) = V0-Vst(t)-Vst(t-T)-Vr
1(t-T) 

g,(t)    g,(t-T)    gr'(t-r) 

PS.CS. PstCst PstCs, 
v„ 
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(5.14a) 

v4(t) = vi(t) + vt
I(t-r)=-^ + gj(t)   .   g,  (t-T) 

p c pc 
(5.14b) 

From eqs (5.8), (5.13), and (5.14), the engineering strain rate is 

VP(t)=v0 
PstCst Ps.Cs. Ps.cs. Pc Pc 

(5.15) 

Now, we solve for a^t-r) from eq (5.13) and eliminate a^t-r) from eq (5.15). Thus, 

h0£p(t)=V0- 
1 1 — +  

PC    Ps,cst_ 
[r.W + cr/Ct-T)]- 

Ps.Cs. 
(5.16) 

From eqs (5.13), (5.6), and (5.3), the stress in the incident bar is 

,,       i/+     ,     gp(t)a(t)    <T0g(£p)a0 ,,(t)+Mt-)=-^=(I-yI 
(5.17) 

and from eq (5.7a) 
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Mt-T) = 
g0g(gp(t-T))a0 

(l-£p(t-T)) A 
(5.18) 

Finally, we substitute eqs (5.17) and (5.18) into eq (5.16) and obtain 

h 

V, 
MP(t)=l-K 

1 1 
 +  

P C PstCs 

g(£p(t))      2K   g(£p(t-T)) 

l-£p(t)      PstCst  l-Sp(t-T) 
,forr<t<2r.   (5.19) 

The solution to eq (5.19) is 

t=T+M 
v„_J, 

1-K 
1 1 
— +  
P c    pstc9 

g(x)     2K g(ep(t-T)) 

1-x    pÄcÄl-e_(t-T) 
dx, 

for T < t < 2T,   (5.20) 

where Sp1 is the strain in the pulse shaper at t = x, sp(t-x) is calculated from eq (5.11a) 

with the appropriate time shift, and K and x are defined by eq (5.11b). 

Equation (5.20) gives the total strain in the pulse shaper for x < t < 2 x. The strain 

in the incident bar is calculated from eq (5.7b) using the values of ep for x < t < 2x 

calculated from eq (5.20). As previously mentioned, the pulse shaper must not expand 

beyond the bar surfaces, so the engineering strain in the pulse shaper is limited by eq 

(5.3) for an initial pulse shaper area a<>, such that a(t) < A. In addition, eqs (5.19) and 

(5.20) are valid only if the pulse shaper remains in contraction or sp(t) remains positive 



66 

in eq (5.8). Thus for the particle velocities shown in Fig 5.2, (v3-v4) > 0. When v3 < v4, 

the pulse shaper will be modeled as elastic unloading. 

As long as a < A and v3 > v4; the pulse shaper continues to deform in 

compression. We repeated the previous analyses for multiple reverberations in the striker 

bar. For t > 2x, the general versions of eqs (5.16) and (5.19) are 

M»(t)=v0- 1 1  + — 
P c      pstcst 

2 

PstCst 

[o-i (t) + a,1 (t - x) + crt
2 (t - 2T) + .<rt

n (t - nr)] 

 ?_[(Tst(t-T) + cTr
1(t-2T) + crr

2(t-3r) + a/^t-nr)], 

fornT<t<(n + l)T.   (5.21) 

and 

h 
v^P(t)=l-K 

1 1 
 +  

P C p^ 

g(0 
l-e„ 

2K 

PstCs 

g(e0(t-T))    g(£p(t-2r)) g(gp(t-nr)) 
• + + . 

1-eJt-x)    l-s(t-2x) l-sp(t-nT) 

fornT<t<(n + l)T.   (5.22) 

< 

Now consider the situation when v3 < v4 and the pulse shaper unloads during x < t 

2x at t = t*.   We assume the pulse shaper unloads elastically (Fig. 5.3) and that the 

unloading stress is given by 

<7u(t)= <-Ep(ep-ep) 
(5.23) 
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where GP*, sp* are the peak stress and strain at t = t* when v3 = v4j and Ep is the unloading 

Young's modulus. 

Equation (5.16) gives the strain rate of the pulse shaper in terms of stress 

components in the incident and transmission bars for x < t < 2x. For x < t < t*, the stress 

in the incident bar at the pulse shaper/ incident bar interface is given by eq (5.17). 

However, for t* < t < 2x, the pulse shaper is unloading. From a force balance at the pulse 

shaper/ incident bar interface, the stress in the incident bar is 

er; (t) + er,1 (t - T) = »°i
g" {t\, for t * < t < 2T. (5.24) 

A(l-£p) 

Equation (5.24) assumes that the stress-strain law for the pulse shaper is given by eq 

(5.23) and that cru(t) < ap*. The last term in eq (5.16) is the interface stress from the right 

travelling tensile pulse coming from the free surface of the striker bar. Since this stress 

component is delayed by t = x, ast (t-x) is given by eq (5.18). We substitute eqs (5.18) 

and (5.24) into eq (5.16) and obtain 

2LLS (t)=i-K 
V    p 

1 1  +  
PiC;       PstCs 

a*-B.(e*-ev)      2K   g(s(t-r)) 

^o0-£p) Ps.Cst  l-ep(t-T) 

fort*<t<2x    (5.25) 

which has solution 
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t = t* + v   J V. 
1-K 

1 1  +  
PiCj       Ps,Cs 

ffD*-E0(e/-x)      2K   g(£p(t-0) P
V
 p 

^0d-x) 

-l 

dx, 
Ps.CÄl-«P(t-T)_ 

for t* < t < 2T   (5.26) 

where t* is the time when v3 = v4 and unloading begins. 

For many cases, additional wave reverberations in the striker bar are required to 

completely unload the pulse shaper. We repeated the previous analysis and obtained 

equations for the pulse shaper response for the onset of unloading between x < t < 2x and 

responses during 2x < t < 3x. Thus, 

7L*p(t)=1-K 
1 1  +  

P C Ps,Cs 

a;-E(s;-eJ      2K   g(fip(t-r)) 

<T0(l-fip) 

2K   g(eD(t-2r)) 

Ps.cs. l-£p(t-2x) 

PstCst l-fip(t-T) 

for2x<t<T + t*   (5.27a) 

h 

V. 
TTSp(t)=l-K 

1       1 — +  
P c      pstcs 

<-Ep(gp*-gp) 

o-0(l-ep) 

2K   gp'-Ep(gp*-gp(t-r))      2K   g(gp(t-2T))  forr + t^f^,    (527b) 

Ps.Cs,        C70(l-£p(t-r)) Pstcst l-ep(t-2x) 

Two response equations for 2x < t < 3x are required because of time delay terms in eq 

(5.21) that correspond to reverberations in the striker bar. In particular, the third terms in 

eqs (5.27a) and (5.27b) are different and the other terms are the same. For t < t* the pulse 

shaper is loading and eq (5.6) applies. By contrast, for t > t* the pulse shaper is 

unloading and eq (5.23) applies. 
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Figure 5.3 Pulse shaper response function in loading and unloading 

For the situation where the pulse shaper is not fully unloaded at t = 3x, we again 

repeated the previous analysis and obtained equations for the pulse shaper response for 

unloading between x < t < 2x and responses during 3x < t < 4x. Thus, 

0 

1       1 — +  
P C PstCs 

<-Ep(<-ep) 

*.(!-*„) 
2K 

Ps.Cs 

<j'-E(e*-£(t-T))    g(fip(t-2r))    g(ep(t-3r)) 
PV p 

a0(l-£D(t-r)) 
■ + - ■ + - 

l-ep(t-2T)    l-ep(t-3T)_ 

for3T<t<2T + t*   (5.28a) 



0 

1       1 
■ + - 

P C Ps,Cs 
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*o(l-0 

2K 

Ps,Cs 

V-Ep«-gp(t-r)) | g;-Ep(gp'-gp(t-2r)) | g(fip(t-3r» 

CTo(l-£p(t-r)) <To0-ßp(t-2T)) l-fip(t-3r)_ 

for2T + t*T<t<4r.   (5.28b) 

Numerical evaluations helped us understand the elastic unloading process that 

starts when v3 = v4 and continues for v4 > v3 (see Fig. 5.2). We found that the terms 

corresponding to the striker impact dominated values of v3 and v4. For example, the 

dominant term in eq (5.14a) for v3(t) is vst (t) = ast (t)/pstCst and the dominant term in eq 

(5.14b) for v4(t) is Vj(t) = tfi(t)/pc. As the pulse shaper stress decreases during unloading, 

CTst(t) and Oi(t) decreases rapidly which also causes v3 and v4 to decrease rapidly. As 

ast(t) and a;(t) decrease, v3(t) decreases much more slowly than v4(t). For some cases, the 

unloading condition v3(t) < v4(t) may be violated and the pulse shaper will begin elastic 

loading. Due to the heavy dependence of aj(t) on v4(t), this reloading is short lived, 

occurs frequently, and is a main reason why it is not uncommon for the unloading of the 

pulse shaper to be long (-100 (is). The unload/ reload cycles in the pulse shaper 

eventually reduce the pulse shaper stress to zero and the striker and incident bars separate 

from each another. 

In summary, we have presented a pulse shaping model for loading and unloading 

of the pulse shaper material. The pulse shaper material is taken as incompressible and 

assumed to undergo homogeneous deformation. Loading is governed by a general, one- 

dimensional stress-strain relationship (eq (5.6)) and unloading is taken as linear (eq 
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(5.23)). A general loading equation for multiple reverberations in the striker bar is 

developed and given by eq (5.22). The unloading procedure is more complicated and 

only the case for unloading at t* between T < t < 2x is presented. For other cases where 

unloading starts at times greater than 2T, we developed a Fortran computer code (see 

Appendix A) to calculate the pulse shaper response. 

5.3 PULSE SHAPER MATERIAL RESPONSE 

We conducted experiments with both OFHC and C11000 (Lewis, 1979) copper 

pulse shapers and showed that the Cl 1000 pulse shapers could be driven to larger strains 

without breakup and remained more circular after deformation. In addition, we present 

results for both hard and annealed Cl 1000 copper. The hard copper was received from 

the supplier and measured 45 on the Rockwell B scale (HRB 45). We heated the as- 

received copper for 2 hours at 800° F to obtain the annealed copper. 

The original pulse shaper geometries had thicknesses ranging from 0.8 mm to 1.6 

mm and thickness-to-diameter ratios ranging from 0.16 to 0.50. As discussed by Kolsky 

(1949), Davies and Hunter (1963), and Baron (1956), these geometries can create a 

complicated two-dimensional stress-state in the pulse shapers due to inertial and 

frictional effects. However, we are only attempting to produce a desired strain-time pulse 

in the incident bar and are not attempting to obtain stress-strain data for the pulse shapers. 

Thus CTP = G0 g(ep) given by eq (5.6) should not be construed as a constitutive material 

description of the pulse shaper, but as a one-dimensional resistance function. 
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For the hard and annealed, C11000 copper pulse shapers, we determined that a 

resistance function of the form 

o\£ 
<T„ = 

p l-*pm 

0 p (5.29) 

could accurately curve fit our data with a0, n, and m as adjustable parameters. Figure 5.4 

shows the hard copper (HRB 45) resistance function with a0 = 550 MPa, n = 0.0875, and 

m = 4.0. The dashed lines are split Hopkinson pressure bar data from samples with an 

original diameter of 9.52 mm and an original thickness of 6.4 mm. These data reached 

engineering strain magnitudes of 0.44 and 0.47 with strain rates of 3,200 and 3,500 s"1, 

respectively. The data points in Fig. 5.4 are from pulse shaping experiments where we 

used an end-point method. For each data point in Fig. 5.4 the engineering strain is the 

final strain calculated from eq (5.2). From eqs (5.3) and (5.4), the true axial stress in the 

pulse shaper can be expressed in terms of strain in the incident bar as 

<TP=—(l-ep>ei (5-30) 
a„ 

The corresponding true axial stress for each data point in Fig. 5.4 is that value 

corresponding to the maximum strain measured with the incident bar. Thus, maximum 

strain is obtained from a post-test thickness measurement, and maximum stress is 

calculated from eq (5.30) with the maximum measured strain in the incident bar. Figure 
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5.4 shows that the end-point data and Hopkinson bar data are in good agreement to 

strains of about 0.45. The end-point method was required to obtain strain data to about 

0.85. 

Figure 5.5 shows resistance functions for 0.79 and 1.29-mm-thick annealed 

copper pulse shapers. The resistance function for the 0.79-mm-thick pulse shapers lies 

above that for the 1.29-mm-thick pulse shapers and that suggests a slight rate effect for 

the material response. The parameters in eq (5.29) for the annealed pulse shapers with 

original thickness ho = 0.79 mm are CT0 = 750 MPa, n = 0.37, and m = 4.25; for ho = 1.29 

mm, the parameters are a0 = 625 MPa, n = 0.32, and m = 4.25. In addition, we present 

results from five Hopkinson bar experiments. The data with permanent strains of 0.13, 

and 0.18 had an original diameter of 9.53 mm, an original thickness of 12.70 mm, and 

strain rates of 2,100, and 3,000 s"1, respectively. The Hopkinson bar data with a 

permanent strain of 0.25 had an original diameter of 9.53 mm, an original thickness of 

6.35 mm, and strain rate of 4,370 s"1; whereas, the Hopkinson bar data with permanent 

strains of 0.36, and 0.54, had an original diameter and thickness of 6.35 mm, and strain 

rates of 5,800 s"1 each. The end-point method data points for the 1.29-mm-thick pulse 

shapers are in close agreement with the Hopkinson bar data for strains to 0.55. Again, 

the end-point method was required to obtain strain data to about 0.85. 
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Figure 5.4 Data and response function for hard (HRB 45) C11000 copper 
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Figure 5.5 Data and response functions for annealed C11000 copper 



75 

5.4      INCIDENT STRAIN FROM PULSE SHAPED EXPERIMENTS 

We modified the split Hopkinson pressure bar apparatus by shaping the incident 

pulses such that test samples are in dynamic stress equilibrium and have a nearly constant 

strain rate over most of the test duration. To obtain reliable dynamic, stress-strain data 

for brittle materials such as rocks or ceramics that have failure strains less than a few 

percent, the incident strain pulse should have a linear or quasi-linear rise. We will use the 

pulse shaping techniques described in this chapter to conduct experiments with limestone 

and glass ceramic samples. Results will be presented in Chapters 6 and 7. 

Figures 5.6 and 5.7 show data and model predictions for incident stresses from 

pulse shaped experiments with hard (HRB 45) and annealed C11000 pulse shapers, 

respectively. The pulse shapers had original thicknesses and diameters of 1.6 mm and 

4.8 mm, respectively. The 12.7-mm-diameter striker and incident bars shown in Fig. 5.1 

had lengths of 152 and 2130 mm, respectively. As discussed in Chapter 3, the bars were 

made from high-strength maraging VascoMax C350 steel (Vasco-Pacific, 1998) and have 

density p = 8100 kg/m3, Young's modulus E = 200 GPa, and bar wave velocity c = 4970 

m/s. The strain gages shown in Fig. 5.2 are located at 1060 mm from the impact surface 

on the incident bar. 

The striker bar is launched by a gas gun that has a bore diameter larger than the 

striker bar diameter, so the striker bar is fitted with two nylon bore-riders (sabots). The 

bore-riders are nylon cylinders that make a snug fit for the striker bar in the gun bore and 

provide a good alignment for projectile launch. We learned early in this study that the 

added mass of the bore-riders needed to be included in the striker bar wave analysis for 
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predicting incident strain pulses. This added mass is included in the derivation of the 

elementary theory for the striker bar by using an effective density pst, where pst is the 

total mass of the striker bar and bore-riders divided by the volume of the striker bar. The 

wave velocity for the striker bar is taken as cst
2 = E/pst, where E is Young's Modulus for 

the striker bar. Model predictions and measured strain pulses are in good agreement with 

this approximation. 

We previously defined x with eq (5.1 lb) as the time for two wave transit times in 

a striker bar of length L. For the data and model predictions shown in Figs. 5.6 and 5.7, 

the experiments were conducted with pst = 8,750 kg/m3, cst = 4,780 m/s, L = 152 mm, T = 

63.6 us, and a striking velocity V0 = 17.5 m/s. Both Figs. 5.6 and 5.7 show that the onset 

of unloading is at about t* = 110 JJ,S. So x < t* < 2x, and the loading strain in the pulse 

shaper is calculated from eq (5.11a) for 0 < t < x and from eq (5.20) for x < t < t*. 

However as with all Hopkinson experimental techniques, we do not measure stresses or 

strains in the pulse shaper but infer these quantities through a wave analysis and 

downstream strain measurements on the incident bar. Thus, the model that predicts 

incident bar stresses shown in Figs. 5.6 and 5.7 are calculated from eqs (5.6), (5.7a), and 

(5.29). 

For t > t* or t greater than about 110 \xs, the pulse shaper is unloading. We take 

the unloading Young's modulus as Ep = 117 GPa in eq (5.23) and calculate the unloading 

pulse shaper strain responses for t* < t < 2x (2x = 127 jxs) from eq (5.26) and for 2x < t < 

3x (3T = 191 us) from eqs (5.27a) and (5.27b).   The incident bar stresses predicted for 
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unloading in Figs. 5.6 and 5.7 can be expressed in terms of the strain in the pulse shaper. 

We combine eqs (5.3), (5.4), and (5.23) and obtain 

'•-Tä5j'''-B'i'''->) (531) 

where ap* and sp* are the peak pulse shaper stress and strain at the onset of unloading. 

A common feature for the hard copper data is a well defined kink found early in 

the incident stress-time data. The kink shown in Fig. 5.6 has an incident stress level of 

about 70 MPa and is caused by the transition from elastic to plastic deformation in the 

pulse shaper. The incident stress level of this kink can be adjusted by changing the initial 

pulse shaper diameter. In addition, the data in Fig. 5.7 shows the kink is removed for an 

annealed copper pulse shaper that has a very small yield strength. 

In Appendix B, we present results from a total of 32, SHPB experiments with 

hard (HRB = 45) and annealed Cl 1000 copper pulse shapers to study the accuracy of the 

pulse shaping model and resistance functions developed in this chapter. We varied 

striker bar lengths (50.8 and 152.4 mm), nominal striking velocities (8.5 and 17.5 m/s), 

pulse shaper diameters (3.2 and 4.8 mm), and pulse shaper thicknesses (1.6 and 0.8 mm) 

in order to exercise our model over a variety of different strain environments. Data and 

model predictions are shown to be in good agreement. 
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Figure 5.6 Incident bar stress data and model prediction for a hard C11000 copper pulse shaper 

250 

b 

B0 

0 30 60 150 210 

Figure 5, 

90 120 

Time (jis) 

.7 Incident bar stress data and model prediction for an annealed C11000 copper pulse 
shaper 



CHAPTER 6 

COMPRESSIVE BEHAVIOR OF AN INDIANA LIMESTONE 

6.1  BACKGROUND 

In Chapter 2, we presented results from three sets of depth-of-penetration 

experiments with limestone targets and steel rod projectiles with diameters of 7.1, 12.7, 

and 25.4 mm. Results from these experiments show that the target resistance increased 

with decreasing projectile diameter. Based on previous analyses by Warren and Forrestal 

(1998) for aluminum targets, we suspected that the target strength dependence on 

projectile diameter could be attributed to strain-rate effects in the target material. As a 

first step to developing a mechanics based understanding for the dynamic material 

response of these limestone targets, it was necessary to develop the experimental and 

analytical tools to properly test brittle materials dynamically. We developed an 

experimental split Hopkinson pressure bar (SHPB) facility specifically for brittle 

materials testing, and in Chapters 4 and 5 presented analytic models to help us conduct 

valid SHPB experiments.   In this chapter, we present unconfined compressive strength 

c 0        1 
data on Indiana limestone specimens at strain rates between 10" to 3 x 10 s". We show 

that the dynamic unconfined compressive strength for this limestone material is about 

double that obtained from the quasi-static experiments. Possible mechanisms for this 

large strength enhancement will be discussed. 
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6.2 INDIANA LIMESTONE 

As mentioned previously, the Indiana limestone used in this work was obtained 

from the Elliot Stone Company, Bedford Indiana. This material can be classified as a 

carbonate rock containing over 90% calcite and less than 10% quartz, and made up of an 

intermediate mixture of oolites and microfossil debris cemented with calcite (Podnieks, 

Chamberlain, and Thill, 1972, and Pettijohn, 1975). The limestone had an average bulk 

density ps = 2320 kg/m3 and a measured grain density pg = 2700 kg/m3, which gives an 

average porosity of 14.5%. The Young's modulus, Es = 24 GPa, for the limestone was 

measured directly from the linearized slope of quasi-static compression tests presented in 

110 
this chapter and the bar wave velocity cs = 3,200 m/s was calculated from cs = (Es/ps)   . 

Limestone cores, 13-mm in diameter, were drilled from a block perpendicular to 

the bedding plane with a thin walled diamond core barrel. The core was cut to a rough 

length and the ends ground flat and parallel to within ±0.025 mm. The outside diameter 

of the sample was then machined to a final diameter of 12.7 mm with the sides 

perpendicular to the ends of the sample to within 0.1°. 

6.3 EXPERIMENTS 

6.3.1    Servo-Hydraulic Loading 

A total of 23 compression tests were performed using a hydraulically driven 

Materials Test System (MTS 810), which is shown schematically in Fig. 6.1. A load cell 



81 

(MTS model 1210 AP-5K-B) was used to measure the axial load history and two 

different size MTS extensometers (model 632.31E-24 for 12.7- and 19.1-mm long 

specimens and 632.25B-20 for 25.4-mm-long specimens) were used to measure the axial 

deformation of the test specimens. The MTS actuator was moved at a constant velocity 

in displacement control mode in order to attain a constant strain rate in the limestone 

samples that behave nearly linear-elastic until just prior to failure. Varying strain rates 

were achieved by altering the actuator velocity. A personal computer (ALR 386) was 

used through a software program "Testlink" to control the MTS system and a Tektronix 

TDS 420A digital oscilloscope recorded the axial load and deformation data from each 

test. 

MTS Frame 

Figure 6.1 Schematic of MTS loading system 
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General practices for preparing and testing rock materials in compression are 

described in the American Society for Testing and Materials (ASTM) standards D 4543 

(1991) and D 2664 (1991), respectively. From such standards, general testing procedures 

can be developed that help eliminate testing variables (such as grain size and edge 

effects) that could easily change the strength values obtained for many rock materials. 

The standards are meant to be a guide for testing all rock materials, and as such could be 

too conservative when applied to some types of rock (see Hawkes and Mellor, 1970, and 

Farmer, 1983). 

ASTM recommends that the diameter of a rock specimen be at least ten times the 

largest mineral grain size, and since the grain size of Indiana limestone is between 0.15 

and 1.0 mm (Podnieks, Chamberlain, and Thill, 1972), specimen diameters of at least 

12.7 mm were used for this work. It is also recommended that a rock specimen have a 

length-to-diameter (lo/D) ratio of 2.0 to 2.5, which for a 12.7-mm-diameter specimen 

would result in a length of at least 25.4 mm. This proposed length is relatively long by 

SHPB standards. Since we would like to test the same length specimens in both the 

servo-hydraulic and SHPB test devices to eliminate test variability, it was necessary to 

investigate the effect different lo/D ratios on the compressive strength of Indiana 

limestone. 

Compressive strengths from 23 servo-hydraulic experiments conducted with 12.7- 

mm-diameter by 12.7-, 19.1-, and 25.4-mm-long specimens at strain rates between 10" 

and 3x10"2 s"1 are presented in Fig. 6.2. Within the data scatter, the compressive strengths 

of the limestone are about the same for all three \JD ratios tested.   Stress-strain data 
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presented in Figs. 6.3-6.5 show a general trend of increased compressive strength with 

increased strain rates. Figures 6.3-6.5 also show that the limestone behaves nearly linear- 

elastic, with a Young's modulus of approximately 24 GPa, until just before failure. We 

will use this modulus in the next section for the SHPB models developed in Chapter 4 

that predict equilibrium and constant strain rate in a sample for a given ramp incident 

pulse. 
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Figure 6.2 Compressive strengths of Indiana limestone samples with various aspect ratios and rates 
of strain 
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Figure 6.5 Stress-strain data for 12.7-mm-diameter by 25.4-mm-long limestone specimens 

6.3.2   Modified Split Hopkinson Pressure Bar 

Models developed in Chapter 4 predict that a nondispersive ramp pulse in the 

incident bar is required for testing brittle materials that have a linear stress-strain 

response to failure. In Chapter 5, we developed the pulse shaping models and techniques 

needed to produce such a pulse. In this section, we present results from two experiments 

on Indiana limestone that demonstrate our modified SHPB technique. Data from 

experiments show that the samples are in dynamic stress equilibrium and have nearly 

constant strain rates over most of the duration of the tests. We also carefully bracket 

sample failure with one test where the sample fails with catastrophic damage and a 
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second test where the sample is recovered intact. The sample had a length and diameter 

of 12.7 mm, and the sample and bar diameters were equal. The high strength steel 

incident and transmission bars had lengths of 2130 and 915 mm, respectively. Strain 

gages shown in Fig. 3.4 are located at 1065 mm from the impact surface of the incident 

bar and 229 mm from the sample/ bar interface on the transmission bar. To obtain a 

nearly linear ramp pulse in the incident bar, a 3.97-mm-diameter, 0.79-mm-thick, 

annealed C11000 copper pulse shaper was used. All the above mentioned parameters 

remained fixed for the two experiments presented in this section. However, the first 

experiment used a 154-mm-long, steel striker bar, and the second experiment used a 51- 

mm-long, steel striker bar. Both striker bars were launched to a striking velocity of 13.9 

m/s. 

Figure 6.6 shows the measured incident stress pulse and a prediction from our 

pulse shaping model for a 154-mm-long, steel striker bar with a striking velocity of 13.9 

m/s. Note that the incident stress pulse is nearly a linear ramp for about 75 jxs and has a 

stress loading rate of about M = 3.3 MPa/fxs. Incident, reflected, and transmitted strain 

pulses presented in Fig. 6.7 show that the high frequency oscillations that appear in Fig. 

3.10 are eliminated with pulse shaping. Thus, data analyses that use the elementary bar 

theory should be more accurate for pulse shaped experiments. Figure 6.8 presents 

stresses in the sample at the incident bar/ sample interface o\ and the sample/ 

transmission bar interface CT2 calculated from eqs (3.26a) and (3.26b) that use the 

measured strain signals. We also show that the model prediction from eqs (4.2) and 

(4.7b) are in good agreement with the measured stresses and that c} and a2 are in close 
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agreement. Thus, the sample is in nearly a state of dynamic stress equilibrium. Figure 

6.8 also shows the predicted and measured strain rates versus time. Strain rate is nearly 

constant for 15 j^s < t < 50 jas. At about 50 ^is, the limestone sample begins to fail. 

When failure starts, the sample is no longer in a state of homogeneous deformation and 

the valid range for the experiment is over. Post-test observations showed that the sample 

eventually experienced catastrophic damage. 
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Figure 6.6 Data and model prediction for an incident pulse with an annealed copper pulse shaper 
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Figures 6.6 and 6.8 show that the limestone sample started to fail at about 50 fxs 

and the incident ramp pulse was loading for about 75 ps. Therefore, the sample 

continued to be loaded after the start of failure and the sample eventually experienced 

catastrophic damage. To recover an intact limestone sample after a test, we conducted 

another experiment with a ramp pulse in the incident bar with a shorter duration than the 

pulse shown in Fig. 6.6. Figure 6.9 shows the measured incident stress pulse and a 

prediction from our pulse shaping model for a 51-mm-long, steel striker bar with a 

striking velocity of 13.9 m/s. Note that the incident stress pulse is nearly a linear ramp 

for about 50 j^s and has a stress loading rate of about M = 3.1 MPa/|is. Thus the incident 

pulses shown in Figs. 6.6 and 6.9 are almost identical except for the loading durations of 

75 |as and 50 \is, respectively. Results for the 50 ja,s ramp incident pulse are shown in 

Fig. 6.10 and are very similar to those presented in Fig. 6.8. However, the strain rate in 

Fig. 6.7 shows an exponential growth after about 50 JJ.S, and the strain rate in Fig. 6.10 

remains nearly constant. Thus the sample is loaded after failure began in the first 

experiment, and the loading ended at about the time the sample started to fail in the 

second experiment. In the first experiment the limestone sample eventually failed with 

catastrophic damage; whereas, in the second experiment the sample was recovered intact. 

From Figs. 6.8 and 6.10 we conclude that the limestone sample has a failure stress of 

about 120 MPa for a strain rate between 100 s"1 and 120 s"1. 
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6.4      RESULTS 

In Fig. 6.11, we show stress-strain curves from the dynamic SHPB experiments 

discussed in this section and a quasi-static stress-strain curve. We note that the failure 

stress at a strain rate between 100 and 120 s"1 is about double that obtained from a quasi- 

static experiment. Compressive strength versus strain rate data are presented in Fig. 6.12. 

In addition to the servo-hydraulic and SHPB data discussed in section 6.3, several 

additional compressive strength data points are included in Fig. 6.12. The open square 

symbols in Fig 6.12 represent data produced by Olsson and Mosher (1996) on 25.4-mm- 

diameter, IQ/D -2 limestone specimens. Also, two additional SHPB experiments with 

lo/D =1.5 specimens were conducted and show no noticeable strength effect from the 

different aspect ratios (open triangle and crossed circle). These additional data compare 

well with the previously discussed servo-hydraulic and SHPB data and create an almost 

linear compressive strength- log strain rate relationship over the range we tested. 
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6.5      DISCUSSION OF STRAIN RATE EFFECTS IN INDIANA LIMESTONE 

The results presented in Fig. 6.12 on Indiana limestone demonstrates that 

compressive strength increases with increasing strain rate. Previous research (Cheatham, 

1968; Kumar, 1968; Sangha and Dhir, 1972; Green and Perkins ,1972; and Costin and 

Mecholsky, 1983) has also shown that the compressive strengths of many types of rocks 

are sensitive to strain rate. Causes for this strain-rate effect have focused on 

environmental variables such as temperature (Rutter, 1972; and Podnieks, Chamberlain, 

and Thill, 1972) and liquid saturation (Colback, and Wiid, 1965; and Podnieks, 

Chamberlain, and Thill, 1972). In general, it has been shown that the strength of rocks 

and many other brittle solids (Lawn, 1993) will increase with increasing strain rate and 

decreasing temperature and saturation. In an attempt to gain an insight into the effect of 

strain rate on the strengths of rocks, the basic rock fracturing process is briefly reviewed, 

previous work is discussed, and possible explanations for the rate enhancement of 

Indiana limestone are presented. 

Griffith (1920) assumed that defects, in the form of narrow cracks, created stress 

concentrations that weakened brittle materials. He proposed that fracture occurs when 

the stress at or near the crack tip exceeds the strength of the atomic bonds in this region. 

Using expressions for the stress field around an isolated crack in an elastic homogeneous 

body, Griffith developed a fracture initiation criterion for crack tip propagation. 

According to Griffith's model, a crack initiated in a tensile field will propagate unstably 

causing the specimen to fracture. However, the problem becomes more complicated in a 
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compressive field. Various investigators (Brace and Bombilakis, 1963; and Hoek and 

Bieniawski, 1965) have studied crack growth photoelastically in glass plates stressed in 

compression. They found that the initiation of crack growth under such conditions did 

not lead to failure. Instead, the cracks became stable after propagating some fraction of 

their initial length and in the direction of the maximum compressive principle stress. 

If a uniform stress field is applied to an inhomogeneous material such as a rock, 

local stresses can be very different than those specified at the boundaries. The stress 

concentrations along grain boundaries, pores, and cracks further.complicate this problem. 

As an inhomogeneous rock specimen is subjected to an increasing applied stress, there 

will be a certain region in the rock where the stress intensity will exceed the local 

strength. A crack, which may pre-exist in the material or at a grain boundary, will then 

propagate. When the crack propagates into a region where the local stress is lower, it will 

stop propagating and become arrested. As the applied stress is increased still higher, the 

region with the next highest stress concentration will fail, and so on, until combinations 

of these events produces a final fracture of the entire body. 

The idealized picture of crack propagation in rocks is complicated by 

environmental effects. Rice (1978) modified the classical Griffith (1920) theory to 

account for stress corrosion in a solid due to an absorbate able to infiltrate the solid 

matrix and reduce the thermodynamic threshold by which crack growth can occur. Data 

by Boozer, Hiller, and Serdengecti (1962) on Indiana limestone (similar to the material of 

study in this research) and Navaho sandstone samples saturated with different liquids 

showed that triaxial compressive strengths of both rocks decreased as a function of 

increasing surface tension of the immersing liquids.   Later, Colback and Wiid (1965) 
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presented similar results on unconfined compression experiments from another quartzitic 

sandstone. Conclusions from these experiments suggest that the absorbates decreased the 

energy needed to form the two new surfaces of a crack and thus decreased their strength, 

by a factor of two in some cases. 

Other data from Krokosky and Husak (1968) showed unconfined strength 

increases of up to 50% from samples of basalt tested at room (lxlO5 Pa) pressure and 

when ultra-high vacuum pressures (1.3xl0~7 Pa) were applied. Results from these 

experiments indicate that the lack of a stress corrosion mechanism, namely water vapor, 

in the ultra-high vacuum tests was responsible for the increased strength of the rock. 

In addition to environmental effects, the rate of loading is also an important 

parameter because it can limit the effective time environmental conditions have to 

decrease the surface free energy at crack tips in rocks. Costin and Mecholsky (1983) 

applied Rice's (1978) failure criterion to a wet Tennessee marble to study the effects 

stress corrosion has on strength with varying strain rate. Data and model predictions, 

presented in Fig. 6.13, show three distinct stages to the shape of the data and model 

prediction. At strain rates below about 10"6 s"1, the model predicts that the rock strength 

will be independent of rate. In this strain-rate range, the stress around the advancing 

crack tips will have sufficient time to relax and the crack tips will have sufficient time to 

absorb moisture before the next increment of load is applied. At intermediate strain rates 

(10"6 to 1 s"1), stress corrosion plays a less dominant role in the strength of the marble 

with increasing strain rate. As strain rates are increased, the medium around the 

advancing crack tips will not have sufficient time to absorb completely the water vapor 

that could weaken the atomic bonds at the crack tip.   At strain rates above 1 s"1, the 



96 

predicted failure stress of the marble is independent of stress corrosion because the water 

vapor will not have time to weaken the bonds of the advancing crack tip. Model 

predictions and experimental data are shown to be in good agreement in Fig. 6.13. 
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Figure 6.13 Ultimate failure stress versus strain rate from compression tests on wet Tennessee 
marble. [Costin and Mecholsky (1983)] 

Griffith's (1920) and Rice's (1978) models assumes quasi-static loading of an 

ideal brittle material. Under such idealized conditions, all of the mechanical energy 

absorbed by a material having linearly elastic behavior until failure is used to rupture the 

atomic bonds at the crack tip to form new surfaces. The rate of loading of this solid is 

slow enough so that stress fields within the medium can equilibrate, and no mechanical 

energy is used to generate heat, create plastic flow, or develop acoustic emissions around 
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an advancing crack tip. Although restrictive in nature, Rice's model shows that 

environmental effects in rocks can account for some of the strength enhancements shown 

in Fig. 6.12 for Indiana limestone, especially in the low to medium strain rate region. 

At strain rates about 10"3 s"1, other mechanisms such as non-equilibrated stress 

fields and mode of failure changes can also cause strength enhancements in rocks. 

Observations by Swanson (1984), and Atkinson (1984) have shown that the mode of 

crack propagation within rocks changes with strain rate. At moderate rates of strain (10"1 

s"1), the crack path tends to travel a more transgranular path compared to the predominant 

intergranular path seen at quasi-static strain rates (10"5 s"1). As a rock specimen is 

subjected to a stress field in a quasi-static environment, crack advancement occurs at a 

slow enough rate to relax the stress concentrations adjacent to the crack surface before 

the next stress increment is applied. However, at faster strain rates, the stress 

concentrations do not have sufficient time to fully equilibrate through the medium and 

cause the stress distribution around a crack tip to be a function of strain rate. In this case, 

the magnitude of the stress concentrations around a crack tip is higher. Depending upon 

the mineralogy and pore and flaw distributions of the rock being tested, the crack path 

could follow a much more transgranular path at the higher strain rates (Swanson, 1984). 

It is likely that the observed strength enhancements we have seen for Indiana limestone as 

a function of strain rate are due to one or more of the mechanisms we have discussed 

above. 

To begin to unravel the dependence saturation level, equilibrium, and mode of 

failure changes have on the unconfined compressive strength of Indiana limestone would 

require an extensive experimental effort.    Although standard American Society for 
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Testing & Materials (ASTM) practices (D4543, 1991, and D2664, 1991) exist for 

preparing and testing rock materials in a quasi-static environment, no standards are 

currently available for the dynamic testing of rocks. Further, Podnieks, Chamberlain, and 

Thill, (1972) have shown that slight variations of sample preparation and preconditioning 

can dramatically effect strength characteristics of rocks. Repetitive experiments would 

need to be conducted at several strain-rate ranges to obtain statistically meaningful 

results. 

We have shown that recovery of damaged specimens loaded with a single, well- 

defined loading pulse from a SHPB experiment is possible. Several different post- 

mordem analyses of the recovered samples could be performed in future work to help 

quantify the damage created in the limestone tested at various rates of strain. Some 

examples are: 1) Pre- and post-test sonic velocities can be measured, 2) reloading of 

recovered intact samples from SHPB experiments could be performed quasi-statically to 

measure the relative change in unconfmed strengths of pristine and dynamically tested 

limestone samples, and 3) optical or scanning electron microscope images of sections of 

samples could be used to study fracture patterns and trends. 



CHAPTER 7 

COMPRESSrVE BEHAVIOR OF MACOR 

The analytical models presented in Chapter 4 examine the sample response 

produced by an incident stress pulse. The incident stress pulse given by eq (4.1) is taken 

as a quadratic function, but these models assume the sample has a linear stress-strain 

response. While most brittle materials, such as rocks or ceramics, have quasi-linear, 

dynamic stress-strain responses, slight deviations from linear can change the strain-rate 

histories over the test duration. Because we do not know the sample, stress-strain 

response before a test, some experimental trials are required before we achieve dynamic 

stress equilibrium and nearly constant strain rate. The analytical models show trends that 

help guide and minimize our experimental trials. 

We begin this process by first conducting a few quasi-static, stress-strain 

experiments with a new sample material. Then, we linearize this quasi-static data and 

obtain a value for Es for eq (4.2). Our early SHPB experiments are conducted with nearly 

linear incident stress pulses such as those for limestone (Fig. 6.6) or the incident pulse 

shown in Fig. 5.7. We check for sample equilibrium and nearly constant strain rate with 

strain measurements and eqs (3.26a), (3.26b), and (3.28). In this study, we learned that it 

was relatively easy to obtain sample equilibrium and more difficult to obtain a nearly 

constant strain rate over most of the test duration. For the Macor results presented in this 

section, analytical and experimental trials suggest the concave downward incident stress 

pulse shown in Fig. 7.1 produced a nearly constant strain rate. 
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To demonstrate our modified SHPB technique, we present results from two pulse 

shaped experiments with the machineable glass ceramic, Macor (Corning, 1992). Macor 

is a white, ceramic composite comprised of a fluorophlogopite mica phase (55%) 

■a 

interspersed in a borosilicate glass matrix (45%) having a density ps = 2520 kg/m , 

Young's modulus Es = 64.1 GPa, bar wave velocity cs = 5040 m/s, and porosity r\ = 0%. 

Data from experiments with Macor show that the samples are in dynamic stress 

equilibrium and have nearly constant strain rates over most of the duration of the tests. In 

addition, we carefully bracket sample failure with one test where the sample fails with 

catastrophic damage and a second test where the sample is recovered intact. Thus, intact 

samples that experience strains beyond the elastic region and post-peak stresses can be 

retrieved for microstructural evaluations. 

The striker, incident, and transmission bars shown in Fig. 3.4 were made from 

high strength, maraging VM 350 steel (Vasco Pacific, Montebello, CA) and have density 

p = 8100 kg/m3, Young's modulus E = 200 GPa, and bar wave velocity c = 4970 m/s. 

The incident and transmission bars had diameters of 19.05 mm and lengths of 2130 and 

915 mm, respectively. Strain gages shown in Fig. 3.4 were located at 1065 mm from the 

impact surface of the incident bar and at 458 mm from the sample/ bar interface on the 

transmission bar. The Macor samples had a length and diameter of 9.53 mm. To obtain 

incident stress pulses that would strain the Macor samples at a nearly constant strain rate 

over most of the test durations, 10.21-mm-diameter, 0.79-mm-thick, annealed C11000 

copper pulse shapers were used. All of the above mentioned parameters remained fixed 

for the two experiments presented in this section. However, the first experiment used a 

19.05-mm-diameter,  127-mm-long, striker bar, and the second experiment used a 
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19.05-mm-diameter, 101.6-mm-long, striker bar. The effective densities and wave 

velocities that correct for the added mass of the sabots were pst = 8790 kg/m , cst = 4770 

m/s and pst = 8760 kg/m3, cst = 4780 m/s for the 125-mm-long and 101.6-mm-long striker 

bars, respectively. Both striker bars were launched to a striking velocity of 12.2 m/s. 

250—r 

Figure 7.1 Incident bar stress data and model prediction for an annealed C11000 copper pulse 
shaper 

Figures 7.1, 7.2, and 7.3 show data for the experiment conducted with the 127- 

mm-long striker bar. In Fig. 7.1, we show the measured incident stress pulse and a 

prediction from our pulse shaping model. Figure 7.2 shows stresses at stations 1 and 2 

shown in Fig. 3.4. The stress at the incident bar/ sample interface <TI is calculated from 

eq (3.29a) and strains measured on the incident bar, and stress at the transmission 
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bar/sample interface CT2 is calculated from eq (3.29b) and the measured transmitted strain. 

These interface stresses are in reasonably good agreement, which implies that the sample 

is nearly in dynamic stress equilibrium. Strain rate in the sample, shown in Fig. 7.3, is 

calculated from eq (3.31) and the measured reflected strain in the incident bar. The 

average strain rate is about 300 s"1 over 20 (as to 60 fxs. At about 60 (is the sample begins 

to fail and eventually fails with catastrophic damage. 
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Figure 7.2 Interface stresses from a pulse shaped SHPB experiment with a Macor sample 
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Figure 7.3 Strain rate from a pulse shaped SHPB experiment with a Macor sample 

Figures 7.4, 7.5, and 7.6 show data for the experiment conducted with the 101.6- 

mm-long striker bar. Figure 7.6 shows an average strain rate of 280 s"1 over 20 us to 50 

(xs. At 50 jas, the sample unloads and was recovered intact. 

Figure 7.7 shows dynamic and quasi-static stress-strain data for the Macor 

samples.   The sample with an average strain rate of ss = 280 s"1 experienced strain 

beyond the elastic region and post-peak stress. Samples such as these can be retrieved for 

post-test, microstructural evaluations. 
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Figure 7.4 Incident bar stress data and model prediction for an annealed C11000 copper pulse 
shaper 
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Figure 7.5 Interface stresses from a pulse shaped SHPB experiment with a Macor sample 
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Figure 7.6 Strain rate from a pulse shaped SHPB experiment with a Macor sample 
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Figure 7.7 Quasi-static and dynamic stress-strain data for Macor 



CHAPTER 8 

CONCLUSIONS 

A series of penetration experiments were conducted into Indiana limestone targets 

with three scales of geometrically similar projectiles. The ogive-nose rod projectiles with 

a length-to-diameter ratio often had diameters and masses of 7.1 mm, 0.020kg; 12.7 mm, 

0.117 kg; and 25.4 mm, 0.931 kg. Based on data sets with these three projectile scales, a 

previously developed analytic penetration model was used to describe the target 

resistance by its density and a target strength parameter that is determined from 

penetration depth versus striking velocity data. Results from these experiments and the 

penetration model suggested a strain-rate dependence of the limestone target material. 

In order to begin to investigate the strain-rate effects of Indiana limestone, a split 

Hopkinson pressure bar (SHPB) facility was designed and built for dynamic testing of 

brittle materials in uniaxial compression. Preliminary results from conventional SHPB 

experiments on limestone samples indicated that critical experimental modifications had 

to be made to the traditional SHPB apparatus for valid testing of brittle materials. 

Specifically, the incident pulse was shaped such that the samples reached dynamic stress 

equilibrium and had a nearly constant strain rate throughout most of the test duration. 

Also, the responses of the SHPB apparatus and the sample under test were modeled in 

order to guide the experimental designs and minimize the experimental trials. 

The shaping of the incident pulse was accomplished by placing a thin disk of 

annealed or hard Cl 1000 copper on the impact surface of the incident bar. After impact 
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by the striker bar, the copper disk deforms plastically and spreads the pulse in the 

incident bar. An analytical model and data were presented that show a wide variety of 

incident strain pulses can be produced by varying the geometry of the copper disks and 

the length and striking velocity of the striker bar. Model predictions were shown to be in 

good agreement with measurements. 

Analytic models predicted that a ramp stress pulse in the incident bar is required 

for limestone samples. Data from experiments with limestone samples showed that the 

samples were in dynamic stress equilibrium and had constant strain rates over most of the 

test durations. Compressive strength stress data for strain rates between 10"5 and 300 s" 

on Indiana limestone samples showed an increase in compressive strength as strain rate 

increased. In addition, the ramp pulse durations were controlled such that samples were 

unloaded just prior to failure. Thus, intact samples that experienced strains beyond the 

elastic region and post-peak stresses could be retrieved for microstructural evaluations. 

To show the versatility of this work, experiments and model results were also presented 

for a machineable glass ceramic. 

Thus, this thesis presents analytic models and experimental techniques that 

provide procedures to obtain dynamic, unconfined compressive, stress-strain data for 

brittle materials. Data for limestone and a glass ceramic materials were presented to 

demonstrate these procedures. 
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$DEBUG 

HOPKINSON BAR PULSE SHAPING PROGRAM HOP9-1 (9/20/99) 

THIS PROGRAM CALCULATES THE INCIDENT STRESS IN THE SPLIT 
HOPKINSON BAR FOR A PULSE SHAPING MATERIAL WITH KNOWN MATERIAL 
PROPERTIES. 

PARAMETER      (NPS=15000) 
DOUBLE PRECISION HM(NPS),HI(NPS),EC(NPS),T(NPS),DELT(NPS) 
DOUBLE PRECISION STRAINI(NPS),STRESSI(NPS),TMS(NPS) 
DOUBLE PRECISION STRNRT(NPS),VI(NPS),V2(NPS) , AM 
DOUBLE PRECISION DHM,DDELT,DT,DEC,SIGCSTR,ECSTR,VALUE1,VALUE4 

CA110 COPPER MODEL 

SIGO=550000000. 
AN=0.0875 
AM=4. 

CA110 'ANNEALED' COPPER MODEL REGULAR 

SIGO=625000000. 
AN=0.32 
AM=4.25 

CA110 'ANNEALED' COPPER MODEL THIN 

SIGO=750000000. 
AN=0.37 
AM=4.25 

NEMAT-NASSER'S CONSTANTS (CA 101) 

SIGO=570000000. 
AN=0.2 
AM=9.9e25 

COPPER PARAMETERS 

YOUNGC=117.21E03 
HOIN=0.0317 
HOM=HOIN*0.0254 
DIAO=0.402 
AO=DIAO**2*0.7854 
HSTEPI=0.00005* 0.0254 
STEP=50 

BAR PROPERTIES  (C-350) 

E=200E9 
RHO=8100 
C=4969 
A=0. 7465**2*0. 7854 

BAR PROPERTIES (ALUMINUM) 

E=72.0e9 
RHO=2780 
C=5089 
A=0.750**2*0.7854 

STRIKER PARAMETERS 

RHOST=RHO*1.0885 
CST=SQRT(E/RHOST) 
VO=12.28 
ALEN=6. 
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ST=2* ALEN* 0.0254/CST 
C 
C       INCREMENTS 
C 

STARl=HSTEPI/200 
STAR2=HSTEPI/10000 
STAR3=HSTEPI/52500 
STAR4=HSTEPI/25000 
AK1= (2* SIGO* AO) / (RHOST* CST* VO* A) 
AK=(SIGO*AO)/(VO*A)* (1/ (C* RHO) +1/ (CST*RHOST) ) 

C 
C       INITIAL VALUES 
C 

HM(1)=HOM 
HI(1)=HOM/0.0254 
EC(1)=0 
T(1)=0 
DELT(1)=0 
STRAINI(1)=0 
STRESSI(1)=0 
Vl(l)=VO 
V2(l)=0.0 
TMS(1)=0 
STRNRT(l) = (VO)/HOM 
SIGMAX=0.99*0.5*RHO*C*VO/1E6 
COONT=l 

C 
C      OPEN OUTPUT FILES 
C 

OPEN(UNIT=7,FILE='OUTPÜT1.TXT' , STATUS='UNKNOWN') 
WRITE(7,5) HM(1),HI(1) , EC(1),T(1),DELT(1),STRAINI(1) 

+    , STRESSI(l) ,TMS(1),STRNRT(1) ,V1(1) , V2(l) 
5  FORMAT(ll(F15.8,1X)) 

C 
C      OPEN DEBUG FILE 
C 

OPEN(UNIT=8,FILE='OUTPUT2.TXT' , STATUS='UNKNOWN') 
OPEN(UNIT=9,FILE='OUTPUT3.TXT',STATUS='UNKNOWN') 
OPEN(UNIT=10,FILE='OUTPUT4.TXT' , STATUS='UNKNOWN') 

C 
C       DO LOOP FOR FIRST TRAVEL OF WAVE (ST) IN STRIKER 

C 
DO 1000 1=2,NPS 

100 DHM=HM(I-1)-HSTEPI 
200 DHI=DHM/0.0254 

DEC=(HOM-DHM)/HOM 
DT=(HOM/VO)* (1.0/CL.0-AK* ( (DEC** AN) / ( (1. 0-(DEC** AM) )* (1.0-DEC) ) ) ) ) 

+ * (DEC-EC(I-1))+T(I-1) 
DDELT=DT-T(I-1) 
IF(I.EQ.2)THEN 

DELTP=DDELT+1.5E-9 
DELTM=DDELT-1.5E-9 
GO TO 300 

ENDIF 
IF(DDELT.LE.DELTP.AND.DDELT.GE.DELTM)THEN 

HSTEPI=HM(I-1)-DHM 
GO TO 300 

ENDIF 
IF(DDELT.GT.DELT(2))THEN 

DHM=DHM+STAR2 
GO TO 200 
ENDIF 
IF(DDELT.LT.DELT(2))THEN 

DHM=DHM-STAR2 
GO TO 200 
ENDIF 

300 HM(I)=DHM 
HI(I)=DHI 
EC(I)=DEC 
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T(I)=DT 
DELT(I)=DDELT 

STRAINI(I) = (SIGO*AO)/(E*A)* (EC (I )** AN) / ( (1. O-EC (I) ** AM) 
+ * (l.O-EC(I))) 

STRESSI(I)=STRAINI(I)* (E/1E6) 
IF(STRESSI(I).GE.SIGMAXJTHEN 

STRESSI(I)=SIGMAX 
STRAINI(I)=STRESSI(I)/(E/1E6) 
HM(I)=HM(I-1) 
HI(I)=HI(I-1) 
EC(I)=EC(I-1) 
SIGCSTR=(STRESSI (I)* (l-EC(I) )*A)/AO 
ECSTR=EC(I) 

ENDIF 
V1(I)=V0-(STRESSI(I)*1E6)/(RH0ST*CST) 
V2(I) = (STRESSI(I)*1E6)/(RH0*C) 
TMS(I)=T(I)*1E6 
STRNRT(I) = (V1(I)-V2(I))/H0M 

WRITE (7, 400) HM (I) ,HI(I) ,EC(I) , T (I) , DELT (I) , STRAINI (I) , 
+        STRESSI(I) ,TMS(I),STRNRT(I),V1(I),V2(I) 

400  FORMAT(11(F15.8,IX)) 
IF(STRNRT(I).LE.0.0)THEN 

STRNRT(I)=0.0 
NUN=I 
N=I 
GO TO 10001 

ENDIF 
IF(T(I) .GE.ST)THEN 

N=I 
COUNT=2 
GO TO 1001 

ENDIF 
1000  CONTINUE 

C 
C      DO LOOP FOR SECOND TRAVEL OF WAVE (2*ST) IN STRIKER 
C 

1001 PRINT*, 'GOING TO SECOND' 
DO 2000 II=N+1,NPS 

DHM=HM(II-1)-STAR1 
2100 DHI=DHM/0.0254 

DEC=(HOM-DHM)/HOM 
DT=(HOM/VO)* (1.0/(1.0-AK* (DEC**AN)/( (1. 0-DEC**AM)* (1.0-DEC) )- 

+        AK1* (EC(II-N)**AN)/( (1.0-EC(II-N)**AM)* (l-EC(II-N) ) ) ) ) 
+        * (DEC-EC(II-l) )+T(II-l) 

DDELT=DT-T(II-1) 
IF(DDELT.LE.0.0)THEN 

NN=II-1 
NUN=NN 
SIGCSTR=(STRESSI (II-l)* (l-EC(II-l) )*A)/AO 
ECSTR=EC(II-1) 
GO TO 10001 

ENDIF 
IF(DDELT.LE.DELTP.AND.DDELT.GE.DELTM)THEN 

HSTEPI=HM(II-l)-DHM 
GO TO 2200 

ENDIF 
IF(DDELT.GT.DELT(2))THEN 

DHM=DHM+STAR3 
GO TO 2100 

ENDIF 
IF(DDELT.LT.DELT(2))THEN 

DHM=DHM-STAR3 
GO TO 2100 
ENDIF 

2200 HM(II)=DHM 
HI(II)=DHI 
EC(II)=DEC 
T(II)=DT 
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DELT(II)=DDELT 
STRAINI(II) = (SIGO*AO)/(E*A)* (EC (II) ** AN) / ( (1. 0- 

+ EC(II)**AM)* (l.O-EC(II))) 
STRESSI(II)=STRAINI(II)* (E/1E6) 
IF(STRESSI (II) .GT. ( (RHO*C*VO) / (2E6) ) (THEN 

STRESSI(II) = (RHO*C*VO)/(2E6) 
STRAINI(II)=STRESSI(II)/(E/1E6) 

ENDIF 
VI (II) = (VO- (2*STRESSI (II-N)* 1E6) / (RHOST*CST) ) - (STRESSI (II)* 

+ 1E6)/(RH0ST*CST) 
V2 (II ) = (STRESSI (II )*1E6)/(RH0*C) 
TMS(II)=T(II)*1E6 
STRNRT(II) = (V1(II)-V2(II) ) /HOM 

WRITE(7,2700)HM(II),HI(II),EC(II),T(II),DELT(II),STRAINI(II), 
+        STRESSI(II), TMS(II) , STRNRT(II),VI(II),V2(II) 

2700  F0RMAT(11(F15.8,1X)) 
IF(STRNRT(II).LE.0.0)THEN 

STRNRT(II)=0.0 
NN=II 
NUN=II 
PRINT *,ST 
GO TO 10001 

ENDIF 
IF(II.EQ. (2*N) (THEN 

NN=II 
CODNT=3 

C WRITE(8,*)NN,T(II) 
PRINT *,'GOING TO 3' 
GO TO 2001 

ENDIF 
2000 CONTINUE 

C 
C       DO LOOP FOR THIRD TRAVEL OF WAVE (3*ST) IN STRIKER 
C 
2001 DO 3000 III=NN+1,NPS 

DHM=HM(III-l)-STARl 
3100 DHI=DHM/0.0254 

DEC=(HOM-DHM)/HOM 
DT1=AK* (DEC**AN)/( (1. 0-DEC** AM) * (1.0-DEC) ) 
DT2=AK1* (EC(III-N)**AN)/( (1.0-EC(III-N)**AM)* (l-EC(III-N) ) ) 
DT3=AK1* (EC(III-NN)**AN)/( (1.0-EC(III-NN)**AM)* (1-EC (III-NN) ) ) 

DT=(HOM/VO)* (1.0/(1.0-DT1-DT2-DT3))* (DEC-EC(III-l))+T(III-l) 
DDELT=DT-T(III-1) 
IF(DDELT.LE.0.0)THEN 

NNN=III-1 
NUN=NNN 
SIGCSTR=(STRESSI(III-l)* (1-EC(III-l))*A)/AO 
ECSTR=EC(III-l) 
GO TO 10001 

ENDIF 
IF(DDELT.LE.DELTP.AND.DDELT.GE.DELTM)THEN 
HSTEPI=HM(III-1)-DHM 
GO TO 3200 

ENDIF 
IF(DDELT.GT.DELT(2))THEN 

DHM=DHM+STAR3 
GO TO 3100 

ENDIF 
IF(DDELT.LT.DELT(2))THEN 

DHM=DHM-STAR3 
GO TO 3100 

ENDIF 
3200 HM(III)=DHM 

HI(III)=DHI 
EC(III)=DEC 
T(III)=DT 
DELT(III)=DDELT 
STRAINI (III) = (SIGO*AO) / (E*A)* (EC (III) ** AN) / 

+ ( (1.0-EC(III)**AM)* (1.0-EC(III) )) 
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STRESSI(III)=STRAINI(III)* (E/1E6) 
IF(STRESSKIII) .GT. ( (RHO* C* VO) / (2E6) ) ) THEN 

STRESSI (III) = (RHO*C*VO) / (2E6) 
STRAINI(III)=STRESSI(III)/(E/1E6) 

ENDIF 
VI(III)=VO-(STRESSI(III)*1E6)/(RHOST*CST)-(2*STRESSI(III-N) 

+        * 1000000)/(RHOST*CST)-(2* STRESSI(III-NN)*1E6)/(RHOST*C) 
V2 (III ) = (STRESSI (III)*1E6)/ (RHO*C) 
TMS(III)=T(III)*1E6 
STRNRT(III) = (V1(III)-V2(III) )/HOM 

WRITE(7,3700,ERR=999)HM(III),HI(III),EC(III),T(III),DELT(III), 
+        STRAINI(III),STRESSI(III) , TMS(III),STRNRT(III),VI(III),V2(III) 

3700 FORMAT(11(F15.8,IX)) 
IF(STRNRT(III).LE.0.0)THEN 

STRNRT(III)=0.0 
NNN=III 
NON=III 
GO TO 10001 

ENDIF 
IFdII.EQ. (3*N) )THEN 

NNN=III 
COONT=4 
PRINT*,'GOING TO 4' 
GO TO 4001 

ENDIF 
3000 CONTINUE 

C 
C      DO LOOP FOR FORTH TRAVEL OF WAVE (4* ST) IN STRIKER 
C 
4001  DO 4000 IIII=NNN+1,NPS 

DHM=HM(IIII-1)-STAR1 
4100 DHI=DHM/0.0254 

DEC=(HOM-DHM)/HOM 
DTl=(DEC**AN)/( (1.0-DEC**AM)* (1.0-DEC) ) 
DT2=(EC(IIII-N)**AN)/((1.0-EC(IIII-N)**AM)* (1-EC (IIII-N) ) ) 
DT3=(EC(IIII-NN)**AN)/((1.0-EC(IIII-NN)**AM)* (1-EC(IIII-NN))) 

DT4=(EC(IIII-NNN)**AN)/((1.0-EC(IIII-NNN)**AM)*(1-EC(IIII-NNN))) 
DT=(HOM/VO)* (1.0/(1.0-AK*DT1-AK1*(DT2+DT3+DT4)))* 

+        (DEC-EC(IIII-1))+T(IIII-1) 
DDELT=DT-T(IIII-1) 
IF(DDELT.LE.0.0)THEN 

NNNN=IIII-1 
NUN=NNNN 
SIGCSTR=(STRESSI(IIII-l)* (1-EC(IIII-l))*A)/AO 
ECSTR=EC(IIII-1) 
GO TO 10001 

ENDIF 
IF(DDELT.LE.DELTP.AND.DDELT.GE.DELTM)THEN 

HSTEPI=HM(IIII-l)-DHM 
GO TO 4200 

ENDIF 
IF(DDELT.GT.DELT(2))THEN 

DHM=DHM+STAR3 
GO TO 4100 

ENDIF 
IF (DDELT . LT . DELT (2) ) THEN 

DHM=DHM-STAR3 
GO TO 4100 

ENDIF 
4200 HM(IIII)=DHM 

HI(IIII)=DHI 
EC(IIII)=DEC 
T(IIII)=DT 
DELT(IIII)=DDELT 

STRAINI (IIII) = (SIGO*AO)/(E* A)* (EC(IIII)**AN)/((1.0- 
+        EC(IIII)**AM)* (l.O-EC(IIII) ) ) 

' STRESSI(IIII)=STRAINI(IIII)*(E/1E6) 
IF(STRESSI(IIII).GT.((RHO*C*VO)/(2E6))(THEN 

STRESSI (IIII) = (RHO*C*VO) / (2E6) 
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STRAINI(IIII)=STRESSI(IIII)/(E/1E6) 
ENDIF 
V1(IIII)=V0-(STRESSI(IIII)*1E6)/(RH0ST*CST)-(2*STRESSI(IIII-N) 

+        *1E6) /(RH0ST*CST)-(2*STRESSI(IIII-NN)*1E6) / 
+ (RHOST*CST) - (2*STRESSI (IIII-NNN)* 1E6) / (RHOST*CST) 

V2(IIII)=(STRESSI(IIII)*1E6)/(RH0*C) 
TMS(IIII)=T(IIII)*1E6 
STRNRT(IIII)=(VI(IIII)-V2(IIII))/HOM 
PRINT*, IIII, EC(IIII), TMS(IIII) 

WRITE(7,4700,ERR=999)HM(IIII),HI(IIII),EC(IIII),T(IIII), 
+ DELT(IIII),STRAINI(IIII),STRESSI(IIII),TMS(IIII),STRNRT(IIII), 
+ VI(IIII),V2(IIII) 

4700  FORMAT(11(F15.8,IX)) 
STRNRT(IIII)=(VI(IIII)-V2(IIII))/HOM 
IF(STRNRT(IIII).LE.0.0JTHEN 

STRNRT(IIII)=0.0 
NNNN=IIII 
NUN=IIII 
GO TO 10001 

ENDIF 
IFdIII.EQ. (4*N))THEN 

NNNN=IIII 
NIV=IIII 
COUNT=5 
PRINT*,'GOING TO 5' 
GO TO 5001 

ENDIF 
NNNN=IIII 

4000  CONTINUE 
C 
C       DO LOOP FOR FIFTH TRAVEL OF WAVE (5*ST) IN STRIKER 
C 
5001  DO 5000 IIIII=NNNN+1,NPS 

DHM=HM(IIIII-1)-STAR3 
5100 DHI=DHM/0.0254 

DEC=(HOM-DHM)/HOM 
DTl=(DEC**AN)/( (1.0-DEC**AM)* (1.0-DEC) ) 
DT2=(EC(IIIII-N)**AN)/( (1. 0-EC (IIIII-N) ** AM) * (1-EC (IIIII-N) ) ) 

DT3=(EC(IIIII-NN)**AN)/((1.0-EC(IIIII-NN)**AM)* (1-EC(IIIII-NN))) 
DT4=(EC(IIIII-NNN)**AN)/( (1. 0-EC (IIIII-NNN) ** AM)* 

+ (1-EC(IIIII-NNN))) 
DT5=(EC(IIIII-NNNN)**AN)/( (1. 0-EC (IIIII-NNNN)** AM) * 

+ (1-EC(IIIII-NNNN))) 
DT=(HOM/VO)*(1.0/(1.0-AK*DT1-AK1* (DT2+DT3+DT4+DT5)))* 

+ (DEC-EC(IIIII-l))+T(IIIII-l) 
DDELT=DT-T(IIIII-l) 
IF(DDELT.LE.0.0)THEN 

NNNN=IIIII-1 
NUN=NNNN 
SIGCSTR=(STRESSI(IIIII-D* (1-EC(IIIII-l))*A)/AO 
ECSTR=EC(IIIII-l) 
GO TO 10001 

ENDIF 
IF(DDELT.LE.DELTP.AND.DDELT.GE.DELTM)THEN 

HSTEPI=HM(IIIII-1)-DHM 
GO TO 5200 

ENDIF 
IF(DDELT.GT.DELT(2))THEN 

DHM=DHM+STAR4 
GO TO 5100 

ENDIF 
IF(DDELT.LT.DELT(2))THEN 

DHM=DHM-STAR4 
GO TO 5100 

ENDIF 
5200 HM(IIIII)=DHM 

HI(IIIII)=DHI 
EC(IIIII)=DEC 
T(IIIII)=DT 
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DELT(IIIII)=DDELT 
STRAINI (IIIII) = (SIGO*AO)/(E* A)* (EC (IIIII) ** AN) / 

+        ( (1-EC(IIIII)**AM)* (l.O-EC(IIIII) ) ) 
STRESSKIIIII)=STRAINI (IIIII)* (E/1E6) 
IF(STRESSI(IIIII).GT.((RHO*C*VO)/(2E6)))THEN 

STRESSI(IIIII) = (RHO*C*VO)/(2E6) 
STRAINI(IIIII)=STRESSI(IIIII)/(E/1E6) 

ENDIF 
VI(IIIII)=VO-(STRESSI(IIIII)*1E6)/(RHOST*CST)-(2* STRESSI(IIIII-N) 

+       * 1000000)/(RHOST*CST)- (2* STRESSI (IIIII-NN)* 1000000) / (RHOST*CST) 
+        -(2* STRESSI (IIIII-NNN)*1E6)/(RH0ST*CST)-(2* STRESSI (IIIII-NNNN) 
+       *1E6)/(RH0ST*CST) 
V2 (11111) = (STRESSI (IIIII)*1E6)/(RH0*C) 

TMS(IIIII)=T(IIIII)*1E6 
STRNRT(11111)=(VI(IIIII)-V2(IIIII))/HOM 

PRINT*, IIIII, EC(IIIII), TMS(IIIII) 
WRITE(7,5700,ERR=999)HM(IIIII),HI(IIIII),EC(IIIII),T(IIIII), 

+        DELT(IIIII),STRAINI(IIIII) , STRESSI(IIIII) , TMS(IIIII) , 
+        STRNRT(IIIII),VI(IIIII),V2(IIIII) 

5700  FORMAT(11(F15.8,IX)) 
IF(STRNRT(IIIII).LE.0.0(THEN 

STRNRT(IIIII)=0.0 
NNNNN=IIIII 
NUN=IIIII 
PRINT *, 'STRNRT ZERO' 
GO TO 10001 

ENDIF 
IFdIIII.EQ. (5*N) (THEN 

NV=IIIII 
NNNNN=IIIII 
COÜNT=6 
PRINT*, 'GOING TO 6' 
GO TO 6001 

ENDIF 
NNNNN=IIIII 

5000  CONTINUE 
C 
C      DO LOOP FOR SIXTH TRAVEL OF WAVE (6*ST) IN STRIKER 
C 
6001  DO 6000 IV=NNNNN+1,NPS 

DHM=HM(IV-1)-STAR3 
6100 DHI=DHM/0.0254 

DEC=(HOM-DHM)/HOM 
DTl=(DEC**AN)/( (1.0-DEC**AM)* (1.0-DEC) ) 
DT2=(EC(IV-N)**AN)/( (1. 0-EC (IV-N) ** AM)* (l-EC(IV-N) ) ) 
DT3=(EC(IV-NN)**AN) /( (1. 0-EC (IV-NN) ** AM) * (l-EC(IV-NN) ) ) 
DT4=(EC(IV-NNN)**AN)/( (1. 0-EC (IV-NNN)** AM) * (1-EC (IV-NNN) ) ) 
DT5=(EC(IV-NNNN)**AN)/( (1. 0-EC (IV-NNNN)** AM) * (1-EC (IV-NNNN) ) ) 

DT6=(EC(IV-NNNNN)**AN)/((1.0-EC(IV-NNNNN)**AM)* (1-EC(IV-NNNNN))) 
DT=(HOM/VO)* (1.0/(1.0-AK*DT1-AK1* (DT2+DT3+DT4+DT5+DT6)))* 

+        (DEC-EC(IV-1))+T(IV-1) 
DDELT=DT-T(IV-1) 
IF(DDELT.LE.0.0)THEN 

NNNN=IV-1 
NUN=NNNN 
SIGCSTR= (STRESSI (IV-1)* (1-EC (IV-1) )*A)/AO 
ECSTR=EC(IV-1) 
PRINT*, 'DDELT.LE.0.0' 
GO TO 10001 

ENDIF 
IF(DDELT.LE.DELTP.AND.DDELT.GE.DELTM)THEN 

HSTEPI=HM(IV-1)-DHM 
GO TO 6200 

ENDIF 
IF(DDELT.GT.DELT(2)(THEN 

DHM=DHM+STAR4 
GO TO 6100 

ENDIF 
IF(DDELT.LT.DELT(2)(THEN 
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DHM=DHM-STAR4 
GO TO 6100 

ENDIF 
6200 HM(IV)=DHM 

HI(IV)=DHI 
EC(IV)=DEC 
T(IV)=DT 
DELT(IV)=DDELT 

STRAINI (IV) = (SIGO*AO)/(E*A)* (EC (IV) ** AN) / ( (1-EC (IV)** AM)* 
+        (l.O-EC(IV) ) ) 

STRESSI(IV)=STRAINI(IV)* (E/1E6) 
IF(STRESSKIV) .GT. ( (RHO* C* VO) / (2E6) ) ) THEN 

STRESSI (IV) = (RHO*C*VO) / (2E6) 
STRAINI(IV)=STRESSI(IV)/(E/1E6) 

ENDIF 
VI (IV)=VO-(STRESSI(IV)*1E6)/(RHOST*CST)-(2*STRESSI(IV-N) 

+       * 1000000 )/(RHOST*CST)- (2* STRESSI (IV-NN)* 1000000) / (RHOST*CST) 
+        -(2* STRESSI(IV-NNN)*1E6)/(RHOST*CST)-(2*STRESSI(IV-NNNN) 
+       * 1E6) / (RHOST*CST) - (2* STRESSI (IV-NNNNN)* 1E6) / (RHOST*CST) 

V2 (IV) = (STRESSI (IV)* 1E6) / (RHO*C) 
TMS(IV)=T(IV)*1E6 
STRNRT(IV)=(VI(IV)-V2(IV))/HOM 
PRINT*, IV, EC(IV), TMS(IV) 

WRITE(7,6700,ERR=999)HM(IV),HI(IV) , EC (IV) , T (IV) , 
+        DELT(IV),STRAINI(IV),STRESSI(IV),TMS(IV),STRNRT(IV), 
+        V1(IV),V2(IV) 

6700  FORMAT(11(F15.8,1X)) 
STRNRT(IV)=(VI(IV)-V2(IV))/HOM 
IF(STRNRT(IV).LE.0.0)THEN 

STRNRT(IV)=0.0 
NSIX=IV 
NUN=IV 
PRINT * , 'STRNRT ZERO' 
GO TO 10001 

ENDIF 
IF(IV.EQ. (6*N) )THEN 

NVI=IV 
NSIX=IV 
COUNT=7 
PRINT *,'GOING TO 7' 
GO TO 7001 

ENDIF 
NSIX=IV 

6000  CONTINUE 
C 
C       DO LOOP FOR SEVENTH TRAVEL OF WAVE (7* ST) IN STRIKER 
C 
7001  DO 7000 IVI=NSIX+1,NPS 

DHM=HM(IVI-1)-STAR1 
7100 DHI=DHM/0.0254 

DEC=(HOM-DHM)/HOM 
DTl=(DEC**AN)/( (1.0-DEC**AM)* (1.0-DEC) ) 
DT2=(EC(IVI-N)**AN)/( (1. 0-EC (IVI-N)** AM) * (l-EC(IVI-N) ) ) 
DT3=(EC(IVI-NN)**AN)/((1.0-EC(IVI-NN)**AM)* (1-EC(IVI-NN))) 
DT4=(EC(IVI-NNN)**AN)/((1.0-EC(IVI-NNN)**AM)* (1-EC(IVI-NNN))) 

DT5=(EC(IVI-NNNN)**AN)/((1.0-EC(IVI-NNNN)**AM)* (1-EC(IVI-NNNN))) 
DT6=(EC(IVI-NNNNN)**AN)/((1.0-EC(IVI-NNNNN)**AM)* 

+        (1-EC(IVI-NNNNN))) 
DT7=(EC(IVI-NSIX)**AN)/( (1. 0-EC (IVI-NSIX) ** AM) * 

+        (1-EC(IVI-NSIX))) 
DT=(HOM/VO)* (1.0/(1.0-AK*DT1-AK1* (DT2+DT3+DT4+DT5+DT6+DT7)))* 

+ (DEC-EC(IVI-1))+T(IVI-l) 
DDELT=DT-T(IVI-1) 
IF(DDELT.LE.0.O)THEN 

NUN=IVI-1 
SIGCSTR=(STRESSI(IVI-1)* (1-EC(IVI-1))*A)/AO 
ECSTR=EC(IVI-1) 
PRINT*, 'DDELT.LE.0.0' 
GO TO 10001 
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ENDIF 
IF(DDELT.LE.DELTP.AND.DDELT.GE.DELTM)THEN 

HSTEPI=HM(IVI-1)-DHM 
GO TO 7200 

ENDIF 
IF(DDELT.GT.DELT(2)(THEN 

DHM=DHM+STAR3 
GO TO 7100 

ENDIF 
IF(DDELT.LT.DELT(2)(THEN 

DHM=DHM-STAR3 
GO TO 7100 

ENDIF 
7200 HM(IVI)=DHM 

HI(IVI)=DHI 
EC(IVI)=DEC 
T(IVI)=DT 
DELT(IVI)=DDELT 

STRAINI(IVI) = (SIGO*AO)/(E*A)* (EC (IVI)** AN) / ( (1-EC (IVI)**AM)* 
+        (l.O-EC(IVI))) 

STRESSI(IVI)=STRAINI(IVI)*(E/1E6) 
IF(STRESSKIVI) .GT. ( (RHO* C* VO) / (2E6) ) ) THEN 

STRESSI (IVI) = (RHO*C*VO) / (2E6) 
STRAINI(IVI)=STRESSI(IVI)/(E/1E6) 

ENDIF 
VI (IVI)=VO- (STRESSI (IVI)* 1E6) / (RHOST*CST) - (2* STRESSI (IVI-N) 

+        * 1000000) / (RHOST*CST) - (2* STRESSI (IVI-NN)* 1000000) / (RHOST*CST) 
+        -(2* STRESSI(IVI-NNN)*1E6)/(RHOST*CST)-(2* STRESSI(IVI-NNNN) 
+        * 1E6) / (RHOST*CST) - (2* STRESSI (IVI-NNNNN) * 1E6) / (RHOST*CST) 
+        -(2* STRESSI (IVI-NSIX)*lE6)/(RHOST*CST) 
V2 (IVI ) = (STRESSI (IVI )*1E6)/(RHO* C) 

TMS(IVI)=T(IVI)*1E6 
STRNRT (IVI) = (VI (IVI) -V2 (IVI) ) /HOM 
PRINT*, IVI, EC(IVI), TMS(IVI) 

WRITE(7,7700,ERR=999)HM(IVI),HI(IVI) ,EC (IVI) , T (IVI) , 
+        DELT(IVI),STRAINI(IVI),STRESSI(IVI),TMS(IVI),STRNRT(IVI), 
+        VI(IVI),V2(IVI) 

7700  F0RMAT(11(F15.8,1X)) 
IF(STRNRT(IVI).LE.0.0)THEN 

STRNRT(IVI)=0.0 
NSEV=IVI 
PRINT *, 'STRNRT ZERO' 
GO TO 10001 

ENDIF 
IF(IVI.EQ. (7*N) (THEN 

NVII=IVI 
NSEV=IVI 
COUNT=8 
PRINT*,'GOING TO 8' 
GO TO 8001 

ENDIF 
NSEV=IVI 

7000  CONTINUE 
C 
C      DO LOOP FOR EIGHTH TRAVEL OF WAVE (8*ST) IN STRIKER 
C 
8001  DO 8000 IVII=NSEV+1,NPS 

DHM=HM(IVII-1)-STAR1 
8100 DHI=DHM/0.0254 

DEC=(HOM-DHM)/HOM 
DTl=(DEC**AN)/( (1.0-DEC**AM)* (1.0-DEC) ) 
DT2=(EC(IVII-N)**AN)/( (1. 0-EC (IVII-N)** AM)* (1-EC (IVII-N) ) ) 
DT3=(EC(IVII-NN)**AN)/( (1. 0-EC (IVII-NN) ** AM)* (1-EC (IVII-NN) ) ) 
DT4=(EC(IVII-NNN)**AN)/((1.0-EC(IVII-NNN)**AM)* (1-EC(IVII-NNN))) 
DT5=(EC(IVII-NNNN)**AN)/((1.0-EC(IVII-NNNN)**AM)* 

+        (1-EC(IVII-NNNN))) 
DT6=(EC(IVII-NNNNN)**AN)/((1.0-EC(IVII-NNNNN)**AM)* 

+        (1-EC(IVII-NNNNN))) 
DT7=(EC(IVII-NSIX)**AN)/((1.0-EC(IVII-NSIX)**AM)* 
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+ (l-EC(IVII-NSIX))) 
DT8=(EC(IVII-NSEV)**AN)/((1.O-EC(IVII-NSEV)**AM)* 

+ (1-EC(IVII-NSEV))) 
DT=(HOM/VO)* (1.0/(1.0-AK*DT1*AK1* (DT2 + DT3 + DT4+DT5+DT6+DT7 + DT8) ) )* 

+ (DEC-EC(IVII-1))+T(IVII-l) 
DDELT=DT-T(IVII-1) 
IF(DDELT.LE.0.0)THEN 

PRINT*, '* ' 
NUN=IVII-1 
SIGCSTR=(STRESSI(IVII-1)*(1-EC(IVII-1))*A)/AO 
ECSTR=EC(IVII-1) 
PRINT*, 'DDELT.LE.0.0' 
GO TO 10001 

ENDIF 
IF(DDELT.LE.DELTP.AND.DDELT.GE.DELTM)THEN 

HSTEPI=HM(IVII-1)-DHM 
GO TO 8200 

ENDIF 
IF(DDELT.GT.DELT(2))THEN 

DHM=DHM+STAR3 
GO TO 8100 

ENDIF 
IF(DDELT.LT.DELT(2))THEN 

DHM=DHM-STAR3 
GO TO 8100 

ENDIF 
8200 HM(IVII)=DHM 

HI(IVII)=DHI 
EC(IVII)=DEC 
T(IVII)=DT 
DELT(IVII)=DDELT 

STRAINI (IVII ) = (SIGO*AO)/(E* A)* (EC (IVII) ** AN) / (1. 0-EC (IVII) ) 
STRESSI(IVII)=STRAINI(IVII)* (E/1E6) 
IF(STRESSI(IVII).GT.((RHO*C*VO)/(2E6))(THEN 

STRESSI (IVII ) = (RHO* C*VO) / (2E6) 
STRAINI(IVII)=STRESSI(IVII)/(E/1E6) 

ENDIF 
VI(IVII)=VO-(STRESSI(IVII)*1E6)/(RHOST*CST)-(2*STRESSI(IVII-N) 

+       *1000000)/(RHOST*CST)-(2*STRESSI(IVII-NN)*1000000)/(RHOST*CST) 
+        -(2*STRESSI(IVII-NNN)*1E6)/(RHOST*CST)-(2*STRESSI(IVII-NNNN) 
+        *1E6)/(RHOST*CST)-(2*STRESSI(IVII-NNNNN)*1E6)/(RHOST*CST) 
+        -(2* STRESSI (IVII-NSIX)*1E6)/(RHOST* CST)-(2* STRESSI (IVII-NSEV) 
+        *1E6)/(RHOST* CST) 
V2 (IVII) = (STRESSI (IVII)* 1E6)/(RH0*C) 

TMS (IVII)=T (IVII)*1E6 
STRNRT(IVII)=(VI(IVII)-V2(IVII))/HOM 
PRINT*, IVII, EC(IVII), TMS(IVII) 

WRITE(7,8700,ERR=999)HM(IVII),HI(IVII),EC(IVII),T(IVII), 
+        DELT(IVII),STRAINI(IVII),STRESSI(IVII) , TMS(IVII),STRNRT(IVII), 
+        VI(IVII),V2(IVII) 

8700  FORMAT(ll(F15.8,IX)) 
IF(STRNRT(IVII).LE.0.0)THEN 

STRNRT(IVII)=0.0 
NUN=IVII 
PRINT *, 'STRNRT ZERO' 
GO TO 10001 

ENDIF 
IF(IVII.EQ. (8*N) )THEN 

NVIII=IVII 
NUN=IVII 
COUNT=9 
GO TO 10001 

ENDIF 
NEIG=IVII 

8000  CONTINUE 
999  PRINT *,'BAD' 

C 
C       UNLOADING 
C 
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10001  PRINT *,'UNLOADING' 
PRINT*, N,NN,NNN,NIV,NV,NVI,NVII 
VALUE=DELT(2) 
DO 10000 J=NUN+1,NPS 

DHM=HM(J-1)+STAR4 
10100 DHI=DHM/0.0254 

DEC=(HOM-DHM)/HOM 
IF(COUNT.EQ.11)THEN 

STRESSJJN=STRESSI(J-N) 
STRESSJJNN=STRESSI(J-NN) 
STRESSJJNNN=STRESSI(J-NNN) 
STRESSJJNIV=STRESSI(J-NIV) 
STRESSJJNV=STRESSI (J-NV) 
STRESSJJNVI=STRESSI(J-NVI) 
STRESSJJNVII=STRESSI(J-NVII) 
STRESSJJNVIII=STRESSI(J-NVIII) 
STRESSJJNIX=STRESSI(J-NIX) 
STRESSJJNX=STRESSI(J-NX) 
VALUE1=1- (2* STRESS JJN* 1E6) / (VO* RHOST* CST) 
VALUE2= (2* STRESS JJNN* 1E6) / (VO* RHOST* CST) 
VALUE3= (2* STRESS JJNNN*1E6) / (VO* RHOST* CST) 
VALUE4= (2* STRESS JJNIV*1E6) / (VO* RHOST* CST) 
VALUE5= (2* STRESSJJNV* 1E6) / (VO* RHOST* CST) 
VALUE6= (2*STRESSJJNVI* 1E6) / (VO* RHOST* CST) 
VALUE7= (2* STRESS JJNVII* 1E6) / (VO* RHOST* CST) 
VALUE8= (2* STRESS JJNVI II* 1E6) / (VO* RHOST* CST) 
VALUE9= (2* STRESS JJNIX* 1E6) / (VO* RHOST* CST) 
VALUE10=(2* STRESSJJNX*1E6)/(VO*RHOST* CST) 
VALUEll=(AO)/(VO*A* (1-DEC) )* (1/(RHO* C)+1/(RHOST* CST) ) 

+ * ( (SIGCSTR* 1E6) -YOUNGC* (ECSTR-DEC) ) 
DT=(HOM/VO)* (1.0/(VALUE1-VALUE2-VALUE3-VALUE4 

+ -VALUE5-VALUE6-VALUE7-VALUE8-VALUE9-VALUE10-VALUE11))* 
+ (DEC-EC(J-l))+T(J-l) 

ENDIF 
IF(COUNT.EQ.10(THEN 

STRESSJJN=STRESSI(J-N) 
STRESSJJNN=STRESSI(J-NN) 
STRESSJJNNN=STRESSI(J-NNN) 
STRESSJJNIV=STRESSI(J-NIV) 
STRESSJJNV=STRESSI(J-NV) 
STRESSJJNVI=STRESSI(J-NVI) 
STRESSJJNVII=STRESSI(J-NVII) 
STRESSJJNVIII=STRESSI(J-NVIII) 
STRESSJJNIX=STRESSI(J-NIX) 
VALUE1=1-(2* STRESSJJN*1E6)/(VO* RHOST*CST) 
VALUE2= (2* STRESS JJNN* 1E6) / (VO* RHOST* CST) 
VALOE3=(2* STRESSJJNNN*1E6)/(VO*RHOST*CST) 
VALUE4= (2* STRESS JJNIV* 1E6) / (VO* RHOST* CST) 
VALUE5= (2* STRESS JJNV* 1E6) / (VO* RHOST* CST) 
VALUE6=(2*STRESSJJNVI*1E6) / (VO* RHOST* CST) 
VALUE7=(2*STRESSJJNVII*1E6)/(V0*RH0ST*CST) 
VALUE8=(2*STRESSJJNVIII*1E6)/(VO*RHOST*CST) 
VALUE9=(2*STRESSJJNIX*1E6)/(VO*RHOST*CST) 
VALUE10=(AO)/(VO*A* (1-DEC))* (1/ (RHO* C) +1/ (RHOST* CST) ) 

+ * ( (SIGCSTR* 1E6) -YOUNGC* (ECSTR-DEC) ) 
DT=(HOM/VO)* (1.0/(VALUE1-VALUE2-VALUE3-VALUE4 

+ -VALUE5-VALUE6-VALUE7-VALUE8-VALUE9-VALUE10))* 
+ (DEC-EC(J-l))+T(J-l) 

ENDIF 
IF(COUNT.EQ.9)THEN 

STRESSJJN=STRESSI(J-N) 
STRESSJJNN=STRESSI(J-NN) 
STRESSJJNNN=STRESSI(J-NNN) 
STRESSJJNIV=STRESSI(J-NIV) 
STRESSJJNV=STRESSI(J-NV) 
STRESSJJNVI=STRESSI(J-NVI) 
STRESSJJNVII=STRESSI(J-NVII) 
STRESSJJNVIII=STRESSI(J-NVIII) 
VALUE1=1- (2*STRESSJJN*1E6) / (VO* RHOST* CST) 
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VALUE2= (2* STRESS JJNN* 1E6) / (VO* RHOST* CST) 
VALUE3= (2* STRESS JJNNN* 1E6) / (VO*RHOST* CST) 
VALUE4= (2* STRESS JJNIV* 1E6) / (VO*RHOST* CST) 
VALUE5=(2*STRESSJJNV*1E6) / (VO* RHOST* CST) 
VALUE6=(2*STRESSJJNVI*1E6) / (VO* RHOST* CST) 
VALUE7= (2* STRESS JJNVII* 1E6) / (VO*RHOST* CST) 
VALÜE8=(2*STRESSJJNVIII*1E6)/(VO*RHOST*CST) 
VALUE9=(AO)/(VO*A* (1-DEC))* (1/(RHO* C)+1/(RHOST* CST) ) 
* ( (SIGCSTR* 1E6) -YOUNGC* (ECSTR-DEC) ) 

DT=(HOM/VO)* (1.0/(VALUE1-VALUE2-VALUE3-VALUE4 
-VALUE5-VALUE6-VALUE7-VALUE8-VALUE9))* (DEC-EC(J-l))+T(J-l) 

ENDIF 
IF(COUNT.EQ.8)THEN 

STRESSJJN=STRESSI(J-N) 
STRESSJJNN=STRESSI(J-NN) 
STRESSJJNNN=STRESSI(J-NNN) 
STRESSJJNIV=STRESSI(J-NIV) 
STRESSJJNV=STRESSI(J-NV) 
STRESSJJNVI=STRESSI(J-NVI) 
STRESSJJNVII=STRESSI(J-NVII) 
VALUE1 = 1-(2* STRESSJJN*1E6)/(VO*RHOST*CST) 
VALUE2=(2*STRESSJJNN*1E6) / (VO* RHOST* CST) 
VALUE3=(2*STRESSJJNNN*1E6)/(VO*RHOST*CST) 
VALUE4=(2*STRESSJJNIV*1E6) / (VO* RHOST* CST) 
VALUE5= (2* STRESS JJNV* 1E6) / (VO* RHOST* CST) 
VALUE6= (2* STRESS JJNVI* 1E6) / (VO* RHOST* CST) 
VALUE7=(2*STRESSJJNVII*1E6)/(VO*RHOST*CST) 

VALUE8=(AO) /(VO*A* (1-DEC) )* (1/(RHO* C)+1/(RHOST* CST) ) 
* ((SIGCSTR*1E6)-YOUNGC* (ECSTR-DEC)) 

DT=(HOM/VO)* (1.0/(VALUE1-VALUE2-VALUE3-VALUE4 
-VALUE5-VALUE6-VALUE7-VALUE8))* (DEC-EC(J-l))+T(J-l) 
ENDIF 
IF(COUNT.EQ.7)THEN 

STRESSJJN=STRESSI(J-N) 
STRESSJJNN=STRESSI(J-NN) 
STRESSJJNNN=STRESSI(J-NNN) 
STRESSJJNIV=STRESSI(J-NIV) 
STRESSJJNV=STRESSI(J-NV) 
STRESSJJNVI=STRESSI(J-NVI) 
VALUE1 = 1-(2*STRESSJJN*1E6)/(V0*RH0ST*CST) 
VALUE2= (2* STRESS JJNN* 1E6) / (VO* RHOST* CST) 
VALUE3= (2* STRESS JJNNN* 1E6)/ (VO* RHOST* CST) 
VALUE4=(2*STRESSJJNIV*1E6)/(VO*RHOST*CST) 
VALUE5=(2*STRESSJJNV*1E6) / (VO* RHOST* CST) 
VALUE6=(2*STRESSJJNVI*1E6) / (VO* RHOST* CST) 
VALUE7=(AO)/(VO*A* (1-DEC) )* (1/(RHO* C)+1/(RHOST* CST) ) 

* ((SIGCSTR*1E6)-YOUNGC* (ECSTR-DEC)) 
DT=(HOM/VO)* (1.0/(VALUE1-VALUE2-VALUE3-VALUE4 

-VALUE5-VALUE6-VALÜE7))* (DEC-EC(J-l))+T(J-l) 
ENDIF 
IF(COUNT.EQ.6)THEN 

STRESSJJN=STRESSI(J-N) 
STRESSJJNN=STRESSI(J-NN) 
STRESSJJNNN=STRESSI(J-NNN) 
STRESSJJNIV=STRESSI(J-NIV) 
STRESSJJNV=STRESSI(J-NV) 
VALUE1 = 1-(2*STRESSJJN*1E6)/(V0*RH0*C) 
VALUE2= (2* STRESS JJNN* 1E6) / (VO*RHO*C) 
VALUE3= (2* STRESS JJNNN* 1E6) /(VO*RHO*C) 
VALUE4= (2* STRESS JJNIV* 1E6) /(VO*RHO*C) 
VALUE5= (2* STRESS JJNV* 1E6) / (VO*RHO*C) 
VALUE6=(AO)/(VO*A* (1-DEC) )* (1/(RHO* C)+1/(RHOST* CST) ) 

* ( (SIGCSTR* 1E6) -YOUNGC* (ECSTR-DEC) ) 
DT=(HOM/VO)*(1.0/(VALUE1-VALUE2-VALUE3-VALUE4 

-VALUE5-VALUE6))* (DEC-EC(J-l))+T(J-l) 
ENDIF 
IF(COUNT.EQ.5)THEN 

STRESSJJN=STRESSI(J-N) 
STRESSJJNN=STRESSI(J-NN) 
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STRESSJJNNN=STRESSI(J-NNN) 
STRESSJJNIV=STRESSI(J-NIV) 
VALUE1=1- (2* STRESS JJN* 1E6) / (VO* RHOST* C) 
VAL0E2= (2* STRESS JJNN* 1E6) / (VO* RHOST* CST) 
VALUE3= (2* STRESSJJNNN* 1E6) / (VO* RHOST* CST) 
VALUE4= (2* STRESS JJNIV* 1E6) / (VO* RHOST* CST) 
VALUE5=(AO)/(VO*A* (1-DEC))* (1/(RHO* C)+1/(RHOST* CST) ) 

+ * ( (SIGCSTR*1E6) -YOUNGC* (ECSTR-DEC) ) 
DT=(HOM/VO)* (1.0/(VALUE1-VALUE2-VALUE3-VALUE4- 

+ VALOE5))* (DEC-EC(J-l))+T(J-l) 
ENDIF 
IF(COUNT.EQ.4)THEN 

STRESSJJN=STRESSI(J-N) 
STRESSJJNN=STRESSI(J-NN) 
STRESSJJNNN=STRESSI(J-NNN) 
VALUE1 = 1- (2*STRESSJJN*1E6) / (VO* RHOST* CST) 
VALOE2= (2* STRESS JJNN* 1E6) / (VO* RHOST* CST) 
VALUE3= (2* STRESS JJNNN* 1E6) / (VO* RHOST* CST) 
VALUE4=(AO)/(VO*A* (1-DEC) )* (1/(RHO* C)+1/(RHOST* CST) ) 

+ * ((SIGCSTR*1E6)-YOUNGC*(ECSTR-DEC)) 
DT=(HOM/VO)* (1.0/(VALUE1-VALUE2-VALUE3-VALUE4))* 

+ (DEC-EC(J-l))+T(J-l) 
ENDIF 
IF(COUNT.EQ.3)THEN 

STRESSJJN=STRESSI(J-N) 
STRESSJJNN=STRESSI(J-NN) 
VALUE1 = 1- (2*STRESSJJN*1E6) / (VO* RHOST* CST) 
VALUE2= (2* STRESS JJNN* 1E6) / (VO* RHOST* CST) 
VALUE4=(AO)/(VO*A* (1-DEC))* (1/(RHO* C)+1/(RHOST* CST) ) 

+ * ( (SIGCSTR* 1E6)-YOUNGC* (ECSTR-DEC) ) 
DT=(HOM/VO)* (1.0/(VALUE1-VALUE2-VALUE4))* 

+ (DEC-EC(J-l))+T(J-l) 
ENDIF 
IF(COUNT.EQ.2)THEN 

STRESSJJN=STRESSI(J-N) 
VALUE1=1- (2* STRESS JJN* 1E6) / (VO*RHO*C) 
VALUE4=(AO)/(VO*A* (1-DEC))* (1/(RHO* C)+1/(RHOST* CST) ) 

+ * ( (SIGCSTR* 1E6) -YOUNGC* (ECSTR-DEC) ) 
DT=(HOM/VO)*(1.0/(VALUE1-VALUE4))* 

+ (DEC-EC(J-l))+T(J-l) 
ENDIF 
DDELT=DT-T(J-1) 

C 
C      FIRST DATA POINT WILL HAVE VERY LITTLE CHANGE IN STRAIN. 
C      THEREFORE, IT IS NECESSARY TO LET TIME ADVANCE AND HOLD STRAINS 
C      CONSTANT. 
C 

IF(DDELT.LT.0.0)THEN 
DELT(J)=DELT(J-1) 
T(J)=T(J-1)+DELT(J) 
TMS(J)=T(J)*1E6 
STRESSI(J)=STRESSI(J-l) 
STRAINI(J)=STRAINI(J-l) 
HM(J)=HM(J-1) 
HI(J)=HI(J-l) 
EC(J)=EC(J-1) 

VI (J) =VO- (STRESSI (J)* 1E6) / (RHOST* CST) - (2* STRESS JJN* 1E6) / 
+ (RH0ST*CST)-(2*STRESSJJNN*1E6)/(RH0ST*CST)-(2*STRESSJJNNN*1E6)/ 
+ (RHOST* CST) - (2* STRESSJJNNN* 1E6) / (RHOST* CST) - (2* STRESSJJNIV* 1E6) / 
+        (RHOST* CST) - (2* STRESSJJNV* 1E6) / (RHOST* CST) - (2* STRESSJJNVI* 1E6) / 
+        (RHOST* CST)- (2* STRESS JJNVII* 1E6) / (RHOST* CST) -(2* STRESS JJNVIII*1E6) 
+        / (RHOST* CST) - (2* STRESS JJNIX* 1E6) / (RHOST* CST) - (2* STRESS JJNX* 1E6) / 
+        (RHOST* CST) 

V2 (J) = (STRESSI (J)*1E6)/(RH0*C) 
STRNRT(J) = (V1 (J)-V2 (J) )/HOM 
GOTO 10201 

ENDIF 
IF(DDELT.LE.DELTP.AND.DDELT.GE.DELTM)THEN 

GO TO 10200 
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ENDIF 
IF(DDELT.GT.VALUE)THEN 

IF(BETA.EQ.O)THEN 
DHM=DHM-STAR4/3 
BETA=1 
GOTO 10100 

ENDIF 
BETA=1 
DHM=DHM-STAR4 
GOTO 10100 

ENDIF 
IF (DDELT . LT . VALUE) THEN 

IF(BETA.EQ.1)THEN 
DHM=DHM+STAR4/2 
BETA=0 
GOTO 10100 

ENDIF 
DHM=DHM+STAR4 
BETA=0 
GOTO 10100 

ENDIF 
10200 CONTINUE 

HM(J)=DHM 
HI(J)=DHI 
EC(J)=DEC 
T(J)=DT 
DELT(J)=DDELT 

STRESSI(J)=AO/( (l-EC(J) )*A)* (SIGCSTR-YOUNGC* (ECSTR-EC (J) ) ) 
STRAINI(J)=STRESSI(J)/(E/1E6) 

VI (J)=VO-(STRESSI (J)*1E6) / (RHOST* CST) - (2* STRESS JJN* 1E6) / 
+        (RHOST* CST) - (2* STRESS JJNN* 1E6) / (RHOST* CST) - (2* STRESSJJNNN* 1E6) / 
+        (RHOST* CST) - (2* STRESS JJNNN* 1E6) / (RHOST* CST) - (2* STRESS JJNIV* 1E6) / 
+        (RHOST* CST) - (2* STRESS JJNV* 1E6) / (RHOST* CST) - (2* STRESSJJNVI* 1E6) / 
+        (RHOST*CST)-(2* STRESSJJNVII*1E6)/(RHOST*CST)-(2* STRESSJJNVIII*1E6) 
+        / (RHOST* CST) - (2* STRESS JJNIX* 1E6) / (RHOST* CST) - (2* STRESS JJNX* 1E6) / 
+        (RHOST*CST) 

V2 (J) = (STRESSI (J)*lE6)/(RHO*C) 
TMS(J)=T(J)*1E6 
STRNRT(J) = (V1(J)-V2(J) )/HOM 

C 
C       THE CALCULATED STRNRT(J) ABOVE ASSUMES UNLOADING IS OCCURING. IF THE 
C       STRAIN RATE IS POSITIVE, STRNRT(J) IS NOT VALID.  THEREFORE, THE PROGRAM 
C       LETS TIME ADVANCE AND HOLDS THE STRESS AND STRAIN CONSTANT. 

C 
IF(STRNRT(J).GT.0.0(THEN 

STRESSI(J)=STRESSI(J-l) 
STRAINI(J)=STRAINI(J-l) 
HM(J)=HM(J-1) 
HI(J)=HI(J-l) 
EC(J)=EC(J-1) 

VI (J) =VO- (STRESSI (J)* 1E6) / (RHOST* CST) - (2* STRESS JJN* 1E6) / 
+        (RHOST* CST) - (2* STRESS JJNN* 1E6) / (RHOST* CST) - (2* STRESS JJNNN* 1E6) / 
+        (RHOST* CST) - (2* STRESS JJNNN* 1E6) / (RHOST* CST) - (2* STRESS JJNIV* 1E6) / 
+        (RHOST* CST) - (2* STRESS JJNV* 1E6) / (RHOST* CST) - (2* STRESSJJNVI* 1E6) / 
+        (RHOST* CST)- (2* STRESSJJNVI I* 1E6) / (RHOST* CST) -(2* STRESS JJNVIII* 1E6) 
+        / (RHOST* CST) - (2* STRESS JJNIX* 1E6) / (RHOST* CST) - (2* STRESS JJNX* 1E6) / 
+        (RHOST*CST) 

V2 (J) = (STRESSI (J)* 1E6) / (RHO*C) 
STRNRT(J)=(VI(J)-V2(J))/HOM 

C 
C       DOES NOT WRITE THE ADVANCE, JUST KEEPS TRACK OF IT 
C 

GO TO 10800 
ENDIF 

10201 PRINT*, J,EC(J) ,TMS(J) 
IF(STRESSI(J).LT.0.0)THEN 

STRESSI(J)=0.0 
WRITE(7,10700,ERR=999)HM(J),HI(J),EC(J),T(J),DELT(J), 

+        STRAINI(J),STRESSI(J),TMS(J),STRNRT(J),VI(J), 
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+       V2(J) 
GO TO 20000 

ENDIF 
WRITE(7,10700,ERR=999)HM(J),HI(J),EC(J),T(J),DELT(J), 

+        STRAINI(J),STRESSI(J),TMS(J),STRNRT(J),VI(J), 
+        V2(J) 

10700  FORMAT(11(F15.8,IX)) 
10800 IF(J.EQ.(COUNT*N))THEN 

PRINT*, J,STRNRT(J),TMS(J) 
IF(COUNT.EQ.2)NN=J 
IF(COUNT.EQ.3)NNN=J 
IF(COUNT.EQ.4)NIV=J 
IF(COUNT.EQ.5)NV=J 
IF(COUNT.EQ.6)NVI=J 
IF(COUNT.EQ.7)NVII=J 
IF(COUNT.EQ.8)NVIII=J 
IF(COUNT.EQ.9)NIX=J 
IF(COUNT.EQ.10)NX=J 
COUNT=COUNT+l 

ENDIF 
10050 CONTINUE 
10000 CONTINUE 
20000 CLOSE(UNIT=7) 

CLOSE(UNIT=8) 
CLOSE(UNIT=9) 
CLOSE(UNIT=10) 
STOP 
END 



APPENDIX B 

PULSE SHAPING MODEL EVALUATION EXPERIMENTS 
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A total of 32 SHPB experiments were conducted with hard (HRB = 45) and 

annealed C11000 copper pulse shapers to study the accuracy of the pulse shaping model 

and resistance functions developed in Chapter 5. These experiments were conducted 

using 12.7-mm-diameter VascoMax C-350 maraging steel (HRC = 58) striker and 

incident bars. We varied striker bar lengths (50.8 and 152.4 mm), nominal striking 

velocities (8.5 and 17.5 m/s), pulse shaper diameters (3.2 and 4.8 mm), and pulse shaper 

thicknesses (1.6 and 0.8 mm) in order to exercise our model over a variety of loading 

conditions. 

Tabulated results from the experiments and model predictions are presented for 

the hardened and annealed (C11000) coppers in Tables B.l and B.2, respectively. For 

each experiment, the pre- and post-test dimensions of the pulse shapers were measured 

and used to calculate the final engineering strain in the pulse shaper and also validate our 

model assumption that the pulse shaper material is nearly incompressible [see eq (5.1)]. 

The peak incident bar stress was from the peak axial strain measured by the incident bar 

strain gages. Knowing the peak stress in the incident bar and final pulse shaper diameter, 

eq (5.5) was then rearranged to calculate the peak true pulse shaper stress. Model 

predictions of the pulse shaper strain given by eqs (5.11), (5.20), (5.29), and (5.34) were 

applied to eq (5.3), (5.2), (5.6), and (5.5) to calculate the diameter and thickness of the 

pulse shaper, the true stress in the pulse shaper, and the incident bar stress, respectively. 

Tables B.l and B.2 show that model predictions of the final pulse shaper dimensions and 

peak incident bar and pulse shaper stresses are in good agreement with the experimental 

measurements. 
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Figures B.l - B.16 show incident bar stress data and model prediction 

comparisons for the tests described in Tables B.l and B.2. Part (a) and (b) of each figure 

describes the respective response of a hardened and annealed (C11000) copper pulse 

shaper tested under nominally identical input conditions. As we discussed earlier in 

Chapter 5, a common feature for the hardened copper data is a well-defined knee found 

early into the loading of the pulse shaper. The knee is created when the hardened copper 

is loaded beyond its elastic limit and begins to flow plastically. Since annealed copper 

has a much smaller yield strength than that of the hardened copper, the annealed copper 

knee is sometimes more difficult to distinguish. The incident stress pulse model 

predictions agree well with measurements and can therefore be used as a design tool to 

help select the experimental parameters necessary to produce valid SHPB experiments 

for brittle materials. 
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Figure B.l Data and model predictions for nominal 3.2-mm-diameter by 1.6-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 50.8-mm-long 

striker at a nominal velocity of 8.6 m/s 
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Figure B.2 Data and model predictions for nominal 3.2-mm-diameter by 1.6-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 50.8-mm-long 

striker at a nominal velocity of 17.6 m/s 
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Figure B.3 Data and model predictions for nominal 3.2-mm-diameter by 1.6-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 152.4-mm-long 

striker at a nominal velocity of 8.8 m/s 
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Figure B.4 Data and model predictions for nominal 3.2-mm-diameter by 1.6-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 152.4-mm-long 

striker at a nominal velocity of 17.5 m/s 
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Figure B.5 Data and model predictions for nominal 3.2-mm-diameter by 0.8-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 50.8-mm-long 

striker at a nominal velocity of 8.3 m/s 
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Figure B.6 Data and model predictions for nominal 3.2-mm-diameter by 0.8-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 50.8-mm-long 

striker at a nominal velocity of 17.5 m/s 
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Figure B.7 Data and model predictions for nominal 3.2-mm-diameter by 0.8-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 152.4-mm-long 

striker at a nominal velocity of 8.7 m/s 
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Figure B.8 Data and model predictions for nominal 3.2-mm-diameter by 0.8-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 152.4-mm-long 

striker at a nominal velocity of 17.5 m/s 
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Figure B.9 Data and model predictions for nominal 4.8-mm-diameter by 1.6-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 50.8-mm-long 

striker at a nominal velocity of 8.5 m/s 
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Figure B.10 Data and model predictions for nominal 4.8-mm-diameter by 1.6-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 50.8-mm-long 

striker at a nominal velocity of 17.7 m/s 
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Figure B.ll Data and model predictions for nominal 4.8-mm-diameter by 1.6-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 152.4-mm-long 

striker at a nominal velocity of 8.6 m/s 



148 

ZMI i i 

/ 

i i -1                1 

O 

\ _ | 200 

VI 

Dala 
 Model 

l\ 
VI 

/ 1 
«> 150 
u M « 

PQ \V 
-g 100 M 
a 

(—i \\ 

\V 
50 1/7 

i i 

\\ 

0 30 60 90 120 150 180 210 

(a) 

250 

^200 
PH 

VI 

El50 
GO 
u 
03 

PQ 
3 100 
4i 

H3 
• P* 
w 
a 

50- 

0 

- 

1                1 1 1 1                          1 

\ 
uaia 

 Model 

l\ 
\\ 

- / \\ 

/ \\ 

- / 
\\ 
\\ 

\\ 

- // \\ 
1 

1                 1 1 

\\ 
1                          1      V^^Lv-^v,  

0 30 60 90 120 150 180 210 

Time (JJ,S) 
(b) 

Figure B.12 Data and model predictions for nominal 4.8-mm-diameter by 1.6-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 152.4-mm-long 

striker at a nominal velocity of 17.5 m/s 
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Figure B.13 Data and model predictions for nominal 4.8-mm-diameter by 0.8-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 50.8-mm-long 

striker at a nominal velocity of 8.7 m/s 
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Figure B.14 Data and model predictions for nominal 4.8-mm-diameter by 0.8-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 50.8-mm-long 

striker at a nominal velocity of 17.7 m/s 
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Figure B.15 Data and model predictions for nominal 4.8-mm-diameter by 0.8-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 152.4-mm-long 

striker at a nominal velocity of 8.6 m/s 
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Figure B.16 Data and model predictions for nominal 4.8-mm-diameter by 0.8-mm-thick 
(a) hard and (b) annealed C11000 copper pulse shaper impacted by a 152.4-mm-long 

striker at a nominal velocity of 17.5 m/s 
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