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AFIT/GOR/ENS/0 IM-16 

ABSTRACT 

The Combined Mating and Ranging Planning System (CMARPS) is the system 

used by AMC to schedule air refueling for deployments from the continental US to other 

parts of the world. The tool developed by Capehart (2000) provided results similar to 

CMARPS in less time. Capehart's tool allows AMC to input several receiver groups 

consisting of various aircraft types and numbers. Each receiver group contains a point of 

origin and destination, with the option of providing one waypoint along the path, a ready 

to load date (RLD) and required delivery date (RDD). The user is also able to specify the 

locations of military tanker aircraft. The main goal of this tool is to assign the tankers to 

the different refueling points of the receiver groups so that all receiver groups arrive 

before their RDD. Secondary goals include the reuse of tankers and limiting the total 

flight distance for all tanker aircraft. The main purpose of this research is to introduce a 

dynamic feature of tabu search, reactive tabu search, into the tool. This method changes 

tabu tenure when necessary in the hope of finding better solutions by diversifying the 

search to the unexplored areas of the solution space. 



A REACTIVE TABU SEARCH METAHEURISTIC 

EXTENSION OF THE AIR REFUELING 

TANKER ASSIGNMENT PROBLEM 

CHAPTER 1. INTRODUCTION 

1.1 BACKGROUND 

The United States Air Force (USAF) wants to maintain a force structure prepared to 

fight and win two major regional wars at approximately the same time. The 1997 

Quadrennial Defense Review (QDR) reinforced and institutionalized the two war strategy 

(A/TQ, 2000). In order to achieve this goal for aerial refueling missions, USAF desires a 

tool that helps to schedule the deployment of its fighter/bomber aircraft to areas of 

conflict around the globe. The word "deployment" refers to moving military forces so 

that they are ready to respond to a crisis (Applications of Metaheuristics to Air Force 

Problems, 2000). 

The USAF's Air Mobility Command (AMC) typically uses tanker aircraft for 

refueling the Air Force's fighter/bomber aircraft as the aircraft deploy. All tanker 

operations are commanded from the Tanker Airlift Control Center (TACC) located at 

Scott Air Force Base, Illinois. 

The KC-135 tankers were introduced in 1957 and were intended to accompany the 

B-52 bombers. In the early 1970's the Department of Defense (DoD) sought to expand its 



tanker fleet by purchasing new generation wide-body commercial transports. The Air 

Force selected McDonnell-Douglas' DC-10, designated for military use as the KC-10, as 

an advanced tanker (Congressional Budget Office, 1982). Despite the fact that a good 

many bombers have been retired over the last 40 years, the USAF still needs a large 

number of tankers. With the ending of cold war, mission priorities and threat concepts of 

USAF changed tremendously. Humanitarian aids and first strike forces gained 

importance over other missions. For this reason, the need for tankers never decreased. 

The KC-135 and KC-10 aircraft provide in-flight refueling for almost every aircraft 

in the Air Force. The KC-135 Stratotankers are used for these deployments. With in- 

flight refueling, non-stop flying capabilities increase greatly giving each aircraft the 

ability to reach its destination before its required arrival time. The amount of fuel that 

can be delivered by tanker aircraft, within a flying radius of 2,500Nm is shown in Table 1 

(A/TQ, 2000). 

Table 1: Tanker deliverable fuel capacities 

Tanker type    Fuel (pounds) 
KC-135A 63,000 
KC-135R 94,500 
KC-135E 75,600 
KC-10 162,000 

As forward basing and forward mobility give way to rapid mobility from the United 

States, the role of the tanker will become a critical part of almost every air operation. Air 

refueling allows combat aircraft to deploy, to strike targets deep in enemy territory and 

extends the time fighter aircraft can protect friendly forces from attack by enemy aircraft. 

Nearly the entire USAF air refueling fleet was needed to execute the campaign 

during the Air War Over Serbia (AWOS), and Lieutenant General Michael Short said that 



"without tankers we could not have fought this war" (A/TQ, 2000). Due to the limited 

number of tanker aircraft available compared to the number needed during an operational 

deployment, not all refueling requests can be met simultaneously. This may cause some 

deploying receiver groups to arrive at their deployment destinations later than scheduled. 

Therefore, the allocation and scheduling of tankers is extremely important in ensuring 

receivers are not tardy. 

In order to compare the effort required by the Combined Mating and Ranging 

Planning System, (CMARPS) to that of the Tanker Assignment Problem (TAP) tool 

(Capehart, 2000), two simple mission plans were compared in Capehart's research. The 

computation time for the TAP tool was significantly less than that of CMARPS. This 

computational time benefit is of major interest to AMC. 

1.2 PROBLEM STATEMENT 

During crisis situations, air refueling tankers provide necessary support for 

deployment of combat and combat support aircraft. During Operation Allied Force 

(OAF), tanker aircraft transferred over 355,800,000 pounds of fuel during inflight 

refuelings (A/Q, 2000). To schedule these tanker aircraft, AMC uses CMARPS. This 

system provides actual tanker/receiver aircraft schedules, but it often takes a long time to 

generate a schedule. For some scenarios, it may take up to two weeks to schedule tankers 

and receivers for a deployment. It is desirable to find a tool that gives good solutions for 

deployments in a short time when compared with CMARPS. 



Another drawback of CMARPS is that it is not interoperable with AMC's airlift 

simulation. Since tanker and airlift missions are interrelated and compete for limited 

airbase resources, there should be some interaction between the two tools. 

1.3 RESEARCH OBJECTIVES 

The objective of this research is to improve TAP tool performance by using 

Reactive Tabu Search (RTS). The introduction of intensification and diversification 

schemes through RTS is a positive contribution of this research. The elite candidate list 

strategy, which evaluates the most promising regions of the solution space in order to 

decrease computation time, is also introduced. 

While improving the TAP Tool, a strongly related task of the research is 

verification and validation (V&V) of the TAP Tool. V&V highlights the strengths and 

weaknesses of the model. Comparing tools with some small deployments does 

verification and validation. 

1.4 SCOPE 

This problem is both an assignment and scheduling problem. KC-135 tankers need 

to be assigned to receiver groups. So, this problem is an assignment problem. Since 

tankers have assigned times to meet with receiver groups, it is also a scheduling problem. 

The receiver groups consist of both fighter and bomber aircraft. Fighters need 

tanker escort while flying over open waters. Bombers do not need escort. The aircraft 



types that need tanker escort are shown as "Y", and the aircraft types that do not need 

escort are shown as "N" in Table 2. 

Table 2: Escort Requirements 

A/OA10 Y AC130 N 
AV8 Y B1 N 
EA6 Y B2 N 

F/A18 Y B52 N 
F117 Y C141 N 
F14 Y C17 N 
F15 Y C5 N 

F15E Y E3 N 
F16 Y E8 N 
F18 Y KC10 N 

MC130 N 
RC135 N 

Factors effecting this problem include the tanker and receiver aircraft fuel capacities 

and burn rates, ground speed, true air speed, altitude, deployment distances, number of 

aircraft to be supported, time frames, locations of both tanker and receiver group origins 

and destinations, wind, escort requirement, formation size, and crew duty limitations. 

Although altitude affects the fuel burn rate, we model a nominal flight altitude. 

Wind has an enormous effect on the fuel burn rate and ground speed of an aircraft, but 

this research does not incorporate the effect of wind. Flying an aircraft from the 

continental US to the other parts of the world is not an easy task for a pilot, as it requires 

about 10-13 hours of continuous flying. Flight and duty time regulations can be 

interpreted as a means of ensuring that reasonable minimum rest periods are provided to 

crews (NASA Technical Memorandum, 1991). Crew duty limitations of the fighter pilots 

are not accounted for, even though three hours of turn around time for the tankers is 

assumed. 



1.5 CONTRIBUTION OF RESEARCH 

This effort provides AMC with a quick running tanker assignment tool. The 

algorithm uses RTS and can serve as a starting point for a future tanker assignment tool 

that can be interoperable with an airlift model. 

1.6 REPORT OVERVIEW 

The remainder of this thesis is organized as follows; Chapter 2 reviews the 

literature. Chapter 3 reviews the verification and validation efforts that were applied to 

the TAP tool and describes the methodology for solving the tanker assignment problem 

with RTS. The results of this methodology are presented in Chapter 4. Finally, Chapter 5 

concludes the research and discusses future research. 



CHAPTER 2. LITERATURE REVIEW 

This chapter begins with the introduction of the tanker scheduling tools. Then 

comes the basic principles of scheduling theory, and continues with the detailed 

explanations of heuristic search techniques such as tabu search, reactive tabu search, and 

elite candidate list strategies. 

2.1 TANKER SCHEDULING TOOLS 

A limited amount of research has been accomplished in this area. The first work is 

AMC's CMARPS. Hostler (1987) tried to schedule Strategic Air Command's (SAC) air 

refueling tanker fleet by using a preemptive goal programming approach. The other work 

is Russina, Ruthsatz, and Russ's Quick Look Tool for Tanker Deployment. Capehart 

extended the Quick Look Tool and developed the TAP Tool. AMC performed the most 

recent work in this area by incorporating a user-friendly interface to the TAP Tool. 

CMARPS and the Quick Look Tool were good to some extent, but they had serious 

drawbacks, i.e. long runtimes, and not accounting for tankers located at different bases. 

Even though the TAP tool has some drawbacks, it certainly produces high quality 

solutions given the short time to find those solutions. The TAP tool is very attractive 

since it has decreased runtime compared to the other models. AMC worked on the TAP 

Tool, introduced a new spreadsheet, and made the tanker input easier for the user to 

access. 



2.1.1 CMARPS 

AMC uses CMARPS for scheduling tanker aircraft. This model was introduced in 

1982 and assigns specific tankers to refueling points. The mission routing determines the 

fuel requirements for the receiver group. CMARPS routes the mission considering the 

following criteria: avoid restricted airspace, minimize threat exposure, deconflict routes 

in a strike zone, and satisfy time over targets. Once the fuel requirements are determined, 

CMARPS assigns tankers to meet the requirements. CMARPS does this by minimizing 

use of tanker resources, minimizing tanker fuel consumption, using air refuelable tankers, 

regenerating tankers for tanker reuse, and satisfying the abort base requirements. Once 

the tanker assignments are made, CMARPS simulates the aircraft mission using formulas 

for winds and fuel consumptions to generate a final mission schedule and flight plan 

(Logicon, 1996). 

2.1.2 Hostler's Air Refueling Tanker Scheduling Tool 

Hostler attempted to schedule SAC's air refueling tanker fleet to perform more than 

one refueling mission during a flight. He used a preemptive goal programming approach 

by using three priority levels. He considered three objectives: maximize the number of 

tanker requests satisfied, maximize the number of category B requests satisfied, and 

minimize the total flight time to perform all the missions. 

Each request for a tanker is prioritized based on the type of training mission 

conducted by the receiver aircraft. Category A training is normal recurring air refueling 

training. Category B training is in support of formal course training, exercises, 



predeployment air refueling, deployments, rotations, and tests (Air Force Regulation, 

1:2-3). 

A preemptive goal programming approach is used to solve the scheduling problem. 

This means that the desired goals to be achieved, when scheduling the tankers to the 

requests, are identified and prioritized according to their perceived importance. When 

solving the goal program, each of the objectives is optimized in order of priority, with the 

highest priority objective being optimized first (Winston, 1994). 

Hostler developed a preprocessor to transform the inputs from the tanker and 

receiver scheduling units into a usable format executable by the mixed integer 

programming package. This preprocessor determined all of the possible refuelings that 

could take place, computed the flight times of the missions, and determined all of the 

variables to be used in the constraints and objective functions. By using a list of flight 

time constraints, all of the refuelings that are not possible are sifted out before they reach 

the integer program. This sifting allowed the integer program to work with only those 

refuelings that are possible. 

2.1.3 Quick Look Tool for Tanker Deployment 

Russina, Ruthsatz, and Russ (1999) provided a prototype tool to evaluate tanker 

allocation for the aircraft deployment mission. Their Quick Look Tool makes basic 

assumptions regarding aircraft capabilities and interactions between receiver groups and 

tankers. The Quick Look Tool functions as a relatively simple tool for modeling and 

predicting air refueling tanker capabilities for supporting deployment of combat and 



combat support aircraft. The AMC tanker-scheduling problem involves a wide scope of 

system variables, constraints, and potential analysis areas. The example provided by 

Russina, Ruthsatz, and Russ presents an in-depth explanation of the deployment issues 

associated with tanker deployment. 

The issues of tanker availability and reusing tankers are very important in 

scheduling a complex deployment. The scheduling precision in the Quick Look Tool is in 

terms of days, but it is more desirable to schedule missions in terms of hours or minutes. 

The user interface involves a Microsoft Excel Workbook with ten worksheets. All 

calculations made by the Quick Look Tool are done via Excel macros written in Visual 

Basic for Applications code. The current Quick Look Tool accounts for tanker 

availability on a day-by-day basis, and does not consider the tankers located at separate 

bases. These two issues are the major deficiencies in the Quick Look Tool. 

2.1.4 TAP Tool 

The Quick Look Tool accounted for tanker availability on a day-by-day basis, but it 

did not consider tankers located at separate bases. Capehart's research extended the 

approach, increasing the tanker's capability to multiple origins. The scheduling precision 

in the TAP Tool is in terms of minutes no matter how complex the deployment is. 

Due to the complexity of deploying large numbers of receiver aircraft, and 

scheduling them in terms of minutes, a heuristic is required to obtain solutions in a 

reasonable length of time. Capehart used a tabu search (TS) method to solve this tanker 

assignment problem. 
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In order to illustrate the tanker aircraft's route we should know what kind of 

receiver aircraft needs refueling, because a tanker aircraft's route differs according to the 

type of receiver aircraft. For a fighter aircraft, the tanker aircraft reaches the refueling 

point (RP), refuels the receiver aircraft, escorts them to the next refueling point or the 

final destination of the receiver aircraft, and returns to its original take-off base. An 

example scenario is created to illustrate the tanker aircraft's route is shown in Figure 1. 

The mission consists of sending an F-16 from Barksdale AFB (KBAD) to the Port of 

Astoria (KAST). 

If the receiver type classifies as heavy, the tanker aircraft's route differs slightly. In 

this situation the tanker aircraft just refuels the heavy and returns to its base of origin. 

This is illustrated when sending one B-52 from Elmendorf AFB (PAED) to King Khalid 

AFB (OEKK), which is in Saudi Arabia. This is shown in Figure 2. 
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Figure 1: Tanker Escort of an F-16 Fighter 
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Figure 2: Tanker Escort of a B-52 Bomber 
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2.1.5 AMC's Efforts on TAP Tool 

Once Capehart finished his efforts, AMC continued working on the TAP Tool. 

AMC divided the "Aircraft Performance" worksheet into two separate worksheets named 

"Receiver Aircraft Performance", and "Tanker Aircraft Performance". They created the 

ability to change the available tanker bases and number of tanker aircraft at them, by 

adding a table in the "Input" worksheet. These changes help the user easily make changes 

to the number of available tanker aircraft and tanker bases. There are no important 

changes in the running of the original TAP Tool. 

2.2 SCHEDULING THEORY 

Scheduling concerns the allocation of limited resources to tasks over time. It is a 

decision making process that has as a goal the optimization of one or more objectives 

(Pinedo, 1995). Scheduling impacts almost every military operation. Flight scheduling is 

the most common for Air Force operations. 

Resources and tasks may take many forms. Resources might be machines in a 

workshop, tanker aircraft on a refueling mission, runways at an airfield, and so on. The 

tasks may be operations on an assembly line, take-offs and landings at an airport, or 

refuelings in the mission. Each task may have a different priority level, earliest possible 

starting time, and due date. Objectives include the minimization of the completion time 

of the last job, minimization of maximum tardiness, or minimization of the total number 

of late tasks. 

13 



The basic problems in scheduling include single machine or parallel machine 

problems. In real life single machine environments are rare, but analysis of single 

machine models led to heuristics for more complicated machine environments (Pinedo, 

1995). 

2.2.1 Parallel Machine Models 

A machine can be thought of as a finite resource required for completing a task, 

such as a cashier in a checkout line. Parallel machines can be thought as cashiers in a 

checkout line, or different tail numbered tankers for refueling points. Minimizing the 

makespan is one of the most common objectives when working with parallel machines. 

Makespan is equivalent to the completion time of the last job to leave the system. A 

shorter makespan usually implies a high utilization of the machines. In this research we 

want all the receiver groups to arrive their destinations before their RDD. We applied a 

hard penalty even one of the receivers are tardy. We also want the latest receiver groups 

TOD to be less than the time limit of the deployment. 

2.2.1.1 Precedence Constraints 

Precedence constraints may appear in a single machine or in parallel machine 

environments. These require that one or more jobs must complete before another job is 

allowed to start its processing. 

Precedence constraints define timing requirements between activity pairs within 

projects. Predecessor activity must end before its successor activity may start. During 

14 



refueling the same tail numbered tanker cannot meet the fuel requirements of two 

different missions at the same time. 

2.3 HEURISTIC APPROACHES 

Heuristic methods can be considered solving a mathematical problem by an 

intuitive approach (Silver et al., 1980). Heuristic algorithms provide near-optimal 

solutions to difficult problems in less time when compared with direct, analytic methods. 

A local search heuristic starts from an initial solution and tries to obtain a better one in an 

iterative way by searching the neighborhood of the current solution. A fast near-optimal 

solution to exact problems makes more sense than a time consuming exact solution to an 

inexact problem (Zanakis and Evans, 1981). Previous research on the tanker assignment 

problem applied tabu search. This research uses reactive tabu search, an extension of TS. 

2.3.1 Tabu Search 

Introduced by Glover (1986), TS is an iterative procedure for solving large 

combinatorial optimization problems. TS has proven to be extremely successful in 

solving to optimality or near-optimality a variety of classical and practical problems 

(Glover, 1990). Some basic concepts used in TS are a move, a neighborhood, candidate 

lists, the tabu list, intensification and diversification. Specific definitions for these terms 

change from problem to problem. 

Two key aspects characterize many applications of TS. One of them is TS is used to 

complement local, and neighborhood search. The other one is the main modifications to 

local search are obtained through the prohibition of selected moves available at the 

15 



current point. Local search is effective if the neighborhood is appropriate to the problem 

structure, but its effectiveness stops as soon as the first local optimal solution is 

encountered and no improving moves are available. TS continues the search beyond the 

first local optimal solution without wasting the work already completed, as is the case if a 

new local search is initiated from a different starting point. TS enforces appropriate 

amounts of diversification to prevent the search trajectory from remaining confined near 

a given local optimal solution (Ben-Daya, Al-Fawzan, 1998). 

In some cases, the solution phase of a specific problem may get trapped at a local 

optimum. TS is designed to escape the trap of local optimality (Glover, 1990). An 

algorithm is needed that recognizes that the procedure is at a local optimum and drives 

the search away from the local optimum. In other words, TS should have its own 

weapons to get away from local optimums. Examining how recently or how frequently 

solution attributes are encountered triggers those weapons. TS uses flexible memory 

structures to explore the solution space more thoroughly than by rigid memory systems or 

memoryless systems (Glover, 1990). 

The tabu search algorithm "moves" through the solution space in search of good 

solutions. When the algorithm leaves one solution and visits another, this is called a 

"move". Specifically, the search examines a neighborhood of a given solution. This 

examination does not depend on randomization (Glover, 1986). Move definition is very 

problem specific. Examples of moves are changing the value assigned to a variable, 

adding or deleting an element from a set, or interchanging the position of two jobs on a 

machine, and so on (Glover, 1990). The set of potential moves from the current solution 

that the TS algorithm can operate on is called a move neighborhood. 

16 



Move neighborhood size depends on the problem type and the move definition. For 

illustrative purposes, suppose we have a deployment, which has only one refueling point, 

and again suppose that only tanker Air Force Bases (AFBs) A, B, and C can support that 

refueling point. We define a move as replacing a tanker assigned to the refueling point 

with another tanker within range that can also support that refueling point. For this 

specific problem the neighborhood structure is composed of A, B, and C AFBs. If we 

choose AFB A as a supporting base for the refueling point, the possible moves include: 

swapping AFB A with AFB B, or swapping AFB A with AFB C. As the number of 

supporting bases and the number of refueling points increase, the size of the 

neighborhood grows dramatically. 

Candidate list strategies decrease neighborhood search time and increase the 

number of iterations the algorithm performs per unit time. A candidate list is a subset of 

the entire neighborhood. Determining the best admissible candidate is a critical step. It 

might be found randomly or based on some predetermined rules. The evaluation of a 

move can be based on the change produced in the objective function value (Glover, 

1990). Glover advocates the use of rules to determine candidate lists, stating, "efficiency 

and quality can be greatly affected by using intelligent procedures for isolating effective 

candidate moves" (Glover and Laguna, 1997: 343). 

Tabu search uses memory extensively for many different purposes, one of which is 

to prevent cycling with a "tabu list". The tabu list is closely related to the short-term 

memory component of TS, and forms the core of TS (Glover, 1990). A tabu list usually 

consists of a list of moves, or their attributes the search has recently encountered. The 

moves on the tabu list cannot be revisited for a specified number of iterations called the 

17 



tabu tenure. Once a move has been on the tabu list for a number of iterations equal to the 

tabu tenure, it is removed from the list and is again a valid move choice. The size of the 

list can either be fixed or variable (Ben-Daya, Al-Fawzan, 1998). Checking tabu status is 

the first step in screening for admissibility of moves (Glover, 1990). Tabu lists may force 

the tabu search algorithm to make an unimproving move if all the moves that improve the 

objective function value are on the tabu list. 

An intensification strategy takes advantage of the idea that "good solutions at one 

level are often found close to good solutions at an adjacent level" (Glover and Laguna, 

1997: 138). TS uses flexible memory for intensification. If the search encounters a good 

solution, it may be desirable to intensify the search within the local area in hopes of 

finding an optimum. Intensification strategies reinforce move combinations and solution 

features historically found good (Glover, 1990). An elite solution is a good solution 

found and saved for future exploration. It is a good idea to keep a rank ordered list of the 

best solutions found so far so that the algorithm knows what solutions to visit for 

intensification purposes. Once the intensification phase has been completed, TS may 

terminate or start a diversification phase. 

There are times when the tabu search algorithm will get stuck in an unproductive 

region of the solution space. The algorithm needs something more than the tabu list to 

escape these bad regions of the solution space. Long-term memory operates primarily as 

a basis for diversifying the search (Glover, 1990 and Lokketangen and Glover 1998). If a 

search begins cycling within, and cannot escape a region, it needs some triggering event 

forcing the search to another region. Cycling is described returning to past solutions or 

revisiting past sequences of solutions. Cycling is unproductive so mechanisms in TS are 



used to prevent it. First a procedure is needed to identify cycling, and as soon as it detects 

cycling, it forces the algorithm to diversify to other regions of the solution space. Two 

different number series are shown in Tables 3 and 4. Table 3's series is an example of a 

non-cycling while Table 4's series is an example of cycling. 

Table 3: Example for a non-cycling Series 

10   20   30   10   20   10   30 

Table 4: Example for a Cycling Series 

10   20   30   10   20   30   10 

The numbers represented in Table 4 are cycling. The numbers 10, 20, and 30 are 

repeating themselves once again, making the cycle period 3 for this series. 

In many applications, the short-term memory component itself produces high 

quality solutions. However, long-term memory might be needed to obtain better results 

for complex problems (Skorin-Kapov, 1989). The main difference between 

intensification and diversification is that during an intensification stage, the search 

focuses on examining neighbors of elite solutions, while the diversification stage 

encourages the search process to examine unvisited regions and to generate solutions that 

differ from those seen before (Glover, 1990). Intensification requires short-term memory, 

while diversification uses long-term memory to accomplish its purpose. 
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2.3.2 RTS 

RTS was developed by Battiti and Tecchiolli (1994), and can be considered as a 

useful blend of intensification and diversification. In the RTS algorithm, by examining 

the solution quality, the tabu tenure is automatically adjusted to control the search. This 

allows the search to move between intensification and diversification (Battiti, 1996:61). 

The tabu tenure is learned automatically by reacting to the occurrence of cycles (Battiti, 

Tecchiolli, 1994). 

Some tabu search implementations are based on the fact that cycles are avoided if 

the repetition of previously visited configurations is prohibited (Battiti, 1996 and Battiti 

and Tecchiolli, 1995). The reverse elimination method (REM) is an example of this. 

REM can be described as a kind of strict tabu search where the only local movements that 

become tabu are those that would lead to previously visited solutions. But this method 

may converge to a good solution very slowly if the suboptimal solution is surrounded by 

large basins of attractions. For this reason, the proper choice of list size is very important 

to the success of the algorithm. Actually, more robust schemes are based on a randomly 

varying list size, but this is problem specific and variations on the list size must be 

prescribed (Battiti, Tecchiolli, 1994 and Lokketangen and Glover 1998). 

Some problems require a careful selection of parameters to find a good solution. 

This may be achieved either from a deep knowledge of the problem or by a simple trial 

and error process (Battiti, 1996). RTS changes tabu tenure according to the quality of the 

search. Solution quality is a function of the length of time a move remains tabu. 

Generally, tabu tenure starts out small and grows rapidly if cycling occurs. Tabu list size 

decreases gradually as cycling is diminished. 
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The use of RTS requires a mechanism to properly identify when the search has 

cycled. Hashing functions, as described by Glover and Laguna (1997:246), are widely 

used and considered a fast, efficient way to determine cycling in complicated problems. 

The overriding purpose of any hashing function is to enable a tabu search algorithm to 

detect whenever it transitions to a solution that has already been visited (Carlton and 

Barnes, 1996; Woodruff and Zemel, 1993). If a problem requires excessive memory 

space to store all configurations, one may resort to compression techniques (Battiti, 

Tecchiolli, 1994). For small problems, entire solutions can be compared (Battiti, 

1996:67). 

Increasing the list size is the first step when encountering previously visited 

solutions. But this may not be enough to force the search trajectory to another portion of 

the solution space. There must be another mechanism that counts the number of 

configurations that are repeated many times. If this number exceeds a predetermined 

threshold, a diversification step is triggered. 

2.3.3 Candidate List Strategies 

The simplest candidate list strategy is to examine the full neighborhood of available 

moves (Lokketangen and Glover, 1998). However, this can be an expensive process in 

terms of computation time. The purpose of introducing candidate lists is to decrease the 

neighborhood structure, so that reaching a better solution is improved by not spending 

time on all neighborhood evaluations. Candidate list strategies include: aspiration plus 

strategy, elite candidate list strategy, successive filter strategy, sequential fan candidate 
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list strategy, and bounded change candidate list strategy. The tool implemented in this 

research applies the elite candidate list strategy. 

2.3.3.1 Elite Candidate List 

The elite candidate list approach builds a list of good solutions by saving certain 

good solutions encountered during the tabu search. Periodically the current best move 

from the elite list is selected and tabu search is restarted. The elite candidate list process 

continues adding to the list and periodically restarting the search. This technique is 

motivated by the assumption that good solutions may be revisited and their 

neighborhoods, searched more thoroughly, may yield better solutions (Glover and 

Laguna, 1997:63). 

2.4 CONCLUSION 

Intelligent and aggressive use of candidate lists can speed up the search by forcing 

an evaluation of a subset of the neighborhood. TS was chosen as the method for this 

research. RTS is a dynamic procedure that changes the tabu tenure when required. 

Introducing RTS represents major progress for this research. The basic purpose is to 

further decrease the solution time without reducing the solution quality. 
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CHAPTER 3. METHODOLOGY 

This chapter describes the verification and validation effort applied to the TAP 

Tool, and the specifics of the reactive tabu search used to find solutions to the aerial 

refueling missions during deployments. The first section describes the verification and 

validation effort done by correcting the coordinate problems, and modifying the objective 

function formulation. The second section concerns the implementation of reactive tabu 

search and elite candidate list strategy. 

3.1 VERIFICATION & VALIDATION EFFORT 

After Capehart (2000) composed the TAP Tool, AMC began to work on the tool. 

They added some coding to the original TAP Tool. Their effort did almost nothing to the 

execution of the original TAP Tool, although there were some problems with the TAP 

Tool. First of all, there was a coordinate problem for some deployments. The second 

basic problem was choosing the wrong tanker bases for some deployments. Other minor 

problems had already been corrected. For example in some deployments, there was no 

answer at all. However, adding overseas tanker AFBs to the original composition of the 

tool solved this difficulty. 
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3.1.1 Coordinate Problem 

In one of the deployments, we encountered a coordinate problem. When we sent 

one B-52 from Barksdale AFB (KBAD) to Andersen AFB (PGUA), the tool was 

choosing refueling point 1 when it should have selected refueling point number 2 as 

shown in Figure 3. 

We identified an error in implementing the sign conversion for indicating direction. 

In the original model the sign was positive (+) making the coordinate west, and it should 

have been negative (-) making the coordinate east. After the correction, the RP moved 

from 1 to 2, which is the correct coordinate. 
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Figure 3: Illustration of coordinate change from point 1 to point 2. 

3.1.2 Modification of the Objective Function Evaluation 

Before discussing what was done to the objective function, it is necessary to present 

the original objective function. 
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3.1.2.1 Old Mission Evaluation 

There are many specified goals for this problem. One goal is to have the receiver 

groups arrive at their destinations on time. This is represented by a hard constraint, 

resulting in an infeasible mission plan if any receiver groups are scheduled to arrive past 

their required delivery date (RDD). The second goal is to minimize the total distance 

traveled by the tanker aircraft. Another possible goal is to use the fewest tankers 

possible. The original objective function evaluated a mission plan using a single value 

incorporating each goal, and the objective was to minimize mission evaluation: 

Mission Evaluation = Distance Penalty - Reuse Bonus - Early Bonus + (Sync Penalty + 

Conflict Penalty + Tardiness Penalty + Early Penalty + Negative TOD Penalty) + Tanker Index 

The TS search engine primarily uses the following three values during the search 

process. 

Distance Penalty: For each decision variable, the distance penalty is the sum of 

the distances traveled by all tankers in the current mission. The solutions with smaller 

distance penalties are more attractive. 

Reuse Bonus: Each time a tanker is reused in a deployment, this value is 

increased. 

Early Bonus: Although we are most concerned with having each receiver group 

arrive by its RDD, it is valuable to have them arrive earlier. Thus, this value represents 

the number of hours a receiver group arrives at its destination before its RDD. 

The next set of values encourages feasibility throughout the search process. 

Sync Penalty: If a receiver group requires more than one tanker at a refueling 

point along its path, these tankers must arrive at that location at the same time. A heavy 
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penalty is applied when the tankers assigned to this multi-tanker refueling point are not 

scheduled to arrive at the same time. 

Conflict Penalty: In order to ensure that a tanker does not refuel two receiver 

groups at the same time, a conflict penalty is imposed. Each tanker is given a 3-hour 

turnaround period between missions. If any of the tankers in the solution break this 3- 

hour separation between assignments, a conflict occurs. When this happens, a large 

conflict penalty is added to the objective function. 

To expedite the search process, we attempt to generate an initial feasible mission 

plan. This plan is generated using a greedy construction heuristic. For each decision 

variable (DV), representing a refueling point, we assign the closest tanker that has not yet 

been assigned to another DV. If the maximum number of tankers at the closest base is 

reached, we repeat the tanker assignments at this base. This is when a tanker conflict 

may occur, in which the same tanker is scheduled for more than one refueling point at the 

same time. Increasing the number of tankers at each base eliminates this conflict, but this 

also increases the computation time required during the search process. Therefore, we 

allow the initial solution to be infeasible for some deployment problems. When we begin 

with an infeasible solution, the first goal is to reach a feasible solution. To accomplish 

this, the large negative conflict penalty in the objective function encourages the TS to 

generate moves to decrease the number of conflicts. 

Early Penalty: The deployment is scheduled to begin at time zero. Thus, a heavy 

penalty is applied when a receiver group's time of departure (TOD) is before the 

beginning of the planning horizon. 
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Tardiness Penalty: In order to ensure that each receiver group arrives before its 

RDD, a large penalty is applied to the objective function when a receiver group's TOD is 

tardy. 

Negative TOD Penalty: In the case when a receiver groups TOD is before zero, 

which might happen when starting with an infeasible solution, this value directs the 

search process into the feasible region. This term applies large negative values to the 

missions that correct this problem, thus making those missions attractive choices for the 

next mission plan. 

Tanker Index: Tankers are indexed at each base. Indexing encourages using the 

lower indexed tankers. We use this value for cosmetic reason only, since all tankers are 

of the same type (Capehart, 2000). 

3.1.2.2 New Mission Evaluation 

Before explaining what is being added to the model it is important to understand 

why the changes were made. To illustrate, we examine some sample deployments. The 

first deployment sends one F-16 from Barksdale AFB (KBAD) to the Port of Astoria 

(KAST). This deployment is shown in Figure 4. It is apparent that Mountain Home AFB 

(KMUO) should support the refueling point since it is the nearest AFB to the RP (140 

NM). However, the TAP Tool chose Fairchild AFB (KSKA) even though the distance 

(357 NM) was much greater than Mountain Home AFB's. 
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Figure 4: Sending one F-16 from KBAD to KAST 

KBAD 

The second deployment sends one F-16 from Barksdale AFB (KBAD) to Hickham 

AFB (PHIK). This deployment is shown in Figure 5. The TAP Tool chose Fairchild AFB 

(KSKA) for the first RP, and Hickham AFB (PHIK) for the second RP. However, it is 

obvious that March AFB (KRIV) should be chosen for the first RP. 

Figure 5: Sending one F-16 from KBAD to PHIK 
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Since the tool was not choosing the correct AFBs for these simple deployments, the 

objective function was modified. The term added to the objective function considers 

distance for a tanker from base to the RP. The tanker index is excluded from the new 

objective function. After the changes, the new minimization objective function is: 

Mission Evaluation = Distance Penalty - Reuse Bonus - Early Bonus + (Sync Penalty + 

Conflict Penalty + Tardiness Penalty + Early Penalty + Negative TOD Penalty) + distance from 

base to RP 

Distance from base to RP: This is the distance for a tanker to travel to its assigned refueling 

point. Closer tanker bases are more attractive. If the tanker base is close to the RP it 

receives a high value. 

3.2 TABU SEARCH IMPLEMENTATION 

In order to use the TAP, we first determine how to represent the solution. There 

must be a tanker aircraft assigned to each refueling point, so the solution consists of those 

tankers assigned to the refueling points plus the time at which the tankers take-off from 

their base of origin. In addition, the tanker take-off times directly determine the times at 

which the receiver groups must leave their base of origin. Thus, the receiver group take- 

off times are also part of the solution. 
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We first generate the list of solution attributes, which are modified to form 

different solutions. Let RG1 be the first receiver group request. We first determine if 

this receiver group requires refueling. If RG1 must be refueled during its deployment, 

we calculate the location for the required refueling(s). Let RGli be a decision variable 

(DV) representing the first refueling point for receiver group one. Next, we check each 

of the bases with tanker aircraft to determine if there exists a tanker capable of satisfying 

RGl's fuel requirements. If RG1 consists of aircraft classified as "heavy," the amount of 

fuel that group requires is the amount of fuel needed to successfully continue the flight to 

its destination or to the next refueling point. On the other hand, if RG1 contains aircraft 

classified as "fighter," then this group must have a tanker escort between refueling points. 

Although "fighter" groups only require tanker escort over open water, we assume for this 

model that they require tanker escort between each refueling point and their final leg of 

the mission. For this type of receiver group, a tanker must be capable of traveling to the 

refueling point, fulfill the receiver group's fuel requirements, escort the group to the next 

refueling point, and finally return to its base of origin. The tanker routes for sending one 

F-16 from KB AD to PHIK are shown in Figure 6. For each tanker capable of satisfying 

the requirements at RGli, we generate a number of alternatives for the decision variable 

RGli. A separate alternative is generated for each tanker and for discrete take-off times, 

in one-hour increments. We generate this list of DV alternate values for all bases with 

tankers capable of satisfying the fuel requirements for RGli. 
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Figure 6: Tanker Routes for one F-16 from KBAD to PHIK 

Suppose that there exists no tanker with enough fuel to satisfy RGli's 

requirements. In this case, we attempt to assign two tankers to this refueling point, with 

each satisfying half of the off-load required of RG1. This process continues until the 

appropriate number of tankers are assigned to RGli. For each tanker assigned to RGli, 

a new DV is generated, with the same list of alternative choices for that DV. For 

example, if two tankers are needed for RGli, then two DVs are generated, each having 

the same set of alternate tankers, since both DVs have the same fuel off-load. 

If RG1 requires more than one refueling point, we apply this same technique to 

each of the these extra refueling points, with each of them representing another DV; 

however, each tanker has only one take-off time, as opposed to the different distinct take- 

off times for the tankers assigned to a first refueling point. This take-off time is a 

continuous value that is based on the take-off time for the tanker assigned to the receiver 

group's first refueling point. 
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This method continues for each receiver group until all refueling points and 

numbers of tankers assigned to each are determined. At this point, the list of DV 

alternatives represents all options for assigning tankers to receiver groups for the final 

mission plan. Which of these alternatives to choose is now the focus of the search 

engine. 

3.3 REACTIVE TABU SEARCH IMPLEMENTATION 

The user has an ability to select the initial solution by entering Y/N to the Greedy 

option on the "Input" worksheet. If the user sets this value to "Y", then the greedy 

heuristic forms the initial solution. Otherwise, the initial solution is constructed based on 

tanker availability, not accounting for the tanker distances. Producing the initial solution 

randomly causes many conflict problems. After constructing the initial solution using 

either a greedy approach or randomly generating a solution, the reactive tabu search finds 

all the elite solutions by simply checking the move evaluations of every support base for 

every RP. Reactive tabu search changes one support base, which is in the elite candidate 

list, at a time and evaluates the corresponding solution. Each solution contains the time of 

refueling, place where the refueling will take place, take-off times for tankers, and tanker 

bases that support the mission. All the variables are kept in an array, named "DV", for 

future examinations. This DV array also contains the move evaluations for that solution. 

If the selected DV is already in the solution, then we set the penalty to Big-M 

(1,000,000), so that it is not chosen for the current move. Each move is evaluated by 

penalizing receivers if they take off too early, for late receivers, for having the same 
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tanker aircraft take off sooner than 10 hours apart, for not having multiple first refueling 

points at the same time, and rewarding if the number of conflicts has decreased. 

After forming DV's for each RP, every changing point of tanker base names is 

indexed by "Rpind" variable to allow easy access for future evaluations. All the decision 

variable evaluations are saved to an array named "objectivefunc", and corresponding 

support bases are saved to an array named "supportbases" 

The number of support bases for each RP are counted, and stored to an array named 

"numb". Furthermore, the minimum objective function evaluation for each RP is found 

and stored in a variable "minforthatRP". 

Each mission is evaluated in a very aggressive manner. The minimum values for 

each RP are found and used to find the initial solution and this solution is stored. In order 

to maintain the best solution found so far, a variable called "bestsofar" is created. This 

variable always keeps track of the best solution found to date for the search process. This 

solution is always saved in the "bestSol" array. 

Now begins the process of moving between solutions. First of all, we should begin 

with an explanation of the move used in this search. A move is defined as removing an 

existing tanker assigned to a refueling point and replacing it with another tanker within 

range to satisfy the needs of the receiver group at that refueling point. 

As soon as the algorithm finds the minimum values for each RP, it indexes the 

minimum RP values in order to use them in future swap operations. Moreover, the 

reactive tabu search algorithm also finds the minimum among these minimum values 

obtained for each RP, and uses this as a beginning move. Once the algorithm detects this 
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value, it marks the base that includes this minimum value and stores it to the variable 

"Bui". 

Since we found our starting move, we are ready to introduce the neighborhood 

structure that is being used in this search. The RP associated with the "Bui" variable is 

supported by some number of tanker bases. This value can never be more than the value 

of the variable "numtbases" which is entered by the user on the "INPUT" worksheet. 

This number is subject to change. Basically, it is the number of tanker bases that can be 

used in a contingency. 

The number of tanker bases that supports the RP forms the neighborhood structure. 

Since we have our swap element, which is the minimum value for that RP, we have to 

find which support base to swap with. The answer to this question forms the basis for our 

reactive tabu search procedure. The base having the second minimum objective function 

evaluation is chosen as the DV to swap with, if this DV is not on the tabu list for that 

iteration. 

As soon as the move is made, the swap element is put in a tabu list, the objective 

function evaluation is recalculated, and the support bases for that mission are saved. 

Now begins the basic tabu search principal of "remembering the past". In this 

search, both short and long-term memory components are used in order to trigger a 

mechanism in the case of finding the same solution as the previous move, or in the case 

of long term cycling. 

At the end of every iteration, the objective function value found on the previous 

iteration is compared with the current objection function value. RTS keeps track of 

recently visited solutions, in order to determine if the search is stuck in a local minimum. 
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If the search finds the same results for consecutive iterations, it diversifies the search by 

randomly examining another portion of the solution space and increases the tabu tenure 

by one. 

More robust schemes are based on a randomly varying list size, although one must 

prescribe suitable limits for its variation (Battiti and Tecchiolli, 1994:126). The tabu 

tenure was initialized to one. When the search encountered repetitions, it increased the 

tenure by one. The main reason for doing so is completely problem specific. 

The neighborhood structure in this problem is composed of tanker bases that 

support a specific refueling point. When you look closely at a neighborhood, it is obvious 

that in some scenarios there are only one or two tanker bases that support a specific 

refueling point. To account for this situation, it is logical to increase tabu tenure by only 

one. Another reason for this is that the neighborhood structure can never exceed twelve 

bases for this problem. Even though the number twelve can be increased; the number of 

tanker bases supporting any deployment will be relatively small. Therefore, it is logical to 

increase tabu tenure by only one. This feature allows the tool to explore the promising 

regions more closely and makes the search more aggressive. To account for these small 

numbers, it is logical to increase tabu tenure gradually and to decrease tabu tenure as 

soon as repetitions and/or cycles are diminished. 

The second memory component is long-term memory. The cycle detection 

algorithm in the tool looks for a sign of cycling. At the end of every iteration, the 

algorithm looks at the results of all iterations regressively. If it detects the same result in 

one of the previous iterations, it tries to determine if it is a cycle. If it is a cycle, this 

algorithm diversifies the search to another region of solution space by randomly 
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examining another portion of the solution space. "... Cycle avoidance is not an ultimate 

goal of the search process... the broader objective is to continue to stimulate the 

discovery of new high quality solutions" (Battiti and Tecchiolli, 1994:127). 

Fortunately, we have the ability to illustrate all the solution space. "If a problem 

requires an extensive memory space to store all configurations, one may resort to 

compression techniques, i.e. hashing" (Battiti and Tecchiolli, 1994:126). We do not need 

further storage requirements for hash tables. All the solutions are kept in an array. This 

helps us to compare all the solutions easily. The likelihood of collision described as 

meeting the exact same solution is very low; for this reason, we did not use hash tables. 

The TAP tool uses three phases to arrive at an output. (See Figure 7). The three 

phases consist of DV alternative generation, initial solution generation, and RTS. RTS 

flowchart is shown in Figure 8. 

Input 

DV Alternative 
Generation 

Phase 

Initial Solution 
Generation 

Phase 

RTS 
Phase 

Output 

Figure 7: Revised TAP Tool Flowchart 
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Figure 8: RTS Flowchart 
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3.3.1 Memory Usage 

Explicit memory is used in this research. Explicit memory records complete 

solutions visited during the search. All the solutions are kept in an array. These solutions 

are used for measuring cycling in the short-term. Objective function values of 

corresponding solutions are kept in another array. These values are used to check for long 

term cycling. 

The attributive memory component of tabu search is not used in this research. 

Attributive memory records information about solution attributes that change in moving 

from one solution to another. 

3.4 ELITE CANDIDATE LIST STRATEGY 

If a move neighborhood is too large to efficiently evaluate, a candidate list strategy 

intelligently isolates "effective candidate moves, rather than trying to evaluate every 

possible move in a current neighborhood of alternatives" (Glover and Laguna, 1997). 

Even though the neighborhood of alternatives are not large for this problem, it is logical 

to use effective candidate moves in order to speed up neighborhood evaluation and allow 

the algorithm to explore more areas of the solution space in less time. This idea is 

illustrated using a sample scenario. The sample mission consists of sending one B-52 

from Elmendorf AFB (PAED) to King Khalid (OEKK), and one F-16 from Barksdale 

(KBAD) to Andersen AFB (PGUA). The bases activated for this scenario are shown in 
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Table 5. The B-52 mission requires only one refueling. While the F-16 mission requires 

five refuelings. The bases supporting these RPs and their objective function evaluations 

are shown in Tables 6 and 7, respectively. 

Table 5: Bases Activated for Neighborhood Scenario 

Bases # of Tankers 
KWRB 25 
PAEI 25 
KMCF 25 
KSKA 25 
PAED 1 
KIAB 25 
KMUO 25 
PGUA 25 
PHIK 1 
KDYS 10 
KRIV 10 
KSUU 10 

Table 6: Bases supporting RPs for Example Deployment 

B-52 F-16 
"IstRP IstRP 2ndRP 3rdRP 4th RP 5th RP 
KMUO KMCF KRIV PGUA PGUA PGUA 
KRIV KMUO KSKA PHIK 
KSKA KRIV KSUU 
KSUU KSKA PAED 
KWRB KSUU PHIK 
PAED KWRB 
PAEI PAED 
PHIK PAEI 

PHIK 
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Table 7: Objective Function Evaluations for Example Deployment 

B-52 F-16 
"IstRP IstRP 2ndRP 3rdRP 4th RP 5th RP 
6992 6761 3521 5198 9073 9259 
6357 4826 2858 2280 
6179 5306 9064 
6339 5314 1605 
6155 4551 2453 
1151 6175 
1266 6050 
6485 6337 

6733 

Trying to allocate tankers to refueling points for this deployment results in 720 

different solutions. It is obvious that some of the solutions are not attractive. In order to 

no visit unattractive solutions, we introduced the elite candidate list strategy, and thus 

decreased the number of possible solutions. The bases supporting these RPs and their 

objective function evaluations after introducing the elite candidate list strategy are shown 

in Tables 8 and 9, respectively. 

Table 8: Bases supporting RPs after Elite Candidate List 

B-52 F-16 
IstRP IstRP 2ndRP 3rdRP 4th RP 5th RP 
KWRB KMUO KSKA PGUA PGUA PGUA 
PAED KRIV PAED PHIK 
PAEI KSUU PHIK 
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Table 9: Objective Function Evaluations after Elite Candidate List 

B-52 F-16 
1stRP 1stRP 2ndRP 3rdRP 4th RP 5th RP 
6155 4826 2858 5198 9073 9259 
1151 5306 1605 2280 
1266 4551 2453 

The number of possible solutions decreased from 720 to 54 (3*3*3*2*1*1). The 

number of possible solutions and their objective function evaluations are represented in 

Tables 10 and 11 for all neighborhoods and for the elite candidate list neighborhood, 

respectively. 
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Figure 9: Number of Solutions for all neighborhoods 
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Figure 10: Number of Solutions after Forming Candidate List 

When we increase the size of the problem by either increasing the number of RPs, 

increasing the number of missions, or increasing the number of support bases, it is 

obvious that looking at all the possible moves dramatically increases the solution time. 

In chapter 4, we test our model using a large deployment. Results and conclusions 

are presented. 
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CHAPTER 4. RESULTS AND CONCLUSIONS 

In this chapter we tested our model. The test deployment consists of sending 11 

receiver groups from the continental US to the Southeast Asia. 

4.1 SOUTHEAST ASIA DEPLOYMENT 

This deployment involves receiver groups departing the U.S. and arriving in 

Southeast Asia. Table 12 provides a list of the 11 receiver groups shown in Figure 9. 

The tanker bases activated for this deployment include McConnell, Mountain 

Home, Grand Forks, Fairchild, Kadena, and Eielson, with 15 KC-135 tankers located at 

each base. Tanker bases activated for this deployment are shown in Table 13. Tankers 

located at these bases are capable of satisfying all the receiver groups' fuel requirements 

during the deployment. 

Table 10: Receiver Groups for Southeast Asia Deployment 

Mission Receivers # of Receivers Origin Destination ALD RDD 

1 F117 2 Holloman Osan 5 

2 F15 6 Mt. Home Osan 5 

3 F15 6 Elmendorf Osan 5 
4 F16 6 Eielson Osan 5 

5 A/OA10 6 Eielson Osan 5 

6 B1 Mt. Home Andersen 5 

7 B1 Ellsworth Andersen 5 

8 B1 Dyess Andersen 5 

9 B52 Barksdale Andersen 5 

10 B52 Minot Andersen 5 

11 F117 2 Holloman Osan 5 
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Table 11: Number of Aircraft on the bases used for Southeast Asia 
Deployment 

TANKER BASE ICAO CODE NUMBER OF TANKERS 
McCONNELL KIAB 15 

MOUNTAIN HOME KMUO 15 

GRAND FORKS KRDR 15 

FAIRCHILD KSKA 15 

KADENA RODN 15 

EIELSON PAEI 15 

The tool that AMC worked on does not run the Southeast Deployment. Therefore, 

we will compare the results with the TAP Tool. 

The initial mission plan from this research is shown in Table 14, and this plan is 

constructed by using the greedy algorithm. Reactive tabu search sought better solutions 

by diversifying among the solution space through the iterations. The best mission plan 

from this research after 100 iteration is presented in Table 15 (All computer runs are 

made on a Pentium III 700Mhz, 128Mb RAM computer). As the iteration count increased 

the number of conflicts decreased and the schedule is stretched over time. The number of 

tanker aircraft used decreased from 27 to 14. The number of conflicts decreased from one 

to zero after 100 iterations. The initial mission plan is not feasible since there is a conflict 

between the two highlighted lines. Tanker tail #11 out of Kadena is scheduled to depart 

before it has time to accomplish its first assignment and take a 3-hour maintenance 

period. 
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Table 12: Initial Solution of Southeast Asia Deployment inRTS 

SORTIE ID RP# ICAO CODE BASE NAME 
TAKE-OFF 

TIME 
TANKER 
TAIL# 

1 KSKA FAIRCHILD AFB 6 1 
2 PAEI EIELSON AFB 7.7493514 1 
3 PAEI EIELSON AFB 9.44891366 2 
4 RODN KADENAAB 10.378072 1 
5 RODN KADENAAB 15.4611866 2 

2 PAEI EIELSON AFB 6 3 
2 PAEI EIELSON AFB 6 4 
2 3 RODN KADENA AB 13.2606619 3 
3 RODN KADENA AB 1 4 
3 2 RODN KADENA AB 8.63640049 5 
4 PAEI EIELSON AFB 1 5 
4 PAEI EIELSON AFB 1 6 
4 2 RODN KADENA AB 2.96460085 6 
5 RODN KADENAAB 1 7 
5 RODN KADENAAB 1 8 
5 2 RODN KADENA AB 10.4902287 9 
6 RODN KADENAAB 11 10 
7 RODN KADENAAB 6 11 
8 RODN KADENAAB 6 12 
9 PAEI KADENA AB 11 7 
9 PAEI KADENAAB 11 8 
10 PAEI KADENAAB 6 9 

KSKA FAIRCHILD AFB 6 2 
2 PAEI EIELSON AFB 7.7493514 10 
3 PAEI EIELSON AFB 9.44891366 11 
4 RODN KADENAAB 10.378072 13 
5 RODN EIELSON AFB 15.4611866 14 
5 RODN KADENA AB 15.4611866 11 
5 RODN KADENA AB 15.4611866 11 
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Table 13: Solution of Southeast Asia Deployment after 100 iteration in RTS 

SORTIE ID RP# ICAO CODE BASE NAME 
TAKE-OFF 

TIME 
TANKER 
TAIL# 

1 PAEI EIELSON AFB 2.92974044 1 
2 PAEI EIELSON AFB 7.7493514 2 
3 PAEI EIELSON AFB 9.44891365 3 
4 RODN KADENAAB 10.378072 1 
5 RODN KADENAAB 15.4611866 2 

2 PAEI EIELSON AFB 17.7493514 1 
2 PAEI EIELSON AFB 17.7493514 2 
2 3 RODN KADENAAB 25.0100133 1 
3 RODN KADENAAB 27.3736128 4 
3 2 RODN KADENAAB 35.0100133 1 
4 PAEI EIELSON AFB 29.4489137 2 
4 PAEI EIELSON AFB 29.4489137 1 
4 2 RODN KADENA AB 31.4135145 6 
5 RODN KADENAAB 50.378072 7 
5 RODN KADENA AB 50.378072 1 
5 2 RODN KADENA AB 59.8683007 9 
6 RODN KADENA AB 60.378072 1 
7 RODN KADENAAB 61.4135145 6 
8 RODN KADENAAB 70.378072 1 
9 PAEI EIELSON AFB 39.4489137 2 
9 PAEI EIELSON AFB 39.4489137 1 
10 PAEI EIELSON AFB 49.4489137 1 
11 KSKA FAIRCHILD AFB 57.6995623 1 
11 2 PAEI EIELSON AFB 59.4489137 1 
11 3 PAEI EIELSON AFB 61.1484759 2 
11 4 RODN KADENA AB 62.0776342 13 
11 5 RODN KADENAAB 67.1607489 14 
11 5 RODN KADENAAB 67.1607489 11 

There is no conflict in the best mission plan output. This plan used 14 tankers, and 

was found in 13 minutes. The last receiver group to complete its trip has a TOA of 79 

hours after the deployment begins. The timeline for the initial and best mission plan is 
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shown in Table 16. Scheduling of the initial and best missions on a time scale is shown in 

Figures 10 and 11, respectively. 

Table 14: Timeline for Initial and Best Mission Plan in RTS 

SORTIE ID 
INITIAL MISS. PLAN 

TOA             TOD 
BEST MISSION PLAN 

TOA            TOD 

1 4.5 17.2 4.5 17.2 

2 4.1 15.1 15.8 26.9 

3 3.5 11 29.9 37.3 

4 1.09 8.5 29.5 36.9 

5 1.06 12.3 50.4 61.6 

6 4.05 16.2 53.4 65.6 

7 1.1 14.5 56.5 69.9 

8 0.7 15.1 65.1 79.5 

9 4.5 19.5 33.02 48.03 

10 0.5 13.8 44.01 57.2 

11 4.5 17.2 56.2 68.9 
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Figure 12: Initial Mission Schedule for South East Deployment in RTS 
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SCHEDULE FOR SOUTH EAST 
DEPLOYMENT AFTER 100 ITERATIONS 

WITH GREEDY APPROACH 

z 
g 

11 
10 

9 
8 
7 
6 
5 
4 
3 
2 
1 

_/ i 

--- 

i i 
1               u 

1 ■ 
I ...»p 

i • 
i 

1 3 
i        'i 

1—p 
i a 

I                   1 ."• '                                  s  r- 

20 40 60 80 

TIME AFTER DEPLOYMENT BEGINS (Hrs) 

Figure 13: Best Mission Schedule for South East Deployment in RTS 

When we examine the results of the TAP Tool, we see that even though the 

assignment of tanker bases to the refueling points has minor discrepancies both can be 

considered as correct allocations. For the TAP Tool, the latest receiver groups TOA is 75 

hours after the deployment begins. Table 17 shows the resulting initial mission plan 

generated by the greedy method. Table 18 displays the TOD and TOA produced by the 

TAP Tool for each receiver group. The TOD and TOA values for tankers and receiver 

groups are represented in hours after the deployment begins. 
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Table 15: Initial Mission Plan for South East Deployment in TAP Tool 

RG# Refueling Point # Tanker Base Tanker # Tanker TOD (hours) 

1 FAIRCHILD AFB 1 6.0 
2 EIELSON AFB 1 7.7 
3 EIELSON AFB 2 9.4 
4 KADENAAB 1 10.4 
5 KADENA AB 2 15.5 

2 1 EIELSON AFB 3 6.0 
2 1 EIELSON AFB 4 6.0 
2 2 KADENA AB 3 5.7 
2 2 KADENA AB 4 5.7 
2 2 KADENA AB 5 5.7 
2 3 KADENA AB 6 13.3 

3 KADENA AB 7 1.0 
3 KADENA AB 8 1.0 
3 KADENAAB 9 1.0 
3 2 KADENA AB 10 8.6 

4 EIELSON AFB 5 1.0 
4 EIELSON AFB 6 1.0 
4 2 KADENA AB 11 3.0 

;-----5-:.vv KADENA ABr 12 1.0 
5 KADENA AB 13 1.0 
5 2 KADENA AB 14 10.5 

6 KADENA AB 15 11.0 

7 KADENA AB 1 21.0 

8 KADENA AB 1 31.0 

9 EIELSON AFB 7 11.0 
9 EIELSON AFB 8 11.0 

10 EIELSON AFB 9 6.0 
FAIRCHILD AFB 2 6.0 

2 EIELSON AFB 10 7.7 
3 EIELSON AFB 11 9.4 
4 KADENA AB 12-Ka- 10.4 
5 KADENA AB il 15.5 

This initial mission plan uses of 28 tankers. Each receiver group arrives at its 

destination before their RDD. However, this mission plan is not feasible since there is a 

conflict between the two highlighted tankers. Tankers 11 and 12 out of Kadena are both 

scheduled to depart before they have time to accomplish their first assignments and take a 

3-hour maintenance period. 
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Table 16: Initial TOD and TOD for South East Deployment in TAP Tool 

Receiver Group # TOD (hours) TOA (hours) 

1 4.5 17.3 
2 4.1 15.2 
3 3.6 11.0 
4 1.1 8.5 
5 1.1 12.3 
6 4.1 16.2 
7 16.2 29.5 
8 25.8 40.2 
9 4.6 19.6 
10 0.6 13.8 
11 4.5 17.3 

After 100 iterations, the TAP Tool arrives at the best mission plan found which is 

presented in Table 19 and Table 20. This plan uses 13 tankers. The computation time for 

that run was approximately 20 minutes (all the runs were made on a Pentium II 350Mhz, 

64Mb RAM computer). 

Table 17: Final TOD and TOA for South East Deployment in TAP Tool 

Receiver Group # TOD (hours) TOA (hours) 
1 4.5 17.3 
2 49.1 60.2 
3 3.6 11.0 
4 1.1 8.5 
5 31.1 42.3 
6 19.1 31.2 
7 11.2 24.5 
8 60.8 75.2 
9 29.6 44.6 
10 10.6 23.8 
11 59.5 72.3 
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Table 18: Best Mission Plan Evaluation for South East Deployment in TAP 
Tool 

RG# Refueling Point # Tanker Base Tanker # Tanker TOD (hours) 

1 FAIRCHILD AFB 1 6.0 
2 EIELSON AFB 1 7.7 
3 EIELSON AFB 2 9.4 
4 KADENA AB 1 10.4 
5 KADENA AB 11 15.5 

2 1 EIELSON AFB 5 51.0 
2 1 EIELSON AFB 4 51.0 
2 2 KADENA AB 3 50.7 
2 2 KADENA AB 4 50.7 
2 2 KADENA AB 13 50.7 
2 3 KADENA AB 11 58.3 

3 KADENA AB 3 1.0 
3 KADENA AB 8 1.0 
3 KADENA AB 13 1.0 
3 2 KADENA AB 10 8.6 

4 EIELSON AFB 5 1.0 
4 EIELSON AFB 4 1.0 
4 2 KADENA AB 11 3.0 

5 KADENA AB 3 31.0 
5 KADENA AB 13 31.0 
5 2 KADENA AB 11 40.5 

6 KADENA AB 11 26.0 

7 KADENA AB 3 16.0 

8 KADENA AB 13 66.0 

9 EIELSON AFB 5 36.0 
9 EIELSON AFB 4 36.0 

10 EIELSON AFB 4 16.0 

11 FAIRCHILD AFB 1 61.0 
11 2 EIELSON AFB 10 62.7 
11 3 EIELSON AFB 4 64.4 
11 4 KADENA AB 11 65.4 
11 5 KADENA AB 3 70.5 

The concept of tabu tenure used in the TAP Tool is slightly different than that of 

reactive tabu search's. In the TAP Tool, the user can set different values of tabu tenure, 

each resulting in different solutions. In the previous research, a tabu tenure for 7 gave the 

best results. But tabu tenure in reactive tabu search displays a dynamic feature. It begins 
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at a value of one and changes as cycles are encountered. For that reason we do not 

compare the two tools on a tabu tenure basis. A general comparison of tools is presented 

in Table 21. 

Table 19: General Comparison of TAP Tool and RTS 

TAP Tool RTS 
Time spent 20 min 13 min 
Sol. Quality Good Good 
Scheduling Good Good 

Tankers used 13 14 
Latest TOA 75.2 79.5 

"Time spent" is described as the time that the computer spends for 100 iterations of 

the South East Deployment. The result of TAP Tool came from a Pentium II 350Mhz, 

64Mb RAM computer. On the other hand, result of RTS came from a Pentium III 

700Mhz, 128Mb RAM computer. 

"Sol. Quality" is defined as allocating the correct tankers to the refueling points. In 

this deployment, many of the refueling points are supported by only one base. The 

tankers from Kadena AFB generally supported the refueling points over the Pacific 

Ocean. This is the main reason the results are so similar. For the first refueling points of 

fighter groups, the number of tanker bases supporting these refueling points increased. 

This situation increased the possibility of assigning different tankers for the refueling 

points. The total distance traveled by the tankers is 101.939Nm in RTS approach, but we 

do not have any information about this value for the TAP Tool results. For this reason 

both assignments are considered "good". 
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"Scheduling" is defined as stretching the deployment to its allowable time limits. 

For this deployment ALD is 1 and RDD is 5. We have four days to complete the 

deployment. Both tools finished the deployment in less than 96 hours (4 days). Latest 

receiver group's TOA for both tools are around 75-80 hours after the deployment begins. 

Since none of them arrived after the 96 hours of deployment limit, and both of the latest 

TOA are close, both tools are considered as "good" from the scheduling perspective. 

"Tankers used" is defined as the total number of different tankers used. A low value 

in this field does not mean that the number of sorties flown by the tankers is low. The 

actual number of sorties flown is always the same. We reward reuse tankers, which 

results in a decreased number of tankers used. 

"Latest TOA" is the latest time that a receiver group reaches to its destination. Our 

goal is to finish the deployment before its allowable time limit. We want this value to be 

less than the time limit of the deployment. 

4.2 SOUTHEAST ASIA DEPLOYMENT WITHOUT GREEDY CONSTRUCTION 

If the user does not prefer to use the greedy construction heuristic, then the initial 

mission plan is shown in Table 22. This initial mission plan has 24 conflicts and 

obviously is not a good mission plan either from the assignment perspective or from the 

scheduling perspective. The best mission plan uses 10 tanker aircraft and has no conflicts 

in the solution. We reached this solution in 7 minutes. 
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Table 20: Initial Solution of Southeast Asia Deployment without greedy 
approach 

SORTIE ID RP# ICAO CODE BASE NAME 
TAKE-OFF 

TIME 
TANKER 
TAIL* 

1 KMUO MOUNTAIN HOME AFB 1 
2 KMUO MOUNTAIN HOME AFB 0.94669016 
3 PAEI EIELSON AFB 4.24690027 
4 RODN KADENA AB 5.1760586 
5 PAEI EIELSON AFB 4.3473912 

2 PAEI EIELSON AFB 1 
2 PAEI EIELSON AFB 1 
2 3 PAEI EIELSON AFB 2.44828868 
3 RODN KADENA AB 1 
3 2 RODN KADENA AB 8.63640049 
4 PAEI EIELSON AFB 1 
4 PAEI EIELSON AFB 1 
4 2 RODN KADENA AB 2.96460085 
5 RODN KADENA AB 1 
5 RODN KADENA AB 1 
5 2 PAEI EIELSON AFB 4.5300729 
6 RODN KADENA AB 1 
7 RODN KADENA AB 1 
8 RODN KADENA AB 1 
9 KMUO MOUNTAIN HOME AFB 1 
9 KMUO MOUNTAIN HOME AFB 1 
10 PAEI EIELSON AFB 1 

KMUO MOUNTAIN HOME AFB 1 
2 KMUO MOUNTAIN HOME AFB 0.94669016 
3 PAEI EIELSON AFB 4.24690027 
4 RODN KADENA AB 5.1760586 
5 PAEI EIELSON AFB 4.3473912 

When we examine the initial solution created without using the greedy construction 

heuristic, we see that even though the assignment of tanker bases to refueling points 

seems good, there are many conflicts in the mission plan. The same tanker aircraft is 

assigned to different kinds of missions at the same time. This is not practical. These 
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conflicts are reduced by reactive tabu search algorithm at each iteration. The final 

mission plan after 100 iteration does not have any conflicts and is shown in Table 23. 

Table 21: Solution after 100 iteration without greedy 

SORTIE ID RP# 
ICAO 
CODE BASE NAME 

TAKE-OFF 
TIME 

TANKER 
TAIL# 

1 KMUO MOUNTAIN HOME AFB 1 1 
2 KMUO MOUNTAIN HOME AFB 0.9466902 2 
3 PAEI EIELSON AFB 4.2469003 1 
4 RODN KADENA AB 5.1760586 1 
5 PAEI EIELSON AFB 4.3473912 2 

2 PAEI EIELSON AFB 14.347391 1 
2 PAEI EIELSON AFB 14.347391 2 
2 3 PAEI EIELSON AFB 15.79568 3 
3 RODN KADENA AB 15.176059 1 
3 2 RODN KADENA AB 22.812459 2 
4 PAEI EIELSON AFB 25.79568 1 
4 PAEI EIELSON AFB 25.79568 3 
4 2 RODN KADENA AB 27.760281 1 
5 RODN KADENA AB 37.760281 1 
5 RODN KADENA AB 37.760281 2 
5 2 PAEI EIELSON AFB 41.290354 1 
6 RODN KADENA AB 47.760281 1 
7 RODN KADENA AB 57.760281 1 
8 RODN KADENA AB 67.760281 1 
9 KMUO MOUNTAIN HOME AFB 11 1 
9 KMUO MOUNTAIN HOME AFB 11 3 
10 PAEI EIELSON AFB 51.290354 1 
11 KMUO MOUNTAIN HOME AFB 73.584222 1 
11 2 KMUO MOUNTAIN HOME AFB 73.530912 4 
11 3 PAEI EIELSON AFB 76.831122 1 
11 4 RODN KADENA AB 77.760281 1 
11 5 PAEI EIELSON AFB 76.931613 2 

For this best solution the latest TOA is 84 hours after the deployment begins. The 

timeline for initial and best mission plan is shown in Table 24. Scheduling of the initial 

and best mission plan on a time scale is shown in Figures 12 and 13, respectively. 
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Table 22: Timeline for Initial and Best Mission Plan in RTS, without Greedy 

SORTIE ID 
INITIAL MISS. PLAN 

TOD           TOA 
BEST MISSION PLAN 

TOD           TOA 
1 0.6 12.05 0.6 12.05 
2 0.8 10.9 12.4 23.5 
3 3.5 11 17.7 25.1 
4 1.09 8.5 25.9 33.3 
5 1.06 12.3 37.8 49.06 
6 5.9 12.1 40.8 53 
7 3.8 13.3 52.9 66.2 
8 4.2 14.5 62.5 76.9 
9 4.6 14.9 5.3 20.3 
10 4.4 13.2 45.8 59.09 
11 0.6 12.05 71.9 84.6 
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Figure 14: Initial Schedule for South East Deployment in RTS without Greedy 
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BEST SCHEDULE FOR SOUTH EAST 
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Figure 15: Best Schedule for South East Deployment in RTS without Greedy 

4.3 DECREASING THE AVAILABLE TANKERS FOR SOUTHEAST ASIA 

DEPLOYMENT 

We decreased the available tanker numbers from 15 to 5 at each of the bases. The 

tanker bases activated for this deployment remained the same. Initial conditions are 

shown in Table 25. Since we decreased the available tanker numbers, the tool produced 

fewer decision variables, so the solution time decreased considerably. Initial mission plan 

and best mission plan after 100 iterations are shown in Tables 26 and 27, respectively. 

Table 23: Decreasing the Number of Aircraft on the bases 

TANKER BASE ICAO CODE NUMBER OF TANKERS 
McCONNELL KIAB 5 

MOUNTAIN HOME KMUO 5 
GRAND FORKS KRDR 5 

FAIRCHILD KSKA 5 
KADENA RODN 5 
EIELSON PAEI 5 
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This initial mission plan has 15 conflicts, which are highlighted in the Table 26. 

Table 24: Initial Solution of RTS with 5 tankers in each base 

SORTIE 
ID RP# 

ICAO 
CODE BASE NAME 

TAKE-OFF 
TIME 

TANKER 
TAIL* 

1 KSKA FAIRCHILD AFB 6 1 
2 PAEI EIELSON AFB 7.749351399 1 
3 PAEI EIELSON AFB 9.448913655 2 
4 RODN KADENA AB 10.37807198 1 
5 RODN KADENA AB 15.46118662 2 

2 PAEI EIELSON AFB 6 3 
2 PAEI EIELSON AFB 6 4 
2 3 RODN KADENA AB 13.26066185 3 
3 RODN KADENA AB 1 4 
3 2 RODN KADENA AB 8.636400492 5 
4 PAEI EIELSON AFB ?v.   'i.'-;,:-v 5 
4 PAEI EIELSON AFB "^i^tl^K^ 5 
4 2 RODN KADENA AB 2.964600846 4 
5 RODN KADENA AB 21 1 
5 RODN KADENA AB 21 4 
5 2 RODN KADENA AB 30.4902287 4 
6 RODN KADENA AB 31 1 
7 RODN KADENA AB 41 1 
8 RODN KADENA AB 51 1 
9 KSKA FAIRCHILD AFB 6 2 
9 KSKA FAIRCHILD AFB 6 3 
10 PAEI EIELSON AFB 21 1 
11 KSKA FAIRCHILD AFB 6 4 
11 2 KSKA FAIRCHILD AFB 6.670367819 5 
11 3 PAEI EIELSON AFB 9.448913655 3 
11 4 RODN KADENA AB 10.37807198 2 
11 5 RODN KADENA AB 15.46118662 1 
11 5 RODN KADENA AB 15.46118662 1 
11 5 RODN KADENA AB 15.46118662 1 
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Table 25: Best Solution after 100 Iterations with 5 tankers in each base 

SORTIE 
ID RP# 

ICAO 
CODE BASE NAME 

TAKE-OFF 
TIME 

TANKER 
TAIL# 

1 PAEI EIELSON AFB 2.92974044 1 
2 PAEI EIELSON AFB 7.749351399 2 
3 PAEI EIELSON AFB 9.448913655 3 
4 RODN KADENA AB 10.37807198 1 
5 RODN KADENAAB 15.46118662 2 

2 PAEI EIELSON AFB 18.20052477 1 
2 PAEI EIELSON AFB 18.20052477 2 
2 3 RODN KADENA AB 25.46118662 2 
3 RODN KADENA AB 22.74167149 4 
3 2 RODN KADENA AB 30.37807198 1 
4 PAEI EIELSON AFB 30.77707064 1 
4 PAEI EIELSON AFB 30.77707064 2 
4 2 RODN KADENA AB 32.74167149 4 
5 RODN KADENA AB 50.37807198 1 
5 RODN KADENA AB 50.37807198 2 
5 2 RODN KADENAAB 59.86830068 4 
6 RODN KADENA AB 65.46118662 2 
7 RODN KADENA AB 69.86830068 4 
8 RODN KADENAAB 75.46118662 2 
9 KSKA FAIRCHILD AFB 16 1 
9 KSKA FAIRCHILD AFB 16 2 
10 PAEI EIELSON AFB 40.77707064 1 
11 KSKA FAIRCHILD AFB 81.08311464 1 
11 2 KSKA FAIRCHILD AFB 81.75348246 2 
11 3 PAEI EIELSON AFB 84.53202829 2 
11 4 RODN KADENAAB 85.46118662 2 
11 5 RODN KADENA AB 90.54430126 1 
11 5 RODN KADENAAB 90.54430126 3 

This best solution uses 10 tankers. We reached this solution in 5 minutes. There are 

no conflicts in this solution. Total distance traveled by all tankers is 101.371Nm. This 

distance is the minimum distance that we find up to this point. We do not pass the 

allowable time limits for this deployment. Latest receiver groups TOA is 92 hours after 

the deployment begins. Decreasing the available number of tankers at each base 
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decreased the computation time for this deployment, but we do not know exactly how 

much we should decrease the tanker numbers. Receiver group TOD and TOA values are 

shown in Table 28. Schedule for this deployment is shown in Figure 14. 

Table 26: TOD and TOA with 5 Tankers in Each Base 

Receiver Group # TOD (hours) TOA (hours) 
1 4.5 17.2 
2 16.3 27.3 
3 25.3 32.7 
4 30.8 38.2 
5 50.4 61.8 
6 58.5 70.7 
7 65.03 78.3 
8 70.2 84.6 
9 10.2 25.2 
10 35.3 48.5 
11 79.6 92.3 

BEST SCHEDULE FOR SOUTH EAST 
DEPLOYMENT WITH 5 TANKERS IN EACH BASE 
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Figure 16: Best Schedule for South East Deployment with 5 Tankers in Each Base 
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4.4 CONCLUSION 

The initial mission plan may have conflicts. It is observed that the initial solution 

produced by the greedy approach has fewer conflicts when compared with the random 

method. As the iteration count increased, the number of conflicts decreased in both the 

TAP Tool and the revised tool. 

A primary goal is that every receiver group reaches its destination before its 

required delivery date. This goal is achieved in both of the tools. At the end of 100 

iterations, both tools completed the deployment within its time limits. 

A secondary goal is the reuse of tankers. In both tools the number of tankers used 

decreased gradually. We should bear in mind that actual tanker sorties are always the 

same. We reused the same tail numbered tankers by stretching the deployment to its 

allowable time limits. By doing so, we had an ability to reuse some tankers. 

Computer time spent for this deployment decreased from 20 minutes to 13 minutes. 

The main reason behind this is the use of different computers. In any case, the time for 

100 iterations is short when compared with CMARPS. 

Assignment of tanker bases to refueling points by both tools is good. Even though 

some of the support bases have changed for some refueling points, it is concluded that the 

overall evaluation of the assignment of tankers for the missions is appropriate for both 

tools. 

When we decreased the number of available tankers from 15 to 5 for South East 

Deployment, the time to find a solution decreased. The algorithm required fewer decision 

variables. The solution quality for this deployment was better than the previous ones. We 
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do not have the ability to determine how much to decrease the available number of 

tankers and still find a good solution. 

By using an elite candidate list strategy, we decreased the possible number of 

solutions considerably during the assignment phase. In the scheduling phase, the number 

of possible solutions increased tremendously because we introduced the time factor. 

4.4.1 Problems with the TAP Tool 

Air Force regulations require tanker escort for fighter aircraft while crossing large 

bodies of water. But tanker aircraft escort fighter aircraft even if its mission route is on 

the land, so we need to use a database consisting of land formation locations. 

Tankers are always required to return to their take, off base. This reduces the 

capability of tanker offloading, and also reduces the total distance a tanker can escort a 

mission. 

A tanker is assigned to a refueling point. A tanker might be able to satisfy the fuel 

requirements of a receiver group. Even in this situation, one tanker is assigned to every 

refueling point of that mission. 

Although high altitude jet streams affect fuel burn rates, ground speed, and true 

course, it is not included in the tool. 

The previous quick look tool used a third order polynomial equation to determine 

the fuel burned by an aircraft. The TAP Tool determines flight distances based on fuel 

flow. Because of this discrepancy, the TAP Tool does not use the fuelburn functions in 

the code. Fuel burn rates can be found in flight manuals of every aircraft. This value is 
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dependent upon many factors such as altitude, true air speed, wind, etc, so it is subject to 

change for different scenarios. A database for fuel burn rates would decrease the run 

time, but increase the precision of the solutions. 
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CHAPTER 5. FUTURE RESEARCH 

5.1 RECOMMENDATIONS 

The code is written in Visual Basic for Applications (VBA) within Excel. 

Translating the code to Java might decrease the computation time. 

Adding wind effects into tool would improve result precision. Forming a database 

for fuelburn rates for different types of receiver aircraft by using their original flight 

manual values would increase the solution precision. 

Using a database of land formation locations would help achieve more accurate 

results, because the results for total tanker distance traveled are misleading right now. 

Adding a user-friendly map, and being able to add tanker bases and flight routes on 

it, would help visualize the scenarios, and help the decision makers understand the 

scenarios more readily. Adding restricted airspace information, thus being able to 

produce different deployment routes would be a positive contribution. Adding Gantt 

charts to the output files will help the decision maker to visualize the deployment 

schedule. 

The ability to give weights to missions might produce more effective schedules. By 

using preemptive goal programming techniques, more flexible schedules can be created. 

Using probabilities for missed refueling, delayed disconnects, and aircraft 

malfunctions might be added for future analyses. 

Adding the ability of using KC-10 Extender for these deployments might produce 

more flexible solution alternatives. The available offload of a KC-10 is almost two times 
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greater than a KC-135R. A check would need to be made on the tanker type before it is 

scheduled. 

An upgrade to the scheduling process would be to allow the user to interact with the 

computer as it prepares the schedule. 
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APPENDIX A 

ada(l, l) = initSol(l,3) 
ada(l,2)=l 
adasize = 1 
flaga = True 
For x = 2 To RPcount 
For ys = 1 To adasize 
If ada(ys, 1) = initSol(x, 3) Then 
flaga = False 

End If 
Next ys 
If flaga = True Then 
adasize = adasize + 1 
ada(adasize, 1) = initSol(x, 3) 
ada(adasize, 2) = x 

End If 
flaga = True 
Nextx 

div = 0 
Dim cu As Boolean 
cu = False 
Dim flag As Boolean 
flag = True 
Cycle = 0 
sss = 1 
hh = 0 
m = 0 
v = 0 
For k = 1 To numlterations 
TENURE = 1 
bestVal = 1000000 

' Display the current iteration. 
Sheets("input").Cells(2, 12) = k 

Skip = (k Mod modNum) + 1 

' Count how many tankers are reused in the current solution. 
For q = 1 To RPcount - 1 

p=l 
goon = True 
While goon = True 

If sched(q, 6) & sched(q, 3) = sched(q + p, 6) & sched(q + p, 3) Then 
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If p + q <> i And q <> i Then 
currentReuse = currentReuse + 1 
goon = False 

End If 
End If 
If p = RPcount Then 

goon = False 
Else 

p = p+l 
End If 

Wend 
Nextq 

i = l 
While i < RPcount + 1 

' First look at the current solution to count how many conflicts there are. 

conflictNumbers = 0 
currentNegTODs = 0 
If CloseLook(i) = True Then 

If sched(i, 2) = 1 Then 

' Count how many TODs are less than zero. 
If sched(i, 9) < 0 Then currentNegTODs = currentNegTODs + 1 

h = 0 
While sched(i + h, 1) = sched(i, 1) 

For n = 1 To RPcount 
If sched(n, 6) & sched(n, 3) = sched(i + h, 6) & sched(i + h, 3) And i + 

hon Then 
If sched(n, 5) > sched(i + h, 5) Then 

tempi = (sched(n, 5) - (3 + sched(i + h, 5) + sched(i + h, 7) / 430)) 
Else 

tempi = (sched(i + h, 5) - (3 + sched(n, 5) + sched(n, 7) / 430)) 
End If 
If tempi < 0 Then conflictNumbers = conflictNumbers + 1 

End If 
Nextn 
h = h + l 

Wend 
Else 

For n = 1 To RPcount 
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If sched(n, 6) & sched(n, 3) = sched(i, 6) & sched(i, 3) And i <> n Then 
If sched(n, 5) > sched(i, 5) Then 

tempi = (sched(n, 5) - (3 + sched(i, 5) + sched(i, 7) / 430)) 
Else 

tempi = (sched(i, 5) - (3 + sched(n, 5) + sched(n, 7) / 430)) 
End If 
If tempi < 0 Then conflictNumbers = conflictNumbers + 1 

End If 
Nextn 

End If 
' If there are no problems with the current solution, don't take 
' a close look at it again. 
If currentNegTODs = 0 And conflictNumbers = 0 Then CloseLook(i) = False 

End If 

' Look at each neighbor by changing one RP at a time 
TENURE =1 
j = RPindex(i) 
Whilej<RPindex(i + l) 

' Save the current solution 
For p = 1 To RPcount 

Forn = 1 To 15 
tempVar(p, n) = sched(p, n) 

Nextn 
Nextp 

' Change to a new DV for this RP 
sched(i, 1) = DV(j, 1) 
sched(i,2) = DV(j, 2) 
sched(i, 3) = DV(j, 3) 
sched(i, 4) = DV(j, 4) 
sched(i,6) = DV(j, 8) 
sched(i,7) = DV(j, 5) 
sched(i, ll) = DV(j, 12) 

ind = Find(sched(i, 1), missplan, missions) 
'XXXXXXXX 

' If we are changing a RP other than a 1st RP, calculate the 
' take-off time for this tanker. 
IfDV(j, 2)<>lThen 

a = 0 

69 



tempi = False 
While tempi = False 

a = a+ 1 
If sched(i - a, 2) < 2 Then tempi = True 

Wend 
If sched(i, 1) = Empty Then 
sched(i, 5) = Empty 
Else 
If ind = -1 Then 
ind = missions 
End If 
sched(i, 5) = sched(i - a, 8) + (sched(i, 2) - sched(i - a, 2)) * (rpvals(ind, 6) / 

recrqmts(ind, 3)) - DV(tempIndex, 12) / tankers(3, 3) 
End If 

Else 
sched(i, 5) = DV(tempIndex, 7) 

End If 

' Determine the time that this refueling will take place 
If sched(i, 1) = Empty Then 
sched(i, 8) = Empty 
Else 
sched(i, 8) = sched(i, 5) + DV(tempIndex, 12) / tankers(3, 3) 
End If 

' If this is the first refueling point, determine when the receiver 
' group will arrive at the destination 
If sched(i, 2) = 1 Then 

If sched(i, 1) & sched(i, 2) = sched(i + 1, 1) & sched(i + 1,2) Then 
sched(i + 1,8) = sched(i, 8) 

End If 

' Also calculate the new take-off time for any other tankers 
' assigned to other refueling points with this same RG. 
n = l 
While sched(i + n, 1) = sched(i, 1) 

sched(i + n, 5) = sched(i, 8) + (sched(i + n, 2) - sched(i, 2)) * (rpvals(ind, 6) / 
recrqmts(ind, 3)) - sched(i + n, 11)/ tankers(3, 3) 

n = n + 1 
Wend 

TOA = ((missplan(ind, 7) - rpvals(ind, 8)) / recrqmts(ind, 3)) + sched(i, 8) 
sched(i, 10) = TOA 
TOD = TOA - (missplan(ind, 7) / recrqmts(ind, 3)) 
sched(i, 9) = TOD 
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End If 

' Evaluate this new solution somehow 
distPen = 0 
tempi = 0 
newConflict = 0 
conflictPen = 0 
conflictBonus = 0 
latePen = 0 
earl yB onus = 0 
newReuse = 0 
reuseBonus = 0 
earlyPen = 0 
negTODpen = 0 
syncPen = 0 

' If this is a DV already in the solution, set the penalty to Big-M 
1 so that it is not chosen for the current move. 
If sched(i, 3) & sched(i, 5) & sched(i, 6) = tempVar(i, 3) & tempVar(i, 5) & 

tempVar(i, 6) Then 
Ifi = lThen 

For d = 1 To numTbases 
If DV(j, 3) = tankerplacement(d, 1) Then 

dd = tankerplacement(d, 2) 
End If 

Nextd 

If dd = 1 Then 
DV(j, 10) = 1000000 

Else 
'j=j + 15-l 
DV(j, 10) = 100 * DV(j, 12) 
DV(j-l,10) = DV(j, 10) 

End If 

Else 'if not the first rp 

For d = 1 To numTbases 
If DV(j, 3) = tankerplacement(d, 1) Then 

dd = tankerplacement(d, 2) 
End If 

Nextd 
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apart 

Ifdd=lThen 
DV(j,9) = 0 
DV(j, 10) = 100 * DV(j, 12) 

Else 
'j=j + 15-l 
DV(j, 10) = 100 * DV(j, 12) 
DV(j-l,10) = DV(j,10) 

End If 

End If 

Else 

' penalize for making the receivers take off too early. 
If TOD < 0 Then earlyPen = 500000 

If earlyPen <> 500000 Then 

' penalize for late receivers 
If sched(i, 2) = 1 Then 

If Max(0, ((TOA) - 24 * missplan(ind, 6))) > 0 Then latePen = 600000 
earlyBonus = 10 * Max(0, ((24 * missplan(ind, 6)) - (TOA))) 

End If 

If latePen <> 600000 Then 
For n = 1 To RPcount 

distPen = distPen + sched(n, 7) 
' penalize for having the same aircraft take off sooner than 10 hours 

If sched(n, 6) & sched(n, 3) = sched(i, 6) & sched(i, 3) And i <> n Then 
If sched(n, 5) > sched(i, 5) Then 

tempi = (sched(n, 5) - (3 + sched(i, 5) + sched(i, 7) / 430)) 
Else 

tempi = (sched(i, 5) - (3 + sched(n, 5) + sched(n, 7) / 430)) 
End If 
If tempi < 0 Then newConflict = newConflict + 1 
If sched(i, 6) & sched(i, 3) <> tempVar(i, 6) & tempVar(i, 3) Then 

newReuse = newReuse + 1 
End If 

Then 

' penalize for not having multiple first refueling points at the same time 
If sched(n, 2) = 1 And sched(i, 2) = 1 And sched(n, 1) = sched(i, 1) 

If sched(n, 8) <> sched(i, 8) Then syncPen = 40000 

72 



End If 
Nextn 

' If this is the first refueling point for a receiver group, 
' check the other refueling points to make sure you haven't 
' created a conflict. 
If sched(i, 2) = 1 Then 

h = 0 
While sched(i + h, 1) = sched(i, 1) 

Ifh>0Then 
' Take-off Time 
sched(i + h, 5) = sched(i, 8) + (sched(i + h, 2) - sched(i, 2)) * 

(rpvals(ind, 6) / recrqmts(ind, 3)) - sched(i + h, 11) / tankers(3, 3) 
' Time of refueling 
sched(i + h, 8) = sched(i + h, 5) + sched(i + h, 11) / tankers(3, 3) 

End If 
For n = 1 To RPcount 

If sched(n, 6) & sched(n, 3) = sched(i + h, 6) & sched(i + h, 3) And 
i + h <> n Then 

430)) 

430)) 

If sched(n, 5) > sched(i + h, 5) Then 
tempi = (sched(n, 5) - (3 + sched(i + h, 5) + sched(i + h, 7) / 

Else 
tempi = (sched(i + h, 5) - (3 + sched(n, 5) + sched(n, 7) / 

End If 
If tempi < 0 Then newConflict = newConflict + 1 

End If 
Nextn 
h = h+l 

Wend 
End If 

reuseBonus = 500 * newReuse + 2000 * currentReuse 

' Reward if the number of conflicts has decreased. 
' Penalize if there are more conflicts. 
If newConflict < conflictNumbers Then 

conflictBonus = -100000 
Elself newConflict > 0 Or conflictNumbers > 0 Then 

conflictPen = 90000 
End If 
If currentNegTODs > 0 Then 

negTODpen = -100000 * currentNegTODs 
End If 
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End If 
End If 

DVG, is; ) = conflictPen 
DVG, 19; ) = conflictBonus 
DV(j, 20; ) = distPen 
DV(j,2i; ) = reuseBonus 
DVG, 22; ) = earlyPen 
DV(j, 23; ) = negTODpen 
DV(j, 24; ) = earlyBonus 
Dvo, 25; ) = latePen 
DVG, 26; ) = newConflict 
DVG, 27; ) = conflictNumbers 
DVG, 28; ) = CloseLook(i) 
DVG, 29; ) = infeasible 

DVG, 10) = conflictPen + conflictBonus + (100 * DVG, 12)) - reuseBonus + syncPen + 
earlyPen + negTODpen - earlyBonus + latePen 

End If 
For p = 1 To RPcount 
Forn = 1 To 15 
sched(p, n) = tempVar(p, n) 

Nextn 
Nextp 
j=j + l 
Wend 
u=l 
t = i 
yy = True 
For j = RPindex(i) To RPindex(i + 1) - 1 
If yy = True Then 
NewSolG, l) = DV(j, 10) 
New2Sol=DV(j + l, 10) 
If New2Sol 0 NewSolG, 1) Then 
J=J + 2 
Else 
If New2Sol = DVG, 10) Then 
US = DVG, 3) 
x=j + 1 
While DV(x, 3) = US 
x = x + 1 

Wend 
RPind(i, u) = x - 1 

Else 
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If New2Sol <> Empty Then 
New2Sol = DV(j + 2, 10) 
US = DV(j + 2, 3) 
x=j + 1 
While DV(x, 3) = US 
x = x + 1 

Wend 
RPind(i, u) = x 
Else 
If New2Sol = Empty Then 
RPind(i,u)=j 
yy = False 

End If 
End If 'k: iteration number 

End If 't: RPnumber (t'th RP) 
If j + 2 < RPindex(i + 1) -1 Then 'u: u'th base supporting t'th RP 
objectivefunc(t, u) = DV(RPind(i, u), 10) 
supportbases(t, u) = DV(RPind(i, u), 3) 
j = x-l 
Else 
j = DVcount - 1 
End If 
u = u+ 1 

End If 
End If 
Nextj 
i = i + l 

Wend 
For t = 1 To RPcount 
sayi = 0 
For e = 1 To numTbases 
If supportbases(t, e) <> Empty Then 
sayi = sayi + 1 

End If 
Nexte 
numb(t) = sayi 
u=l 
minfortthRP = objectivefunc(t, u) 
If to Bui Then 
For u = 1 To sayi 
If objectivefunc(t, u) <= minfortthRP Then 
minfortthRP = objectivefunc(t, u) 
chosenbaseforthatRP(t, u) = supportbases(t, u) 
minforthatRP(t, u) = minfortthRP 
y(k,t) = u 
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y(k+l,t) = u 
End If 
Nextu 
If z = Empty Then 
z = u-2 
Ifz<lThen 
z=l 

End If 
y(k, t) = u 
y(k + l,t) = u 

End If 
End If 
Nextt 
If k = 1 Then 
f = 0 
For i = 1 To RPcount 
s = objectivefunc(i, (y(k, i))) 
f=s + f 
totobjforkthiteration(k) = f 

Next i 
Else 
f = 0 
For i = 1 To RPcount 
If i <> Bui Then 
s = objectivefunc(i, (y(k, i))) 

Else 
s = objectivefunc(i, z) 

End If 
f=s + f 
totobjforkthiteration(k) = f 
Nexti 

End If 
Ifk=lThen 
bestsofar = totobjforkthiteration(l) 
End If 
If totobjforkthiteration(k) <= bestsofar Then 
bestsofar = totobjforkthiteration(k) 

End If 
If f <> totobjforkthiteration(k - 1) Then 
TENURE = 1 
For i = 1 To RPcount 
oankicozum(k, i) = supportbases(i, (y(k, i))) 
Nexti 
For i = 1 To RPcount 
s = objectivefunc(i, (y(k, i))) 

76 



If s < objectivefunc(i - 1, (y(k, i -1))) Then 
Bul = i 

End If 
Nexti 
sayi = 0 
For e = 1 To numTbases 
If objectivefunc(Bul, e) <> Empyt Then 
sayi = sayi + 1 

End If 
Nexte 
If sayi = 2 Then 
degiskenl = objectivefunc(Bul, 1) 
degisken2 = objectivefunc(Bul, 2) 
If degiskenl < degisken2 Then 
Min = degiskenl 
tabu(k +1,1) = degiskenl 
swap = degiskenl 

Else 
Min = degisken2 
tabu(k +1,1) = degisken2 
swap = degisken2 

End If 
For i = 1 To sayi 
If objectivefunc(Bul, i) = swap Then 
y(k + l,Bul) = i 
cc = y(k+l,Bul) 

End If 
Nexti 

End If 
If sayi > 2 Then 
degiskenl = objectivefunc(Bul, 1) 
degisken2 = objectivefunc(Bul, 2) 
For x = 3 To sayi - 1 
If objectivefunc(Bul, x) < degiskenl Then 
h = objectivefunc(Bul, x) 
If degiskenl < degisken2 Then 
degisken2 = degiskenl 

End If 
degiskenl = h 

Else 
If objectivefunc(Bul, x) < degisken2 Then 
zu = objectivefunc(Bul, x) 
If degisken2 < degiskenl Then 
degiskenl = degisken2 

End If 
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degisken2 = zu 
End If 
End If 
Nextx 
If degiskenl < degisken2 Then 
Min = degiskenl 
tabu(k +1,1) = degiskenl 
swap = degiskenl 

Else 
Min = degisken2 
tabu(k +1,1) = degisken2 
swap = degisken2 

End If 
If Min = tabu(k, 1) Or Min = tabu(k, 2) Then 
degiskenl = objectivefunc(Bul, 1) 
degisken2 = objectivefunc(Bul, 2) 
For x = 1 To sayi 
If tabu(k, 1) <> objectivefunc(Bul, x) Then 
If objectivefunc(Bul, x) <= degiskenl Then 
h = objectivefunc(Bul, x) 
If degiskenl < degisken2 Then 
degisken2 = degiskenl 
degiskenl = h 

End If 
Else 
If objectivefunc(Bul, x) <= degisken2 Then 
zu = objectivefunc(Bul, x) 
If degisken2 < degiskenl Then 
degiskenl = degisken2 
degisken2 = zu 

End If 
End If 
End If 

End If 
Nextx 
If degiskenl < degisken2 Then 
Min = degiskenl 
tabu(k +1,1) = degiskenl 
swap = degisken2 

Else 
Min = degisken2 
tabu(k +1,1) = degisken2 
swap = degiskenl 

End If 
End If 
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For i = 1 To sayi 
If objectivefunc(Bul, i) = swap Then 
y(k+l,Bul) = i 
cc = y(k+l,Bul) 

End If 
Nexti 
End If 
If sayi = 1 Then 
Bui = Bui + 1 
IfBul>RPcountThen 
Bui = Bui - RPcount 
cc = 1 

End If 
End If 

Else 
TENURE = TENURE + 1 
For i = 1 To RPcount 
oankicozum(k, i) = supportbases(i, (y(k, i))) 

Nexti 
Bui = Bui + 1 
If Bui > RPcount Then 
Bui = Bui - RPcount 

End If 
sayi = 0 
For e = 1 To numTbases 
If supportbases(Bul, e) <> Empyt Then 
sayi = sayi + 1 

End If 
Nexte 
If sayi = 2 Then 
degiskenl = objectivefunc(Bul, 1) 
degisken2 = objectivefunc(Bul, 2) 
If degiskenl < degisken2 Then 
Min = degiskenl 
tabu(k +1,1) = degiskenl 
tabu(k + 2, 2) = degiskenl 
swap = degiskenl 

Else 
Min = degisken2 
tabu(k +1,1) = degisken2 
tabu(k + 2, 2) = degisken2 
swap = degisken2 

End If 
For i = 1 To sayi 
If objectivefunc(Bul, i) = swap Then 
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y(k+l,Bul) = i 
cc = y(k+l,Bul) 

End If 
Nexti 

End If 
If sayi > 2 Then 
degiskenl = objectivefunc(Bul, 1) 
degisken2 = objectivefunc(Bul, 2) 
For x = 3 To sayi 
If objectivefunc(Bul, x) < degiskenl Then 
h = objectivefunc(Bul, x) 
If degiskenl < degisken2 Then 
degisken2 = degiskenl 
degiskenl = h 

End If 
Else 
If objectivefunc(Bul, x) < degisken2 Then 
zu = objectivefunc(Bul, x) 
If degisken2 < degiskenl Then 
degiskenl = degisken2 
degisken2 = zu 

End If 
End If 

End If 
Nextx 
If degiskenl < degisken2 Then 
Min = degiskenl 
tabu(k + 1, 1) = degiskenl 
tabu(k + 2, 2) = degiskenl 
swap = degiskenl 

Else 
Min = degisken2 
tabu(k +1,1) = degisken2 
tabu(k + 2, 2) = degisken2 
swap = degisken2 

End If 
If Min = tabu(k, 1) Or Min = tabu(k, 2) Then 
degiskenl = objectivefunc(Bul, 1) 
degisken2 = objectivefunc(Bul, 2) 
For x = 1 To sayi 
If tabu(k, 1) <> objectivefunc(Bul, x) Or tabu(k, 2) <> objectivefunc(Bul, x) Then 
If objectivefunc(Bul, x) <= degiskenl Then 
h = objectivefunc(Bul, x) 
If degiskenl < degisken2 Then 
degisken2 = degiskenl 
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degiskenl = h 
End If 
Else 
If objectivefunc(Bul, x) <= degisken2 Then 
zu = objectivefunc(Bul, x) 
If degisken2 < degiskenl Then 
degiskenl = degisken2 
degisken2 = zu 

End If 
End If 
End If 

End If 
Nextx 
If degiskenl < degisken2 Then 
Min = degiskenl 
tabu(k +1,1) = degiskenl 
tabu(k + 2, 2) = degiskenl 
swap = degisken2 

Else 
Min = degisken2 
tabu(k +1,1) = degisken2 
tabu(k + 2, 2) = degisken2 
swap = degiskenl 

End If 
End If 
For i = 1 To sayi 
If objectivefunc(Bul, i) = swap Then 
y(k+l,Bul) = i 
cc = y(k+l,Bul) 

End If 
Nexti 

End If 
If sayi = 1 Then 
Bui = Bui + 1 
IfBul>RPcountThen 
Bui = Bui - RPcount 
QC = 1 

End If 
End If 
f = 0 
For i = 1 To RPcount 
If i <> Bui Then 
s = objectivefunc(i, (y(k, i))) 

Else 
s = objectivefunc(i, cc) 
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End If 
f=s + f 
totobjforkthiteration(k) = f 
Nexti 
For d = 1 To RPcount 
If i <> Bui Then 
For n = 1 To 15 
sched(i, n) = sched(i, n) 

Nextn 
End If 
If d = Bui Then 
Forn = 1 To 15 
sched(d, n) = sched(i, n) 

Nextn 
End If 
Nextd 
If totobjforkthiteration(k) <= bestsofar Then 
bestsofar = totobjforkthiteration(k) 

End If 
End If 
If (k <> 1 And flag = True) Then 
For i = k - 1 To sss Step -1 
If cu <> True Then 
If totobjforkthiteration(k) = totobjforkthiteration(i) Then 
flag = False 
v = k - i 
hh = k + v 
cu = True 

End If 
End If 
Nexti 

End If 
Ifk = hhThen 
cu = False 
qq=l 
For i = 0 To v - 1 
If totobjforkthiteration(k - v + i) <> totobjforkthiteration(k - 2 * v + i) Then 
qq = 0 

End If 
Nexti 
If qq <> 0 Then 
Cycle = v 
flag = True 
sss = hh 
div = div + 1 
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Bui = Bui + 1 
IfBul>RPcountThen 
Bui = Bui - RPcount 

End If 
sayi = 0 
For e = 1 To numTbases 
If supportbases(Bul, e) <> Empyt Then 
sayi = sayi + 1 

End If 
Next e 
If sayi >= 2 Then 
degiskenl = objectivefunc(Bul, 1) 
degisken2 = objectivefunc(Bul, 2) 
For x = 3 To sayi 
If objectivefunc(Bul, x) < degiskenl Then 
h = objectivefunc(Bul, x) 
If degiskenl < degisken2 Then 
degisken2 = degiskenl 
degiskenl = h 

End If 
Else 
If objectivefunc(Bul, x) < degisken2 Then 
zu = objectivefunc(Bul, x) 
If degisken2 < degiskenl Then 
degiskenl = degisken2 
degisken2 = zu 

End If 
End If 
End If 
Nextx 
If degiskenl < degisken2 Then 
Min = degiskenl 
tabu(k +1,1) = degiskenl 
swap = degiskenl 
dew = degisken2 

Else 
Min = degisken2 
tabu(k + 1,1) = degisken2 
swap = degisken2 
dew = degiskenl 

End If 
End If 
For i = 1 To sayi 
If objectivefunc(Bul, i) = dew Then 
y(k + l,Bul) = i 

83 



cc = y(k+l,Bul) 
End If 
Nexti 
If sayi = 1 Then 
Bui = Bui + 1 
IfBul>RPcountThen 
Bui = Bui - RPcount 
cc = 1 

End If 
End If 
f = 0 
For i = 1 To RPcount 
If i<> Bui Then 
s = objectivefunc(i, (y(k, i))) 

Else 
s = objectivefunc(i, cc) 

End If 
f = s + f 
totobjforkthiteration(k) = f 
Nexti 
For d = 1 To RPcount 
If i<> Bui Then 
Forn = 1 To 15 
sched(i, n) = sched(i, n) 

Nextn 
End If 
If d = Bui Then 
Forn = 1 To 15 
sched(d, n) = sched(i, n) 

Nextn 
End If 
Nextd 
If totobjforkthiteration(k) <= bestsofar Then 
bestsofar = totobjforkthiteration(k) 

End If 
End If 
End If 
flag = True 

If greedy = "Y" Then 
If k <= RPcount Then 
devam = True 
For i = 1 To RPcount - 1 
If devam = True Then 
bg = 0 
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For p = 1 To RPcount - i 
If devam = True Then 
gg = True 
If tempVar(i, 3) = tempVar(i + p, 3) Then 

If devam = True Then 
If tempVar(i, 1) <> tempVar(i + p, 1) Then 
If devam = True Then 
bur = True 
For hm = k To i Step -1 
If tempVar(saz(hm -1), 1) = tempVar(i + p, 1) Then 
bur = False 
If bur = False Then 
hm = i 

End If 
End If 
Next hm 
If i + p <= saz(k -1) And bur = False Then 
p = p+l 
bg = bg + 1 
gg = False 

End If 
If gg = True Then 
If tempVar(saz(k - 1), 1) <> tempVar(i + p, 1) Then 
If tempVar(i, 6) <> tempVar(i + p, 6) And tempVar(i, 1) <> tempVar(i + p, 1) 

Then 
If tempVar(saz(k - 1), 1) <> tempVar(i + p, 1) Then 
If tempVar(i, 6) <> tempVar(i + p, 6) Then 
If tempVar(i + p, 2) = tempVar(i + p + 1, 2) Then 
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10) 
ss = tempVar(i + p, 1) 
vv = 0 
r = i + p 
Forff = rTo 1 Step-1 
If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 
If tempVar(vv, 10) + fark < tl Then 
tempVar(i + p, 6) = tempVar(i, 6) 

While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
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tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
vv = vv + 1 

Wend 
devam = False 
saz(k) = i + p 

End If 
Else 
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10) 
ss = tempVar(i + p, 1) 
vv = 0 
r = i +p 
Forff = rTolStep-l 
If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 
If tempVar(vv, 10) + fark < tl Then 
tempVar(i + p, 6) = tempVar(i, 6) 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
vv = vv + 1 

Wend 
devam = False 
saz(k) = i + p 

End If 
End If 

Else 
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10) 
ss = tempVar(i + p, 1) 
vv = 0 
r = i + p 
Forff = rTol Step-1 
If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 
If tempVar(vv, 10) + fark < tl Then 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
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tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
tempVar(vv, 6) = tempVar(i, 6) 
vv = vv + 1 

Wend 
devam = False 
saz(k) = i + p 

End If 
End If 
End If 
End If 

Else 
End If 
End If 

End If 
End If 

End If 
End If 

End If 
Nextp 

End If 
Next i 
For n = 1 To RPcount 
For ii = 1 To 15 
bestSol(n, ii) = tempVar(n, ii) 
sched(n, ii) = tempVar(n, ii) 

Next ii 
Nextn 

Else 

For i = 1 To RPcount 
If numb(i) > 1 Then 
geci(l) = tempVar(i, 3) 
geci(2) = tempVar(i, 4) 
geci(3) = tempVar(i, 7) 
geci(4) = tempVar(i, 11) 
geci(5) = tempVar(i, 5) 
For zi = 1 To numb(i) 
If geci(l) <> supportbases(i, zi) And geci(l) <> supportbases(Bul, cc) Then 
tempVar(i, 3) = supportbases(i, zi) 
tempVar(i, 4) = DV(RPind(i, zi), 4) 
tempVar(i, 7) = DV(RPind(i, zi), 5) 
tempVar(i, 11) = DV(RPind(i, zi), 12) 
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tempVar(i, 5) = tempVar(i, 8) - (tempVar(i, 11) / tankers(3, 3)) 
devam = True 
If devam = True Then 
bg = 0 
sal = False 
For p = 1 To RPcount - i 
If sal = False Then 
If devam = True Then 
gg = True 
If tempVar(i, 3) = tempVar(i + p, 3) Then 
If devam = True Then 
If tempVar(i, 1) <> tempVar(i + p, 1) Then 
If devam = True Then 
bur = True 
For hm = k - RPcount To 1 Step -1 
If tempVar(saz(k - 1), 1) = tempVar(i + p, 1) Then 
bur = False 
If bur = False Then 
hm=l 

End If 
End If 
Next hm 
If i + p <= saz(k - 1) And bur = False Then 
p = p + l 
bg = bg + 1 
gg = False 

End If 
If gg = True Then 
If tempVar(i, 6) <> tempVar(i + p, 6) Then 
If tempVar(i + p, 1) = tempVar(i + p + 1, 1) Then 
If tempVar(i + p, 2) = tempVar(i + p + 1, 2) Then 
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10) 
IffarkoOThen 
ss = tempVar(i + p, 1) 
vv = 0 
r = i + p 
Forff = rTo 1 Step-1 
If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 
If tempVar(vv, 10) + fark < tl Then 
tempVar(i + p, 6) = tempVar(i, 6) 
While tempVar(vv, 1) = gorev 
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tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
vv = vv + 1 

Wend 
devam = False 
saz(k) = i + p 

End If 
End If 
Else 
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10) 
If fark <> 0 Then 
ss = tempVar(i + p, 1) 
vv = 0 
r = i +p 
Forff = rTol Step-1 
If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 
If tempVar(vv, 10) + fark < tl Then 
tempVar(i + p, 6) = tempVar(i, 6) 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
vv = vv + 1 

Wend 
devam = False 
saz(k) = i + p 

End If 
End If 
End If 

Else 
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10) 
If fark >0 Then 
ss = tempVar(i + p, 1) 
vv = 0 
r = i + p 
Forff = rTol Step-1 
If tempVar(ff, 1) = ss Then 
vv = ff 
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End If 
Next ff 
gorev = tempVar(vv, 1) 
If tempVar(vv, 10) + fark < tl Then 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
vv = vv + 1 

Wend 
devam = False 
saz(k) = i + p 

End If 
End If 
End If 
End If 

Else 
End If 
End If 
End If 

End If 
End If 

End If 
If saz(k) <> Empty Then 
sal = True 
p = RPcount - i 

End If 
End If 
Nextp 

End If 
Else 
End If 
If sal = True Then 
i = RPcount 

End If 
If saz(k) = Empty Then 
tempVar(i, 3) = geci(l) 
tempVar(i, 4) = geci(2) 
tempVar(i, 7) = geci(3) 
tempVar(i, 11) = geci(4) 
tempVar(i, 5) = geci(5) 

End If 
Next zi 

End If 
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Nexti 

'asagisi fizibilite 

For i = 1 To RPcount 
ger = False 
For kl = i + 1 To RPcount 
If ger = False Then 
If tempVar(i, 6) = tempVar(kl, 6) And tempVar(i, 3) = tempVar(kl, 3) Then 
taf = kl 
If kl < RPcount Then 
ger = True 

End If 
End If 

End If 
If ger = True Then 
If tempVar(i, 1) = tempVar(taf, 1) Then 
If tempVar(i, 3) = tempVar(taf, 3) Then 
tempVar(taf, 6) = tempVar(taf, 6) + 1 
ger = True 

End If 
Else 
If tempVar(i, 3) = tempVar(taf, 3) Then 
If tempVar(taf, 5) - tempVar(i, 5) -10 < 0 Then 
fark = tempVar(i, 5) + 10 - tempVar(taf, 5) 
ss = tempVar(taf, 1) 
vv = 0 
r = taf 
Forff = rTolStep-l 
If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
vv = vv + 1 

Wend 
End If 

End If 
End If 

End If 
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If ger = True Then 
ger = False 
kl = taf 

End If 
Next kl 
Nexti 

End If 

'asagisi ayni gorevlerde kuyruk numarasini esitliyor 

If saz(k) = Empty Then 
For mmm = 1 To RPcount - 1 
If devam = True Then 
For z = 2 To RPcount 
If devam = True Then 
If tempVar(mmm, 1) <> tempVar(mmm + z, 1) Then 
If tempVar(mmm, 3) = tempVar(mmm + z, 3) And tempVar(mmm, 6) = 

tempVar(mmm + z, 6) Then 
If tempVar(mmm + 1, 1) <> tempVar(mmm + z + 1, 1) Then 
If tempVar(mmm +1,3) = tempVar(mmm + z + 1, 3) And tempVar(mmm + z - 1, 

6) <> tempVar(mmm + z + 1, 6) Then 
fark = (tempVar(mmm, 5) + 10) - tempVar(mmm + z, 5) 
ss = tempVar(mmm + z, 1) 
vv = 0 
r = mmm + z 
Forff = rTo 1 Step-1 
If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 
If tempVar(vv, 10) + fark < tl Then 
tempVar(mmm + z + 1, 6) = tempVar(mmm + 1,6) 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
vv = vv + 1 

Wend 
devam = False 
saz(k) = mmm + z + 1 
End If 
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End If 
End If 

End If 
End If 
If saz(k) <> Empty Then 
devam = False 

End If 
End If 
Nextz 

End If 
Next mmm 

End If 
For n = 1 To RPcount 
For ii = 1 To 15 
bestSol(n, ii) = tempVar(n, ii) 
sched(n, ii) = tempVar(n, ii) 

Next ii 
Nextn 

Else 

For mj = 1 To adasize 
Ifk>10Thenmj = 2 
Ifk>20Thenmj = 3 

devam = True 
For g = ada(mj, 2) To RPcount - 2 

hd = tempVar(g, 3) 
saz(k) = Empty 
For gh = 1 To RPcount - g 
If fdt = True Then 
saz(k - 1) = 1 
fdt = False 

End If 
If devam = True Then 
If saz(k -1) > gh Then 
gh = saz(k - 1) 

End If 
If tempVar(g, 6) = tempVar(g + gh, 6) And tempVar(g, 3) = tempVar(g + gh, 3) And 

tempVar(g, 1) = tempVar(g + gh, 1) Then 
x = tempVar(g, 3) 
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For hj = 1 To numTbases 
If tankBases(hj, 1) = x Then 
nu = tankBases(hj, 5) 
If tempVar(g + gh, 6) + 1 <= nu Then 
tempVar(g + gh, 6) = tempVar(g + gh, 6) + 1 

Else 
tempVar(g + gh, 6) = tempVar(g + gh, 6) + 1 - nu 

End If 
saz(k) = g + gh 
gh = RPcount - g 
g = RPcount 
hj = numTbases 
devam = False 

End If 
Next hj 

Else 
If tempVar(g, 6) = tempVar(g + gh, 6) And tempVar(g, 3) = tempVar(g + gh, 3) And 

tempVar(g, 1) <> tempVar(g + gh, 1) Then 
If devam = True Then 
ss = tempVar(g + gh, 1) 
r = g + gh 
Forff = rTolStep-l 
If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 

If tempVar(g + gh, 1) = tempVar(g + gh + 1, 1) And tempVar(g + gh, 3) = tempVar(g 
+ gh + 1, 3) And tempVar(g + gh, 6) = tempVar(g + gh + 1, 6) Then 

tempVar(g + gh + 1, 6) = tempVar(saz(k -1), 6) + 1 
If tempVar(g + gh + 1, 6) > nu Then 
tempVar(g + gh + 1, 6) = tempVar(saz(k), 6) + 1 - nu 

End If 
saz(k) = g + gh + 1 
devam = False 
fark = tempVar(saz(k - 1), 5) + 10 - tempVar(vv, 5)'- tempVar(saz(k-l), 5) 
If tempVar(vv, 10) + fark < tl Then 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
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vv = vv + 1 
Wend 

End If 

Else 
ss = tempVar(g + gh, 1) 
r = g + gh 
Forff = rTol Step-1 
IftempVar(ff, l) = ssThen 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 
fark = tempVar(g, 5) + 10 - tempVar(vv, 5)'- tempVar(saz(k-l), 5) 
If tempVar(vv, 10) + fark < tl Then 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
vv = vv + 1 

Wend 
saz(k) = g + gh 
devam = False 

End If 
End If 

End If 
End If 
End If 

End If 
Next gh 

If saz(k) <> Empty Then 

g = RPcount 
fdt = False 

Else 
g = ada(mj + l,2) 
Ifg = -lThen 
devam = True 
g = 0 

End If 
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fdt = True 

End If 
Nextg 
If saz(k) <> Empty Then 
mj = adasize 

End If 
Next mj 

For n = 1 To RPcount 
For ii = 1 To 15 
bestSol(n, ii) = tempVar(n, ii) 
sched(n, ii) = tempVar(n, ii) 

Next ii 
Nextn 

If k > RPcount Then 
For i = 1 To RPcount 
ger = False 
For kl = i + 1 To RPcount 
If ger = False Then 
If tempVar(i, 6) = tempVar(kl, 6) And tempVar(i, 3) = tempVar(kl, 3) Then 
taf = kl 
If kl < RPcount Then 
ger = True 

End If 
End If 

End If 
If ger = True Then 
If tempVar(i, 1) = tempVar(taf, 1) Then 
If tempVar(i, 3) = tempVar(taf, 3) Then 
tempVar(taf, 6) = tempVar(taf, 6) + 1 
ger = True 

End If 
Else 
If tempVar(i, 3) = tempVar(taf, 3) Then 
If tempVar(taf, 5) - tempVar(i, 5) - 10 < 0 Then 
fark = tempVar(i, 5) + 10 - tempVar(taf, 5) 
ss = tempVar(taf, 1) 
vv = 0 
r = taf 
Forff = rTolStep-l 
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If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
gorev = tempVar(vv, 1) 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
vv = vv + 1 

Wend 
End If 
End If 

End If 
End If 
If ger = True Then 
ger = False 
kl = taf 

End If 
Next kl 
Nexti 
End If 
End If 

If saz(k) = Empty Then 
For mmm = 1 To RPcount - 1 
If devam = True Then 
For z = 2 To RPcount 
If devam = True Then 
If tempVar(mmm, 1) <> tempVar(mmm + z, 1) Then 
If tempVar(mmm, 3) = tempVar(mmm + z, 3) And tempVar(mmm, 6) = 

tempVar(mmm + z, 6) Then 
If tempVar(mmm + 1, 1) <> tempVar(mmm + z + 1, 1) Then 
If tempVar(mmm +1,3) = tempVar(mmm + z + 1, 3) And tempVar(mmm + z -1, 

6) <> tempVar(mmm + z + 1,6) Then 
fark = (tempVar(mmm, 5) + 10) - tempVar(mmm + z, 5) 
ss = tempVar(mmm + z, 1) 
vv = 0 
r = mmm + z 
Forff = rTolStep-l 
If tempVar(ff, 1) = ss Then 
vv = ff 

End If 
Next ff 
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gorev = tempVar(vv, 1) 
If tempVar(vv, 10) + fark < tl Then 
tempVar(mmm + z + 1, 6) = tempVar(mmm + 1,6) 
While tempVar(vv, 1) = gorev 
tempVar(vv, 5) = tempVar(vv, 5) + fark 
tempVar(vv, 8) = tempVar(vv, 8) + fark 
tempVar(vv, 9) = tempVar(vv, 9) + fark 
tempVar(vv, 10) = tempVar(vv, 10) + fark 
w = vv + 1 

Wend 
devam = False 
saz(k) = mmm + z + 1 
End If 

End If 
End If 

End If 
End If 
If saz(k) <> Empty Then 
devam = False 

End If 
End If 
Next z 
End If 
Next mmm 

End If 
For n = 1 To RPcount 
Forii = 1 To 15 
bestSol(n, ii) = tempVar(n, ii) 
sched(n, ii) = tempVar(n, ii) 

Next ii 
Next 
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