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FOREWORD 

The National Computer Security Center is issuing A Guide to Understanding Security 
Modeling in Trusted Systems as part of the "Rainbow Series" of documents produced by 
our Technical Guidelines Program. In the Rainbow Series, we discuss, in detail, the 
features of the Department of Defense Trusted Computer System Evaluation Criteria (DoD 
5200.28-STD) and provide guidance for meeting each requirement. The National 
Computer Security Center, through its Trusted Product Evaluation Program, evaluates the 
security features and assurances of commercially-produced computer systems. 
Together, these programs ensure that organizations are capable of protecting their 
important data with trusted computer systems. Security modeling, in its various forms, is 
an important component of the assurance of the trust of a computer system. 

A Guide to Understanding Security Modeling in Trusted Systems is intended for use by 
personnel responsible for developing models of the security policy of a trusted computer 
system. At lower levels of trust, this model is generally the system's philosophy of 
protection. At higher trust levels, this also includes informal and formal models of the 
protection mechanisms within a system. This guideline provides information on many 
aspects of security modeling, including the process of developing a security policy model, 
security modeling techniques, and specific ways to meet the requirements of the 
Department of Defense Trusted Computer System Evaluation Criteria. 

As the Director, National Computer Security Center, I invite your suggestions for 
revising this document. We plan to review and revise this document as the need arises. 

Patrick R, G&ftagfier, J£^    ^/ October 1992 
Director 
National Computer Security Center 
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1. INTRODUCTION 

This document provides guidance on the construction, evaluation, and use of security 

policy models for automated information systems (AIS) used to protect sensitive 

information whose unauthorized disclosure, alteration, loss, or destruction must be 

prevented. In this context, sensitive information includes classified information as well as 

unclassified sensitive information. 

1.1 BACKGROUND 

The National Computer Security Center (NCSC) was established in 1981 and acquired 

its present name in 1985. Its main goal is to encourage the widespread availability of 

trusted AISs. In support of this goal, the DoD Trusted Computer System Evaluation Criteria 

(TCSEC) was written in 1983. It has been adopted, with minor changes, as a DoD standard 

for the protection of sensitive information in DoD computing systems. [NCSC85] The 

TCSEC\s routinely used for the evaluation of commercial computing products prior to their 

accreditation for use in particular environments. This evaluation process is discussed in 

Trusted Product Evaluations: A Guide for Vendors. [NCSC90c] 

The TCSEC divides AISs into four main divisions, labeled D, C, B, and A, in order of 

increasing security protection and assurance. Divisions C through A are further divided 

into ordered subdivisions referred to as classes. For all classes (C1, C2, B1, B2, B3 and 

A1), the TCSEC requires system documentation that includes a philosophy of protection. 

Forclasses B1, B2, B3, and A1, it also requires an informal or formal security policy model. 

Although the TCSEC is oriented primarily toward operating systems, its underlying 

concepts have been applied much more generally. In recognition of this, the NCSC has 

published a Trusted Network Interpretation [NCSC87] and a Trusted Database 

Management System Interpretation. [NCSC91] In addition, the NCSC also provides a 

series of guidelines addressing specific TCSEC requirements, of which this document is an 

example. 

1.2 PURPOSE 

This guideline is intended to give vendors and evaluators of trusted systems a solid 

understanding of the modeling requirements of the TCSEC and the Trusted Network 

Interpretation of the TCSEC (TNI).   It presents modeling and philosophy of protection 

-l- 



SECURITY MODELING GUIDE 

requirements for each of the classes in the TCSEC, describes possible approaches to 

modeling common security requirements in various kinds of systems, and explains what 

kinds of modelsare useful in an evaluation. It is intended for vendors, evaluators, and other 

potential builders and users of security models. 

This guideline discusses the philosophy of protection requirement, explains how it 

relates to security modeling, and provides guidance on documentation relating to the 

system's philosophy of protection and security policy model. It explains the distinction 

between informal and formal security policy models as well as the relationships among 

application-independent models, application-dependent security models, and model 

interpretations. It also explains which techniques may be used to meet the modeling 

requirements at levels B1 through A1 as well as the advantages and disadvantages of the 

various modeling techniques. Finally, it discusses the specific TCSEC modeling 

requirements. 

This guideline also addresses human aspects of modeling. It describes how modeling 

captures basic security requirements and how the security modeling effort leads to better 

systems and provides a basis for increased assurance of security. 

Finally, this guideline answers common questions about NCSC recommendations 

regarding the construction of security models. Security policies and models are supplied 

by vendors in response to customer needs and TCSEC requirements; they are not 

supplied by the NCSC or the TCSEC. The TCSEC does, however, set minimum 

requirements in the areas of mandatory and discretionary access control. The TCSEC 

does not require particular implementation techniques; this freedom applies, by extension, 

to modeling techniques. Acceptability of a technique depends on the results achieved. 

More specifically, a security model must provide a clear and accurate description of the 

security policy requirements, as well as key ideas associated with their enforcement. 

Moreover, one must be able to validate the model using assurance techniques appropriate 

to the proposed evaluation class. Any vendor-supplied modeling technique which 

appears to be compatible with the security modeling requirements will be seriously 

considered during the course of a product evaluation. 

Topics which are closely related to security modeling include formulation of security 

policy objectives, design specification and verification, covert channel analysis, and 

implementation correspondence analysis. These topics are addressed only to the extent 
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necessary to establish their influence on the security modeling process. All but the first of 

these topics are addressed in otherguidelines in this series. Security objectives fortrusted 

systems traditionally include nondisclosure, integrity, and denial of service, [cf NCSC88, 

AIS Security] However, the modeling of denial of service is not addressed in this guideline, 

due to the lack of adequate literature on this topic. This guideline is written with the 

understanding that security modeling will continue to evolve in response to new policy 

objectives and modeling techniques associated with future trusted system designs. 

Reading and understanding this guideline is not sufficient to allow an inexperienced 

individual to develop a model. Rather, he or she should read this document in conjunction 

with one or more of the published models in the list of references. This guideline assumes 

a general familiarity with the TCSEC and with computer security. A general text such as 

Building a Secure Computer System [GASS87] may provide useful background reading. 

Additional mathematical background needed for formal modeling can be found in general 

texts on mathematical structures such as Introduction to Mathematical Structures 

[GAL089]. 

The approaches to security modeling presented in this document are not the only 

possible approaches to satisfying TCSEC modeling requirements, but are merely 

suggested approaches. The presentation of examples illustrating these approaches does 

not imply NCSC endorsement of the products on which these examples are based. 

Recommendations made in this document are not supplementary requirements to the 

TCSEC. The TCSEC itself (as supplemented by announced interpretations [NCSC87, 

NCSC88a, NCSC88b, NCSC91 ]) is the only metric used by the NCSC to evaluate trusted 

computing products. 

1.3 CONTROL OBJECTIVES 

The requirements of the TCSEC were derived from three main control objectives: 

assurance, security policy, and accountability. The security modeling requirements of the 

TCSEC support the assurance and security policy control objectives in systems rated B1 

and above. 

1.3.1 THE ASSURANCE OBJECTIVE 

The TCSEC assurance control objective states, in part, 
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"Systems that are used to process or handle classified or other sensitive 
information must be designed to guarantee correct and accurate 
interpretation of the security policy and must not distort the intent of that 
policy." [NCSC85, § 5.3.3] 

Assurance in this sense refers primarily to technical assurance rather than social 

assurance. It involves reducing the likelihood that security mechanisms will be subverted 

as opposed to just improving people's confidence in the utility of the security mechanisms. 

1.3.2 THE SECURITY POLICY OBJECTIVE 

The TCSEC security policy control objective states, in part, 

"A statement of intent with regard to control over access to and dissemination 
of information, to be known as the security policy, must be precisely defined 
and implemented for each system that is used to process sensitive 
information. The security policy must accurately reflect the laws, regulations, 
and general policies from which it is derived." [NCSC85, § 5.3.1] 

The security policy objective given in the TCSEC covers "mandatory security policy," 

"discretionary security policy," and "marking" objectives. The mandatory security policy 

objective requires the formulation of a mandatory access control (MAC) policy that 

regulates access by comparing an individual's clearance or authorization for information to 

the classification or sensitivity designation of the information to be accessed. The 

discretionary access control objective requires the formulation of a discretionary access 

control (DAC) policy that regulates access on the basis of each individual's need-to-know. 

Finally, the marking objective gives labeling requirements for information stored in and 

exported from systems designed to enforce a mandatory security policy. 

The access controls associated with security policies serve to enforce nondisclosure 

and integrity. Nondisclosure controls prevent inappropriate dissemination of information. 

Integrity controls prevent inappropriate modification of information. 

The security policy control objective requires that the security policy accurately reflect 

the laws, regulations, and general policies from which it is derived. These may include the 

revised DoD Directive 5200.28, Security Requirements for Automated Information 

Systems (AISs). [DOD88a] Section D of Directive 5200.28 gives policy relating to both 

integrity and nondisclosure. It mentions safeguards "against sabotage, tampering, denial 

of service, espionage, fraud, misappropriation, misuse, or release to unauthorized users." 

Enclosure 2 defines relevant terms and, in particular, extends the concept of "user" to 
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include processes and devices interacting with an automated information system on behalf 

of users. Enclosure 3 gives general security requirements, including data-integrity 

requirements. The revised 5200.28 does not use the MAC/DAC terminology. Instead, it 

requires accurate marking of sensitive information and the existence of an 

(undifferentiated) access control policy based partly on the identity of individual users. It 

treats need-to-know as a form of least privilege. 

Security policy relating to nondisclosure stems from Executive Order 12356 [REAG82] 

and, in the case of DoD systems, from DoD 5200.1-R. [DOD86] Depending on the 

application, the security policy may be constrained by a variety of other regulations as well. 

The collection, maintenance, use, and dissemination of personal information is protected 

by DoD Directive 5400.11 [DOD82, § E.2] and by Public Law 100-503 [CONG88]. 

Classified and other sensitive information needed for the conduct of federal programs is 

protected by the Computer Security Act of 1987, Public Law 100-235 [CONG87], which 

requires safeguards against loss and unauthorized modification. 

1.4 HISTORICAL OVERVIEW 

The starting point in modeling a MAC policy is the observation that security levels are 

partially ordered (see Appendix A). This fact was first reflected in the design of the 

ADEPT-50, an IBM 360-based, time-sharing system with both mandatory and 

discretionary controls. [WEIS69, LAND81] The central role of partial orderings in MAC 

policy models was then recognized in subsequent work. [POPE73; BELL73; BELL74a] 

These partial orderings on security levels have become known as dominance relations. 

Independently of this, access control matrices were used by Lampson and Graham 

[LAMP71; GRAH72] to represent protection data. These works modeled discretionary 

access control using matrices whose rows and columns represented subjects and objects. 

Subjects were active entities such as processes and users. Objects were entities such as 

data structures that played a passive role, but often included subjects as well. Each entry in 

an access matrix told what a given subject was allowed to do with a given object by giving a 

set of allowed operations such as read, write, execute, or change ownership. The AIS used 

the access matrix to mediate all accesses by subjects to objects. 
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An Air Force Computer Security Technology Planning Study [ANDE72], referred to as 

"the Anderson Report," discussed use of a reference monitor to enforce nondisclosure 

policies and advanced the idea of formal security verification — the use of rigorous 

mathematical proofs to give (partial) assurance that a program design satisfies stated 

security requirements. This idea was investigated by Schell, Downey and Popek. 

[SCHE73] 

At that time, Bell and La Padula adapted access control matrices for use in modeling 

both mandatory and discretionary access controls and codified the reference monitor 

concept using state machines. Their machine states included access matrices and other 

security-relevant information and are now often referred to as protection states. Having 

established the necessary framework, they observed that a portion of DoD policy for 

nondisclosure of classified information could be formalized as invariant properties of 

protection states [LAPA73], that is, as properties which hold in all reachable states of the 

system. Their invariants constrained the allowed accesses between subjects and objects. 

The most significant of these was their ^-property. It included a form of the simple security 

property and guaranteed that the security level of every object read by an untrusted subject 

was at or below the security level of every object written by that subject. [BELL74] These 

ideas and their use in enforcing nondisclosure are covered in detail in Sections 3.2.4 and 

4.1. 

To complete their state machine, Bell and La Padula introduced a set of state 

transformations, called rules of operation, that modeled basic changes in a protection state 

and then rigorously proved that the rules of operation preserved the identified state 

invariants. [LAPA73, BELL74, BELL76] This work contains the first widely discussed use of 

mathematical proof for studying multilevel security. 

In parallel with Bell and La Padula, Walter and others developed a similar approach to 

verifying multilevel security. [WALT74, WALT74a] A strong point of the work by Walter et al. 

is the use of modularity and data abstraction techniques that have since been accepted as 

indispensable for verifying large systems. 

The intent of the state invariants identified by Bell and La Padula is that information is 

allowed to flow from one entity to another only if the second entity is at an equal or higher 

security level than the first. Denning and others attempted to formalize this idea directly 

using "information flow" models. [DENN76, DENN77, COHE77, REIT79, ANDR80] These 
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models differed in style from access control models in that they referred explicitly to 

information flow, but, in contrast to more recent investigations, did not actually define 

information flow. Denning's work did, however, point out an interesting distinction. In the 

conditional assignment 

if a = 0 then b := c, 

information flows explicitly from c to b (when a = 0) and implicitly from a to b (when b ^ c). 

Denning also pointed out that, in the case of the ADEPT-50, access control can easily 

allow implicit information flow. [DENN77] This problem is discussed in detail in Section 3.2. 

Discrepancies between information flow and access control open up the possibility of 

covert channels— paths of information flow that malicious processes can use to bypass 

the access control mechanism and thereby violate underlying security objectives, [cf 

LAMP73] Information flow models and concern over covert channels have led to the 

development of techniques and tools for covert channel analysis that are capable of 

detecting a variety of covert channels. [MILL76.MILL81, FEIE77, FEIE80] 

The developments just described provided the technical background for the security 

modeling requirements given in the TCSEC. A variety of important developments not 

explicitly reflected in the TCSEC have taken place in the last decade and will be presented 

later in this guideline. The class of security policies that can be formally modeled has been 

greatly extended, beginning with Biba's (pre-TCSEC) work on integrity. [BIBA77] Work 

has also gone into tailoring nondisclosure security to particular applications. Finally, 

various external-interface models have been developed that do not constrain internal 

system structure, an example of which is the noninterference model of Goguen and 

Meseguer. [GOGU82] These models provide a rationale for rigorously assessing new 

approaches to access control. 

1.5 CONTENT AND ORGANIZATION 

Section 2 presents an overview of the security modeling process, with emphasis on 

correctness and utility. Section 3 presents technical detail on how to model concepts of 

interest, including nondisclosure and integrity policies, mandatory and discretionary 

access controls, and exemption from access control within the Trusted Computing Base 

(TCB). 
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Section 4 shows how to apply the techniques from Section 3 to various kinds of 

systems; including operating systems, networks, database systems, and multilevel 

workstations. Finally, Section 5 summarizes all of the TCSEC security modeling 

requirements for B1, B2, B3, and A1 computing systems. 

Appendix A presents facts about lattices and partially ordered sets that are needed for 

Sections 3 and 4. Appendix B contains brief descriptions of available support tools. 

Appendices C and D contain suggested outlines for a philosophy of protection and a 

security policy model. Finally, Appendix E is a glossary giving definitions of technical terms. 

This glossary includes all terms that are introduced in italics throughout the guideline. 

When TCSEC requirements are discussed in this guideline, they are identified either by 

the key words "must" or "shall" or by explicit quotations from the TCSEC. By way of 

contrast, when desirable but optional actions and approaches are discussed, they are 

presented without exhortation and are instead accompanied by an explanation of specific 

advantages or benefits. In a few cases, possible requirements are designated by "should," 

because the implications of the TCSEC are not fully understood or agreed upon. 
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2. OVERVIEW OF A SECURITY MODELING PROCESS 

A security model precisely describes important aspects of security and their 

relationship to system behavior. The primary purpose of a security model is to provide the 

necessary level of understanding for a successful implementation of key security 

requirements. The security policy plays a primary role in determining the content of the 

security model. Therefore, the successful development of a good security model requires a 

clear, well-grounded security policy. In the case of a formal model, the development of the 

model also must rely on appropriate mathematical techniques of description and analysis 

for its form. 

Sections 2.1 and 2.2 explain what security models describe, why they are useful, and 

how they are used in the design of secure systems.   Section 2.3 introduces general 

definitions relating to security models and explains how security models are created. 

Finally, Section 2.4 discusses the presentation of a security model in a modeling document. 

2.1 SECURITY MODELS AND THEIR PURPOSE 

Early security models focused primarily on nondisclosure of information. More recently, 

the importance of data as a basis for decisions and actions has stimulated interest in 

integrity models. [DOD88a, WHIT84] For example, nondisclosure properties alone do not 

protect against viruses that can cause unauthorized, malicious modification of user 

programs and data. 

A wide variety of concepts can impact nondisclosure and integrity in particular system 

designs. As a result, the content of security models is quite varied. Their primary purpose 

is to provide a clear understanding of a system's security requirements. Without such an 

understanding, even the most careful application of the best engineering practices is 

inadequate for the successful construction of secure systems. 

Inadequacies in a system can result either from a failure to understand requirements or 

from flaws in their implementation. The former problem, defining what a system should do, 

is relatively difficult in the case of security. The definition must be precise in orderto prevent 

undesired results, or subtle flaws, during the implementation of the system design. 
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During the entire design, coding, and review process, the modeled security 

requirements may be used as precise design guidance, thereby providing increased 

assurance that the modeled requirements are satisfied by the system. The precision of the 

model and resulting guidance can be significantly improved by casting the model in a 

formal language. 

Once the system has been built, the security model serves the evaluation and 

accreditation processes. It contributes to the evaluators' judgement of how well the 

developers have understood the security policy being implemented and whether there are 

inconsistencies between security requirements and system design. Moreover, the security 

model provides a mechanism for tailoring the evaluation process to the vendor's needs 

because it presents the security concept that is supported by the system being evaluated. 

The inclusion of particular facts in the security model proclaims to evaluators and potential 

customers that those facts are validated at the level of assurance which the TCSEC 

associates with that system's evaluation class. 

Upon successful evaluation and use, the security model provides a basis for explaining 

security-relevant aspects of system functionality. Later, during maintenance, it provides a 

basis for guidance in making security-relevant modifications. Finally, by suppressing 

inessential design detail, security models facilitate a broader understanding of security that 

can be applied to increasingly larger classes of systems. Among the many examples of 

such generalizations is the adaptation of traditional reference monitor concepts referenced 

in the TNI to provide a basis for understanding network security requirements. [NCSC87] 

The intended purpose of a security model suggests several desirable properties. The 

requirements captured by a good model pertain primarily to security, so that they do not 

unduly constrain the functions of the system or its implementation. A good model 

accurately represents the security policy that is actually enforced by the system. Thus, it 

clarifies both the strengths and the potential limitations of the policy. (As an extreme 

example, if the system can simply declassify all objects and then proceed normally, as in 

McLean's System Z [MCLE87], a good model would show this.) Finally, a good model is 

simple and therefore easy to understand; it can be read and fully understood in its entirety 

by its intended audience. This last property cannot be achieved without significant care in 

-10- 



OVERVIEW 

choosing the contents, organization, and presentation of the security model. For example, 

the desire to provide a security model with the "look and feel" of UNIX® might need to be 

tempered by the need for simplicity and abstraction, [cf NCSC90b, Sec. 6.2] 

2.2 SECURITY MODELING IN THE SYSTEM DEVELOPMENT PROCESS 

Security requirements are best identified early in the system development process. Not 

identifying security requirements in a timely fashion is likely to have devastating effects on 

security assurance, security and application functionality, development schedule, and 

overall development costs. For example, in the case of a development using 

DOD-STD-2167A, [DOD88] this identification process would be part of the system 

requirements analysis. The identification of security requirements begins with the 

identification of high-level security objectives (as described in Section 1.3) and the 

methods by which they are to be met, including automated, procedural, and physical 

protection methods. This identification of security requirements and their derivation from 

identified higher-level security objectives is the initial material for a philosophy of 

protection (POP). As indicated in Appendix C, the philosophy of protection may also 

include a broad range of other topics such as the structure of the trusted computing base 

(TCB) and physical and procedural security mechanisms. 

Those requirements in the philosophy of protection which deal with automated 

protection methods provide an initial definition of security for a security policy model. The 

model's purpose is to precisely state these requirements and to compare them with key 

aspects of the security enforcement mechanism. A security policy model in this sense 

contains two essential portions: a "definition of security" portion that captures key security 

requirements and a "rules of operation" portion that shows how the definition of security is 

enforced.''' 

' The TCSEC Glossary identifies several kinds of formal security policy models but discusses modeling 
requirements only for state-machine models. For these, it identifies a "definition of security" portion, 
referred to as a "definition of a 'secure' state" and "rules of operation" portion, in an apparent summary of 
the Bell & La Padula approach. Both the definition itself and its subsequent use in product evaluations 
indicate that, while a state-machine approach is unnecessary, a model must contain both a definition of 
security and rules of operation which show how the definition of security is enforced. The definition of 
security should adequately support identified security policy objectives but does not necessarily have 
to consist of, or be limited to, a definition of secure state. 
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The model's definition of security can be used to avoid major system development 

errors. It can be used to guide the design of basic software protection mechanisms and to 

influence the design, selection and use of underlying firmware and hardware protection 

mechanisms. The initial draft model, and supporting documentation, provides guidance as 

to system security during reviews of the system design. However, there often are 

discrepancies between the design and the model. Some of these are resolvable and can 

be identified and corrected during the normal design review process. In some cases, 

however, discrepancies are unavoidable and can only be resolved by making some 

assumptions that simplify the problem. These assumptions need to be justifiable, based on 

the model. These discrepancies can also be addressed through procedural restrictions on 

the use of the system. There are some portions of a security model that may require design 

information that is not initially available and must, therefore, be postponed. Possible 

examples include detailed rules of operation for a security kernel and security models for 

specific security-critical processes. In such cases, the system designer must ensure that 

discrepancies are noted and the completed system will satisfy the completed model. 

To ensure that a design satisfies modeled security requirements, it is necessary to give 

a model interpretation which shows how the model relates to the system. For evaluation 

classes B1 and B2, this involves explaining how each concept in the model is embodied by 

the system design and informally demonstrating that the modeled requirements are met. 

Since the model's rules of operation must conform to the model's definition of security, the 

model interpretation need demonstrate only that the rules of operation are adhered to. For 

classes B3 and A1, the model interpretation is done in two steps. The design, as reflected 

in a top-level specification (TLS), is shown to be consistent with the model, and the 

implementation is shown to be consistent with the TLS. For Class B3, an informal 

descriptive top-level specification (DTLS) is used, an informal correspondence from the 

DTLS to the model is performed, and the implementation is shown to be consistent with the 

DTLS. At Class A1, the DTLS is supplemented with a formal top-level specification 

(FTLS), a formal verification proves that the FTLS is consistent with the model, and the 

implementation is shown to be consistent with the FTLS. A fuller summary of 

model-interpretation requirements is given in Section 5. 
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The role of security modeling in relation to other aspects of system development is 

summarized in Figure 2.1. Aspects that do not directly involve modeling, per se, are 

shaded in grey. Requirements concerning the model are summarized at the beginning of 

Section 5. The broadest document is the philosophy of protection (POP); it covers 

higher-level security objectives, derived security policies constraining the design and use 

of the system, and the protection mechanisms enforced by the TCB. The POP, the security 

policy, and the model all cover the system's definition of security. Both the POP and the 

model cover key aspects of the TCB protection mechanisms. At B2 and above, the formal 

model supports a rigorous proof showing that the rules of operation enforce the definition of 

security, and the DTLS gives a functional description of the TCB protection mechanisms 

with emphasis on the TCB interface. At A1, the FTLS formalizes a large portion of the DTLS 

in order to verify that the TCB design satisfies the modeled security requirements. 

Security Policy 
Informal 

Model 

POP 

Informal 
Correspondence 

Security 
Testing 

Informal 
Correspondence 

.^n 

^ Informal 
Correspondence 

Implementation 
Correspondence 

;       r~ 

Formal 
Verification 

Implementation 
(Hardware & Software) 

Implementation 
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Figure 2.1. Security Documentation 

The above paragraphs refer to a single security model but networks, database 

systems, and other complex systems may involve several security models or submodels. 

When a system is made up of several complex components or subsystems, interfaces 

between the components or subsystem layers must be modeled, if they play a key role in 

security protection. In this case, the best approach may be to develop separate models for 
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each component or layer in order to show how the various subsystems contribute to overall 

system security. A danger with this approach, however, is that the combined effect of the 

various submodels may not be obvious. This is discussed further in Section 4. 

2.3 IDENTIFYING THE CONTENTS OF A SECURITY MODEL 

The most basic strategy in identifying the contents of a security model is perhaps that of 

divide and conquer. The modeling effort may be subdivided according to higher-level 

security objectives. Requirements on a system can be mapped to derived requirements on 

subsystems. Requirements for a particular objective can be classified according to level in 

a requirements hierarchy. 

Security modeling provides a five-stage elaboration hierarchy for mapping a system's 

security policy requirements to the behavior of the system. As a result of this hierarchy, the 

phrases "security policy" and "security model" have taken on a variety of meanings. The 

five relevant stages are as follows: 

1. Higher-level policy objectives 
2. External-interface requirements 
3. Internal security requirements 
4. Rules of operation 
5. Top-level specification 

A higher-level objective specifies what is to be achieved by proper design and use of a 

computing system; it constrains the relationship between the system and its environment. 

The TCSEC control objectives belong to this first level of the requirements hierarchy. An 

external-interface requirement applies a higher-level objective to a computing system's 

external interface; it explains what can be expected from the system in support of the 

objective but does not unduly constrain internal system structure. Internal security 

requirements constrain relationships among system components and, in the case of a 

TCB-oriented design, among controlled entities. Rules of operation explain how internal 

requirements are enforced by specifying access checks and related behaviors that 

guarantee satisfaction of the internal requirements. A top-level specification is a 

completely functional description of the TCB interface. It also specifies behavior of system 

components or controlled entities. 

In various contexts, the phrase security policy may refer to any or all of the first four 

stages of elaboration. In many contexts, the term security policy refers to organizational 

security policy, [cf NCSC85, Glossary] From a modeling perspective, organizational 
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policies are the source of higher-level policy objectives. In much of the literature on 

security modeling, a system security policy is part of the requirements stages of 

development and provides the definition of security to be modeled. Additional thoughts on 

the importance of distinguishing among policy objectives, organizational policies, and 

system policies may be found in Sterne's article "On the Buzzword 'Security Policy'." 

[STER91] The terms "MS security policy" and "automated security policy" are synonyms 

for "system security policy." 

The security policy model is a model of the security policy enforced by the TCB. It is 

simultaneously a model of the policy and of the system for which the model is given. The 

portions of the system which are constrained by the model belong to the TCB by definition. 

The model's definition of security may contain external-interface requirements, but more 

traditionally consists of internal requirements. Its rules of operation may, in some cases, 

amount to a top-level specification. There is no firm boundary between rules of operation 

and top-level specifications: both explain how internal requirements are enforced by the 

TCB. However, more detail is required in a TLS, including accurate descriptions of the 

error messages, exceptions, and effects of the TCB interface. Security requirements 

occur implicitly in rules of operation and top-level specifications. In this form they are often 

referred to as security mechanisms. Internal requirements are sometimes classified as 

"policy" or "mechanism" according to whether or not they are derived from a specific 

higher-level policy objective. 

Conceptually, the security modeling process takes place in two main phases. 

Requirements modeling takes place after a system security policy is fairly well understood. 

This is accomplished by constraining the system's design and use based on the 

higher-level objectives. Rules of operation may be deferred until after the definition of 

security is established and the basic architecture of the system has been identified. 

The following paragraphs contain general suggestions for the construction of security 

models. Suggestions pertaining to specific kinds of security requirements and specific 

kinds of systems are given in Sections 3 and 4, respectively. 

These suggestions are broken down into six steps that could be carried out with respect 

to an entire system and security policy or, more simply, for a given component and 

higher-level policy objective. The first step is to identify externally imposed security policy 

requirements on how the system (or component) must interact with its environment. The 
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second is to identify the internal entities of the system and to derive the requirements 

portion of the model in such a way as to extend the external-interface requirements. The 

third is to give rules of operation in order to show how the modeled security requirements 

can be enforced. After completion of step three enough information generally is available 

to determine reliably whether the model is inherently new or can be formalized by known 

techniques. At classes B2 and above, this is the fourth step. The first three steps taken 

together result in the identification of several submodels. The fifth step is to demonstrate 

consistency among these various submodels, so that they fit together in a reasonable way 

to form a completed security policy model. Finally, the sixth step is to demonstrate 

relevance of the model to the actual system design. Typically, the majority of the security 

modeling effort is associated with these last two steps and associated revisions to the 

model. The total effort needed to produce a security policy model varies considerably, but 

is often between six staff-months and two staff-years. 

2.3.1 STEP 1: IDENTIFY REQUIREMENTS ON THE EXTERNAL INTERFACE 

The first step is to identify major security requirements and distinguish them from other 

kinds of issues. These identified requirements should adequately support known 

higher-level policy objectives for use of the system. An emphasis on external-interface 

requirements helps prevent an unrecognized mixing of security and design issues. Such 

mixing could interfere with the understanding of security and could impose unnecessary 

constraints on the system design. 

External-interface requirements for a computer system can be described in several 

ways. An elegant, but possibly difficult, approach is to limit the discussion purely to data 

crossing the system interface; this is the "black-box" approach. The best known example 

of the black-box approach is noninterference (see Section 3.2.1). Alternatively, one can 

describe the system in terms of its interactions with other entities in its environment, such 

as other computing systems, users, "*" or processes. Finally, one can give a hypothetical 

description of internal structure that ensures the desired external-interface behavior. 

In general, the system's interaction with its environment is constrained by the sensitivity 

of the information handled and by the authorizations of the individuals and systems 

accessing the system. Identified user roles, associated privileges, and the extent to which 

certain roles are security-critical also limit the system's interface to the environment. 

^ In this guideline, a user is always an individual human user. 
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These constraints determine security attributes that are associated with the system's 

inputs and outputs. Security attributes may include classification, integrity, origin, 

ownership, source of authorization, and intended use, among others. The use of such 

attributes in the construction of security models is discussed in Section 3. 

In the case of mandatory access control policies, information must be accurately 

labeled and handled only by authorized users. This requirement places restrictions on how 

information is input to the system and, implicitly, on how it will be processed. Authorized 

handling of information is modeled in terms of constraints on what information may flow 

from one user to another: information input to the system as classified information should 

be output only to authorized recipients. 

In addition to general regulations, there are often site-dependent and 

application-dependent constraints that may need to be modeled. In particular, there may 

be site-dependent constraints on allowed security labels. 

Having identified the security requirements on the system interface, it is necessary to 

decide on the requirements to be covered in the model's definition of security. It must then 

be decided which of these requirements should be modeled directly or indirectly in terms of 

internal requirements on system entities and the TCB interface. The set of requirements to 

include is constrained by minimal TCSEC requirements, the need to adequately support 

relevant policy objectives, and the need for a simple, understandable model. The inclusion 

of more requirements may provide more useful information for accreditation once the 

system is evaluated, but it also increases the difficulty of the vendor's assurance task. The 

inclusion of more requirements also suggests a more careful structuring of the model in 

order to show how various aspects of security fit together. 

Several factors may influence a decision of whether to directly include 

external-interface requirements in the security model. The direct inclusion of 

external-interface requirements can help explain how the model supports higher-level 

policy objectives. In the case of an application security model, the direct modeling of 

user-visible operations may be more relevant to end users, a point of view reflected in the 

SMMS security model. [LAND84] In the case of a network security model, understanding 

is facilitated by modeling of the network's interaction with hosts in its environment, as will be 

discussed in Section 4.2. 
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2.3.2 STEP 2: IDENTIFY INTERNAL REQUIREMENTS 

To support the identified external requirements, the system must place constraints on 

the controlled entities of the system. These internal constraints traditionally form the 

model's definition of security. In a model whose definition of security contains 

external-interface requirements, internal constraints can provide a needed bridge 

between the definition of security and the rules of operation. 

The controlled entities themselves should be identified at a level of granularity that is 

fine enough to allow needed security-relevant distinctions among entities. At class B2 and 

above, the controlled entities should include all (active and passive) system resources that 

are accessible outside of the TCB. For convenience, controlled entities may be grouped 

into subclasses in any way that facilitates understanding of the system. Such groupings will 

depend on the system to be modeled. For an operating system, the relevant controlled 

entities might include buffers, segments, processes, and devices. In most models, it has 

been convenient to group entities according to whetherthey play an active or a passive role 

in order to help show how the TCB implements the reference monitor concept.1" For 

networks and other complex systems, identification of controlled entities may need to be 

preceded by identification of subsystems and their derived security requirements. 

Constraints on controlled entities are best stated as general properties and 

relationships that apply to all (or a broad class of) entities and accesses. Greater generality 

eliminates unnecessary constraints on the system design, improves one's intuition about 

the model, and can greatly reduce the overall effort needed to validate correctness of the 

identified constraints. 

The identification of necessary constraints on controlled entities and their interactions is 

a nontrivial task; familiarity with similar systems and security models can be of great 

benefit. To define the necessary constraints, it will be necessary to label each entity with 

appropriate security attributes and to identify possible kinds of interactions, or accesses, 

between controlled entities. As used here, an access is any interaction that results in the 

flow of information from one entity to another, [cf DOD88a] 

* In [ANDE72], active entities are called "subjects".  This use of the word is slightly broader than that 
used in this guideline, where subjects are essentially controlled processes. 
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In describing access constraints, it may be useful to know that some kinds of accesses 

are highly restricted, as when a process accesses a file by executing it. The notion of 

causality may also be important: a transfer of information from entity ei to e2 might occur 

because e-| wrote e2. because e2 read e-|, or because a third entity directly copied ei to 

e2 without actually reading e-|. [cf MCLE90, Sec. 2] 

In the particular case of state machine models, constraints often take the form of state 

invariants, as in the work of Bell and La Padula. Recent efforts suggest that state-transition 

constraints are an attractive alternative to state invariants for certain kinds of security 

requirements. [MCLE88; NCSC90b, Sec. 6.7] The simplest well-known, state-transition 

constraint is the tranquility principle of Bell and La Padula, which says that the security 

level of a controlled entity cannot change during a state transition. Tranquility can be 

artificially rephrased as a state invariant: in any reachable state, the level of an entity 

coincides with its level in the initial state. Consider, however, the DAC requirement that a 

subject which gains access to an object must possess the necessary DAC permissions 

when the access request is made. This is harder to rephrase as a state invariant because 

DAC permissions can change from one state to the next. Good tutorial examples of state 

invariants and state-transition constraints may be found in Building a Secure Computer 

System [GASS87,Sec. 9.5.1, 9.5.2]; more complex examples occur in the TRUSIX work 

[NCSC90b,Sec. 2]. 

The number of internal requirements in a typical model varies considerably depending 

on the desired level of assurance, the complexity of the policy and system being modeled, 

andthegranularity ofthe individual requirements. Forexample.the Trusted UNIXWorking 

Group (TRUSIX) model covers TCSEC access control requirements for a B3 Secure 

Portable Operating System Interface for Computer Environments (POSIX) system and has 

eleven state invariants and ten state-transition constraints. [NCSC90b] 

The question of which security requirements to cover in the model's internal 

requirements is answered as much by issues of good engineering practice as by the 

TCSEC. At a minimum, the model must cover the control of processes outside the TCB. 

Such processes are potentially a significant security risk because they may be of unknown 

functionality and origin. According to current practice, those portions of the TCB that do not 

support user-requested computation do not have to be modeled. For example, the 

security administrator interface does not have to be modeled.   However, if significant 
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user-requested computation is performed by some portion of the TCB, it should be 

modeled. A typical example would be a trusted downgrading process available to 

authorized users (not necessarily the security administrator). A more extreme example 

would be a multilevel database management system implemented as a TCB subject 

whose database consisted of a single highly-classified file. 

Finally, there is the possibility that some security requirements might be included in the 

model, but only in the rules of operation. The rules of operation may allow the application of 

good security practice closer to the implementation level. The rules of operation can then 

contain security conditions that are not explicitly required by the security policy. Rules of 

operation can not make up for an inadequate definition of security, however. The task of 

inferring a modeled security policy from the rules of operation may be excessively difficult, 

especially if the rules are complex, [cf NCSC90b, Sec. 6.8] 

2.3.3 STEP 3: DESIGN RULES OF OPERATION FOR POLICY ENFORCEMENT 

How can the modeled security requirements on system entities be enforced? The rules 

of operation answerthis question in broad terms by describing abstract interactions among 

system entities with particular emphasis on access control and other policy-enforcement 

mechanisms. In the case of an operating system kernel, the rules of operation would 

typically describe state transformations and associated access checks needed to uphold 

the definition of security. In the case of a formal model, this step amounts to the 

construction of a miniature FTLS. It is a useful preliminary step, even if a full FTLS 

specification is planned. The rules of operation togetherwith the modeled requirements on 

controlled entities form the security policy model. 

In giving rules of operation, it is important that system behavior be adequately 

represented. However, actual interactions among controlled entities need not be directly 

specified when they can be described as a composition of several rules of operation. There 

is no need for an implementation to directly support an individual rule where several rules 

have been combined to describe an action. An appropriate level of detail for rules of 

operation is illustrated by the work of Bell and La Padula. [BELL76] Good tutorial examples 

may be found in Building a Secure Computer System.[GASS87, § 9.5.1 (Step 3)] More 

complex examples may be found in the TRUSIX work. [NCSC90b] The rules of operation 

will usually be more readable if they are not too detailed. At class B3 and above, it is 

especially important to avoid details that are not security relevant. This is because their 
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inclusion in the model may force their inclusion in the TCB in order to achieve a successful 

model interpretation, thereby violating the TCB minimization requirements. [NCSC85, 

Sec.3.3.3.1.1] 

In the case of a B1 informal model, the rules of operation may reasonably contain 

information that, for higher evaluation classes, would be found in a DTLS. Thus, a stronger 

emphasis on policy enforcement than on policy requirements may be useful. This is 

especially true if the TCB is large and complex, as, for example, when security is retrofitted 

onto a previously unevaluated system. [BODE88] 

A formal model needs to formalize the idea that a particular state transformation is 

being executed on behalf of a particular subject. Two traditional approaches are to add an 

extra input to the state transformation that gives the subject id and to add a "current subject" 

field to the system state. With the former approach, accompanying documentation should 

explain clearly how the subject-identity parameter is passed, in order to avoid the 

erroneous impression that the subject is responsible for identifying itself to the TCB. The 

latter approach suggests that the system being modeled has a single central processing 

unit. This may be a problem for the model interpretation if the system actually contains 

multiple CPUs. See the TRUSIX work for further discussion. [NCSC90b, Sec. 6.13] 

Finally, in designing rules of operation, it may be convenient to separate access 

decisions from other kinds of system functionality, including the actual establishment or 

removal of access. This separation facilitates exploration of new access control policies. 

Only the access decision portion is affected by a change in policy because access 

enforcement depends only on the access decision, not on how it was made. [LAPA90, 

ABRA90] Isolation of the access decision mechanism occurs in the LOCK system design 

[SAYD87] and in the security policy architecture of SecureWare's Compartmented Mode 

Workstation [NCSC91b, Section 2.2.1.]. 

2.3.4 STEP 4: DETERMINE WHAT IS ALREADY KNOWN 

Usually some, if not all, aspects of the identified security model will have been studied 

before. The identification of previously used terminology allows security issues to be 

presented in a manner that is more easily understood; and making the connection to 

previously studied issues may provide valuable insight into their successful solution. 
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For classes B2 and above, the modeling effort must be based on accepted principles of 

mathematical exposition and reasoning. This is because formal models and mathematical 

proofs are required. The chosen mathematical formalism must allow for an accurate 

description of the security model and should provide general mechanisms for its analysis. 

This is necessary so that specific interactions among the entities of the model can be 

verified as being appropriate. 

In practice, needed mathematical techniques are usually adapted from previous 

security modeling efforts because security modeling, perse, is generally much easier than 

the development of new mathematical techniques. Extensive use of past modeling 

techniques is especially feasible in the case of fairly general and familiar policy 

requirements. System-dependent modeling is generally required for policy enforcement, 

but established techniques are often available for demonstrating consistency with the 

modeled requirements. 

If new mathematical techniques are used, their credibility is best established by 

exposure to critical review, in order to uncover possible errors in the mathematics and its 

intended use. This review process is facilitated by the development of comparative results 

that give useful relationships between new models and old ones. 

2.3.5 STEP 5:  DEMONSTRATE CONSISTENCY AND CORRECTNESS 

Since the security provided by a system is largely determined by its security model, it is 

important that the model capture needed security requirements and that its rules of 

operation show how to enforce these requirements. 

The first crucial step of identifying security requirements on the system interface cannot 

be directly validated by mathematical techniques, [cf MCLE85] Human review is needed to 

establish what security requirements need to be addressed and whether these 

requirements are reflected in later mathematical formalizations. For systems in class B2 

and above, real-world interpretations are assigned to key constructs of the formal model in 

order to provide a common semantic framework for comparing the model and the security 

policy. 

The appropriate technique for validating requirements on controlled entities (Step 2) 

depends partly on the novelty of the approach. Informal human review is required to 

assure that the modeled requirements support the original system security policy. Careful 
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comparisons with previous models of the same or related policies may help to show how 

new modeling techniques relate to previously accepted techniques for handling particular 

policy concepts. (See, for example, [MCLE87; MCLE90,Sec. 3 & Sec. 4].) An alternate 

technique is to give an external-interface model and then mathematically prove that the 

constraints on system entities imply satisfaction of the external-interface model. The 

external-interface model is easily compared with a security policy or policy objective. The 

constraints on system entities are those identified in the requirements portion of the 

security policy model. This technique is illustrated in Section 3.2. 

If the rules of operation are given correctly (Step 3), they will comply with the constraints 

given in the requirements portion of the model. A formal proof oi compliance is required for 

classes B2 and above. In a state-transition model, state invariants are proved by 

induction: one proves that they hold for the initial state and are preserved by each state 

transition given in the rules of operation. (See, for example, [CHEH81].) State-transition 

constraints are straightforwardly proved by showing that each state transition satisfies the 

constraints. 

2.3.6 STEP 6: DEMONSTRATE RELEVANCE 

The rules of operation should be a correct abstraction of the implementation. A 

preliminary model interpretation that is done as part of the modeling process can provide 

an informal check on whether the rules of operation are sensible and relevant. This model 

interpretation shows how enforcement mechanisms modeled in the rules of operation are 

realized by the system. A model interpretation explains what each model entity represents 

in the system design and shows how each system activity can be understood in terms of the 

given rules of operation. Thus, for example, a "create file" operation in the system might be 

explained as involving a restricted use of the rules for "create object," "write object," and/or 

"set permissions" in the model, depending on the actual arguments to the "create file" 

command. 

An appropriate, somewhat novel, example of a model interpretation is found in the 

TRUSIX work. [NCSC90b, Sec. 4] The model interpretation is described as an informal 

mapping from the TRUSIX DTLS to the TRUSIX model. This interpretation first explains 

how UNIX entities are represented in the model and the DTLS. For example, messages, 

semaphores, and shared memory are entities that the DTLS refers to as interprocess 

communication (IPC) objects but that are treated as "files" in the model. Thirty-six UNIX 
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system interface functions are then described by giving pseudocode that shows how each 

function can be expressed in terms of the state transformations given by the rules of 

operation. In other words, the transformations given in the rules of operation form a toy 

security kernel that could be used to implement UNIX if efficiency were irrelevant. 

The SCOMP and Multics model interpretations are examples based on Secure 

Computer System: Unified Exposition and Multics Interpretation. [BELL76]. In the SCOMP 

interpretation, a set of security-relevant kernel calls and trusted processes are identified 

as 'SCOMP rules of operation." [HONE85] For each such SCOMP rule, a brief summary of 

security-relevant functionality is given and then interpreted as the combined effect of 

restricted use of one or more rules from the above work by Bell. [BELL76] The specific 

restrictions are enumerated in an appendix, along with a rationale for omitting some kernel 

calls and trusted functions from the interpretation. The correspondence between the rules 

in this work [BELL76] and actual SCOMP behavior is rather complex. The Multics 

interpretation, by way of contrast, is more sketchy, but the actual correspondence appears 

to be simpler. [MARG85] 

2.4 PRESENTATION FOR EVALUATION AND USE 

The most important factors in the successful presentation of a security model are the 

simplicity of the model, its appropriateness, and an understanding of its intended uses. 

The presentation of the model must demonstrate that the model correctly describes the 

system security policy. A clear explanation of the policy from which the model is derived 

should be available for this demonstration. Sufficiency of the model may be demonstrated 

by presenting the relationship of the model to the policy and by carefully explaining and 

justifying the modeling decisions behind this relationship. In addition to modeled 

requirements, the system may support other security requirements that are not suitable for 

inclusion in the model, especially if it is a formal model. Unmodeled security requirements 

can be presented in an appendix so that TCB developers have all of the security 

requirements in a single document. 

An overview of the model interpretation is needed so that readers can understand the 

relevance of the system's security model to the security policy and to the overall 

system-development process.   All of these topics may be legitimately covered in a 
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philosophy of protection. In fact, it is highly desirable that the philosophy of protection be 

the first document delivered by the vendor in a system evaluation, so that it can serve as a 

basis for further understanding of the security model and other system documentation. 

In the case of a formal model, an informal explanation or presentation of the model 

prepared for a general audience is highly desirable. This is partly for reasons mentioned in 

Section 2.3.5 and partly because of the general need to acquaint system developers, 

implementors, and end users with the basic security principles that are to be supported by 

the system. The informal presentation can reasonably be included in the philosophy of 

protection. 

A well-written explanation of the model's definition of security can be used by potential 

buyers of a secure system to determine compatibility between the computing system and 

their organization's security policies and needs. To evaluate the ability of a computing 

system to support these policies, potential users may wish to construct an informal model 

of their security policies and compare it to the definition of security supported by the 

computing system. This use of the security model and the fact that some aspects of 

security modeling can only be validated by social review suggest that portions of the 

security model and the philosophy of protection be made available to a relatively wide 

audience, for example, treating them as publicly released, nonproprietary documents. 

For systems at the B2 level or above, the requirement of mathematical proof 

necessitates the presentation of a rigorous mathematical formalization as well. For a 

mathematical audience, standards of precision may preclude a style that will be 

appropriate for a general audience. In this case, an informal presentation of the model is 

also needed in order to reach the general audience. 

At the A1 level of assurance, the formal model is directly involved in the formal 

verification of the FTLS. As a result, it may be appropriate to present the model in the 

formal specification language of an endorsed verification system (see Appendix B). 

Authors and readers must be fully aware of the nuances of the descriptive notation of the 

verification system used in order to avoid errors due to discrepancies between author 

intent and reader expectation. Furthermore, if a formal verification system is used to check 
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proofs, it is necessary to achieve a correct translation of what is to be proved into the 

language of the verification system. Further discussion of these points may be found in 

[FARM86; NCSC90b, Sec. 6.3]. 
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3. SECURITY MODELING TECHNIQUES 

Having introduced the major topics involved in security modeling, we now consider 

detailed modeling issues with emphasis on mathematical structure as well as empirical 

justification. In this section, a review of basic concepts is followed by discussions on the 

modeling of various kinds of policies and objectives: nondisclosure, need-to-know, 

integrity, and special-purpose policies of particular TCB subjects. 

In most cases, modeling techniques are introduced, with details handled via references 

to the available literature. Inclusion of these references does not imply NCSC 

endorsement of referenced products incorporating the techniques discussed. 

3.1 BASIC CONCEPTS 

As discussed in Section 2, the identification of controlled entities plays a crucial role in 

the development of a security policy model. At B2 and above, the controlled entities must 

include all system resources. If the policy is multifaceted, with separate subpolicies for 

mandatory and discretionary access controls, it may be acceptable to decompose the 

system into different sets of controlled entities for different subpolicies. A secure 

computing system may decompose into data structures, processes, information about 

users, I/O devices, and security attributes for controlled entities. In general, the number of 

different kinds of entities depends on what security-relevant distinctions are to be made. 

The following paragraphs discuss how to perform such a decomposition for typical kinds of 

entities, with the goal of modeling security requirements in such a way as to allow an 

accurate, useful model interpretation. 

An explicitly controlled entityis one that has explicitly associated security attributes. In 

the TRUSIX model, for example, the explicitly controlled entities are referred to as 

"elements". They consist of subjects and three kinds of objects; files, directories, and 

entries (i.e., links). [NCSC90b, Sec. 6.9-6.11] In addition to explicitly controlled entities, a 

system will have implicitly controlled entities. Such an entity might be contained in an 

explicitly controlled entity or might be a composite entity composed of explicitly controlled 

entities having potentially different security attributes. 
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The discussion of security attributes in this section emphasizes security levels used for 

mandatory access control because the TCSEC labeling requirements apply primarily to 

mandatory access control and auditing. However, much of what is said about MAC labels 

applies to other kinds of security attributes including, for example, discretionary access 

control lists. 

It is necessary to model creation and destruction of most kinds of controlled entities. A 

simpler model results if the same approach is used in all cases. In a formal model, one can 

model the creation of new controlled entities by modeling changes in the set of all controlled 

entities. A fixed set of possible controlled entities, together with an indication of which 

entities are available for use in a particular state (e.g., which subjects are active, which 

objects or object-ids are allocated) can also be used, [cf NCSC90b] 

3.1.1 DATA STRUCTURES AND STORAGE OBJECTS 

In this guideline, a data structure"*" is a repository for data with an internal state, or value, 

that can be written (i.e., changed) and/or read (i.e., observed) by processes (and, possibly, 

devices) using well-defined operations available to them. A data structure is distinct from 

its value at a particular time, which is, in turn, distinct from the information conveyed by that 

value. The information content depends not only on the value but also on how it is 

interpreted. Similarly, a data structure is distinct from a name for that data structure. 

A data structure that is explicitly associated with exactly one security level by the 

security policy model is a storage object.1* There are no a priori restrictions on the level of 

abstraction at which data structures and storage objects are modeled. In particular, objects 

may be abstract data structures that are accessed using high-level operations provided by 

an encapsulation mechanism. In this case, a user would have access to the high-level 

operations but could not access the encapsulated data directly via more concrete 

operations that may have been used to define the high-level operations. This lack of direct 

access would have to be enforced by the TCB. 

Ordinarily, the storage objects in a security model are disjoint. This means that, in 

principle, changes to one object do not force changes to other objects. If a state-machine 

model is used, disjoint storage objects can be modeled as separate components of the 

"*" The need to distinguish between data structures and objects is not seen in the TCSEC Glossary 
definitions but has arisen more recently from issues involving structured objects, multilevel data 
structures, and possible differences between the storage objects used for MAC and the named objects 
used for DAC. 
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underlying machine state. If two objects at different security levels were not disjoint, then 

access to data in their intersection would be allowed or denied according to which label is 

used. This ambiguity can be resolved by explicitly associating a level with their intersection. 

In this case, the associated level allows the intersection to also be regarded as a separate 

storage object, thereby restoring disjointness. Thus, disjointness in storage objects 

simplifies one's understanding of how security labels are used to control access. It has also 

been argued that disjointness simplifies covert channel analysis via shared resource 

matrices. 

In some systems, collections of objects are combined to form multilevel data structures 

that are assigned their own security levels. Multilevel data structures called "containers" 

are used in the Secure Military Message System (SMMS) to address aggregation 

problems.1' [LAND84] The level of a container must dominate the levels of any objects or 

containers inside it. 

When an object or other controlled entity is created, it must be assigned security 

attributes and initialized in such a way as to satisfy the object reuse requirement. The 

modeling of object reuse policies (e.g., objects are erased when allocated) can be useful, 

but object reuse is not found in traditional access control models because the object reuse 

requirement deals with the content of objects and TCB data structures. The initialization of 

security attributes, however, plays an essential role in access control and can be modeled 

by distinguishing between "active" and "inactive" entities, as in [NCSC90b]. The security 

attributes of a newly created object may be taken from, or assigned by, the subject that 

created it. In many systems, creating an object is essentially a special case of writing to it: 

its value changes from undefined to null. If this change is visible to non-TCB subjects and 

the new object is created by a non-TCB subject, then the security level of the new object 

must dominate that of the creating subject. DAC attributes, by way of contrast, are usually 

given by system- or user-supplied defaults. 

3.1.2 PROCESSES AND SUBJECTS 

A process may create, destroy, and interact with storage objects and other processes, 

and it may interact with I/O devices. It has an associated run-time environment and is 

distinct from the program or code which defines it.   For instance, the program would 

^ An aggregation problem can occur when a user has access to individual pieces of data in a data set, but 
not to the entire data set. This problem is discussed further in Section 4.3. 
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ordinarily be modeled as information contained in a storage object. An explicitly controlled 

process is a subject. It normally has a variety of associated security attributes including a 

security level, hardware security attributes such as its process domain, the user and user 

group on whose behalf it is executing, indications of whether it belongs to the TCB, and 

indications of whether it is exempt from certain access control checks. 

The issues regarding disjointness of storage objects mentioned in Section 3.1.1 apply 

to subjects as well. If two subjects share memory, it is advisable to model the shared 

memory as an object separate from either subject in order to achieve the disjointness 

needed for information-flow analysis. Local memory need not be separately modeled, but 

must be properly taken into account when modeling the subject. Registers (including the 

instruction pointer) are technically shared memory but can often be treated abstractly as 

unshared local memory. This is especially true if registers are saved and restored during 

process swaps and the information they contain is not shared between processes. 

Security levels for processes are ordinarily similar to security levels for storage objects. 

The TCSEC requires that a subject have a nondisclosure level that is dominated by the 

clearance and authorization of its user. A TCB subject may reasonably be assigned 

separate levels for reading and writing in order to allow partial exemption from access 

control (see Section 3.4). Other TCB-related entities may also need separate levels for 

reading and writing in some systems. One such example is /dev/null in UNIX. [GLIG86] 

This object is system high in the sense that any process can write to it; but it is system low in 

the sense that any process can read from it because its value is always null. 

In general, the security-relevant attributes of a subject are part of its run-time 

environment. Some attributes are relatively static and are inherited from the subject's 

executable code or are stored with its code. In UNIX, the property of being a set-user-id 

program is a statically determined attribute, as is the effective user-id. Other attributes are 

dynamically assigned and are inherited from a subject's parent or are actively assigned by 

the parent (assuming it has a parent process). In the latter case, the parent must be relied 

upon to assign the child's security attributes appropriately. As a result the parent usually 

belongs to the TCB in this latter case. A secure terminal server, for example, might create a 

subject and assign it security attributes based on the determined identity of a user logging 

in. 
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There are potential difficulties in associating user-ids with TCB subjects. A terminal 

server would appear to operate on behalf of the user currently logged in or on behalf of the 

Identification and Authentication mechanism if no one was logged in. A print spooler acts 

on behalf of the users in its print queue. Such TCB subjects are, in reality, associated with 

multiple user-ids, a fact which is relevant to the design of the audit mechanism. A TCB 

subject that does not act on behalf of a given user can be handled either as having a 

dynamically modifiable user-id or as acting on behalf of the system (equivalent^, as acting 

on behalf of a system-defined pseudo-user). 

When a subject creates a child subject by executing a program, the resulting child might 

belong to the TCB and be exempt from certain access control checks, even if the original 

subject was not in the TCB. This is possible if exemptions are associated with the program 

object itself. 

With the advent of multitasking languages such as Ada, there is a question of when two 

threads of control belong to the same subject. Pragmatically, to be the same subject, they 

should have the same security attributes. To qualify as separate subjects, their separation 

should be enforceable by the TCB.1" Finally, nothing explicitly prohibits a multithreaded 

process from consisting of several subjects operating at different security levels. Of 

course, intraprocess communication will be somewhat limited for such a process unless it 

contains TCB subjects that are exempt from some of the MAC constraints. 

3.1.3 USERS AND USER ROLES 

User-related topics often turn up in security models in spite of the fact that users are not 

controlled entities and thus do not need to be directly modeled. The users of a system may 

perform specific user roles by executing associated role-support programs. In general, a 

user may engage in a combination of several roles. As a matter of policy, a given user role 

may require system-mediated authorization and may provide specific system resources 

needed for performance of the role.   Although the following paragraphs discuss only 

^ The TCSECglossary mentions two uses of the word "subject," the more general use from [ANDE72] and 
a less general use from Multics. In Multics, a process and, hence, a subject is single-threaded. However, 
legitimate examples of multithreaded subjects have turned up in product evaluations, and their 
multithreadedness has been considered acceptable by the NCSC. Multithreaded processes are often 
referred to as process families. 
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individual user roles, most of the basic concepts extend to roles for other kinds of clients in 

the environment of a computing system including usergroups and, in the case of a network, 

hosts or subjects running on hosts. 

The TCSEC requires support for certain trusted user roles. For systems at B2 and 

above, these roles include the security administrator role and the system operator role. 

The administrator role governs security attributes of users, moderates discretionary and 

mandatory access control, and interprets audit data. The operator role ensures provision 

of service and performs accounting activities. [NCSC90a] These roles may be subdivided 

so that they can be shared by multiple users. In addition, they do not preclude the addition 

of other trusted roles. In general, trusted user roles are characterized by the fact that they 

involve handling security-critical information in a way that violates access restrictions 

placed on non-TCB subjects. As a result, processes that support trusted roles can be 

misused and must have restricted access. By definition, such trusted role processes have 

security properties that are unacceptable without special constraints on the behavior of 

their users. These observations suggest (but do not mandate) the modeling of support for 

user roles, especially trusted user roles. Trusted role processes are usually treated as 

TCB subjects. Additional information on modeling them is given in Section 3.4. 

Instructive examples of role definitions may be found in Secure Xenix [GLIG86] and the 

SMMS security model [LAND84]. Secure Xenix restructured the Guru role into four 

separate roles. The SMMS security model included a system security officer role, a 

downgrader role and a releaser role. In both of these systems, the roles support separation 

of duty in that each role has privileges not available to the other roles. Separation of duty 

has been emphasized by Clark and Wilson, who have given a general scheme for 

constraining user roles by using triples of the form (user, program, object-list) in order to 

control how and whether each user may access a given collection of objects. [CLAR87] A 

similar role-enforcement mechanism is supported by type enforcement. [BOEB85] The 

type-enforcement mechanism itself assigns "types" to both subjects and objects; subject 

types are referred to as "domains." The accesses of each subject are constrained by a 

"type table" based on subject domain and object type. Each user has a set of domains 

associated with subjects running on his behalf. These domains are used to define user 

roles, [cf THOM90] 
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3.1.4 I/O DEVICES 

Although users are external to the computing system and need not be directly modeled, 

it is still useful to model their allowed interactions with the system in order to document 

security-relevant constraints that are enforced by the system. User interactions may be 

modeled in terms of constraints on I/O devices if there is a convention for discussing the 

current user of a device. Devices which are accessible to subjects outside the TCB should 

be modeled either implicitly or explicitly as part of the interface between the non-TCB 

subjects and the TCB. An additional reason for interest in I/O devices is that I/O typically 

accounts for a large portion of the TCB.1" The following paragraphs present general 

information on the modeling of devices with emphasis on device security requirements and 

then discuss when they should be modeled as objects, as subjects, or as their own kind of 

entity. 

Normally, security models discuss abstract encapsulated devices rather than actual 

physical devices. An encapsulated device is an abstract representation of a device, its 

associated device driver, and possibly other associated entities such as attached hardware 

and dedicated device buffers. Thus, for example, one might discuss a line printer 

connected to the system but not the actual RS-232 device used to achieve the connection 

or its associated device driver. 

By definition, an input device injects information into the system in a way that the system 

cannot entirely control. The next state of the system may depend on the actual input as well 

as on the current state and the particular state transformation being executed. This fact 

can be accommodated in several ways in an FTLS or a model that addresses object 

content. One can treat the actual input as a parameter to the transformation. If there are 

only a few different input values, one can associate different transformations with different 

inputs. Finally, one can treat the transformation as being nondeterministic, meaning that 

several different states can result from executing the transformation in a given state. 

+ I/O handling often accounts for 30 percent or more of an entire operating system. [TANE87, Preface] 
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Abstract encapsulated devices are often passive entities, in contrast to their underlying 

hardware. Security requirements for devices, however, differ significantly from those for 

either storage objects or controlled processes: 

• External policy on use of the system requires that devices pass information 
only to authorized users. 

• Devices may transport either unlabeled data or labeled data and are 
classified as single-level or multilevel de vices accordingly. 

• At B2 and above, the TCSEC requires that every device have a minimum and 
maximum device level that represents constraints imposed by the physical 
environment in which the device is located. 

Authorized use of a device may be enforced by requiring that any piece of information 

output by the device have a security level that is dominated by the clearance and 

authorization of the recipient. A combination of procedural and automated methods are 

needed to correctly associate the security level of the information, the user who will receive 

that information, and the security level ofthat user. Typically, the device itself will also have 

a security level. The user who receives information from a device may well be different than 

the user who sent that information to the device. If a device with local memory (an 

intelligent terminal, for example) is allocated to different users or different security levels at 

different times, it will typically need to be reset between users in order to meet requirements 

on authorized transmission of information. 

Both single-level and multilevel devices may handle multiple levels of information. 

A single-level device can only handle a single level at a time but may have some 

convention forchanging levels. A multilevel device, by way of contrast, can handle different 

levels of data without altering its security designation, but still might be used in such a way 

as to carry data at only one fixed security level. 

The TCSEC requirement for device ranges does not explain how they are to be used. 

The most common option is to require that the level of any object transmitted by the device 

be within the range. Another option is to require that the security clearance of any user be 

within the range. Separate decisions regarding device minimum and device maximum are 

also possible. In the Trusted Xenix system,* a user with a secret clearance can have an 

unclassified session on a terminal with a secret device minimum.    The intended 

' Trusted Xenix" is a trademark of Trusted Information Systems. Trusted Xenix was formerly known 
as Secure Xenix, which is the name found in [GLIG86]. 
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interpretation of the device minimum is that the device is in a restricted area that should 

contain only users whose clearance is at least the device minimum. If the device minimum 

is secret, then a login attempt by an uncleared user is treated as a violation of physical 

security. [GLIG86] 

The question of whether devices should be modeled in the same way as other kinds of 

controlled entities depends on the complexity of the devices involved, observed similarities 

between devices and other modeled entities, and goals relating to the simplicity and 

accuracy of the model. The TRUSIX group decided to model devices in the same way as 

file objects, a decision that depended heavily on both the nature of UNIX and the specific 

goals of the TRUSIX effort. [NCSC90b, § 6.9] The SMMS model treats devices as 

containers in order to capture the fact that the device maximum must dominate the level of 

all data handled by the device. [LAND84] Yet another alternative is to model devices by 

modeling their device drivers as TCB subjects. In general, more sophisticated I/O devices 

need greater modeling support, with the limiting case being intelligent workstations 

modeled as autonomous computing systems. 

3.1.5 SECURITY ATTRIBUTES 

A security attribute is any piece of information that may be associated with a controlled 

entity or user for the purpose of implementing a security policy. The attributes of controlled 

entities may be implicit; they need not be directly implemented in data structures. Labels 

on a multilevel tape, for example, can be stored separately from the objects they label, 

provided there is an assured method of determining the level of each object on the tape, 

[cf NCSC88b, C1-CI-05-84] 

Primary attributes of security policies that are usefully reflected in the security model 

include locus of policy enforcement, strength and purpose of the policy, granularity of user 

designations, and locus of administrative authority. These policy aspects lead to a 

taxonomy of policies and security attributes. 

There are several types of security attributes of any given system: informational 

attributes, access control attributes, nondisclosure attributes, and integrity attributes. 

Informational attributes are maintained for use outside the given computing system, 

whereas access control attributes limit access to system resources and the information 

they contain.   Purely informational attributes are somewhat uncommon; an informative 
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example is given in Section 4.4. Access control attributes may be classified according to 

what they control. A loose access control attribute controls access to the entity it is 

associated with, whereas a tight access control attribute also controls access to 

information contained in that entity. Thus, access restrictions determined by tight attributes 

must propagate from one object to another when (or before) information is transferred, 

because control over the information must still be maintained after it leaves the original 

entity. Nondisclosure attributes are used to prevent unauthorized release of information, 

whereas integrity attributes are used to prevent unauthorized modification ordestruction of 

information. 

Attributes can also be classified by the granularity and authority of their control. The 

user granularity of an attribute may be "coarse," controlling access on the basis of broadly 

defined classes of users, or it can be "per-user," controlling access by individual users and 

processes acting on their behalf. Finally, centralized authority implies that policy for use of 

attributes is predefined and takes place under the control of a system security 

administrator, whereas distributed authority implies that attributes are set by individual 

users for entities under their control. This classification of security attributes is based partly 

on the work of Abrams. [ABRA90] 

When applied to typical security policies for B2 systems, these distinctions among 

security attributes might take the form given in Figure 3.1. MAC policies must enforce 

nondisclosure constraints on information and may enforce integrity constraints as well. 

They must regulate access to information on the basis of user clearance and labeled 

sensitivity of data. The involvement of user clearances typically comes at the expense of 

per-user granularity because several users are likely to have the same clearance. 

Authority to assign security attributes is usually somewhat centralized. Users can create 

entities at various levels, but ability to change the levels of existing entities is usually 

restricted to authorized users. 
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Figure 3.1. Typical Classification of Access Control Policies 

DAC policies must enforce access constraints on both reading and writing. They must 

provide per-user granularity as criteria for access decisions, although they often include a 

group mechanism for coarse-grained access decisions as well. DAC policies are normally 

used to enforce both nondisclosure and integrity, but constraints on access to named 

objects do not necessarily imply corresponding constraints on access to information in 

those objects. Authority to change discretionary attributes is usually distributed among 

users on the basis of ownership. 

3.1.6 PARTIALLY ORDERED SECURITY ATTRIBUTES 

A security attribute belonging to a partially ordered set may be referred to as a level. 

The associated partial ordering may be referred to as the dominance relation; in 

symbols, L-, is dominated by L2if and only if L-, < L2. The use of partially ordered levels is 

usually associated with tight access control policies and constraints on information flow. 

Constraints on information flow can arise for several different reasons. As a result a 

multifaceted policy might have a different partial ordering for each reason. Often, the 

combined effect of constraints associated with several partial orderings can be expressed 

in terms of a single composite ordering. In this case, facts about Cartesian products of 

partially ordered sets given in Appendix A may be used to simplify the formal model and, 

possibly, the system's implementation as well. The following paragraphs discuss the 

connection between levels and constraints on information flow, the use of these constraints 

for supporting nondisclosure and integrity objectives, and the tailoring of level-based 

policies to particular applications. 

t The MAC policy enforced by a system may be useful for integrity as well as nondisclosure. 
DAC policies are not required to be either loose or distributed. 
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A dominance relation is often viewed as an abstraction of allowed information flows: 

information can flow from entity E1 to entity E2 only if the level of E1 is dominated by the 

level of E2. This rather general view, which is an analogue of the original *-property of Bell 

and La Padula, allows the illustration of some basic issues in the use of levels, but it is 

overly simple in some respects. It does not address whether information flows properly or 

whether the flow is direct or indirect. Moreover, this view does not contain any explicit 

assumption about why information may be prevented from flowing from one entity to 

another. 

Partially ordered levels and related constraints on information flow have been 

suggested for use in enforcing both nondisclosure and integrity objectives. The motivation 

for these suggestions may be understood from the following considerations. Suppose that 

access controls could enforce the above information-flow constraints perfectly. Suppose 

that the two objects contain the same information, but one is labeled at a higher level than 

the other. In this situation, information is less likely to be disclosed from the higher-level 

object because fewer subjects have a sufficiently high level to receive this information. 

Conversely, if lower-level subjects can write higher-level objects, then inappropriate 

modification of the lower-level object is less likely because fewer subjects have a 

sufficiently low level to write to it. This dual relationship may cause the goals of 

nondisclosure and integrity to conflict, especially if the ordering on levels is strongly 

hierarchical. As explained in Section 3.5, this duality between nondisclosure and integrity 

has some significant limitations. A given set of security levels designed for enforcing 

nondisclosure may be inappropriate for enforcing integrity, and not all integrity policies use 

partially ordered security attributes. 

When a computing system is accredited for use at a particular site, it is assigned a host 

accreditation range - a set of levels at which the host may store, process, and transmit 

data.1" A host range can prevent the aggregation of certain classes of data. If several 

objects have different levels and no level in the host range dominates all of them, then there 

is no legitimate way of concatenating these objects. This use of host ranges is discussed 

further in Section 4.4. 

' Several different kinds of accreditation ranges may be associated with a host 
on a network. For example, a network interface accreditation range is a device range which restricts the 
levels that may be used in connection with a given network interface. 
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A desirable constraint holds between a host range and device ranges: if the host range 

contains a level that does not belong to any device range, a non-TCB subject running at 

that level can not communicate bidirectionally without using covert channels. By way of 

contrast, a device range may reasonably contain levels not in the host range. Suppose, for 

example, that A and B are incomparable levels dominated by a level C that does not belong 

to the host range. A device might reasonably use C as a maximum device level in order to 

allow use of the device at either level A or level B. But, in this case, the system would need 

to check that each object input from the device actually belonged to the host range. 

3.1.7 NONDISCLOSURE LEVELS 

The following paragraphs discuss the structure of nondisclosure levels as it relates to 

their abstract mathematical properties, to TCSEC requirements, and to their intended use. 

Analyses given in the following paragraphs suggest that the structure of nondisclosure 

levels that are used to enforce nondisclosure policies is often not needed for modeling 

purposes. If their structure plays no significant role in a given model, their inclusion is 

unnecessary and may limit the applicability of the model. 

The TCSEC requires that nondisclosure levels contain a classification component and 

a category component. The hierarchical "classification" component is chosen from a 

linearly ordered set and the nonhierarchical "category" component must belong to a set of 

the form g>(C), the set of all subsets of C, for some set C of categories, [cf NCSC85, 

Sec. 9.0,Sec. 3.1.1.4] In some applications, thousands of categories may be needed. In 

others, only the four clearance levels "unclassified", "confidential", "secret", and "top 

secret" are needed, as a result of Executive Order 12356. [REAG82] These facts illustrate 

the importance of configuration-dependent host accreditation ranges to remove unused 

security levels. 

As explained in Appendix A, any partially ordered set may be fully embedded in one 

based on categories. As a result, TCSEC constraints on nondisclosure levels do not 

restrict the class of partially ordered sets that may be used for such levels (although these 

constraints do affect the use of human-readable names). The decomposition of levels into 

classification and category components can be configuration-dependent and may be 
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given along with the host accreditation range. This fact is of some interest for computing 

systems with both commercial and military applications, [cf BELL90] In this case, the 

model should be general enough to embrace all intended configurations. 

Even if labels are explicitly assumed to contain classification and category 

components, nothing in the TCSEC prevents the addition of vendor-supplied components 

because such additions do not invalidate the mandated access checks. Thus, for example, 

each label could contain a release date after which the contained information will be 

valueless and, therefore, unclassified. If release dates are chronologically ordered, later 

dates would represent a higher nondisclosure level. The initial specification of release 

dates, like that of other nondisclosure attributes, needs to be handled by trusted path 

software. The regrading from classified-outdated to unclassified would be carried out by 

trusted software in conformance with accepted downgrading requirements. 

A nondisclosure level is, by definition, commensurate with the level of harm that could 

result from unauthorized disclosure, and it should also be commensurate with the level of 

assurance against unauthorized disclosure that is to be found in the system's TCB and 

surrounding physical environment. Various rules of thumb have been worked out to 

correlate risk with levels of nondisclosure and assurance. [DOD88a, NCSC85a] While 

these relationships are not likely to show up in the security model itself, they may affect the 

kinds of security attributes that are included in the nondisclosure level. 

3.1.8 UNLABELED ENTITIES AND THE TRUSTED COMPUTING BASE 

In addition to controlled entities, there are system resources that either are not user 

accessible or are part of the mechanism by which user-accessible resources are 

controlled. These latter resources are the software, hardware, and internal data structures 

which make up the TCB. At higher levels of assurance, significant effort goes into 

minimizing the size and complexity of the TCB in orderto reduce the overall effort needed to 

validate its correct operation. 

The TCB typically consists of the implemented access control mechanism and other 

entities that must be protected in order to maintain the overall security of the system. 

A TCB process which is not part of the access control mechanism may be assigned 

security attributes and controlled as a subject in orderto help enforce the principle of least 

privilege within the TCB. Conversely, certain subjects may need to be included within the 
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TCB because they assign security levels to input, support trusted user roles, transform 

data in such a way as to legitimately alter the data security level, or perform some other 

security-critical function.1" A data structure may also be security-critical, as when it 

contains user-authentication data, a portion of the audit trail, audit-control data, orsecurity 

attributes of controlled entities. It is not always necessary to assign security attributes to 

TCB processes and security-critical data structures, but this is often done to enforce the 

principle of least privilege within the TCB and to regulate access by non-TCB subjects to 

security-critical data structures. 

If a piece of data can be accessed as a direct effect of a system call (i.e. access directly 

specified in a parameter) then it must be accounted for in the interpretation of controlled 

entities in such a way as to satisfy MAC requirements. But some data structures may not be 

directly accessible. Possible examples include security labels, the current access matrix, 

internal object names that are not accessible to users of the system, and transient 

information related to access control, opening of files, and so forth. A data structure which 

is not directly accessible does not have to be labeled. A decision to supply a label may 

complicate the modeling process, whereas a decision not to supply a label may increase 

the difficulty of the covert channel analysis. 

While there is no explicit requirement to model the TCB, the model must capture 

security requirements imposed by the TCSEC, including reference monitor requirements 

relating to non-TCB subjects and the entities they manipulate, [cf NCSC87, Appendices 

B.3.4, B.7.1] A possible approach to modeling these reference monitor requirements is 

discussed in Section 3.2.4. If significant aspects of the system security policy are 

embodied in TCB subjects that are exempt from modeled access constraints on non-TCB 

subjects, then exempt subject modeling is also needed. This topic is discussed further in 

Section 3.4. 

3.2 NONDISCLOSURE AND MANDATORY ACCESS CONTROL 

How can nondisclosure requirements be accommodated in a model's definition of 

security? To what extent can access control succeed in enforcing nondisclosure? What 

impact do nondisclosure and access control requirements have on trusted systems 

"*" Subjects belonging to the TCB are often referred to as "trusted," but in some contexts, this word is 
used more narrowly, referring to TCB subjects that are exempt from certain constraints enforced 
by the reference monitor, or even more narrowly, for subjects that are exempt from the '-property. 
[Cf SALT75, SCHE85, BELL76] 
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design? The first of these questions is customarily addressed by imposing access 

constraints on controlled entities (e.g., the "-property). But various research efforts have 

contributed additional approaches that provide a useful context in which to explain how 

access constraints can support nondisclosure objectives. Both traditional and newer 

research-related approaches are discussed below. The ordering is top-down, beginning 

with nondisclosure requirements on the external system interface, as in the modeling 

paradigm described in Section 2.3. 

Section 3.2.1 shows how nondisclosure requirements can be formalized in an external- 

interface model. In Section 3.2.2, external-interface requirements are elaborated to obtain 

an information-flow model, in order to facilitate later analysis. Section 3.2.3 introduces the 

reference monitor interface and applies the information-flow requirements to individual 

subject instructions. Section 3.2.4 presents an access-constraint model that ensures 

satisfaction of the information-flow requirements at the reference monitor interface. 

Finally, Section 3.2.5 only briefly discusses rules of operation because of their 

system-specific nature. 

Each of the three models presented in Sections 3.2.1, 3.2.2, and 3.2.4 provides 

adequate conceptual support for nondisclosure requirements found in the TCSEC 

mandatory security objective and could serve as a definition of mandatory security in a 

security policy model. Adequacy of the access-constraint model, in particular, is 

established by comparison with the previous two models. Comments regarding the impact 

of these models on overall system design are distributed among the various subsections, 

with the third access-constraint model providing the most explicit basis for designing rules 

of operation and judging correctness of implementation. 

These models are very simple and need to be adjusted to accommodate policy 

variations found in particular trusted systems. These models do not address aggregation 

and inference. For sake of simplicity, no accommodation is made for trusted processes or 

discretionary access control. The presented access-constraint model is especially 

relevant to systems in which all user-initiated computation is performed by subjects 

outside of the TCB. It may not be adequate for systems whose TCB contains major trusted 

applications (e.g., a multilevel DBMS implemented as a TCB subject). Finally, the entire 
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analysis assumes that the system to be modeled is deterministic in the sense that its 

behavior is completely determined by its combined input sequence and data initially in the 

system. 

3.2.1   EXTERNAL-INTERFACE REQUIREMENTS AND MODEL 

Consider a system where each input or output is labeled with a nondisclosure level. 

Users work with I/O streams containing items at a given level and provide inputs in such a 

way that the level of a given input stream accurately reflects the sensitivity of the 

information it contains. The system creates each output item by extracting information 

from input items (possibly at several different levels) and affixing an appropriate label. 

A combination of automated and procedural methods is used to combine input streams 

into a single input sequence and to separate the resulting combined output sequence into 

separate output streams at different levels. 

The actual nondisclosure requirement is this: outputs labeled with a given level must 

contain only information whose sensitivity is dominated by that of their label. This 

requirement is pictured in Figure 3.2, where lighter shadings represent higher information 

security levels: I I for level A dominates \ 1 for level B, which dominates ÜÜ for 

level C. 

This requirement is difficult to model (let alone implement) because it talks about the 

actual sensitivity of output information, whereas the system is only given the attributed 

sensitivity of its data. These difficulties can be avoided with the following alternate 

requirement: a given labeled output must not contain information derived from data whose 

attributed sensitivity fails to be dominated by the level of the output's label. This alternate 

requirement applies to both data supplied in the input streams, and data residing in the 

system itself. This alternate requirement is slightly stronger than the original provided that 

information at a given level cannot be synthesized by aggregation and inference from 

information at strictly lower levels. In this case, any classified information in the system 

either came from the input stream or was already contained in the system when it was 

installed. 
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Figure 3.2 Intended Use of a Secure System 

In the first external-interface model, each item in the system's input stream is taken to 

be a labeled value, as is each item in the output stream. There are two "nondisclosure 

security" requirements which are given relative to an arbitrary level L: 

Noninterference: 
Any output stream at level L remains unchanged when inputs at levels not 
dominated by L are altered or removed. 

Nonobservability: 
Any output stream at level L remains unchanged when data in the system whose 
sensitivity is not dominated by L is altered or removed. 

These two terms and the requirements they name are similar; the only distinction is that 

noninterference discusses independence from high-level input, whereas nonobservability 

discusses independence from high-level data in the system. 

As with any mathematical modeling effort, there is a need to specify the physical 

interpretation of the model. There are also choices to be made as to which aspects of the 

system's observable behavior are actually addressed by this external-interface model. An 

"accurate" interpretation of this model is a physical system whose I/O streams and data are 

related according to the above two requirements. In a "complete" interpretation of this 

model, the input stream would contain all external influences on the system being modeled; 

the output stream would contain all observable effects of the system on its environment; 

and the data in the system would include all data that can influence the value of the output 

stream. An accurate interpretation can be 'Useful" without being complete if it includes all 

outputs associated with normal use as well as enough of the inputs and system state to 

predict the included outputs. It is standard engineering practice to avoid details that would 

make the modeling problem intractable and then consider them in a separate covert 

channel analysis. 
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The noninterference requirement is due to Goguen and Meseguer. [GOGU82] Under 

useful interpretations, this requirement rules out resource-exhaustion channels 

associated with those aspects of the system that are covered by the model's interpretation. 

Suppose that some system resource (such as memory) is used for processing both 

low-level and high-level inputs, and that the processing of low-level inputs cannot 

proceed when that resource is unavailable. In this case, the system may not emit a 

low-level diagnostic explaining the nature of the problem, since the diagnostic could 

reveal "interference" by high-level input. The low-level diagnostic, if allowed, would have 

provided a resource-exhaustion channel. 

The nonobservability requirement was developed as part of the LOCK verification 

effort. It covers situations in which classified data is entered during system configuration 

using information paths not addressed in the security modeling process. A superficially 

stronger requirement is that the system initially contains no classified information. This 

stronger requirement occurs implicitly in the original noninterference models of Goguen 

and Meseguer. [GOGU82, GOGU84] With this stronger requirement, useful physical 

interpretations would need to include any classified inputs that occurred during the 

construction, installation, or booting of the system. 

3.2.2 INFORMATION-FLOW MODEL 

The information-flow model is discussed next because of its close relationship to 

noninterference. The requirements of this model are motivated by an informal view of how 

information flows through a deterministic state-machine system. The possible paths of 

information flow during a state transition are depicted as arrows in Figure 3.3, where 1,0, 

and S abbreviate input, output, and state, respectively. 

I/S ^^v 
input *■ state    )   S/S 

I/O S/O 

output 

Figure 3.3. Information Flows in a Deterministic State Machine 
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Each input is assumed to induce a state transition and a (possibly empty) sequence of 

labeled outputs. As indicated in the above diagram, there are just four possible flows: 

directly from input to output, from an input to the next system state, from a given state to the 

next state, and from a given state to an output. Correspondingly, there are four 

flow-security requirements for the information-flow model that must hold for any 

nondisclosure level L. They refer to "portions" of the state, meaning collections of variables 

(i.e., state components): 

I/O Security: 
An output at level L can only be induced by an input whose level is dominated by L. 

I/S Security: 
An input at level L can affect only those portions of the system state whose levels 
dominate L 

S/O Security: 
An output at level L can depend only on those portions of the system state whose 
levels are dominated by L 

S/S Security: 
A portion of the state which is at level L can affect only those portions of the state 
whose levels dominate L 

To see the effect of these requirements, suppose, for example, that the current time is 

maintained as a state component that is implicitly incremented by every input instruction 

according to the time needed for its execution. The l/S security property implies that the 

clock level must dominate every level in the input stream because every input affects this 

particular state component. This observation does not imply that all "system" clocks have 

to be system high, however. One possibility is to partition time into several disjoint "slices." 

This partitioning effectively creates a virtual clock for each time slice. Processes running in 

a given time slice affect only the virtual clock associated with that time slice, so that the level 

of the virtual clock need only dominate the levels of these processes. Consequently, a 

process that reads the virtual clock for its time slice must have a level that dominates those 

of other processes running in that time slice. 

The four requirements of the information-flow model imply those of the 

nondisclosure-requirements model. This fact is an example of an 'unwinding" theorem in 

that it shows how to recast nondisclosure in terms of individual inputs and state transitions. 

An informal justification of this fact can be given as follows. First, consider the 

nonobservability requirement: information at a given level L in the output stream cannot 

come directly from portions of the state not dominated by L (by the S/O security property), 
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and it cannot come indirectly from a preceding state transition (by the S/S security 

property). Now consider noninterference: information in the output stream at a given 

level L cannot come directly from inputs not dominated by L (by the I/O security property), 

and it cannot come indirectly via an intermediate system state as a result of the l/S security 

and nonobservability properties. 

All four of the flow-security requirements are necessary for noninterference. Moreover, 

there is a partial converse: in the case of systems that contain "print" commands capable of 

outputting arbitrary state components, the four flow-security requirements follow from the 

nondisclosure requirements. 

This information-flow model is similar to those of Feiertag, Levitt, and Robinson 

[FEIE77] but it makes some minor improvements: an input that causes a state change may 

also induce output; a given input may induce outputs at several different levels; and it is not 

required that each input be associated with an identified user. The correctness of this 

model with respect to the nondisclosure-requirements model is formally proven in 

[WILL91]. The result is a variant of the unwinding theorem of Goguen and Meseguer. 

[GOGU84, RUSH85] An exposition of Rushby's treatment of the unwinding theorem can 

be found in the article "Models of Multilevel Security." [MILL89] 

3.2.3 APPLICATION TO THE REFERENCE MONITOR INTERFACE 

Security policy models traditionally emphasize the reference monitor interface and 

cover the processing of subject instructions but ignore issues associated with the 

sequencing of subject instructions and their synchronization with external inputs. These 

ignored issues are handled separately via covert channel analysis. This is due to the lack of 

general, well-developed modeling techniques for dealing with time, concurrency, and 

synchronization. Subject-instruction processing, by way of contrast, is readily modeled. In 

particular, the above external-interface and information-flow models can be used for 

subject-instruction processing, just by giving them a new physical interpretation. 

Under this new interpretation, the inputs of the state machine are the instructions that 

subjects execute, including system traps whose semantics are defined by the TCB's 

kernel-call software.   External system inputs are also included in the case of "input 
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instructions." Each instruction is executed to produce a state change and zero or more 

outputs. The outputs include external system outputs and, possibly, feedback to the 

unmodeled instruction-sequencing mechanism. 

Notice that subjects do not literally execute instructions (since they are untrusted). The 

TCB itself executes each subject instruction on behalf of an associated subject controlled 

by the TCB. In particular, each hardware instruction available to processes outside of the 

TCB (i.e., each "user-mode" instruction) is executed by the CPU, which is part of the TCB. 

To ensure nondisclosure security, all subject instructions, including user-mode hardware 

instructions, must satisfy the reinterpreted model requirements, either by virtue of the 

hardware design or by enforced restrictions on their use. For example, security may be 

violated if a subject can follow a kernel call with a "branch-to-previous-context" instruction 

that inadvertently restores all of the access privileges used during the processing of that 

kernel call. Instructions implemented by the hardware but not used by compilers should be 

modeled if the compilers are bypassable. In the unusual case where non-TCB subjects 

can directly execute microcode instructions, these too need to be modeled. 

The actual accesses of a given subject to various objects in its environment are 

determined by the instructions it executes (or attempts to execute). Therefore, it is this 

stream of subject instructions that the reference validation mechanism must mediate in 

order to carry out the recommendations of the Anderson Report. [ANDE72] The 

application of noninterference and information flowto subject-instruction processing dates 

back to [FEIE77] where a form of noninterference is referred to as "property P1." The 

validation of noninterference as applied to LOCK subject-instruction processing is 

presented in [HAIG87a; FINE90]. Keefe and Tsai have adapted noninterference for use in 

modeling DBMS schedulers. [KEEF90] It can be shown that information flow for 

subject-instruction processing, together with a variant of noninterference for 

subject-instruction sequencing, implies noninterference and nonobservability for the 

entire system. [WILL91] 

3.2.4 ACCESS-CONSTRAINT MODEL 

An access-constraint model can be obtained by expanding the information-flow model 

of instruction processing to include traditional notions of access control, including subjects, 

objects, a current-access matrix, and access constraints. This is not a complete access 
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control model in the traditional sense because it lacks rules of operation. It is a definition of 

mandatory security for instruction processing; it does not show how access constraints are 

actually enforced. 

The access-constraint model assumes that the instruction processing state is made up 

of labeled state components called objects. The model does not explicitly assume that 

subjects are controlled processes, but it does assume that every computation involving 

either access to objects or output has an associated subject. Each subject has a 

nondisclosure level and is assumed to include its local data space (including stack, 

program counter, and so forth). Consequently, each subject is also considered to be an 

object that could passively be acted on by other subjects. The system state, st, contains a 

"current-access matrix,">Ast(s, o), that associates each subject-object pair with a set of 

"modes." For simplicity, the possible modes are taken to be just 'bbserve" and 'modify." 

The requirements of the access-constraint model fall into three groups: traditional 

requirements, constraints on the semantics of observation and modification, and I/O 

requirements. These requirements are formulated for systems with file-like objects that 

are opened (in accordance with simple security and the *-property), accessed for a period 

of time (in accordance with the observe-semantics and modify-semantics requirements), 

and then closed. Each of the eight requirements must hold in every reachable state. 

Simple Security: 
A subject may have observe access to an object only if its level dominates that of the 
object. 

•-Property: 
A subject may have modify access to an object only if its level is dominated by that of 
the object. 

Tranquility: 
The level of a given subject or object is the same in every reachable state. 

Variants of simple security and the *-property are found in virtually all mandatory 

security models. The tranquility requirement can be weakened without compromising the 

mandatory security objective, but possibly at the expense of a more complicated model, 

[cf MCLE88] 
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The requirements which constrain the semantics of reading and writing are a major 

factor in deciding what checks must appear in the rules of operation. Other major factors 

include the actual system design and the degree of detail needed in the model. 

Observe Semantics: 
A subject that executes an instruction whose behavior depends on the value of 
some state component must have observe access to that state component. 

Modify Semantics: 
A subject that executes an instruction which modifies a given state component must 
have modify access to that state component. 

The observe-semantics requirement is slightly strongerthan necessary. A subject (e.g., a 

mail program) that knows the existence of two objects at a higher level might reasonably 

cause information to be transferred from one to the other by means of a "blind" copy 

instruction, but this is directly ruled out by the observe-semantics requirement. As noted 

by McLean [MCLE90,Sec. 4], Haigh's analysis contains a similar restriction. [HAIG84] A 

very careful treatment of what constitutes observation may be found in "A Semantics of 

Read." [MARC86] The use of a semantics of reading and writing may be found also in 

several other security modeling efforts, including those by Cohen, [COHE77] Popek, 

[POPE78] and Landwehr [LAND84]. 

The following requirements constrain allowed associations between subjects and I/O 

streams. They assume that each input is read on behalf of an associated subject referred 

to as its "reader." 

Reader Identification: 
The decision as to which subject is the reader for a given input must be based only 
on information whose level is dominated by that of the reader. 

Reader Authorization: 
The level of the data read must be dominated by that of the reader. 

Writer Authorization: 
A subject that executes an instruction which produces an output must have a level 
that is dominated by that of the output. 

In some implementations, the associations between inputs and subjects are relatively 

static, and their validation is straightforward. In others, subjects are created dynamically to 

service inputs as they arrive, and explicit modeling may be useful. 

If the eight requirements of this access-constraint model are satisfied, then so are the 

requirements of the information-flow model. [WILL91] This observation supports the 

thesis that access constraints can provide an adequate definition of mandatory security. 
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Related comparisons of access control models and information-flow models may be found 

in the works by Gove and Taylor. [GOVE84, TAYL84] Unfortunately, this access-constraint 

model also shares some potential weaknesses of the previous models. In particular, use of 

the simple security and "-properties to enforce nondisclosure rests on the following implicit 

assumption: a non-TCB subject either outputs information at its own level or outputs 

information of an unknown lower level that must, therefore, be given worst-case 

protection. This assumption ignores the possibility that a process may be able to produce 

information which is more highly classified than its inputs through some form of 

aggregation or inference. Security models which address this possibility in the case of 

database management systems are discussed in Section 4.3. 

3.2.5 TAILORING THE MODELS 

The remaining tasks in modeling nondisclosure are to tailor the definition of mandatory 

security to meet specific system needs and to provide rules of operation describing the 

kinds of actions that will be exhibited by the system being modeled. The following 

paragraphs discuss adaptations relating to lack of current access and the desirability of 

modeling error diagnostics, trusted operations, and nondeterminacy. 

In most systems there are some operations that access objects without being preceded 

by an operation that provides access permission. For these operations, authorization must 

be checked on every access, and either the model or its interpretation must treat the 

combined effects of the simple security and observe-semantics properties, and of the 

"-property and modify-semantics properties. If this is done in the model, the result is as 

follows: 

Observe Security: 
A subject may execute an instruction whose behavior depends on the value of an 
object only if its security level dominates that of the object. 

Modify Security: 
A subject may execute an instruction that modifies an object only if its level 
dominates that of the object. 

These axioms omit reference to the traditional current-access matrix and are particularly 

well-suited to systems that do not have an explicit mechanism for granting access 

permissions. 
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Although it is necessary to model unsuccessful execution resulting from attempted 

security violations, it is not necessary to model resulting error diagnostics. If the model only 

covers normal use of the system, it is both acceptable and traditional to omit error 

diagnostics, as would typically be the case in an informal model of a B1 system. For higher 

evaluation classes, however, an available option is to give detailed rules of operation that 

explicitly model some or all error returns. Their inclusion in the model can provide an 

alternative to examining them by means of a more traditional covert channel analysis, as 

well as additional information for judging correctness of the system's design and 

implementation. Error diagnostics resulting from unsuccessful instruction executions can 

reasonably be modeled either as output or as information written into the subject's data 

space. 

A variant of the above modeling strategy has been carried out for the LOCK system. 

The LOCK verification is based on noninterference and nonobservability applied to 

subject-instruction processing (as opposed to the entire system). The inputs consist of 

LOCK kernel requests and user-mode machine instructions. LOCK uses a 'conditional" 

form of noninterference in which certain "trusted" inputs are explicitly exempted from the 

noninterference requirement. The LOCK model was elaborated by means of an unwinding 

theorem and then augmented to obtain an access control model. Technically, the LOCK 

noninterference verification is an extension of traditional access control verification 

because the first major step in proving noninterference was to verify the traditional Bell & La 

Padula properties for the LOCK access control model. This access-control verification 

represents about half of the LOCK noninterference verification evidence. The LOCK 

developers compared noninterference verification with a traditional covert channel 

analysis technique based on shared resource matrices. [HAIG87, FINE89] They have 

since concluded that the noninterference approach is preferable, especially if both 

nonobservability and noninterference are verified, because of the extensive hand analysis 

associated with the shared resource matrix approach. 

Noninterference has been generalized to nondeterministic systems in several ways. A 

variety of nonprobabilistic generalizations has been proposed for dealing with 

nondeterminacy, but they do not provide a full explanation of nondisclosure because of the 

possibility of noisy information channels. [WITT90] Despite this limitation, nonprobabilistic 

generalizations of noninterference provide useful insight into the nature of security in 
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distributed systems. An interesting result is that a security model can be adequate for 

sequential systems, but is not adequate for a distributed system. This is because the 

process of "hooking up" its sequential components introduces new illegal information 

channels that are not addressed by the model. [MCCU88a] A state-machine model that 

overcomes this lack of "hook-up" security has been provided by McCullough. [MCCU88] It 

relies on state-transition techniques and, like the original Goguen and Meseguer models, 

has a demonstrated compatibility with traditional design verification methodologies. 

3.3 NEED-TO-KNOW AND DISCRETIONARY ACCESS CONTROL 

Discretionary access control (DAC) mechanisms typically allow individual users to 

protect objects (and other entities) from unauthorized disclosure and modification. Many 

different DAC mechanisms are possible, and these mechanisms can be tailored to support 

a wide variety of user-controlled security policy objectives. Users may impose 

need-to-know constraints by restricting read access and may guard the integrity of their 

files by restricting write access. As explained below, the use of group names may also 

allow specific objects and processes to be associated with specific user roles in support of 

least privilege. Discretionary security mechanisms are more varied and tend to be more 

elaborate than mandatory mechanisms. The policy requirements for them are weaker in 

order to allow for this variation. As a result, a well-understood discretionary security model 

can play a larger role both in clarifying what is provided in a particular system and in 

encouraging an elegant security design. 

Traditionally, systems have been built under the assumption that security objectives 

related to DAC are both user-enforced and user-supplied. A variety of well-known 

weaknesses are traceable to this assumption. By way of contrast, vendor cognizance of 

user security objectives allows the development of a DAC security model whose 

mechanisms correctly support higher-level, user-enforced security policies. Moreover, 

modeling of these higher-level policies would provide a suitable basis for validating 

correctly designed DAC mechanisms and for supplying guidance on their use for policy 

enforcement. 

DAC mechanisms and requirements are summarized in Section 3.3.1. Group 

mechanisms and their use in supporting user roles are covered in Section 3.3.2. Section 

3.3.3 discusses traditional weaknesses in meeting common user-enforced security 
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objectives and Section 3.3.4 presents mechanisms that overcome some of these 

weaknesses. Further information on DAC mechanisms may be found in A Guide to 

Understanding Discretionary Access Control in Trusted Systems. [NCSC87a] The 

formalization of control objectives such as need-to-know and least privilege, as well as 

the subsequent verification of access control mechanisms with per-user granularity, are 

research topics that have yet to be adequately explored. 

3.3.1 DAC REQUIREMENTS AND MECHANISMS 

Separate DAC attributes for reading and writing are traditional but not required. DAC 

security attributes must be able to specify users both explicitly and implicitly (i.e., by 

specifying a user group whose membership might be controlled by another user or user 

group). For systems at B3 and above, DAC attributes must give explicit lists1" of individuals 

and groups that are allowed or denied access. A wide variety of relationships among 

individual and group permissions and denials are possible, [cf LUNT88] 

The assignment of DAC attributes may be carried out by direct user interaction with the 

TCB, by (non-TCB) subjects acting on behalf of the user [NCSC88b, C1-CI-01-86], or by 

default. This last alternative is needed in order to ensure that an object is protected until 

such time as its DAC attributes are set explicitly. [NCSC88b, C1-CI-03-86] The default 

attributes for an object may be inherited (as when a new object is created in UNIX by 

copying an object owned by the user) or they may be statically determined. 

A user who has responsibility forassigning DAC attributes to an object may be regarded 

as an owner of the object. Typically, the user who creates an object has responsibility for 

assigning DAC attributes and is thus the initial owner in this sense, but this is not a 

requirement. [NCSC88b, C1-CI-03-85] In UNIX, each file has a unique explicit owner, but 

root can also modify DAC attributes and it is thus an implicit co-owner. Some systems 

provide for change of ownership and for multiuser ownership; others do not. A variety of 

issues arise in the case of multiple owners. May any owner grant and revoke access, orare 

some owners more privileged than others? How is coordination among owners achieved; 

is agreement among owners required? The answers can differ for read and write accesses 

and for granting and revoking. Analogous issues arise when transfer of ownership occurs. 

^ Lists, per se, are not required; any equivalent implementation mechanism for specifying access on a 
per-user basis suffice. 
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A traditional approach to these issues is to let any owner grant or revoke access or 

ownership; another is to adopt a principle of "least access," so that all owners must grant a 

particular kind of access in order for it to become available, [cf LUNT88] 

By tradition, the entities controlled by the DAC mechanism must include all 

user-accessible data structures controlled by MAC. However, the explicitly controlled 

entities (i.e. named objectsj may be different from MAC storage objects. Examples where 

storage objects and named objects differ are found in some database systems (see 

Section 4.3). Operating systems can also have this feature. For example, files might be 

named objects which are made up of individually labeled segments that are the storage 

objects. 

3.3.2 USER GROUPS AND USER ROLES 

Access control lists determine triples of the form (user/group, object, 

access_mode) and thereby provide a limited variety of triples of the sort used for role 

enforcement. In fact, generalizing the mechanism to allow arbitrary programs in place of 

access modes would provide a general mechanism of the sort used for role enforcement, 

as was discussed at the end of Section 3.1.3. In the case of a trusted role, all associated 

programs would belong to the TCB. 

Some systems allow a user to participate in several groups or roles. Some of these 

systems require a user to set a "current group" variable for a given session. In this case, the 

user would run only programs with execute access in the current group, and they would 

access only files associated with that group. Again, the effect is to create a three-way 

constraint involving user groups, processes, and storage objects. In order for a user to 

participate in several groups or roles, it must be possible for some groups to be subgroups 

of others or for a user to be associated with several different groups. The possibility of 

subgroups involves some interesting implementation issues. [SAND88] In the SMMS 

[LAND84], groups represent user roles, each user has a unique "individual" role, there is a 

notion of current role, and a given user may have several current roles. This use of 

individual roles or groups is a way of tying individual accesses to group accesses so that the 

two kinds of access do not have to be discussed separately: individual access is implicitly 

given by the rules for group access applied to one-member groups. 
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The ability to define user groups may be distributed. It is usually assumed that the class 

authorized to define user groups is larger than the class of system security personnel but 

smaller than the entire user population. A group associated with a trusted user role (e.g., 

downgrader, security administrator) would necessarily be controlled by a system 

administrator. 

The owner of a group and the users who specify access to their objects in terms of that 

group need to clearly understand both the criteria for group membership and the 

entitlements associated with membership in that group. Such understandings depend 

partly on the mechanics of the group mechanism, which may be clarified by including 

groups in the security model. 

3.3.3 SOURCES OF COMPLEXITY AND WEAKNESS 

In security policies and definitions of security, complexity tends to inhibit effective user 

understanding. As such, it is a weakness that, in some cases, may be offset by 

accompanying advantages. The following paragraphs discuss several sources of 

complexity and weakness in DAC mechanisms including objects that are not disjoint, the 

coexistence of two or more access control mechanisms, discrepancies between allowed 

and authorized accesses, and the use of "set-user-id" to allow object encapsulation. 

Finally, the most common weakness found in DAC mechanisms is discussed, namely, that 

they are loose; that is, they control access to objects without necessarily controlling access 

to the information they contain. 

It can happen that named objects overlap so that a given piece of data can be 

associated with several different sets of security attributes. In this case, they can be called 

disjoint. This is essentially what happens if ownership is associated with file names rather 

than with files. In this case, a given piece of data can have multiple owners, each of whom 

can give or revoke access to it. As with mandatory access controls, a lack of disjointness 

tends to interfere with one's ability to determine allowed accesses. It usually implies that 

named objects are different from storage objects, a fact which is a source of complexity that 

may have some advantages. Discretionary access may be controlled to a finer or coarser 

level of object granularity than mandatory access. Aggregation problems can be 

addressed by allowing some objects to be subobjects of others and by imposing stricter 
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access controls on an aggregate object than on its components. In the case of aggregate 

objects, there is the additional problem that a change in the permissions of the aggregate 

may logically entail a change in the permissions of its components. 

When a C2 or B1 system is created by retrofitting security into a previously unevaluated 

system, it may happen that the new mechanism supports access control lists in addition to 

the old discretionary mechanism supported. In this case, the discretionary portion of the 

security model can play a useful role in showing how the two mechanisms interact. 

[BODE88] 

If a process has its discretionary permission to access an object revoked while the 

process is using it, some implementations allow this usage to continue, thereby creating a 

distinction between authorized and allowed accesses. This distinction is both an added 

complexity and a weakness that needs to be modeled in order to accurately reflect the 

utility of the mechanism. The principal reason for allowing this distinction is efficiency of 

implementation. However, in virtual memory systems, immediate revocation can often be 

handled efficiently by deleting access information in an object's page table. [KARG89] 

Although discretionary access is ordinarily thought of as relating to users and objects, 

processes also acquire discretionary permissions, either dynamically when they are 

executed, or statically from their executable code. With dynamic allocation, the 

permissions may be those associated with the user who invoked the process; the 

process's user id would be an example. In command and control systems, there is often a 

"turnover" mechanism in which the user id of a process can change in order to allow a 

smooth transfer of control when a user's shift ends. In UNIX, the user id of a shell program 

changes in response to a "switch user" command. 

With static allocation, security attributes might be associated with a subject on the basis 

of its executable code. The UNIX "set user id" feature provides an example of this type of 

allocation. The owner of a program can specify that it is a "set-uid" program, meaning that it 

will run with the owner's "effective user id" and thereby assume its owner's permissions 

when executed by other users. The purpose of this mechanism is to allow programmers to 

create "encapsulated" objects. Such an object is encapsulated by giving it owner-only 

access, so that it can be handled only by programs whose effective user id is that of the 

owner. Other users can access the object by only executing "encapsulating" set-user-id 

programs that have the same owner as the encapsulated object.   The UNIX set-user-id 
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option is a source of added complexity, and, as explained below, is vulnerable to a variety of 

misuses. Other methods of object encapsulation are thus well worth investigating. 

Suggested patches to the UNIX set-user-id mechanism have been considered in the 

design of Secure Xenix [GLIG86], and modeling of the set-user-id mechanism itself is 

illustrated in the TRUSIX work. [NCSC90b] 

Discretionary access controls are inherently loose. This can cause information to be 

disclosed even though the owner has forbid it. For example, breaches of need-to-know 

security may occur when user /, who owns a file /gives permission to access information in f 

to user; but not to user /c.and then k indirectly obtains access to f. This can happen in a 

variety of ways, including the following: 

• /copies fto a file that k has read access to. 
• a Trojan horse acting under authority of either /' or/gives k a copy of /. 
• a Trojan horse acting under authority of /gives k read access to f. 
• a poorly designed set-user-id program created by /is run by k (with the 

discretionary permissions of y) and is misused to give k a copy of f. 

Each case involves an extension of access that is analogous to downgrading in MAC. If 

this extension occurs without the knowledge and permission of f 's owner, then the intent of 

the owner's protection is violated. 

The first three of the above five weaknesses are specific to policies dealing with 

nondisclosure, and they need not carry over to other policies dealing with unauthorized 

modification. The fourth and fifth weaknesses, by way of contrast, involve tampering with 

DAC security attributes by non-TCB subjects, a feature that seriously affects any policy 

relying on DAC attributes. 

The first of the above weaknesses appears to be an inherent aspect of traditional DAC 

mechanisms. An interesting fact about these mechanisms is that there is no general 

algorithm that can decide, for an arbitrary system and system state, whether a given user 

can ever obtain access to a given object. [HARR76] As explained below, such weaknesses 

are not forced by DAC requirements, despite their prevalence in existing systems. 

-58- 



SECURITY MODELING TECHNIQUES 

3.3.4 TIGHT PER-USER ACCESS CONTROL 

Tight controls on the distribution of information within a computing system originate 

from efforts to provide DAC-like mechanisms that have useful information-flow properties 

[MILL84] and from efforts to provide automated support for "ORCON" and similar release 

markings that are used in addition to security classifications. [ISRA87, GRAU89] Some 

typical release markings are: 

ORCON — dissemination and extraction of information controlled by originator 
NOFORN — not releasable to foreign nationals 
NATO — releasable to NATO countries only 
REL <countries/organization> — releasable to specified foreign countries only 
EYES ONLY <groups/offices> —viewable by members of specified offices only 
PERSONAL FOR <individuals> — releasable to specified individuals only. 

Release markings are used by the originator(s) of a document for providing need-to-know 

information . Some release markings such as NOFORN, NATO, and REL < >, have coarse 

user granularity and, as explained in Appendix A.4, can be handled via nondisclosure 

categories. Others have per-user granularity but, unlike traditional DAC mechanisms, 

restrict access to both the document and the information it contains. A catalogue of release 

markings and an accompanying language syntax may be found in the article "Beyond the 

Pale of MAC and DAC - Defining New Forms of Access Control." [MCCO90] 

Tight access control mechanisms designed to support need-to-know differ from 

traditional DAC mechanisms in several crucial respects. The explicitly controlled entities 

(i.e., "named objects") include processes as well as data structures. In addition, a user's 

ability to modify their security attributes is highly constrained. The first such mechanism 

was proposed by Millen [MILL84]; a minor variant of it follows. 

Each controlled entity is associated with two sets of users, a 'distribution" set and a 

'contribution" set. These are obtained by evaluating the entity's "access expression" 

whenever the object is involved in an access check. Access expressions are the DAC 

attributes of the policy; their semantics explain the interplay among individual and group 

authorizations and denials. For the sake of brevity these are not modeled. The distribution 

and contribution sets enforce nondisclosure and integrity constraints, respectively. 

Smallerdistribution sets represent a higher level of nondisclosure, and smallercontribution 

sets represent a higher level of integrity. The empty set is both the highest nondisclosure 
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level and the highest integrity level. Information may flow from entity /to entity g, provided 

the distribution set for /contains the distribution set for g and the contribution set for /is 

contained in the contribution set for g. 

In Millen's model, devices have a controlling influence on user behavior. A terminal, for 

example, is modeled as two separate devices — a keyboard for input and a screen for 

output. When a user logs in, the distribution and contribution sets for both the keyboard and 

the screen are set (by a secure terminal server) to {/}. Communication from other users (or 

files that they own) is enabled by extending the contribution set for the screen. 

Communication to other users is enabled by extending the distribution set forthe keyboard. 

The keyboard contribution set and the screen distribution set must always contain {i} in 

order to reflect the actual presence of the person using the terminal. 

The distribution sets and contribution sets of Millen's model may be viewed as levels 

whose partial ordering is directly tied to an information-flow policy. Consequently, this DAC 

mechanism is tight enough to control information flow, and covert storage channel analysis 

can be used to check the extent to which distribution sets control disclosure in an actual 

implementation. In Millen's model, DAC permissions for an object are set (by its creator or 

by default) when it is created and are never modified thereafter. As a result, DAC Trojan 

horses of the sort discussed in Section 3.3.3 are impossible. The ability to dynamically 

change discretionary attributes without losing tightness would require some nontrivial 

additions to the policy. Expansion must be done only by trusted path software in response 

to appropriate owner authorization. Ownership must propagate so that it is associated not 

only with controlled entities but also with the information they contain. One option is for 

ownership to propagate in the same way as contribution sets, with each owner supplying 

access constraints. A slightly different option is suggested in McCollum's work. [MCCO90] 

Similarities between MAC and the tight DAC of Millen's mode! suggest the possibility of 

a single mechanism meeting both sets of requirements. Moreover, both sets of 

requirements stem from the same policy objective in Security Requirements for Automated 

Information Systems (AISs). [DOD88a] The consistency of the two sets can be informally 

justified as follows: assume the system supports co-ownership by maintaining separate 

distribution and contribution sets for each owner, taking intersections in the obvious way. 

Each input must be co-owned by a system security officer (SSO), and there is a trusted 

path mechanism that allows a user to select the SSO's distribution set from a collection of 
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SSO-controlled groups. For example, the groups might be TS, S+, and U+ where, by 

definition, U+ is the group of all users, S+ is the union of TS and the secret users.and TS is 

the top-secret users. Users are instructed to select the SSO's distribution set according to 

the sensitivity of their data.and, as a result, the main MAC requirements for labeling and 

access control are satisfied. 

A disadvantage of tight DAC is that there are many innocuous violations of the policy, 

as, for example, when a user creates a file with owner-only access and then mails it to a 

colleague. Pozzo has suggested that, if the user is authorized to extend access, a trusted 

path mechanism should interrupt the program causing the violation in order to obtain the 

user's permission, thereby minimizing the inconvenience associated with tight control. 

[POZZ86] Another strategy for minimizing unnecessary access violations, which has been 

suggested by Graubartis, is to allow DAC security attributes to float so that when a process 

reads a file, for example, the distribution list for the process would be intersected with that of 

the file. [GRAU89] A disadvantage of propagated ownership is that the set of owners tends 

to expand, and this is inconvenient if all owners must agree on access control decisions. 

3.4 TCB SUBJECTS — PRIVILEGES AND RESPONSIBILITIES 

TCB processes are often exempt^ from some of the access constraints placed on 

non-TCB subjects and are, therefore, able to access data and perform actions that are not 

available to non-TCB subjects. The responsible use of such exemptions by the TCB is 

properly part of the system security policy. Exemptions in this sense are not a license to 

violate policy. If a TCB process is exempt from some of the constraints placed on non-TCB 

subjects but not others, it may be useful to treat it as a TCB subject so that the TCB can 

enforce those constraints from which it has not been exempt. 

The trusted-role programs identified in Section 3.1.3 are usually exempt in this sense 

because they have access to security-critical data structures and, in many cases, address 

role-related extensions of the basic system security policy. Device-related subjects are 

also likely to be exempt. A secure terminal server needs to handle inputs at a variety of 

' TCB subjects which are exempt from some or all access constraints enforced on non-TCB subjects 
are often referred to as "privileged," but this word has a variety of other uses, as in the phrase "principle 
of least privilege." As mentioned in Section 3.1.8, TCB subjects (in particular, exempt subjects) are often 
referred to as "trusted" subjects, but this term has other uses as well. 
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security levels and may be implemented as a TCB subject exempt from some of the MAC 

constraints. A print server is also likely to be implemented as a multilevel TCB subject 

because of the need to save, label, and print files at several different security levels. 

In some cases, exempt subjects conform to the same overall policy that the system 

enforces on non-TCB subjects. In others, exempt subjects provide limited but significant 

extensions to the basic system policy. As a result, the presence of unmodeled exempt 

subjects can make it difficult to determine the actual system security policy by looking at the 

security policy model, [cf LAND84] To the extent that the policy for exempt subjects differs 

from the policy described in the system security model, the validity of the model as a 

representation of the system is compromised as are assurances derived from an analysis 

of the model. The extent of the compromise tends to be influenced by the extent to which 

such exempt subjects interact with nonexempt subjects. 

The actual rules enforced by the system include both what may be done by non-TCB 

subjects and what is done by TCB subjects. Unmodeled special cases can be avoided by 

directly addressing the policies associated with exempt subjects in the model, [cf ABRA90] 

The following paragraphs address the modeling of exemptions and their legitimate use by 

TCB processes. There is no explicit requirement to model TCB subjects and their 

exemptions from access control, but there may be implicit modeling requirements that 

apply to some subjects, especially those that are directly involved in the access control 

mechanism. In the case of subjects exempt from mandatory access checks, it is often 

appropriate to substitute covert channel analysis for explicit modeling. 

3.4.1 IDENTIFYING PRIVILEGES AND EXEMPTIONS 

If the principle of least privilege is followed in allocating exemptions to TCB subjects, 

then the extent of a subject's exemptions are both a partial measure of the need to model its 

behavior and an indicator of what should be modeled. This information indicates the extent 

to which a TCB subject's privileges may be abused and, thus, the amount of assurance that 

must be provided regarding the subject's correctness. Information on the extent of a 

subject's exemptions can be provided by an explicit identification of exemptions, by its 

security attributes, and by specific knowledge of the resources accessible to it. These 

identification techniques provide a variety of techniques for modeling and implementing 

exemptions. 
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A useful first step in describing exemptions is to classify them according to various kinds 

of security requirements, such as mandatory access control, discretionary access control, 

auditing, and service assurance. The purpose of this classification is to guarantee that any 

process which fails to have a particular kind of exemption will not interfere with the 

corresponding kind of security requirement. Each named exemption or "privilege" is 

associated with a particular kind of functionality allowed by that exemption. Ideally, this 

functionality should be available only through possession of the named exemption. As with 

other security attributes, it is important to know how a process inherits its exemptions (e.g., 

dynamically from its parent or statically from its executable code). Whether this 

classification is an explicit part of the model will depend largely on whether it appears in the 

system design. Including exemptions explicitly in the design simplifies the analysis of 

exempt subjects but also complicates the access control mechanism. 

In the Army Secure Operating System (ASOS), exemptions are an explicit part of the 

access control mechanism. [DIVI90] The association between exemptions and kinds of 

security allows the model to assert, for example, that any process (trusted or otherwise) 

satisfies the *-property unless it has the "security_star_exemption." To possess an 

exemption, a process must receive that exemption both statically during system 

generation and dynamically from its parent process. Thus, most ASOS subjects can never 

have exemptions. Those subjects that can have exemptions will only run with the 

exemptions when they are necessary. The TRUSIX work also illustrates the use of 

exemptions for the case of a trusted login server: two exemptions and associated 

transformations allow (a new invocation of) the serverto change its real user id and raise its 

security level. [NCSC90b] 

The DAC mechanism can be extended to identify TCB subjects and security-critical 

objects in the following way. The system has one or more distinguished pseudousers. 

Some or all security-critical data structures are owned by these pseudousers. A named 

object owned by a pseudouser has owner-only access, and DAC is designed in such a way 

that nothing can ever alter the access permissions of an object owned by a pseudouser. 

(This implies that the system's DAC mechanism is free from some of the traditional 

weaknesses mentioned in Section 3.3.3.) Only TCB subjects are allowed to act on behalf 

of pseudousers and, therefore, are the only subjects capable of accessing objects owned 
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by their pseudousers. Thus, if the audit trail, for example, is owned by an "auditor" 

pseudouser, then editing of audit files can be performed only by specially designed TCB 

subjects acting on behalf of the auditor, if at all. 

The MAC mechanism can also be extended to allow partial exemptions. 

Security-critical data structures can be treated as objects with special security levels 

possessed only by TCB subjects. More significantly, subjects can be partially exempt from 

the "-property. Each subject is provided with two separate security labels, an "alter-min" 

label that gives the minimum level to which a subject may write and a "view-max" label that 

gives the maximum level from which it may read. A process is partially trusted'to the extent 

that its alter-min level fails to dominate its view-max level. [SCHE85.BELL86, DION81 ] A 

straightforward application of partially trusted processes is found in the GEMSOS design. 

[SCHE85] Each process has two security labels and is classified as "single-level" or 

"multilevel," according to whether the two labels are equal or distinct. Each security label 

has separate nondisclosure and integrity components. The nondisclosure component of 

the view-max label must dominate the nondisclosure component of the alter-min label, 

whereas, the integrity component of the alter-min label dominates the integrity component 

of the view-max label because of the partial duality between nondisclosure and integrity 

mentioned in Section 3.1.6. 

Finally, as an example of the above identification techniques, considerthe requirement 

that only certain administrative processes can access user-authentication data. One 

possibility is to treat this independently of other policy requirements. User-authentication 

data can be stored in unlabeled TCB data structures that are not available to non-TCB 

subjects or even most TCB subjects. This nonavailability constraint (and exemption from 

it) might be implemented via hardware isolation or by an explicit software exemption 

mechanism. This approach could be explicitly modeled. 

A second possibility is to permanently place user-authentication data in named objects 

owned by an "administrator" pseudouser and allow only certain programs to run on behalf 

of this pseudouser. A (fixable) drawback of this approach is that such programs may need 

to run on behalf of actual users for auditing purposes. 

A third possibility is to place user-authentication data in a storage object which has a 

unique security level that is incomparable with any level available to users of the system. 

Only certain administrative programs are allowed to run at this level; such programs may 
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need to be partially trusted in orderto access data at other security levels. Notice that other 

TCB-only security levels may be needed to ensure that these administrative programs do 

not have access to other security-critical data structures which are also being protected by 

the MAC mechanism. 

3.4.2 RESPONSIBLE USE OF EXEMPTIONS 

In modeling an exempt subject, the goal is to prohibit abuses of privilege that might 

result from exemptions by placing explicit constraints on that subject's behavior. The main 

challenge in formulating these constraints is to achieve an appropriate level of abstraction. 

In most cases, the requisite security requirement is considerably weaker than a detailed 

statement of functional correctness. The following paragraphs first discuss subjects that 

conform to the overall policy enforced for non-TCB subjects and then discuss those that do 

not. These latter subjects include, primarily, the trusted-role programs identified in 

Section 3.1.3. 

An exempt subject that conforms to the basic policy illustrated by the modeling of 

non-TCB subjects usually does not require separate modeling unless it supports a 

significant extension of the TCB interface that is not covered by the general model. This is 

the case of a subject which is also a trusted DBMS, for example. However, the modeling of 

a policy-conforming exempt subject can provide additional insight into its proper design 

and is particularly valuable if the subject is visible at the user interface. For example, a 

scheduler is user-visible, should be policy-conforming, and could be treated as an exempt 

subject whose behavior is justified either by modeling noninterference-like requirements 

[cf KEEF90; MAIM90] or by performing a covert channel analysis. 

A secure terminal server is another example of a user-visible, policy-conforming, 

exempt subject. The main security-critical requirements for a secure terminal server are 

that each user and terminal have a trusted path (or paths) for exchanging security-critical 

information with the TCB and that there be no "cross talk" between a given trusted path and 

any other I/O channel. The issue of how logical channels are multiplexed onto a given 

terminal is not security-relevant, as long as it is correct. The fact that the multiplexing 

includes an Identification and Authentication (l&A) protocol is security-relevant, but 

modeling details of the l&A mechanism is unlikely to add much assurance unless it is 

accompanied by an analysis of subvertability. 
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In the case of a trusted-role program, misuse and resulting breaches of security can be 

prevented through a combination of software checks and procedural constraints on correct 

use of the program. If the program and the trusted role it supports are designed together, 

then the design analysis can identify errors of use and can determine whether they are 

easily detected through automated checks. The automated checks are appropriately 

covered in a trusted-process security model. Knowledge of errors that are not caught by 

the automated checks can be recast as informal policies associated with the trusted role 

itself. These procedural policies are reasonably included in the system's Trusted Facility 

Manual. A reader of the high-level system documentation should be able to see how a 

given misuse of a trusted role is inhibited through an appropriate combination of software 

mechanisms required by the model and procedural constraints found in the definition of the 

trusted role. One should be able to see, for example, how a system administrator is 

inhibited from falsifying evidence about the behavior of other users by editing the audit trail. 

Security properties fortrusted-role processes often involve constraints that hold over a 

sequence of events, as opposed to constraints on individual state transitions. The use of 

locks to ensure proper sequencing of events may be needed, at least in some cases, 

[cf LAND89] Modeling of trusted-role processes is often omitted on grounds of restricted 

use and lack of accepted examples, but this argument is weak because the higher level of 

user trust is offset by a greater potential for abuse. 

3.5 INTEGRITY MODELING 

Although both integrity and nondisclosure are important for both commercial and 

military computing systems, commercial systems have historically placed greater 

emphasis on integrity, and military systems more emphasis on nondisclosure. Accordingly, 

guidelines on integrity policy are under development by the National Institute of Science 

and Technology (NIST). 

Although the TCSEC does not impose specific requirements for integrity policy 

modeling, it does provide for vendor-supplied policies and models. As mentioned in 

Section 1.3.2, DoD Directive 5200.28 includes both integrity and nondisclosure 

requirements. In addition, the NCSC evaluation process accommodates any security 

policy that meets minimum TCSEC requirements and is of interest to the Department of 

Defense. 
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Although the following paragraphs do not offer guidance on the formulation of system 

integrity policies, they do consider relevant modeling techniques and TCSEC 

requirements. A brief discussion of integrity objectives, policies, and models is given in 

order to provide an overall picture of the field of security policy modeling. This is followed by 

a brief taxonomy of integrity-related concepts and their relationship to security modeling. 

Topics covered in the taxonomy fall into two broad areas: error handling and 

integrity-oriented access control. Examples relating to TCB integrity are included with the 

taxonomy as indications of possible relationships between integrity modeling and related 

assurance issues forthe TCB. The presented taxonomy is based largely on the one found 

in "A Taxonomy of Integrity Models, Implementations and Mechanisms." [ROSK90] 

3.5.1 OBJECTIVES, POLICIES, AND MODELS 

The term integrity has a variety of uses in connection with computer security 

[cf RUTH89], all stemming from a need for information that meets known standards of 

correctness or acceptability with respect to externally supplied real-world or theoretical 

situations. A closely related need is the ability to detect and recover from occasional 

failures to meet these standards. These needs lead to derived objectives for user integrity, 

data integrity, and process integrity in order to maintain and track the acceptability of 

information as it is input, stored, and processed by a computing system. 

Commercial experience as a source of integrity objectives, policies, and mechanisms is 

covered in the landmark paper by Clark and Wilson. [CLAR87; KATZ89] Their paper 

includes a separation-of-duty objective for promoting user integrity; 

application-dependent, integrity-validation processes for ensuring data integrity; the 

application-dependent certification1" of 'Iransformation procedures" for establishing 

process integrity; and a ternary access control mechanism for constraining associations 

among users, processes, and data. A thorough discussion of their work is given in the 

Report on the Invitational Workshop on Integrity Policy in Computer Information Systems 

(WIPCIS). [KATZ89] 

^The term "certification," is sometimes confused with the similar terms, "evaluation" and 
"accreditation." Certifications, like evaluations, are carried out with respect to security-relevant criteria 
and, like accreditations, are with respect to a particular application and site. However, an evaluation applies 
to a product whereas a certification applies to its use in a particular site or application. An accreditation is 
an authorization for use, whereas a certification is a decision that relevant technical requirements are met. 
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Their requirement for well-formed transactions suggests that for high-integrity 

processes, application-dependent software modeling may be needed as input to the 

certification process. As discussed in Section 3.5.3, the access control mechanism of 

Clark and Wilson determines which procedures may act on a given object and thereby 

provides an encapsulation mechanism similar to those associated with data abstraction in 

modern programming and specification languages. 

3.5.2 ERROR DETECTION AND RECOVERY 

In the following paragraphs, general observations on the nature of error handling are 

followed by a variety of examples that arise in connection with integrity policies. 

An error can only be recognized if an unexpected value occurs or if an unexpected 

relationship among two or more values occurs. The possibility of anomalous values and 

relationships may be built in as part of the system design, as in the case of audit records and 

message acknowledgements. It may be added by an application, be of external origin 

resulting from syntactic and semantic constraints on the structure of the application data, or 

be external in the form of information held by multiple users (in addition to the computing 

system). 

The detection of anomalous values and relationships is only partially automated in most 

cases. Typically, an initial error or anomalous situation is detected, perhaps automatically. 

This discovery may be followed by further automated or manual investigation to find related 

errors and, perhaps, the root cause of these errors. Finally, corrective action removes the 

errors and/or inhibits the creation of new errors. 

The automated portions of this three-part, error-handling process are more likely to be 

suitable for security modeling. In the case of a partially automated error-handling 

mechanism, modeling can help clarify which portions of the mechanism are automated 

(namely, those that are modeled). If detection is automated and recovery is manual, there 

may be additional issues associated with the design of an alarm mechanism (e.g., 

timeliness, avoidance of masking high-priority alarms with low-priority alarms). 

As already mentioned, the TCB audit mechanism required for systems at classes C2 

and above is a built-in, error-detection mechanism. It is usually not modeled but could be; 

Bishop has provided an example. [BISH90] Recent integrity articles have suggested that 
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audit records should allow for a complete reconstruction of events so that errors can be 

traced to their source. [SAND90, CLAR89] This integrity requirement on audit trails is 

potentially amenable to formal analysis. 

"Checkpoint and restore" is another built-in mechanism found in many systems. 

Modeling of this mechanism may be no more interesting than for auditing. However, 

systems at classes B3 and above have a trusted-recovery requirement. The state 

invariants that come out of the formal modeling and verification process effectively define 

exceptional values of the system state that must not exist in a newly restored state. 

Moreover, run-time checking of these state invariants may be necessary after an 

unexplained system failure. 

A variety of integrity mechanisms promote user integrity by collecting the same or 

related information from several different users. Supervisory control and N-person control 

allow two or more users to affirm the validity of the same information. Supervisory control 

involves sequential production and review of an action, whereas N-person control refers to 

simultaneous or independent agreement on taking action. A possible approach to 

modeling N-person control is given by McLean. [MCLE88, Sec. 3] The subjects of the 

model include composite subjects made up of N ordinary subjects acting on behalf of 

different users. The explicit inclusion of these N-person subjects invites questions about 

their security attributes; for example, what is their security level? In both supervisory and 

N-person control, lack of agreement is an error condition, and the system performs error 

handling by blocking the action being controlled. 

Certain access controls may be suspended by any user in an emergency, but the 

system may require that a state of emergency be explicitly declared before suspending 

these access controls. The explicit declaration together with the actual violation of the 

controls provides two different indications of the need for a typical action. The decision to 

constrain a particular action via supervisory, N-person, or emergency-override control 

might be made by an appropriately authorized user, as opposed to the system's designers. 

In all three of these mechanisms, the actions to be controlled need not be vendor-defined. 

A related strategy for promoting user integrity is separation of duty. This involves 

defining user roles in such a way that no one user can commit a significant error without 

detection. Instead, there would have to be collusion among several users. For example, if 

no one person can order goods, accept delivery, and provide payment, then it is difficult for 
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a user to buy nonexistent items from himself. A more generic example recommended by 

Clark and Wilson is that no person who is authorized to use a transformation procedure has 

participated in its certification. Separation of duty promotes user integrity, if roles are 

designed in such a way that several different users contribute overlapping, partially 

redundant views of an external situation modeled in the computing system. In most cases, 

design of the roles is application-dependent. Provisions for role enforcement are part of 

the system design. Detection of errors can be either manual or automated (but 

application-dependent). Error recovery is largely manual. In the Clark-Wilson model, 

separation of duty is enforced via access control triples, but is itself not formally modeled. 

According to Clark and Wilson, consistency checks on the structure of user-supplied 

data are needed initially to guarantee that data has been properly entered [CLAR87] and 

can be run later as a check against inappropriate modification [CLAR89]. Typically, these 

Integrity Validation Procedures (IVPs) compare new information against previously 

computed information, as in a program that compares actual inventory data against 

previously computed inventory. The use of IVPs is explicitly modeled by Clark and Wilson, 

but the fact that they reject anomalous data is not. 

Redundancy to improve process integrity is used in high-availability systems. Two or 

more processes with different hardware and/or algorithms are run with the same expected 

result, and a voting algorithm combines the results. An interesting feature of these data- 

and process-integrity promoting algorithms is that they apparently increase integrity 

through aggregation and inference. In this respect, integrity is similarto nondisclosure, not 

dual to it. Interesting formal models of voting algorithms include the "Byzantine Generals 

Problem", in which a process can give inconsistent results [LAMP82], and clock 

synchronization algorithms. [LAMP87, RUSH89] 

In general, all error-handling mechanisms exploit redundancy of the sort discussed in 

information theory and conform to the same general principles that provide the basis for 

error-correcting codes [cf HAMM80] used to suppress noise. What sets integrity-related 

mechanisms apart is their emphasis on user-induced errors. 
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3.5.3 ENCAPSULATION AND LEVEL-BASED ACCESS CONTROL 

The following paragraphs discuss encapsulation mechanisms, the use of level-based 

access control and integrity hierarchies, and the use of partially trusted subjects to achieve 

encapsulation. 

Encapsulation mechanisms ensure what Clark and Wilson refer to as "internal 

consistency." They provide a limited set of high-level operations that can be certified to 

maintain a known structure on the data that they encapsulate. Several mechanisms 

suitable for performing encapsulation have been discussed in Sections 3.1.3, 3.3.2, and 

3.3.3. Another encapsulation mechanism is message passing, as illustrated in the design 

of Smalltalk. [GOLD80] As discussed below, level-based access control with partially 

trusted subjects also provides an encapsulation capability similar to type enforcement. 

If an encapsulation mechanism is supported, it may be used to provide tamper proofing 

forthe TCB and to enforce the principle of least privilege within the TCB. Type enforcement 

has been used for this purpose. [BOEB85] In the LOCK system, each security-critical 

entity (for example, the password file) is of a type that can be accessed only by the 

appropriate TCB subjects. This typing information is preset and, in the case of TCB 

entities, cannot be modified, even by the system security officer. Since the type 

enforcement mechanism is formally verified, this verification provides a partial verification 

of TCB integrity as a special case. Type enforcement has also been used to extend the 

LOCK TCB for a trusted DBMS application. [STAC90] In the extension, new TCB subjects 

are straightforwardly prevented from interfering with the old part of the TCB through static 

access restrictions in the type-enforcement table. 

The crucial idea behind access control based on integrity levels was alluded to in 

Section 3.1.6. That information may flow from one entity to another only if the latter's 

integrity level is at or below that of the former, thereby preventing the latter from being 

contaminated with low-integrity information. Thus, if the integrity ordering is inverted for 

purposes of access control, then the *-property will automatically enforce the desired 

property. As observed by Roskos, [ROSK90] this duality applies not only to access control, 

but to higher-level nondisclosure policies as well.   In the case of noninterference, for 
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example, if inputs from user A cannot "interfere" with outputs to user "B," then A cannot 

compromise the integrity of these outputs. [PITT88] The practical utility of these 

observations is undetermined.'*' 

For level-based integrity to be useful, there must be some convention for assigning 

integrity levels to controlled entities. Biba [BIBA77] suggested a hierarchy dual to that 

given by Executive Order 12356, which, as mentioned in Section 3.1.7, defines the terms 

"confidential," "secret," and "top secret." Thus, integrity levels would be classified 

according to the level of harm which could result from unauthorized or inappropriate 

modification of information. The dual of "secret," for example, would be a level indicating 

that inappropriate modification could result in serious, but not exceptionally grave, damage 

to national security. While this suggestion has not found wide acceptance, there are 

clear-cut examples of integrity orderings associated with the possibility of serious harm. 

The inadvertent substitution of "exercise" data for "live" data is one such example; 

effectively, "exercise" is a lower integrity level than "live." What Biba's suggestion lacks (in 

contrast to the work of Clark and Wilson) is a convention for controlling not only who may 

modify data but also how they do it. 

There are several other integrity measures not based on level of harm, [cf PORT85] 

User contribution sets form an integrity ordering under the dual of the subset relation, as 

was noted in Section 3.3.4. A careful analysis of user roles can also give indications of 

needed integrity and nondisclosure levels. [LIPN82] The results of trusted error-detection 

and integrity-validation procedures can be stored as (components of) integrity levels in 

order to disable inappropriate uses of flawed data and to enable appropriate 

error-recovery procedures. 

Integrity levels (or components) that are based on freedom from various kinds of error 

cannot be preserved during processing unless the procedures involved do not introduce 

these kinds of errors. This motivates the use of software assurance hierarchies. The 

necessary level of software assurance is found by working backwards from a level of 

acceptable risk, which depends both on the expected level of software errors and the level 

of harm which may result from these errors in a particular operating environment (the latter 

being bounded by the relevant Biba integrity levels).   If software at several levels of 

^ Yet another relationship between nondisclosure and integrity is found in the "Chinese Wall" policy dis- 
cussed in Section 4.4.4 — a nondisclosure policy can promote user integrity by preventing conflicts of 
interest. 
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assurance is needed on the same system, then an access control mechanism is needed to 

be sure that software used in a given application is backed up by adequate assurance. A 

technique that suggests itself is to include assurance levels as components of integrity 

levels. 

A well-defined hierarchy of assurance levels is given in the TCSEC for evaluating 

TCBs. It has been adapted to subsystems [cf NCSC88a] and is readily adapted to 

individual processes; the hierarchy itself is summarized in Appendix D of the TCSEC. An 

easily applied assurance hierarchy based on credibility of origin has also been suggested 

by Pozzo: [POZZ86] software supplied by a system's vendor is regarded as having higher 

assurance than software developed by a company's support staff, and production software 

typically has higher assurance than experimental software. Software of unknown origin 

has lowest assurance. Such a hierarchy presupposes an ability to track data sources, as 

described in DoD 5200.28-R. [DOD88a, Enclosure2, Req. 7] 

The use of level-based integrity for TCB encapsulation is suggested by Millen. 

[MILL84] One or more integrity categories can be reserved forTCB entities, as a means of 

protecting them from non-TCB entities. An application of this idea is found in the network 

described by Fellows. [FELL87] In this network, each communication process in the TCB is 

a partially trusted subject that sends messages labeled with its own unique integrity 

category, thereby encoding authorship of the message in the security label itself. 

Lee and Shockley have argued that level-based integrity with partially trusted1" subjects 

can partially fulfill the requirements of Clark and Wilson. [LEE88, SHOC88] The ASOS 

integrity policy may be viewed as a special case of this general partially trusted subject 

mechanism. Access checking in ASOS allows any process to read below its own integrity 

level; the implicit assumption is that any subject with reasonable integrity can be relied on to 

make its own integrity checks when needed. In effect, each subject in ASOS is treated as if 

it had a separate view-max security label obtained by setting the integrity component of its 

security label to integrity-low. [DIVI90] 

"*" Subjects that are partially trusted with respect to integrity labels do not necessarily belong to the TCB. 
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Though relevant to many systems, some security modeling techniques are best 

illustrated by a particular kind of system. While traditional access control models are 

applicable to a wide class of systems, they are nicely illustrated by operating systems 

because they both contain file-like objects that are opened, accessed for a period of time, 

and then closed. The issue of selecting an underlying model of computation occurs in any 

modeling effort, but models not based on state machines have occurred most frequently in 

networks. Trusted application models often take the form of models for database systems. 

Issues having to do with label accuracy are illustrated in Compartmented Mode 

Workstations (CMWs) and the Secure Military Message System (SMMS). The treatment 

of these topics is largely introductory because of the breadth (and, in some cases, relative 

newness) of the material to be covered. 

4.1 OPERATING SYSTEMS 

In modeling operating systems, there is especially rich literature to draw on. The 

following paragraphs discuss traditional access control models and the models of Bell and 

La Padula in particular. 

4.1.1 TRADITIONAL ACCESS CONTROL MODELS 

An access control model traditionally involves a set of states, together with a set of 

primitive operations on states. Each state contains a set S of "subjects," a set O of 

"objects," and an "access" matrix A. For each subject s and object o, A[s, o] is a set of 

access rights, such as "read," "write," "execute," and "own." In the context of an access 

control model, rules of operation are axioms or definitions describing the primitive 

operations. 

The simplest useful access control model is perhaps the HRU model of Harrison, Ruzzo 

and Ullman. [HARR76] The HRU model assumes that every subject is also an object, the 

rationale being that (almost) every subject has local memory that it can access. In the HRU 

model, the primitive operations are, create s, create o, destroy s, destroy o, enter rinto 

A[s, o], and delete rfrom A[s, o], where r varies over all supported access rights. 
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To use an acceoS control model for security modeling, one needs to add functions that 

extract security labels from subjects and objects and to explain how operations are affected 

by security labels. In some cases, it may also be appropriate to mode! other attributes of 

objects, such as directory hierarchies. These additions to the basic access control model 

facilitate a clear presentation, but are not theoretically necessary for discussing security, as 

can be seen from Pittelli's translation of a Bell and La Padula model into the HRU model. 

[PITT87] One can model the addition of new subjects or objects by allowing s and o to 

change in response to the create and delete operations, or one can use fixed sets of 

subjects and objects together with an indication of which subjects are active. Finally, if an 

access control model is to discuss information flow, it needs to discuss which objects are 

actually written as a result of a given operation. This can be done by adding functions that 

extract object content. A complete information-flow analysis would also need to address 

flows to and from non-object entities. Flows to and from the current-access matrix, for 

example, could be handled either by treating rows of the matrix as objects or by treating 

these flows in the covert channel analysis. 

The assumption that subjects are objects is associated with several interesting 

observations that need to be modeled whether or not subjects are regarded as objects. 

Typically, every subject has read and write access to itself (that is, to its stack and local data 

area). This fact can be modeled as the invariant {read, write} G A[S, S]. Consequently, if a 

subject outside the TCB is allowed to change its security level, the new level should 

dominate the old one. This is because information at the old level in its local memory can be 

transferred only to entities whose level dominates the subject's new and (hence) old 

security level. The assumption that subjects are objects also provides a means of 

modeling interprocess communication: a process P? may send a message or signal to 

process P^   if and only if P/ has write access to P^. 

Hierarchical file systems have a potential for introducing various covert storage channel 

problems. In many cases, these channels can be closed through the use of additional 

access control checks that depend on the structure of the directory hierarchy. It is 

acceptable to include such access control checks (and hence, directory structures) in the 

model. One problem is that if a directory contains a file at a lower security level, then it is 

difficult to delete the directory without users at the lower security level finding out, since they 

can no longer access the file after it is deleted.  A widely imitated solution proposed by 
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Walter is to require a compatibility property for directories, namely that the level of each file 

dominate that of its parent directory. [WALT74] Alternatively, the system could just remove 

access and leave actual deletion of files and directories to a trusted garbage collector. A 

similar problem that is not ruled out by compatibility arises when a lower-level process 

creates a directory at a higher level. If a higher-level process then adds a (higher-level) file 

to the directory, a UNIX-like operating system would refuse a later request by the 

lower-level process to delete the directory, thereby signaling the existence of the 

higher-level file. [GLIG86] 

The compatibility principle was regarded by the TRUSIX working group as being a 

generally useful property of directories, independently of its use to discourage covert 

channels. They considered four possible approaches to modeling directories and, forsake 

of generality, decided that security labels would be assigned to individual directory entries 

as well as directories. [NCSC90b, Sec. 6.10, 6.11] 

Kernel-call based implementations of operating systems invariably rely on some form 

of exception mechanism. At higher assurance levels, it is likely to be a matter of policy that 

exceptions not return information about higher-level entities. In this case, kernel 

exceptions can be included in the security model in order to represent this policy, either 

directly or in summary form. One might, for example, use the three exception classes 

'access-denied,"'User-error," and 'system-error". [BELL76] 

For further information on access control models, the reader is referred to 

Cryptography and Data Security [DENN82, Ch.4] and "Models of Multilevel Security" 

[MILL89]. 

4.1.2 THE MODELS OF BELL AND LA PADULA 

As mentioned in Section 1.4, the work of Bell and La Padula identified the main steps in 

the security modeling process and provided the first real examples of security verification 

by proving that their rules of operation preserved necessary state invariants. The identified 

invariants codified important mandatory access control requirements and provided 

guidance for their implementation. 

Not surprisingly, fifteen years of close scrutiny has produced an understanding of areas 

where refinement of the original approach is desirable in future efforts. The question of 

correspondence to externally imposed MAC security policy was handled quite informally. 
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As indicated in Section 3.2 (and in the LOCK verification effort), a closer correspondence is 

possible with the use of external-interface models. In fact, the Bell and La Padula models 

contain some well-known weaknesses. A lack of attention to local process memory is 

related in part to the fact that subjects need not be objects. A subject may, in the absence of 

the tranquility principle [LAPA73, p. 19], lower its security level. As a result, the "change 

subject current security level" and "change object level" rules provide a variety of 

opportunities for untrusted downgrading of information. The significance of these and 

similar rules was not well understood until much later. [MILL84, MCLE85, MCLE87, 

BELL88, LAPA89] 

The Bell and La Padula models have a relatively narrow focus. None of the models 

explicitly mentions multilevel devices, external interfaces, or user identities; and there is no 

modeling of integrity. With the exception of the *-property, exemptions from access control 

are not modeled, so that there is no basis for relating exemptions to use of privilege, 

subject integrity, or trusted user roles. The Multics model interpretation was necessarily 

incomplete because design work on Secure Multics was still in progress in 1976. Some of 

the notational conventions used in the models (e.g., overuse of subscripts and lack of 

mnemonic naming conventions) are avoided in many of the more recent security modeling 

efforts. 

4.2 NETWORKS AND OTHER DISTRIBUTED SYSTEMS 

Which network decomposition techniques lend themselves to security analysis? How 

should this decomposition be reflected in the model? How should the overall network 

security policy be reflected in the model? What is the role of individual components in 

enforcing the overall policy? Should nondeterminacy and the distributed nature of a 

network be reflected in the model's underlying model of computation; that is, should the 

network be treated as a state machine or as something else? The following subsections 

discuss these questions as they relate to network security objectives and the requirements 

of the Trusted Network Interpretation (TNI). [NCSC87] 

4.2.1 SYSTEMS AND THEIR COMPONENTS 

A network system is an automated information system that typically consists of a 

communications subnet and its clients. Clients are entities that the subnet interacts with 

(e.g., host computers, other networks, users, electronic censors), as in Figure 4.1. Some 

■78- 



TECHNIQUES FOR SPECIFIC SYSTEMS 

clients may play a distinguished role in the network, performing key distribution or network 

administration services. The communications subnet might consist of message switches 

and transmission lines. 

Figure 4.1. A Physical Network Decomposition 

In addition to a physical decomposition of a network, there is also the possibility of 

decomposing along protocol layers, so that a network handling a layer n protocol decom- 

poses into abstract protocol machines and network(s) handling a more primitive layer n-1 

protocol, [cf IS084, TANE88] In this second approach, it is possible to reassemble the 

protocol machines at various layers into physical components, so that the second ap- 

proach is compatible with the first. In Figure 4.2, abstract protocol machines are collected 

to form interface units that may either be part of or separate from corresponding hosts. 

Each interface unit includes protocol handlers for all layers. 

Figure 4.2. A Network Protocol Decomposition 
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The partitioning of a network system results in optional subsystem components, such 

as a communications subnet, as well as individual components whose further subdivision 

is not useful for modeling purposes. [NCSC87, Sec. 1.3] In the following paragraphs, 

network systems and subsystems are both referred to as networks. Individual and 

subsystem components are both referred to as components. Network partitioning has a 

variety of security-relevant ramifications. There is a need for both system security models 

and component models as well as the need to consider TCB interfaces both in components 

and in the entire network system. In contrast to operating systems, there is little point in 

assuming that a network is either "up" or "down." Rather, it is necessary to model the 

network across a range of partially functioning states. [FELL87] The principle of "mutual 

suspicion" can be applied to components in orderto minimize security violations in case an 

individual component is subverted. [SCHA85] In this case, each component enforces a 

component policy that is strong enough not only to contribute to the overall system policy 

but also to detect suspicious behavior in other components. 

Networks are usually extensible, and, as a result, analysis of their security cannot 

depend on configuration details that change as the network expands. A similar problem is 

posed by the need for fault tolerance. Component failures and subsequent restarts should 

not lead to violations of network security policy. [FELL87] 

Some networks have covert channel problems related to indeterminate information in 

message headers. In some cases, these "header"channels are visible in the model itself. 

Other covert channels result from interconnection subtleties and from nondeterminacy 

caused by channel noise and by race conditions associated with distributed computation. 

Similar covert-channel problems can arise in other nondeterministic systems, and, as 

mentioned in Section 3.2, a probabilistic analysis may be needed in orderto rule out certain 

kinds of covert channels. [WITT90] However, nonprobabilistic analyses have also 

provided some useful insights. [MCCU88, MCCU88a, JOHN88] 

4.2.2 MODEL STRUCTURE AND CONTENT 

A crucial modeling requirement for networks is that "the overall network policy must be 

decomposed into policy elements that are allocated to appropriate components and used 

as the basis for the security policy model forthose components". [NCSC87, Sec. 3.1.3.2.2] 

One way of meeting this requirement is to provide a security policy model consisting of 

several submodels. A network security model can give an overall definition of security for 
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the network in order to clarify how the network supports higher-level security objectives. 

A structural model can explain how the network is partitioned. This is particularly useful if 

the component structure is directly involved in the network's policy enforcement strategy. 

Finally, each component is given a security policy model. Correctness is shown by 

demonstrating that the component model properties together with the structural model 

properties imply the requirements in the network security model. The given 

demonstrations may rely either on external interface properties of the components [cf 

MOORE90, BRIT84, FREE88] or on modeled internal properties [cf GLAS87]. 

For a component that is part of a larger network, external-interface requirements will 

often be apparent from the network modeling effort. For a separately evaluated 

component, rated B2 or higher, external-interface requirements will usually be given in an 

accompanying network security architecture description. [NCSC87, Sec. 3.2.4.4, A.3] The 

NCSC Verification Working Group has concluded that access control requirements 

imposed by the network security architecture should be modeled. Consequently, the 

definition of security for the component model needs to contain or comply with such 

external-interface requirements. It is easier to demonstrate conformance if these 

requirements are directly included. This "external" portion of a component model is 

essentially new and is distinct from internal requirements or rules of operation. In the case 

of MAC requirements, this external interface portion may be regarded as a generalization 

of TCSECdevice labeling requirements. [NCSC87; Sec. 3.1.1.3.2,3.2.1.3.4] A model for a 

network system, in contrast to a component, may not need such external-interface 

requirements because the environment of the network system need not have a 

well-defined security architecture and is likely to contain only trusted entities such as users 

and other evaluated network systems. 

Security-critical entities in the network or its containing network system are collectively 

referred to as the network TCB (NTCB). A second network modeling requirement is that a 

component model should cover all interfaces between security-critical network entities 

and other kinds of entities (see Figure 4.3). Collectively, these interfaces contain the 

reference monitor interface forthe NTCB. Relevant non-NTCB entities for a network might 

belong either to the network orto its environment. Whole components of a network may lie 

outside of the NTCB. Individual components may also contain non-NTCB entities (as in 

the case of an ordinary host, for example). 
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When modeling a component, it may be desirable to model not only the interface 

between its TCB and non-TCB entities but also the interface between its TCB and other 

NTCB entities in order to give a better description of the security services provided by that 

component. For an A1 system, this additional modeling information can provide 

correctness criteria for the FTLS, since each component FTLS must describe the interface 

between that component's TCB and the TCB portions of other components. [NCSC87, 

Sec. 4.1.3.2.2]   These additional interfaces are indicated by dashed lines in Figure 4.3. 

Figure 4.3. Modeled Interfaces to the TCB Portion of Component A 

4.2.3 NETWORK SECURITY MODELS 

The security policy model for a network often contains a network security portion, 

although this is not required by the TNI. Overall network security modeling is especially 

useful for a network that is too large for effective system testing because, in this case, 

overall security assurance can be achieved only by some form of static analysis. A network 

security model can give a precise description of security services provided by the network 

and can help to identify the boundaries of the system being modeled. It can identify 

security-relevant aspects of communication among major components and can describe 

associated security requirements. The entities described in this model need not be local to 

individual physical components. This model partially determines and may share the 

external-interface requirements found in the various component models. 

For network systems rated B1 and above, mandatory access control plays a major role 

in modeling user-related communication. [SCHN85] Other useful security requirements 

include correct delivery [GLASS87]; discretionary access control; label, header, or 

message integrity [GLAS87, FREE88]; and encryption [BRIT84]; among others. [IS089; 

NCSC87, Sec.9] 
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In many networks, there is a significant amount of TCB software devoted to 

security-critical communications protocols. A clear understanding of the basis for these 

protocols is required in order to completely assess security assurance. A network security 

model can provide this understanding by providing requirements that serve as correctness 

criteria for security-critical protocols found in the NTCB portion of the network. Label 

association protocols and label integrity requirements are of particular relevance in the 

case of MAC policy modeling. 

Access control modeling may be influenced by the network topology. For example, 

access enforcement may be carried out by a communications subnet, while access 

decisions are performed by a designated host that serves as an access decision facility. 

[BRIT84] 

One approach to specifying mandatory access control is to regard hosts as subjects 

(partially trusted subjects, in the case of multilevel secure hosts) and host "liaisons" as 

"communication" objects.1" [BELL86, BELL88a] Host liaisons are temporary connections 

established between pairs of hosts for the purpose of exchanging messages at a given 

security level, such as transport layer connections. This approach is similar to that taken in 

several real systems. In the Boeing local area network (LAN) model the subjects are 

arbitrary LAN clients. [SCHN85] In the model described by Fellows subjects are hosts. 

[FELL87] In this latter modeling effort, the host liaison approach was found to be 

satisfactory for expressing system security requirements with the possible exception of 

what came to be known as the "entelechy"* property. This property means that a host may 

send or receive messages over a connection if and only if it has current access to that 

connection. These models are internal-requirements models for network systems. 

Because these models treat hosts very simply, they also serve as external-interface 

specifications of their communication subnets. 

A more explicit external-interface model was given for the Multinet Gateway System 

(MGS). The clients of the MGS are "external systems" that communicate with the MGS 

over message ports. [FREE88]   Messages have security labels, message ports are 

+ 
The words "subject" and "object" are used somewhat differently in these presentations than in the 

TCSEC, in order to convey an analogy between the presented network models and more traditional access 
control models. TCSEC requirements pertaining to controlled process subjects and storage objects do not 
always carry over in the manner suggested by this analogy. 

en-tel'-e-key— the realization of form-giving cause (as contrasted with potential existence). 
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multilevel devices, and the expected access constraints are enforced between messages 

and message ports. In addition, the model contains limited information about the structure 

of messages and declares that any delivered message must be legitimately 'derived from" 

messages received by the system at the same security level. In other words, no spoofing or 

regrading is allowed. The MGS model and FTLS are, in part, partitioned along protocol 

layers. 

In some cases lower-level component models involve system-only messages which 

are not visible at the system interface. [FELL87, FREE88] In these cases special security 

labels are used to separate system-only messages from normal client messages so that 

privileged information in system-only messages cannot accidentally leave the system. 

Lower level component specifications had to distinguish among several kinds of 

messages, such as acknowledgments and other "protocol" messages as well as between 

encrypted and plain text messages. Messages are split into header and data components. 

In networks, some understanding of object structure is essential to enforcing security, and 

this understanding necessarily turns up in derived security requirements for network 

components. 

In some cases, the network model may be trivial and therefore unneeded. A network 

system consisting of single-level hosts connected by one-way links, for example, might 

have only the obvious requirement that the level of a destination host dominate that of a 

receiving host. Even this simple case may be worth modeling, if the cascading problem is 

considered. Considering the cascading problem may determine when network 

connections increase the risk of compromise, [see MILL88] 

4.2.4 INDIVIDUAL COMPONENT SECURITY MODELS 

Like other component models, individual component security models should 

accommodate relevant external-interface requirements inherited from their containing 

networks. An individual component which contains entities that are not security critical 

must contain a reference monitor, and its model should constrain the reference monitor 

interface. In this case, the model will include a structure analogous to that presented in 

Section 3.2, including internal requirements and rules of operation. Correctness of the 

model can be proved by showing that the rules of operation imply both internal- and 

external-interface requirements. For some components, this proof may involve showing 

that the internal requirements already imply the external-interface requirements.   For 
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others, the internal requirements may apply only to the internal reference monitor interface, 

so that they are unrelated to the external-interface requirements and have properties that 

are enforced by different software. 

As with other kinds of computing systems, an individual component may contain 

subjects that do not act on behalf of particular users; the TNI refers to these as internal 

subjects. In the case of networks, it is common for internal subjects to exist outside the 

TCB, as in the case of routing protocols which are not involved in security enforcement. In 

some components, all of the subjects are internal, and the isolation of untrusted processes 

is so simple and straight-forward that modeling of the reference monitor interface is 

unnecessary. 

An individual component may lie entirely within the NTCB. In this case, its 

external-interface requirements may already be sufficient as a description of component 

policy enforcement because an internal-security model offers no essentially new insights. 

Alternatively, a simplified functional description, in the form of an FTLS or rules of 

operation, may be useful in showing how the component goes about meeting its 

external-interface requirements. In this case, the functional description should provably 

imply the external-interface requirements. 

4.2.5 UNDERLYING MODELS OF COMPUTATION 

State machines have been successfully used as a basis forsecurity modeling in several 

network evaluations. However, concerns about their convenience for partitioning a 

network TCB into components have been expressed by some researchers and system 

developers. State invariants may not be testable in practice because they can discuss 

widely separated state components that cannot be accessed in a timely fashion. Two 

elementary state transitions may be concurrent, leading to a partially ordered view of event 

histories in which two events can occur without either fully preceding the other. Parts of the 

secure state may be replicated in different locations, which imposes consistency 

requirements as well as forced discrepancies between the system state and the Cartesian 

product of the component states. [FELL87] Because of these perceived inconveniences, 

various history mechanisms have been used as an alternative to state machines, including 
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I/O histories [GLASS87; FREE88], time-stamped buffer histories [BRIT84], and event 

histories [MCCU88]. Event histories are essentially the "trace" semantics for Hoare's 

communicating sequential processes. [HOARE85] 

The differing approaches used in the above security modeling efforts underscore the 

fact that a formal security model depends on an underlying model of computation. Models 

of computation that could reasonably be used for networks include modal logic with 

communication based on shared variables [MANN82, PNUE81], axiomatically defined 

process algebras [MILN83, HOAR85], and Petri nets augmented with data flow primitives 

[AGER82, CHIS85]. Specification languages based on process algebras [EIJK89] and on 

communicating state machines [DIAZ89] have been developed for describing 

communications protocols and may be adaptable for use in writing network security 

models. 

In general, the underlying model of computation for a security model should be chosen 

to facilitate the statement and proof of the key security properties that will be studied. In the 

case of networks, several different options have been tried and many more are plausible, 

but no preferred approach has yet been established. 

4.3 DATABASE MANAGEMENT SYSTEMS 

The field of database security is relatively new and has provided a large variety of 

questions and issues, some of which are outlined in the following paragraphs. As a result, 

there are many unresolved issues, and significant effort may be needed to obtain a good 

security design. This section is based in part on observations drawn from works by 

Hubbard and Hinke [HUBB86, HINK90], from the Trusted Database Managementsystem 

Interpretation of the Trusted Computer System Evaluation Criteria (TDI), [NCSC91] and 

from similar security modeling issues for other trusted applications. 

Perhaps the most obvious modeling issue is how the DBMS security model should be 

related to the DBMS data model, that is, to the high-level user's model of how the DBMS 

manages data. Can the security model serve as a simplified data model? If so, is it 

consistent with the data model supplied to users of the system? Are all of the major entities 

in the data model covered in the security model?  In the case of a relational DBMS, for 

-86. 



TECHNIQUES FOR SPECIFIC SYSTEMS 

example, does the model and/or accompanying documentation explain how relations, 

views, records, fields, and view definitions relate to the appropriate entities (e.g.,named 

objects) of the security model? 

Commercial database systems are commonly designed to run on a variety of different 

operating systems. This suggests that a database system might be modeled separately 

from its underlying operating systems, if there is a common explanation of how its security 

features interact with those of the underlying operating systems. Database systems raise a 

variety of security policy issues that are not covered in the TCSEC. The large quantity of 

user-supplied information found in typical databases increases the potential for erroneous 

data (and data classifications) as well as the potential for the unauthorized release of 

information due to aggregation and inference. However, database systems can partially 

automate the labeling of data through the use of content-dependent classification rules, 

thereby eliminating some kinds of user errors. 

4.3.1 SYSTEM STRUCTURE 

Many of the structural considerations regarding database systems apply to application 

systems in general, [cf PAYN90] A discussion of these considerations is followed by 

DBMS-specific observations about the design of objects for mandatory and discretionary 

access control. 

A DBMS (or similar application) can be built on an existing trusted system orcan be built 

from scratch. A third alternative is to build on a modified system, but, in terms of modeling, 

this is similar to starting from scratch. Building on a trusted operating system offers a 

well-defined and well-documented basis that provides process isolation and user 

authentication. Depending on the DBMS design, the operating system may also provide 

mandatory or discretionary access control. However, it may be necessary to hide or "turn 

off" some of the original security mechanisms, if they are inconsistent with and impact the 

operation of the DBMS security policy. The DBMS may also need to hide the original 

TCB/user interface, if the DBMS provides a significantly different user interface than the 

underlying operating system. Starting from scratch can give a more unified design, may 

simplify the security modeling effort, and is particularly appropriate for database machines 

with simple, built-in operating systems. 

■87- 



SECURITY MODELING GUIDE 

The DBMS-supplied notion of security can be presented in an external -nterface model 

that gives the intended user-view of security. If the DBMS is built on a trusted operating 

system, the external model can be followed with an internal requirements model that 

identifies the role of the underlying operating system and its security policy model. The 

external-interface model itself will be more relevant to users of the application if it 

emphasizes concepts associated with the DBMS. Terminology found in the OS security 

model, by way of contrast, may be inappropriate either because it refers to entities hidden 

by the application or is very abstract in order to apply to a wide range of product 

applications. 

The security models associated with a trusted DBMS and its underlying operating 

system illustrate several issues that arise in other large applications. To ensure that the 

system design is consistent with the security policy, it is necessary to provide evidence that 

the model (or models) of underlying subsystems support the application policy. The 

decomposition of an overall security policy model into submodels for subsystems is 

particularly advantageous when subsystems are developed by different groups over a 

protracted period of time. Despite efforts to keep the system model abstract, there may be 

inconsistencies between it and off-the-shelf subsystems used in the development. As a 

result, the system security model will need to be maintained in an interactive process as the 

design and product selection proceed. 

The granularity of storage objects for database systems is typically finerthan that of the 

underlying operating system. The distinction between active and passive entities tends to 

be somewhat blurred in the case of object-oriented systems. Existing examples suggest 

that the data model has a strong influence on the mandatory security policy, as can be seen 

by comparing relational [e.g., DENN88], functional [THUR89], entity/relationship 

[GAJN88], and object-oriented security models [e.g., JAJO90; KEEF89b; LUNT90; 

LARR90]. These observations suggest that the underlying OS MAC facility may well need 

to be supplanted. Database entities may be viewed as multilevel structures that are divided 

up and stored in single-level files. In this case, the DBMS might contain non-TCB subjects 

operating at all security levels used by the DBMS. This approach is illustrated by the LOCK 

Data Views [HAIG90] and SeaViews [LUNT88b] systems. Alternatively, the DBMS itself 

may take responsibility for the assignment of security labels so that entities which are 

single-level objects to the operating system are multilevel data structures to the DBMS, as 
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in the ASD [GARV90] and MITRE prototypes [DAVI88]. In either case, it is important to 

understand the relationship between database entities and the storage objects of the 

underlying operating system, and it is appropriate to explain and perhaps formally model 

the protocol for passing objects between the DBMS and the underlying operating system. 

The named objects in a DBMS may differ not only from those of the underlying 

operating system but also from the storage objects of the DBMS itself. User views are 

traditionally used as a means of controlling access in relational database systems 

[KORT86, Ch.13.2]; and it is reasonable to use views as named objects.1" In this case a 

user may have access to several overlapping views so that the ability to access a given 

piece of information would depend on the user's view of it. Consequently, the user's ability 

to access that information might not be immediately apparent. In degenerate cases, two 

named objects might coincide or, similarly, a given object might have several names. 

4.3.2 INTEGRITY MECHANISMS AND POLICIES 

Since pragmatic approaches to data integrity are, in varying degrees, part of most 

database systems, [KORT86, Ch 13.3; FERN81, Ch.8] the modeling of DBMS integrity 

policies may lead to a better formal understanding of integrity that can be applied much 

more generally. Issues of interest include whether integrity constraints obscure other 

critical security concerns, whether there are built-in mechanisms for monitoring or 

controlling the propagation of inconsistencies, and whether users are able to learn which 

integrity checks succeed or fail for a given piece of information. 

Simple data integrity checks such as "A record field of type 'month' should be an integer 

between 1 and 12" guarantee structural integrity. If such checks are enforced on input, a 

corresponding integrity failure is unlikely, and therefore significant. Labeling constraints of 

the sort discussed in Section 4.3.5 can be modeled in much the same way as simple 

integrity checks; they enforce a form of label integrity. 

A more complicated check such as "A record field of type 'department' should only be 

populated by department names, of which there are currently 93," however, can be 

invalidated in at least two ways, by adding a misspelled department and by altering the set 

^ With sufficient restrictions, it appears that view instances can be used successfully for storage objects 
in order to maintain some compatibility between MAC and DAC entities, [cf KNOD88] 
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of official department names. In more complicated cases, it may not be possible to 

guarantee data integrity because inconsistencies do not uniquely identify an erroneous 

entry, so that inconsistencies in the database must be allowed for. 

A model of a data integrity policy can show how information about integrity checks is 

associated with data and how it propagates during data processing. For example, 

indication of whether a given record satisfies a particular integrity check is a security 

attribute that might be modeled as a category in an integrity label. The model could explain 

how this attribute is handled during data processing. 

Finally, some system integrity issues appearto be unique to secure database systems. 

The scheduling of single-level updates associated with a series of multilevel updates has 

to be both correct and efficient, and it must allow secure recovery after system failure. 

[KEEF90] 

4.3.3 AGGREGATION 

The aggregation of less classified information to form a more highly classified body of 

information is illustrated by the following example: locations of individuals are unclassified, 

but total troop strength in a given area is classified, suggesting that a comprehensive 

database of troop locations should itself be classified. In some cases, aggregation 

problems can be handled by separating individual pieces of information into several or 

many categories. Once this is done, aggregate levels are automatically represented by a 

set of categories and thus by a higher security level. With this approach, no explicit 

modeling of aggregation control is needed. 

An alternate approach is to place objects in "containers" that are classified at a higher 

level and allow them to be read only by subjects that are at the higher level and by TCB 

subjects that are authorized to extract individual objects as a form of controlled 

downgrading, as in the SMMS model. [LAND84] Methods for simulating containers in a 

relational database system have been shown by Meadows. [MEAD90] 

Yet another approach to controlling aggregation is to keep track of user queries and 

provide context-dependent classification of query results. In this case, the first N items 

from an aggregate might be automatically downgraded, but the remaining items could only 

be obtained by users acting at the level of the aggregate. [HAIG90; cf LUNT89] This 

approach can be formalized by modeling the access histories of containers. 
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A rathergeneral approach to aggregation is to introduce an aggregate level function, g, 

that associates each set of data items with a security level. One expects that if His a subset 

of K, then g{H) < g(K). Additionally, one expects that, for any A, B, and C, if g{A) < g(B), 

then g{A u C) < g{B u C), since the information in A u Cis obtainable from information at 

levels dominated by g(BuC), since g(A) < g{B) < g{B u C) and g{C) < g{B u C). 

Meadows provides further information regarding the construction of aggregate-level 

functions. [MEAD90b] 

4.3.4 INFERENCE 

In contrast to aggregation, inference allows new information to combine with preexist- 

ing knowledge in a given environment, obtaining results that are not contained in the 

original aggregate. The inference of restricted information from authorized queries and 

database information is illustrated by the following examples: 

1. The total quantity of an item is classified, but its total cost and cost per item 
are not; two unclassified queries suffice to retrieve a piece of classified 
information. [DENN82] 

2. An uncleared user query of the form, "Give me the contents of all containers 
which contain the fact that Flight 127 is carrying bombs to the front," might 
elicit a response of "access denied" because one or more of the requested 
records is classified, thereby indicating that Flight 127 is secretly carrying 
bombs to the front. [WISE90] 

3. A customer's bank balance is restricted information. A user of a statistical 
database obtains the total of all bank balances for bank customers in 
Smalltown, along with a corresponding list of all customer names (of which 
there is only one). [KORT86] 

The first inference example can be addressed by classifying one of the facts which led 

to the inference, by enforcing separation of duty so that no uncleared user is authorized to 

get both facts, or by maintaining user access histories and providing context-dependent 

classification of query results. [HAIG90] A possible objective for the modeling effort is to 

provide enough information to see which options are available in the modeled system. 

The second example looks superficially like a covert channel associated with error 

returns but is potentially more dangerous because it is so easy to use. It can be avoided by 

redefining the query semantics so that the phrase "all containers" implicitly refers to all 
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containers at or belowthe user's level. With this change, the appropriate query response is 

"no such records exist." A strong model and model interpretation would simply rule out this 

example. 

The third example underscores the fact that inference problems also arise in 

commercial systems, [cf KORT86, Ch. 13.5; FERN81, Ch. 13] The need to model 

inference control thus extends beyond traditional multilevel security. 

An extensive quantitative analysis of the inference problem may be found in 

Crytography and Data Security. [DENN82] In the LOCK Data Views effort, much of the 

inference problem is delegated to a database system security officer who can specify 

content- and context- dependent classification rules. The classification of a field in a 

record may depend on its value, on other fields in the record it is displayed with, or on 

previous queries made by the user. [HAIG90] An interesting consequence of inference 

problems is that there may be no lowest, safe security level for a given piece of information: 

an otherwise unclassified piece of information might allow users at level {a} to infer 

information at level {a, b} and users at level {p} to infer information at level {p, q}. Thus, {a, 

b}, {p, q}, and {a, b, p, q} would be admissible levels for this piece of information, whereas 

{a} and {p} would not. These and other considerations have led to an explicit axiomatization 

of inference in terms of an "infer function [HAIG90] that could be included in a model's 

definition of security in order to explicitly capture an inference control policy. 

Inference constraints may be enforced during database design, updating, and query 

processing. In principle, enforcement need only occur during query processing, but this 

approach may also be the least efficient, [cf KEEF89, HINK88, ROWE89, FORD90] Thus, 

locus of policy enforcement may be a significant factor in modeling inference control. 

4.3.5 PARTIALLY AUTOMATED LABELING 

As discussed in Section 3.2, the usual labeling paradigm is that users know the 

sensitivities of their inputs and supply these sensitivities when the information is being 

entered. In the case of databases, however, information about object classifications may 

not be available when a database schema is defined. Including this classification 

information as part of the schema definition not only provides a uniform approach to 

classification, but also improves labeling accuracy by allowing specially authorized users 

to assign or constrain object sensitivity levels. 
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In actuality, information rather than data or containers for data is classified.^ 

Consequently, a rule for classifying storage objects in a database may depend not only on 

the particular object but also on the data it contains and on how the data is used, as is 

illustrated by the following examples: 

1. A ship's location might be unclassified when it was in a U.S. port but classified 
if it were fifty miles from Tripoli. [GRAU90] 

2. Names of manufacturing companies are unclassified but most information 
about a particular spy plane, including its manufacturer, is classified. 

In the first example, classification is content-dependent. As noted by Graubart, content- 

dependent classification is antithetical to the tranquility principle. [GRAU90] In the second 

example, whether or not the name of the plane's manufacturer is classified depends on its 

use in a given context. Lunt has argued that context-sensitive classifications are easily 

confused with inference problems [LUNT89] and that object-oriented systems are 

especially appropriate for handling context dependencies. [LUNT90] 

Lack of tranquility exposes what has been called the "multiparty update conflict" 

problem. Two users working at different classifications attempt to store conflicting reports, 

leading to questions about which report and which classification is correct, and whether or 

not the mistaken user should be so informed. One possibility is that the less-classified user 

has been given a "cover story" to hide publicly observable aspects of a classified situation. 

In this case, a possible approach to the update conflict is to store both the cover story and 

the truth in the same spot in the database with the two entries being distinguished only by 

their classification. This approach, known as "polyinstantiation," is not the only approach to 

multiparty update conflicts [KEEF90b], and it may well be inappropriate in situations where 

cover stories are not involved. [SMIT90] 

A fairly wide variety of content- and/or context-dependent classification mechanisms 

have been investigated, but a general approach to the problem has yet to be 

developed. [SMIT88] As indicated in Section 3.2.1, traditional approaches to MAC 

modeling begin with the assumption that data sensitivity is user-supplied. As a result, 

some aspects may need to be rethought when modeling policies for automated data 

labeling. 

* In some cases data itself is classified, as in the case of a secret code name for a classified project; 
but even here the intent is to classify all information associated with the named project. 
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4.4 SYSTEMS WITH EXTENDED SUPPORT FOR LABEL ACCURACY 

As mentioned in Section 3.1.5, security labels are used both to control information flow 

and to provide accurate security markings for data. These goals may well conflict, and this 

conflict may be theoretically unavoidable in some situations. [JONE75; DENN82, § 5.2.1] 

Policies and coping strategies for maintaining label accuracy have turned up in security 

models, whereas label accuracy itself has not yet been explicitly modeled. 

The following paragraphs discuss pragmatic factors that inhibit accuracy, some coping 

strategies suggested by these factors, and the realization of these strategies in 

Compartmented Mode Workstations (CMWs). As a final example, the "Chinese wall" 

policy for stock market analysts is introduced and shown to be a variant of the workstation 

security policy. 

4.4.1 FACTORS INHIBITING ACCURACY IN LABELING 

In practice, several factors may interfere with accuracy in labeling, including the need to 

maintain labels across different working environments, the use of complex labeling 

schemes, and data fusion. 

In many applications, the collection, processing, and distribution of information all take 

place in different environments. It can happen that labels are assigned during collection 

and used to control the ultimate distribution, but the majority of processing takes place in a 

system-high environment where automated access control is not supported or in a 

multilevel environment where not all security markings are used to control access by users. 

In these cases, it is necessary to accurately maintain security markings even when they are 

not needed to enforce access control in the information processing environment. 

Some applications may involve the use of literally thousands of categories. Moreover, 

the required security markings may include not only a DoD classification but also code 

words, handling caveats, and/or release markings as well. Such markings usually form a 

lattice, but the rules for combining markings may be complex. [WOOD87] 

The fusion of data at several security levels requires a convention for labeling fused 

data. Even if aggregation and inference issues are ignored, it is still necessary to find a 

level which dominates that of every data source. If the level of fused data can be predicted 

in advance, then aggregate data can be maintained in multilevel data structures, as in the 
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SMMS. [LAND84] However, finding an appropriate aggregate level may be hindered by 

difficulty in combining labels or by the fact that the sources cannot be predicted in advance, 

either because they arrive in real time or because the avoidance of inappropriate sources is 

part of the fusion task itself. 

4.4.2 FLOATING SENSITIVITY LABELS 

If the security levels form a semi-lattice, then some form of "high water mark" policy 

may be used to maintain an upper bound on fused data. In such a policy, the TCB maintains 

the least upper bound of all data levels associated with an entity in a "floating" label. While 

the TCSEC requirements do not rule out floating labels, the MAC requirements do imply 

that the level of a subject must never float above the clearance of its user. At B2 and above, 

the covert channel requirements suggest that label data should not be exploitable as a 

covert channel. Unfortunately, most high watermark policies not only allow, but actually 

force, the existence of covert channels based on the use of floating labels. [DENN82, 

Ch.5.3] 

The level of a process can be kept from floating too high by going to a dual-label 

mechanism in which a fixed label contains the subject's maximum security level, which 

dominates that of the floating label. In this situation, the fixed label is used only for access 

control and need only include those security attributes that are actually used for access 

control. Factors which favor acceptability of a covert channel include low bandwidth and 

the absence of application software that can exploit covert channels. 

4.4.3 COMPARTMENTED MODE WORKSTATIONS (CMW) 

The CMW design described by Woodward [WOOD87] is for a dual label system. The 

fixed label contains a 'sensitivity" level and is the only label used for access control. The 

floating label contains an "information" level that consists of a second sensitivity level and 

additional security markings. The sensitivity levels are used to control nondisclosure and 

consist of DoD clearance and authorization components. The security markings form a 

lattice; hence, so do the information levels. The intended use of the two labels is that the 

fixed label enforces an upper bound on the sensitivity of information held by an entity, while 

the information level describes the current security level of information held. The covert 

channel problem resulting from the use of floating labels can lead to erroneous information 

labels but cannot be used to violate the access control policy enforced by the fixed labels. 
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A CMW security model has been developed by Bodeau and Millen. [MILL90] Its MAC 

policy may briefly be summarized as follows: when a user creates a new file or process, it 

receives a sensitivity level equal to that of the user's login level. By way of contrast, the 

information label for a newly created file contains the lowest possible information level. In 

particular, its sensitivity component is "unclassified." A sensitivity label never changes 

throughout the life of an entity, but the information label is allowed to float upwards in such a 

way that its sensitivity component is always dominated by the level ofthat entity's sensitivity 

label. 

The rules of operation are such that, whenever an operation is invoked that involves an 

(intended) information flow from an entity E1 to an entity E2, the sensitivity labels are 

checked to be sure that the sensitivity of E2 dominates that of Ep The maximum of the 

information levels for E1 and E2 is then computed, and it becomes the new value of the 

information label for E2. In addition to the properties just described, the CMW model also 

discusses privilege and DAC. The model does not address direct process-to-process 

communication, but does treat pipes as objects. As is appropriate when modeling a policy 

that is subject to misuse, the existence of a channel based on information labels is 

derivable from the model itself. 

4.4.4 THE CHINESE WALL SECURITY POLICY 

As presented by Brewer and Nash, the 'Chinese Wall" Policy is a mandatory access 

control policy for stock market analysts. [BREW89] This organizational policy is legally 

binding in the United Kingdom stock exchange. According to the policy, a market analyst 

may do business with any company. However, every time the analyst receives sensitive 

"inside" information from a new company, the policy prevents him from doing business with 

any other company in the same industry because that would involve him in a conflict of 

interest. In other words, collaboration with one company places a "Chinese wall" between 

him and all other companies in the same industry. Sameness of industry might be judged 

according to business sector headings found in listings of the stock exchange, for example. 

Notice that this policy does not, by itself, prohibit conspiracies. For example, one market 

analyst can give information about a company in industry I to a company in industry J. 

Subsequently, another analyst can transfer this information from the company in industry J 
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back to some other company in industry I. Analogous conspiracies between colluding 

processes, however, are explicitly ruled out in the corresponding system security policy 

and its model, [cf BREW89, Axiom 6] 

Brewer and Nash argue that this policy cannot be modeled using models in the style of 

Bell and La Padula that obey tranquility. However, this policy can easily be modeled as a 

variant of the CMW model. Information and sensitivity levels are both sets of categories, 

where each category represents a different company. There is an accreditation range for 

information levels. A level belongs to the accreditation range if and only if it does not 

contain two or more companies from the same industry. The model must be extended 

slightly by adding information labels for users. Every user and every controlled entity has a 

system-high sensitivity level, reflecting the fact that an analyst may work with any 

particular company. Every user starts out with an empty (system-low) information label. 

Each time an analyst attempts to read information in a new category (i.e., company), his 

information level floats up, unless it goes outside of the accreditation range, in which case 

his attempt is rejected. Notice that, as in the CMW example, there are thousands of 

categories. While the rule for combining categories is straightforward, the accreditation 

range is not. Additional thoughts on the use of accreditation ranges in controlling 

aggregation may be found in the paper "Extending the Brewer-Nash Model to a Multilevel 

Context." [MEAD90b] 
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At evaluation class C1 and above, a "description of the manufacturer's philosophy of 

protection and an explanation of how this philosophy is translated into the TCB" is required. 

For evaluation classes B1 and above, this requirement is supplanted with explicit security 

modeling requirements. This section contains a listing of these requirements, followed by a 

discussion of how a security policy model can meet these requirements, as well as satisfy 

related assurance and architectural requirements. 

5.1 STATED REQUIREMENTS ON THE SECURITY MODEL 

Requirements that are new at a given evaluation level are presented in bold face. 

5.1.1 B1 REQUIREMENTS 

1. An informal or formal model of the security policy supported by the 
TCB shall be maintained over the life cycle of the ADP system. An 
informal or formal description of the security policy model enforced by 
the TCB shall be available. 

2. [The security model] shall be demonstrated to be consistent with its 
axioms. 

3. An explanation [shall be] provided to show that it is sufficient to 
enforce the security policy. 

4. The specific TCB protection mechanisms shall be identified and an 
explanation given to show that they satisfy the model. 

5.1.2 B2 REQUIREMENTS 

1. A formal model of the security policy supported by the TCB shall be 
maintained over the life cycle of the ADP system. A formal description of the 
security policy model enforced by the TCB shall be available. 

2. [The model] shall be proven consistent with its axioms. 

3. [The model shall be] proven sufficient to enforce the security policy. 

4. The specific TCB protection mechanisms shall be identified and an 
explanation given to show that they satisfy the model. 

5.1.3 B3 REQUIREMENTS 

1. A formal model of the security policy supported by the TCB shall be 
maintained over the life cycle of the ADP system. A formal description of the 
security policy model enforced by the TCB shall be available. 

2. [The model] shall be proven consistent with its axioms. 
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3. [The model shall be] proven sufficient to enforce the security policy. 

4. The specific TCB protection mechanisms shall be identified and an 
explanation given to show that they satisfy the model. 

5. A convincing argument shall be given that the DTLS is consistent with 
the model. 

5.1.4 A1 REQUIREMENTS 

1. A formal model of the security policy supported by the TCB shall be 
maintained over the life cycle of the ADP system. A formal description of the 
security policy model enforced by the TCB shall be available. 

2. [The model] shall be proven consistent with its axioms. 

3. [The model shall be] proven sufficient to enforce the security policy. 

4. The specific TCB protection mechanisms shall be identified and an 
explanation given to show that they satisfy the model. 

5. A convincing argument shall be given that the DTLS is consistent with the 
model. 

6. A combination of formal and informal techniques shall be used to show 
that the FTLS is consistent with the model. This verification evidence 
shall be consistent with that provided within the state-of-the-art of the 
particular National Computer Security Center-endorsed formal 
specification and verification system used. 

7. During the entire life cycle, i.e., during the design, development and 
maintenance of the TCB, a configuration management system shall be in 
place ... that maintains control of changes to the formal model.... 

5.2 DISCUSSION OF THE B1 REQUIREMENTS 

1. Provided Model of the Security Policy Enforced by the TCB. The decision of 

whether to use a formal or informal model is a matter of choice, as can be seen from the 

TCSEC Glossary. An informal security policy model should be presented with enough 

precision that a formal mathematical model could be constructed if needed. A formal 

security model must conform to accepted standards of mathematical rigor. 

The security model must present a definition of security and an enforcement policy 

(i.e., rules of operation) for controlled system entities. The controlled entities may be 

correctly interpreted as storage objects, devices, processes, and other controlled system 

resources. The model must present the system's notion of access and explain how access 

checks (or constraints) succeed in preventing unauthorized access. Thus, the model must 

consist of more than just a high-level description of security requirements. 
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Since formal proof is not required, a firm distinction between abstract security 

requirements and concrete enforcement mechanisms may be unnecessary. It is absent 

from the [NCSC88] definition of a security policy model. A distinction between the 

reference monitor and other portions of the TCB is also not required, but the role of TCB 

subjects in the enforcement of the security policy must be taken into account. Moreover, in 

the case of a retrofitted system that did not originally support trusted user roles, the 

interface between TCB subjects and the basic system kernel may be too complicated for 

TCB-subject modeling to be valuable. 

2. Demonstration of Internal Consistency. The second modeling requirement 

covers two related concerns. The model must not contain inconsistencies. In other words, 

it must not contradict itself. Moreover, a formal or informal demonstration must show that 

the modeled enforcement policy is sufficient to achieve any modeled security requirements 
("axioms"). In other words, the rules of operation must imply the definition of security. 

3. Explanation of Sufficiency to Enforce the Security Policy. An explanation must 

be provided to show that the model's description of the security policy is adequate — that 

the model leads to a system whose TCB enforces the advertised system security policy. 

Forthe model to be sufficient or adequate in this sense, it must include key ideas used in the 

design of the security enforcement mechanisms. The resulting rules of operation should 

provide a basis for understanding how the system's main security enforcement 

mechanisms enforce the security policy. In the case of networks and other complex 

systems, models of key subsystems are needed in addition to a model of the entire system. 

In particular, "the overall network policy must be decomposed into policy elements that are 

allocated to appropriate components and used as the basis forthe security policy model for 

those components". [NCSC87, Sec. 3.1.3.2.2] 

The system security policy itself must include the minimum requirements of 

Section 3.1.1 of the TCSEC, and the model should tailor Section 3.1.1 to the particular 

system at hand. The access control requirements in Section 3.1.1 must always be 

modeled, whereas the need to model the labeling and object reuse requirements will vary 

from one system to the next, [cf NCSC87, Sec. 3.1.4.4] 
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The security policy model must include a description of DAC. An explanation of how 

DAC interacts with MAC is encouraged but not explicitly required. In particular, there is no a 

priori requirement for DAC objects to coincide with MAC objects. 

The security policy model must include a description of MAC. The decomposition of 

sensitivity levels into clearance, nondisclosure category, or other components need not be 

explicitly included unless such decomposition is essential to an understanding of the 

model. Flagrant examples of illegal information channels may be regarded as MAC policy 

violations, even though a covert channel analysis is not required. More specifically, a 

documented (or trivially inferred) use of a system function must not result in an illegal 

transfer of information. 

Modeling of the following security policy requirements may be useful, but is traditionally 

not required: 

• A process acting on behalf of a user must have a label that is dominated by 
the clearance and authorization of that user. 

• Information flowing across a device must have an implicitly or explicitly 
associated sensitivity level, according to whether the device is classified as 
single-level or multilevel. 

• Object reuse and process initialization do not happen in such a way as to 
allow unauthorized disclosure. 

• In a network, the overall network security policy is enforced by the NTCB. 

• Additional vendor supplied security requirements, whether derived from 
governing regulations or customer needs, may be enforced by the TCB. 

4. TCB Protection Mechanisms and Correspondence to Model. The TCSEC 

modeling requirements must be met in a way that is consistent with the needs of the system 

development process and with actual TCB protection mechanisms. The vendor must 

supply a model interpretation showing how the rules of operation in the model relate to the 

actions of the TCB. The model interpretation must address the reference monitor interface 

and show how subject instructions are accounted for. 

The following aspects of a system do not have to be modeled although their 

representation in the model may be useful: 

• Error diagnostics, 

• The contents of storage objects and other controlled entities, 
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• The scheduling of subjects and their synchronization with external inputs, 

• Internal TCB structure, 

• Portions of the TCB that do not support user-requested computation 
(e.g., security-administrator functions), and 

• An individual network component that has a very simple (or nonexistent) 
reference monitor and contains no subjects which act on behalf of users. 

5.3 DISCUSSION OF THE B2 REQUIREMENTS 

1. Provided Model of the Security Policy Enforced by the TCB. The model must be 

written in a formal mathematical notation; either mathematical English or a well-defined 

formal specification language is acceptable. From the TCSEC Glossary definition of a 

formal security policy model, it is clear that the model must describe both what security is 

and how it is enforced. As discussed in Section 3.2, the definition of security can be 

formalized using either external-interface requirements or internal requirements on 

controlled entities. The explanation of how security is enforced typically takes the form of 

rules of operation. 

2. Demonstration of Internal Consistency A mathematical proof must be given 

showing that the rules of operation ensure satisfaction of the modeled security 

requirements. 

3. Explanation of Sufficiency to Enforce the Security Policy. The proof referred to 

in this requirement is an informal, rather than a mathematical proof, because sufficiency 

depends on the typically informal security policy. The intent of this documentation 

requirement is that stronger evidence of sufficiency be provided at B2 than at B1. If 

the system has a novel approach to mandatory or discretionary access control, it may be 

necessary to model both what the system does and what Section 3.2.1 of the TCSEC 

requires and then to prove that the system does what is required. Stronger evidence of 

sufficiency is possible, if the model is compatible with other B2 security, accountability, and 

assurance requirements. For this reason, explicit inclusion of the following requirements 

may be useful: 

• The TCB shall support the assignment of minimum and maximum security 
levels to all attached physical devices. These security levels shall be used by 
the TCB to enforce constraints imposed by the physical environments in 
which the devices are located. 
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• [The TCB design shall] separate those elements [of the TCB] that are 
protection-critical from those that are not. 

• The TCB modules shall be designed such that the principle of least privilege 
is enforced. 

• The user interface to the TCB shall be completely defined and all elements of 
the TCB identified. 

• The TCB shall support separate operator and administrator functions. 

• The system developer shall conduct a thorough search for covert storage 
channels. 

• The TCB shall support a trusted communication path between itself and the 
user for initial login and authentication. Communications via this path shall 
be initiated exclusively by the user. 

If separate security models are given for the security kernel and other components of 

the TCB, then the pieces must fit together correctly, and arguments should be given to the 

effect that overall system security is achieved and necessary checks are not inadvertently 

omitted. As indicated in Section 3.2, the notion of which storage channels are covert is 

partially reflected in the security model, and the inclusion of information flow requirements 

in the model's definition of security can reduce the effort needed to perform covert channel 

analysis. 

4.   TCB Protection Mechanisms and Correspondence to Model.    The  B2 

requirements for validation of TCB protection mechanisms are basically the same as those 

discussed at the end of Section 5.2, except for an implicit completeness requirement. This 

requirement is that "the TCB shall enforce a mandatory access control policy over all 

resources (i.e., subjects, objects,and I/O devices) that are directly or indirectly accessible 

by subjects external to the TCB." This requirement should be reflected in the model 

interpretation, and its satisfaction may require extensions to the model in order to account 

for all accessible resources in the implementation. The model interpretation itself may be 

accomplished in two steps, by first mapping the model to the DTLS and then the DTLS to 

the TCB implementation. 

5.4 Discussion of the B3 Requirements 

The B3 requirements include the B2 requirements as well as several new requirements. 

1, 2. Provided Modeland Internal Consistency. The basic structure of the security 

model is the same at B3 as at B2. 
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3. Explanation of Sufficiency to Enforce the Security Policy. There is one 

additional security policy requirement at B3, namely that access controls "shall be capable 

of specifying, for each named object, a list of named individuals and a list of groups of 

named individuals with their respective modes of access to that object. For each named 

object, it shall be possible to specify a list of named individuals and a list of groups of named 

individuals for which no access to the object is to be given." 

In addition, the model may usefully reflect, and must be consistent with, the following B3 

architectural assurance requirement: "The TCB shall be designed and structured to use a 

complete, conceptually simple protection mechanism with precisely defined semantics. 

This mechanism shall play a central role in enforcing the internal structuring of the TCB and 

the system. Significant system engineering shall be directed toward minimizing the 

complexity of the TCB and excluding from the TCB modules that are not 

protection-critical." 

4, 5. TCB Protection Mechanisms and DTLS Correspondence to Model. The 

validation of TCB protection mechanisms is normally performed by showing that the model 

is an abstraction of the DTLS and then mapping the DTLS to the actual TCB 

implementation. (See Section 2.3.6.) 

5.5 DISCUSSION OF THE A1 REQUIREMENTS 

1-5. Previously Introduced Requirements. The first five requirements are the same 

at A1 as at B3 (except for the fact that the FTLS rather than the DTLS is mapped to the 

implementation). The requirements for a formal covert channel analysis invite, but do not 

require, the use of information flow or similar external-interface models. 

6. FTLS Correspondence to Model. The main new requirement at this level is that a 

"formal" mathematical proof be given showing that the security model is an abstraction of 

the FTLS. This proof may be carried out either by hand or with the use of an endorsed 

formal verification system. In either case, the vendor is responsible for providing an 

understandable, logically correct justification of correspondence. This justification 

normally begins with the formulation of a rigorous conjecture to the effect that the model is 

an abstraction of the FTLS. If part or all of the proof is presented to a verification system, 

then the vendor must demonstrate that the presented portion is correctly codified in the 
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formal language of the verification system.   This demonstration may require informal 

argument and an appeal to the semantics of the system's formal specification language. 

There are two common ways of showing that the FTLS is consistent with the model: 

comparing the FTLS with the rules of operation and comparing the FTLS directly with the 

model's definition of security. In the latter case, the rules of operation and model 

interpretation are similar in purpose to the FTLS and its implementation correspondence, 

respectively. This parallelism of requirements does not necessarily imply duplication of 

effort, however, because there are no explicit requirements which force a distinction 

between the FTLS and the rules of operation. 

7. Configuration Management for the Model. The requirement that the model and 

related documentation be maintained under configuration management is not a modeling 

requirement, perse. However, because of this requirement, extra care is needed to ensure 

that the model is given in a form that contributes to its maintainability. 
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Policies that control information flow often rely on partially ordered sets of security 

attributes. This appendix introduces partial orderings as they relate to information flow 

and presents basic facts about partial orderings that are relevant to the modeling and 

implementation of label-based security policies. Many of these facts can also be found in 

the undergraduate text [ABB069]. 

Most processes satisfy two basic information flow properties: 

reflexivity:    A process can access any information it possesses.   That is, 
information can always flow from a process to itself. 

transitivity:    If information can flow from process P1 to process P2 and can 
flow from P2 to P3, then information can flow from P1 to Ps.1' 

These two properties of information flow determine a preordering relation between 

processes.  If processes are labeled in such a way as to make economical use of label 

values, then the following property may also hold as well: 

antisymmetry:    If information can flow from a process with label Li to a process 
with label L2, and conversely, then /_? = L2. 

Thus, the intended relationship between labels and information flow leads to consideration 

of a reflexive, transitive, antisymmetric relation on label values, that is, a partial ordering. 

The intended relationship between information flow and this partial ordering can be 

expressed by saying that Z.7 < L2, if information is allowed to flow from controlled processes 

with label L-, to controlled processes with label L2. This relation is traditionally referred to as 

dominance:   L/ is dominated by L2\\ and only if Lj < L2. 

The following sections introduce basic terminology and show how partial orderings can 

be constructed and manipulated through the use of embeddings, Cartesian products, and 

dual orderings. 

A.1 TERMINOLOGY 

Formally, < is taken to be a partial ordering on a set i whose elements are referred to 

as levels. A pair of the form (i, <) is a partially ordered set. For any levels L7 and Z^.Z.* 

< L2 if and only if /_? < L2 and L7 ^ L2. The lowest, or minimum, level of z, if such exists, is 

t This is a worst-case assumption; P2 might be constructed so that information from P1 was never 
passed along to P3. 
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that level which is dominated by all other levels in i. Similarly, the highest, or maximum, 

level dominates all other levels. A minimal level, by way of contrast, is one that fails to 

dominate any level other than itself. Similarly, a maximal level is not dominated by any 

other level. If there are several maximal levels then there is no maximum level. 

Traditionally, the lowest level among all levels in a given system is referred to as 

system-low. Similarly, the highest level is system-high. However, these levels do not 

always exist. In Figure A.1, the highest level is H. There are two minimal levels, L and L', 

and, therefore, no lowest level. (The intended partial ordering here is the transitive, 

reflexive closure of the relation actually pictured, so that L< H, by transitivity.and H<H,by 

reflexivity.) 

Figure A.1. A Partial Ordering 

The greatest lower bound of two levels, L1 and L2, is the highest level that is dominated 

by both L-t and L2, provided such a level exists. Similarly, the least upper bound of L-, and 

L2, is the lowest level that dominates both L-, and L2, provided such exists. In the above 

diagram, His the least upper bound of /Wand M'. His also an upper bound of L and U, but 

not the least such, because /Wand M' are both lower. Moreover, L and L' do not have a 

least upper bound, because the set of levels greater than both L and U contains two 

minimal elements, namely /Wand M'. A partial ordering in which all pairs of levels have a 

least upper bound is a semilattice. A semilattice in which all pairs of levels have a greatest 

lower bound is a lattice. 

Two levels L-, and L2 are incomparable if and only if U neither dominates nor is 

dominated by L2. A set JH, of levels is linearly ordered if and only if no two elements of JL are 

incomparable. In the above diagram, /Wand M' are incomparable. The set {L, M, H} is 

linearly ordered (with L <H, by transitivity). 

If C is any finite set, then the set of all subsets of C, 9(C), is partially ordered by the 

set-inclusion relation. In other words, L? is dominated by L2 if and only if /_r is a subset of L2; 
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in symbols, Lj c L2. This gives a lattice ordering on <3>(Cf. The lowest level of 9>(C) is the 

empty set; the minimum levels above the empty set are the singleton sets of the form {c}, 

where c belongs to C. These singleton levels are variously referred to as categories or 

atoms. The highest level is C itself. 

A.2 EMBEDDINGS 

When implementing a partially ordered set of levels, it is always possible to choose a 

larger implementation set whose additional elements are simply not used. In particular, 

any partially ordered set can be fully embedded in one of the form (9(C), c); that is, given 

any partial ordering < on a set i, there is a one-to-one mapping e into a set of the form 

9(C) such that, for any LhL2 in I, L1 < L2 if and only if e(Lj) c e(L2). In fact, one may take 

e(L) = {UIU < /_}. In the case of linearly ordered sets, the embedding 

f(L) = {U IL' < L} also works. For example, if i is a linearly ordered set of 16 clearance 

levels, then i may be fully embedded in a set of fifteen categories. A word of caution is in 

order regarding full embeddings: they need not preserve least upper bounds. If L is the 

least upper bound of L? and L2, then e(L) is an upper bound of e(Lj) and e(L2), but need not 

be the least upper bound. Greatest lower bounds can also fail to be preserved under full 

embeddings. 

As a further application of embeddings, consider the problem of specifying a set &of 

levels at which a given device may pass information. Assume % is convex in the sense that 

L E % whenever L1tL2 e % and L-, < L < L2. Assume also, that % is a subset of the 

system's accreditation range A. The partially ordered set A can always be embedded in a 

lattice L in such a way that, for some device minimum, min, and some device maximum, 

max, % = {L E A | min < L < max}. Thus, arbitrary convex sets may be specified as 

device ranges, at least if one allows unaccredited levels in the specification of the device 

range. 

A.3 CARTESIAN PRODUCTS 

The effect of simultaneously applying two label-based policies to a set of entities is the 

same as applying a corresponding composite policy to entities, each of which has a single 

composite label. If the partially ordered sets forthe two policies are {i, <) and (i/, <'), then 

t R(C) is traditionally referred to as the "power set of C." 
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the composite label has values in the Cartesian product, (i, <)x(i', <') = (ixz', <"), 

where the new partial order, <", is defined by (Lu Lr') <" <L2,L2'} if and only if L? < L2 and 

L-i' <' L2'. The sets i and i' are referred to as components oilxi'. A sample Cartesian 

product ordering is illustrated in Figure A.2. Notice that, in the Cartesian product, the level 

{S, 0) is incomparable to the level {U, (a)). (Some punctuation has been omitted in the third 

lattice diagram.) 

S{c, d} 

U 

{c,d} 

x {c} {d} 

0 

Sic} 

U{c} 

S{d} 

U{d} 

Figure A.2. A Cartesian Product Ordering 

If C and D are disjoint, then the partially ordered sets {9(C), c) x {9(D), c) and 

(g>(Cu D), c) are isomorphic, meaning that there is a full embedding which maps 

<$(C)x9(D) on to 9>(Cu D). In particular, traditional nondisclosure labels consisting of 

clearances and category sets can be fully embedded into a set of the form <3>(A), 

with A = C u D. 

Usually, there are several nonequivalent ways to decompose a partially ordered set into 

two components. For a partially ordered set of the form (9(A), c), there are n + 1 

meaningfully different ways, where n is the number of categories in A (since the first 

component can have any number of categories between 0 and n). In particular, the 

decomposition into clearance and category components could be configuration 

dependent, even if the labels themselves were not. 

A.4 DUALITY 

The notion of duality between nondisclosure and integrity that is evident in some 

security policies has a formal analogue for partial orderings. For a given set land 

associated partial ordering <, the dual ordering for (i, <) is the relation ^ defined by 

/_! >r L2 if and only if L2 < Lh A Biba policy (as described in Section 3.5.3) that is based on 
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(i, ^) can be rewritten as a nondisclosure policy based on the dual ordering (i, >:), so that 

information is allowed to flow from L1 to L2, provided L1 ^ L2. Usually, to avoid confusion, 

the elements of the dual ordering would be renamed so that the intended ordering is 

obvious from the level itself. 

The dual ordering for (9>(C), c) is the set-containment relation, 2, and the lattice 

(9>(C), c)isisomorphicto(9>(C), a) underthe mapping e given by e(A) = C \ A, for each A 

in 3>(C), where C \ A is the complement set containing those elements of C not in A In this 

case, the categories of (9(C), a) are the dual categories of (9(C), c), that is, they are sets 

of the form C \ {c}. In Figure A.2, {cj = C\ {a}, so that {c} is both a category and a dual 

category. 

The a relation is the ordering used to ensure nondisclosure for "distribution" sets in 

Section 3.3.4. This observation suggests a method for accommodating release markings 

of the form "REL<countries>" through the use of MAC categories. Each country c is 

associated with the dual category C \ {c}; a message with category set B is releasable to 

country c, if B c C\{c), that is, if c £ B. The most sensitive of these release markings, 

namely "NOFORN," is represented by the largest category set, the set C containing all 

relevant countries. 

In a system with a nondisclosure policy based on (Jf,<) and a Biba integrity policy 

based on (3, ^), the partial orderings that control information flow would be < and >z, so 

that the two policies can be combined to obtain a single policy pertaining to information flow 

that is based on composite levels taken from the partially ordered set (J\T, <)x(3, >:). 

Suppose each of the original orderings have minimum and maximum levels. If the 

minimum integrity level is integrity-low, then integrity-low is the maximum level with 

respect to the dual ordering. Consequently, the composite ordering contains the four levels 

indicated in Figure A.3. Notice that the composite level which represents both 

system-high nondisclosure and system-high integrity is not the maximum level but the one 

on the right. 
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(nondisclosure - high, integrity - low) 

/ \ 
(nondisclosure-low, integrity-low) (nondisclosure-high, integrity-high) 

(nondisclosure - low, integrity- high) 

Figure A.3. Extreme Points in a Product Ordering 

Finally, if nondisclosure and integrity are handled similarly, the decomposition of combined 

levels into nondisclosure and integrity components may be treated as a system 

configuration decision in order to handle varying emphasis on nondisclosure and integrity. 
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This appendix discusses the use of NCSC-endorsed formal verification systems for 

security modeling. A list of endorsed verification systems called the Endorsed Tools 

List (ETL) is maintained by the NCSC. These tools define the level of rigor which must be 

met by formal assurance provided for systems receiving an A1 evaluation. The following 

paragraphs discuss verification systems with emphasis on the two currently endorsed 

systems, GVE ("Gypsy Verification Environment") and FDM ("Formal Development 

Methodology"). 

In general, a verification system is defined by its specification language and its 

reasoning mechanism. Its implementation includes tools for parsing specifications, 

verifying their legality, and outputting conclusions which have been verified by the system. 

A verification system can provide a codification of a security model and can help 

demonstrate that its rules of operation are consistent with its security requirements. The 

utility of a verification system depends on the expressiveness of its specification language, 

the soundness of its reasoning mechanism, the correctness and utility of its 

implementation, and the quality of its documentation, [cf NCSC89] 

Both GVE and FDM provide a rich variety of data types and associated operations from 

mathematics and computer science, (including scalar types, finite sets, sequences, and 

records.) Both systems have interactive theorem provers that may be used to verify 

specifications; they accept theorem-proving commands and include facilities for printing 

completed proofs. Both theorem provers use specially designed systems of logic that 

extend many-sorted, first-order logic. Both systems come with special-purpose tools for 

performing covert channel analysis via shared resource matrices. These systems are 

suitable for writing formal state-machine models, but they require specialized training. 

The writing of formal models and specifications in a formalized language has been 

found to be the most fruitful aspect of using verification tools. This is the conclusion of 

several major verification efforts, including BLACKER, the Boeing LAN, LOCK, and the 

Multinet Gateway. The writing of formal descriptions encourages a more precise and 

abstract understanding of security, forces the resolution of design issues needed to 

complete the model or specification, and provides a clear basis for implementation 

analysis.   In general, both manual proofs and machine proofs provide more assurance 
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than specifications alone. Experience has shown that machine proofs are more reliable 

than hand proofs but that they are also more time consuming and are still not foolproof. 

There are still many sources of possible error. The TCSEC itself is based on policy 

directives rather than mathematical formalisms. Rigorous, general frameworks for 

computer security have not yet been developed. 

B.1 FDM: THE FORMAL DEVELOPMENT METHODOLOGY 

FDM supports multilevel specifications at a series of abstraction levels. Each level 

refines the prior level by adding more detail and more functions. The FDM specification 

language, Ina Jo, provides a formalized notation for describing state machines that 

includes provisions for declaring state variables and for specifying initial states, state 

invariants, state transition constraints, and state transformations. Its type mechanism 

includes a general facility for declaring subtypes that is useful for classifying controlled 

entities in a security model, for example. The Ina Jo specification processor automatically 

generates correctness assertions to the effect that every reachable state satisfies the 

provided state invariants and state transition constraints. 

FDM began in 1974 as an internal research project at the System Development 

Corporation (now UNISYS Corporation). FDM is currently owned by PARAMAX Systems 

Corporation, a subsidiary of UNISYS Corporation. Its early development was driven by 

specific problems in formal modeling and formal specification and verification with the goal 

of complementing system testing as a means of validating correctness. Since then, a 

series of incremental enhancements has increased its power, efficiency and portability, 

added new capabilities, and improved its documentation. FDM Release 12.4, the most 

recently endorsed version, contains two new flow tools: a shared resource matrix tool that 

assists in the manual analysis of potential covert channels and an automated flow tool for 

detecting and analyzing information flows in specifications. FDM Beta Release 12.5 

contains a much improved flow tool and a new interactive tool for executing Ina Jo 

specifications against user-supplied test cases. The FDM tools run on Sun Workstations, 

on DEC VAXes running Berkeley UNIX, and on Multics. 
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The available documentation on FDM includes the FDM UserGuide[EGGE89],\he Ina 

Jo Specification Language Reference Manual [SCHE89], and the Interactive Theorem 

Prover (UP) Reference Mamva/[SCH088]. Examples of Ina Jo based security modeling 

efforts may be found in [NCSC90b, CHEN90, FELL87, CHEH81]. 

B.2 GVE: THE GYPSY VERIFICATION ENVIRONMENT 

The GVE is an interactive system that makes extensive checks to ensure legality of 

specifications. In particular, recursive functions must terminate, partial functions must not 

be applied outside their domains, and theorems may be proved. The GVE maintains user 

databases and supports incremental program development through the use of "header" 

files. 

The GVE specification language, Gypsy, has been used for a variety of security models, 

including several that are not based on state invariants and state transition constraints. 

Gypsy supports the use of local name spaces called "scopes" and includes "mapping" 

types that can be used as abstractions of hash tables and othercomplex data structures. In 

Gypsy, states can be modeled as records whose components represent state variables. 

Initial states and state transitions are described with the help of a binary "with" operator, and 

theorems about reachable states are stated directly using the "lemma" construct. Gypsy 

contains a programming language portion that has a Pascal-like syntax, includes condition 

handling facilities and concurrent processes, and is supported by a "verification condition 

generator" that allows proofs of program correctness. An operational semantics has been 

given for a portion of Gypsy. [GOOD90] 

The development of the GVE began in 1974 at the University of Texas at Austin with the 

goal of verifying communications processing systems. Initial work with the first version of 

Gypsy led to significant language simplifications and some extensions in Gypsy 2.0. 

In 1986, Computational Logic, Inc., assumed responsibility for GVE and completed work 

on Gypsy 2.1. A subset of this has been implemented as Gypsy 2.05, the current language 

forthe Gypsy methodology. The currently endorsed implementation is GVE 13.16. Recent 

work has been directed towards improved documentation, performance analysis and 

improvement, and the development of a better configuration management system. 

Version 20.70 of the GVE is currently being considered for NCSC endorsement. 
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Available documentation on GVE includes the Report on Gypsy 2.05 [GOOD89], 

Using the Gypsy Methodology [GOOD88], and the Gypsy Verification Environment User's 

M3/7t/a/[AKER90]. Examples of Gypsy-based security modeling efforts may be found in 

[DIVI90, FINE90, FREE88, CHEH81]. 
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PHILOSOPHY OF PROTECTION OUTLINE 

This appendix outlines material suitable for a Philosophy of Protection (POP) 
document. Its purpose is to provide a template for vendors who desire additional guidance 
in producing a POP. Unless otherwise noted, required portions of this and the following 
appendix are those which are accompanied by an explicit reference to the TCSEC. 

There are no TCSEC requirements on the organization of this material or on how it is 
packaged in vendor-supplied documents. If the information outlined in this and the 
following appendix appears in two or more separate documents, careful cross referencing 
will help the reader assemble a complete picture. 

1. INTRODUCTION 

Present"... a description of the manufacturer's philosophy of protection." [2.1.4.4] 

A higher-level policy on the design and use of a trusted computing system is normally 
implemented by a combination of automated, procedural, and physical safeguards. 
The POP can show that these safeguards fit together in such a way as to achieve stated 
security objectives. The POP is an open-ended document of varying length and 
content, and any relevant system-related activity may be used to substantiate the 
vendor's philosophy of protection; including requirements analysis, design, 
implementation, testing, marketing, and method of delivery. For systems in higher 
evaluation divisions, the POP is likely to contain several staff years of accumulated 
wisdom. 

2. CONTROLLING SECURITY OBJECTIVES 

Describe the anticipated policy for use of the computer and the effect this policy has had 
on the security design. In other words, describe the security objectives which guide the 
design and use of the system being evaluated. Alternatively, give a summary with 
references to a separate security policy document (see Appendix D.2). 

There are several questions that should be answered when preparing this section of the 
POP. In general terms, what is the system to which these objectives are applied, and 
how does the system support these objectives? What is the system interface, and what 
is the security perimeter, that is, the portion of the system and its environment where 
security objectives are actively addressed? (By definition, the security perimeter 
contains the TCB and associated controlled entities.) 
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3. AUTOMATED PROTECTION 

The POP should address how the implemented policy compares with the higher-level 
policy objectives. Is it more or less restrictive? Where, how, and why? 

3.1 SYSTEM SECURITY REQUIREMENTS 

The POP gives security requirements imposed on the system in order to meet the 
above security objectives. It indicates which requirements are refinements or 
extensions of TCSEC requirements. Distinguish between "policy" requirements 
that are modeled with the assurance required for the system's evaluation class and 
other security-relevant functional requirements. At B1 and above, this distinction 
can be emphasized by merely summarizing policy requirements in the philosophy of 
protection and referencing their full presentation in a separate policy model 
document (see appendix D.4). 

3.2. TCB STRUCTURE 

A description of the TCB provides needed context for an explanation of how the 
vendor's philosophy of protection is reflected in the TCB. Moreover, "if the TCB is 
composed of distinct modules, the interfaces between these modules shall be 
described." [2.1.4.4] Relevant aspects of the TCB hardware/software architecture 
include the TCB interface to untrusted resources, as well as software, firmware, and 
hardware protection mechanisms. Forclasses B2 and above, much of the needed 
information will be contained in the DTLS and need only be summarized here. 

Brief answers and/or references are recommended for the following sorts of 
questions. What are the protected resources? How is subject activation and 
deactivation accomplished? How is I/O handled? How is output labeled and what 
security attributes are associated with "named users"? What are the named objects 
used for DAC, and what are the storage objects used for MAC? How are they 
created and destroyed? Are there "public" objects accessible to all users? 

What are the main TCB software modules? What are their interfaces to each other, 
to the hardware, and to untrusted resources? What is the virtual machine 
architecture and its relationship to the underlying hardware? What is the hardware 
architecture? How does it perform task management, storage management, and 
device control? 

3.3 VALIDATION OF THE TCB WITH RESPECT TO THE SECURITY 
REQUIREMENTS 

"Documentation shall be available that provides a description of ... how this 
philosophy [of protection] is translated into the TCB." [2.1.4.4] This requirement 
may be satisfied by directly relating the avowed philosophy to the TCB protection 
mechanisms. 
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At higher evaluation levels, this requirement is largely supplanted by other similar 
requirements. At B1 and above, it is supported by explanations which show that the 
TCB satisfies the security model and, therefore, enforces the modeled portion of the 
system security policy. At B2 and above, it is supported by the DTLS and by 
documentation showing that the DTLS accurately describes the TCB interface. At 
A1, it is supported by a proof showing that the FTLS satisfies the model and by 
informal testing and analysis showing that the FTLS accurately describes the TCB 
interface. 

4. PROCEDURAL AND PHYSICAL SECURITY MECHANISMS 

In general, threats to the secure use of a system are thwarted by a combination of 
automated mechanisms, procedural methods, and physical constraints on the 
computing environment. The effectiveness of these combined safeguards can be 
argued by giving a taxonomy of potential threats against the system and by showing 
how each kind of threat is countered by a combination of TCB security requirements 
and related measures described in the Security Feature User's Guide and/or the 
Trusted Facility Manual. 

5. NOTES AND CONCLUSIONS 

The POP should present any other significant aspects of the vendor's philosophy of 
protection. It should explain what conclusions are to be drawn from the empirical and 
analytical evidence presented. 

6. GLOSSARY 

The POP should list technical terms and give definitions. It should include all terms 
whose usage differs with either TCSEC definitions or common usage. Include all terms 
for which multiple definitions are in common use (e. g., user, subject, object, trusted 
subject). 

7. REFERENCES 

The POP should include references to relevant design documentation. 

8. APPENDIX ON SATISFACTION OF THE (e.g., CLASS B2) CRITERIA 

It may be helpful to list each TCSEC requirement forthe candidate evaluation class and 
show how it is met. This step is definitely optional, but it can help resolve questions 
about the meaning of particular requirements as they apply to particular systems. 
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The following outline contains a suggested organization of material for a Security Policy 
Model Document. Its purpose is to provide a template for vendors who desire additional 
guidance in producing a security policy model. Any or all of this material could 
appropriately be included in the Philosophy of Protection. 

1. INTRODUCTION 

The purpose of this document is to present "an informal or formal model of the security 
policy supported by the TCB." [3.1.3.2.2] By definition, the security model includes a 
definition of security describing the policy enforced by the system as well as rules of 
operation giving design guidance on how to enforce the requirements in the definition of 
security. 

A summary of the manufacturer's philosophy of protection [cf 2.1.4.4] may help 
establish an appropriate context for the presentation of the security policy and model. 
In particular, a summary of the TCB protection mechanisms, their support for the 
security policy, and their role in implementing the model will help establish the relevance 
of the model to the system being developed. 

2. THE SECURITY POLICY 

"A statement of intent with regard to control over access to and dissemination of 
information, to be known as the security policy, must be precisely defined and 
implemented for each system that is used to process sensitive information." [5.3.1] It 
will help avoid confusion if high-level security policy objectives are carefully 
distinguished from, and related to, derived policies that directly impact the design and 
use of the system. The policies that most need to be modeled are those giving the actual 
security requirements to be enforced by the system and the rules of operation showing 
how these requirements are enforced. 

The security policy statement should answer several questions. Is the security policy 
composed of several different policy elements? Is the system composed of several 
subsets, subsystems, components, or layers? If so, for each identified portion, what 
security services are provided, and what security services are relied on as provided by 
other portions? What are the interfaces between the various portions to be modeled? 
How do they combine to form the complete system? 
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2.1 MARKING OF INFORMATION 

"... it is necessary that the system mark information with appropriate classification or 
sensitivity labels and maintain these markings as the information moves through 
[and is exported from] the system." [5.3.1.3] A marking policy is required in relation 
to MAC and may be appropriate for any policy based on the use of associated 
security attributes. 

Several questions concerning the marking of information should be answered within 
the security model. How are security attributes assigned to controlled entities and 
under what authorization? To what extent are marking decisions made, 
remembered, and then repeatedly applied for a period of time? How is object reuse 
accomplished? How do security attributes propagate during the processing of 
information (e.g., when a new storage object is created)? How (and under what 
circumstances) are security attributes presented when information leaves the 
system? What is the precise marking policy for paged hardcopy output? Are there 
additional marking requirements forthis system that are not covered in the TCSEC? 
How is the level of a subject tied to the clearance and authorization of its user? Is a 
given I/O action taken on behalf of a particular user? If so, is it consistent with the 
clearance and authorization of that user? 

The following questions are relevant at B2 and above. How are minimum and 
maximum device levels used? What is the policy for changing device levels? How is 
the marking policy allocated to different portions of the TCB? How does the marking 
policy interact with special user roles associated with security administration and 
system operation? 

2.2 MANDATORY SECURITY POLICY 

The security model should "... include a set of rules for controlling access based 
directly on a comparison of the individual's clearance or authorization for the 
information and the classification or sensitivity designation of the information being 
sought, and indirectly on considerations of physical and other environmental factors 
of control." [5.3.1.1] 

2.3 POLICY REGARDING NEED-TO-KNOW 

The security model should "... include a consistent set of rules for controlling and 
limiting access based on identified individuals who have been determined to have a 
need-to-know for the information." [5.3.1.2] "The AIS shall function so that each 
user has access to all of the information to which the user is entitled... but no more." 
[DOD88a, Enclosure 3] The model should answer the following questions: What 
system policy and mechanisms are offered in support of this objective? And to what 
extent do they support it? 
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2.4 ADDITIONAL SECURITY POLICY ELEMENTS 

"The security policy must accurately reflect the laws, regulations, and general 
policies from which it is derived." [5.3.1 ] This portion is dictated by specific customer 
requirements, of which there could be many. The following list presents a typical 
slice through four government policy-making levels. Each level is followed by a list 
of examples. At each level, the boldface example is the one chosen for elaboration 
at lower levels: 

National Policy on Secrecy, Integrity, and Availability 
(Executive Order 12356 covers secrecy policy [REAG82]); 

National Department Policy 
(e.g., DOE, DOD, NIST, HEW) 

(Dir. 5200.28 [DOD88a],TCSEC[NCSC85] refine [REAG82]); 

Branch Policy 
(e.g., USAF, USN, NSA, DIA); 

Command Center Policy 
(e.g., Strategic Air Command, Electronic Systems Command). 

3. ADEQUACY OF THE MODELING PARADIGM 

The security model should explain how the security model's definition of security 
manages to capture essential notions of computer security and how the modeled policy 
relates to the intended policy and to the implemented policy. It should indicate the 
overall abstraction level used in the model. At B2 and above, it should explain any 
formalization techniques that might interfere with a correct understanding of the model. 

3.1 HERITAGE 

The security model should: 

a. Identify any previous models and mathematical formalisms upon 
which the model is based, 

b. Briefly describe these previous model(s); identify (and emphasize) 
those portions from which the model is derived, 

c. Identify areas where the model has extended the base model(s) in 
order to provide better correspondence to policy or to model new 
policy elements. 

d. If the model is not based on a state-machine paradigm, motivate and 
explain the paradigm. 
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3.2 SUFFICIENCY TO ENFORCE THE POLICY 

The model should "show that it [the model] is sufficient to enforce the security 
policy." [3.1.4.4] It should also explain why a system based on the model will 
adequately support the security policy identified in Section 2. If the model is based 
on a previous security model, it should explain how differences enumerated in parts 
3.1 (b) and (c) above maintain or enhance the adequacy of the original approach. 

3.3 RELEVANCE TO THE ACTUAL SYSTEM 

The security model should briefly describe the intended interpretations of the 
various constructs found in the model. At B2 and above, it should also discuss 
whether all system resources are accounted for in the model. 

4. THE SECURITY POLICY MODEL 

The presentation of the model might be loosely divided into four sections: basic 
concepts, a definition of security, other requirements reflected in the model, and rules of 
operation. Some systems will have a more elaborate structure, due to distinctions 
between system and subsystem models or between external and internal 
requirements. In the case of security properties enforced by TCB subjects, the 
distinction between requirements and rules of operation may be moot. An informal 
model may legitimately be presented as part of the security policy. 

4.1 BASIC CONCEPTS 

This section should introduce the basic data types, constants, and operations that 
will be used to build the model. It also presents the underlying model of 
computation; specifies the various kinds of controlled entities and security attributes 
that will occur in the model; and identifies particular security-critical subjects, 
objects, or unlabeled TCB entities that will play a distinguished role in the model. It 
should also answer several general questions. Are there special objects that are not 
accessible by non-TCB subjects? If so, what is their role, and how are they 
protected from access by subjects outside of the TCB? Which subjects are inside 
the TCB; why are they considered part of the TCB? How are these TCB subjects 
created (i.e., statically during system initialization or dynamically by other TCB 
subjects)? What portions of the system policy are implemented by TCB subjects 
exempt from one or more constraints enforced by the reference monitor? How are 
devices modeled? What special properties must hold at system start-up (e.g., 
initial-state requirements in the case of a state machine model)? What are the 
security attributes of each predefined security-critical entity (e.g., security level, 
owner or user, access control lists, associated user roles, exemptions from access 
control)? 
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In a system with multiple subpolicies or a layered design with differing security 
services provided by different layers, some or all of the above questions may have 
multiple answers, depending on the policy or layer. 

4.2 SECURITY POLICY REQUIREMENTS 

In the case of an access control model in the tradition of Bell and La Padula, the 
security policy requirements include the following kinds of assertions or "axioms": 

secure state invariants 
MAC invariants (e.g., simple security, "-property) 
DAC invariants (may legitimately be empty for some policies) 
Usage invariants (e.g., no subject can access an unused entity) 
Other policy-specific state invariants; 

secure state transition constraints 
MAC constraints (e.g., tranquility) 
DAC constraints (e.g., getting access implies authorization) 
Creation constraints (e.g., assignment of security attributes) 
Other policy-specific state transition constraints. 

In the case of a model in the tradition of Goguen and Meseguer, support for a 
mandatory access control objective would involve a statement of noninterference. It 
would be a statement to the effect that the system view available to a subject (or 
user) cannot be influenced by the behavior of other subjects (users) whose security 
level fails to be dominated by that of the given subject. 

4.3 OTHER SECURITY REQUIREMENTS REFLECTED IN THE MODEL 

The following questions are relevant at B2 and above; they may, optionally, be 
addressed in the model. Which objects can be viewed by someone acting in a 
special role associated with system operation or security administration? What 
activities can be accomplished only by invoking such a role (e.g., shutdown and 
restart the system, make backup tapes, restore files, set the clock, take devices 
offline, collect performance statistics, kill runaway programs, manipulate printer 
queues)? Which objects can be viewed or modified by the security administrator? 
In how many ways can the security administrator perform downgrading? What 
activities can be accomplished only by invoking this role (e.g., suspend and restore 
auditing, save audit data on tape, change object ownership, view or modify security 
attributes of arbitrary controlled entities, or view or modify user authentication 
data)? 

The following questions are relevant at B3 and above and may optionally be 
addressed in the model. What is the purpose of each exemption allowed for 
subjects inside the TCB? Which TCB subjects are involved in identification and 
authentication and therefore need access to user authentication data? Which TCB 
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subjects are involved with trusted path and related activities (e.g., set password, 
logout)? Does modification of discretionary access require use of trusted path? 
What privileges are afforded to TCB software supporting special user roles, and to 
what extent can these privileges be passed on to the system operator and security 
administrator? 

4.4 RULES OF SAFE OPERATION 

The model should present key ideas needed to understand the design of the policy 
enforcement mechanism, identify basic kinds of interactions with the TCB and 
explain what constraints are enforced in order to satisfy the model's definition of 
security. 

5. VALIDATION OF CONSISTENCY 

"[The model] shall be ... demonstrated/proven consistent with its axioms." [3.1.3.2.2, 
3.2.3.2.2] The model should demonstrate that any system which obeys the identified 
rules of operation also satisfies the model's definition of security. Depending on how the 
rules of operation are specified, it may also be necessary to justify internal consistency 
among the rules of operation themselves. 

6. NOTES AND CONCLUSIONS 

There should be a section in the model that explains what conclusions are to be drawn 
from the empirical and analytical evidence presented. Significant ramifications of the 
security model should be mentioned. 

7. GLOSSARY 

The model should list technical terms and give definitions; including all terms whose 
usage differs with either TCSECdefinitions or common usage. It should also include all 
terms for which multiple definitions are in common use (e.g., user, subject, object, 
trusted subject). 

8. REFERENCES 

The model should include references to design documentation and previous security 
models on which it was based. 
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APPENDIXE. GLOSSARY 

This Glossary contains definitions of terms involved in security modeling. When 

possible, definitions are based primarily on the NCSC Charter [DOD88a, Definitions], the 

TCSEC [NCSC85, Glossary], the TNI [NCSC87, Glossary], the Computer Security 

Subsystem Interpretation [NCSC88a, Glossary], Criteria Interpretation Reports 

[NCSC88b], and the NCSC Glossary of Computer Security Terms [NCSC88]. In some 

cases, additional information has been added to previously given definitions in order to 

provide further clarification; this additional information is distinguished by its enclosure in 

doublebrackets (I... I). 

Access (to Information) 

The ability and opportunity to obtain knowledge of classified, sensitive unclassified, or 
unclassified information. [DOD88a] 

Access (to a Resource) 

(1) A specific type of interaction between a subject and an object that results in the flow 
of information from one to the other. [NCSC85; NCSC87] 

(2) The ability and the means necessary to store or retrieve data, to communicate with, 
or to make use of any resource of an ADP system. [NCSC87] 

Access Control 

(1) Restrictions controlling a subject's access to an object. [ANDE72; NCSC87] 

(2) The limiting of rights or capabilities of a subject to communicate with other subjects 
or to use functions or services in a computer system or network. [NCSC87] 

Access Control Attribute 

Security attribute used for access control. 

Access Control Model 

A model that gives rules of operation showing how access decisions are made. 
Traditionally, an access control model involves a set of states together with a set of 
primitive operations on states whose behavior is defined by rules of operation. 
Typically, each state contains a set S of "subjects," a set O of "objects," and an access 
matrixA. Foreach subject sand object o, A[s, o] is a set of access rights, such as read, 
write, execute, and own. 

Accreditation (of an AIS) 

A formal declaration by the designated approving authoritythat the AIS is approved to 
operate in a particular security mode using a prescribed set of safeguards. [DOD88a] 
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Accreditation Range (of a Network Host) 

A set of mandatory access control levels for data storage, processing, and 
transmission. The accreditation range will generally reflect the sensitivity levels of data 
that the accreditation authority believes the host can reliably keep segregated with an 
acceptable level of risk in the context of the particular network for which the 
accreditation range is given. [NCSC87] ffln practice, several different accreditation 
ranges may be associated with a host. A network accreditation range is the set of levels 
that are permitted fortransmission of data on the network. The host's network interface 
accreditation range is given by minimum and maximum levels for the associatedl/O 
device. The host accreditation range is the set of all levels that may be used within the 
host itself. Finally, the host's user accreditation range is the subset of the host 
accreditation range obtained by excluding levels that are associated exclusively with 
TCB subjects, trusted user roles, or related security-critical objects.] 

Aggregation Problem 

An occurence when a user's right to several pieces of information results in knowledge 
they do not have a right to. It can happen that a user is not allowed access to a collection 
of data items, but is allowed access to any given item in the collection. In this case, the 
aggregation problem is to prevent the user (or a subject acting on their behalf) from 
gaining access to the whole collection through repeated accesses to items in the 
collection. 

Antisymmetry 

A relation in which no two elements are equivalent. More precisely, a relation R is 
antisymmetric if and only if, for all x, y, x Ry and y Rx implies x = y. 

Application-Dependent Security Model 

A security model that includes security-relevant information about the semantics of a 
particular application; an application-dependent model contrasts with a security model 
for a general-purpose computing system that supports a variety of differing 
applications. Database security models are application security models in this sense. 

Assurance (Activity) 

Activity aimed at achieving a level of assurance, including informal argument, 
mathematical proof, the performance of dynamic checks on the behavior of an AIS, and 
the performance of static checks on AIS hardware or software. 

Assurance (Measure) 

A measure of confidence that the security features and architecture of an AIS 
accurately mediate and enforce the security policy. [NCSC88;cf DOD88a] 

Attribute 

See security attribute. 
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Automated Information System (AIS) 

An assembly of computer hardware, software, and/or firmware configured to collect, 
create, communicate, compute, disseminate, process, store, and/or control data or 
information. [DOD88a] 

AIS Security 

Measures and controls that protect an AIS against denial of service and unauthorized 
(accidental or intentional) disclosure, modification, or destruction of AISs and data. AIS 
security includes consideration of all hardware and/or software functions, 
characteristics and/or features; operational procedures, accountability procedures, 
and access controls at the central computer facility, remote computer, and terminal 
facilities; management constraints; physical structures and devices; and personnel and 
communication controls needed to provide an acceptable level of riskforthe AIS and for 
the data and information contained in the AIS. It includes the totality of security 
safeguards needed to provide an acceptable protection level for an AIS and for data 
handled by an AIS. [NCSC88] 

Centralized Authority 

Authority to modify security attributes that is limited to the system security administrator 
acting on behalf of the system's owner (e.g., DOD). 

Clients 

People or processes accessing an AIS either by direct connections (i.e., via terminals) 
or indirect connections (i.e., prepare input data or receive output that is not reviewed for 
content or classification by a responsible individual), [cf DOD88a, definition of user] 

Compatibility Property (on Directories) 

The requirement that any file in a directory have a security level which dominates that of 
the parent directory. [WALX74] 

Component (of a Network) 

A device or set of devices, consisting of hardware, firmware, and/or software that 
performs a specific function on a computer communications network. A component is a 
part of the larger system and may itself consist of other components. Examples include 
modems, telecommunications controllers, message switches, technical control 
devices, host computers, gateways, communications subnets, etc. [NCSC87] 

Component Security Model 

A subsystem security model for a system that is the union of its modeled component 
subsystems. 

Control Objectives 

Higher-level policy objectives that constrain the design and use of a trusted computing 
system; specific control objectives are listed in Section 5 of the TCSEC. 
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Controlled Entity 
Any system resource (e.g., process, storage object, I/O device) for which the TCB 
controls access by users. (See also System Entity, Explicitly-Controlled Entity.) 

Convex Set (of Levels) 

A set of levels that does not contain any "holes" with respect to the dominance relation. 
Formally, a partially ordered set % of levels is convex if and only if L e % whenever 
L-\, L2e%and L| < L < L2. 

Covert Channel 

A communication channel that allows a process to transfer information in a mannerthat 
violates the [[intent of the system]] security policy. [NCSC85] din some cases, the 
offending process may be external to the system that has the covert channel.] A covert 
channel typically communicates by exploiting a mechanism not intended to be used for 
communication. [NCSC87] 

Covert Channel Analysis 

Determination of the extent to which the security policy model and subsequent 
lower-level program descriptions may allow unauthorized access to information. 
Covert channel analysis properly includes all forms of covert channels, external as well 
as internal, and timing as well as storage channels. 

Covert Storage Channel 

A covert channel that involves the direct or indirect writing of a storage location by one 
process and the direct or indirect reading of the storage location by another process. 
[NCSC87] 

Covert Timing Channel 

A covert channel in which one process signals information to another by modulating its 
own use of system resources (e.g., CPU time) in such a way that this manipulation 
affects the real response time observed by the second process. [NCSC87] 

Denial of Service 
Any action or series of actions that prevent any part of a system from functioning in 
accordance with its intended purpose. This includes any action that causes 
unauthorized destruction, modification, or delay of service. [NCSC88] 

Descriptive Top-Level Specification (DTLS) 

A top—level specification that is written in a natural language (e.g., English), an informal 
design notation, or a combination of the two. [NCSC85] 

Designated Approving Authority (DAA) 

The official who has the authority to decide on accepting the security safeguards 
prescribed for an AIS. [DOD88a] 
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Deterministic 

An AIS characterized by having its behavior, in principle, entirely determined by its 
inputs. 

Discretionary Access Control (DAC) 

A means of restricting access to inamedl objects based on the identity of [[named 
users orj subjects and/or groups to which they belong. [NCSC85] It is not necessary for 
the creator of an object to control access to that object. [NCSC88b] At levels C2 and 
higher, a system must protect objects by default at creation time; the default protection 
may be changed only by authorized individuals and processes acting on their behalf. 
[NCSC88b] DAC is often employed to enforce need-to-know. [NCSC87] The controls 
are [[often]] discretionary in the sense that a subject with a certain access permission is 
capable of passing that permission (perhaps indirectly) on to any other subject (unless 
restrained by mandatory access control). [NCSC85] 

Disjoint (Objects) 

A relationship between objects. Two objects are disjoint if and only if writing to either 
object cannot affect the value of the other. 

Distributed Authority 

An AIS characterized by having authority to modify security attributes given to arbitrary 
users for entities under their control. 

Dominate 

A relationship in which security level Si is said to dominate security level S2 if the 
hierarchical classification of Si is greater than or equal to that of S2 and the 
nonhierarchical categories of Si include all those of S2 as a subset. [NCSC85] [[More 
generally, if S-\ and S2 are levels from any partially ordered set of security attributes, then 
Si dominates S2 if and only if S2 < S-iJ 

Encapsulated Device 

An abstract representation of an I/O device, its associated device driver, and other 
related entities such as attached hardware and dedicated device buffers. An 
encapsulated device is an I/O port for an AIS. 

Encapsulation Mechanism 

A mechanism that provides restricted access to a data structure or other entity. 
Typically, the encapsulation mechanism supports a set of "abstract operations" on a 
data structure; the operations together with the data structure form a "data abstraction." 
The abstract operations are usually defined in terms of more elementary operations 
that are not available to users of the data abstraction, and TCB support is needed to 
prevent users of the data abstraction from accessing the data structure by means of 
more elementary operations. 
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Endorsed Tools List 

The list of formal verification tools endorsed by the NCSC for the development of 
systems with high levels of trust. [NCSC88] 

Entity 

See Controlled Entity. 

Evaluation 

The process of determining whether a computing system meets given requirements. 

Exempt Subject 

A TCB subject that is exempt from some of the constraints imposed on non-TCB 
subjects and is thus able to perform actions that are not available to non-TCB subjects. 

Explicitly Controlled Entity 

A controlled entity for which there are explicitly associated security attributes, such as 
subjects and storage objects, in the case of a MAC policy, or named objects, in the case 
of a DAC policy. In addition to explicitly controlled entities, there may be implicitly 
controlled entities, including fragments of controlled entities and composite entities. 

External-Interface Model 

A model whose definition of security is cast in terms of external-interface requirements. 
The purpose of an external-interface model is to present system requirements while 
avoiding unnecessary constraints on internal structure. 

External-Interface Requirement 

A requirement that must hold for the interface between a system and its environment. 

Floating Label Policy 

A policy based on security levels in which the level of an entity can increase as a result of 
receiving information from a higher-level entity. 

Formal Proof 

(1)UA mathematical proof:] A complete and convincing mathematical argument, 
presenting the full logical justification for each proof step forthe truth of a theorem or 
set of theorems. [NCSC85] 

(2) A machine-checked proof: Text that a proof checker has accepted as evidence 
showing that a conjecture is a valid consequence of its axioms. 

(3) A Hubert proof in a theory T: a sequence of formulas, each of which is either an 
axiom of T or is a direct consequence of preceding formulas in the sequence by 
virtue of a rule of inference associated with the underlying formal system. 
[cfMEND79] 
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Formal Security Policy Model 

A mathematically precise statement of a [system]] security policy. [NCSC85] Some 
formal modeling techniques include: state-transition models, temporal-logic models, 
denotational-semantics models, and algebraic-specification models. An example is 
the model described by Bell and La Padula in Secure Computer Systems: Unified 
Exposition andMultics Interpretation. [NCSC85] To be adequately precise, a model Hin 
the tradition of Bell and LaPadula]] must represent the initial state of a system, the way in 
which the system progresses from one state to another, and a definition of a "secure" 
state of the system. To be acceptable as a basis for a TCB, the model must be 
supported by a formal proof that, if the initial state of the system satisfies the definition of 
a "secure state" and if all assumptions required by the model hold, then all future states 
of the system will be secure. [NCSC85] [More generally, the model should contain a 
definition of security that regulates how a system manages, protects, and distributes 
sensitive information as well as rules of operation that show how the definition of 
security is to be enforced. At levels B2 and above, it must be supported by a formal 
proof showing that the rules of operation guarantee satisfaction of the definition of 
security.]] 

Formal (Security) Verification 

The process of using formal proofs to demonstrate the consistency between [all valid 
interpretations of]] a formal specification of a system and a formal security policy model 
(design verification) or between the formal specification and [all valid interpretations of]) 
its high-level program [i.e., software] implementation (implementation verification). 
[NCSC85] [In general, programs, like specifications, are subject to multiple 
interpretations because programming languages allow compilers to take minor liberties 
in order to produce optimal code.] 

Formal Top-Level Specification (FTLS) 

A top-level specification that is written in a formal mathematical language to allow 
theorems showing the correspondence of the system specification to its formal 
requirements to be hypothesized and formally proven. [NCSC85] 

Host (on a Network) 

Any computer-based system connected to the network and containing the necessary 
protocol interpreter software to initiate network access and carry out information 
exchange across the communications network. [NCSC87] 

Individual Component (of a Network) 

A component of a network that is not subdivided into smaller components for purposes 
of security analysis. 

Individual Component Model 

A security policy model for an individual component of a network. 
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Inference Problem 

The occurrence when a user is able to deduce information to which they do not have 
privilege from information to which they do have privilege. It can happen that a user is 
not allowed access to a piece of information that is logically inferrible from known 
information and pieces of information that the user does have access to. In this case, 
the inference problem is to prevent the user (or a subject acting on their behalf) from 
indirectly gaining access to the inferrible information. 

Informal Security Policy Model 

A precise description of the security policy enforced by the system. It must identify the 
rules and practices that regulate how a system manages, protects, and distributes 
sensitive information, [cf NCSC88, Security Policy Model\ 

Information-Flow Model 

A definition of security (typically a state-machine model) which depicts allowed 
information flows that occur in response to individual user inputs and changes of state. 

Informational Attribute 

A security attribute that is used for some other purpose than access control within a 
given computing system; the association may be for later use outside the system, for 
example. 

Integrity (of Data) 

(1) The property that data meet an a priori expectation of quality. [NCSC88] 

(2) The state that exists when the quality of stored information is protected from 
contamination or degradation by information of lower quality. [COUR89] 

Integrity (of a System or Process) 

The quality that a system [[or process! has when it performs its intended function in an 
unimpaired manner, free from deliberate or inadvertent unauthorized manipulation. 
[NCSC88] 

Integrity Attribute, Integrity Level 

A security attribute used to prevent unauthorized or inappropriate modification or 
destruction of information. 

Internal-Security Model 

A security model whose definition of security consists of internal security requirements. 

Internal-Security Requirement 

A system requirement that is stated in terms of desired relationships among controlled 
entities, constraints on their interaction, or in terms of allowed forms of interaction. 

-134- 



APPENDIX E: GLOSSARY 

Internal Subject 

A subject that is not acting as direct surrogate for a user. A process which is not 
associated with any user but performs system-wide functions such as packet 
switching, line printer spooling, and so on. [NCSC87] 

Invariant 

An assertion that is true in every reachable state. 

Label 

See Security Label. 

Level 

A security attribute chosen from a partially ordered set of security attributes. For a given 
system configuration, the accreditation process should ensure that levels are limited to 
an appropriate accreditation range and that the system never assumes one level 
dominates another when, in reality, it does not. (See also, Security Level.) 

Least Privilege 

A principle which requires that each subject in a system be granted the most restrictive 
set of privileges (or lowest clearance) needed for the performance of authorized tasks. 
The application of this principle limits the damage that can result from accident, error, or 
unauthorized use. [NCSC85] 

Loose Access Control Attribute 

A security attribute that controls access to system resources without controlling access 
to the information they contain in some cases. 

Mandatory Access Control (MAC) 

A means of restricting access to objects based on the sensitivity (as represented by a 
label) of the information contained in the objects and the formal authorization (i.e., 
clearance) of subjects to access information of such sensitivity. [NCSC85] 

Mandatory Security Policy 

A policy that is based on constraints imposed by a recognized authority for the 
protection of sensitive information and applied uniformly to all users of a computing 
system. 

Mealy Machine 

A model of computation consisting of inputs, outputs, states, an initial state, a 
state-transformation function that shows how a given input and state induce a new 
state, and an output function that shows the output which results from a given input in a 
given state. 
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Model 

An abstraction or simplification of reality, the purpose of which is to capture key aspects 
of the behavior of that reality. 

Model Interpretation 

An intended association between the constructs of a model and identified aspects of the 
system being modeled; this association provides a means of judging whether 
assertions in the model are true of the modeled system. If they are, then the system is 
said to satisfy the model with respect to the given interpretation, and the interpretation is 
said to be accurate. 

Model of Computation 

A general model of a potentially large class of computing systems. 

Moore Machine 

A model of computation consisting of inputs, outputs, states, an initial state, a 
state-transformation function that shows how a given input and state induce a new 
state, and an output function that maps each state to an associated output. 

Multilevel Device 

A device that is used in a mannerthat permits it to simultaneously process data of two or 
more levels without risk of compromise. To accomplish this, sensitivity labels are 
normally stored on the same physical medium and in the same form 
(i.e., machine-readable or human-readable) as the data being processed. [NCSC85] 

Multilevel Data Structure 

A data structure that contains (or overlaps) several objects whose security levels are 
not necessarily the same. 

Named Object 

An object which is directly manipulate at the TCB interface. The object must have 
meaning to more than one process. [NCSC88a] [[In other words, a named object is a 
data structure or other controlled entity to which discretionary access controls can be 
directly applied. DAC attributes need only be associated with a data structure if it is 
directly visible at the TCB interface and has meaning to more than one process.! 

Need-to-Know 

pete rmi nation by an authorized holder of sensitive information ofjj the necessity for 
[[another person to have! access to, knowledge of, or possession of specific 
information required to carry out dspecific]] official duties. [NCSC88] 

Network 

See network system or network subsystem. 
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Network Security Model 

That portion of a security policy model for a network that describes overall network 
security policy as opposed to security services provided by particular components. 

Network Subsystem 

A component of a network that might itself be partitioned into smaller components. 

Network System 

A system which is implemented with a collection of interconnected network 
components. A network system is based on a coherent security architecture and 
design. [NCSC87] 

Network Trusted Computing Base (NTCB) 

The totality of protection mechanisms within a network system— including hardware, 
firmware, and software — the combination of which is responsible for enforcing a 
security policy. [NCSC87] 

Nondeterministic 

A characteristic of an AIS where its behavior is not entirely determined by its inputs. 

Nondisclosure Attribute 

A security attribute used to prevent the unauthorized release of information. Usually, 
nondisclosure attributes belong to a partially ordered set of nondisclosure levels. 

Nondisclosure Controls 

Automated controls used to prevent the unauthorized release of information. 

Object 

A passive entity that contains or receives information. Access to an object potentially 
implies access to the information it contains. Examples of objects are: records, blocks, 
pages, segments, files, directories, directory trees, and programs, as well as bits, bytes, 
words, fields, processors, video displays, keyboards, clocks, printers, network nodes, 
etc. [NCSC85] 

Owner (of an Entity) 

The user (or users) responsible for controlling the use of a controlled entity. 

Partial Ordering 

A relation that is transitive, reflexive, and antisymmetric. 

Partially Trusted Subject 

A subject, typically a TCB subject, that has two security levels, "alter-min" and 
"view-max," and is constrained in such a way that it may only write at levels dominating 
alter-min and read at levels dominated by view-max. 
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Philosophy Of Protection (Protection Philosophy) 

An informal description of the overall design of a system that delineates each of the 
protection mechanisms employed. A combination (appropriate to the evaluation class) 
of formal and informal techniques is used to show that these mechanisms are adequate 
to enforce the security policy. [NCSC85] 

Policy 

A high-level overall plan embracing the general goals and acceptable procedures, 
especially of a governmental body. 

Process (Single-threaded). 

A [sequential]] program in execution. It is completely characterized by a single 
execution point (represented by the machine state) and an address space. [NCSC85] 

Process Family (Multithreaded Process) 

A program in execution, especially one with multiple points of control. 

Proof Checker 

A tool that (1) accepts as input an assertion (called a conjecture), a set of assertions 
(called assumptions), and a proof; (2) terminates and outputs either success or failure; 
and (3) if it succeeds, then the conjecture is a valid consequence of the assumptions. 
[NCSC89] HA proof checker is typically supported by a formal semantics that 
determines interpretations of formulas; in this case, a formula fy is a valid consequence 
of a set O of formulas if and only if every interpretation which satisfies <E> also 
satisfies (j).fl 

Protection State 

That portion of the system state which is crucial to understanding an access control 
policy and is therefore not abstracted away in an access control model. 

Reachable State 

Any state that can be obtained from an initial state via inputs and state transformations. 

Read Access (to an Entity) 

Permission to read information. [NCSC87] 

Reference Monitor Concept 

An access control concept that refers to an abstract machine that mediates all accesses 
to objects by subjects. [NCSC85] 

Reflexivity 

Property of a binary relation R which says that every element is related to itself, that is, 
x R x, for all x. 
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Release Markings 

Authorized markings placed on a document by its originator for the purpose of imposing 
restrictions on dissemination of the document and the information it contains. 

Role Support Program 

A program that is executed in support of an associated user role. 

Rules of Operation 

Descriptions of key ideas associated with the design of the security-enforcement 
mechanisms in a trusted computing system. Rules of operation typically describe basic 
state transformations that accomplish necessary access control checks. 

Secure System 

An AIS that satisfies an associated system security policy. 

Security Administrator 

A user responsible for the security of an AIS and having some authority to enforce 
security safeguards on other users of the AIS. 

Security Attribute 

Any piece of information that may be associated with a controlled entity or user for the 
purpose of implementing a security policy. 

Security-Critical Data 

User authentication data, audit data, audit control data, security attributes of controlled 
entities, or other data that are necessary for the correct functioning of the TCB. 

Security Label 

A container for associated security attributes of a controlled entity, especially attributes 
in a partially ordered set of security attributes related to information flow. 

Security Level 

The combination of a hierarchical classification and a set of nonhierarchical categories 
that represents the sensitivity of information. [NCSC85] [[In some contexts, this term is 
used more generally to mean, simply, a level in a partially ordered set of security 
attributes.]] 

Security Markings 

Security attributes not used for mandatory access control. 

Security Mechanism 

A concretely given security requirement, especially one that is not directly tied to a 
controlling security objective. 
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Security Perimeter 

The portion of a system and its environment where security objectives are actively 
addressed. The security perimeter contains the TCB and associated controlled 
entities. 

Security Policy (Automated Information System) 

A set of restrictions and properties that specify how an AIS prevents information and 
computing resources from being used to violate an organizational security policy. It 
should be accompanied by a persuasive set of engineering arguments showing that 
these restrictions and properties play a key role in the enforcement of the organizational 
security policy, [cf STER91] 

Security Policy (Organizational) 

A set of laws, rules, and practices that regulates how an organization manages, 
protects, and distributes sensitive information. [NCSC85] 

Security Policy Model 

(1) An informal presentation of a formal security policy model. [NCSC85] 

(2) A [precise, if not] formal presentation of the security policy enforced by the system. 
It must identify the set of rules and practices that regulates how a system manages, 
protects, and distributes sensitive information. [NCSC88] 

Security Requirements 

Types and levels of protection necessary for equipment, data, information, 
applications, and facilities to meet da given] security policy. [NCSC88] 

Sensitive Information 

Information that, as determined by a competent authority, must be protected because 
its unauthorized disclosure, alteration, loss, or destruction is deemed to at least cause 
perceivable damage to someone or something. [NCSC85] [[Sensitive information 
includes both classified information and unclassified sensitive information, [cf 
DOD88a]] 

Sensitivity Label 

A piece of information that represents the security level of an object and that describes 
the sensitivity (e.g., classification) of data in the object. Sensitivity labels are used by 
the TCB as the basis for mandatory access control decisions. [NCSC85] 

Separation of Duty 

A design principle in which user roles are defined so that privileges are divided among 
several roles in such a way as to inhibit the abuse of any given role. 
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Simple Security Condition (i.e., Simple Security Property) 

(1) A Bell-La Padula security model rule li.e.,state invariant] allowing a subject read 
access to an object only if the security level of the subject dominates the security 
level of the object. [NCSC85] 

(2) A state invariant to the effect that a subject may have read access to an object only if 
its maximum security level dominates the security level of the object. [BELL76] 

Single-Level Device 

A device that is used to process data of a single security level at any one time. Since the 
device need not be trusted to separate data of different security levels, sensitivity labels 
do not have to be stored with the data being processed. [NCSC85] 

♦ -property (Star Property) 

(1) A Bell-LaPadula security model rule ni.e.,state invariant] allowing a subject write 
access to an object only if the security level of the subject is dominated by the 
security level of the object [NCSC85]. 

(2) A state invariant to the effect that an untrusted subject may write only objects at or 
above and may read only objects at or below its current security level. [BELL76] 

State 

That component of a state machine model which holds the current (abstracted) state of 
the system being modeled. 

Storage Object 

An object that supports both read and write accesses. [NCSC85] 

State Invariant 

A property that is true of all reachable states. 

State Machine 

A model of computation involving inputs, outputs, states, and state transition functions, 
for example, a Mealy machine or a Moore machine. 

State Transition Constraint 

A relationship between states that must hold for every state transition; the tranquility 
property is a simple state transition constraint. 

Subject 

An active entity, generally in the form of a person, process [[, process family], or device, 
that causes information to flow among objects or changes the system state. 
Technically, din Multics, it is] a process/domain pair, where a domain is the set of objects 
that a uprocess or] subject has the ^potential or actual] ability to access. [NCSC85] 
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Submodel 

A portion of a security policy model that deals with a particular policy objective, a 
particular system component, requirements that relate internal components, or rules of 
operation showing how security is enforced. 

Subsystem Security Model 

A security model for a subsystem of a larger system. 

System Entity 

Any system resource (e.g., process, storage object, I/O device) that is directly or 
indirectly accessible by users. 

System Operator 

A user responsible for the routine operation and maintenance of the system. 

System Security Model 

A security model for an entire system, as opposed to a subsystem model. 

TCB Subject 

A subject internal to the TCB. The two main kinds of TCB subjects are multilevel 
subjects (ones that compute the security levels or security attributes of their outputs) 
and trusted-role subjects. 

Tight Access Control Attribute 

A security attribute that controls access to system entities and the information they 
contain. 

Top-Level Specification (TLS) 

A nonprocedural description of system behavior at the most abstract level. Typically, a 
functional specification that omits all implementation details. [NCSC85] [[A TLS 
discusses what a system does as opposed to how; the requirement that the 
specification be "nonprocedural" applies to the content rather than the form of the 
specification.! 

Tranquility 
A property applied to a set of (typically untrusted) controlled entities saying that their 
security level may not change (except possibly at the instigation of trusted processes). 

Transitivity 

Property of a binary relation /? which says that if xRy and y R z, then xRz. 

Trojan Horse 

A computer program with an apparently or actually useful function that contains 
additional (hidden) functions that surreptitiously exploit the legitimate authorizations of 
the invoking process to the detriment of security. For example, making a "blind copy" of 
a sensitive file for the creator of the Trojan horse. [NCSC85] 
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Trusted Computer System 

A system that employs li.e, whose design employs] sufficient hardware and software 
integrity measures to allow its use for lenforcing a system security policy, such as a 
nondisclosure policy, that allows] processing simultaneously a range of sensitive or 
classified information. [NCSC87] 

Trusted Computing Base (TCB) 

The totality of protection mechanisms within a computer system, including hardware, 
firmware, software, land data], the combination of which is responsible for enforcing a 
isystem] security policy. [NCSC85] It creates a basic protection environment and 
provides additional user services required for a trusted computer system. [NCSC87] A 
TCB [thus] consists of one or more components that together enforce a unified 
[[system] security policy over a product or system. The ability of a TCB to correctly 
enforce an [[organizational] security policy depends solely [[i.e.Jointly] on the 
mechanisms within the TCB, on the correct input by system administrative personnel of 
parameters (e.g.,a user's clearance) related to the security policy l,and on the proper 
actions of its users (e.g., proper labeling ofinput, password secrecy)]. [NCSC85] 

Trusted Role Process 

A process that supports a trusted user role by manipulating security-critical data. 

Trusted User Role 

A user role that involves handling security-critical information maintained by the 
system. 

Type Enforcement 

A form of mandatory access control in which objects and subjects are assigned types, 
and access by subjects to objects is restricted by looking up allowed accesses in a 
"type" table. 

User 

Any person who interacts directly with a computing system; [NCSC85] see also clients. 

User Granularity 

A property of access control attributes which determines whether they are "coarse," 
controlling access on the basis of broadly defined classes of users, or "fine," with the 
ability to control access by individual users and processes acting on their behalf. 

User Role 

A prescribed use of an AIS as defined by a combination of procedural and software 
constraints. 
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Verification 

The process of comparing two levels of system specification for proper 
correspondence (e.g., security policy model with top-level specification, top-level 
specification with source code, or source code with object code). This process may or 
may not be automated. [NCSC89] 

Verification System 

An integrated set of tools and techniques for performing verification. [NCSC89] 

Write Access 

Permission to write information. [NCSC87] 
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