REPORT DOCUMENTATION PAGE

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)
2. REPORT DATE
07/14/01
3. REPORT TYPE AND DATES COVERED
Final Progress Report
4. TITLE AND SUBTITLE
Boussinesq Modelling of Waves in Harbors and Inlets
5. FUNDING NUMBERS
DAAG55-98-1-0173
6. AUTHOR(S)
James T. Kirby
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center For Applied Coastal Research
University of Delaware
Newark, DE 19716
8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211
10. SPONSORING / MONITORING AGENCY REPORT NUMBER
37548.3 - EV
11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release: distribution unlimited.
12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words)
A curvilinear grid version of a Boussinesq model for application to tidal inlets and other complex domains has been completed and a resulting manuscript published. The resulting model will be transferred to Army labs at their request. A means for extending the Boussinesq formulation to account for a correct description of vertical vorticity has been found, and the code has been extended to include an eddy viscosity formulation to damp vortical motions resulting in strongly sheared flows. Recent tasks include:
(1) Completed the description of the vorticity-conserving model and report findings to a technical journal.
(2) Tested the model against experimental data on separation and vortex generation in the context of solitary wave scattering by a thin wall. Completed a Master's thesis related to this work.
(3) Completed comparison to lab data from the Ponce de Leon Inlet model study conducted by the Coastal Hydraulics Lab, USACOE WES.

14. SUBJECT TERMS
15. NUMBER OF PAGES
5
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used for announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to **stay within the lines** to meet **optical scanning requirements**.
Final Progress Report
Boussinesq Modelling of Waves in Harbors and Tidal Inlets
DAAG55-98-1-0173

James T. Kirby and Robert A. Dalrymple
July 12, 2001

Statement of Problem Studied

Our first project goal was to develop a curvilinear grid version of a Boussinesq model for application to tidal inlets and other complex domains. This goal has been achieved, and the model has been documented (Shi et al, 2001a). The resulting model has the flexibility of modeling wave breaking and shoreline runup, and is thus fully applicable to studies of realistic inlet geometries and adjacent coastal areas. Extensive comparisons with lab data for the Ponce de Leon Inlet model study, conducted by the Coastal Hydrodynamics Lab, USACOE WES, have been completed as a further test of the curvilinear model. This work will be reported shortly (Shi et al, 2001b, 2001c).

During this work, a means for extending the Boussinesq formulation to account for a correct description of vertical vorticity has been found, and the code has been extended to include an eddy viscosity formulation to damp vortical motions resulting in strongly sheared flows. This extension to the formulation has been tested in comparison to lab data on flow separation and vortex formation during the passage of wave crests past thin barriers. The ability to reproduce this behavior is crucial to the problem of determining entrance losses for flows in constricted harbor entrances, and has not been previously accessible with this category of models. In order to study this problem, laboratory experiments on flow separation induced by solitary waves passing through gaps have been conducted. Experimental results have been compared to model predictions in order to test the formulation of eddy viscosity terms in the curvilinear model. A Masters thesis has been completed, and results have been reported at a conference.

Numerical and analytical properties of staggered and un-staggered grid versions of the Boussinesq code have been investigated, and the level of noise in the two models has been found to be comparable. The staggered grid model has been found to be more accurate in terms of linear wave propagation as grid resolution decreases. These aspects as well as a basic stability analysis are presently being documented.
The model has been tested against field data from the DELILAH field experiment (Duck, N.C.) and has been found to give accurate reproduction of time averaged mean flows. A journal manuscript describing this work is in preparation (Chen et al, 2001).

Although the topic was dropped during the initial evaluation of the scope of the project, we have had a chance to pursue the second goal of developing a model which is applicable to three-dimensional current fields with both horizontal and vertical vorticity distributions. This work has led to the development of a model of weakly dispersive waves in one horizontal dimension, riding on currents with arbitrary vertical distribution of horizontal vorticity. The model is presently being tested against laboratory data and will be presented by Rego et al (2001).

Summary of Most Important Results

A curvilinear grid version of a Boussinesq model for application to tidal inlets and other complex domains has been completed and a resulting manuscript published. The new model code is based on high-order finite differences applied on a staggered grid scheme. The resulting model is more stable than the existing FUNWAVE code (Kirby et al, 1998), requiring considerably less numerical filtering and iteration to achieve accurate results. The curvilinear model can also handle complex areas with more flexibility than the original Cartesian grid model. The model has been applied to the study of waves in Ponce de Leon Inlet, Florida (Shi et al, 1999, 2001b, 2001c), and to the generation and shedding of vertical vortex cores during the passage of wave crests past vertical breakwater edges (Hommel et al, 2000, 2001).

Errors in the original formulation of Wei et al (1995) and Chen et al (2000a) pertaining to the representation of the second order correction to vertical vorticity have been identified and corrected by Chen et al (2000b) and Chen et al (2001), and extensive calculations of nearshore wave fields have been conducted using the corrected model. We have shown that the Boussinesq model is capable of correctly modeling mean longshore currents in field situations, as well as rip currents in laboratory settings (Chen et al, 1999). Model predictions of unsteady longshore current fluctuations have been collected and will be compared to field data in the near future.

The results of the present study are presently being incorporated in an updated release (to be designated version 2.0) of the Boussinesq model code FUNWAVE (Kirby et al, 1998, 2001). The new code provides extensions to cover curvilinear coordinate systems and enhancements to vertical vorticity transport described above. In addition, several enhancements to nonlinear properties in the model (Kennedy et al, 2001a, Kennedy et al, 2001b) are incorporated in the release. A review of the present state of the FUNWAVE model and the Boussinesq modelling technique in general is being prepared by Kirby (2002) for inclusion in the book Advances in Coastal Modeling by Lakhan (2002) and will provide a detailed overview of the results of this project.

Publications and Technical Reports
(a) Peer-reviewed journal articles

(b) Conference proceedings

(c) Papers presented at meetings

(d) Manuscripts submitted or in preparation

(e) Technical reports submitted to ARO

Participating Scientific Personnel

(1) James T. Kirby, Professor
(2) Robert A. Dalrymple, Professor
(3) Fengyan Shi, Visiting Scholar
(4) Furong Zhen, Graduate Research Assistant
(5) Lisa Hommel, Graduate Research Assistant, Master of Civil Engineering, Fall 2000.

Thesis: Vortex formation resulting from solitary wave interaction with a breakwater.

Bibliography

MEMORANDUM OF TRANSMITTAL

U.S. Army Research Office
ATTN: AMSRL-RO-BI (TR)
P.O. Box 12211
Research Triangle Park, NC 27709-2211

Reprint (Orig + 2 copies)
Technical Report (Orig + 2 copies)

Manuscript (1 copy)
Final Progress Report (Orig + 2 copies)

Related Materials, Abstracts, Theses (1 copy)

CONTRACT/GRANT NUMBER: DAAG55-98-1-0173

REPORT TITLE: Boussinesq Modelling of Waves in Harbors and Inlets

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerely,

JAMES T. KIRBY
PROFESSOR
CENTER FOR APPLIED COASTAL RESEARCH
UNIVERSITY OF DELAWARE
NEWARK, DE 19716