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1    Executive Summary 

The principal goal of the proposed research program is to develop a systematic methodology 
for the design of feedback control schemes capable of shaping the response of complex dy- 
namical systems. In particular, the ability to systematically control, or take advantage of, 
dominant nonlinear effects in the evolution of complex dynamical systems is an important 
research goal, with applications in several existing and emerging DOD research and develop- 
ment programs. Notable examples, widely appreciated within the aerospace industry, include 
the development of flight controllers for increasing the high angle-of-attack or high agility 
capabilities of existing or future generationc. of aircraft and missiles. Indeed, the importance 
of including the nonlinear behavior of ap,-jaynamic parameters, such as the coefficient of 
lift, as a function of the angle-of-attack has long been recognized. In addition, the couplings 
between the pitch, roll and yaw moments at high angles-of-attack exhibit nonlinear effects 
which cannot be ignored. For example, better control of the yaw moment at high-angles-of 
attack would lead to improvements in weapon pointing systems and underscores the need 
for a systematic theory of robust nonlinear control design. 

The incorporation of linear and nonlinear distributed parameter effects also present an 
opportunity in the control of complex dynamical systems, for example, the earlier design of 
the F/A-18 included aeroelastic wings, which would result in less weight and an increased 
opportunity to take advantage of flexible effects. However, understanding the stability char- 
acteristics of the loaded flexible wing still presents a challenge, a challenge which is currently 
being addressed through the Active Aeroelastic Wing program.   Another example of the 



potential impact of nonlinear control of distributed systems is in problems of flow control, 
such as in the control of instabilities in the unsteady separated shear layer, which have been 
experimentally shown to greatly influence stall and lift behavior and is known to result in 
damage or in reduction of the life cycle of aircraft parts. Indeed, artWe control of flutter and 
of buffeting would increase life-cycle of aircraft through suppressing buffet loads on fighter 
aircraft with vertical tails, such as on the F/A-18, as well as on the tails of commercial 
and transport aircraft. Moreover, distributed effects also offer the opportunity to produce 
large displacements with relatively small control effort. For example, the development of 
a nonlinear distributed parameter control system that takes advantage of large variations 
in an unsteady flow would offer the promise of greatly increased aircraft maneuverability, 
survivability, and structural fatigue life. 

A continuation of an ongoing research effort, the research program we are conducting is 
aimed at the development of a systematic control methodology for lumped and distributed 
parameter systems, similar in scope and applicability to classical automatic control design 
for lumped linear systems. The typical design objectives would involve designing feedback 
schemes which achieve one or more of the following: asymptotic tracking, stabilization, 
disturbance attenuation or rejection, robustness against uncertainty. We will also require 
the design of observers or filters which asymptotically produce either the system state or a 
functional of the state, such as a desired feedback law. The need to control systems in which 
the rigid aerodynamics are coupled with the effects of fluid flow and flexible structural modes 
underscores the desirability for a unified feedback design methodology, capable of producing 
controllers for both nonlinear lumped and distributed parameter systems. 

2    Accomplishments/New Findings 

2.a    Feedback Design for Nonlinear Systems 

As a starting point, we recall that one of the classical problems which involves shaping the 
response of a system is output regulation, in which the objective is that of controlling a 
plant in order to have its output track (or reject) exogenous commands or disturbances. 
The nonlinear regulator theory developed in [46] is valid in case a model for an "exosystem" 
which generates the exogenous signal to be tracked and the exogenous disturbance to be 
rejected is known and satisfies certain conditions. These conditions currently prohibit the 
incorporation of certain signal generators which also have application, such as tracking a 
ramp or a limit cycle. One of the goals of the present research effort is to extend the class 
of signal generators to which nonlinear regulator theory will apply.  Among the additional 



research tasks we propose is to develop robust control schemes for output regulation in the 
large and for robust model following. 

Even for lumped linear systems, the more refined task of developing a robust regulator 
theory involves still more challenging cases arising when either: 

1. a signal generator, or reference model, is known but certain parameters in the system 
or in the disturbance channel are unknown (structured uncertainty); or 

2. a signal generator for disturbances is not known ( unstructured uncertainty). 

Both of these problems are central focal points in the modern approach to robust control. 
Despite significant effort, for lumped, linear systems robust control for structured uncertain- 
ties is not nearly as well understood as robust control for unstructured uncertainties. In 
general, one can always augment the system dynamics by adding as new state variables 
the parameters accounting for the structured uncertainty. Of course, for linear systems this 
results in a nonlinear system, so that linear regulator theory cannot be directly applied and 
one might not expect a linear controller to exist. However, even for nonlinear systems there 
arises a technical problem in the application of nonlinear regulator theory as it is presently 
formulated; viz., the parameter values are not necessarily observable or detectable through 
error measurements. Our first research task makes some of these goals explicit. 

Task 2.1:  The development of a separation principle for robust output regulation 

Perhaps our most significant discovery relating to Task 2.1 has been for systems which 
undergo a bifurcation as a plant parameter changes. In his thesis, "A nonequilibrium theory 
for robust output regulation for nonlinear systems," James Ramsey develops an approach *o 
output regulation for systems undergoing a codimenison one bifurcation resulting in a stable 
attractor. The results (see appended manuscript) use the recently established existence of 
an observer for bifurcating systems and an extension of the Byrnes-Isisdori approach to 
regulation from the equilibrium case to the nonequilibrium case. •> 

Prior to this thesis and the thesis of Andrea Serrani, most of the results obtained for ro- 
bust output regulation have been local in nature. However, in several interesting simulations 
involving - for example, the robust output regulation of the controlled van der Pol oscillator - 
we have observed that these regulation schemes actually may continue to apply relatively far 
from the system equilibrium, suggesting that a global version of nonlinear regulator theory 
should be valid for a class of systems containing many examples of interest. We expect that a 
global version of output regulator theory, valid for example for larger amplitude limit cycles, 
will depend rather heavily on the development of a general feedback design methodology for 
stablization about attractors. Our next task focuses on nonlocal robust output regulation; 



the problem of designing feedback control laws which would make robust output regulation 
possible for arbitrary choices of compact regions of the state spaces of both the system to 
be controlled and the exosystem. For example, we have been able to achieve semiglobal or 
global robust output regulation for various useful classes of control systems, such as those 
systems having a finite Volterra series. 

Task 2.2: The development of a feedback design methodology for solving semiglobal or 
global robust output regulation problems. 

It is well known that, for systems having uniform relative degree one and a globally 
asymptotically stable zero dynamics, even in the nonlinear case, high-gain output feedback 
can force a desirable asymptotic behavior. In particular, when the zero dynamics are glob- 
ally asymptotically and locally exponentially stable, high-gain output feedback can asymp- 
totically stabilize the equilibrium, while enlarging the basin of attraction so as to contain 
any pre-assigned compact set of initial data, a property known as semiglobal stabilizabil- 
ity. More generally, the same strategy applies to those systems for which "backstepping" 
methods would apply, or the class of passive systems, for which there is an underlying global 
stability mechanism. 

On the other hand, if the zero dynamics are just asymptotically stable, the use of only 
a memoryless output feedback may not asymptotically stabilize the origin but, nevertheless, 
can help to steer the trajectory to an arbitrary small neighborhood of the origin (practical 
stabilizability).The question, however, of describing the asymptotic behavior of the closed 
loop system so obtained inside this small neighborhood has remained open. In our recent 
research, we have addressed this question. In particular, for a system having relative degree 
one, we have been able to describe explicitly, in terms of properties of the open-loop system, 
the structure of any compact attractor that might exist and to determine whether such 
an attractor is stable in the sense of Lyapunov. Recalling that the closed-loop trajectories 
converge to trajectories of the open-loop zero dynamics as the gain is increased, we have used 
the gain coefficient as a bifurcation parameter in a perturbation of the zero dynamics. Such 
a formalism is indeed possible in great generality, and enables us to describe the asymptotic 
behavior inside the small neighborhood of the origin as a bifurcation from the zero dynamics. 

In another recent paper, we have proposed an approach to stabilization via output feed- 
back, which uses a feedback law that takes explicit advantage of the observability of the state 
variables associated with the zero dynamics. In doing this, we could substantially remove 
the hypothesis of minimum-phaseness and have it replaced by a less restrictive hypothesis, 
which by the way happens to be even necessary in the case of linear systems. In the current 
research, we have shown how the method in question can be rendered robust versus modeling 
errors on the so-called "high-frequency gain" of the system. This is a particularly sensitive 



issue in the case of an unstable system possessing an unstable zero dynamics, where it is 
well-known that stabilization with arbitrary, lower and upper, gain margins in not possible. 

The ability to design semiglobally, or globally, valid output regulation schemes will also 
impact another limilation of the existing theory of output regulation. The existing results on 
robust output regulation do give sufficient conditions for the local solution of the nonlinear 
regulator problem, provided the exosystem is "neutral stability". There are quite a few 
standard signals which can be tracked by such exosystems. For example, asymptotic tracking 
of a constant function, i.e. set-point control, is accommodated by a one-dimensional neutrally 
stable system. As another example, asymptotic tracking of any trigonometric polynomial 
can be approached by combining the exogeneous system corresponding to set-point control 
with a finite number of harmonic oscillators. Thus, approximate asymptotic tracking of 
a periodic saw-tooth waveform can be approached within the present context of output 
regulation. However, an important extension of the nonlinear regulator theory would be the 
design of controllers achieving asymptotic tracking and disturbance attenuation for signals 
generated either by unstable exogenous systems, which for example might generate "ramps," 
or by more complicated exogenous systems, capable of producing limit cycles or other stable 
nonlinear phenomena. This is the content of our next explicit research task: 

Task 2.3: Output regulation in the case of exosystems which are not necessarily "neur 
trally stable", including, for example, exosystems which have ramps, saw-tooth waves, unsta- 
ble motions to stable limit cycles, invariant tori, etc. 

In this part of our research, we have begun by re-casting the problem of output regula- 
tion in very general terms, so as to render it suitable to deal with more general classes of 
exosystems. In thr, way, we have introduced the concepts of Steady State Locus, a special 
set in the combined state-space of the cascade plant-exosystem. This concept extends to a 
global setting the notion of zero-error manifold, which was used so far to establish important 
results in output regulation theory, but limited to the cases in which this manifold could be 
globally given the structure of a graph of a mapping. With this new concept, we are able to 
offset these limitations and we are ready to start with the development of a general theory 
of output regulation for genuinely nonlinear systems. 

Our next explicit research task addresses the design of feedback laws which can achieve 
robust model following. The starting point for this research effort is the observation that one 
could view several problems in parameter adaptive control as feedback design problems for 
nonlinear systems. From this point of view, one should expect adaptive control algorithms 
to be nonlinear, as indeed they often are. Based on preliminary calculations, in our research 
we will investigate the possibility of extending our method for robust semiglobal regulation 



to the case in which the exosystem is not just an autonomous linear system, but a linear 
reference model driven by time-varying reference command signals. 

Task 2.4: The development of a systematic feedback design methodology for robust model 
following for classes of linear and nonlinear systems. 

The main objective of this part of our research is the development of a control structure in 
which, using only sensed information from the error between actual and trajectory, accurate 
steady state tracking is achieved by means of an error-feedback control which incorporates 
an "internal model" of the "external" operational conditions (such as any trajectory require- 
ment, or any dominant disturbance). It is well-known, in fact, that internal-model-based 
controller possesses invaluable robustness properties. 

The main obstruction to widespread use of internal-model based control is the need for 
an exact mathematical model of the exosystem, which is supposed to generate the external 
trajectories and/or disturbances. To overcome this obstruction, we have concentrated our 
efforts on the study of the possibility of autonomous recognition of the natural modes of the 
exosystem. To this end, we are developing a methodology for autonomous tuning of the nat- 
ural frequencies of the internal model. This is not a standard frequency estimator, but rather 
a two-layer internal model. The device does not estimate the frequency of the exogenous 
input, but rather estimates the control needed to secure a zero steady-state tracking error. 
Preliminary simulations show very promising results. From the standpoint of the design of 
control systems, is an important breakthrough. The need of an accurate model of the exoge- 
nous inputs, which was a recognized roadblock, is no longer an issue. Our newly developed 
control methodology incorporates a mechanism for autonomous tuning of the parameters of 
an exosystem of a fixed structure, a featu^ that none of the current control methodologies 
has. 

In this way we have also contributed to a clarification of a major theoretical issue: in 
dealing with the control of uncertain systems, where is the boundary between robust control 
and adaptive control? In our case, all uncertainties related to system parameters are dealt 
with via techniques of robust stabilization, while self-tuning methods are used to estimate 
parameters of the exogenous inputs. 

Thus far we have concentrated our research efforts on the problem of detecting unknown 
inputs (disturbances) in a nonlinear system. Using methods from differential geometry, we 
have been able to develop general conditions for the design of a filter capable of independently 
detecting the presence of unknown inputs. The results obtained in this way are far more 
advanced than those obtainable by means of the classical Beard-Jones detection filter for 
linear systems or, for that matter, any other published result about unknown-input detection 
for nonlinear systems. In particular our technique incorporates a procedure that minimizes 



the dimension of the filter needed to estimate the presence of such disturbance. This feature 
is particularly significant in the (realistic) situation in which the available observations are 
corrupted by noise. 

In particular, we have compared our design methods with sora<j recently published tech- 
niques that use game theory to select the filter parameters so PS to achieve a prescribed 
attenuation of the effect of the noise on the signal generated by the filter. We have been 
able to show that the preliminary implementation of our reduction methods greatly sim- 
plify the design of the optimal filter and automatically guarantees the required observability 
properties needed for the design of the optimal filter in the case of infinite horizon. 

The last decade witnessed an increasing interest in the study of the nonlinear equivalent 
of the so-called #<» suboptimal control problem of linear systems theory. A fundamental 
role in this analysis has been played by the notion of a dissipative system, introduced by 
J.C.Willems, which lends itself to a very expressive characterization of the so-called L2 gain 
of a system (a concept which - for a nonlinear system - replaces the more popular notion of 
Hoc norm of a transfer function), via an extension of the so-called "bounded real lemma" 
of linear system theory. An equally important role is played by the theory of differential 
games which, as illustrated in great detail by T.Basar and P.Bernhard in [6], shows that the 
problem of finding a feedback law which renders the L2 gain of a linear system less than 
a prescribed number 7 can be interpreted as a problem of achieving a nonpositive value 
function in a two-person, zero sum, linear differential game with quadratic cost. 

Pioneering contributions towards the development of this theory (which, in the literature 
on nonlinear systems is more often referred to as theory of disturbance attenuation with 
internal stability) were those of J.A.Bali and J.W.Helton [3] and A.Van der Schaft [77]. 
In particular, [77] has shown that, in the case of full information, that is when the set 
of measured variables which are available for feedback includes the state of the controlled, 
plant and the exogenous disturbance input, the solution of the problem can be determined 
from the solution of a Hamilton-Jacobi equation (or inequality, as in [78]), which is the 
nonlinear version of the Riccati equation considered in [68], [38], and [6] for the corresponding 
Hoo suboptimal control problem of linear systems. Sufficient conditions for the solution 
of the problem of disturbance attenuation in the case of arbitrary measurement feedback 
were given in [44] and also in [2]. In particular, the paper [44] suggested the use of a 
"certainty equivalence" controller, whose adjustable parameters (namely, the "gain" of a 
"output injection" correction term) were to be calculated on the basis of the solution of 
another Hamilton-Jacobi inequality. 

One alternative approach we are developing is based on a method for solving the model 
matching problem in H°° control that reduces the problem to a Nevanlinna-Pick interpolation 
problem with degree constraint, a problem for which we have developed a complete theory. As 



a special case, we obtain the sensitivity reduction problem. The main difference between our 
method and the existing H°° controller design methods is that we do not use the weighting 
functions to shape the frequency response of the sensitivity function. Instead, we will tune 
the spectral zeros of a positive real function related to the sensitivity function to obtair. a 
desirable frequency response. If necessary, extra interpolation constraints can be introduced. 
A set of design rules are being developed. 

We have previously shown that an arbitrary solution of the Nevanlinna-Pick interpolation 
problem with degree constraint can be determined by solving a convex optimization prob- 
lem. Solving this optimization problem by Newton's method can lead to an ill-conditioned 
problem, especially when there are spectral zeros close to the unit circle. To overcome these 
problems a new approach based on a homotopy continuation method with predictor-corrector 
steps has been developed. This solver turns out to be quite efficient and numerically robust. 

We have also developed a geometric approach to disturbance attenuation and fault de- 
tection. Thus far we have concentrated our research efforts on the problem of detecting 
unknown inputs (disturbances) in a nonlinear system. Using methods from differential ge- 
ometry, we have been able to develop general conditions for the design of a filter capable of 
independently detecting the presence of unknown inputs. The results obtained in this way 
are far more advanced than those obtainable by means of the classical Beard-Jones detection 
filter for linear systems or, for that matter, any other published result about unknown-input 
detection for nonlinear systems. In particular our technique incorporates a procedure that 
minimizes the dimension of the filter needed to estimate the presence of such disturbance. 
This feature is particularly significant in the (realistic) situation in which the available ob- 
servations are corrupted by noise. 

In particular, we have compared our design methods with some recently published tech- 
niques that use game theory to select the filter parameters so as to achieve a preserved 
attenuation of the effect of the noise on the signal generated by the filter. We have been 
able to show that the preliminary implementation of our reduction methods greatly sim- 
plify the design of the optimal filter and automatically guarantees the required observability 
properties needed for the design of the optimal filter in the case of infinite horizon. 

Task 2.5: The development of a feedback design methodology for achieving disturbance 
attenuation for systems in the critical case. 

The challenge to the design of control schemes which are robust against real parametric 
uncertainty is that, for many control systems involving real parametric uncertainty, the 
unobservability or nondetectabilty of the unknown parameters from the system error requires 
an alternative formulation of dynamic compensation schemes. Indeed, whenever the plant 
equilibrium is independent of the parameter and the output is function of just the system 



state, then the entire plant/exosystem state is not observable or detectable in the first 
approximation. However, in the case where the equilibrium varies with the parametric 
uncertainty the plant/exosystem state might actually be observable, even when the output 
function is a function of just the system state. This phenomenon actually occurs in some of 
the most generic (local codimension one) bifurcations, an observation which motivates the 
next task, largely solved in the appended thesis of James Ramsey. 

Task 2.6: Characterize those systems and outputs which undergo an observable or detectable 
codimension one bifurcation, and provide a systematic design methodology for constructing 
dynamic observers. 

The next explicit research task which we shall propose is to formalize our understanding 
of when such a construction is possible and, when it is possible, how one can design such a 
dynamical system. 

Task 2.7: Develop the underlying theory for the existence and the systematic design of 
asymptotic proxies for robust feedback control laws. 

There are also antecedents in various approaches to Kaiman filtering for the asymptotic 
propagation of a functional, viz. the Kaiman gain, rather than estimating the functional by 
estimating the entire state of a system and then applying the functional to the state esti- 
mate.More explicitly, it is well-known that the one-step predictor generated by the Kaiman 
filter involves a gain which can be determined via a matrix Riccati equation. On the other 
hand, one could investigate whether it is possible to directly propagate the Kaiman gain, 
rather than solving the matrix Riccati equation. While a closed system determining just 
the gain is unknown, it is possible to propagate an n-vector related to the gain, along with 
an n-dimensional co-state, in a closed system. In contrast to the typical state-costate rep- 
resentation of the matrix Riccati equation as a linear two-point boundary value problem, 
this dynamical system is a nonlinear initial-value problem which asymptotically computes 
the Kaiman gain for positive real v(z). Because this evolves in 2n variables rather than in 
n(n + l)variables, this dynamical system has been referred to as a fast-filtering algorithm. A 
phase-portrait for this nonlinear dynamical system has been developed in the single-input, 
single-output case and has led to not only a better understanding of its asymptotic proper- 
ties but also to the unanticipated resolution of a long standing problem with applications 
in signal processing and speech synthesis. Indeed, in our recent paper [28] we presented a 
geometric duality between filtering and interpolation, tying together two fundamental classes 
of problems, rational covariance extension and the dynamics of fast filtering algorithms. Be- 
cause of the unanticipated usefulness of this dynamical systems approach in a variety of 



problems involving systems and signals, we formulated the multivariable extension of this 
methodology as our next explicit research task. 

Task 2.8: Study the geometry of the fast filtering algorithm in the multivariable case. 

To this end, preliminary studies have been undertaken to investigate the use of the power 
method and the theory of Grassmanian manifolds to describe the geometry of the phase- 
portrait of the fast algorithms in the multivariable case. Our interest in these dynamical 
systems lies in their relationship to methods for asymptotically producing "proxies" for a 
state feedback law evaluated as an estimate of the current state. However, there are other 
applications of these ideas which have importance to current DOD missions, particularly 
those involving digital, wireless communications. The connection to these applications is 
the rational covariance extension problem, which was formulated by Kaiman as an inter- 
polation problem and which plays an important role in signal processing, spectral analysis, 
and speech processing.In our work we described a fundamental geometric duality between 
filtering and interpolation. This duality has several corollaries which provide solutions and 
insight into some very interesting and intensely researched problems. The solution of the 
rational covariance extension problem leads to the ability to design "notch" niters which 
match the "notches" in a segment of a digitized speech waveform, an ability which addresses 
a fundamental current limitation in speech synthesis. In order to extend this analysis to 
image processing, such as studying time series of images, one would need to obtain the 
corresponding multivariate results. This motivates the following research task. 

Task 2.9: Solve the rational covariance extension problem in the multivariate case. 

As a first step to solve the interpolation problem in the multivariate case, we have studied 
a duality between a problem of finding a solution to a system of a nonlinear equations 
f(x) = y and a <->responding variational problem, under which the former problem is well- 
posed in the sense of Hadamard and the variational problem has an unique minimum which is 
an interior point, provided / is proper and the variational problem is known to have at most 
one minimizing point, as is the case for a convex problem. This theory is a finite-dimensional 
analogue of the Dirichlet Principle which links the solutions of certain nonlinear PDE's to 
solutions of certain variational problems in the Calculus of Variations.We have also made 
progress on Tasks 2.8 and 2.9 with our recent development of an abstract theory of analytic 
interpolation with complexity constraints in a Banach algebra setting. 

2.b    Feedback Design for Distributed Parameter Systems 

Our main long term goal in this research area is concerned with the systematic development of 
design methodologies capable of shaping the response of systems whose dynamics is governed 
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by nonlinear distributed parameter systems. For example, for such systems we are interested 
in developing the theory of output regulation, including tracking and disturbance rejection. 

As in the nonlinear lumped case there are three ingredients to achieve output regulation: 

1. the stability or stabilizability of the plant, 

2. the existence of a steady-state response, and 

3. the ability to design a feedback system to shape the steady-state response. 

As part of this research effort we have made significant progress in this area. In order to 
describe our results we begin with the case of bounded actuators and sensors. In particular 
we present our first main result for the problem of output regulation using state feedback 
given in [16] (with the addition of a detectability condition on the class of systems the same 
results hold for the error feedback case). First we introduce some notation. Consider a plant 
described by an abstract distributed parameter control system in Hilbert space: 

z(t) = Az{t) + Bu(t) + d{t), (1) 

y(t) = Cz{t), (measured output) (2) 

z(0) = z0, 

where z G Z is the state of the system, Z is a separable Hilbert space (state space), u G U 
is an input , y G Y is the measured output, U and Y are Hilbert control and output 
spaces, respectively. A is assumed to be the infinitesimal generator of a strongly continuous 
semigroup on a Hilbert space Z, B E £{U,Z) and C G C(Z,Y). Here we use the notation 
£{Wi,W2) to denote the set of all bounded linear operators from a Hilbert space W\ to a 
Hilbert space W2. The term d(t) repres^rts a disturbance. 

In addition we will assume that tb^ia exists a finite dimensional linear system, referred 
to as the exogenous system (or exosystem), that produces a reference output yr(t) and which 
is also used to model the disturbance d(t): 

w(t) = Sw{t) (3) 

yr(t) = Qw(t) (4) 
d(t) = Pw(t) (5) 

w(0) = w0. 

Here S G C{W), W is a finite dimensional vector space, Q G £{W,Y) and P G C(W, Z). 
We refer to the difference between the measured and reference outputs as the error 

e(t) = y(t) - yr(t) = Cz(t) - Qw(t). (6) 

11 



Problem 2.1. State Feedback Regulator Problem: 
Find a feedback control law in the form 

u{t) = Kz{t) + Lw(t) 

such that K € C(Z, U), Le C(W, U) and 

(l.a) the system z(t) = {A + BK)z(t) is stable, i.e. (A + BK) is the infinitesimal generator 
of an exponentially stable Co semigroup, and 

(l.b) for the closed loop system 

z(t) = {A + BK)z{t) + (BL + P)w{t), (7) 

w(t) = Sw{t), 

the error 
e(t) = Cz(t) - Qw(t) —y 0   05 t -* oo, 

for any initial conditions ZQ € Z in (11) and w0 € W in (3). 

Problem 2.2. Error Feedback Regulator Problem: 
Find an error feedback controller of the form 

X{t) = FX{t) + Ge{t), (8) 

u(t) = HX{t) 

where X(t) e X for t > 0, X is a Hubert space, G E C{Y,X), H € £(X,U) and F is the 
infinitesimal generator of a Co semigroup on X with the properties that 

(2.a) the system 

z(t) = Az(t) + BHX(t), (9) 
X{t) = FX{t) + Ge(t) 

is exponentially stable when w = 0, i.e. 

an exponentially stable Co semigroup, and 

A    BH 
GC     F 

is the infinitesimal generator of 
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(2.b) for the closed loop system 

z{t) = Az(t) + BHX(t) + Pw(t), (10) 

X{t) = GCz(t) + FX(t)-GQw(t), 

w{t) = Sw(t) 

the error 
e(t) = Cz(t) - Qw(t) —* 0  as t -» oo, 

for any initial conditions zQ € Z in (??), X(0) € X and and w0 £W in (3). 

As in [?], we impose the following standard assumptions. 

Assumption 1. Hi The exosystem is neutrally stable, as in /?/. In the linear case, this 
is equivalent to the origin being Lyapunov stable forward and backward in time. This 
implies that a(S) C jR (the imaginary axis) and S has no nontrivial Jordan blocks. 
Here and below we use the notation a(T) for the spectrum of an operator T. Also, by 
p(T) we will denote the resolvent set of T. 

H2 The pair {A,B) is exponentially stabilizable, i.e., there exists K G C(Z,U) such that 
A + BK is the infinitesimal generator of an exponentially stable Co semigroup. 

H3  The pair 

Ac -Q]) 

is exponentially detectable, i.e., there exists G € £(Y,Z x W), with 

A   P 
0    5 

G = 
Gx 
G2 

, de^Z), G2e£(Y,W) 

such that 

A   P 
0    S 

-G[C   -Q) (11) 

is the infinitesimal generator of an exponentially stable Co semigroup. 

The first main results from [16] characterizing the solvability of the regulator problems 
for linear distributed parameter systems are given in Theorem 1. 

One of the main results of [16] given in Theorem 1 provide necessary and sufficient 
conditions for the solvability of the state feedback regulator problems. 
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Theorem 1. Let Hl and H2 hold. The linear state feedback regulator problem is solvable 
if and only if there exist mappings II € C(W, Z) with Ran (II) C V(A) and T € C(W, U) 
satisfying the "regulator equations," 

US = AU + BT + P, (12) 

en = Q. (13) 

In this case a feedback law solving the state feedback regulator problem is given by 

u(t) = Kz(t) + (T-KU)w{t), (14) 

where K is any stabilizing feedback for (A, B). 

As we have commented above, under an additional detectability assumption on the plants, 
solvability of the Error Feedback Regulator Problem, is also characterized in terms of solv- 
ability of the same regulator equations given in (7). 

Theorem 2. Let HI, H2 and H3 hold. The linear error feedback regulator problem is 
solvable if and only if there exist mappings U € £(W, Z) and Y € C(W, U) with Ran(U) C 
T>(A), such that 

US = AU + BT + P (15) 

CT = Q. (16) 

With this IT and T a controller solving the error feedback regulator problem is given by 

where X £X = Z xW, 

G = 

F = 

G1 

G2 

X(t) = FX(t) + Ge(t), 

u(t) = HX(t). 

, H=[K (r - Arn)], 

(17) 

(A + BK-dC)    (P + B(T - KU) + GXQ) 
-G2C {S + G*Q) 

(18) 

(19) 

Here K e C(Z, U) is an exponentially stabilizing feedback for the pair {A, B) and 

an exponentially stabilizing output injection (such K and G exist by H2 and H3). 
G2 

is 
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Our first specific research task was concerned with extending the above results to the case 
of systems for which the input and outputs are given in terms of unbounded operators on 
the Hubert state space. These controller designs would take advantage of truly distributed 
parameter effects which have no lumped counterpart, and therefore could not be designed 
on the basis of lumped approximations to the distributed parameter models. 

Task 3.1: Extend the theory of output regulation to include unbounded inputs and outputs. 

There are numerous technical obstacles that had to be overcome en route to carrying 
out Task 3.1. For example, for unbounded B, even if A generates an analytic semigroup 
it may happen that (A + B) is not a generator. Further, for unbounded B and C (and 
even possibly K) expressions such as CB or BKC may make no sense. On the other hand 
there is considerable interest in the case of unbounded inputs and outputs that arise, for 
example, in the study of boundary control systems governed by partial differential equations. 
Typical applications include actuators and sensors supported at isolated points or on lower 
dimensional hypersurfaces in, or on the boundary of, a spatial domain. 

After a considerable effort our work focused on extending our geometric approach to the 
class of regular linear systems. A system is called regular provided the system is Well Posed 
and satisfies the Regularity Condition. For complete details of what these concepts involve 
we refer the reader to [84]-[83] and suffice to present a short overview. We consider regular 
linear systems 

z = Az + Bu ^Q) 

y = CAz + Du ' [    } 

where CA is tru A-extension of the observation operator C (see [85])) defined for z € T>(CA) 

by 
CAz =   lim  C\(\I-A) lz exists. 

A—»+oo 

1. Well Posedness: A system (20) is well posed provided that B and C are Admissible, 
and there exists a Transfer Function G(s) = CA(sI-A)~lB for some (hence, for every) 
5 G p(A) (this means that 

{sI-A)-lBU CV(CA). 

2. Regularity: A well posed system is called regular provided there exists a feed-through 
term D G C{U, V), such that 

lim  G{s)tp = Dip,   V (p€U 
s—>+oo 
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While we will not go into detail concerning the questions of admissibility, etc., we still 
need to introduce certain terminologies. Let us define the space 

Zx = V(A) C Z with  11*11! = ||(/W-4)z|| ,   ßep(A), 

and the space 

Z_i  the completion of Z with respect to    ||z||_i = \\{ßl - ^)_1*||- 

Then there are the dense embeddings 

Zi ^ Z «-» Z_i. 

Assumption 2.       1.  We assume that B € C(U,Z-i), C € C(ZUY) are admissible 

2. G{s) = CA(sI - A)-XB exists for s e p{A). 

3. (A,B) stabilizable: There exists K € C(ZX,U) so that (A + KAB) is a stable generator. 

Within this setting we have extended the solvability results for both the state and error 
feedback regulator problems and, for example, after several important adjustments due to 
unbounded B and C, we have obtained the following analog of Theorem 1. 

Problem 2.3. State Feedback Regulator Problem for Regular Systems: 
Find a feedback control law in the form 

u(t) = KAz{t) + Lw(t) 

such that K G C{Z, U),Le C(W, U) and 

(l.a) the system z(t) = (A+BKA)z(t) r stable, i.e. (A + BKA) is the infinitesimal generator 
of an exponentially stable Co semigroup, and 

(l.b) for the closed loop system 

z{t) = {A + BKA)z(t) + {BL + P)w(t), (21) 

w(t) = Sw{t), 

the error 
e(t) = CAz(t)-Qw(t)eL2

Q(0,oo) 

where for some a < 0 

L2(0,oo) = j</,   £°W)\ I2 e~at dt < oo 
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We give the following result from [13]. 

Theorem 3. Under the above assumptions, the state feedback regulator problem is solvable 
if and only if there exist mappings U e £{W, Z C Z) and V € C(W, U) satisfying the 

"Regulator Equations" 

CAU-Q = 0 

Here the space Z is given by 

Z = V{A) + {XI-A)-1PW+(\I-A)-1BU,    for   Xep(A). 

IfTI and T satisfy the regulator equations then a feedback law solving the problem of output 
regulation is given by u = KAz + (r — KLR)W. 

Our next research task was concerned with the design of compensators which solve the 
error feedback problem. 

Task 3.2: For the error feedback regulator problem a considerable effort will be devoted 
to the problem of designing infinite and finite dimensional compensators for a wide class 
of systems and to developing a useful theory of finite dimensional approximation of these 
observers. This will be applied in the case of bounded and unbounded inputs and outputs 

A system (1), (36) (or (20)) is said to satisfy the Spectrum Decomposition Assumption 
at 6 if the spectrum of A (denoted a{A)) decomposes into two parts 

a+(A) = {Xe o(A) : Re(A) > 8},   a.{A) = {A G a'\). ■ Re(A) < delta) 

in such a way that a+ (A) consists of a finite number of eigenvalues of finite multiplicity which 
can be enclosed in the interior a simple closed rectifiable curve and with a- (A) contained in 
the exterior. 

An operator A that generates a Co semigroup is said to satisfy the Spectrum Determined 
Growth Condition provided the growth bound of the semigroup is equal to the upper bound of 
the real part of the spectrum of A. Operators that satisfy this condition include (a) bounded 
operators A,; (b) operators A for which the semigroup is differentiable in the strong operator 
topology; (c) operators A for which the semigroup is compact for some fixed value of time; 
(d) if A is a Reisz spectral operator. Fortunately this included most examples of interest 
in applications to partial differential equations. On the other hand this condition is not 
preserved under very simple perturbations (see [87]). 
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For plants whose dynamics are governed by operators A satisfying the Spectrum Decom- 
position Assumption for 6 < 0 and the Spectrum Determined Growth Condition, we have 
been able to show that our results lead to finite dimensional feedback laws that solve the 
state and error feedback regulator problems. These controller designs would take advantage 
of truly distributed parameter effects which have no lumped counterpart, and therefore could 
not be designed on the basis of lumped approximations to the distributed parameter models. 

The fact that the solvability of the regulator problem is related to the system zeros is 
well known for finite dimensional systems. In [46] the solvability of the regulator problems 
for nonlinear finite dimensional systems was interpreted as a property of the zero dynamics 
of the composite system formed from the plant and the exogenous system. Namely, under 
certain assumptions it can be shown that the regulator problem is solvable if and only if 
the zero dynamics of the composite system can locally be decomposed into diffeomorphic 
copies of the exosystem and the plant's zero dynamics. We will develop analogous results for 
linear infinite dimensional systems with bounded control and observation operators. For this 
reason, it will be important to introduce the concept of the zero dynamics of a distributed 
parameter system and to relate it to the system transmission zeros. 

Task 3.3: The development of a complete understanding of the relationship between zero 
dynamics and transmission zeros for a large class of linear distributed parameter systems, 
including systems with unbounded control and sensing. 

We have made some progress in this direction in [16], [11]. For simplicity we consider 
the special case in which the finite dimensional Hilbert input space U and output space Y 
satisfy 

dim(t/) = dim(Y) = m . 

We first recall that for SISO systems transmission zeroes are defined as the zeroes of the 
transfer function. In the MIMO case the transfer function is an m x m matrix givwi by 

G(s) = C(sl - A)~lB. (22) 

We shall assume det G{s) ^ 0. In this case, we make the following definition. 

Definition 1. s0 E C is a transmission zero of the system (1) if det G(SQ) = 0. 

It is also useful to introduce the concept of an invariant zero. 

Definition 2. s0 €. C is an invariant zero of the system (1) if the system 

(A-s0I)   B 
C 0 

18 
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has a solution 
z0 

u0 
¥> 

In the SISO case it is straightforward to show that for s0 € poo{A) (the connected 
component of the resolvent set of A containing a right half plane, see [37], page 70), the 
concepts of transmission zeros and invariant zeros coincide (see, e.g., [89]). We include a 
short proof of this result in the MIMO case for completeness. 

Lemma 1. If s0 € p(A), then s0 is a transmission zero if and only if it is an invariant zero. 

Using a similar argument, or appealing directly to the lemma above, one can show the 
following. 

Lemma 2. If s0 E p(A) and s0 € p{A + BK) then s0 is a transmission zero of G if and 
only if it is a transmission zero of GK where GK(S) = C(sl — AK)~

X
B. 

In the classical automatic control of lumped SISO systems, it is well-known that the 
regulator problem is solvable provided no eigenvalue of S is a transmission zero, i.e., A € a(S) 
implies G(X) ^ 0. For distributed parameter systems, it is not immediate that G would be 
defined at A. Since we assume that A is the infinitesimal generator of a C0 semigroup and 
B and C are bounded, it is known that the transfer function G exists and is defined on 
Poo (A), where p<x>{A) is the connected component of the resolvent which contains infinity 
and intersects the positive real axis, cf. [37]. Even for a fixed system, we are of course 
interested in solving output regulation problems for a variety of exosystems, so that we 
should regard A as being an arbitrary point in the closed right-half plane. This observation 
is the basis for our first nonresonance result. 

Remark 1. We note that it follows immediately from Theorems 1 and 2 that under the 
hypotheses HI, H2, H3 the state feedback regulator problem is solvable if and only if the error 
feedback regulator problem is solvable. Thus in providing necessary and sufficient conditions 
for solvability of these problems we need not distinguish between the two cases. For this 
reason, from now on we will only refer to the state feedback case. 

Task 3.4: Develop a complete understanding of the role of zero dynamics in solvability of 
the regulator equations for distributed parameter systems. We plan to carry out this research 
task by addressing the problem from the point of view of geometry and invariance as well as 
from the more functional theoretic viewpoint of invariant and transmission zeros. The latter 
will require a further treatment of transfer functions for distributed parameter systems. 
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Theorem 4. For the system (1) with exosystem (l)-(S) satisfying hypotheses HI and H2 
and the assumption that a(S) C Poo(^); the regulator equations (12) and (13) are solvable, 
and the output regulation via state-feedback is achievable, provided no eigenvalue of S is a 
transmission zero, i.e., A G a(S) implies detG(A) ^ 0. 

Corollary 1. Under the same hypotheses as the theorem, the regulator equations (12) and 
(13) are solvable, and the output regulation via state-feedback is achievable, for every choice 
of P and Q if, and only if, det G{jati) ^ 0 for i = 1, • • • ,k. 

We next relax the condition relating the spectrum of the exogenous system with the 
component of the resolvent which contains infinity. 

Corollary 2. Assume that A satisfies the spectrum decomposition assumption with respect to 
the closed right half plane and that the system (1) with exosystem (l)-(3) satisfies hypotheses 
HI and H2 of the basic Assumption 1. The regulator equations (15) and (16) are then 
solvable, and the output regulation via state-feedback is achievable, for every choice of P 
and Q if and only if no eigenvalue of S is a transmission zero, i.e., A G a(S) implies 
detG{X) = C(XI-A)-lB^0. 

Our final nonresonance result will remove the condition a(S) C p{A). This begins with 
the observation that one can also express the basic nonresonance condition in terms of ä 
generalized Hautus test involving invariant zeros. 

Corollary 3. For the system (1) with exosystem (l)-(3) satisfying hypotheses HI and H2; 

the regulator equations (15) and (16) are solvable for every choice of P and Q if and only if 
no eigenvalue of S is an invariant zero; i.e., if and only if 

ker 
\A-\I)   B 

C 0 
{0}, for all A G a{S) 

The results presented so far give necessary and sufficient conditions for solvability of the 
regulator equations for every choice of P and Q. The analysis for a particular choice of P and 
Q is of course more difficult. We have obtained such an analysis for the SISO case. In this 
case we need to formulate an additional resonance condition for the plant and exosystem, 
which is a consequence of hypothesis H3. In order to draw attention to the fact that we are 
in the SISO case we now denote the transfer functions using lowercase letters. 

Corollary 4. Suppose the plant and exosystem satisfies hypotheses H1-H3. The regulator 
equations are solvable, and output regulation by error feedback can be achieved, if and only if 
no natural frequency of the exosystem is a transmission zero of the plant, i.e., g(\) ^ 0 for 

all\€a{S). 
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Remark 2. This corollary imposes additional restrictions on P and Q, viz., hypothesis H3 
in order to obtain necessity of the resonance condition and to be able to design error feedback 
control schemes. 

Certainly one of most important long range research objectives in our research in dis- 
tributed parameter systems is to study output regulation for nonlinear distributed parameter 
systems. We expect that through a considerable research effort, we will be able to design 
feedback laws capable of shaping the response of nonlinear distributed parameter systems. 
This research will include an effort to extend the geometric theory developed in [46] to pro- 
vide necessary and sufficient conditions for solvability of both the state and error feedback 
problems. A key point in our extension of the regulator theory to nonlinear distributed 
parameter systems is the requirement that the closed loop composite systems governed by 
nonlinear evolution equations in a Hilbert (or, more generally a Banach) space has a local 
center manifold. 

In this direction we have made some progress in our preliminary study of the following 
three tasks. 
Task 3.5: For special classes of nonlinear distributed parameter systems, develop a theory 
of output regulation based on center manifold theory analogous to our development of linear 
distributed parameter systems. For these classes of systems we will first consider the case of 
bounded input and output operators as discussed above for the output regulator problem for 
linear distributed parameter systems. 

Task 3.6: One of our long range goals will be to develop a theory of output regulation for 
nonlinear distributed parameter syste.as with bounded inputs and outputs and for systems 
containing convective nonlinearities based on center manifold theory as described above in 
Task 3.5. Part of this work will include the development of an appropriate center manifold 
theory applicable for these problems. 

Task 3.7: Extend the theory of output regulation to general convective reaction diffusion 
equations with unbounded inputs and outputs. 

In general terms, we consider a plant, exosystem and feedback law: 

z = $(z,u,w) (24) 

w = s(w) 

u = a(z,w) 
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where z €. Z,ueU, Z and U are Hubert spaces, and w G W. 
Since we are first interested in the local theory, we assume without loss of generality that 

the point (0,0,0) is an equilibrium and that $, s, a are such that 

$(0,0,0) = 0,   s(0) = 0,    a(0,0) = 0. 

And, moreover, assume that they can be represented in a neighborhood of (0,0,0,) G Z x 
U x Rk via first order approximations so that the system (24) can be written as 

z = Az + Bu +Pw + x(z,u,w) (25) 
w = Sw + ip(w) 

u = Kz + Lw + ß(z, w). 

We also impose the following assumptions 

1. A is assumed to be the infinitesimal generator of a strongly continuous semigroup on 
a Hilbert space Z, B E £{U,Z) and C e C(Z,Y). 

2. The nonlinear terms x^iß satisfy: 

(a) X) V*) ß are °f C
^
SLSS

 C2 in the sense of Frechet. 

(b) The following conditions hold 

i. X(0,0,0) = 0 ,  ^x(0,0,0) = 0, —x(0,0,0) = 0, 

|;X(0,0,0) = 0, (26) 

ii. v(o) = o, v'(0) = o, 

iii. /5(0,0) = 0,  1^(0,0) = 0, ^0(0,0) = 0. 

(c) The nonlinear terms are good enough so that the initial value problem for the 
uncontrolled and closed loop systems have unique global in time strong solutions 
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in the appropriate Hilbert spaces. Namely, this should be true for the systems 

i. z = Az + x(z,0,0), 

z = Az + Pw + x(2,0, w), 
w = s(w) ^27) 

iii.   z = (A + BK)z + {P + BL)w + (f)(z,w), 
w = Sw + ip(w), 
where  (f>(z,w) = x{z, oc{z, w),w) + Bß(z, w). 

Our preliminary calculations suggest that under these general assumptions, we expect that 
the development of a theory of output regulation for nonlinear distributed parameter systems 
can be based on center manifold theory analogous to our development of linear distributed 
parameter systems. Namely, for examples governed by partial differential equations under 
which the above conditions hold we have developed some analytical and numerical results 
that demonstrate the feasibility of obtaining a theory of output regulation for systems gov- 
erned by nonlinear partial differential equations. For example our preliminary calculations 
include examples from the following class of systems. 

Consider systems with state space Z = L2(ti,RN) where Q C Rn is a bounded domain. 
The dynamics of the controlled composite system are governed by 

zt     = T[z] + b[z]u + p[z]w, 

wt    = s(w), " (28) 

e(t)   =h[z(t)]-q(w(t)) 

where 
n 

r[z] = Az + Y,M*)**i+9(z) (29) 
t=i 

with boundary conditions on the boundary du of Q of the form 

B(Z): ]T aij{x)zXi{x,t)rjj{x) - k(x)z(x,t) 
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The function k(x) > 0 defined on dQ. plays the role of the system gain. 
The operator A is assumed to be a formally self-adjoint uniformly elliptic differential 

operator: 

* - 1£ (««<*>£) • (3D 
The rest of the terms in T are assumed to satisfy 

1. (Reaction Term) 

(a) g : RN —► RN is a nonlinear function, 

(b) g e C\    g(0) = 0,  g'(0) = 0 

(c) g(o^>-c(\e+\e+1), 
(d) \g(0\ < C(l + |e|r) with r < 2 + 4/n. 

2. (Convective Term) 

(a) y^/iC-2)^— is a convective term. 
i=i dXi 

(b) /i(z) G C2(RN,R) are nonlinear functions satisfying £(0) = 0, 

(c) |/i(£)l<C(|£|2 + |£|). 

3. (Input) u(t) G C/ is the control input 6 : Z -> C(U, Z) : z •-> 6[Z] 

4. (Output) 

(a) (Measured Output) /i : z(-,t) >-► Ä[z(-,t)] G Rp with h(0) = 0. 

(b) (Reference Output) q : w{t) eW^ q(w(t)) G Rp with q(0) = 0. 

5. (Exosystem) 

(a) s(w) is a smooth vector field on W with s(0) = 0. 

(b) More specifically, we assume exosystem is Poisson stable. 
Namely, we assume that 

s(w) = Stü + si(w) 

is neutrally stable. 
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6. (Disturbance) p is a disturbance term p : Z —> C(W, Z) : z ■-»• p[z] . 

7. (Error) The error is given by e(t) = h[z(t)]-q(w(t)) where we assume that h : Z —> Rp 

and q : Fr —» Rp are continuous. 

For the system described above the following hold: 

1. For every initial condition z0, there is a unique classical solution defined for alH > 0. 

/ ||2(i)|| < Mo(p), ie[0,oo) 
2. There are the estimates < 

( ||*(*)||ffi(n,Rw) ^ ^(W).   * G [*o,oo) 
where M0 and Mi are continuous monotone increasing functions. 

3. Moreover, for any R > 0, there exists K(R) > 0, a(il) > 0 and positive continuous 
functions Cj(R) > 0 such that, if 

HPII < R, and    min k(x) > K{R) 
x€9fi 

f     |k(*)ll < Co(Ä)e-0*,   R<Co(R)<2R,   t > 0, 
Then «^ 

I     P(i)llH'(n) < C1(fi,i0)e-Qt,   t > to > 0, I = [n/2] + 1 

Consider the 
PROBLEM: Find a feedback law   u = a[w] = Lw + ß[w) : W -+U 
with L € C(W, U),    ß(0) = ßw(0) = 0 so that: 
For some neighborhood of (0,0) in Z xW there exists a global in time solution of the closed 
loop system 

J  zt    =T[z] + b[z]a[w]+p[z}w, 

\ wt   = s(w) 

and this solution satisfies e(t) = h[z(t)] — q(w(t))   ~*   > 0. 
We have shown that 

THEOREM 2: For every a[w] (as described above) the system 

{ 
zt = T[z) + b[z]a[w] + p[z]w, ,*. 
wt = s(w) 

plus boundary conditions 
has a Local Center Manifold M C Z x W, with (0,0) E M and M can be expressed as the 
graph of a mapping II : W° CW—*Z (for some neighborhood W° of 0 in W). 

The mapping II has the following properties: 
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1. neC2, with n(0) = 0 and n'(o) = 0. 

2. M = Graph(n) = {(IL(w),w) € Z x W0} is invariant for (*). 

3. Invariance of M can be expressed through the mapping II: 

^s(w) = rLIl(w)] + b[U{w)]a[w}+p[Ii(w)}w 
OVJ 

THEOREM 3: Under all the above assumptions, a feedback law a[w] solves the State 
Feedback Regulator Problem (for our class of systems) if and only if the Center Manifold 
mapping II (whose existence is guaranteed by Theorem 2) also satisfies the "error zeroing" 
condition 

h[Ii(w)} - q{w) = 0,   V weW°. 

THEOREM 4: Under our assumptions. The state feedback regulator problem is solvable 
if and only if there exists two mappings 

n : W° C W -> Z,      a:W°cW'-*U 
satisfying the "Regulator Equations": 

^s(w) = JHIIH] + b[U(w)]a{w)+p[Il(w)}w 
ow 
h[U{w)} - q{w) = 0,   V w e W°. 

If the regulator equations are satisfied a feedback control law achieving regulation is given 
by u = a(w). 

As it can be seen by examples it is sometimes possible to obtain very simple and physi- 
cally motivated boundary feedback stabilizing control laws for nonlinear systems. Our next 
research task concerns the problem o; stabilization of distributed parameter systems and the 
investigation of the extent to whicn simple design methodologies can be used to stabilize 
boundary control systems. 
Task 3.8 We will investigate the design of boundary feedback stabilization schemes for linear 
and nonlinear distributed parameter systems. 

Task 3.9: Further develop the notion of zero pole dynamics, relating high gain limits of 
trajectories and attractors to the concept of zero dynamics for nonlinear distributed parameter 
systems. Using this analysis we also propose the design of boundary feedback stabilization 
schemes based on the concepts of zero pole dynamics for minimum phase nonlinear distributed 
parameter systems. 

Task 3.10: Investigate similar stability results for related feedback schemes and different 
geometric configurations of the spatial domains. 
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As an important first step in the analysis of Tasks 8 - 10 we have made some inter- 
esting discoveries, reported in [18], concerning zero pole dynamics for a controlled viscous 
Burgers' equation and we have applied these results to prove both semiglobal and practical 
stabilization for our boundary feedback laws. 

We now show that, with u = 0, this boundary controlled system is locally exponentially 
stable. In fact, we can be show the system is semiglobally stabilizable when the gains are 
tunable. To see this, consider the related Burgers' equation given by given by 

wt - ewxx + wwx = f{x, t), (32) 

w{x,0) = <p(x),   ^I2(0,1), (33) 

where x e [0,1] and t € [0, oo). 
For this equation, we introduce controls through the "flux" at the endpoints of the interval 

[0,1]: 

u(t) = ("JQ
0
;?) € M2 for all t € [0, oo). (34) 

We then take as output (observation) the difference between the "temperature" (or the "fluid 
velocity") at the same endpoints. 

»w-("[;:!|:^i)6«,{-n'e !"■»'■ (35) 

We comment that, under our assumptions, the uncontr lied (u = 0) and undisturbed 
(/ = 0) open loop system (66), (67), (68) is not asymptotically stable since w(x, t) =constant 
is a solution for initial data (p(x) =constant. On the other hand, if we introduce a feedback 
mechanism by the law: 

«<*> = -( *0   fc°)yW. ^[0,oo), (36) 

where k0 > 0, fcx > 0 are the gain parameters. This feedback law (36) can be rewritten in 
the form of boundary conditions 

wx(0,t)-ko(w(0,t)-vo{t)) = 0 (37) 

wx(l,t) + k1(w{l,t)-v1(t)) = 0. 
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In this formal sense, we can interpret (75), (33), (37) as the closed loop boundary control 
system for the open loop system (75), (33), with controls given by (34) and outputs given 
by (35). We will denote the solution of the closed loop system by wK(x,t). 

The zero dynamics is defined by the condition that the output be constrained to be zero: 

y(t) = 0 , te[0,oo). (38) 

/ The condition (38) formally gives the nonhomogeneous Dirichlet boundary conditions 

tu(0,t) = v0(t),   w(l,t) = Vl(t) , te [0,oo). (39) 

Thus, the zero dynamics consists of the initial boundary value problem (75), (33), (39) in 
the state space L2(0,1). The solution of this problem will be denoted by w(x,t). 

We are particularly interested in the more common situation for the zero dynamics in 
which VQ = 0, vi = 0 corresponding to Burgers' equation with homogeneous Dirichlet bound- 
ary conditions 

w(0, t) = 0,   w(l, t) = 0 , t € [0, oo). (40) 

Intuitively, Dirichlet boundary conditions also correspond formally to letting k0 and fci tend 
to oo in the closed loop boundary conditions (37). Thus, as in classical automatic control, 
we should obtain the zeros, or more properly the zero dynamics, as a high gain limit of the 
closed loop poles, or more properly the closed loop dynamics. More precisely, in [19, 18] it 
is shown that the solution wK\x,t) of the problem (75), (33), (37) converges in some sense 
to the solution w(x, t) of the problem (75), (33), (40) as k0, h -> oo, just as the closed loop 
trajectories converge locally to the trajectories of the zero dynamics in the lumped case [7]. 
In particular, it is shown in [18] that: 

a) The feedback law (36) semiglobally exponentially stabilizes the open loop system (75), 
(40) with zero forcing term / = 0. This result is valid in the L2(0,1), Il\0,1) and 
L°°(0, l)-norms. 

b) This result is robust in the sense of practical stability: if the disturbance / ^ 0 
but is "sufficiently small" then our feedback law still provides a practical semiglobal 
stabilization of the open loop system dynamics. Moreover, this result remains valid if 
the boundary disturbances are also nonzero but are "small enough." 

More specifically, let us introduce certain notation from [18]. By || • || we will denote the 
norm in the space L2(0,1). The principal linear part of Equation (75) is the linear operator 

AK = ——r with dense domain in L2(0,1) given by 
ax1 

D(AK) = {i>e H2(Q, 1) : V'(0) - fco^(0) = 0,^(1) + WU) = 0}. 
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AK is a positive self-adjoint operator (recall that fco, fci > 0) whose inverse A^1 is compact. 
The domain D(A]^2) of the operator Al£2 coincides with the Sobolev space H^O, 1). In this 
space one can introduce a new norm 

IMI? = Pf V'll2 = IIV'xIl2 + fcoWo)!2 + fc!lV(i)l2- (41) 

The norm (41) is equivalent to the usual i^-norm |MI#i(o,i) = ll^x||2 + IIV'II2- However, it 
is important to keep in mind that, in contrast with the i^-norm, the norm || • ||i depends 
on the gain parameters and j)Vlli —► oo as fc0, fci —> oo for a given ip G #x(0,1). 

We use the following notations: QT = [0,1] x [0,T], where T > 0; Qto,tl = [0,1] x [to, h] 
for any t\ > t0 > 0 so that Q0,r = QT- 

We introduce several function spaces which were used in [19]. The weak solution of our 
problem is an element of the Banach space 

MT = C{[0,T},L2(0,l))nL2{[0,T},H\0,l)) 

The norm in this space is 

\W\MT = max \\w(t)\\ + Qf   |Nt)llk(o.i) *)     • (42) 

(Here and below we denote by w(t) the function w(-,t) considered as a function of x with t 
fixed.) Elements of MT are continuous functions of t G [0,T] with respect to the norm of 
L2(0,1), which means that 

\\w{t + At) - w{t) || -* 0 as At | 0 for any t G [0, T),  w G MT- (43) 

Denote by iJ4'2(<3t0,r) the Hubert space with the norm (see, e.g., [61]): 

IMIWo.x) = f ONI2 + IHI2 + Hu-ll2 + M2+ 

+IKxxll2 + IKII2 + IKxxxll2 + 
+ \\uxxt\? + \\uu\\2)dt. (44) 

By C2,1((5t0,r) we denote the Banach space of functions u(x,t) such that u,ux,uxx,ut G 
C(Qt0,T)- The norm in this space is 

Nlc2.i(Qto T) = ,  m^    (M + KI + |u**| + N)- (45) 
(x,t)eQt0,T 
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We have the following embedding 

H^{Qt0,T)cC^{Qt0<r). (46) 

The definition of a weak solution of the problem (75), (33), (37) is standard (see, e.g., [61], 
[62], [63]) and is given in equation (2.12) in [19]. 

Now we are in a position to formulate Theorem 5. 

Theorem 5. a) LetT > 0 be arbitrary and consider the problem (75), (33), (37) on the 
time interval [0,T]. Let f G L2([0,r],L2(0,1)) = L2(QT) and t*>,vi G H1^) C 
C[0,T]. Then the problem (33), (33), (37) with arbitrary initial function <p G L2(0,1) 
has a unique weak solution wK(x,t) such that wK G Mr- 

b) Assume that, in addition to the assumptions in item a), f G HA'2(Qtoj) for any 
to e (0,T) and v0,vi G H2(0,T) C C^O.TJ. Then for t > 0 the weak solution is 
C2'1 -smooth and, therefore, satisfies Eq. (75) in the classical sense. More precisely, 
wK G #4'2(<3to,r) for any tQ G (0,T). 

c) Let the conditions of a) be satisfied. Letk>0 and assume that the gain parameters k0 

and ki satisfy the condition 

k0,ki G [fc.oo), (47) 

(It will be convenient to choose k = TT/2. However, the value of k is immaterial for us 
because we will consider the limit k0,h -* oo/ Then the weak solution wK satisfies 
the continuity condition (43) uniformly with respect to k0 and kx. In particular, the 
limit 

\\wK{t) - <p\\ -» 0    as t-^0 (48) 

is uniform with respect to ko and k\. 

d) Select any function W(x,t) which is Cx'-smooth in x and satisfies the conditions: 
W(0,t)=v0{t),   W(l,t) = v1{t),   Wx{0,t) = 0,   Wx{l,t) = 0. Define 

wK{x,t) = wK{x,t)-W(x,t). 

Under the assumptions of item a), the weak solution wK(t) G H1^, 1) for any t G (0, T] 
and there exists the weak derivative w*x G L2(Qt0tT) for any t0 G (0,T). The function 
wK, and hence the solution wK, satisfies the following estimates: 

||^(t)||2 + e f\\wK{T)\\\dT<M0{\Wlt). (49) 
./o 
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II^WIIi^r^MidblM), (50) 

/' 
l^x(r)\\2dT<tfM2(yit). (51) 

'to 

//, in addition, f andv0,vi have the weak derivatives 

ft G L2(Qt0,T)   and <,< € L2(t0,T) for any t0 G (0,T], (52) 

then wK has the weak derivative 

w« eL2([t0,T], ^(0,1)),   for any toe(0,T), 

and the following estimate holds 

H^(r)||?dT<töaAfs(llvll,*). (53) 
/ -'to 

Here all the functions Mj(f,i) (i = 0,1,2,3,) are positive continuous and monotone 
increasing in £ G (0, oo), t G [0,T]. These functions do not depend on k0 and kx if the 
condition (47) is satisfied. (They can only depend on k.) 

Theorem 6. a) Assume that (p G L2(0,1), / G L2(QT) and v0,vi G H1^^) for any 
T > 0. Then there exists a unique weak solution w(x,t) of the problem (75), (33), 
(39). For any T > 0 the solution w G MT, where the space MT is defined in (42). 
The solution w(t) G Hl(0, 1) for any t > 0 and there exists the weak derivative wxx G 
L

2
{QI0,T) for arbitrary t0 G \ti.'T], T > 0. For all t > 0 the solution w satisfies the 

following estimates: 

Hi)||2 + 6 f \\wx(T)\\2dT < N0(\\<p\\,t), (54) 
Jo 

IKWII^/'A^IMU), (55) 

V-MlPdr^tö^OMI,*)- (56) 
/ Jtn 'to 

where the functions Ni(£,t) (i = 0,1,2) have the same properties as the functions 
Mi(£,t) from Theorem 5. 
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b) Statement b) of Theorem 5 holds for the solution w of problem (75), (S3), (39): if 
f e H4>2{Qt0,T) and v0,vx € H2(0,T) for any 0 < t0 < T then w E H^{Qto,T) C 
C^iQtorfforanyOKtoKT. 

Now we are in a position to formulate the first of the two main results of [18]. 

Theorem 7. Let wK and w be the solutions of the closed loop problem (75), (33), (37) and 
the zero-dynamics problem (75), (33), (39) correspondingly. Assume that (p, f, andv0,Vi in 
both problems are the same and satisfy the conditions of Theorem 5, statement a). Then 

lim    \\wK(t)-w(t)\\=0 (57) 
fco,fci—»oo 

for any t > 0. The convergence is uniform on any finite interval [0,T]. 

Theorem 8. Assume that all conditions of Theorem 7 are satisfied and, in addition, (52) 

holds for vo, v\ and f. Then 

lim    \\wK(t)-w(t)\\HHo,i) = 0 (58) 

for any t > 0 and the convergence is uniform on any finite interval [t0,T] with t0 > 0. Due 
to the embedding H\0,1) C C[0,1], (58) implies that for t0 > 0 

max     max \wK(x,t) -w(x,t)\ -> 0 as k0,ki -> oo. (59) 
t€[to,T]     i€[0,l] 

These results were used to prove the following stabilization results found in [18] 

Theorem 9. a) The undisturbed open loop system defined by equation (75) with / = 0 
and boundary conditions (40) is semiglobally stabilizable in the L2(0,1), -/^((M) and 
L°°(0,1) norms by the feedback law (36) with zero boundary disturbances v0 = vi = 0. 

More precisely, for any R> 0 there exists K(R) > 0 such that the following statement 
holds. If the initial function ip G L2(0,1) satisfies 

and the gain parameters 

IMI < R (6°) 

fco,A:i>tf(Ä), (61) 
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then the solution wK of the closed loop initial boundary problem (75), (33), (31) cor- 
responding to f = 0 and v0 = V\ = 0 satisfies the estimates: 

\\wK{t)\\<C0(R)e-a\   R<C0{R)<2R,   t>0, (62) 

lk*(i)||tfW)<Ci(fi>Me"Qt>   t>to>0, (63) 

where a > 0 can be taken as a = en2/4, C0 and Ci are positive continuous functions 
of their arguments, and lim Ci{R,t0) = oo. If if £ /^(O, 1) and ||y?||tfi(o,i) < R, then 

to—*o 
(63) holds fort>0 and Cx = C^R). 

An estimate similar to (63) holds for the norm \\wK(t)\\L°°(p,i)- 

b) The open loop system (75), (40) with a sufficiently small disturbance f is semiglobally 
practically stabilizable in the L2(0,1) norm by the feedback law (36) with sufficiently 
small boundary disturbances vo and v\. 

More precisely, for any R > 0 and 6 > 0 there exist K(R, 5) > 0 and a(6) > 0 such 
that the following statement holds. If the initial function ip satisfies (60), the gain 
parameters k0 and kx satisfy (61) with K(R) replaced by K(R,5), and the disturbances 
vo, V\ and f satisfy 

esssupt€[0]Oo) {||/(t)||, K(i)|, \v[(t)\, \v0(t)\, M*)|} < a. (64) 

(where p > 0 and a > 0 are sufficiently small constants, which are independent of k0 

and hi) with a < a(S) then the solution wK of the closed loop problem (75), (33), (37) 
satisfies the estimate 

\\wK(t)\\<^ for t>T(R,6), '       (65) 

where T{R,6) = C0ln{R/6), C0 > 0. 

In our recent preliminary report [24] we have made some progress toward establishing 
existence of global in time dynamics for the open loop, closed loop and zero dynamics systems 
generated by a class of systems governed by boundary controlled convection reaction diffusion 
equations (see (66)-(74) below). This work relates to our specific Tasks 3.13 and 3.14. 

Task 3.13: As a specific research task devoted to the study of the steady state response 
of nonlinear distributed parameter systems we intend to carry out an analysis parallel to 
that described above for a boundary controlled viscous Burgers' equation for this class of 
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hydrodynamic systems in higher dimensions, [24, 25]. We propose to establish, among other 
things, the existence of long time dynamics and Lyapunov stability for all initial data and 
existence of a global attractor. 

Task 3.14: Using techniques from functional analysis and partial differential equations we 
propose to employ a variety of feedback regularization methods to suppress possible instabili- 
ties or blowups in a subdomain Qi of a domain Q C Rn. For example, i/fii is a thin layer 
near the boundary of Q, we propose to investigate the suppression of the onset of turbulence 
in the boundary layer. 

Consider a class systems governed by higher dimensional convection reaction diffusion 
equations evolving on a bounded domain flcR"(n>l) with C2-boundary T. 

In particular, we consider boundary control systems of the form 

wt - Lw + div F{w) + G{w) = h,   . (66) 
w{x,0) = <p(x), ipeL2{Q), (67) 

n 

B[w) = ^2 a-ijWwxiix^^jix) 
M=l 

= u(t), (68) 

y{t) = w(x,t),    xeT (69) 

where x = (zi, ■ ■ • , xn) G Q and t > 0 and fj(x) is the unit normal vector to Y. 
The operator L is a formally self-adjoint uniformly elliptic differential operator: 

t,j=i j 

Lw represents a diffusion term in non-isotropic, non-homogeneous media, where w(x,t) is 
the state of system, divF(w) = div F{x,t,w) is a convective term, G{w) = G(x,t,w) is a 
reactive term and h = h(x, t) is an external control or disturbance. 

We are interested in very general boundary feedback controls acting though the boundary 
T of Q. In particular we consider two types of (nonlinear) feedback controls from our recent 
work [24]: 

Feedback Control Type I: u{x, t) = -k{x, y(x, t)) (70) 

where k G Chm{T x R) 

Feedback Control Type II: u{x, t) = -     lC(x, 7,1/(7, *)) rfI\        (71) 

where K G C1,1,m(r x V x R) 
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Employing the Type I control law, the input (68) and the output (69), we obtain a Closed 
Loop System consisting of (66), (67) subject to the (nonlinear) boundary condition 

B(w)(x, t) + k(x, w(x, t)) = 0. (72) 
xer 

For the Type II control law, the input (68) and the output (69), we obtain a Closed Loop 
System consisting of (66), (67) subject to the (nonlinear) boundary condition 

B(w)(x,t)+ fjC{x,j,w^,t))dT, = 0, (73) 
igr 

In either case, we define the zero dynamics, obtained by constraining the output (69) to 
zero, to be the system consisting of (66), (67) and Dirichlet boundary conditions 

w(x, t) = 0. (74) 

In [24] we have been able to establish global in time existence and regularity of solutions 
for the above class of initial boundary value problems. 

In our work on existence of steady state responses for convective reaction diffusion pro- 
cesses, in a joint work [1] (with Professor John Burns at VT& State University), we have 
also made a startling discovery concerning the existence of so-called numerical stationary 
solutions for Burgers' equation with Neumann boundary conditions. In particular, we illus- 
trate with this example that, because of finite precision arithmetic, a convergent numerical 
algorithm can produce false (purely numerical) solutions. The main purpose of this work 
is to give a-, in-depth examination of this model problem and to give warning in the use of 
numerical ^used proofs of uniqueness for hydrodynamic problems. 

Burgers' equation on the interval (0,1) subject to Neumann Boundary Conditions is given 
by the dynamical system 

wt - ewxx + wwx = 0, 

xe (0,1),    t>0, e>0, 

wx(0,t) = wx(l,t) = 0, 

w(x,0) = 4>{x). 

We are interested in the corresponding steady state problem 

-evxx(x) + v(x)vx{x) = 0, 
vx(0) = vx(l) = 0. 

(75) 

(76) 
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Solutions of (76) are called stationary (or equilibrium) solutions of the unsteady problem 
(75). One approach to the development of numerical methods for solving (76) is to solve 
the time dependent problem (75) and assume that w(-,t) —> v(-) as t —» +oo. In order to 
construct fast and accurate "time marching" schemes based on this idea, a number of points 
must be considered. In particular, one should address the following issues. 

(a) If possible, the questions of existence and uniqueness of stationary solutions to the 
boundary value problem (76) needs to be answered. These are still open questions for 
many fluid and gas dynamic problems. 

(b) One needs to know that for reasonable initial data (/>(•), the time varying solution w(-,t) 
exists for all t > 0,   lim w(-,t) = v(-) exists, and v(-) is a stationary solution. 

t—>+oo 

(c) The rate at which w(-,t) —► v(-) is important because it can influence the efficiency of 
the scheme. 

(d) If one introduces a numerical approximation (with spatial mesh size Ax) and con- 
structs the numerical solution wAx(-,t) with the property that as Ax —> 0 (i.e. mesh 
refinement) wAx(-,t) -*• w(•,*), then   lim wAx(-,t) = vAx(-) needs to exist. 

t—*+oo 

(e) The limit vAx(-) is assumed (or proven) to be a good approximation to v(-). This 
issue is more complicated than one might guess and it can fail in surprisingly simple 
problems. 

Items (a) - (e) above do not address all of the of important issues. For example, as 
we have shown in our paper [1], even if items (a)-(d) are satisfied and one can prove (this 
means using infinite precision arithmetic) that vAx(-) —► v(-), then problem sensitivity and 
finite precision arithmetic can pr^üuce numerical solutions vAx(-) that do not approximate 
any stationary solution! Thus, it is possible for a perfectly sound theoretical algorithm to 
produce "false" numerical solutions to the steady state problem. We demonstrate this point 
by a complete analysis of Burgers' equation with Neumann boundary conditions. 
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6    Scientific Interactions/Transitions 

During the month of November 1997, Dr. Christopher I. Byrnes visited the Flight Controls 
Lab at Wright Patterson Air Force Base to learn about new AF initiatives in flight control 
from Dr. Siva Banda. Dr. Byrnes has also provided technical advice to Dr. James Cloutier 
and other Air Force personnel at Ft. Eglin Air Force Base. 

The Boeing/Washington University Graduate Education and Research Partnership, a 
$3.1 Million program sponsored by the Boeing/McDonnell Douglas Foundation, provides 
a novel, formal opportunity to interact scientifically with research engineers at the Boeing 
corporation and to transition technology developed at Washington University to the defense 
industry. This program war Inaugurated in December 1998, under the co-direction of Dr. 
Allen Atkins (Vice President (VP) of Production Application Technologies, Boeing) and Dr. 
Byrnes, with a joint meeting of Washington University (WU) and Boeing researchers and 
the announcement of twelve joint research projects in the areas of Aerospace, Automatic 
Control, Computational Science, Materials and Image Processing. In May 1999, Dr. Atkins 
and Dr. Byrnes co-hosted the First Research Day for the Partnership. There were twelve 
presentations by research teams led by a WU Professor of Engineering and a Boeing research 
engineer who codirect a doctoral thesis in the School of Engineering and applied Science. In 
this program, Dr. A. Isidori chaired and Dr. Kevin Wise served on A. Serrani's dissertation 
committee. The dissertation aimed to transition research on robust output regulation to 
methodologies for robust asymptotic tracking and disturbance rejection for aircraft.for flutter 
control.   In the same program, Dr.   C. Byrnes chaired and Dr.   Kevin Wise served on J. 
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Ramsey's dissertation committee. The dissertation aims to transition research on output 
regulation near a stable periodic motion of unknown frequency to methodologies for flutter 
control. The highlights of this research day were the subject of a briefing from 14:30 to 17:30 
on December 20, 1999 to high level personnel in Boeing and the Boeing/McDonnell Douglas 
Foundation. Dr. C. Byrnes participated in a briefing to Boeing personnel on these research 
projects and possible transitions. The Boeing personnel included: 

Dr. Allen Atkins     Vice President (VP) of Production Application Technologies 
Dr. Kevin Wise       Manager, Integrated Flight Control 
Jerry Halley Assoc. Tech. Fellow, Advanced Manufac. Res. and Devel. 
Toni Bailey Pres., Boeing-McDonnell Found., VP, Comm. and Educ. Rela- 

tions 
Ron Shelley Dir., Supplier Management and Procurement, Prod. Operations 
Dan Grossman Director of Strategic Planning 
Dr. Diane Chong     Department Manager, Engineering 
Dr. Matt Thomas    Manager, University Liaison 
John Van Gels VP and General Manager of Production Operations/Gen. Serv. 
Flake Campbell       Director of Advanced Manufacturing Research and Development 
Charles Saff Staff Manager, Advanced Materials Structures Technology 
Jimmy Williams Senior Manager, Advanced Manufac. Research and Devel. 

On February 12, 2001, Dr. Atkins and Dr. Byrnes co-hosted the Second Research Day 
for the Partnership. There were thirteen presentations by research teams on new research 
projects in the same five areas. In this program, Dr. C. Byrnes and Dr. A. Isidori co-chair 
and Dr. Kevin Wise serves on F. Celani's dissertation committee. The dissertation aims to 
transition research on the stability of inner-loop/outer-loop feedback systems and of dynamic 
inversion schemes to methodologies for for analyzing stability of flight control systems and 
for modeling and correcting small deviations from cnm conditions such as occur in "nose 
slippage" at certain high angle-of-attack maneuvers. 

From 1997-1999, Dr. Byrnes served as a scientific advisor to Drs. Alan Cain, Yutaka 
Ikeda and Kevin Wise at Boeing Aerospace on an AFOSR funded initiative in flow control. 
Among the intended applications are the development of a robust nonlinear control strategy 
for the control of airflow to increase lift on tail flaps on aircraft such as the C17 and the 
development of a nonlinear control strategy to shorten the exhaust plume on fighter aircraft 
in order to render the aircraft more stealthy. 

During the same period, Dr. Byrnes served as a consultant to Dr. Rowena Eberhardt 
in support of an AFOSR funded program at Lockheed-Martin, on the stability of nonlinear 
adaptive controllers. 

Drs.  Gilliam and Shubov are involved in a collaborative effort with researchers in the 
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AFOSR Center for Optimal Design and Control at Virginia Tech & State University on the 
use of "numerical based" methods for hydrodynamic models. As part of this collaboration, 
Dr. Gilliam collaborated visited the AFOSR Center for Optimal Design and Control at 
Virginia Tech & State University in November of 2000 and collaborated with ,esearchers in 
the center. 

Through collaboration with AFOSR sponsored researcher Dr. Tryphon Georgiou at Uni- 
versity of Minnesota, Drs. C. I. Byrnes and A.G. Lindquist have developed a new methodol- 
ogy for designing rational positive real functions satisfying the Nevanlinna-Pick constraints, 
a problem with multiple applications to circuit design, robust control design and signal 
processing. A transition of this technology has commenced with a patent application for a 
high-resolution spectral estimator, discussed in the next section. On March 1, 2000 a written 
disclosure of this technology was made to Dr. Richard Albanese of Armstrong Laboratory. 

In addition to collaborative research with engineering research and development personnel 
at Boeing, St. Louis, MO, and scientific interaction with AFOSR personnel at Boiling AFB, 
Ft. Eglin AFB and Wright Patterson AFB, we have presented many invited lectures and 
colloquia nationally and internationally: 

December 1997: 
• "Global L2-gain State Feedback Design for a Class of Nonlinear Systems," 36th 

IEEE Conf. Decision and Control (San Diego, CA, December 1997), Lecture pre- 
sented by Professor A.Isidori 

• "Harmonic Forcing for a Class of Nonlinear Systems," 36th IEEE Conf. Deci- 
sion and Control (San Diego, CA, December 1997), Lecture presented by Professor 
A.Isidori 

• "Computational Methods for Feedback Control of Distributed Parameter Systems," 
Special Session at 36th IEEE Conf. Decision and Control (San Diego, CA, December 
1997), Organizer and Chair: Professor David Gilliam. 

February 1998: 

• "Semiglobal Stabilization by output feedback of non-minimum phase uncertain non- 
linear systems" Invited lecture presented by Dr. Alberto Isidori at the Seminar 
"Nonlinear Control", Centre E. Borel, Universite Pierre et Marie Curie, Paris, 1998. 

March 1998: 
• "Output regulation for nonlinear distributed parameter systems," Department of 

Systems Science and Math, Washington University, St. Louis, Lecture presented 
by Professor D.S. Gilliam. 
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• "Why subspace identification algorithms sometimes don't work and what we can 
do instead" presented by Professor Anders Lindquist at Washington University, St. 
Louis. 

April 1998: 
• "What is Optimization and Systems Theory, and what are we doing at KTH?", 

presented by Professor Anders Lindquist at Physics Colloquium, KTH, Stockholm 
Sweden. 

May 1998: 
• "Output regulation for nonlinear distributed parameter systems," SIAM Conference 

on Systems Control, Jacksonville, Florida. Lecture presented by Professor D.S. 
Gilliam. 

• "Covariance extension and speech processing", presented by Professor Anders Lindquist 
at Third Russian-Swedish Control Conference, Stockholm. 

• AFOSR Contractors Workshop, Pasadena, CA. Attended by Professor C.I. Byrnes. 

• "The geometry of positive real functions with applications to systems and signals," 
Plenary lecture presented at SIAM Conference on Systems Control, Jacksonville, 
Florida, by Professor C.I. Byrnes. 

June 1998: 
• "Conditions for solvability of the output regulator problem for distributed parame- 

ter systems," Invited Lecture presented at the IEEE Mediterranean Conference by 
Professor C.I. Byrnes. 

July 1998: 
• "The separation principle in nonlinear stabilization" Plenary lecture presented by 

Dr. Alberto Isidori at the Conference: "Mathematical Theory of Networks and 
Systems", Padova, Italy. 

• "On the geometry of Nevanlinna-Pick interpolation." One hour invited lecture pre- 
sented at International Conference on the Mathematical Theory of Networks and 
Systems, Padova, Italy by Professor C.I. Byrnes. 

• "Output regulation for nonlinear distributed parameter systems," International 
Conference on the Mathematical Theory of Networks and Systems, Padova, Italy. 
Lecture presented by Professor D.S. Gilliam. 
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• "A generalized entropy criterion for rational Nevanlinna-Pick interpolation with 
applications to systems and control," International Conference on the Mathematical 
Theory of Networks and Systems, Padova, Italy. Lecture presented by Professor C.I. 
Byrnes. 

• "Experimental evidence showing that stochastic subspace identification methods 
may fail," International Conference on the Mathematical Theory of Networks and 
Systems, Padova, Italy. Lecture presented by Professor A. Lindquist. 

• D.S. Gilliam, Organizer of of special session entitled "Applications of Numerical, 
Functional and Stochastic Methods to the Analysis of Data" for International Con- 
ference on the Mathematical Theory of Networks and Systems, Padova, Italy. 

• "Exponential nonlinear observer design for bifurcating systems," Lecture presented 
at International Conference on the Mathematical Theory of Networks and Systems, 
Padova, Italy by Professor C.I. Byrnes. 

• "Persistence of stability of periodic motion for nonlinear systems," Invited lecture 
presented at the Systems Theory Days Conference held in Montalcina, Italy by 
Professor C.I. Byrnes. 

August 1998: 

• "Output regulation for nonlinear distributed parameter systems," 6th Conference 
on Computation and Control in Bozeman, Montana. Lecture presented by Professor 
D.S. Gilliam. 

October 1998: 

• "Global analysis of linear systems," Plenary lecture, Dr. C. Byrnes at Perspectives 
in Control, (In honor of R.W. Brockett's 60th Birthday) BU/Harvard, Cambridge, 
MA, Oct. 98. 

• "A convex optimization approach to Nevanlinna-Pick interpolation problems in ro- 
bust stabilization," Plenary lecture, Dr. A. Lindquist at the International Con- 
ference Dynamical Systems: Stability, Control, Optimization, Minsk, Belarus, Oct. 
98. 

• "Stabilization of nonlinear systems using output feedback," Invited lecture, Dr. A. 
Isidori,M/T, Cambridge, MA, Oct. 98. 

November 1998: 

• "Advances in nonlinear control theory," Invited lecture, Dr. A. Isidori at the Case 
Western Reserve University, Cleveland, OH. 
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• "Conditions for solvability of the regulator problem for linear distributed parameter 
systems," Invited lecture, Dr. D.S. Gilliam at Texas System Days. 

• "The geometry of Nevanlinna-Pick interpolation, with applications to control and 
signal processing," Dr. C. Byrnes at The Royal Institute of Technology, Stockholm, 
Sweden, Invited lecture on the occasion of receiving an Honorary Doctorate. 

December 1998: 
• "Output regulation for nonlinear systems: an overview," Invited lecture, Dr. A. 

Isidori at the 37th IEEE Conference on Decision and Control, Tampa, FL, Dec. 
1998. 

• "Conditions for solvability of the output regulator problem for siso distributed pa- 
rameter systems," Lecture, Dr. D.S. Gilliam at 37th IEEE on Decision and Control, 
Tampa, FL, Dec. 1998. 

• "Zero dynamics for relative degree one siso distributed parameter systems," Lecture, 
Dr. D.S. Gilliam at 37th IEEE on Decision and Control, Tampa, FL, Dec. 1998. 

February 1999: 
• "Analytic interpolation with degree constraints, with applications to systems and 

control," Dr. A. Lindquist at the Texas Tech University, Lubbock, TX, Feb. 99. 

March 1999: 
• "A duality between filtering and interpolation," Invited lecture, Dr. C. Byrnes at 

Kyoto University, Japan, Mar. 99. 

• "A duality between altering and interpolation," Invited lecture, Dr. C. Byrnes at 
Tokyo University, J^an, Mar. 99. 

• "Stabilization by output feedback revisited," Dr. A. Isidori, Oberwolfach Math. 
Inst., Mar. 99. 

April 1999: 
• "The geometry of Nevanlinna-Pick interpolation, with applications to control and 

signal processing," Plenary lecture, Dr. C. Byrnes at Advances in Mathematical 
Systems Theory, (in honor of D. Hinrichsen's 60th Birthday), Borkum, Germany, 
Apr. 99. 

• "Analytic interpolation with degree constraints, with applications to systems and 
control," Dr. A. Lindquist at Moscow State University, Apr. 99. 
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• "A Duality Between Filtering and Interpolation," Invited lecture, Dr. C. Byrnes at 
Universiteü Groningen, Netherlands, Apr. 99. 

May 1999: 
• "Output regulation for periodic systems," J. Ramsey and Dr. C. Byrnes at the 

Boeing/WU Research Day, St. Louis, May 99. 

• "Robust Output Regulation," A. Serrani and Dr. C. Byrnes at the Boeing/WU 
Research Day, St. Louis, May 99. 

• "The geometry of Nevanlinna-Pick interpolation, with applications to control and 
signal processing," Plenary lecture, Dr. C. Byrnes at the Michigan Interdisciplinary 
Mathematics Meeting, University of Michigan, Ann Arbor, May 99. 

• "On the control of vortices in tornado flows," Invited lecture, Dr. V.l. Shubov at 
the SIAM Annual Meeting, Atlanta, May 99. 

June 1999: 

• "A duality between filtering and Interpolation," Invited lecture, Dr. C. Byrnes at 
the University of Rome, Italy, Jun. 99. 

• "Analytic interpolation with degree constraints, with applications to systems and 
control," Dr. A. Lindquist at the Int. Conf. on Rat. Approx., Antwerpen, Belgum, 
Jun. 99. 

• "A comment on numerical based 'proofs' for hydrodynamic flows," Invited lecture, 
Dr. D.S. Gilliam at NSF Workshop on Control of Fluids at UCSD, Jun. 99. 

• "Output regulation of nonlinear systems," and "Stabilization of nonlinear systems 
using output feedback," Invited lectures, Dr. A. Isidori at COSY, Arrabida, Portu- 
gal, Jun. 99. 

August 1999: 

• "Nonlinear control systems," Invited lecture, Dr. C. Byrnes at The 1999 AFOSR 
Annual Contractors Meeting on Dynamics and Control, Wright-Patterson Air Force 
Base, Aug. 99. 

• "On the stabilization of uncertain linear systems by output feedback," Invited Lec- 
ture by Dr. A. Isidori at The Äström Symposium on Control in Lund, Sweden, 
Aug. 99. 

September 1999: 
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• "Toward a nonequilibrium theory for nonlinear control," Plenary Invited Lecture 
given by Dr. C. Byrnes at The Mathematics of Systems and Control: From Intel- 
ligent Control to Behavioral Systems (In honor of J.C. Willem's 60th Birthday), 
Groningen, The Netherlands, Sept. 99. 

• "Analytic interpolation with degree constraints, with applications to systems and 
control," Plenary lecture, Dr. A. Lindquist at the Sixth St. Petersburg Symposium 
on Adaptive Systems Theory, St. Petersburg, Russia, Sept. 99. 

• "On the problem of residual generation for fault detection in nonlinear systems and 
some related facts," Dr. A. Isidori, 5th European Control Conference. 

October 1999: 
• "Advances in high-resolution spectral estimation," Invited Lecture given by Dr. A. 

Lindquist Advances in Systems Theory, Cambridge, Massachusetts, (In honor of 
S.K. Mitter's 65th Birthday)). 

December 1999: 
• "Output regulation of nonlinear systems" 8 hour Workshop presented by C.I. Byrnes, 

A. Isidori, Jie Huang, A. Serrani, and L. Marconi, 38rd IEEE Conf. Decision and 
Control (CDC), Phoenix. 

• "Recent advances in output regulation for distributed parameter systems," Dr. D.S. 
Gilliam, Recent Advances in Systems and Control Theory, Washington University, 
St. Louis, (Invited Lecture). 

• "Adaptive stabilization of nonlinear non-minimum phase systems," Dr. A. Isidori, 
Recent Advances in Systems and Control Theory, Wash. Univ., St. Louis, (Invited 
Lecture). 

• "Analytic interpolation with degree constraints, with applications to systems and 
control," Dr. A. Lindquist, Recent Advances in Systems and Control Theory, Wash- 
ington University, St. Louis, (Invited Lecture). 

• "A necessary condition for local asymptotic stability of equilibria of nonlinear sys- 
tems with parameters," Lecture presented by C.I. Byrnes at the Proc. of the 38th 
IEEE Conference on Decision and Control, Phoenix, Dec. 1999. 

• "Output regulation for linear systems with anti-stable eigenvalues in the presence 
of input saturation," R. De Santis, A. Isidori, 38rd IEEE CDC. 

• "Analytic interpolation with degree constraint: A constructive theory with appli- 
cations to control and signal processing," A. Lindquist, 38rd IEEE CDC. 
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• "A convex optimization approach to the covariance extension problem with degree 
constraint," Dr. A. Lindquist, 38rd IEEE CDC. 

• "Global output regulation for a class of nonlinear systems," A. Serrani, A. Isidori, 
38rd IEEE CDC. 

• "Example of output regulation for a system with unbounded inputs and outputs," 
Dr. D.S. Gilliam, 38rd IEEE CDC, Phoenix, AZ, (Invited Lecture). 

• "Semiglobal Stabilization of a boundary controlled viscous Burgers' equation," Dr. 
D.S. Gilliam, 38rd IEEE CDC, Phoenix, AZ. 

March 2000: 

• "Why Nevanlinna-Pick interpolation theory is important in applications to systems 
and control and how it can be modified to be more useful," Dr. A. Lindquist 
Helsinki University of Technology, Helsinki, finland, {Colloquium lecture). 

May 2000: 

• "Fine dust limit for coupled systems of Navier-Stokes and Euler equations." Dr. 
V.l. Shubov, 3rd International Conference on Nonlinear Problems in Aviation and 
Aerospace, Daytona Beach, FL, {Invited lecture). 

• "Stability of airflow containing dust and applications to tornado dynamics," Dr. 
V.l. Shubov, International Conference on Differential Equations and Dynamical 
Systems, Kennesaw State University, Atlanta, GA, {Invited lecture). 

• "Analytic interpolation with degree constraint with applications to systems and 
control and signal processing," The 2000 Zaborszky Lectures (three lectures) Dr. 
A. Lindquist Washington University, St. Louis {Invited Lectures). 

June 2000: 

• "Toward a nonequilibrium theory for nonlinear control," Dr. C. Byrnes, Nonlinear 
Control in the Year 2000, Paris, France, {Plenary Lecture). 

• "Toward a nonequilibrium theory for nonlinear control," Dr. C. Byrnes, lJ^th In- 
ternational Symposium on Mathematical Theory of Networks and Systems (MTNS 
2000), Perpignan, France, {Plenary Lecture). 

• "Some New Methods and Concepts in High-resolution Spectral Estimation," Dr. 
A. Lindquist Third Asian Control Conference (ASCC), Shanghai, China {Plenary 
lecture). 
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• "An iJoo-suboptimal fault detection filter for bilinear systems," C. De Persis, A. 
Isidori, Nonlinear Control in the Year 2000, (Invited lecture). 

• "Advances in nonlinear output regulation," A. Serrani, A. Isidori, C.I.Byrnes, L. 
Marconi at Nonlinear Control in the Year 2000, (Invited lecture). 

• "Robust global stabilization of a class of uncertain feedforward nonlinear systems," 
A. Marconi, A. Isidori, Nonlinear Control in the Year 2000. 

• "The design of filters for fault detection in nonlinear systems," Dr. A. Isidori, IFAC 
Symposia "Safeprocess 2000". 

• "Generalizations of Hadamard's theorem and Dirichlet's principle for finite dimen- 
sions," Dr. C. Byrnes, (MTNS 2000), Perpignan, France. 

• "Robust observer design for nonlinear systems that change with the disturbance," 
Dr. C. Byrnes (MTNS 2000), Perpignan, France. 

• "Covariances, cepstral coefficients and pole-zero models for signal processing," Dr. 
A. Lindquist, (MTNS 2000), Perpignan, France. 

• "Recent results on Interpolation in the class of positive real functions: A geometric 
approach," Dr. A. Lindquist (MTNS 2000), Perpignan, France. 

August 2000: 

• "Output regulation for systems with delays," Dr. D.S. Gilliam, 8th Conf. on 
Computation and Control at Montana State University. 

• "Fine dust limit for coupled systems of Navier-Stokes and Euler equations." Dr. 
V.l. Shubov, 8th Conf. on Computation and Control Montana State University. 

• "Toward a nonequilibrium theory for nonlinear control systems," 2000 AFOSR Con- 
tractors Meeting: Dynamics and control, Cal Tech University, Lecture presented by 
Dr. C.I. Byrnes. 

September 2000: 

• "Cepstral geometry and global analysis of ARMA parameterizations," Lecture pre- 
sented by Professor Anders Lindquist at the Workshop for the European Research 
Network of Systems Identification, vadstena, Sweden. 

November 2000: 

• "Geometric Theory of Output Regulation for Linear Distributed Parameter Sys- 
tems," Dr.  D.S. Gilliam, Future Directions in Distributed Parameter Systems in 
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honor of H.T. Banks 60th birthday, North Carolina State University, November 
2000 (Invited Address). 

• "Synthetic speech and modern mathematics: What is the connection?," Colloquium 
lecture presented by Professor Anders Lindquist at the Royal Institute of Technol- 
ogy, Stockholm, Sweden. 

7 New Discoveries, Inventions or Patent Disclosures 

On May 8, 1998, Drs. Christopher I. Byrnes and Anders G. Lindquist submitted, through 
Washington University, a patent application, US Serial No. 08/854,150, "A new method 
and apparatus for speech analysis and synthesis." On February 11, 1999, the patent ap- 
plication US Serial No. 08/854,150 was allowed by the U.S. Patent Office. On May 13, 
1999 a positive International Preliminary Examination Report was issued for the exten- 
sion (PCT/US98/09576) of this patent to Australia, Canada, Europe, and Japan, on the 
basis of the previous disclosure, US Serial No. 08/854,150. On September 2, 1999, US 
Patent No 5,940,791, "Method and apparatus for speech analysis and synthesis using lattice 
ladder notch filters," was awarded to Washington University by the U.S. Patent Office as 
. On November 9, 1999 an application to the national stage was made for the extension 
(PCT/US98/09576) of this patent to Australia, Canada, Europe, and Japan. 

On August 5, 1998, Drs. Christopher I. Byrnes and Anders G. Lindquist submitted, 
through Washington University, the patent disclosure, US Serial No. No. 09/117,721: "A 
new method and apparatus for speech analysis and synthesis including speaker recognition," 
to the U.S. Patent Office. On May 9, 2000, they made a response to the favorable review of 
patent application US Serial No. 09/117,721. 

On October 8, 1998, tbo patent application US Serial No. 09/176,984, "Method and 
apparatus for a tunable high-resolution spectral estimator," was filed by Drs. C.I. Byrnes, 
T. Georgiou and A.G. Lindquist through the University of Minnesota and Washington Uni- 
versity to the U.S. Patent Office. On October 22, 1999 an application was made for the 
international extension of the patent application US Serial No. 09/176,984. 

8 Additional Information, Awards and Honors 

In November 1998, Dr. Byrnes received an Honorary Doctor of Technology from the Swedish 
Royal Institute of Technology, along with the Nobel Laureate, Dr. Claude Cohen-Tanoudji. 
In 1998, Dr. Byrnes was also elected a Fellow of the Academy of Sciences of St. Louis. 
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The paper "A convex optimization approach to the rational covariance extension prob- 
lem", by C. I. Byrnes, S. V. Gusev and A. Lindquist, published in SIAM J. Control and 
Opimization, 37 (1999), 211-229, has been chosen by the editors of SIAM Review to be the 
second "SIGEST" paper from SICON. 
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