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ABSTRACT

This thesis explores the validation of Lanchester equations as models of the
attrition process for the Battle of Kursk in World War I1. The methodology and results of
this study extend previous validation efforts undertaken since the development of the
Ardennes Campaign Simulation Data Base (ACSDB) in 1989 and the Kursk Data Base
(KDB) in 1996. The KDB is a computerized database developed by the Dupuy Institute
and the Center for Army Analysis from military archives in Germany and Russia. The
data are two-sided, time-phased (daily), highly detailed, and encompass 15 days of the
campaign. The primary areas of analysis are the effect of using purely engaged forcesin
parameter edimation and the effect of force weighting in forming homogeneous force
strengths. Based on the numbers of personnel, tanks, armored personnel carriers, and
artillery, three different data sets were constructed: all combat forces in the campaign,
combat forces within contact that are both engaged and not engaged, and combat forces
within contact that are engaged. In addition, a weight optimization program using a
steepest ascent algorithm was developed and utilized. Findings indicate that Lanchester-
based models provide a considerably better fit for data sets composed only of forces that
are actively engaged. Also, Lanchester’s linear model appears to provide the best fit to
the Battle of Kursk data. Finally, optimization of force weights does not significantly

improve the fit of Lanchester models.
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EXECUTIVE SUMMARY

Since the dramatic growth of operations research during and after World War |1,
modeling of combat at both the tactical and strategic level has grown dramatically. One
complicated characteristic of most combat models is the representation of the decrease in
force levels over time, commonly referred to as attrition. 1n an effort to accurately model
the attrition process, many combat models employ Lanchester-type equations.
Fortunately, the development of the Ardennes Campaign Simulation Data Base (ACSDB)
in 1989 and the Kursk Data Base (KDB) in 1996 has enabled more analysis concerning
the empirical validation of Lanchester equations. The purpose of this study is to explore
the validation of Lanchester equations as they model the attrition process of the Battle of
Kursk in World War 11. In particular, this thesis focuses on the effect of using purely
engaged forces in parameter estimation and the effect of force weighting in forming

homogeneous force strengths.

The general form of the Lanchester modd is:
B (D) = aR(t)’B(1)",

R (t) = bB(Y)PR(t)",

where B(t) and R(t) are the strengths of blue and red forces at time't, B (t) and  (t) are the
rates at which blue forces and red forces are killed a time t, a and b are attrition
parameters, p is the exponent parameter of the attacking Prce, and q is the exponent
parameter of the defending force. Three specific variations of these equations are of
particular interest due to their simplicity and intuitive results. First, the Lanchester linear

model existsswhen p=q = 1. In this case, the casualty rate of a force is proportional to
Xvil



the product of its force size and the enemy’s force size. Next, the Lanchester square
model existswhen p=1and g = 0. Here, the casualty rate of aforce is proportional only
to the enemy force size. Findly, the logarithmic model exissswhen p=0and g=1 and
describes a situation when the casualty rate is only proportional to one’'s own force size

and not the enemy’s.

In previous studies concerning the validation of Lanchester equations with
historical data, the authors make no distinction between those forces that are actually
engaged and those that are not engaged. However, the KDB does delineate between all
combat units, all combat units within contact but not engaged, and all combat units within
contact and engaged. Quite possibly, Lanchester equations may prove more applicable to
one of these data types than the others. This result could prove useful in determining

how combat simulations that use L anchester-based equations are best utilized.

In order to conduct this analysis, three separate data sets were constructed from
the KDB. These data sets divide the KDB into three inclusive categories: all combat unit
data (ACUD), combat unit data for those units that are within contact (CCUD), and
combat unit data for only those units that are actualy fighting (FCUD). Each of these
data sets was analyzed using three different techniques. The first two techniques consist
of the application of previous methodologies used by Bracken [Ref. 4] in his analysis of
the Ardennes Campaign and by Turkes [Ref. 2] in his analysis of the Battle of Kursk.
Bracken's technique involved delineating a range of values for each parameter and
searching on a discrete grid over this range for the set of parameters resulting in lowest
sum of squared residuals when compared to the actual data. Turkes modeled his

technique after a method developed by Fricker. [Ref. 5] This process consists of using
XViii



linear regression on logarithmically transformed data to estimate the unknown
parameters. Each of these models was applied to the ACUD, CCUD, and FCUD data

sats to determine which set resulted in a better fit.

The final area of analysis explores the area of force weighting and its affect on a
model’s fit. Force weighting is often utilized to combine differing force types into a
homogeneous force level. This is accomplished by multiplying the actual size of each
force type by an appropriate weighting parameter and summing for each day. In this
analysis, personnel, tanks, armored personnel carriers, and artillery were combined to
produce a homogeneous level of force strength. However, no common methodology or
rigorous criteria exists for determining the weighting parameters of each force type. The
selection of these weights may actually have a considerable impact on the mode!’s fit to

the actual data.

In order to determine the ideal weights, a weight optimization agorithm was
developed and applied to each of the three data sets. This algorithm consists of a steepest
ascent search combined with linear regression on the logarithmically transformed
variables to determine the weights that result in the best fit of the model. This procedure
was aso applied to Lanchester’s square, linear, and logarithmic models, as well as to the

ACUD data from the Ardennes campaign.

The results of this thesis indicate that Lanchester-based models provide a
considerably better fit for data sets composed only of forces that are actively engaged.
As shown in Figure 1, each of the models described above performs best when applied

only to the fighting unit data. Use of the contact unit data resulted in the worst fitting

Xix



model. This result suggests that Lanchester-type models more accurately predict combat

losses in cases where only fully engaged forces are considered.

R-Squared Comparison

0.7
0.6 1
0.5

047 B All Units

0.3 Contact Units
0.2 0O Fighting Units

S . .

-0.1- Bracken Method Turkes Method Optimized Weights
Modd Type

R-Squared

Figure 1. Comparison of R vaues for three separate models. A higher R value
indicates a better fit to the actual data.

Another significant finding resulted from the direct application of Lanchester’s
square, linear, and logarithmic equations. Of all models investigated in this thesis,
Lanchester’s linear model provides the best fit to the Battle of Kursk data. This is a
significant finding and represents one of the few cases in which one of Lanchester’s basic
models was found to apply to an actual battle using highly aggregated data. Thisimplies
that a force's casuaties were a function of both friendly and enemy force levels for
engaged forces during the Battle of Kursk. The resulting parameters and R values for
each model when applied to the fighting unit data are shown in Table 1. As noted earlier,

use of the fighting unit data resulted in the best fit for each mode.

XX



Method a b p q R2
Bracken 1.20E-08 | 8.00E-09 1.7 05 0.3809
Turkes 1376-08 | 2.49E-09 0.5694 1.6919 05541
Optimized Weights | 6.04E-08 | 1.31E-08 0.5286 1.5858 05734
Optimized Weights | 5 19F07 | 607E-08 1 1 0.6187
(Linear Law)
Optimized Weights | 5 300 05 | 1 42E-02 1 0 0.2924
(SquareLaw)
Optimized Weights | 5 5 05 | 1.27E-02 0 1 05375
(Log Law)

Table 1. Resulting parameter values for each model when applied to fighting unit data.

Finally, the optimization of force weights produced mixed results. The resulting
weights from the weight optimization process for the CCUD and FCUD data imply that
tanks were the dominant source of combat power during the Battle of Kursk. This
supports the commonly held historical opinion that the conflict was largely defined by
tank battles. However, the optimization of force weights does not significantly improve
the fit of Lanchester models. Although the use of optimal weights does increase the
performance of the model in most cases, this improvement is often minimal or mitigated
by weights that do not make intuitive sense.  For instance, the best fit discovered in this
analysis was with al weights set equal to one and resulted in an R of 0.6187. If the
weights are switched to Bracken's weights and the a, b, p, and q parameters remain the
same, the R value decreases only slightly to 0.5513. Therefore, the practice of assigning

weights based on intuitive judgment seems to be somewhat justified.
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l. INTRODUCTION

A. OVERVIEW

Since the dramatic growth of operations research during and after World War |1,
the United States military has used various forms of modeling to study complex
processes. In particular, modeling of combat at both the tactical and strategic level has
grown dramatically with the advent of increased computing power. One complicated
characteristic of most combat models is the representation of the decrease in force levels
over time, commonly referred to as attrition. In an effort to accurately model the attrition
process, many combat models employ Lanchester-type equations. However, due to a
serious deficiency in the quality of historical data, empirical validation of Lanchester
equations in modeling attrition has been sorely lacking. Fortunately, the development of
the Ardennes Campaign Simulation Data Base (ACSDB) in 1989 and the Kursk Data
Base (KDB) in 1996 has enabled more analysis in this area. The purpose of this study is
to explore the validation of Lanchester equations as they model the attrition process of
the Battle of Kursk in World War Il. In particular, this thesis focuses on the effect of
using purely engaged forces in parameter estimation and the effect of force weighting in
forming homogeneous force strengths. The information gained from this analysis may
offer important insight in determining how combat simulations that use Lanchester-based

equations are best utilized.



B. BACKGROUND

1 Lanchester Equations

In 1914, F. W. Lanchester proposed a set of differential equations in order to
quantitatively justify the importance of concentration on the modern battlefield. [Ref. 1]
Lanchester believed that ancient combat consisted of a series of “one on one” duels
between individual soldiers. Therefore, the combatants' force levels had no effect on the
exchange ratio. However, in modern combat, forces have the capability of aiming fire
from different locations onto a single target. In this case, each side's casualty rate 5
proportional to the number of enemy firers, and an obvious advantage exists in

concentrating fires.

The general form of the Lanchester model is:
B (t) = aR(t)"B(t)", (1.1)
R (t) = bB(t)PR(t)", (1.2)

where B(t) and R(t) are the strengths of blue and red forces at time t, B (t) and  (t) are the
rates at which blue forces and red forces are killed at time t, a and b are attrition
parameters, p is the exponent parameter of the attacking force, and q is the exponent
parameter of the defending force. Initial force sizes are represented by B(0) and R(0)
and, when numerically calculated with time step ?t, are incrementally decreased as
follows: B(t+ ?t) = B(t) — ?tB (t) and R(t + ?2t) = R(t) — ?t R (t). Lanchester reasoned
that two forces are of equal strength when their force ratio remains the same throughout
the battle. Therefore, B(t) / R(t) = B (t) / R (t), for al t. This result is equivalent to the

condition that bB(t)” *! = aR(t)*%** for somep and g, and all t. [Ref. 2]
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Three specific variations of these equations are of particular interest due to their
simplicity and intuitive results. First, the Lanchester linear model existswhen p=q=1.
In this case, the casualty rate of aforce is proportional to the product of its force size and
the enemy’s force size. Commonly referred to as “area fire,” Lanchester hypothesized
that this model represented a situation when firing is directed over a general area without
being aimed at specific targets. Next, the Lanchester square model exists when p =1
and q = 0. Here, the casualty rate of aforceis proportional only to the enemy force size.
According to Lanchester, this condition should govern modern combat situations where
several elements of one combatant can be aimed and concentrated on specific enemy
targets. These situations are commonly referred to as “aimed fire” Finaly, the
logarithmic model exists when p = 0 and g = 1 and describes a situation when the
casualty rate is only proportional to one's own force size and not the enemy’s. This
result seems counter-intuitive and was not theorized by Lanchester. However, it does
represent the fact that not all attrition is due to enemy fire. A logarithmic result could
represent a situation where the primary causes of casualties were disease, desertion, or

other non-battle losses. [Ref. 6]
2. Previous Studies

Previous studies concerning the validation of Lanchester equations using
historical data have been limited due to the absence of quality data sets. Of particular
interest are those that use data organized by daily force size. Studies by Engel on the Iwo
Jima campaign in World War Il [Ref. 16], Hartley and Helmbold on the InchonSeoul

campaign of the Korean War [Ref. 3], Bracken on the Ardennes campaign of World War



Il [Ref. 4], Fricker on the Ardennes campaign [Ref. 5], and Turkes on the Battle of Kursk

[Ref. 2] are among the few empirical validation efforts that use daily force size data.
a. Engel’s Study

Engel conducted the first study using time-phased data to validate
Lanchester’s square law equation. [Ref. 11][Ref. 16] His data set consisted of the daily
force strengths of U.S. forces and beginning and ending force strengths for Japanese
forces. Engel found that the square law was a reasonable model of daily U.S. attrition
and total Japanese attrition. However, he aso concluded that other Lanchester
formulations could fit the data, and he offered no goodness of fit measure for his mode.

[Ref.3]
b. Hartley and Helmbold’' s Study

Hartley and Helmbold utilized linear regression to test whether the
Lanchester square model applied to the InchonSeoul campaign of the Korean War.
Their data set consisted of manpower only, and they attempted to model just United
States casualties. In addition, they introduced the use of change points at certain phases
in the campaign and then refit the model at each of these change points. They concluded
the following: (1) the data do not fit a constant coefficient Lanchester square law, (2) the
data better fit a set of three separate battles (one distinct battle every six or seven days),
(3) the Lanchester square model is not a proven attrition algorithm for warfare, but
neither can it be completely discounted, and (4) more two-sided, time-phased data are

needed to validate any proposed attrition law.



C. Bracken’s Study

Bracken developed four separate models for the Ardennes campaign and
determined the parameters for each model that resulted in the best fit to the actual data.
Due to the varying levels of intensity in the conflict, he restricted his data set to include
only 10 of the 33 days of available data. Using a technique that applied different weights
to different equipment types, he developed a homogeneous data set representing the
combined strength of manpower, tanks, armored personnel carriers, and artillery. His
method involved delineating a range of vaues for each parameter and searching on a
discrete grid over this range for the set of parameters resulting in the lowest sum of
squared residuals when compared to the actual data. Bracken also introduced the use of a
tactical parameter d that he theorized would offer some insight as to whether the attacker
or defender had the advantage in the campaign. He concluded the following: (1) the
Lanchester linear model was the best fit for the Ardennes campaign, (2) when combat
forces are considered, alied individual effectiveness was greater than German individual
effectiveness, (3) when total forces are considered, individual effectiveness was the same

for both sides, and (4) an attacker advantage existed throughout the campaign.
d. Fricker’s Study

Fricker followed up Bracken's study of the Ardennes campaign by
applying a logarithmically transformed linear regression to determine each of the
parameters that resulted in the best fit when compared to the actual data He also
included air sortie data and employed an algorithm that reconfigured daily force levels to

include all reinforcements at the beginning of the campaign. He concluded that the



logarithmic model provided the best fit, implying that a combatant’ s casualties are more a

function of the size of his own forces than his enemy’s.
e Turkes Study

Turkes performed a comprehensive analysis by analyzing previous
methodologies, testing different techniques for locating the best fitting parameters, and
exploring the impact of different weighting schemes to form homogeneous force levels.
In particular, he applied Bracken's and Fricker’'s methodologies to the Battle of Kursk
data and employed 39 different models including linear and robust regression. Also, he
applied four separate weight combinations to determine his model’s sensitivity to
weighting criteria. He concluded that: (1) the parameters found by Bracken and Fricker
do not fit the Battle of Kursk data, (2) the original Lanchester equations do not fit the
Battle of Kursk data, (3) robust regression located the best fitting parameters, and (4)
different force weighting schemes do not significantly affect the fit of the model. In
addition, as shown in Figure 1.1, he used a contour-filled plot to show that the surface of
the sum of squared residuals (SSR) is very flat aound the global minimum. This figure
shows the wide range of p and q parameters found by severa different researchers using
the same data set but different methodologies. With thisfigure, Turkes showed that small

changes in handling the data could result in dramatically different parameter estimates.
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Figure 1.1. Contour filled plot of SSR values for Battle of Kursk data from Ref. [2]. Each

X represents a pairing of p and q parameters found using alternate methodologies. The
three basic Lanchester representations are al'so shown.

3. Areas of Interest Not Addressed in Previous Studies
a. Engagement Levels of Forces

In the studies by Bracken, Fricker, and Turkes, the authors make no
distinction between those forces that are actually engaged and those that are not engaged.
In each analysis, al combat forces in the campaign are considered. However, the KDB
does delineate between all combat units, all combat units within contact but not engaged,

and all combat units within contact and engaged.

b. Weighting of Individual Weapon Types

Due to the small size of the data set, fitting Lanchester equations

heterogeneoudly is not practical. With only 14 days of usable data and four unknown




parameters (a, b, p, and q) for each weapon category, the overall s/stem of equations
would be overdetermined. [Ref. 11] In the studies by Bracken, Fricker, and Turkes, the
authors al form a homogeneous force level by combining the individual levels of
manpower, tanks, armored personnel carriers (APCs), and artillery. Each individua level
is multiplied by a prescribed weight and summed to form the total force level. However,
these weights are simply assumed based on weighting methods that Bracken claims are
commonly used by the Center for Army Anaysis (CAA). [Ref. 4] Turkes does perform
some sensitivity analysis using different weights, but, again, these are not based on any

rigorous criteria.
C. OBJECTIVE
1 Stated Objectives

The Kursk Operations Simulation and Validation Exercise — Phase |1 (KOSAVE
I1) report was completed by CAA in Sep 98 and is available in both printed and electronic
form. [Ref. 7] This report documents the KDB and is used to complete all analysisin this
study. The objective of this thesis is to further upon the studies mentioned in Section 11
in the following ways.

Analyze the impact of using only engaged forces and partialy engaged
forces to determine Lanchester parameters.

Develop a force weighting methodology to optimize the modd’s fit to the
actual data. That is, determine the weights that yield the best fit.



2. M easur es of Performance

The measures of performance for each model are the sum of squared residuals
(SSR) and the R statistic. These measures reflect the goodness of fit for the different

models. The SSRand R values are calculated with the following formulas:

SSR:?(Yl Yl)2 (1.3)
R2:1-SSR:1-é;lg\(‘-\?‘)2 (1.4)
st aly -V |

where Y, Y, and Y denote the estimated value, the real value, and the mean value of the Y
parameter (daily casualties) indexed by day. A lower SSRvalue or a greater R value
indicates a better fit. Also, the possibility of a negative R value exists, implying that the
fitted model yields worse results than simply using the average daily losses as an
estimate. SSR is the measure used most often by Bracken, Fricker, and Turkes.
However, R is invariant to differing weights and sizes of data sets. Consequently, R

represents a more accurate measure of performance in this study.
D. METHODOLOGY AND ORGANIZATION

The methodology for this thesis consisted of the following steps:

Conduct a thorough literature review.

Review the KDB and identify any peculiarities and correlations that exist
in the data.

Organize the KDB into three data sets representing al combat units,
combat units within contact that are both engaged and not engaged, and
combat units within contact that are engaged.

Analyze the three data sets using Bracken's grid search methodol ogy.

Analyze the three data sets using Turkes' linear regression methodology.
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Analyze the three data sets with parameters constrained to the three basic
Lanchester equations

Develop an algorithm that conducts a gradient search to locate the optimal
weights for manpower, tanks, artillery, and APCs based onminimizing Re.

Apply these weights to the KDB and compare the results to those attained
by Turkes.

This study is organized into four main chapters. Chapter Il contains a brief
history of the Battle of Kursk in order to familiarize the reader with the campaign’'s
significant events. In addition, the development of the three primary data sets is
explained, and the data sets are shown in detail. Subsequently, the data sets are analyzed
to highlight any patterns of interest, and a correlation analysis is performed to study the

interactions occurring between the data.

Chapter 111 contains the bulk of the anaysis. First, the methods utilized by
Bracken and Turkes are applied to the three data sets, and the results for each data set are
compared and contrasted. In addition, Turkes method is applied to the three basic
Lanchester equations. Next, the process of determining the optimal weights is explained
in detail. The resulting weight optimization algorithm is provided and applied to the
three data sets. Again, the results of this section are compared and contrasted within each

data set and, additionally, to the results of the other methodologies.

Chapter 1V contains the primary conclusions found during the preparation of this
thesis. Also, recommendatiors for additiona research are provided in order to guide

future analysisin this area.
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.  HISTORICAL OVERVIEW AND DATA SUMMARY

A. HISTORICAL OVERVIEW OF THE BATTLE OF KURSK

Following its disastrous defeat at Stalingrad in the winter of 1942 — 43, the
German military’s offensive operations on the Eastern Front came to a near standstill.
Desperately seeking to regain lost momentum, Adolf Hitler set his sights on the Kursk
salient, which extended nearly 150 km to the west and was nearly 200 km wide. This
salient was the dominant feature on the front and offered the perfect target for German
tactics that had proved so successful in the past — encircling vast Soviet armies and

destroying them in the process. [Ref. 9]

The German plan, named Operation Citadel, consisted of a classic pincer
maneuver. Field Marshal Gunther von Kluge's Army Group Center, led by Genera
Model’s Ninth Army, was to attack from the northern flank of the bulge and drive toward
the town of Kursk. Here, it would link up with General Hoth's 4th Panzer Army from
Field Marshal Eric von Manstein’s Army Group South, which was attacking from the
southern flank. If successful, the Germans would encircle and destroy five Soviet armies,
forcing the Soviets to delay their operations, and alowing the German armed forces to

regain the initiative. [Ref. 9]

Due to extensive German delays and a fruitful intelligence gathering effort, the
Soviets were well prepared for the German assault. [Ref. 9] They worked feverishly to
prepare a formidable defensive front, consisting of up to seven defensive lines with anti-
tank strongpoints, anti-tank ditches, and extensive belts of minefields. Knowledge of the

German plan was so extensive that the Soviets actually knew the exact day that Germany
11



would launch its assault. [Ref. 9] In fact, an hour before the German attack finally began
on July 5, 1943, the Soviets launched a pre-emptive artillery barrage on all known enemy

assembly aress.
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Figurell.l. Operation Citadel (July 4 —12) From Ref. [7]

Although the barrage caused a momentary delay, the Germans began the assault
at 0700 hours. In the North, Model’s Ninth Army slammed into the prepared Soviet
positions for several days, gaining only six miles of ground before stalling. With no hope
of breaking the formidable Soviet defense, the Germans became mired in a war of

attrition and were eventually thrown back in disarray.

However, in the South, a different story was developing. German forces made
significant gains day-by-day and by July 11 were in position to capture the town of
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Prokhorovka. A victory here would enable the Germans to establish a bridgehead over
the Psal River, the last natural barrier between the Germans and Kursk [Ref. 9].
Recognizing the importance of Prokhorovka, the Soviets deployed their strategic armored

reserve, the Fifth Guards Tank Army, to meet the Germans head-on.

The two forces collided on July 12 in what has become known as the “largest tank
battle ever fought,” with 483 SS tanks slamming into 525 Soviet tanks. At the end of the
day, the Soviets had lost 375 tanks, while the German losses were only 92. Despite this
disparity, von Manstein’s drive to Kursk was stopped by the sheer impact of the battle.
Combined with the Soviet offensive in the North and the Allied invasion of Sicily two
days later, Hitler decided to abruptly cancel Operation Citadel despite the pleas of von
Manstein who felt that victory was still within his grasp. [Ref. 15] The Germans fell
back into defensive positions while the Soviets began a series of counterattacks,
regaining al lost ground by July 23. For the first time, the Soviets had crushed the
German blitzkrieg on the field of battle. [Ref. 14] The battle to regain momentum in the
East had been hopelesdy lost, and the Germans would never again nount a significant

offensive against the Red Army.
B. DATA SUMMARY
1 Description of Kursk Database

Recent attempts to validate campaign-level combat models have centered on the
comparison of model outputs to real data obtained through the study of historical battles.
Unfortunately, few historical databases exist that offer the requisite detail needed to
support proper validation efforts. In an attempt to support a validation methodology for

combat models, the Center for Army Anaysis developed two detalled databases
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summarizing combat data of the Ardennes Campaign of 1944-45 and the Battle of Kursk
in 1943. These databases were used to support the Ardennes Campaign Simulation
(ARCAS) Study [Ref. 13] in 1995 and the Kursk Operation Simulation and Validation
Exercise (KOSAVE) Study [Ref. 7] in 1998, in which simulated campaign results were
compared with history to assess model validity. The Kursk Data Base (KDB) is
documented in the KOSAVE report and is used to construct the database that supports
thisthesis. The KDB is highly detailed, containing two-sided data that are time-phased
daily from 4 July, 1943 through 18 July, 1943. The data are taken from the southern

front of the Battle of Kursk and are organized into the following sections:
Units and combat posture status.
Personnel status and casualties.
Army weapons status and |osses.
Ammunition status.
Aircraft sortie status.
Geographic unit positions and progress.
2. Database Formulation

The methodology used to organize the database is the same as thet used by Turkes
in his analysis. [Ref. 2] This allows for an accurate comparison of the results of this
study to those obtained by Turkes. The only difference in this database, as compared to
Turkes', is that this database is divided into three inclusive sets: al combat unit data
(ACUD), combat unit data for those units that are within contact (CCUD), and combat

unit data for only those units that are actually fighting (FCUD). This terminology is
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borrowed from Gozel [Ref. 10] in his analysis of the separate data sets. The fighting
status of combat units is attained from the KOSAVE report [Ref. 7], which specifies the
status (either fighting, within contact and not fighting, and not within contact) for each
combat unit on each day of the battle. The formulation of the three base sets of data is
described below. These sets are then reconfigured as needed in each model. This

reconfiguration is explained in detail in the section to which it applies.
a. Manpower

Manpower is represented by combat manpower, which is composed of all
infantry, armor, and artillery forces. Logistics and support personnel are not available in
the KBD. Daily combat manpower is calculated by summing the “On Hand” (OH)
manpower totals in the KOSAVE Il report for all combat units, including headquarters.
The KDB organizes casuaties into four separate categories.  killed, wounded,
captured/missing in action, and disease and non-battle injuries. Daily combat |osses are

calculated by summing these categories.
b. Weapons Classification

The KOSAVE report contains information on six separate weapons

classes:
Tanks
Armored Personnel Carriers (APCs)
Artillery

Rocket Launchers
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Heavy Anti-Tank Weapons

Flamethrowers/Heavy Machine Guns

In maintaining a comparative relationship with Bracken's and Turkes analyses, this

study only considers tanks, APCs, and artillery weapon systems.

The KDB lists information on a broad spectrum of individual weapon
types and is not organized according to the weapon classifications above. The
organization of weapons types into three separate weapons classifications is completed in
accordance with Table 5-1 [Ref. 7: p. 5-3] and Table 5-2 [Ref. 7: p. 5-4] in the KOSAVE
report. Table I1.1 shows the German and Soviet individual weapon types in each weapon
classification.

Daily totals for each weapon classification are obtained by summing the
OH totals for each weapon type from the KOSAVE report. Weapons losses are

categorized as destroyed/abandoned and damaged. Turkes states that “considering a

damaged weapon system as a loss is logical, because a damaged weapon system is

considered to be a ‘temporary loss' and in nonoperational status.” [Ref. 2: p. 27]

German Soviet
Tanks APCs Artillery Tanks APCs Artillery

Pzl (all type) [AC4-6w 105mm Gun Kv-1 BA-10 SU-122
PzIV (all type) |AC8w 105mm How  |KV-2 BA-64 SU-152
PzV (all type) [AC8w 75mm  |150mm Gun M-3 Armtpt 122mm Gun
PzVI (al type) |ACSpt 150mm How |MK-2/3 Bren 122mm How
Pzl 1Spt LHT 152mm How  |MK-4 152mm Gun
T-34 (Soviet) |LHTSpt 155mm How |T-34 203mm How

MHT 210mm How  [T-60

MHT Spt 7SmmLtIG T-70

MHT75mmIG |87.6mm How

MHT Flame Wespe

Pzl Hummel

Pzl

Table I1.1. Summary of German and Soviet weapons types within tanks, APC, and
artillery classification.
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C. ACUD, CCUD, and FCUD Data

Tables 11.2 through 11.4 list the ACUD, CCUD, and FCUD data sets for

the Germans and Soviets compiled using the methodology shown above.

German ACUD Data Soviet ACUD Data
M anpower Tanks APCs Artillery Manpower Tanks APCs Artillery
Day] OH Loss| OH [Loss| OH [ Loss| OH | Loss OH Loss| OH | Loss| OH [ Loss| OH | Loss

1]1307365] 800 |1178] 4 ]1170| O 1189 1 510252 | 130 | 2500 0 511 0 718 0
21301341 16192 | 986 | 198 | 1142 | 29 | 1166| 24 | 507698 | 8527 | 2396 | 105 | 507 4 705 13
3 129720514302 | 749 | 248 (1128 14 [1161| 5 498884 | 9423 | 2367 | 117 | 501 6 676 30
4 1293960 | 3414 | 673 | 121 (1101 ] 27 [1154| 7 489175 110431] 2064 | 259 | 490 11 661 15
5 [ 306659 | 2942 | 596 | 108 | 1085 | 16 | 1213| 13 | 481947 | 9547 | 1754 | 315 | 477 13 648 14
6 ]1303879 [ 2953 | 490 | 139 | 1073| 14 | 1210| 6 470762 |111836] 1495 | 289 | 458 19 640 9
7 1302014 (2040 | 548 | 36 |1114] 42 | 1199| 12 | 460808 | 10770 1406 | 157 | 463 3 629 13
8 1300050 |2475] 563 | 63 |1104| 16 | 1206 15 | 453126 | 7754 | 1351 | 135 | 462 4 628 7
9 1298710 (2612 | 500 | 98 | 1099 | 12 | 1194 | 12 | 433813 119422( 977 | 414 | 432 30 613 16
10299369 [ 2051 | 495 [ 57 |1096| 4 1187 7 423351 |10522| 978 | 117 | 424 8 606 10
112973952140 480 | 46 | 1093| 6 11841 5 415254 | 8723 | 907 | 118 | 418 8 603 5
121296237 [ 1322 | 426 | 79 11089| 5 1183 3 419374 | 4076 | 883 96 417 1 601 5
131296426 | 1350 | 495 [ 23 | 1092 1 1179 4 416666 | 2940 | 985 27 417 0 600 3
14 | 296350 | 949 | 557 7 1095 1 1182 2 415461 | 1217 | 978 | 42 417 2 602 0
151 295750 [ 1054 | 588 1098 5 1182 11 | 413298 [ 3260 | 948 85 409 8 591 4

Tablell.2. German and Soviet ACUD data. OH denotes amount on hand. Loss denotes
the number of casuaties. Note the clear Soviet advantage in OH manpower and tanks
when all forces are considered.

German CCUD Data Soviet CCUD Data
Manpower Tanks APCs Artillery M anpower Tanks APCs Artillery
Day] OH Loss| OH | Loss| OH | Loss| OH | Loss OH Loss| OH | Loss| OH | Loss| OH | Loss

1 1265823 | 769 | 942 0 1147 0 1048 1 138378 | 120 | 129 0 11 0 184 0
2 | 262055 | 5956 [ 965 | 180 | 1125| 29 | 1035| 18 181474 | 8301 | 396 73 61 4 211 8
3 1276383 [4275| 731 | 240 [1111| 14 [ 1106| 3 221666 | 8971 | 1006 | 101 [ 235 6 209 25
4 1273660 | 3392 | 652 | 113 |1084| 27 | 1099| 7 238993 | 9076 | 980 | 255 [ 234 11 228 9
5 |1 275511 12889 | 564 | 108 | 1068 | 16 | 1129 | 13 | 256687 | 8026 | 742 | 300 | 227 11 221 9
6 | 287391 [2818| 389 | 102 | 917 | 14 [1121| 5 284050 |10747] 830 | 228 | 261 7 239 9

7 | 248538 | 1993 | 525 | 36 [1097| 42 |1088| 12 | 297105 [10239| 869 | 116 [ 312 3 269 10
8 | 279722 | 2456 | 563 63 [1087| 16 | 1164 | 15 | 358172 | 7485 | 1158 | 125 | 420 3 331 5

9 | 279046 | 2588 | 483 | 92 [1082| 12 | 1153| 11 | 344513 ]18932| 832 | 392 [ 353 25 339 16
10| 279697 | 2031 | 495 57 11079 4 1158 7 339299 110220| 875 | 110 | 414 7 342 6
11| 276604 | 2113 | 474 41 | 1076 6 1155 5 330225 | 8439 | 784 | 114 | 403 8 340 4
121291571 [ 1303 | 418 | 79 [1072| 5 1154 3 302666 | 3868 | 715 | 93 352 1 337 2
131 289582 | 1331 | 480 22 | 1075 1 1136 4 272394 | 2802 | 573 27 291 0 330 3
14 237336 | 871 | 441 4 911 1 1064| 2 263878 | 1150 | 569 34 291 2 313 0
235653 | 1004 | 472 914 5 1089 | 10 | 282532 | 3191 | 624 333 8 318 4

Table [1.3. German and Soviet CCUD data. OH denotes amount on hand. Loss denotes
the number of casualties. Note the Soviets now have less manpower than the Germans on
days one through six. In addition, the overall difference in combat power is diminished
considerably when only forces within contact are considered.
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German FCUD Data Soviet FCUD Data
M anpower Tanks APCs Artillery Manpower Tanks APCs Artillery
Day] OH Loss| OH | Loss| OH | Loss| OH | Loss OH Loss|{ OH | Loss| OH | Loss| OH | Loss

1] 97740 | 654 [ 290 0 307 0 405 1 0 0 0 0 0 0 0 0
2 1247866 | 5863 | 965 | 180 | 1125| 29 | 976 | 18 | 84783 [ 8268 | 83 68 10 4 126 8

3 1261368 | 3604 | 731 | 240 {1111 | 14 | 1043] 3 141589 | 8888 | 605 | 73 175 6 147 25
4 121121213047 | 652 | 113 [1084| 27 | 838 7 163378 | 8898 | 980 | 255 [ 232 11 157 7
5122731412744 | 564 | 108 | 1068 | 16 | 931 | 13 | 145875| 7534 | 646 | 287 | 221 10 112 9
6 | 224664 | 2623 | 389 [ 102 | 917 | 14 | 863 5 179607 | 8608 | 352 | 145 [ 162 7 162 9
7 12006861848 | 525 | 36 |1097| 42 | 903 | 11 | 166526 | 8138 | 483 | 108 | 163 3 139 6
8 [ 23203812360 | 563 | 63 | 1087 | 16 | 980 9 2103431 6634 | 480 | 115 | 201 2 202 4
9 [262920 | 2575 | 483 | 92 |1082| 12 | 1102( 11 | 252844 {18072| 525 | 375 | 231 24 262 15
10| 279697 | 2031 | 495 | 57 |1079| 4 11581 7 175121 [ 8688 | 349 | 36 114 4 213 5
11]208498 | 1677 | 415 | 41 | 921 6 903 3 206465 | 6148 | 513 | 99 293 6 204 4
12| 226075 ] 1064 356 | 75 | 917 5 965 2 89898 | 2472 | 68 6 16 0 113 1
131131800 469 | 193 | 13 | 497 0 508 4 87769 | 21141 76 0 16 0 124 3
14 149538 [ 495 | 363 4 756 1 600 1 37981 | 457 | 108 6 16 0 36 0
188079 [ 807 | 352 708 4 7 119346 { 2404 | 408 | 84 176 8 127 0

Table I1.4. German and Soviet FCUD data. OH denotes amount on hand. Loss denotes
the number of casualties. Note the overall combat power now appears to favor the
Germans when only those forces in contact are considered.

When comparing the data in the tables above, the Soviet advantage in
overall combat power decreases as the degree of contact becomes more refined. Thisis

shown in Figures I1.2 through 11.5 below.

German Vs. Soviet Manpower

500000

400000 -

300000 O German

200000 Soviet

100000

Mean Number of Personnel

0

ACUD CCUD FCUD
Data Type

Figurell.2. German vs. Soviet Manpower. The Soviets have superiority in manpower
when considering all combat forces. However, the Germans have superiority when
considering only those forces that are actualy fighting.
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German Vs. Soviet Tanks
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Figure I1.3. German vs. Soviet Tanks The Soviets have more than a two to one
advantage in tanks when considering all combat forces. However, the Germans have
the advantage when considering only those forces that are actually fighting.

German Vs. Soviet APCs
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Figure 11.4. German vs. Soviet APCs The Germans maintain superiority in the
number of APCsin all three data sets.
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German Vs. Soviet Artillery
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Figure 11.5. German vs. Soviet Artillery. The Germans maintain superiority in the
number of artillery in all three data sets.

3. Combat Postures

In this study, the Soviet forces are the Blue forces and the German forces are the
Red Forces. Daily combat postures of individual units are defined in the KOSAVE
report. However, defining the overall posture of the German and Soviet forces is difficult
because on several days individual units are both attacking and defending within each
force. Considering historical context and taking the posture of all line units into account,
an overal concept of force posture does emerge. The posture of the forces is defined as

follows [Ref. 2]:
July 4 — July 11 (Day 1 through Day 8) ? Germans attack
July 12 — July 18 (Day 9 through Day 15) ? Soviets attack

The combat posture on July 12 is particularly difficult to define, since this is the

day that the Soviets counterattacked against the German offensive. In actuality, neither
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force was defending during this engagement. However, since the Soviets continued to
press the offensive and the Germans assumed a defensive posture in the days that

followed, the Soviets are considered to be attacking on this day.
4, Correlation Analysis

By examining the degree of correlation in each data set, differences in how the
data interact can be discerned. In particular, the correlations that exist in the ACUD,
CCUD, and FCUD data sets may infer which Lanchester models may apply to each data
set. Figures|1.6 through I1.8 display simultaneous pair-wise scatter plots of Soviet |osses
(SL), German losses (GL), German on-hand (G), and Soviet onthand (S). [Ref. 11] Each
sguare within the figure represents a scatterplot of two of the four variables of interest,
shown on the diagonal. A smoothed line is added to better convey the correlation
revealed by the scatterplots. Tables 11.5 through I1.7 display the correlation matrices that
correspond to the figures. [Ref. 12] Because historical accounts indicate that the battle
did not actually intensify until Day 2, the data for Day 1 are excluded from this analysis.
Each point on the plot corresponds to one of the last 14 days of the data sets. The data
for each day are weighted using Bracken's approach [Ref. 4 to form a homogeneous
force level of combat losses and combat power (homogeneous onthand forces) for both
the Soviet and German forces. This weighting process is explained in greater detail in

Chapter I11.A.1.a

For the ACUD data, all interactions are positively correlated. The strongest
correlation of 0.91 occurs between Soviet combat power and German losses. German
combat power and Soviet losses also have a relatively high positive correlation of 0.65.

These results reveal that a force's casuaty levels tend to increase as the enemy’s combat
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power increases, indicating that a Lanchester square model may be the best fit for the

ACUD data.

For the CCUD data, a negative correlation of -0.56 exists between German losses
and Soviet combat power, indicating that an increase in Soviet combat power results in a
decrease in German losses. All other correlations exhibit relatively weak positive
correlation. These results suggest that a Lanchester logarithmic model may be the best fit

for the CCUD data.

For the FCUD data, all interactions are positively correlated, with German losses
and German combat power (0.69) and Soviet losses and Soviet combat power (0.76)
being the strongest. In addition, the correlation of 0.63 between German losses and
Soviet combat power is aso somewhat high. These results indicate that a force's losses
correspond to both enemy and friendly force strengths, representative of the Lanchester

linear law.

Two additional peculiarities are evident in each figure. Within each data set, the
pair-wise scatterplots indicate that the eighth day of the battle represents an extreme
outlier, especially for al combinations including Soviet losses. This day represents the
large tank battle at Prokhorovka. The exceedingly high casualties that occurred on this
day may exert a high degree of influence on subsequent analysis. In addition, days one
and two also seem to be influential, especially in the CCUD and FCUD analyses. In
particular, the negative correlation in the CCUD analysis and weak positive correlation in
the FCUD analysis, each with respect to German losses and Soviet onthand, may be

attributed to the influence of days one and two. These are the days in which the Germans
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were attacking the Soviets' prepared defensive positions. With these two days omitted,

each scatterplot reveals a stronger positive correlation.

2000 6000

, 10000

460000 500000 540000 580000

T T T
15000 25000

T

T
5000

T

T T
5000 15000

T
25000

13 T T
360000 365000 370000

8
SL 6 4 3 5 4 5 4 3
107 1 10 7 1]]10 7
11 [1-
14 1
712 125,
o 1
84
=] 2
=)
S 5 GL
© 8
4 7
o 1 1096
=8
Q144
1 4 4 1
6 5
7
9 8
13
10 3
3 11
<3 1
o 2
1 3
o 4
]
2 S
0 7
o 8
8 9
Sl 10
©
<

FigureI1.6. Pair-wise scatter plot of Soviet losses (SL), German losses (GL),
German onthand (G), and Soviet onthand (S) from ACUD data set. Trend lines are
created using a lowess smoother. Note that day eight appears to be an outlier,
especialy for all combinations including SL.

ACUD Daa Soviet Losss GemanLoses | GamanOnHand | Sovie On-Hand
Soviet L oss 100 043 033 036
Gaman Losss 043 100 065 091
Geamen OnHand 0.33 065 100 069
Sovigt On-Hand 0.36 091 069 100

Table11.5. Correlation matrix of ACUD data. Note the high positive correlation
between German losses and Soviet on-hand (0.91).
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Figurell.7. Pair-wise scatter plot of Soviet losses (SL), German losses (GL), German
on-hand (G), and Soviet on-hand (S) from CCUD data set. Trend lines are created
using a lowess smoother. Note that day eight appears to be an outlier, especialy for all
combinations including SL.

CCUD Data Sovid Loses GeamanLosess | GamanOnHand | Sovig On-Hand
Soviet L osses 100 041 034 025
Gaman Loses 041 100 033 056
Gamaen OnHand 034 033 100 019
Sovig On-Hand 025 056 019 100

Tablell.6. Correlation matrix of CCUD data. Note the negative correlation between
German losses and Soviet orthand (-0.56).
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Figure11.8. Pair-wise scatter plot of Soviet losses (SL), German losses (GL), German
on-hand (G), and Soviet on-hand (S) from FCUD data set. Trend lines are created
using a lowess smoother. Note that day eight appears to be an outlier, especialy for all
combinations including SL.

FCUD Data Soviet Loses GeamanLosess | GamanOn-Hand | Sovig On-Hand
Soviet Loses 1.00 052 063 0.76
German Lossss 052 100 0.69 017
Geaman On-Hand 0.63 0.69 100 04
Soviet On-Hand 0.76 017 054 100

Tablell.7. Correlation matrix of FCUD data. Note the high positive correlation between
Soviet losses and Soviet on-hand (0.76) and German losses and German on-hand (0.69).
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[11.  EXPLORATION OF DATA SETSAND WEIGHTING
METHODOLOGIES

A. COMPARATIVE ANALYSIS OF PREVIOUS METHODOLOGIES

In this section, the methodologies previously implemented by Bracken and Turkes
are applied to the ACUD, CCUD, and FCUD data sets. First, a summary of the original
methodologies is given in each subsection. The analysis is then completed with strict
adherence to the respective methodology, and the results are compared to Turkes results
from his analysis of the Battle of Kursk. The objective of this analysis is to analyze the

impact of using only engaged and partially engaged forces to determine Lanchester

parameters.
1. Bracken Methodology
a. Summary

Bracken's study [Ref. 4] involved the parameter estimation for Lanchester
equations when applied to the Ardennes campaign of World War Il. He was aso
interested in the tactical posture of a force and its effect on attrition. Bracken used the

following variation of the basic Lanchester equations to perform his analysis:
B () = adR(t)"B(t)", (111.1)
R (t) = b(1/d)B(t)°R(t)? (111.2)

The a, b, p, and g parameters in these equations have the same definition
as those presented in Chapter 1.B.1. The d parameter is atactical parameter that Bracken

introduced to determine whether the attacker or defender had any advantage in the battle.
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The use of d in Equations I11.1 and 1.2 implies that Red is attacking and Blue is

defending. Interpretation of d is as follows:
d>17? attacker advantage exists
d=17 neither attacker nor defender advantage exists
d<1? defender advantage exists

Bracken divides his anaysis into four separate models. Each model
requires an aggregation of manpower, APCs, tanks, and artillery into a homogeneous
representation of combat power. This is accomplished by multiplying the actual size of

each force type by an appropriate weighting parameter and summing for each day:

4
CombatPowea = & Typei ’ Weighti " n (111.3)
i=1
n= (1 ......... 15) indexes the days of the campaign

Type; = (#of Personndl, #of Tanks, #of APCs,#of Artillery ) fori=1to4
Weight = (1, 20,5,40), for i =1to 4

Bracken used the following weighting parameters in his analysis. 1 for
personnel, 20 for tanks, 5 for APCs, and 40 for artillery. He assumed these weights based
on weighting methods he claimed were used by CAA. He further states [Ref. 4] that,
“Virtudly al theater-level dynamic combat simulation models incorporate similar

weights, either as inputs or as decision parameters computed as the simulations progress.”

In Model 1, force strengths are represented by tanks, APCs, artillery, and
combat manpower. Bracken defines combat manpower as infantry, armor, and artillery
personnel only. In Model 2, combat manpower is substituted with total manpower;
which is defined as al personnd in the campaign, including logistics and support
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personnel. Models 3 and 4 consist of the same forces as Models 1 and 2, respectively,

but exclude the use of atactical parameter.

Bracken’s methodology involved defining a discrete set of values for each
of the parameters in the model (i.e. a, b, d, p, g). He then performed a search over this
grid of parameter values for the set of parameters resulting in the lowest sum of squared
residuals when compared to the actual data. The sum of squared residuals was cal culated

using the Equation I11.4 below:

6 2
SSR:é(B - adRqu)Z+ (R -b(l/d)Bqu) (111.4)
n ' n n n n n n

(l')l

+a (B - a(l/d)Rqu)Z +
n n n

=7

Qor f') Qo

2
(R - dequ)
n n n

7

=}

n

where n represents the days of the battle, B , and K, are the actual number of Soviet and
German casualtieson day n, and B, and R, are the actual number on-hand. In this
model, the Germans attacked on days two through six and the Allies attacked on days
seven through eleven. Bracken eliminated day one from consideration since no

significant contact occurred on this day.

The results of Bracken's analysis are shown in Table 111.1.

Model Type a b p q d

Model 1 8.00E-09 1.00E-08 1 1 1.25
M odel 2 8.00E-09 8.00E-09 0.8 1.2 1.25
Model 3 8.00E-09 1.00E-08 1.3 0.7 N/A
Model 4 8.00E-09 8.00E-09 1.2 0.8 N/A

Table 111.1. Resulting parameters of Bracken's analysis of the Ardennes

campaign data.
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Bracken concluded the following from his analysis:
The Lanchester linear model results in the best fit for the Ardennes
campaign in al four models.

When considering combat forces, Allied individual effectiveness is greater
than German individual effectiveness.

When considering total forces, individual effectiveness is the same for
both sides.

An attacker advantage exists throughout the campaign.

b. Aggregation of Data

The following analysis directly applies Bracken's weighting methodology

to the three data sets from the Battle of Kursk defined in Chapter 11.B.2.c. Tables I11.2

and 111.3 present the aggregated data for all three data sets.

German On-Hand German Casualties
Day ACUD CCUD FCUD ACUD CCUD FCUD
1 384335 332318 121275 920 809 694
2 373411 328380 311831 11257 10421 10328
3 364265 340798 323263 9532 9265 8594
4 359085 336080 263192 6249 6067 5722
5 372524 337291 281174 5702 5649 5504
6 367444 344596 271549 6043 5128 4933
7 366504 308043 252791 3450 3403 3218
8 365070 342977 288833 4415 4396 4060
9 361965 340236 322070 5112 4928 4915
10 362229 341312 341312 3491 3471 3471
11 359820 337664 257523 3290 3163 2647
12 357522 351451 276380 3047 3028 2669
13 358946 349997 158465 1975 1936 889
14 360245 293271 184578 1174 1036 620
15 360280 293223 232379 1639 1529 1207

Table I11.2. Aggregated data for German forces. Aggregated force data is obtained by
weighting combat manpower, tanks, APCs, and artillery by 1, 20, 5, and 40, respectively.
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Soviet On-Hand Soviet Casualties
Day ACUD CCUD FCUD ACUD CCUD FCUD
1 591527 148373 0 130 120 0
2 586353 198139 91533 11167 10101 9968
3 575769 251321 160444 12993 12021 11378
4 559345 268883 190418 16266 14591 14333
5 545332 281502 164380 16472 14441 13684
6 528552 311515 193937 18071 15702 11903
7 516403 326805 182561 14445 12974 10553
8 507576 396672 238028 10754 10200 9104
9 480033 376478 274979 28492 27537 26292
10 469271 372549 191191 13302 12695 9628
11 459604 361520 226350 11323 10919 8318
12 463159 332206 95858 6201 5813 2632
13 462451 298509 94329 3600 3462 2234
14 461186 289233 41661 2067 1840 577
15 457943 309397 133466 5160 5091 4124

Table I11.3. Aggregated data for Soviet forces. Aggregated force data is obtained by
weighting combat manpower, tanks, APCs, and artillery by 1, 20, 5 and 40,

respectively.

Application of Methodology to ACUD, CCUD, FCUD Data

Bracken’s methodology for Model 1 and Model 3 is applied to each of the

three data sets with the following aterations. The sum of squared residualsis defined as:

SSR=3

=2

>

15
ta

n=9

(6,- a0rB;) +4 R, - bW BIRY)

(B, - a(1/d)RfB:)2 +§ (R, - den"an)z

(111.5)

where n indexes the 15 days of the battle. Therefore, the residuals are calculated for each
day of the battle, squared, and then summed for al available days. Upon examination of
the data sets, the casualty levels for both forces are much lower for the first day. Also,
historical accounts indicate that the battle did not actually begin until 5 July, which is the
second day of the data. Therefore, the first day represents a significant outlier in the data

sets that is not supported by historical records. [Ref. 2, p.66] Including this day in the
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analysis could have adverse effects on the results. Thus, only the last 14 days of the data
set are used in the remainder of this thesis. Other possible outliers in the data sets that
occur during the course of the battle are included. This analysis portrays the Germans on
the offensive on days two through eight and the Soviets on the offensive on days nine

through 15. The parametersa, d, p, and g are limited to the following discrete range:

(CII— ) = (4x10°,............ 1.2x10°®8),
[(ZT— bo) = (4x107°,............ 1.2x10°8),
(S T— p21) = (0.0,....... 2.0),
(CET— G21) = (0.0,...ccoceee. 2.0),
[(CET— do) = (0.6,..eccee..... 1.4)

This is the range of parameters used by Turkes [Ref. 2] in his application
of Bracken's methodology. It includes a more comprehensive set of parameters than

those used by Bracken.
d. Results

Tables 111.4 and 111.5 illustrate the results of Bracken's search method

when applied to the ACUD, CCUD, and FCUD data sets for Models 1 and 3.

Data Set a b p q d SSR R2
ACUD 1.20E-08 | 1.00E-08 0.1 20 10 6.51E+08 | 0.0919
CCUD 9.00E-09 | 4.00E-09 0.9 13 11 6.26E+08 | 0.0019
FCUD 1.20E-08 | 8.00E-09 1.7 0.5 10 3.99E+08 | 0.3809

Table I11.4. Results of Bracken's method when applied to Model 1. ACUD results most
resemble the logarithmic law, CCUD results most resemble a mix of the logarithmic and
linear laws, and FCUD results most resemble the square law.
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Data Set a b q d SSR R2
ACUD 1.20E-08 | 1.00E-08 0.1 20 N/A 6.51E+08 [ 0.0919
CCUD | 9.00E-09 | 4.00E-09 0.9 13 N/A 6.53E+08 | -0.0141
FCUD 1.20E-08 | 8.00E-09 17 05 N/A 3.99E+08 [ 0.3809

Table I11.5. Results of Bracken's method when applied to Model 3. ACUD results most
resemble the logarithmic law, CCUD results most resemble a mix of the logarithmic and
linear laws, and FCUD results most resemble the square law.

Upon examination, the anaysis yields interesting results. The ACUD
results shown above are the same as those that Turkes found when applying Brackeri s
methodology to the Battle of Kursk [Ref. 2]. This is expected because Turkes only
considered all combat forces in his analysis. However, as the data set is refined to

consider only those forces in contact and those that are in contact and fighting, the (p, Q)

values change substantially.

For Model 1, the ACUD (p, g) pairing of (0.1, 2.0) most resembles the
logarithmic model, implying that a force's losses in the Battle of Kursk were more a
result of one's own force strength than the enemy’s. However, when considering only
those forces that are in contact, the (p, ¢ pairing becomes (0.9, 1.3). This result is
something of a cross between the logarithmic model and the linear model. Finally, when
considering only those forces that are in contact and actually fighting, a (p, q) of (1.7,
0.5) results. This indicates a predominately square model. Therefore, it appears that, as
the data becomes more refined, the model tends more towards a square model
representation.

This makes more intuitive sense than Turkes result, showing that

casualties are proportional to enemy force size.
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For Model 3, the results are similar. The ACUD representation appears to
be logarithmic, the CCUD data tends towards a linear/logarithmic mix, and the FCUD
data most resembles a square model. However, the results from both models are suspect
due to the boundaries that restrict possible parameter values. In each of the results above,
at least one of the parameter values occurs on the boundary. This implies that if no
boundary existed, other parameter values could be found that result in a lower SSR [Ref.

2.

In both cases, the SSR and R values improve dramatically between the
ACUD and FCUD data sets. Use of the CCUD data set results in the lowest R values.
Here, R is the more informative statistic when comparing the different data sets because
it takes the varying sizes of the sets into account. Since the d parameter is 1.0 in Model
1, the R? values for the ACUD set in both Model 1 and Model 3 are the same. The R
using the FCUD data set is 0.3809 for each model, demonstrating a much better fit than

the mode!s that take all combat units into account.
2. TurkesM ethodology

In addition to the strict application of Turkes methodology, this section also
explores two additional areas of interest: 1) modeling the basic Lanchester square, linear,
and logarithmic equations, and 2) modeling only manpower. The methodology and

results for these areas of analysis are revealed in their respective subsections.
a. Summary

As opposed to Bracken’s methodology of searching over a discrete grid of

parameters, Turkes used linear regression to find the optimal, unconstrained parameters
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to the scalar model of Lanchester equations. [Ref. 2] He modeled his analysis after
Fricker's use of linear regression to analyze the Ardennes campaign. [Ref. 5] In order to
use this method, a logarithmic transformation is required to convert the origina
Lanchester models in Equations 1.1 and 1.2 into a linear model. [Ref. 2, p. 67] Taking the

logarithm of both sides of each equation yields the following:
log(B) = log(a) + plog(R) + qlog(B) (111.6)

log(R) = log(b) + plog(B) + qlog(R) (1n.7)

Linear regression is then be used to find the a, b, p, and g parameters that minimize SSR.

The results of Turkes analysis are shown in Table I11.6.

a b p q SSR R2
1.06E-47 | 1.90E-48 5.7475 3.3356 6.36E+08 0.1126

Table I11.6. Resulting parameters of Turkes' linear regression anaysis
of the Battle of Kursk.

Turkes concluded that linear regression provided better fitting parameters
to the Battle of Kursk data than Bracken’s technique. He also discovered that the eighth
day of the battle represented a significant outlier in the data set and influenced the fit
dramatically. [Ref. 2] Asaresult, he extended his analysis by using robust regression to

account for this outlier. The use of robust regression is not considered in this thesis.
b. Application of Methodology to ACUD, CCUD, FCUD Data

This analysis directly applies Turkes methodology for linear regression to
the same three data sets listed in Tables 11.2, 11.3, and 11.4, minus the first day’s data in

each set (for reasons discussed in Chapter 111.A.1.c). In previous analyses, the use of a
35



tactical parameter was shown to have minimal impact. [Ref. 11] Therefore, the tactical
parameter d is not included in this analysis. See Fricker's [Ref. 5] or Turkes [Ref. 2]

analysis for examples of how to include this parameter in alinear regression analysis.
C. Results

Table 111.7 illustrates the results of linear regression when applied to the
ACUD, CCUD, and FCUD data sets. Asin the results of Bracken's methodology, the fit
improves greatly with the use of the FCUD data. The best R value is now 0.5541, nearly
five times better than the R? using the ACUD data. Interestingly, the R decreases when
switching from ACUD to CCUD data, and then rebounds significantly when using the
FCUD data The fact that R is negative for the CCUD analysis indicates that simply

taking the average of the daily losses produces a better estimate of casualties than the

mode!.
Data Set a b p q SSR R2
ACUD 1.06E-47 1.90E-48 5.7475 3.3356 6.36E+08 0.1123
CCuUD 1.51E+02 | 5.31E+01 | -0.8324 1.1634 6.38E+08 -0.0170
FCUD 1.37E-08 | 2.49E-09 0.5694 1.6919 2.87E+08 0.5541

Table I11.7. Results of linear regression when applied to ACUD, CCUD, and FCUD
data sets. ACUD results most resemble a mix between the square and linear laws,
CCUD results most resemble the logarithmic law, and FCUD results most resemble a
mix of the square and linear laws.

Figures 111.1 through [11.6 compare the estimated and actual casualties for
each side and each data set. As shown in Figure 111.2, the eighth day of the battle
represents a significant outlier in the ACUD data set. This is the same result that Turkes

found in his analysis. This same outlier is also apparent in the CCUD analysisin Figures
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[11.3 and 111.4, while the fit for the German losses appears to be worse than the ACUD fit.
In addition, the CCUD model overestimates casuaties for both sides from Day 11
through Day 14. The combination of these effects may explain why the R is lower for
the CCUD analysis than the ACUD analysis. However, as shown in Figures I11.5 and
111.6, the fits improve dramatically when using the FCUD data, especially for the Soviet
forces. Infact, Figure I11.6 reveals that the model now accounts for the data point that
was an outlier in the ACUD and CCUD analyses. The only identifiable weakness in the
FCUD model occurs in the first few days of the battle, where the model underestimates
the real German casualties. Since these days correspond to Germany’s initial assault on
prepared defensive positions, this result is somewhat expected. The estimated parameters
reflect the entire course of the campaign. Therefore, a relatively short period of intense

combat may result in a higher residual value for that time period.

The parameters found for the ACUD data most resemble a cross between
the square and linear models, with a unit’s casualties tending to be more proportional to
the enemy’s force size. The CCUD parameters most resemble the logarithmic model,
indicating that a unit’s casualties are a function of its own force size. However, the fact
that the p parameter is negative is counterintuitive, indicating that an increase in enemy
force size actually benefits the friendly force. The FCUD results indicate a mixture of the
linear and logarithmic models, with a unit’s casualties tending to be more proportional to
its own force size. These results coincide with the expected Lanchester models from the

correlation analysis in Chapter 11.B.4.
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Figurelll.1. Fitted versus real German casuaties for ACUD data set.
Fitted vs. Real Soviet Casualties
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Figure 111.2. Fitted versus real Soviet casualties for ACUD data set. Notice the large
outlier on day eight. This outlier seems to directly contribute to a higher SSR and lower
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Fitted vs. Real German Casualties
(Linear Regression - CCUD Data Set)
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Figure 111.3. Fitted versus real German casualties for CCUD data set. Notice the fit

appears to be much worse than the fit in Figure I11.1.

Fitted vs. Real Soviet Casualties
(Linear Regression - CCUD Data Set)
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Figure 111.4. Fitted versus real Soviet casualties for CCUD data set. Notice the large
outlier on day eight. Thisoutlier seems to directly contribute to a higher SSR and lower
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Fitted vs. Real German Casualties
(Linear Regression - FCUD Data Set)
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Figure 111.5. Fitted versus real German casualties for FCUD data set. Except for the
first two days, the fit appears much better than the CCUD analysis.

Fitted vs. Real Soviet Casualties
(Linear Regression - FCUD Data Set)
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Figure 111.6. Fitted versus real Soviet casualties for FCUD data set. Notice how the
model’s fitted casualties now closely resemble the rea casualties. Most significantly,

the model more accurately estimates the casuaties from day eight. This greatly
decreases the SSRand increases R.
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d. p and g Constrained to Linear, Square, and Logarithmic Models

The estimation of the parameters is simplified substantially if the models

are restricted to the three base Lanchester equations. With this restriction, the p and q

parameters are now fixed, leaving only the a and b parameters to be estimated. If the

resulting R is nearly as good as the unconstrained R?, use of Lanchester equations may

be justified as a more simplistic approach. In this analysis, Turkes methodology is

applied with p and q restricted to the three basic Lanchester models. Equations 111.8 and

111.9 represent the linear model, wherep=1andq= 1.

andqg=1.

B (t) = aR(t)B(t), (111.8)
R (t) = bB(HR(), (111.9)

Equations 111.10 and 111.11 represent the square model, where p = 1 and

B (t) = aR(t), (111.10)

R (t) = bB(t), (111.11)

Equations 111.12 and 111.13 represent the logarithmic model, where p =0

B (t) = aB(t), (111.12)
R (t) = bR(t), (111.13)

Because p and q are now fixed to specific values, a logarithmic

transformation is no longer required, and the a and b parameters can be found with a

basic linear regression through the origin.
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The results of this analysis are shown in Tables [11.8 through 111.10. Of
the basic Lanchester laws, the linear law provides the best fit for the ACUD dkta, the
logarithmic law provides the best fit for the CCUD data, and the linear law provides the
best fit for the FCUD data. Overal, the linear model with FCUD data provides the best
fit. With an R value of 0.5513, the performance of the model is very close to the
performance of the FCUD model found with unconstrained values for p and . This

indicates that the Lanchester linear model provides an excellent fit for the FCUD data.

The scale of the a and b parameters is aso of interest here. The results of
the unrestricted analysis in Table 111.7 show widely varying results for the a and b
parameters. However, as explained earlier, when the p and q values are restricted, a
logarithmic transformation of the data is no longer required. Therefore, the use of basic
linear regression to estimate a and b appears to result in more consistent values across the

models. In addition, the fact that the p and g parameters are fixed to the same vaues for

each data set also contributes to the consistency of the a and b parameters.

M odel a b p q SSR R2
Linear 2.17E-07 8.26E-08 1 1 5.03E+08 0.5513
Square 3.72E-02 2.34E-02 1 0 2.89E+08 0.2185
Log 6.13E-02 1.63E-02 0 1 3.08E+08 0.5216
Table 111.8. Linear regression results for FCUD data with p and q restricted to

Lanchester linear, square, and logarithmic models. Note the high R value for the linear

mode!.
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Model a b p q SSR R2
Linear 1.08E+07 | 4.02E+08 1 1 6.07E+08 0.0324
Square 3.41E-02 1.33E-02 1 0 6.33E+08 -0.0102
Log 3.58E-02 1.38E-02 0 1 5.90E+08 0.0586
Table 111.9. Linear regression results for CCUD data with p and q restricted to

Lanchester linear, square, and logarithmic models. The logarithmic model provides the
best fit for this data set.

Model a b p q SSR R2

Linear 6.68E+08 2.69E+08 1 1 6.24E+08 0.1290

Square 3.35E-02 9.80E-03 1 0 6.79E+08 0.0522
Log 2.43E-02 1.31E-02 0 1 6.57E+08 0.0831

Table 111.10. Linear regression results for ACUD data with p and q restricted to
Lanchester linear, square, and logarithmic models. The linear model provides the best
fit for this data set.

e Model of Manpower Only

One troubling aspect of the analysis in this section is the somewhat
arbitrary selection of the weights used to combine personnel, tanks, APCs and artillery
into a homogeneous force. This area is explored in great detail in Chapter 111.B.
However, one possible approach in dealing with this concern is to model manpower only,
eliminating all weaponry from explicit consideration. With this approach, all personnel

in the campaign are weighted equally.

Utilizing the last 14 days of the manpower columnsin Tables 11.2 through

11.4, the results of Turkes methodology with marpower only are shown in Table I11.11.
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Data Set a b p o} SSR R2
ACUD | 1.39E-55 | 2.29E-56 | 6.1045 4.4721 | 2.79E+08 | 0.0771
CCUD | 9.81E+02 | 3.45E+02 | -0.7752 0.925 2.90E+08 | -0.0423
FCUD 8.64E-08 | 1.81E-08 | 0.5214 1.5614 | 1.17E+08 | 0.5713

Table I11.11. Linear regression results for manpower only. Note the similarity in the p

and g parameters to those in Table I11.7. Also, note the dightly improved fit for the
FCUD data compared to Table I11.7.

The results indicate that modeling only manpower does not significantly
affect the results of the analysis. The resulting p and g parameters are very similar to
those listed in Table I11.7. In addition, the R value decreases somewhat for the ACUD

and CCUD data, but increases dightly for the FCUD data.
f. Accuracy of Logarithmically Transformed Linear Regression

The inability of the unrestrained optimization to locate the optimal R> may
lie in the use of linear regresson with the logarithmically transformed versions of
Equations 1.1 and 1.2. As Turkes showed with his use of contour surfaces [Ref. 2],
logarithmic linear regression only estimates the best fitting values for a, b, p, and g. The
instability of using logarithmic transformations can be shown with a ssmple example.
Assume three arbitrary numbers are chosen, say 1, 10, and 100. The mean of these
numbers is obvioudy 37. However, if we logarithmically transform each number, find
the mean, and then convert back to the original scale using the exponential, the mean is

found to be 10.

The accuracy of the resultsin Table 111.7 can be evaluated by comparing
them to the actual optimal values. The actual optima p and q for a given set of weights

can be found through a combinatoric search around avisually obtained optimal region.
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[Ref. 11] The p and q parameters are assigned discrete values over a specified range and
a R vaue is caculated for each combination. The a and b parameters for each
combination are calculated by a straightforward linear regression through the origin. The
p and g values that result in the highest R? are optimal. The results of this search are

shownin Table I11.12.

Data Set a b p q SSR R2

ACUD 1.81E-35 | 1.47E-36 5.70 1.25 5.47E+08 0.2371
CCuD 3.05E+00 | 1.17E+00 -0.35 1.00 5.89E+08 0.0607
FCUD 3.07E-06 | 8.51E-07 0.40 1.40 2.73E+08 0.5768

Table 111.12. Results of combinatoric search over p and q using Bracken's weighting
criteria. Note the difference in the value of q for the ACUD data as compared to Table
11.7.

The contour surfaces of the ACUD, CCUD, and FCUD data sets using
Bracken's weighting criteria are shown in Figures 111.7 through 111.9. These surfaces
graphically portray the R values for a different combination of p and q and were created
using the method described above by incrementing p and q in steps of 0.05. [Ref. 11]
Each line represents an individua R value in increments of 0.02, and the compilation of
al of these lines creates a visual picture of the R surface. Based on these surfaces and
the results in Table 111.8, the use of linear regression on the logarithmically transformed
equations has mixed results. The actual optima p vaue for the ACUD data is 5.70,
which is the nearly the same as the value found through linear regression. However, the
actual g value is 1.25, which differs greatly from the value of 3.3356 found through linear
regression. Because of this, the optimal R? value found through linear regression on the

logarithmically transformed equations is much less than the actual optimal R of 0.2371.
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However, the results for the CCUD and FCUD data are much better. For
the CCUD data, the optimal p and q vaues are -0.35 and 1.00, which compare favorably
to the p and g values found through linear regression on the logarithmically transformed
equations. For the FCUD data, the optimal p and g values are 0.40 and 1.40, which are

also close to the linear regression values.

Contour Plot of R-Squared Surface
(ACUD Data Set)

Figure 111.7. Contour plot of R surface for ACUD data set with Bracken's weights.
Note the disparity between the optimal and estimated p and g values.
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Contour Plot of R-Squared Surface
(CCUD Data Set)

X - Turkes OptimarR<Squared
X - Actual Optimal R-Squared
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Figurel11.8. Contour plot of R surface for CCUD data set with Bracken weights. Note
the close proximity between the optimal and estimated p and q values.

Contour Plot of R-Squared Surface
(FCUD Data Set)

X - Turkes Optimal R

X - Actual Optimal R-Squareq

FigureI11.9. Contour plot of R surface for FCUD data set with Bracken weights. Note
the close proximity between the optimal and estimated p and q values.

47



B. WEIGHT OPTIMALITY

All previous analyses referenced in this thesis use a homogeneous data set created
with the weights specified in Equation 111.3. However, these weights are not based on
any rigorous criteria, and only Turkes performs any sensitivity analysis on how the
weights affect the model’s fit (see Chapter 1.B.2.d). Quite possibly, aternate weighting
criteriamay dramatically affect the fits attained by the models discussed in Chapter 111.A.
The objective of this analysis is to determine the weights for tanks, APCs, and artillery

that maximize R.
1. M ethodology
a. Objective Function

The objective function in this analysis is the R statistic. The goal of the
optimization is to maximize the objective function, which will result in a model that

provides a better fit to the data. The full objective function is shown in Equation 111.14.
Maximize: Rzzl-gé’\SSR/éSSIQ (111.14)
i i %)

where,

SSR = (CASs —a*OHgi * * OHg )2 + (CAS; —b*OHg P * OHg; %?
SST, = (CASs - mean(S; CASy))? + (CAS;i - mean(S; CASy))?

CAS; = PERSy; + TANK & * Wt + APCg; * Wapc + ARTY * Warty
CASyi = PERSys + TANKge * Wt + APCyei * Wapc + ARTYy * Warty
OHgs = PERSs;i + TANKg * Wt + APCgy * Wapc + ARTYs * Warty

OHgi = PERSyai + TANKga * Wt + APCgyqi * Wapc + ARTYga * Warty
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SSR = sum of squared residuals for day i

SST; = total sum of squares for day i

CAS = # of casualties for force x on day i

OHy; = # oh-hand for force x on day i

PERS, = # of personnel of force type x and statusy on day i
TANK,,; = # of tanks of force type x and statusy on day i
APC,yi = # of APCs of force type x and statusy on day i
ARTY,,i = # of artillery of force type x and status y on day i
Wt = tank weight

Wapc = APC weight

Warty = artillery weight

X = (s Soviet, g German)

y = (c casualties, a available forces)

a = Soviet attrition coefficient

b = German attrition coefficient

p = exponent parameter of opposing force

g = exponent parameter of friendly force

I = index of day of battle (1, 2, ..., 14)

As a baseline, personnel weights are assumed to be one in this analysis.
Therefore, the resulting tank, APC, and artillery weights are relative to personnel
weights. Separate analyses are conducted for each of the three data sets. In addition,
anaysis of the FCUD data set is conducted with the p and q parameters set to each of the

three standard Lanchester models.
b. Theoretical Summary

The following analysis employs a steepest ascent algorithm in order to
determine the optimal weights. |f R is represented by f(x), where x = (tank weight, APC
weight, artillery weight), and if f(x) is differentiable at x with a non-zero gradient, then
the gradient of f(x) is the direction of steepest ascent. [Ref. 8: p. 300] Therefore, if d
equals the gradient of f(x) and ? equals the step length, then x can be incremented using

Equation 111.15 shown below.

49



x=x+72d (111.15)

Due to the complexity of the objective function, the gradient of f(x) is
estimated numericaly. This is accomplished by incrementing each weight by a certain
distance (?), caculating the new R, and comparing it to the R from the original weight.

For instance the partial derivative of the tank weight is found as follows:

+ D0 3
- ¢

- fgx
gx

I-O

=
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« : (111.16)
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The partial derivatives dape and darty are found by incrementing x> and xa,
respectively. These three partial derivatives form the desired gradient d. In order to
calculate the R values at each step, linear regression on the logarithmically transformed
equations is used to estimate the best fitting values of the a, b, p, and g parameters

corresponding to the updated weights.

Given a starting point x and gradient d, the function f(x) can be optimized
incrementally using Equation 111.15. x is continually incremented until certain stopping
conditions are met. In this analysis, the stopping condition occurs when the difference

between the incremented objective functions is no larger than 1.00e-05.

A fina theoretica issue concerns the subject of concavity. In order to
ensure that the global optima are found, the objective function must be concave. If the
objective function is not concave, there exists a possibility that the optimization method

may find local optima and end the search before locating the globa optima. Concavity
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describes a condition in which the line segment joining any two distinct points of a
function lies below the function itself. [Ref. 8: p. 79] In this analysis, R is assumed to
be a concave function. This assumption is justified by analyzing several disparate
starting points. If all of these points converge to the same optima, then the assumption of
concavity is justified over the range of pre-selected starting values. In addition,
concavity is supported by Figures 111.7 through 111.9 and by the figures shown in Ref.

[11], which exhibit a concave appearance over the range of specified p and g values.
C. Description of Algorithm

Using a combination of steepest ascent optimization and logarithmically
transformed linear regression, the optimal weights for a given set of data are found using
the following algorithm. A flowchart of the algorithm is shown at Figure 111.10. S
PLUS software was used to execute this algorithm. A copy of the programming code is

located in Appendix A.

Stepl: Initialization:

- Select data set (ACUD, CCUD, or FCUD)

- Input starting weights: x = (tank weight, APC weight, artillery
weight)

- * Uselinear regression to determine a, b, p, g
- Define increment distance (?)

- Define search parameters (e and d)

- Define search tolerance (?)

- Define step distance (?)
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Step 2a: While (e> ?) {

- Caculate initial R2 (r2init)

- Increment tank weight by ?

- Calculate partial derivative (d) of R with respect to tank weight

- Increment APC weight by ?

- Calculate partial derivative (dapc) Of R with respect to APC weight

- Increment artillery weight by ?

- Calculate partial derivative (darty) of R with respect to artillery weight

- d = (Ch, e, dany )

- Step 2b: While (d>?) {

- Update weights (x = x + ?d)
- Calculate R (r2now)

- Increment step distance by ?
- Update weights

- Calculate new R (r2new)

- d=r2new —r2now

}

- Calculate R2 with new weights (r2incr)
- e=r2incr — r2init
}
Step 3: Record new weights and corresponding a,b,p,q parameters
Step 4: Fix a,b,p,q
Step 5: Repeat Steps 2 and 3 as needed
Step 6: Record optimal weights and corresponding a,b,p,q parameters

* Linear regression is performed prior to each R calculation to update a,b,p,q
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Start

Input

-initial weights (wt, wapc,warty)
-search tolerance (?)

-step distance (? )

@<

Regress to determine Stolr)e parameters. Calculate partia deriv
ab.p.q =) | abp.q =) ad R (r2init) g
-wt, wapc, warty

|

Fix a, b, p, gand repeat
to find final weights

i

Calculate R? with new <:| Regress with new weights <":| Recal culate weights with <:| Decrease ? by one
weights (r2incr) tofind newa, b, p, q new ? step

Calculate R2 (r2now)

Calculate R? with new <:| Inrcrease ? by
lambda (r 2new) one step

Figure 111.10. Flowchart depicting the weight optimization algorithm. The algorithm
uses a combination of steepest descent search and linear regression to locate the tank,
APC, and artillery weights that result in the best fitting model.

Theoreticaly, the weights found at Step 3 should be optimal. However,
due to the logarithmic transformation of the model, linear regression does not necessarily
result in the optima vaues for the a, b, p, and q parameters when applied to the
untransformed model. This fact, combined with manually entered stopping criteria and
tolerances, results in weights that are only close to optimal. This condition is mitigated
by applying Steps 4 through 6. In these steps, the a, b, p, and q parameters found in Step
3 are fixed, and the agorithm is reapplied without linear regression to calculate the

optimal weights.

The optimization algorithm shown above is unrestricted and may produce
negative weights. Negative weighting is not intuitively appealing, indicating that

increasing the number of personnel or a certain weapon type will actualy decrease
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combat power. Therefore, the algorithm is further restricted to allow a minimum weight
of one for tanks, APCs, and artillery. A copy of the programming code for this

adjustment is located in Appendix B.
2. Results

In addition to a direct application of the weight optimization agorithm to the
KDB, two additional extensions are provided in this section: 1) application of the model
to Lanchester’s square, linear, and logarithmic equations, and 2) application of the model

to the ACUD data of the Ardennes Campaign.
a. Unconstrained pand g

The results of the weight optimization for the Battle of Kursk data are

shown in Table 111.13. Tank weights are rounded to the nearest whole number.

Tank APC | Artillery
Data Set | Weight | Weight | Weight a b p q R2
ACUD 1 121 615 8.60E-79 | 5.53E-79 6.8383 6.8451 0.3154
CCUD 43 5 5 1.31E-05 | 6.31E-06 | -0.4044 2.039 0.0573
FCUD 4 1 1 6.04E-08 | 1.31E-08 | 0.5286 1.5858 0.5734

Table 111.13. Weight optimization results for the Battle of Kursk data. Note the increase
in R for each data set as compared to the results in Table I11.7 using Bracken’s weights.

By optimizing the weights for tanks, APCs, and artillery, and using linear
regression to estimate the a, b, p, and q parameters, the R? values for the ACUD data
show significant improvement as compared to the results in Table I11.7 using Bracken's
weights. The ACUD R improves nearly threefold, increasing from 0.1123 to 0.3154.

The CCUD R is aso higher, increasing from -0.0170 to 0.0573. The FCUD R shows
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only dlight improvement, increasing from 0.5541 to 0.5734. However, when compared to
the results of the combinatoric search in Table 111.12, the optimization of weights has less
impact. The R for the ACUD data only improves from 0.2371 to 0.3154, the R for the
CCUD data actually decreases from 0.0607 to 0.0573, and the FCUD R is nearly

identical.

Although the weight optimization improves the R value for the ACUD
data, the resulting weights are not intuitively appealing. From most historical accounts,
the Battle of Kursk was dominated by tank battles, with APCs and artillery contributing
to a lesser degree. However, the weights for the ACUD data imply that artillery was by
far the dominant weapon on the battlefield, whereas the weights for the CCUD and
FCUD data imply that tanks were more dominant. The optimal ACUD weights appear to
be a result of Germany’s large numerica advantage in APCs and artillery and
disadvantage in manpower and tanks, shown in Figures I1.2 through 11.5. Upon further
inspection, the figures revea that the Germans actually had an advantage in manpower
and tanks when considering only those forces in contact. Hence, the weighting shiftsin
favor of tanks as the level of contact is narrowed from ACUD to FCUD. This effect

reflects a more accurate representation of the Battle of Kursk.

The variations in the scale of the a and b parameters is also of interest.
The a and b parameters for the ACUD data are on the scale of 1.00e-79, far smaller than
the scale for the parameters found for the CCUD and FCUD data This correlates
negatively with the relatively high values found for the p and g parameters. In addition,
the extreme difference in scale between the parameters makes optimization more
difficult.
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b. pand g Constrained to Linear, Square, and Logarithmic Models

In thisanalysis, p and q are restricted to the three basic Lanchester models,

and the weighting methodology from Chapter 111.B.1 is applied to Equations 111.8 through

[11.13. The results of the weight optimization for the Lanchester models are shown in

Tables 111.14 through 111.16.

Tank APC | Artillery
M odel Weight | Weight | Weight a b p q R2
Linear 1 1 1 2.11E-07 | 6.07E-08 1 1 0.6187
Square 1 1 1 3.35E-02 | 1.42E-02 1 0 0.2924
Log 6 1 1 5.22E-02 | 1.27E-02 0 1 0.5375

Table 111.14. Weight optimization results for FCUD data with p and q restricted to
Lanchester linear, square, and logarithmic models. Note the high R value for the linear

mode.
Tank APC | Artillery
M odel Weight | Weight | Weight a b p g R2
Linear 1 1 1 1.04E-07 | 3.05E-08 1 1 0.0619
Square 1 1 1 8.81E-02 | 5.39E-02 1 0 0.1281
Log 217 1 1 2.99E-02 | 8.39E-03 0 1 0.0126

Table I11.15. Weight optimization results for CCUD data with p and q restricted to
Lanchester linear, square, and logarithmic models.

Tank APC | Artillery
M odée Weight | Weight | Weight a b R2
Linear 55 1 226 4.97E-08 | 2.46E-08 0.1569
Square 479 82 61 1.17E-01 | 4.24E-02 1 0 0.1043
Log 1 1 1 1.93E-02 | 8.86E-03 0 1 0.0794

Table 111.16. Weight optimization results for ACUD data with p and q restricted to
Lanchester linear, square, and logarithmic models.
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The results for the linear model with the FCUD data are significant. The
R value of 0.6187 is the best in this analysis. This suggests that the Battle of Kursk
strongly resembles the Lanchester linear model of combat when only fighting forces are
considered. Figures|ll.11 and 111.12 illustrate the model’ s results compared to the actual

attrition data

The R value for the linear model shows that the resulting p and q values
obtained in Chapter 111.B.2.afor the FCUD data are not optimal. As described in Chapter
[11.A.2.e, the reason for this appears b lie in the use of linear regression with the
logarithmically transformed versions of Equations I.1 and 1.2 . In the optimization
program, linear regression of the transformed equations is used to optimize the a, b, p,
and q parameters. Turkes and Fricker each used this same method in their analyses, and
their results were generally close to the actual optimal values. [Ref. 11] Also, the results

from

Fitted vs. Real German Casualties
(Linear Modd - FCUD Data Set)
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Figure 111.11. Fitted versus real German casualties for FCUD data set using the linear
model.
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Fitted vs. Real Soviet Casualties
(Linear Modd - FCUD Data Set)

% 20000 - ¢— Real Soviet
a & Casualties
8 15000 - —&— Fitted Spwet
S Casualties
L 10000 A

B < & o

® 5000 -

& <

g 0 T T T T T T T T T T T T VT 1

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Days

Figure 111.12. Fitted versus real Soviet casualties for FCUD data set using the linear
model.

Chapter 111.A.2.c were aso close to the actual optimal values, especialy for the CCUD
and FCUD data. However, linear regression of the transformed data using the weightsin
Table 111.13 for the linear model yields ap value of 0.5259, aq value of 1.5707, and a R
of 0.5710. Obvioudly, if linear regression was optimizing the p and g parameters, they

both should be closer to 1. This would yield a higher R? and a better fitting model.

Attempts to optimize the a, b, p, and q parameters using a steepest ascent
search as described above proved unsuccessful. In this method, al seven parameters are
optimized simultaneously with no use of linear regression. However, the widely varying
scale of the individual parameters appears to be too great to enable accurate gradients to
be determined. For instance, a numerical gradient for the seven parameters requires each
parameter to be incremented by the same distance (? from the optimization agorithm).

The relative size of this distance varies greatly when compared to a weight value of 20 or
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a b vaue of 1.00e-79. This creates a degree of instability between the parameters,
resulting in intuitively unappealing results (e.g. tank weights of 6000). Other factors that
adversely affect the optimization include user input values for step size and tolerance
limits. The choice of these values may dightly ater the results during each iteration of

the algorithm, ultimately affecting the final outcome.
C. Application of Model to Ardennes Campaign Data (ACUD Only)

This section applies the weighting methodology from Chapter 111.B to the
ACUD data for the Ardennes Campaign (see Ref. [4]: p. 421-424). Note: Only the
ACUD data is available to the author. The intent of this section is to determine how the

model performs when compared to an alternate data set.

The first step in this analysis is to establish a baseline R? measurement
using both linear regression on the logarithmically transformed data and the combinatoric
search method. Next, the weight optimization algorithm is applied to days two through
eleven of the data. These days represent the most intense period of fighting in the

campaign. [Ref. 4] The results of this anaysis are shown in Table I11.17.

Tank APC | Artillery

M ethod Weight | Weight | Weight a b p q R2
Linear 20 5 40 | 919E+03 | 9.02E+03 | 1.6428 | -1.7182 | 03232
Regression
Combinatoric| ) 5 40 | 6.70E+10 | 1.20E+10 | 1.4000 | -2.6000 | 05707
Search
Weight 20 197 6 107E+18 | 9.06E+15 | 1.8631 | -4.0347 | 0.6852
Optimization

Table 111.17. Results of Ardennes Campaign analysis. Note the large increase in
between the linear regression and combinatoric search methods.
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Upon examination of the results, a similar pattern emerges when
compared to the analysis of the KDB. Linear regression of the logarithmicaly
transformed data provides a relatively inaccurate estimate of the optima a, b, p and g
parameters, whereas the combinatoric search refines these estimates and results in much
higher . The weight optimization process improves this R somewhat, but the resulting
weights do not seem intuitive (i.e. APC weight of 197). Such unintuitive weighting also
occurred for the ACUD data in the KDB. Therefore, weight optimization results do not

appear to qualitatively improve the fit of the model to either the KDB or Ardennes data.
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V. CONCLUSIONSAND RECOMMENDATIONS

A. CONCLUSIONS

The following conclusions are based on the findings in Chapter 11.B.4 and the

results described in Chapters [11.A.1.d, I11.A.2.c, and |11.B.2.
1 Data Correlations May Reflect Lanchester Models

When analyzing historical data, the correlations that exist between variables seem
to infer which Lanchester model best fits the data. Using Bracken’s weights in Chapter
11.B.4, the correlations suggested that the square model would provide the best fit for the
ACUD data, the logarithmic model would provide the best fit for the CCUD data, and the
square model would provide the best fit for the FCUD data. These predictions were
supported by the results of the linear regression analysis from Chapter 111.A.2.c. In this
case, the models that best fit the ACUD, CCUD, and FCUD data agreed with the

predicted models from the correlation analysis.
2. Lanchester Models More Accurately Fit FCUD Data

In each section of analysis, the use of the FCUD data set resulted in a significantly
higher R value in comparison to the ACUD and CCUD data. This suggests that
Lanchester equations and their derivatives more accurately predict combat losses in cases
where only fully engaged forces are considered. This characteristic may occur more
obviously in models with large outliers, such as Day 8 in the KDB. As shown in Figures
[11.1 through I11.6, the major deficiency of the linear regresson model when considering
the ACUD and CCUD data was the inability to account for this outlier. However, by

using FCUD data, the model better accounted for the sharp increase in casualties for this
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day. Outliers such as these are better representations of the abnormalities that exist in
many battles. Rather than ignoring these outliers, the FCUD model may be able to deal

with them more readily.

3. FCUD Data Reveals Important Insight Concerning the Battle of
Kursk

When considering all combat units, the Soviets had a consistently greater
advantage in terms of total combat power. Therefore, historical scholars have assumed
that the Germans must have been far superior in terms of training and equipment in order
to come s0 close to victory. Indeed, this conclusion is supported by the German’'s
maintaining a higher attrition coefficient in each analysis. However, analyzing the FCUD
data reveals that the Germans actually averaged a greater number of personnel, tanks,
APCs, and artillery that were actually in contact. This indicates that the Germans had
more fighting combat power during the actual battles. Therefore, their relative successis

also supported by sheer numbers, not just by training and equipment.

4, Transformed Linear Regression Failsto Optimizep, g, a, and b in All
Cases

Although Fricker and Turkes used transformed linear regression with some degree
of success in their analyses, this technique does not work well with al data sets. The
process of transforming Equations 1.1 and 1.2, performing linear regression, and then
converting back to the original form is somewhat unstable and only results in nearly
optimal parameter estimates. Because of this, the weighting methodology introduced in
this thesis does not optimize the a, b, pand g parameters, although it does provide the

optimal weights for given values of a, b, p and q.
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The reason for the instability of the transformed linear regression may lie in the
different scales of the parameters being estimated. Thea and b parameters are extremely
small, on the scale of 1.00 x 10° in the ACUD case. The p and g parameters roughly
vary between —1.00 and 5.00. Combined with a logarithmic transformation, the

optimization of these parameters with linear regression becomes less than ideal.

5. Weight Optimization Does Not Greatly Affect the Fit of Lanchester
Models

Although optimizing the weights does improve the R statistic in some cases, this
improvement is minimal when compared to the actual optimal RP. For instance, the best
fit discovered in this analysis was with all weights set equal to one and resulted in an R
of 0.6187. If the weights are switched to Bracken's weights and the a, b, p, and q
parameters remain the same, the R decreases only dightly to 0.5513. This finding
supports the weight sensitivity analysis that Turkes performed. [Ref. 2] In addition, the
resulting weights do not always make intuitive sense without restricting their boundaries.
For instance, without restricting weights to be positive, the weight optimization program
from this analysis resulted in negative weights for al three weapon systems. This makes
no intuitive sense, indicating that increasing the amount of any weapon system actually

decreases combat power.

6. Optimized Weights FOR CCUD and FCUD Data Do Réeflect
Historical Accounts of the Battle of Kursk

The weights found during the weight optimization process of CCUD and FCUD
data do support historical opinion concerning the Battle of Kursk. The resulting weight
of tanks is significantly hgher than the weight of personnel, artillery, and APCs. This

supports the common belief that tanks dominated the battlefield.
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7. The Battle of Kursk Most Resemblesthe Lanchester Linear M odel for
the FCUD Data Set

As opposed to most other analyses concerning the historical validation of
Lanchester models [Ref. 2][Ref. 3][Ref. 5][Ref. 6], one of Lanchester’s base models was
found to fit the Battle of Kursk quite well. In this analysis, the Lanchester linear model
with all force weights equal to one provides the best fit to the FCUD data. As shown in
Figure V.1, this result is extremely close to the actual optimal R for these weights. This
implies that a force's casualties were a function of both friendly and enemy force levels
for engaged forces during the Battle of Kursk. However, the best fitting models for the

ACUD and CCUD data do not reflect any of Lanchester’s base models.

Contour Plot of R-Squared Surface
(FCUD Data Set)

0.6

Figure IV.1. Contour plot of R surface for FCUD data set with al force weights equal
to one. Note how close the Lanchester linear fit is to the actual optimal fit.



B. RECOMMENDATIONS FOR FURTHER RESEARCH
The following areas require additional study.
1 Extended Analysis Required for ACUD, CCUD, and FCUD Data Sets

In order to substantiate the conclusions of this thesis, additional historical data
sets must be organized into ACUD, CCUD, and FCUD subsets and analyzed to
determine the best fitting models. The Ardennes database is a prime candidate for this
type of research, given its similarity to the KDB. Analyses could include whether the
more refined data sets allow for an improved fit of the model and whether any of the base
Lanchester models fit the data well. Such analysis would assist in determining if the

conclusions above apply to other military conflicts.
2. Alternate Methods Required for Optimizingp, q,a and b

The use of transformed linear regression to determine the optimal values of the p,
g, 8 and b parameters is not ideal. In some cases, this technique worked quite well.
When using Bracken’s weights with the CCUD and FCUD data sets, the estimated values
of p, q, & and b were quite close to the optima (see Figures 111.8 and I11.9). However,
with the al weights set equal to one, the estimated values were much farther from the
optima. This inconsistency is troublesome and requires the use of additional contour
surface analysis to verify that the estimated parameters from regression are indeed close
to the optima. Consequently, the development of an improved method of optimizing p, q,
a, and b simultaneously would eliminate the need for this additional step. Ideally, this
new method could be used along with the weight optimization program introduced in this

thesis to optimize all unknown parameters.
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APPENDIX A. WEIGHT OPTIMIZATION PROGRAM
(UNCONSTRAINED)

### Al progranmm ng was conpl eted using the S-Plus statistical package. The
### foll owi ng conputer code is provided as a reference only and may only prove
### useful to those parties familiar with S-Plus and the wei ghting optimization

### process described in Chapter I11.B. Al coments are in bold print.
set <- dat # input data

set2 <- dat2

wei ghts <- ¢(1,1,1) # initialize weights

W < 1

W <- weights[1]

Wapc <- wei ghts[ 2]

Warty <- wei ghts[ 3]

newparam <- regr(set,set2, W, Wapc, Warty) # regression to find a,b,p,q
a <- newparani 1]

b <- newpar ani 2]

p <- newparani 3]

g <- newpar anf 4]
delta <- 0.1

step <- 1000
tol <- 1le-005
epsilon <- 100

initialize increnent distance (delta)
initialize step distance (Ilanbda)
initialize tolerance |evel

initialize difference between initial R2
and i ncrenmented R2

H*HHH

while(epsilon > tol) {
W best < W # record "best" weights
Wapcbest <- Wapc
Wartybest <- Warty

r2next <- 1 # initialize r2next, r2now, |anbda

r2now <- 0

| anbda <- 10000

diff <- 100 # diff = difference between new R2 and initial R2

r2init < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q)) # calculate
initial R

####Cal cul ate partial derivatives

newparam <- regr(set, set2, W + delta, Wapc, Warty) # regression to

find a,b,p,q

a <- newparanf 1]

b <- newparani 2]

p <- newparani 3]

<- newpar ani 4]

wtderiv <- (rsquare(set, c(W, W + delta, Wapc, Warty, a, b, p, q)) -
r2init)/delta # partial derivative with respect to tank wei ght

o]

newparam <- regr(set, set2, W, Wapc + delta, Warty) # regression to
find a,b,p,q

<- newpar anf 1]

<- newpar ani 2]

newpar anf 3]

<- newpar ani 4]

QT To
AN
|

wapcderiv <- (rsquare(set, c(W, W, Wapc + delta, Warty, a, b, p, q)) -
r2init)/delta # partial derivative with respect to APC wei ght

newparam <- regr(set, set2, W, Wapc, Warty + delta) # regression to
find a,b,p,q
a <- newparani 1]
b <- newparani 2]
p <- newpar ani 3]
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}

g <- newparani 4]

wartyderiv <- (rsquare(set, c(W, W, Wapc, Warty + delta, a, b, p, q)) -
r2init)/delta # partial derivative with respect to artillery weight

####Det erm ne | anbda (step di stance)
while(diff > tol) {
newparam <- regr(set,set2, W + lanbda * wderiv, Wapc + | anbda * wapcderiv,
Warty + lanbda * wartyderiv) # regression to find
a,b,pq
a <- newparani 1]
b <- newparani 2]
p <- newpar ani 3]
g <- newparani 4]
#
r

cal cul ate current R2
2now <- rsquare(set, c(W, W + lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv, a, b, p, Q))

| anbda <- | anbda + step

newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv) # regression
to find a,b,p,q
a <- newparani 1]
b <- newpar ani 2]
p <- newparani 3]
g <- newpar ani 4]
#
r

cal cul ate new R2
2next < rsquare(set, c(W, W + lanbda * wtderiv, \Wapc + | anbda *
wapcderiv, Warty + |anmbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now # cal cul ate new difference
}
|l anbda <- | anbda - step # record best |anbda
W <- W + lanbda * wtderiv # cal cul ate new wei ghts using | anbda

Wapc <- Wapc + | anbda * wapcderiv

Warty <- Warty + |anbda * wartyderiv

newparam <- regr(set,set2, W, Wapc, Warty) # regression to find a,b,p,q
a <- newparani 1]

b <- newpar ani 2]

p <- newpar ani 3]

g <- newparani 4]

r2incr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, q)) #cal cul ate R2
with new wei ghts
epsilon <- r2incr - r2init # cal cul ate new epsilon

#### record best weights

W <- W best

Wapc <- WWapchest

Warty <- Wartybest

newparam <- regr(set,set2, W, Wapc, Warty) # regression to determ ne new

O T TO

a,b,p,q
<- newpar anf 1]
<- newpar anf 2]
<- newpar ani 3]
<- newpar ani 4]
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HHH R A A A AL A
#H#H##H#HAF X a, b, p, q and optim ze wei ght s agai n######HARHHAHHHAHHTRHHTRHHARHHE
A

step <- 100
epsilon <- 100
whil e(epsilon > tol) {
W best < W # record "best" weights
Wapcbest <- Wapc
Wartybest <- Warty
r2next <- 1 # initialize r2next, r2now, |anbda, diff
r2now <- 0
| anbda < step
diff <- 100
r2init < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))

####Cal cul ate partial derivatives

wtderiv <- (rsquare(set, c(W, W + delta, Wapc, Warty, a, b, p, q)) -
r2init)/delta

wapcderiv <- (rsquare(set, c(W, W, Wapc + delta, Warty, a, b, p, q)) -
r2init)/delta

wartyderiv <- (rsquare(set, c(W, W, Wapc, Warty + delta, a, b, p, q)) -
r2init)/delta

####Det er mi ne | anbda
while(diff >tol ) {
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, q))
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now

}
|l anbda <- | anbda - step # record best |anbda
W <- W + lanbda * wtderiv # cal cul ate new wei ghts using | anbda
Wapc <- Wapc + | anbda * wapcderiv
Warty <- Warty + |anbda * wartyderiv
r2incr < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q)) #cal cul ate R2
with new wei ghts
epsilon <- r2incr - r2init
}
W <- W best
Wapc <- Wapcbest
Warty <- Wartybest
r2regr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, q)) #calculate final R2
with new wei ghts
####record optimal paraneters
final <- c(Wh, W, Wapc, Warty, a, b, p, g, r2regr)
final
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APPENDIX B. WEIGHT OPTIMIZATION PROGRAM
(CONSTRAINED TO POSITIVE WEIGHTYS)

### Al progranmm ng was conpl eted using the S-Plus statistical package. The
### foll owi ng conputer code is provided as a reference only and may only prove
### useful to those parties familiar with S-Plus and the wei ghting optimization

### process described in Chapter I11.B. Al coments are in bold print.
set <- dat # input data

set2 <- dat2

wei ghts <- ¢(1,1,1) # initialize weights

W < 1

W <- weights[1]

Wapc <- wei ghts[ 2]

Warty <- wei ghts[ 3]

newparam <- regr(set,set2, W, Wapc, Warty) # regression to find a,b,p,q
a <- newparani 1]

b <- newpar ani 2]

p <- newparani 3]

g <- newpar ani 4]

delta <- .1 # initialize increment distance (delta)

step <- 1000 # initialize step distance (I|anbda)

tol <- l1le-005 # initialize tolerance |evel

epsilon <- 100 # initialize difference between initial R2 and

increnented R2 (epsilon)

while(epsilon > tol) {
W best < W # record "best" weights
Wapcbest <- Wapc
Wartybest <- Warty
W New <- 0 # initialize tenp variabl es
WapcNew <- 0
VartyNew <- 0O

r2next < 1 # initialize r2next, r2now, |anbda, diff

r2now <- 0

| anbda <- step

diff <- 100 # diff = difference between new R2 and initial R2

r2init < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q)) # calculate
initial R2

####Cal cul ate partial derivatives

newparam <- regr(set, set2, W + delta, Wapc, Warty) # regression to
find a,b,p,q

a <- newparanf 1]

b <- newparani 2]

newpar anf 3]

O T
N
1

<- newpar ani 4]
wtderiv <- (rsquare(set, c(W, W + delta, Wapc, Warty, a, b, p, q)) -
r2init)/delta # partial derivative with respect to tank weight

newparam <- regr(set, set2, W, Wapc + delta, Warty) # regression to
find a,b,p,q

a <- newparani 1]

b <- newpar ani 2]

p <- newpar ani 3]

<- newpar ani 4]

wapcderiv <- (rsquare(set, c(W, W, Wapc + delta, Warty, a, b, p, q)) -

r2init)/delta # partial derivative with respect to APC wei ght

o)

newparam <- regr(set, set2, W, Wapc, Warty + delta) # regression to
find a,b,p,q
a <- newparani 1]
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b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

wartyderiv <- (rsquare(set, c(W, W, Wapc, Warty + delta, a, b, p, q)) -
r2init)/delta # partial derivative with respect to artillery weight

####Det er mi ne | anbda and new wei ghts (nunbers indicate required logic tests)

###1 — all partial derivatives positive
if(wderiv > 0 & wapcderiv > 0 & wartyderiv > 0) {
while(diff > tol ) {

newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]
b <- newparani 2]
p <- newparani 3]
g <- newpar ani 4]
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))

| anbda <- | anbda + step

newparam <- regr(set,set2, W + |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]

b <- newpar ani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next <- rsquare(set, c(W, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

I}an‘oda < lanbda - step # record best |anbda

W <- W + lanbda * wtderiv # cal cul ate new wei ghts using | anbda

Wapc <- Wapc + | anbda * wapcderiv

Warty <- Warty + |anbda * wartyderiv

newparam <- regr(set,set2, W, Wapc, Warty) # regression to find a, b, p,q

a <- newparani 1]

b <- newpar ani 2]

p <- newpar ani 3]

g <- newparani 4]

r2incr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, q)) #calculate R2
wi th new wei ghts

epsilon <- r2incr - r2init

###2 — negative partial derivative for artillery
if(wderiv > 0 & wapcderiv > 0 & wartyderiv < 0)

WartyTenp <- Warty + | anbda * wartyderiv # record tenporary weight

while(diff > tol & & WartyTenp > 1) {
newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]
b <- newparani 2]
p <- newparani 3]
g <- newparani 4]
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv, a, b, p, q))
| anbda <- | anbda + step
newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]
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b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next < rsquare(set, c(W, W + |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))

diff <- r2next - r2now

WartyTenp <- Warty + |l anbda * wartyderiv

}
while(diff > tol & WartyTenp <= 1) {

Varty <- 1
newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, \Warty) # regression to find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))

| anbda <- | anbda + step

newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty) # regression to find a,b,p,q
a <- newparanf 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next <- rsquare(set, c(W, W + |anbda * wderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))

diff <- r2next - r2now

I}an‘oda < lanbda - step # record best | anbda
W <- W + lanbda * wtderiv # cal cul ate new wei ghts using | anbda
Wapc <- Wapc + | anbda * wapcderiv
WartyNew <- Warty + lanbda * wartyderiv
if (WartyNew > 1) {
Warty <- Warty + lanbda * wartyderiv

}
if (WartyNew <= 1) {
Warty <- 1

%ewparam <- regr(set,set2, W, Wapc, Warty) # regression to find a,b,p,q
a <- newparani 1]

b <- newpar ani 2]

p <- newpar ani 3]

g <- newparani 4]

r2incr < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))

#cal culate R2 wi th new wei ghts

epsilon <- r2incr - r2init

###3}; — negative partial derivative for APCs
if(wderiv > 0 & wartyderiv > 0 & wapcderiv < 0) {

WapcTenp <- Wapc + | anbda * wapcderiv

while(diff > tol &% WapcTenp > 1) {
newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |anmbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]
b <- newpar ani 2]
p <- newparani 3]
g <- newpar ani 4]
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, q))
| anbda <- | anbda + step
newparam <- regr(set,set2, W + |anbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
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a <- newparani 1]
b <- newparani 2]

p <- newpar ani 3]

newpar anf 4]

r2next <- rsquare(set, c(W, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv, a, b, p, Q))

diff <- r2next - r2now

WapcTenp <- Wapc + | anbda * wapcderiv

feo)
N
1

}
while(diff > tol && WapcTenp <= 1) {

Wapc <- 1
newparam <- regr(set,set2, W + |lanmbda * wtderiv, , Warty + | anbda *
war t yderiv) # regression to find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2now <- rsquare(set, c(W, W + |lanbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, Qq))

| anbda <- | anbda + step

newparam <- regr(set,set2, W + lanbda * wtderiv, Wapc, Warty +

| anbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

}
| anbda <- | anbda - step # record best | anbda
W <- W + |anbda * wtderiv # cal cul ate new wei ghts using | anbda
Warty <- Warty + lanbda * wartyderiv
WapcNew <- Wapc + | anbda * wapcderiv
if (WapcNew > 1) {
Wapc <- Wapc + | anbda * wapcderiv

if (WapcNew <= 1) {
Wapc <- 1
}

newparam <- regr(set,set2, W, Wapc, Warty) # regression to find a,b,p,q

a <- newpar anf 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2incr < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q)) #calculate R2
with new wei ghts

epsilon <- r2incr - r2init

###4 — negative partial derivative for tanks
i f(wapcderiv > 0 & wartyderiv > 0 & wderiv < 0) {

W Tenp <~ W + |anbda * wtderiv

while(diff > tol & WTenmp > 1) {
newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
a <- newparanf 1]
b <- newparani 2]
p <- newparani 3]
g <- newpar ani 4]
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))
WNew <- W + |lanbda * wtderiv
| anbda <- |anbda + step
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newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))

diff <- r2next - r2now

W Tenp <<« W + |anbda * wtderiv

}
while(diff > tol & WTenp <= 1) {

W <- 1
newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty +
| anbda * wartyderiv) # regression to find a,b,p,q

a <- newparanf 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2now <- rsquare(set, c(W, W, Wapc + |anbda * wapcderiv, Warty +
|l anbda * wartyderiv, a, b, p, q))

|l anbda <- | anbda + step

newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty +

| anbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]

b <- newpar ani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +
| anbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

I}an‘oda < lanbda - step # record best |anbda
W New <- W + |anmbda * wtderiv
Wapc <- Wapc + | anbda * wapcderiv
Warty <- Warty + |anbda * wartyderiv
if (WNew > 1) {
W <- W + |anbda * wtderiv
}
i

f (WNew <= 1) {
W < 1

i]ewparam <- regr(set,set2, W, Wapc, Warty) #regression to find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newparani 3]

g <- newparani 4]

r2incr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))#calculate R2
with new wei ghts

epsilon <- r2incr - r2init

###g — negative partial derivative for APCs and artillery
if(wderiv > 0 & wapcderiv < 0 & wartyderiv < 0) {

WapcTenp <- Wapc + | anbda * wapcderiv

WartyTenp <- Warty + lanbda * wartyderiv

while(diff > tol && WapcTenp > 1 && WartyTenp > 1) {
newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
a <- newparanf 1]
b <- newparani 2]
p <- newparani 3]
g <- newpar ani 4]
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r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc+ | anbda *
wapcderiv, Warty +l anbda * wartyderiv, a, b, p, q))

WapcNew <- Wapc + | anbda * wapcderiv

WartyNew <- Warty + |lanbda * wartyderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W + |anbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]

b <- newpar ani 2]

p <- newparani 3]

g <- newparani 4]

r2next < rsquare(set, c(W, W + lanbda * wderiv, Wapc+ | anbda *
wapcderiv, Warty +l anbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

WapcTenp <- Wapc + | anbda * wapcderiv

WartyTenp <- Warty + |lanbda * wartyderiv

5

ile(diff >tol & & WapcTenp <= 1 && WartyTenmp > 1) {

Wapc <- 1

newparam <- regr(set,set2, W + |lanbda * wtderiv, Wapc, Varty +
| anbda * wartyderiv) # regression to find a,b,p,q
a <- newparanf 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2now <- rsquare(set, c(W, W + |lanbda * wderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, q))

WartyNew <- Warty + |lanbda * wartyderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W + |lanbda * wtderiv, Wapc, Varty +
| anbda * wartyderiv) # regression to find a,b,p,q
a <- newparanf 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next < rsquare(set, c(W, W + lanbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

WartyTenp <- Warty + lanbda * wartyderiv

while(diff > tol &% WapcTenp > 1 && WartyTenp <= 1) {
Warty <- 1
newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty) # regression to find a,b,p,q
a <- newparan 1]
b <- newpar ani 2]
p <- newparani 3]
g <- newpar ani 4]
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc+ | anbda
wapcderiv, Warty,a, b, p, q))
WapcNew <- WAapc + | anbda * wapcderiv
| anbda <- | anbda + step
newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda
wapcderiv, Warty) # regression to find a,b,p,q
a <- newparani 1]
b <- newpar ani 2]
p <- newparani 3]
g <- newpar ani 4]
r2next < rsquare(set, c(W, W + lanbda * wtderiv, Wapc+ | anbda *
wapcderiv, Warty, a, b, p, q))
diff <- r2next - r2now
WapcTenp <- Wapc + | anbda * wapcderiv

*

*
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while(diff > tol &% WapcTenp <= 1 && WartyTenp <= 1) {
Wapc <- 1
VWarty <- 1
newparam <- regr(set,set2, W + lanbda * wderiv, Wapc, Warty)
#regression to find a,b,p,q
a <- newparanf 1]
b <- newparani 2]
p <- newparani 3]
<- newpar ani 4]
r2now <- rsquare(set, c(W, W + lanbda * wderiv, Wapc, Warty , a,
b, p, a))
| anbda <- | anbda + step
newparam <- regr(set,set2, W + |lanbda * wtderiv, Wapc, Warty)
#regression to find a, b, p,q

o]

a <- newparani 1]
b <- newpar ani 2]
p <- newpar ani 3]

g <- newpar ani 4]
r2next <- rsquare(set, c(W, W + |anbda * wtderiv, Wapc, Warty , a,
b, p, 9))
diff <- r2next - r2now
I}anrbda < lanbda - step # record best | anbda
W <- W + lanbda * wtderiv # cal cul ate new wei ghts using | anbda

WapcNew <- WAapc + | anbda * wapcderiv
WartyNew <- Warty + |lanmbda * wartyderiv

if (WapcNew > 1) {
Wapc <- Wapc + | anbda * wapcderiv

if (WartyNew > 1) {
Warty <- Warty + |anbda * wartyderiv

}
if (WapcNew <= 1) {
Wapc <- 1

}
if (WartyNew <= 1) {
Warty <- 1

%ewparam <- regr(set,set2, W, Wapc, Warty) # regression to find a,b,p,q
a <- newparani 1]

b <- newparani 2]

p <- newpar ani 3]

g <- newparani 4]

r2incr < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))

#cal culate R2 wi th new wei ghts

epsilon <- r2incr - r2init

###g — negative partial derivative for APCs and tanks
if(wderiv < 0 & wapcderiv < 0 & wartyderiv > 0) {
W Tenp << W + [ anbda * wderiv
WapcTenp <- Wapc + | anbda * wapcderiv
while(diff > tol & WTenp > 1 & WapcTenp > 1 ) {
newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv) # regression to find
a, b,pq
a <- newparani 1]
b <- newparani 2]
p <- newparani 3]
<- newpar ani 4]
r2now <- rsquare(set, c(W, W+ |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Qq))
WNew <- W + |lanbda * wtderiv
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WapcNew <- WAapc + | anbda * wapcderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc + | anbda *

wapcderiv, Warty + |anbda * wartyderiv) # regression to find
a,b,p,q

a <- newparanf 1]

b <- newparani 2]

p <- newparani 3]

<- newpar ani 4]

r2next <- rsquare(set, c(W, W + |lanbda * wtderiv, Wapc + | anbda *

wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))

diff <- r2next - r2now

W Tenp <~ W + |anbda * wtderiv

WapcTenp <- Wapc + | anbda * wapcderiv

o]

}
while(diff > tol & WTenp > 1 & WapcTenp <= 1) {

Wapc <- 1
newparam <- regr(set,set2, W + lanbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv) # regression to find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newpar ani 3]

g <- newpar ani 4]

r2now <- rsquare(set, c(W, W + |anbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, q))

W New <- W + |anbda * wderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W + lanbda * wtderiv, Wapc, Warty +

| anbda * wartyderiv) # regression to find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newpar ani 3]

g <- newpar ani 4]

r2next <- rsquare(set, c(W, W + |lanbda * wderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, Qq))

diff <- r2next - r2now

W Tenp << W + | anbda * wtderiv

}
while(diff > tol & WTenmp <= 1 & WapcTemp > 1) {

W < 1
newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty +
| anbda * wartyderiv) # regressionto find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2now <- rsquare(set, c(W, W, Wapc + |anbda * wapcderiv, Warty +
| anbda * wartyderiv, a, b, p, q))

WapcNew <- Wapc + | anbda * wapcderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty +

| anbda * wartyderiv) # regression to find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next < rsquare(set, c(W, W, Wapc + |l anbda * wapcderiv, Warty +
| anbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

WapcTenp <- Wapc + | anbda * wapcderiv

}
while(diff > tol & W Tenp <= 1 && WapcTenp <= 1) {
W <- 1
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Wapc <- 1
newparam <- regr(set,set2, W, Wapc, Warty + |anbda * wartyderiv)
# regression to find a,b,p,q
a <- newparani 1]
b <- newparani 2]
p <- newpar ani 3]
<- newpar ani 4]
r2now <- rsquare(set, c(W, W, Wapc, Warty + |anbda * wartyderiv, a,
b, p,
Ian‘gdan | anbda + step
newparam <- regr(set,set2, W, Wapc, Warty + |anbda * wartyderiv)
# regression to find a,b,p,q

o)

a <- newparani 1]
b <- newparani 2]

p <- newparani 3]

<- newpar ani 4]

r2next <- rsquare(set, c(W, W, Wapc, Warty + |anbda * wartyderiv,
a, b, p, q))

diff <- r2next - r2now

o]

}
| anbda <- |anbda - step # record best | anbda
W New <- W + |anbda * wderiv
WapcNew <- Wapc + | anbda * wapcderiv
Warty <- Warty + lanbda * wartyderiv # cal cul ate new wei ghts using | anbda
if (WapcNew > 1) {
Wapc <- Wapc + | anbda * wapcderiv
}

if (WNew > 1) {

W <- W + | anbda * wtderiv
}
i

f (WapcNew <= 1) {
Wapc <- 1

}
if (WNew <= 1) {
W o< 1

%lewparam <- regr(set,set2, W, Wapc , Warty) # regression to find a,b,p,q
a <- newparani 1]
b <- newpar ani 2]
p <- newpar ani 3]
g <- newparani 4]
r2incr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))
#cal culate R2 wi th new wei ghts
epsilon <- r2incr - r2init

###7 — negative partial derivative for tanks and artillery
if(wderiv < 0 & wapcderiv > 0 & wartyderiv < 0) {
W Tenp << W + | anbda * wderiv
WartyTenp <- Warty + |lanbda * wartyderiv
while(diff > tol & WTenp > 1 & WartyTenp > 1 ) {
newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv) # regression to find
a,b,pq
a <- newparani 1]
b <- newparani 2]
p <- newparani 3]
<- newpar ani 4]
r2now <- rsquare(set, c(W, W+ |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv, a, b, p, Q))
WNew <- W + |anmbda * wtderiv
WartyNew <- Warty + |lanbda * wartyderiv
| anbda <- | anbda + step

Keo)
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newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv) # regression to find a,b,p,q
a <- newparani 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next <- rsquare(set, c(W, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

W Tenp <<« W + |anbda * wtderiv

WartyTenp <- Warty + | anbda * wartyderiv

}
while(diff > tol & WTenp > 1 && WartyTenp <= 1) {

Warty <- 1
newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty) # regression to find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newpar ani 3]

g <- newpar ani 4]

r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))

WNew <- W + lanmbda * wtderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty) # regression to find a,b,p,q
a <- newparani 1]

b <- newparani 2]

p <- newpar ani 3]

g <- newpar ani 4]

r2next <- rsquare(set, c(W, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))

diff <- r2next - r2now

W Tenp << W + | anbda * wderiv

}
while(diff > tol & WTenp <= 1 && WartyTenp > 1) {

W < 1
newparam <- regr(set,set2, W, Wapc + | anbda * wapcderiv, Warty +
| anbda * wartyderiv) # regression to find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newpar ani 3]

g <- newpar ani 4]

r2now <- rsquare(set, c(W, W, Wapc + |anbda * wapcderiv, Warty +
| anbda * wartyderiv, a, b, p, Qq))

WartyNew <- Warty + |anbda * wartyderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty +

| anbda * wartyderiv) # regression to find a,b,p,q

a <- newparani 1]

b <- newparanf 2]

p <- newpar ani 3]

g <- newpar ani 4]

r2next <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +
| anbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

WartyTenp <- Warty + |l anbda * wartyderiv

}
while(diff > tol & WTenp <= 1 && WartyTenp <= 1) {
W < 1
Warty <- 1
newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty )
# regression to find a,b,p,q
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a <- newparani 1]
b <- newparani 2]
p <- newpar ani 3]
newpar anf 4]
r2now <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty, a,
b, p, a))
| anbda < | anbda + step
newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty)
# regression to find a,b,p,q

feo)
N
1

a <- newparani 1]
b <- newparani 2]

p <- newpar anj 3]

<- newpar ani 4]

r2next <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty, a,
b, p, a))

diff <- r2next - r2now

o)

I}anbda < lanbda - step # record best |anbda
W New <- W + |anbda * wderiv

Wapc <- Wapc + | anbda * wapcderiv

WartyNew <- Warty + |lanbda * wartyderiv

if (WartyNew > 1) {
Warty <- Warty + |anbda * wartyderiv
}

if (WNew > 1) {

W <- W + |lanbda * wtderiv
}
i

f (WartyNew <= 1) {
Varty <- 1

§f (W New <= 1) {
W o< 1
}

newparam <- regr(set,set2, W, Wapc, Warty) # regression to find a, b, p,q
a <- newparanf 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2incr < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))

#cal cul ate R2 with new wei ghts

epsilon <- r2incr - r2init

###8 — all partial derivatives are negative
if(wderiv < 0 & wapcderiv < 0 & wartyderiv < 0) {
W Tenp <~ W + |anbda * wtderiv
WapcTenp <- Wapc + | anbda * wapcderiv
WartyTenp <- Warty + |l anbda * wartyderiv
while(diff >tol & WTenp > 1 & & WapcTenp > 1 && WartyTenp > 1) {
newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv) # regression to find
a,b,p,q
a <- newparani 1]
b <- newparani 2]
p <- newparani 3]
<- newpar anf 4]
r2now <- rsquare(set, c(W, W+ |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))
W New <- W + |anbda * wderiv
WapcNew <- Wapc + | anbda * wapcderiv
WartyNew <- Warty + |lanbda * wartyderiv
| anbda <- | anmbda + step

o]
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newparam <- regr(set,set2, W + |lanbda * wderiv, Wapc + | anbda *

wapcderiv, Warty + |anbda * wartyderiv) # regression to find
a,b,pq
a <- newparani 1]
b <- newparani 2]
newpar anf 3]

folho]
N
'

<- newpar ani 4]

r2next <- rsquare(set, c(W, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Qq))

diff <- r2next - r2now

W Tenp << W + | anbda * wderiv

WapcTenp <- Wapc + | anbda * wapcderiv

WartyTenp <- Warty + |l anbda * wartyderiv

:f/\hile(diff > tol & WTenp > 1 && WapcTenmp > 1 && WartyTenp <= 1) {
Warty <- 1
newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty) # regression to find a,b,p,q
a <- newparanf 1]
b <- newparani 2]
p <- newparani 3]
g <- newpar ani 4]
r2now <- rsquare(set, c(W, W+ |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))
W New <- W + |anbda * wderiv
WapcNew <- Wapc + | anbda * wapcderiv
| anbda <- | anbda + step
newparam <- regr(set,set2, W + |anbda * wderiv, Wapc + | anbda *
wapcderiv, Warty) # regression to find a,b,p,q
a <- newparani 1]
b <- newparani 2]
p <- newpar ani 3]
g <- newpar ani 4]
r2next < rsquare(set, c(W, W + |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))
diff <- r2next - r2now
W Tenp << W + | anbda * wtderiv
WapcTenp <- Wapc + | anbda * wapcderiv

}
while(diff > tol & WTenp > 1 & WapcTenp <= 1 && WartyTenp > 1 ) {

Wapc <- 1
newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv) # regression to find a,b,p,q

a <- newparani 1]

b <- newparani 2]

p <- newpar ani 3]

g <- newparani 4]

r2now <- rsquare(set, c(W, W+ |lanmbda * wtderiv, Wapc, Warty +
|l anbda * wartyderiv, a, b, p, Q))

WNew <- W + |anmbda * wtderiv

WartyNew <- Warty + |lanbda * wartyderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc , Warty +
| anbda * wartyderiv) # regression to find a,b,p,q

a <- newparani 1]

b <- newpar ani 2]

p <- newparani 3]

g <- newpar ani 4]

r2next < rsquare(set, c(W, W + lanbda * wtderiv, Wapc, Warty +
|l anbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

W Tenp <~ W + |anbda * wtderiv

WartyTenp <- Warty + |l anbda * wartyderiv
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}

while(diff > tol & WTenmp <= 1 && WapcTenp > 1 && WartyTenmp > 1 ) {
W < 1
newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty +

a
b
p
q
r

| anbda * wartyderiv) # regression to find a,b,p,q

<- newpar ani 1]
<- newpar ani 2]
<- newpar ani 3]
<- newpar ani 4]
2now <- rsquare(set, c(W, W, Wapc + |anbda * wapcderiv, Warty +

| anbda * wartyderiv, a, b, p, q))

WapcNew <- WAapc + | anbda * wapcderiv

WartyNew <- Warty + |anbda * wartyderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty +

a
b
p
q
r

| anbda * wartyderiv) # regression to find a,b,p,q

<- newpar ani 1]
<- newpar anf 2]
<- newpar ani 3]
<- newpar ani 4]
2next < rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +

| anbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now
WapcTenp <- Wapc + | anbda * wapcderiv
WartyTenp <- Warty + lanbda * wartyderiv

}
while(diff > tol & WTenp > 1 && WapcTenp <= 1 && WartyTenp <= 1 ) {

Wapc <- 1

Warty <- 1

newparam <- regr(set,set2, W + |anbda * wtderiv, Wapc, Warty)

# regression to find a,b,p,q

a <- newparanf 1]

b <- newparani 2]

p <- newparani 3]

g <- newpar ani 4]

r2now <- rsquare(set, c(W, W+ |anbda * wtderiv, Wapc, Warty, a, b,
,q4)

W New <- W + |anbda * wderiv

| anbda <- | anbda + step

newparam <- regr(set,set2, W + lanbda * wtderiv, Wapc , Warty)

p

a
b
p

o]

<-
<-
<-
<-

#regression to find a, b, p,q
newpar anf 1]
newpar anf 2]
newpar anf 3]
newpar anf 4]

r2next <- rsquare(set, c(W, W+ |anbda * wtderiv, Wapc, Warty, a, b,
, q)

diff <- r2next - r2now

W Tenp <~ W + |anbda * wtderiv

p

}
while(diff > tol & WTenmp <= 1 &% WapcTenp > 1 && WartyTenp <= 1) {

W < 1
VWarty <- 1
newparam <- regr(set,set2, W, Wapc + |anbda * wapcderiv, Warty)
# regression to find a,b,p,q
a <- newparanf 1]
b <- newparani 2]
p <- newparani 3]
g <- newpar ani 4]

r2now <- rsquare(set, c(W, W, Wapc + |anbda * wapcderiv, Warty, a,
b, p, a))

WapcNew <- Wapc + | anbda * wapcderiv

| anbda <- | anbda + step
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newparam <- regr(set,set2, W, Wapc + | anbda * wapcderiv, Warty)
# regression to find a,b,p,q
a <- newparani 1]
b <- newparan 2]
p <- newparani 3]
newpar anf 4]
r2next <- rsquare(set, c(W, W, Wapc + |l anbda * wapcderiv, Warty, a,
b, p, a))
diff <- r2next - r2now
WapcTenp <- Wapc + | anbda * wapcderiv

o]
N
'

while(diff > tol && W Tenp <= 1 && WapcTenp <= 1 && WartyTenp > 1 ) {
W <- 1
Wapec <- 1
newparam <- regr(set,set2, W, Wapc, Warty + |anbda * wartyderiv)
# regression to find a,b,p,q
a <- newparani 1]
b <- newparani 2]
p <- newpar ani 3]
<- newpar ani 4]
r2now <- rsquare(set, c(W, W, Wapc, Warty + | anbda * wartyderiv, a,
b, p, a))
WartyNew <- Warty + lanbda * wartyderiv
| anbda <- | anbda + step
newparam <- regr(set,set2, W, Wapc, Warty + |anbda * wartyderiv)
# regression to find a,b,p,q

o)

a <- newparani 1]
b <- newparani 2]

p <- newpar ani 3]

<- newpar ani 4]

r2next <- rsquare(set, c(W, W, Wapc, Warty + |lanbda * wartyderiv,
a, b, p, q))

diff <- r2next - r2now

WartyTenp <- Warty + |l anbda * wartyderiv

o)

}

if(diff >tol & WTenp <= 1 && WapcTenp <= 1 && WartyTenp <= 1) {
W < 1
Wapc <- 1
Warty <- 1

}

| anbda <- | anbda - step
WNew <- W + |lanbda * wtderiv
WapcNew <- Wapc + | anbda * wapcderiv
WartyNew <- Warty + |lanbda * wartyderiv
if (WapcNew > 1) {

Wapc <- Wapc + | anbda * wapcderiv

if (WartyNew > 1) {
Warty <- Warty + lanbda * wartyderiv

if (WNew > 1) {
W <- W + |lanbda * wtderiv

}

if (VWapcNew <= 1) {
Wapc <- 1

}

if (WartyNew <= 1) {
Warty <- 1

}

if (WNew <= 1) {
W < 1

}



newparam <- regr(set,set2, W, Wapc, Warty) # regression to find a, b, p,q
a <- newparani 1]
b <- newparani 2]
p <- newparani 3]
g <- newpar ani 4]
r2incr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, qQ))
#cal culate R2 with new wei ghts
epsilon <- r2incr - r2init

BRI R TR R R R R R B R R T R R R R R
#HH#HHAHF X a, b, p, g and opti m ze wei ght SHH#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHBHHHHHH A H AR R R R R H A H R R R R R H AR R R

####r ecord best weights

W <- W best

Wapc <- Wapchest

Warty <- Wartybest

newparam <- regr(set,set2, W, Wapc, Warty) # regression to determi ne new a,b,p,q

a

b
p
q

<- newpar anf 1]
<- newpar anf 2]
<- newpar ani 3]
<- newpar ani 4]

step <- 100
epsilon <- 100
whil e(epsilon > tol) {

W best < W # record "best" weights

Wapcbest <- WApc

Wartybest <- Warty

W New <- 0O

WapcNew <- 0

VartyNew <- 0O

r2next <- 1 # initialize r2next, r2now, |anbda

r2now <- 0

| anbda < step

diff <- 100 # diff = difference between new R2 and initial R2
r2init < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))

####Cal cul ate partial derivatives

wderiv <- (rsquare(set, c(W, W + delta, Wapc, Warty, a, b, p, q)) -
r2init)/delta

wapcderiv <- (rsquare(set, c(W, W, Wapc + delta, Warty, a, b, p, q)) -
r2init)/delta

wartyderiv <- (rsquare(set, c(W, W, Wapc, Warty + delta, a, b, p, q)) -
r2init)/delta

#i###Det er m ne | anbda

##1 — all partial derivatives positive

if(wderiv > 0 & wapcderiv > 0 & wartyderiv > 0) {
while(diff > tol ) {

r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))

| anbda <- | anbda + step

r2next <- rsquare(set, c(W, W + |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))

diff <- r2next - r2now
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| anbda <- |anbda - step # record best | anbda
W <- W + |anbda * wtderiv # cal cul ate new wei ghts using | anbda
Wapc <- Wapc + | anbda * wapcderiv
Warty <- Warty + lanbda * wartyderiv
r2incr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))

#cal culate R2 wi th new wei ghts
epsilon <- r2incr - r2init

###2 — negative partial derivative for artillery
if(wderiv > 0 & wapcderiv > 0 & wartyderiv < 0) {

WartyTenp <- Warty + | anbda * wartyderiv

while(diff > tol & WartyTemp > 1) {
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))
WartyNew <- Warty + |lanmbda * wartyderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W + |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))
diff <- r2next - r2now
WartyTenp <- Warty + |l anbda * wartyderiv

sAhiIe(diff > tol && VartyTemp <= 1) {
VWarty <- 1
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))
| anbda <- | anbda + step
r2next < rsquare(set, c(W, W + |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))
diff <- r2next - r2now

}
| anbda <- | anbda - step # record best | anbda
W <- W + |anbda * wtderiv # cal cul ate new wei ghts using | anbda
Wapc <- Wapc + | anbda * wapcderiv
WartyNew <- Warty + |lanbda * wartyderiv
if (WartyNew > 1) {
Warty <- Warty + |anbda * wartyderiv

if (WartyNew <= 1) {
Warty <- 1
}

r2incr < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))
#cal culate R2 with new wei ghts

epsilon <- r2incr - r2init

###3}; — negative partial derivative for APC
if(wderiv > 0 & wartyderiv > 0 & wapcderiv < 0) {

WapcTenp <- Wapc + | anbda * wapcderiv

while(diff > tol && WapcTenp > 1) {
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv, a, b, p, q))
WapcNew <- WAapc + | anbda * wapcderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty +l anbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now
WapcTenp <- Wapc + |anmbda * wapcderi v

}
while(diff > tol &% WapcTenp <= 1) {
Wapc <- 1
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc, Warty +
|l anbda * wartyderiv, a, b, p, q))
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W + lanbda * wderiv, Wapc, Warty +
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| anbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now

}
|l anbda <- | anbda - step # record best | anbda
W <- W + |anbda * wtderiv # cal cul ate new wei ghts using | anbda
WapcNew <- Wapc + | anbda * wapcderiv
Warty <- Warty + lanbda * wartyderiv
if (WapcNew > 1) {
Wapc <- Wapc + | anbda * wapcderiv

}

if (WapcNew <= 1) {
Wapc <- 1

}

r2incr < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))
#cal culate R2 with new wei ghts
epsilon <- r2incr - r2init

###4 — negative partial derivative for tank
i f(wapcderiv > 0 && wartyderiv > 0 & wtderiv < 0) {

W Tenp <<« W + |anbda * wtderiv

while(diff > tol & WTenp > 1) {
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |anbda * wartyderiv, a, b, p, q))
W New <- W + |anmbda * wtderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W + |anbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))
diff <- r2next - r2now
W Tenp <~ W + |anbda * wtderiv

}
while(diff > tol & WTenp <= 1) {
W <- 1
r2now <- rsquare(set, c(W, W, Wapc + |anbda * wapcderiv, Warty +
|l anbda * wartyderiv, a, b, p, q))
| anbda <- |anbda + step
r2next <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +
|l anbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now

I}an‘oda <- lanmbda - step # record best |anbda
WNew <- W + |anbda * wderiv
Wapc <- Wapc + | anbda * wapcderiv
Warty <- Warty + |anbda * wartyderiv
if (WNew > 1) {
W <- W + |anbda * wtderiv
i}f (W New <= 1) {
W < 1
}
r2incr < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))
#cal cul ate R2 with new wei ghts
epsilon <- r2incr - r2init

###5 — negative partial derivative for APC and artillery
if(wderiv > 0 &% wapcderiv < 0 & wartyderiv < 0) {
WapcTenp <- Wapc + | anbda * wapcderiv
WartyTenp <- Warty + |l anbda * wartyderiv
while(diff > tol & WapcTenp > 1 && WartyTenp > 1) {
r2now <- rsquare(set, c(W, W + |lanbda * wtderiv, Wapc+ | anbda *
wapcderiv, Warty +l anbda * wartyderiv, a, b, p, q))
WapcNew <- WApc + | anbda * wapcderiv
WartyNew <- Warty + |lanbda * wartyderiv
| anbda <- | anbda + step
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r2next < rsquare(set, c(W, W + lanbda * wtderiv, Wapc+ | anbda *

wapcderiv, Warty +l anbda * wartyderiv, a, b, p, Qq))
diff <- r2next - r2now

WapcTenp <- Wapc + | anbda * wapcderiv

WartyTenp <- Warty + lanbda * wartyderiv

}
while(diff > tol & WapcTenp <= 1 && WartyTenp > 1) {
Wapc <- 1
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, q))
WartyNew <- Warty + |lanbda * wartyderiv
| anbda <- |anbda + step
r2next <- rsquare(set, c(W, W + lanbda * wderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now
WartyTenp <- Warty + |lanbda * wartyderiv

\}/\hile(diff > tol &% WapcTenp > 1 & & WartyTenp <= 1) {
Warty <- 1
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc+ | anbda *
wapcderiv, Warty, a, b, p, q))
WapcNew <- Wapc + | anbda * wapcderiv
| anbda <- | anbda + step

r2next <- rsquare(set, c(W, W + |anbda * wtderiv, Wapc+ | anbda *

wapcderiv, Warty, a, b, p, q))
diff <- r2next - r2now
WapcTenp <- Wapc + | anbda * wapcderiv

}
while(diff > tol & WapcTenp <= 1 && WartyTenp <= 1) {
Wapc <- 1
Warty <- 1
r2now <- rsquare(set, c(W, W + |lanbda * wderiv, Wapc, Warty ,
b, p, a))
| anbda <- | anbda + step
r2next < rsquare(set, c(W, W + lanbda * wtderiv, Wapc, Warty ,

b, p. d))
diff <- r2next - r2now

}
| anbda <- | anbda - step # record best |anbda

W <- W + lanbda * wtderiv # cal cul ate new wei ghts using | anbda

WapcNew <- WAapc + | anbda * wapcderiv
WartyNew <- Warty + |anbda * wartyderiv
if (WapcNew > 1) {

Wapc <- Wapc + lanbda * wapcderiv

}
if (WartyNew > 1) {

Warty <- Warty + |anbda * wartyderiv
}

if (VWapcNew <= 1) {
Wapc <- 1

}

if (VMartyNew <= 1) {
VWarty <- 1

}

r2incr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))
#cal cul ate R2 with new wei ghts
epsilon <- r2incr - r2init

###E}; — negative partial derivative for tank and APC
if(wderiv < 0 & wapcderiv < 0 & wartyderiv > 0) {
W Tenp << W + [ anbda * wderiv
WapcTenp <- Wapc + | anbda * wapcderiv
while(diff > tol & WTenp > 1 & WapcTenp > 1 ) {
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r2now <- rsquare(set, c(W, W+ |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))

WNew <- W + |lanbda * wtderiv

WapcNew <- Wapc + | anbda * wapcderiv

| anbda <- |anbda + step

r2next <- rsquare(set, c(W, W + |anbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

W Tenp <~ W + |anbda * wtderiv

WapcTenp <- Wapc + | anbda * wapcderiv

}
while(diff > tol & W Tenp > 1 & WapcTenp <= 1) {
Wapc <- 1
r2now <- rsquare(set, c(W, W + |anbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, q))
W New <- W + |anbda * wderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W + |lanbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now
W Tenp << W + [ anbda * wderiv

}
while(diff > tol & WTenp <= 1 & WapcTemp > 1) {
W < 1
r2now <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +
| anbda * wartyderiv, a, b, p, q))
WapcNew <- Wapc + | anbda * wapcderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +
|l anbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now
WapcTenp <- Wapc + | anbda * wapcderiv

}
while(diff > tol & WTenp <= 1 & & WapcTenp <= 1) {
W < 1
Wapc <- 1
r2now <- rsquare(set, c(W, W, Wapc, Warty + |l anbda * wartyderiv, a,
b, p, a))
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W, Wapc, Warty + lanbda * wartyderiyv,

a, b, p, )
diff <- r2next - r2now

}

| anbda <- | anbda - step # record best | anbda
W New <- W + |anbda * wderiv

WapcNew <- Wapc + | anbda * wapcderiv

Warty <- Warty + |anbda * wartyderiv

if (VapcNew > 1) {
Wapc <- Wapc + |l anbda * wapcderiv

}
if (WNew > 1) {
W <- W + |lanbda * wtderiv
}
|

f (WapcNew <= 1) {
Wapc <- 1

}

if (WNew <= 1) {
W o< 1

}

r2incr < rsquare(set, c(W, W, Wapc, VWarty, a, b, p,
#cal culate R2 with new wei ghts

epsilon <- r2incr - r2init
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###7 — negative partial derivative for tank and artillery
if(wderiv < 0 & wapcderiv > 0 & wartyderiv < 0) {

W Tenp << W + | anbda * wtderiv

WartyTenp <- Warty + lanbda * wartyderiv

while(diff > tol & WTenp > 1 & WartyTenp > 1 ) {
r2now <- rsquare(set, c(W, W+ |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))
W New <- W + |lanbda * wtderiv
WartyNew <- Warty + |lanbda * wartyderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now
W Tenp << W + | anbda * wderiv
WartyTenp <- Warty + |lanbda * wartyderiv

\}/\hile(diff >tol & WTenp > 1 && WartyTenmp <= 1) {
Warty <- 1
r2now <- rsquare(set, c(W, W + lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))
W New <- W + |anbda * wderiv
| anbda <- | anbda + step
r2next < rsquare(set, c(W, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))
diff <- r2next - r2now
W Tenp << W + | anbda * wderiv

}
while(diff > tol & WTenp <= 1 && WartyTenp > 1) {
W < 1
r2now <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +
| anbda * wartyderiv, a, b, p, q))
WartyNew <- Warty + lanbda * wartyderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +
| anbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now
WartyTenp <- Warty + |l anbda * wartyderiv

}
while(diff > tol & WTenmp <= 1 && WartyTenp <= 1) {

W < 1

Warty <- 1

r2now <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Varty, a,
b, p, a))

| anbda <- |anbda + step
r2next <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Varty, a,

b, p, @)
diff <- r2next - r2now

}

| ambda < |anbda - step # record best |anbda

WNew <- W + |anbda * wderiv

Wapc <- Wapc + | anbda * wapcderiv # cal cul ate new wei ghts using | anbda

WartyNew <- Warty + |anbda * wartyderiv
if (WartyNew > 1) {
Warty <- Warty + lanbda * wartyderiv

}
if (WNew > 1) {
W <- W + |lanbda * wtderiv

}

if (MartyNew <= 1) {
Warty <- 1

}

if (WNew <= 1) {
90



W < 1
b
r2incr < rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))
#cal cul ate R2 with new wei ghts
epsilon <- r2incr - r2init

###8 — all partial derivatives negative
if(wderiv < 0 & wapcderiv < 0 & wartyderiv < 0) {

W Tenp <~ W + |anbda * wtderiv

WapcTenp <- Wapc + |anbda * wapcderiv

WartyTenp <- Warty + | anbda * wartyderiv

while(diff > tol & WTenp > 1 & WapcTenp > 1 && WartyTenmp > 1 ) {
r2now <- rsquare(set, c(W, W+ |lanbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty + |lanbda * wartyderiv, a, b, p, Q))
W New <- W + |anbda * wderiv
WapcNew <- Wapc + | anbda * wapcderiv
WartyNew <- Warty + |lanbda * wartyderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W + |lanbda * wderiv, Wapc + | anbda *
wapcderiv, Warty + lanbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now
W Tenp <~ W + |anbda * wtderiv
WapcTenp <- Wapc + | anbda * wapcderiv
WartyTenp <- Warty + |l anbda * wartyderiv

}
while(diff > tol & WTenp > 1 & WapcTenp > 1 && WartyTenp <=1 ) {
VWarty <- 1
r2now <- rsquare(set, c(W, W+ |anbda * wderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))
WNew <- W + |lanbda * wtderiv
WapcNew <- WApc + | anbda * wapcderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W + |anbda * wtderiv, Wapc + | anbda *
wapcderiv, Warty, a, b, p, q))
diff <- r2next - r2now
W Tenp <~ W + |anbda * wtderiv
WapcTenp <- Wapc + | anbda * wapcderiv

}
while(diff > tol & WTenp > 1 & WapcTenp <= 1 && WartyTenmp > 1 ) {
Wapce <- 1
r2now <- rsquare(set, c(W, W+ |anbda * wtderiv, Wapc, Warty +
| anbda * wartyderiv, a, b, p, q))
WNew <- W + |lanbda * wtderiv
WartyNew <- Warty + |lanbda * wartyderiv
| anbda <- |anbda + step
r2next < rsquare(set, c(W, W + lanbda * wtderiv, Wapc, Warty +
lanbda * wartyderiv, a, b, p, q))
diff <- r2next - r2now
W Tenp <~ W + |anbda * wtderiv
WartyTenp <- Warty + |l anbda * wartyderiv

sAhiIe(diff > tol && W Tenp <= 1 & & WapcTenmp > 1 && WartyTenp > 1 ) {

W < 1

r2now <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +
| anbda * wartyderiv, a, b, p, q))

WapcNew <- Wapc + | anbda * wapcderiv

WartyNew <- Warty + |lanbda * wartyderiv

| anbda <- | anbda + step

r2next <- rsquare(set, c(W, W, Wapc + | anbda * wapcderiv, Warty +
lanbda * wartyderiv, a, b, p, q))

diff <- r2next - r2now

WapcTenp <- Wapc + | anbda * wapcderiv

WartyTenp <- Warty + |l anbda * wartyderiv
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}
while(diff > tol && WTenp > 1 & & WapcTenp <= 1 && WartyTenp <= 1) {
Wapc <- 1

Warty <- 1
r2now <- rsquare(set, c(W, W+ |lanbda * wtderiv, Wapc, Warty, a, b,
p, 9))

W New <- W + |lanbda * wtderiv

| anbda <- | anbda + step

r2next <- rsquare(set, c(W, W+ |lanbda * wtderiv, Wapc, Warty, a, b,
p, 9))

diff <- r2next - r2now

W Tenp <~ W + |anbda * wtderiv

}
while(diff > tol & WTenmp <= 1 & & WapcTenp > 1 && WartyTenp <= 1) {
W <- 1
Warty <- 1
r2now <- rsquare(set, c(W, W, Wapc + |anbda * wapcderiv, Warty, a,
b, p, a))
WapcNew <- Wapc + | anbda * wapcderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W, Wapc + |l anbda * wapcderiv, Warty, a,
b, p, a))
diff <- r2next - r2now
WapcTenp <- Wapc + | anbda * wapcderiv

}
while(diff > tol & WTenp <= 1 && WapcTenp <= 1 && WartyTenp > 1 ) {
W < 1
Wapc <- 1
r2now <- rsquare(set, c(W, W, Wapc, Warty + |anbda * wartyderiv, a,
b, p, a))
WartyNew <- Warty + |lanbda * wartyderiv
| anbda <- | anbda + step
r2next <- rsquare(set, c(W, W, Wapc, Warty + lanbda * wartyderiv,
a, b, p, 9))
diff <- r2next - r2now
WartyTenp <- Warty + |lanbda * wartyderiv

if(diff >tol && WTenp <= 1 && WapcTenp <= 1 && WartyTenp <= 1 ) {
W < 1
Wapc <- 1
Warty <- 1

}

W New <- W + |anmbda * wtderiv
WapcNew <- Wapc + | anbda * wapcderiv
WartyNew <- Warty + | anbda * wartyderiv

| anbda <- |anbda - step
if (WapcNew > 1) {
Wapc <- Wapc + |l anbda * wapcderiv

}
if (WartyNew > 1) {
Warty <- Warty + |lanbda * wartyderiv

}
if (WNew > 1) {

W <- W + |anbda * wtderiv
}

if (WapcNew <= 1) {
Wapc <- 1

}

if (WartyNew <= 1) {
Warty <- 1

}
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if (WNew <= 1) {
W o< 1
}

r2incr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, q))
#cal culate R2 wi th new wei ghts

epsilon <- r2incr - r2init

}

W <- W best

Wapc <- Wapcbest

Warty <- Wartybest

r2regr <- rsquare(set, c(W, W, Wapc, Warty, a, b, p, qQ))

####record optimal paraneters

final <- c(Wy, W, Wapc, Warty, a, b, p, g, r2regr)
final
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