
I 1
I ^ i ?** 0! C f t'% I^J ''i

NATiÜfMJ--
ESiiÄiTY? CENTER

"Äffet ,."-'"' I NATIONAL COMPUTER € Z f" % i_ t i1«

tea

gäS§M»ffi!|jlSi^ :fi;,:«tiaiSlKiS!SBSailB

Basrsisßsfßi

00t,

^ pi. i:'':

^ 8 "A

Ü1!
|l lii a

ft f "
I 1

I

Gnjnüaiiftfi»*

vi

WS S Drmal Verification Systems

11

Ä 3 r s i qgq

11
I i f III
I if!
11 i
I 8

I
I 8

1 I

Distribution UnNmi 1

1
mi

NCSC-TG-014-89
Library No. S-231,308

FOREWORD

This publication, Guidelines for Formal Verification Systems is issued by the
National Computer Security Center (NCSC) under the authority and in accordance
with Department of Defense (DoD) Directive 5215.1, "Computer Security
Evaluation Center." The guidelines defined in this document are intended for
vendors building formal specification and verification systems that trusted system
developers may use in satisfying the requirements of the Department of Defense
Trusted Computer System Evaluation Criteria (TCSEC), DoD 5200.28-STD, and the
Trusted Network Interpretation of the TCSEC.

As the Director, National Computer Security Center, I invite your
recommendations for revision to this technical guideline. Address all proposals for
revision through appropriate channels to the National Computer Security Center,
9800 Savage Road, Fort George G. Meade, MD, 20755-6000, Attention: Chief,
Technical Guidelines Division.

-^3zift
Patrick R. Gattaghe^tff. 1 April 1989
Director

National Computer Security Center

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402

ACKNOWLEDGMENTS

The National Computer Security Center expresses appreciation to Barbara Mayer

and Monica McGill Lu as principal authors and project managers of this document.

We recognize their contribution to the technical content and presentation of this pub-

lication.

We thank the many individuals who contributed to the concept, development, and

review of this document. In particular, we acknowledge: Karen Ambrosi, Tom

Ambrosi, Terry Benzel, David Gibson, Sandra Goldston, Dale Johnson, Richard

Kemmerer, Carl Landwehr, Carol Lane, John McLean, Jonathan Millen, Andrew

Moore, Michele Pittelli, Marvin Schaefer, Michael Sebring, Jeffrey Thomas, Tom

Vander-Vlis, Alan Whitehurst, James Williams, Kimberly Wilson, and Mark

Woodcock. Additionally, we thank the verification system developers and the rest of

the verification community who helped develop this document.

TABLE OF CONTENTS

FOREWORD i

ACKNOWLEDGMENTS ii

PREFACE iv

1. INTRODUCTION 1

1.1 PURPOSE 1

1.2 BACKGROUND 1

1.3 SCOPE 2

2. EVALUATION APPROACH 3

2.1 EVALUATION OF NEW SYSTEMS 3

2.2 REEVALUATION FOR ENDORSEMENT 5

2.3 REEVALUATION FOR REMOVAL 6

2.4 BETA VERSIONS 7

3. METHODOLOGY AND SYSTEM SPECIFICATION 8

3.1 METHODOLOGY 8

3.2 FEATURES 9

3.2.1 Specification Language 9

3.2.2 Specification Processing 10

3.2.3 Reasoning Mechanism 11

3.3 ASSURANCE, SOUNDNESS, AND ROBUSTNESS 12

3.4 DOCUMENTATION 11

4. IMPLEMENTATION AND OTHER SUPPORT FACTORS 15

4.1 FEATURES 15

4.1.1 User Interface 15

4.1.2 Hardware Support 16

4.2 ASSURANCE 17

4.2.1 Configuration Management 17

4.2.2 Support and Maintenance 19

4.2.3 Testing 19

4.3 DOCUMENTATION 19

5. FUTURE DIRECTIONS 23

APPENDIX A: CONFIGURATION MANAGEMENT 25

GLOSSARY 28

BIBLIOGRAPHY 35

PREFACE

One of the goals of the NCSC is to encourage the development of production-quality

verification systems. This guideline was developed as part of the Technical Guide-

line Program specifically to support this goal.

Although there are manual methodologies for performing formal specification and

verification, this guideline addresses verification systems that provide automated

support.

Throughout the document, the term developer is used to describe the developer of

the verification system. The term vendor is used to describe the individual(s) who

are providing support for the tool. These individuals may or may not be the same

for a particular tool.

IV

1. INTRODUCTION

The principal goal of the National Computer Security Center (NCSC) is to encourage

the widespread availability of trusted computer systems. In support of this goal the

DoD Trusted Computer System Evaluation Criteria (TCSEC) was created, against

which computer systems could be evaluated. The TCSEC was originally published

on 15 August 1983 as CSC-STD-001-83. In December 1985 the DoD modified and

adopted the TCSEC as a DoD Standard, DoD 5200.28-STD. [1]

1.1 PURPOSE

This document explains the requirements for formal verification systems that are

candidates for the NCSC's Endorsed Tools List (ETL). [5] This document is primar-

ily intended for developers of verification systems to use in the development of

production-quality formal verification systems. It explains the requirements and the

process used to evaluate formal verification systems submitted to the NCSC for en-

dorsement.

1.2 BACKGROUND

The requirement for NCSC endorsement of verification systems is stated in the

TCSEC and the Trusted Network Interpretation of the TCSEC (TNI). [4] The TCSEC

and TNI are the standards used for evaluating security controls built into automated

information and network systems, respectively. The TCSEC and TNI classify levels

of trust for computer and network systems by defining divisions and classes within

divisions. Currently, the most trusted class defined is A1, Verified Design, which re-

quires formal design specification and formal verification. As stated in the TCSEC

and TNI, ". . . verification evidence shall be consistent with that provided within the

state of the art of the particular Computer Security Center-endorsed formal specifi-

cation and verification system used." [1]

Guidelines were not available when the NCSC first considered endorsing verification

systems. The NCSC based its initial endorsement of verification systems on support

and maintenance of the system, acceptance within the verification community, and

stability of the system.

1.3 SCOPE

Any verification system that has the capability for formally specifying and verifying

the design of a trusted system to meet the TCSEC and TNI A1 Design Specification

and Verification requirement can be considered for placement on the ETL. Although

verification systems that have capabilities beyond design verification are highly en-

couraged by the NCSC, this guideline focuses mainly on those aspects of verifica-

tion systems that are sufficient for the design of candidate A1 systems.

The requirements described in this document are the primary consideration in the

endorsement process. They are categorized as either methodology and system

specification or implementation and other support factors. Within each category are

requirements for features, assurances, and documentation.

The requirements cover those characteristics that can and should exist in current

verification technology for production-quality systems. A production-quality verifica-

tion system is one that is sound, user-friendly, efficient, robust, well documented,

maintainable, developed with good software engineering techniques, and available

on a variety of hardware. [2] The NCSC's goal is to elevate the current state of

verification technology to production quality, while still encouraging the advancement

of research in the verification field.

Since the NCSC is limited in resources for both evaluation and support of verification

systems, the ETL may reflect this limitation. Verification systems placed on the ETL

will either be significant improvements to systems already on the list or will provide a

useful approach or capability that the currently endorsed systems lack.

This guideline was written to help in identifying the current needs in verification sys-

tems and to encourage future growth of verification technology. The evaluation pro-

cess is described in the following section. Verification systems will be evaluated

against the requirements listed in sections 3 and 4. Section 5 contains a short list of

possibilities for next-generation verification systems. It is not an all-encompassing

list of features as this would be counterproductive to the goals of research.

2. EVALUATION APPROACH

A formal request for evaluation of a verification system for placement on the ETL

shall be submitted in writing directly to:

National Computer Security Center

ATTN: Deputy C (Verification Committee Chairperson)

9800 Savage Road

Fort George G. Meade, MD 20755-6000

Submitting a verification system does not guarantee NCSC evaluation or placement

on the ETL.

The developers shall submit a copy of the verification system to the NCSC along

with supporting documentation and tools, test suites, configuration management evi-

dence, and source code. In addition, the system developers shall support the

NCSC evaluators. For example, the developers shall be available to answer ques-

tions, provide training, and meet with the evaluation team.

There are three cases in which an evaluation can occur: 1) the evaluation of a new

verification system being considered for placement on the ETL, 2) the reevaluation

of a new version of a system already on the ETL for placement on the ETL (reevalu-

ation for endorsement), and 3) the reevaluation of a system on the ETL being con-

sidered for removal from the ETL (reevaluation for removal).

2.1 EVALUATION OF NEW SYSTEMS

To be considered for initial placement on the ETL, the candidate endorsed tool must

provide some significant feature or improvement that is not available in any of the

currently endorsed tools. If the verification system meets this requirement, the

evaluators shall analyze the entire verification system, concentrating on the require-

ments described in Chapters 3 and 4 of this document. If a requirement is not com-

pletely satisfied, but the developer is working toward completion, the relative signifi-

cance of the requirement shall be measured by the evaluation team. The team shall

determine if the deficiency is substantial or detrimental. For example, a poor user

interface would not be as significant as the lack of a justification of the methodology.

Requirements not completely satisfied shall be identified and documented in the fi-

nal evaluation report.

Studies or prior evaluations (e.g., the Verification Assessment Study Final Report)

[2] performed on the verification system shall be reviewed. Strengths and weaknes-

ses identified in other reports shall be considered when evaluating the verification

system.

The following are the major steps leading to an endorsement and ETL listing for a

new verification system.

1) The developer submits a request for evaluation to the NCSC Verification
Committee Chairperson.

2) The Committee meets to determine whether the verification system pro-
vides a significant improvement to systems already on the ETL or provides
a useful approach or capability that the existing systems lack.

3) If the result is favorable, an evaluation team is formed and the verification
system evaluation begins.

4) Upon completion of the evaluation, a Technical Assessment Report (TAR)
is written by the evaluation team.

5) The Committee reviews the TAR and makes recommendations on en-
dorsement.

6) The Committee Chairperson approves or disapproves endorsement.

7) If approved, an ETL entry is issued for the verification system.

8) A TAR is issued for the verification system.

2.2 REEVALUATION FOR ENDORSEMENT

The term reevaluation for endorsement denotes the evaluation of a new version of

an endorsed system for placement on the ETL. A significant number of changes or

enhancements, as determined by the developer, may warrant a reevaluation for en-

dorsement. The intent of this type of reevaluation is to permit improvements to en-

dorsed versions and advocate state-of-the-art technology on the ETL while maintain-

ing the assurance of the original endorsed version.

A verification system that is already on the ETL maintains assurance of soundness

and integrity through configuration management (see Appendix). The documenta-

tion of this process is evidence for the reevaluation of the verification system.

Reevaluations are based upon an assessment of all evidence and a presentation of

this material by the vendor to the NCSC. The NCSC reserves the right to request

additional evidence as necessary.

The vendor shall prepare the summary of evidence in the form of a Vendor Report

(VR). The vendor may submit the VR to the NCSC at any time after all changes

have ended for the version in question. The VR shall relate the reevaluation evi-

dence at a level of detail equivalent to the TAR. The VR shall assert that assurance

has been upheld and shall include sufficient commentary to allow an understanding

of every change made to the verification system since the endorsed version.

The Committee shall expect the vendor to present a thorough technical overview of

changes to the verification system and an analysis of the changes, demonstrating

continuity and retention of assurance. The Committee subsequently issues a rec-

ommendation to the Committee Chairperson stating that assurance has or has not

been maintained by the current verification system since it was endorsed. If the

verification system does not sustain its endorsement, the vendor may be given the

option for another review by the Committee. The reevaluation cycle ends with an

endorsement determination by the Committee Chairperson, and if the determination

is favorable, a listing of the new release is added to the ETL, replacing the

previously endorsed version; the old version is then archived.

The following are the major steps leading to an endorsement and ETL listing for a
revised verification system.

1) The vendor submits the VR and other materials to the NCSC Verification
Committee Chairperson.

2) An evaluation team is formed to review the VR.

3) The team adds any additional comments and submits them to the Verifica-
tion Committee.

4) The vendor defends the VR before the Committee.

5) The Committee makes recommendations on endorsement.

6) The Committee Chairperson approves or disapproves endorsement.

7) If approved, a new ETL entry is issued for the revised verification system.

8) The VR is issued for the revised verification system.

2.3 REEVALUATION FOR REMOVAL

Once a verification system is endorsed, it shall normally remain on the ETL as long

as it is supported and is not replaced by another system. The Committee makes

the final decision on removal of a verification system from the ETL. For example,

too many bugs, lack of users, elimination of support and maintenance, and unsound-

ness are all reasons which may warrant removal of a verification system from the

ETL. Upon removal, the Committee makes a formal announcement and provides a
written justification of their decision.

Systems on the ETL that are removed or replaced shall be archived. Systems de-

velopers that have a Memorandum of Agreement (MOA) with the NCSC to use a

verification system that is later archived may continue using the system agreed upon

in the MOA. Verification evidence from a removed or replaced verification system

shall not be accepted in new system evaluations for use in satisfying the A1 Design

Specification and Verification requirement.

The following are the major steps leading to the removal of a verification system

from the ETL.

1) The Verification Committee questions the endorsement of a verification
system on the ETL.

2) An evaluation team is formed and the verification system evaluation
begins, focusing on the area in question.

3) Upon completion of the evaluation, a TAR is written by the evaluation
team.

4) The Committee reviews the TAR and makes recommendations on
removal.

5) The Committee Chairperson approves or disapproves removal.

6) If removed, a new ETL is issued eliminating the verification system in
question.

7) A TAR is issued for the verification system under evaluation.

2.4 BETA VERSIONS

Currently, verification systems are not production quality tools and are frequently be-

ing enhanced and corrected. The version of a verification system that has been en-

dorsed may not be the newest and most capable version. Modified versions are

known as beta tool versions. Beta versions are useful in helping system developers

uncover bugs before submitting the verification system for evaluation.

The goal of beta versions is to stabilize the verification system. Users should not

assume that any particular beta version will be evaluated or endorsed by the NCSC.

If the developer of a trusted system is using a beta version of a formal verification

system, specifications and proof evidence shall be submitted to the NCSC which

can be completely checked without significant modification using an endorsed tool

as stated in the A1 requirement. This can be accomplished by using either the cur-

rently endorsed version of a verification system or a previously endorsed version

that was agreed upon by the trusted system developer and the developer's evalua-

tion team. Submitted specifications and proof evidence that are not compatible with

the endorsed or agreed-upon version of the tool may require substantial modification

by the trusted system developer.

3. METHODOLOGY AND SYSTEM SPECIFICATION

The technical factors listed in this Chapter are useful measures of the quality and

completeness of a verification system. The factors are divided into four categories:

1) methodology, 2) features, 3) assurance, and 4) documentation. Methodology is

the underlying principles and rules of organization of the verification system. Fea-

tures include the functionality of the verification system. Assurance is the confi-

dence and level of trust that can be placed in the verification system. Documenta-

tion consists of a set of manuals and technical papers that fully describe the verifica-

tion system, its components, application, operation, and maintenance.

These categories extend across each of the components of the verification system.

These components minimally consist of the following:

a) a mathematical specification language that allows the user to express correct-

ness conditions,

b) a specification processor that interprets the specification and generates con-

jectures interpretable by the reasoning mechanism, and

c) a reasoning mechanism that interprets the conjectures generated by the pro-

cessor and checks the proof or proves that the correctness conditions are

satisfied.

3.1 METHODOLOGY

The methodology of the verification system shall consist of a set of propositions

used as rules for performing formal verification in that system. This methodology

shall have a sound, logical basis. This requirement is a necessary but not sufficient

condition for the endorsement of the system.

3.2 FEATURES

3.2.1 Specification Language

a. Language expressiveness.

The specification language shall be sufficiently expressive to support the

methodology of the verification system. This ensures that the specification

language is powerful and rich enough to support the underlying methodology.

For example, if the methodology requires that a specification language be

used to model systems as state machines, then the specification language

must semantically and syntactically support all of the necessary elements for

modeling systems as state machines.

b. Defined constructs.

The specification language shall consist of a set of constructs that are rigor-

ously defined (e.g., in Backus-Naur Form with appropriate semantic defini-

tions). This implies that the language is formally described by a set of rules

for correct use.

c. Mnemonics.

The syntax of the specification language shall be clear and concise without

obscuring the interpretation of the language constructs. Traditional symbols

from mathematics should be employed wherever possible; reasonably mne-

monic symbols should be used in other cases. This aids the users in inter-

preting constructs more readily.

d. Internal uniformity.

The syntax of the specification language shall be internally uniform. This en-

sures that the rules of the specification language are not contradictory.

e. Overloading.

Each terminal symbol of the specification language's grammar should support

one and only one semantic definition insofar as it increases comprehensibility.

When it is beneficial to incorporate more than one definition for a symbol or

construct, the semantics of the construct shall be clearly defined from the

context used. This is necessary to avoid confusion by having one construct

with more than one interpretation or more than one construct with the same

interpretation. For example, the symbol " +" may be used for both integer

and real addition, but it should not be used to denote both integer addition

and conjunction.

f. Correctness conditions.

The specification language shall provide the capability to express correctness

conditions.

g. Incremental verification.

The methodology shall allow incremental verification. This would allow, for

example, a verification of portions of a system specification at a single time.

Incremental verification may also include the capability for performing verifica-

tion of different levels of abstraction. This allows essential elements to be

presented in the most abstract level and important details to be presented at

successive levels of refinement.

3.2.2 Specification Processing

a. Input.

All of the constructs of the specification language shall be processible by the

specification processor(s). This is necessary to convert the specifications to

a language or form that is interpretable by the reasoning mechanism.

b. Output.

The output from the processor(s) shall be interpretable by the reasoning

mechanism. Conjectures derived from the correctness conditions shall be
generated. The output shall also report errors in specification processing to
the user in an easily interpretable manner.

10

3.2.3 Reasoning Mechanism

a. Compatibility of components.

The reasoning mechanism shall be compatible with the other components of

the verification system to ensure that the mechanism is capable of determin-

ing the validity of conjectures produced by other components of the verifica-

tion system. For example, if conjectures are generated by the specification

processor that must be proven, then the reasoning mechanism must be able

to interpret these conjectures correctly.

b. Compatibility of constructs.

The well-formed formulas in the specification language that may also be input

either directly or indirectly into the reasoning mechanism using the lan-

guage^) of the reasoning mechanism shall be mappable to ensure compati-

bility of components. For example, if a lemma can be defined in the specifi-

cation language as "LEMMA <well-formed formula>" and can also be de-

fined in the reasoning mechanism, then the construct for the lemma in the

reasoning mechanism shall be in the same form.

c. Documentation.

The reasoning mechanism shall document the steps it takes to develop the

proof. Documentation provides users with a stable, standard reasoning

mechanism that facilitates debugging and demonstrates completed proofs. If

the reasoning mechanism is defined to use more than one method of reason-

ing, then it should clearly state which method is used and remain consistent

within each method of reasoning.

d. Reprocessing.

The reasoning mechanism shall provide a means for reprocessing completed

proof sessions. This is to ensure that users have a means of reprocessing

theorems without reconstructing the proof process. This mechanism shall

also save the users from reentering voluminous input to the reasoning

mechanism. For example, reprocessing may be accomplished by the

11

generation of command files that can be invoked to recreate the proof

session.

e. Validation.

The methodology shall provide a means for validating proof sessions inde-

pendently of the reasoning mechanism. Proof strategies checked by an inde-

pendent, trustworthy proof checker shall ensure that only sound proof steps

were employed in the proof process. Trustworthy implies that there is assur-

ance that the proof checker accepts only valid proofs. The validation process

shall not be circumventable and shall always be invoked for each completed

proof session.

f. Reusability.

The reasoning mechanism shall facilitate the use of system- and user-

supplied databases of reusable definitions and theorems. This provides a

foundation for proof sessions that will save the user time and resources in re-

proving similar theorems and lemmas.

g. Proof dependencies.

The reasoning mechanism shall track the status of the use and reuse of theo-

rems throughout all phases of development. Proof dependencies shall be

identified and maintained so that if modifications are made to a specification

(and indirectly to any related conjectures/theorems), the minimal set of theo-

rems and lemmas that are dependent on the modified proofs will need to be

reproved.

3.3 ASSURANCE, SOUNDNESS, AND ROBUSTNESS

a. Sound basis.

Each of the verification system's tools and services shall support the method-

ology. This ensures that users can understand the functionality of the verification

system with respect to the methodology and that the methodology is supported

by the components of the verification system.

12

b. Correctness.

The verification system shall be rigorously tested to provide assurance that the

majority of the system is free of error.

c. Predictability.

The verification system shall behave predictably. Consistent results are needed

for the users to interpret the results homogeneously. This will ensure faster and

easier interpretation and fewer errors in interpretation.

d. Previous use.

The verification system shall have a history of use to establish stability, useful-

ness, and credibility. This history shall contain documentation of applications (for

example, applications from academia or the developers). These applications

shall test the verification system, so that strengths and weaknesses may be un-

covered.

e. Error recovery.

The verification system shall gracefully recover from internal software errors.

This error handling is necessary to ensure that errors in the verification system

do not cause damage to a user session.

f. Software engineering.

The verification system shall be implemented using documented software engi-

neering practices. The software shall be internally structured into well-defined,

independent modules for ease of maintainability and configuration management.

g. Logical theory.

All logical theories used in the verification system shall be sound. If more than

one logical theory is used in the verification system, then there shall be evidence

that the theories work together via a metalogic. This provides the users with a

sound method of interaction among the theories.

13

h. Machine independence.

The functioning of the methodology and the language of the verification system

shall be machine independent. This is to ensure that the functioning of the the-

ory, specification language, reasoning mechanism and other essential features

does not change from one machine to another. Additionally, the responses that

the user receives from each of the components of the verification system should

be consistent across the different hardware environments that support the verifi-

cation system.

3.4 DOCUMENTATION

a. Informal justification.

An informal justification of the methodology behind the verification system shall

be provided. All parts of the methodology must be fully documented to serve as

a medium for validating the accuracy of the stated implementation of the verifica-

tion system. The logical theory used in the verification system shall be docu-

mented. If more than one logical theory exists in the system, the metalogic em-

ployed in the system shall be explained and fully documented. This documenta-

tion is essential for the evaluators and will aid the users in understanding the

methodology.

b. Formal definition.

A formal definition (e.g., denotational semantics) of the specification language(s)

shall be provided. A formal definition shall include a clear semantic definition of

the expressions supported by the specification language and a concise descrip-

tion of the syntax of all specification language constructs. This is essential for

the evaluators and will aid the users in understanding the specification language.

c. Explanation of methodology.

A description of how to use the methodology, its tools, its limitations, and the

kinds of properties that it can verify shall be provided. This is essential for users

to be able to understand the methodology and to use the verification system ef-

fectively.

14

4. IMPLEMENTATION AND OTHER SUPPORT FACTORS

The NCSC considers the support factors listed in this section to be measures of the

usefulness, understandability, and maintainability of the verification system. The

support factors are divided into the following three categories: 1) features, 2) assur-

ances, and 3) documentation.

Two features that provide support for the user are the interface and the base hard-

ware of the verification system. Configuration management, testing, and mainte-

nance are three means of providing assurance. (The Appendix contains additional

information on configuration management.) Documentation consists of a set of

manuals and technical papers that fully describe the verification system, its compo-

nents, application, operation, and maintenance.

4.1 FEATURES

4.1.1 User Interface

a. Ease of use.

The interface for the verification system shall be user-friendly. Input must be

understandable, output must be informative, and the entire interface must

support the users' goals.

b. Understandable input.

Input shall be distinct and concise for each language construct and ade-

quately represent what the system requires for the construct.

c. Understandable output.

Output from the components of the verification system shall be easily inter-

pretable, precise, and consistent. This is to ensure that users are provided

with understandable and helpful information.

15

d. Compatibility.

Output from the screen, the processor, and the reasoning mechanism shall

be compatible with their respective input, where appropriate. It is reasonable

for a specification processor (reasoning mechanism) to put assertions into a

canonical form, but canonical forms should be compatible in the specification

language (reasoning mechanism).

e. Functionality.

The interface shall support the tasks required by the user to exercise the veri-

fication system effectively. This is to ensure that all commands necessary to

utilize the components of the methodology are available and functioning ac-

cording to accompanying documentation.

f. Error reporting.

The verification system shall detect, report, and recover from errors in a
specification. Error reporting shall remain consistent by having the same er-

ror message generated each time the error identified in the message is en-

countered. The output must be informative and interpretable by the users.

4.1.2 Hardware Support

a. Availability.

The verification system shall be available on commonly used computer sys-

tems. This will help ensure that users need not purchase expensive or out-

dated machines, or software packages to run the verification system.

b. Efficiency.

Processing efficiency and memory usage shall be reasonable for specifica-

tions of substantial size. This ensures that users are able to process simple

(no complex constructs), short (no more than two or three pages) specifica-

tions in a reasonable amount of time (a few minutes). The processing time of

larger, more complex specifications shall be proportional to the processing

16

time of smaller, less complex specifications. Users should not need to wait

an unacceptable amount of time for feedback.

4.2 ASSURANCE

4.2.1 Configuration Management

a. Life-cycle maintenance.

Configuration management tools and procedures shall be used to track

changes (both bug fixes and new features) to the verification system from ini-

tial concept to final implementation. This provides both the system maintain-

ers and the evaluators with a method of tracking the numerous changes

made to the verification system to ensure that only sound changes are imple-
mented.

b. Configuration items.

Identification of Configuration Items (CIs) shall begin early in the design stage.

CIs are readily established on a logical basis at this time. The configuration

management process shall allow for the possibility that system changes will

convert non-CI components into CIs.

c. Configuration management tools.

Tools shall exist for comparing a newly generated version with the previous

version. These tools shall confirm that a) only the intended changes have

been made in the code that will actually be used as the new version of the

verification system, and b) no additional changes have been inserted into the

verification system that were not intended by the system developer. The

tools used to perform these functions shall also be under strict configuration
control.

d. Configuration control.

Configuration control shall cover a broad range of items including software,

documentation, design data, source code, the running version of the object

code, and tests. Configuration control shall begin in the earliest stages of

17

design and development and extend over the full life of the CIs. It involves

not only the approval of changes and their implementation but also the updat-

ing of all related material to reflect each change. For example, often a

change to one area of a verification system may necessitate a change to an-

other area. It is not acceptable to write or update documentation only for new

code or newly modified code, rather than for all parts of the verification sys-

tem affected by the addition or change. Changes to all CIs shall be subject

to review and approval.

The configuration control process begins with the documentation of a change

request. This change request should include justification for the proposed

change, all of the affected items and documents, and the proposed solution.

The change request shall be recorded in order to provide a way of tracking all

proposed system changes and to ensure against duplicate change requests

being processed.

e. Configuration accounting.

Configuration accounting shall yield information that can be used to answer

the following questions: What source code changes were made on a given

date? Was a given change absolutely necessary? Why or why not? What

were all the changes in a given Cl between releases N and N + 1? By whom

were they made, and why? What other modifications were required by the

changes to this Cl? Were modifications required in the test set or documen-

tation to accommodate any of these changes? What were all the changes

made to support a given change request?

f. Configuration auditing.

A configuration auditor shall be able to trace a system change from start to

finish. The auditor shall check that only approved changes have been imple-

mented, and that all tests and documentation have been updated concurrently

with each implementation to reflect the current status of the system.

g. Configuration control board.

The vendor's Configuration Control Board (CCB) shall be responsible for

approving and disapproving change requests, prioritizing approved

18

modifications, and verifying that changes are properly incorporated. The

members of the CCB shall interact periodically to discuss configuration man-

agement topics such as proposed changes, configuration status accounting

reports, and other topics that may be of interest to the different areas of the

system development.

4.2.2 Support and Maintenance

The verification system shall have ongoing support and maintenance from the devel-

opers or another qualified vendor. Skilled maintainers are necessary to make

changes to the verification system.

4.2.3 Testing

a. Functional tests.

Functional tests shall be conducted to demonstrate that the verification sys-

tem operates as advertised. These tests shall be maintained over the life cy-

cle of the verification system. This ensures that a test suite is available for

use on all versions of the verification system. The test suite shall be en-

hanced as software errors are identified to demonstrate the elimination of the

errors in subsequent versions. Tests shall be done at the module level to

demonstrate compliance with design documentation and at the system level

to demonstrate that software accurately generates assertions, correctly imple-

ments the logic, and correctly responds to user commands.

b. Stress testing.

The system shall undergo stress testing by the evaluation team to test the

limits of and to attempt to generate contradictions in the specification lan-

guage, the reasoning mechanism, and large specifications.

4.3 DOCUMENTATION

a. Configuration management plan.

A configuration management plan and supporting evidence assuring a consistent

mapping of documentation and tools shall be provided for the evaluation. This

19

provides the evaluators with evidence that compatibility exists between the

components of the verification system and its documentation. The plan shall include

the following:

1. The configuration management plan shall describe what is to be done to

implement configuration management in the verification system. It shall

define the roles and responsibilities of designers, developers, manage-

ment, the Configuration Control Board, and all of the personnel involved

with any part of the life cycle of the verification system.

2. Tools used for configuration management shall be documented in the con-

figuration management plan. The forms used for change control, conven-

tions for labeling configuration items, etc., shall be contained in the con-

figuration management plan along with a description of each.

3. The plan shall describe procedures for how the design and implementation

of changes are proposed, evaluated, coordinated, and approved or disap-

proved. The configuration management plan shall also include the steps

to ensure that only those approved changes are actually included and that

the changes are included in all of the necessary areas.

4. The configuration management plan shall describe how changes are made

to the plan itself and how emergency procedures are handled. It should

describe the procedures for performing time-sensitive changes without go-

ing through a full review process. These procedures shall define the steps

for retroactively implementing configuration management after the emer-

gency change has been completed.

b. Configuration management evidence.

Documentation of the configuration management activities shall be provided to

the evaluators. This ensures that the policies of the configuration management

plan have been followed.

c. Source code.

Well-documented source code for the verification system, as well as documenta-

tion to aid in analysis of the code during the evaluation, shall be provided. This

20

provides the evaluators with evidence that good software engineering practices

and configuration management procedures were used in the implementation of

the verification system.

d. Test documentation.

Documentation of test suites and test procedures used to check functionality of

the system shall be provided. This provides an explanation to the evaluators of

each test case, the testing methodology, test results, and procedures for using

the tests.

e. User's guide.

An accurate and complete user's guide containing all available commands and

their usage shall be provided in a tutorial format. The user's guide shall contain

worked examples. This is necessary to guide the users in the use of the verifi-

cation system.

f. Reference manuals.

A reference manual that contains instructions, error messages, and examples of

how to use the system shall be provided. This provides the users with a guide

for problem-solving techniques as well as answers to questions that may arise

while using the verification system.

g. Facilities manual.

A description of the major components of the software and their interfacing shall

be provided. This will provide users with a limited knowledge of the hardware

base required to configure and use the verification system.

h. Vendor report.

A report written by the vendor during a reevaluation that provides a complete de-

scription of the verification system and changes made since the initial evaluation

shall be provided. This report, along with configuration management documenta-

tion, provides the evaluators with evidence that soundness of the system has not

been jeopardized.

21

i. Significant worked examples.

Significant worked examples shall be provided which demonstrate the strengths,

weaknesses, and limitations of the verification system. These examples shall re-

flect portions of computing systems. They may reside in the user's guide, the

reference manual, or a separate document.

22

5. FUTURE DIRECTIONS

The purpose of this section is to list possible features for future or beyond-A1 verifi-

cation systems. Additionally, it contains possibilities for future research - areas that

researchers may choose to investigate. Research and development of new verifica-

tion systems or investigating areas not included in this list is also encouraged. Note

that the order in which these items appear has no bearing on their relative impor-

tance.

a. The specification language should permit flexibility in approaches to specifica-

tion.

b. The specification language should allow the expression of properties involving

liveness, concurrency, and eventuality.

c. The reasoning mechanism should include a method for reasoning about infor-

mation flows.

d. The design and code of the verification system should be formally verified.

e. The theory should support rapid prototyping. Rapid prototyping supports a

way of developing a first, quick version of a specification. The prototype pro-

vides immediate feedback to the user.

f. The verification system should make use of standard (or reusable) compo-

nents where possible (for example, use of a standard windowing system, use

of a standard language-independent parser, editor, or printer, use of a stan-

dard database support system, etc.).

g. The verification system should provide a language-specific verifier for a com-

monly used systems programming language.

h. The verification system should provide a method for mapping a top-level

specification to verified source code.

i. The verification system should provide a tool for automatic test data genera-

tion of the design specification.

23

j. The verification system should provide a means of identifying which paths in

the source code of the verification system are tested by a test suite.

k. The verification system should provide a facility for high-level debug-

ging/tracing of unsuccessful proofs.

I. A formal justification of the methodology behind the verification system should
be provided.

24

APPENDIX

CONFIGURATION MANAGEMENT

The purpose of configuration management is to ensure that changes made to verifi-

cation systems take place in an identifiable and controlled environment. Configura-

tion managers take responsibility that additions, deletions, or changes made to the

verification system do not jeopardize its ability to satisfy the requirements in Chap-

ters 3 and 4. Therefore, configuration management is vital to maintaining the en-

dorsement of a verification system.

Additional information on configuration management can be found in A Guide to Un-

derstanding Configuration Management in Trusted Systems. [3]

OVERVIEW OF CONFIGURATION MANAGEMENT

Configuration management is a discipline applying technical and administrative di-

rection to: 1) identify and document the functional and physical characteristics of

each configuration item for the system; 2) manage all changes to these characteris-

tics; and 3) record and report the status of change processing and implementation.

Configuration management involves process monitoring, version control, information

capture, quality control, bookkeeping, and an organizational framework to support

these activities. The configuration being managed is the verification system plus all

tools and documentation related to the configuration process.

Four major aspects of configuration management are configuration identification,

configuration control, configuration status accounting, and configuration auditing.

CONFIGURATION IDENTIFICATION

Configuration management entails decomposing the verification system into identifi-

able, understandable, manageable, trackable units known as Configuration Items

(CIs). A Cl is a uniquely identifiable subset of the system that represents the small-

est portion to be subject to independent configuration control procedures. The

25

decomposition process of a verification system into CIs is called configuration

identification.

CIs can vary widely in size, type, and complexity. Although there are no hard-and-

fast rules for decomposition, the granularity of CIs can have great practical impor-

tance. A favorable strategy is to designate relatively large CIs for elements that are

not expected to change over the life of the system, and small CIs for elements likely

to change more frequently.

CONFIGURATION CONTROL

Configuration control is a means of assuring that system changes are approved be-

fore being implemented, only the proposed and approved changes are implement-

ed, and the implementation is complete and accurate. This involves strict proce-

dures for proposing, monitoring, and approving system changes and their implemen-

tation. Configuration control entails central direction of the change process by per-

sonnel who coordinate analytical tasks, approve system changes, review the imple-

mentation of changes, and supervise other tasks such as documentation.

CONFIGURATION ACCOUNTING

Configuration accounting documents the status of configuration control activities and

in general provides the information needed to manage a configuration effectively. It

allows managers to trace system changes and establish the history of any develop-

mental problems and associated fixes. Configuration accounting also tracks the sta-

tus of current changes as they move through the configuration control process.

Configuration accounting establishes the granularity of recorded information and

thus shapes the accuracy and usefulness of the audit function.

The accounting function must be able to locate all possible versions of a Cl and all

of the incremental changes involved, thereby deriving the status of that Cl at any

specific time. The associated records must include commentary about the reason

for each change and its major implications for the verification system.

26

CONFIGURATION AUDIT

Configuration audit is the quality assurance component of configuration manage-

ment. It involves periodic checks to determine the consistency and completeness of

accounting information and to verify that all configuration management policies are

being followed. A vendor's configuration management program must be able to

sustain a complete configuration audit by an NCSC review team.

CONFIGURATION MANAGEMENT PLAN

Strict adherence to a comprehensive configuration management plan is one of the

most important requirements for successful configuration management. The con-

figuration management plan is the vendor's document tailored to the company's

practices and personnel. The plan accurately describes what the vendor is doing to

the system at each moment and what evidence is being recorded.

CONFIGURATION CONTROL BOARD

All analytical and design tasks are conducted under the direction of the vendor's

corporate entity called the Configuration Control Board (CCB). The CCB is headed

by a chairperson who is responsible for assuring that changes made do not jeopar-

dize the soundness of the verification system. The Chairperson assures that the

changes made are approved, tested, documented, and implemented correctly.

The members of the CCB should interact periodically, either through formal meet-

ings or other available means, to discuss configuration management topics such as

proposed changes, configuration status accounting reports, and other topics that

may be of interest to the different areas of the system development. These interac-

tions should be held to keep the entire system team updated on all advancements

or alterations in the verification system.

27

GLOSSARY

Beta Version

Beta versions are intermediate releases of a product to be tested at one or

more customer sites by the software end-user. The customer describes in

detail any problems encountered during testing to the developer, who makes

the appropriate modifications. Beta versions are not endorsed by the NCSC,

but are primarily used for debugging and testing prior to submission for en-

dorsement.

Complete

A theory is complete if and only if every sentence of its language is either

provable or refutable.

Concurrency

Simultaneous or parallel processing of events.

Configuration Accounting

The recording and reporting of configuration item descriptions and all depar-

tures from the baseline during design and production.

Configuration Audit

An independent review of computer software for the purpose of assessing

compliance with established requirements, standards, and baselines. [3]

Configuration Control

The process of controlling modifications to the system's design, hardware,

firmware, software, and documentation which provides sufficient assurance

that the system is protected against the introduction of improper modification

prior to, during, and after system implementation. [3]

28

Configuration Control Board (CCB)

An established vendor committee that is the final authority on all proposed

changes to the verification system.

Configuration Identification

The identifying of the system configuration throughout the design, develop-

ment, test, and production tasks. [3]

Configuration Item (Cl)

The smallest component tracked by the configuration management system.

[3]

Configuration Management

The process of controlling modifications to a verification system, including

documentation, that provides sufficient assurance that the system is protected

against the introduction of improper modification before, during, and after sys-

tem implementation.

Conjecture

A general conclusion proposed to be proved upon the basis of certain given

premises or assumptions.

Consistency (Mathematical)

A logical theory is consistent if it contains no formula such that the formula

and its negation are provable theorems.

Consistency (Methodological)

Steadfast adherence to the same principles, course, form, etc.

Correctness

Free from errors; conforming to fact or truth.

29

Correctness Conditions

Conjectures that formalize the rules, security policies, models, or other critical

requirements on a system.

Design Verification

A demonstration that a formal specification of a software system satisfies the

correctness conditions (critical requirements specification).

Documentation

A set of manuals and technical papers that fully describe the verification sys-

tem, its components, application, and operation.

Endorsed Tools List (ETL)

A list composed of those verification systems currently recommended by the

NCSC for use in developing highly trusted systems.

Eventuality

The ability to prove that at some time in the future, a particular event will

occur.

Formal Justification

Mathematically precise evidence that the methodology of the verification sys-

tem is sound.

Formal Verification

The process of using formal proofs to demonstrate the consistency (design

verification) between a formal specification of a system and a formal security

policy model or (implementation verification) between the formal specification

and its program implementation. [1]

30

Implementation Verification

A demonstration that a program implementation satisfies a formal specifica-

tion of a system.

Informal Justification

An English description of the tools of a verification system and how they inter-

act. This includes a justification of the soundness of the theory.

Language

A set of symbols and rules of syntax regulating the relationship between the

symbols, used to convey information.

Liveness

Formalizations that ensure that a system does something that it should do.

Metalogic

A type of logic used to describe another type of logic or a combination of dif-

ferent types of logic.

Methodology

The underlying principles and rules of organization of a verification system.

Production Quality Verification System

A verification system that is sound, user-friendly, efficient, robust, well-

documented, maintainable, well-engineered (developed with software engi-

neering techniques), available on a variety of hardware, and promoted (has

education available for users). [2]

Proof

A syntactic analysis performed to validate the truth of an assertion relative to

an (assumed) base of assertions.

31

Proof Checker

A tool that 1) accepts as input an assertion (called a conjecture), a set of as-

sertions (called assumptions), and a proof; 2) terminates and outputs either

success or failure; and 3) if it succeeds, then the conjecture is a valid conse-

quence of the assumptions.

Reasoning Mechanism

A tool (interactive or fully automated) capable of checking or constructing

proofs.

Safety Properties

Formalizations that ensure that a system does not do something that it should

not do.

Semantics

A set of rules for interpreting the symbols and well-formed formulae of a lan-

guage.

Sound

An argument is sound if all of its propositions are true and its argument form

is valid. A proof system is sound relative to a given semantics if every con-

jecture that can be proved is a valid consequence of the assumptions used in

the proof.

Specification Language

A logically precise language used to describe the structure or behavior of a

system to be verified.

Specification Processor

A software tool capable of receiving input, parsing it, generating conjectures

(candidate theorems), and supplying results for further analysis (e.g., reason-

ing mechanism).

32

Syntax

A set of rules for constructing sequences of symbols from.the primitive sym-

bols of a language.

Technical Assessment Report (TAR)

A report that is written by an evaluation team during an evaluation of a verifi-

cation system and available upon completion.

Theorem

In a given logical system, a well-formed formula that is proven in that system.

Theory

A formal theory is a coherent group of general propositions used as principles

of explanation for a particular class of phenomena.

User-Friendly

A system is user-friendly if it facilitates learning and usage in an efficient

manner.

Valid

An argument is valid when the conclusion is a valid consequence of the

assumptions used in the argument.

Vendor Report (VR)

A report that is written by a vendor during and available upon completion of a

reevaluation of a verification system.

Verification

The process of comparing two levels of system specification for proper corre-

spondence (e.g., security policy model with top-level specification, top-level

specification with source code, or source code with object code). This pro-

cess may or may not be automated. [1]

33

Verification Committee

A standing committee responsible for the management of the verification ef-

forts at the NCSC. The committee is chaired by the NCSC Deputy Director

and includes the NCSC Chief Scientist, as well as representatives from both

the NCSC's Office of Research and Development and Office of Computer Se-

curity Evaluations, Publications, and Support.

Verification System

An integrated set of tools and techniques for performing verification.

Well-Formed Formula

A sequence of symbols from a language that is constructed in accordance

with the syntax for that language.

34

BIBLIOGRAPHY

[1] Department of Defense, Department of Defense Trusted Computer System

Evaluation Criteria, DOD 5200.28-STD, December 1985.

[2] Kemmerer, Richard A., Verification Assessment Study Final Report, University

of California, March 1986.

[3] National Computer Security Center, A Guide to Understanding Configuration

Management in Trusted Systems, NCSC-TG-006, March 1988.

[4] National Computer Security Center, Trusted Network Interpretation of the

Trusted Computer System Evaluation Criteria, NCSC-TG-005, July 1987.

[5] National Security Agency, Information Systems Security Products and Ser-

vices Catalogue, Issued Quarterly, January 1989 and successors.

35

UNCLASSIFIED
ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
NCSC-TG-014

6a. NAME OF PERFORMING ORGANIZATION
National Computer Security Center

6b. OFFICE SYMBOL
(If applicable) C11

6c. ADDRESS (City, State and ZIP Code)
ATTN:C11

9800 Savage Road
Ft. George G. Meade, MD 20755-6000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

8c. ADDRESS (City, State and ZIP Code)

11. TITLE (Include Security Classification)
Guidelines for Formal Verification Systems

1 b. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT
UNLIMITED DISTRIBUTION

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

7b. ADDRESS (City,State andZIP Code)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
NO.

12. PERSONAL AUTHOR(S)
Barbara A. Mayer, Monica McGill Lu
13a.TYPEOF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr, Mo., Day)
890401

15. PAGE COUNT
41

16. SUPPLEMENTARY NOTATION
Library No.: S231,308

17. COSATI CODES

FIELD GROUP SUB.GR.

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
NCSC TCSEC TNI Formal Verification Endorsed Tools List

19. ABSTRACT (Continue on reverse side if necessary and identify by block number)
The Department of Defense Trusted Computer System Evaluation Criteria (DoD TCSEC) requires that
"NCSC-endorsed" verification systems be used in satisfying the A1 requirements for verified design.
This publication explains the specific criteria for endorsement by the National Computer Security
Center (NCSC). Additionally, it describes the process used to evaluate formal verification systems
submitted to the NCSC for endorsement.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED

22a. NAME OF RESPONSIBLE INDIVIDUAL
BLAINEW. BURNHAM

DD FORM 1473, 83 APR

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22b. TELEPHONE NUMBER
(Include Area Code) (301)859-4463

8b. OFFICE SYMBOL
C11

EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

