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1   Executive Summary 

1.1   Accomplishments 

In this program we developed a new computationally viable approach for analysis and con- 
trol design of complex nonlinear systems. Resulting development techniques are directly 
applicable to a wide variety of engineering applications which are nonlinear and/or dis- 
tributed, and are especially relevant to the analysis and control of complex vehicle systems. 
The accomplishment of these program goals was approached from analytical, computa- 
tional and experimental perspectives. 

The study of time varying systems was motivated by their direct application to the inves- 
tigation of nonlinear systems along trajectories; this is a situation that arises frequently 
in general system analysis and simulation, as well as more specifically in control system 
design. The research in distributed control was targeted at the growing number of engineer- 
ing systems that are comprised of interconnected subsystems and must necessarily employ 
distributed control, as well as at the abundance of physical systems that are inherently dis- 
tributed. A general and computationally tractable theory was developed, and was verified 
using existing experimental facilities at Cornell and Illinois. 

The research strategy for the program was leveraged from current robust control theory, 
which until now was limited to dealing with design and system analysis issues locally in 
the system envelope, and was not directly applicable in distributed scenarios. The research 
funded by this grant, however, coupled with the rapid advancements in the field of semi- 
definite programming (SDP), have formed the basis for a computational theory for control 
design based on SDP techniques. 

The specific accomplishments were the following: 

1. The generalization of the most important results in one dimensional system analysis 
and design to the multidimensional case. This was achieved by considering systems 
which can be expressed as linear fractional transformations on temporal and spatial 
shift operators. This formulation has resulted in tractable algorithms for controlling 
distributed systems, and has laid the foundation for extending these results to include 
system uncertainty, subject to a rich class of input disturbances. 

2. The investigation of decentralized implementation of multidimensional controllers 
which result from multidimensional system optimization. 

3. The generalization of the most important results in linear time invariant analysis to 
a linear time varying setting. One of the major directions was that of /i-theory for 
parametric, LTI and LTV perturbation classes which have been extensively studied 
by Doyle and co-workers, and of robust performance to uncertainty in the presence 
of white noise. A key component of this work was to obtain feasible computational 
schemes. 



4. The development of optimal control strategies for linear time varying systems, with 
both H-infinity and H2 performance criteria. These schemes were combined with the 
aforementioned robust analysis results to provide general tools for robust, nonlinear 
controller synthesis along trajectories. 

5. The investigation of model validation of nonlinear systems over large ranges of the 
state space using linear time varying techniques. 

6. The exploration of model reduction of nonlinear systems along trajectories with guar- 
anteed error bounds. 

7. The systematic study of analysis and approximation of continuous linear time varying 
systems via discrete time varying systems. 

8. Establishing connections between the results on linear time varying analysis and de- 
sign to those on multidimensional optimization. One framework for control design 
and analysis was developed that includes these two problems as special cases. This 
framework permits control design and analysis for spatially varying distributed sys- 
tems along trajectories, applications which arise, for example, from tight formation 
flight of unmanned aerial vehicles. 
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ber 1999. 

4. R. D'Andrea. "Temporal discretization of spatially distributed systems." IEEE Con- 
ference on Decision and Control, Phoenix, Arizona, December 1999. 



5. R. D'Andrea. "Convex and finite dimensional conditions for controller synthesis 
with dynamic integral constraints." IEEE Conference on Decision and Control, 
Phoenix, Arizona, December 1999. 

6. R. D'Andrea. "Software for modeling, analysis, and control design for multidimen- 
sional systems." IEEE International Symposium on Computer-Aided Control System 
Design, Kona, Hawaii, August 1999. 

7. R. D'Andrea. "Linear matrix inequalities, multidimensional system optimization, 
and control of spatially distributed systems." American Control Conference, San 
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8. R. D'Andrea. "Convex £2 synthesis for multidimensional systems." IEEE Confer- 
ence on Decision and Control, Tampa, Florida, December 1998. 
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ence on Decision and Control, Tampa, Florida, December 1998. 
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Systems." 
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6. R. D'Andrea. Lucent Technologies, Murray Hill, New Jersey. May 2000. "Robust 
and Optimal Control of Complex Interconnected Systems." 
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Systems." 
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10. R. D'Andrea. Princeton University, Mechanical and Aerospace Engineering, Prince- 
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11. R. D'Andrea. Yale University, Electrical Engineering, New Haven, CT. September 
1999. "Robust and Optimal Control of Complex Interconnected Systems." 

12. R. D'Andrea. Universal Instruments Corporation, Binghamton, NY. September 1999. 
"Feedback Control: Overcoming Complexity and Uncertainty." 

13. R. D'Andrea. Wright Patterson Air Force Base, Air Vehicles Directorate, Dayton, 
OH. July 1999. "Decentralized Control of Spatially Distributed Systems, with Ap- 
plication to Formation Flight." 

14. R. D'Andrea. University of Toronto, Canada, Electrical and Computer Engineering. 
April 1999. "Robust and Optimal Control of Complex Interconnected Systems." 

15. R. D'Andrea. Colorado State University, Electrical and Computer Engineering, Fort 
Collins, CO. March 1999. "Decentralized Control of Spatially Distributed Systems, 
with Application to Formation Flight." 

16. R. D'Andrea. University of California, Los Angeles, Mechanical and Aerospace 
Engineering. March 1999. "Decentralized Control of Spatially Distributed Systems, 
with Application to Formation Flight." 
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ing and Computation. March 1999. "Decentralized Control of Spatially Distributed 
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1.5   Honors and Awards 

D'Andrea 

RoboCup World Champions, 2000 
Project manager and faculty advisor for the world champion F180 League Cornell 
Autonomous Robotic Soccer team. Melbourne, Australia 2000. 

National Science Foundation CAREER Award, 2000 

National Academy of Engineering Frontiers in Engineering Symposium, 2000 
Selected to participate in symposium bring together engineers ranging in age from 
30 to 45 years who are performing leading-edge research and technical work. 

J.P. and Mary Berger '50 Excellence in Teaching Award, 2000 
College of Engineering award, awarded annually to twenty outstanding teachers at 
Cornell University. 

D. G. Shepherd Teaching Prize, 1999 
Awarded annually to the most outstanding teacher in the Sibley School of Mechanical 
and Aerospace Engineering, Cornell University. 

RoboCup World Champions, 1999 
Project manager and faculty advisor for the world champion F180 League Cornell 
Autonomous Robotic Soccer team. Stockholm, Sweden 1999. 

Dullerud 

National Science Foundation CAREER Award, 1999 
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2   Spatially Interconnected Systems 

2.1    Summary 

Many systems consist of similar units which directly interact with their nearest neighbors. 
Even when these units have tractable models and interact with their neighbors in a simple 
and predictable fashion, the resulting system often displays rich and complex behavior 
when viewed as a whole. There are many examples of such systems, including: 

• Automobiles on a freeway: during periods of congestion, drivers are typically con- 
cerned with the position and velocity of the vehicle directly in front and directly 
behind them. Even though a driver's response in these situations may be predictable 
and easy to model, the overall behavior of the vehicles on the freeway is very com- 
plex, and is prone to many types of instabilities. This has led to research in automated 
highway systems to increase vehicle throughput and eliminate traffic instabilities [1]. 

• Formation flight of uninhabited aerial vehicles: in these applications, unmanned ve- 
hicles are flown in close formation in order to increase the effective aspect ratio of 
the vehicles and thus reduce drag (migrating birds employ a similar strategy, and the 
resulting V-formations can be explained in terms of drag reduction [2]). The identi- 
cal vehicles are coupled to their nearest neighbors aerodynamically, and any control 
system being sought must take this coupling into account to ensure that disturbances 
are not amplified as they propagate through the system [3], [4]. 

• Satellite formation flight: there have been recent proposals for utilizing formations 
of satellites which create sparse apertures for remote sensing applications. These 
configurations have the same performance as an extremely large satellite, but at a 
fraction of the cost. The required performance is the method by which these systems 
interact; the satellites must maintain a fixed formation in the presence of gravitational 
perturbations, solar radiation, and atmospheric drag, using a minimum amount of fuel 
for formation keeping [5], [6], [7], [8]. 

• Cross directional control: in these applications, arrays of spatially distributed sen- 
sors and actuators are used to maintain uniformity of the manufactured paper in the 
direction perpendicular to the travel of the sheet. The effects of actuation in one 
spatial location are propagated to neighboring locations by the very material being 
controlled [9], [10], [11]. 

• Certain classes of partial differential equations: many PDEs are derived by consid- 
ering the interaction of an infinite number of infinitesimal elements interacting with 
their nearest neighbors; examples include the deflection of beams, plates, and mem- 
branes, and the temperature distribution of thermally conductive materials [12]. 
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An important aspect of many of these systems is that sensing and actuation capabilities 
exist at every unit. In the examples above, this is clearly the case for vehicle platoons, 
aerial vehicle systems, satellite constellations, and cross-directional control systems. With 
the rapid advances in micro electro-mechanical actuators and sensors, one may control the 
vibrations of plates by instrumenting them with a large number of distributed actuators and 
sensors as well. This latter application is typically referred to as smart structure control; an 
excellent treatment of this emerging field may be found in [13]. 

If one attempts to control these systems using standard control design techniques, severe 
limitations will quickly be encountered as most optimal control techniques cannot handle 
systems of very high dimension and with a large number of inputs and outputs. It is also not 
feasible to control these systems with centralized schemes, as these require high levels of 
connectivity, impose a substantial computational burden, and are typically more sensitive 
to failures and modeling errors than decentralized schemes. 

In order for any optimal control technique to be successful, the structure of the system must 
be exploited in order to obtain tractable algorithms. In particular, a large class of problems 
can be captured with the following model equations: 

wT{t,s) ' AJJ    AJS BT 

ws(t,s) = -AST     -Ass Bs 

z(t,s)   _ GT     Gs D 
WT(t)     =     XT{t), 

ws{t ) = ' ±S,mXs(t). 

xT(t,s) 
xs(t,s) 
d(t, s) 

(1) 

(2) 

(3) 

In the description above, the signals, such as d(t, s), are indexed by a temporal indepen- 
dent variable t and spatial independent variables s = (sx, s2, • • • ,SL)- In other words, the 
system evolves in both time and space, where the number of spatial independent variables 
is L. 

Define the shift operators Sj as follows 

(S;u(t))(s) :=«(«, si,--- ,Si + V" ,SL),   i = l,---,L. (4) 

For a given (2L+l)-tuple of non-negative integers m = (m0, mi, m_i, ro2, m_2, • • • , m_L), 
we define the following structured operator: 

As,m := diag(Si/mi, Sx Jm_1,S2im2) °2 %-2'" i^ %.i)' w) 

Thus operator ASim captures the spatial evolution of the system. 

In the series of papers [14], [15], [16], and [17], control design and analysis for these system 
is considered, which fall under the class of spatially invariant systems. Other researchers 
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Figure 1: Controller implementation for two spatial dimensions. Each subsystem is a finite 
dimensional, linear time invariant subsystem which is connected to its nearest neighbors. 
The signals y = y(t, si, S2) coming into each subsystem are the local sensor variables, and 
the signals u — u(t, sx, s2) leaving each subsystem are the actuator signals. 

have proposed methods for designing controllers for spatially invariant systems by taking 
Fourier transforms in the spatial independent variables, and designing controllers as a func- 
tion of the spatial frequency variables; see [18], [19], [20], and the references therein. The 
strengths of the techniques developed as part of the research funded under this grant are: 

• No "gridding" of the spatial frequency transform variables is required; gridding the 
spatial frequency variables can quickly become computationally prohibitive, espe- 
cially when dealing with more than one spatial dimension. 

• The non-trivial problem of interpolating the spatial frequency-dependent controllers 
is avoided. 

• The resulting controllers inherit the same structure as the plant, which implies that 
the resulting controllers have a simple implementation. This is depicted in Figure 1. 

• The formalism for treating these classes of problems can be readily extended to the 
spatially and time varying case. 

• The techniques are based on linear matrix inequalities (LMIs). LMIs appear to be 
a unifying thread in robust and optimal control design and analysis, increasing the 
likelihood of extending the existing, standard robust and optimal control design tools 
to spatially distributed systems. 

2.2   Software 

A MATLAB toolbox was developed in order to facilitate control design and analysis for 
these classes of systems, the Multidimensional Systems toolbox. This software allows one 
to perform the following tasks: 

13 
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Figure 2: Uncertainty and Linear Fractional Representations 

1. Construct MD system representations from first principles models; 

2. Model reduce MD systems; 

3. Manipulate MD' systems, such as addition, multiplication, block transformations, 
etc.; 

4. Design spatially distributed controllers for MD systems; 

5. Analyze the performance of MD systems; 

6. Simulate MD systems 

2.2.1    Data Structure 

A MD system sys is captured by the following structured object: 

sys.A n by n real matrix 
sys.B n by m real matrix 
sys.C p by n real matrix 
sys.D p by m real matrix 
sys.blk L by 1 real array 

Define A = diag(6i/sy8.Wfc(i)) • ■ • ,SLIsysMk(L)), where the Si are scalar indeterminates, 
and sys.blk captures the multiplicity of each indeterminate, sys captures the following 
structured object: 

sys.D H- sys.C A(I - sys.,4A)  1 sys.B (6) 

Defining 

M = 
sys.A   sys.B 
sys.C   sys.D 

14 

(7) 



it corresponds to the object in Figure 2. This block diagram is often represented by the star 
product of A and M, A • M. 

The functions in the MD toolbox can be divided into six parts.  We outline the various 
functions in the MD toolbox by considering a simple example: the 2D heat equation: 

su = aHL + aHf + Q (8) 
dt       dx2      dy2 

where U(x, y, t) is the temperature of the plate, Q is the heat added to the plate, x and y 
are the independent spatial coordinates, and t is time. 

Define the following operators: 

Then the 2D heat equation can be captured as follows: 

TU = (X2 + Y2)U + Q (10) 

2.2.2    Modeling of MD systems 

The function MN20NMD, which corresponds to Multinomial to Output Nulling, creates 
an output nulling [21] representation of the form 

(A * MON)w = 0. (11) 

The w capture all the variables in the multidimensional system; for our example, w = 
(U,Q). MN20NMD takes as an input a two dimensional cell array R and returns sys, 
where sys is used to capture A and M. For our example, A is of the form diag(T7, XI, YI). 
R is used to capture the multinomial which describes our system as a set of multinomial 
equations; it is often the most natural way to describe a system from first principles [22], 
[23]. 

An input-output representation is created from an output nulling representation with func- 
tion ON2IOMD; for example, one could set Q an input and U an output and construct the 
following representation: 

E/ = (A*M/o)Q (12) 

The above functions can readily handle systems with many inputs and outputs, many equa- 
tions, and many operators. 
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2.2.3   Model Reduction 

The systems created via MN20NMD tend to be very nonminimal. Functions CTRBFMD 
(decomposition of MD system into reachable and unreachable parts, see [24]), and MIN- 
REALMD (minimal realization by truncation of unreachable, unobservable parts) can be 
used to create minimal realizations when the indeterminates in A do not commute. It is 
found in practice [25] that these algorithms yield minimal realizations even when the inde- 
terminates in A commute. 

2.2.4   System Manipulation 

These functions allow one to interconnect, add, subtract, concatenate, etc. MD systems. 
For example, one may add the following equation to the heat equation system 

y = U + n (13) 

by first converting the above to an ON system via MN20NMD, and then using AUGMD 
(which corresponds to augment) to incorporate this additional system of equations to the 
2D heat equation, y in the above equation could correspond to the sensed variable, and n 
the sensor noise. 

Other functions are used to manipulate the blocks in A. These manipulations include 
bilinear transformations, continuous to discrete time sampling, reordering of blocks, and 
the inversion of blocks. For example, in the 2D heat equation example, one may want to 
invert the indeterminate corresponding to T and express the system using indeterminate 
T_1 using function LFTINVMD. This would be done to cast the system in standard state 
space form (note that a ID state space system can be thought of as an LFT between T_1 

and a constant matrix). 

2.2.5    Controller Synthesis 

These functions allow one to design controller for MD systems. For example, for the 2D 
heat equation example, one may want to design a MD system with input y and output Q 
which stabilizes the heat equation and which rejects sensor noise n. The reader is referred 
to [16], [17], and [26] for a description of these MD synthesis techniques. 

2.2.6   System Analysis 

These set of functions are used to analyze the £2 performance of MD systems. 
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2.2.7   Simulation 

These set of functions allow one to simulate MD systems; this is particularly useful when 
implementing MD controllers designed using the MD controller synthesis techniques in the 
toolbox. 

2.2.8    Complete List of Functions 

The complete list of functions which currently constitute the MD Toolbox may be found in 
Table 1. 
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System Description 
MN20NMD 
ON2IOMD 

Model Reduction 
CTRBFMD 
MINREALMD 

■ Construct an output nulling representation 
Output nulling to input-output 

• Decomposition into reachable and unreachable parts 
• Minimal realization 

System Manipulation 
ADDMD 
AUGMD 
MULTMD 
STARMD 
SUBMD 

Block Transformations 
BLMD 
C2DMD 
C2DZOHMD 
D2CMD 
LFTINVMD 
PERMUTEMD 
SHIFTMD 
SWAPMD 

Controller Synthesis 
CHFMD 
CHFOPTMD 
CNSTMD 

System Analysis 
CAUGMD 
CLYAPMD 
STABMD 

System Simulation 
CRCRSMD 
DSIMULATEMD 

- Add two systems 
- Concatenate two systems 
- Multiply two systems 
- Star product of two systems 
- Subtract one system from another 

- General bilinear transformation 
- Bilinear transformation, plane to disk 
- Zero order hold, continuous to discrete transformation 
- Bilinear transformation, disk to plane 
- Inverts indeterminates in system description 
- Combines two block structures into one 
- Bilinear transformation, plane to plane 
- Swap blocks in realization 

- Cts. time L2 to L2 control design 
- Optimal cts. time L2 to L2 control design 
- Explicit construction of controller 

- Augments system to reduce conservatism of analysis LMIs 
- Continuous time Lyapunov Analysis for stability 
- Stability test by frequency search 

Decomposition to allow Taylor expansion 
Discrete time simulation 

Table 1: Functions in MD Toolbox 



3    Time and Spatially Varying Systems 

3.1    Control of nonstationary systems 

A substantial number of engineering control and analysis problems can be reduced to anal- 
ysis along a nominal trajectory. A few examples are described below. 

• An array of automatically controlled aircraft are required to follow a repeating hold 
pattern. The necessary commands to achieve this are computed, and an outer feed- 
back control loop is used to ensure that despite the presence of wind and other dis- 
turbances the trajectories are closely followed. 

• The load profile of a power system exhibits a repetitive fluctuation on a weekly 
(sometimes daily) cycle, and is thus periodic. A feedback control loop is used to 
stabilize the system around the desired power trajectory. 

• A satellite is required to maintain a complex low-altitude orbit, but for energy con- 
servation may only use its thrusters for short intervals at specified points in time. A 
feedback control law is used to ensure the correct trajectory above the earth. In this 
example the system is both intrinsically time varying and nonlinear. 

In each example the systems follow prespecified trajectories, and the dynamics can be ex- 
pected to be significantly nonlinear. Furthermore very accurate open-loop models for these 
systems would be extremely complex; consider simply the wing-fluid interaction in one 
aircraft. The Pis have pursued design and analysis methods for control of complex systems 
along prespecified trajectories using tools from control, dynamical systems and nonlinear 
systems theory in a hybrid combination. The particular approach described here concen- 
trates on novel techniques developed by the Pis involving linear time varying systems. 

Linear time varying (LTV) systems form an important and central class of systems for 
control design because they can be used to represent and analyze nonlinear systems along 
trajectories. The main advantage of considering LTV systems is analytical and computa- 
tional, as they are considerably simpler than starting with general nonlinear systems. To 
make the connection between nonlinear systems along trajectories and LTV systems more 
concrete, linearization of trajectories is now reviewed. A discrete1 nonlinear system can be 
described by 

xk+i   =   F(xk, wk) (14) 

zk   =   H(xk, wk), 

'for clarity of exposition we focus on discrete systems 
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where xk is the system state, wk is an exogenous input, and zk is the output. Suppose it is 
desired to analyze or maintain this system near the trajectory xk resulting from input wk, 
giving output zk. Then the linearization of this system along the trajectory is 

xk+i   =   Akxk + Bkwk (15) 

zk   =   Ckxk + Dkwk, 

where [Ak Bk] = %\{ik,wk) and [Ck Dk] = &■ \{ik^k). By studying this LTV system, if 
the values of wk are not too large, linearization theorems guarantee that the actual response 
of the nonlinear system to the input wk = wk + wk will be near zk = zk + zk. Methods 
for predicting this mismatch and controlling the system around such trajectories is a main 
motivation of the LTV program pursued. 

The approach described in this section is a synopsis of that given in earlier work by 
Dullerud and Lall, where the starting point for this formalism is an LTV system of the 
form in (15). The major feature of the framework now described is that it allows LTV sys- 
tems to be treated almost as though they were LTI; matrices are replaced by block diagonal 
operators and transfer functions by a newly defined system function. The framework it- 
self is very straightforward to describe and has substantial implications for the treatment of 
LTV systems, both from an analytical and a computational perspective. Indeed the exam- 
ples shown on analysis and optimal synthesis clearly demonstrate the strength of this new 
framework as very complex manipulations appear transparent. 

To illustrate the main idea consider the following important question that one might ask: 
what is the induced norm of the system on the finite energy signals £2? As is well known 
from the literature on uncertain systems, this question is fundamental to issues both for 
robustness analysis and for local stabilization of nonlinear systems. 

In order to answer such questions, we rewrite the system described by (15) as 

x   =   ZAx + ZBw (16) 

z   =   Cx + Dw. (17) 

Here x = (xo,Xi,x7, • ■ ■), and similarly for u and y. The symbols A, B, C, and D 
represent block diagonal operators which have matrix representations, e.g. 

4o 
A, 

A2 

0  " 

0 

and the operator Z is the unilateral shift or delay operator on £2. Then the standard notion 
of exponential stability corresponds to invertibility of the operator / - ZA. If we write the 
map from w to z as G, then 

G = C{I-ZA)-1ZB + D 
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A key result is that this representation of time-varying systems allows the definition of 
a system function which formally plays the analogous role of a transfer function, and is 
defined by 

0(A) = C{I - \ZA)-lXZB + D. (18) 

Note that this function, although appearing nearly identical to a transfer function, is not 
a transfer function even when the given system is time invariant. A central result is the 
following induced norm equality 

||G||=max C{I-\ZA)-X\ZB + D 
Aero 

here D is the set of complex numbers of magnitude less than one. This can be shown using a 
combination of spectral theory for operators and complex analysis. A generalized version 
of the result can also be demonstrated when the system function is a function of several 
(or countable) variables; this multidimensional version is very important for work with 
model reduction and has a many significant connections with control methods. The main 
advantage of this frequency domain formulation is that it allows the techniques of robust 
analysis and synthesis to be applied directly to the LTV system. For example a structured 
version of the KYP lemma is 

The norm inequality ||G|| < 1 is satisfied if and only if there exists a block diagonal 
operator X > 0 such that the inequality 

ZA ZB ' 
* 

' X   0 " 
C D 0    I 

ZA ZB ' ' X   0." 
C D 0    I 

< 0   is satisfied. 
(19) 

This is a convex condition and reduces to a finite dimensional linear matrix inequality 
(LMI) when the time horizon is finite or the system G is periodic. 

z ■* 

Figure 3: Closed-loop system 

To further illustrate the perspective and power gained by applying this machinery a synthe- 
sis problem is now described. Let G be defined as above but described by the following 
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partitioned state space equations 

xk+x — Akxk + Bikwk + B2kuk       xQ 

zk = Cikxk + Dnkwk + D12kuk 

Vk = C2kxk + D2ikwk 

0 

(20) 

where xk G Rn, wk G Rnw, uk G RUu, zk G W1*, and yk G Rn*. Make the physical 
and technical assumption that the matrices A,B,C,D are uniformly bounded functions of 

time. 

(21) 

Suppose this system is to be controlled by a controller K characterized by 

ski = 4WF + B*Vk 
uk = C^xl + D$yk. 

where ^ 6 1™. The connection of G and K is shown in Figure 3. 

The synthesis question that corresponds to the analysis question above is: does there exist 
a controller K that stabilizes the closed-loop system and makes the map \\w M- z\\ < 1? 
A controller satisfying these conditions is said to be admissible; here by scaling it is again 
assumed, without loss of generality, that the norm bound sought is one. 

By using the system function of (18), it is possible to derive the following synthesis theorem 

There exists an admissible synthesis K for G, with state dimension no less than that 
ofG, if and only if there exist block-diagonal operators R > 0 and S > 0 satisfying 

(i) 

(Ü) 

(iii) 

'NR   0 1 * 

0     I 

'NS 6 *   . 

0     / 

R   I 
I   s >o 

ARA* - Z*RZ       ARC{        Bx 

dRA* dRCt-I   Du 

~A*Z*SZA-S 
B\Z*SZA 

Ci 

D li 

NR   0 
0     / 

<0 

A*Z*SZBX 

B*xZ*SZBi -1 
Ci 

-I 

Ns   0 
0     I 

<0 

where the operators NR, NS satisfy 

ImJVß = Ker [B*2   D*12] , N*RNR = I 

ImNs = Ker [c2   D21] , N*SNS = I. 

Note that these conditions look formally identical to those obtained in the optimal #«> 
synthesis results via LMIs in the stationary case. If the above conditions are met an explicit 
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Controller can be determined from R and S, just as in the standard LMI solution to the H^ 
synthesis problem. The above general synthesis result is infinite dimensional and convex, 
but reduces to a finite dimensional convex condition for finite time horizons or periodic 
systems; virtually all scenarios of engineering interest fall into these categories. 

During the project we have considerably extended the nonstationary problems that can be 
solved in the area of robust control, thus making new methods available for control along 
trajectories: 

• We have developed new convex synthesis conditions for robust performance in lin- 
ear time-varying systems, subject to time-varying perturbations. In particular these 
results are exact for sensitivity minimization in the presence of multiplicative pertur- 
bations. The methods apply to a number of additional robust performance problems, 
and are always both necessary and sufficient when the system plant is periodic. Oth- 
erwise the conditions provided are aiways sufficient, and a controller can be directly 
constructed when this condition holds. 

• Considered control of nonstationary linear parameter-varying systems. This work has 
resulted in synthesis conditions derived for such systems using an operator theoretic 
framework with the £2 induced norm as the performance measure. These conditions 
are given in terms of structured operator inequalities. In general, evaluating the va- 
lidity of these conditions is an infinite dimensional convex optimization problem; 
however, in certain important cases these reduce to finite dimensional semi-definite 
programming problem, and are thus readily verified. 

• Have introduced and studied eventually periodic systems in the context of nonlinear 
systems which transition between equilibria or periodic orbits. It has been shown 
that general nonstationary analysis conditions are computable for such systems, and 
we have studied potential conservatism for synthesis problems as well. 

3.2   Distributed control of heterogeneous systems 

As detailed above, recently there has been renewed research interest in distributed con- 
trol of systems with an emphasis on synthesizing controllers that preserve the distributed 
structure of the nominal plant. The primary motivation for this work is (1) the increasing 
number of systems that are formed by the interconnection of interacting subsystems; and 
(2) the tremendous potential of emerging technologies which are making the deployment 
of large distributed sensor and actuator arrays possible. Much of this recent work has fo- 
cused on systems that are shift invariant, or homogeneous, with respect to both spatial and 
temporal variables. Many systems occurring in both nature and engineering, due to bound- 
ary conditions, inhomogeneity in material, or the coupling of differing subsystems, fail to 
possess such an invariance property, particularly with respect to spatial variables. 
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An achievement of the program has been the development of tools and results for dis- 
tributed control, within the context of robust control, to deal with such heterogeneity. The 
Pis have considered distributed state space systems using a generalization of the Roesser 
model, and develop stability and synthesis results using the £2-induced norm as the per- 
formance measure. In particular the work is concerned with developing controllers which 
have the same state space structure as the nominal system. Our approach makes significant 
use of operator theory, and the results obtained are all stated as convex feasibility problems. 
More specifically, we extend robust control machinery to include heterogeneous Roesser 
systems. We derive sufficient conditions for analyzing performance with respect to the £2- 
induced norm, and then provide sufficient conditions for the existence controllers which 
stabilize the system and provide a guaranteed level of performance. The techniques devel- 
oped are based on extending and combining those developed by the Pis on LTV systems 
and homogeneous distributed systems. An operator inertia concept is central to obtaining 
the results, and is adapted for use with distributed systems from earlier work on standard 
nonstationary systems. The analysis and synthesis results we derive are stated in terms of 
linear operator inequalities over infinite dimensional spaces. In certain circumstances they 
can be reduced directly to linear matrix inequalities, and thus their feasibility can be readily 
determined using semidefinite programming. 
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4   Formation Flight Test-Bed 

4.1   Summary 

An integral part of our research prograrr) was to evaluate the analytical tools being devel- 
oped on several application systems and experiments. The main goals were to test the tools 
on real applications, to contribute to the understanding of several control applications and 
provide useful synthesis techniques for them, and to motivate further research into relevant 
control related issues. One such application area was Formation Flight control. 

The key feature of formation flight systems is that they consist of many similar units which 
are required to follow predetermined trajectories. The goal of control design is to design 
for disturbance rejection (for physically meaningful disturbance classes), subject to model 
uncertainty (due to the complexity of fluid-structure interactions, reduced order models 
will need to be used, leading to model uncertainty), for many interacting units (leading to 
distributed control). 

During the grant period, we completed the construction of an experimental platform at 
Cornell University that will be used to explore aircraft formation flight control. A schematic 
representation of the experiment may be found in Figure 4. It consists of four rectangular 
lifting surfaces, or wings, in a windtunnel with two degrees of freedom: roll about the roll 
axis, and translation about the pitch axis; the translation about the pitch axis is implemented 
with a rotary arm, which well approximates translation for small displacements. A fifth 
lifting surface, a half of one wing, is firmly attached to the side of the wind tunnel and is 
used to generate a vortical disturbance, which propagates to the downstream wing. The 
relative spacing of the wings can be adjusted, as can the pitch angle of each wing. Ailerons 
on each wing, actuated by two micro-servos, provide the only control for each wing. Two 
optical encoders are used to measure the roll angle and displacement along the pitch axis. 
The main physical parameters of the system are given in Table 2. 

Parameter Value 
Wing airfoil NACA0015 
Wing span 12 inches 
Wing chord 3 inches 
Effective wing mass along pitch axis adjustable, > 0.05 kg 
Wing roll inertia adjustable, > 0.0005 kg m2 

Actuator rate limit llrad/s 
Sensor resolution 0.0015 rad 
Wind tunnel cross-section height 4 feet, width 5 feet 
Wind tunnel maximum velocity 30 m/s 

Table 2: Physical Parameters 
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Figure 4: Schematic diagram of experiment. Top diagram, top view; the direction of the 
flow is from the top of the page to the bottom of the page. The degrees of freedom are 
roll (the vertical axis of the page), and translation about the pitch axis (the complete wing 
mount can rotate about an axis coming out of the page, which for small rotations well 
approximates horizontal translations). Bottom diagram, side view. 
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Figure 5: Formation Flight Testbed. 

The experiment is instrumented to a Dual Processor Pentium II machine via the DS1103 
real time control hardware and software package from dSpace. The dSpace system is being 
used to implement real time control, while the dual processor workstation is being used for 
control design and analysis. 

4.2   Analytical Models 

We have derived simple models which qualitatively capture the dynamics of formation 
flight systems by capturing the instantaneous lift generated by the wings via vortex sheets 
in potential flow; see [27] for modeling details. Restricting the analysis to the roll dynamics 
(no translation), the lift on a downstream wing induced by a moment step on the upstream 
wing is captured in the left plot of Figure 6, in non-dimensional units; the net induced 
moment is depicted in the right plot of Figure 6. 

This induced moment is the result of the induced velocity associated with the vortex sheet 
being shed by the upstream wing. The linearized equations of motion for an infinite number 
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Figure 6: Induced Lift and Moment 
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Figure 7: Control architecture.  G is the local system, coupled to its nearest neighbors. 
Controller K inherits the same architecture. 

of wings can be captured by the following operator equation: 

T29 = -kTB + r + rSD(l - pSD)-1!^ (22) 

where 9 = 0(s, t) is the roll angle, independent variable s is the wing number, independent 
variable t is time, T is the temporal differentiation operator 

39 
(T9)(s,t) := — (s,i), 

S is the unit spatial shift operator, 

(S9)(s,t):=9{s-l,t), 

D is the unit time delay operator, 

(D9)(s,t):=9{s,t-1), 

(23) 

(24) 

(25) 

r = T(S, t) is the torque applied to the wing, and k, r, and p are constants derived from the 
physical parameters of the system. 

The simple model above is valid for an infinite number of wings; given that the coupling 
is only from upstream wings to downstream wings, however, controllers designed for the 
infinite wing case will guarantee stability and performance for systems consisting of only 
a finite number of wings. Controllers were designed using the techniques outlined in [16] 
and [17] for the models described above. A frame of a simulation may be found in Figure 8, 
corresponding to time = 45 units. The left most wing is the lead wing, the right most wing 
is the trailing wing. Random noise torques were applied to each of the wings throughout 
the simulation. 

One of the attractive features of using the multidimensional optimization techniques in [16] 
and [17] to these classes of problems is that the resulting control architecture mimics that 
of the plant. This is depicted in Figure 7. In particular, the computation is decentralized, 
with the controllers K communicating with their nearest neighbors. 
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Figure 8: Closed loop system, multidimensional system optimization. The view is essen- 
tially a rear view, with an elevation of 20 degrees to separate the wings (the roll axes of the 
wings are essentially into the page). The left-most wing is the lead wing. 

|Time 
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(     Reset/Start Here  ~) 

Figure 9: Closed loop system, decentralized V.^ optimization. 

Using the same weights and performance objectives, decentralized controllers were de- 
signed using "Hoo optimization by treating the fluid coupling as a disturbance. A frame of 
a simulation may be found in Figure 9, corresponding to time = 45 units. As can be seen, 
the resulting closed loop system displays string instabilities. 

4.3   Future Work 

As a follow up to this grant, we are in the process of constructing models which incorporate 
the translational, actuator, and sensor dynamics, and thus provide a first principles model 
of the complete experimental system about the natural equilibrium point. Robust linear 
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identification and model validation techniques are being employed to incorporate experi- 
mental data in the resulting model, and to extend the model to include system uncertainty. 
The various system parameters, such as pitch angle, mass of the wing, velocity of the flow 
in the wind tunnel, etc., are being varied in order to control the difficulty of controlling the 
system with purely decentralized schemes. 
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