
A REACTIVE TABU SEARCH METAHEURISTIC

EXTENSION OF THE AIR REFUELING

TANKER ASSIGNMENT PROBLEM

THESIS

Omit Hilmi TEKELIOGLU, First Lieutenant, TUAF

AFIT/GOR/ENS/01M-16

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

20010619 030

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the United States Air Force,

Department of Defense, or the United States Government.

AFIT/GOR/ENS/OlM-16

A REACTIVE TABU SEARCH METAHEURISTIC EXTENSION OF THE AIR

REFUELING TANKER ASSIGNMENT PROBLEM

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Ümit Hilmi TEKELIOGLU

First Lieutenant, TUAF, B.S.

March 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/01M-16

A REACTIVE TABU SEARCH METAHEURISTIC EXTENSION OF THE AIR
REFUELING TANKER ASSIGNMENT PROBLEM

Omit Hilmi TEKELIOGLU, B.S.
First Lieutenant, TUAF

Approved:

7. Ö-^UL^

James T. Moore, Ph.D. (Advisor)

Raymond Hill, Ph.D., Lt Col, U^A AF (Reader)

William Nanry, Ph.D., LTO(P>, US ARMY (Reader)

M<Lro\
date

) ttcUöi
date

1 Mfi&ti
date

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Moore and my readers, Lt. Col. Hill and

LTC (P) Nanry, for reading many of my works through this process. They provided all

the motivation and help I needed.

I would like to thank my wife, Özlem, and my baby-girl Nazh, for being with me

all the time. And without the help of Erhan, Hakan, Ibrahim, Kaan, and Engin this thesis

would be a difficult experience for me.

Ümit Hilmi TEKELiOGLU

IV

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS IV

LIST OF FIGURES VII

LIST OF TABLES VIII

ABSTRACT X

CHAPTER 1. INTRODUCTION 1

1.1 BACKGROUND 1
1.2 PROBLEM STATEMENT 3
1.3 RESEARCH OBJECTIVES 4
1.4 SCOPE 4
1.5 CONTRIBUTION OF RESEARCH 6
1.6 REPORT OVERVIEW 6

CHAPTER 2. LITERATURE REVIEW 7

2.1 TANKER SCHEDULING TOOLS 7
2.1.2 Hostler's Air Refueling Tanker Scheduling Tool 8
2.1.3 Quick Look Tool for Tanker Deployment 9
2.1.4 TAP Tool 10
2.1.5 AMC's Efforts on TAP Tool 13

2.2 SCHEDULING THEORY 13
2.2.1 Parallel Machine Models 14

2.2.1.1 Precedence Constraints 14
2.3 HEURISTIC APPROACHES 15

2.3.1 Tabu Search 15
2.3.2 RTS 20
2.3.3 Candidate List Strategies 21

2.3.3.1 Elite Candidate List 22
2.4 CONCLUSION 22

CHAPTER 3. METHODOLOGY 23

3.1 VERIFICATION & VALIDATION EFFORT 23
3.1.1 Coordinate Problem 24
3.1.2 Modification of the Objective Function Evaluation 24

3.1.2.1 Old Mission Evaluation 25
3.1.2.2 New Mission Evaluation 27

3.2 TABU SEARCH IMPLEMENTATION 29
3.3 REACTIVE TABU SEARCH IMPLEMENTATION 32

3.3.1 Memory Usage 38
3.4 ELITE CANDID ATE LIST STRATEGY 38

CHAPTER 4. RESULTS AND CONCLUSIONS 43

4.1 SOUTHEAST ASIA DEPLOYMENT 43
4.2 SOUTHEAST ASIA DEPLOYMENT WITHOUT GREEDY CONSTRUCTION 54
4.3 DECREASING THE AVAILABLE TANKERS FOR SOUTHEAST ASIA DEPLOYMENT 58
4.4 CONCLUSION 62

4.4.1 Problems with the TAP Tool 63

CHAPTER 5. FUTURE RESEARCH 65

5.1 RECOMMENDATIONS 65

APPENDIX A 67

BIBLIOGRAPHY 99

VI

List of Figures

Page

Figure 1: Tanker Escort of an F-16 Fighter 11

Figure 2: Tanker Escort of a B-52 Bomber 12

Figure 3: Illustration of coordinate change from point 1 to point 2 24

Figure 4: Sending one F-16 from KB AD to KAST 28

Figure 5: Sending one F-16 from KB AD to PHIK 28

Figure 6: Tanker Routes for one F-16 from KBAD to PHIK 31

Figure 7: Revised TAP Tool Flowchart 36

Figure 8: RTS Flowchart 37

Figure 9: Number of Solutions for all neighborhoods 41

Figure 10: Number of Solutions after Forming Candidate List 42

Figure 11: Southeast Asia Deployment 44

Figure 12: Initial Mission Schedule for South East Deployment in RTS 48

Figure 13: Best Mission Schedule for South East Deployment in RTS 49

Figure 14: Initial Schedule for South East Deployment in RTS without Greedy 57

Figure 15: Best Schedule for South East Deployment in RTS without Greedy 58

Figure 16: Best Schedule for South East Deployment with 5 Tankers in Each Base 61

Vll

List of Tables

Page

Table 1: Tanker deliverable fuel capacities 2

Table 2: Escort Requirements 5

Table 3: Example for a non-cycling Series 19

Table 4: Example for a Cycling Series 19

Table 5: Bases Activated for Neighborhood Scenario 39

Table 6: Bases supporting RPs for Example Deployment 39

Table 7: Objective Function Evaluations for Example Deployment 40

Table 8: Bases supporting RPs after Elite Candidate List 40

Table 9: Objective Function Evaluations after Elite Candidate List 41

Table 10: Receiver Groups for Southeast Asia Deployment 43

Table 11: Number of Aircraft on the bases used for Southeast Asia Deployment.... 45

Table 12: Initial Solution of Southeast Asia Deployment in RTS 46

Table 13: Solution of Southeast Asia Deployment after 100 iteration in RTS 47

Table 14: Timeline for Initial and Best Mission Plan in RTS 48

Table 15: Initial Mission Plan for South East Deployment in TAP Tool 50

Table 16: Initial TOD and TOD for South East Deployment in TAP Tool 51

Table 17: Final TOD and TOA for South East Deployment in TAP Tool 51

Table 18: Best Mission Plan Evaluation for South East Deployment in TAP Tool.. 52

Table 19: General Comparison of TAP Tool and RTS 53

Table 20: Initial Solution of Southeast Asia Deployment without greedy approach 55

Vlll

Table 21: Solution after 100 iteration without greedy 56

Table 22: Timeline for Initial and Best Mission Plan in RTS, without Greedy 57

Table 23: Decreasing the Number of Aircraft on the bases 58

Table 24: Initial Solution of RTS with 5 tankers in each base 59

Table 25: Best Solution after 100 Iterations with 5 tankers in each base 60

Table 26: TOD and TOA with 5 Tankers in Each Base 61

IX

AFIT/GOR/ENS/0 IM-16

ABSTRACT

The Combined Mating and Ranging Planning System (CMARPS) is the system

used by AMC to schedule air refueling for deployments from the continental US to other

parts of the world. The tool developed by Capehart (2000) provided results similar to

CMARPS in less time. Capehart's tool allows AMC to input several receiver groups

consisting of various aircraft types and numbers. Each receiver group contains a point of

origin and destination, with the option of providing one waypoint along the path, a ready

to load date (RLD) and required delivery date (RDD). The user is also able to specify the

locations of military tanker aircraft. The main goal of this tool is to assign the tankers to

the different refueling points of the receiver groups so that all receiver groups arrive

before their RDD. Secondary goals include the reuse of tankers and limiting the total

flight distance for all tanker aircraft. The main purpose of this research is to introduce a

dynamic feature of tabu search, reactive tabu search, into the tool. This method changes

tabu tenure when necessary in the hope of finding better solutions by diversifying the

search to the unexplored areas of the solution space.

A REACTIVE TABU SEARCH METAHEURISTIC

EXTENSION OF THE AIR REFUELING

TANKER ASSIGNMENT PROBLEM

CHAPTER 1. INTRODUCTION

1.1 BACKGROUND

The United States Air Force (USAF) wants to maintain a force structure prepared to

fight and win two major regional wars at approximately the same time. The 1997

Quadrennial Defense Review (QDR) reinforced and institutionalized the two war strategy

(A/TQ, 2000). In order to achieve this goal for aerial refueling missions, USAF desires a

tool that helps to schedule the deployment of its fighter/bomber aircraft to areas of

conflict around the globe. The word "deployment" refers to moving military forces so

that they are ready to respond to a crisis (Applications of Metaheuristics to Air Force

Problems, 2000).

The USAF's Air Mobility Command (AMC) typically uses tanker aircraft for

refueling the Air Force's fighter/bomber aircraft as the aircraft deploy. All tanker

operations are commanded from the Tanker Airlift Control Center (TACC) located at

Scott Air Force Base, Illinois.

The KC-135 tankers were introduced in 1957 and were intended to accompany the

B-52 bombers. In the early 1970's the Department of Defense (DoD) sought to expand its

tanker fleet by purchasing new generation wide-body commercial transports. The Air

Force selected McDonnell-Douglas' DC-10, designated for military use as the KC-10, as

an advanced tanker (Congressional Budget Office, 1982). Despite the fact that a good

many bombers have been retired over the last 40 years, the USAF still needs a large

number of tankers. With the ending of cold war, mission priorities and threat concepts of

USAF changed tremendously. Humanitarian aids and first strike forces gained

importance over other missions. For this reason, the need for tankers never decreased.

The KC-135 and KC-10 aircraft provide in-flight refueling for almost every aircraft

in the Air Force. The KC-135 Stratotankers are used for these deployments. With in-

flight refueling, non-stop flying capabilities increase greatly giving each aircraft the

ability to reach its destination before its required arrival time. The amount of fuel that

can be delivered by tanker aircraft, within a flying radius of 2,500Nm is shown in Table 1

(A/TQ, 2000).

Table 1: Tanker deliverable fuel capacities

Tanker type Fuel (pounds)
KC-135A 63,000
KC-135R 94,500
KC-135E 75,600
KC-10 162,000

As forward basing and forward mobility give way to rapid mobility from the United

States, the role of the tanker will become a critical part of almost every air operation. Air

refueling allows combat aircraft to deploy, to strike targets deep in enemy territory and

extends the time fighter aircraft can protect friendly forces from attack by enemy aircraft.

Nearly the entire USAF air refueling fleet was needed to execute the campaign

during the Air War Over Serbia (AWOS), and Lieutenant General Michael Short said that

"without tankers we could not have fought this war" (A/TQ, 2000). Due to the limited

number of tanker aircraft available compared to the number needed during an operational

deployment, not all refueling requests can be met simultaneously. This may cause some

deploying receiver groups to arrive at their deployment destinations later than scheduled.

Therefore, the allocation and scheduling of tankers is extremely important in ensuring

receivers are not tardy.

In order to compare the effort required by the Combined Mating and Ranging

Planning System, (CMARPS) to that of the Tanker Assignment Problem (TAP) tool

(Capehart, 2000), two simple mission plans were compared in Capehart's research. The

computation time for the TAP tool was significantly less than that of CMARPS. This

computational time benefit is of major interest to AMC.

1.2 PROBLEM STATEMENT

During crisis situations, air refueling tankers provide necessary support for

deployment of combat and combat support aircraft. During Operation Allied Force

(OAF), tanker aircraft transferred over 355,800,000 pounds of fuel during inflight

refuelings (A/Q, 2000). To schedule these tanker aircraft, AMC uses CMARPS. This

system provides actual tanker/receiver aircraft schedules, but it often takes a long time to

generate a schedule. For some scenarios, it may take up to two weeks to schedule tankers

and receivers for a deployment. It is desirable to find a tool that gives good solutions for

deployments in a short time when compared with CMARPS.

Another drawback of CMARPS is that it is not interoperable with AMC's airlift

simulation. Since tanker and airlift missions are interrelated and compete for limited

airbase resources, there should be some interaction between the two tools.

1.3 RESEARCH OBJECTIVES

The objective of this research is to improve TAP tool performance by using

Reactive Tabu Search (RTS). The introduction of intensification and diversification

schemes through RTS is a positive contribution of this research. The elite candidate list

strategy, which evaluates the most promising regions of the solution space in order to

decrease computation time, is also introduced.

While improving the TAP Tool, a strongly related task of the research is

verification and validation (V&V) of the TAP Tool. V&V highlights the strengths and

weaknesses of the model. Comparing tools with some small deployments does

verification and validation.

1.4 SCOPE

This problem is both an assignment and scheduling problem. KC-135 tankers need

to be assigned to receiver groups. So, this problem is an assignment problem. Since

tankers have assigned times to meet with receiver groups, it is also a scheduling problem.

The receiver groups consist of both fighter and bomber aircraft. Fighters need

tanker escort while flying over open waters. Bombers do not need escort. The aircraft

types that need tanker escort are shown as "Y", and the aircraft types that do not need

escort are shown as "N" in Table 2.

Table 2: Escort Requirements

A/OA10 Y AC130 N
AV8 Y B1 N
EA6 Y B2 N

F/A18 Y B52 N
F117 Y C141 N
F14 Y C17 N
F15 Y C5 N

F15E Y E3 N
F16 Y E8 N
F18 Y KC10 N

MC130 N
RC135 N

Factors effecting this problem include the tanker and receiver aircraft fuel capacities

and burn rates, ground speed, true air speed, altitude, deployment distances, number of

aircraft to be supported, time frames, locations of both tanker and receiver group origins

and destinations, wind, escort requirement, formation size, and crew duty limitations.

Although altitude affects the fuel burn rate, we model a nominal flight altitude.

Wind has an enormous effect on the fuel burn rate and ground speed of an aircraft, but

this research does not incorporate the effect of wind. Flying an aircraft from the

continental US to the other parts of the world is not an easy task for a pilot, as it requires

about 10-13 hours of continuous flying. Flight and duty time regulations can be

interpreted as a means of ensuring that reasonable minimum rest periods are provided to

crews (NASA Technical Memorandum, 1991). Crew duty limitations of the fighter pilots

are not accounted for, even though three hours of turn around time for the tankers is

assumed.

1.5 CONTRIBUTION OF RESEARCH

This effort provides AMC with a quick running tanker assignment tool. The

algorithm uses RTS and can serve as a starting point for a future tanker assignment tool

that can be interoperable with an airlift model.

1.6 REPORT OVERVIEW

The remainder of this thesis is organized as follows; Chapter 2 reviews the

literature. Chapter 3 reviews the verification and validation efforts that were applied to

the TAP tool and describes the methodology for solving the tanker assignment problem

with RTS. The results of this methodology are presented in Chapter 4. Finally, Chapter 5

concludes the research and discusses future research.

CHAPTER 2. LITERATURE REVIEW

This chapter begins with the introduction of the tanker scheduling tools. Then

comes the basic principles of scheduling theory, and continues with the detailed

explanations of heuristic search techniques such as tabu search, reactive tabu search, and

elite candidate list strategies.

2.1 TANKER SCHEDULING TOOLS

A limited amount of research has been accomplished in this area. The first work is

AMC's CMARPS. Hostler (1987) tried to schedule Strategic Air Command's (SAC) air

refueling tanker fleet by using a preemptive goal programming approach. The other work

is Russina, Ruthsatz, and Russ's Quick Look Tool for Tanker Deployment. Capehart

extended the Quick Look Tool and developed the TAP Tool. AMC performed the most

recent work in this area by incorporating a user-friendly interface to the TAP Tool.

CMARPS and the Quick Look Tool were good to some extent, but they had serious

drawbacks, i.e. long runtimes, and not accounting for tankers located at different bases.

Even though the TAP tool has some drawbacks, it certainly produces high quality

solutions given the short time to find those solutions. The TAP tool is very attractive

since it has decreased runtime compared to the other models. AMC worked on the TAP

Tool, introduced a new spreadsheet, and made the tanker input easier for the user to

access.

2.1.1 CMARPS

AMC uses CMARPS for scheduling tanker aircraft. This model was introduced in

1982 and assigns specific tankers to refueling points. The mission routing determines the

fuel requirements for the receiver group. CMARPS routes the mission considering the

following criteria: avoid restricted airspace, minimize threat exposure, deconflict routes

in a strike zone, and satisfy time over targets. Once the fuel requirements are determined,

CMARPS assigns tankers to meet the requirements. CMARPS does this by minimizing

use of tanker resources, minimizing tanker fuel consumption, using air refuelable tankers,

regenerating tankers for tanker reuse, and satisfying the abort base requirements. Once

the tanker assignments are made, CMARPS simulates the aircraft mission using formulas

for winds and fuel consumptions to generate a final mission schedule and flight plan

(Logicon, 1996).

2.1.2 Hostler's Air Refueling Tanker Scheduling Tool

Hostler attempted to schedule SAC's air refueling tanker fleet to perform more than

one refueling mission during a flight. He used a preemptive goal programming approach

by using three priority levels. He considered three objectives: maximize the number of

tanker requests satisfied, maximize the number of category B requests satisfied, and

minimize the total flight time to perform all the missions.

Each request for a tanker is prioritized based on the type of training mission

conducted by the receiver aircraft. Category A training is normal recurring air refueling

training. Category B training is in support of formal course training, exercises,

predeployment air refueling, deployments, rotations, and tests (Air Force Regulation,

1:2-3).

A preemptive goal programming approach is used to solve the scheduling problem.

This means that the desired goals to be achieved, when scheduling the tankers to the

requests, are identified and prioritized according to their perceived importance. When

solving the goal program, each of the objectives is optimized in order of priority, with the

highest priority objective being optimized first (Winston, 1994).

Hostler developed a preprocessor to transform the inputs from the tanker and

receiver scheduling units into a usable format executable by the mixed integer

programming package. This preprocessor determined all of the possible refuelings that

could take place, computed the flight times of the missions, and determined all of the

variables to be used in the constraints and objective functions. By using a list of flight

time constraints, all of the refuelings that are not possible are sifted out before they reach

the integer program. This sifting allowed the integer program to work with only those

refuelings that are possible.

2.1.3 Quick Look Tool for Tanker Deployment

Russina, Ruthsatz, and Russ (1999) provided a prototype tool to evaluate tanker

allocation for the aircraft deployment mission. Their Quick Look Tool makes basic

assumptions regarding aircraft capabilities and interactions between receiver groups and

tankers. The Quick Look Tool functions as a relatively simple tool for modeling and

predicting air refueling tanker capabilities for supporting deployment of combat and

combat support aircraft. The AMC tanker-scheduling problem involves a wide scope of

system variables, constraints, and potential analysis areas. The example provided by

Russina, Ruthsatz, and Russ presents an in-depth explanation of the deployment issues

associated with tanker deployment.

The issues of tanker availability and reusing tankers are very important in

scheduling a complex deployment. The scheduling precision in the Quick Look Tool is in

terms of days, but it is more desirable to schedule missions in terms of hours or minutes.

The user interface involves a Microsoft Excel Workbook with ten worksheets. All

calculations made by the Quick Look Tool are done via Excel macros written in Visual

Basic for Applications code. The current Quick Look Tool accounts for tanker

availability on a day-by-day basis, and does not consider the tankers located at separate

bases. These two issues are the major deficiencies in the Quick Look Tool.

2.1.4 TAP Tool

The Quick Look Tool accounted for tanker availability on a day-by-day basis, but it

did not consider tankers located at separate bases. Capehart's research extended the

approach, increasing the tanker's capability to multiple origins. The scheduling precision

in the TAP Tool is in terms of minutes no matter how complex the deployment is.

Due to the complexity of deploying large numbers of receiver aircraft, and

scheduling them in terms of minutes, a heuristic is required to obtain solutions in a

reasonable length of time. Capehart used a tabu search (TS) method to solve this tanker

assignment problem.

10

In order to illustrate the tanker aircraft's route we should know what kind of

receiver aircraft needs refueling, because a tanker aircraft's route differs according to the

type of receiver aircraft. For a fighter aircraft, the tanker aircraft reaches the refueling

point (RP), refuels the receiver aircraft, escorts them to the next refueling point or the

final destination of the receiver aircraft, and returns to its original take-off base. An

example scenario is created to illustrate the tanker aircraft's route is shown in Figure 1.

The mission consists of sending an F-16 from Barksdale AFB (KBAD) to the Port of

Astoria (KAST).

If the receiver type classifies as heavy, the tanker aircraft's route differs slightly. In

this situation the tanker aircraft just refuels the heavy and returns to its base of origin.

This is illustrated when sending one B-52 from Elmendorf AFB (PAED) to King Khalid

AFB (OEKK), which is in Saudi Arabia. This is shown in Figure 2.

._^-^:,_.Vv...,„,'•--■:
x »»■.--—'"I1"

KAST -JR KSKA H

FW i

'i

_ji
.„ ——S

*m.' jKMuol [RPT

i >»■«».

j KSUU

v. .,--•!

- 1

•J

^-/iäL -I*

>■'

m
KBAD

&

Figure 1: Tanker Escort of an F-16 Fighter

11

■;"7\

v

Figure 2: Tanker Escort of a B-52 Bomber

12

2.1.5 AMC's Efforts on TAP Tool

Once Capehart finished his efforts, AMC continued working on the TAP Tool.

AMC divided the "Aircraft Performance" worksheet into two separate worksheets named

"Receiver Aircraft Performance", and "Tanker Aircraft Performance". They created the

ability to change the available tanker bases and number of tanker aircraft at them, by

adding a table in the "Input" worksheet. These changes help the user easily make changes

to the number of available tanker aircraft and tanker bases. There are no important

changes in the running of the original TAP Tool.

2.2 SCHEDULING THEORY

Scheduling concerns the allocation of limited resources to tasks over time. It is a

decision making process that has as a goal the optimization of one or more objectives

(Pinedo, 1995). Scheduling impacts almost every military operation. Flight scheduling is

the most common for Air Force operations.

Resources and tasks may take many forms. Resources might be machines in a

workshop, tanker aircraft on a refueling mission, runways at an airfield, and so on. The

tasks may be operations on an assembly line, take-offs and landings at an airport, or

refuelings in the mission. Each task may have a different priority level, earliest possible

starting time, and due date. Objectives include the minimization of the completion time

of the last job, minimization of maximum tardiness, or minimization of the total number

of late tasks.

13

The basic problems in scheduling include single machine or parallel machine

problems. In real life single machine environments are rare, but analysis of single

machine models led to heuristics for more complicated machine environments (Pinedo,

1995).

2.2.1 Parallel Machine Models

A machine can be thought of as a finite resource required for completing a task,

such as a cashier in a checkout line. Parallel machines can be thought as cashiers in a

checkout line, or different tail numbered tankers for refueling points. Minimizing the

makespan is one of the most common objectives when working with parallel machines.

Makespan is equivalent to the completion time of the last job to leave the system. A

shorter makespan usually implies a high utilization of the machines. In this research we

want all the receiver groups to arrive their destinations before their RDD. We applied a

hard penalty even one of the receivers are tardy. We also want the latest receiver groups

TOD to be less than the time limit of the deployment.

2.2.1.1 Precedence Constraints

Precedence constraints may appear in a single machine or in parallel machine

environments. These require that one or more jobs must complete before another job is

allowed to start its processing.

Precedence constraints define timing requirements between activity pairs within

projects. Predecessor activity must end before its successor activity may start. During

14

refueling the same tail numbered tanker cannot meet the fuel requirements of two

different missions at the same time.

2.3 HEURISTIC APPROACHES

Heuristic methods can be considered solving a mathematical problem by an

intuitive approach (Silver et al., 1980). Heuristic algorithms provide near-optimal

solutions to difficult problems in less time when compared with direct, analytic methods.

A local search heuristic starts from an initial solution and tries to obtain a better one in an

iterative way by searching the neighborhood of the current solution. A fast near-optimal

solution to exact problems makes more sense than a time consuming exact solution to an

inexact problem (Zanakis and Evans, 1981). Previous research on the tanker assignment

problem applied tabu search. This research uses reactive tabu search, an extension of TS.

2.3.1 Tabu Search

Introduced by Glover (1986), TS is an iterative procedure for solving large

combinatorial optimization problems. TS has proven to be extremely successful in

solving to optimality or near-optimality a variety of classical and practical problems

(Glover, 1990). Some basic concepts used in TS are a move, a neighborhood, candidate

lists, the tabu list, intensification and diversification. Specific definitions for these terms

change from problem to problem.

Two key aspects characterize many applications of TS. One of them is TS is used to

complement local, and neighborhood search. The other one is the main modifications to

local search are obtained through the prohibition of selected moves available at the

15

current point. Local search is effective if the neighborhood is appropriate to the problem

structure, but its effectiveness stops as soon as the first local optimal solution is

encountered and no improving moves are available. TS continues the search beyond the

first local optimal solution without wasting the work already completed, as is the case if a

new local search is initiated from a different starting point. TS enforces appropriate

amounts of diversification to prevent the search trajectory from remaining confined near

a given local optimal solution (Ben-Daya, Al-Fawzan, 1998).

In some cases, the solution phase of a specific problem may get trapped at a local

optimum. TS is designed to escape the trap of local optimality (Glover, 1990). An

algorithm is needed that recognizes that the procedure is at a local optimum and drives

the search away from the local optimum. In other words, TS should have its own

weapons to get away from local optimums. Examining how recently or how frequently

solution attributes are encountered triggers those weapons. TS uses flexible memory

structures to explore the solution space more thoroughly than by rigid memory systems or

memoryless systems (Glover, 1990).

The tabu search algorithm "moves" through the solution space in search of good

solutions. When the algorithm leaves one solution and visits another, this is called a

"move". Specifically, the search examines a neighborhood of a given solution. This

examination does not depend on randomization (Glover, 1986). Move definition is very

problem specific. Examples of moves are changing the value assigned to a variable,

adding or deleting an element from a set, or interchanging the position of two jobs on a

machine, and so on (Glover, 1990). The set of potential moves from the current solution

that the TS algorithm can operate on is called a move neighborhood.

16

Move neighborhood size depends on the problem type and the move definition. For

illustrative purposes, suppose we have a deployment, which has only one refueling point,

and again suppose that only tanker Air Force Bases (AFBs) A, B, and C can support that

refueling point. We define a move as replacing a tanker assigned to the refueling point

with another tanker within range that can also support that refueling point. For this

specific problem the neighborhood structure is composed of A, B, and C AFBs. If we

choose AFB A as a supporting base for the refueling point, the possible moves include:

swapping AFB A with AFB B, or swapping AFB A with AFB C. As the number of

supporting bases and the number of refueling points increase, the size of the

neighborhood grows dramatically.

Candidate list strategies decrease neighborhood search time and increase the

number of iterations the algorithm performs per unit time. A candidate list is a subset of

the entire neighborhood. Determining the best admissible candidate is a critical step. It

might be found randomly or based on some predetermined rules. The evaluation of a

move can be based on the change produced in the objective function value (Glover,

1990). Glover advocates the use of rules to determine candidate lists, stating, "efficiency

and quality can be greatly affected by using intelligent procedures for isolating effective

candidate moves" (Glover and Laguna, 1997: 343).

Tabu search uses memory extensively for many different purposes, one of which is

to prevent cycling with a "tabu list". The tabu list is closely related to the short-term

memory component of TS, and forms the core of TS (Glover, 1990). A tabu list usually

consists of a list of moves, or their attributes the search has recently encountered. The

moves on the tabu list cannot be revisited for a specified number of iterations called the

17

tabu tenure. Once a move has been on the tabu list for a number of iterations equal to the

tabu tenure, it is removed from the list and is again a valid move choice. The size of the

list can either be fixed or variable (Ben-Daya, Al-Fawzan, 1998). Checking tabu status is

the first step in screening for admissibility of moves (Glover, 1990). Tabu lists may force

the tabu search algorithm to make an unimproving move if all the moves that improve the

objective function value are on the tabu list.

An intensification strategy takes advantage of the idea that "good solutions at one

level are often found close to good solutions at an adjacent level" (Glover and Laguna,

1997: 138). TS uses flexible memory for intensification. If the search encounters a good

solution, it may be desirable to intensify the search within the local area in hopes of

finding an optimum. Intensification strategies reinforce move combinations and solution

features historically found good (Glover, 1990). An elite solution is a good solution

found and saved for future exploration. It is a good idea to keep a rank ordered list of the

best solutions found so far so that the algorithm knows what solutions to visit for

intensification purposes. Once the intensification phase has been completed, TS may

terminate or start a diversification phase.

There are times when the tabu search algorithm will get stuck in an unproductive

region of the solution space. The algorithm needs something more than the tabu list to

escape these bad regions of the solution space. Long-term memory operates primarily as

a basis for diversifying the search (Glover, 1990 and Lokketangen and Glover 1998). If a

search begins cycling within, and cannot escape a region, it needs some triggering event

forcing the search to another region. Cycling is described returning to past solutions or

revisiting past sequences of solutions. Cycling is unproductive so mechanisms in TS are

used to prevent it. First a procedure is needed to identify cycling, and as soon as it detects

cycling, it forces the algorithm to diversify to other regions of the solution space. Two

different number series are shown in Tables 3 and 4. Table 3's series is an example of a

non-cycling while Table 4's series is an example of cycling.

Table 3: Example for a non-cycling Series

10 20 30 10 20 10 30

Table 4: Example for a Cycling Series

10 20 30 10 20 30 10

The numbers represented in Table 4 are cycling. The numbers 10, 20, and 30 are

repeating themselves once again, making the cycle period 3 for this series.

In many applications, the short-term memory component itself produces high

quality solutions. However, long-term memory might be needed to obtain better results

for complex problems (Skorin-Kapov, 1989). The main difference between

intensification and diversification is that during an intensification stage, the search

focuses on examining neighbors of elite solutions, while the diversification stage

encourages the search process to examine unvisited regions and to generate solutions that

differ from those seen before (Glover, 1990). Intensification requires short-term memory,

while diversification uses long-term memory to accomplish its purpose.

19

2.3.2 RTS

RTS was developed by Battiti and Tecchiolli (1994), and can be considered as a

useful blend of intensification and diversification. In the RTS algorithm, by examining

the solution quality, the tabu tenure is automatically adjusted to control the search. This

allows the search to move between intensification and diversification (Battiti, 1996:61).

The tabu tenure is learned automatically by reacting to the occurrence of cycles (Battiti,

Tecchiolli, 1994).

Some tabu search implementations are based on the fact that cycles are avoided if

the repetition of previously visited configurations is prohibited (Battiti, 1996 and Battiti

and Tecchiolli, 1995). The reverse elimination method (REM) is an example of this.

REM can be described as a kind of strict tabu search where the only local movements that

become tabu are those that would lead to previously visited solutions. But this method

may converge to a good solution very slowly if the suboptimal solution is surrounded by

large basins of attractions. For this reason, the proper choice of list size is very important

to the success of the algorithm. Actually, more robust schemes are based on a randomly

varying list size, but this is problem specific and variations on the list size must be

prescribed (Battiti, Tecchiolli, 1994 and Lokketangen and Glover 1998).

Some problems require a careful selection of parameters to find a good solution.

This may be achieved either from a deep knowledge of the problem or by a simple trial

and error process (Battiti, 1996). RTS changes tabu tenure according to the quality of the

search. Solution quality is a function of the length of time a move remains tabu.

Generally, tabu tenure starts out small and grows rapidly if cycling occurs. Tabu list size

decreases gradually as cycling is diminished.

20

The use of RTS requires a mechanism to properly identify when the search has

cycled. Hashing functions, as described by Glover and Laguna (1997:246), are widely

used and considered a fast, efficient way to determine cycling in complicated problems.

The overriding purpose of any hashing function is to enable a tabu search algorithm to

detect whenever it transitions to a solution that has already been visited (Carlton and

Barnes, 1996; Woodruff and Zemel, 1993). If a problem requires excessive memory

space to store all configurations, one may resort to compression techniques (Battiti,

Tecchiolli, 1994). For small problems, entire solutions can be compared (Battiti,

1996:67).

Increasing the list size is the first step when encountering previously visited

solutions. But this may not be enough to force the search trajectory to another portion of

the solution space. There must be another mechanism that counts the number of

configurations that are repeated many times. If this number exceeds a predetermined

threshold, a diversification step is triggered.

2.3.3 Candidate List Strategies

The simplest candidate list strategy is to examine the full neighborhood of available

moves (Lokketangen and Glover, 1998). However, this can be an expensive process in

terms of computation time. The purpose of introducing candidate lists is to decrease the

neighborhood structure, so that reaching a better solution is improved by not spending

time on all neighborhood evaluations. Candidate list strategies include: aspiration plus

strategy, elite candidate list strategy, successive filter strategy, sequential fan candidate

21

list strategy, and bounded change candidate list strategy. The tool implemented in this

research applies the elite candidate list strategy.

2.3.3.1 Elite Candidate List

The elite candidate list approach builds a list of good solutions by saving certain

good solutions encountered during the tabu search. Periodically the current best move

from the elite list is selected and tabu search is restarted. The elite candidate list process

continues adding to the list and periodically restarting the search. This technique is

motivated by the assumption that good solutions may be revisited and their

neighborhoods, searched more thoroughly, may yield better solutions (Glover and

Laguna, 1997:63).

2.4 CONCLUSION

Intelligent and aggressive use of candidate lists can speed up the search by forcing

an evaluation of a subset of the neighborhood. TS was chosen as the method for this

research. RTS is a dynamic procedure that changes the tabu tenure when required.

Introducing RTS represents major progress for this research. The basic purpose is to

further decrease the solution time without reducing the solution quality.

22

CHAPTER 3. METHODOLOGY

This chapter describes the verification and validation effort applied to the TAP

Tool, and the specifics of the reactive tabu search used to find solutions to the aerial

refueling missions during deployments. The first section describes the verification and

validation effort done by correcting the coordinate problems, and modifying the objective

function formulation. The second section concerns the implementation of reactive tabu

search and elite candidate list strategy.

3.1 VERIFICATION & VALIDATION EFFORT

After Capehart (2000) composed the TAP Tool, AMC began to work on the tool.

They added some coding to the original TAP Tool. Their effort did almost nothing to the

execution of the original TAP Tool, although there were some problems with the TAP

Tool. First of all, there was a coordinate problem for some deployments. The second

basic problem was choosing the wrong tanker bases for some deployments. Other minor

problems had already been corrected. For example in some deployments, there was no

answer at all. However, adding overseas tanker AFBs to the original composition of the

tool solved this difficulty.

23

3.1.1 Coordinate Problem

In one of the deployments, we encountered a coordinate problem. When we sent

one B-52 from Barksdale AFB (KBAD) to Andersen AFB (PGUA), the tool was

choosing refueling point 1 when it should have selected refueling point number 2 as

shown in Figure 3.

We identified an error in implementing the sign conversion for indicating direction.

In the original model the sign was positive (+) making the coordinate west, and it should

have been negative (-) making the coordinate east. After the correction, the RP moved

from 1 to 2, which is the correct coordinate.

^ ii ;?-*.;•:■>

-#-""

■*f

KBAD PI

\
tag*

mm

BK;W ; TPGUA ANDERSEN AFB 25]

spin

«IPHKHCKHAMAFBIl J

Figure 3: Illustration of coordinate change from point 1 to point 2.

3.1.2 Modification of the Objective Function Evaluation

Before discussing what was done to the objective function, it is necessary to present

the original objective function.

24

3.1.2.1 Old Mission Evaluation

There are many specified goals for this problem. One goal is to have the receiver

groups arrive at their destinations on time. This is represented by a hard constraint,

resulting in an infeasible mission plan if any receiver groups are scheduled to arrive past

their required delivery date (RDD). The second goal is to minimize the total distance

traveled by the tanker aircraft. Another possible goal is to use the fewest tankers

possible. The original objective function evaluated a mission plan using a single value

incorporating each goal, and the objective was to minimize mission evaluation:

Mission Evaluation = Distance Penalty - Reuse Bonus - Early Bonus + (Sync Penalty +

Conflict Penalty + Tardiness Penalty + Early Penalty + Negative TOD Penalty) + Tanker Index

The TS search engine primarily uses the following three values during the search

process.

Distance Penalty: For each decision variable, the distance penalty is the sum of

the distances traveled by all tankers in the current mission. The solutions with smaller

distance penalties are more attractive.

Reuse Bonus: Each time a tanker is reused in a deployment, this value is

increased.

Early Bonus: Although we are most concerned with having each receiver group

arrive by its RDD, it is valuable to have them arrive earlier. Thus, this value represents

the number of hours a receiver group arrives at its destination before its RDD.

The next set of values encourages feasibility throughout the search process.

Sync Penalty: If a receiver group requires more than one tanker at a refueling

point along its path, these tankers must arrive at that location at the same time. A heavy

25

penalty is applied when the tankers assigned to this multi-tanker refueling point are not

scheduled to arrive at the same time.

Conflict Penalty: In order to ensure that a tanker does not refuel two receiver

groups at the same time, a conflict penalty is imposed. Each tanker is given a 3-hour

turnaround period between missions. If any of the tankers in the solution break this 3-

hour separation between assignments, a conflict occurs. When this happens, a large

conflict penalty is added to the objective function.

To expedite the search process, we attempt to generate an initial feasible mission

plan. This plan is generated using a greedy construction heuristic. For each decision

variable (DV), representing a refueling point, we assign the closest tanker that has not yet

been assigned to another DV. If the maximum number of tankers at the closest base is

reached, we repeat the tanker assignments at this base. This is when a tanker conflict

may occur, in which the same tanker is scheduled for more than one refueling point at the

same time. Increasing the number of tankers at each base eliminates this conflict, but this

also increases the computation time required during the search process. Therefore, we

allow the initial solution to be infeasible for some deployment problems. When we begin

with an infeasible solution, the first goal is to reach a feasible solution. To accomplish

this, the large negative conflict penalty in the objective function encourages the TS to

generate moves to decrease the number of conflicts.

Early Penalty: The deployment is scheduled to begin at time zero. Thus, a heavy

penalty is applied when a receiver group's time of departure (TOD) is before the

beginning of the planning horizon.

26

Tardiness Penalty: In order to ensure that each receiver group arrives before its

RDD, a large penalty is applied to the objective function when a receiver group's TOD is

tardy.

Negative TOD Penalty: In the case when a receiver groups TOD is before zero,

which might happen when starting with an infeasible solution, this value directs the

search process into the feasible region. This term applies large negative values to the

missions that correct this problem, thus making those missions attractive choices for the

next mission plan.

Tanker Index: Tankers are indexed at each base. Indexing encourages using the

lower indexed tankers. We use this value for cosmetic reason only, since all tankers are

of the same type (Capehart, 2000).

3.1.2.2 New Mission Evaluation

Before explaining what is being added to the model it is important to understand

why the changes were made. To illustrate, we examine some sample deployments. The

first deployment sends one F-16 from Barksdale AFB (KBAD) to the Port of Astoria

(KAST). This deployment is shown in Figure 4. It is apparent that Mountain Home AFB

(KMUO) should support the refueling point since it is the nearest AFB to the RP (140

NM). However, the TAP Tool chose Fairchild AFB (KSKA) even though the distance

(357 NM) was much greater than Mountain Home AFB's.

27

—C-^- .,'■■--.-..,

KSKA
KAST °^

{[KSK c — "X, A

V-"—
'l

1^1

jKSUUj

<_.v-—-

! ,-*

./' i
/ \

r
i

i

..,->>

.-'-- I

I

c

Figure 4: Sending one F-16 from KBAD to KAST

KBAD

The second deployment sends one F-16 from Barksdale AFB (KBAD) to Hickham

AFB (PHIK). This deployment is shown in Figure 5. The TAP Tool chose Fairchild AFB

(KSKA) for the first RP, and Hickham AFB (PHIK) for the second RP. However, it is

obvious that March AFB (KRIV) should be chosen for the first RP.

Figure 5: Sending one F-16 from KBAD to PHIK

28

Since the tool was not choosing the correct AFBs for these simple deployments, the

objective function was modified. The term added to the objective function considers

distance for a tanker from base to the RP. The tanker index is excluded from the new

objective function. After the changes, the new minimization objective function is:

Mission Evaluation = Distance Penalty - Reuse Bonus - Early Bonus + (Sync Penalty +

Conflict Penalty + Tardiness Penalty + Early Penalty + Negative TOD Penalty) + distance from

base to RP

Distance from base to RP: This is the distance for a tanker to travel to its assigned refueling

point. Closer tanker bases are more attractive. If the tanker base is close to the RP it

receives a high value.

3.2 TABU SEARCH IMPLEMENTATION

In order to use the TAP, we first determine how to represent the solution. There

must be a tanker aircraft assigned to each refueling point, so the solution consists of those

tankers assigned to the refueling points plus the time at which the tankers take-off from

their base of origin. In addition, the tanker take-off times directly determine the times at

which the receiver groups must leave their base of origin. Thus, the receiver group take-

off times are also part of the solution.

29

We first generate the list of solution attributes, which are modified to form

different solutions. Let RG1 be the first receiver group request. We first determine if

this receiver group requires refueling. If RG1 must be refueled during its deployment,

we calculate the location for the required refueling(s). Let RGli be a decision variable

(DV) representing the first refueling point for receiver group one. Next, we check each

of the bases with tanker aircraft to determine if there exists a tanker capable of satisfying

RGl's fuel requirements. If RG1 consists of aircraft classified as "heavy," the amount of

fuel that group requires is the amount of fuel needed to successfully continue the flight to

its destination or to the next refueling point. On the other hand, if RG1 contains aircraft

classified as "fighter," then this group must have a tanker escort between refueling points.

Although "fighter" groups only require tanker escort over open water, we assume for this

model that they require tanker escort between each refueling point and their final leg of

the mission. For this type of receiver group, a tanker must be capable of traveling to the

refueling point, fulfill the receiver group's fuel requirements, escort the group to the next

refueling point, and finally return to its base of origin. The tanker routes for sending one

F-16 from KB AD to PHIK are shown in Figure 6. For each tanker capable of satisfying

the requirements at RGli, we generate a number of alternatives for the decision variable

RGli. A separate alternative is generated for each tanker and for discrete take-off times,

in one-hour increments. We generate this list of DV alternate values for all bases with

tankers capable of satisfying the fuel requirements for RGli.

30

.)]KSKA\ c

[KRJVI ---"H
KBÄ51

...■••• --..i

 ;;;*^-«-^r"'"" ' ..,»»^t-

Figure 6: Tanker Routes for one F-16 from KBAD to PHIK

Suppose that there exists no tanker with enough fuel to satisfy RGli's

requirements. In this case, we attempt to assign two tankers to this refueling point, with

each satisfying half of the off-load required of RG1. This process continues until the

appropriate number of tankers are assigned to RGli. For each tanker assigned to RGli,

a new DV is generated, with the same list of alternative choices for that DV. For

example, if two tankers are needed for RGli, then two DVs are generated, each having

the same set of alternate tankers, since both DVs have the same fuel off-load.

If RG1 requires more than one refueling point, we apply this same technique to

each of the these extra refueling points, with each of them representing another DV;

however, each tanker has only one take-off time, as opposed to the different distinct take-

off times for the tankers assigned to a first refueling point. This take-off time is a

continuous value that is based on the take-off time for the tanker assigned to the receiver

group's first refueling point.

31

This method continues for each receiver group until all refueling points and

numbers of tankers assigned to each are determined. At this point, the list of DV

alternatives represents all options for assigning tankers to receiver groups for the final

mission plan. Which of these alternatives to choose is now the focus of the search

engine.

3.3 REACTIVE TABU SEARCH IMPLEMENTATION

The user has an ability to select the initial solution by entering Y/N to the Greedy

option on the "Input" worksheet. If the user sets this value to "Y", then the greedy

heuristic forms the initial solution. Otherwise, the initial solution is constructed based on

tanker availability, not accounting for the tanker distances. Producing the initial solution

randomly causes many conflict problems. After constructing the initial solution using

either a greedy approach or randomly generating a solution, the reactive tabu search finds

all the elite solutions by simply checking the move evaluations of every support base for

every RP. Reactive tabu search changes one support base, which is in the elite candidate

list, at a time and evaluates the corresponding solution. Each solution contains the time of

refueling, place where the refueling will take place, take-off times for tankers, and tanker

bases that support the mission. All the variables are kept in an array, named "DV", for

future examinations. This DV array also contains the move evaluations for that solution.

If the selected DV is already in the solution, then we set the penalty to Big-M

(1,000,000), so that it is not chosen for the current move. Each move is evaluated by

penalizing receivers if they take off too early, for late receivers, for having the same

32

tanker aircraft take off sooner than 10 hours apart, for not having multiple first refueling

points at the same time, and rewarding if the number of conflicts has decreased.

After forming DV's for each RP, every changing point of tanker base names is

indexed by "Rpind" variable to allow easy access for future evaluations. All the decision

variable evaluations are saved to an array named "objectivefunc", and corresponding

support bases are saved to an array named "supportbases"

The number of support bases for each RP are counted, and stored to an array named

"numb". Furthermore, the minimum objective function evaluation for each RP is found

and stored in a variable "minforthatRP".

Each mission is evaluated in a very aggressive manner. The minimum values for

each RP are found and used to find the initial solution and this solution is stored. In order

to maintain the best solution found so far, a variable called "bestsofar" is created. This

variable always keeps track of the best solution found to date for the search process. This

solution is always saved in the "bestSol" array.

Now begins the process of moving between solutions. First of all, we should begin

with an explanation of the move used in this search. A move is defined as removing an

existing tanker assigned to a refueling point and replacing it with another tanker within

range to satisfy the needs of the receiver group at that refueling point.

As soon as the algorithm finds the minimum values for each RP, it indexes the

minimum RP values in order to use them in future swap operations. Moreover, the

reactive tabu search algorithm also finds the minimum among these minimum values

obtained for each RP, and uses this as a beginning move. Once the algorithm detects this

33

value, it marks the base that includes this minimum value and stores it to the variable

"Bui".

Since we found our starting move, we are ready to introduce the neighborhood

structure that is being used in this search. The RP associated with the "Bui" variable is

supported by some number of tanker bases. This value can never be more than the value

of the variable "numtbases" which is entered by the user on the "INPUT" worksheet.

This number is subject to change. Basically, it is the number of tanker bases that can be

used in a contingency.

The number of tanker bases that supports the RP forms the neighborhood structure.

Since we have our swap element, which is the minimum value for that RP, we have to

find which support base to swap with. The answer to this question forms the basis for our

reactive tabu search procedure. The base having the second minimum objective function

evaluation is chosen as the DV to swap with, if this DV is not on the tabu list for that

iteration.

As soon as the move is made, the swap element is put in a tabu list, the objective

function evaluation is recalculated, and the support bases for that mission are saved.

Now begins the basic tabu search principal of "remembering the past". In this

search, both short and long-term memory components are used in order to trigger a

mechanism in the case of finding the same solution as the previous move, or in the case

of long term cycling.

At the end of every iteration, the objective function value found on the previous

iteration is compared with the current objection function value. RTS keeps track of

recently visited solutions, in order to determine if the search is stuck in a local minimum.

34

If the search finds the same results for consecutive iterations, it diversifies the search by

randomly examining another portion of the solution space and increases the tabu tenure

by one.

More robust schemes are based on a randomly varying list size, although one must

prescribe suitable limits for its variation (Battiti and Tecchiolli, 1994:126). The tabu

tenure was initialized to one. When the search encountered repetitions, it increased the

tenure by one. The main reason for doing so is completely problem specific.

The neighborhood structure in this problem is composed of tanker bases that

support a specific refueling point. When you look closely at a neighborhood, it is obvious

that in some scenarios there are only one or two tanker bases that support a specific

refueling point. To account for this situation, it is logical to increase tabu tenure by only

one. Another reason for this is that the neighborhood structure can never exceed twelve

bases for this problem. Even though the number twelve can be increased; the number of

tanker bases supporting any deployment will be relatively small. Therefore, it is logical to

increase tabu tenure by only one. This feature allows the tool to explore the promising

regions more closely and makes the search more aggressive. To account for these small

numbers, it is logical to increase tabu tenure gradually and to decrease tabu tenure as

soon as repetitions and/or cycles are diminished.

The second memory component is long-term memory. The cycle detection

algorithm in the tool looks for a sign of cycling. At the end of every iteration, the

algorithm looks at the results of all iterations regressively. If it detects the same result in

one of the previous iterations, it tries to determine if it is a cycle. If it is a cycle, this

algorithm diversifies the search to another region of solution space by randomly

35

examining another portion of the solution space. "... Cycle avoidance is not an ultimate

goal of the search process... the broader objective is to continue to stimulate the

discovery of new high quality solutions" (Battiti and Tecchiolli, 1994:127).

Fortunately, we have the ability to illustrate all the solution space. "If a problem

requires an extensive memory space to store all configurations, one may resort to

compression techniques, i.e. hashing" (Battiti and Tecchiolli, 1994:126). We do not need

further storage requirements for hash tables. All the solutions are kept in an array. This

helps us to compare all the solutions easily. The likelihood of collision described as

meeting the exact same solution is very low; for this reason, we did not use hash tables.

The TAP tool uses three phases to arrive at an output. (See Figure 7). The three

phases consist of DV alternative generation, initial solution generation, and RTS. RTS

flowchart is shown in Figure 8.

Input

DV Alternative
Generation

Phase

Initial Solution
Generation

Phase

RTS
Phase

Output

Figure 7: Revised TAP Tool Flowchart

36

Initial Solution

Count the tanker reuse
in current solution

Find the number of
support bases for each

RP

Form the elite
candidate list by

finding the minimum
objective function

evaluation for each RP

Find the minimum
values for each RP

Put thesel Falues and
their associated tanker
bases in candidate list

Form the current
solution by using the
minimum values for

each RP

Report this solution as
the last mission plan

Find the minimum
objective function

evaluation among the
minimums for each RP

> Put that DV in tabu list

Find the minimum
among rest, which is

not tabu

Intensify^fte search
by swapping DVs

Find the new mission
evaluation

Report this solution as
the best mission plan

N

Set tabu tenure to one

Diversify the search to the
other parts of the solution

space and increase tabu tenure
by 1

Set tabu tenure to one

Output Data to
Worksheets

N

Figure 8: RTS Flowchart

37

3.3.1 Memory Usage

Explicit memory is used in this research. Explicit memory records complete

solutions visited during the search. All the solutions are kept in an array. These solutions

are used for measuring cycling in the short-term. Objective function values of

corresponding solutions are kept in another array. These values are used to check for long

term cycling.

The attributive memory component of tabu search is not used in this research.

Attributive memory records information about solution attributes that change in moving

from one solution to another.

3.4 ELITE CANDIDATE LIST STRATEGY

If a move neighborhood is too large to efficiently evaluate, a candidate list strategy

intelligently isolates "effective candidate moves, rather than trying to evaluate every

possible move in a current neighborhood of alternatives" (Glover and Laguna, 1997).

Even though the neighborhood of alternatives are not large for this problem, it is logical

to use effective candidate moves in order to speed up neighborhood evaluation and allow

the algorithm to explore more areas of the solution space in less time. This idea is

illustrated using a sample scenario. The sample mission consists of sending one B-52

from Elmendorf AFB (PAED) to King Khalid (OEKK), and one F-16 from Barksdale

(KBAD) to Andersen AFB (PGUA). The bases activated for this scenario are shown in

38

Table 5. The B-52 mission requires only one refueling. While the F-16 mission requires

five refuelings. The bases supporting these RPs and their objective function evaluations

are shown in Tables 6 and 7, respectively.

Table 5: Bases Activated for Neighborhood Scenario

Bases # of Tankers
KWRB 25
PAEI 25
KMCF 25
KSKA 25
PAED 1
KIAB 25
KMUO 25
PGUA 25
PHIK 1
KDYS 10
KRIV 10
KSUU 10

Table 6: Bases supporting RPs for Example Deployment

B-52 F-16
"IstRP IstRP 2ndRP 3rdRP 4th RP 5th RP
KMUO KMCF KRIV PGUA PGUA PGUA
KRIV KMUO KSKA PHIK
KSKA KRIV KSUU
KSUU KSKA PAED
KWRB KSUU PHIK
PAED KWRB
PAEI PAED
PHIK PAEI

PHIK

39

Table 7: Objective Function Evaluations for Example Deployment

B-52 F-16
"IstRP IstRP 2ndRP 3rdRP 4th RP 5th RP
6992 6761 3521 5198 9073 9259
6357 4826 2858 2280
6179 5306 9064
6339 5314 1605
6155 4551 2453
1151 6175
1266 6050
6485 6337

6733

Trying to allocate tankers to refueling points for this deployment results in 720

different solutions. It is obvious that some of the solutions are not attractive. In order to

no visit unattractive solutions, we introduced the elite candidate list strategy, and thus

decreased the number of possible solutions. The bases supporting these RPs and their

objective function evaluations after introducing the elite candidate list strategy are shown

in Tables 8 and 9, respectively.

Table 8: Bases supporting RPs after Elite Candidate List

B-52 F-16
IstRP IstRP 2ndRP 3rdRP 4th RP 5th RP
KWRB KMUO KSKA PGUA PGUA PGUA
PAED KRIV PAED PHIK
PAEI KSUU PHIK

40

Table 9: Objective Function Evaluations after Elite Candidate List

B-52 F-16
1stRP 1stRP 2ndRP 3rdRP 4th RP 5th RP
6155 4826 2858 5198 9073 9259
1151 5306 1605 2280
1266 4551 2453

The number of possible solutions decreased from 720 to 54 (3*3*3*2*1*1). The

number of possible solutions and their objective function evaluations are represented in

Tables 10 and 11 for all neighborhoods and for the elite candidate list neighborhood,

respectively.

Solution Space Representation

50000

o 40000

> 30000

§ 20000

•E 10000
O

0
wa>cor~-T-mocoi--->-LOC)co
LoocDT-h-cjr^-cooo-^-oj'^-o

t-T-cMCJcoco'^-'^LOLncDr^

of Solutions

Figure 9: Number of Solutions for all neighborhoods

41

Solution Space after
Candidate List

</>
0
3
(0
>

6 c
3
Li.

!Q
O

40000

30000

20000

10000

0 11111 n 111111111111111111 f r 11111111111111111111 n ii

T-h-COOLO-i-h-COO)
T- i- <M CO CO «fr -*■

Solutions

Figure 10: Number of Solutions after Forming Candidate List

When we increase the size of the problem by either increasing the number of RPs,

increasing the number of missions, or increasing the number of support bases, it is

obvious that looking at all the possible moves dramatically increases the solution time.

In chapter 4, we test our model using a large deployment. Results and conclusions

are presented.

42

CHAPTER 4. RESULTS AND CONCLUSIONS

In this chapter we tested our model. The test deployment consists of sending 11

receiver groups from the continental US to the Southeast Asia.

4.1 SOUTHEAST ASIA DEPLOYMENT

This deployment involves receiver groups departing the U.S. and arriving in

Southeast Asia. Table 12 provides a list of the 11 receiver groups shown in Figure 9.

The tanker bases activated for this deployment include McConnell, Mountain

Home, Grand Forks, Fairchild, Kadena, and Eielson, with 15 KC-135 tankers located at

each base. Tanker bases activated for this deployment are shown in Table 13. Tankers

located at these bases are capable of satisfying all the receiver groups' fuel requirements

during the deployment.

Table 10: Receiver Groups for Southeast Asia Deployment

Mission Receivers # of Receivers Origin Destination ALD RDD

1 F117 2 Holloman Osan 5

2 F15 6 Mt. Home Osan 5

3 F15 6 Elmendorf Osan 5
4 F16 6 Eielson Osan 5

5 A/OA10 6 Eielson Osan 5

6 B1 Mt. Home Andersen 5

7 B1 Ellsworth Andersen 5

8 B1 Dyess Andersen 5

9 B52 Barksdale Andersen 5

10 B52 Minot Andersen 5

11 F117 2 Holloman Osan 5

43

„ . ■■- ■'■'Ti'sgpiap^'>ls>^"

Figure 11: Southeast Asia Deployment

44

Table 11: Number of Aircraft on the bases used for Southeast Asia
Deployment

TANKER BASE ICAO CODE NUMBER OF TANKERS
McCONNELL KIAB 15

MOUNTAIN HOME KMUO 15

GRAND FORKS KRDR 15

FAIRCHILD KSKA 15

KADENA RODN 15

EIELSON PAEI 15

The tool that AMC worked on does not run the Southeast Deployment. Therefore,

we will compare the results with the TAP Tool.

The initial mission plan from this research is shown in Table 14, and this plan is

constructed by using the greedy algorithm. Reactive tabu search sought better solutions

by diversifying among the solution space through the iterations. The best mission plan

from this research after 100 iteration is presented in Table 15 (All computer runs are

made on a Pentium III 700Mhz, 128Mb RAM computer). As the iteration count increased

the number of conflicts decreased and the schedule is stretched over time. The number of

tanker aircraft used decreased from 27 to 14. The number of conflicts decreased from one

to zero after 100 iterations. The initial mission plan is not feasible since there is a conflict

between the two highlighted lines. Tanker tail #11 out of Kadena is scheduled to depart

before it has time to accomplish its first assignment and take a 3-hour maintenance

period.

45

Table 12: Initial Solution of Southeast Asia Deployment inRTS

SORTIE ID RP# ICAO CODE BASE NAME
TAKE-OFF

TIME
TANKER
TAIL#

1 KSKA FAIRCHILD AFB 6 1
2 PAEI EIELSON AFB 7.7493514 1
3 PAEI EIELSON AFB 9.44891366 2
4 RODN KADENAAB 10.378072 1
5 RODN KADENAAB 15.4611866 2

2 PAEI EIELSON AFB 6 3
2 PAEI EIELSON AFB 6 4
2 3 RODN KADENA AB 13.2606619 3
3 RODN KADENA AB 1 4
3 2 RODN KADENA AB 8.63640049 5
4 PAEI EIELSON AFB 1 5
4 PAEI EIELSON AFB 1 6
4 2 RODN KADENA AB 2.96460085 6
5 RODN KADENAAB 1 7
5 RODN KADENAAB 1 8
5 2 RODN KADENA AB 10.4902287 9
6 RODN KADENAAB 11 10
7 RODN KADENAAB 6 11
8 RODN KADENAAB 6 12
9 PAEI KADENA AB 11 7
9 PAEI KADENAAB 11 8
10 PAEI KADENAAB 6 9

KSKA FAIRCHILD AFB 6 2
2 PAEI EIELSON AFB 7.7493514 10
3 PAEI EIELSON AFB 9.44891366 11
4 RODN KADENAAB 10.378072 13
5 RODN EIELSON AFB 15.4611866 14
5 RODN KADENA AB 15.4611866 11
5 RODN KADENA AB 15.4611866 11

46

Table 13: Solution of Southeast Asia Deployment after 100 iteration in RTS

SORTIE ID RP# ICAO CODE BASE NAME
TAKE-OFF

TIME
TANKER
TAIL#

1 PAEI EIELSON AFB 2.92974044 1
2 PAEI EIELSON AFB 7.7493514 2
3 PAEI EIELSON AFB 9.44891365 3
4 RODN KADENAAB 10.378072 1
5 RODN KADENAAB 15.4611866 2

2 PAEI EIELSON AFB 17.7493514 1
2 PAEI EIELSON AFB 17.7493514 2
2 3 RODN KADENAAB 25.0100133 1
3 RODN KADENAAB 27.3736128 4
3 2 RODN KADENAAB 35.0100133 1
4 PAEI EIELSON AFB 29.4489137 2
4 PAEI EIELSON AFB 29.4489137 1
4 2 RODN KADENA AB 31.4135145 6
5 RODN KADENAAB 50.378072 7
5 RODN KADENA AB 50.378072 1
5 2 RODN KADENA AB 59.8683007 9
6 RODN KADENA AB 60.378072 1
7 RODN KADENAAB 61.4135145 6
8 RODN KADENAAB 70.378072 1
9 PAEI EIELSON AFB 39.4489137 2
9 PAEI EIELSON AFB 39.4489137 1
10 PAEI EIELSON AFB 49.4489137 1
11 KSKA FAIRCHILD AFB 57.6995623 1
11 2 PAEI EIELSON AFB 59.4489137 1
11 3 PAEI EIELSON AFB 61.1484759 2
11 4 RODN KADENA AB 62.0776342 13
11 5 RODN KADENAAB 67.1607489 14
11 5 RODN KADENAAB 67.1607489 11

There is no conflict in the best mission plan output. This plan used 14 tankers, and

was found in 13 minutes. The last receiver group to complete its trip has a TOA of 79

hours after the deployment begins. The timeline for the initial and best mission plan is

47

shown in Table 16. Scheduling of the initial and best missions on a time scale is shown in

Figures 10 and 11, respectively.

Table 14: Timeline for Initial and Best Mission Plan in RTS

SORTIE ID
INITIAL MISS. PLAN

TOA TOD
BEST MISSION PLAN

TOA TOD

1 4.5 17.2 4.5 17.2

2 4.1 15.1 15.8 26.9

3 3.5 11 29.9 37.3

4 1.09 8.5 29.5 36.9

5 1.06 12.3 50.4 61.6

6 4.05 16.2 53.4 65.6

7 1.1 14.5 56.5 69.9

8 0.7 15.1 65.1 79.5

9 4.5 19.5 33.02 48.03

10 0.5 13.8 44.01 57.2

11 4.5 17.2 56.2 68.9

INITIAL SCHEDULE FOR SOUTH EAST
DEPLOYMENT WITH GREEDY APPROACH

11
10
9

(/) 8 z 7 o
</) 6
(O 5 s 4

3
2
1

20

TIME AFTER DEPLOYMENT BEGINS (Hrs)

Figure 12: Initial Mission Schedule for South East Deployment in RTS

48

SCHEDULE FOR SOUTH EAST
DEPLOYMENT AFTER 100 ITERATIONS

WITH GREEDY APPROACH

z
g

11
10

9
8
7
6
5
4
3
2
1

_/ i

i i
1 u

1 ■
I ...»p

i •
i

1 3
i 'i

1—p
i a

I 1 ."• ' s r-

20 40 60 80

TIME AFTER DEPLOYMENT BEGINS (Hrs)

Figure 13: Best Mission Schedule for South East Deployment in RTS

When we examine the results of the TAP Tool, we see that even though the

assignment of tanker bases to the refueling points has minor discrepancies both can be

considered as correct allocations. For the TAP Tool, the latest receiver groups TOA is 75

hours after the deployment begins. Table 17 shows the resulting initial mission plan

generated by the greedy method. Table 18 displays the TOD and TOA produced by the

TAP Tool for each receiver group. The TOD and TOA values for tankers and receiver

groups are represented in hours after the deployment begins.

49

Table 15: Initial Mission Plan for South East Deployment in TAP Tool

RG# Refueling Point # Tanker Base Tanker # Tanker TOD (hours)

1 FAIRCHILD AFB 1 6.0
2 EIELSON AFB 1 7.7
3 EIELSON AFB 2 9.4
4 KADENAAB 1 10.4
5 KADENA AB 2 15.5

2 1 EIELSON AFB 3 6.0
2 1 EIELSON AFB 4 6.0
2 2 KADENA AB 3 5.7
2 2 KADENA AB 4 5.7
2 2 KADENA AB 5 5.7
2 3 KADENA AB 6 13.3

3 KADENA AB 7 1.0
3 KADENA AB 8 1.0
3 KADENAAB 9 1.0
3 2 KADENA AB 10 8.6

4 EIELSON AFB 5 1.0
4 EIELSON AFB 6 1.0
4 2 KADENA AB 11 3.0

;-----5-:.vv KADENA ABr 12 1.0
5 KADENA AB 13 1.0
5 2 KADENA AB 14 10.5

6 KADENA AB 15 11.0

7 KADENA AB 1 21.0

8 KADENA AB 1 31.0

9 EIELSON AFB 7 11.0
9 EIELSON AFB 8 11.0

10 EIELSON AFB 9 6.0
FAIRCHILD AFB 2 6.0

2 EIELSON AFB 10 7.7
3 EIELSON AFB 11 9.4
4 KADENA AB 12-Ka- 10.4
5 KADENA AB il 15.5

This initial mission plan uses of 28 tankers. Each receiver group arrives at its

destination before their RDD. However, this mission plan is not feasible since there is a

conflict between the two highlighted tankers. Tankers 11 and 12 out of Kadena are both

scheduled to depart before they have time to accomplish their first assignments and take a

3-hour maintenance period.

50

Table 16: Initial TOD and TOD for South East Deployment in TAP Tool

Receiver Group # TOD (hours) TOA (hours)

1 4.5 17.3
2 4.1 15.2
3 3.6 11.0
4 1.1 8.5
5 1.1 12.3
6 4.1 16.2
7 16.2 29.5
8 25.8 40.2
9 4.6 19.6
10 0.6 13.8
11 4.5 17.3

After 100 iterations, the TAP Tool arrives at the best mission plan found which is

presented in Table 19 and Table 20. This plan uses 13 tankers. The computation time for

that run was approximately 20 minutes (all the runs were made on a Pentium II 350Mhz,

64Mb RAM computer).

Table 17: Final TOD and TOA for South East Deployment in TAP Tool

Receiver Group # TOD (hours) TOA (hours)
1 4.5 17.3
2 49.1 60.2
3 3.6 11.0
4 1.1 8.5
5 31.1 42.3
6 19.1 31.2
7 11.2 24.5
8 60.8 75.2
9 29.6 44.6
10 10.6 23.8
11 59.5 72.3

51

Table 18: Best Mission Plan Evaluation for South East Deployment in TAP
Tool

RG# Refueling Point # Tanker Base Tanker # Tanker TOD (hours)

1 FAIRCHILD AFB 1 6.0
2 EIELSON AFB 1 7.7
3 EIELSON AFB 2 9.4
4 KADENA AB 1 10.4
5 KADENA AB 11 15.5

2 1 EIELSON AFB 5 51.0
2 1 EIELSON AFB 4 51.0
2 2 KADENA AB 3 50.7
2 2 KADENA AB 4 50.7
2 2 KADENA AB 13 50.7
2 3 KADENA AB 11 58.3

3 KADENA AB 3 1.0
3 KADENA AB 8 1.0
3 KADENA AB 13 1.0
3 2 KADENA AB 10 8.6

4 EIELSON AFB 5 1.0
4 EIELSON AFB 4 1.0
4 2 KADENA AB 11 3.0

5 KADENA AB 3 31.0
5 KADENA AB 13 31.0
5 2 KADENA AB 11 40.5

6 KADENA AB 11 26.0

7 KADENA AB 3 16.0

8 KADENA AB 13 66.0

9 EIELSON AFB 5 36.0
9 EIELSON AFB 4 36.0

10 EIELSON AFB 4 16.0

11 FAIRCHILD AFB 1 61.0
11 2 EIELSON AFB 10 62.7
11 3 EIELSON AFB 4 64.4
11 4 KADENA AB 11 65.4
11 5 KADENA AB 3 70.5

The concept of tabu tenure used in the TAP Tool is slightly different than that of

reactive tabu search's. In the TAP Tool, the user can set different values of tabu tenure,

each resulting in different solutions. In the previous research, a tabu tenure for 7 gave the

best results. But tabu tenure in reactive tabu search displays a dynamic feature. It begins

52

at a value of one and changes as cycles are encountered. For that reason we do not

compare the two tools on a tabu tenure basis. A general comparison of tools is presented

in Table 21.

Table 19: General Comparison of TAP Tool and RTS

TAP Tool RTS
Time spent 20 min 13 min
Sol. Quality Good Good
Scheduling Good Good

Tankers used 13 14
Latest TOA 75.2 79.5

"Time spent" is described as the time that the computer spends for 100 iterations of

the South East Deployment. The result of TAP Tool came from a Pentium II 350Mhz,

64Mb RAM computer. On the other hand, result of RTS came from a Pentium III

700Mhz, 128Mb RAM computer.

"Sol. Quality" is defined as allocating the correct tankers to the refueling points. In

this deployment, many of the refueling points are supported by only one base. The

tankers from Kadena AFB generally supported the refueling points over the Pacific

Ocean. This is the main reason the results are so similar. For the first refueling points of

fighter groups, the number of tanker bases supporting these refueling points increased.

This situation increased the possibility of assigning different tankers for the refueling

points. The total distance traveled by the tankers is 101.939Nm in RTS approach, but we

do not have any information about this value for the TAP Tool results. For this reason

both assignments are considered "good".

53

"Scheduling" is defined as stretching the deployment to its allowable time limits.

For this deployment ALD is 1 and RDD is 5. We have four days to complete the

deployment. Both tools finished the deployment in less than 96 hours (4 days). Latest

receiver group's TOA for both tools are around 75-80 hours after the deployment begins.

Since none of them arrived after the 96 hours of deployment limit, and both of the latest

TOA are close, both tools are considered as "good" from the scheduling perspective.

"Tankers used" is defined as the total number of different tankers used. A low value

in this field does not mean that the number of sorties flown by the tankers is low. The

actual number of sorties flown is always the same. We reward reuse tankers, which

results in a decreased number of tankers used.

"Latest TOA" is the latest time that a receiver group reaches to its destination. Our

goal is to finish the deployment before its allowable time limit. We want this value to be

less than the time limit of the deployment.

4.2 SOUTHEAST ASIA DEPLOYMENT WITHOUT GREEDY CONSTRUCTION

If the user does not prefer to use the greedy construction heuristic, then the initial

mission plan is shown in Table 22. This initial mission plan has 24 conflicts and

obviously is not a good mission plan either from the assignment perspective or from the

scheduling perspective. The best mission plan uses 10 tanker aircraft and has no conflicts

in the solution. We reached this solution in 7 minutes.

54

Table 20: Initial Solution of Southeast Asia Deployment without greedy
approach

SORTIE ID RP# ICAO CODE BASE NAME
TAKE-OFF

TIME
TANKER
TAIL*

1 KMUO MOUNTAIN HOME AFB 1
2 KMUO MOUNTAIN HOME AFB 0.94669016
3 PAEI EIELSON AFB 4.24690027
4 RODN KADENA AB 5.1760586
5 PAEI EIELSON AFB 4.3473912

2 PAEI EIELSON AFB 1
2 PAEI EIELSON AFB 1
2 3 PAEI EIELSON AFB 2.44828868
3 RODN KADENA AB 1
3 2 RODN KADENA AB 8.63640049
4 PAEI EIELSON AFB 1
4 PAEI EIELSON AFB 1
4 2 RODN KADENA AB 2.96460085
5 RODN KADENA AB 1
5 RODN KADENA AB 1
5 2 PAEI EIELSON AFB 4.5300729
6 RODN KADENA AB 1
7 RODN KADENA AB 1
8 RODN KADENA AB 1
9 KMUO MOUNTAIN HOME AFB 1
9 KMUO MOUNTAIN HOME AFB 1
10 PAEI EIELSON AFB 1

KMUO MOUNTAIN HOME AFB 1
2 KMUO MOUNTAIN HOME AFB 0.94669016
3 PAEI EIELSON AFB 4.24690027
4 RODN KADENA AB 5.1760586
5 PAEI EIELSON AFB 4.3473912

When we examine the initial solution created without using the greedy construction

heuristic, we see that even though the assignment of tanker bases to refueling points

seems good, there are many conflicts in the mission plan. The same tanker aircraft is

assigned to different kinds of missions at the same time. This is not practical. These

55

conflicts are reduced by reactive tabu search algorithm at each iteration. The final

mission plan after 100 iteration does not have any conflicts and is shown in Table 23.

Table 21: Solution after 100 iteration without greedy

SORTIE ID RP#
ICAO
CODE BASE NAME

TAKE-OFF
TIME

TANKER
TAIL#

1 KMUO MOUNTAIN HOME AFB 1 1
2 KMUO MOUNTAIN HOME AFB 0.9466902 2
3 PAEI EIELSON AFB 4.2469003 1
4 RODN KADENA AB 5.1760586 1
5 PAEI EIELSON AFB 4.3473912 2

2 PAEI EIELSON AFB 14.347391 1
2 PAEI EIELSON AFB 14.347391 2
2 3 PAEI EIELSON AFB 15.79568 3
3 RODN KADENA AB 15.176059 1
3 2 RODN KADENA AB 22.812459 2
4 PAEI EIELSON AFB 25.79568 1
4 PAEI EIELSON AFB 25.79568 3
4 2 RODN KADENA AB 27.760281 1
5 RODN KADENA AB 37.760281 1
5 RODN KADENA AB 37.760281 2
5 2 PAEI EIELSON AFB 41.290354 1
6 RODN KADENA AB 47.760281 1
7 RODN KADENA AB 57.760281 1
8 RODN KADENA AB 67.760281 1
9 KMUO MOUNTAIN HOME AFB 11 1
9 KMUO MOUNTAIN HOME AFB 11 3
10 PAEI EIELSON AFB 51.290354 1
11 KMUO MOUNTAIN HOME AFB 73.584222 1
11 2 KMUO MOUNTAIN HOME AFB 73.530912 4
11 3 PAEI EIELSON AFB 76.831122 1
11 4 RODN KADENA AB 77.760281 1
11 5 PAEI EIELSON AFB 76.931613 2

For this best solution the latest TOA is 84 hours after the deployment begins. The

timeline for initial and best mission plan is shown in Table 24. Scheduling of the initial

and best mission plan on a time scale is shown in Figures 12 and 13, respectively.

56

Table 22: Timeline for Initial and Best Mission Plan in RTS, without Greedy

SORTIE ID
INITIAL MISS. PLAN

TOD TOA
BEST MISSION PLAN

TOD TOA
1 0.6 12.05 0.6 12.05
2 0.8 10.9 12.4 23.5
3 3.5 11 17.7 25.1
4 1.09 8.5 25.9 33.3
5 1.06 12.3 37.8 49.06
6 5.9 12.1 40.8 53
7 3.8 13.3 52.9 66.2
8 4.2 14.5 62.5 76.9
9 4.6 14.9 5.3 20.3
10 4.4 13.2 45.8 59.09
11 0.6 12.05 71.9 84.6

INITIAL SCHEDULE FOR SOUTH EAST
DEPLOYMENT WITHOUT GREEDY

10
9

(/) z o
8
7

V) 6
</) 5
s 4

3
2
1

10

TIME (Hrs)

15

Figure 14: Initial Schedule for South East Deployment in RTS without Greedy

57

BEST SCHEDULE FOR SOUTH EAST
DEPLOYMENT IN RTS WITHOUT GREEDY

11J
10
9

|

co 8 1 1

z 7

co 5. 1 i
H 1

1—*

^^^^^^
2 1^^^^^^

1" t=3—7 ' ^ ^
20 40 60 80 100

TIME (Hrs)

Figure 15: Best Schedule for South East Deployment in RTS without Greedy

4.3 DECREASING THE AVAILABLE TANKERS FOR SOUTHEAST ASIA

DEPLOYMENT

We decreased the available tanker numbers from 15 to 5 at each of the bases. The

tanker bases activated for this deployment remained the same. Initial conditions are

shown in Table 25. Since we decreased the available tanker numbers, the tool produced

fewer decision variables, so the solution time decreased considerably. Initial mission plan

and best mission plan after 100 iterations are shown in Tables 26 and 27, respectively.

Table 23: Decreasing the Number of Aircraft on the bases

TANKER BASE ICAO CODE NUMBER OF TANKERS
McCONNELL KIAB 5

MOUNTAIN HOME KMUO 5
GRAND FORKS KRDR 5

FAIRCHILD KSKA 5
KADENA RODN 5
EIELSON PAEI 5

58

This initial mission plan has 15 conflicts, which are highlighted in the Table 26.

Table 24: Initial Solution of RTS with 5 tankers in each base

SORTIE
ID RP#

ICAO
CODE BASE NAME

TAKE-OFF
TIME

TANKER
TAIL*

1 KSKA FAIRCHILD AFB 6 1
2 PAEI EIELSON AFB 7.749351399 1
3 PAEI EIELSON AFB 9.448913655 2
4 RODN KADENA AB 10.37807198 1
5 RODN KADENA AB 15.46118662 2

2 PAEI EIELSON AFB 6 3
2 PAEI EIELSON AFB 6 4
2 3 RODN KADENA AB 13.26066185 3
3 RODN KADENA AB 1 4
3 2 RODN KADENA AB 8.636400492 5
4 PAEI EIELSON AFB ?v. 'i.'-;,:-v 5
4 PAEI EIELSON AFB "^i^tl^K^ 5
4 2 RODN KADENA AB 2.964600846 4
5 RODN KADENA AB 21 1
5 RODN KADENA AB 21 4
5 2 RODN KADENA AB 30.4902287 4
6 RODN KADENA AB 31 1
7 RODN KADENA AB 41 1
8 RODN KADENA AB 51 1
9 KSKA FAIRCHILD AFB 6 2
9 KSKA FAIRCHILD AFB 6 3
10 PAEI EIELSON AFB 21 1
11 KSKA FAIRCHILD AFB 6 4
11 2 KSKA FAIRCHILD AFB 6.670367819 5
11 3 PAEI EIELSON AFB 9.448913655 3
11 4 RODN KADENA AB 10.37807198 2
11 5 RODN KADENA AB 15.46118662 1
11 5 RODN KADENA AB 15.46118662 1
11 5 RODN KADENA AB 15.46118662 1

59

Table 25: Best Solution after 100 Iterations with 5 tankers in each base

SORTIE
ID RP#

ICAO
CODE BASE NAME

TAKE-OFF
TIME

TANKER
TAIL#

1 PAEI EIELSON AFB 2.92974044 1
2 PAEI EIELSON AFB 7.749351399 2
3 PAEI EIELSON AFB 9.448913655 3
4 RODN KADENA AB 10.37807198 1
5 RODN KADENAAB 15.46118662 2

2 PAEI EIELSON AFB 18.20052477 1
2 PAEI EIELSON AFB 18.20052477 2
2 3 RODN KADENA AB 25.46118662 2
3 RODN KADENA AB 22.74167149 4
3 2 RODN KADENA AB 30.37807198 1
4 PAEI EIELSON AFB 30.77707064 1
4 PAEI EIELSON AFB 30.77707064 2
4 2 RODN KADENA AB 32.74167149 4
5 RODN KADENA AB 50.37807198 1
5 RODN KADENA AB 50.37807198 2
5 2 RODN KADENAAB 59.86830068 4
6 RODN KADENA AB 65.46118662 2
7 RODN KADENA AB 69.86830068 4
8 RODN KADENAAB 75.46118662 2
9 KSKA FAIRCHILD AFB 16 1
9 KSKA FAIRCHILD AFB 16 2
10 PAEI EIELSON AFB 40.77707064 1
11 KSKA FAIRCHILD AFB 81.08311464 1
11 2 KSKA FAIRCHILD AFB 81.75348246 2
11 3 PAEI EIELSON AFB 84.53202829 2
11 4 RODN KADENAAB 85.46118662 2
11 5 RODN KADENA AB 90.54430126 1
11 5 RODN KADENAAB 90.54430126 3

This best solution uses 10 tankers. We reached this solution in 5 minutes. There are

no conflicts in this solution. Total distance traveled by all tankers is 101.371Nm. This

distance is the minimum distance that we find up to this point. We do not pass the

allowable time limits for this deployment. Latest receiver groups TOA is 92 hours after

the deployment begins. Decreasing the available number of tankers at each base

60

decreased the computation time for this deployment, but we do not know exactly how

much we should decrease the tanker numbers. Receiver group TOD and TOA values are

shown in Table 28. Schedule for this deployment is shown in Figure 14.

Table 26: TOD and TOA with 5 Tankers in Each Base

Receiver Group # TOD (hours) TOA (hours)
1 4.5 17.2
2 16.3 27.3
3 25.3 32.7
4 30.8 38.2
5 50.4 61.8
6 58.5 70.7
7 65.03 78.3
8 70.2 84.6
9 10.2 25.2
10 35.3 48.5
11 79.6 92.3

BEST SCHEDULE FOR SOUTH EAST
DEPLOYMENT WITH 5 TANKERS IN EACH BASE

</)

c/>

11 C P ■ ■ _
10

9
8
7 1 I

(j
b

i i

3 1 B

2
1

1 1

, ' ' J <* ^ <■

20 40 60 80 100

TIME (Hrs)

Figure 16: Best Schedule for South East Deployment with 5 Tankers in Each Base

61

4.4 CONCLUSION

The initial mission plan may have conflicts. It is observed that the initial solution

produced by the greedy approach has fewer conflicts when compared with the random

method. As the iteration count increased, the number of conflicts decreased in both the

TAP Tool and the revised tool.

A primary goal is that every receiver group reaches its destination before its

required delivery date. This goal is achieved in both of the tools. At the end of 100

iterations, both tools completed the deployment within its time limits.

A secondary goal is the reuse of tankers. In both tools the number of tankers used

decreased gradually. We should bear in mind that actual tanker sorties are always the

same. We reused the same tail numbered tankers by stretching the deployment to its

allowable time limits. By doing so, we had an ability to reuse some tankers.

Computer time spent for this deployment decreased from 20 minutes to 13 minutes.

The main reason behind this is the use of different computers. In any case, the time for

100 iterations is short when compared with CMARPS.

Assignment of tanker bases to refueling points by both tools is good. Even though

some of the support bases have changed for some refueling points, it is concluded that the

overall evaluation of the assignment of tankers for the missions is appropriate for both

tools.

When we decreased the number of available tankers from 15 to 5 for South East

Deployment, the time to find a solution decreased. The algorithm required fewer decision

variables. The solution quality for this deployment was better than the previous ones. We

62

do not have the ability to determine how much to decrease the available number of

tankers and still find a good solution.

By using an elite candidate list strategy, we decreased the possible number of

solutions considerably during the assignment phase. In the scheduling phase, the number

of possible solutions increased tremendously because we introduced the time factor.

4.4.1 Problems with the TAP Tool

Air Force regulations require tanker escort for fighter aircraft while crossing large

bodies of water. But tanker aircraft escort fighter aircraft even if its mission route is on

the land, so we need to use a database consisting of land formation locations.

Tankers are always required to return to their take, off base. This reduces the

capability of tanker offloading, and also reduces the total distance a tanker can escort a

mission.

A tanker is assigned to a refueling point. A tanker might be able to satisfy the fuel

requirements of a receiver group. Even in this situation, one tanker is assigned to every

refueling point of that mission.

Although high altitude jet streams affect fuel burn rates, ground speed, and true

course, it is not included in the tool.

The previous quick look tool used a third order polynomial equation to determine

the fuel burned by an aircraft. The TAP Tool determines flight distances based on fuel

flow. Because of this discrepancy, the TAP Tool does not use the fuelburn functions in

the code. Fuel burn rates can be found in flight manuals of every aircraft. This value is

63

dependent upon many factors such as altitude, true air speed, wind, etc, so it is subject to

change for different scenarios. A database for fuel burn rates would decrease the run

time, but increase the precision of the solutions.

64

CHAPTER 5. FUTURE RESEARCH

5.1 RECOMMENDATIONS

The code is written in Visual Basic for Applications (VBA) within Excel.

Translating the code to Java might decrease the computation time.

Adding wind effects into tool would improve result precision. Forming a database

for fuelburn rates for different types of receiver aircraft by using their original flight

manual values would increase the solution precision.

Using a database of land formation locations would help achieve more accurate

results, because the results for total tanker distance traveled are misleading right now.

Adding a user-friendly map, and being able to add tanker bases and flight routes on

it, would help visualize the scenarios, and help the decision makers understand the

scenarios more readily. Adding restricted airspace information, thus being able to

produce different deployment routes would be a positive contribution. Adding Gantt

charts to the output files will help the decision maker to visualize the deployment

schedule.

The ability to give weights to missions might produce more effective schedules. By

using preemptive goal programming techniques, more flexible schedules can be created.

Using probabilities for missed refueling, delayed disconnects, and aircraft

malfunctions might be added for future analyses.

Adding the ability of using KC-10 Extender for these deployments might produce

more flexible solution alternatives. The available offload of a KC-10 is almost two times

65

greater than a KC-135R. A check would need to be made on the tanker type before it is

scheduled.

An upgrade to the scheduling process would be to allow the user to interact with the

computer as it prepares the schedule.

66

APPENDIX A

ada(l, l) = initSol(l,3)
ada(l,2)=l
adasize = 1
flaga = True
For x = 2 To RPcount
For ys = 1 To adasize
If ada(ys, 1) = initSol(x, 3) Then
flaga = False

End If
Next ys
If flaga = True Then
adasize = adasize + 1
ada(adasize, 1) = initSol(x, 3)
ada(adasize, 2) = x

End If
flaga = True
Nextx

div = 0
Dim cu As Boolean
cu = False
Dim flag As Boolean
flag = True
Cycle = 0
sss = 1
hh = 0
m = 0
v = 0
For k = 1 To numlterations
TENURE = 1
bestVal = 1000000

' Display the current iteration.
Sheets("input").Cells(2, 12) = k

Skip = (k Mod modNum) + 1

' Count how many tankers are reused in the current solution.
For q = 1 To RPcount - 1

p=l
goon = True
While goon = True

If sched(q, 6) & sched(q, 3) = sched(q + p, 6) & sched(q + p, 3) Then

67

If p + q <> i And q <> i Then
currentReuse = currentReuse + 1
goon = False

End If
End If
If p = RPcount Then

goon = False
Else

p = p+l
End If

Wend
Nextq

i = l
While i < RPcount + 1

' First look at the current solution to count how many conflicts there are.

conflictNumbers = 0
currentNegTODs = 0
If CloseLook(i) = True Then

If sched(i, 2) = 1 Then

' Count how many TODs are less than zero.
If sched(i, 9) < 0 Then currentNegTODs = currentNegTODs + 1

h = 0
While sched(i + h, 1) = sched(i, 1)

For n = 1 To RPcount
If sched(n, 6) & sched(n, 3) = sched(i + h, 6) & sched(i + h, 3) And i +

hon Then
If sched(n, 5) > sched(i + h, 5) Then

tempi = (sched(n, 5) - (3 + sched(i + h, 5) + sched(i + h, 7) / 430))
Else

tempi = (sched(i + h, 5) - (3 + sched(n, 5) + sched(n, 7) / 430))
End If
If tempi < 0 Then conflictNumbers = conflictNumbers + 1

End If
Nextn
h = h + l

Wend
Else

For n = 1 To RPcount

68

If sched(n, 6) & sched(n, 3) = sched(i, 6) & sched(i, 3) And i <> n Then
If sched(n, 5) > sched(i, 5) Then

tempi = (sched(n, 5) - (3 + sched(i, 5) + sched(i, 7) / 430))
Else

tempi = (sched(i, 5) - (3 + sched(n, 5) + sched(n, 7) / 430))
End If
If tempi < 0 Then conflictNumbers = conflictNumbers + 1

End If
Nextn

End If
' If there are no problems with the current solution, don't take
' a close look at it again.
If currentNegTODs = 0 And conflictNumbers = 0 Then CloseLook(i) = False

End If

' Look at each neighbor by changing one RP at a time
TENURE =1
j = RPindex(i)
Whilej<RPindex(i + l)

' Save the current solution
For p = 1 To RPcount

Forn = 1 To 15
tempVar(p, n) = sched(p, n)

Nextn
Nextp

' Change to a new DV for this RP
sched(i, 1) = DV(j, 1)
sched(i,2) = DV(j, 2)
sched(i, 3) = DV(j, 3)
sched(i, 4) = DV(j, 4)
sched(i,6) = DV(j, 8)
sched(i,7) = DV(j, 5)
sched(i, ll) = DV(j, 12)

ind = Find(sched(i, 1), missplan, missions)
'XXXXXXXX

' If we are changing a RP other than a 1st RP, calculate the
' take-off time for this tanker.
IfDV(j, 2)<>lThen

a = 0

69

tempi = False
While tempi = False

a = a+ 1
If sched(i - a, 2) < 2 Then tempi = True

Wend
If sched(i, 1) = Empty Then
sched(i, 5) = Empty
Else
If ind = -1 Then
ind = missions
End If
sched(i, 5) = sched(i - a, 8) + (sched(i, 2) - sched(i - a, 2)) * (rpvals(ind, 6) /

recrqmts(ind, 3)) - DV(tempIndex, 12) / tankers(3, 3)
End If

Else
sched(i, 5) = DV(tempIndex, 7)

End If

' Determine the time that this refueling will take place
If sched(i, 1) = Empty Then
sched(i, 8) = Empty
Else
sched(i, 8) = sched(i, 5) + DV(tempIndex, 12) / tankers(3, 3)
End If

' If this is the first refueling point, determine when the receiver
' group will arrive at the destination
If sched(i, 2) = 1 Then

If sched(i, 1) & sched(i, 2) = sched(i + 1, 1) & sched(i + 1,2) Then
sched(i + 1,8) = sched(i, 8)

End If

' Also calculate the new take-off time for any other tankers
' assigned to other refueling points with this same RG.
n = l
While sched(i + n, 1) = sched(i, 1)

sched(i + n, 5) = sched(i, 8) + (sched(i + n, 2) - sched(i, 2)) * (rpvals(ind, 6) /
recrqmts(ind, 3)) - sched(i + n, 11)/ tankers(3, 3)

n = n + 1
Wend

TOA = ((missplan(ind, 7) - rpvals(ind, 8)) / recrqmts(ind, 3)) + sched(i, 8)
sched(i, 10) = TOA
TOD = TOA - (missplan(ind, 7) / recrqmts(ind, 3))
sched(i, 9) = TOD

70

End If

' Evaluate this new solution somehow
distPen = 0
tempi = 0
newConflict = 0
conflictPen = 0
conflictBonus = 0
latePen = 0
earl yB onus = 0
newReuse = 0
reuseBonus = 0
earlyPen = 0
negTODpen = 0
syncPen = 0

' If this is a DV already in the solution, set the penalty to Big-M
1 so that it is not chosen for the current move.
If sched(i, 3) & sched(i, 5) & sched(i, 6) = tempVar(i, 3) & tempVar(i, 5) &

tempVar(i, 6) Then
Ifi = lThen

For d = 1 To numTbases
If DV(j, 3) = tankerplacement(d, 1) Then

dd = tankerplacement(d, 2)
End If

Nextd

If dd = 1 Then
DV(j, 10) = 1000000

Else
'j=j + 15-l
DV(j, 10) = 100 * DV(j, 12)
DV(j-l,10) = DV(j, 10)

End If

Else 'if not the first rp

For d = 1 To numTbases
If DV(j, 3) = tankerplacement(d, 1) Then

dd = tankerplacement(d, 2)
End If

Nextd

71

apart

Ifdd=lThen
DV(j,9) = 0
DV(j, 10) = 100 * DV(j, 12)

Else
'j=j + 15-l
DV(j, 10) = 100 * DV(j, 12)
DV(j-l,10) = DV(j,10)

End If

End If

Else

' penalize for making the receivers take off too early.
If TOD < 0 Then earlyPen = 500000

If earlyPen <> 500000 Then

' penalize for late receivers
If sched(i, 2) = 1 Then

If Max(0, ((TOA) - 24 * missplan(ind, 6))) > 0 Then latePen = 600000
earlyBonus = 10 * Max(0, ((24 * missplan(ind, 6)) - (TOA)))

End If

If latePen <> 600000 Then
For n = 1 To RPcount

distPen = distPen + sched(n, 7)
' penalize for having the same aircraft take off sooner than 10 hours

If sched(n, 6) & sched(n, 3) = sched(i, 6) & sched(i, 3) And i <> n Then
If sched(n, 5) > sched(i, 5) Then

tempi = (sched(n, 5) - (3 + sched(i, 5) + sched(i, 7) / 430))
Else

tempi = (sched(i, 5) - (3 + sched(n, 5) + sched(n, 7) / 430))
End If
If tempi < 0 Then newConflict = newConflict + 1
If sched(i, 6) & sched(i, 3) <> tempVar(i, 6) & tempVar(i, 3) Then

newReuse = newReuse + 1
End If

Then

' penalize for not having multiple first refueling points at the same time
If sched(n, 2) = 1 And sched(i, 2) = 1 And sched(n, 1) = sched(i, 1)

If sched(n, 8) <> sched(i, 8) Then syncPen = 40000

72

End If
Nextn

' If this is the first refueling point for a receiver group,
' check the other refueling points to make sure you haven't
' created a conflict.
If sched(i, 2) = 1 Then

h = 0
While sched(i + h, 1) = sched(i, 1)

Ifh>0Then
' Take-off Time
sched(i + h, 5) = sched(i, 8) + (sched(i + h, 2) - sched(i, 2)) *

(rpvals(ind, 6) / recrqmts(ind, 3)) - sched(i + h, 11) / tankers(3, 3)
' Time of refueling
sched(i + h, 8) = sched(i + h, 5) + sched(i + h, 11) / tankers(3, 3)

End If
For n = 1 To RPcount

If sched(n, 6) & sched(n, 3) = sched(i + h, 6) & sched(i + h, 3) And
i + h <> n Then

430))

430))

If sched(n, 5) > sched(i + h, 5) Then
tempi = (sched(n, 5) - (3 + sched(i + h, 5) + sched(i + h, 7) /

Else
tempi = (sched(i + h, 5) - (3 + sched(n, 5) + sched(n, 7) /

End If
If tempi < 0 Then newConflict = newConflict + 1

End If
Nextn
h = h+l

Wend
End If

reuseBonus = 500 * newReuse + 2000 * currentReuse

' Reward if the number of conflicts has decreased.
' Penalize if there are more conflicts.
If newConflict < conflictNumbers Then

conflictBonus = -100000
Elself newConflict > 0 Or conflictNumbers > 0 Then

conflictPen = 90000
End If
If currentNegTODs > 0 Then

negTODpen = -100000 * currentNegTODs
End If

73

End If
End If

DVG, is;) = conflictPen
DVG, 19;) = conflictBonus
DV(j, 20;) = distPen
DV(j,2i;) = reuseBonus
DVG, 22;) = earlyPen
DV(j, 23;) = negTODpen
DV(j, 24;) = earlyBonus
Dvo, 25;) = latePen
DVG, 26;) = newConflict
DVG, 27;) = conflictNumbers
DVG, 28;) = CloseLook(i)
DVG, 29;) = infeasible

DVG, 10) = conflictPen + conflictBonus + (100 * DVG, 12)) - reuseBonus + syncPen +
earlyPen + negTODpen - earlyBonus + latePen

End If
For p = 1 To RPcount
Forn = 1 To 15
sched(p, n) = tempVar(p, n)

Nextn
Nextp
j=j + l
Wend
u=l
t = i
yy = True
For j = RPindex(i) To RPindex(i + 1) - 1
If yy = True Then
NewSolG, l) = DV(j, 10)
New2Sol=DV(j + l, 10)
If New2Sol 0 NewSolG, 1) Then
J=J + 2
Else
If New2Sol = DVG, 10) Then
US = DVG, 3)
x=j + 1
While DV(x, 3) = US
x = x + 1

Wend
RPind(i, u) = x - 1

Else

74

If New2Sol <> Empty Then
New2Sol = DV(j + 2, 10)
US = DV(j + 2, 3)
x=j + 1
While DV(x, 3) = US
x = x + 1

Wend
RPind(i, u) = x
Else
If New2Sol = Empty Then
RPind(i,u)=j
yy = False

End If
End If 'k: iteration number

End If 't: RPnumber (t'th RP)
If j + 2 < RPindex(i + 1) -1 Then 'u: u'th base supporting t'th RP
objectivefunc(t, u) = DV(RPind(i, u), 10)
supportbases(t, u) = DV(RPind(i, u), 3)
j = x-l
Else
j = DVcount - 1
End If
u = u+ 1

End If
End If
Nextj
i = i + l

Wend
For t = 1 To RPcount
sayi = 0
For e = 1 To numTbases
If supportbases(t, e) <> Empty Then
sayi = sayi + 1

End If
Nexte
numb(t) = sayi
u=l
minfortthRP = objectivefunc(t, u)
If to Bui Then
For u = 1 To sayi
If objectivefunc(t, u) <= minfortthRP Then
minfortthRP = objectivefunc(t, u)
chosenbaseforthatRP(t, u) = supportbases(t, u)
minforthatRP(t, u) = minfortthRP
y(k,t) = u

75

y(k+l,t) = u
End If
Nextu
If z = Empty Then
z = u-2
Ifz<lThen
z=l

End If
y(k, t) = u
y(k + l,t) = u

End If
End If
Nextt
If k = 1 Then
f = 0
For i = 1 To RPcount
s = objectivefunc(i, (y(k, i)))
f=s + f
totobjforkthiteration(k) = f

Next i
Else
f = 0
For i = 1 To RPcount
If i <> Bui Then
s = objectivefunc(i, (y(k, i)))

Else
s = objectivefunc(i, z)

End If
f=s + f
totobjforkthiteration(k) = f
Nexti

End If
Ifk=lThen
bestsofar = totobjforkthiteration(l)
End If
If totobjforkthiteration(k) <= bestsofar Then
bestsofar = totobjforkthiteration(k)

End If
If f <> totobjforkthiteration(k - 1) Then
TENURE = 1
For i = 1 To RPcount
oankicozum(k, i) = supportbases(i, (y(k, i)))
Nexti
For i = 1 To RPcount
s = objectivefunc(i, (y(k, i)))

76

If s < objectivefunc(i - 1, (y(k, i -1))) Then
Bul = i

End If
Nexti
sayi = 0
For e = 1 To numTbases
If objectivefunc(Bul, e) <> Empyt Then
sayi = sayi + 1

End If
Nexte
If sayi = 2 Then
degiskenl = objectivefunc(Bul, 1)
degisken2 = objectivefunc(Bul, 2)
If degiskenl < degisken2 Then
Min = degiskenl
tabu(k +1,1) = degiskenl
swap = degiskenl

Else
Min = degisken2
tabu(k +1,1) = degisken2
swap = degisken2

End If
For i = 1 To sayi
If objectivefunc(Bul, i) = swap Then
y(k + l,Bul) = i
cc = y(k+l,Bul)

End If
Nexti

End If
If sayi > 2 Then
degiskenl = objectivefunc(Bul, 1)
degisken2 = objectivefunc(Bul, 2)
For x = 3 To sayi - 1
If objectivefunc(Bul, x) < degiskenl Then
h = objectivefunc(Bul, x)
If degiskenl < degisken2 Then
degisken2 = degiskenl

End If
degiskenl = h

Else
If objectivefunc(Bul, x) < degisken2 Then
zu = objectivefunc(Bul, x)
If degisken2 < degiskenl Then
degiskenl = degisken2

End If

77

degisken2 = zu
End If
End If
Nextx
If degiskenl < degisken2 Then
Min = degiskenl
tabu(k +1,1) = degiskenl
swap = degiskenl

Else
Min = degisken2
tabu(k +1,1) = degisken2
swap = degisken2

End If
If Min = tabu(k, 1) Or Min = tabu(k, 2) Then
degiskenl = objectivefunc(Bul, 1)
degisken2 = objectivefunc(Bul, 2)
For x = 1 To sayi
If tabu(k, 1) <> objectivefunc(Bul, x) Then
If objectivefunc(Bul, x) <= degiskenl Then
h = objectivefunc(Bul, x)
If degiskenl < degisken2 Then
degisken2 = degiskenl
degiskenl = h

End If
Else
If objectivefunc(Bul, x) <= degisken2 Then
zu = objectivefunc(Bul, x)
If degisken2 < degiskenl Then
degiskenl = degisken2
degisken2 = zu

End If
End If
End If

End If
Nextx
If degiskenl < degisken2 Then
Min = degiskenl
tabu(k +1,1) = degiskenl
swap = degisken2

Else
Min = degisken2
tabu(k +1,1) = degisken2
swap = degiskenl

End If
End If

78

For i = 1 To sayi
If objectivefunc(Bul, i) = swap Then
y(k+l,Bul) = i
cc = y(k+l,Bul)

End If
Nexti
End If
If sayi = 1 Then
Bui = Bui + 1
IfBul>RPcountThen
Bui = Bui - RPcount
cc = 1

End If
End If

Else
TENURE = TENURE + 1
For i = 1 To RPcount
oankicozum(k, i) = supportbases(i, (y(k, i)))

Nexti
Bui = Bui + 1
If Bui > RPcount Then
Bui = Bui - RPcount

End If
sayi = 0
For e = 1 To numTbases
If supportbases(Bul, e) <> Empyt Then
sayi = sayi + 1

End If
Nexte
If sayi = 2 Then
degiskenl = objectivefunc(Bul, 1)
degisken2 = objectivefunc(Bul, 2)
If degiskenl < degisken2 Then
Min = degiskenl
tabu(k +1,1) = degiskenl
tabu(k + 2, 2) = degiskenl
swap = degiskenl

Else
Min = degisken2
tabu(k +1,1) = degisken2
tabu(k + 2, 2) = degisken2
swap = degisken2

End If
For i = 1 To sayi
If objectivefunc(Bul, i) = swap Then

79

y(k+l,Bul) = i
cc = y(k+l,Bul)

End If
Nexti

End If
If sayi > 2 Then
degiskenl = objectivefunc(Bul, 1)
degisken2 = objectivefunc(Bul, 2)
For x = 3 To sayi
If objectivefunc(Bul, x) < degiskenl Then
h = objectivefunc(Bul, x)
If degiskenl < degisken2 Then
degisken2 = degiskenl
degiskenl = h

End If
Else
If objectivefunc(Bul, x) < degisken2 Then
zu = objectivefunc(Bul, x)
If degisken2 < degiskenl Then
degiskenl = degisken2
degisken2 = zu

End If
End If

End If
Nextx
If degiskenl < degisken2 Then
Min = degiskenl
tabu(k + 1, 1) = degiskenl
tabu(k + 2, 2) = degiskenl
swap = degiskenl

Else
Min = degisken2
tabu(k +1,1) = degisken2
tabu(k + 2, 2) = degisken2
swap = degisken2

End If
If Min = tabu(k, 1) Or Min = tabu(k, 2) Then
degiskenl = objectivefunc(Bul, 1)
degisken2 = objectivefunc(Bul, 2)
For x = 1 To sayi
If tabu(k, 1) <> objectivefunc(Bul, x) Or tabu(k, 2) <> objectivefunc(Bul, x) Then
If objectivefunc(Bul, x) <= degiskenl Then
h = objectivefunc(Bul, x)
If degiskenl < degisken2 Then
degisken2 = degiskenl

80

degiskenl = h
End If
Else
If objectivefunc(Bul, x) <= degisken2 Then
zu = objectivefunc(Bul, x)
If degisken2 < degiskenl Then
degiskenl = degisken2
degisken2 = zu

End If
End If
End If

End If
Nextx
If degiskenl < degisken2 Then
Min = degiskenl
tabu(k +1,1) = degiskenl
tabu(k + 2, 2) = degiskenl
swap = degisken2

Else
Min = degisken2
tabu(k +1,1) = degisken2
tabu(k + 2, 2) = degisken2
swap = degiskenl

End If
End If
For i = 1 To sayi
If objectivefunc(Bul, i) = swap Then
y(k+l,Bul) = i
cc = y(k+l,Bul)

End If
Nexti

End If
If sayi = 1 Then
Bui = Bui + 1
IfBul>RPcountThen
Bui = Bui - RPcount
QC = 1

End If
End If
f = 0
For i = 1 To RPcount
If i <> Bui Then
s = objectivefunc(i, (y(k, i)))

Else
s = objectivefunc(i, cc)

81

End If
f=s + f
totobjforkthiteration(k) = f
Nexti
For d = 1 To RPcount
If i <> Bui Then
For n = 1 To 15
sched(i, n) = sched(i, n)

Nextn
End If
If d = Bui Then
Forn = 1 To 15
sched(d, n) = sched(i, n)

Nextn
End If
Nextd
If totobjforkthiteration(k) <= bestsofar Then
bestsofar = totobjforkthiteration(k)

End If
End If
If (k <> 1 And flag = True) Then
For i = k - 1 To sss Step -1
If cu <> True Then
If totobjforkthiteration(k) = totobjforkthiteration(i) Then
flag = False
v = k - i
hh = k + v
cu = True

End If
End If
Nexti

End If
Ifk = hhThen
cu = False
qq=l
For i = 0 To v - 1
If totobjforkthiteration(k - v + i) <> totobjforkthiteration(k - 2 * v + i) Then
qq = 0

End If
Nexti
If qq <> 0 Then
Cycle = v
flag = True
sss = hh
div = div + 1

82

Bui = Bui + 1
IfBul>RPcountThen
Bui = Bui - RPcount

End If
sayi = 0
For e = 1 To numTbases
If supportbases(Bul, e) <> Empyt Then
sayi = sayi + 1

End If
Next e
If sayi >= 2 Then
degiskenl = objectivefunc(Bul, 1)
degisken2 = objectivefunc(Bul, 2)
For x = 3 To sayi
If objectivefunc(Bul, x) < degiskenl Then
h = objectivefunc(Bul, x)
If degiskenl < degisken2 Then
degisken2 = degiskenl
degiskenl = h

End If
Else
If objectivefunc(Bul, x) < degisken2 Then
zu = objectivefunc(Bul, x)
If degisken2 < degiskenl Then
degiskenl = degisken2
degisken2 = zu

End If
End If
End If
Nextx
If degiskenl < degisken2 Then
Min = degiskenl
tabu(k +1,1) = degiskenl
swap = degiskenl
dew = degisken2

Else
Min = degisken2
tabu(k + 1,1) = degisken2
swap = degisken2
dew = degiskenl

End If
End If
For i = 1 To sayi
If objectivefunc(Bul, i) = dew Then
y(k + l,Bul) = i

83

cc = y(k+l,Bul)
End If
Nexti
If sayi = 1 Then
Bui = Bui + 1
IfBul>RPcountThen
Bui = Bui - RPcount
cc = 1

End If
End If
f = 0
For i = 1 To RPcount
If i<> Bui Then
s = objectivefunc(i, (y(k, i)))

Else
s = objectivefunc(i, cc)

End If
f = s + f
totobjforkthiteration(k) = f
Nexti
For d = 1 To RPcount
If i<> Bui Then
Forn = 1 To 15
sched(i, n) = sched(i, n)

Nextn
End If
If d = Bui Then
Forn = 1 To 15
sched(d, n) = sched(i, n)

Nextn
End If
Nextd
If totobjforkthiteration(k) <= bestsofar Then
bestsofar = totobjforkthiteration(k)

End If
End If
End If
flag = True

If greedy = "Y" Then
If k <= RPcount Then
devam = True
For i = 1 To RPcount - 1
If devam = True Then
bg = 0

84

For p = 1 To RPcount - i
If devam = True Then
gg = True
If tempVar(i, 3) = tempVar(i + p, 3) Then

If devam = True Then
If tempVar(i, 1) <> tempVar(i + p, 1) Then
If devam = True Then
bur = True
For hm = k To i Step -1
If tempVar(saz(hm -1), 1) = tempVar(i + p, 1) Then
bur = False
If bur = False Then
hm = i

End If
End If
Next hm
If i + p <= saz(k -1) And bur = False Then
p = p+l
bg = bg + 1
gg = False

End If
If gg = True Then
If tempVar(saz(k - 1), 1) <> tempVar(i + p, 1) Then
If tempVar(i, 6) <> tempVar(i + p, 6) And tempVar(i, 1) <> tempVar(i + p, 1)

Then
If tempVar(saz(k - 1), 1) <> tempVar(i + p, 1) Then
If tempVar(i, 6) <> tempVar(i + p, 6) Then
If tempVar(i + p, 2) = tempVar(i + p + 1, 2) Then
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10)
ss = tempVar(i + p, 1)
vv = 0
r = i + p
Forff = rTo 1 Step-1
If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)
If tempVar(vv, 10) + fark < tl Then
tempVar(i + p, 6) = tempVar(i, 6)

While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark

85

tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
vv = vv + 1

Wend
devam = False
saz(k) = i + p

End If
Else
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10)
ss = tempVar(i + p, 1)
vv = 0
r = i +p
Forff = rTolStep-l
If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)
If tempVar(vv, 10) + fark < tl Then
tempVar(i + p, 6) = tempVar(i, 6)
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
vv = vv + 1

Wend
devam = False
saz(k) = i + p

End If
End If

Else
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10)
ss = tempVar(i + p, 1)
vv = 0
r = i + p
Forff = rTol Step-1
If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)
If tempVar(vv, 10) + fark < tl Then
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark

86

tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
tempVar(vv, 6) = tempVar(i, 6)
vv = vv + 1

Wend
devam = False
saz(k) = i + p

End If
End If
End If
End If

Else
End If
End If

End If
End If

End If
End If

End If
Nextp

End If
Next i
For n = 1 To RPcount
For ii = 1 To 15
bestSol(n, ii) = tempVar(n, ii)
sched(n, ii) = tempVar(n, ii)

Next ii
Nextn

Else

For i = 1 To RPcount
If numb(i) > 1 Then
geci(l) = tempVar(i, 3)
geci(2) = tempVar(i, 4)
geci(3) = tempVar(i, 7)
geci(4) = tempVar(i, 11)
geci(5) = tempVar(i, 5)
For zi = 1 To numb(i)
If geci(l) <> supportbases(i, zi) And geci(l) <> supportbases(Bul, cc) Then
tempVar(i, 3) = supportbases(i, zi)
tempVar(i, 4) = DV(RPind(i, zi), 4)
tempVar(i, 7) = DV(RPind(i, zi), 5)
tempVar(i, 11) = DV(RPind(i, zi), 12)

87

tempVar(i, 5) = tempVar(i, 8) - (tempVar(i, 11) / tankers(3, 3))
devam = True
If devam = True Then
bg = 0
sal = False
For p = 1 To RPcount - i
If sal = False Then
If devam = True Then
gg = True
If tempVar(i, 3) = tempVar(i + p, 3) Then
If devam = True Then
If tempVar(i, 1) <> tempVar(i + p, 1) Then
If devam = True Then
bur = True
For hm = k - RPcount To 1 Step -1
If tempVar(saz(k - 1), 1) = tempVar(i + p, 1) Then
bur = False
If bur = False Then
hm=l

End If
End If
Next hm
If i + p <= saz(k - 1) And bur = False Then
p = p + l
bg = bg + 1
gg = False

End If
If gg = True Then
If tempVar(i, 6) <> tempVar(i + p, 6) Then
If tempVar(i + p, 1) = tempVar(i + p + 1, 1) Then
If tempVar(i + p, 2) = tempVar(i + p + 1, 2) Then
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10)
IffarkoOThen
ss = tempVar(i + p, 1)
vv = 0
r = i + p
Forff = rTo 1 Step-1
If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)
If tempVar(vv, 10) + fark < tl Then
tempVar(i + p, 6) = tempVar(i, 6)
While tempVar(vv, 1) = gorev

88

tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
vv = vv + 1

Wend
devam = False
saz(k) = i + p

End If
End If
Else
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10)
If fark <> 0 Then
ss = tempVar(i + p, 1)
vv = 0
r = i +p
Forff = rTol Step-1
If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)
If tempVar(vv, 10) + fark < tl Then
tempVar(i + p, 6) = tempVar(i, 6)
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
vv = vv + 1

Wend
devam = False
saz(k) = i + p

End If
End If
End If

Else
fark = ((tempVar(i, 5) + 10) - tempVar(i + p, 5) + bg * 10)
If fark >0 Then
ss = tempVar(i + p, 1)
vv = 0
r = i + p
Forff = rTol Step-1
If tempVar(ff, 1) = ss Then
vv = ff

89

End If
Next ff
gorev = tempVar(vv, 1)
If tempVar(vv, 10) + fark < tl Then
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
vv = vv + 1

Wend
devam = False
saz(k) = i + p

End If
End If
End If
End If

Else
End If
End If
End If

End If
End If

End If
If saz(k) <> Empty Then
sal = True
p = RPcount - i

End If
End If
Nextp

End If
Else
End If
If sal = True Then
i = RPcount

End If
If saz(k) = Empty Then
tempVar(i, 3) = geci(l)
tempVar(i, 4) = geci(2)
tempVar(i, 7) = geci(3)
tempVar(i, 11) = geci(4)
tempVar(i, 5) = geci(5)

End If
Next zi

End If

90

Nexti

'asagisi fizibilite

For i = 1 To RPcount
ger = False
For kl = i + 1 To RPcount
If ger = False Then
If tempVar(i, 6) = tempVar(kl, 6) And tempVar(i, 3) = tempVar(kl, 3) Then
taf = kl
If kl < RPcount Then
ger = True

End If
End If

End If
If ger = True Then
If tempVar(i, 1) = tempVar(taf, 1) Then
If tempVar(i, 3) = tempVar(taf, 3) Then
tempVar(taf, 6) = tempVar(taf, 6) + 1
ger = True

End If
Else
If tempVar(i, 3) = tempVar(taf, 3) Then
If tempVar(taf, 5) - tempVar(i, 5) -10 < 0 Then
fark = tempVar(i, 5) + 10 - tempVar(taf, 5)
ss = tempVar(taf, 1)
vv = 0
r = taf
Forff = rTolStep-l
If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
vv = vv + 1

Wend
End If

End If
End If

End If

91

If ger = True Then
ger = False
kl = taf

End If
Next kl
Nexti

End If

'asagisi ayni gorevlerde kuyruk numarasini esitliyor

If saz(k) = Empty Then
For mmm = 1 To RPcount - 1
If devam = True Then
For z = 2 To RPcount
If devam = True Then
If tempVar(mmm, 1) <> tempVar(mmm + z, 1) Then
If tempVar(mmm, 3) = tempVar(mmm + z, 3) And tempVar(mmm, 6) =

tempVar(mmm + z, 6) Then
If tempVar(mmm + 1, 1) <> tempVar(mmm + z + 1, 1) Then
If tempVar(mmm +1,3) = tempVar(mmm + z + 1, 3) And tempVar(mmm + z - 1,

6) <> tempVar(mmm + z + 1, 6) Then
fark = (tempVar(mmm, 5) + 10) - tempVar(mmm + z, 5)
ss = tempVar(mmm + z, 1)
vv = 0
r = mmm + z
Forff = rTo 1 Step-1
If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)
If tempVar(vv, 10) + fark < tl Then
tempVar(mmm + z + 1, 6) = tempVar(mmm + 1,6)
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
vv = vv + 1

Wend
devam = False
saz(k) = mmm + z + 1
End If

92

End If
End If

End If
End If
If saz(k) <> Empty Then
devam = False

End If
End If
Nextz

End If
Next mmm

End If
For n = 1 To RPcount
For ii = 1 To 15
bestSol(n, ii) = tempVar(n, ii)
sched(n, ii) = tempVar(n, ii)

Next ii
Nextn

Else

For mj = 1 To adasize
Ifk>10Thenmj = 2
Ifk>20Thenmj = 3

devam = True
For g = ada(mj, 2) To RPcount - 2

hd = tempVar(g, 3)
saz(k) = Empty
For gh = 1 To RPcount - g
If fdt = True Then
saz(k - 1) = 1
fdt = False

End If
If devam = True Then
If saz(k -1) > gh Then
gh = saz(k - 1)

End If
If tempVar(g, 6) = tempVar(g + gh, 6) And tempVar(g, 3) = tempVar(g + gh, 3) And

tempVar(g, 1) = tempVar(g + gh, 1) Then
x = tempVar(g, 3)

93

For hj = 1 To numTbases
If tankBases(hj, 1) = x Then
nu = tankBases(hj, 5)
If tempVar(g + gh, 6) + 1 <= nu Then
tempVar(g + gh, 6) = tempVar(g + gh, 6) + 1

Else
tempVar(g + gh, 6) = tempVar(g + gh, 6) + 1 - nu

End If
saz(k) = g + gh
gh = RPcount - g
g = RPcount
hj = numTbases
devam = False

End If
Next hj

Else
If tempVar(g, 6) = tempVar(g + gh, 6) And tempVar(g, 3) = tempVar(g + gh, 3) And

tempVar(g, 1) <> tempVar(g + gh, 1) Then
If devam = True Then
ss = tempVar(g + gh, 1)
r = g + gh
Forff = rTolStep-l
If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)

If tempVar(g + gh, 1) = tempVar(g + gh + 1, 1) And tempVar(g + gh, 3) = tempVar(g
+ gh + 1, 3) And tempVar(g + gh, 6) = tempVar(g + gh + 1, 6) Then

tempVar(g + gh + 1, 6) = tempVar(saz(k -1), 6) + 1
If tempVar(g + gh + 1, 6) > nu Then
tempVar(g + gh + 1, 6) = tempVar(saz(k), 6) + 1 - nu

End If
saz(k) = g + gh + 1
devam = False
fark = tempVar(saz(k - 1), 5) + 10 - tempVar(vv, 5)'- tempVar(saz(k-l), 5)
If tempVar(vv, 10) + fark < tl Then
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark

94

vv = vv + 1
Wend

End If

Else
ss = tempVar(g + gh, 1)
r = g + gh
Forff = rTol Step-1
IftempVar(ff, l) = ssThen
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)
fark = tempVar(g, 5) + 10 - tempVar(vv, 5)'- tempVar(saz(k-l), 5)
If tempVar(vv, 10) + fark < tl Then
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
vv = vv + 1

Wend
saz(k) = g + gh
devam = False

End If
End If

End If
End If
End If

End If
Next gh

If saz(k) <> Empty Then

g = RPcount
fdt = False

Else
g = ada(mj + l,2)
Ifg = -lThen
devam = True
g = 0

End If

95

fdt = True

End If
Nextg
If saz(k) <> Empty Then
mj = adasize

End If
Next mj

For n = 1 To RPcount
For ii = 1 To 15
bestSol(n, ii) = tempVar(n, ii)
sched(n, ii) = tempVar(n, ii)

Next ii
Nextn

If k > RPcount Then
For i = 1 To RPcount
ger = False
For kl = i + 1 To RPcount
If ger = False Then
If tempVar(i, 6) = tempVar(kl, 6) And tempVar(i, 3) = tempVar(kl, 3) Then
taf = kl
If kl < RPcount Then
ger = True

End If
End If

End If
If ger = True Then
If tempVar(i, 1) = tempVar(taf, 1) Then
If tempVar(i, 3) = tempVar(taf, 3) Then
tempVar(taf, 6) = tempVar(taf, 6) + 1
ger = True

End If
Else
If tempVar(i, 3) = tempVar(taf, 3) Then
If tempVar(taf, 5) - tempVar(i, 5) - 10 < 0 Then
fark = tempVar(i, 5) + 10 - tempVar(taf, 5)
ss = tempVar(taf, 1)
vv = 0
r = taf
Forff = rTolStep-l

96

If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff
gorev = tempVar(vv, 1)
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
vv = vv + 1

Wend
End If
End If

End If
End If
If ger = True Then
ger = False
kl = taf

End If
Next kl
Nexti
End If
End If

If saz(k) = Empty Then
For mmm = 1 To RPcount - 1
If devam = True Then
For z = 2 To RPcount
If devam = True Then
If tempVar(mmm, 1) <> tempVar(mmm + z, 1) Then
If tempVar(mmm, 3) = tempVar(mmm + z, 3) And tempVar(mmm, 6) =

tempVar(mmm + z, 6) Then
If tempVar(mmm + 1, 1) <> tempVar(mmm + z + 1, 1) Then
If tempVar(mmm +1,3) = tempVar(mmm + z + 1, 3) And tempVar(mmm + z -1,

6) <> tempVar(mmm + z + 1,6) Then
fark = (tempVar(mmm, 5) + 10) - tempVar(mmm + z, 5)
ss = tempVar(mmm + z, 1)
vv = 0
r = mmm + z
Forff = rTolStep-l
If tempVar(ff, 1) = ss Then
vv = ff

End If
Next ff

97

gorev = tempVar(vv, 1)
If tempVar(vv, 10) + fark < tl Then
tempVar(mmm + z + 1, 6) = tempVar(mmm + 1,6)
While tempVar(vv, 1) = gorev
tempVar(vv, 5) = tempVar(vv, 5) + fark
tempVar(vv, 8) = tempVar(vv, 8) + fark
tempVar(vv, 9) = tempVar(vv, 9) + fark
tempVar(vv, 10) = tempVar(vv, 10) + fark
w = vv + 1

Wend
devam = False
saz(k) = mmm + z + 1
End If

End If
End If

End If
End If
If saz(k) <> Empty Then
devam = False

End If
End If
Next z
End If
Next mmm

End If
For n = 1 To RPcount
Forii = 1 To 15
bestSol(n, ii) = tempVar(n, ii)
sched(n, ii) = tempVar(n, ii)

Next ii
Next

98

BIBLIOGRAPHY

Air Force Regulation 55-47, Air Refueling Management

Airlift/Tanker Quarterly, Volume 8, Number 3: 10-14, Summer 2000

Airlift/Tanker Quarterly, Volume 8, Number 4: 26, Fall 2000

Airlift/Tanker Quarterly, Volume 6, Number 1: 19, Winter 2000

Ben-Daya, M. and Al-Fawzan, M. "A Tabu Search Approach for the Flow Shop
Problem," ORSA Journal on Operations Research Society, Vol. 109: pp. 88-95, 1998

Battiti, R. "Reactive search: Toward self-tuning heuristics," Modern Heuristic Search
Methods, Rayward-Smith (ed.), John Wiley and Sons Ltd: pp. 61-83, 1996

Battiti, R. and G. Tecchiolli. "The reactive tabu search," ORSA Journal on Operations
Research Society, 6(2): pp. 126-140, 1994

Battiti, R. and G. Tecchiolli. "Training Neural Nets with the Reactive Tabu Search,"
IEEE, Transactions on Neural Networks, Vol. 6, No.5, pp. 1185-1200, September 1995

Carlton, W.B. and Barnes, J.W. 'A note on hashing functions and tabu search
algorithms', European Journal of Operational Research Vol. 95: pp. 237-239, 1996

Committee on the Next Decade of Operations Research (CONDOR) "Operations
Research: The Next Decade," Operations Research, Vol. 36: pp. 619-637, 1988

Congressional Budget Office, "Aerial Tanker Force Modernization," pp. 1-5, March 1982

Congressional Budget Office, "Modernizing the Aerial Tanker Fleet: Prospects for
Capacity, timing, and Cost," pp. 2, September 1985

Gant, H.N. "Deterrence in the Face of Explosive Peace," Air University Press 1994

Glover, F. and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997

Glover, F. "Future Paths for Integer Programming and Links to Artificial Intelligence,"
Computers and Operations Research, Vol. 13: pp. 533-539, 1986

Glover, F. "Tabu Search: A Tutorial," Interfaces, Vol. 20: pp. 74-94, 1990

Hostler, H.C. "Air Refueling Tanker Scheduling," Thesis, AFIT/ENS, 1987

99

Logicon, "Combined Mating and Ranging Planning System Overview," Briefing, 1996

Lokketangen, A. and Glover, F. "Solving Zero-One Mixed Integer Programming
Problems Using Tabu Search," European Journal of Operational Research, Vol. 106, pp.
624-658, 1998

Moore, J.T. and Hill, R.R. "Applications of Metaheuristics to Air Force Problems,"
Proposal, 2000

NASA Technical Memorandum, "Crew Factors in Flight Operations," 103852, December
1991

Pinedo, M. "Scheduling Theory, Algorithms, and Systems," Prentice Hall, 1995

Silver, E.A., Vidal R.V., and Werra D. "A tutorial on heuristic methods," European
Journal of Operational Research, Vol. 5, pp. 153-162, 1980

Skorin-Kapov, J. "Tabu search applied to the Quadratic Assignment Problem," ORSA,
Journal on Computing, Vol. 2, No.l (May), pp. 33-45, 1990

Winston, W.L. "Operations Research Applications and Algorithms," third edition,
Duxbury Press, International Thomson Publishing, pp. 778-781, 1994

Woodruff, D.L. and Zemel, E. "Hashing Vectors for Tabu Search," Annals of Operations
Research, Vol. 41: pp. 123-137, 1993

Zanakis, S.H. and Evans, J.R. "Heuristic 'Optimization': Why, When, And How To Use
It," Interfaces, Vol. 11,1981

100

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if
it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

20-03-2001
2. REPORT TYPE
Master's Thesis

3. DATES COVERED (From - To)

Jun 2000 - Feb 2001
4. TITLE AND SUBTITLE

A REACTIVE TABU SEARCH METAHEURISTIC EXTENSION OF
THE AIR REFUELING TANKER ASSIGNMENT PROBLEM

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Umit Hilmi TEKELIOGLU, 1st Lieutenant, TUAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENS)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENS/O IM-16

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ AMC/XPY
402 Scott Drive, Unit 3L3
Scott AFB, IL 62225/5307
DSN:576-5954

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Combined Mating and Ranging Planning System (CMARPS) is the system used by AMC to schedule air refueling for deployments from the continental

US to other parts of the world. The tool developed by Capehart (2000) got results similar to CMARPS in less time. Capehart's tool allows AMC to input several receiver
groups consisting of various aircraft types and numbers. Each receiver group contains a point of origin and destination, with the option of providing one waypoint along
the path, a ready to load date (RLD) and required delivery date (RDD). The user is also able to specify the locations of military tanker aircraft. The main goal of this tool
is to assign the tankers to the different refueling points of the receiver groups so that all receiver groups arrive before their RDD. Secondary goals include the reuse of
tankers and limiting the total flight distance for all tanker aircraft. The main purpose of this research is to introduce a dynamic feature of tabu search, reactive tabu search,
into the tool. This method changes tabu tenure when necessary in the hope of finding better solutions by diversifying the search to the unexplored areas of the solution
space.

15. SUBJECT TERMS
Tabu Search, Heuristics, Metaheuristics, Tanker Scheduling, Assignment Problem

16. SECURITY CLASSIFICATION OF:

a. REPORT

u
b. ABSTRACT

u
c. THIS PAGE

u

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES

113

19a. NAME OF RESPONSIBLE PERSON
Dr. James T. Moore, AFIT/ENS JamesMoore@afit.af.mil
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4337

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Form Approved
OMB No. 074-0188

101

