
NCSC-TG-010
VERSION-1

NATIONAL COMPUTER SECURITY CENTER

A GUIDE TO
UNDERSTANDING

SECURITY MODELING

IN
TRUSTED SYSTEMS

20010802 090
October 1992

Approved for Public Release:
Distribution Unlimited

NCSC-TG-010
Library No. S-239,669

Version 1

FOREWORD

The National Computer Security Center is issuing A Guide to Understanding Security
Modeling in Trusted Systems as part of the "Rainbow Series" of documents produced by
our Technical Guidelines Program. In the Rainbow Series, we discuss, in detail, the
features of the Department of Defense Trusted Computer System Evaluation Criteria (DoD
5200.28-STD) and provide guidance for meeting each requirement. The National
Computer Security Center, through its Trusted Product Evaluation Program, evaluates the
security features and assurances of commercially-produced computer systems.
Together, these programs ensure that organizations are capable of protecting their
important data with trusted computer systems. Security modeling, in its various forms, is
an important component of the assurance of the trust of a computer system.

A Guide to Understanding Security Modeling in Trusted Systems is intended for use by
personnel responsible for developing models of the security policy of a trusted computer
system. At lower levels of trust, this model is generally the system's philosophy of
protection. At higher trust levels, this also includes informal and formal models of the
protection mechanisms within a system. This guideline provides information on many
aspects of security modeling, including the process of developing a security policy model,
security modeling techniques, and specific ways to meet the requirements of the
Department of Defense Trusted Computer System Evaluation Criteria.

As the Director, National Computer Security Center, I invite your suggestions for
revising this document. We plan to review and revise this document as the need arises.

Patrick R, G&ftagfier, J£^ ^/ October 1992
Director
National Computer Security Center

ACKNOWLEDGMENTS

Special recognition and acknowledgment for their contributions to this document are
extended to the following: Dr. James Williams, as primary author of this document; Barbara
Mayer, Capt. James Goldston, USAF, and Lynne Ambuel, for project management.

Special thanks are also given to the many evaluators, vendors.and researchers whose
careful reviews and suggestions contributed to this document, with special recognition for
the advice of David Bell, Daniel Schnackenberg, Timothy Levin, Marshall Abrams,
Deborah Bodeau, Leonard La Padula, Jonathan Millen, William L Harkness, Thomas A.
Ambrosi, Paul Pittelli, Dr. Michael Sinutko, Jr, and COL Rayford Vaughn, USA.

TABLE OF CONTENTS

FOREWORD i
ACKNOWLEDGMENTS iii

1. INTRODUCTION 1

1.1 Background 1
1.2 Purpose 1
1.3 Control Objectives 3

1.3.1 The Assurance Objective 3
1.3.2 The Security Policy Objective 4

1.4 Historical Overview 5
1.5 Content and Organization 7

2. OVERVIEW OF A SECURITY MODELING PROCESS 9

2.1 Security Models and Their Purpose 9
2.2 Security Modeling in the System Development Process 11
2.3 Identifying the Contents of a Security Model 14

2.3.1 Step 1: Identify Requirements on the External Interface 16
2.3.2 Step 2: Identify Internal Requirements 18
2.3.3 Step 3: Design Rules of Operation for Policy Enforcement 20
2.3.4 Step 4: Determine What is Already Known 21
2.3.5 Step 5: Demonstrate Consistency and Correctness 22
2.3.6 Step 6: Demonstrate Relevance 23

2.4 Presentation for Evaluation and Use 24

3. SECURITY MODELING TECHNIQUES 27

3.1 Basic Concepts 27

3.1.1 Data Structures and Storage Objects 28
3.1.2 Processes and Subjects 29
3.1.3 Users and User Roles 31
3.1.4 I/O Devices 33
3.1.5 Security Attributes 35
3.1.6 Partially Ordered Security Attributes 37
3.1.7 Nondisclosure Levels 39
3.1.8 Unlabeled Entities and the Trusted Computing Base 40

3.2 Nondisclosure and Mandatory Access Control 41

3.2.1 External-Interface Requirements and Model 43
3.2.2 Information-Flow Model 45
3.2.3 Application to the Reference Monitor Interface 47
3.2.4 Access-Constraint Model 48

SECURITY MODELING GUIDE

3.2.5 Tailoring the Models 51

3.3 Need-to-Know and Discretionary Access Control 53

3.3.1 DAC Requirements and Mechanisms 54
3.3.2 User Groups and User Roles 55
3.3.3 Sources of Complexity and Weakness 56
3.3.4 Tight Per-User Access Control 59

3.4 TCB Subjects — Privileges and Responsibilities 61

3.4.1 Identifying Privileges and Exemptions 62
3.4.2 Responsible Use of Exemptions 65

3.5 Integrity Modeling 66

3.5.1 Objectives, Policies, and Models 67
3.5.2 Error Detection and Recovery 68
3.5.3 Encapsulation and Level-Based Access Control 71

4. TECHNIQUES FOR SPECIFIC KINDS OF SYSTEMS 75

4.1 Operating Systems 75

4.1.1 Traditional Access Control Models 75
4.1.2 The Models of Bell and La Padula 77

4.2 Networks and Other Distributed Systems 78

4.2.1 Systems and Their Components 78
4.2.2 Model Structure and Content 80
4.2.3 Network Security Models 82
4.2.4 Individual Component Security Models 84
4.2.5 Underlying Models of Computation 85

4.3 Database Management Systems 86

4.3.1 System Structure 87
4.3.2 Integrity Mechanisms and Policies 89
4.3.3 Aggregation 90
4.3.4 Inference 91
4.3.5 Partially Automated Labeling 92

4.4 Systems with Extended Support for Label Accuracy 94

4.4.1 Factors Inhibiting Accuracy in Labeling 94
4.4.2 Floating Sensitivity Labels 95
4.4.3 Compartmented Mode Workstations (CMW) 95
4.4.4 The Chinese Wall Security Policy 96

TABLE OF CONTENTS

5. MEETING THE REQUIREMENTS 99

5.1 Stated Requirements on the Security Model 99
5.2 Discussion of the B1 Requirements 100
5.3 Discussion of the B2 Requirements 103
5.4 Discussion of the B3 Requirements 104
5.5 Discussion of the A1 Requirements 105

APPENDIX A. SECURITY LEVELS AND PARTIALLY ORDERED SETS .. 107

A.1 Terminology 107
A.2 Embeddings 109
A.3 Cartesian Products 109
A.4 Duality 110

APPENDIX B. AVAILABLE SUPPORT TOOLS 113

B.1 FDM: the Formal Development Methodology 114
B.2 GVE: the Gypsy Verification Environment 115

APPENDIX C. PHILOSOPHY OF PROTECTION OUTLINE 117

APPENDIX D. SECURITY MODEL OUTLINE 121

APPENDIX E. GLOSSARY 127

REFERENCES 145

VII

1. INTRODUCTION

This document provides guidance on the construction, evaluation, and use of security

policy models for automated information systems (AIS) used to protect sensitive

information whose unauthorized disclosure, alteration, loss, or destruction must be

prevented. In this context, sensitive information includes classified information as well as

unclassified sensitive information.

1.1 BACKGROUND

The National Computer Security Center (NCSC) was established in 1981 and acquired

its present name in 1985. Its main goal is to encourage the widespread availability of

trusted AISs. In support of this goal, the DoD Trusted Computer System Evaluation Criteria

(TCSEC) was written in 1983. It has been adopted, with minor changes, as a DoD standard

for the protection of sensitive information in DoD computing systems. [NCSC85] The

TCSEC\s routinely used for the evaluation of commercial computing products prior to their

accreditation for use in particular environments. This evaluation process is discussed in

Trusted Product Evaluations: A Guide for Vendors. [NCSC90c]

The TCSEC divides AISs into four main divisions, labeled D, C, B, and A, in order of

increasing security protection and assurance. Divisions C through A are further divided

into ordered subdivisions referred to as classes. For all classes (C1, C2, B1, B2, B3 and

A1), the TCSEC requires system documentation that includes a philosophy of protection.

Forclasses B1, B2, B3, and A1, it also requires an informal or formal security policy model.

Although the TCSEC is oriented primarily toward operating systems, its underlying

concepts have been applied much more generally. In recognition of this, the NCSC has

published a Trusted Network Interpretation [NCSC87] and a Trusted Database

Management System Interpretation. [NCSC91] In addition, the NCSC also provides a

series of guidelines addressing specific TCSEC requirements, of which this document is an

example.

1.2 PURPOSE

This guideline is intended to give vendors and evaluators of trusted systems a solid

understanding of the modeling requirements of the TCSEC and the Trusted Network

Interpretation of the TCSEC (TNI). It presents modeling and philosophy of protection

-l-

SECURITY MODELING GUIDE

requirements for each of the classes in the TCSEC, describes possible approaches to

modeling common security requirements in various kinds of systems, and explains what

kinds of modelsare useful in an evaluation. It is intended for vendors, evaluators, and other

potential builders and users of security models.

This guideline discusses the philosophy of protection requirement, explains how it

relates to security modeling, and provides guidance on documentation relating to the

system's philosophy of protection and security policy model. It explains the distinction

between informal and formal security policy models as well as the relationships among

application-independent models, application-dependent security models, and model

interpretations. It also explains which techniques may be used to meet the modeling

requirements at levels B1 through A1 as well as the advantages and disadvantages of the

various modeling techniques. Finally, it discusses the specific TCSEC modeling

requirements.

This guideline also addresses human aspects of modeling. It describes how modeling

captures basic security requirements and how the security modeling effort leads to better

systems and provides a basis for increased assurance of security.

Finally, this guideline answers common questions about NCSC recommendations

regarding the construction of security models. Security policies and models are supplied

by vendors in response to customer needs and TCSEC requirements; they are not

supplied by the NCSC or the TCSEC. The TCSEC does, however, set minimum

requirements in the areas of mandatory and discretionary access control. The TCSEC

does not require particular implementation techniques; this freedom applies, by extension,

to modeling techniques. Acceptability of a technique depends on the results achieved.

More specifically, a security model must provide a clear and accurate description of the

security policy requirements, as well as key ideas associated with their enforcement.

Moreover, one must be able to validate the model using assurance techniques appropriate

to the proposed evaluation class. Any vendor-supplied modeling technique which

appears to be compatible with the security modeling requirements will be seriously

considered during the course of a product evaluation.

Topics which are closely related to security modeling include formulation of security

policy objectives, design specification and verification, covert channel analysis, and

implementation correspondence analysis. These topics are addressed only to the extent

■2-

INTRODUCTION

necessary to establish their influence on the security modeling process. All but the first of

these topics are addressed in otherguidelines in this series. Security objectives fortrusted

systems traditionally include nondisclosure, integrity, and denial of service, [cf NCSC88,

AIS Security] However, the modeling of denial of service is not addressed in this guideline,

due to the lack of adequate literature on this topic. This guideline is written with the

understanding that security modeling will continue to evolve in response to new policy

objectives and modeling techniques associated with future trusted system designs.

Reading and understanding this guideline is not sufficient to allow an inexperienced

individual to develop a model. Rather, he or she should read this document in conjunction

with one or more of the published models in the list of references. This guideline assumes

a general familiarity with the TCSEC and with computer security. A general text such as

Building a Secure Computer System [GASS87] may provide useful background reading.

Additional mathematical background needed for formal modeling can be found in general

texts on mathematical structures such as Introduction to Mathematical Structures

[GAL089].

The approaches to security modeling presented in this document are not the only

possible approaches to satisfying TCSEC modeling requirements, but are merely

suggested approaches. The presentation of examples illustrating these approaches does

not imply NCSC endorsement of the products on which these examples are based.

Recommendations made in this document are not supplementary requirements to the

TCSEC. The TCSEC itself (as supplemented by announced interpretations [NCSC87,

NCSC88a, NCSC88b, NCSC91]) is the only metric used by the NCSC to evaluate trusted

computing products.

1.3 CONTROL OBJECTIVES

The requirements of the TCSEC were derived from three main control objectives:

assurance, security policy, and accountability. The security modeling requirements of the

TCSEC support the assurance and security policy control objectives in systems rated B1

and above.

1.3.1 THE ASSURANCE OBJECTIVE

The TCSEC assurance control objective states, in part,

SECURITY MODELING GUIDE

"Systems that are used to process or handle classified or other sensitive
information must be designed to guarantee correct and accurate
interpretation of the security policy and must not distort the intent of that
policy." [NCSC85, § 5.3.3]

Assurance in this sense refers primarily to technical assurance rather than social

assurance. It involves reducing the likelihood that security mechanisms will be subverted

as opposed to just improving people's confidence in the utility of the security mechanisms.

1.3.2 THE SECURITY POLICY OBJECTIVE

The TCSEC security policy control objective states, in part,

"A statement of intent with regard to control over access to and dissemination
of information, to be known as the security policy, must be precisely defined
and implemented for each system that is used to process sensitive
information. The security policy must accurately reflect the laws, regulations,
and general policies from which it is derived." [NCSC85, § 5.3.1]

The security policy objective given in the TCSEC covers "mandatory security policy,"

"discretionary security policy," and "marking" objectives. The mandatory security policy

objective requires the formulation of a mandatory access control (MAC) policy that

regulates access by comparing an individual's clearance or authorization for information to

the classification or sensitivity designation of the information to be accessed. The

discretionary access control objective requires the formulation of a discretionary access

control (DAC) policy that regulates access on the basis of each individual's need-to-know.

Finally, the marking objective gives labeling requirements for information stored in and

exported from systems designed to enforce a mandatory security policy.

The access controls associated with security policies serve to enforce nondisclosure

and integrity. Nondisclosure controls prevent inappropriate dissemination of information.

Integrity controls prevent inappropriate modification of information.

The security policy control objective requires that the security policy accurately reflect

the laws, regulations, and general policies from which it is derived. These may include the

revised DoD Directive 5200.28, Security Requirements for Automated Information

Systems (AISs). [DOD88a] Section D of Directive 5200.28 gives policy relating to both

integrity and nondisclosure. It mentions safeguards "against sabotage, tampering, denial

of service, espionage, fraud, misappropriation, misuse, or release to unauthorized users."

Enclosure 2 defines relevant terms and, in particular, extends the concept of "user" to

-4-

INTRODUCTION

include processes and devices interacting with an automated information system on behalf

of users. Enclosure 3 gives general security requirements, including data-integrity

requirements. The revised 5200.28 does not use the MAC/DAC terminology. Instead, it

requires accurate marking of sensitive information and the existence of an

(undifferentiated) access control policy based partly on the identity of individual users. It

treats need-to-know as a form of least privilege.

Security policy relating to nondisclosure stems from Executive Order 12356 [REAG82]

and, in the case of DoD systems, from DoD 5200.1-R. [DOD86] Depending on the

application, the security policy may be constrained by a variety of other regulations as well.

The collection, maintenance, use, and dissemination of personal information is protected

by DoD Directive 5400.11 [DOD82, § E.2] and by Public Law 100-503 [CONG88].

Classified and other sensitive information needed for the conduct of federal programs is

protected by the Computer Security Act of 1987, Public Law 100-235 [CONG87], which

requires safeguards against loss and unauthorized modification.

1.4 HISTORICAL OVERVIEW

The starting point in modeling a MAC policy is the observation that security levels are

partially ordered (see Appendix A). This fact was first reflected in the design of the

ADEPT-50, an IBM 360-based, time-sharing system with both mandatory and

discretionary controls. [WEIS69, LAND81] The central role of partial orderings in MAC

policy models was then recognized in subsequent work. [POPE73; BELL73; BELL74a]

These partial orderings on security levels have become known as dominance relations.

Independently of this, access control matrices were used by Lampson and Graham

[LAMP71; GRAH72] to represent protection data. These works modeled discretionary

access control using matrices whose rows and columns represented subjects and objects.

Subjects were active entities such as processes and users. Objects were entities such as

data structures that played a passive role, but often included subjects as well. Each entry in

an access matrix told what a given subject was allowed to do with a given object by giving a

set of allowed operations such as read, write, execute, or change ownership. The AIS used

the access matrix to mediate all accesses by subjects to objects.

5-

SECURITY MODELING GUIDE

An Air Force Computer Security Technology Planning Study [ANDE72], referred to as

"the Anderson Report," discussed use of a reference monitor to enforce nondisclosure

policies and advanced the idea of formal security verification — the use of rigorous

mathematical proofs to give (partial) assurance that a program design satisfies stated

security requirements. This idea was investigated by Schell, Downey and Popek.

[SCHE73]

At that time, Bell and La Padula adapted access control matrices for use in modeling

both mandatory and discretionary access controls and codified the reference monitor

concept using state machines. Their machine states included access matrices and other

security-relevant information and are now often referred to as protection states. Having

established the necessary framework, they observed that a portion of DoD policy for

nondisclosure of classified information could be formalized as invariant properties of

protection states [LAPA73], that is, as properties which hold in all reachable states of the

system. Their invariants constrained the allowed accesses between subjects and objects.

The most significant of these was their ^-property. It included a form of the simple security

property and guaranteed that the security level of every object read by an untrusted subject

was at or below the security level of every object written by that subject. [BELL74] These

ideas and their use in enforcing nondisclosure are covered in detail in Sections 3.2.4 and

4.1.

To complete their state machine, Bell and La Padula introduced a set of state

transformations, called rules of operation, that modeled basic changes in a protection state

and then rigorously proved that the rules of operation preserved the identified state

invariants. [LAPA73, BELL74, BELL76] This work contains the first widely discussed use of

mathematical proof for studying multilevel security.

In parallel with Bell and La Padula, Walter and others developed a similar approach to

verifying multilevel security. [WALT74, WALT74a] A strong point of the work by Walter et al.

is the use of modularity and data abstraction techniques that have since been accepted as

indispensable for verifying large systems.

The intent of the state invariants identified by Bell and La Padula is that information is

allowed to flow from one entity to another only if the second entity is at an equal or higher

security level than the first. Denning and others attempted to formalize this idea directly

using "information flow" models. [DENN76, DENN77, COHE77, REIT79, ANDR80] These

INTRODUCTION

models differed in style from access control models in that they referred explicitly to

information flow, but, in contrast to more recent investigations, did not actually define

information flow. Denning's work did, however, point out an interesting distinction. In the

conditional assignment

if a = 0 then b := c,

information flows explicitly from c to b (when a = 0) and implicitly from a to b (when b ^ c).

Denning also pointed out that, in the case of the ADEPT-50, access control can easily

allow implicit information flow. [DENN77] This problem is discussed in detail in Section 3.2.

Discrepancies between information flow and access control open up the possibility of

covert channels— paths of information flow that malicious processes can use to bypass

the access control mechanism and thereby violate underlying security objectives, [cf

LAMP73] Information flow models and concern over covert channels have led to the

development of techniques and tools for covert channel analysis that are capable of

detecting a variety of covert channels. [MILL76.MILL81, FEIE77, FEIE80]

The developments just described provided the technical background for the security

modeling requirements given in the TCSEC. A variety of important developments not

explicitly reflected in the TCSEC have taken place in the last decade and will be presented

later in this guideline. The class of security policies that can be formally modeled has been

greatly extended, beginning with Biba's (pre-TCSEC) work on integrity. [BIBA77] Work

has also gone into tailoring nondisclosure security to particular applications. Finally,

various external-interface models have been developed that do not constrain internal

system structure, an example of which is the noninterference model of Goguen and

Meseguer. [GOGU82] These models provide a rationale for rigorously assessing new

approaches to access control.

1.5 CONTENT AND ORGANIZATION

Section 2 presents an overview of the security modeling process, with emphasis on

correctness and utility. Section 3 presents technical detail on how to model concepts of

interest, including nondisclosure and integrity policies, mandatory and discretionary

access controls, and exemption from access control within the Trusted Computing Base

(TCB).

■7-

SECURITY MODELING GUIDE

Section 4 shows how to apply the techniques from Section 3 to various kinds of

systems; including operating systems, networks, database systems, and multilevel

workstations. Finally, Section 5 summarizes all of the TCSEC security modeling

requirements for B1, B2, B3, and A1 computing systems.

Appendix A presents facts about lattices and partially ordered sets that are needed for

Sections 3 and 4. Appendix B contains brief descriptions of available support tools.

Appendices C and D contain suggested outlines for a philosophy of protection and a

security policy model. Finally, Appendix E is a glossary giving definitions of technical terms.

This glossary includes all terms that are introduced in italics throughout the guideline.

When TCSEC requirements are discussed in this guideline, they are identified either by

the key words "must" or "shall" or by explicit quotations from the TCSEC. By way of

contrast, when desirable but optional actions and approaches are discussed, they are

presented without exhortation and are instead accompanied by an explanation of specific

advantages or benefits. In a few cases, possible requirements are designated by "should,"

because the implications of the TCSEC are not fully understood or agreed upon.

-8-

2. OVERVIEW OF A SECURITY MODELING PROCESS

A security model precisely describes important aspects of security and their

relationship to system behavior. The primary purpose of a security model is to provide the

necessary level of understanding for a successful implementation of key security

requirements. The security policy plays a primary role in determining the content of the

security model. Therefore, the successful development of a good security model requires a

clear, well-grounded security policy. In the case of a formal model, the development of the

model also must rely on appropriate mathematical techniques of description and analysis

for its form.

Sections 2.1 and 2.2 explain what security models describe, why they are useful, and

how they are used in the design of secure systems. Section 2.3 introduces general

definitions relating to security models and explains how security models are created.

Finally, Section 2.4 discusses the presentation of a security model in a modeling document.

2.1 SECURITY MODELS AND THEIR PURPOSE

Early security models focused primarily on nondisclosure of information. More recently,

the importance of data as a basis for decisions and actions has stimulated interest in

integrity models. [DOD88a, WHIT84] For example, nondisclosure properties alone do not

protect against viruses that can cause unauthorized, malicious modification of user

programs and data.

A wide variety of concepts can impact nondisclosure and integrity in particular system

designs. As a result, the content of security models is quite varied. Their primary purpose

is to provide a clear understanding of a system's security requirements. Without such an

understanding, even the most careful application of the best engineering practices is

inadequate for the successful construction of secure systems.

Inadequacies in a system can result either from a failure to understand requirements or

from flaws in their implementation. The former problem, defining what a system should do,

is relatively difficult in the case of security. The definition must be precise in orderto prevent

undesired results, or subtle flaws, during the implementation of the system design.

-9

SECURITY MODELING GUIDE

During the entire design, coding, and review process, the modeled security

requirements may be used as precise design guidance, thereby providing increased

assurance that the modeled requirements are satisfied by the system. The precision of the

model and resulting guidance can be significantly improved by casting the model in a

formal language.

Once the system has been built, the security model serves the evaluation and

accreditation processes. It contributes to the evaluators' judgement of how well the

developers have understood the security policy being implemented and whether there are

inconsistencies between security requirements and system design. Moreover, the security

model provides a mechanism for tailoring the evaluation process to the vendor's needs

because it presents the security concept that is supported by the system being evaluated.

The inclusion of particular facts in the security model proclaims to evaluators and potential

customers that those facts are validated at the level of assurance which the TCSEC

associates with that system's evaluation class.

Upon successful evaluation and use, the security model provides a basis for explaining

security-relevant aspects of system functionality. Later, during maintenance, it provides a

basis for guidance in making security-relevant modifications. Finally, by suppressing

inessential design detail, security models facilitate a broader understanding of security that

can be applied to increasingly larger classes of systems. Among the many examples of

such generalizations is the adaptation of traditional reference monitor concepts referenced

in the TNI to provide a basis for understanding network security requirements. [NCSC87]

The intended purpose of a security model suggests several desirable properties. The

requirements captured by a good model pertain primarily to security, so that they do not

unduly constrain the functions of the system or its implementation. A good model

accurately represents the security policy that is actually enforced by the system. Thus, it

clarifies both the strengths and the potential limitations of the policy. (As an extreme

example, if the system can simply declassify all objects and then proceed normally, as in

McLean's System Z [MCLE87], a good model would show this.) Finally, a good model is

simple and therefore easy to understand; it can be read and fully understood in its entirety

by its intended audience. This last property cannot be achieved without significant care in

-10-

OVERVIEW

choosing the contents, organization, and presentation of the security model. For example,

the desire to provide a security model with the "look and feel" of UNIX® might need to be

tempered by the need for simplicity and abstraction, [cf NCSC90b, Sec. 6.2]

2.2 SECURITY MODELING IN THE SYSTEM DEVELOPMENT PROCESS

Security requirements are best identified early in the system development process. Not

identifying security requirements in a timely fashion is likely to have devastating effects on

security assurance, security and application functionality, development schedule, and

overall development costs. For example, in the case of a development using

DOD-STD-2167A, [DOD88] this identification process would be part of the system

requirements analysis. The identification of security requirements begins with the

identification of high-level security objectives (as described in Section 1.3) and the

methods by which they are to be met, including automated, procedural, and physical

protection methods. This identification of security requirements and their derivation from

identified higher-level security objectives is the initial material for a philosophy of

protection (POP). As indicated in Appendix C, the philosophy of protection may also

include a broad range of other topics such as the structure of the trusted computing base

(TCB) and physical and procedural security mechanisms.

Those requirements in the philosophy of protection which deal with automated

protection methods provide an initial definition of security for a security policy model. The

model's purpose is to precisely state these requirements and to compare them with key

aspects of the security enforcement mechanism. A security policy model in this sense

contains two essential portions: a "definition of security" portion that captures key security

requirements and a "rules of operation" portion that shows how the definition of security is

enforced.'''

' The TCSEC Glossary identifies several kinds of formal security policy models but discusses modeling
requirements only for state-machine models. For these, it identifies a "definition of security" portion,
referred to as a "definition of a 'secure' state" and "rules of operation" portion, in an apparent summary of
the Bell & La Padula approach. Both the definition itself and its subsequent use in product evaluations
indicate that, while a state-machine approach is unnecessary, a model must contain both a definition of
security and rules of operation which show how the definition of security is enforced. The definition of
security should adequately support identified security policy objectives but does not necessarily have
to consist of, or be limited to, a definition of secure state.

11

SECURITY MODELING GUIDE

The model's definition of security can be used to avoid major system development

errors. It can be used to guide the design of basic software protection mechanisms and to

influence the design, selection and use of underlying firmware and hardware protection

mechanisms. The initial draft model, and supporting documentation, provides guidance as

to system security during reviews of the system design. However, there often are

discrepancies between the design and the model. Some of these are resolvable and can

be identified and corrected during the normal design review process. In some cases,

however, discrepancies are unavoidable and can only be resolved by making some

assumptions that simplify the problem. These assumptions need to be justifiable, based on

the model. These discrepancies can also be addressed through procedural restrictions on

the use of the system. There are some portions of a security model that may require design

information that is not initially available and must, therefore, be postponed. Possible

examples include detailed rules of operation for a security kernel and security models for

specific security-critical processes. In such cases, the system designer must ensure that

discrepancies are noted and the completed system will satisfy the completed model.

To ensure that a design satisfies modeled security requirements, it is necessary to give

a model interpretation which shows how the model relates to the system. For evaluation

classes B1 and B2, this involves explaining how each concept in the model is embodied by

the system design and informally demonstrating that the modeled requirements are met.

Since the model's rules of operation must conform to the model's definition of security, the

model interpretation need demonstrate only that the rules of operation are adhered to. For

classes B3 and A1, the model interpretation is done in two steps. The design, as reflected

in a top-level specification (TLS), is shown to be consistent with the model, and the

implementation is shown to be consistent with the TLS. For Class B3, an informal

descriptive top-level specification (DTLS) is used, an informal correspondence from the

DTLS to the model is performed, and the implementation is shown to be consistent with the

DTLS. At Class A1, the DTLS is supplemented with a formal top-level specification

(FTLS), a formal verification proves that the FTLS is consistent with the model, and the

implementation is shown to be consistent with the FTLS. A fuller summary of

model-interpretation requirements is given in Section 5.

12-

OVERVIEW

The role of security modeling in relation to other aspects of system development is

summarized in Figure 2.1. Aspects that do not directly involve modeling, per se, are

shaded in grey. Requirements concerning the model are summarized at the beginning of

Section 5. The broadest document is the philosophy of protection (POP); it covers

higher-level security objectives, derived security policies constraining the design and use

of the system, and the protection mechanisms enforced by the TCB. The POP, the security

policy, and the model all cover the system's definition of security. Both the POP and the

model cover key aspects of the TCB protection mechanisms. At B2 and above, the formal

model supports a rigorous proof showing that the rules of operation enforce the definition of

security, and the DTLS gives a functional description of the TCB protection mechanisms

with emphasis on the TCB interface. At A1, the FTLS formalizes a large portion of the DTLS

in order to verify that the TCB design satisfies the modeled security requirements.

Security Policy
Informal

Model

POP

Informal
Correspondence

Security
Testing

Informal
Correspondence

.^n

^ Informal
Correspondence

Implementation
Correspondence

; r~

Formal
Verification

Implementation
(Hardware & Software)

Implementation
Correspondence

Figure 2.1. Security Documentation

The above paragraphs refer to a single security model but networks, database

systems, and other complex systems may involve several security models or submodels.

When a system is made up of several complex components or subsystems, interfaces

between the components or subsystem layers must be modeled, if they play a key role in

security protection. In this case, the best approach may be to develop separate models for

13

SECURITY MODELING GUIDE

each component or layer in order to show how the various subsystems contribute to overall

system security. A danger with this approach, however, is that the combined effect of the

various submodels may not be obvious. This is discussed further in Section 4.

2.3 IDENTIFYING THE CONTENTS OF A SECURITY MODEL

The most basic strategy in identifying the contents of a security model is perhaps that of

divide and conquer. The modeling effort may be subdivided according to higher-level

security objectives. Requirements on a system can be mapped to derived requirements on

subsystems. Requirements for a particular objective can be classified according to level in

a requirements hierarchy.

Security modeling provides a five-stage elaboration hierarchy for mapping a system's

security policy requirements to the behavior of the system. As a result of this hierarchy, the

phrases "security policy" and "security model" have taken on a variety of meanings. The

five relevant stages are as follows:

1. Higher-level policy objectives
2. External-interface requirements
3. Internal security requirements
4. Rules of operation
5. Top-level specification

A higher-level objective specifies what is to be achieved by proper design and use of a

computing system; it constrains the relationship between the system and its environment.

The TCSEC control objectives belong to this first level of the requirements hierarchy. An

external-interface requirement applies a higher-level objective to a computing system's

external interface; it explains what can be expected from the system in support of the

objective but does not unduly constrain internal system structure. Internal security

requirements constrain relationships among system components and, in the case of a

TCB-oriented design, among controlled entities. Rules of operation explain how internal

requirements are enforced by specifying access checks and related behaviors that

guarantee satisfaction of the internal requirements. A top-level specification is a

completely functional description of the TCB interface. It also specifies behavior of system

components or controlled entities.

In various contexts, the phrase security policy may refer to any or all of the first four

stages of elaboration. In many contexts, the term security policy refers to organizational

security policy, [cf NCSC85, Glossary] From a modeling perspective, organizational

14-

OVERVIEW

policies are the source of higher-level policy objectives. In much of the literature on

security modeling, a system security policy is part of the requirements stages of

development and provides the definition of security to be modeled. Additional thoughts on

the importance of distinguishing among policy objectives, organizational policies, and

system policies may be found in Sterne's article "On the Buzzword 'Security Policy'."

[STER91] The terms "MS security policy" and "automated security policy" are synonyms

for "system security policy."

The security policy model is a model of the security policy enforced by the TCB. It is

simultaneously a model of the policy and of the system for which the model is given. The

portions of the system which are constrained by the model belong to the TCB by definition.

The model's definition of security may contain external-interface requirements, but more

traditionally consists of internal requirements. Its rules of operation may, in some cases,

amount to a top-level specification. There is no firm boundary between rules of operation

and top-level specifications: both explain how internal requirements are enforced by the

TCB. However, more detail is required in a TLS, including accurate descriptions of the

error messages, exceptions, and effects of the TCB interface. Security requirements

occur implicitly in rules of operation and top-level specifications. In this form they are often

referred to as security mechanisms. Internal requirements are sometimes classified as

"policy" or "mechanism" according to whether or not they are derived from a specific

higher-level policy objective.

Conceptually, the security modeling process takes place in two main phases.

Requirements modeling takes place after a system security policy is fairly well understood.

This is accomplished by constraining the system's design and use based on the

higher-level objectives. Rules of operation may be deferred until after the definition of

security is established and the basic architecture of the system has been identified.

The following paragraphs contain general suggestions for the construction of security

models. Suggestions pertaining to specific kinds of security requirements and specific

kinds of systems are given in Sections 3 and 4, respectively.

These suggestions are broken down into six steps that could be carried out with respect

to an entire system and security policy or, more simply, for a given component and

higher-level policy objective. The first step is to identify externally imposed security policy

requirements on how the system (or component) must interact with its environment. The

15-

SECURITY MODELING GUIDE

second is to identify the internal entities of the system and to derive the requirements

portion of the model in such a way as to extend the external-interface requirements. The

third is to give rules of operation in order to show how the modeled security requirements

can be enforced. After completion of step three enough information generally is available

to determine reliably whether the model is inherently new or can be formalized by known

techniques. At classes B2 and above, this is the fourth step. The first three steps taken

together result in the identification of several submodels. The fifth step is to demonstrate

consistency among these various submodels, so that they fit together in a reasonable way

to form a completed security policy model. Finally, the sixth step is to demonstrate

relevance of the model to the actual system design. Typically, the majority of the security

modeling effort is associated with these last two steps and associated revisions to the

model. The total effort needed to produce a security policy model varies considerably, but

is often between six staff-months and two staff-years.

2.3.1 STEP 1: IDENTIFY REQUIREMENTS ON THE EXTERNAL INTERFACE

The first step is to identify major security requirements and distinguish them from other

kinds of issues. These identified requirements should adequately support known

higher-level policy objectives for use of the system. An emphasis on external-interface

requirements helps prevent an unrecognized mixing of security and design issues. Such

mixing could interfere with the understanding of security and could impose unnecessary

constraints on the system design.

External-interface requirements for a computer system can be described in several

ways. An elegant, but possibly difficult, approach is to limit the discussion purely to data

crossing the system interface; this is the "black-box" approach. The best known example

of the black-box approach is noninterference (see Section 3.2.1). Alternatively, one can

describe the system in terms of its interactions with other entities in its environment, such

as other computing systems, users, "*" or processes. Finally, one can give a hypothetical

description of internal structure that ensures the desired external-interface behavior.

In general, the system's interaction with its environment is constrained by the sensitivity

of the information handled and by the authorizations of the individuals and systems

accessing the system. Identified user roles, associated privileges, and the extent to which

certain roles are security-critical also limit the system's interface to the environment.

^ In this guideline, a user is always an individual human user.

16-

OVERVIEW

These constraints determine security attributes that are associated with the system's

inputs and outputs. Security attributes may include classification, integrity, origin,

ownership, source of authorization, and intended use, among others. The use of such

attributes in the construction of security models is discussed in Section 3.

In the case of mandatory access control policies, information must be accurately

labeled and handled only by authorized users. This requirement places restrictions on how

information is input to the system and, implicitly, on how it will be processed. Authorized

handling of information is modeled in terms of constraints on what information may flow

from one user to another: information input to the system as classified information should

be output only to authorized recipients.

In addition to general regulations, there are often site-dependent and

application-dependent constraints that may need to be modeled. In particular, there may

be site-dependent constraints on allowed security labels.

Having identified the security requirements on the system interface, it is necessary to

decide on the requirements to be covered in the model's definition of security. It must then

be decided which of these requirements should be modeled directly or indirectly in terms of

internal requirements on system entities and the TCB interface. The set of requirements to

include is constrained by minimal TCSEC requirements, the need to adequately support

relevant policy objectives, and the need for a simple, understandable model. The inclusion

of more requirements may provide more useful information for accreditation once the

system is evaluated, but it also increases the difficulty of the vendor's assurance task. The

inclusion of more requirements also suggests a more careful structuring of the model in

order to show how various aspects of security fit together.

Several factors may influence a decision of whether to directly include

external-interface requirements in the security model. The direct inclusion of

external-interface requirements can help explain how the model supports higher-level

policy objectives. In the case of an application security model, the direct modeling of

user-visible operations may be more relevant to end users, a point of view reflected in the

SMMS security model. [LAND84] In the case of a network security model, understanding

is facilitated by modeling of the network's interaction with hosts in its environment, as will be

discussed in Section 4.2.

17-

SECURITY MODELING GUIDE

2.3.2 STEP 2: IDENTIFY INTERNAL REQUIREMENTS

To support the identified external requirements, the system must place constraints on

the controlled entities of the system. These internal constraints traditionally form the

model's definition of security. In a model whose definition of security contains

external-interface requirements, internal constraints can provide a needed bridge

between the definition of security and the rules of operation.

The controlled entities themselves should be identified at a level of granularity that is

fine enough to allow needed security-relevant distinctions among entities. At class B2 and

above, the controlled entities should include all (active and passive) system resources that

are accessible outside of the TCB. For convenience, controlled entities may be grouped

into subclasses in any way that facilitates understanding of the system. Such groupings will

depend on the system to be modeled. For an operating system, the relevant controlled

entities might include buffers, segments, processes, and devices. In most models, it has

been convenient to group entities according to whetherthey play an active or a passive role

in order to help show how the TCB implements the reference monitor concept.1" For

networks and other complex systems, identification of controlled entities may need to be

preceded by identification of subsystems and their derived security requirements.

Constraints on controlled entities are best stated as general properties and

relationships that apply to all (or a broad class of) entities and accesses. Greater generality

eliminates unnecessary constraints on the system design, improves one's intuition about

the model, and can greatly reduce the overall effort needed to validate correctness of the

identified constraints.

The identification of necessary constraints on controlled entities and their interactions is

a nontrivial task; familiarity with similar systems and security models can be of great

benefit. To define the necessary constraints, it will be necessary to label each entity with

appropriate security attributes and to identify possible kinds of interactions, or accesses,

between controlled entities. As used here, an access is any interaction that results in the

flow of information from one entity to another, [cf DOD88a]

* In [ANDE72], active entities are called "subjects". This use of the word is slightly broader than that
used in this guideline, where subjects are essentially controlled processes.

18

OVERVIEW

In describing access constraints, it may be useful to know that some kinds of accesses

are highly restricted, as when a process accesses a file by executing it. The notion of

causality may also be important: a transfer of information from entity ei to e2 might occur

because e-| wrote e2. because e2 read e-|, or because a third entity directly copied ei to

e2 without actually reading e-|. [cf MCLE90, Sec. 2]

In the particular case of state machine models, constraints often take the form of state

invariants, as in the work of Bell and La Padula. Recent efforts suggest that state-transition

constraints are an attractive alternative to state invariants for certain kinds of security

requirements. [MCLE88; NCSC90b, Sec. 6.7] The simplest well-known, state-transition

constraint is the tranquility principle of Bell and La Padula, which says that the security

level of a controlled entity cannot change during a state transition. Tranquility can be

artificially rephrased as a state invariant: in any reachable state, the level of an entity

coincides with its level in the initial state. Consider, however, the DAC requirement that a

subject which gains access to an object must possess the necessary DAC permissions

when the access request is made. This is harder to rephrase as a state invariant because

DAC permissions can change from one state to the next. Good tutorial examples of state

invariants and state-transition constraints may be found in Building a Secure Computer

System [GASS87,Sec. 9.5.1, 9.5.2]; more complex examples occur in the TRUSIX work

[NCSC90b,Sec. 2].

The number of internal requirements in a typical model varies considerably depending

on the desired level of assurance, the complexity of the policy and system being modeled,

andthegranularity ofthe individual requirements. Forexample.the Trusted UNIXWorking

Group (TRUSIX) model covers TCSEC access control requirements for a B3 Secure

Portable Operating System Interface for Computer Environments (POSIX) system and has

eleven state invariants and ten state-transition constraints. [NCSC90b]

The question of which security requirements to cover in the model's internal

requirements is answered as much by issues of good engineering practice as by the

TCSEC. At a minimum, the model must cover the control of processes outside the TCB.

Such processes are potentially a significant security risk because they may be of unknown

functionality and origin. According to current practice, those portions of the TCB that do not

support user-requested computation do not have to be modeled. For example, the

security administrator interface does not have to be modeled. However, if significant

-19

SECURITY MODELING GUIDE

user-requested computation is performed by some portion of the TCB, it should be

modeled. A typical example would be a trusted downgrading process available to

authorized users (not necessarily the security administrator). A more extreme example

would be a multilevel database management system implemented as a TCB subject

whose database consisted of a single highly-classified file.

Finally, there is the possibility that some security requirements might be included in the

model, but only in the rules of operation. The rules of operation may allow the application of

good security practice closer to the implementation level. The rules of operation can then

contain security conditions that are not explicitly required by the security policy. Rules of

operation can not make up for an inadequate definition of security, however. The task of

inferring a modeled security policy from the rules of operation may be excessively difficult,

especially if the rules are complex, [cf NCSC90b, Sec. 6.8]

2.3.3 STEP 3: DESIGN RULES OF OPERATION FOR POLICY ENFORCEMENT

How can the modeled security requirements on system entities be enforced? The rules

of operation answerthis question in broad terms by describing abstract interactions among

system entities with particular emphasis on access control and other policy-enforcement

mechanisms. In the case of an operating system kernel, the rules of operation would

typically describe state transformations and associated access checks needed to uphold

the definition of security. In the case of a formal model, this step amounts to the

construction of a miniature FTLS. It is a useful preliminary step, even if a full FTLS

specification is planned. The rules of operation togetherwith the modeled requirements on

controlled entities form the security policy model.

In giving rules of operation, it is important that system behavior be adequately

represented. However, actual interactions among controlled entities need not be directly

specified when they can be described as a composition of several rules of operation. There

is no need for an implementation to directly support an individual rule where several rules

have been combined to describe an action. An appropriate level of detail for rules of

operation is illustrated by the work of Bell and La Padula. [BELL76] Good tutorial examples

may be found in Building a Secure Computer System.[GASS87, § 9.5.1 (Step 3)] More

complex examples may be found in the TRUSIX work. [NCSC90b] The rules of operation

will usually be more readable if they are not too detailed. At class B3 and above, it is

especially important to avoid details that are not security relevant. This is because their

20-

OVERVIEW

inclusion in the model may force their inclusion in the TCB in order to achieve a successful

model interpretation, thereby violating the TCB minimization requirements. [NCSC85,

Sec.3.3.3.1.1]

In the case of a B1 informal model, the rules of operation may reasonably contain

information that, for higher evaluation classes, would be found in a DTLS. Thus, a stronger

emphasis on policy enforcement than on policy requirements may be useful. This is

especially true if the TCB is large and complex, as, for example, when security is retrofitted

onto a previously unevaluated system. [BODE88]

A formal model needs to formalize the idea that a particular state transformation is

being executed on behalf of a particular subject. Two traditional approaches are to add an

extra input to the state transformation that gives the subject id and to add a "current subject"

field to the system state. With the former approach, accompanying documentation should

explain clearly how the subject-identity parameter is passed, in order to avoid the

erroneous impression that the subject is responsible for identifying itself to the TCB. The

latter approach suggests that the system being modeled has a single central processing

unit. This may be a problem for the model interpretation if the system actually contains

multiple CPUs. See the TRUSIX work for further discussion. [NCSC90b, Sec. 6.13]

Finally, in designing rules of operation, it may be convenient to separate access

decisions from other kinds of system functionality, including the actual establishment or

removal of access. This separation facilitates exploration of new access control policies.

Only the access decision portion is affected by a change in policy because access

enforcement depends only on the access decision, not on how it was made. [LAPA90,

ABRA90] Isolation of the access decision mechanism occurs in the LOCK system design

[SAYD87] and in the security policy architecture of SecureWare's Compartmented Mode

Workstation [NCSC91b, Section 2.2.1.].

2.3.4 STEP 4: DETERMINE WHAT IS ALREADY KNOWN

Usually some, if not all, aspects of the identified security model will have been studied

before. The identification of previously used terminology allows security issues to be

presented in a manner that is more easily understood; and making the connection to

previously studied issues may provide valuable insight into their successful solution.

21

SECURITY MODELING GUIDE

For classes B2 and above, the modeling effort must be based on accepted principles of

mathematical exposition and reasoning. This is because formal models and mathematical

proofs are required. The chosen mathematical formalism must allow for an accurate

description of the security model and should provide general mechanisms for its analysis.

This is necessary so that specific interactions among the entities of the model can be

verified as being appropriate.

In practice, needed mathematical techniques are usually adapted from previous

security modeling efforts because security modeling, perse, is generally much easier than

the development of new mathematical techniques. Extensive use of past modeling

techniques is especially feasible in the case of fairly general and familiar policy

requirements. System-dependent modeling is generally required for policy enforcement,

but established techniques are often available for demonstrating consistency with the

modeled requirements.

If new mathematical techniques are used, their credibility is best established by

exposure to critical review, in order to uncover possible errors in the mathematics and its

intended use. This review process is facilitated by the development of comparative results

that give useful relationships between new models and old ones.

2.3.5 STEP 5: DEMONSTRATE CONSISTENCY AND CORRECTNESS

Since the security provided by a system is largely determined by its security model, it is

important that the model capture needed security requirements and that its rules of

operation show how to enforce these requirements.

The first crucial step of identifying security requirements on the system interface cannot

be directly validated by mathematical techniques, [cf MCLE85] Human review is needed to

establish what security requirements need to be addressed and whether these

requirements are reflected in later mathematical formalizations. For systems in class B2

and above, real-world interpretations are assigned to key constructs of the formal model in

order to provide a common semantic framework for comparing the model and the security

policy.

The appropriate technique for validating requirements on controlled entities (Step 2)

depends partly on the novelty of the approach. Informal human review is required to

assure that the modeled requirements support the original system security policy. Careful

-22-

OVERVIEW

comparisons with previous models of the same or related policies may help to show how

new modeling techniques relate to previously accepted techniques for handling particular

policy concepts. (See, for example, [MCLE87; MCLE90,Sec. 3 & Sec. 4].) An alternate

technique is to give an external-interface model and then mathematically prove that the

constraints on system entities imply satisfaction of the external-interface model. The

external-interface model is easily compared with a security policy or policy objective. The

constraints on system entities are those identified in the requirements portion of the

security policy model. This technique is illustrated in Section 3.2.

If the rules of operation are given correctly (Step 3), they will comply with the constraints

given in the requirements portion of the model. A formal proof oi compliance is required for

classes B2 and above. In a state-transition model, state invariants are proved by

induction: one proves that they hold for the initial state and are preserved by each state

transition given in the rules of operation. (See, for example, [CHEH81].) State-transition

constraints are straightforwardly proved by showing that each state transition satisfies the

constraints.

2.3.6 STEP 6: DEMONSTRATE RELEVANCE

The rules of operation should be a correct abstraction of the implementation. A

preliminary model interpretation that is done as part of the modeling process can provide

an informal check on whether the rules of operation are sensible and relevant. This model

interpretation shows how enforcement mechanisms modeled in the rules of operation are

realized by the system. A model interpretation explains what each model entity represents

in the system design and shows how each system activity can be understood in terms of the

given rules of operation. Thus, for example, a "create file" operation in the system might be

explained as involving a restricted use of the rules for "create object," "write object," and/or

"set permissions" in the model, depending on the actual arguments to the "create file"

command.

An appropriate, somewhat novel, example of a model interpretation is found in the

TRUSIX work. [NCSC90b, Sec. 4] The model interpretation is described as an informal

mapping from the TRUSIX DTLS to the TRUSIX model. This interpretation first explains

how UNIX entities are represented in the model and the DTLS. For example, messages,

semaphores, and shared memory are entities that the DTLS refers to as interprocess

communication (IPC) objects but that are treated as "files" in the model. Thirty-six UNIX

■23

SECURITY MODELING GUIDE

system interface functions are then described by giving pseudocode that shows how each

function can be expressed in terms of the state transformations given by the rules of

operation. In other words, the transformations given in the rules of operation form a toy

security kernel that could be used to implement UNIX if efficiency were irrelevant.

The SCOMP and Multics model interpretations are examples based on Secure

Computer System: Unified Exposition and Multics Interpretation. [BELL76]. In the SCOMP

interpretation, a set of security-relevant kernel calls and trusted processes are identified

as 'SCOMP rules of operation." [HONE85] For each such SCOMP rule, a brief summary of

security-relevant functionality is given and then interpreted as the combined effect of

restricted use of one or more rules from the above work by Bell. [BELL76] The specific

restrictions are enumerated in an appendix, along with a rationale for omitting some kernel

calls and trusted functions from the interpretation. The correspondence between the rules

in this work [BELL76] and actual SCOMP behavior is rather complex. The Multics

interpretation, by way of contrast, is more sketchy, but the actual correspondence appears

to be simpler. [MARG85]

2.4 PRESENTATION FOR EVALUATION AND USE

The most important factors in the successful presentation of a security model are the

simplicity of the model, its appropriateness, and an understanding of its intended uses.

The presentation of the model must demonstrate that the model correctly describes the

system security policy. A clear explanation of the policy from which the model is derived

should be available for this demonstration. Sufficiency of the model may be demonstrated

by presenting the relationship of the model to the policy and by carefully explaining and

justifying the modeling decisions behind this relationship. In addition to modeled

requirements, the system may support other security requirements that are not suitable for

inclusion in the model, especially if it is a formal model. Unmodeled security requirements

can be presented in an appendix so that TCB developers have all of the security

requirements in a single document.

An overview of the model interpretation is needed so that readers can understand the

relevance of the system's security model to the security policy and to the overall

system-development process. All of these topics may be legitimately covered in a

■24-

OVERVIEW

philosophy of protection. In fact, it is highly desirable that the philosophy of protection be

the first document delivered by the vendor in a system evaluation, so that it can serve as a

basis for further understanding of the security model and other system documentation.

In the case of a formal model, an informal explanation or presentation of the model

prepared for a general audience is highly desirable. This is partly for reasons mentioned in

Section 2.3.5 and partly because of the general need to acquaint system developers,

implementors, and end users with the basic security principles that are to be supported by

the system. The informal presentation can reasonably be included in the philosophy of

protection.

A well-written explanation of the model's definition of security can be used by potential

buyers of a secure system to determine compatibility between the computing system and

their organization's security policies and needs. To evaluate the ability of a computing

system to support these policies, potential users may wish to construct an informal model

of their security policies and compare it to the definition of security supported by the

computing system. This use of the security model and the fact that some aspects of

security modeling can only be validated by social review suggest that portions of the

security model and the philosophy of protection be made available to a relatively wide

audience, for example, treating them as publicly released, nonproprietary documents.

For systems at the B2 level or above, the requirement of mathematical proof

necessitates the presentation of a rigorous mathematical formalization as well. For a

mathematical audience, standards of precision may preclude a style that will be

appropriate for a general audience. In this case, an informal presentation of the model is

also needed in order to reach the general audience.

At the A1 level of assurance, the formal model is directly involved in the formal

verification of the FTLS. As a result, it may be appropriate to present the model in the

formal specification language of an endorsed verification system (see Appendix B).

Authors and readers must be fully aware of the nuances of the descriptive notation of the

verification system used in order to avoid errors due to discrepancies between author

intent and reader expectation. Furthermore, if a formal verification system is used to check

-25-

SECURITY MODELING GUIDE

proofs, it is necessary to achieve a correct translation of what is to be proved into the

language of the verification system. Further discussion of these points may be found in

[FARM86; NCSC90b, Sec. 6.3].

-26-

3. SECURITY MODELING TECHNIQUES

Having introduced the major topics involved in security modeling, we now consider

detailed modeling issues with emphasis on mathematical structure as well as empirical

justification. In this section, a review of basic concepts is followed by discussions on the

modeling of various kinds of policies and objectives: nondisclosure, need-to-know,

integrity, and special-purpose policies of particular TCB subjects.

In most cases, modeling techniques are introduced, with details handled via references

to the available literature. Inclusion of these references does not imply NCSC

endorsement of referenced products incorporating the techniques discussed.

3.1 BASIC CONCEPTS

As discussed in Section 2, the identification of controlled entities plays a crucial role in

the development of a security policy model. At B2 and above, the controlled entities must

include all system resources. If the policy is multifaceted, with separate subpolicies for

mandatory and discretionary access controls, it may be acceptable to decompose the

system into different sets of controlled entities for different subpolicies. A secure

computing system may decompose into data structures, processes, information about

users, I/O devices, and security attributes for controlled entities. In general, the number of

different kinds of entities depends on what security-relevant distinctions are to be made.

The following paragraphs discuss how to perform such a decomposition for typical kinds of

entities, with the goal of modeling security requirements in such a way as to allow an

accurate, useful model interpretation.

An explicitly controlled entityis one that has explicitly associated security attributes. In

the TRUSIX model, for example, the explicitly controlled entities are referred to as

"elements". They consist of subjects and three kinds of objects; files, directories, and

entries (i.e., links). [NCSC90b, Sec. 6.9-6.11] In addition to explicitly controlled entities, a

system will have implicitly controlled entities. Such an entity might be contained in an

explicitly controlled entity or might be a composite entity composed of explicitly controlled

entities having potentially different security attributes.

■27-

SECURITY MODELING GUIDE

The discussion of security attributes in this section emphasizes security levels used for

mandatory access control because the TCSEC labeling requirements apply primarily to

mandatory access control and auditing. However, much of what is said about MAC labels

applies to other kinds of security attributes including, for example, discretionary access

control lists.

It is necessary to model creation and destruction of most kinds of controlled entities. A

simpler model results if the same approach is used in all cases. In a formal model, one can

model the creation of new controlled entities by modeling changes in the set of all controlled

entities. A fixed set of possible controlled entities, together with an indication of which

entities are available for use in a particular state (e.g., which subjects are active, which

objects or object-ids are allocated) can also be used, [cf NCSC90b]

3.1.1 DATA STRUCTURES AND STORAGE OBJECTS

In this guideline, a data structure"*" is a repository for data with an internal state, or value,

that can be written (i.e., changed) and/or read (i.e., observed) by processes (and, possibly,

devices) using well-defined operations available to them. A data structure is distinct from

its value at a particular time, which is, in turn, distinct from the information conveyed by that

value. The information content depends not only on the value but also on how it is

interpreted. Similarly, a data structure is distinct from a name for that data structure.

A data structure that is explicitly associated with exactly one security level by the

security policy model is a storage object.1* There are no a priori restrictions on the level of

abstraction at which data structures and storage objects are modeled. In particular, objects

may be abstract data structures that are accessed using high-level operations provided by

an encapsulation mechanism. In this case, a user would have access to the high-level

operations but could not access the encapsulated data directly via more concrete

operations that may have been used to define the high-level operations. This lack of direct

access would have to be enforced by the TCB.

Ordinarily, the storage objects in a security model are disjoint. This means that, in

principle, changes to one object do not force changes to other objects. If a state-machine

model is used, disjoint storage objects can be modeled as separate components of the

"*" The need to distinguish between data structures and objects is not seen in the TCSEC Glossary
definitions but has arisen more recently from issues involving structured objects, multilevel data
structures, and possible differences between the storage objects used for MAC and the named objects
used for DAC.

-28-

SECURITY MODELING TECHNIQUES

underlying machine state. If two objects at different security levels were not disjoint, then

access to data in their intersection would be allowed or denied according to which label is

used. This ambiguity can be resolved by explicitly associating a level with their intersection.

In this case, the associated level allows the intersection to also be regarded as a separate

storage object, thereby restoring disjointness. Thus, disjointness in storage objects

simplifies one's understanding of how security labels are used to control access. It has also

been argued that disjointness simplifies covert channel analysis via shared resource

matrices.

In some systems, collections of objects are combined to form multilevel data structures

that are assigned their own security levels. Multilevel data structures called "containers"

are used in the Secure Military Message System (SMMS) to address aggregation

problems.1' [LAND84] The level of a container must dominate the levels of any objects or

containers inside it.

When an object or other controlled entity is created, it must be assigned security

attributes and initialized in such a way as to satisfy the object reuse requirement. The

modeling of object reuse policies (e.g., objects are erased when allocated) can be useful,

but object reuse is not found in traditional access control models because the object reuse

requirement deals with the content of objects and TCB data structures. The initialization of

security attributes, however, plays an essential role in access control and can be modeled

by distinguishing between "active" and "inactive" entities, as in [NCSC90b]. The security

attributes of a newly created object may be taken from, or assigned by, the subject that

created it. In many systems, creating an object is essentially a special case of writing to it:

its value changes from undefined to null. If this change is visible to non-TCB subjects and

the new object is created by a non-TCB subject, then the security level of the new object

must dominate that of the creating subject. DAC attributes, by way of contrast, are usually

given by system- or user-supplied defaults.

3.1.2 PROCESSES AND SUBJECTS

A process may create, destroy, and interact with storage objects and other processes,

and it may interact with I/O devices. It has an associated run-time environment and is

distinct from the program or code which defines it. For instance, the program would

^ An aggregation problem can occur when a user has access to individual pieces of data in a data set, but
not to the entire data set. This problem is discussed further in Section 4.3.

-29-

SECURITY MODELING GUIDE

ordinarily be modeled as information contained in a storage object. An explicitly controlled

process is a subject. It normally has a variety of associated security attributes including a

security level, hardware security attributes such as its process domain, the user and user

group on whose behalf it is executing, indications of whether it belongs to the TCB, and

indications of whether it is exempt from certain access control checks.

The issues regarding disjointness of storage objects mentioned in Section 3.1.1 apply

to subjects as well. If two subjects share memory, it is advisable to model the shared

memory as an object separate from either subject in order to achieve the disjointness

needed for information-flow analysis. Local memory need not be separately modeled, but

must be properly taken into account when modeling the subject. Registers (including the

instruction pointer) are technically shared memory but can often be treated abstractly as

unshared local memory. This is especially true if registers are saved and restored during

process swaps and the information they contain is not shared between processes.

Security levels for processes are ordinarily similar to security levels for storage objects.

The TCSEC requires that a subject have a nondisclosure level that is dominated by the

clearance and authorization of its user. A TCB subject may reasonably be assigned

separate levels for reading and writing in order to allow partial exemption from access

control (see Section 3.4). Other TCB-related entities may also need separate levels for

reading and writing in some systems. One such example is /dev/null in UNIX. [GLIG86]

This object is system high in the sense that any process can write to it; but it is system low in

the sense that any process can read from it because its value is always null.

In general, the security-relevant attributes of a subject are part of its run-time

environment. Some attributes are relatively static and are inherited from the subject's

executable code or are stored with its code. In UNIX, the property of being a set-user-id

program is a statically determined attribute, as is the effective user-id. Other attributes are

dynamically assigned and are inherited from a subject's parent or are actively assigned by

the parent (assuming it has a parent process). In the latter case, the parent must be relied

upon to assign the child's security attributes appropriately. As a result the parent usually

belongs to the TCB in this latter case. A secure terminal server, for example, might create a

subject and assign it security attributes based on the determined identity of a user logging

in.

-30.

SECURITY MODELING TECHNIQUES

There are potential difficulties in associating user-ids with TCB subjects. A terminal

server would appear to operate on behalf of the user currently logged in or on behalf of the

Identification and Authentication mechanism if no one was logged in. A print spooler acts

on behalf of the users in its print queue. Such TCB subjects are, in reality, associated with

multiple user-ids, a fact which is relevant to the design of the audit mechanism. A TCB

subject that does not act on behalf of a given user can be handled either as having a

dynamically modifiable user-id or as acting on behalf of the system (equivalent^, as acting

on behalf of a system-defined pseudo-user).

When a subject creates a child subject by executing a program, the resulting child might

belong to the TCB and be exempt from certain access control checks, even if the original

subject was not in the TCB. This is possible if exemptions are associated with the program

object itself.

With the advent of multitasking languages such as Ada, there is a question of when two

threads of control belong to the same subject. Pragmatically, to be the same subject, they

should have the same security attributes. To qualify as separate subjects, their separation

should be enforceable by the TCB.1" Finally, nothing explicitly prohibits a multithreaded

process from consisting of several subjects operating at different security levels. Of

course, intraprocess communication will be somewhat limited for such a process unless it

contains TCB subjects that are exempt from some of the MAC constraints.

3.1.3 USERS AND USER ROLES

User-related topics often turn up in security models in spite of the fact that users are not

controlled entities and thus do not need to be directly modeled. The users of a system may

perform specific user roles by executing associated role-support programs. In general, a

user may engage in a combination of several roles. As a matter of policy, a given user role

may require system-mediated authorization and may provide specific system resources

needed for performance of the role. Although the following paragraphs discuss only

^ The TCSECglossary mentions two uses of the word "subject," the more general use from [ANDE72] and
a less general use from Multics. In Multics, a process and, hence, a subject is single-threaded. However,
legitimate examples of multithreaded subjects have turned up in product evaluations, and their
multithreadedness has been considered acceptable by the NCSC. Multithreaded processes are often
referred to as process families.

• 31

SECURITY MODELING GUIDE

individual user roles, most of the basic concepts extend to roles for other kinds of clients in

the environment of a computing system including usergroups and, in the case of a network,

hosts or subjects running on hosts.

The TCSEC requires support for certain trusted user roles. For systems at B2 and

above, these roles include the security administrator role and the system operator role.

The administrator role governs security attributes of users, moderates discretionary and

mandatory access control, and interprets audit data. The operator role ensures provision

of service and performs accounting activities. [NCSC90a] These roles may be subdivided

so that they can be shared by multiple users. In addition, they do not preclude the addition

of other trusted roles. In general, trusted user roles are characterized by the fact that they

involve handling security-critical information in a way that violates access restrictions

placed on non-TCB subjects. As a result, processes that support trusted roles can be

misused and must have restricted access. By definition, such trusted role processes have

security properties that are unacceptable without special constraints on the behavior of

their users. These observations suggest (but do not mandate) the modeling of support for

user roles, especially trusted user roles. Trusted role processes are usually treated as

TCB subjects. Additional information on modeling them is given in Section 3.4.

Instructive examples of role definitions may be found in Secure Xenix [GLIG86] and the

SMMS security model [LAND84]. Secure Xenix restructured the Guru role into four

separate roles. The SMMS security model included a system security officer role, a

downgrader role and a releaser role. In both of these systems, the roles support separation

of duty in that each role has privileges not available to the other roles. Separation of duty

has been emphasized by Clark and Wilson, who have given a general scheme for

constraining user roles by using triples of the form (user, program, object-list) in order to

control how and whether each user may access a given collection of objects. [CLAR87] A

similar role-enforcement mechanism is supported by type enforcement. [BOEB85] The

type-enforcement mechanism itself assigns "types" to both subjects and objects; subject

types are referred to as "domains." The accesses of each subject are constrained by a

"type table" based on subject domain and object type. Each user has a set of domains

associated with subjects running on his behalf. These domains are used to define user

roles, [cf THOM90]

■32-

SECURITY MODELING TECHNIQUES

3.1.4 I/O DEVICES

Although users are external to the computing system and need not be directly modeled,

it is still useful to model their allowed interactions with the system in order to document

security-relevant constraints that are enforced by the system. User interactions may be

modeled in terms of constraints on I/O devices if there is a convention for discussing the

current user of a device. Devices which are accessible to subjects outside the TCB should

be modeled either implicitly or explicitly as part of the interface between the non-TCB

subjects and the TCB. An additional reason for interest in I/O devices is that I/O typically

accounts for a large portion of the TCB.1" The following paragraphs present general

information on the modeling of devices with emphasis on device security requirements and

then discuss when they should be modeled as objects, as subjects, or as their own kind of

entity.

Normally, security models discuss abstract encapsulated devices rather than actual

physical devices. An encapsulated device is an abstract representation of a device, its

associated device driver, and possibly other associated entities such as attached hardware

and dedicated device buffers. Thus, for example, one might discuss a line printer

connected to the system but not the actual RS-232 device used to achieve the connection

or its associated device driver.

By definition, an input device injects information into the system in a way that the system

cannot entirely control. The next state of the system may depend on the actual input as well

as on the current state and the particular state transformation being executed. This fact

can be accommodated in several ways in an FTLS or a model that addresses object

content. One can treat the actual input as a parameter to the transformation. If there are

only a few different input values, one can associate different transformations with different

inputs. Finally, one can treat the transformation as being nondeterministic, meaning that

several different states can result from executing the transformation in a given state.

+ I/O handling often accounts for 30 percent or more of an entire operating system. [TANE87, Preface]

-33

SECURITY MODELING GUIDE

Abstract encapsulated devices are often passive entities, in contrast to their underlying

hardware. Security requirements for devices, however, differ significantly from those for

either storage objects or controlled processes:

• External policy on use of the system requires that devices pass information
only to authorized users.

• Devices may transport either unlabeled data or labeled data and are
classified as single-level or multilevel de vices accordingly.

• At B2 and above, the TCSEC requires that every device have a minimum and
maximum device level that represents constraints imposed by the physical
environment in which the device is located.

Authorized use of a device may be enforced by requiring that any piece of information

output by the device have a security level that is dominated by the clearance and

authorization of the recipient. A combination of procedural and automated methods are

needed to correctly associate the security level of the information, the user who will receive

that information, and the security level ofthat user. Typically, the device itself will also have

a security level. The user who receives information from a device may well be different than

the user who sent that information to the device. If a device with local memory (an

intelligent terminal, for example) is allocated to different users or different security levels at

different times, it will typically need to be reset between users in order to meet requirements

on authorized transmission of information.

Both single-level and multilevel devices may handle multiple levels of information.

A single-level device can only handle a single level at a time but may have some

convention forchanging levels. A multilevel device, by way of contrast, can handle different

levels of data without altering its security designation, but still might be used in such a way

as to carry data at only one fixed security level.

The TCSEC requirement for device ranges does not explain how they are to be used.

The most common option is to require that the level of any object transmitted by the device

be within the range. Another option is to require that the security clearance of any user be

within the range. Separate decisions regarding device minimum and device maximum are

also possible. In the Trusted Xenix system,* a user with a secret clearance can have an

unclassified session on a terminal with a secret device minimum. The intended

' Trusted Xenix" is a trademark of Trusted Information Systems. Trusted Xenix was formerly known
as Secure Xenix, which is the name found in [GLIG86].

•34-

SECURITY MODELING TECHNIQUES

interpretation of the device minimum is that the device is in a restricted area that should

contain only users whose clearance is at least the device minimum. If the device minimum

is secret, then a login attempt by an uncleared user is treated as a violation of physical

security. [GLIG86]

The question of whether devices should be modeled in the same way as other kinds of

controlled entities depends on the complexity of the devices involved, observed similarities

between devices and other modeled entities, and goals relating to the simplicity and

accuracy of the model. The TRUSIX group decided to model devices in the same way as

file objects, a decision that depended heavily on both the nature of UNIX and the specific

goals of the TRUSIX effort. [NCSC90b, § 6.9] The SMMS model treats devices as

containers in order to capture the fact that the device maximum must dominate the level of

all data handled by the device. [LAND84] Yet another alternative is to model devices by

modeling their device drivers as TCB subjects. In general, more sophisticated I/O devices

need greater modeling support, with the limiting case being intelligent workstations

modeled as autonomous computing systems.

3.1.5 SECURITY ATTRIBUTES

A security attribute is any piece of information that may be associated with a controlled

entity or user for the purpose of implementing a security policy. The attributes of controlled

entities may be implicit; they need not be directly implemented in data structures. Labels

on a multilevel tape, for example, can be stored separately from the objects they label,

provided there is an assured method of determining the level of each object on the tape,

[cf NCSC88b, C1-CI-05-84]

Primary attributes of security policies that are usefully reflected in the security model

include locus of policy enforcement, strength and purpose of the policy, granularity of user

designations, and locus of administrative authority. These policy aspects lead to a

taxonomy of policies and security attributes.

There are several types of security attributes of any given system: informational

attributes, access control attributes, nondisclosure attributes, and integrity attributes.

Informational attributes are maintained for use outside the given computing system,

whereas access control attributes limit access to system resources and the information

they contain. Purely informational attributes are somewhat uncommon; an informative

-35-

SECURITY MODELING GUIDE

example is given in Section 4.4. Access control attributes may be classified according to

what they control. A loose access control attribute controls access to the entity it is

associated with, whereas a tight access control attribute also controls access to

information contained in that entity. Thus, access restrictions determined by tight attributes

must propagate from one object to another when (or before) information is transferred,

because control over the information must still be maintained after it leaves the original

entity. Nondisclosure attributes are used to prevent unauthorized release of information,

whereas integrity attributes are used to prevent unauthorized modification ordestruction of

information.

Attributes can also be classified by the granularity and authority of their control. The

user granularity of an attribute may be "coarse," controlling access on the basis of broadly

defined classes of users, or it can be "per-user," controlling access by individual users and

processes acting on their behalf. Finally, centralized authority implies that policy for use of

attributes is predefined and takes place under the control of a system security

administrator, whereas distributed authority implies that attributes are set by individual

users for entities under their control. This classification of security attributes is based partly

on the work of Abrams. [ABRA90]

When applied to typical security policies for B2 systems, these distinctions among

security attributes might take the form given in Figure 3.1. MAC policies must enforce

nondisclosure constraints on information and may enforce integrity constraints as well.

They must regulate access to information on the basis of user clearance and labeled

sensitivity of data. The involvement of user clearances typically comes at the expense of

per-user granularity because several users are likely to have the same clearance.

Authority to assign security attributes is usually somewhat centralized. Users can create

entities at various levels, but ability to change the levels of existing entities is usually

restricted to authorized users.

-36-

Binding Strength:

Purpose:

User Granularity:

Authority:

MAC

Tight

Nondisclosure '

Coarse

Centralized

SECURITY MODELING TECHNIQUES

DAC

Loose^
Nondisclosure &

Integrity
Per-user

Distributed'

Figure 3.1. Typical Classification of Access Control Policies

DAC policies must enforce access constraints on both reading and writing. They must

provide per-user granularity as criteria for access decisions, although they often include a

group mechanism for coarse-grained access decisions as well. DAC policies are normally

used to enforce both nondisclosure and integrity, but constraints on access to named

objects do not necessarily imply corresponding constraints on access to information in

those objects. Authority to change discretionary attributes is usually distributed among

users on the basis of ownership.

3.1.6 PARTIALLY ORDERED SECURITY ATTRIBUTES

A security attribute belonging to a partially ordered set may be referred to as a level.

The associated partial ordering may be referred to as the dominance relation; in

symbols, L-, is dominated by L2if and only if L-, < L2. The use of partially ordered levels is

usually associated with tight access control policies and constraints on information flow.

Constraints on information flow can arise for several different reasons. As a result a

multifaceted policy might have a different partial ordering for each reason. Often, the

combined effect of constraints associated with several partial orderings can be expressed

in terms of a single composite ordering. In this case, facts about Cartesian products of

partially ordered sets given in Appendix A may be used to simplify the formal model and,

possibly, the system's implementation as well. The following paragraphs discuss the

connection between levels and constraints on information flow, the use of these constraints

for supporting nondisclosure and integrity objectives, and the tailoring of level-based

policies to particular applications.

t The MAC policy enforced by a system may be useful for integrity as well as nondisclosure.
DAC policies are not required to be either loose or distributed.

-37-

SECURITY MODELING GUIDE

A dominance relation is often viewed as an abstraction of allowed information flows:

information can flow from entity E1 to entity E2 only if the level of E1 is dominated by the

level of E2. This rather general view, which is an analogue of the original *-property of Bell

and La Padula, allows the illustration of some basic issues in the use of levels, but it is

overly simple in some respects. It does not address whether information flows properly or

whether the flow is direct or indirect. Moreover, this view does not contain any explicit

assumption about why information may be prevented from flowing from one entity to

another.

Partially ordered levels and related constraints on information flow have been

suggested for use in enforcing both nondisclosure and integrity objectives. The motivation

for these suggestions may be understood from the following considerations. Suppose that

access controls could enforce the above information-flow constraints perfectly. Suppose

that the two objects contain the same information, but one is labeled at a higher level than

the other. In this situation, information is less likely to be disclosed from the higher-level

object because fewer subjects have a sufficiently high level to receive this information.

Conversely, if lower-level subjects can write higher-level objects, then inappropriate

modification of the lower-level object is less likely because fewer subjects have a

sufficiently low level to write to it. This dual relationship may cause the goals of

nondisclosure and integrity to conflict, especially if the ordering on levels is strongly

hierarchical. As explained in Section 3.5, this duality between nondisclosure and integrity

has some significant limitations. A given set of security levels designed for enforcing

nondisclosure may be inappropriate for enforcing integrity, and not all integrity policies use

partially ordered security attributes.

When a computing system is accredited for use at a particular site, it is assigned a host

accreditation range - a set of levels at which the host may store, process, and transmit

data.1" A host range can prevent the aggregation of certain classes of data. If several

objects have different levels and no level in the host range dominates all of them, then there

is no legitimate way of concatenating these objects. This use of host ranges is discussed

further in Section 4.4.

' Several different kinds of accreditation ranges may be associated with a host
on a network. For example, a network interface accreditation range is a device range which restricts the
levels that may be used in connection with a given network interface.

■38-

SECURITY MODELING TECHNIQUES

A desirable constraint holds between a host range and device ranges: if the host range

contains a level that does not belong to any device range, a non-TCB subject running at

that level can not communicate bidirectionally without using covert channels. By way of

contrast, a device range may reasonably contain levels not in the host range. Suppose, for

example, that A and B are incomparable levels dominated by a level C that does not belong

to the host range. A device might reasonably use C as a maximum device level in order to

allow use of the device at either level A or level B. But, in this case, the system would need

to check that each object input from the device actually belonged to the host range.

3.1.7 NONDISCLOSURE LEVELS

The following paragraphs discuss the structure of nondisclosure levels as it relates to

their abstract mathematical properties, to TCSEC requirements, and to their intended use.

Analyses given in the following paragraphs suggest that the structure of nondisclosure

levels that are used to enforce nondisclosure policies is often not needed for modeling

purposes. If their structure plays no significant role in a given model, their inclusion is

unnecessary and may limit the applicability of the model.

The TCSEC requires that nondisclosure levels contain a classification component and

a category component. The hierarchical "classification" component is chosen from a

linearly ordered set and the nonhierarchical "category" component must belong to a set of

the form g>(C), the set of all subsets of C, for some set C of categories, [cf NCSC85,

Sec. 9.0,Sec. 3.1.1.4] In some applications, thousands of categories may be needed. In

others, only the four clearance levels "unclassified", "confidential", "secret", and "top

secret" are needed, as a result of Executive Order 12356. [REAG82] These facts illustrate

the importance of configuration-dependent host accreditation ranges to remove unused

security levels.

As explained in Appendix A, any partially ordered set may be fully embedded in one

based on categories. As a result, TCSEC constraints on nondisclosure levels do not

restrict the class of partially ordered sets that may be used for such levels (although these

constraints do affect the use of human-readable names). The decomposition of levels into

classification and category components can be configuration-dependent and may be

•39-

SECURITY MODELING GUIDE

given along with the host accreditation range. This fact is of some interest for computing

systems with both commercial and military applications, [cf BELL90] In this case, the

model should be general enough to embrace all intended configurations.

Even if labels are explicitly assumed to contain classification and category

components, nothing in the TCSEC prevents the addition of vendor-supplied components

because such additions do not invalidate the mandated access checks. Thus, for example,

each label could contain a release date after which the contained information will be

valueless and, therefore, unclassified. If release dates are chronologically ordered, later

dates would represent a higher nondisclosure level. The initial specification of release

dates, like that of other nondisclosure attributes, needs to be handled by trusted path

software. The regrading from classified-outdated to unclassified would be carried out by

trusted software in conformance with accepted downgrading requirements.

A nondisclosure level is, by definition, commensurate with the level of harm that could

result from unauthorized disclosure, and it should also be commensurate with the level of

assurance against unauthorized disclosure that is to be found in the system's TCB and

surrounding physical environment. Various rules of thumb have been worked out to

correlate risk with levels of nondisclosure and assurance. [DOD88a, NCSC85a] While

these relationships are not likely to show up in the security model itself, they may affect the

kinds of security attributes that are included in the nondisclosure level.

3.1.8 UNLABELED ENTITIES AND THE TRUSTED COMPUTING BASE

In addition to controlled entities, there are system resources that either are not user

accessible or are part of the mechanism by which user-accessible resources are

controlled. These latter resources are the software, hardware, and internal data structures

which make up the TCB. At higher levels of assurance, significant effort goes into

minimizing the size and complexity of the TCB in orderto reduce the overall effort needed to

validate its correct operation.

The TCB typically consists of the implemented access control mechanism and other

entities that must be protected in order to maintain the overall security of the system.

A TCB process which is not part of the access control mechanism may be assigned

security attributes and controlled as a subject in orderto help enforce the principle of least

privilege within the TCB. Conversely, certain subjects may need to be included within the

40-

SECURITY MODELING TECHNIQUES

TCB because they assign security levels to input, support trusted user roles, transform

data in such a way as to legitimately alter the data security level, or perform some other

security-critical function.1" A data structure may also be security-critical, as when it

contains user-authentication data, a portion of the audit trail, audit-control data, orsecurity

attributes of controlled entities. It is not always necessary to assign security attributes to

TCB processes and security-critical data structures, but this is often done to enforce the

principle of least privilege within the TCB and to regulate access by non-TCB subjects to

security-critical data structures.

If a piece of data can be accessed as a direct effect of a system call (i.e. access directly

specified in a parameter) then it must be accounted for in the interpretation of controlled

entities in such a way as to satisfy MAC requirements. But some data structures may not be

directly accessible. Possible examples include security labels, the current access matrix,

internal object names that are not accessible to users of the system, and transient

information related to access control, opening of files, and so forth. A data structure which

is not directly accessible does not have to be labeled. A decision to supply a label may

complicate the modeling process, whereas a decision not to supply a label may increase

the difficulty of the covert channel analysis.

While there is no explicit requirement to model the TCB, the model must capture

security requirements imposed by the TCSEC, including reference monitor requirements

relating to non-TCB subjects and the entities they manipulate, [cf NCSC87, Appendices

B.3.4, B.7.1] A possible approach to modeling these reference monitor requirements is

discussed in Section 3.2.4. If significant aspects of the system security policy are

embodied in TCB subjects that are exempt from modeled access constraints on non-TCB

subjects, then exempt subject modeling is also needed. This topic is discussed further in

Section 3.4.

3.2 NONDISCLOSURE AND MANDATORY ACCESS CONTROL

How can nondisclosure requirements be accommodated in a model's definition of

security? To what extent can access control succeed in enforcing nondisclosure? What

impact do nondisclosure and access control requirements have on trusted systems

"*" Subjects belonging to the TCB are often referred to as "trusted," but in some contexts, this word is
used more narrowly, referring to TCB subjects that are exempt from certain constraints enforced
by the reference monitor, or even more narrowly, for subjects that are exempt from the '-property.
[Cf SALT75, SCHE85, BELL76]

•41

SECURITY MODELING GUIDE

design? The first of these questions is customarily addressed by imposing access

constraints on controlled entities (e.g., the "-property). But various research efforts have

contributed additional approaches that provide a useful context in which to explain how

access constraints can support nondisclosure objectives. Both traditional and newer

research-related approaches are discussed below. The ordering is top-down, beginning

with nondisclosure requirements on the external system interface, as in the modeling

paradigm described in Section 2.3.

Section 3.2.1 shows how nondisclosure requirements can be formalized in an external-

interface model. In Section 3.2.2, external-interface requirements are elaborated to obtain

an information-flow model, in order to facilitate later analysis. Section 3.2.3 introduces the

reference monitor interface and applies the information-flow requirements to individual

subject instructions. Section 3.2.4 presents an access-constraint model that ensures

satisfaction of the information-flow requirements at the reference monitor interface.

Finally, Section 3.2.5 only briefly discusses rules of operation because of their

system-specific nature.

Each of the three models presented in Sections 3.2.1, 3.2.2, and 3.2.4 provides

adequate conceptual support for nondisclosure requirements found in the TCSEC

mandatory security objective and could serve as a definition of mandatory security in a

security policy model. Adequacy of the access-constraint model, in particular, is

established by comparison with the previous two models. Comments regarding the impact

of these models on overall system design are distributed among the various subsections,

with the third access-constraint model providing the most explicit basis for designing rules

of operation and judging correctness of implementation.

These models are very simple and need to be adjusted to accommodate policy

variations found in particular trusted systems. These models do not address aggregation

and inference. For sake of simplicity, no accommodation is made for trusted processes or

discretionary access control. The presented access-constraint model is especially

relevant to systems in which all user-initiated computation is performed by subjects

outside of the TCB. It may not be adequate for systems whose TCB contains major trusted

applications (e.g., a multilevel DBMS implemented as a TCB subject). Finally, the entire

•42-

SECURITY MODELING TECHNIQUES

analysis assumes that the system to be modeled is deterministic in the sense that its

behavior is completely determined by its combined input sequence and data initially in the

system.

3.2.1 EXTERNAL-INTERFACE REQUIREMENTS AND MODEL

Consider a system where each input or output is labeled with a nondisclosure level.

Users work with I/O streams containing items at a given level and provide inputs in such a

way that the level of a given input stream accurately reflects the sensitivity of the

information it contains. The system creates each output item by extracting information

from input items (possibly at several different levels) and affixing an appropriate label.

A combination of automated and procedural methods is used to combine input streams

into a single input sequence and to separate the resulting combined output sequence into

separate output streams at different levels.

The actual nondisclosure requirement is this: outputs labeled with a given level must

contain only information whose sensitivity is dominated by that of their label. This

requirement is pictured in Figure 3.2, where lighter shadings represent higher information

security levels: I I for level A dominates \ 1 for level B, which dominates ÜÜ for

level C.

This requirement is difficult to model (let alone implement) because it talks about the

actual sensitivity of output information, whereas the system is only given the attributed

sensitivity of its data. These difficulties can be avoided with the following alternate

requirement: a given labeled output must not contain information derived from data whose

attributed sensitivity fails to be dominated by the level of the output's label. This alternate

requirement applies to both data supplied in the input streams, and data residing in the

system itself. This alternate requirement is slightly stronger than the original provided that

information at a given level cannot be synthesized by aggregation and inference from

information at strictly lower levels. In this case, any classified information in the system

either came from the input stream or was already contained in the system when it was

installed.

■43-

SECURITY MODELING GUIDE

Level A

Level' B

Level C
Combined

Input Sequence
Combined

Output Sequence

Level A

LevelB

Level C

Figure 3.2 Intended Use of a Secure System

In the first external-interface model, each item in the system's input stream is taken to

be a labeled value, as is each item in the output stream. There are two "nondisclosure

security" requirements which are given relative to an arbitrary level L:

Noninterference:
Any output stream at level L remains unchanged when inputs at levels not
dominated by L are altered or removed.

Nonobservability:
Any output stream at level L remains unchanged when data in the system whose
sensitivity is not dominated by L is altered or removed.

These two terms and the requirements they name are similar; the only distinction is that

noninterference discusses independence from high-level input, whereas nonobservability

discusses independence from high-level data in the system.

As with any mathematical modeling effort, there is a need to specify the physical

interpretation of the model. There are also choices to be made as to which aspects of the

system's observable behavior are actually addressed by this external-interface model. An

"accurate" interpretation of this model is a physical system whose I/O streams and data are

related according to the above two requirements. In a "complete" interpretation of this

model, the input stream would contain all external influences on the system being modeled;

the output stream would contain all observable effects of the system on its environment;

and the data in the system would include all data that can influence the value of the output

stream. An accurate interpretation can be 'Useful" without being complete if it includes all

outputs associated with normal use as well as enough of the inputs and system state to

predict the included outputs. It is standard engineering practice to avoid details that would

make the modeling problem intractable and then consider them in a separate covert

channel analysis.

■44-

SECURITY MODELING TECHNIQUES

The noninterference requirement is due to Goguen and Meseguer. [GOGU82] Under

useful interpretations, this requirement rules out resource-exhaustion channels

associated with those aspects of the system that are covered by the model's interpretation.

Suppose that some system resource (such as memory) is used for processing both

low-level and high-level inputs, and that the processing of low-level inputs cannot

proceed when that resource is unavailable. In this case, the system may not emit a

low-level diagnostic explaining the nature of the problem, since the diagnostic could

reveal "interference" by high-level input. The low-level diagnostic, if allowed, would have

provided a resource-exhaustion channel.

The nonobservability requirement was developed as part of the LOCK verification

effort. It covers situations in which classified data is entered during system configuration

using information paths not addressed in the security modeling process. A superficially

stronger requirement is that the system initially contains no classified information. This

stronger requirement occurs implicitly in the original noninterference models of Goguen

and Meseguer. [GOGU82, GOGU84] With this stronger requirement, useful physical

interpretations would need to include any classified inputs that occurred during the

construction, installation, or booting of the system.

3.2.2 INFORMATION-FLOW MODEL

The information-flow model is discussed next because of its close relationship to

noninterference. The requirements of this model are motivated by an informal view of how

information flows through a deterministic state-machine system. The possible paths of

information flow during a state transition are depicted as arrows in Figure 3.3, where 1,0,

and S abbreviate input, output, and state, respectively.

I/S ^^v
input *■ state) S/S

I/O S/O

output

Figure 3.3. Information Flows in a Deterministic State Machine

• 45-

SECURITY MODELING GUIDE

Each input is assumed to induce a state transition and a (possibly empty) sequence of

labeled outputs. As indicated in the above diagram, there are just four possible flows:

directly from input to output, from an input to the next system state, from a given state to the

next state, and from a given state to an output. Correspondingly, there are four

flow-security requirements for the information-flow model that must hold for any

nondisclosure level L. They refer to "portions" of the state, meaning collections of variables

(i.e., state components):

I/O Security:
An output at level L can only be induced by an input whose level is dominated by L.

I/S Security:
An input at level L can affect only those portions of the system state whose levels
dominate L

S/O Security:
An output at level L can depend only on those portions of the system state whose
levels are dominated by L

S/S Security:
A portion of the state which is at level L can affect only those portions of the state
whose levels dominate L

To see the effect of these requirements, suppose, for example, that the current time is

maintained as a state component that is implicitly incremented by every input instruction

according to the time needed for its execution. The l/S security property implies that the

clock level must dominate every level in the input stream because every input affects this

particular state component. This observation does not imply that all "system" clocks have

to be system high, however. One possibility is to partition time into several disjoint "slices."

This partitioning effectively creates a virtual clock for each time slice. Processes running in

a given time slice affect only the virtual clock associated with that time slice, so that the level

of the virtual clock need only dominate the levels of these processes. Consequently, a

process that reads the virtual clock for its time slice must have a level that dominates those

of other processes running in that time slice.

The four requirements of the information-flow model imply those of the

nondisclosure-requirements model. This fact is an example of an 'unwinding" theorem in

that it shows how to recast nondisclosure in terms of individual inputs and state transitions.

An informal justification of this fact can be given as follows. First, consider the

nonobservability requirement: information at a given level L in the output stream cannot

come directly from portions of the state not dominated by L (by the S/O security property),

-46-

SECURITY MODELING TECHNIQUES

and it cannot come indirectly from a preceding state transition (by the S/S security

property). Now consider noninterference: information in the output stream at a given

level L cannot come directly from inputs not dominated by L (by the I/O security property),

and it cannot come indirectly via an intermediate system state as a result of the l/S security

and nonobservability properties.

All four of the flow-security requirements are necessary for noninterference. Moreover,

there is a partial converse: in the case of systems that contain "print" commands capable of

outputting arbitrary state components, the four flow-security requirements follow from the

nondisclosure requirements.

This information-flow model is similar to those of Feiertag, Levitt, and Robinson

[FEIE77] but it makes some minor improvements: an input that causes a state change may

also induce output; a given input may induce outputs at several different levels; and it is not

required that each input be associated with an identified user. The correctness of this

model with respect to the nondisclosure-requirements model is formally proven in

[WILL91]. The result is a variant of the unwinding theorem of Goguen and Meseguer.

[GOGU84, RUSH85] An exposition of Rushby's treatment of the unwinding theorem can

be found in the article "Models of Multilevel Security." [MILL89]

3.2.3 APPLICATION TO THE REFERENCE MONITOR INTERFACE

Security policy models traditionally emphasize the reference monitor interface and

cover the processing of subject instructions but ignore issues associated with the

sequencing of subject instructions and their synchronization with external inputs. These

ignored issues are handled separately via covert channel analysis. This is due to the lack of

general, well-developed modeling techniques for dealing with time, concurrency, and

synchronization. Subject-instruction processing, by way of contrast, is readily modeled. In

particular, the above external-interface and information-flow models can be used for

subject-instruction processing, just by giving them a new physical interpretation.

Under this new interpretation, the inputs of the state machine are the instructions that

subjects execute, including system traps whose semantics are defined by the TCB's

kernel-call software. External system inputs are also included in the case of "input

■ 47-

SECURITY MODELING GUIDE

instructions." Each instruction is executed to produce a state change and zero or more

outputs. The outputs include external system outputs and, possibly, feedback to the

unmodeled instruction-sequencing mechanism.

Notice that subjects do not literally execute instructions (since they are untrusted). The

TCB itself executes each subject instruction on behalf of an associated subject controlled

by the TCB. In particular, each hardware instruction available to processes outside of the

TCB (i.e., each "user-mode" instruction) is executed by the CPU, which is part of the TCB.

To ensure nondisclosure security, all subject instructions, including user-mode hardware

instructions, must satisfy the reinterpreted model requirements, either by virtue of the

hardware design or by enforced restrictions on their use. For example, security may be

violated if a subject can follow a kernel call with a "branch-to-previous-context" instruction

that inadvertently restores all of the access privileges used during the processing of that

kernel call. Instructions implemented by the hardware but not used by compilers should be

modeled if the compilers are bypassable. In the unusual case where non-TCB subjects

can directly execute microcode instructions, these too need to be modeled.

The actual accesses of a given subject to various objects in its environment are

determined by the instructions it executes (or attempts to execute). Therefore, it is this

stream of subject instructions that the reference validation mechanism must mediate in

order to carry out the recommendations of the Anderson Report. [ANDE72] The

application of noninterference and information flowto subject-instruction processing dates

back to [FEIE77] where a form of noninterference is referred to as "property P1." The

validation of noninterference as applied to LOCK subject-instruction processing is

presented in [HAIG87a; FINE90]. Keefe and Tsai have adapted noninterference for use in

modeling DBMS schedulers. [KEEF90] It can be shown that information flow for

subject-instruction processing, together with a variant of noninterference for

subject-instruction sequencing, implies noninterference and nonobservability for the

entire system. [WILL91]

3.2.4 ACCESS-CONSTRAINT MODEL

An access-constraint model can be obtained by expanding the information-flow model

of instruction processing to include traditional notions of access control, including subjects,

objects, a current-access matrix, and access constraints. This is not a complete access

-48-

SECURITY MODELING TECHNIQUES

control model in the traditional sense because it lacks rules of operation. It is a definition of

mandatory security for instruction processing; it does not show how access constraints are

actually enforced.

The access-constraint model assumes that the instruction processing state is made up

of labeled state components called objects. The model does not explicitly assume that

subjects are controlled processes, but it does assume that every computation involving

either access to objects or output has an associated subject. Each subject has a

nondisclosure level and is assumed to include its local data space (including stack,

program counter, and so forth). Consequently, each subject is also considered to be an

object that could passively be acted on by other subjects. The system state, st, contains a

"current-access matrix,">Ast(s, o), that associates each subject-object pair with a set of

"modes." For simplicity, the possible modes are taken to be just 'bbserve" and 'modify."

The requirements of the access-constraint model fall into three groups: traditional

requirements, constraints on the semantics of observation and modification, and I/O

requirements. These requirements are formulated for systems with file-like objects that

are opened (in accordance with simple security and the *-property), accessed for a period

of time (in accordance with the observe-semantics and modify-semantics requirements),

and then closed. Each of the eight requirements must hold in every reachable state.

Simple Security:
A subject may have observe access to an object only if its level dominates that of the
object.

•-Property:
A subject may have modify access to an object only if its level is dominated by that of
the object.

Tranquility:
The level of a given subject or object is the same in every reachable state.

Variants of simple security and the *-property are found in virtually all mandatory

security models. The tranquility requirement can be weakened without compromising the

mandatory security objective, but possibly at the expense of a more complicated model,

[cf MCLE88]

-49-

SECURITY MODELING GUIDE

The requirements which constrain the semantics of reading and writing are a major

factor in deciding what checks must appear in the rules of operation. Other major factors

include the actual system design and the degree of detail needed in the model.

Observe Semantics:
A subject that executes an instruction whose behavior depends on the value of
some state component must have observe access to that state component.

Modify Semantics:
A subject that executes an instruction which modifies a given state component must
have modify access to that state component.

The observe-semantics requirement is slightly strongerthan necessary. A subject (e.g., a

mail program) that knows the existence of two objects at a higher level might reasonably

cause information to be transferred from one to the other by means of a "blind" copy

instruction, but this is directly ruled out by the observe-semantics requirement. As noted

by McLean [MCLE90,Sec. 4], Haigh's analysis contains a similar restriction. [HAIG84] A

very careful treatment of what constitutes observation may be found in "A Semantics of

Read." [MARC86] The use of a semantics of reading and writing may be found also in

several other security modeling efforts, including those by Cohen, [COHE77] Popek,

[POPE78] and Landwehr [LAND84].

The following requirements constrain allowed associations between subjects and I/O

streams. They assume that each input is read on behalf of an associated subject referred

to as its "reader."

Reader Identification:
The decision as to which subject is the reader for a given input must be based only
on information whose level is dominated by that of the reader.

Reader Authorization:
The level of the data read must be dominated by that of the reader.

Writer Authorization:
A subject that executes an instruction which produces an output must have a level
that is dominated by that of the output.

In some implementations, the associations between inputs and subjects are relatively

static, and their validation is straightforward. In others, subjects are created dynamically to

service inputs as they arrive, and explicit modeling may be useful.

If the eight requirements of this access-constraint model are satisfied, then so are the

requirements of the information-flow model. [WILL91] This observation supports the

thesis that access constraints can provide an adequate definition of mandatory security.

■50-

SECURITY MODELING TECHNIQUES

Related comparisons of access control models and information-flow models may be found

in the works by Gove and Taylor. [GOVE84, TAYL84] Unfortunately, this access-constraint

model also shares some potential weaknesses of the previous models. In particular, use of

the simple security and "-properties to enforce nondisclosure rests on the following implicit

assumption: a non-TCB subject either outputs information at its own level or outputs

information of an unknown lower level that must, therefore, be given worst-case

protection. This assumption ignores the possibility that a process may be able to produce

information which is more highly classified than its inputs through some form of

aggregation or inference. Security models which address this possibility in the case of

database management systems are discussed in Section 4.3.

3.2.5 TAILORING THE MODELS

The remaining tasks in modeling nondisclosure are to tailor the definition of mandatory

security to meet specific system needs and to provide rules of operation describing the

kinds of actions that will be exhibited by the system being modeled. The following

paragraphs discuss adaptations relating to lack of current access and the desirability of

modeling error diagnostics, trusted operations, and nondeterminacy.

In most systems there are some operations that access objects without being preceded

by an operation that provides access permission. For these operations, authorization must

be checked on every access, and either the model or its interpretation must treat the

combined effects of the simple security and observe-semantics properties, and of the

"-property and modify-semantics properties. If this is done in the model, the result is as

follows:

Observe Security:
A subject may execute an instruction whose behavior depends on the value of an
object only if its security level dominates that of the object.

Modify Security:
A subject may execute an instruction that modifies an object only if its level
dominates that of the object.

These axioms omit reference to the traditional current-access matrix and are particularly

well-suited to systems that do not have an explicit mechanism for granting access

permissions.

-51

SECURITY MODELING GUIDE

Although it is necessary to model unsuccessful execution resulting from attempted

security violations, it is not necessary to model resulting error diagnostics. If the model only

covers normal use of the system, it is both acceptable and traditional to omit error

diagnostics, as would typically be the case in an informal model of a B1 system. For higher

evaluation classes, however, an available option is to give detailed rules of operation that

explicitly model some or all error returns. Their inclusion in the model can provide an

alternative to examining them by means of a more traditional covert channel analysis, as

well as additional information for judging correctness of the system's design and

implementation. Error diagnostics resulting from unsuccessful instruction executions can

reasonably be modeled either as output or as information written into the subject's data

space.

A variant of the above modeling strategy has been carried out for the LOCK system.

The LOCK verification is based on noninterference and nonobservability applied to

subject-instruction processing (as opposed to the entire system). The inputs consist of

LOCK kernel requests and user-mode machine instructions. LOCK uses a 'conditional"

form of noninterference in which certain "trusted" inputs are explicitly exempted from the

noninterference requirement. The LOCK model was elaborated by means of an unwinding

theorem and then augmented to obtain an access control model. Technically, the LOCK

noninterference verification is an extension of traditional access control verification

because the first major step in proving noninterference was to verify the traditional Bell & La

Padula properties for the LOCK access control model. This access-control verification

represents about half of the LOCK noninterference verification evidence. The LOCK

developers compared noninterference verification with a traditional covert channel

analysis technique based on shared resource matrices. [HAIG87, FINE89] They have

since concluded that the noninterference approach is preferable, especially if both

nonobservability and noninterference are verified, because of the extensive hand analysis

associated with the shared resource matrix approach.

Noninterference has been generalized to nondeterministic systems in several ways. A

variety of nonprobabilistic generalizations has been proposed for dealing with

nondeterminacy, but they do not provide a full explanation of nondisclosure because of the

possibility of noisy information channels. [WITT90] Despite this limitation, nonprobabilistic

generalizations of noninterference provide useful insight into the nature of security in

-52-

SECURITY MODELING TECHNIQUES

distributed systems. An interesting result is that a security model can be adequate for

sequential systems, but is not adequate for a distributed system. This is because the

process of "hooking up" its sequential components introduces new illegal information

channels that are not addressed by the model. [MCCU88a] A state-machine model that

overcomes this lack of "hook-up" security has been provided by McCullough. [MCCU88] It

relies on state-transition techniques and, like the original Goguen and Meseguer models,

has a demonstrated compatibility with traditional design verification methodologies.

3.3 NEED-TO-KNOW AND DISCRETIONARY ACCESS CONTROL

Discretionary access control (DAC) mechanisms typically allow individual users to

protect objects (and other entities) from unauthorized disclosure and modification. Many

different DAC mechanisms are possible, and these mechanisms can be tailored to support

a wide variety of user-controlled security policy objectives. Users may impose

need-to-know constraints by restricting read access and may guard the integrity of their

files by restricting write access. As explained below, the use of group names may also

allow specific objects and processes to be associated with specific user roles in support of

least privilege. Discretionary security mechanisms are more varied and tend to be more

elaborate than mandatory mechanisms. The policy requirements for them are weaker in

order to allow for this variation. As a result, a well-understood discretionary security model

can play a larger role both in clarifying what is provided in a particular system and in

encouraging an elegant security design.

Traditionally, systems have been built under the assumption that security objectives

related to DAC are both user-enforced and user-supplied. A variety of well-known

weaknesses are traceable to this assumption. By way of contrast, vendor cognizance of

user security objectives allows the development of a DAC security model whose

mechanisms correctly support higher-level, user-enforced security policies. Moreover,

modeling of these higher-level policies would provide a suitable basis for validating

correctly designed DAC mechanisms and for supplying guidance on their use for policy

enforcement.

DAC mechanisms and requirements are summarized in Section 3.3.1. Group

mechanisms and their use in supporting user roles are covered in Section 3.3.2. Section

3.3.3 discusses traditional weaknesses in meeting common user-enforced security

■53-

SECURITY MODELING GUIDE

objectives and Section 3.3.4 presents mechanisms that overcome some of these

weaknesses. Further information on DAC mechanisms may be found in A Guide to

Understanding Discretionary Access Control in Trusted Systems. [NCSC87a] The

formalization of control objectives such as need-to-know and least privilege, as well as

the subsequent verification of access control mechanisms with per-user granularity, are

research topics that have yet to be adequately explored.

3.3.1 DAC REQUIREMENTS AND MECHANISMS

Separate DAC attributes for reading and writing are traditional but not required. DAC

security attributes must be able to specify users both explicitly and implicitly (i.e., by

specifying a user group whose membership might be controlled by another user or user

group). For systems at B3 and above, DAC attributes must give explicit lists1" of individuals

and groups that are allowed or denied access. A wide variety of relationships among

individual and group permissions and denials are possible, [cf LUNT88]

The assignment of DAC attributes may be carried out by direct user interaction with the

TCB, by (non-TCB) subjects acting on behalf of the user [NCSC88b, C1-CI-01-86], or by

default. This last alternative is needed in order to ensure that an object is protected until

such time as its DAC attributes are set explicitly. [NCSC88b, C1-CI-03-86] The default

attributes for an object may be inherited (as when a new object is created in UNIX by

copying an object owned by the user) or they may be statically determined.

A user who has responsibility forassigning DAC attributes to an object may be regarded

as an owner of the object. Typically, the user who creates an object has responsibility for

assigning DAC attributes and is thus the initial owner in this sense, but this is not a

requirement. [NCSC88b, C1-CI-03-85] In UNIX, each file has a unique explicit owner, but

root can also modify DAC attributes and it is thus an implicit co-owner. Some systems

provide for change of ownership and for multiuser ownership; others do not. A variety of

issues arise in the case of multiple owners. May any owner grant and revoke access, orare

some owners more privileged than others? How is coordination among owners achieved;

is agreement among owners required? The answers can differ for read and write accesses

and for granting and revoking. Analogous issues arise when transfer of ownership occurs.

^ Lists, per se, are not required; any equivalent implementation mechanism for specifying access on a
per-user basis suffice.

■ 54-

SECURITY MODELING TECHNIQUES

A traditional approach to these issues is to let any owner grant or revoke access or

ownership; another is to adopt a principle of "least access," so that all owners must grant a

particular kind of access in order for it to become available, [cf LUNT88]

By tradition, the entities controlled by the DAC mechanism must include all

user-accessible data structures controlled by MAC. However, the explicitly controlled

entities (i.e. named objectsj may be different from MAC storage objects. Examples where

storage objects and named objects differ are found in some database systems (see

Section 4.3). Operating systems can also have this feature. For example, files might be

named objects which are made up of individually labeled segments that are the storage

objects.

3.3.2 USER GROUPS AND USER ROLES

Access control lists determine triples of the form (user/group, object,

access_mode) and thereby provide a limited variety of triples of the sort used for role

enforcement. In fact, generalizing the mechanism to allow arbitrary programs in place of

access modes would provide a general mechanism of the sort used for role enforcement,

as was discussed at the end of Section 3.1.3. In the case of a trusted role, all associated

programs would belong to the TCB.

Some systems allow a user to participate in several groups or roles. Some of these

systems require a user to set a "current group" variable for a given session. In this case, the

user would run only programs with execute access in the current group, and they would

access only files associated with that group. Again, the effect is to create a three-way

constraint involving user groups, processes, and storage objects. In order for a user to

participate in several groups or roles, it must be possible for some groups to be subgroups

of others or for a user to be associated with several different groups. The possibility of

subgroups involves some interesting implementation issues. [SAND88] In the SMMS

[LAND84], groups represent user roles, each user has a unique "individual" role, there is a

notion of current role, and a given user may have several current roles. This use of

individual roles or groups is a way of tying individual accesses to group accesses so that the

two kinds of access do not have to be discussed separately: individual access is implicitly

given by the rules for group access applied to one-member groups.

•55-

SECURITY MODELING GUIDE

The ability to define user groups may be distributed. It is usually assumed that the class

authorized to define user groups is larger than the class of system security personnel but

smaller than the entire user population. A group associated with a trusted user role (e.g.,

downgrader, security administrator) would necessarily be controlled by a system

administrator.

The owner of a group and the users who specify access to their objects in terms of that

group need to clearly understand both the criteria for group membership and the

entitlements associated with membership in that group. Such understandings depend

partly on the mechanics of the group mechanism, which may be clarified by including

groups in the security model.

3.3.3 SOURCES OF COMPLEXITY AND WEAKNESS

In security policies and definitions of security, complexity tends to inhibit effective user

understanding. As such, it is a weakness that, in some cases, may be offset by

accompanying advantages. The following paragraphs discuss several sources of

complexity and weakness in DAC mechanisms including objects that are not disjoint, the

coexistence of two or more access control mechanisms, discrepancies between allowed

and authorized accesses, and the use of "set-user-id" to allow object encapsulation.

Finally, the most common weakness found in DAC mechanisms is discussed, namely, that

they are loose; that is, they control access to objects without necessarily controlling access

to the information they contain.

It can happen that named objects overlap so that a given piece of data can be

associated with several different sets of security attributes. In this case, they can be called

disjoint. This is essentially what happens if ownership is associated with file names rather

than with files. In this case, a given piece of data can have multiple owners, each of whom

can give or revoke access to it. As with mandatory access controls, a lack of disjointness

tends to interfere with one's ability to determine allowed accesses. It usually implies that

named objects are different from storage objects, a fact which is a source of complexity that

may have some advantages. Discretionary access may be controlled to a finer or coarser

level of object granularity than mandatory access. Aggregation problems can be

addressed by allowing some objects to be subobjects of others and by imposing stricter

-56-

SECURITY MODELING TECHNIQUES

access controls on an aggregate object than on its components. In the case of aggregate

objects, there is the additional problem that a change in the permissions of the aggregate

may logically entail a change in the permissions of its components.

When a C2 or B1 system is created by retrofitting security into a previously unevaluated

system, it may happen that the new mechanism supports access control lists in addition to

the old discretionary mechanism supported. In this case, the discretionary portion of the

security model can play a useful role in showing how the two mechanisms interact.

[BODE88]

If a process has its discretionary permission to access an object revoked while the

process is using it, some implementations allow this usage to continue, thereby creating a

distinction between authorized and allowed accesses. This distinction is both an added

complexity and a weakness that needs to be modeled in order to accurately reflect the

utility of the mechanism. The principal reason for allowing this distinction is efficiency of

implementation. However, in virtual memory systems, immediate revocation can often be

handled efficiently by deleting access information in an object's page table. [KARG89]

Although discretionary access is ordinarily thought of as relating to users and objects,

processes also acquire discretionary permissions, either dynamically when they are

executed, or statically from their executable code. With dynamic allocation, the

permissions may be those associated with the user who invoked the process; the

process's user id would be an example. In command and control systems, there is often a

"turnover" mechanism in which the user id of a process can change in order to allow a

smooth transfer of control when a user's shift ends. In UNIX, the user id of a shell program

changes in response to a "switch user" command.

With static allocation, security attributes might be associated with a subject on the basis

of its executable code. The UNIX "set user id" feature provides an example of this type of

allocation. The owner of a program can specify that it is a "set-uid" program, meaning that it

will run with the owner's "effective user id" and thereby assume its owner's permissions

when executed by other users. The purpose of this mechanism is to allow programmers to

create "encapsulated" objects. Such an object is encapsulated by giving it owner-only

access, so that it can be handled only by programs whose effective user id is that of the

owner. Other users can access the object by only executing "encapsulating" set-user-id

programs that have the same owner as the encapsulated object. The UNIX set-user-id

-57-

SECURITY MODELING GUIDE

option is a source of added complexity, and, as explained below, is vulnerable to a variety of

misuses. Other methods of object encapsulation are thus well worth investigating.

Suggested patches to the UNIX set-user-id mechanism have been considered in the

design of Secure Xenix [GLIG86], and modeling of the set-user-id mechanism itself is

illustrated in the TRUSIX work. [NCSC90b]

Discretionary access controls are inherently loose. This can cause information to be

disclosed even though the owner has forbid it. For example, breaches of need-to-know

security may occur when user /, who owns a file /gives permission to access information in f

to user; but not to user /c.and then k indirectly obtains access to f. This can happen in a

variety of ways, including the following:

• /copies fto a file that k has read access to.
• a Trojan horse acting under authority of either /' or/gives k a copy of /.
• a Trojan horse acting under authority of /gives k read access to f.
• a poorly designed set-user-id program created by /is run by k (with the

discretionary permissions of y) and is misused to give k a copy of f.

Each case involves an extension of access that is analogous to downgrading in MAC. If

this extension occurs without the knowledge and permission of f 's owner, then the intent of

the owner's protection is violated.

The first three of the above five weaknesses are specific to policies dealing with

nondisclosure, and they need not carry over to other policies dealing with unauthorized

modification. The fourth and fifth weaknesses, by way of contrast, involve tampering with

DAC security attributes by non-TCB subjects, a feature that seriously affects any policy

relying on DAC attributes.

The first of the above weaknesses appears to be an inherent aspect of traditional DAC

mechanisms. An interesting fact about these mechanisms is that there is no general

algorithm that can decide, for an arbitrary system and system state, whether a given user

can ever obtain access to a given object. [HARR76] As explained below, such weaknesses

are not forced by DAC requirements, despite their prevalence in existing systems.

-58-

SECURITY MODELING TECHNIQUES

3.3.4 TIGHT PER-USER ACCESS CONTROL

Tight controls on the distribution of information within a computing system originate

from efforts to provide DAC-like mechanisms that have useful information-flow properties

[MILL84] and from efforts to provide automated support for "ORCON" and similar release

markings that are used in addition to security classifications. [ISRA87, GRAU89] Some

typical release markings are:

ORCON — dissemination and extraction of information controlled by originator
NOFORN — not releasable to foreign nationals
NATO — releasable to NATO countries only
REL <countries/organization> — releasable to specified foreign countries only
EYES ONLY <groups/offices> —viewable by members of specified offices only
PERSONAL FOR <individuals> — releasable to specified individuals only.

Release markings are used by the originator(s) of a document for providing need-to-know

information . Some release markings such as NOFORN, NATO, and REL < >, have coarse

user granularity and, as explained in Appendix A.4, can be handled via nondisclosure

categories. Others have per-user granularity but, unlike traditional DAC mechanisms,

restrict access to both the document and the information it contains. A catalogue of release

markings and an accompanying language syntax may be found in the article "Beyond the

Pale of MAC and DAC - Defining New Forms of Access Control." [MCCO90]

Tight access control mechanisms designed to support need-to-know differ from

traditional DAC mechanisms in several crucial respects. The explicitly controlled entities

(i.e., "named objects") include processes as well as data structures. In addition, a user's

ability to modify their security attributes is highly constrained. The first such mechanism

was proposed by Millen [MILL84]; a minor variant of it follows.

Each controlled entity is associated with two sets of users, a 'distribution" set and a

'contribution" set. These are obtained by evaluating the entity's "access expression"

whenever the object is involved in an access check. Access expressions are the DAC

attributes of the policy; their semantics explain the interplay among individual and group

authorizations and denials. For the sake of brevity these are not modeled. The distribution

and contribution sets enforce nondisclosure and integrity constraints, respectively.

Smallerdistribution sets represent a higher level of nondisclosure, and smallercontribution

sets represent a higher level of integrity. The empty set is both the highest nondisclosure

-59-

SECURITY MODELING GUIDE

level and the highest integrity level. Information may flow from entity /to entity g, provided

the distribution set for /contains the distribution set for g and the contribution set for /is

contained in the contribution set for g.

In Millen's model, devices have a controlling influence on user behavior. A terminal, for

example, is modeled as two separate devices — a keyboard for input and a screen for

output. When a user logs in, the distribution and contribution sets for both the keyboard and

the screen are set (by a secure terminal server) to {/}. Communication from other users (or

files that they own) is enabled by extending the contribution set for the screen.

Communication to other users is enabled by extending the distribution set forthe keyboard.

The keyboard contribution set and the screen distribution set must always contain {i} in

order to reflect the actual presence of the person using the terminal.

The distribution sets and contribution sets of Millen's model may be viewed as levels

whose partial ordering is directly tied to an information-flow policy. Consequently, this DAC

mechanism is tight enough to control information flow, and covert storage channel analysis

can be used to check the extent to which distribution sets control disclosure in an actual

implementation. In Millen's model, DAC permissions for an object are set (by its creator or

by default) when it is created and are never modified thereafter. As a result, DAC Trojan

horses of the sort discussed in Section 3.3.3 are impossible. The ability to dynamically

change discretionary attributes without losing tightness would require some nontrivial

additions to the policy. Expansion must be done only by trusted path software in response

to appropriate owner authorization. Ownership must propagate so that it is associated not

only with controlled entities but also with the information they contain. One option is for

ownership to propagate in the same way as contribution sets, with each owner supplying

access constraints. A slightly different option is suggested in McCollum's work. [MCCO90]

Similarities between MAC and the tight DAC of Millen's mode! suggest the possibility of

a single mechanism meeting both sets of requirements. Moreover, both sets of

requirements stem from the same policy objective in Security Requirements for Automated

Information Systems (AISs). [DOD88a] The consistency of the two sets can be informally

justified as follows: assume the system supports co-ownership by maintaining separate

distribution and contribution sets for each owner, taking intersections in the obvious way.

Each input must be co-owned by a system security officer (SSO), and there is a trusted

path mechanism that allows a user to select the SSO's distribution set from a collection of

■60-

SECURITY MODELING TECHNIQUES

SSO-controlled groups. For example, the groups might be TS, S+, and U+ where, by

definition, U+ is the group of all users, S+ is the union of TS and the secret users.and TS is

the top-secret users. Users are instructed to select the SSO's distribution set according to

the sensitivity of their data.and, as a result, the main MAC requirements for labeling and

access control are satisfied.

A disadvantage of tight DAC is that there are many innocuous violations of the policy,

as, for example, when a user creates a file with owner-only access and then mails it to a

colleague. Pozzo has suggested that, if the user is authorized to extend access, a trusted

path mechanism should interrupt the program causing the violation in order to obtain the

user's permission, thereby minimizing the inconvenience associated with tight control.

[POZZ86] Another strategy for minimizing unnecessary access violations, which has been

suggested by Graubartis, is to allow DAC security attributes to float so that when a process

reads a file, for example, the distribution list for the process would be intersected with that of

the file. [GRAU89] A disadvantage of propagated ownership is that the set of owners tends

to expand, and this is inconvenient if all owners must agree on access control decisions.

3.4 TCB SUBJECTS — PRIVILEGES AND RESPONSIBILITIES

TCB processes are often exempt^ from some of the access constraints placed on

non-TCB subjects and are, therefore, able to access data and perform actions that are not

available to non-TCB subjects. The responsible use of such exemptions by the TCB is

properly part of the system security policy. Exemptions in this sense are not a license to

violate policy. If a TCB process is exempt from some of the constraints placed on non-TCB

subjects but not others, it may be useful to treat it as a TCB subject so that the TCB can

enforce those constraints from which it has not been exempt.

The trusted-role programs identified in Section 3.1.3 are usually exempt in this sense

because they have access to security-critical data structures and, in many cases, address

role-related extensions of the basic system security policy. Device-related subjects are

also likely to be exempt. A secure terminal server needs to handle inputs at a variety of

' TCB subjects which are exempt from some or all access constraints enforced on non-TCB subjects
are often referred to as "privileged," but this word has a variety of other uses, as in the phrase "principle
of least privilege." As mentioned in Section 3.1.8, TCB subjects (in particular, exempt subjects) are often
referred to as "trusted" subjects, but this term has other uses as well.

61-

SECURITY MODELING GUIDE

security levels and may be implemented as a TCB subject exempt from some of the MAC

constraints. A print server is also likely to be implemented as a multilevel TCB subject

because of the need to save, label, and print files at several different security levels.

In some cases, exempt subjects conform to the same overall policy that the system

enforces on non-TCB subjects. In others, exempt subjects provide limited but significant

extensions to the basic system policy. As a result, the presence of unmodeled exempt

subjects can make it difficult to determine the actual system security policy by looking at the

security policy model, [cf LAND84] To the extent that the policy for exempt subjects differs

from the policy described in the system security model, the validity of the model as a

representation of the system is compromised as are assurances derived from an analysis

of the model. The extent of the compromise tends to be influenced by the extent to which

such exempt subjects interact with nonexempt subjects.

The actual rules enforced by the system include both what may be done by non-TCB

subjects and what is done by TCB subjects. Unmodeled special cases can be avoided by

directly addressing the policies associated with exempt subjects in the model, [cf ABRA90]

The following paragraphs address the modeling of exemptions and their legitimate use by

TCB processes. There is no explicit requirement to model TCB subjects and their

exemptions from access control, but there may be implicit modeling requirements that

apply to some subjects, especially those that are directly involved in the access control

mechanism. In the case of subjects exempt from mandatory access checks, it is often

appropriate to substitute covert channel analysis for explicit modeling.

3.4.1 IDENTIFYING PRIVILEGES AND EXEMPTIONS

If the principle of least privilege is followed in allocating exemptions to TCB subjects,

then the extent of a subject's exemptions are both a partial measure of the need to model its

behavior and an indicator of what should be modeled. This information indicates the extent

to which a TCB subject's privileges may be abused and, thus, the amount of assurance that

must be provided regarding the subject's correctness. Information on the extent of a

subject's exemptions can be provided by an explicit identification of exemptions, by its

security attributes, and by specific knowledge of the resources accessible to it. These

identification techniques provide a variety of techniques for modeling and implementing

exemptions.

-62-

SECURITY MODELING TECHNIQUES

A useful first step in describing exemptions is to classify them according to various kinds

of security requirements, such as mandatory access control, discretionary access control,

auditing, and service assurance. The purpose of this classification is to guarantee that any

process which fails to have a particular kind of exemption will not interfere with the

corresponding kind of security requirement. Each named exemption or "privilege" is

associated with a particular kind of functionality allowed by that exemption. Ideally, this

functionality should be available only through possession of the named exemption. As with

other security attributes, it is important to know how a process inherits its exemptions (e.g.,

dynamically from its parent or statically from its executable code). Whether this

classification is an explicit part of the model will depend largely on whether it appears in the

system design. Including exemptions explicitly in the design simplifies the analysis of

exempt subjects but also complicates the access control mechanism.

In the Army Secure Operating System (ASOS), exemptions are an explicit part of the

access control mechanism. [DIVI90] The association between exemptions and kinds of

security allows the model to assert, for example, that any process (trusted or otherwise)

satisfies the *-property unless it has the "security_star_exemption." To possess an

exemption, a process must receive that exemption both statically during system

generation and dynamically from its parent process. Thus, most ASOS subjects can never

have exemptions. Those subjects that can have exemptions will only run with the

exemptions when they are necessary. The TRUSIX work also illustrates the use of

exemptions for the case of a trusted login server: two exemptions and associated

transformations allow (a new invocation of) the serverto change its real user id and raise its

security level. [NCSC90b]

The DAC mechanism can be extended to identify TCB subjects and security-critical

objects in the following way. The system has one or more distinguished pseudousers.

Some or all security-critical data structures are owned by these pseudousers. A named

object owned by a pseudouser has owner-only access, and DAC is designed in such a way

that nothing can ever alter the access permissions of an object owned by a pseudouser.

(This implies that the system's DAC mechanism is free from some of the traditional

weaknesses mentioned in Section 3.3.3.) Only TCB subjects are allowed to act on behalf

of pseudousers and, therefore, are the only subjects capable of accessing objects owned

63.

SECURITY MODELING GUIDE

by their pseudousers. Thus, if the audit trail, for example, is owned by an "auditor"

pseudouser, then editing of audit files can be performed only by specially designed TCB

subjects acting on behalf of the auditor, if at all.

The MAC mechanism can also be extended to allow partial exemptions.

Security-critical data structures can be treated as objects with special security levels

possessed only by TCB subjects. More significantly, subjects can be partially exempt from

the "-property. Each subject is provided with two separate security labels, an "alter-min"

label that gives the minimum level to which a subject may write and a "view-max" label that

gives the maximum level from which it may read. A process is partially trusted'to the extent

that its alter-min level fails to dominate its view-max level. [SCHE85.BELL86, DION81] A

straightforward application of partially trusted processes is found in the GEMSOS design.

[SCHE85] Each process has two security labels and is classified as "single-level" or

"multilevel," according to whether the two labels are equal or distinct. Each security label

has separate nondisclosure and integrity components. The nondisclosure component of

the view-max label must dominate the nondisclosure component of the alter-min label,

whereas, the integrity component of the alter-min label dominates the integrity component

of the view-max label because of the partial duality between nondisclosure and integrity

mentioned in Section 3.1.6.

Finally, as an example of the above identification techniques, considerthe requirement

that only certain administrative processes can access user-authentication data. One

possibility is to treat this independently of other policy requirements. User-authentication

data can be stored in unlabeled TCB data structures that are not available to non-TCB

subjects or even most TCB subjects. This nonavailability constraint (and exemption from

it) might be implemented via hardware isolation or by an explicit software exemption

mechanism. This approach could be explicitly modeled.

A second possibility is to permanently place user-authentication data in named objects

owned by an "administrator" pseudouser and allow only certain programs to run on behalf

of this pseudouser. A (fixable) drawback of this approach is that such programs may need

to run on behalf of actual users for auditing purposes.

A third possibility is to place user-authentication data in a storage object which has a

unique security level that is incomparable with any level available to users of the system.

Only certain administrative programs are allowed to run at this level; such programs may

•64-

SECURITY MODELING TECHNIQUES

need to be partially trusted in orderto access data at other security levels. Notice that other

TCB-only security levels may be needed to ensure that these administrative programs do

not have access to other security-critical data structures which are also being protected by

the MAC mechanism.

3.4.2 RESPONSIBLE USE OF EXEMPTIONS

In modeling an exempt subject, the goal is to prohibit abuses of privilege that might

result from exemptions by placing explicit constraints on that subject's behavior. The main

challenge in formulating these constraints is to achieve an appropriate level of abstraction.

In most cases, the requisite security requirement is considerably weaker than a detailed

statement of functional correctness. The following paragraphs first discuss subjects that

conform to the overall policy enforced for non-TCB subjects and then discuss those that do

not. These latter subjects include, primarily, the trusted-role programs identified in

Section 3.1.3.

An exempt subject that conforms to the basic policy illustrated by the modeling of

non-TCB subjects usually does not require separate modeling unless it supports a

significant extension of the TCB interface that is not covered by the general model. This is

the case of a subject which is also a trusted DBMS, for example. However, the modeling of

a policy-conforming exempt subject can provide additional insight into its proper design

and is particularly valuable if the subject is visible at the user interface. For example, a

scheduler is user-visible, should be policy-conforming, and could be treated as an exempt

subject whose behavior is justified either by modeling noninterference-like requirements

[cf KEEF90; MAIM90] or by performing a covert channel analysis.

A secure terminal server is another example of a user-visible, policy-conforming,

exempt subject. The main security-critical requirements for a secure terminal server are

that each user and terminal have a trusted path (or paths) for exchanging security-critical

information with the TCB and that there be no "cross talk" between a given trusted path and

any other I/O channel. The issue of how logical channels are multiplexed onto a given

terminal is not security-relevant, as long as it is correct. The fact that the multiplexing

includes an Identification and Authentication (l&A) protocol is security-relevant, but

modeling details of the l&A mechanism is unlikely to add much assurance unless it is

accompanied by an analysis of subvertability.

-65-

SECURITY MODELING GUIDE

In the case of a trusted-role program, misuse and resulting breaches of security can be

prevented through a combination of software checks and procedural constraints on correct

use of the program. If the program and the trusted role it supports are designed together,

then the design analysis can identify errors of use and can determine whether they are

easily detected through automated checks. The automated checks are appropriately

covered in a trusted-process security model. Knowledge of errors that are not caught by

the automated checks can be recast as informal policies associated with the trusted role

itself. These procedural policies are reasonably included in the system's Trusted Facility

Manual. A reader of the high-level system documentation should be able to see how a

given misuse of a trusted role is inhibited through an appropriate combination of software

mechanisms required by the model and procedural constraints found in the definition of the

trusted role. One should be able to see, for example, how a system administrator is

inhibited from falsifying evidence about the behavior of other users by editing the audit trail.

Security properties fortrusted-role processes often involve constraints that hold over a

sequence of events, as opposed to constraints on individual state transitions. The use of

locks to ensure proper sequencing of events may be needed, at least in some cases,

[cf LAND89] Modeling of trusted-role processes is often omitted on grounds of restricted

use and lack of accepted examples, but this argument is weak because the higher level of

user trust is offset by a greater potential for abuse.

3.5 INTEGRITY MODELING

Although both integrity and nondisclosure are important for both commercial and

military computing systems, commercial systems have historically placed greater

emphasis on integrity, and military systems more emphasis on nondisclosure. Accordingly,

guidelines on integrity policy are under development by the National Institute of Science

and Technology (NIST).

Although the TCSEC does not impose specific requirements for integrity policy

modeling, it does provide for vendor-supplied policies and models. As mentioned in

Section 1.3.2, DoD Directive 5200.28 includes both integrity and nondisclosure

requirements. In addition, the NCSC evaluation process accommodates any security

policy that meets minimum TCSEC requirements and is of interest to the Department of

Defense.

-66-

SECURITY MODELING TECHNIQUES

Although the following paragraphs do not offer guidance on the formulation of system

integrity policies, they do consider relevant modeling techniques and TCSEC

requirements. A brief discussion of integrity objectives, policies, and models is given in

order to provide an overall picture of the field of security policy modeling. This is followed by

a brief taxonomy of integrity-related concepts and their relationship to security modeling.

Topics covered in the taxonomy fall into two broad areas: error handling and

integrity-oriented access control. Examples relating to TCB integrity are included with the

taxonomy as indications of possible relationships between integrity modeling and related

assurance issues forthe TCB. The presented taxonomy is based largely on the one found

in "A Taxonomy of Integrity Models, Implementations and Mechanisms." [ROSK90]

3.5.1 OBJECTIVES, POLICIES, AND MODELS

The term integrity has a variety of uses in connection with computer security

[cf RUTH89], all stemming from a need for information that meets known standards of

correctness or acceptability with respect to externally supplied real-world or theoretical

situations. A closely related need is the ability to detect and recover from occasional

failures to meet these standards. These needs lead to derived objectives for user integrity,

data integrity, and process integrity in order to maintain and track the acceptability of

information as it is input, stored, and processed by a computing system.

Commercial experience as a source of integrity objectives, policies, and mechanisms is

covered in the landmark paper by Clark and Wilson. [CLAR87; KATZ89] Their paper

includes a separation-of-duty objective for promoting user integrity;

application-dependent, integrity-validation processes for ensuring data integrity; the

application-dependent certification1" of 'Iransformation procedures" for establishing

process integrity; and a ternary access control mechanism for constraining associations

among users, processes, and data. A thorough discussion of their work is given in the

Report on the Invitational Workshop on Integrity Policy in Computer Information Systems

(WIPCIS). [KATZ89]

^The term "certification," is sometimes confused with the similar terms, "evaluation" and
"accreditation." Certifications, like evaluations, are carried out with respect to security-relevant criteria
and, like accreditations, are with respect to a particular application and site. However, an evaluation applies
to a product whereas a certification applies to its use in a particular site or application. An accreditation is
an authorization for use, whereas a certification is a decision that relevant technical requirements are met.

-67-

SECURITY MODELING GUIDE

Their requirement for well-formed transactions suggests that for high-integrity

processes, application-dependent software modeling may be needed as input to the

certification process. As discussed in Section 3.5.3, the access control mechanism of

Clark and Wilson determines which procedures may act on a given object and thereby

provides an encapsulation mechanism similar to those associated with data abstraction in

modern programming and specification languages.

3.5.2 ERROR DETECTION AND RECOVERY

In the following paragraphs, general observations on the nature of error handling are

followed by a variety of examples that arise in connection with integrity policies.

An error can only be recognized if an unexpected value occurs or if an unexpected

relationship among two or more values occurs. The possibility of anomalous values and

relationships may be built in as part of the system design, as in the case of audit records and

message acknowledgements. It may be added by an application, be of external origin

resulting from syntactic and semantic constraints on the structure of the application data, or

be external in the form of information held by multiple users (in addition to the computing

system).

The detection of anomalous values and relationships is only partially automated in most

cases. Typically, an initial error or anomalous situation is detected, perhaps automatically.

This discovery may be followed by further automated or manual investigation to find related

errors and, perhaps, the root cause of these errors. Finally, corrective action removes the

errors and/or inhibits the creation of new errors.

The automated portions of this three-part, error-handling process are more likely to be

suitable for security modeling. In the case of a partially automated error-handling

mechanism, modeling can help clarify which portions of the mechanism are automated

(namely, those that are modeled). If detection is automated and recovery is manual, there

may be additional issues associated with the design of an alarm mechanism (e.g.,

timeliness, avoidance of masking high-priority alarms with low-priority alarms).

As already mentioned, the TCB audit mechanism required for systems at classes C2

and above is a built-in, error-detection mechanism. It is usually not modeled but could be;

Bishop has provided an example. [BISH90] Recent integrity articles have suggested that

■68-

SECURITY MODELING TECHNIQUES

audit records should allow for a complete reconstruction of events so that errors can be

traced to their source. [SAND90, CLAR89] This integrity requirement on audit trails is

potentially amenable to formal analysis.

"Checkpoint and restore" is another built-in mechanism found in many systems.

Modeling of this mechanism may be no more interesting than for auditing. However,

systems at classes B3 and above have a trusted-recovery requirement. The state

invariants that come out of the formal modeling and verification process effectively define

exceptional values of the system state that must not exist in a newly restored state.

Moreover, run-time checking of these state invariants may be necessary after an

unexplained system failure.

A variety of integrity mechanisms promote user integrity by collecting the same or

related information from several different users. Supervisory control and N-person control

allow two or more users to affirm the validity of the same information. Supervisory control

involves sequential production and review of an action, whereas N-person control refers to

simultaneous or independent agreement on taking action. A possible approach to

modeling N-person control is given by McLean. [MCLE88, Sec. 3] The subjects of the

model include composite subjects made up of N ordinary subjects acting on behalf of

different users. The explicit inclusion of these N-person subjects invites questions about

their security attributes; for example, what is their security level? In both supervisory and

N-person control, lack of agreement is an error condition, and the system performs error

handling by blocking the action being controlled.

Certain access controls may be suspended by any user in an emergency, but the

system may require that a state of emergency be explicitly declared before suspending

these access controls. The explicit declaration together with the actual violation of the

controls provides two different indications of the need for a typical action. The decision to

constrain a particular action via supervisory, N-person, or emergency-override control

might be made by an appropriately authorized user, as opposed to the system's designers.

In all three of these mechanisms, the actions to be controlled need not be vendor-defined.

A related strategy for promoting user integrity is separation of duty. This involves

defining user roles in such a way that no one user can commit a significant error without

detection. Instead, there would have to be collusion among several users. For example, if

no one person can order goods, accept delivery, and provide payment, then it is difficult for

69-

SECURITY MODELING GUIDE

a user to buy nonexistent items from himself. A more generic example recommended by

Clark and Wilson is that no person who is authorized to use a transformation procedure has

participated in its certification. Separation of duty promotes user integrity, if roles are

designed in such a way that several different users contribute overlapping, partially

redundant views of an external situation modeled in the computing system. In most cases,

design of the roles is application-dependent. Provisions for role enforcement are part of

the system design. Detection of errors can be either manual or automated (but

application-dependent). Error recovery is largely manual. In the Clark-Wilson model,

separation of duty is enforced via access control triples, but is itself not formally modeled.

According to Clark and Wilson, consistency checks on the structure of user-supplied

data are needed initially to guarantee that data has been properly entered [CLAR87] and

can be run later as a check against inappropriate modification [CLAR89]. Typically, these

Integrity Validation Procedures (IVPs) compare new information against previously

computed information, as in a program that compares actual inventory data against

previously computed inventory. The use of IVPs is explicitly modeled by Clark and Wilson,

but the fact that they reject anomalous data is not.

Redundancy to improve process integrity is used in high-availability systems. Two or

more processes with different hardware and/or algorithms are run with the same expected

result, and a voting algorithm combines the results. An interesting feature of these data-

and process-integrity promoting algorithms is that they apparently increase integrity

through aggregation and inference. In this respect, integrity is similarto nondisclosure, not

dual to it. Interesting formal models of voting algorithms include the "Byzantine Generals

Problem", in which a process can give inconsistent results [LAMP82], and clock

synchronization algorithms. [LAMP87, RUSH89]

In general, all error-handling mechanisms exploit redundancy of the sort discussed in

information theory and conform to the same general principles that provide the basis for

error-correcting codes [cf HAMM80] used to suppress noise. What sets integrity-related

mechanisms apart is their emphasis on user-induced errors.

•70-

SECURITY MODELING TECHNIQUES

3.5.3 ENCAPSULATION AND LEVEL-BASED ACCESS CONTROL

The following paragraphs discuss encapsulation mechanisms, the use of level-based

access control and integrity hierarchies, and the use of partially trusted subjects to achieve

encapsulation.

Encapsulation mechanisms ensure what Clark and Wilson refer to as "internal

consistency." They provide a limited set of high-level operations that can be certified to

maintain a known structure on the data that they encapsulate. Several mechanisms

suitable for performing encapsulation have been discussed in Sections 3.1.3, 3.3.2, and

3.3.3. Another encapsulation mechanism is message passing, as illustrated in the design

of Smalltalk. [GOLD80] As discussed below, level-based access control with partially

trusted subjects also provides an encapsulation capability similar to type enforcement.

If an encapsulation mechanism is supported, it may be used to provide tamper proofing

forthe TCB and to enforce the principle of least privilege within the TCB. Type enforcement

has been used for this purpose. [BOEB85] In the LOCK system, each security-critical

entity (for example, the password file) is of a type that can be accessed only by the

appropriate TCB subjects. This typing information is preset and, in the case of TCB

entities, cannot be modified, even by the system security officer. Since the type

enforcement mechanism is formally verified, this verification provides a partial verification

of TCB integrity as a special case. Type enforcement has also been used to extend the

LOCK TCB for a trusted DBMS application. [STAC90] In the extension, new TCB subjects

are straightforwardly prevented from interfering with the old part of the TCB through static

access restrictions in the type-enforcement table.

The crucial idea behind access control based on integrity levels was alluded to in

Section 3.1.6. That information may flow from one entity to another only if the latter's

integrity level is at or below that of the former, thereby preventing the latter from being

contaminated with low-integrity information. Thus, if the integrity ordering is inverted for

purposes of access control, then the *-property will automatically enforce the desired

property. As observed by Roskos, [ROSK90] this duality applies not only to access control,

but to higher-level nondisclosure policies as well. In the case of noninterference, for

71

SECURITY MODELING GUIDE

example, if inputs from user A cannot "interfere" with outputs to user "B," then A cannot

compromise the integrity of these outputs. [PITT88] The practical utility of these

observations is undetermined.'*'

For level-based integrity to be useful, there must be some convention for assigning

integrity levels to controlled entities. Biba [BIBA77] suggested a hierarchy dual to that

given by Executive Order 12356, which, as mentioned in Section 3.1.7, defines the terms

"confidential," "secret," and "top secret." Thus, integrity levels would be classified

according to the level of harm which could result from unauthorized or inappropriate

modification of information. The dual of "secret," for example, would be a level indicating

that inappropriate modification could result in serious, but not exceptionally grave, damage

to national security. While this suggestion has not found wide acceptance, there are

clear-cut examples of integrity orderings associated with the possibility of serious harm.

The inadvertent substitution of "exercise" data for "live" data is one such example;

effectively, "exercise" is a lower integrity level than "live." What Biba's suggestion lacks (in

contrast to the work of Clark and Wilson) is a convention for controlling not only who may

modify data but also how they do it.

There are several other integrity measures not based on level of harm, [cf PORT85]

User contribution sets form an integrity ordering under the dual of the subset relation, as

was noted in Section 3.3.4. A careful analysis of user roles can also give indications of

needed integrity and nondisclosure levels. [LIPN82] The results of trusted error-detection

and integrity-validation procedures can be stored as (components of) integrity levels in

order to disable inappropriate uses of flawed data and to enable appropriate

error-recovery procedures.

Integrity levels (or components) that are based on freedom from various kinds of error

cannot be preserved during processing unless the procedures involved do not introduce

these kinds of errors. This motivates the use of software assurance hierarchies. The

necessary level of software assurance is found by working backwards from a level of

acceptable risk, which depends both on the expected level of software errors and the level

of harm which may result from these errors in a particular operating environment (the latter

being bounded by the relevant Biba integrity levels). If software at several levels of

^ Yet another relationship between nondisclosure and integrity is found in the "Chinese Wall" policy dis-
cussed in Section 4.4.4 — a nondisclosure policy can promote user integrity by preventing conflicts of
interest.

■72-

SECURITY MODELING TECHNIQUES

assurance is needed on the same system, then an access control mechanism is needed to

be sure that software used in a given application is backed up by adequate assurance. A

technique that suggests itself is to include assurance levels as components of integrity

levels.

A well-defined hierarchy of assurance levels is given in the TCSEC for evaluating

TCBs. It has been adapted to subsystems [cf NCSC88a] and is readily adapted to

individual processes; the hierarchy itself is summarized in Appendix D of the TCSEC. An

easily applied assurance hierarchy based on credibility of origin has also been suggested

by Pozzo: [POZZ86] software supplied by a system's vendor is regarded as having higher

assurance than software developed by a company's support staff, and production software

typically has higher assurance than experimental software. Software of unknown origin

has lowest assurance. Such a hierarchy presupposes an ability to track data sources, as

described in DoD 5200.28-R. [DOD88a, Enclosure2, Req. 7]

The use of level-based integrity for TCB encapsulation is suggested by Millen.

[MILL84] One or more integrity categories can be reserved forTCB entities, as a means of

protecting them from non-TCB entities. An application of this idea is found in the network

described by Fellows. [FELL87] In this network, each communication process in the TCB is

a partially trusted subject that sends messages labeled with its own unique integrity

category, thereby encoding authorship of the message in the security label itself.

Lee and Shockley have argued that level-based integrity with partially trusted1" subjects

can partially fulfill the requirements of Clark and Wilson. [LEE88, SHOC88] The ASOS

integrity policy may be viewed as a special case of this general partially trusted subject

mechanism. Access checking in ASOS allows any process to read below its own integrity

level; the implicit assumption is that any subject with reasonable integrity can be relied on to

make its own integrity checks when needed. In effect, each subject in ASOS is treated as if

it had a separate view-max security label obtained by setting the integrity component of its

security label to integrity-low. [DIVI90]

"*" Subjects that are partially trusted with respect to integrity labels do not necessarily belong to the TCB.

-73-

4. TECHNIQUES FOR SPECIFIC KINDS OF SYSTEMS

Though relevant to many systems, some security modeling techniques are best

illustrated by a particular kind of system. While traditional access control models are

applicable to a wide class of systems, they are nicely illustrated by operating systems

because they both contain file-like objects that are opened, accessed for a period of time,

and then closed. The issue of selecting an underlying model of computation occurs in any

modeling effort, but models not based on state machines have occurred most frequently in

networks. Trusted application models often take the form of models for database systems.

Issues having to do with label accuracy are illustrated in Compartmented Mode

Workstations (CMWs) and the Secure Military Message System (SMMS). The treatment

of these topics is largely introductory because of the breadth (and, in some cases, relative

newness) of the material to be covered.

4.1 OPERATING SYSTEMS

In modeling operating systems, there is especially rich literature to draw on. The

following paragraphs discuss traditional access control models and the models of Bell and

La Padula in particular.

4.1.1 TRADITIONAL ACCESS CONTROL MODELS

An access control model traditionally involves a set of states, together with a set of

primitive operations on states. Each state contains a set S of "subjects," a set O of

"objects," and an "access" matrix A. For each subject s and object o, A[s, o] is a set of

access rights, such as "read," "write," "execute," and "own." In the context of an access

control model, rules of operation are axioms or definitions describing the primitive

operations.

The simplest useful access control model is perhaps the HRU model of Harrison, Ruzzo

and Ullman. [HARR76] The HRU model assumes that every subject is also an object, the

rationale being that (almost) every subject has local memory that it can access. In the HRU

model, the primitive operations are, create s, create o, destroy s, destroy o, enter rinto

A[s, o], and delete rfrom A[s, o], where r varies over all supported access rights.

-75-

SECURITY MODELING GUIDE

To use an acceoS control model for security modeling, one needs to add functions that

extract security labels from subjects and objects and to explain how operations are affected

by security labels. In some cases, it may also be appropriate to mode! other attributes of

objects, such as directory hierarchies. These additions to the basic access control model

facilitate a clear presentation, but are not theoretically necessary for discussing security, as

can be seen from Pittelli's translation of a Bell and La Padula model into the HRU model.

[PITT87] One can model the addition of new subjects or objects by allowing s and o to

change in response to the create and delete operations, or one can use fixed sets of

subjects and objects together with an indication of which subjects are active. Finally, if an

access control model is to discuss information flow, it needs to discuss which objects are

actually written as a result of a given operation. This can be done by adding functions that

extract object content. A complete information-flow analysis would also need to address

flows to and from non-object entities. Flows to and from the current-access matrix, for

example, could be handled either by treating rows of the matrix as objects or by treating

these flows in the covert channel analysis.

The assumption that subjects are objects is associated with several interesting

observations that need to be modeled whether or not subjects are regarded as objects.

Typically, every subject has read and write access to itself (that is, to its stack and local data

area). This fact can be modeled as the invariant {read, write} G A[S, S]. Consequently, if a

subject outside the TCB is allowed to change its security level, the new level should

dominate the old one. This is because information at the old level in its local memory can be

transferred only to entities whose level dominates the subject's new and (hence) old

security level. The assumption that subjects are objects also provides a means of

modeling interprocess communication: a process P? may send a message or signal to

process P^ if and only if P/ has write access to P^.

Hierarchical file systems have a potential for introducing various covert storage channel

problems. In many cases, these channels can be closed through the use of additional

access control checks that depend on the structure of the directory hierarchy. It is

acceptable to include such access control checks (and hence, directory structures) in the

model. One problem is that if a directory contains a file at a lower security level, then it is

difficult to delete the directory without users at the lower security level finding out, since they

can no longer access the file after it is deleted. A widely imitated solution proposed by

76-

TECHNIQUES FOR SPECIFIC SYSTEMS

Walter is to require a compatibility property for directories, namely that the level of each file

dominate that of its parent directory. [WALT74] Alternatively, the system could just remove

access and leave actual deletion of files and directories to a trusted garbage collector. A

similar problem that is not ruled out by compatibility arises when a lower-level process

creates a directory at a higher level. If a higher-level process then adds a (higher-level) file

to the directory, a UNIX-like operating system would refuse a later request by the

lower-level process to delete the directory, thereby signaling the existence of the

higher-level file. [GLIG86]

The compatibility principle was regarded by the TRUSIX working group as being a

generally useful property of directories, independently of its use to discourage covert

channels. They considered four possible approaches to modeling directories and, forsake

of generality, decided that security labels would be assigned to individual directory entries

as well as directories. [NCSC90b, Sec. 6.10, 6.11]

Kernel-call based implementations of operating systems invariably rely on some form

of exception mechanism. At higher assurance levels, it is likely to be a matter of policy that

exceptions not return information about higher-level entities. In this case, kernel

exceptions can be included in the security model in order to represent this policy, either

directly or in summary form. One might, for example, use the three exception classes

'access-denied,"'User-error," and 'system-error". [BELL76]

For further information on access control models, the reader is referred to

Cryptography and Data Security [DENN82, Ch.4] and "Models of Multilevel Security"

[MILL89].

4.1.2 THE MODELS OF BELL AND LA PADULA

As mentioned in Section 1.4, the work of Bell and La Padula identified the main steps in

the security modeling process and provided the first real examples of security verification

by proving that their rules of operation preserved necessary state invariants. The identified

invariants codified important mandatory access control requirements and provided

guidance for their implementation.

Not surprisingly, fifteen years of close scrutiny has produced an understanding of areas

where refinement of the original approach is desirable in future efforts. The question of

correspondence to externally imposed MAC security policy was handled quite informally.

-77-

SECURITY MODELING GUIDE

As indicated in Section 3.2 (and in the LOCK verification effort), a closer correspondence is

possible with the use of external-interface models. In fact, the Bell and La Padula models

contain some well-known weaknesses. A lack of attention to local process memory is

related in part to the fact that subjects need not be objects. A subject may, in the absence of

the tranquility principle [LAPA73, p. 19], lower its security level. As a result, the "change

subject current security level" and "change object level" rules provide a variety of

opportunities for untrusted downgrading of information. The significance of these and

similar rules was not well understood until much later. [MILL84, MCLE85, MCLE87,

BELL88, LAPA89]

The Bell and La Padula models have a relatively narrow focus. None of the models

explicitly mentions multilevel devices, external interfaces, or user identities; and there is no

modeling of integrity. With the exception of the *-property, exemptions from access control

are not modeled, so that there is no basis for relating exemptions to use of privilege,

subject integrity, or trusted user roles. The Multics model interpretation was necessarily

incomplete because design work on Secure Multics was still in progress in 1976. Some of

the notational conventions used in the models (e.g., overuse of subscripts and lack of

mnemonic naming conventions) are avoided in many of the more recent security modeling

efforts.

4.2 NETWORKS AND OTHER DISTRIBUTED SYSTEMS

Which network decomposition techniques lend themselves to security analysis? How

should this decomposition be reflected in the model? How should the overall network

security policy be reflected in the model? What is the role of individual components in

enforcing the overall policy? Should nondeterminacy and the distributed nature of a

network be reflected in the model's underlying model of computation; that is, should the

network be treated as a state machine or as something else? The following subsections

discuss these questions as they relate to network security objectives and the requirements

of the Trusted Network Interpretation (TNI). [NCSC87]

4.2.1 SYSTEMS AND THEIR COMPONENTS

A network system is an automated information system that typically consists of a

communications subnet and its clients. Clients are entities that the subnet interacts with

(e.g., host computers, other networks, users, electronic censors), as in Figure 4.1. Some

■78-

TECHNIQUES FOR SPECIFIC SYSTEMS

clients may play a distinguished role in the network, performing key distribution or network

administration services. The communications subnet might consist of message switches

and transmission lines.

Figure 4.1. A Physical Network Decomposition

In addition to a physical decomposition of a network, there is also the possibility of

decomposing along protocol layers, so that a network handling a layer n protocol decom-

poses into abstract protocol machines and network(s) handling a more primitive layer n-1

protocol, [cf IS084, TANE88] In this second approach, it is possible to reassemble the

protocol machines at various layers into physical components, so that the second ap-

proach is compatible with the first. In Figure 4.2, abstract protocol machines are collected

to form interface units that may either be part of or separate from corresponding hosts.

Each interface unit includes protocol handlers for all layers.

Figure 4.2. A Network Protocol Decomposition

■79-

SECURITY MODELING GUIDE

The partitioning of a network system results in optional subsystem components, such

as a communications subnet, as well as individual components whose further subdivision

is not useful for modeling purposes. [NCSC87, Sec. 1.3] In the following paragraphs,

network systems and subsystems are both referred to as networks. Individual and

subsystem components are both referred to as components. Network partitioning has a

variety of security-relevant ramifications. There is a need for both system security models

and component models as well as the need to consider TCB interfaces both in components

and in the entire network system. In contrast to operating systems, there is little point in

assuming that a network is either "up" or "down." Rather, it is necessary to model the

network across a range of partially functioning states. [FELL87] The principle of "mutual

suspicion" can be applied to components in orderto minimize security violations in case an

individual component is subverted. [SCHA85] In this case, each component enforces a

component policy that is strong enough not only to contribute to the overall system policy

but also to detect suspicious behavior in other components.

Networks are usually extensible, and, as a result, analysis of their security cannot

depend on configuration details that change as the network expands. A similar problem is

posed by the need for fault tolerance. Component failures and subsequent restarts should

not lead to violations of network security policy. [FELL87]

Some networks have covert channel problems related to indeterminate information in

message headers. In some cases, these "header"channels are visible in the model itself.

Other covert channels result from interconnection subtleties and from nondeterminacy

caused by channel noise and by race conditions associated with distributed computation.

Similar covert-channel problems can arise in other nondeterministic systems, and, as

mentioned in Section 3.2, a probabilistic analysis may be needed in orderto rule out certain

kinds of covert channels. [WITT90] However, nonprobabilistic analyses have also

provided some useful insights. [MCCU88, MCCU88a, JOHN88]

4.2.2 MODEL STRUCTURE AND CONTENT

A crucial modeling requirement for networks is that "the overall network policy must be

decomposed into policy elements that are allocated to appropriate components and used

as the basis for the security policy model forthose components". [NCSC87, Sec. 3.1.3.2.2]

One way of meeting this requirement is to provide a security policy model consisting of

several submodels. A network security model can give an overall definition of security for

80-

TECHNIQUES FOR SPECIFIC SYSTEMS

the network in order to clarify how the network supports higher-level security objectives.

A structural model can explain how the network is partitioned. This is particularly useful if

the component structure is directly involved in the network's policy enforcement strategy.

Finally, each component is given a security policy model. Correctness is shown by

demonstrating that the component model properties together with the structural model

properties imply the requirements in the network security model. The given

demonstrations may rely either on external interface properties of the components [cf

MOORE90, BRIT84, FREE88] or on modeled internal properties [cf GLAS87].

For a component that is part of a larger network, external-interface requirements will

often be apparent from the network modeling effort. For a separately evaluated

component, rated B2 or higher, external-interface requirements will usually be given in an

accompanying network security architecture description. [NCSC87, Sec. 3.2.4.4, A.3] The

NCSC Verification Working Group has concluded that access control requirements

imposed by the network security architecture should be modeled. Consequently, the

definition of security for the component model needs to contain or comply with such

external-interface requirements. It is easier to demonstrate conformance if these

requirements are directly included. This "external" portion of a component model is

essentially new and is distinct from internal requirements or rules of operation. In the case

of MAC requirements, this external interface portion may be regarded as a generalization

of TCSECdevice labeling requirements. [NCSC87; Sec. 3.1.1.3.2,3.2.1.3.4] A model for a

network system, in contrast to a component, may not need such external-interface

requirements because the environment of the network system need not have a

well-defined security architecture and is likely to contain only trusted entities such as users

and other evaluated network systems.

Security-critical entities in the network or its containing network system are collectively

referred to as the network TCB (NTCB). A second network modeling requirement is that a

component model should cover all interfaces between security-critical network entities

and other kinds of entities (see Figure 4.3). Collectively, these interfaces contain the

reference monitor interface forthe NTCB. Relevant non-NTCB entities for a network might

belong either to the network orto its environment. Whole components of a network may lie

outside of the NTCB. Individual components may also contain non-NTCB entities (as in

the case of an ordinary host, for example).

-81-

SECURITY MODELING GUIDE

When modeling a component, it may be desirable to model not only the interface

between its TCB and non-TCB entities but also the interface between its TCB and other

NTCB entities in order to give a better description of the security services provided by that

component. For an A1 system, this additional modeling information can provide

correctness criteria for the FTLS, since each component FTLS must describe the interface

between that component's TCB and the TCB portions of other components. [NCSC87,

Sec. 4.1.3.2.2] These additional interfaces are indicated by dashed lines in Figure 4.3.

Figure 4.3. Modeled Interfaces to the TCB Portion of Component A

4.2.3 NETWORK SECURITY MODELS

The security policy model for a network often contains a network security portion,

although this is not required by the TNI. Overall network security modeling is especially

useful for a network that is too large for effective system testing because, in this case,

overall security assurance can be achieved only by some form of static analysis. A network

security model can give a precise description of security services provided by the network

and can help to identify the boundaries of the system being modeled. It can identify

security-relevant aspects of communication among major components and can describe

associated security requirements. The entities described in this model need not be local to

individual physical components. This model partially determines and may share the

external-interface requirements found in the various component models.

For network systems rated B1 and above, mandatory access control plays a major role

in modeling user-related communication. [SCHN85] Other useful security requirements

include correct delivery [GLASS87]; discretionary access control; label, header, or

message integrity [GLAS87, FREE88]; and encryption [BRIT84]; among others. [IS089;

NCSC87, Sec.9]

-82-

TECHNIQUES FOR SPECIFIC SYSTEMS

In many networks, there is a significant amount of TCB software devoted to

security-critical communications protocols. A clear understanding of the basis for these

protocols is required in order to completely assess security assurance. A network security

model can provide this understanding by providing requirements that serve as correctness

criteria for security-critical protocols found in the NTCB portion of the network. Label

association protocols and label integrity requirements are of particular relevance in the

case of MAC policy modeling.

Access control modeling may be influenced by the network topology. For example,

access enforcement may be carried out by a communications subnet, while access

decisions are performed by a designated host that serves as an access decision facility.

[BRIT84]

One approach to specifying mandatory access control is to regard hosts as subjects

(partially trusted subjects, in the case of multilevel secure hosts) and host "liaisons" as

"communication" objects.1" [BELL86, BELL88a] Host liaisons are temporary connections

established between pairs of hosts for the purpose of exchanging messages at a given

security level, such as transport layer connections. This approach is similar to that taken in

several real systems. In the Boeing local area network (LAN) model the subjects are

arbitrary LAN clients. [SCHN85] In the model described by Fellows subjects are hosts.

[FELL87] In this latter modeling effort, the host liaison approach was found to be

satisfactory for expressing system security requirements with the possible exception of

what came to be known as the "entelechy"* property. This property means that a host may

send or receive messages over a connection if and only if it has current access to that

connection. These models are internal-requirements models for network systems.

Because these models treat hosts very simply, they also serve as external-interface

specifications of their communication subnets.

A more explicit external-interface model was given for the Multinet Gateway System

(MGS). The clients of the MGS are "external systems" that communicate with the MGS

over message ports. [FREE88] Messages have security labels, message ports are

+
The words "subject" and "object" are used somewhat differently in these presentations than in the

TCSEC, in order to convey an analogy between the presented network models and more traditional access
control models. TCSEC requirements pertaining to controlled process subjects and storage objects do not
always carry over in the manner suggested by this analogy.

en-tel'-e-key— the realization of form-giving cause (as contrasted with potential existence).

-83-

SECURITY MODELING GUIDE

multilevel devices, and the expected access constraints are enforced between messages

and message ports. In addition, the model contains limited information about the structure

of messages and declares that any delivered message must be legitimately 'derived from"

messages received by the system at the same security level. In other words, no spoofing or

regrading is allowed. The MGS model and FTLS are, in part, partitioned along protocol

layers.

In some cases lower-level component models involve system-only messages which

are not visible at the system interface. [FELL87, FREE88] In these cases special security

labels are used to separate system-only messages from normal client messages so that

privileged information in system-only messages cannot accidentally leave the system.

Lower level component specifications had to distinguish among several kinds of

messages, such as acknowledgments and other "protocol" messages as well as between

encrypted and plain text messages. Messages are split into header and data components.

In networks, some understanding of object structure is essential to enforcing security, and

this understanding necessarily turns up in derived security requirements for network

components.

In some cases, the network model may be trivial and therefore unneeded. A network

system consisting of single-level hosts connected by one-way links, for example, might

have only the obvious requirement that the level of a destination host dominate that of a

receiving host. Even this simple case may be worth modeling, if the cascading problem is

considered. Considering the cascading problem may determine when network

connections increase the risk of compromise, [see MILL88]

4.2.4 INDIVIDUAL COMPONENT SECURITY MODELS

Like other component models, individual component security models should

accommodate relevant external-interface requirements inherited from their containing

networks. An individual component which contains entities that are not security critical

must contain a reference monitor, and its model should constrain the reference monitor

interface. In this case, the model will include a structure analogous to that presented in

Section 3.2, including internal requirements and rules of operation. Correctness of the

model can be proved by showing that the rules of operation imply both internal- and

external-interface requirements. For some components, this proof may involve showing

that the internal requirements already imply the external-interface requirements. For

■ 84-

TECHNIQUES FOR SPECIFIC SYSTEMS

others, the internal requirements may apply only to the internal reference monitor interface,

so that they are unrelated to the external-interface requirements and have properties that

are enforced by different software.

As with other kinds of computing systems, an individual component may contain

subjects that do not act on behalf of particular users; the TNI refers to these as internal

subjects. In the case of networks, it is common for internal subjects to exist outside the

TCB, as in the case of routing protocols which are not involved in security enforcement. In

some components, all of the subjects are internal, and the isolation of untrusted processes

is so simple and straight-forward that modeling of the reference monitor interface is

unnecessary.

An individual component may lie entirely within the NTCB. In this case, its

external-interface requirements may already be sufficient as a description of component

policy enforcement because an internal-security model offers no essentially new insights.

Alternatively, a simplified functional description, in the form of an FTLS or rules of

operation, may be useful in showing how the component goes about meeting its

external-interface requirements. In this case, the functional description should provably

imply the external-interface requirements.

4.2.5 UNDERLYING MODELS OF COMPUTATION

State machines have been successfully used as a basis forsecurity modeling in several

network evaluations. However, concerns about their convenience for partitioning a

network TCB into components have been expressed by some researchers and system

developers. State invariants may not be testable in practice because they can discuss

widely separated state components that cannot be accessed in a timely fashion. Two

elementary state transitions may be concurrent, leading to a partially ordered view of event

histories in which two events can occur without either fully preceding the other. Parts of the

secure state may be replicated in different locations, which imposes consistency

requirements as well as forced discrepancies between the system state and the Cartesian

product of the component states. [FELL87] Because of these perceived inconveniences,

various history mechanisms have been used as an alternative to state machines, including

-85-

SECURITY MODELING GUIDE

I/O histories [GLASS87; FREE88], time-stamped buffer histories [BRIT84], and event

histories [MCCU88]. Event histories are essentially the "trace" semantics for Hoare's

communicating sequential processes. [HOARE85]

The differing approaches used in the above security modeling efforts underscore the

fact that a formal security model depends on an underlying model of computation. Models

of computation that could reasonably be used for networks include modal logic with

communication based on shared variables [MANN82, PNUE81], axiomatically defined

process algebras [MILN83, HOAR85], and Petri nets augmented with data flow primitives

[AGER82, CHIS85]. Specification languages based on process algebras [EIJK89] and on

communicating state machines [DIAZ89] have been developed for describing

communications protocols and may be adaptable for use in writing network security

models.

In general, the underlying model of computation for a security model should be chosen

to facilitate the statement and proof of the key security properties that will be studied. In the

case of networks, several different options have been tried and many more are plausible,

but no preferred approach has yet been established.

4.3 DATABASE MANAGEMENT SYSTEMS

The field of database security is relatively new and has provided a large variety of

questions and issues, some of which are outlined in the following paragraphs. As a result,

there are many unresolved issues, and significant effort may be needed to obtain a good

security design. This section is based in part on observations drawn from works by

Hubbard and Hinke [HUBB86, HINK90], from the Trusted Database Managementsystem

Interpretation of the Trusted Computer System Evaluation Criteria (TDI), [NCSC91] and

from similar security modeling issues for other trusted applications.

Perhaps the most obvious modeling issue is how the DBMS security model should be

related to the DBMS data model, that is, to the high-level user's model of how the DBMS

manages data. Can the security model serve as a simplified data model? If so, is it

consistent with the data model supplied to users of the system? Are all of the major entities

in the data model covered in the security model? In the case of a relational DBMS, for

-86.

TECHNIQUES FOR SPECIFIC SYSTEMS

example, does the model and/or accompanying documentation explain how relations,

views, records, fields, and view definitions relate to the appropriate entities (e.g.,named

objects) of the security model?

Commercial database systems are commonly designed to run on a variety of different

operating systems. This suggests that a database system might be modeled separately

from its underlying operating systems, if there is a common explanation of how its security

features interact with those of the underlying operating systems. Database systems raise a

variety of security policy issues that are not covered in the TCSEC. The large quantity of

user-supplied information found in typical databases increases the potential for erroneous

data (and data classifications) as well as the potential for the unauthorized release of

information due to aggregation and inference. However, database systems can partially

automate the labeling of data through the use of content-dependent classification rules,

thereby eliminating some kinds of user errors.

4.3.1 SYSTEM STRUCTURE

Many of the structural considerations regarding database systems apply to application

systems in general, [cf PAYN90] A discussion of these considerations is followed by

DBMS-specific observations about the design of objects for mandatory and discretionary

access control.

A DBMS (or similar application) can be built on an existing trusted system orcan be built

from scratch. A third alternative is to build on a modified system, but, in terms of modeling,

this is similar to starting from scratch. Building on a trusted operating system offers a

well-defined and well-documented basis that provides process isolation and user

authentication. Depending on the DBMS design, the operating system may also provide

mandatory or discretionary access control. However, it may be necessary to hide or "turn

off" some of the original security mechanisms, if they are inconsistent with and impact the

operation of the DBMS security policy. The DBMS may also need to hide the original

TCB/user interface, if the DBMS provides a significantly different user interface than the

underlying operating system. Starting from scratch can give a more unified design, may

simplify the security modeling effort, and is particularly appropriate for database machines

with simple, built-in operating systems.

■87-

SECURITY MODELING GUIDE

The DBMS-supplied notion of security can be presented in an external -nterface model

that gives the intended user-view of security. If the DBMS is built on a trusted operating

system, the external model can be followed with an internal requirements model that

identifies the role of the underlying operating system and its security policy model. The

external-interface model itself will be more relevant to users of the application if it

emphasizes concepts associated with the DBMS. Terminology found in the OS security

model, by way of contrast, may be inappropriate either because it refers to entities hidden

by the application or is very abstract in order to apply to a wide range of product

applications.

The security models associated with a trusted DBMS and its underlying operating

system illustrate several issues that arise in other large applications. To ensure that the

system design is consistent with the security policy, it is necessary to provide evidence that

the model (or models) of underlying subsystems support the application policy. The

decomposition of an overall security policy model into submodels for subsystems is

particularly advantageous when subsystems are developed by different groups over a

protracted period of time. Despite efforts to keep the system model abstract, there may be

inconsistencies between it and off-the-shelf subsystems used in the development. As a

result, the system security model will need to be maintained in an interactive process as the

design and product selection proceed.

The granularity of storage objects for database systems is typically finerthan that of the

underlying operating system. The distinction between active and passive entities tends to

be somewhat blurred in the case of object-oriented systems. Existing examples suggest

that the data model has a strong influence on the mandatory security policy, as can be seen

by comparing relational [e.g., DENN88], functional [THUR89], entity/relationship

[GAJN88], and object-oriented security models [e.g., JAJO90; KEEF89b; LUNT90;

LARR90]. These observations suggest that the underlying OS MAC facility may well need

to be supplanted. Database entities may be viewed as multilevel structures that are divided

up and stored in single-level files. In this case, the DBMS might contain non-TCB subjects

operating at all security levels used by the DBMS. This approach is illustrated by the LOCK

Data Views [HAIG90] and SeaViews [LUNT88b] systems. Alternatively, the DBMS itself

may take responsibility for the assignment of security labels so that entities which are

single-level objects to the operating system are multilevel data structures to the DBMS, as

TECHNIQUES FOR SPECIFIC SYSTEMS

in the ASD [GARV90] and MITRE prototypes [DAVI88]. In either case, it is important to

understand the relationship between database entities and the storage objects of the

underlying operating system, and it is appropriate to explain and perhaps formally model

the protocol for passing objects between the DBMS and the underlying operating system.

The named objects in a DBMS may differ not only from those of the underlying

operating system but also from the storage objects of the DBMS itself. User views are

traditionally used as a means of controlling access in relational database systems

[KORT86, Ch.13.2]; and it is reasonable to use views as named objects.1" In this case a

user may have access to several overlapping views so that the ability to access a given

piece of information would depend on the user's view of it. Consequently, the user's ability

to access that information might not be immediately apparent. In degenerate cases, two

named objects might coincide or, similarly, a given object might have several names.

4.3.2 INTEGRITY MECHANISMS AND POLICIES

Since pragmatic approaches to data integrity are, in varying degrees, part of most

database systems, [KORT86, Ch 13.3; FERN81, Ch.8] the modeling of DBMS integrity

policies may lead to a better formal understanding of integrity that can be applied much

more generally. Issues of interest include whether integrity constraints obscure other

critical security concerns, whether there are built-in mechanisms for monitoring or

controlling the propagation of inconsistencies, and whether users are able to learn which

integrity checks succeed or fail for a given piece of information.

Simple data integrity checks such as "A record field of type 'month' should be an integer

between 1 and 12" guarantee structural integrity. If such checks are enforced on input, a

corresponding integrity failure is unlikely, and therefore significant. Labeling constraints of

the sort discussed in Section 4.3.5 can be modeled in much the same way as simple

integrity checks; they enforce a form of label integrity.

A more complicated check such as "A record field of type 'department' should only be

populated by department names, of which there are currently 93," however, can be

invalidated in at least two ways, by adding a misspelled department and by altering the set

^ With sufficient restrictions, it appears that view instances can be used successfully for storage objects
in order to maintain some compatibility between MAC and DAC entities, [cf KNOD88]

89

SECURITY MODELING GUIDE

of official department names. In more complicated cases, it may not be possible to

guarantee data integrity because inconsistencies do not uniquely identify an erroneous

entry, so that inconsistencies in the database must be allowed for.

A model of a data integrity policy can show how information about integrity checks is

associated with data and how it propagates during data processing. For example,

indication of whether a given record satisfies a particular integrity check is a security

attribute that might be modeled as a category in an integrity label. The model could explain

how this attribute is handled during data processing.

Finally, some system integrity issues appearto be unique to secure database systems.

The scheduling of single-level updates associated with a series of multilevel updates has

to be both correct and efficient, and it must allow secure recovery after system failure.

[KEEF90]

4.3.3 AGGREGATION

The aggregation of less classified information to form a more highly classified body of

information is illustrated by the following example: locations of individuals are unclassified,

but total troop strength in a given area is classified, suggesting that a comprehensive

database of troop locations should itself be classified. In some cases, aggregation

problems can be handled by separating individual pieces of information into several or

many categories. Once this is done, aggregate levels are automatically represented by a

set of categories and thus by a higher security level. With this approach, no explicit

modeling of aggregation control is needed.

An alternate approach is to place objects in "containers" that are classified at a higher

level and allow them to be read only by subjects that are at the higher level and by TCB

subjects that are authorized to extract individual objects as a form of controlled

downgrading, as in the SMMS model. [LAND84] Methods for simulating containers in a

relational database system have been shown by Meadows. [MEAD90]

Yet another approach to controlling aggregation is to keep track of user queries and

provide context-dependent classification of query results. In this case, the first N items

from an aggregate might be automatically downgraded, but the remaining items could only

be obtained by users acting at the level of the aggregate. [HAIG90; cf LUNT89] This

approach can be formalized by modeling the access histories of containers.

-90.

TECHNIQUES FOR SPECIFIC SYSTEMS

A rathergeneral approach to aggregation is to introduce an aggregate level function, g,

that associates each set of data items with a security level. One expects that if His a subset

of K, then g{H) < g(K). Additionally, one expects that, for any A, B, and C, if g{A) < g(B),

then g{A u C) < g{B u C), since the information in A u Cis obtainable from information at

levels dominated by g(BuC), since g(A) < g{B) < g{B u C) and g{C) < g{B u C).

Meadows provides further information regarding the construction of aggregate-level

functions. [MEAD90b]

4.3.4 INFERENCE

In contrast to aggregation, inference allows new information to combine with preexist-

ing knowledge in a given environment, obtaining results that are not contained in the

original aggregate. The inference of restricted information from authorized queries and

database information is illustrated by the following examples:

1. The total quantity of an item is classified, but its total cost and cost per item
are not; two unclassified queries suffice to retrieve a piece of classified
information. [DENN82]

2. An uncleared user query of the form, "Give me the contents of all containers
which contain the fact that Flight 127 is carrying bombs to the front," might
elicit a response of "access denied" because one or more of the requested
records is classified, thereby indicating that Flight 127 is secretly carrying
bombs to the front. [WISE90]

3. A customer's bank balance is restricted information. A user of a statistical
database obtains the total of all bank balances for bank customers in
Smalltown, along with a corresponding list of all customer names (of which
there is only one). [KORT86]

The first inference example can be addressed by classifying one of the facts which led

to the inference, by enforcing separation of duty so that no uncleared user is authorized to

get both facts, or by maintaining user access histories and providing context-dependent

classification of query results. [HAIG90] A possible objective for the modeling effort is to

provide enough information to see which options are available in the modeled system.

The second example looks superficially like a covert channel associated with error

returns but is potentially more dangerous because it is so easy to use. It can be avoided by

redefining the query semantics so that the phrase "all containers" implicitly refers to all

91

SECURITY MODELING GUIDE

containers at or belowthe user's level. With this change, the appropriate query response is

"no such records exist." A strong model and model interpretation would simply rule out this

example.

The third example underscores the fact that inference problems also arise in

commercial systems, [cf KORT86, Ch. 13.5; FERN81, Ch. 13] The need to model

inference control thus extends beyond traditional multilevel security.

An extensive quantitative analysis of the inference problem may be found in

Crytography and Data Security. [DENN82] In the LOCK Data Views effort, much of the

inference problem is delegated to a database system security officer who can specify

content- and context- dependent classification rules. The classification of a field in a

record may depend on its value, on other fields in the record it is displayed with, or on

previous queries made by the user. [HAIG90] An interesting consequence of inference

problems is that there may be no lowest, safe security level for a given piece of information:

an otherwise unclassified piece of information might allow users at level {a} to infer

information at level {a, b} and users at level {p} to infer information at level {p, q}. Thus, {a,

b}, {p, q}, and {a, b, p, q} would be admissible levels for this piece of information, whereas

{a} and {p} would not. These and other considerations have led to an explicit axiomatization

of inference in terms of an "infer function [HAIG90] that could be included in a model's

definition of security in order to explicitly capture an inference control policy.

Inference constraints may be enforced during database design, updating, and query

processing. In principle, enforcement need only occur during query processing, but this

approach may also be the least efficient, [cf KEEF89, HINK88, ROWE89, FORD90] Thus,

locus of policy enforcement may be a significant factor in modeling inference control.

4.3.5 PARTIALLY AUTOMATED LABELING

As discussed in Section 3.2, the usual labeling paradigm is that users know the

sensitivities of their inputs and supply these sensitivities when the information is being

entered. In the case of databases, however, information about object classifications may

not be available when a database schema is defined. Including this classification

information as part of the schema definition not only provides a uniform approach to

classification, but also improves labeling accuracy by allowing specially authorized users

to assign or constrain object sensitivity levels.

92.

TECHNIQUES FOR SPECIFIC SYSTEMS

In actuality, information rather than data or containers for data is classified.^

Consequently, a rule for classifying storage objects in a database may depend not only on

the particular object but also on the data it contains and on how the data is used, as is

illustrated by the following examples:

1. A ship's location might be unclassified when it was in a U.S. port but classified
if it were fifty miles from Tripoli. [GRAU90]

2. Names of manufacturing companies are unclassified but most information
about a particular spy plane, including its manufacturer, is classified.

In the first example, classification is content-dependent. As noted by Graubart, content-

dependent classification is antithetical to the tranquility principle. [GRAU90] In the second

example, whether or not the name of the plane's manufacturer is classified depends on its

use in a given context. Lunt has argued that context-sensitive classifications are easily

confused with inference problems [LUNT89] and that object-oriented systems are

especially appropriate for handling context dependencies. [LUNT90]

Lack of tranquility exposes what has been called the "multiparty update conflict"

problem. Two users working at different classifications attempt to store conflicting reports,

leading to questions about which report and which classification is correct, and whether or

not the mistaken user should be so informed. One possibility is that the less-classified user

has been given a "cover story" to hide publicly observable aspects of a classified situation.

In this case, a possible approach to the update conflict is to store both the cover story and

the truth in the same spot in the database with the two entries being distinguished only by

their classification. This approach, known as "polyinstantiation," is not the only approach to

multiparty update conflicts [KEEF90b], and it may well be inappropriate in situations where

cover stories are not involved. [SMIT90]

A fairly wide variety of content- and/or context-dependent classification mechanisms

have been investigated, but a general approach to the problem has yet to be

developed. [SMIT88] As indicated in Section 3.2.1, traditional approaches to MAC

modeling begin with the assumption that data sensitivity is user-supplied. As a result,

some aspects may need to be rethought when modeling policies for automated data

labeling.

* In some cases data itself is classified, as in the case of a secret code name for a classified project;
but even here the intent is to classify all information associated with the named project.

■93-

SECURITY MODELING GUIDE

4.4 SYSTEMS WITH EXTENDED SUPPORT FOR LABEL ACCURACY

As mentioned in Section 3.1.5, security labels are used both to control information flow

and to provide accurate security markings for data. These goals may well conflict, and this

conflict may be theoretically unavoidable in some situations. [JONE75; DENN82, § 5.2.1]

Policies and coping strategies for maintaining label accuracy have turned up in security

models, whereas label accuracy itself has not yet been explicitly modeled.

The following paragraphs discuss pragmatic factors that inhibit accuracy, some coping

strategies suggested by these factors, and the realization of these strategies in

Compartmented Mode Workstations (CMWs). As a final example, the "Chinese wall"

policy for stock market analysts is introduced and shown to be a variant of the workstation

security policy.

4.4.1 FACTORS INHIBITING ACCURACY IN LABELING

In practice, several factors may interfere with accuracy in labeling, including the need to

maintain labels across different working environments, the use of complex labeling

schemes, and data fusion.

In many applications, the collection, processing, and distribution of information all take

place in different environments. It can happen that labels are assigned during collection

and used to control the ultimate distribution, but the majority of processing takes place in a

system-high environment where automated access control is not supported or in a

multilevel environment where not all security markings are used to control access by users.

In these cases, it is necessary to accurately maintain security markings even when they are

not needed to enforce access control in the information processing environment.

Some applications may involve the use of literally thousands of categories. Moreover,

the required security markings may include not only a DoD classification but also code

words, handling caveats, and/or release markings as well. Such markings usually form a

lattice, but the rules for combining markings may be complex. [WOOD87]

The fusion of data at several security levels requires a convention for labeling fused

data. Even if aggregation and inference issues are ignored, it is still necessary to find a

level which dominates that of every data source. If the level of fused data can be predicted

in advance, then aggregate data can be maintained in multilevel data structures, as in the

-94-

TECHNIQUES FOR SPECIFIC SYSTEMS

SMMS. [LAND84] However, finding an appropriate aggregate level may be hindered by

difficulty in combining labels or by the fact that the sources cannot be predicted in advance,

either because they arrive in real time or because the avoidance of inappropriate sources is

part of the fusion task itself.

4.4.2 FLOATING SENSITIVITY LABELS

If the security levels form a semi-lattice, then some form of "high water mark" policy

may be used to maintain an upper bound on fused data. In such a policy, the TCB maintains

the least upper bound of all data levels associated with an entity in a "floating" label. While

the TCSEC requirements do not rule out floating labels, the MAC requirements do imply

that the level of a subject must never float above the clearance of its user. At B2 and above,

the covert channel requirements suggest that label data should not be exploitable as a

covert channel. Unfortunately, most high watermark policies not only allow, but actually

force, the existence of covert channels based on the use of floating labels. [DENN82,

Ch.5.3]

The level of a process can be kept from floating too high by going to a dual-label

mechanism in which a fixed label contains the subject's maximum security level, which

dominates that of the floating label. In this situation, the fixed label is used only for access

control and need only include those security attributes that are actually used for access

control. Factors which favor acceptability of a covert channel include low bandwidth and

the absence of application software that can exploit covert channels.

4.4.3 COMPARTMENTED MODE WORKSTATIONS (CMW)

The CMW design described by Woodward [WOOD87] is for a dual label system. The

fixed label contains a 'sensitivity" level and is the only label used for access control. The

floating label contains an "information" level that consists of a second sensitivity level and

additional security markings. The sensitivity levels are used to control nondisclosure and

consist of DoD clearance and authorization components. The security markings form a

lattice; hence, so do the information levels. The intended use of the two labels is that the

fixed label enforces an upper bound on the sensitivity of information held by an entity, while

the information level describes the current security level of information held. The covert

channel problem resulting from the use of floating labels can lead to erroneous information

labels but cannot be used to violate the access control policy enforced by the fixed labels.

•95-

SECURITY MODELING GUIDE

A CMW security model has been developed by Bodeau and Millen. [MILL90] Its MAC

policy may briefly be summarized as follows: when a user creates a new file or process, it

receives a sensitivity level equal to that of the user's login level. By way of contrast, the

information label for a newly created file contains the lowest possible information level. In

particular, its sensitivity component is "unclassified." A sensitivity label never changes

throughout the life of an entity, but the information label is allowed to float upwards in such a

way that its sensitivity component is always dominated by the level ofthat entity's sensitivity

label.

The rules of operation are such that, whenever an operation is invoked that involves an

(intended) information flow from an entity E1 to an entity E2, the sensitivity labels are

checked to be sure that the sensitivity of E2 dominates that of Ep The maximum of the

information levels for E1 and E2 is then computed, and it becomes the new value of the

information label for E2. In addition to the properties just described, the CMW model also

discusses privilege and DAC. The model does not address direct process-to-process

communication, but does treat pipes as objects. As is appropriate when modeling a policy

that is subject to misuse, the existence of a channel based on information labels is

derivable from the model itself.

4.4.4 THE CHINESE WALL SECURITY POLICY

As presented by Brewer and Nash, the 'Chinese Wall" Policy is a mandatory access

control policy for stock market analysts. [BREW89] This organizational policy is legally

binding in the United Kingdom stock exchange. According to the policy, a market analyst

may do business with any company. However, every time the analyst receives sensitive

"inside" information from a new company, the policy prevents him from doing business with

any other company in the same industry because that would involve him in a conflict of

interest. In other words, collaboration with one company places a "Chinese wall" between

him and all other companies in the same industry. Sameness of industry might be judged

according to business sector headings found in listings of the stock exchange, for example.

Notice that this policy does not, by itself, prohibit conspiracies. For example, one market

analyst can give information about a company in industry I to a company in industry J.

Subsequently, another analyst can transfer this information from the company in industry J

■96-

TECHNIQUES FOR SPECIFIC SYSTEMS

back to some other company in industry I. Analogous conspiracies between colluding

processes, however, are explicitly ruled out in the corresponding system security policy

and its model, [cf BREW89, Axiom 6]

Brewer and Nash argue that this policy cannot be modeled using models in the style of

Bell and La Padula that obey tranquility. However, this policy can easily be modeled as a

variant of the CMW model. Information and sensitivity levels are both sets of categories,

where each category represents a different company. There is an accreditation range for

information levels. A level belongs to the accreditation range if and only if it does not

contain two or more companies from the same industry. The model must be extended

slightly by adding information labels for users. Every user and every controlled entity has a

system-high sensitivity level, reflecting the fact that an analyst may work with any

particular company. Every user starts out with an empty (system-low) information label.

Each time an analyst attempts to read information in a new category (i.e., company), his

information level floats up, unless it goes outside of the accreditation range, in which case

his attempt is rejected. Notice that, as in the CMW example, there are thousands of

categories. While the rule for combining categories is straightforward, the accreditation

range is not. Additional thoughts on the use of accreditation ranges in controlling

aggregation may be found in the paper "Extending the Brewer-Nash Model to a Multilevel

Context." [MEAD90b]

97 ■

5. MEETING THE REQUIREMENTS

At evaluation class C1 and above, a "description of the manufacturer's philosophy of

protection and an explanation of how this philosophy is translated into the TCB" is required.

For evaluation classes B1 and above, this requirement is supplanted with explicit security

modeling requirements. This section contains a listing of these requirements, followed by a

discussion of how a security policy model can meet these requirements, as well as satisfy

related assurance and architectural requirements.

5.1 STATED REQUIREMENTS ON THE SECURITY MODEL

Requirements that are new at a given evaluation level are presented in bold face.

5.1.1 B1 REQUIREMENTS

1. An informal or formal model of the security policy supported by the
TCB shall be maintained over the life cycle of the ADP system. An
informal or formal description of the security policy model enforced by
the TCB shall be available.

2. [The security model] shall be demonstrated to be consistent with its
axioms.

3. An explanation [shall be] provided to show that it is sufficient to
enforce the security policy.

4. The specific TCB protection mechanisms shall be identified and an
explanation given to show that they satisfy the model.

5.1.2 B2 REQUIREMENTS

1. A formal model of the security policy supported by the TCB shall be
maintained over the life cycle of the ADP system. A formal description of the
security policy model enforced by the TCB shall be available.

2. [The model] shall be proven consistent with its axioms.

3. [The model shall be] proven sufficient to enforce the security policy.

4. The specific TCB protection mechanisms shall be identified and an
explanation given to show that they satisfy the model.

5.1.3 B3 REQUIREMENTS

1. A formal model of the security policy supported by the TCB shall be
maintained over the life cycle of the ADP system. A formal description of the
security policy model enforced by the TCB shall be available.

2. [The model] shall be proven consistent with its axioms.

99

SECURITY MODELING GUIDE

3. [The model shall be] proven sufficient to enforce the security policy.

4. The specific TCB protection mechanisms shall be identified and an
explanation given to show that they satisfy the model.

5. A convincing argument shall be given that the DTLS is consistent with
the model.

5.1.4 A1 REQUIREMENTS

1. A formal model of the security policy supported by the TCB shall be
maintained over the life cycle of the ADP system. A formal description of the
security policy model enforced by the TCB shall be available.

2. [The model] shall be proven consistent with its axioms.

3. [The model shall be] proven sufficient to enforce the security policy.

4. The specific TCB protection mechanisms shall be identified and an
explanation given to show that they satisfy the model.

5. A convincing argument shall be given that the DTLS is consistent with the
model.

6. A combination of formal and informal techniques shall be used to show
that the FTLS is consistent with the model. This verification evidence
shall be consistent with that provided within the state-of-the-art of the
particular National Computer Security Center-endorsed formal
specification and verification system used.

7. During the entire life cycle, i.e., during the design, development and
maintenance of the TCB, a configuration management system shall be in
place ... that maintains control of changes to the formal model....

5.2 DISCUSSION OF THE B1 REQUIREMENTS

1. Provided Model of the Security Policy Enforced by the TCB. The decision of

whether to use a formal or informal model is a matter of choice, as can be seen from the

TCSEC Glossary. An informal security policy model should be presented with enough

precision that a formal mathematical model could be constructed if needed. A formal

security model must conform to accepted standards of mathematical rigor.

The security model must present a definition of security and an enforcement policy

(i.e., rules of operation) for controlled system entities. The controlled entities may be

correctly interpreted as storage objects, devices, processes, and other controlled system

resources. The model must present the system's notion of access and explain how access

checks (or constraints) succeed in preventing unauthorized access. Thus, the model must

consist of more than just a high-level description of security requirements.

100-

MEETING THE REQUIREMENTS

Since formal proof is not required, a firm distinction between abstract security

requirements and concrete enforcement mechanisms may be unnecessary. It is absent

from the [NCSC88] definition of a security policy model. A distinction between the

reference monitor and other portions of the TCB is also not required, but the role of TCB

subjects in the enforcement of the security policy must be taken into account. Moreover, in

the case of a retrofitted system that did not originally support trusted user roles, the

interface between TCB subjects and the basic system kernel may be too complicated for

TCB-subject modeling to be valuable.

2. Demonstration of Internal Consistency. The second modeling requirement

covers two related concerns. The model must not contain inconsistencies. In other words,

it must not contradict itself. Moreover, a formal or informal demonstration must show that

the modeled enforcement policy is sufficient to achieve any modeled security requirements
("axioms"). In other words, the rules of operation must imply the definition of security.

3. Explanation of Sufficiency to Enforce the Security Policy. An explanation must

be provided to show that the model's description of the security policy is adequate — that

the model leads to a system whose TCB enforces the advertised system security policy.

Forthe model to be sufficient or adequate in this sense, it must include key ideas used in the

design of the security enforcement mechanisms. The resulting rules of operation should

provide a basis for understanding how the system's main security enforcement

mechanisms enforce the security policy. In the case of networks and other complex

systems, models of key subsystems are needed in addition to a model of the entire system.

In particular, "the overall network policy must be decomposed into policy elements that are

allocated to appropriate components and used as the basis forthe security policy model for

those components". [NCSC87, Sec. 3.1.3.2.2]

The system security policy itself must include the minimum requirements of

Section 3.1.1 of the TCSEC, and the model should tailor Section 3.1.1 to the particular

system at hand. The access control requirements in Section 3.1.1 must always be

modeled, whereas the need to model the labeling and object reuse requirements will vary

from one system to the next, [cf NCSC87, Sec. 3.1.4.4]

101

SECURITY MODELING GUIDE

The security policy model must include a description of DAC. An explanation of how

DAC interacts with MAC is encouraged but not explicitly required. In particular, there is no a

priori requirement for DAC objects to coincide with MAC objects.

The security policy model must include a description of MAC. The decomposition of

sensitivity levels into clearance, nondisclosure category, or other components need not be

explicitly included unless such decomposition is essential to an understanding of the

model. Flagrant examples of illegal information channels may be regarded as MAC policy

violations, even though a covert channel analysis is not required. More specifically, a

documented (or trivially inferred) use of a system function must not result in an illegal

transfer of information.

Modeling of the following security policy requirements may be useful, but is traditionally

not required:

• A process acting on behalf of a user must have a label that is dominated by
the clearance and authorization of that user.

• Information flowing across a device must have an implicitly or explicitly
associated sensitivity level, according to whether the device is classified as
single-level or multilevel.

• Object reuse and process initialization do not happen in such a way as to
allow unauthorized disclosure.

• In a network, the overall network security policy is enforced by the NTCB.

• Additional vendor supplied security requirements, whether derived from
governing regulations or customer needs, may be enforced by the TCB.

4. TCB Protection Mechanisms and Correspondence to Model. The TCSEC

modeling requirements must be met in a way that is consistent with the needs of the system

development process and with actual TCB protection mechanisms. The vendor must

supply a model interpretation showing how the rules of operation in the model relate to the

actions of the TCB. The model interpretation must address the reference monitor interface

and show how subject instructions are accounted for.

The following aspects of a system do not have to be modeled although their

representation in the model may be useful:

• Error diagnostics,

• The contents of storage objects and other controlled entities,

-102

MEETING THE REQUIREMENTS

• The scheduling of subjects and their synchronization with external inputs,

• Internal TCB structure,

• Portions of the TCB that do not support user-requested computation
(e.g., security-administrator functions), and

• An individual network component that has a very simple (or nonexistent)
reference monitor and contains no subjects which act on behalf of users.

5.3 DISCUSSION OF THE B2 REQUIREMENTS

1. Provided Model of the Security Policy Enforced by the TCB. The model must be

written in a formal mathematical notation; either mathematical English or a well-defined

formal specification language is acceptable. From the TCSEC Glossary definition of a

formal security policy model, it is clear that the model must describe both what security is

and how it is enforced. As discussed in Section 3.2, the definition of security can be

formalized using either external-interface requirements or internal requirements on

controlled entities. The explanation of how security is enforced typically takes the form of

rules of operation.

2. Demonstration of Internal Consistency A mathematical proof must be given

showing that the rules of operation ensure satisfaction of the modeled security

requirements.

3. Explanation of Sufficiency to Enforce the Security Policy. The proof referred to

in this requirement is an informal, rather than a mathematical proof, because sufficiency

depends on the typically informal security policy. The intent of this documentation

requirement is that stronger evidence of sufficiency be provided at B2 than at B1. If

the system has a novel approach to mandatory or discretionary access control, it may be

necessary to model both what the system does and what Section 3.2.1 of the TCSEC

requires and then to prove that the system does what is required. Stronger evidence of

sufficiency is possible, if the model is compatible with other B2 security, accountability, and

assurance requirements. For this reason, explicit inclusion of the following requirements

may be useful:

• The TCB shall support the assignment of minimum and maximum security
levels to all attached physical devices. These security levels shall be used by
the TCB to enforce constraints imposed by the physical environments in
which the devices are located.

-103

SECURITY MODELING GUIDE

• [The TCB design shall] separate those elements [of the TCB] that are
protection-critical from those that are not.

• The TCB modules shall be designed such that the principle of least privilege
is enforced.

• The user interface to the TCB shall be completely defined and all elements of
the TCB identified.

• The TCB shall support separate operator and administrator functions.

• The system developer shall conduct a thorough search for covert storage
channels.

• The TCB shall support a trusted communication path between itself and the
user for initial login and authentication. Communications via this path shall
be initiated exclusively by the user.

If separate security models are given for the security kernel and other components of

the TCB, then the pieces must fit together correctly, and arguments should be given to the

effect that overall system security is achieved and necessary checks are not inadvertently

omitted. As indicated in Section 3.2, the notion of which storage channels are covert is

partially reflected in the security model, and the inclusion of information flow requirements

in the model's definition of security can reduce the effort needed to perform covert channel

analysis.

4. TCB Protection Mechanisms and Correspondence to Model. The B2

requirements for validation of TCB protection mechanisms are basically the same as those

discussed at the end of Section 5.2, except for an implicit completeness requirement. This

requirement is that "the TCB shall enforce a mandatory access control policy over all

resources (i.e., subjects, objects,and I/O devices) that are directly or indirectly accessible

by subjects external to the TCB." This requirement should be reflected in the model

interpretation, and its satisfaction may require extensions to the model in order to account

for all accessible resources in the implementation. The model interpretation itself may be

accomplished in two steps, by first mapping the model to the DTLS and then the DTLS to

the TCB implementation.

5.4 Discussion of the B3 Requirements

The B3 requirements include the B2 requirements as well as several new requirements.

1, 2. Provided Modeland Internal Consistency. The basic structure of the security

model is the same at B3 as at B2.

104-

MEETING THE REQUIREMENTS

3. Explanation of Sufficiency to Enforce the Security Policy. There is one

additional security policy requirement at B3, namely that access controls "shall be capable

of specifying, for each named object, a list of named individuals and a list of groups of

named individuals with their respective modes of access to that object. For each named

object, it shall be possible to specify a list of named individuals and a list of groups of named

individuals for which no access to the object is to be given."

In addition, the model may usefully reflect, and must be consistent with, the following B3

architectural assurance requirement: "The TCB shall be designed and structured to use a

complete, conceptually simple protection mechanism with precisely defined semantics.

This mechanism shall play a central role in enforcing the internal structuring of the TCB and

the system. Significant system engineering shall be directed toward minimizing the

complexity of the TCB and excluding from the TCB modules that are not

protection-critical."

4, 5. TCB Protection Mechanisms and DTLS Correspondence to Model. The

validation of TCB protection mechanisms is normally performed by showing that the model

is an abstraction of the DTLS and then mapping the DTLS to the actual TCB

implementation. (See Section 2.3.6.)

5.5 DISCUSSION OF THE A1 REQUIREMENTS

1-5. Previously Introduced Requirements. The first five requirements are the same

at A1 as at B3 (except for the fact that the FTLS rather than the DTLS is mapped to the

implementation). The requirements for a formal covert channel analysis invite, but do not

require, the use of information flow or similar external-interface models.

6. FTLS Correspondence to Model. The main new requirement at this level is that a

"formal" mathematical proof be given showing that the security model is an abstraction of

the FTLS. This proof may be carried out either by hand or with the use of an endorsed

formal verification system. In either case, the vendor is responsible for providing an

understandable, logically correct justification of correspondence. This justification

normally begins with the formulation of a rigorous conjecture to the effect that the model is

an abstraction of the FTLS. If part or all of the proof is presented to a verification system,

then the vendor must demonstrate that the presented portion is correctly codified in the

-105-

SECURITY MODELING GUIDE

formal language of the verification system. This demonstration may require informal

argument and an appeal to the semantics of the system's formal specification language.

There are two common ways of showing that the FTLS is consistent with the model:

comparing the FTLS with the rules of operation and comparing the FTLS directly with the

model's definition of security. In the latter case, the rules of operation and model

interpretation are similar in purpose to the FTLS and its implementation correspondence,

respectively. This parallelism of requirements does not necessarily imply duplication of

effort, however, because there are no explicit requirements which force a distinction

between the FTLS and the rules of operation.

7. Configuration Management for the Model. The requirement that the model and

related documentation be maintained under configuration management is not a modeling

requirement, perse. However, because of this requirement, extra care is needed to ensure

that the model is given in a form that contributes to its maintainability.

-106

APPENDIX A. SECURITY LEVELS AND PARTIALLY
ORDERED SETS

Policies that control information flow often rely on partially ordered sets of security

attributes. This appendix introduces partial orderings as they relate to information flow

and presents basic facts about partial orderings that are relevant to the modeling and

implementation of label-based security policies. Many of these facts can also be found in

the undergraduate text [ABB069].

Most processes satisfy two basic information flow properties:

reflexivity: A process can access any information it possesses. That is,
information can always flow from a process to itself.

transitivity: If information can flow from process P1 to process P2 and can
flow from P2 to P3, then information can flow from P1 to Ps.1'

These two properties of information flow determine a preordering relation between

processes. If processes are labeled in such a way as to make economical use of label

values, then the following property may also hold as well:

antisymmetry: If information can flow from a process with label Li to a process
with label L2, and conversely, then /_? = L2.

Thus, the intended relationship between labels and information flow leads to consideration

of a reflexive, transitive, antisymmetric relation on label values, that is, a partial ordering.

The intended relationship between information flow and this partial ordering can be

expressed by saying that Z.7 < L2, if information is allowed to flow from controlled processes

with label L-, to controlled processes with label L2. This relation is traditionally referred to as

dominance: L/ is dominated by L2\\ and only if Lj < L2.

The following sections introduce basic terminology and show how partial orderings can

be constructed and manipulated through the use of embeddings, Cartesian products, and

dual orderings.

A.1 TERMINOLOGY

Formally, < is taken to be a partial ordering on a set i whose elements are referred to

as levels. A pair of the form (i, <) is a partially ordered set. For any levels L7 and Z^.Z.*

< L2 if and only if /_? < L2 and L7 ^ L2. The lowest, or minimum, level of z, if such exists, is

t This is a worst-case assumption; P2 might be constructed so that information from P1 was never
passed along to P3.

107-

SECURITY MODELING GUIDE

that level which is dominated by all other levels in i. Similarly, the highest, or maximum,

level dominates all other levels. A minimal level, by way of contrast, is one that fails to

dominate any level other than itself. Similarly, a maximal level is not dominated by any

other level. If there are several maximal levels then there is no maximum level.

Traditionally, the lowest level among all levels in a given system is referred to as

system-low. Similarly, the highest level is system-high. However, these levels do not

always exist. In Figure A.1, the highest level is H. There are two minimal levels, L and L',

and, therefore, no lowest level. (The intended partial ordering here is the transitive,

reflexive closure of the relation actually pictured, so that L< H, by transitivity.and H<H,by

reflexivity.)

Figure A.1. A Partial Ordering

The greatest lower bound of two levels, L1 and L2, is the highest level that is dominated

by both L-t and L2, provided such a level exists. Similarly, the least upper bound of L-, and

L2, is the lowest level that dominates both L-, and L2, provided such exists. In the above

diagram, His the least upper bound of /Wand M'. His also an upper bound of L and U, but

not the least such, because /Wand M' are both lower. Moreover, L and L' do not have a

least upper bound, because the set of levels greater than both L and U contains two

minimal elements, namely /Wand M'. A partial ordering in which all pairs of levels have a

least upper bound is a semilattice. A semilattice in which all pairs of levels have a greatest

lower bound is a lattice.

Two levels L-, and L2 are incomparable if and only if U neither dominates nor is

dominated by L2. A set JH, of levels is linearly ordered if and only if no two elements of JL are

incomparable. In the above diagram, /Wand M' are incomparable. The set {L, M, H} is

linearly ordered (with L <H, by transitivity).

If C is any finite set, then the set of all subsets of C, 9(C), is partially ordered by the

set-inclusion relation. In other words, L? is dominated by L2 if and only if /_r is a subset of L2;

-108

APPENDIX A: SECURITY LEVELS AND PARTIALLY ORDERED SETS

in symbols, Lj c L2. This gives a lattice ordering on <3>(Cf. The lowest level of 9>(C) is the

empty set; the minimum levels above the empty set are the singleton sets of the form {c},

where c belongs to C. These singleton levels are variously referred to as categories or

atoms. The highest level is C itself.

A.2 EMBEDDINGS

When implementing a partially ordered set of levels, it is always possible to choose a

larger implementation set whose additional elements are simply not used. In particular,

any partially ordered set can be fully embedded in one of the form (9(C), c); that is, given

any partial ordering < on a set i, there is a one-to-one mapping e into a set of the form

9(C) such that, for any LhL2 in I, L1 < L2 if and only if e(Lj) c e(L2). In fact, one may take

e(L) = {UIU < /_}. In the case of linearly ordered sets, the embedding

f(L) = {U IL' < L} also works. For example, if i is a linearly ordered set of 16 clearance

levels, then i may be fully embedded in a set of fifteen categories. A word of caution is in

order regarding full embeddings: they need not preserve least upper bounds. If L is the

least upper bound of L? and L2, then e(L) is an upper bound of e(Lj) and e(L2), but need not

be the least upper bound. Greatest lower bounds can also fail to be preserved under full

embeddings.

As a further application of embeddings, consider the problem of specifying a set &of

levels at which a given device may pass information. Assume % is convex in the sense that

L E % whenever L1tL2 e % and L-, < L < L2. Assume also, that % is a subset of the

system's accreditation range A. The partially ordered set A can always be embedded in a

lattice L in such a way that, for some device minimum, min, and some device maximum,

max, % = {L E A | min < L < max}. Thus, arbitrary convex sets may be specified as

device ranges, at least if one allows unaccredited levels in the specification of the device

range.

A.3 CARTESIAN PRODUCTS

The effect of simultaneously applying two label-based policies to a set of entities is the

same as applying a corresponding composite policy to entities, each of which has a single

composite label. If the partially ordered sets forthe two policies are {i, <) and (i/, <'), then

t R(C) is traditionally referred to as the "power set of C."

-109.

SECURITY MODELING GUIDE

the composite label has values in the Cartesian product, (i, <)x(i', <') = (ixz', <"),

where the new partial order, <", is defined by (Lu Lr') <" <L2,L2'} if and only if L? < L2 and

L-i' <' L2'. The sets i and i' are referred to as components oilxi'. A sample Cartesian

product ordering is illustrated in Figure A.2. Notice that, in the Cartesian product, the level

{S, 0) is incomparable to the level {U, (a)). (Some punctuation has been omitted in the third

lattice diagram.)

S{c, d}

U

{c,d}

x {c} {d}

0

Sic}

U{c}

S{d}

U{d}

Figure A.2. A Cartesian Product Ordering

If C and D are disjoint, then the partially ordered sets {9(C), c) x {9(D), c) and

(g>(Cu D), c) are isomorphic, meaning that there is a full embedding which maps

<$(C)x9(D) on to 9>(Cu D). In particular, traditional nondisclosure labels consisting of

clearances and category sets can be fully embedded into a set of the form <3>(A),

with A = C u D.

Usually, there are several nonequivalent ways to decompose a partially ordered set into

two components. For a partially ordered set of the form (9(A), c), there are n + 1

meaningfully different ways, where n is the number of categories in A (since the first

component can have any number of categories between 0 and n). In particular, the

decomposition into clearance and category components could be configuration

dependent, even if the labels themselves were not.

A.4 DUALITY

The notion of duality between nondisclosure and integrity that is evident in some

security policies has a formal analogue for partial orderings. For a given set land

associated partial ordering <, the dual ordering for (i, <) is the relation ^ defined by

/_! >r L2 if and only if L2 < Lh A Biba policy (as described in Section 3.5.3) that is based on

-no-

APPENDIX A: SECURITY LEVELS AND PARTIALLY ORDERED SETS

(i, ^) can be rewritten as a nondisclosure policy based on the dual ordering (i, >:), so that

information is allowed to flow from L1 to L2, provided L1 ^ L2. Usually, to avoid confusion,

the elements of the dual ordering would be renamed so that the intended ordering is

obvious from the level itself.

The dual ordering for (9>(C), c) is the set-containment relation, 2, and the lattice

(9>(C), c)isisomorphicto(9>(C), a) underthe mapping e given by e(A) = C \ A, for each A

in 3>(C), where C \ A is the complement set containing those elements of C not in A In this

case, the categories of (9(C), a) are the dual categories of (9(C), c), that is, they are sets

of the form C \ {c}. In Figure A.2, {cj = C\ {a}, so that {c} is both a category and a dual

category.

The a relation is the ordering used to ensure nondisclosure for "distribution" sets in

Section 3.3.4. This observation suggests a method for accommodating release markings

of the form "REL<countries>" through the use of MAC categories. Each country c is

associated with the dual category C \ {c}; a message with category set B is releasable to

country c, if B c C\{c), that is, if c £ B. The most sensitive of these release markings,

namely "NOFORN," is represented by the largest category set, the set C containing all

relevant countries.

In a system with a nondisclosure policy based on (Jf,<) and a Biba integrity policy

based on (3, ^), the partial orderings that control information flow would be < and >z, so

that the two policies can be combined to obtain a single policy pertaining to information flow

that is based on composite levels taken from the partially ordered set (J\T, <)x(3, >:).

Suppose each of the original orderings have minimum and maximum levels. If the

minimum integrity level is integrity-low, then integrity-low is the maximum level with

respect to the dual ordering. Consequently, the composite ordering contains the four levels

indicated in Figure A.3. Notice that the composite level which represents both

system-high nondisclosure and system-high integrity is not the maximum level but the one

on the right.

-in-

SECURITY MODELING GUIDE

(nondisclosure - high, integrity - low)

/ \
(nondisclosure-low, integrity-low) (nondisclosure-high, integrity-high)

(nondisclosure - low, integrity- high)

Figure A.3. Extreme Points in a Product Ordering

Finally, if nondisclosure and integrity are handled similarly, the decomposition of combined

levels into nondisclosure and integrity components may be treated as a system

configuration decision in order to handle varying emphasis on nondisclosure and integrity.

112.

APPENDIX B. AVAILABLE SUPPORT TOOLS

This appendix discusses the use of NCSC-endorsed formal verification systems for

security modeling. A list of endorsed verification systems called the Endorsed Tools

List (ETL) is maintained by the NCSC. These tools define the level of rigor which must be

met by formal assurance provided for systems receiving an A1 evaluation. The following

paragraphs discuss verification systems with emphasis on the two currently endorsed

systems, GVE ("Gypsy Verification Environment") and FDM ("Formal Development

Methodology").

In general, a verification system is defined by its specification language and its

reasoning mechanism. Its implementation includes tools for parsing specifications,

verifying their legality, and outputting conclusions which have been verified by the system.

A verification system can provide a codification of a security model and can help

demonstrate that its rules of operation are consistent with its security requirements. The

utility of a verification system depends on the expressiveness of its specification language,

the soundness of its reasoning mechanism, the correctness and utility of its

implementation, and the quality of its documentation, [cf NCSC89]

Both GVE and FDM provide a rich variety of data types and associated operations from

mathematics and computer science, (including scalar types, finite sets, sequences, and

records.) Both systems have interactive theorem provers that may be used to verify

specifications; they accept theorem-proving commands and include facilities for printing

completed proofs. Both theorem provers use specially designed systems of logic that

extend many-sorted, first-order logic. Both systems come with special-purpose tools for

performing covert channel analysis via shared resource matrices. These systems are

suitable for writing formal state-machine models, but they require specialized training.

The writing of formal models and specifications in a formalized language has been

found to be the most fruitful aspect of using verification tools. This is the conclusion of

several major verification efforts, including BLACKER, the Boeing LAN, LOCK, and the

Multinet Gateway. The writing of formal descriptions encourages a more precise and

abstract understanding of security, forces the resolution of design issues needed to

complete the model or specification, and provides a clear basis for implementation

analysis. In general, both manual proofs and machine proofs provide more assurance

-113

SECURITY MODELING GUIDE

than specifications alone. Experience has shown that machine proofs are more reliable

than hand proofs but that they are also more time consuming and are still not foolproof.

There are still many sources of possible error. The TCSEC itself is based on policy

directives rather than mathematical formalisms. Rigorous, general frameworks for

computer security have not yet been developed.

B.1 FDM: THE FORMAL DEVELOPMENT METHODOLOGY

FDM supports multilevel specifications at a series of abstraction levels. Each level

refines the prior level by adding more detail and more functions. The FDM specification

language, Ina Jo, provides a formalized notation for describing state machines that

includes provisions for declaring state variables and for specifying initial states, state

invariants, state transition constraints, and state transformations. Its type mechanism

includes a general facility for declaring subtypes that is useful for classifying controlled

entities in a security model, for example. The Ina Jo specification processor automatically

generates correctness assertions to the effect that every reachable state satisfies the

provided state invariants and state transition constraints.

FDM began in 1974 as an internal research project at the System Development

Corporation (now UNISYS Corporation). FDM is currently owned by PARAMAX Systems

Corporation, a subsidiary of UNISYS Corporation. Its early development was driven by

specific problems in formal modeling and formal specification and verification with the goal

of complementing system testing as a means of validating correctness. Since then, a

series of incremental enhancements has increased its power, efficiency and portability,

added new capabilities, and improved its documentation. FDM Release 12.4, the most

recently endorsed version, contains two new flow tools: a shared resource matrix tool that

assists in the manual analysis of potential covert channels and an automated flow tool for

detecting and analyzing information flows in specifications. FDM Beta Release 12.5

contains a much improved flow tool and a new interactive tool for executing Ina Jo

specifications against user-supplied test cases. The FDM tools run on Sun Workstations,

on DEC VAXes running Berkeley UNIX, and on Multics.

-114-

APPENDIX B: AVAILABLE SUPPORT TOOLS

The available documentation on FDM includes the FDM UserGuide[EGGE89],\he Ina

Jo Specification Language Reference Manual [SCHE89], and the Interactive Theorem

Prover (UP) Reference Mamva/[SCH088]. Examples of Ina Jo based security modeling

efforts may be found in [NCSC90b, CHEN90, FELL87, CHEH81].

B.2 GVE: THE GYPSY VERIFICATION ENVIRONMENT

The GVE is an interactive system that makes extensive checks to ensure legality of

specifications. In particular, recursive functions must terminate, partial functions must not

be applied outside their domains, and theorems may be proved. The GVE maintains user

databases and supports incremental program development through the use of "header"

files.

The GVE specification language, Gypsy, has been used for a variety of security models,

including several that are not based on state invariants and state transition constraints.

Gypsy supports the use of local name spaces called "scopes" and includes "mapping"

types that can be used as abstractions of hash tables and othercomplex data structures. In

Gypsy, states can be modeled as records whose components represent state variables.

Initial states and state transitions are described with the help of a binary "with" operator, and

theorems about reachable states are stated directly using the "lemma" construct. Gypsy

contains a programming language portion that has a Pascal-like syntax, includes condition

handling facilities and concurrent processes, and is supported by a "verification condition

generator" that allows proofs of program correctness. An operational semantics has been

given for a portion of Gypsy. [GOOD90]

The development of the GVE began in 1974 at the University of Texas at Austin with the

goal of verifying communications processing systems. Initial work with the first version of

Gypsy led to significant language simplifications and some extensions in Gypsy 2.0.

In 1986, Computational Logic, Inc., assumed responsibility for GVE and completed work

on Gypsy 2.1. A subset of this has been implemented as Gypsy 2.05, the current language

forthe Gypsy methodology. The currently endorsed implementation is GVE 13.16. Recent

work has been directed towards improved documentation, performance analysis and

improvement, and the development of a better configuration management system.

Version 20.70 of the GVE is currently being considered for NCSC endorsement.

115-

SECURITY MODELING GUIDE

Available documentation on GVE includes the Report on Gypsy 2.05 [GOOD89],

Using the Gypsy Methodology [GOOD88], and the Gypsy Verification Environment User's

M3/7t/a/[AKER90]. Examples of Gypsy-based security modeling efforts may be found in

[DIVI90, FINE90, FREE88, CHEH81].

-116

APPENDIX C.
PHILOSOPHY OF PROTECTION OUTLINE

This appendix outlines material suitable for a Philosophy of Protection (POP)
document. Its purpose is to provide a template for vendors who desire additional guidance
in producing a POP. Unless otherwise noted, required portions of this and the following
appendix are those which are accompanied by an explicit reference to the TCSEC.

There are no TCSEC requirements on the organization of this material or on how it is
packaged in vendor-supplied documents. If the information outlined in this and the
following appendix appears in two or more separate documents, careful cross referencing
will help the reader assemble a complete picture.

1. INTRODUCTION

Present"... a description of the manufacturer's philosophy of protection." [2.1.4.4]

A higher-level policy on the design and use of a trusted computing system is normally
implemented by a combination of automated, procedural, and physical safeguards.
The POP can show that these safeguards fit together in such a way as to achieve stated
security objectives. The POP is an open-ended document of varying length and
content, and any relevant system-related activity may be used to substantiate the
vendor's philosophy of protection; including requirements analysis, design,
implementation, testing, marketing, and method of delivery. For systems in higher
evaluation divisions, the POP is likely to contain several staff years of accumulated
wisdom.

2. CONTROLLING SECURITY OBJECTIVES

Describe the anticipated policy for use of the computer and the effect this policy has had
on the security design. In other words, describe the security objectives which guide the
design and use of the system being evaluated. Alternatively, give a summary with
references to a separate security policy document (see Appendix D.2).

There are several questions that should be answered when preparing this section of the
POP. In general terms, what is the system to which these objectives are applied, and
how does the system support these objectives? What is the system interface, and what
is the security perimeter, that is, the portion of the system and its environment where
security objectives are actively addressed? (By definition, the security perimeter
contains the TCB and associated controlled entities.)

-117-

SECURITY MODELING GUIDE

3. AUTOMATED PROTECTION

The POP should address how the implemented policy compares with the higher-level
policy objectives. Is it more or less restrictive? Where, how, and why?

3.1 SYSTEM SECURITY REQUIREMENTS

The POP gives security requirements imposed on the system in order to meet the
above security objectives. It indicates which requirements are refinements or
extensions of TCSEC requirements. Distinguish between "policy" requirements
that are modeled with the assurance required for the system's evaluation class and
other security-relevant functional requirements. At B1 and above, this distinction
can be emphasized by merely summarizing policy requirements in the philosophy of
protection and referencing their full presentation in a separate policy model
document (see appendix D.4).

3.2. TCB STRUCTURE

A description of the TCB provides needed context for an explanation of how the
vendor's philosophy of protection is reflected in the TCB. Moreover, "if the TCB is
composed of distinct modules, the interfaces between these modules shall be
described." [2.1.4.4] Relevant aspects of the TCB hardware/software architecture
include the TCB interface to untrusted resources, as well as software, firmware, and
hardware protection mechanisms. Forclasses B2 and above, much of the needed
information will be contained in the DTLS and need only be summarized here.

Brief answers and/or references are recommended for the following sorts of
questions. What are the protected resources? How is subject activation and
deactivation accomplished? How is I/O handled? How is output labeled and what
security attributes are associated with "named users"? What are the named objects
used for DAC, and what are the storage objects used for MAC? How are they
created and destroyed? Are there "public" objects accessible to all users?

What are the main TCB software modules? What are their interfaces to each other,
to the hardware, and to untrusted resources? What is the virtual machine
architecture and its relationship to the underlying hardware? What is the hardware
architecture? How does it perform task management, storage management, and
device control?

3.3 VALIDATION OF THE TCB WITH RESPECT TO THE SECURITY
REQUIREMENTS

"Documentation shall be available that provides a description of ... how this
philosophy [of protection] is translated into the TCB." [2.1.4.4] This requirement
may be satisfied by directly relating the avowed philosophy to the TCB protection
mechanisms.

-118-

APPENDIX C: PHILOSOPHY OF PROTECTION OUTLINE

At higher evaluation levels, this requirement is largely supplanted by other similar
requirements. At B1 and above, it is supported by explanations which show that the
TCB satisfies the security model and, therefore, enforces the modeled portion of the
system security policy. At B2 and above, it is supported by the DTLS and by
documentation showing that the DTLS accurately describes the TCB interface. At
A1, it is supported by a proof showing that the FTLS satisfies the model and by
informal testing and analysis showing that the FTLS accurately describes the TCB
interface.

4. PROCEDURAL AND PHYSICAL SECURITY MECHANISMS

In general, threats to the secure use of a system are thwarted by a combination of
automated mechanisms, procedural methods, and physical constraints on the
computing environment. The effectiveness of these combined safeguards can be
argued by giving a taxonomy of potential threats against the system and by showing
how each kind of threat is countered by a combination of TCB security requirements
and related measures described in the Security Feature User's Guide and/or the
Trusted Facility Manual.

5. NOTES AND CONCLUSIONS

The POP should present any other significant aspects of the vendor's philosophy of
protection. It should explain what conclusions are to be drawn from the empirical and
analytical evidence presented.

6. GLOSSARY

The POP should list technical terms and give definitions. It should include all terms
whose usage differs with either TCSEC definitions or common usage. Include all terms
for which multiple definitions are in common use (e. g., user, subject, object, trusted
subject).

7. REFERENCES

The POP should include references to relevant design documentation.

8. APPENDIX ON SATISFACTION OF THE (e.g., CLASS B2) CRITERIA

It may be helpful to list each TCSEC requirement forthe candidate evaluation class and
show how it is met. This step is definitely optional, but it can help resolve questions
about the meaning of particular requirements as they apply to particular systems.

119-

APPENDIX D. SECURITY MODEL OUTLINE

The following outline contains a suggested organization of material for a Security Policy
Model Document. Its purpose is to provide a template for vendors who desire additional
guidance in producing a security policy model. Any or all of this material could
appropriately be included in the Philosophy of Protection.

1. INTRODUCTION

The purpose of this document is to present "an informal or formal model of the security
policy supported by the TCB." [3.1.3.2.2] By definition, the security model includes a
definition of security describing the policy enforced by the system as well as rules of
operation giving design guidance on how to enforce the requirements in the definition of
security.

A summary of the manufacturer's philosophy of protection [cf 2.1.4.4] may help
establish an appropriate context for the presentation of the security policy and model.
In particular, a summary of the TCB protection mechanisms, their support for the
security policy, and their role in implementing the model will help establish the relevance
of the model to the system being developed.

2. THE SECURITY POLICY

"A statement of intent with regard to control over access to and dissemination of
information, to be known as the security policy, must be precisely defined and
implemented for each system that is used to process sensitive information." [5.3.1] It
will help avoid confusion if high-level security policy objectives are carefully
distinguished from, and related to, derived policies that directly impact the design and
use of the system. The policies that most need to be modeled are those giving the actual
security requirements to be enforced by the system and the rules of operation showing
how these requirements are enforced.

The security policy statement should answer several questions. Is the security policy
composed of several different policy elements? Is the system composed of several
subsets, subsystems, components, or layers? If so, for each identified portion, what
security services are provided, and what security services are relied on as provided by
other portions? What are the interfaces between the various portions to be modeled?
How do they combine to form the complete system?

121

SECURITY MODELING GUIDE

2.1 MARKING OF INFORMATION

"... it is necessary that the system mark information with appropriate classification or
sensitivity labels and maintain these markings as the information moves through
[and is exported from] the system." [5.3.1.3] A marking policy is required in relation
to MAC and may be appropriate for any policy based on the use of associated
security attributes.

Several questions concerning the marking of information should be answered within
the security model. How are security attributes assigned to controlled entities and
under what authorization? To what extent are marking decisions made,
remembered, and then repeatedly applied for a period of time? How is object reuse
accomplished? How do security attributes propagate during the processing of
information (e.g., when a new storage object is created)? How (and under what
circumstances) are security attributes presented when information leaves the
system? What is the precise marking policy for paged hardcopy output? Are there
additional marking requirements forthis system that are not covered in the TCSEC?
How is the level of a subject tied to the clearance and authorization of its user? Is a
given I/O action taken on behalf of a particular user? If so, is it consistent with the
clearance and authorization of that user?

The following questions are relevant at B2 and above. How are minimum and
maximum device levels used? What is the policy for changing device levels? How is
the marking policy allocated to different portions of the TCB? How does the marking
policy interact with special user roles associated with security administration and
system operation?

2.2 MANDATORY SECURITY POLICY

The security model should "... include a set of rules for controlling access based
directly on a comparison of the individual's clearance or authorization for the
information and the classification or sensitivity designation of the information being
sought, and indirectly on considerations of physical and other environmental factors
of control." [5.3.1.1]

2.3 POLICY REGARDING NEED-TO-KNOW

The security model should "... include a consistent set of rules for controlling and
limiting access based on identified individuals who have been determined to have a
need-to-know for the information." [5.3.1.2] "The AIS shall function so that each
user has access to all of the information to which the user is entitled... but no more."
[DOD88a, Enclosure 3] The model should answer the following questions: What
system policy and mechanisms are offered in support of this objective? And to what
extent do they support it?

-122-

APPENDIX D: SECURITY MODEL OUTLINE

2.4 ADDITIONAL SECURITY POLICY ELEMENTS

"The security policy must accurately reflect the laws, regulations, and general
policies from which it is derived." [5.3.1] This portion is dictated by specific customer
requirements, of which there could be many. The following list presents a typical
slice through four government policy-making levels. Each level is followed by a list
of examples. At each level, the boldface example is the one chosen for elaboration
at lower levels:

National Policy on Secrecy, Integrity, and Availability
(Executive Order 12356 covers secrecy policy [REAG82]);

National Department Policy
(e.g., DOE, DOD, NIST, HEW)

(Dir. 5200.28 [DOD88a],TCSEC[NCSC85] refine [REAG82]);

Branch Policy
(e.g., USAF, USN, NSA, DIA);

Command Center Policy
(e.g., Strategic Air Command, Electronic Systems Command).

3. ADEQUACY OF THE MODELING PARADIGM

The security model should explain how the security model's definition of security
manages to capture essential notions of computer security and how the modeled policy
relates to the intended policy and to the implemented policy. It should indicate the
overall abstraction level used in the model. At B2 and above, it should explain any
formalization techniques that might interfere with a correct understanding of the model.

3.1 HERITAGE

The security model should:

a. Identify any previous models and mathematical formalisms upon
which the model is based,

b. Briefly describe these previous model(s); identify (and emphasize)
those portions from which the model is derived,

c. Identify areas where the model has extended the base model(s) in
order to provide better correspondence to policy or to model new
policy elements.

d. If the model is not based on a state-machine paradigm, motivate and
explain the paradigm.

-123-

SECURITY MODELING GUIDE

3.2 SUFFICIENCY TO ENFORCE THE POLICY

The model should "show that it [the model] is sufficient to enforce the security
policy." [3.1.4.4] It should also explain why a system based on the model will
adequately support the security policy identified in Section 2. If the model is based
on a previous security model, it should explain how differences enumerated in parts
3.1 (b) and (c) above maintain or enhance the adequacy of the original approach.

3.3 RELEVANCE TO THE ACTUAL SYSTEM

The security model should briefly describe the intended interpretations of the
various constructs found in the model. At B2 and above, it should also discuss
whether all system resources are accounted for in the model.

4. THE SECURITY POLICY MODEL

The presentation of the model might be loosely divided into four sections: basic
concepts, a definition of security, other requirements reflected in the model, and rules of
operation. Some systems will have a more elaborate structure, due to distinctions
between system and subsystem models or between external and internal
requirements. In the case of security properties enforced by TCB subjects, the
distinction between requirements and rules of operation may be moot. An informal
model may legitimately be presented as part of the security policy.

4.1 BASIC CONCEPTS

This section should introduce the basic data types, constants, and operations that
will be used to build the model. It also presents the underlying model of
computation; specifies the various kinds of controlled entities and security attributes
that will occur in the model; and identifies particular security-critical subjects,
objects, or unlabeled TCB entities that will play a distinguished role in the model. It
should also answer several general questions. Are there special objects that are not
accessible by non-TCB subjects? If so, what is their role, and how are they
protected from access by subjects outside of the TCB? Which subjects are inside
the TCB; why are they considered part of the TCB? How are these TCB subjects
created (i.e., statically during system initialization or dynamically by other TCB
subjects)? What portions of the system policy are implemented by TCB subjects
exempt from one or more constraints enforced by the reference monitor? How are
devices modeled? What special properties must hold at system start-up (e.g.,
initial-state requirements in the case of a state machine model)? What are the
security attributes of each predefined security-critical entity (e.g., security level,
owner or user, access control lists, associated user roles, exemptions from access
control)?

124

APPENDIX D: SECURITY MODEL OUTLINE

In a system with multiple subpolicies or a layered design with differing security
services provided by different layers, some or all of the above questions may have
multiple answers, depending on the policy or layer.

4.2 SECURITY POLICY REQUIREMENTS

In the case of an access control model in the tradition of Bell and La Padula, the
security policy requirements include the following kinds of assertions or "axioms":

secure state invariants
MAC invariants (e.g., simple security, "-property)
DAC invariants (may legitimately be empty for some policies)
Usage invariants (e.g., no subject can access an unused entity)
Other policy-specific state invariants;

secure state transition constraints
MAC constraints (e.g., tranquility)
DAC constraints (e.g., getting access implies authorization)
Creation constraints (e.g., assignment of security attributes)
Other policy-specific state transition constraints.

In the case of a model in the tradition of Goguen and Meseguer, support for a
mandatory access control objective would involve a statement of noninterference. It
would be a statement to the effect that the system view available to a subject (or
user) cannot be influenced by the behavior of other subjects (users) whose security
level fails to be dominated by that of the given subject.

4.3 OTHER SECURITY REQUIREMENTS REFLECTED IN THE MODEL

The following questions are relevant at B2 and above; they may, optionally, be
addressed in the model. Which objects can be viewed by someone acting in a
special role associated with system operation or security administration? What
activities can be accomplished only by invoking such a role (e.g., shutdown and
restart the system, make backup tapes, restore files, set the clock, take devices
offline, collect performance statistics, kill runaway programs, manipulate printer
queues)? Which objects can be viewed or modified by the security administrator?
In how many ways can the security administrator perform downgrading? What
activities can be accomplished only by invoking this role (e.g., suspend and restore
auditing, save audit data on tape, change object ownership, view or modify security
attributes of arbitrary controlled entities, or view or modify user authentication
data)?

The following questions are relevant at B3 and above and may optionally be
addressed in the model. What is the purpose of each exemption allowed for
subjects inside the TCB? Which TCB subjects are involved in identification and
authentication and therefore need access to user authentication data? Which TCB

125

SECURITY MODELING GUIDE

subjects are involved with trusted path and related activities (e.g., set password,
logout)? Does modification of discretionary access require use of trusted path?
What privileges are afforded to TCB software supporting special user roles, and to
what extent can these privileges be passed on to the system operator and security
administrator?

4.4 RULES OF SAFE OPERATION

The model should present key ideas needed to understand the design of the policy
enforcement mechanism, identify basic kinds of interactions with the TCB and
explain what constraints are enforced in order to satisfy the model's definition of
security.

5. VALIDATION OF CONSISTENCY

"[The model] shall be ... demonstrated/proven consistent with its axioms." [3.1.3.2.2,
3.2.3.2.2] The model should demonstrate that any system which obeys the identified
rules of operation also satisfies the model's definition of security. Depending on how the
rules of operation are specified, it may also be necessary to justify internal consistency
among the rules of operation themselves.

6. NOTES AND CONCLUSIONS

There should be a section in the model that explains what conclusions are to be drawn
from the empirical and analytical evidence presented. Significant ramifications of the
security model should be mentioned.

7. GLOSSARY

The model should list technical terms and give definitions; including all terms whose
usage differs with either TCSECdefinitions or common usage. It should also include all
terms for which multiple definitions are in common use (e.g., user, subject, object,
trusted subject).

8. REFERENCES

The model should include references to design documentation and previous security
models on which it was based.

-126

APPENDIX E: GLOSSARY

APPENDIXE. GLOSSARY

This Glossary contains definitions of terms involved in security modeling. When

possible, definitions are based primarily on the NCSC Charter [DOD88a, Definitions], the

TCSEC [NCSC85, Glossary], the TNI [NCSC87, Glossary], the Computer Security

Subsystem Interpretation [NCSC88a, Glossary], Criteria Interpretation Reports

[NCSC88b], and the NCSC Glossary of Computer Security Terms [NCSC88]. In some

cases, additional information has been added to previously given definitions in order to

provide further clarification; this additional information is distinguished by its enclosure in

doublebrackets (I... I).

Access (to Information)

The ability and opportunity to obtain knowledge of classified, sensitive unclassified, or
unclassified information. [DOD88a]

Access (to a Resource)

(1) A specific type of interaction between a subject and an object that results in the flow
of information from one to the other. [NCSC85; NCSC87]

(2) The ability and the means necessary to store or retrieve data, to communicate with,
or to make use of any resource of an ADP system. [NCSC87]

Access Control

(1) Restrictions controlling a subject's access to an object. [ANDE72; NCSC87]

(2) The limiting of rights or capabilities of a subject to communicate with other subjects
or to use functions or services in a computer system or network. [NCSC87]

Access Control Attribute

Security attribute used for access control.

Access Control Model

A model that gives rules of operation showing how access decisions are made.
Traditionally, an access control model involves a set of states together with a set of
primitive operations on states whose behavior is defined by rules of operation.
Typically, each state contains a set S of "subjects," a set O of "objects," and an access
matrixA. Foreach subject sand object o, A[s, o] is a set of access rights, such as read,
write, execute, and own.

Accreditation (of an AIS)

A formal declaration by the designated approving authoritythat the AIS is approved to
operate in a particular security mode using a prescribed set of safeguards. [DOD88a]

-127-

SECURITY MODELING GUIDE

Accreditation Range (of a Network Host)

A set of mandatory access control levels for data storage, processing, and
transmission. The accreditation range will generally reflect the sensitivity levels of data
that the accreditation authority believes the host can reliably keep segregated with an
acceptable level of risk in the context of the particular network for which the
accreditation range is given. [NCSC87] ffln practice, several different accreditation
ranges may be associated with a host. A network accreditation range is the set of levels
that are permitted fortransmission of data on the network. The host's network interface
accreditation range is given by minimum and maximum levels for the associatedl/O
device. The host accreditation range is the set of all levels that may be used within the
host itself. Finally, the host's user accreditation range is the subset of the host
accreditation range obtained by excluding levels that are associated exclusively with
TCB subjects, trusted user roles, or related security-critical objects.]

Aggregation Problem

An occurence when a user's right to several pieces of information results in knowledge
they do not have a right to. It can happen that a user is not allowed access to a collection
of data items, but is allowed access to any given item in the collection. In this case, the
aggregation problem is to prevent the user (or a subject acting on their behalf) from
gaining access to the whole collection through repeated accesses to items in the
collection.

Antisymmetry

A relation in which no two elements are equivalent. More precisely, a relation R is
antisymmetric if and only if, for all x, y, x Ry and y Rx implies x = y.

Application-Dependent Security Model

A security model that includes security-relevant information about the semantics of a
particular application; an application-dependent model contrasts with a security model
for a general-purpose computing system that supports a variety of differing
applications. Database security models are application security models in this sense.

Assurance (Activity)

Activity aimed at achieving a level of assurance, including informal argument,
mathematical proof, the performance of dynamic checks on the behavior of an AIS, and
the performance of static checks on AIS hardware or software.

Assurance (Measure)

A measure of confidence that the security features and architecture of an AIS
accurately mediate and enforce the security policy. [NCSC88;cf DOD88a]

Attribute

See security attribute.

-128-

APPENDIXE: GLOSSARY

Automated Information System (AIS)

An assembly of computer hardware, software, and/or firmware configured to collect,
create, communicate, compute, disseminate, process, store, and/or control data or
information. [DOD88a]

AIS Security

Measures and controls that protect an AIS against denial of service and unauthorized
(accidental or intentional) disclosure, modification, or destruction of AISs and data. AIS
security includes consideration of all hardware and/or software functions,
characteristics and/or features; operational procedures, accountability procedures,
and access controls at the central computer facility, remote computer, and terminal
facilities; management constraints; physical structures and devices; and personnel and
communication controls needed to provide an acceptable level of riskforthe AIS and for
the data and information contained in the AIS. It includes the totality of security
safeguards needed to provide an acceptable protection level for an AIS and for data
handled by an AIS. [NCSC88]

Centralized Authority

Authority to modify security attributes that is limited to the system security administrator
acting on behalf of the system's owner (e.g., DOD).

Clients

People or processes accessing an AIS either by direct connections (i.e., via terminals)
or indirect connections (i.e., prepare input data or receive output that is not reviewed for
content or classification by a responsible individual), [cf DOD88a, definition of user]

Compatibility Property (on Directories)

The requirement that any file in a directory have a security level which dominates that of
the parent directory. [WALX74]

Component (of a Network)

A device or set of devices, consisting of hardware, firmware, and/or software that
performs a specific function on a computer communications network. A component is a
part of the larger system and may itself consist of other components. Examples include
modems, telecommunications controllers, message switches, technical control
devices, host computers, gateways, communications subnets, etc. [NCSC87]

Component Security Model

A subsystem security model for a system that is the union of its modeled component
subsystems.

Control Objectives

Higher-level policy objectives that constrain the design and use of a trusted computing
system; specific control objectives are listed in Section 5 of the TCSEC.

-129-

SECURITY MODELING GUIDE

Controlled Entity
Any system resource (e.g., process, storage object, I/O device) for which the TCB
controls access by users. (See also System Entity, Explicitly-Controlled Entity.)

Convex Set (of Levels)

A set of levels that does not contain any "holes" with respect to the dominance relation.
Formally, a partially ordered set % of levels is convex if and only if L e % whenever
L-\, L2e%and L| < L < L2.

Covert Channel

A communication channel that allows a process to transfer information in a mannerthat
violates the [[intent of the system]] security policy. [NCSC85] din some cases, the
offending process may be external to the system that has the covert channel.] A covert
channel typically communicates by exploiting a mechanism not intended to be used for
communication. [NCSC87]

Covert Channel Analysis

Determination of the extent to which the security policy model and subsequent
lower-level program descriptions may allow unauthorized access to information.
Covert channel analysis properly includes all forms of covert channels, external as well
as internal, and timing as well as storage channels.

Covert Storage Channel

A covert channel that involves the direct or indirect writing of a storage location by one
process and the direct or indirect reading of the storage location by another process.
[NCSC87]

Covert Timing Channel

A covert channel in which one process signals information to another by modulating its
own use of system resources (e.g., CPU time) in such a way that this manipulation
affects the real response time observed by the second process. [NCSC87]

Denial of Service
Any action or series of actions that prevent any part of a system from functioning in
accordance with its intended purpose. This includes any action that causes
unauthorized destruction, modification, or delay of service. [NCSC88]

Descriptive Top-Level Specification (DTLS)

A top—level specification that is written in a natural language (e.g., English), an informal
design notation, or a combination of the two. [NCSC85]

Designated Approving Authority (DAA)

The official who has the authority to decide on accepting the security safeguards
prescribed for an AIS. [DOD88a]

-130-

APPENDIX E: GLOSSARY

Deterministic

An AIS characterized by having its behavior, in principle, entirely determined by its
inputs.

Discretionary Access Control (DAC)

A means of restricting access to inamedl objects based on the identity of [[named
users orj subjects and/or groups to which they belong. [NCSC85] It is not necessary for
the creator of an object to control access to that object. [NCSC88b] At levels C2 and
higher, a system must protect objects by default at creation time; the default protection
may be changed only by authorized individuals and processes acting on their behalf.
[NCSC88b] DAC is often employed to enforce need-to-know. [NCSC87] The controls
are [[often]] discretionary in the sense that a subject with a certain access permission is
capable of passing that permission (perhaps indirectly) on to any other subject (unless
restrained by mandatory access control). [NCSC85]

Disjoint (Objects)

A relationship between objects. Two objects are disjoint if and only if writing to either
object cannot affect the value of the other.

Distributed Authority

An AIS characterized by having authority to modify security attributes given to arbitrary
users for entities under their control.

Dominate

A relationship in which security level Si is said to dominate security level S2 if the
hierarchical classification of Si is greater than or equal to that of S2 and the
nonhierarchical categories of Si include all those of S2 as a subset. [NCSC85] [[More
generally, if S-\ and S2 are levels from any partially ordered set of security attributes, then
Si dominates S2 if and only if S2 < S-iJ

Encapsulated Device

An abstract representation of an I/O device, its associated device driver, and other
related entities such as attached hardware and dedicated device buffers. An
encapsulated device is an I/O port for an AIS.

Encapsulation Mechanism

A mechanism that provides restricted access to a data structure or other entity.
Typically, the encapsulation mechanism supports a set of "abstract operations" on a
data structure; the operations together with the data structure form a "data abstraction."
The abstract operations are usually defined in terms of more elementary operations
that are not available to users of the data abstraction, and TCB support is needed to
prevent users of the data abstraction from accessing the data structure by means of
more elementary operations.

131

SECURITY MODELING GUIDE

Endorsed Tools List

The list of formal verification tools endorsed by the NCSC for the development of
systems with high levels of trust. [NCSC88]

Entity

See Controlled Entity.

Evaluation

The process of determining whether a computing system meets given requirements.

Exempt Subject

A TCB subject that is exempt from some of the constraints imposed on non-TCB
subjects and is thus able to perform actions that are not available to non-TCB subjects.

Explicitly Controlled Entity

A controlled entity for which there are explicitly associated security attributes, such as
subjects and storage objects, in the case of a MAC policy, or named objects, in the case
of a DAC policy. In addition to explicitly controlled entities, there may be implicitly
controlled entities, including fragments of controlled entities and composite entities.

External-Interface Model

A model whose definition of security is cast in terms of external-interface requirements.
The purpose of an external-interface model is to present system requirements while
avoiding unnecessary constraints on internal structure.

External-Interface Requirement

A requirement that must hold for the interface between a system and its environment.

Floating Label Policy

A policy based on security levels in which the level of an entity can increase as a result of
receiving information from a higher-level entity.

Formal Proof

(1)UA mathematical proof:] A complete and convincing mathematical argument,
presenting the full logical justification for each proof step forthe truth of a theorem or
set of theorems. [NCSC85]

(2) A machine-checked proof: Text that a proof checker has accepted as evidence
showing that a conjecture is a valid consequence of its axioms.

(3) A Hubert proof in a theory T: a sequence of formulas, each of which is either an
axiom of T or is a direct consequence of preceding formulas in the sequence by
virtue of a rule of inference associated with the underlying formal system.
[cfMEND79]

132.

APPENDIX E: GLOSSARY

Formal Security Policy Model

A mathematically precise statement of a [system]] security policy. [NCSC85] Some
formal modeling techniques include: state-transition models, temporal-logic models,
denotational-semantics models, and algebraic-specification models. An example is
the model described by Bell and La Padula in Secure Computer Systems: Unified
Exposition andMultics Interpretation. [NCSC85] To be adequately precise, a model Hin
the tradition of Bell and LaPadula]] must represent the initial state of a system, the way in
which the system progresses from one state to another, and a definition of a "secure"
state of the system. To be acceptable as a basis for a TCB, the model must be
supported by a formal proof that, if the initial state of the system satisfies the definition of
a "secure state" and if all assumptions required by the model hold, then all future states
of the system will be secure. [NCSC85] [More generally, the model should contain a
definition of security that regulates how a system manages, protects, and distributes
sensitive information as well as rules of operation that show how the definition of
security is to be enforced. At levels B2 and above, it must be supported by a formal
proof showing that the rules of operation guarantee satisfaction of the definition of
security.]]

Formal (Security) Verification

The process of using formal proofs to demonstrate the consistency between [all valid
interpretations of]] a formal specification of a system and a formal security policy model
(design verification) or between the formal specification and [all valid interpretations of])
its high-level program [i.e., software] implementation (implementation verification).
[NCSC85] [In general, programs, like specifications, are subject to multiple
interpretations because programming languages allow compilers to take minor liberties
in order to produce optimal code.]

Formal Top-Level Specification (FTLS)

A top-level specification that is written in a formal mathematical language to allow
theorems showing the correspondence of the system specification to its formal
requirements to be hypothesized and formally proven. [NCSC85]

Host (on a Network)

Any computer-based system connected to the network and containing the necessary
protocol interpreter software to initiate network access and carry out information
exchange across the communications network. [NCSC87]

Individual Component (of a Network)

A component of a network that is not subdivided into smaller components for purposes
of security analysis.

Individual Component Model

A security policy model for an individual component of a network.

133

SECURITY MODELING GUIDE

Inference Problem

The occurrence when a user is able to deduce information to which they do not have
privilege from information to which they do have privilege. It can happen that a user is
not allowed access to a piece of information that is logically inferrible from known
information and pieces of information that the user does have access to. In this case,
the inference problem is to prevent the user (or a subject acting on their behalf) from
indirectly gaining access to the inferrible information.

Informal Security Policy Model

A precise description of the security policy enforced by the system. It must identify the
rules and practices that regulate how a system manages, protects, and distributes
sensitive information, [cf NCSC88, Security Policy Model\

Information-Flow Model

A definition of security (typically a state-machine model) which depicts allowed
information flows that occur in response to individual user inputs and changes of state.

Informational Attribute

A security attribute that is used for some other purpose than access control within a
given computing system; the association may be for later use outside the system, for
example.

Integrity (of Data)

(1) The property that data meet an a priori expectation of quality. [NCSC88]

(2) The state that exists when the quality of stored information is protected from
contamination or degradation by information of lower quality. [COUR89]

Integrity (of a System or Process)

The quality that a system [[or process! has when it performs its intended function in an
unimpaired manner, free from deliberate or inadvertent unauthorized manipulation.
[NCSC88]

Integrity Attribute, Integrity Level

A security attribute used to prevent unauthorized or inappropriate modification or
destruction of information.

Internal-Security Model

A security model whose definition of security consists of internal security requirements.

Internal-Security Requirement

A system requirement that is stated in terms of desired relationships among controlled
entities, constraints on their interaction, or in terms of allowed forms of interaction.

-134-

APPENDIX E: GLOSSARY

Internal Subject

A subject that is not acting as direct surrogate for a user. A process which is not
associated with any user but performs system-wide functions such as packet
switching, line printer spooling, and so on. [NCSC87]

Invariant

An assertion that is true in every reachable state.

Label

See Security Label.

Level

A security attribute chosen from a partially ordered set of security attributes. For a given
system configuration, the accreditation process should ensure that levels are limited to
an appropriate accreditation range and that the system never assumes one level
dominates another when, in reality, it does not. (See also, Security Level.)

Least Privilege

A principle which requires that each subject in a system be granted the most restrictive
set of privileges (or lowest clearance) needed for the performance of authorized tasks.
The application of this principle limits the damage that can result from accident, error, or
unauthorized use. [NCSC85]

Loose Access Control Attribute

A security attribute that controls access to system resources without controlling access
to the information they contain in some cases.

Mandatory Access Control (MAC)

A means of restricting access to objects based on the sensitivity (as represented by a
label) of the information contained in the objects and the formal authorization (i.e.,
clearance) of subjects to access information of such sensitivity. [NCSC85]

Mandatory Security Policy

A policy that is based on constraints imposed by a recognized authority for the
protection of sensitive information and applied uniformly to all users of a computing
system.

Mealy Machine

A model of computation consisting of inputs, outputs, states, an initial state, a
state-transformation function that shows how a given input and state induce a new
state, and an output function that shows the output which results from a given input in a
given state.

135-

SECURITY MODELING GUIDE

Model

An abstraction or simplification of reality, the purpose of which is to capture key aspects
of the behavior of that reality.

Model Interpretation

An intended association between the constructs of a model and identified aspects of the
system being modeled; this association provides a means of judging whether
assertions in the model are true of the modeled system. If they are, then the system is
said to satisfy the model with respect to the given interpretation, and the interpretation is
said to be accurate.

Model of Computation

A general model of a potentially large class of computing systems.

Moore Machine

A model of computation consisting of inputs, outputs, states, an initial state, a
state-transformation function that shows how a given input and state induce a new
state, and an output function that maps each state to an associated output.

Multilevel Device

A device that is used in a mannerthat permits it to simultaneously process data of two or
more levels without risk of compromise. To accomplish this, sensitivity labels are
normally stored on the same physical medium and in the same form
(i.e., machine-readable or human-readable) as the data being processed. [NCSC85]

Multilevel Data Structure

A data structure that contains (or overlaps) several objects whose security levels are
not necessarily the same.

Named Object

An object which is directly manipulate at the TCB interface. The object must have
meaning to more than one process. [NCSC88a] [[In other words, a named object is a
data structure or other controlled entity to which discretionary access controls can be
directly applied. DAC attributes need only be associated with a data structure if it is
directly visible at the TCB interface and has meaning to more than one process.!

Need-to-Know

pete rmi nation by an authorized holder of sensitive information ofjj the necessity for
[[another person to have! access to, knowledge of, or possession of specific
information required to carry out dspecific]] official duties. [NCSC88]

Network

See network system or network subsystem.

-136-

APPENDIX E: GLOSSARY

Network Security Model

That portion of a security policy model for a network that describes overall network
security policy as opposed to security services provided by particular components.

Network Subsystem

A component of a network that might itself be partitioned into smaller components.

Network System

A system which is implemented with a collection of interconnected network
components. A network system is based on a coherent security architecture and
design. [NCSC87]

Network Trusted Computing Base (NTCB)

The totality of protection mechanisms within a network system— including hardware,
firmware, and software — the combination of which is responsible for enforcing a
security policy. [NCSC87]

Nondeterministic

A characteristic of an AIS where its behavior is not entirely determined by its inputs.

Nondisclosure Attribute

A security attribute used to prevent the unauthorized release of information. Usually,
nondisclosure attributes belong to a partially ordered set of nondisclosure levels.

Nondisclosure Controls

Automated controls used to prevent the unauthorized release of information.

Object

A passive entity that contains or receives information. Access to an object potentially
implies access to the information it contains. Examples of objects are: records, blocks,
pages, segments, files, directories, directory trees, and programs, as well as bits, bytes,
words, fields, processors, video displays, keyboards, clocks, printers, network nodes,
etc. [NCSC85]

Owner (of an Entity)

The user (or users) responsible for controlling the use of a controlled entity.

Partial Ordering

A relation that is transitive, reflexive, and antisymmetric.

Partially Trusted Subject

A subject, typically a TCB subject, that has two security levels, "alter-min" and
"view-max," and is constrained in such a way that it may only write at levels dominating
alter-min and read at levels dominated by view-max.

137-

SECURITY MODELING GUIDE

Philosophy Of Protection (Protection Philosophy)

An informal description of the overall design of a system that delineates each of the
protection mechanisms employed. A combination (appropriate to the evaluation class)
of formal and informal techniques is used to show that these mechanisms are adequate
to enforce the security policy. [NCSC85]

Policy

A high-level overall plan embracing the general goals and acceptable procedures,
especially of a governmental body.

Process (Single-threaded).

A [sequential]] program in execution. It is completely characterized by a single
execution point (represented by the machine state) and an address space. [NCSC85]

Process Family (Multithreaded Process)

A program in execution, especially one with multiple points of control.

Proof Checker

A tool that (1) accepts as input an assertion (called a conjecture), a set of assertions
(called assumptions), and a proof; (2) terminates and outputs either success or failure;
and (3) if it succeeds, then the conjecture is a valid consequence of the assumptions.
[NCSC89] HA proof checker is typically supported by a formal semantics that
determines interpretations of formulas; in this case, a formula fy is a valid consequence
of a set O of formulas if and only if every interpretation which satisfies <E> also
satisfies (j).fl

Protection State

That portion of the system state which is crucial to understanding an access control
policy and is therefore not abstracted away in an access control model.

Reachable State

Any state that can be obtained from an initial state via inputs and state transformations.

Read Access (to an Entity)

Permission to read information. [NCSC87]

Reference Monitor Concept

An access control concept that refers to an abstract machine that mediates all accesses
to objects by subjects. [NCSC85]

Reflexivity

Property of a binary relation R which says that every element is related to itself, that is,
x R x, for all x.

138

APPENDIX E: GLOSSARY

Release Markings

Authorized markings placed on a document by its originator for the purpose of imposing
restrictions on dissemination of the document and the information it contains.

Role Support Program

A program that is executed in support of an associated user role.

Rules of Operation

Descriptions of key ideas associated with the design of the security-enforcement
mechanisms in a trusted computing system. Rules of operation typically describe basic
state transformations that accomplish necessary access control checks.

Secure System

An AIS that satisfies an associated system security policy.

Security Administrator

A user responsible for the security of an AIS and having some authority to enforce
security safeguards on other users of the AIS.

Security Attribute

Any piece of information that may be associated with a controlled entity or user for the
purpose of implementing a security policy.

Security-Critical Data

User authentication data, audit data, audit control data, security attributes of controlled
entities, or other data that are necessary for the correct functioning of the TCB.

Security Label

A container for associated security attributes of a controlled entity, especially attributes
in a partially ordered set of security attributes related to information flow.

Security Level

The combination of a hierarchical classification and a set of nonhierarchical categories
that represents the sensitivity of information. [NCSC85] [[In some contexts, this term is
used more generally to mean, simply, a level in a partially ordered set of security
attributes.]]

Security Markings

Security attributes not used for mandatory access control.

Security Mechanism

A concretely given security requirement, especially one that is not directly tied to a
controlling security objective.

-139-

SECURITY MODELING GUIDE

Security Perimeter

The portion of a system and its environment where security objectives are actively
addressed. The security perimeter contains the TCB and associated controlled
entities.

Security Policy (Automated Information System)

A set of restrictions and properties that specify how an AIS prevents information and
computing resources from being used to violate an organizational security policy. It
should be accompanied by a persuasive set of engineering arguments showing that
these restrictions and properties play a key role in the enforcement of the organizational
security policy, [cf STER91]

Security Policy (Organizational)

A set of laws, rules, and practices that regulates how an organization manages,
protects, and distributes sensitive information. [NCSC85]

Security Policy Model

(1) An informal presentation of a formal security policy model. [NCSC85]

(2) A [precise, if not] formal presentation of the security policy enforced by the system.
It must identify the set of rules and practices that regulates how a system manages,
protects, and distributes sensitive information. [NCSC88]

Security Requirements

Types and levels of protection necessary for equipment, data, information,
applications, and facilities to meet da given] security policy. [NCSC88]

Sensitive Information

Information that, as determined by a competent authority, must be protected because
its unauthorized disclosure, alteration, loss, or destruction is deemed to at least cause
perceivable damage to someone or something. [NCSC85] [[Sensitive information
includes both classified information and unclassified sensitive information, [cf
DOD88a]]

Sensitivity Label

A piece of information that represents the security level of an object and that describes
the sensitivity (e.g., classification) of data in the object. Sensitivity labels are used by
the TCB as the basis for mandatory access control decisions. [NCSC85]

Separation of Duty

A design principle in which user roles are defined so that privileges are divided among
several roles in such a way as to inhibit the abuse of any given role.

140 ■

APPENDIX E: GLOSSARY

Simple Security Condition (i.e., Simple Security Property)

(1) A Bell-La Padula security model rule li.e.,state invariant] allowing a subject read
access to an object only if the security level of the subject dominates the security
level of the object. [NCSC85]

(2) A state invariant to the effect that a subject may have read access to an object only if
its maximum security level dominates the security level of the object. [BELL76]

Single-Level Device

A device that is used to process data of a single security level at any one time. Since the
device need not be trusted to separate data of different security levels, sensitivity labels
do not have to be stored with the data being processed. [NCSC85]

♦ -property (Star Property)

(1) A Bell-LaPadula security model rule ni.e.,state invariant] allowing a subject write
access to an object only if the security level of the subject is dominated by the
security level of the object [NCSC85].

(2) A state invariant to the effect that an untrusted subject may write only objects at or
above and may read only objects at or below its current security level. [BELL76]

State

That component of a state machine model which holds the current (abstracted) state of
the system being modeled.

Storage Object

An object that supports both read and write accesses. [NCSC85]

State Invariant

A property that is true of all reachable states.

State Machine

A model of computation involving inputs, outputs, states, and state transition functions,
for example, a Mealy machine or a Moore machine.

State Transition Constraint

A relationship between states that must hold for every state transition; the tranquility
property is a simple state transition constraint.

Subject

An active entity, generally in the form of a person, process [[, process family], or device,
that causes information to flow among objects or changes the system state.
Technically, din Multics, it is] a process/domain pair, where a domain is the set of objects
that a uprocess or] subject has the ^potential or actual] ability to access. [NCSC85]

141

SECURITY MODELING GUIDE

Submodel

A portion of a security policy model that deals with a particular policy objective, a
particular system component, requirements that relate internal components, or rules of
operation showing how security is enforced.

Subsystem Security Model

A security model for a subsystem of a larger system.

System Entity

Any system resource (e.g., process, storage object, I/O device) that is directly or
indirectly accessible by users.

System Operator

A user responsible for the routine operation and maintenance of the system.

System Security Model

A security model for an entire system, as opposed to a subsystem model.

TCB Subject

A subject internal to the TCB. The two main kinds of TCB subjects are multilevel
subjects (ones that compute the security levels or security attributes of their outputs)
and trusted-role subjects.

Tight Access Control Attribute

A security attribute that controls access to system entities and the information they
contain.

Top-Level Specification (TLS)

A nonprocedural description of system behavior at the most abstract level. Typically, a
functional specification that omits all implementation details. [NCSC85] [[A TLS
discusses what a system does as opposed to how; the requirement that the
specification be "nonprocedural" applies to the content rather than the form of the
specification.!

Tranquility
A property applied to a set of (typically untrusted) controlled entities saying that their
security level may not change (except possibly at the instigation of trusted processes).

Transitivity

Property of a binary relation /? which says that if xRy and y R z, then xRz.

Trojan Horse

A computer program with an apparently or actually useful function that contains
additional (hidden) functions that surreptitiously exploit the legitimate authorizations of
the invoking process to the detriment of security. For example, making a "blind copy" of
a sensitive file for the creator of the Trojan horse. [NCSC85]

-142.

APPENDIX E: GLOSSARY

Trusted Computer System

A system that employs li.e, whose design employs] sufficient hardware and software
integrity measures to allow its use for lenforcing a system security policy, such as a
nondisclosure policy, that allows] processing simultaneously a range of sensitive or
classified information. [NCSC87]

Trusted Computing Base (TCB)

The totality of protection mechanisms within a computer system, including hardware,
firmware, software, land data], the combination of which is responsible for enforcing a
isystem] security policy. [NCSC85] It creates a basic protection environment and
provides additional user services required for a trusted computer system. [NCSC87] A
TCB [thus] consists of one or more components that together enforce a unified
[[system] security policy over a product or system. The ability of a TCB to correctly
enforce an [[organizational] security policy depends solely [[i.e.Jointly] on the
mechanisms within the TCB, on the correct input by system administrative personnel of
parameters (e.g.,a user's clearance) related to the security policy l,and on the proper
actions of its users (e.g., proper labeling ofinput, password secrecy)]. [NCSC85]

Trusted Role Process

A process that supports a trusted user role by manipulating security-critical data.

Trusted User Role

A user role that involves handling security-critical information maintained by the
system.

Type Enforcement

A form of mandatory access control in which objects and subjects are assigned types,
and access by subjects to objects is restricted by looking up allowed accesses in a
"type" table.

User

Any person who interacts directly with a computing system; [NCSC85] see also clients.

User Granularity

A property of access control attributes which determines whether they are "coarse,"
controlling access on the basis of broadly defined classes of users, or "fine," with the
ability to control access by individual users and processes acting on their behalf.

User Role

A prescribed use of an AIS as defined by a combination of procedural and software
constraints.

143

SECURITY MODELING GUIDE

Verification

The process of comparing two levels of system specification for proper
correspondence (e.g., security policy model with top-level specification, top-level
specification with source code, or source code with object code). This process may or
may not be automated. [NCSC89]

Verification System

An integrated set of tools and techniques for performing verification. [NCSC89]

Write Access

Permission to write information. [NCSC87]

144.

REFERENCES

REFERENCES

ABB069 Abbot, J. C, Sets, Lattices, and Boolean Algebras, Chapter 4, Allyn and
Bacon, 1969.

ABRA90 Abrahms, M. D., et al., "A Generalized Framework for Access Control: An
Informal Description," 13th National Computer Security Conference,
pp. 135-143, NCSC/NCSL, October 1990.

AGER82 Agerwala, T., and N. I. Arvind, "Data Flow Systems," Computer, Vol. 15,
No. 2, pp. 10-14, IEEE, February 1982.

AKER90 Akers, R. L. et al., Gypsy Verification Environment User's Manual,
Computational Logic Inc., Austin TX 78703, July 1990.

ANDE72 Anderson, J. P., Computer Security Technology Planning Study, Vol. I,
ESD-TR-73-51, NTIS# AD-758206, Electronic Systems Division, Air Force
Systems Command, October 1972.

ANDR80 Andrews, G. R., and R. P. Reitman, "An Axiomatic Approach to Information
Flow in Programs," ACM Transactions on Programming Languages and
Systems, Vol. 2, No. 1, pp. 56-76, ACM, January 1980.

BELL73 Bell, D. E., and L. J. La Padula, Secure Computer Systems, Vol. I:
Mathematical Foundations, ESD-TR-73-278, NTIS# AD-770768, Electronic
Systems Division, Air Force Systems Command, November 1973.

BELL74 Bell, D. E., Secure Computer Systems, Vol. Ill: A Refinement of the
Mathematical Model, ESD-TR-73-278, NTIS# AD-780528, Electronic
Systems Division, Air Force Systems Command, April 1974.

BELL74a Bell, D. E., and L J. La Padula, "Secure Computer Systems: Mathematical
Foundations and Model," M74-244, The MITRE Corporation, Bedford MA,
October 1974.

BELL76 , Secure Computer System: Unified Exposition and Multics
Interpretation, ESD-TR-75-306, NTIS# AD-A023588, Electronic Systems
Division, Air Force Systems Command, March 1976.

BELL86 Bell, D. E., "Secure Computer Systems: A Network Interpretation," Second
Aerospace Computer Security Conference: Protecting Intellectual Property,
pp 32-39, IEEE, December 1986.

145-

SECURITY MODELING GUIDE

BELL88 , "Concerning 'Modeling' of Computer Security," 1988 Symposium
on Security and Privacy, pp. 8-13, IEEE, April 1988.

BELL88a , "Security Policy Modeling for the Next-Generation Packet
Switch," 1988 Symposium on Security and Privacy, pp. 212-216, IEEE,
April 1988.

BELL90 , "Lattices, Policies, and Implementations," 13th National
Computer Security Conference, pp. 165-171, NIST/NCSC, October 1990.

BIBA77 Biba, K. J., "Integrity Considerations for Secure Computer Systems,"
ESD-TR-76-372, NTIS# AD-A039324, Electronic Systems Division,
Air Force Systems Command, April 1977.

BISH90 Bishop, M., "A Model of Security Monitoring," Fifth Computer Security
Applications Conference, pp. 46-52, held December 1989, IEEE, 1990.

BODE88a Bodeau, D. J., "Some Observations on B1 Informal Models,"MTP 278,
The MITRE Corporation, Bedford MA, September 1988.

BOEB85 Boebert, W. E., and R. Y. Kain, "A Practical Alternative to Hierarchical
Integrity Policies," 8th National Computer Security Conference, pp. 18-29,
NBS/NCSC, October 1985.

BREW89 Brewer, D. F. C. and M. J. Nash, "The Chinese Wall Security Policy,"
1989 Symposium on Security and Privacy, pp. 206-214, IEEE, May 1989.

BRIT84 Britton, D. E., "Formal Verification of a Secure Network with End-to-End
Encryption," 1984 Symposium on Security and Privacy, pp. 154-166, IEEE,
April 1984.

CHEH81 Cheheyl, M. H., et al., "Verifying Security," Computing Surveys, Vol. 13,
No. 3, pp. 279-339, ACM, September 1981.

CHEN90 Cheng, P.-C, and V. D. Gligor, "On the Formal Specification and Verification
of a Multiparty Session Protocol," 1990 Symposium on Research in Security
and Privacy, pp. 216-233, IEEE, May 1990.

CHIS85 Chisholm, G. H. et al., "Preliminary Report on the Formal Analysis of the
Draper FTP Hardware and Software Using ITP, "ANL/MCS-TM-59,
NTIS# DE86003985, Argonne National Laboratory, Argonne, IL 60439,
September 1985.

CLAR87 Clark, D. D. and D. R. Wilson, "Comparison of Commercial and Military
Computer Security Policies," 1987 Symposium on Security and Privacy,
pp. 184-194, IEEE, April 1987.

146

REFERENCES

CLAR89 , "Evolution of a Model for Computer Integrity," in Report of the
Invitational Workshop on Data Integrity, Special Publication 500-168,
pp. A.2.1-A.2.13, NIST, January 1989.

COHE77 Cohen, E., "Information Transmission in Computational Systems," 6th ACM
Symposium on Operating Systems Principles, ACM SIGOPS Operating
Systems Review, Vol. 11, No. 5, pp. 133-139, ACM, November 1977.

CONG87 Congress, 100th, Computer Security Act of 1987, Public Law 100-235,
January 1988.

CONG88 , Computer Matching and Privacy Protection Act of 1988, Public
Law 100-503, October 1988.

COUR89 , Courtney, R. H., "Some Informal Comments About Integrity and
the Integrity Workshop," Report of the Invitational Workshop on Data
Integrity, NIST Special Publication 500-168, pp. A.1.1-A.1.18, NIST,
January 1989.

DAVI88 Davison, Jay W., "Implementation Design for a Kernelized Trusted DBMS,"
Fourth Aerospace Computer Security Applications Conference, pp. 91-98,
IEEE, December 1988.

DENN76 Denning, D. E., "A Lattice Model of Secure Information Flow,"
Communications of the ACM, Vol. 19, No. 5, pp. 236-243, ACM, May 1976.

DENN77 , and P. J. Denning, "Certification of Programs for Secure
Information Flow," Communications of the ACM, Vol. 20, No. 7, pp. 504-512
ACM, July 1977.

DENN82 , Cryptography and Data Security, Addison-Wesley, 1982.

DENN88 et al., "The Sea View Security Model," 1988 Symposium on
Security and Privacy pp. 218-233, IEEE, April 1988.

DIAZ89 Diaz, M., et al., The Formal Description Technique Estelle, North-Holland,
1989.

DION81 Dion, L. C, "A Complete Protection Model," 1981 Symposium on Security
and Privacy, pp. 49-55, IEEE, April1981.

DIVI90 DiVito, B. L, et al., "Specification and Verification of the ASOS Kernel,"
1990 Symposium on Research in Security and Privacy, pp. 61-74, IEEE,
May 1990.

147 •

SECURITY MODELING GUIDE

DOD82

DOD86

DOD88

DOD88a

EGGE89

EIJK89

FARM86

FEIE77

FEIE80

FELL87

FERN81

FINE89

FINE90

FORD90

Department of Defense, Department of Defense Privacy Program,
DoD Directive 5400.11, June 1982.

 , Information Security Program Regulation, DoD Regulation
5200.1, May 1986.

June 1985.
., Defense System Software Development, DOD 2167A-STD,

_, Security Requirements for Automated Information Systems
(AISs), DoD Directive 5200.28, March 1988.

Eggert, P. et al., FDM User Guide, Unisys Corporation, Culver City,
CA 90230, September 1989.

Eijk, P. H. J. van, C. A. Vissers, and M. Diaz, The Formal Description
Technique LOTOS, North-Holland, 1989.

Farmer, W. M., D. M. Johnson, and F. J. Thayer, "Towards a Discipline for
Developing Verified Software," 9th National Computer Security Conference,
pp. 91-98, NBS/NCSC, September 1986.

Feiertag, R. J., K. N. Levitt, and L. Robinson, "Proving Multilevel Security of
a System Design," 6th Symposium on Operating Systems Principles,
ACM Operating Systems Review, Vol. 11 No.5, pp. 57-65, November 1977.

Feiertag, R. J., "A Technique for Proving Specifications are Multilevel
Secure," CSL-109, SRI International, Menlo Park, January 1980.

Fellows, J. et al, "The Architecture of a Distributed Trusted Computing
Base," 10th National Computer Security Conference, pp. 68-77, NBS/NCSC,
September 1987.

Fernandez, E. B., R. C. Summers, and C. Wood, Database Security and
Integrity, Addison-Wesley, 1981.

Fine, T, et al., "Noninterference and Unwinding for LOCK," The Computer
Security Foundations Workshop II, IEEE-CS Order No. 1955, pp. 22-30,
IEEE, June 1989.

Fine, T, "Constructively Using Noninterference," 1990 Symposium on
Research in Security and Privacy, pp. 162-169, IEEE, May 1990.

Ford, W. R., J. P. O'Keeffe, and B. M. Thuraisingham, "Database Inference
Controller—An Overview," MTR 10963, Volume 1, The MITRE Corporation,
Bedford MA, August 1990.

-148

REFERENCES

FREE88 Freeman, J. W., R. B. Neely, and G. W. Dinolt, "An Internet Security Policy
Model," 11th National Computer Security Conference, pp. 10-19,
NBS/NCSC, October 1988.

GAJN88 Gajnak, G. E., "Some Results from the Entity/Relationship Multilevel Secure
DBMS Project," Fourth Aerospace Computer Security Applications
Conference, pp. 66-71, IEEE, December 1988.

GAL089 Galovich, S., Introduction to Mathematical Structures, Harcourt, Brace &
Jovanovich, 1989.

GARV90 "A Layered TCB Implementation Versus the Hinke-Schaefer Approach," in
Database Security, III: Status and Prospects, pp. 151-165, edited by
D. L Spoonerand C. Landwehr, North-Holland/IFIP, 1990.

GASS87 Gasser, M., Building a Secure Computer System, Van Nostrand, 1987.

GLAS87 Glasgow, J. I., and G. H. MacEwen, "The Development and Proof of a
Formal Specification for a Multilevel Secure System," ACM Transactions on
Computing Systems, Vol. 5, No. 2, pp. 151-184, ACM, May 1987.

GLIG86 Gligor, V. D. et al., "On the Design and the Implementation of Secure Xenix
Workstations," 1986 Symposium on Security and Privacy, pp. 102-117,
IEEE, April 1986.

GOGU82 Goguen, J. A., and J. Meseguer, "Security Policies and Security Models,"
1982 Symposium on Security and Privacy, pp. 11-20, IEEE, April 1982.

GOGU84 , "Unwinding and Inference Control," 1984 Symposium on Security
and Privacy, pp. 75-85, IEEE, May 1984.

GOLD80 Goldberg, A., Smalltalk-80: The Language and its Implementation,
Addison-Wesley, Reading, MA, 1983.

GOOD88 Good, D. I., B. L. DiVito, and M. K. Smith, Using the Gypsy Methodology,
Computational Logic, Inc., Austin TX 78703, January 1988.

GOOD89 Good, D. I., R. L. Akers, and L M. Smith, Report on Gypsy 2.05,
Computational Logic, Inc., Austin TX 78703, August 1989.

GOOD90 Good, D. I., A. E. Siebert, and W. D. Young, Middle Gypsy 2.05 Definition,
Technical Report 59, Computational Logic Inc., Austin TX 78703, May 1990.

GOVE84 Gove, R. A., "Extending the Bell & La Padula Security Model," 7th DoD/NBS
Computer Security Conference, pp. 112-119, NBS/NCSC, September 1984.

-149-

SECURITY MODELING GUIDE

GRAH72 Graham, G. S., and P. J. Denning, "Protection—Principles and Practice,"
Proceedings of the 1972AFIPS Spring Joint Computer Conference, Vol. 40,
pp. 417-429, AFIPS Press, 1972.

GRAU89 Graubart, R. G., "On the Need for a Third Form of Access Control,"
12th National Computer Security Conference, pp. 296-304., NIST/NCSC,
October 1989.

GRAU90 , "Comparing DBMS and Operating System Security
Requirements: The Need for a Separate DBMS Security Criteria," in
Database Security, III: Status and Prospects, pp. 109-114, edited by D. L.
Spoonerand C. Landwehr, North-Holland/IFIP, 1990.

GRAY91 Gray, J. W., Ill, "Toward a Mathematical Foundation for Information Flow
Security," IEEE Symposium on Research in Security and Privacy, pp. 21-34,
IEEE, May 1991.

HAIG84 Haigh, J. T, "A Comparison of Formal Security Policy Models," 7th DoD/NBS
Computer Security Conference, pp. 88-111, NBS/NCSC, September 1984.

HAIG87 , "An Experience Using Two Covert Channel Analysis Techniques
on a Real System Design," IEEE Transactions on Software Engineering,
Vol. SE-13, No. 2, pp. 157-168, IEEE, February1987.

HAIG87a , and W. D. Young, "Extending the Noninterference Version of MLS
for SAT," IEEE Transactions on Software Engineering, Vol. SE-13, No. 2,
pp. 141-150, IEEE, February 1987.

HAIG90 , et al., "The LDV Approach to Database Security, "Database
Security III: Status and Prospects, pp. 323-339, edited by D. L. Spooner
and C. Landwehr, North-Holland/IFIP, 1990.

HAMM80 Hamming, R. W., Coding and Information Theory, Prentice-Hall, Englewood
Cliffs, NJ, 1980.

HARR76 Harrison, M. A., W. L Ruzzo, and J. D. Ullman, "Protection in Operating
Systems," Communications of the ACM, Vol. 19, No. 8, August 1976.

HINK88 Hinke, T H., "Inference Aggregation Detection in Database Management
Systems," 1988 Symposium on Security and Privacy, pp. 96-106, IEEE,
April 1988.

HINK90 , "DBMS Trusted Computing Base Taxonomy," in Database
Security III: Status and Prospects, pp. 97-108, edited by D. L. Spooner and
C. Landwehr, North-Holland/IFIP, 1990.

150 ■

REFERENCES

HOAR85 Hoare, C. A. R., Communicating Sequential Processes, Prentice-Hall, 1985.

HONE85 Honeywell Information Systems, Inc., SCOMP Interpretation of the
Bell-LaPadula Model, January 1985.

HUBB86 Hubbard, B. S., S. A. Walker, and R. R. Henning, "Database Systems and
the Criteria: Do They Relate?," 9th National Computer Security Conference,
pp. 21-24, NBS/NCSC, September 1986.

IS084

IS089

International Standards Organization, Information processing systems —
Open Systems Interconnection — Basic Reference Model, ISO 7498-1984
(E), (available from) American National Standards Association, New York,
1984.

 , Information Processing Systems — Open Systems
Interconnection — Basic Reference Model — Part 2:Security Architecture,
ISO 7498-2:1984 (E), (available from) American National Standards
Association, New York, 1989.

ISRA87 Israel, H., "Design of Originator Controls in a Computer System: a Trusted
Discretionary Access Control Mechanism," 3rd Symposium on Physical/
Electronic Security, pp. 3-1-3-6, Armed Forces Communications and
Electronics Association,Philadelphia, August 1987.

JAJO90 Jajodia, S., and B. Kogan, "Integrating an Object-Oriented Data Model with
Multilevel Security," 1990 Symposium on Research in Security and Privacy,
pp. 76-85, IEEE, May 1990.

JOHN88 Johnson, D. M., and F. J. Thayer, "Security and the Composition of
Machines," The Computer Security Foundations Workshop, pp. 72-89, the
MITRE Corporation, Bedford MA, June 1988.

JONE75 Jones, A. K., and R. J. Lipton, "The Enforcement of Security Policies for
Computation," ACM Operating Systems Review,Vo\. 9, No. 5, pp. 197-206,
November 1975.

KARG89 Karger, P. A., "New Methods for Immediate Revocation," 1989 Symposium
on Security and Privacy, pp. 48-55, IEEE, May 1989.

KATZ89

KEEF89

Katzke, S. W., and Z. G. Ruthberg, editors, Report on the Invitational
Workshop on Integrity Policy in Computer Information Systems (WIPCIS),
Special Publication 500-160, NIST, January 1989.

Keefe, T. F, M. B. Thuraisingham, and W. T. Tsai, "Secure
Query-Processing Strategies," IEEE Computer, Vol. 22, No.3, pp. 63-70,
March 1989.

-151-

SECURITY MODELING GUIDE

KEEF89b Keefe, T. R, W. T. Tsai, and M. B. Thuraisingham, "SODA: A Secure
Object-Oriented Database System," Computers and Security, Vol. 8, No. 6,
pp. 517-533, Elsevier Science, October 1989.

KEEF90 Keefe, T. R, and W. T. Tsai, "Multiversion Concurrency Control for Multilevel
Secure Database Systems," 1990 Symposium on Research in Security and
Privacy, pp. 369-383, IEEE, May 1990.

KEEF90b , et al., "Multi-Party Update Conflict: The Problem and Its
Solutions," Fifth Computer Security Applications Conference, pp. 222-231,
held December 1989, IEEE, 1990.

KNOD88 Knode, R. B., and R. A. Hunt, "Making Databases Secure with TRUDATA
Technology," Fourth Aerospace Computer Security Applications Conference,
pp. 82-90, December 1988, IEEE.

KORT86 Korth, H. R, and A. Silberschatz, Database System Concepts, McGraw Hill,
1986.

LAMP71 Lampson, B. W., "Protection," Proceedings, 5th Princeton Symposium on
Information Sciences and Systems, March 1971, and SIGOPS Operating
Systems Review, Vol. 8, No. 1, pp. 18-24, ACM, January 1974.

LAMP73 , "A Note on the Confinement Problem," Communications of the
ACM, Vol. 16, No. 10, pp. 613-615, ACM, October 1973.

LAMP82 Lamport, L, R. Shostak, and M. Pease, "The Byzantine Generals' Problem,"
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3,
pp. 382-401, ACM, July 1982.

LAMP85 Lamport, L, and P. M. Melliar-Smith, "Synchronizing Clocks in the Presence
of Faults," Journal of the ACM, Vol.32, No. 1, pp. 52-78, ACM, January
1985.

LAND81 Landwehr, C. E., "Formal Models for Computer Security," Computing
Surveys, Vol. 13, No. 3, pp. 247-278, ACM, September1981.

LAND84 , C. L, Heitmeyer, and J. McLean, "A Security Model for Military
Message Systems," ACM Transactions on Computer Systems, Vol. 2, No. 3,
pp. 198-221, ACM, August 1984.

LAND89 Landauer, J., T. Redmond, and T Benzel, "Formal Policies for Trusted
Processes," The Computer Security Foundations Workshop II, pp. 31-40,
IEEE #1955, June 1989.

-152

LAPA73

LAPA89

LAPA90

LARR90

LEE88

LIPN82

LUNT88

LUNT88b

LUNT89

LUNT90

REFERENCES

La Padula, L. J., and D. E. Bell, Secure Computer Systems, Vol. II:
A Mathematical Model, ESD-TR-73-278, NTIS#AD-771543, Electronic
Systems Division, Air Force Systems Command, November 1973.

La Padula, L. J., "The 'Basic Security Theorem' of Bell and LaPadula
Revisited," Cipher, January 1989.

 , "Formal Modeling in a generalized Framework for Access
Control," The Computer Security Foundations Workshop III, pp. 100-109,
IEEE, June 1990.

Larrondo-Petrie, M. M., et al., "Security Policies in Object-Oriented
Databases," in Database Security, III: Status and Prospects, pp. 257-268,
edited by D. L Spoonerand C. Landwehr, North-Holland/IFIP, 1990.

Lee, T. M. P., "Using Mandatory Integrity to Enforce 'Commercial' Security,"
1988 Symposium on Security and Privacy, pp. 140-146, IEEE, April 1988.

Lipner, S. B., "Non-discretionary Controls for Commercial Applications,"
1982 Symposium on Security and Privacy, pp. 2-10, IEEE, April 1982.

Lunt, T. F., "Access Control Policies: Some Unanswered Questions," The
Computer Security Foundations Workshop, pp. 227-245, M88-37, The
MITRE Corporation, Bedford MA, June 1988.

 , et al., "A Near-Term Design for the SeaView Multilevel Database
System," 1988 Symposium on Security and Privacy, pp. 234-244, IEEE,

April 1988.

 , "Aggregation and Inference: Facts and Fallacies,"
1989 Symposium on Security and Privacy, pp. 102-109, IEEE, May 1989.

 , "Multilevel Security for Object-Oriented Database Systems," in
Database Security, III: Status and Prospects, pp. 199-209, edited by
D. L Spoonerand C. Landwehr, North-Holland/IFIP, 1990.

MAIM90 Maimone, W. T, and I. B. Greenberg, "Single-Level Multiversion Schedulers
for Multilevel Secure Database Systems," Computer Security Applications
Conference, pp. 137-147, IEEE, December 1990.

MANN82 Manna, Z., and A. Pnueli, "Verification of Concurrent Programs: Temporal
Proof Principles," Logic of Programs, edited by D. Kozen, Lecture Notes in
Computer Science 131, Springer-Verlag, 1982.

MARC86 Marcus, L, and T. Redmond, "A Semantics of Read," 9th National Computer
Security Conference, pp. 184-193, NBS/NCSC, September 1986.

153

SECURITY MODELING GUIDE

MARG85 Margulies, B. I., Multics Interpretation of the Bell and La Padula Model,
Honeywell Information Systems, August 1985.

MCCO90 McCollum, C. J., J. R. Messing, and L. Notargiacomo, "Beyond the Pale of
MAC and DAC—Defining New Forms of Access Control," 1990 Symposium
on Research in Security and Privacy, pp. 190-200, IEEE, May 1990.

MCCU88 McCullough, D., "Covert Channels and Degrees of Insecurity," The
Computer Security Foundations Workshop, pp. 1-33, M88-37, The MITRE
Corporation, Bedford MA, June 1988.

MCCU88a , Foundations of Ulysses: The Theory of Security,
RADC-TR-87-222, NTIS# AD-A200110, Air Force Systems Command,
July 1988.

MCLE85 McLean, J., "A Comment on the 'Basic Security Theorem' of Bell and La
Padula," Information Processing Letters, Vol.20, pp. 67-70, Elsevier, 1985.

MCLE87 , "Reasoning About Security Models," 1987 Symposium on
Security and Privacy, pp. 123-131, IEEE, April 1987.

MCLE88 , "The Algebra of Security," 1988 Symposium on Security and
Privacy, pp. 2-7, IEEE, April 1988.

MCLE90 , "Security Models and Information Flow," 1990 Symposium on
Research in Security and Privacy, pp. 180-187, IEEE, May 1990.

MEAD90 Meadows, C, "Constructing Containers Using a Multilevel Relational Data
Model," Database Security, III: Status and Prospects, pp. 127-141,
North-Holland/IFIP, 1990.

MEAD90b , "Extending the Brewer-Nash Model to a Multilevel Context," 1990
Symposium on Research in Security and Privacy, pp. 95-102, IEEE,
May 1990.

MEND79 Mendleson, E., Introduction to Mathematical Logic, D. Van Nostrand, 1979.

MILL76 Millen, J. K., "Security Kernel Validation in Practice," Communications of the
ACM, Vol. 19, No. 5, May 1976.

MILL81 , "Information Flow Analysis of Formal Specifications,"
1981 Symposium on Security and Privacy, pp. 3-8, IEEE, April 1981.

MILL84 , "A1 Policy Modeling," 7th DoD/NBS Computer Security
Conference, pp. 137-145, NBS/NCSC, September 1984.

-154.

REFERENCES

MILL88 , and M. W. Schwartz, "The Cascading Problem for Interconnected
Networks," Fourth Aerospace Computer Security Applications Conference,
pp. 269-274, IEEE, December 1988.

MILL89 , "Models of Multilevel Security," Advances in Computers, Vol. 29,
pp. 1-45, Academic Press, 1989.

MILL90 , and D. J. Bodeau, "A Dual-Label Model for the Compartmented
Mode Workstation," M90-51, The MITRE Corporation, Bedford MA,
August 1990.

MILN83 Milner, R., "Calculi for Synchrony and Asynchrony," Theoretical Computer
Science, Vol. 25, No. 3, pp. 267-310, Elsevier, 1983.

MOOR90 Moore, A. P., "The Specification and Verified Decomposition of System
Requirements Using CSP," IEEE Transactions on Software Engineering,Vol.
16, No. 9, pp. 932-948, September 1990.

NCSC85 National Computer Security Center, Department of Defense Trusted
Computer Security Evaluation Criteria, DOD 5200.28-STD, December 1985.

NCSC85a , Computer Security Requirements: Guidance for Applying the
Department of Defense Trusted Computer System Criteria in Specific
Environments, CSC-STD-003-85, National Computer Security Center,
June 1985.

NCSC87 , Trusted Network Interpretation, NCSC-TG-005, National
Computer Security Center, July 1987.

NCSC87a , A Guide to Understanding Discretionary Access Control in
Trusted Systems, NCSC-TG-003, National Computer Security Center,
September 1987.

NCSC88 , Glossary of Computer Security Terms, NCSC-TG-004, National
Computer Security Center, October 1988.

NCSC88a , Computer Security Subsystem Interpretation, NCSC-TG-009,
Version-1, National Computer Security Center, September 1988.

NCSC88b , "Criteria Interpretations," Ratings Maintenance Program Notes,
National Computer Security Center, September 1988.

NCSC89 , Guidelines for Formal Verification Systems, Version-1,
NCSC-TG-014, National Computer Security Center, April 1989.

-155-

SECURITY MODELING GUIDE

NCSC89a , A Guide to Understanding Trusted Facility Management,
Version-1, NCSC-TG-015, National Computer Security Center, October
1989.

NCSC90a , Guidelines for Writing Trusted Facility Manuals, National
Computer Security Center (in preparation).

NCSC90b , Trusted Unix Working Group (TRUSIX) Formal Security Policy
Model for the UNIX® System, NCSC-TG-020-B, National Computer
Security Center, (draft) July 1990.

NCSC90c , Trusted Product Evaluations: A Guide for Vendors,
NCSC-TG-002, National Computer Security Center, June 1990.

NCSC91 , Trusted Database Management System Interpretation of the
Trusted Computer System Evaluation Criteria, NCSC-TG-021, National
Computer Security Center, April 1991.

NCSC91b , Final Evaluation Report, SecureWare Incorporated,
Compartmented Mode Workstation Plus, National Computer Security Center,
January 1991.

PAYN90 Payne, C. N., J. N. Froscher, and J. P. McDermott, "On Models for a Trusted
Application System," Sixth Computer Security Applications Conference,
pp. 58-67, IEEE, December 1990.

PITT87 Pittelli, P. A., "The Bell-La Padula Computer Security Model Represented as
a Special Case of the Harrison-Ruzzo-Ullman Model," 10th National
Computer Security Conference, pp. 118-121, NBS/NCSC, September 1987.

PITT88 , "Formalizing Integrity Using Non-interference," 11th National
Computer Security Conference, pp. 38-42, NBS/NCSC, 1988.

PNUE81 Pnueli, A., "Temporal Semantics of Concurrent Programs," Theoretical
Computer Science, Vol. 13, Elsevier, 1981.

POPE73 Popek, G. J., "Access Control Models," ESD-TR-73-106, NTIS#
AD-761807, Electronic Systems Division, Air Force Systems Command,
February 1973.

POPE78 , and D. A. Färber, "A Model for Verification of Data Security in
Operating Systems," Communications of the ACM, pp. 737-749, Vol. 21,
September 1978.

PORT85 Porter, S., and T. S. Arnold, "On the Integrity Problem," 8th National
Computer Security Conference, pp. 15-16, NBS/NCSC, October 1985.

156 •

REFERENCES

POZZ86 Pozzo, M. P., and T. E. Gray, "Managing Exposure to Potentially Malicious
Programs," 9th National Computer Security Conference, pp. 75-80,
NBS/NCSC, September1986.

REAG82 Reagan, R. L, Executive Order 12356, U. S. Printing Office, April 1982.

REIT79 Reitman, R. P., "A Mechanism for Information Control in Parallel Systems,"
Proceedings 7th Symposium on Operating Systems Principles, ACM
SIGOPS Operating Systems Review, Vol.13, No. 4, pp. 55-63, December
1979.

ROSK90 Roskos, J. E., et al., "A Taxonomy of Integrity Models, Implementations and
Mechanisms," 13th National Computer Security Conference, pp. 541-551,
NIST/NCSC, October 1990.

ROWE89 Rowe, N. O, "Inference-Security Analysis Using Resolution Theorem-
Proving, Fifth International Conference on Data Engineering, pp. 410-416,
IEEE, February 1989.

RUSH85 Rushby, J. M., "The SRI Security Model," Computer Science Laboratory,
SRI International, Menlo Park, CA 94025, 1985.

RUSH89 , and F. von Henke, Formal Verification of a Fault Tolerant Clock
Synchronization Algorithm, NASA Contractor Report 4239, Langley
Research Center, Hampton, VA 23665, June 1989.

RUTH89 Ruthberg, Z. G., and W. T, Polk, editors, Report of the Invitational Workshop
on Data Integrity, Special Publication 500-168, NIST, September 1989.

SALT75 Saltzer, J., and M. Schroeder, "The Protection of Information in Computer
Systems," Proceedings of the IEEE, Vol.63, No. 9, September 1975.

SAND88 Sandhu, R. S., "The NTree: A Two Dimension Partial Order for Protection
Groups," ACM Transactions on Computer Systems, Vol. 6, No. 2, pp.
197-222, May 1988.

SAND90 , and S. Jajodia, "Integrity Mechanisms in Database Management
Systems," 13th National Computer Security Conference, pp. 526-540,
NIST/NCSC, October 1990.

SAYD87 Saydjari, O. S. and J. M. Beckman, "Locking Computers Securely,"
10th National Computer Security Conference, pp. 129-141, NCSC/ICST,
September 1987.

SCHA85 Schaefer, M., and D. E. Bell, "Network Security Assuranee,"S#7 National
Computer Security Conference, DoD Computer Security Center, pp. 64-69,
October 1985.

157.

SECURITY MODELING GUIDE

SCHE73 Schell, R. R., P. J. Downey, and G. J. Popek, "Preliminary Notes on the
Design of Secure Military Computer Systems," ESD-TR-80-127,
NTIS# AD-A089433, Electronic Systems Division, U.S. Air Force,
January 1973.

SCHE85 Schell, R. R., T. F. Tao, and M. Heckman, "Designing the GEMSOS Security
Kernel for Security and Performance," 8th National Computer Security
Conference, pp. 108-119, NBS/NCSC, October 1985.

SCHE89 Scheid, J. and S. Holtsberg, Ina Jo Specification Language Reference
Manual, Unisys Corporation, Culver City, CA 90230, May 1989.

SCHN85 Schnackenberg, D. D., "Development of a Multilevel Secure Local Area
Network," 8th National Computer Security Conference, pp. 97-104,

NBS/NCSC, October 1985.

SCH088 Schorre, D. V., et. al., Interactive Theorem Prover (ITP) Reference Manual,
Unisys Corporation, Culver City, CA 90230, November 1988.

SHOC88 Shockley, W. R., "Implementing the Clark/Wilson Integrity Policy Using
Current Technology," 11th National Computer Security Conference, pp.
29-39, NBS/NCSC, October 1988.

SMIT88 Smith, G. W., "Identifying and Representing the Security Semantics of an
Application," Fourth Aerospace Computer Security Applications Conference,
pp. 125-130, IEEE, December 1988.

SMIT90 , "Solving Multilevel Database Security Problems: Technology is
not Enough," in Database Security, III: Status and Prospects, pp. 115-126,
edited by D. L. Spooner and C. Landwehr, North-Holland/IFIP, 1990.

STAC90 Stachour, P. D. and B. M. Thuraisingham, "Design of LDV: A Multilevel
Secure Relational Database Management System," IEEE Transactions on
Knowledge and Data Engineering, Vol. 2, No. 2, pp. 190-209, IEEE,
June 1990.

STER91 Sterne, D. F., "On the Buzzword 'Security Policy,'" 1991 Symposium on
Research in Security and Privacy, pp. 219-230, IEEE, 1991.

TANE87 Tanenbaum, A. S., Operating Systems: Design and Implementation,
Prentice-Hall, 1987.

 , Computer Networks, Second Edition, Prentice Hall, 1988. TANE88

TAYL84 Taylor, T, "Comparison Paper Between the Bell and La Padula Model and
the SRI Model," 1984 Symposium on Security and Privacy, pp. 195-202,
IEEE, May 1984.

158

REFERENCES

THOM90 Thompson, D. J., "Role-Based Application Design and Enforcement," Fourth
IFIP WG 11.3 Workshop on Database Security, IFIP Working Group 1.3 and
U.S. Office of Navel Research, Halifax, England, September 1990.

THUR89 Thuraisingham, B. M., "A Functional View of Multilevel Databases,"
Computers and Security, Vol. 8, No. 8, pp. 721-730, Elsevier Science,
December 1989.

WALT74 Walter, K. G. et al., "Primitive Models of Computer Security," Case Western
Reserve University, and ESD-TR-74-117, NTIS #AD778467, Electronic
Systems Division, Air Force Systems Command, January 1974.

WALT74a , "Modeling The Security Interface," Case Western Reserve
University, August 1974.

WEIS69 Weissman, C, "Security Controls in the ADEPT-50 Time Sharing System,"
1969 AFIPS Fall Joint Computer Conference, Vol. 35, pp. 119-133, AFIPS
Press, 1969.

WHIT84 The White House, National Policy on Telecommunications and Automated
Information Systems Security, NSDD-145, September1984.

WILL91 Williams, J. G., "Modeling Nondisclosure in Terms of the Subject-Instruction
Stream," 1991 Symposium on Research in Security and Privacy, IEEE,
May 1991.

WISE90 Wiseman, S. R., "On the Problem of Security in Databases,"in Database
Security, III: Status and Prospects, pp. 301-310, edited by D. L Spooner
and C. Landwehr, North-Holland/IFIP, 1990.

WITT90 Wittbold, J. T, and D. M. Johnson, "Information Flow in Nondeterministic
Systems," 1990 Symposium on Research in Security and Privacy, pp.
144-161, IEEE, May 1990.

WOOD87 Woodward, J. P. L, "Exploiting the Dual Nature of Sensitivity Labels,"
1987 Symposium on Security and Privacy, pp. 23-30, IEEE, April 1987.

-159-
ö U.S. GOVERNMENT PRINTING OFFICER993-718-173/61047

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

c reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
;ring and maintaining the data needed, and completing and reviewing the collection of information. Sena comments regarding this burden estimate or any other aspect of this

Public
gathering and maintaining the data needed, and completing and reviewing _ .
collection of information. Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highways, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

October 1992
REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

A Guide to Understanding Security Modeling in Trusted Systems

6, AUTHOR(S)

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Security Agency
Attn: C81 (Standards, Criteria, and Guidelines Division)
Ft. George G. Meade, MD 20755-6000

8. PERFORMING ORGANIZATION
REPORT NUMBER

NCSC-TG-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Security Agency
Attn: C81 (Standards, Criteria, and Guidelines Division)
Ft. George G. Meade, MD 20755-6000

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Library No. S-239,669

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document provides a guidance as to the formulation of security models for trusted systems
at all levels of trust. It helps the developer understand the essential concepts of security modeling,
as well as expected content for the model.

14. SUBJECTTERMS
Computer security; Trusted Computer System Evaluation Criteria (TCSEC); automated
data processing (ADP); security modeling; modeling; operating systems.

15. NUMBEROF PAGES
159

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 23<M8
298-102

NSN 7540-01-280-5500

