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A b s t r a c t

All currently available network intrusion d&r&ion (ID) systems rely
upon  a mechanism of data collect,ion-passive  protocol analysis-which
is fundamentally flawed. In passive protocol analysis, the intrusion detec-
lion system (IDS) unobt,rusively  watches all traffic on the  network, and
scrutinizes it for patterns of suspicious activity. We outline in this pa-
per two basic problems with the reliability of passive protocol analysis:
(1) there isn’t enough information on the  wire on which to ba.w  conclu-
sions about what is actually happening on networked machines, and (2)
the fact that the system is passive makes  it inherently “fail-open,” mean-
ing that a compromise in the availability of the IDS doesn’t compromise
the availability of the network. We define  three classes of attacks which
exploit these fundamental problems---insertion, evaion,  and denial of ser.
vice attacks--and describe how to apply these three  types of attacks to
IP and TCP protocol analysis. We present the results of tests of the ef-
ficacy of our attacks against four of t,hr  most popular network intrusion
detection systems om the market. All of the ID systems tested were  found
to bc vulnerable Lo each of our attacks. ‘This indicates that network ID
systems cannot be fully trusted until they are fundamentally redesigned.
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1 Introduction

Intrusion  detection is a security technology that attempts  t,o identify and iso-
late “intrusions” against computer systems.  Different ID systems have  differing
classifications of “intrusion”; a system attempting to detect, at,t,acks  against web
servers  might consider only malicious HTTP requests, while a system intended
to monitor dynamic routing protocols might only consider RIP spoofing. RC-
gardless,  all ID systems share a general definition of “intrusion” as an unautho-
rized usage of or misuse of a computer system.

Intrusion detection is an important component,  of a security system, and it,
complements  other security technologies. By providing information to site sd-
ministration, ID allows not only for the detection of attacks explicitly addressed
by other security components (such as firewalls  and service wrappers), but also
attempts to provide notification of new attacks unforeseen by other components.

Intrusion detection systems also provide forensic information that potentially
allow organizations to discover the origins of an attack. In this manner, ID
systems attempt to make attackers mow account,able  for their actions, and, t,o
some  extent, act as a deterrent to future attacks.

1.1 The CIDF Model of Intrusion Detection Systems

There are many different ID systems deployed world-wide, and almost as many
different designs for them. Because there are so many different ID systems,
it, helps to have a model within which to consider all of them. The Common
Intrusion  Detection Framework (CIDF)[l] d efincs a set of components that to-
gether define an intrusion d&e&ion system. These components include event
generators (“E-boxes”), analysis engines (“A-boxes”), storage mechanisms (“D-
boxes”), and even  countermeasures (“C-boocc”). A CIDF component can be a
software package in and of itself, or part of a larger system. Figure 1 shows the
manner in which each of these components  relate.

The purpose of an E-box is to provide information about events to the rest
of the system. An “event”  can be complex, or it can bc a low-level network
protocol occurrence. It need not be evidence of au intrusion in and of itself.
E-boxes are t,he sensory organs of a complete  IDS- without E-box inputs, an
int,rusion detection system has .no information from which to make conclusions
about security events.

A-boxes analyze input, from event generators. A large portion of intrusion
detection  research goes into creating new ways  to analyze event streams to
extract relevant information, and a number of different approaches have been
studied. Event analysis techniques based on statistical anomaly detection[2],
graph analysis[3],  and cvcn biological immune system modcls[4]  lravc been pro-
posed.

E-boxes and A-boxes can produce large quantities of data,. This information
must be made available to the system’s operators if it is to bc of any use. The
D-box component  of an IDS defines the means used to store security information
a,nd make  it available at a later time.

3



Figure 1: CIDF component relationships

Many ID systems arc designed only its alarms. However, most commercially
available ID systems are equipped with some form of countermeasure (C-box)
capability, ranging from shutting down TCP connections to modifying router
filter lists. This allows an IDS to try to prevent further  attacks from occurring
after initial attacks are detected. Even systems that don’t provide C-box capa-
bilities can be hooked into home-brewed response programs to achieve a similar
effect.

1.2 Network Intrusion Detection and Passive Analysis

Many ID systems are driven off of audit logs provided by the oper&ing  system,
detecting attacks by watching for suspicions patterns of activity on a single
computer system. This type of IDS is good at discerning attacks that are initi-
ated by local users, and which involve misuse of the capabilities of one system.
However, these “host based” (, ddn multi-host) intrusion detection systems have
a major shortcoming: they are insulated from network events that occur on a
low level (because they only interpret hig&level logging information).

Network intrusion detection systems arc driven off of interpretation of raw
network tra&. They attempt to detect attacks by watching for patterns of
suspicious activity in this traffic. Network ID systems are good at discerning
att,acks  that involve low-level manipulation of the net,work,  and can easily cor-
relate attacks against multiple machines on a network.

It’s important to understand that while  network ID has advantages over
host-based ID, it also has some distinct disadvantages. Network ID systems
we bad at determining exactly what’s occurring on a computer system; host-
based ID systems are kept informed by the operating system as to exactly
what’s happening. It is probably impossible to accurately reconstruct  what is
happening on a system by watching “shell”, “login”, and Yelnet”  sessions.

Network ID systems work by examining the contents of actual packets trans-
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Figure 1: CIDF component relationships

Many ID systems are designed only as alarms. However, most commercially
available ID systems are equipped with some form of countrrmea~sure  (C-box)
capability, ranging from shutting down TCP connections to modifying router
filter lists. This allows an IDS to try to prevent further attacks from occurring
after initial attacks are detected. Even systems that don’t provide C-box capa-
bilities can be hooked into home-brewed response programs to achieve a similar
effect.

1.2 Network Intrusion Detection and Passive Analysis

Many ID systems are driven off of audit logs provided by the operating system,
detecting attacks by watching for suspicious patterns of activity on a single
computer system. This type of IDS is good at discerning attacks that are initi-
ated by local users, and which involve misuse of the capabilities of one system.
However, these “host based” (and multi-host) int,rusion  detection systems have
a major shortcoming: they are insulated from network events that occur on a
low level (because they only interpret higlr-level logging information).

Network intrusion detection systems are driven off of interpretation of raw
network traffic. They attempt to detect attacks by watching for patterns of
suspicious activity in this traffic. Network ID systems are good at discerning
attacks that involve low-level manipulation of the network, and can easily cor-
relate attacks against multiple machines on a network.

It’s important to understand that while network ID has advantages over
host-based ID, it also has some  distinct disadvantages. Network ID systems
axe bad at determining exactly what’s occurring on a computer system; host-
based ID systems are kept informed by t,hc operating system as to exactly
what’s happening. It is probably impossible to accurately reconstruct what is
happening on a system by watching “shell”, “login”, and ‘Wnet” sessions.

Network ID systems work by examining the contents of actual packets trans-
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Figure 2: An example network topology using a passive monitor

mitted on the network. These systems parse packets, analyzing the protocols
used on the network, and extract relevant information from them. This is typ-
ically accomplished by watching the network passively and capturing topics  of
packets that are transmitted by other machines.

Passive network monitors take advantage of “promiscuous mode” access.
A promiscuous network device, or “sniffer”, obtains copies of packets directly
from the network media, regardless of their destination (normal devices only
read packets addressed to them). Figure 2 shows a simplified network topology
in which a passive network monitor has been deployed.

Passive protocol analysis is useful because it is unobtrusive and, at the lowest
levels of network operation, extremely difficult to evade. The installation of a
sniffer does not cause any disruption to the network or degradation to network
performance. Individual machines on the network can be (and usually are)
ignorant to the presence of sniffer. Because the network media provides a reliable
way for a sniffer to obtain copies of raw network traffic, there’s no obvious way
to transmit a packet on a monitored network without it being seen

1.3 Signature Analysis

The question of what information is relevant  t,o an IDS depends upon what it is
trying to detect. For a system that is monitoring DNS traffic, the names of the
hosts being queried for (and the responses to t,hese  queries) might be relevant.
For a system attempting to detect attacks against FTP servers, the contents of
all TCP connections  to the FTP port would be interesting.

Some attacks can be discerned simply by parsing IP packets; an attempt
to circumvent a packet filter using IP fragments is clearly observable simply by
examining the fragment offset fields of individual IP fragments. Other attacks
occur over multiple packets, or must be interpreted outside the context of the
actual protocol (for instance, a DNS query might, only be rclcvant  if it involves
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Figure 3: CIDF model of B network IDS

a certain host).
Most ID systems identify such attacks using a technique called “signature

analysis” (also called “misuse detection”). Signature analysis simply refers to
the fact that, t,hr ID system is programmed  to interpret a certain series of packets,
or a certain piece of data contained in those packets, as an attack. For example,
an IDS that watches web servers might be programmed to look for the string
“phf” as an indicator of a CGI program attack.

Most signature analysis systems are based off of simple pattern matching al-
gorithms. In most cases, the IDS simply looks for a substring within a stream of
data carried by network packets. When it finds this substring (for example, the
“phf” in “GET /cgi-bin/phf?“),  it identifies those network packets as vehicles
of an attack.

Signature analysis and passive  protocol analysis together define the event
generation and analysis techniques used by the majority of commercially avail-
able ID systems. Figure 3 shows how these components fit into the CIDF model.
For simplicity’s sake,  the remainder of this paper refers to systems  that work
like this as “network ID systems.”

1.4 The Need for Reliable Intrusion Detection

Because of its importance within a security system, it is critical that intrusion
detection systems function as expected by the organizations deploying than. In
order to be useful, site administration needs to be able to rely on the informa-
tion provided by the system; flawed systems not only provide less information,
but also a dangerously false sense of security. Moreover, the forensic value of
information from faulty systems is not only negated, but, potentially misleading.

Given the implicat,ions  of the failure of an ID component, it is reasonable
t,o assume tha,t ID systems are themselves logical targets for attack. A smart
intruder who realizes that an IDS has been  deplo,yed  on a network she is a,t-
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tacking will likely attack the IDS first, disabling it or forcing it t,o provide false
information (distracting security personnel from the actual at,tack in progress,
or framing someone else for the attack).

In order for a software component to resist attack, it must bc dcsigncd and
implemented  with an understanding of t,he  specific means by which it can be
attacked. IJnfortunately,  very little information is publicly available t” IDS dr-
signcrs to document t,hr traps and pit,falls  of implement,ing  such a system. Fur-
t,hrrmore,  the majority of commercially available ID syst,ems  have  proprietary,
secret  designs, and are not available with s”urce  code. This makes independent
third-party analysis of such soft,ware  for security problems difficult.

The most obvious aspect of an IDS t,” attack is its “accuracy”. The “accu-
racy” of an IDS is compromised when something occurs that causes the system
to incorrectly identify an intrusion when non” has occurred  (a “false positive”
“utpnt,),  or when something “ccurs  t,hat causes t,he  IDS t,o incorrectly fail to
identify an intrusion when “me has in fact, wxxrrrd (a “false negative”).  Some
rrsearchers[5]  discuss IDS failures in terms of deficiencies in “accuracy” and
“completeness”, where LLaccuracy”  reflects the number of false positives and
“completeness” reflects the number of false negatives.

Other attacks might seek to disable the entire  system, preventing it from
functioning effcctivcly at all. We say that, these attacks attempt to compromise
t,hr “availability” of the system

1.5 Points of Vulnerability in ID Systems

Each component identified by the CIDF model has unique security implications,
snd can be attacked for different reasons.

As the only inputs of raw data int,o  the system, E-boxes a,ct  as the eyes
and ears of an IDS. An attxk against the event,  generation capabilities of an
IDS blinds it t,o what’s actually happening  in t,he  system it’s monitoring. For
example,  an attack against the E-box of a n&work  IDS could prevent it from
obtaining packets off the network, or from appropriately decoding these psckcts.

Some intrusion d&e&ion systcrns rely on sophisticated analyses t” provide
security information. In such systems, the reliability of the A-box components
used is important because am attacker that knows how t,o fool them can wad”
detection ~ and complicated analytical techniques may provide many avenues
of attack. On the other hand, overly simplistic systems may fail to detect at.
t,ackers  that intentionally mask their attacks with complex, coordinated system
interactions from multiple hosts[(i].

The need for reliable data storage is obvious. An attacker that can subvert
the D-box  components of an IDS can prevent  it from recording the details of
her attack; poorly implemented data storage techniyucs  can even allow sophisti-
cated attackers to alter recorded information aft,er  an at,tack has been  detected,
eliminating its forensic value.

The C-box capability cau also be att,ackcd. If a network  relics  on these
countermeasures for protection, an attacker  who knows how t,” thwart the C-box
can continue attacking the network, immune to the safety measures  nnpl”yrd
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by t,hc system.  More important,ly,  countermeasure capabilities can be fool4
int,o  reacting against legitimate usage of t,he network ~ in t,his case, t,he  IDS
can actually be t,urnrd against t,hr network losing it (oft,cn  un-dctcctably).

It is a,ppareni  that there are many different points at, which an intrusion
detection system can be attacked. A comprchcnsivc  t,reatrnent  of all potent,ial
vulnerabilities  is far outside the scope of this paper. R.&her  than attempting to
document general problems common to all ID systems, we focus on a specific
class of attacks against certain types of intrusion detection systems.

There exist several serious problems with t,he  USC of passive protocol analysis
as an event-generation source for signature-analysis intrusion detection systems.
This paper documents these problems, presents several attacks that exploit
them to allow an attacker to evade detection by ID systems, and verifies their
applicability to the most popular commercial ID systems on the market.



z Problems with Network ID Systems

Our work defines two general problems with network intrusion detection:  first,
that there is insufficient information available in packets read off the wire to
correctly reconstruct what is occurring inside complex prot,ocol  transactions,
and next, that ID systems are inherently vulnerahlr  to denial of service attacks.
The first of these problems reduces the accuracy of t,he system, and the second
jcopardizcs its availability.

2.1 Insufficiency of Information on the Wire

A network IDS captures packet,ets  off the wire in order to detcrrnine  what is
happening on the machines it’s watching. A packet, by it,self, is not as significant
to the system as the manner in which the machine receiving that packet,  behaves
after processing it. Network ID systems work by predict,ing  the behavior of
networked machines based  on the packets they  cxcha,nge.

The problem with this technique is that a passive n&work  monitor cannot
accurately predict whether a given  mschine  on the network  is even  going to see
a packet, let alone process it in the expected manner. A number of issues exist
which make the actual meaning of a packet captured by an IDS ambiguous.

A network IDS is typically on an entirely different machine from the systems
it,‘s watching. Often, the IDS is at a completely different point on the n&work.
The basic problem facing a network IDS is that, these diffcrencrs  cause  incon-
sistencies between the ID system and t,he  machines it watches. Some of Qrcse
discrepancies are the results of basic physical differences, others  stem from dif-
ferent, network driver implement,at~ions.

For example, consider an IDS and an end-system located at different places
on a network. The two systems will receive any given packet at different points
in time. This difference in time is important; during the lag, something can
happen on the end-system that might prevent it from sccept,ing  the pa&t.
The IDS, however, has already processed the pxkrt-thinking  that it will he
dealt with normally at the end-system

Considcr  an IP packet with a bad UDP checksum. Most operating systems
will not accept such a packet. Some older systems might. The IDS needs to
know whether every system it watches will accept such a packet, or it, can end
up with an inaccurate reconstruct,ion  of what, hnppencd  on those  machines.

Some operating systems might accept a packet that is obviously bad. A poor
implementation might, for example, allow an II’ packet to have an incorrect
checksum.  If the IDS doesn’t know this, it will discard packets that, the end-
system accepts, again reducing the accuracy of the system.

Even if the IDS knows what operating system every  machine  on the network
runs, it shill might not he able to tell ,just  hy looking at a, packet whether a
given machine will accept it. A machine that runs out of memory will discard
incoming packets. The IDS has no easy way to determine  whether this is the
case on the end-system,  and t,hus  will assume that, the end-system has accepted
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Tog&her, all these problems result  in a situation u-here  the IDS often simply
can’t determine  the implications of a packet merely by examining  it; it, needs
to know a great deal about the met~working  behavior of the end-systems that,
it’s watching, as well as the traffic comdit,ions  of their  network segments. Unfor-
tunately, a network IDS doesn’t have  any simple  way of informing itself about
this; it obtains all its information from packet mpturc.

2.2 Vulnerability to Denial of Service

A “denial of service” (DOS) attack is one that is intended to compromise the
zwailability  of a compubing  resource. Cornman DOS st,tacks include ping floods
and mail bombs ~ both intended to consume disproport,ionatc  amounts of re-
sources, starving legitimate processes. Other attacks are t>argcted  at bugs in
software, and are intended  to crash the system.  The infxnous “ping of death”
arid “t,eardrop”  attacks are rxmples  of bhcse.

Denial of service attacks cm be leveraged  to sulwclt syst,rms  (t,hus con-
promising more than availability) as well as to disable t,hem.  When discussing
the relevance of DOS attacks to a security s,ystmm, the qurstion  of whether  the
system is “fail-open” arises. A “fail-open” system ceases to provide protection
when  it is disabled by a DOS attack. A “fail-closed:’ system, on the other handz
leaves tlrc network protected wbcrr  it is forcibly disabled.

The terms “fail-open” and “fail-closed” are most often bcard within the
context of firemalls, which are access-control devices for networks. A fail-open
firewall  stops controlling  access to the nrt,work  when  it crashes, but leaves the
network available. An attacker that, can crash a fail-open fircwall  can bypass
it entirely. Good firewalls are designed t,o “fail-closed”, leaving the net,work
completely inaccessible (and thus protected) if they crash.

Network ID systems are passive. They do not control the network or main-
tain its connectivity in any way. As such, a network IDS is inherently fail-open.
If aa attacker can crash the IDS or starve it of resources, she cm attack the rest
of the network as if the IDS wasn’t even there. Because  of the obvious snscep-
tibility to DOS attacks that network ID systems have, it’s important that they
be fortified against them.

Unfortunately, denial  of service attacks xc extremely difficult to defend
against. The resource starvation problem is not, easily solvable, and there are
many diffcrerlt  points at which the resources  of an IDS can be consumed. Attacks
tlmt  crash tlrc IDS itself are easily fixed, but,  finding all such vulnerabilities  is
not easily done.

3 Attacks

We discuss in this paper three different types of attacks against sniffer-haed  net-
work ID systems. Two of them at,tcmpt,  to subt,ly  t,hwart protocol analysis, pre-
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venting the signature-rrcognition  system from obtaining adequat~e  information
from which  to draw conclusions. The third lcvcrages  simple resource-starvation
attacks to disrupt or disable the entire  system.

All of our attacks involve an attacker t,hst,  is specifically manipulating her
network  usage to create abnormal, or even pathologica~l,  streams of traffic.
In most cases, they  require low-level packet, forgery. However, unlike normal
“sp,oofing”  attacks, these  techniques are simplified hy the fact that the attacker
is manipulating her own sessions, not attempt,ing  to disrupt those of other users.
Two of our att,acks  are new I , and specific to traffic analysis systems (though
not, necessarily to intrusion detection). Both a,rc mechanisms by which an a,t,-
tacker can fool a protocol analyzer into thinking t,hat somet,hing  is (or is not)
happening on the network The first of these, which WC call “insertion”, in-
volves an attacker stuffing the system with subtly invalid packets; the second,
“evasion”, involves exploiting inconsistencies between the anal,yzrr  and an end
system in order  to slip packets past t,hr analyzer.

3.1 Insertion

An IDS can accept a packet that an end-system rejects. An IDS that does this
makes the mistake of believing that the end-system has accepted and processed
the packet when it actually hasn’t. 4n attacker ca,n exploit this condition hy
sending packets to an end-system that it will reject, hut t,hat the IDS will think
arc valid. In doing this, the attacker is “insrrt~ing”  data into t,he IDS ~ 110  other
system on the network cares about the had packets.

We call this an “insertion” att,ack,  and conditions that lend themselves  to
insertion attacks are the most prevalent  vulncrabilities in the intrusion detection
systems we tested. An attacker can use insertion attacks to defeat signature
analysis, allowing her to slip attacks past, an IDS.

To understand why insertion attacks foil signature analysis, it’s important
lo understand how the technique is employed in real  ID systems. For the most
part,, “signature analysis” uses pattern-matching algorithms to detect  a certain
st,ring  within a stream of data. For instance, an IDS t,hat tries to detect a PHF
;tttack will look for the string “phf” within an HTTP “GET” request, which is
itself a longer string that might look something like "GET /cgi-bin/phf?“.

The IDS can easily detect the string “phf” in that HTTP request using a sin-
plr substring search. However, the problem brconres  much more difficult, to solve
when the attacker can send the same request  to a webservcr,  but force the IDS to
see  B different string, such as “GET /cgi-bin/pleasedontdetecttthisforme?”.
The attacker has used an insertion att,ack to a,dd “lcasedontdetectt”,  “is”, and
‘Lornle”  to the original stream. The IDS can no longer pick out the string “phf”
from tlrc stream of data it observes.

Figure 4 gives a simple example of the same attack. An attacker confronts the
IDS with a stream of l-character packets (the att,ackrr-originated  data &cam),

1 Vera Paxson of LBNL presented a paper describing several of the same attacks as we do 
at roughly the same time.[17] 
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iu which one of the characters (the Mter ‘x’) will be accepted only by the IDS.
As a result, the IDS and the end  syst,em  reconstruct t,wo  different st,rings.

In general, insertion attacks occur  whenever nn IDS is less strict in processing
a pncket  than an end-system. An obvious rextion to t,his problem might be to
make the IDS as strict as possible in p,rora?ssing  pa&& read off t,lre  wire; this
would minimize insertion attacks. However,  another scv-ere  problem  (“evasion”
attacks) occurs when this design approach is taken.

3.2 Evasion

An end-system can accept a packet, that an IDS rejects.  An IDS that, mistakenly
rejects such B packet misses its contents  entirely. This condition can also be
exploited, this time by slipping crucial information past the IDS in pack& that
the IDS is too strict about processing. These packets are “evading” the scrutiny
of the IDS.

We call these  “evasion” a,ttscks, and they arc the easiest t,o exploit and
most devastating to the accuracy of an IDS. Entire sessions can be carried
f(rt,h in pack&s that evade an IDS. and blatantly obvious attacks couched in
such sessions will happen right under the nose of rvcn the most sophisticated
analysis engine.

Evasion attacks foil pattern matching in a manner quite similar to insertion
&racks.  Again, t,he attacker causes t,hr IDS t,o see  a different st,ream  of data
t,han  the end-system - this time, however, t,hc end-system sees  more than the
IDS, and the informat,iom  t,hat the IDS misses is critiral to t,hr detection  of an
;ttt~acl<.

In the insertion attack we mentioned above, the attacker sends an HTTP
request, but muddies its contents on the IDS wit,h  additional data that make
the rrqucst  Seem innocuous. In an cva~sion  attack, t,he attacker sends portions
of the same request in packet,3  that t,hr IDS mist~akrnly rejrct,s;  allowing  her to
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rcmo~e  parts of the stream from the ID system’s uirw. Foor  cxamplr,  t,he original
request could become “GET /gin/f”, which would have no meaning to most ID
systems. Figure 5 shows the same type of att,ack.

3.3 Real World Insertion and Evasion

In reality, insertion and evasion attacks are not this easy  to exploit. Am attacker
usually does not have t,lrc  luxury of injecting  arbitrary characters into a stream.
However, these  attacks can come into play well  before pattcrn  matching becomes
a consideration. One example  of a place iu which insertion attacks can bc
leveraged at a very low level is stream reassembly. To understand how insertion
and evasion play into reassembly, we’ll first explain what we mean by the term.

Many network protocols are simple  and easy  to analyze. They involve one
system sending a single request to another,  and waiting for that system to
respond. For example, a network  monitor can easily determine  the purpose of
a single UDP DNS query by looking at one packet.

Other protocols are more complex, and require consideration of many indi-
vidual packets before a determination can be made about the actual transaction
they represent. In order for a network monitor t,o analyze t,hem,  it must statr-
fully monitor al entire stream of packets, tracking information inside each of
t,hrm For example, in order to discover what is happening inside of a. TCP
connection, t,he  monitor mnst, attempt, to reconst,mct  t,hr streams of dat,a  hcing
exchanged  over the connection.

Protocols like TCP allow any amount of data (within the limits of the IP
protocol’s maximum packet size) t,o be contained in each discrete  packet. A
collection of data can be transmitte d in one packet, or in a group of them
Because they can arrive at their destination out of order, even when transmitted
in order, each packet is given a number tha,t indicates its place within t,he
intended order of the stream This is commonly referred  to as a “srquc~~
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Arrival Order

Intended Order

Figure 6: Sequenced reusembly

number”, and we call collections of packets marked wit,h sequence  numbers
“sequenced”

The recipient of a stream of TCP packets has t,he responsibility of rr-ordering
and extracting the information cont,ained  in each of t,hcm, reconstructing the
original collection of data that the sender transmitted. The process of taking
a collection of unordered, sequenced packets and reconstructing the stream of
data they  contain is termed  “reassembly”.  Figure 6 shows an example  of how a
stream of data tagged with sequence  numbers might be reassembled.

Reassembly issues manifest themselves at the IP layer, as well; IP defines
a mechanism, called “fragmentation”, that allows machines to break individual
packets into smaller ones. Each individual fragment bears a marker that de-
motes where it belongs in t,he context of the original packet; this field is called
the “offset”. IP implementations must be able to accept a stream of packet
fragments and, using their off&s, reassemble them int,o  the original packet.

Insertion attacks disrupt stream reassembly by adding packets to the stream
that would cause it to be reassembled  differently  on the end-systa-if  the end
system accepted the disruptive packets. The inserted  packets could change the
sequencing of the stream (consuming hundreds of sequence  numbers), preventing
the IDS from dealing properly with the valid packets that follow it. Packets can
be inserted that overlap old data, rewriting the stream on the IDS. And, in
some situations, packets can be inserted that simply add content, to the stream
which changes it,s  meaning.

Evasion attacks disrupt stream reassembly by causing t,he IDS to miss parts
of it. The packets lost by the IDS might be vit,al for t,hr sequencing of the
stream; the IDS might not know what to do with the packets  it sets  after the
cvasion attacks. In many situations, it’s fairly simple for the attacker to create
an entire  stream that eludes the IDS.

3.4 Ambiguities

In many cases, defending against insertion and evasion att,acks  is cay. The
behavior that, an attacker is exploiting to insert packets into t,hc IDS is, in these
casts, simply wrong. The IDS might not bc verifying a, checksum or examining
a header field correctly; fixing the problem  merely involves modifying the IDS
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r S e c t i o n I I n f o  N e e d e d 1 Ambiguity

S&ion 4.1.1 Network Topology

Section 4.1.1 Network Topology

IP TTL fieid may not bc large enough for t,hc
number  of hops to the dest,inatiorr
Packet, may lx too large for a dowIlstrcarn
link to handle without fragment,ation

Section 4.1.2 Destination Configuration Destination may be configured
to drop source-routed pack&

Section 4.3.1 Destionation  OS Destinat,ion  may time partially received
fragments out differently depending  on it’s OS

Section 4.3.3 Destination OS Destinatiorl  may reassemble overlapping
fragments differently depending on it’s OS

Section  5.2.2 Destination OS Destination host may not accept TCP
packets bearing  certain options

Section 5.2.2 1 D&in&ion OS 1 Destination ma’ inmlemcnt  PAWS and silentlv

i

Section 5.4.3

Section 5.5.1

Destination OS

D&ix&ion  OS

drop packets with old timcstamps
Dest,ination  may resolve conflicting TCP
segments differently depending on it’s OS
Destination m;ty not check sequence numbers
on RST messages

Figure 7: Ambiguities identified in this pa~prr

to check these things.
In some  cases, however, fixing the problem  is not,  easy. There are situations

in which a network monitor cannot determine  by looking at a packet whether
it, will be accepted. This can be due  t,o varying end-system behavior (one q>-
crating system might process a packet differealy  from anot,hcr).  Basic network
ambiguities can also cause problems. In some  cases, unless the IDS knoue  ex-
actly what path the packet is going to t,akc to get to it’s destination, it won’t
know whether it will actually arrive there.

Attacks that exploit these  kinds of problems cannot easily bc defended
against unless the IDS has a source of informat,ion  that resolves the ambiguity.
If the IDS knows what operating system is running on the destination  system, it
may be able to discern whether a packet is acceptable to that system. If the IDS
can reliably track the topology of t,he network, it may bc be able  to determine
&ether  or not a packet will ever be received by an end-system. In general, we
say a traffic analysis problem is “ambiguous” if an important conclusion about
a packet cannot be made without, a secondary source of information

Figure 7 shows the ambiguities  this paper identifies. Each ambiguity can pa-
tentially be resolved if the IDS has certain information (eit,hcr a reliable view <If
the t,opology  of the network, the configuration of the end-systems it’s watching,
or the OS and version of those systems). This is> of course, not an exhaustive
list,.



The next two sections of t,his paper provide examples  of how insdiou  and
evasion attacks affect protocol analysis at the net,aork  (IP) and transport (TCP)
layers. These sections provide real-world exsmplcs  of &tacks on IP network ID
systems in great detail, working from the basic attxks we’ve defined  here.
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Descriptiollj

1No IP addresses set yet
Received packet, is t,oo short to be an 1P datagram.
Rcccived  packet is too short to be an IP datagram.

IP vxsion isn’t, ‘4’
IP “header length” field  too small

IP “header length” is set larger  t,han the ent,ire  packet,
Bad header checksum

IP “total length” field is shorter than “header  lengt,h”
Packet has IP options and ipdooptions()  returns an error

Not addrcsscd to this host
Too small to be a fragmenti

Figure 8: FreeBSD  2.2 ip.input  () pxkrt discard points (netin,rt/il,.inp?lt. c)

4 Network-Layer Problems

We begin our discussion of specific, observable problems in network intrusion
d&&ion systems at the IP layer. An insertion or evasion problem occurring
within the IP processing of an IDS affects all higher levels  of processing as
well; a problem that allows an attacker to insert an arbitrary IP packet allows
that attacker: by extension, to insert an arbitrary (well-formed)  UDP or ICMP
packet. It, is thus extremely important that an ID system be immune to insertion
or evasion attacks on this level.

4.1 Simple Insertion Attacks

There arc many ways that an attacker can send an IP pxket, t,hat only an IDS
will accept. We collected  citndidate  mrt,hods  by examining the 11’ driver source
code of t,hr 4.4BSD operating system. Any corldit,ion  that causes  4.4l3SD  to
drop a received packet must be accounted for in an intrusion detect,ion  syst,em
An inconsistency between 4.4DSD  and an IDS represents a potential insertion
or evasion attack against that IDS. Figure 8 l&s a11 the points in FreeBSD  2.2’s
“ipinput” routine that discard received datagrams.

4.1.1 Bad Header Fields

The easiest way for au IP datagram  to be discarded by an endpoint is for it to
have an invalid header field. The header  fields of BII IP packet are described in
RFC731[7].

One problem with attempting to use packets with bad header fields for in-
sertion at,tacks  is that doing so often prevents the packet from being  forwarded
by Internet routers. This makes  it difficult to USC such packets for an attack,
unless the IDS is situated on the same LAN as the attacker (in which cast the
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attacker can already manipulate the IDS via packet forgery). A good example
is the “version” field; asigning a value other t,han  4 t,o this field will prevent
the packet,  from being routed.

.hd~cr prohlrm  with using bad header fields is t,he  fact, that some of t,hcm
need  to he correct for the pa&t to bc parsed  corrcct,ly  (“corrcct,ly”  here meaning
“in the manner intended by t,hr att,acker”).  For inst,nm:r, incorrectly specifying
the size  of t,hr IP packet itself, or the size of its header:  ma,y  prevent  the IDS
from locating the transport layer of the pxkrt~.

One IP header field that is easy  to neglect is the &xksum. It, may seem
uur~cessary  for an IDS to verify the accuracy of the checksum 011  rxh captnrcd
II’ packet; however, a datagram wit,h  it bad checksum will not be processed
by most IP implementations. An IDS that does not reject packets with had
checksums is thus vulnerable to a very simple insertion attack.

A harder problem to solve is the TTL field. The TTL (time to live) field
of an IP packet dictates how many “hops” a packet can t,ravcrsc  on it’s way to
it,‘s destination. Every time a router forwards a packet,  it decrement,s  the TTL.
When the TTL runs out, the packet is dropped. If the IDS is not on t,hr same
network segment as the systems it watches, it, is possible  to send packets that
only the IDS will see  by setting the TTL just long enough for the packet, to reach
t,hr IDS, hut too short for the packet  to actually arrive at it’s dcstiuation.[l7]

A similar problem occurs in relation to the “Don’t, Fmgmcnt” (DF) flag in
the IP header. The DF flag t,ells  forwarding devices not to split a packet, np into
fragments when the packet is too large to be forwarded, hut instead to simply
drop the packet. If the maximum packet size of the r&work  t,he IDS is on is
larger than that of the systems it watches, an attacker can insert pack& by
making them too large for the destination met~work  and setting the DF bit.[l7]

Bot,h  of these problems can lead to ambiguities that are only solveable  if the
IDS has an intimat,r  knowledge  of the topology of the nrt,work  it is monitoring.

4.1.2 IP Options

The IP cl~ccksum  problem is fairly simple  to solve;  an IDS can rcasonahly  assume
t,hat if the checksum is wrong, the datagram  will not be accepted  by t,hc crld-
system it’s addressed to. A trickier prohlcm  is t,hat,  of parsing IP opt,ions.  This
is more likely to vary between hosts, and the interpretation of options requires
specialized processing.

For example, most end-systems will drop a packet that is “strict source
routed”[9]  when the host’s own address is mot in t,lrc specified source route. It
is tcasonahle  for an IDS to drop such pack&,  avoiding an insertion attack
HOWCVC~,  many operating systems can be corlfigured  to automatically reject
source routed packets. Unless the IDS knows whether a source-rollted  packet’s
destination  rejects such packets, the correct, act,ion  to take is ambignolls.

Examination of source  route options on IP pac1~rt.s  may seem like an obvious
requirement for B security program. However, there zwe  other options that r,lust
be accounted for that are less obviously  relevant. For instance,  the “timcstamp”
option requests that, certain recipients of t,hr datagram place a, t,imest,amp  withi*,
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L i n e O p t i o n D e s c r i p t i o n

837 Any Bad option length
858 Source Route Option offset is less than ‘4’
866 Strict Source Route This host is not one of the listed hops
886 Source Route This host is configured t,o drop source routed

packets
911 Source Route No route to next hop in route
927 Record Route Option offset is less t,han ‘4’
943 Record Route No route to next hop
957 Timestamp Option length is too short
960 Timestamp Tim&amp recording space is full and the

overflow counter  has wrapped back to zero
971 Tim&amp Not enough record space to hold timcstamp

and IP address
985 Tim&amp Not, enough record space  t,o hold timrst,amp

and IP address
995 Timestamp Bad timestamp t,ype  given

Figure 9: FrceBSD  2.2 ip-dooptions packet  discard point,s

the packet. The code that processes the timestamp option can he forced to
discard the packet (if the opti” is malformed). If the sniffer does not validate
t,he timestamp option in the same manner as the end systems it watches, the
inconsistency can he exploited. Figure 9 lists all the places in which FreeBSD
2.2’s option processing code discards incoming datagrams.

Most IP option processing problems in the 4.4BSD option processing code
results in the transmission of an ICMP error message, notifying t,hr sender of
the errant datagram of the problem. An IDS could potentially listen for such
messages to determine whether an oddly-specified option is correct,. This is not,
always reliable; some  operating systems (Sun Solaris,  for instance) will rate-limit
ICMP,  suppressing the error messages. Furthermore,  tracking ICMP responses
to datagrams hearing options requires the IDS to keep state for each IP packet;
this will consume resources  and potentially allow an &tacker an avenue for a
denial of service  attack.

4.2 MAC Addresses

Alt,hough  obviously not an IP problem per se, the same  implications for insert,ion
at,tacks  exist due to link-layer addressing. An at,tacker  on t,he  same L.4N as a
network monitor can direct link-la,ycr  frames t,o the IDS, without ever allowing
the host specified as the IP destination t,o SW the packet.

If the attacker knows the link-layer address of the IDS, she can simply address
her fake packet to the IDS. No other system on the LAN will process the pa&t,
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Figure 10: Insertion Attacks at the Link Layer

but, if the IDS doesn’t cheek  the MAC address on t,he received packet, it won’t,
kruxv this. Figure 10 shows an example of an attacker that inserts a character
in the IDS by directing a packet to the IDS via the Ethernet link-layer.

Even if the attacker doesn’t know the link-layer address of tbc network morr-
itor:  she can exploit the fact that the network monitor is operating in promis-
cuous mode by addressing the frame to a fake address. .4gain,  unless the IDS
verifies the destination address in the IP header against the correct link-layer
address (and can do so reliably), it can be fooled by falsely-addressed link-layer
frames.

4.3 IP Fragmentation

IP packets can be broken into smaller packets, and reassembled at the drstina-
tion. This is termed “fragmentation”: and is an integral part of the IP protocol.
IP fragmentation allows the sane information to travel over different types of
network media (which may have  different packet, size  limits) without limiting
t,hr entire prot,ocol  to an arbitrary small maximum packet size. A detailed
explanation of IP fragmentation can be found in Stevcns[R],  or in RFC791[9].

Because end-systems will reassemble a stream of IP fragments, it is impor-
tant that a network monitor correctly reassemble fragments as well.  411 IDS
that does not correctly reassemble fragments can be attacked simply by ensur-
ing that all dat,a is exchanged bet,ween  machines  using art,ificially fragmcnt,ed
packets.

4 . 3 . 1  B a s i c  R e a s s e m b l y  P r o b l e m s

Streams of IP fragments usually arrive in order. The last fragment in a stream
is clearly marked (the IP header contains n flag that specifics whether  more
fra,gments  follow a given packet). However, even  though it rarely  happens,  the
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protocol allows fragments to arrive in any arbitrary order. An end system must,
be able to reassemble a datagram from fragment~s  that, arrive  out of order.

Because fragments usually arrive in order, it’s easy to make the mist,& of
assuming that they always will. An IDS that does not properly handle out,-
of-order fragments is vulnerable; an attacker can intentionally scramble her
fragment,  streams to elude  the IDS. It,‘s also important t,bat,  t,he IDS not attcrnpt
t,o reconstruct packets until all fragrncrrts  have been  seen. Another easily made
mistake is to attempt to reassemble as won as t,hc marked final fragment, arrives.

Another significant problem is the fact that received fragmrnt,s  mnst, be
st,ored  until the stream of fragments can be reassembled inbo an entire IP data-
gram. An IDS can bc attacked by flooding the network wit,11 partial, fragmented
datagrams, which will never be completed. A naive IDS will run out of memory
as it attempts to cache each fragment, since the fragmented packets are never
completed.

End-systems must deal with t,his problem as well. Ma,rly  systems drop frag-
mcnts based on their TTL, to avoid running out of memory due  to over-full frag-
ment queues. An IDS that eventually drops old, incomplete fragment streams
must do so in a. manner consistent with the machines  it’s watching, or it will
be vultrcrable  to insrrt,ion  (due to accepting fragment streams that end-systems
lxwr dropped already) or evasion (due to dropping fragments that cm-systems
have  not yet discarded) attacks.

4 . 3 . 2  O v e r l a p p i n g  F r a g m e n t s

It has long been known that there are serious security implications arising from
interactions  between fragmentation and network xcess control devices (like
packet filters). Two well-known attacks involving fragmentation allow attackers
to potentially evade  packet filters by employing pathological fragment  streams.
The first of these attacks involves simply sending data using the smallest frag-
ments possible; the individual fragments will not contain enough data t,o filter
“11.

The second problem is far more rclcvant  t,o ID systems. It involves  frag-
mentation overlap, which occurs when fragments of differing sizes arrive  out of
order and in overlapping positions. If a fragment, arriving at an end-station
contains data that has already arrived in a different  fragment,, it is possible that,
the newly arrived data may overwrite some  of the old d&a.

This presents problems for an IDS, If the IDS does not lxmdlc  overlapping
fragments in a manner consistant with the systems it, watches, it may, given
a stream of fragments, reassemble a completely different packet than an end-
system in receipt of the same fragments. An attacker that understands the
specific inconsistency between an cm-system and an IDS can obscure her attack
by couching data inside of overlapping fragment  strea,ms  that will bc reassembled
diffcrcntly on the two syst,rms.

Overlap resolution is further complicated  by the fact, that data from cow
flitting  fragment.s  is used differently depending  on t,hrir  positions. 1rr some
situations, conflicts arc resolved in favor of the new dat,a. In catbus, the old
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Figure 11: Forward and Reverse Overlap

HP-UX 9.01

Overlap Behavior

Always Favors Old Data
Favors New Data for Forward Overlap
Favors New Data for Forward Overlap

.4lways  Favors Old Data
Favors New Data for Forward Overlap
Favors New Data for Forward Overlap

Figure 12: IP fragment overlap  bchmior for various OS’s

data is preferred and the new data is discarded An IDS that does this incorm
rrct,ly  is vulnerable t,o evasion attacks. Figure 11 shows the different scenarios
involved in fragmentation overlap.

4.3.3 Effects of End-System Fragmentation Bugs

ID systems aren’t the only IP iInplcIrlemtntiolls  that can incorrectly  handle ovw
la,pping  fragments. The IP drivers in cm-systems can have bugs as well. The
complexity of IP fragment reassembl,y  makes the existence of incorrect implc-
mentatious  quite likely. Unless the IDS knows exactly which systems have nom
standard drivers, it is incapable of accurately reconstructing what’s happening
“11 t11cm.

For example, Windows NT resolves  overlapping fragments consistently in fa-
vor of the old data (we were unable to create  a fragment stream that forced Wim-
dew NT t,o rewrite a previously received fragment). This differs  from 4.4BSD,
which rrsolvcs  conflicts as suggested by the st,andard (in favor of the new data in
mses of forward overlap)[lO]. Figure 12 gives examples of how several popular
operating systems resolve overlap.
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The end result is that fragmentation reassembly is different om the end-
system depending on the operating system. Urdcss the IDS knows  which OS
tllc system is running,  it will have absolutely no way of knowing what form of
conflict  resolution was performed,  and thus no conclusive  evidence  of what  was
actually reassembled.

4.3.4 IP Options in Fragment Streams

IP packets can bear options. When an IP packet  is fragmented, the question
arises as to whether  the options from the original pxket should be carried on all
the fragments. RFC791[9]  dicta& that certain IP options are to be present in
every fragment of a datagram (for example, the “security”  option), and others
must appear only in the first fragment.

A strict implementation of IP could discard fragments that incorrectly prwrnt
options. Many implementations  do not,. If the IDS doesn’t behave exxtly like
t,he  machines it’s watching in this respect, it will be vulnerable t,o insertion and
evasion attacks.

4.4 Forensic Information from IP Packets

It is an unfortunate fact that the IP version 4 protocol is in no way anthenti-
cat,ed.  This poses some  problems to ID systems attempting to collect evidence
based on information seen  in IP headers; anyone can forge an IP packet appear-
ing to come from some  arbitrary host.

This problem is particularly severe with connectionless  protocols. In connec-
t,ion-orient,rd  protocols, a weak conclusion can bc drawn as t,o t,hr origin of a
session based on whether a valid connection is created; the sequence numbers
employed by protocols like TCP provide at least cursory assurance that the
&a& is originating at the address it a,pprars  to come from. An IDS can
observe that a connection uses  consistantly  correct sequence numbers and have
a reasonable assurance that it’s not being blindly spoofed.

Unfortunately, no such asurancc  exists with cormcctiorlless  protocols; an
att,ack against the DNS, for instance, could be sourced  from any address on the
net.  It is important that operators of ID systems be ZLWBTR  of t,hr questionable
validity of the addressing information they’re given by t,heir system
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5 TCP Transport-Layer Problems

A large portion of the attacks detcctcd  by ID syst,ems  OCCII~ over TCP conncc-
t,ions.  This imposes the requirement that an IDS be able to recoustruct  the flow
of data passing through a stream of TCP packets. If the IDS can’t do this in a
manner consistent, with end systems it’s watching, it, is vulnerable  to attack.

For normal TCP connections, initiated by innocuous network  applications
like “t&et”, this is not difficult. Against an attacker. who is stretching the
TCP protocol to its limits (and, in exploiting OS bugs, beyond  those limits) t,o
avoid detection, the problem is far more difficult.

There are many different ways to implement a, TCP connection monitor.
Each has its advantages, and each has serious flaws. The lack of a canonical
“Right Way” to process a captured stream of TCP packets  is a major problem
with network ID systems.

5.1 Definition of Terms

TCP connection monitoring is a complicated subject. III  order  to simplify our
discussion, we define several terms describing information used by the monitor to
track and record information flowing t,hrougb  a TCP session. For the most part,
t,hrse terms arc synonymous with those used by the BSD TCP implementation.

Every TCP connection has four identifiers (two for the client, two for the
server) which distinguish it from any other connection  on the network. These
are the client (or source)  and server  (or destination) IP addresses, and the client
and server TCP port numbers. Two connections  cannot exist on the n&work
that share these ident,ifiers.  We’ll refer to this informat,ion  as t,he  “connect,ion
parameters”.

The TCP protocol specification (RFC793[12])  d~fic nes several “SMCS”  that,
any given connection can be in. In this paper, we refer only to states observable
by at, IDS (those involving the actual exchange of data between two hosts).
The vast majority of all possible connections exist, in t,he  “CLOSED” &ate,
meaning that no connection currently exists using those parameters. An active,
established connection is said to be in “ESTABLISHED” st,ate. We’ll introduce
ot,hcr  states when they become relevant to our discussion.

TCP implements a reliable, sequenced  stream protocol. By “reliable”, WC

mean that each end  of a connection can dctcrmine  whether data it has sent was
successfully received, and can do something to remedy  the situation when it
isn’t. TCP is “sequenced” because it employs “srqwncc numbcrs’~  to drt,rrminc
where any piece of data rcprcsclltcd  in a, packet, belongs rvilbin a, stream

In order for an IDS to reconstruct the information flowing through a TCP
connection, it must figure  out what sequence  numbers arc being used. Wc
call the process that an IDS goes through to determine the current valid se-
quence numbers for a connection “synchronization”. A scenario in which the
IDS becomes confused about the current srr/uencr  numbers  is t,ermed  “desyn-
chronization”
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When an IDS is desynchronized from a, connection;  it cannot, xcurately  re-
construct the data being passed through the connection. In many cases, ID
syst,ems  become completely blinded  (not reconst,ructing  1x1~ data from the con-
nection) when this occurs. Thus, a major  goal of an attacker  is to desynchronize
the IDS from her connections.

Along wit,h  sequence nurnbcrs, TCP tracks several other pieces of information
about a connection.  TCP defines a, flowcontrol mcchanisn~ that prevents one
side of a connection from scnding too much data for t,hr ot,hrr side to process;
this is tracked through each side’s “window”. TCP also allows for out-of-band
data to be sent in a stream, using the “urgent pointer”.

This collection of state information can be represented inWrnally  on an rnd-
system in any manner. We refer to the abstract concept of the block of infor-
mation that an implementation must manage to follow a single connection as
a ‘TCP c0ntr01  block”, or “TCB”. A network IDS must maintain a TCB for
every  connection that it watches.

5 . 1 . 1  I D S  S t a t e  T r a n s i t i o n

TCBs arc only useful for connections that we not, (in fact,) in CLOSED state.
Because it would be infeasible for an IDS t,o maintain a TCB for every possible
connection, any network IDS defines a mechanism by which TCBs can be created
for newly detected connections, and destroyed for connections that are no longer
relevant.

In our discussion of IDS TCP problems, WC isolate three  diffcrcnt  points at,
which the processing of a connection by an IDS citn be suhvrrted.  These are
TCB creat,ion  (t,he point at, which an IDS decides to instantiate a new TCB for B
drt,ected  connection), stream reassembly (the process an IDS uses to reconstruct
a stream associated with an “pen TCB), and TCB teardown  (the point at which
the IDS decides to retire a TCB).

Contributing to attacks against each of these three points are data insertion
attxks, which can sllow an &tacker  to confuse the IDS as t,” what da,ta is
actually arriving at the cm-system. In some  cases 1 such as wit,hin  the contcxt
of stream reassembly, dat,a insertion att,acks  make  the reliable monitoring “f
a TCP session practically impossible; it is thus important, t,lre  the IDS not be
vulnerable to insertion attacks. This is not an easy  goal to achieve.

5.2 Simple Insertion Attacks

As with the IP protocol, there are several  different ways in which a single packet
can be inserted into an IDS. TCP input processing  is complex, and there arc
many different cakes  that can cause a received packet to be dropped. As always,
if an IDS doesn’t process  TCP packets in the same manner as the end-systems
it’s monitoring, it is potentially vulnerable  to insertion attacks.

As with “UT analysis of IF’ monitoring, we used the source code t,” th” 4.4BSD
kr~~lel to obtain candidate casts for pot,ential  ins&ion &tacks.  Again, any point
in 4.4BSD’s  tcp.input()  function that causes a received packet to bc dropped
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without complete processing was identified as a possible problem. Figure 13 lists
points in FrceBSD  2.2’s tcp.input()  code where  incoming segments are dropped.

A TCP segment is acknowledged if the receiving system gene&es  a mes-
sage  in rrsponsc to the segment; when this occurs, we indicate whether this is
via an RST or ACK message. The transmission of a message in response to a
bad segment is significant because an IDS could potentially dctcct  invalid seg-
ments by examining the manner in which t,he,y  are acknowledged, though this is
complicated both by resource and eificicncy  issues, as well as the potential for
inconsistant  behavior across different operating systems.

52.1 M a l f o r m e d  H e a d e r  F i e l d s

Data from a, TCP packet can he extract,rd  and used in reassembly without
looking at many of the header fields. This makes  it dangerously easy to design
B TCP session monitor that is vulnerable  to packet insertion; it is important to
valid&e the header fields of a TCP packet before considering its data.

One very easily overlooked field is the “CODE”, which dctcrmincs the type
of message being sent in a given TCP segment,.  The TCP code is specified as a
series of binary flags. Certain  combinations  of these flags are invalid, and should
result in a discarded packet. Additionally, many TCP implementations will not
accept data in a packet that does not, have the “acknowledge” (“ACK”)  flag set.

According to the TCP specification,  TCP imptcmcntations  arc required to
accept data contained in a SYN packet. Because this is a subtle and obscure
point, some implementations may not ha,ndle  this correctly. If an IDS doesn’t
consider dat,a  in a SYN packet,, it is vnlnerahle  to a t,rivia,l evasion at,tack;  if it,
does, it may be vulnerable to insertion attacks involving incorrect end-system
implementations.

Another often overlooked TCP input processing issue  is checksum compu-
tation. All TCP implementations are required to validate incoming packets
with the Internet checksum. Many ID systems fail to perform t,his check; pack-
cts can he inserted into these systems simply by sending TCP segments  with
intentionally corrupt checksums.

5 . 2 . 2  T C P  O p t i o n s

As in IP, it is important that the IDS process TCP options correctly. Unfor-
t,unately,  processing of TCP options is significxntly  trickier than processing IP
options. One reason for t,his is the fact that several TCP options have only
recently been created (timestamp and window scale, for instance). Another is
the fact that TCP specifies rules for when a TCP option can appear  within the
cont,ext  of a connection. Certain options can be invalid in certain connection
states.

RFC1323[13]  introduces two new TCP options designed to increase t,he JX-
liability and performance of TCP in high-speed cnvironmrnts.  With these new
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Packet other than SYN received in LISTEN state
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Figure 13: FreeBSD  2.2 tcp.input()  packet drop points (netinet/tcp-i~~zlt.c)
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options came the possibility that TCP options could appear on packets that
were not SYN segments, a departure from t,he  previous convention. RFC1323
dictates that opt,ions can only appear in no&YN segments if the option has
been specified and accepted previously in that connection.

Because certain TCP implementations may reject non-SYN segments con-
taining options not previously seen,  it’s important t,hat the IDS not hlindly
accept such a packet. On the other hand, some  end-systems  may simply ig-
nore the had options, hut continue to process the packet; if the IDS doesn’t
correctly determine what the end-system has done, it will either be vulnerable
to an insertion attack or another trivial packet evasion &tack.

Another concept defined by RFC1323 is PAWS, or “protection against wrap-
ped sequence numbers”. Systems implcmcnting  PAWS t,rack  timestamps on
segments; if a segment is received that contains a timestamp echo that is older
than some threshold time, it is dropped. An attacker cam trivially crcatc a TCP
segment with an artificially low timestamp, which will cause PAWS-compliant
TCP stacks to drop the packet without further processing.

Not only does the IDS need to know whether t,he end-system supports PAWS,
but it also needs to know what t,he  end-system’s threshold value for timestamps
is. Without this information, an IDS may crroncously  process invalid TCP
segments,  or, even worse, make an incorrect  guess as t,o t,he  validity of a segment
and enable evasion attacks.

5.3 TCB Creation

The first point at which TCP session monitoring can he suhvert,ed  is in TCB
creation. The TCB creation policies of an IDS determine the point at which it
begins recording data for a given connection, as well as the initial state (sequence
numbers, etc) used to synchronize the monitoring with the actual session.

TCB creation is a troublesome issue. There are many different methods that
cam he employed to dctcrminc when  to open a TCB, and none of the straight-
forward methods is without problems. Some techniques are obviously inferior to
others, however,  and it’s important to indicate which these are. TCB creation
establishes the initial state of a connection, including it,s  sequence numbers; the
ability to forge fake TCBs on t,he IDS can allow an attacker to desynchronize
future connections that use the same parameters as the forged connection.

TCB creation as a concept revolves around the TCP three-way handshake
(or “3WH”);  which is an exchange of TCP pack& bet,wern  a client (the “active
opener” of a connection) and server (the “passive opener”). The 3WH estab-
lishes the initial sequence numbers used for that connection, along with any
other parameters (the use of running timest,amps,  for instance) that may be
important.

There are very few options available t,o an end-system in implementing TCB
creation; a TCB cannot be completely opened until a t,hrer-way  handshake is
completed successfully. Without the 3WH, t,hc two cuds of a connection have
no agreed-upon sequence numhrrs  to use,  and will be unable  to exchange data.
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An IDS, on the other hand, has many options. ID systems cau attempt to
determine the sequence numbers heing used simply by looking at the sequc~e

numbers appearing in TCP data packets (we refer t,o this as “synching on dat,a”),
or it can rely entirely on the 3WH. Compromises can be made to either approach;
inform&on from a 3WH can be used, but, not relied upon, by the IDS, and the
IDS does not necessarily need to wait for an ent,irr  3WH before opening a TCB.

We at,tempt  to outline all the st,raight,forward  mechanisms  for establishing
TCBs on au IDS here. This is by no means a complete list of all the ways t,his
task can be accomplished, hut these  are the t,rchniqucs that, WC expect, to see
utilized in typical ID syst,erns.

5.3.1  R e q u i r i n g  T h r e e - W a y  H a n d s h a k e

The first decision for IDS designers to make is whether or not to rely completely
on the three-way handshake for TCB initiation. An IDS that relies on the 3WH
will not record data in a connection for which it, did not observe a handshake.

This has a few distinct disadvantages. The first, snd most obvious is the fact
that the IDS will miss entirely any TCP connection for which it does not see the
3WH. This obviously presents problems at, program init,ialization  time (the IDS
will only he able to see connections that start after it does), but also presents a
serious opportunity for connection evasion by an attacker who can prevent the
IDS from seeing the 3WH.

Another problem occurs in combination with TCP reassembly. If an IDS
uses  the 3WH to determine the initial sequence numbers of a connection, and
then validates data against those sequence numbers, it can potentially be tricked
into desynchronizat,ion  hy an att,acker  who forges a realistic-looking (hut fake)
handshake. If the IDS records the sequence numbers from the handshake, a real
connection, using different sequence  numbers hut the same parameters, will he
undetectable as long as the attacker-created TCB is open.

TCP options compound this problem Iu order to correctly deal with TCP
extensions such as PAWS, the IDS mwt see  the three-way handshake (the hand-
shake determines whether the use of certain options is legitimate with the cow
ncctioII).  If the IDS fails t,o detect,  this, it will be vulnrrahlr t,o insertion attacks
against so~ne  operating systems (notably 4.4BSD).

T h e  E f f e c t s  o f  F i l t e r i n g  o n  H a n d s h a k e  D e t e c t i o n  M a n y  sccurity-con-
scious networks have network filtering in place that makes it difficult for a remote
attacker to send packets to the network that have source addresses of machines
behind the filter. This technique, which is referred to as “inside-outside” filtering
or “spoof-protection”, makes some  attacks against TCB creation harder; the
attacker,  trying to trick the IDS into opening or desynchronizing R TCB, cannot
caily forge server response  pack&.

An IDS czm take advantage of this by trust,ing packets  that appear to orig-
inate from machines behind  such filters (the IDS assumes that the presence of
t,hrse  filters makes forging such packets impossible). Trusted  packets  can be
used as a reliable indicator of connect,iou  st,ate.
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It’s important to base  the decision on whether  t,o “trust” a packet off the
source  address on the packet, and not on the type of TCP message it contains.
An IDS that “trusts” SYN+ACK  packets, assuming that, t,hey  arc server  re-
sponsc  messages and thus protected by packet filters, cannot, sccuratcly detect
att,acks  against network clients (in which the filtered addresses are the clients,
Irot,  the servers).

Of course, the IDS must be configured to know which addresses  are trust-
worthy and which aren’t. An IDS which blindly relics on the fact that addresses
on its own LAN are spoof-protected will be completely vulnerable if no act,ual
spoof protection exists. The configuration of t,he IDS must he consistent with
that of the actual packet filters.

R e q u i r i n g  F u l l  H a n d s h a k e An IDS that requires a full 3WH will not record
data for a connection until it sees and accepts all 3 packets in t,he three-way
handshake. Two of these packets arc sent by the client (and thus, for scrvcr
a,ttacks, can he considered under the complete control of an attacker), and 1
of them is sent by the server. In TCP terminology, this means  that the IDS
doesn’t start recording until the connection enters ESTABLISHED state.

As mentioned previously, requiring a complete handshake makes it danger-
ously easy to miss connections (due to packet evasion techniques, simple per-
formance problems on the TCP monitor that cause it t,o miss packets, or even
att,acker-induced  performance problems).

A l l o w i n g  P a r t i a l  H a n d s h a k e An IDS that requires at least a partial 3WH
will not record data for a connection unt,il  it, sees some port,ion  of t,he hand-
shake occur. Evidence of a three-way handshake validates TCB initiation (we’ll
see that thcrc  are problems with hlindly creat,ing  TCBs to synch up to data
streams), and potentially reduces the ability of an attacker to trick the system
into creat,ing  false TCBs.  Requiring only partial handshakes also decreases the
probability that a connection  will be missed due to packet drops under load.

The question that then arises is “what portion of t,he  t,hree-way  handshake
needs  to be seen  by t,hr IDS before  a TCB is cre:ated‘?.  An IDS can create  a
TCB when it sees the initial connection solicitation (the client  SYK),  or when
it sees the server  return a positive response  (the server SYN+ACK). In the
presence of inside-outside filtering, it can bc difficult for an attacker to spoof t,he
server  response; server SYN+ACK responses are thus a more reliable indication
that a connection is occurring. If am attacker cannot spoof t,hr server  response,
the SYN+ACK also contains the valid sequcncc  numbers for the connection,
allowing the IDS t,o more accurately initialize the TCB.

In either case, it’s important to no%  that until the handshake is completed,
a connect,ion  doesn’t actually exist. The only indication an IDS has that a
connection isn’t being spoofed is when then tbc client responds to the serxr
SYN+ACK with an ACK confirming the server’s initial sequence number. If
an IDS uses  partial handshakes to open TCBs,  it, can be tricked into opening
TCBs for nonexistent connections.

3 0



5 . 3 . 2  D a t a  S y n c h r o n i z a t i o n

The alternative to requiring a three-way handshake t,o open a, TCB is t,o deduct
t,he initial state of a connection by looking at data packets. prcsnmably  after
a. connection has been opened.  Since t,he  IDS is uot, an active  participant in
the connection, it doesn’t necessarily  even  have to consider 3WH packets; it is
entirely feasible to track normal connect,ions  simply by looking at ACK packets
(pxkcts  containing data).

The primary advantage of this technique, which we refer to as “synching on
d&a”, is that the sniffer picks up more data than systems that require hand-
shakes. The system can recover from the loss of an important 3WH packet, and
can detect, connection that began beforc  the program wa,s s&ted. Unfortu-
nately, synching on data creates the possibility that the sniffer will accept data
that doesn’t correspond  to any open connrct,ion

Worse still, ID systems that, synch on data and are strict about sequence
number checking can be desynchronized by an attacker who pollutes the ob-
servable connection state with forged data before  initiating her attack.

U s i n g  S Y N  P a c k e t s A potential antidote to this problem is to allow the
IDS t,o synch on data, but have it pay aMention  to 3WH pack&s that occur
sometime aft,er  it starts recording data. These systems will initialize connection
state from the first observed data packets, but will reinitialize themselves  if they
see  evidence that a real 3WH is being performed (the 3WH is then presumed
to set the real state, and previous state and data recorded should be regarded
a,s intentionally faked).

It is important t,hat,  t,his t,ec huique  be implcmcnt,rd  reliably. Rxanse t,he  pro-
cess of combining data synchronization with hzmdshakr  synchronization neces-
sarily allows the monitor to rcsynchronize  the connection based on some  packet
input, poor implementations can result in TCP session monitors that can be
desynchronized (due to falsely injected 3WH pa&&s) at will by an attacker.

One poor implementation strategy relies solely on client SYN packets to
rrsynchronize  the connection. If a SYN packet, is received sometime after the
TCB is opened, the IDS resets the appropriate sequence  number to match that
of the newly received SYN packet. An attacker can in,jcct  fake SYN packets at
will; all she needs to do is send a SYN packet with a completely  invalid sequence
number, and the IDS will bc desynchronized. Legitimate data being exchanged
on t,he connection will no longer (as far as the IDS is concerned) have valid
scqurnce  numbers, and the IDS, discarding the valid data, will be blinded.

One simple way to address this problem is to only accept the first SYN
pxket seen  on a connection. Presumably, this will be t,he  legitimate three-way
handshake packet, and not a forged desynch attempt.

This does not work. There are three major problems with this approach:
the IDS remains vulnerable to desynch attacks on connections  t,hat,  start before
t,hr program does (it ncvcr examines t,he  original 3WH.  so no legitimate SYN
will ever  appear on the connection),  t,he  IDS has no reliable way to determine
whcthrr any given SYN is in fact the first SYK to sppra,r  on t,he connection
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(packet drops complicate this), and,  most import,antly,  an attacker can perma-
nently desynchronize the connection by inserting  an invalid SYN packet before
the legitimate connect,ion  start,s.

A better approach is to rely on SYN+ACK  packets to resynchronize.  As
long as the attacker can’t, forge  a valid looking SYN+ACK packet from the
server, t,he IDS can make the assumption that SYN+ACKs from the server  are
lcgitimatc and represent real connection handshakes.

There arc problems associated with t,bis too. If the IDS is observing a
stream of data, for which it has not yet detected  a t,llrcc-way  handshake, it
does not necessarily know  which host is the client and which is the server. The
observation of a 3WH determines which end is the client and which is the server.
An attacker can forge a SYN+ACK packet that makes it appear like her end
of the connection is the server; if the IDS cannot determine correctly whether
that is the case, it will be desynchronized.

Ignoring SYN Packets A TCP monitor need  not resynchronizc  on 3WH
packets; SYN packets can be ignored entirely, and data be used as the basis for
sequence number initialization. If this is implemented in a naive  fashion, any
forged data packet can potentially desynchronize t,hr connection. A smarter
implementation might only consider (for synchronization purposes) d&a packets
that originate from local hosts, assuming that the attacker cannot forge packets
appearing to come from these hosts.

5.4 TCP Stream Reassembly

The most difficult task for a network intrusion detection system to accomplish
is the accurate reconstructiorl  of the actual data being exchanged  over a TCP
connection. TCP provides enough information for an end-system to determine
whether  any piece of data is valid, and where that data belongs in the context
of the connection. Even so, the 4.4BSD code  to manage this process is over
2000 lines long, and is some  of the most irwolvcd  in the entire TCP/IP protocol
implementation.

The end-points of a connection have a distinct advantage over an observing
monitor ~ if they miss data, the other side of the connection will automatically
retransmit it after some  period of time. Both participants of the connection can
actively manipulate the other, to ensure that their data is exchanged correctly.

The TCP session monitor does not have this luxury. If it, misses a packet, it
cannot (practically) request retransmission ~~~~ moreover, it cannot easily detect
whether a missing piece of data is due  to out-of-order packet arrival or a dropped
packet. Because the IDS is strictly a passive participant in the cormcction,  it is
quite easy  for it to miss data.

This problem is made even more acute by the fact that proper reassembly of
a stream of TCP packets requires accurate sequence  number tracking. If an IDS
misses enough packets, it can potentially lose t,rack  of the sequence  numbers.
Without some  recovery mechanism, this can permanently desynchronize the
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connection.  The techniques used by an IDS t,o recover  from packet  10~s  (and
rrsynchronize  with the connect,ion)  can also be attacked.

5.4.1 Basic Reassembly Problems

Some  ID systems do not use sequence numbers at all. Instead, they insert data
into the “reassembled” stream in the order it is received These systcrns do
not work. A11  attacker can blind such a systcrn  simply by accompanying her
connection with a constant stream  of garbage data; the output of the monitor’s
TCP driver will bc meaningless.

These systems do not work even on normal TCP streams. The srrival of TCP
segments out of order is a normal occurrence (happening whenever  the rout,e
between TCP endpoints changes and reduces  the latency of the path between
t,hem)[lS].  Unfortunately, when this happens,  t,he ID system does not correctly
rc-order  the packets. The output of t,hr system is again inaccurate. Of course,
nn attacker could also send her stream of data out of order; the end-system will
correctly reassemble, and the effectively  crippled IDS will see meaningless d&a.

5.4.2 Challenges To Reassembly

Even if the system does check sequence numbers, there is no assurance  that a
given segment (even  with correct sequence numbers) will be accepted by the cnd-
system to which it is addressed. Several  issues can cause a TCP implementation
to drop properly sequenced data. The simplest of these  are the II’ and TCP
insertion problems, but other, higher-level issues present problems as well.

One major problem the IDS must cope  wit,h  is each end-syst,em’s  advertised
window. The “window” of a connection rcpreseuts  the number of bytes of data
it, will accept, preventing the other end of the connection from sending too much
data for it to buffer. Data sent past the window is discarded. In addition, the
time at which the IDS detects the change in the window is different from the
time at which the end-system detects the change and reacts to it. Pack&s that
arrive within the period of time that the IDS zmd  t,he  end-system arc inconsistent
can cause problems. An IDS that does not account for this in some  manner is
potentially vulnerable to an insertion attack.

The information available to the IDS from captured packets provides one use-
ful indication of end-system state ~ the acknowledgment, sequence number. The
acknowledgment number represents the next sequence number an end-system
expects to see. Presumably (end-system TCP bugs can break this assumption),
irny valid piece of d&a will eventually be acknowlcdgcd  by an ACK mcssagc.

It, may be apparent at this point that an IDS ca,n reliably monitor a stream
simply by waiting for acknowledgment before acting on a piece of data. This
is not as easy at it may seem  The acknowledgment  number is cnmnlativc;
it represents  the next  expected piece of data within the context of the entire
(wnnection.  Every segment sent is not necessarily directly acknowledged ~ even
t,hough  an acknowledgment is geucrated  in response to it. Several segments
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HP-UX 9.01 Favors New Data for Forward Overlap
Linux Favors New Data for Forward Overlap
.41x 3.25 Favors New Data for Forward Overlap
Solaris 2.6 Favors New Data for Forward Overlap
FrceBSD  2.2 Favors New Data for Forward Overlap
Windows NT 4.0 Always Favors Old Data

O p e r a t i n g  S y s t e m  1 T C P  O v e r l a p  B e h a v i o r

Irix 5.3 / Favors New D&a for Forward Overlap

Figure 14: TCP Overlap Behavior in Various Operating Systems

worth of data can be acknowledged hy one ACK; an IDS cannot simply wait for
an acknowledgement to each individual packet  it sees.

Another great problem in IDS stream reassembly is the fact that an attacker
can send several identically sequenced packets with varying data. The header
information will not change from packet-to-pxket  (except the checksum), and
each packet will alter end-system state in exactly the same manner, but only one
of the packets will actually he processed by the destination host. Unfortunately,
only the end-system knows which one was actually processed. There is not
enough  information exchanged on the wire for a IDS to determine  which packet
was valid.

Worse still, an insertion attack against an IDS coupled with this ambiguity
can allow a~~ attacker to determine which packets will he accepted by the IDS,
by sending segments t,hat the end-system will reject wit,hout,  acknowledging, and
then sending valid packets after some brief delay. The IDS will most likely  accept
the bad data and move the sequence space forward, causing it to ignore the valid
data and potentially desynchronizing the IDS from t,he  actual connection. This
is very similar to the TCP hijacking attack described by Laurent Joncheray[l4].

5 . 4 . 3  O v e r l a p

Like IP fragments, TCP segments can arrive out of order and in varying sizes.
As in IP fragmentation, this can cause new data to overlap old data. As always,
if t,he IDS does not,  resolve t,his problem in a manner consist,ent,  wit,h t,he hosts
it,‘s watching, it will not accurately reassemble the stream of data.

The rules for handling TCP segment overlap are quite similar t,o those of
reassembling fragmented IP datagrams.  In some  casts,  cad-systems  will resolve
t,he conflict in favor of the old data; in others, the co&i& is rcsolvcd in favor
of the new data. There is, again, a great potential for hugs here, and, as in
IP reassembly, a bug on either the end-system or the IDS is exploit,ahle  by the
attacker. Figure 14 details the overlap resolution behavior  of various operating
syst,eIns.

Using overlapping TCP segments, it is possi hle for an nttackcr to create a
stream of packets that will assemble  to a complctcly innocuous string if sent
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alone,  or to an attack signature if it’s accompanied by a single overlapping
segment.  Playing with segment overlap allows the attacker to lit,erally  rewrite
the packet stream on the destination host, and, unless the IDS resol~cs  overlap
in exactly the same manner as the end-system, it will not,  see  t,he attack.

5 . 4 . 4  E n d p o i n t  T C P  O v e r l a p  B u g s

As in IP fragmentation overlap resolution,  t,here  is a large pot,mtia,l  for illcoIl-
sistcncy of implement,atiom  hctween vendors in TCP reassembly code.  .4s an
example, Windows NT resolves conflicts in out-of-order TCP segments consis-
tently in favor of the old data, and 4.4BSD resolves conflicts as indicated in the
RFC, occasionally in favor of the new data. As with fragmentation reassem-
bly, unless the IDS knows how each system on t,he  network reassembles  st,reams
containing conflicting segments, it will he unable to accurately monit,or  certain
types of end-systems.

5 . 4 . 5 S u m m a r y  o f  R e a s s e m b l y  I s s u e s

These  issues do not present a great problem for most connections; most of the
TCP segments in a normal connection arrive  im-order, and there aren’t any fake
TCP segments injected into the &ream  specifically to confuse the IDS. However,
in the real world, an attacker trying to wade an IDS will attempt to make the
TCP stream as hard to monitor as possible, and will stretch the limits of the
protocol to do this.

Vulnerahilities  in IDS TCP reassembly code arc insidious because they arc
not immediately obvious; a specific problem may manifest, itself only when the
IDS is given some pathological sequence of input,s.  The majorit,y  of the time,
the IDS may appear to be reassembling TCP streams perfectly. Testing IDS
TCP implementations for problems is time consuming and expensive; it’s easy
for a vendor to skip this testing almost entirely.

5 . 5  T C B  Teardown

The TCB teardown  policies of an IDS determine the point, at, which t,hr system
ceases recording data from a connection. TCB t,eardown  is necessary hecausc
the state information required to track a connection  consumes resources; when
a connection ceases to exist, it no longer makes sense  to dedicate resources to
tracking it. A system that did not destroy old TCBs at some point would be
trivially defeatable, simply by flooding it, with meaningless connections  until it
ran out of resources  to track future connections.

In TCP, connections close after they’re explicitly requested to do so. Two
TCP messages (RST and FIN) exist specifically to terminate a connection. Bar-
ring sudden crashes on both endpoints, TCP connect,ions  are only terminated
by the exchange of these  messages. Because TCP explicitly provides notification
of terminated connections, it may he logical to design  XL IDS t,ha,t  uses  these
rncssages  to decide when  to close a connection TCB.
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This is not enough to adequately manage the per-connect,ion  resource  prob-
lem. TCP connections do not implicitly %rne  out”. A connection can be alive
without the exchange of any data indefinitely. TCP provides a mechanism to
ensure that both hosts are alive, by periodically exchanging messages, but this
mechanism is not connnonly  used and takes far too long to recognize dormant
connections to be of practical use. Without some method t,o time out arbitrary
dormant connections, the IDS remains attackzblc  simply by flooding it with
connections that do not explicitly terminate.

The problem with TCB teardown  is that an IDS can be tricked into tearing
down a connection that is still active, and thereby force the system to lose  state.
Within the context of a pattern matching engine, this means that the stream
of input abruptly terminates. An attacker tha,t can induce t,he  incorrect t,ermi-
nation of the TCB tracking her can prevent pattern matching from working by
abruptly halting pattern matching before t,he  complete attack signature passes
itcross the network.

On the other hand, an IDS that fails t,o t,ear  down a TCB for a connection
that really has closed is also vulnerable; as soon as the connection is legitimately
closed, its parameters can be re-used  for a new connection wit,11  completely
different sequence numbers (teclrnically~  the systems must wait for a period of
t,ime before reusing  connection paramet~ers  [12]  ~~ not all operating systems
enforce this). In the absence of synchronization recovery techniques, this can
completely blind the IDS to entire connections.

Because an ID system’s TCB teardown  policies can bc attacked, their design
is relevant to our discussion. We’ve identified a few options that can contribute
t,o how an IDS ceases to track connections, and will discuss their  ramifications
hcrc. This is by no means  an exhaustive summary of all the possible options.

5.5.1 Using TCP Connection Teardown Messages

One possible way for an IDS to detcrminr  when to stop t,rxking a connec-
t,ion  is to listen for TCP control messages that indicate the connection is being
shut down. Doing so allows an IDS t,o quickly recover rcsourc~  for connections
that have actually terminated, and also prevents  desynchronization  for new toll-
nections  using the same parameters. Unfortunately, because some connection
termination request messages may be under the control of an attacker, there is
significant risk involved in trusting these messages.

TCP provides two connection teardown  messages. The first message allows
for “orderly” connection teardown, where both sides of t,hc connection acknowl-
edge  the end of the connection and ensure that their  data is completely sent
before the connect,ion  closes. The second message  abrupt,ly  terminates a COIL-
nection  due to error.

FIN Processing TCP provides orderly teardowu  via t,hr FIN message.  .A.

system sending a FIN message  is indicating t,hat,  it, has finished salding data,
and is ready t,o close the connection. FIN messsges  arc a,ck~~o&dged,  and each
side of the connection seyds  a message to shut it, down.
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In the presence  of inside-outside filtering,  FIN mrssagcs are reliable indica-
t,ors  of terminated connections. A connection is not completely terminated  until
both sides send a FIN message, and acknowledge the ot,her  side’s message. An
att,ackcr cannot fake the FIN shutdown of a conucction  without, forging pack&
aat appear to come from the server.

RST Processing It’s not enough for an IDS t,” rely on FIN messages t,o
terminate connection TCBs.  TCP provides a method to abruptly notify the
other end of a connection that the connection has been  closed, using the Reset
(RST) message. RST segments are not acknowledged;  the only way to know if
an RST message has been  accepted by an end-system is to see if it continues
sending data on the connection. The only way to do this practically within an
IDS is to time the connection out after seeing an RST; however, this means
that an IDS can potentially mistakenly shut down a connection that is alive but,
dormant.

The RST problem is more sever”  due t” end-systrm  TCP bugs. Technically,
an RST message  is only valid if it is correctly sequenced ~ RST messages  with
spurious  sequence  numbers (which can be created by an at,tackcr in an rff”rt,
to illicitly tear down connections) should be ignored Not all operating systelns
check the sequence number on RST messages.

5 . 5 . 2 R e l y i n g  o n  T i m e o u t s  f o r  T C B  Teardown

An alternat,ive  to using TCP connection teardown  messages is to simply time
connections out when they become dormant for some  t,hreshold  time period.
This prevents the IDS from being fooled by false TCP tcardown messages, and
potentially simplifies the IDS TCP code.

There is a cost to this simplicity ~ systems that rely  on t,imrouts  for TCB
teardown  can easily be circumvented. In what has been  termed the “Sneakers”
attack (after the famous suspense movie, where Robert Redford evades a sophis-
ticated alarm system by employing a similar technique), the attacker renders
the sum of her movements undetectable to the IDS by wait,ing  for the IDS to
time out between packets.

The Sneakers attack is particularly troublesome because, as WC noted previ-
ously, the IDS must ernploy  some  form of conmect,ion  timeout  TCB teardown,
as dormant TCP connections  can remain established for far longer than the
IDS can devot,e  resources  to track them. If an attacker can induce this timeout,
either by waiting long enough or by filling the IDS with enough interesting (but
meaningless) connections that it is forced to garbage-collect older connections,
she can potentially evade t,he  IDS by ca,using  it to lox st,atc.

Addit,ionally,  systems which completely ignore TCP texdown messages can
be desynchronized when the connection is legitimately closed. Even  though
the connection has ceased to exist,  the IDS maintains a TCB for it, until it,
times out. If a new connection occurs using the same paramctcrs  before the
connection times out on the IDS, the system will be desynchronized, due to the
use of different sequence numbers on the new connection.
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This attack cm be carried out without any specislizcd  rnde; an nttacker
simply uses  “trlnet” to create a connection, closes the connection, and reopens
it. If the sequence numbers on her machine change enough  between t,he  two
connections. a vulnerable IDS will mot be able  to t,rxk the second  connect~ion.
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6 Denial of Service Attacks

DC&l of service attacks against ID systems are scverc because, by their very
nattIre,  passive ID systems “fail open”  ~~~~, rmlikc a good fircwall,  KCXSS  to the
n&work  isn’t cut,  wheu  a. monitor system becomes unresponsive. A basic goal,
then,  for an attacker is to caue t,he IDS t,o fail without losing access to the
machines being att,acked.

Some denial of service attacks exist due t,o buggy software. An IDS that
crashes when it receives a certain bad pa&t, or a series of bad control mcs-
sages, or anything else that can be cued by a remote attacker, can be defeated
instantly. Fortunately, these kinds of bugs are quickly and easily fixed by vcn-
dors.  Unfortunately, finding all such bugs rcquirrs  painstaking software audits.

It is also interesting that some ID systems can themselves be used to launch
denial  of service attacks 011 other systems.  An ID system that includes a coun-
termeasure capability, such as the ability to set packet filters in reaction to
an ,&tack,  can be fooled via false positives (due t,o forged  attacks) t,o react to
at,tacks  that haven’t actually occurred.

6.1 Resource Exhaustion

There are many different types of denial of service  attacks that are valid against
ID systems. The attacks we’ll discuss here all involve resource exhaustion ~ the
att,acker  identifies some  point of network processing t,hat requires the allocation
of some sort of resource, and causes a condition to occur that consumes all of
t,hnt  resource. Resources that can be exhausted by an attacker include CPU
cycles, memory, disk space, and network bandwidt,h.

The CPU processing capabilities of an IDS can be exhausted because the IDS
spends CPU cycles reading packets, determining what they are, and matching
than to some location in saved network state (for examplr,  a,n IP fragment,
needs to be matched to the other fragments of the datagram it represents).
An attacker can determine what the most computationally expensive network
processing operations are, and force the IDS to spend all its time doing useless
work.

ID systems require memory for a variety of things. TCP connection state
needs to be saved, reassembly queues  need  to be maintained, and buffers of data
need  to be created for pattern matching. The system requires memory simply
to read packets in the first place. As the system runs: it allocates memory a,s
needed to perform network processing operations (for example, the receipt of
an IP fragment means that the ID system will need  to obtain memory  to create
and maintain  an IP fragment queue  for that packet,). An stt,a&rr can drt,rrmine
which processing operations require the ID system t,o allocate  memory,  and force
the IDS to allocate all its memory for meaningless informat,ion.

At, some  point, most ID systems will need to store logs of activity on disk.
Each event stored consumes some  amount of disk space, and all computers have
a finite amount of disk space  available. An attxker can create a stream of
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meaningless  events  and, by having them continually stored, eventually  exhaust
all disk space on the IDS, which will then be unable to &ore  real event,s.

Finally, network ID systems track act,ivity on the networks t,hey monitor.
For the most part, they are capable of doing this only because networks are
very rarely used to their full capacit,y;  few monitor systems can keep up with
811 extremely busy  network. The ID system.  unlike  the end-systems, must read
everyone’s pack&,  not just those sent specifically t,o it. An attacker can ovcr-
load the network with meaningless information and prevent the ID system from
keeping up with what’s actually happening on the network.

Other resources exist as well, depending on the design of the system. For
inst,ance,  in systems that set router filters in response to att,acks,  we must  COW
sider  the fact that the router hss a limited  capacity for storing filter entries;
at some point, the router’s filter storage will be completely consumed, and the
system will be unable to add new ent,ries.  An ID system that doesn’t take this
into account can be defeated by forcing it to spend the router’s filter storage on
reactions to fake attacks.

The basic problem with resource consumption on an IDS is t,hat the system
must, simulate the operation of all the machines it’s wat,ching,  in order t,o trxk
what’s actually occurring am them. The end-systems thernsclves  only need to
concern thcrnselvrs  with network traffic that, directly involves them. The IDS,
which is spending more resources coping with the network than any ot,hrr syst,em
on the network, is thus inherently more prom to resource starvation attacks than
the end-systems.

This problem is exacerbated by the fact,  t,hat most nct,work ID systems op-
crate in “promiscuous” mode, reading all traffic off the wire, regardless of its
dest,ination.  Resources can be consumed on the IDS by the processing of traffic
that isn’t even destined for a real machine; apart from the network bandwidth
consumed by this traffic, no other system on the network u-ill be affected by
this. Again, performance on the IDS is degraded to an greater extent t,han on
the end-systems it’s trying to track, making it, more difficult for the IDS t,o keep
up ad giving the attacker an edge.

6.1.1 Exhausting CPU Resources

An attacker’s goal in exhausting an ID system’s comput~ational  capability is to
prevent it from keeping up the network. A CPU-starved IDS will not process
ca,pt,nred  packets quickly enough and, as these packets  fill t,hc buffering capacity
of the operating system, captured data starts being dropped.

An example of why this occurs is useful. On 4.4BSD Unix, packet capture
is accomplished through the “Berkeley Packet Filter” (BPF) device. BPF in-
teracts direct,ly  with low level network drivers (such as the Ethernet interface
driver), taking snapshots of packets before they’re handed up to the IP layer  for
processing. As packets are captured by BPF, t,hry  are stored iu a kernel buffer,
whcrr they stay until an application reads them out.

If an application doesn’t  read data out of t,he  buffer faster  than the buffer
is filled up by newly captured packets. space  for queuing up captured packets
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runs out.  When this happens, captured packets are necessarily dropped before
the application ever has a chance to examine them.

An attacker can prcvcnt  an ID system from keeping up with packet capture
by forcing it to spend too much time  doing usclcss work. In order  to do this,
the attacker must, identify operations that she can force the IDS t,o perform that
consume large amounts of processing time.

In many ID systems, this is easy; inefficient algorithms arc used to process,
save, and look up state about network traffic. The attacker can cause the system
to process  information that forces these algorithms to work in their worst-case
conditions.

A concrete example of this is IP fragmentation. As IP fragments arrive, they
must be stored, until all the related fragments arrive. To facilitate reassembly,
most systems store fragments in the order that their data will appear in the
final packet. This meant that, as each fragment arrives, the system needs to
locat,e the correct fragment storage area, and then find the right place in that
xea to store that specific fragment.

Many systems use a simple ordered list to store incoming fragments. As new
fragments arrive, the system must,  locate the correct  list for t,hat packet, and
then do a full linear lookup to determine whether the new fragment was already
received and, if not, where in the list the fragment should go. As new fragments
arrive, this list gets longer, and the time required to look up fragments in the
list, increases. An attacker  can force this process to operate in its worst case by
sending large amounts of traffic using the smallest possible fragments ~ large
anouts  of CPU cycles will be consumed tracking tiny IP fragments.

Some protocol parsing can be expensive by itself. An IDS that needs to
somehow analyze encrypted traffic may spend a large amount of time simply
decrypting packets (encryption and decryption can be extremely expensive op-
erations). While the demand for this kind of processing is not now very great,
it will increase as technologies such as IP-sec[ll]  arc deployed.

6.12 E x h a u s t i n g  M e m o r y

ID systems require memory to operate. Different types of protocol processing
have differing memory requirements. An attacker that, can force an IDS to
consume  all available memory resources  can render t,he system nonfunctional;
t,hr system may simply quit abruptly when it runs out of memory, or it may
t,hrash  trying to squeeze more space out of slow virtual memory systems, causing
the same effects as CPU exhaustion.

An attacker trying to exhaust memory on an IDS examines the system,
trying to determine the points at which the system allocates memory. The
attacker attempt,s  to isolate network processing events that, cause the systenl
to allocate memory for a long duration of time; the attacker then induces this
processing by sending packets that t,he IDS will be foxcd to process in that
manner.  After being flooded wit,h  such packets for some  time, the IDS will rlln
out of memory to process  the incoming packets.
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Some  ID systems employ “garbage collection” to automatically reclaim mem-
ory t,hat,  is not bring actively used. Unfortunately, used incorrectly, garbage
collection can present  its own problems. A garbage collection system that isn’t
aggressive enough in reclaiming memory will not be able to keep up with de-
mand, and will only slow down nxmory  exhaustion att,xks. A garbage c,ollec-
tion system that is too aggressive will consume memory t,hat is needed for real
processing, causing the system to incorrectly process network traffic.

Examples of att,aclable  memory allocations include TCP TCB creation (the
attacker creates  a flurry of connections to various hosts on the ID system’s
network, or, using packet forgery, creates a flood of entirely fake connection)
and TCP reassembly (the attacker sends large amounts of traffic in streams
of out-of-order data that will need to be rca,ssembled,  forcing the system to
consume memory not only for the data but also for reassembly queues).

6.1.3 Exhausting Network Bandwidth

Perhaps the simplest way to starve an IDS of resources is simply to crratc too
much raw network traffic for the system’s  low-level network interface to keep up
with. As each packet arrives, the interface must copy the packet off the wire and
int,o a buffer, interrupt the system, and cause the system to copy the packet into
the kernel. The interface is capable of handling only a limited amount of traffic
before it is overwhelmed by the load and starts dropping incoming packets.

Although modern network interfaces operate efficiently  enough to keep up
with drastically high network loads, older hardware cannot do so. The point
nt which old ISA-bus based network interfaces become saturated is drastically
lower than t,he point at which t,he network media itxlf  becomes saturated. If
an attacker creates enough traffic, she can prevent such interfaces from keeping
up without saturating the network itself.

Targeted packet floods can also work in some circumstances. On switched
networks, it’s possible to create large amounts of traffic  t,hat will only bc seen
by certain systems. If an attacker can create a fiood of pack&s that will only
be switched to the IDS, she can flood the IDS while maintaining the ability to
communicate with the machines she’s attacking.

This type of attack is closely related to CPU exhaustion, and, indeed, many
t,imes  the system will run out of CPU cycles long before the network interface is
sa,turated.  Regardless of which component of the system fails first, the effect  is
t,he  same for the attacker; the IDS cannot keep up with the network, and misses
significant packets.

6.2 Abusing Reactive ID Systems

In some circumstances, the IDS itself can become  an instruncnt of denial  of
service attacks. If the IDS has a “reactive” countermeasure capability, and
is vulnerable to attacks that create false positives, it ciln be forced to react
to attacks that don’t actually exist. The countermeasures employed can be
subverted to completely block access for legitimate traffic,  or to shut down valid
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connections. in these cases, the reactive  capabilities of network ID systems arc
actually doing more harm than good.

the most basic problem with reacting to attacks discovered by monitoring
IP traffic is that the IP addrcsscs  arc not always trustworthy. An attacker
can forge traffic appearing to come from almost, any IP address, and, if this
traffic appears to contain an attack, the ID system may react to it. In some
circumstances, this is very easy to do.

For example, many attacks occur over “connectionless” protocols, for which
the aLtacker  doesn’t riced  to see the responses to her packets. Instead, she simply
creates and blindly sends forged packets, and the IDS is fooled into believing
that the attack is coming from somewhere that it isn’t. Good examples of this
include ICMP ping floods, SYN floods, “death” packets (such as the ping-of-
death attack involving large ICMP echo requests), and UDP packet storms.

Even attacks that involve TCP connections can be faked if the IDS doesn’t
correctly identify the three-way handshake.  If the IDS doesn’t require a hand-
shake at all before recording data, TCP attacks can be faked as easily as ping
floods; even if it does, the specific manner in which it tracks handshakes can bc
attacked for the same effect.

The essential issue here is that the attacker can trigger alarms about events
occurring from fake addresses. The IDS, which has no idea what the “real”
source of the attack was, reacts falsely to the forged events  by restricting  con-
nectivity to the faked addresses. The addresses used by the attacker can be
specifically chosen to maximally affect overall connectivit,y  (for example, the
attacker can cut off access to all the network’s DNS servers).

The amount of damage that can be caused by such attacks depends on the
manner in which the IDS reacts to attacks in general. Some  ID systems limit
themselves to shutting down TCP connections that appear  to be vrhiclcs  of
at,tack;  these systems can be abused to shut down legitimate connections (by
forging traffic that makes it appear that an attack is being performed using
those connections), but cannot easily be abused to impact overall connectivity,
unless specific TCP connections are vital for the network’s connectivity (for
inst,ance,  BGP4 routing).

Other systems have more effective ways t,o react to attacks; they modify
router filters on the fly to cut all traffic from sites that appear to be originating
attacks. These systems pay for that extra power by being vulnerable to more
damaging denial-of-service subversions; an attacker that can cause the IDS to
recognize false attacks can cut all access of to critical network resources  by
strategically forging addresses.

Regardless of what countermeasures  are actually rmploycd,  it is important
to realize that such facilities are dangerous its long as an attacker  can forge
&tacks. Some types of attacks may never be a legitimate basis for deployment
of countermeasures, simply due to the fact that they can be performed blindly
using forged addresses. Other attacks can only be safely  reacted to if the IDS
ha a rock-solid network processing implementation.
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7 Methodology

Wc support our assertions regarding vulnera,bilitics  in ID systems with the re-
sult,s of ext,ensive  tests against actual, commercially available intrusion detection
systems. The purposes of these tests were t,o ascertain characteristics of each
subject’ s TCPJIP implementation, and to provide concrete examples of actual
attacks that could be performed against them. Our tests were designed  to be
easily  repeatable, and to illustrate in the most obvious possible manner the
deficiencies of each tested system

7.1 Overview

Each of our tests involve injecting packets onto a, test network, on which the
subject ID system w&s running. By t,racking  the subject’s administrative console
output, we were able to observe many characteristics of the system’s underlying
TCP/IP implementation, To this extent, all of our t&s involved consideration
of the subject,  as a “black box”. All our tests involved t,he TCP protocol.

In most cases, the tests involved interactions between our irljected  packets
and a third host, representing  a hypothetical “target” of attack In each test,
this target host was the explicit, addressee of all of our packets. The presence
of t,he  target host, allowed us to easily create “real” TCP connections for the
subject IDS to monitor.

In addition, the target host also acted as a “control” for our rxpcriments.
The target’s reactions to our injected packets allowed us to observe empirically
the behavior of a “real” TCPJIP implementation.  and contrast that behavior
t,o t,he deduced behavior of the subject, IDS.

All of our tests involved  mimicking a “PHF”  webserver  att,ack.  The PHF
at,tack exploits a specific Unix CGI xript  (“phf”) to attempt,  to gain access to
a webserver. We used PHF because the attack is detected by all our subject
ID systems, and because the attack is easily reproduced  using standard TCP
network tools (like “t&et”).  In order to reproduce a PHF attack, we sent the
string ‘LGET /cgi-bin/phf?”  to the target,  host.

In each test, we created network condit,ions  that could make it appear as if
a PHF &tack was being &tempted. In each test, the specific packets injected
into the network differed subtly. The subject ID system react,ed  to each test by
either reporting or not reporting a PHF attack. By considering  the ID system’s
output and the specific types of packets used for the test, we were able to deduct
significant characteristics of the subject IDS.

Before conducting complicated or subtle tests  against the subject,, we cow
ductcd  a series of “baseline” tests. The purpose of &se tests was to ensure that
t,he  subject IDS was configured properly a,nd was functioning at the time our
tests were conducted, and t,hat the IDS did in fact detect a PHF attack based
011  our PHF reproduction string.

In almost all test cases, a process on t,he  target host ran which accepted
incoming TCP connections on the HTTP port and printed  any input obtained
from t,he machine’s TCP st,ack.  By examining the output of this process,  u,e
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were able t” deduce whether the subject IDS should hasr detected the attack
based on the r&work  conditions we created.

7.2 Tools Used

The primary tool we employed in our tests was CASL. a specialized scripting
language  developed at Secure Networks, Inc. that, all”ws for programmable
generation  and capture of raw packets. Each of our tests used a CASL script
to inject packets onto the network, and, in most  cases, read and parse the
responses. A more detailed overview of CASL is provided im [15].

Our target host ran FreeBSD  2.2, an implcmcntation  of 4.4BSD.  The 4.4BSD
TCP/IP st,ack is one of the best documented and most,  easily “bt,ainable  II’
implementations available, and FreeBSD  is by far the most popular BSD im-
plementation. FreeBSD  2.2 was, at the time of our testing, the most recent
“stable” release  of the operating system.

For each test, we used Hobbit’s “n&cat” to”l[l6]  to listen on TCP port
80 and print the input from the target host’s TCP stack. Hobbit’s tool is an
all-purpose, bare-bones diagnostic program that is widely available, popular,
and documented; in its “listening” mode, the tool simply accepts an incoming
connection, and prints each character of data the TCP driver presents to it.

As we ran each test, we observed the specific packets being transmitted
on the network using LBL “tcpdump”[19].  Tcpdump is a low-level network
diagnostic tool that passively monitors n&works  in promiscuous mode, and
prints summaries of each captured packet. We ran the “tcpdump” tool from
the test platform on the first execution of each specific test script. Tcpdump
provided us with IP-level packet traces to accompany our test results, which
made it easier to discern exactly what was happcming  on the network during
ench of our t,rst,s.

Our test network was non-switched KlBaseT Ethernet. The hosts on t,he
n&work included the IDS, the target host, and the test platform. The network
was dormant at the time we conducted our tests.

7.3 Test Execution

Each of our tests involved a CASL script, run from an interpreter on t,he  test
platform, which generated and injected packets addressed to the target host.
We define each of these tests in terms of the script’s name, its specific network
interactions, the IDS characteristic it &tempts to ascertain, and its validity to
the 4.4BSD TCP/IP driver (that is, whether our target host, completely  and
accurately reconstructed the PHF string our test attempted t” send).

A test that was not “valid” to 4.4BSD should not have resulted  in the de-
wction  “f a PHF attack by the subject IDS. We suggest that the subject IDS
should not detect  attacks in “invalid” tests, and should reliably detect attacks
within the valid ones.

In GWXS where the IDS failed t,” detect  an attack in eit,hrr  type of test, we
rc-initialized the IDS and reran the test multiple times. Before  concluding that
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a subject IDS was mot detecting our at,tack  signatures,  wc reran the baseline
t,rst to confirm its operational integrity,  and immediately ran tbc considered
test.

7.4 Test Definitions

NLV7E baseline-l
oprmtion, Complete a TCP handshake; send t,lrc t,est  string in

a single TCP data segment.
Behmior Tested Is the IDS configured properly, and dots  our test

string adrquatcly reproduce a PHF attack to the sub-
1 jrct?

Taroet V&d&u 1 V a l i d

NUTE baseline-Z
operation Complete a TCP handshake, send the test string in

a series of ordered, l-character TCP data segments.
Behauior Tested Is the IDS configured properly, and does our test

I / string adequately reproduce a PHF attack to the sub- )

Complete a TCP handshake, send t,he test  string in a
single TCP data segment which is broken into S-byte
IP fragments and sent in order.

Behavior Tested Does the subject IDS perform IP fragment reasse,n-
bly at all?

Taqet  Validity Valid

Name frae-2
Opwation Complete a TCP handshake, send the test string in

a single TCP data segment which is broken into 24-
byte IP fragments and sent,  in order.

Beiauiur Tested Does the subject,  IDS perform IP fragment  rrassem-
bly at all?

Target Validity Valid

NIlme frag-3
operation Complete a TCP handshake, send the test string in

a single TCP data segment which is broken into 8.
byte fragment,s,  with one of t,hosc fragments sent out
of order.

Behavior Tested Can the subject IDS handle basic out-of-order IP
fragmentation reassembly?

Tqet Validity Valid

4G

ject?  
Target Validi ty  Valid 

Name frag-1 



N,rm,r frav-4 I.._..“-
Operation Complete a TCP handshake, send the test string in a

single TCP data scgmcni  which is broken into S-byte
fragments, with one of t,liose  fra~gmcrlts  scrlt  twice.

Behavior Tested Can the subject IDS handle reassembly when frsg-
mats are complet,rly  duplicat,rd?

Talyet  Validity Valid

NUVJX frag-5
Operation Complete a TCP handshake, send tbc test  string in

a single TCP data segment, broken into S-byte frag-
ments, sent completely out of order and with an ar-
bitrary duplicated fragment,.

Behnvior  Tested Can the subject IDS handle reassembly in patholog-
ical (but correct) cases?

Target Validity Valid

NOJX frag-6
operation Complete a TCP handshake, send the test string im a

single TCP data segment which is broken into S-bye
fragments, sending the marked last, fragment before
any of the others.

Beh,nuior  Tested Does the subject IDS correctly wait for all fragments
to arrive before attempting reassembly?

Target Validity Valid

NWlE frag-7
Operation, Complete a TCP handshake, send a stream of frag-

ments containing the signat,ure  string wit,11 t,hr word
“GET” replaced  wit,h  the string ‘YNI”. Send a.
forward-overlapping fragment rewriting t,be “SNI”
back to “GET” on t,hr target host.

Behavior  Tested Does the subject IDS correctly handle forward over-
lap in IP fragments’!

Target Validity Valid

NO‘VE t c p - 1

Operation Complete a TCP handshake, simulate the disconncc-
tion of the target host from the network, and send
the target string in a. series of l-byte TCP data scg-
merits.

Behavior Tested Does the subject IDS wait for TCP acknowledgment
from the target before acting au d&a from ca,pturcd
packets?

Target  Validity Inapplicable

47



tcp-2
operation Complete R TCP ha,ndshake,  send the test string in

a stream of l-byte TCP data, segments where the
scqucnce  number wraps back to zero.

Behaoiw Tested Does the IDS correctly deal  with wrapped  scqucncc
numbers?

Target Validity Valid

NlVTE tcp-3
operation Complete a TCP handshake, send the test string in

a stream of l-byte TCP d&a segments; duplicating
entirely one of those segments.

B&maim  Tested Does the IDS correct,ly  handle completely duplicate
TCP segments?

Target Validity Valid

NLZ7lE tcp-4
opemtim Complete a TCP handshake, send the test string

in a stream of l-byte  TCP data segments, sending
an additional l-byte TCP segment which overlaps a
previous segment completely  but, contains a different
character.

Behnuior  Z’esfed Does the subject IDS correctly handle duplicate TCP
segments?

Target Validity Valid

Riame tcp-5
opemtim Complete a TCP handsha,ke,  send the test string,

with the letter  ‘c’ replaced with the lcttcr ‘X’, in a
series of l-byte TCP data segments.  Immediately
send a 2.byte  TCP dat,a segment that overlaps (for-
ward) the modified l&es, rewriting it, back  to ‘c’ on
the target host.

!lehauior Tated Can the subject IDS handle overlap in out-of-order
TCP streams’!

Target Validity Valid

vrmle tcp-6
~pmtion Complete a TCP handshake, send t,he test string in

a series of l-byte TCP data segments, and increase
the sequence  number by 1000 midway through the
stream.

3ehavior  Tested Does the IDS “recover” from sudden  changes in the
sequence number’!

48



NUVlJ2 tcp-7
opemtion Complete  a TCP handshake,  send the test st,ring  in a

series of l-byte TCP d&a segments, interleaved with
a stream of l-byte data segments for the sane con-
nrct,ion  but wit,h  drastically different sequence  nunr-
hers.

Behnnio~  Tested Does  the subject IDS cl~eclc  scqucnce  numbers during
reasembly?

Target  Validity Valid

NCTlll~ tcp-8
Opemtion Complete a TCP handshake, send the test string in

a series of l-byte TCP data segments, with one of
those segments sent out of order.

Behavior  Tested Can t,he  subject,  IDS lrandlc  basic out-of-order TCP
reassembly’!

Target  Validity Valid

Name tcp-9
operation Complete a TCP handshake, send the test string in a

series of l-byte TCP data segments, sent in random
order.

Behavior Tested Can the IDS handle pathological out-of-order TCP
reassembly?

Target Validity Valid

PJame t c b c - 1

operation Do not complete a TCP handshake, but send the test
string in a series of l-byte  TCP d&a segrncnts  its if a
handshake had occurred for SO~C arbitrary sequence
number.

Behauior  Tested Does the IDS require a handshake before it will start
recording dat,a  from a connection?

Target Validity Invalid

vame tcbc-2
9peration Complete a TCP handshake, send the t,est  string in a

series of l-byte TCP segments,  interleaved  with SYN
packets for the same connection parameters.

9ehnvio?  Tested Does the IDS resynchronize  on a SYN packet re-
wived after a complete TCP handshake?

lbrget  Validity Valid
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NWlJe
operation

tcbc-3
Do not complete a TCP handshake, but,  send a
stream of arbitrary data at a random sequence nun-
brr as if one had occurred. Use the same connection
paraructcrs to connect  with “nctcat” a,nd type the
test string in manually.

Behavior Tested Can the IDS be desynchronized due t,o badly se-
quenced fake data prior to a real connection init,i-
ation?

Twget Validity Valid

NUlE tcbt-1
operation Complete a TCP handshake and immrdiat,ely  shut

the connection down wit,h  an R.ST.  Re-connect over
the same parameters, with drastically different se-
quence numbers~  and send the test  string in a series
of l-byte TCP data segments.

Behavior Tested Does the IDS correctly resynchronize  after it connec-
tion is legitimately torn down wit,h  an RST?

Target Validity Valid

Name tcbt-2
Operation Complete a TCP handshake and send the test string

in a series of l-byte TCP data segments. Midway
t,hrough the stream, tear the connection  down with
an RST (but continue to send the rest  of t,he data
segIm?rlts).

Behavior  Tested Does the IDS stop recording data when it sees  an
RST?

Target Validity Invalid

NIUM insert-l
opmtion Complete a TCP handshake and send t,he t,est  Wing

in a series of l-b@? TCP data segments, cxh with
a bad IP checksum

Behavior  Tested Does the IDS verify the IP checksum on received
packets’?

Target Validity Invalid

Name insert-2
operation Complete a TCP handshake and send the test string

in a series of l-byte TCP data segments,  each wit,h
a bad TCP checksum

Behavio?  Tested Does the IDS verify the TCP checksum  on received
segments?

nrnet V”lidii?r Tn”aliA
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Name insert-3
opelntion Complete a TCP handshake and send the t,est  string

in a series of l-byte TCP data segments, nom of
which have t,hr ACE; bit set.

Behavior  Tested Does the IDS accept TCP da& in segments wit,hout
the ACK bit?

Target Validity Invalid

NMllt? evade-l
operation Complete a TCP handshake,  include the test string

in the initial SYN packet.
Behavior Tested Does the IDS accept data in a SYN packet?
Taraet Validito Valid

7.5 Summary
Because our tests are scripted, they arc well-dcfincd, easily repeated, and fast.
Afrer defining and perfecting the test suite, we were able to coml~letely  test
new ID systems in a matter of rninut,es.  The majority of our t,est,ing  time was
spent defining new tests. Running the individual tests against ID systems took
negligible time.

We are in the process of releasing the scripting tool that we used for the
tests to the public. When t,his process has completed, WC intend to make the
suite of IDS test scripts we’ve developed available to t,hr public as well. It is
our hope that our work can define a framework within which arbitrary network
ID systems can quickly be evaluated.

Our test suite is by no means complet,r;  WC provide thcsc test results to
support the points in our paper, not to define a cornp,lete  evaluation process
for ID systems. With the tools to conduct, these t,ests  in t,he hands of the
community, we hope t,hat,  our t,rsts ca,n be extended t,o define a more complete
test suite.

8 Results

Wc applied  our tests to four of the most popular network intrusion detection
systems on the market,.  In each case, our tests identified serious, exploitable
problems  in the manner that the IDS reconstructed  data t,ransmitted  on the
network. The results of our te&s  are not surprising, and we believe that they
support, the basic point,s  we make in t,his pa,per.

In many cases, the ID systems we tested had general problems that precluded
them from passing entire collect,ions  of specific  t,rst,s.  For example. none of
t,hr systems WC tested correctly handled IP fragmentation; t,hus,  the syst,rms
incorrectly handled all the specific fragnxntation  tests. We ran every  t,rst, WC

could against each ID system.
One of the systems we tested, WhcelGroup’s NetRanger system, is avail-

able only with its associated hardware. We were unable t,o test this systcrn  011
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our “wn network, but rather had to obtain the cooperation  of an organization
already  using t,he  product. This prcvcnted  us from running many of our tests
against this product; N&Ranger  was the second syst,em  WC:  t&cd, and WC added
many tests  after  our first (and only) exposure t,o the systtxn.  One of our test,s
(“tcp-1”)  also required us t” have access to the local network the test machine
was on ~ WC did not have this access for N&Ranger.

Another system we test, N&work Flight Recorder’s NFR. system, is not an
intrusion detection system per se, but rather a network monitoring engine that
ca,n be used to build an intrusion detection  system (among many other things).
Our result,s  are significant, to t,he  usage of NFR as an automated network IDS,
but not necessarily to the product as a whole.

It’s important to note that the number of “failed” t&s each product has is
not, necessarily an indication of the relative qualit,y of the product. The number
of tests each IDS passes is biased heavily based on the presence  of specific bugs.
Our test suite was not designed to provide a ‘%core” for each product:  but rather
to highlight specific.characteristics  about them.

8.1 Specific Results

The systems we tested were Internet Securit,y  Systems’ “R.ealSecurc”  (version
1.0.97.224 for Windows NT), WheelGroup Corporation’s “NetRanger”  (version
1.2.2),  AbirNet’s  “SessionWall-3”  (version 1, release 2, build ~1.2.0.26  for Win-
dows NT), and Network Flight Recorder’s  “NFR” (version beta-2).

We present the overall results from our t&s for every IDS in Figure 15.
Each individual IDS is described after the t,ablc,  along with an interpretation
of the results.

For each test, a plus sign (‘+‘) indicates t,hat t,hr IDS saw a PHF attnck as
a, result of the packets our test injected. A minus sign (‘-‘) indicates that the
IDS reported n” attack after we ran our test. A question-mark (‘?‘) indicates
that we were unable to perform the test on that product.

8.2 Overviews of Specific ID Systems

8.2 .1  1% RealSecure

ISS RealSecure  is an automated network intrusion drtect,ion  system. We prr-
formed our tests on the Windows NT version of the product, although it is
available for Unix platforms as well.

RealSecure  appears to have  two independent,  network monitor components.
The first of these handles signature  recognition within capt,ured  pa&%; the
second provides a “realtime playback” capability that allows administrators to
watch the information being exchanged in a TCP connect,ion  in real-time.

We found significant differences between the playback facility and the signa-
ture recognition facility. Unlike R~ealSrcurc’a  signat,ure  recognition engine, the
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Figure 15: IDS Test Suite  Results
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playback system does not appear to sanity check TCP pack& before present-
ing their contents to the user. No sequcncc  number checking was pcrformcd
in session playback, and out-of-order packets were displayed out of order. An
attacker can trivially obscure her actions in RcalSrcurr session playback simply
by accompanying her connection with a stream of meaningless. unscquenccd
TCP packets for the connection; she can also confuse administrators by sending
all her packets out of order.

The most significant problem with RealSecure,  as with all the other  systems
we tested, was that it did not handle IP fragmentation rcasscmbly  at all. An
attacker can completely evade RealSecure  by fra,gmenting  every pxket she sends
across the network.

RealSecurc  also appeared to have serious problems with TCP reassembly
when duplicate segments appeared on t,he  network. R.ealSrcure  never detected
an attack in any of the tests we ran that involved  scnding multiple TCP seg-
ments with the same sequence number, even  t,hough  t,hosr t,rst,s  resulted in valid
rcasembly of the test string on the target host.

RealSecure  does not, appear to pay attention t,o TCP RST messages. We
were able to desynchronize RealSecure  by closing a, connection with a client
RST message, and then immediately reconnecting using the same parameters.
RcalSecure  recognized &tacks in streams even  after their connection was reset.
RealSecure  also does not appear to pay attent,ion  to TCP SYN messages;  we
were able to desynchronize RealSecure  from our connections by preceding them
with arbitrary data segments with random sequence numbers.

Finally, R.ealSecurr  was vulnerable to all of our insertion attacks. It, did not
appear to check IP or TCP checksums, nor did it verify that t,hc ACK bit was
set on TCP d&a segments.

8 . 2 . 2  WheelGroup  NetRanger

N&Ranger  is an automated network intrusion detection system by WheelGroup
Corporation. NetRanger interfaces a passive network monitor with a packet
filtering router, creating a “reactive” IDS; the abilit,y to respond in realtime to
attacks by “shunning” addresses (filtering them at t,hr router) is a major feature
of the system.

We had very limited access to the NrtRa,nger  systcrn. The hardwarc  rcquire-
mrnt  (and price) of this system made  it impractical for us to obt,ain our own
copy for testing; rather, WC relied on the cooprrst,ion  of an organizat,ion  already
using t,he product. Because of this, our t,csts were performed over the global
Inbernet,  and we were  ody able to perform certain tests (due to timing issues).
Our test results for N&Ranger  still showed major problems.

Like all the syst,ems  we reviewed, N&Ranger  (in the version WC tested) is
completely unable to handle fragmented IP I,acket,s.  An attacker  can evade
NetRanger completely by fragmenting all her packets.

We were  able  to evade N&Ranger  by injecting duplicate sequenced  segments
with different data into our connection stream (the “t,cp-8” tat). N&Ranger  did
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not detect  data in a SYN packet,, so an attacker  can evade  many of N&Ranger’s
checks by putting crucial data in her initial SYN packet.

We were able to desynchronize N&Ranger  from our connections by preceding
the connection with fake, randomly sequenced data. NetRangcr failed to detect
attacks in a connection,  using the same paramctcrs,  that followed t,his.

Finally, NetRanger was vulnerable to one of our insertion attacks (it doesn’t,
appear to validate TCP checksums). NctRangcr  did appear to reliably verify
IP checksums.

Many of our tests were not performed against N&Ranger.  We can’t conjrc-
ture as to whether N&Ranger  is vulnerable to the attacks those tests measure.
Hopefully, these tests can be run against N&Ranger  in the future.

8 . 2 . 3  AbirNet  S e s s i o n W a l l -

SessionWall  is an automated network int,rusion  detection system by AbirNct.
We tested t,he  Windows NT version of AbirNet,  SessionWall-3.  Although Abir-
Net appears to have realtime connection playback c;tpabilitirs,  WC were unable
to get it working in the evahlation  copy wc used for our tests.

Of all the ID systems we tested, AbirNet  appeared  have  t,he most strict
n&work  monitoring system. SessionWall- did not record d&a for connections
that weren’t marked by a three-way handshake.  It stopped recording when
a connection was torn down with an RST packet.  This prevented our TCB
desynchronization  tests from disrupting the system; however, t,he strictness of
SessionWall’s  implementation may be attackable as well (insertion of RST pack-
ets, for instance, could be used for evasion attacks).

ScssionWall  validat,ed  II’ and TCP checksums, and did not accept dat,a  wit,h-
out the ACK bit set. It did not appear to wait for acknowledgment before
accepting data, however.

We were able to desynchronize SessionWall- from our connect,ions  by inject-
ing fake SYN packets into our stream; the SYNs were  ignored by the endpoint,
but SessionWall  apparently resynchronized  to them and lost pattern matching
state. Like N&Ranger,  SessionWall- also failed to detect data in SYN pack-
ets. SessionWall  did not reassemble overlapping TCP segments  in a manner
consistant with 4.4BSD,  and is thus vulnerable to an evasion  attack.

Like all the systems we reviewed, SessionWall- is completely unable to ban-
dir fragmented IP packets. An attacker can evade  SessionWall- by fragmenting
all her packets.

8 . 2 . 4  N e t w o r k  F l i g h t  R e c o r d e r

NFR is a network monitoring engine by Network Flight Recorder. Unlike the
other systems we tested, NFR is not an automated network intrusion detection
system; rather. NFR provides a network monitoring component that can be
used in a variety of applications. NFR. is user-progranlrnable  and extensible,
aud available in source code.
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We reviewed  NFR because it,s  engine could be used as an automnt,ed  network
intrusion detect,ion  system. This is not, the in&M of t,hr product, and our
results do not have  significant bearing on NFR‘s nomsecurity  uses. .4dditionally,
because  NFR is completely programmable  (the product is really an iuterpret~cr
for a network programming language);  it is possible  for users of the product to
address many of the concerns we bring up in our paper  without modifying the
underlying engine.

NFR was able  to handle IP fragmmt,at,ion;  WC verified this in an independent
t,esting  process that confirmed NFR’s ability to reassemble a fragmented UDP
packet (WC wcrc able to perform this test, because  of NFR,‘s  available source
code). Unfort,unately,  NFR was unable to handle p&tern  matching in a TCP
s&arm  that was sent in fragmcrrtcd IP pnckets;  it therefore “failed” all of our
fragmentation tests.

NFR, in version beta-Z,  was vulnerable to all our insertion attack tats. It
did not verify IP or TCP checksums. and accepted dat,a without the SYN bit
set. NFR detects data in SYN packets.

NFR dots  not immediately tear down a connection TCB when  an RST is
seen.  We were able to desynchronize NFR by sending spurious SYN packets in
our connections, but were unable to successfully  desynchronize it with any of
our other tests. NFR did not reassemble overlapping TCP segments consistantly
wit11 4.4BSD,  and is thus vulnerable to an evasion attack.
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9 Discussion

Our tests revealed serious flaws in each system WC examined. Every IDS we
cxaminrd  could be completely  eluded by a savvy att,acker.  We have no reason
to bcliew t,hat,  skilled attackers on the Internet  don’t already know and aren’t
already exploiting this fact. Many of the problems we t,ested  for were  minor,
and easily  fixed. The very presence of such vulnerabilitics  lads us to believe
that ID systems have not adequately been  t,cstcd.

The ability to forge packets, and the abilit,y to “insert” packets  into ID
syst,ems,  makes it fairly trivial for an attacker to forge “attacks” from arbitrary
addresses. The ability to react to attacks by reconfiguring packet filters was a
major advertised feature of many of the systems WC tcsted. Our work shows t,hat
this capability can be leveraged against the system operators by an attacker;
these facilities may do more harm than good.

Several of the problems we out,line  in this paper have no obvious solution.
Withont  adding a secondary source of informat,ion  for the IDS, allowing it to
ronclusively  identify which packets have been accepted by an end-system, t,here
appear to be ways to create  connections t,hat,  cannot be tracked by passive ID
systems. Since the network conditions an attacker needs t,o induce t,o elude an
IDS nre abnormal, am IDS may be able t,o detect that an attack is occurring;
unfortunately, t,his will be all t,hat an IDS will bc able to say.

Regardless of whether a problem is obviously solvable or not, it’s presence is
significant to both IDS users and designers. Users need to understand that the
manner they configure the IDS (and their network) has a very real impact on
the security of the system, and on the availability of their network. Designers
need to understand the basic problems we identify with packet capture, and
must begin testing their systems mow rigorously.

Finally, the security community (buyers of network ID systems, designers
of such systems. as well as interested third parties like us) as a whole can do
much to enharrcc the reliabilit,y  and security of intrusion detection systems.
Additional, independent third-party analysis and testing of ID systems will, to
a large cxtcnt, define how secure these  systems will be in the future.

9.1 Implications to Operators

There arc several things that can be done by IDS operators to enhance the
overall security of the system as a whole. Additionally. IDS operators riced  to
understand that the outputs of their systems must be read critically; “session
playback” data nlay not represent what’s actually occurring in a session, and
the sonrce  addresses of attacks may not be valid at all.

One critically important step that must be taken before an IDS can bc
effectively used is to set up “spoof protection” filters. which prevent attackers on
t,hc Internet from injecting packets wit,h addresses forged to look Iike “internal”
syst,ems  into the network. Bidirectional packet,  forgery can complrt;rly  confuse
r&work intrusion detection  systems.
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It’s important to understand that an attacker that successfully breaks into an
IDS-protected network probably cont,rols  the IDS. An attacker  with direct access
to t,hc network she’s attacking can forge valid-looking responses from systems
she’s attacking. These  forged packets can prevent, the IDS from obtaining any
coherent picture of what’s happening on the network. As soon as an IDS records
a “successful” attack on the network, xhninistrat,ors  should assume that all bets
arc off, and furt,her  attacks are occurring without the knowledge of the IDS.

An attacker can fool “session playbacks’  facilities into playing arbit,rary  data
back to the operators. Session playback may not, accurately represent  what,?
happening inside of a connection. Real-time conuectiou  monitoring (when bard
ou an ID system’s reconstruction of what’s happening in a TCP stream, rather
than on printing and recording  every packet on the wire) should not be trusted.

Finally, it’s of critical importance that ID system operators do not configure
their system to “react” to arbitrary attacks. An attacker  can easily deny ser-
vice to the entire network by triggeriug &se reactions with faked packets; ID
systems that reconfigure router filters are psrticularly vulnerable to this, as an
attacker can forge attacks that appear t,o come from important sites (like DNS
servers), and cause the IDS to cut off connectivity to these sites.

One possible  step that can be taken to mitigate the risk of countermeasure
subversion is to allow the system to be configured ncvcr to react,  to certain hosts.
None of the systems we tested appeared to allow this type  of configuration. Of
course, if an attacker can spoof councctions  from the “uut,ouchable”  hosts, she
can exploit this to evade countermeasures entirely.

Attacks that can be trivially forged (ping floods, UDP-based attacks, etc.)
should not be reacted to; an attacker can, simply by forging packets, cituse
countermeasures to be deployed that might disrupt the network. Systems that
aren’t strict about reconstructing TCP sessions (ic, that don’t wait for three-
way handshakes before recording data) present the same vulnerability for TCP
connections as well.

9.2 Implications to Designers

This paper has particularly great relevance  to designers of int,rusiou  dct,ection
systems, its it, outlines in detail many attacks that, such systems nerd to be
resistant to. In that sense, this entire paper prcscnts  conclusions relevant to
IDS designers. However, there arc some overall issues that need  to be addressed
by IDS vendors.

Most of the problems we outline in this paper occur only when very abnor-
mal series of packets are injected onto the network. Overlapping IP fragments
or TCP segments are not common; connections  consisting entirely of overlap-
piug  segments are almost certainly attacks. Even if it’s not possible to reliably
reconstruct information contained in such streams, it is possible to alert admin-
istrators to the presence of the abnormal packets.

Of course, this doesn’t work as a design strategy; the value of an IDS is
drastically reduced when all it, an t,ell  an adrninist,rat,or  is “I’ve dcteced an



attack against this host:  but can’t t,cll  you specifically what it is.” Nevertheless,
some  information is bct,tcr than the complet,e  lack of information available now.

The most important issue that vendors need to address is testing. Some
of the problems we discovered wcrc so basic (the rouditions  lading to these
problems occur frequently even in norms1 traffic) t,llat  it, q~penrrd  as if no irl-
depth  testing ha,d been performed  at all. We found severe flaws iu systems that
attempted to address problems for instance, a program that reassembled
fragments, but could not perform  siguaturc  recognition in packets that had
been  fragmented.

Testing network intrusion detrctiou  systems is not simple. In order to test a
network IDS, carefully coordinated streams of forged packets need to be injected
onto a network; tools that are capable of doing this in a manner flexible enough
to test ID systems are products in and of themselves. Our work defines the
beginning of a framework within which ID systems ca,u be tested, and, hopefully,
the availability of our tools will increase  the abilit,y of vendors to test their
systems.

9.3 Implications to the Community

The number of attacks against network ID systems, aud t,he  rrlativc  simplicity
of the problems that were  actually denronstratcd  to be exploitable on the con-
mercial  systems WC tested, indicates to us that network intrusion detection is
not a rnaturc  technology. More research xnd t,rsting  needs to occur before  net-
work intrusion dctcction  can be looked t,o as a reliable component  im a security
systcn1.

Much of this research must be done independently of the vendors. No cred-
iblc public evaluations  of network intrusion detection systems currently exist.
The trade press evaluates security products by t,heir feat,ures  and ease  of use,
not- by their security. Because network int,rusion  dctect,ion  is so fragile, it’s
important that they receive more scrutiny from t,he community.

Our paper defines methods by which w&work imtrusiou  detection systems
can be tested. It is obvious that our tests can bc extended, and that our
methodology can be improved. Everyone stands to benefit from such work, and
it is hoped that our work can serve  as a catalyst for it.

One issue that drastically impacted our ability to test ID systems was the
availability of source code. Only one product we reviewed made source code
available. Because intrusion detection is so susceptible to attack, we think it’s
wise to demand source  code from all vendors. Product,s  with freely available
wurce code will obtain more peer review than products with secret source  code.
If our work makes anything clear,  it’s that marketing claims cannot, be a trusted
source of information about ID systcrns.
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This work would not have been possible without t,he  assist,anw  of many pro-
plc. Several people g&w us valuable input, and criticism, nnd some  of our t&s
would not have been  possible without the coopcratiou  of companies running ID
systems. We’d like to express  our sincere appreciation for this help.

This work was made possible by Sccurc  Networks.  Inc. We’d like to t,hank
Alfred Huger,  Oliver Friedrichs, and .Jon  Wilkins for t,heir assistance with this
project.

WC obtained valuable comments from several of the vendors we reviewed.
We’d specifically like to thank Marcus Ranum of Network Flight Recorder, Mike
Neumann of EnGarde,  and Elliot Turner of MimeStar for their comments and
critiques of our technical work.

Vern  Paxson  of LBL published, as t,his document was being finished, a pa-
per regarding the design of his real-time network intrusion detection system,
“Bro”[l7]. His papa details several &tacks against network ID systems (many
of which we did not catch oursclvcs).  We’d like t,o t,hank  Mr. Paxson for his
extremely valuable input on our own work.

Of course, WC appreciate greatly the fact, t,h;tt Network Flight Recorder  made
t,hcir  source code available to the public for review. This was a courageous and
honorable t,hing  to do (especially in a market as compctitivc as this), and NFR’s
approach to source code release is a model that should be followed by other
vendors.

Finally, this paper would not have been  possible  without the assistance of
Jennifer Myers at EnterAct, L.L.C., who effect,ivrly  rewrote our technical results
into & coherant,  document.

About CASL

Our tests were made possible by the devclopmmt~  of a security t,ool  called CASL.
CASL is a network protocol exploration tool designed  tc allow security a,uditors
to quickly and easily simulate network events  at a very low lcvcl. With a
minimal amount of effort, CASL can effectively be used to forge any kind of
IP packet. With slight programming ability, CASL can be used to perform
complex protocol interactions with other networked hosts.

CASL was inspired by tools like Darren  Reed’s well-known “ipscnd”  utility,
which allowed experimenters to forge a large number of IP packets. However,
CASL expands significantly on these types of tools. Some of the benefits of
CASL over its predecessors include:

l A complete  programming language, with most, typical high-level  language
cont,rol constructs (e.g., “if”, “while”, and “for” statements), and designed
to be as easy to learn and use as shell-script, languages, but with network
programming functionality rivaling t,hat of “C” code.



The ability to crcatc arbit,rary  packets not just t,he ones WC thought up
as we designed the program! Unlike some t,ools,  which allow users  to to
crcat,r arbitrary packets by including “raw” data (presumably built, with
some other tool), CASL allows users  to lay out the format of new packet
types with an expressive and simple “record” synt,nx,  allowing protocol
header fields to be laid out bit-by-bit and byte-by-byte.

Tbc ability to input packets, rading promiscuously off the wire, and
quickly extract information from them.  Network reads use familiar “tcp
dump” expressions to select, packrt,s, md my uumbcr  of packets can bc
read in and cxaminrd  simultaneously

CASL is a self-contained, free-standing program t,hat doesn’t depend  ou
other network or programming tools to operate. It, can be in&&d quickly, and
a CASL script will work on any supported plst,form.  The tool is small, and
consumes a fairly low amount of resources;  CASL programs can easily share  n
system with other large applications, and don’t consume the large amounts of
memory and CPU that general-purpose Isnguages  (like Per1 and Tel) t,end to.

We designed this tool to meet the needs of two very different audiences:
on one hand, CASL is expressive and powerful enough to be a useful  tool for
experienced,  fluent “C” programmers; on the other, it’s simple enough to be
picked up by a nonprogrammer  5s quickly as Bournr shell scripting. A CASL
script can be little more than a 5 line packet trmplat,r  for users who simply
want to forge packets, or it can be tens or hundreds of lines of functional code,
with loops, variables, conditionals, subroutines, and other high-level-language
capabilit,irs.

WC are making CASL available for free for noncommercial use, in the hopes
that it can be used to further the &ate  of the art in security research. For more
information about CASL, comtact~ Secure  Networks Inc.

About Secure Networks, Inc.

Secure Networks, Inc. is a security research  and drvelopmcnt  company located
in Calgary, Alberta, Canada. In addition t,o extensive publically available sea-
ritg research result,s,  Secure Networks also sells security assessment tools. You
ca,n find out more about our work at http:// wuw.secnct.coln. Secure Networks
is reachable via email  at “info~secnet.conI”, and via telephone at 403.262.9211.
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