
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DEVELOPMENT, SIMULATION AND EVALUTION OF
THE IEEE 802.11a PHYSICAL LAYER IN A MULTIPATH

ENVIRONMENT

by

Kok Chye Tan

March 2001

Thesis Advisor:
Second Reader:

John McEachen
Xiaoping Yun

Approved for public release; distribution is unlimited

20010612 104

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 2001

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE: Development, Simulation and Evalution Of The
IEEE 802.11 a Physical Layer In A Multipath Environment

6.AUTHOR(S) KokChyeTan

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

I. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Department Of Defense
9800 Savage Rd
Ft. Meade, MD 20755
ATTN:R531

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
icy or position of the Department of Defense or the U.S. Government. policy or position i

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis describes the development and simulation of the newly proposed IEEE 802.11a physical layer and
demonstrates the effects of Additive White Gaussian Noise (AWGN) and multipath on its performances. The IEEE 802.11a
standardization group has selected Orthogonal Frequency Division Multiplexing (OFDM) as the basis for the new 5 GHz
standard, targeting a range of data rates from 6 up to 54 Mbps. Coded OFDM (COFDM) is a channel coding and modulation
scheme which mitigates the adverse effects of fading by using wideband multicarrier modulation combined with time
interleaving and a convolutional error correcting code. A guard interval is inserted at the transition between successive
symbols to absorb the intersymbol interference created by the time domain spread of the mobile radio channel. The decoding
process is performed using differential demodulation in conjunction with a hard decision Viterbi decoder. The simulation
results shown a COFDM system capable of indoor environment communications in the presence of known multipath and noise
conditions. The results obtained also show that the COFDM configuration is immune to Doppler shift of 5 to 15 Hz.

14. SUBJECT TERMS Coded Orthogonal Frequency Division Multiplexing (COFDM), MATLAB,
Convolutional Encoding, Viterbi Decoder, Interleaver, Multipath, Additive White Gaussian Noise
(AWGN), Inverse Fast Fourier Transform (IFFT), Guard Interval

15. NUMBER OF
PAGES 194

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution is unlimited

DEVELOPMENT, SIMULATION AND EVALUTION OF THE IEEE 802.11a
PHYSICAL LAYER IN A MULTIPATH ENVIRONMENT

Kok Chye Tan
Civilian, Defence Science And Technology Agency (Singapore)

B. Eng., University Of Glasgow, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2001

Author:

Approved by:

L
Xiaoping Yun, Second Reader

ffrey B. Kaorr, Chairm Jeffrey B. JSaJorr, Chairman
Department of Electrical and Computer Engineering

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

This thesis describes the development and simulation of the newly proposed IEEE

802.11a Wireless Local Area Network (WLAN) physical layer and demonstrates the

effects of Additive White Gaussian Noise (AWGN) and multipart! on its performances.

The IEEE 802.11a WLAN standardization group has selected Orthogonal Frequency

Division Multiplexing (OFDM) as the basis for the new 5 GHz standard, targeting a

range of data rates from 6 up to 54 Mbps. Coded OFDM (COFDM) is a channel coding

and modulation scheme which mitigates the adverse effects of fading by using wideband

multicarrier modulation combined with time interleaving and a convolutional error

correcting code. A guard interval is inserted at the transition between successive symbols

to absorb the intersymbol interference created by the time domain spread of the mobile

radio channel. The decoding process is performed using differential demodulation in

conjunction with a hard decision Viterbi decoder. The simulation results show a

COFDM system is capable of indoor environment communications in the presence of

known multipath and noise conditions. The results obtained also show that the COFDM

configuration is immune to Doppler shift of 5 to 15 Hz.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1
B. WIRELESS LOCAL AREA NETWORKS -IEEE 802.11a 2
C. OFDM 3
D. RELATED WORK 3
E. ORGANIZATION OF THE STUDY 4

II. MODEL DESCRIPTIONS 5
A. OVERVIEW OF CONFIGURATION 5
B. CONVOLUTIONAL ENCODING 6
C. BLOCK INTERLEAVER 7
D. DQPSK MODULATION 11
E. OFDM 13
F. GUARD INTERVAL 19
G VITERBI DECODER 20

1. Code Trellis 21
2. Viterbi Algorithm 23
3. Metrics 25

III. WIRELESS CHANNEL CHARACTERISTICS 27
A. NOISE IN COMMUNICATION SYSTEMS 27
B. WHITE NOISE 28
C. MULTIPATH 30

1. Small-Scale Fading And Multipath 31
a. Small-Scale Multipath Propagation 31
b. Time Dispersion Parameters 32

2. Doppler Spread 33
3. Types Of Small-Scale Fading 33
4. Fading Effect Due to Multipath Time Delay Spread 34

a. Flat Fading 34
b. Frequency Selective Fading 36

5. Intersymbol Interference 36
6. Path Loss 37
7. Rayleigh And Ricean Distribution 38

a. Rayleigh Fading Distribution 38
b. Ricean Fading Distribution 38

D. IEEE 802.11 CHANNEL MODEL 38

IV. MATLAB COFDM SYSTEM MODEL 41
A. GENERAL 41
B. COFDM TRANSMITTER 42

1. Random Bit Generator 42
2. Convolutional Encoding 42
3. Block Interleaver 43
4. Symbol Reformatter 43

vii

5. Differential PSK Channel Encoder 43
6. IFFT Processing 45
7. Guard Interval Insertion 45

C. COFDM RECEIVER 46

1. Guard Interval Removal 46
2. FFT Processing 46
3. Channel Decoding 47
4. Block Deinterleaving 47
5. Received Message 47

D. CHANNEL MODELS 47

V. MATLAB PROGRAMMING AND DEVELOPMENT 49
A. OFDM SYSTEM CONSTRUCTION OF FUNCTIONAL BLOCKS 49
B. COFDM TRANSMITTER 50
C. COFDM RECEIVER 57

1. Model 1 System 57
2. Model 2 System 59

VI. SYSTEM SIMULATION METHODOLOGY AND TEST RESULTS 63
A. GENERAL TEST PLAN 63
B. TEST PHASE 1 - SYSTEM MODEL 0 SIMULATIONS 63
C. TEST PHASE 2 - SYSTEM MODEL 1 SIMULATIONS 64
D. TEST PHASE 3 - SYSTEM MODEL 2 SIMULATIONS 69
E. TEST PHASE 4 - SYSTEM MODEL 3 SIMULATIONS 75

1. Link 1 With Doppler Frequency of 5 Hz 76
2. Link 2 With Doppler Frequency of 10 Hz 78
3. Link 3 With Doppler Frequency of 15 Hz 79

F. PERFORMANCE OF COFDM WITH DBPSK MODULATION 81

VII. CONCLUSIONS 87

A. DISCUSSION OF SIMULATION RESULTS 87
1. Test Phase 1 and Test Phase 2 Discussions 87
2. Test Phase 3 Discussions 87
3. Test Phase 4 Discussions 88
4. COFDM DBPSK Modulation Discussions 88

B. FUTURE WORK 89

APPENDIX A. COFDM MATLAB SOURCE CODE 91

LIST OF REFERENCES I69

INITIAL DISTRIBUTION LIST • 171

vm

LIST OF FIGURES

Figure 1. Basic Configuration Of a Coded OFDM Model 5
Figure 2. Convolutional Encoder 6
Figure 3. Demonstrating The Effects of Interleaving a Message Prone To Burst Errors 10
Figure 4. Ideal Frequency-Division Multiplexing Spectrum 14
Figure 5. Additional Guard Band In Frequency Spectrum 14
Figure 6. FFT-based OFDM System 16
Figure 7. Spectrum For Single Symbol With Length Ts 18
Figure 8. OFDM Spectrum 18
Figure 9. An Effect Of Guard Interval 19
Figure 10. A simplified Convoluational Encoder 21
Figure 11. Code Trellis And State Diagram 21
Figure 12. Viterbi Trellis Diagram 22
Figure 13. Extract Of Viterbi Trellis Diagram In Figure 12 23
Figure 14. Normalized (<7=1) Gaussian Probability Density Function 28
Figure 15. (a) Power Spectral Density Of White Noise, (b) Autocorrelation Function Of

White Noise 30
Figure 16. Multipath Interference 30
Figure 17(a & b). Impact Of Multipath Reflections On Received Signal 35
Figure 17(c & d). Impact Of Multipath Reflections On Received Signal 35
Figure 18. Effects Of Delay Spread 36
Figure 19. Channel Impulse Response For IEEE 802.1 la 39
Figure 20. Multipath Delay And Gain Profile 39
Figure 21. Complete System Model 41
Figure 22. COFDM Transmitter Functional Block Diagram 42
Figure 23. Receiver Functional Block Diagram 46
Figure 24. Channel Models 48
Figure 25. Emulation Of The COFDM Communication System 49
Figure 26. Model 0 Block Diagram 50
Figure 27. Hierarchical Arrangement Of M-files Within Cdrcdlft.m 51
Figure 28. Model 1 Block Diagram 57
Figure 29. M-file Hierarchy for Decdrcdl.m 57
Figure 30. System Model 2 Block Diagram 59
Figure 31. M-file Hierarchy For Chuhf.m 60
Figure 32. COFDM Model 3 System 61
Figure 33. BER vs Eb/No For Different Constraint Length (CL) In AWGN Channel,

After Thibault And Le, [14] '. 65
Figure 34. System Model 1 With AWGN Channel 67
Figure 35. A Flat Planar Magnitude Representation Of Symbols Prior To Transmission 68
Figure 36. Effect Of AWGN Found On The Received Signal 68
Figure 37. Constellation Plot Of DQPSK Modulation 71
Figure 38. Transmitted Signal 72
Figure 39. Signal Constellation Plot Before Differential Decoding 73
Figure 40. Signal Constellation Plot After Differential Decoding 73

ix

Figure 41. Received Signal With Frequency Selective Fading 74
Figure 42. Effect of AWGN and Multipath On the Received Signal 76
Figure 43. 16 Sample Point Guard Interval Precursor With 64 FFT Points 77
Figure 44. BER vs. Eb/N0 Performance - With Multipath & AGWN For Link 1 78
Figure 45. BER vs. Eb/N0 Performance - With Multipath & AGWN For Link 2 79
Figure 46. BER vs. Eb/N0 Performance - With Multipath & AGWN For Link 3 80
Figure 47. COFDM DBPSK Modulation With Model 1 (AWGN) 83
Figure 48. COFDM DBPSK Modulation With Model 3 Link 1... 84
Figure 49. COFDM DBPSK Modulation With Model 3 Link 2 85
Figure 50. COFDM DBPSK Modulation With Model 3 Link 3 86

LIST OF TABLES

Table 1. Main Parameters Of The OFDM Standard 20
Table 2. Codewords On The Trace-back Path 25
Table 3. Typical Multipath Delay Spread For Indoor Environments 31
Table 4. General Test Plan 63
Table 5. Model 0 Verification Example 64
Table 6. Model 1 Simulation Run Using Cofdmsim.m 67
Table 7. BERVs Eb/N0: Comparison Of Simulated and Reference Plots (Figure 35) 69
Table 8. Model 2 Simulation - Only Multipath Channel 70
Table 9. Model 3 Link 1 Simulation 76
Table 10. BERVs Eb/N0: Comparison Of Simulated (Figure 44) And Reference Plots 77
Table 11. BERVs Eb/N0: Comparison Of Simulated (Figure 45) And Reference Plots 78
Table 12. BERVs Eb/N0: Comparison Of Simulated (Figure 46) And Reference Plot 79
Table 13. The Equivalent Speed For Doppler Frequencies Of 5, 10 And 15 81
Table 14. DBPSK vs DQPSK 82

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

ACKNOWLEDGMENTS

First, I would like to thank my employer, Defence Science And Technology

Agency (Singapore) for giving me the opportunity to pursue my Msc study in Naval

Postgraduate School. I thank Prof McEachen, my thesis advisor, for his encouragement

and strong support given to me. I also thank Prof Yun, my second reader, who offered

valuable advices along the way. Last but not least, special thanks to my wife, Lin Mei

and my one month old baby boy, Yang Yi, for their love, understanding and

encouragement.

xm

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

EXECUTIVE SUMMARY

This thesis describes the simulation of the newly proposed IEEE 802.1 la physical

layer and demonstrates the effects of Additive White Gaussian Noise (AWGN) and

multipath on its performance. The IEEE 802.11a standardization group has selected

Orthogonal Frequency Division Multiplexing (OFDM) as the basis for the new 5 GHz

standard, targeting a range of data rates from 6 up to 54 Mbps.

Coded OFDM (COFDM) is a channel coding and modulation scheme which

mitigates the adverse effects of fading by using wideband multicarrier modulation

combined with time interleaving and a convolutional error correcting code. A guard

interval is inserted at the transition between successive symbols to absorb the intersymbol

interference created by the time domain spread of the mobile radio channel. The

decoding process is performed using differential demodulation in conjunction with a hard

decision Viterbi decoder.

The objective of simulating the physical layer of IEEE 802.11a using MATLAB

has been successfully achieved in this thesis. The simulation results show a COFDM

system capable of indoor environment communications in the presence of known

multipath and noise conditions. Further discussions relating to specific test phases are

presented below.

Test phase 1 validated a functionally correct model, as there were an absence of

errors in the sink message with no channel included. This indicated that at least

functionally all system sub-blocks within the transmitter and the receiver were operating

correctly according to design, and no obvious design flaws existed due to inaccurate m-

file construction. Test phase 2 carried the functional verification one step further by also

including complete system model 1 simulations (with AWGN only). This test permitted

performance curve comparisons to the work reported by Louis Thibault and Minh Thien

Le, IEEE 1997. Results of system simulations indicated that system model 1

xv

performance is approximately 0.9dB (at Pb=10"3) and 1.05dB (at Pb=10"2) worse than

Louis Thibault and Minh Thien Le, IEEE 1997 most likely due to hard decision decoding.

Test phase 3 simulation using the channel 2 model (multipath channel only)

exclusively demonstrated the effects of multipath on the received signal and the

corresponding sink message array error event manifestations. As expected, frequency

selective fading occurred as well as partial flat fading. As anticipated, these plots

demonstrated constructive and destructive interference due to channel multipath

distortions, as evident by the distinguishing peak and valley apparent in the received

signal magnitude plots.

Test phase 4 involved comprehensive testing of a complete system simulations

using a combined model (AWGN and multipath) to generate corresponding system

performance curves. In comparison to test phase 2 (AWGN only), the results shown that

extra dB are required to combat the multipath effect. The extra dB needed is between

1.80 to 1.85dB at 10"2 probability and between 2.75 to 2.80dB at 10"3 probability. The

results obtained also show that the COFDM configuration is immune to Doppler shift of

5 to 15 Hz. Since our COFDM configuration uses only 48 tones, it offers good Doppler

immunity as the frequency spacing is larger. The above Doppler frequencies used are all

less than lm/s which are good representation of human's walking speed in an indoor

environment. Hence we can further deduce that this COFDM configuration is robust

enough to withstand the indoor mobility requirements.

The COFDM configuration was further examined with DBPSK modulation. As

expected, the results shown that DBPSK required less Eb/N0 then DQPSK. Under the

influence of AWGN and multipath, the DBPSK modulations show that the Eb/N0

required for links 1 to 3 simulations are similar.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

I. INTRODUCTION

The IEEE 802.11a WLAN standardization group has selected Orthogonal

Frequency Division Multiplexing (OFDM) as the basis for the new 5 GHz standard,

targeting a range of data rates from 6 up to 54 Mbps. The objective of this thesis is to

develop a simulation of the IEEE 802.1 la's physical layer using MATLAB, and to study

the effects of multipath on its symbol and bit error performance. The performance curves

obtained in this thesis have the potential for high visibility and impact in several

operational projects [1]. The increasing prevalence of WLAN, both within the Defense

establishment and in the public domain, underscores the need for a simulation of this

kind. The results obtained from this thesis can be included into the Radio pipeline of

OPNET simulation package. The OPNET version 7 comes with an IEEE 802.11 model,

and it can be modified to function as an IEEE 802.1 la WLAN. Hence, the performance

of this newly proposed IEEE 802.11a WLAN protocol in either an office or submarine

environment can be completely analyzed.

A. BACKGROUND

The need for mobile communications and computing, combined with the

explosive growth in demand for Internet access, suggest a very promising future for

wireless data services. Every day, more and more applications are found that can benefit

from wireless networks. The wide range of applications varies from home and small

office uses to military uses.

Since ships have limited personnel, it is vital to increase the productivity of every

crewmember onboard. Accurate, timely communications between the casualty scene,

different stations around the ship, and damage control central have always been of the

utmost importance when combating shipboard casualties. Similarly, the efficient

dissemination of accurate information is also critical to the success of a submarine's

operations. To tap the benefits of wireless networking, the NAVSEA New Attack

1

Submarine (NSSN) program has identified two key areas, damage control

communications and watchstander logs, for productivity improvement by deploying

wireless local area networks (WLANs) onboard submarines [1].

B. WIRELESS LOCAL AREA NETWORKS - IEEE 802.11A

Since the beginning of the 1990s, WLANs for the 900 MHz, 2, 4, and 5 GHz

industrial, scientific, and medical (ISM) bands have been available based on a range of

proprietary products. In June 1997 the JJEEE adopted the first standard for WLANs,

IEEE Std 802.11-1997. This standard was revised in 1999. The standard specifies both

medium access control (MAC) procedures and three different physical layers (PHY).

There are two radio-based PHYs using the 2.4GHz band. The third PHY uses infrared

light. All PHYs support a data rate of 1 Mbps and optionally 2 Mbps [2].

A second IEEE 802.11a working group was formed to standardize yet another

PHY option, which offers higher data rates in the 5.2 GHz band. This development was

motivated by the U.S. Federal Communications Commission amendment to part 15 of its

rules. The amendment made available 300 MHz of spectrum in the 5.2 GHz band,

intended for use by a new category of unlicensed equipment called unlicensed national

information infrastructure (UNIT) devices.

In July 1998, the IEEE 802.11a standardization group decided to select

orthogonal frequency-division multiplexing (OFDM) as the basis for their new 5GHz

standard, targeting a range of data rates from 6 up to 54 Mbps. This new standard is the

first to use OFDM in packet-based communications; the use of OFDM was previously

limited to continuous transmission systems like digital audio broadcasting (DAB) and

digital video broadcasting (DVB). Following the IEEE 802.11 decision, in Europe the

High-Performance LAN (HIPERLAN) type 2, and in Japan the Multimedia Mobile

Access Communication (MMAC) also adopted OFDM for their PHY standards. The

three bodies have worked in close cooperation since then to ensure that differences

between the various standards are kept to a minimum, thereby enabling the

manufacturing of equipment that can be used worldwide [3].

C. OFDM

In indoor radio communication, special propagation problems arise due to the

highly reflective, shadowing environment. Radio signals propagate via multiple paths

which differ in amplitude, phase and delay time[4]. If the symbol period gets shorter

than the root mean square delay spread of the radio channel, significant distortion and

intersymbol interference occurs in the receiver signals. Equalization in this case is

complicated, complex and expensive.

A totally different way to overcome the problem of multipath fading is the

multicarrier approach. The given system bandwidth is divided into an appropriate

number of subbands each of which is modulated with a low data rate modulation,

corresponding to a long symbol period. OFDM is a special case of multicarrier

modulation, where a guard time is inserted between consecutive symbols. This guard

interval avoids intersymbol interference and if differential modulation schemes are

applied to the subcarriers, no equalization is required at all.

D. RELATED WORK

In [14], Thibault and Le had configured a COFDM system based on DQPSK

modulation, convolutional code of V2 with constraint length of 7, and the decoding

process is performed using differential demodulation in conjunction with a soft decision

Viterbi decoder. The BER vs Eb/No curves were simulated in the Additive White

Gaussian Noise (AWGN) channel. This research provides a basis for validating the

COFDM simulation of this thesis and acts a starting point for further comparative

analysis.

In [17], David V. Roderick explored the application of COFDM toward a high-

data-rate line-of-sight maritime communications modem. The modem model was

simulated in MATLAB, and it was used to investigate the feasibility and reliability of

digital communications system for ship-to-ship, ship-to-shore, and ship-to-relay type

connectivity. This simulation work acted as a starting point for the simulations of this

thesis.

E. ORGANIZATION OF THE STUDY

This thesis is organized as follows :

Chapter II provides an overview of the system configuration, and offers the reader

a detailed concept description of the coded OFDM model used in this thesis. Chapter III

discusses the noise channels. It provides descriptions of the additive white Gaussian

noise (AWGN) channel multipath channel. Chapter IV focuses on the MATLAB

COFDM System models. It covers the implementations of the transmitter, receiver and

noise channels. In Chapter V, the MATLAB programming and development are

described. Three different OFDM receiver models are covered. The three models are

namely the noise free model, the AWGN model and the combination of AWGN and

multipath model. Chapter VI offers the system simulation methodology and the test

results. The test plan consists of four different phases aim to verify proper integration of

various sub-blocks and validation of system model. Finally, Chapter VII summarizes this

thesis research and offers a road map for future researches.

II. MODEL DESCRIPTIONS

A. OVERVIEW OF CONFIGURATION

The basic configuration of a coded OFDM model is shown in Figure 1. The data

to be transmitted are first encoded using a convolutional encoding technique, next the

data are interleaved via conventional block interleaver. The purpose of the block

interleaver and convolutional encoder is to improve the symbol/bit error rate

performance. The data to be transmitted are divided among several subcarriers, and the

subcarrier signals, which are modulated by the divided data, are transformed into a time

domain signal using an inverse fast Fourier transform (IFFT). The IFFT output signal is

then formed into an OFDM symbol by extending the IFFT output cyclically. This cyclic

extension is often called the guard interval. At the receiver side, the inverse operation is

performed to demodulate the received signal. The guard interval is removed from the

received signal and the resulting signal is demultiplexed into subcarrier signals by the

FFT. The subcarrier signals are detected and the results combined to yield the received

data. The detailed descriptions of the above mentioned main components are provided in

the following sections.

w
Kanaom
Binary
Generator

i_onvoiunonai
encoding interleaver modulator ^

IFFT
fe Interval

Insertion
 W —W W w w

Viterbi
Decoding

Block Deinterleaver DQPSK
Demodulator 4

Guard
Interval
Removal

1 r

FFT

g AWGN -^ ^ ^

Figure 1. Basic Configuration Of a Coded OFDM Model.
5

B. CONVOLUTIONAL ENCODING

The Convolutional Encoder receives the messages from the Random Binary

Generator and encodes them into codewords. Convolutionally encoding the data is

accomplished using a shift register and associated combinatorial logic that performs

modulo-two addition. A shift register is merely a chain of flip-flops wherein the output of

the nth flip-flop is tied to the input of the (n+l)th flip-flop. Every time the active edge of

the clock occurs, the input to the flip-flop is clocked through to the output, and thus the

data are shifted over one stage. The combinatorial logic is often in the form of cascaded

exclusive-or gates.

The convolutional encoder in this COFDM model is depicted below [5]:

Figure 2. Convolutional Encoder.

As shown in Figure 2, each summing node represents modulo-two addition. Each

box marked Z"1 represents a memory register that holds the input values from previous

sample times. Since there are six memory registers, the output at a given time depends

on seven input values, including the current one. Thus the constraint length of the code

is 7. Since the code has one input and two outputs, the code rate is Vi.

6

A pair of octal numbers called the code generator indicates the connections from

the memory registers to the modulo-two summing nodes. The pair [133g 171g] (i.e.

[10110112 1111001 d) describes the encoder in the figure.

C. BLOCK INTERLEAVER

A block interleaver accepts the coded symbols in blocks from the encoder,

permutes the symbols, and then feeds the rearranged symbols to the modulator. The

usual permutation of the block is accomplished by filling the columns of an M-row-by N-

column (MxN) array with the encoded sequence. After the array is completely filled, the

symbols are then fed to the modulator one row at a time and transmitted over the channel.

At the receiver, the deinterleaver performs the inverse operation; it accepts the symbols

from the demodulator, deinterleaves them, and feeds them to the decoder. Symbols are

entered into the deinterleaver array by rows, and removed by column. Figure 3 illustrates

an example demonstrating the effects of interleaving a message prone to burst errors prior

to transmission through the channel. In this example, the symbol coded source message

block is structured as a M by N matrix, S, with M = 4 rows and N=6 columns and the

dimension product of S equal to MxN =24. As part of the interleaving algorithm an

intermediate matrix must be temporarily constructed using the symbols taken from S.

Therefore, the dimension product of the intermediate matrix, L, (# of column times # of

rows) also equal to M x N. Given the value of S for this example, all possible row and

column intermediate matrix dimension pairs are : (1, 24), (2, 12), (3, 8), (4, 6), (6, 4), (8,

3), (12, 2), and (24, 1). During the formation and subsequent filling of the intermediate

arrays having each of these dimensions, the symbols provided by matrix S are read out

row-by-row and into L row-by-row until S is empty. After matrix L becomes full, the

individual symbols within are read out column-by-column, representing the transmission

sequence. It is evident that effective decorrelation of adjacent errored symbols within the

transmitted message sequence depends on selective formation of intermediate matrices

using appropriate array dimensions. Varied matrix dimensions tend to space the errors

differently throughout the message block after deinterleaving is performed.

Figure 3 supports this example pictorially. It is instructive to note that formation

of intermediate arrays with dimension (1, 24) (row vector) and (24, 1) (column vector)

are not generally implemented since no effective interleaving occurs. For instructional

purposes, this example uses intermediate matrix interleaver dimension pairs : (2, 12), (3,

8) and (4, 6) only. From Figure 3, the dimensions of intermediate matrix A are (12, 2),

having 12 rows and 2 column. After being filled completely with the symbol taken from

the source message block read in row by row, the transmitted sequence, TA, is read out of

matrix A column by column. During transmission through the channel, hypothetical

burst noise occurs corrupting a group of three adjacent symbols in the sequence. Upon

reception, the receiver deinterleaves the sequence to reconstruct the original source

message. It is apparent from the figure that the burst errors become decorrelated from the

group after deinterleaving, becoming isolated non-adjacent symbol errors spaced every

other symbol apart.

Source Message Block
N=6

1 2 3 4
•ro-

: 5
""IT"

6
"IT V 8 y

13
,„rgr

14
2CT

15
~21~"

16
IT

: 17
"23

la
24"

Output sequence read out by $0^;

^,9,8,7,6,5,4,3,2,1

M=4

M,.= 12

I 2

3"'""'" "6
7-—~S~~

II "IT
13 T4

■ftis1 1«
17 "18
Tresor
21 i 22

■23^.""24~

N*=2

Transmitted sequence TA lead out by

 19,17,15,13,11,9,7,5,3,1

Intermediate Matrix A

Source Message Block

1 1 3 4 D 6
7 8 9 TO 11 12
13 14 15 "IS -ir 18
19 20 21 22 23 24

Output sequerce readout hy^gg^

JO, 9,8,7,6,5,4,3,2,1

M,. = 8

1 2 3
4 5 6
7 8 9
10 11 "12

"13" "IT" "15
16 17 18

"19 20'" "21"
'22 23 24

Transmitted sequence T=s read out
^columns :

5,2,22,19,16,13,10,7,4,1

Intermediate Matrix B

Source.

12 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

Intermediate

...10,9,8,7,6,5,4,3,2,1

12 3 4

5 6 7 8

9 10 11 12

13 14 15 16

-> 17 18 19 20

21 22 23 24

Output sequence read out by rows

—►
...14,10,6,2,21,17,13,9,5,1

Transmitted sequence Tc read out by
columns

Transmitted Interleaved sequence TA Received Deinterleaved sequence RA

19 17 15 13 11 9 7 5 3_J 10 9
Noisy Channel

... 19 17 15 13 11 9 7 5 3 1

Krrors

Burst Error

Transmitted Interleaved sequence TB Received Deinterleaved sequence RB

5 2 22 19 16 13 10 7 4 1
Noisv Channel

... 1Q-9 8 76 5 4 3 2 1

5 2 22 19 16 13 10 7 4 1
31

Errors

BurstError

Transmitted Interleaved sequence TC

14 10 6 2 21 17 13 9 5 1

Received Deinterleaved sequence RC

... 10

Noisv Channel

^6i^ 3 2 1

14 10 6 2 21 17 13 9 5 1

^
Errors

Burst Error

Figure 3. Demonstrating The Effects of Interleaving a Message Prone To Burst Errors.

In a similar example, using intermediate matrix B with 8 rows and 3 columns, the

identical channel burst error event once again affects a group of three symbols in the

transmitted sequence, TB. Following deinterleaving in the receiver, the group of

contiguous errors become decorrelated forming isolated symbol errors in the received

10

sequence, RB, spaced every two symbols apart. Similarly, for the last intermediate matrix

C example, following transmission of the interleaved sequence, Tc, through the channel

and deinterleaving in the receiver , the group of errored symbols afflicted by burst noise

in the channel become singly occurring error events spread out in the received message

sequence, Rc, and are spaced every third symbol apart. If this example continued for

every possible interleaver intermediate matrix dimension, it becomes apparent that the

spacing of isolated errors appearing in deinterleaved message sequences are directly

related to the intermediate matrix dimensions [5].

D. DQPSK MODULATION

The term differential PSK (DPSK) refers to the procedure of encoding the data

differentially; that is, the presence of a binary one or zero is manifested by the symbol's

similarity or difference when compared to the preceding symbol. The term DPSK is

often classified as noncoherent because it does not require a reference in phase with the

received carrier [5].

With noncoherent systems, no attempt is made to determine the actual value of

the phase of the incoming signal. Therefore, if the transmitted waveform is

Si = J— cos [0)0t + em 0<t<T (2-1)

i = i, M

the received signal can be characterized by :

r(t) = J— cos[C00t + 0t(t) + a] + n(t) 0< t<T (2-2)

i = l, M

Where a is an arbitrary constant and is typically assumed to be a random variable

uniformly distributed between zero and 2/r, and n(t) is an AWGN process.

For coherent detection, matched filters are used; for noncoherent detection, this is

not possible because the matched filter output is a function of the unknown angle.
11

However, if we assume that a varies slowly relative to two period times (2T), the phase

difference between two successive waveforms 0j(Tl) and 0k(T2) is independent of a ,

that is,

[9k(T2) +a]- lOßr) + a] = 6k(T2) - 0/Tj) = # (T2) (2-3)

The basis for differentially coherent detection of differentially encoded PSK

(DPSK) is as follows. The carrier phase of the previous signaling interval can be used as

a phase reference for demodulation. Its use requires differential encoding of the message

sequence at the transmitter since the information is carried by the difference in phase

between two successive waveforms. To send the ifh message (i= 1,2,....M), the present

signal waveform must have its phase advanced by # = 2^i/M radians over the previous

waveform. The detector, in general, calculates the coordinates of the incoming signal by

correlating it with locally generated waveforms such as J— cosO)0t and J— sm0)ot. The

detector then measures the angle between the currently received signal vector and the

previously received signal vector.

In general, DPSK signaling performs less efficiently than PSK, because the errors

in DPSK tend to propagate (to adjacent symbol times) due to the correlation between

signaling waveforms. One way of viewing the difference between PSK and DPSK is that

the former compares the received signal with a clean reference; in the latter, however,

two noisy signals are compared with each other. One might say that there is twice as

much noise associated with DPSK signaling compared to PSK signaling. It is estimated

that DPSK manifests a degradation of approximately 3 dB when compared with PSK;

this degradation decreases rapidly with increasing signal-to-noise ratio. The trade-off for

this performance loss is reduced system complexity [5].

The use of coherent demodulation (PSK) will give better performance if the

channel is not varying too much. For mobile reception, the channel response may vary

rapidly in phase, and so the potential benefits of coherent demodulation (PSK) are lost in

12

the implementation [6]. It is easier to implement a DPSK system than a PSK system,

since the DPSK receiver does not need phase synchronization. For this reason, DPSK,

although less efficient than PSK, is the preferred choice.

E. OFDM

In a traditional serial data digital communication system, data is sent as a serial

pulse train of information symbols. During the sequence transmission of each symbol

through the channel, the symbol frequency spectrum is allowed to occupy the entire

available bandwidth. However, in a multipath environment (i.e. highly reflective and

shadowing indoor communication or a maritime environment with scattered reflections

from the ocean surface) the signal envelope fluctuates. The time dispersion nature of the

multipath channel also causes adjacent symbols of the serial stream to interfere when the

symbols are short compared to the time spread [7].

A parallel communication system differs from the serial counterpart by allowing

the simultaneous transmission of several sequential data streams using much longer

symbols. At any instance in time, there are many data elements (symbol) being

transmitted through the channel. With this type of system, the individual spectrums of

each data symbol occupy only a small portion of the overall available bandwidth. This

approach is advantageous in spreading out the frequency-selective fade over many

different symbols. Thus, instead of there being a high concentration of errors with

several adjacent symbols being completely destroyed by the fade, the errors are spread

out over many symbols and appear less bursty. In this situation, precise reconstruction of

a majority of the symbols is possible even without the addition of error correcting codes.

Additionally, in a parallel system, by partitioning the entire bandwidth into multiple non-

overlapping frequency sub-bands (sub-channels), equalization of each sub-channel is

much easier than the serial system because the symbols are now much longer than the

time dispersion of the channel, which greatly reduces the effects of ISI.

The approach to implementing a parallel communications system is done in

different ways. In a classical parallel data system using conventional FDM technology

13

(Figure 4), the total signal frequency bandwidth is partitioned into N non-overlapping

sub-channels and are frequency-division multiplexed for transmission.

.Magnitude Symbol Bandwidth Ws

—►I U~

Symbol 1 Symbol 2 Symbol 3 Symbol N

-► Frequency Axis

Overall Bandwidth
W=NxWs

Figure 4. Ideal Frequency-Division Multiplexing Spectrum.

At the receiving end, separation of the sub-band traditionally is accomplished by a

bank of bandpass filters. However, due to the roll-off effect of physically filters, the

actual bandwidth of each sub-channel must be further widened. Sufficient guard bands

must be inserted in the frequency spectrum between adjacent sub-channels to permit

effective filtering without in-band signal attenuation and adjacent band signal

interference. This method, with the addition of guard bands, does not offer the best

possible spectrum efficiency (Figure 5) since now the overall bandwidth is lengthened by

multiple guard bands that do not carry any useful information. [8].

Magnitude

▲

Symbol 1 Symbol 2 Symbol N

-► Frequency Axis

Guard Band

Figure 5. Additional Guard Band In Frequency Spectrum.

An alternative to traditional FDM is a system that uses the discrete Fourier

transform (DFT) to modulate and demodulate parallel data. Using the DFT in the

transmitter, the individual sub-channel spectra can be represented with sine functions

14

which are not band-limited. Multiplexing of the sub-channels is accomplished by base-

band processing instead of bandpass filtering.

One such technique which uses the DFT for implementation is Orthogonal

Frequency Division Multiplexing (OFDM), which is defined as a form of multi-carrier

modulation where the carrier spacing is carefully selected so that each sub-carrier (tone)

is orthogonal to the other sub-carriers. In order for a signal set to be orthogonal, any pair

of sub-carriers must have a frequency separation of a multiple of 1/Ts [8]. OFDM differs

from traditional FDM by allowing the OFDM spectrum of individual orthogonal

subcarriers to mutually overlap; thus, a more optimum spectrum efficiency is gained over

FDM. With the inclusion of coherent detection at the receiver and the use of orthogonal

subcarrier tones separated by the reciprocal of the signaling element duration,

independent separation of the multiplexed tones is possible, specifically by using the

DFT.

Consider a data sequence (Do, Di, D2,....DN-I), where each Dn is a complex

number of the form Dn=An +jBn. If a DFT is performed on the sequence, the result is a

vector d = (do, di,di,... dn-i) of N complex numbers with :

AM 27mm N~l

dm = YJDnexp(-j(=^—) = YJ
D

»exp(-y(2^.fm)), m=0, 1, 2,N-1, (2-4)

Where /„ = n

NAt
tm ~ mAt,

At- —,
N

and Ts is an arbitrary chosen duration of the serial data sequence Dn [7]. Taking the real

part only of the d vector, we get the following components :

AM AM

]T An COS(27mfntm) + ^T
n=0 n=0

jv —i jy i

ym = ^An cos(2mfntm) +]T Bn sin(2mifntm) m=0, 1, 2,.. .N-1 (2-5)

15

Applying these components to an ideal low-pass filter with cutoff frequency

fi 1
2 2At

, we now obtain the frequency division multiplexed signal:

N-\ N-l

y(t)=Yd An cos(2mfnt) + £ Bn sin(2^»/«r) 0 < t < T, (2-6)
n=0 n=0

As an illustration of a general OFDM based communication system using the

orthogonality principle, Figure 6 represents a block diagram of major system components

with substitutions of more efficient fast Fourier transform (FFT) and inverse fast Fourier

transform (IFFT) algorithms to reduce the number of operations from N2 in the DFT

down to approximately —log 2JV for the radix two FFT [9].

Serial Data

Input
Serial-to-Parallel ► Signal
Converter ► Mapper

do

^ IFFT P/S

dn-1

Guard
Interval
Insertion

D/A
►I LPF

Up
Converter

Channel

Parallel-to-Serial
Converter

Signal
Mapper

Serial Data Output

FFT S/P Guard
Interval
Remov
al

A/D
LPF

Down
Converter

Figure 6. FFT-based OFDM System.

Initially, the incoming serial data bit stream is grouped to form symbols, q bits

long, in preparation for a M-ary digital modulation scheme, where M=2q. Each symbol

passes through a signal constellation mapper, such as 4-phase shift keyed (4-PSK) for

example (for this case, q=log2M=log24=2), to generate a complex modulation

value,{DN},corresponding to a particular 2-bit symbol. The sequence of complex

modulation values are converted from serial to parallel format by a multiplexer to form a

block size of N symbols, where each member of N corresponds to a baseband fashion by

16

the IKFT performing the mapping into the time domain. Finally a multiplexer converts

from parallel format to a serial data stream suitable for up conversion and RF

transmission. Before the up conversion process can be accomplished, an analog-to-

digital (A/D) converter is used to convert the discrete values to the analog equivalent and

perform low-pass filtering. After transmission through the channel, the OFDM receiver

portion of the system performs the inverse process of the transmitter. Specifically, down

conversion and low-pass filtering is initially performed to recreate the baseband

transmitted signal. The baseband serial data stream is converted to parallel forming N

paths, which are fed to an FFT block. The N-point FFT operation recovers the complex

modulation values, allowing the inverse signal mapper to generate the corresponding

symbol bit pattern. The q-bit length symbols are multiplexed into a serial data stream to

complete the process and recover the original information.

During the signal constellation mapping stage, each data symbol is encoded as a

truncated sinusoid within the interval (0,TS). Signal truncation causes the frequency

response of y(t) to be a sine function. As seen in Figure 7, the spectral shape of an

OFDM subchannel contains zero crossings at multiples of 1/TS. The other sub-carriers

are generated by the IDFT in such a way that their spacing generates a nearly flat overall

spectrum with no interference among individual spectra. For example, an OFDM

spectrum would be similar to the one depicted in Figure 8. In this figure the

orthogonality of the subcarriers is demonstrated by the overlapping of individual

subcarrier spectra at their respective zero crossings, thus, the spectra of the individual

subchannels are zero at the other subcarrier frequencies.

17

2tr

— -^ *~ f(Hz)

V 1 V
Figure 7. Spectrum For Single Symbol With Length Ts.

*~ f(Hz;

30 35 40 45 50 65 70 75 80

Figure 8. OFDM Spectrum.

As previously mentioned, generation of this orthogonal structure is accomplished by

using the IFFT, and assuming a distortionless channel, orthogonality is maintained after

transmission with each individual subchannel completely separable by the FFT process in the

receiver. Unfortunately, in practice, ideal distortionless channel conditions cannot be guaranteed

and are typically nonexistent in actual RF transmission environments. Also, since each OFDM

symbol spectrum is not band limited, channel distortions such as multipath cause each subchannel

to spread energy into the adjacent subchannels causing intercarrier interference (ICI).

Orthogonal Frequency Division Multiplexing (OFDM) is a modulation method that, like

all wireless transmission schemes, encodes data onto a radio frequency signal. Conventional

18

Single carrier transmission schemes like AM/FM (amplitude or frequency modulation) send only

one signal at a time using one radio frequency. OFDM sends multiple high-speed signals

concurrently on different frequencies. This results in very efficient use of bandwidth, and

provides robust communications in the presence of noise, intentional or unintentional

interference, and reflected signals that degrade radio communications.

F. GUARD INTERVAL

As mentioned in the above section, the basic principle of OFDM is to split a high-

rate data stream into a number of lower-rate streams which are transmitted

simultaneously over a number of subcarriers. Since the symbol duration increases for

lower-rate parallel subcarriers, the relative amount of time dispersion caused by multipath

delay spread is decreased. ISI is eliminated almost completely by introducing a guard

time in every OFDM symbol. In the guard time, the OFDM symbol is cyclically

extended to avoid intercarrier interference. Figure 9 shows an example of four

subcarriers from one OFDM symbol. It can be seen in Figure 9 that all subcarriers differ

by an integer number of cycles within the FFT integration time, which ensures

orthogonality between the different subcarriers. This orthogonality is maintained in the

presence of multipath delay spread, as shown in Figure 9. Because of multipath, the

receiver sees a summation of time-shifted replicas of each OFDM symbol. As long as the

delay spread is smaller than the guard time, there is no ISI or intercarrier interference

within the FFT interval of an OFDM symbol [10].

M?V\AAAA/VWW\!

Direct path "V"
signal *\

Multi pa«i
dalayad signal*

Figure 9. An Effect Of Guard Interval.

19

Table 1 below lists the main parameters of the IEEE 802.1 la OFDM standard. A

key parameter which largely determined the choice of the other parameters is the guard

interval of 800ns (0.8ns). This guard interval provides robustness to RMS delay spreads

up to several hundreds of nanosecond, depending on the coding rate and modulation

used. In practice, this means that the modulation is robust enough to be used in any

indoor environment, including large factory buildings. It can also be used in outdoor

environments, although directional antennas may be needed in this case to reduce the

delay spread to an acceptable amount and increase the range.

Data Rate
Modulation
Coding Rate
Number of subcarriers
Number of FJhT points
OFDM symbol period
Guard Interval

Subcarrier spacing
-3dB bandwidth
Channel spacing

6,9,12,18,24,36,48,54 Mbps
BPSK, QPSK, 16-QAM, 64-QAM
Vi, 2/3, 3/4
48 (without pilot tones)
64
4 [is
800ns
312.5KHz
16.6MHz
20MHz

Table 1. Main Parameters Of The OFDM Standard.

G. VITERBI DECODER

The Viterbi algorithm is a method commonly used for decoding bit streams

encoded by convolutional encoders. This algorithm is a maximum-likelihood decoding

algorithm, which upon receiving the channel output, searches through the trellis to find

the path that is most likely to have generated the received sequence. If hard-decision

decoding is used, this algorithm finds the path that is at the minimum Hamming distance

from the received sequence, and if soft-decision decoding is employed, the Viterbi

algorithm finds the path that is at the minimum Euclidean distance from the received

sequence.

20

1. Code Trellis

For ease of explanation, a simple convolutional encoder with constraint length of

3, and rate Vi is used (Figure 10).

Input: Binary digits

pQ

Du D1 Dl

<y

First Output

Code digits

Second Output

Figure 10. A simplified Convoluational Encoder.

For the rate 1/2 convolutional code presented in Figure 10, the Code Trellis is

drawn as shown in Figure 11. Notice that it is simply another way of drawing the state

diagram, which is presented on the right hand side.

Code Trellis : rate V?. Convolutional Code State Dia$n-am : rate ¥>.
I7IS

00

01

10

11

0/00 ^° 00(0)

01(1)

10(2)

11(3)

Solid: Input '0'
Dotted: Input '1'

Figure 11. Code Trellis And State Diagram.

21

The four possible states (00, 01, 10, 11) are labeled 0, 1, 2, 3 (shown in brackets

in the code trellis diagram). Notice that there are two branches entering each state, which

will be referred to as the upper and lower branches respectively. For example, the state

01 has an upper branch which comes from the state 10, and a lower branch which comes

from state 11. The branch codeword is the codeword associated with a branch. For

example, the upper branch entering state 01 has the branch codeword 10. It's labeled

0/10 in the diagram which means that a binary digit 0 input to the encoder in state 10,

will output the codeword 10 and move to the state 01.

Using the code trellis, the Viterbi Trellis is drawn as shown in Figure 12. Notice

that it is simply a serial concatenation of many code trellis diagrams (ignore the "X", and

the highlighted text (yellow) for now). The only important feature at this stage is that the

Viterbi trellis consists of many code trellis diagrams. The trellis depth of a Viterbi trellis

is the number of code trellis replications used. For example, the trellis depth is 7 in the

example below. The diagram below shows the internal operation of the Viterbi decoder

using a specific example in which the code sequence 11101111010111 is received from

without error.

Time

11 10 11

Received codeword from BSC

11 01 01

Figure 12. Viterbi Trellis Diagram.

11

22

2. Viterbi Algorithm

Any given state in the Viterbi trellis may be identified by the state s and time t.

For example the (0, 1) in Figure 13 below represents the state s = 0 at time t=\, and (3,

5) represents the state s = 3 at time t = 5. These states are shown in Figure 13 below so

that we can relate them to the main Viterbi trellis diagram in Figure 12.

Figure 13. Extract Of Viterbi Trellis Diagram In Figure 12.

Let the metric for a state s at time t be represented by m(s, t). A metric is just a

number. This will become clear very shortly. For example, for the two states shown

above, the metrics are shown in highlighted, yellow text. Thus m(0, 1) = 0 and ra(3, 5) =

0. At time t = 0, we initialize all state metrics to zero (i.e. m(0,0) = m(l,0) = ra(2,0) =

m(3,0) = 0). By setting each state metric to zero, we are taking into account that the

encoder may have started in any of the possible states. This is typically the case because

even though the encoder does in fact start in the all-zero state, the transmitted codeword

sequence may have been segmented and sent as a series of packets. In this case, the

starting state of any given segment cannot be assumed to be the all-zero state. If

however, we know that the encoder started in the all-zero state for the codeword

sequence we are decoding, then for the first code trellis, we need only calculate the

metrics which geminate from the state s = 0 at time t = 0. For example, for the above

convolutional code, you need only calculate the metrics m(0,l) and m(2,l) within the first

code trellis.

Let the hamming distance for the upper branch entering a state s at time t be

HD_upper (s, t), and the hamming distance for the lower branch be HDJower (s, t). The

23

Hamming distance is the number of differences between the received codeword and the

branch codeword.

The Viterbi Trellis shown in Figure 12 is analyzed in the following steps :

Step 1. At time t, for a given state s, compare the received binary codeword with

each branch codeword entering this state to calculate HD_upper (s, t) and HDJower (s,

t). For example, HD_upper (0, 1) = 2 and HD_lower(0,l) = 0.

Step 2. Calculate y_up = HD_upper (s, t) + m(s*, t-1), where s is the state at time

t, and s* is the pervious state at time (t-1) for a given branch. For example, for the first

state s = 0 at t = 1, y_up = HD_upper (0,1) + m(0,0) = 2 + 0 = 2.

Step 3. Calculate y_low = HDJower (s, t) + m(s*, t-1) For example, for the first

state s = 0 at t = 1, y_low = HDJower (0, 1) + m(l,0) = 0 + 0 = 0.

Step 4. Identify the surviving branch entering the state at time t as follows:

Choose upper branch as the survivor if y_up < yjow, and let yJinal = y_up. Otherwise

choose the lower branch, and let yjinal = yjow. If y_up = yjow, then randomly select

any branch as the survivor. For example, for the first state s = 0 at t = 1, yjinal = yjow

= 0.

Step 5. The branch which does NOT survive is marked with an "X". Only one

branch survives per state (or node on the trellis). These X's are only shown in the diagram

above up to time t = 2. For example, for the first state s = 0 at t = 1, the upper branch is

marked with an "X". This means that this branch does not survive. Only the lower branch

entering the state 00 survives.

Step 6. Set the state metric m(s,t) = yjinal. The final metric for each state is

shown in Yellow text in the above diagram. For example, for the first state s = 0 at t = 1,

m(0,l) = yj?inal = 0.

Step 7. Repeat steps 1 to 6 until we reach the end of the Viterbi trellis at time 7. Of

course we must determine the metrics m(s,l) first before we can calculate m(s, 2).
24

Step 8. From all final state metrics [m(0,7) m(l,7) m(2,7) m(3, 7)], choose the

minimum metric, and trace back the path from this state. In the above example this trace

back path is shown as a solid black line, which starts from state s = 0 at time t = 7, and

ends at state s = 0 at time t = 0.

Step 9. Output the information binary digits which correspond to branches on this trace

back path.

3. Metrics

Referring back to the Viterbi Trellis diagram in Figure 12, notice that if we trace

back the path which starts at s = 2, t = 5, the codewords on that trace-back path are as

shown in Table 2 below in the first row. Note that at this state, the metric m(2, 5) = 3.

Codeword sequence on trace back path from
s = 2,t=5

1111101111

Codeword sequence received from channel 1110111101

Hamming distance between these two
sequences

3

Table 2. Codewords On The Trace-back Path.

A total cumulative metric m(2, 5) = 3 means that the codeword sequence on a path

traced back from this state differs with the received codeword sequence in 3 positions.

Hence we select the trace-back path from time t =7 based on which state has the

minimum metric. This is because we want to select a codeword sequence within the

trellis, which is as close as possible to the received codeword sequence from the channel,

i.e. Maximum likelihood decoding [5].

In this chapter we discussed the transmission and reception components of

COFDM signals. The next chapter will discuss the communications channel and aspects

important to analysis of COFDM.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

III. WIRELESS CHANNEL CHARACTERISTICS

A. NOISE IN COMMUNICATION SYSTEMS

The term noise refers to unwanted electrical signals that are always present in

electrical systems. The presence of noise superimposed on a signal tends to obscure or

mask the signal. It limits the receiver's ability to make correct symbol decisions, and

thereby limits the rate of information transmission. Good engineering design can

eliminate much of the noise or its undesirable effect through filtering, shielding, the

choice of modulation, and the selection of an optimum receiver site. However, there is

one natural source of noise, called thermal or Johnson noise, that cannot be eliminated.

Thermal noise is caused by the thermal motion of electrons in all dissipative components

- resistors, wires, and so on. The same electrons that are responsible for electrical

conduction are also responsible for thermal noise [5].

We can describe thermal noise as a zero-mean Gaussian random process. A

Gaussian process, n(t), is a random function whose value, n, at any arbitrary time, t, is

statistically characterized by the Gaussian probability density function, p(n):

1 l^"^2

p(n)=—=exp[--
(JV2^ 2

n
] (3-D

where a1 is the variance of n. The normalized or standardized Gaussian density function

of a zero-mean process is obtained by assuming that <j=l. This normalized pdf is shown

sketched in Figure 14.

27

"-;£-[-*©]

0.399—y-

1 03

■*-o-+

|o=l|

/ 0.242

/ 0.2

/ 0.1

/ 0.054

 1 l _i .
i
i l"-~—

-3 -2

Figure 14. Normalized (cr=l) Gaussian Probability Density Function.

A random signal is often represented as the sum of a Gaussian noise random
variable and a dc signal:

z = a + n (3-2)

Where z is the random signal, a the dc component, and n the Gaussian noise random
variable. The pdf p(z) is then expressed as

P(z) =
1
.— exp[--

z-a \
2

V CT)
] (3-3)

where, as before, <72 is the variance of n. The Gaussian distribution is often used as the

system noise model because of a theorem, called the central limit theorem, which states

that under very general conditions the probability distribution of the sum of j statistically

independent random variables approaches the Gaussian distribution as j -> <=°, no matter

what the individual distribution functions may be. Therefore, even though individual

noise mechanisms might have other than Gaussian distributions, the aggregate of many

such mechanisms will tend toward the Gaussian distribution.

B. WHITE NOISE

The primary spectral characteristic of thermal noise is that its power spectral

density is the same for all frequencies of interest in most communication systems. In

other words, a thermal noise source emanates an equal amount of noise power per unit

28

bandwidth at all frequencies - from dc to about 1012 Hz. Therefore, a simple model for

thermal noise assumes that its power spectral density G„(f) is flat for all frequencies, as

shown in Figure 15, and is denoted as follows :

G„(f)= — watts/hertz (3-4)

Where the factor of 2 is included to indicate that Gn(f) is a two-sided power

spectral density. When the noise power has such a uniform spectral density, we refer to it

as white noise. The adjective "white" is used in the sense that white light contains equal

amounts of all frequencies within the visible band of electromagnetic radiation.

The autocorrelation function of white noise is given by the inverse Fourier

transform of the noise power spectral density denoted as follows :

.!,„ No
Rn(r)=S-l{Gn(f)J = —S{r) (3-5)

Thus the autocorrelation of white noise is a delta function weighted by the factor

NJ2 and occurring at T = 0, as seen in Figure 15(b). Note that Rn(r) is zero for x * 0; that

is, any two different sample of white noise, no matter how close together in time they are

taken, are uncorrelated.

The delta function in equation 1 means that the noise signal, n(t), is totally

decorrelated from its time-shifted version, for any x > 0. Equation 1 indicates that any

two different samples of a white noise process are uncorrelated. Since thermal noise is a

Gaussian process and the samples are uncorrelated, the noise samples are also

independent. Therefore, the effect on the detection process of a channel with additive

white Gaussian noise (AWGN) is that the noise affects each transmitted symbol

independently. Such a channel is called a memoryless channel. The term "additive"

means that the noise is simply superimposed or added to the signal - that there are no

multiplicative mechanisms at work [5].

29

Gn(f>

N0/2

R„(r)

N0/2

0

(a) (W
Figure 15. (a) Power Spectral Density Of White Noise, (b) Autocorrelation Function Of
White Noise.

C. MULTIPATH

Multipath is one of the performance concerns for indoor IEEE 802.11 WLAN

systems. Multipath occurs when the direct path of the transmitted signal is combined

with paths of the reflected signal paths, resulting in a corrupted signal at the receiver, as

show in Figure 16. The delay of the reflected signals (measured in microsecond (usec) in

this thesis) is commonly known as delay spread. Delay spread is the parameter used to

characterize multipath.

Multipath Interference^ „

Direct path

ES:

Figure 16. Multipath Interference.

30

The amount of delay spread varies for indoors home, office, and manufacturing

environments, as shown in Table 3. Surfaces of furniture, elevator shafts, walls, factory

machinery, and metal constructed buildings all contribute to the amount of delay spread

in a given environment [2].

Environment Delay Spread

Home < 0.05 (isec (50 nsec)

Office ~0.1(J.sec (100 nsec)

Manufacturing floor 0.2 - 0.3 |isec (200-300 nsec)

Table 3. Typical Multipath Delay Spread For Indoor Environments.

1. Small-Scale Fading And Multipath

Small-scale fading, or simply fading, is used to describe the rapid fluctuation of

the amplitude of a radio signal over a short period of time or travel distance. Fading is

caused by interference between two or more versions of the transmitted signal which

arrive at the receiver at slightly different times. These waves, called multipath waves,

combine at the receiver antenna to give a resultant signal which can vary widely in

amplitude and phase, depending on the distribution of the intensity, relative propagation

time of the waves and the bandwidth of the transmitted signal [11].

a. Small-Scale Multipath Propagation

Multipath in the radio channel creates small-scale fading effects. The

three most important effects are :

• Rapid changes in signal strength over a small travel distance or

time interval.

• Random frequency modulation due to varying Doppler shift on

different multipath signals.

• Time dispersion (echoes) caused by multipath propagation delays.

Although a mobile receiver may be stationary, the receiver signal may

fade due to movement of surrounding objects in the radio channel. If objects in the radio

channel are static, and motion is considered to be only due to that of the mobile, then

fading is purely a spatial phenomenon. The spatial variations of the resulting signal are

31

seen as temporal variations by the receiver as it moves through the multipath field. A

receiver moving at high speed can pass through several fades in a small period of time.

Maintaining good communication can then become very difficult.

Due to the relative motion between the mobile and the base station, each

multipath wave experience an apparent shift in frequency. The shift in received signal

frequency due to motion is called the Doppler shift, and is directly proportional to the

velocity and direction of motion of the mobile with respect to the direction of arrival of

the received multipath wave.

b. Time Dispersion Parameters

In order to compare different multipath channels and to develop some

general design guidelines for wireless systems, parameters which grossly quantify the

multipath channel are used. The mean excess delay, rms delay spread, and excess delay

spread are multipath channel parameters that can be determined from a power delay

profile. The time dispersive properties of wide band multipath channels are most

commonly quantified by their mean excess delay (f) and rms delay spread (or). The

mean excess delay is the first moment of the power delay profile and is defined to be :

^Ta2kik 2]PO)Zfc
-- * - * (3-6) T=- 3>2* £/>(*)

The rms delay spread is the square root of the second central moment of the power delay

profile and is defined to be :

(jr = 4t1-(j)2 (3-7)

Where f2 = * 2 = * ^ (3-8)

32

These delays are measured relative to the first detectable signal arriving at

the receiver at xo=0. Typical values of rms delay spread are on the order of microseconds

in outdoor mobile radio channels and on the order of nanoseconds in indoor radio

channels.

2. Doppler Spread

Delay spread parameters describe the time dispersive nature of the channel in a

local area. However, they do not offer information about the time varying nature of the

channel caused by either relative motion between the mobile and base station, or by

movement of objects in the channel.

Doppler spread is a measure of the spectral broadening caused by the time rate of

change of the mobile radio channel and is defined as the range of frequencies over which

the received Doppler spectrum is essentially non-zero. When a pure sinusoidal tone of

frequency fc is transmitted, the received signal spectrum, called the Doppler spectrum,

will have components in the range fc -fd to fc + fd, where fd is the Doppler shift. The

amount of spectral broadening depends on fd which is defined as :

fd=YL = Y£ (3-9)
X c

where c is the speed of light, vr is the relative velocity, and/c is the carrier frequency. For

example, at 5200 MHz, and a mobile speed of lm/s (walking speed), the Doppler shift is

17.33 Hz.

3. Types Of Small-Scale Fading

Depending on the relation between the signal parameters (such as bandwidth,

symbol period, etc) and the channel parameters (such as rms delay spread and Doppler

spread), different transmitted signals will undergo different types of fading. The time

dispersion and frequency dispersion mechanisms in a mobile radio channel lead to four

possible distinct effects as shown as follows :

33

 Small-Scale Fading (Based on Multipath time delay spread)
Flat Fading | Frequency Selective Fading
1. B W of signal < B W of channel 1. BW of signal > BW of channel
2. Delay spared < Symbol period 2. Delay spread > Symbol period

Small-Scale Fading (Based on Doppler spread)
Fast Fading Slow Fading
1. High Doppler spread 1. Low Doppler spread
2. Coherence time < Symbol period 2. Coherence time > Symbol period
3. Channel variations faster than baseband
signal variations

3. Channel variations slower than baseband
signal variations.

4. Fading Effect Due to Multipath Time Delay Spread

Time dispersion due to multipath causes the transmitted signal to undergo either

flat or frequency selective fading.

a. Flat Fading

If the mobile radio channel has a constant gain and linear phase response

over a bandwidth which is greater than the bandwidth of the transmitted signal, then the

received signal will undergo flat fading. In flat fading, the multipath structure of the

channel is such that the spectral characteristics of the transmitted signal are preserved at

the receiver. However the strength of the received signal changes with time due to

fluctuations in the gain of the channel caused by multipath. Figure 17 illustrates how flat

fading can distort the amplitude and phase of a received signal. In this scenario a

sinusoidal signal is directly transmitted to the receiver and the same signal being reflected

and then received. For simplicity, it is assumed that the received signal comprises the

sum of the directed signal and the reflected signals. Whether the sum of two such

modulated signals cancel or reinforce each other strongly depends on the difference in

their phase angles. The phase of the received signal may also differ considerably from

the directed signal (see Figure 17(a-f)). If the reflected signal is attenuated, the impact on

the amplitude and phase of the received signal becomes limited (Figure 17(b) and (d)). A

reflected signal need not always produce a negative effect in a multipath link. As shown

in Figure 17(e), although reflected signal 1 virtually cancels out the directed signal,

reflected signal 2 actually provides a means to recover the original signal.

34

Reflected signal

Directed signal

Received signal

Spatial displacement Spatial displacement

Figure 17(a & b). Impact Of Multipath Reflections On Received Signal.

Reflected signal

Directed signal

Received signal

Spatial displacement

24-degree phase shift with
increased amplitude

Spatial displacement

Figure 17(c & d). Impact Of Multipath Reflections On Received Signal.
12.

Reflected signal 1
Reflected signal 2
Directed signal
Received signal

Spatial displacement Spatial displacement

Figure 17(e & f). Impact Of Multipath Reflections On Received Signal.

35

b. Frequency Selective Fading

If the channel possesses a constant-gain and linear phase response over a

bandwidth that is smaller than the bandwidth of transmitted signal, then the channel

creates frequency selective fading on the received signal. Under such conditions the

channel impulse response has a multipath delay spread which is greater than the

reciprocal bandwidth of the transmitted message waveform. When this occurs, the

received signal includes multiple versions of the transmitted waveform which are

attenuated (faded) and delayed in time, and hence the received signal is distorted.

Frequency selective fading is due to time dispersion of the transmitted symbols within the

channel. Thus the channel induces intersymbol interference (ISI).

5. Intersymbol Interference

In general, the effect of the delay spread is to cause the smearing of individual

symbols in the case where the symbol rate is sufficiently low, or to further cause time-

dispersive fading and intersymbol interference if the symbol rate is high (see Figure 18).

Low symbol rate
Original data

symbols are separate
s

Received data symbols broaden
and move closer to each other

Multipath

Original data
symbols are separate

/h /h
I

High symbol rate
Received data symbols overlap
and are barely distinguishable

D

Multipath &S-

Legend
D = Delay spread
S = Symbol interval

Figure 18. Effects Of Delay Spread.

-S
"**\

36

Intersymbol interference (ISI) is a form of self-interference that increases the

error rate in digital transmission, an impairment that cannot be overcome simply by

improving the signal-to-noise ratio. This is because increasing the signal power in turn

increases the self-interference. At higher symbol rates or larger delay spreads, the

difference in delay among the various signal reflections arriving at the receiver can be a

significant fraction of the symbol interval. Normally, a delay spread of more than half a

symbol interval results in indistinguishable symbols and a sharp rise in the error rate.

The ISI is prevented in IEEE 802.11a (with COFDM) by creating a cyclically

extended guard interval, where each OFDM symbol is preceded by a periodic extension

of the signal itself.

6. Path Loss

In general, the spatially averaged power P0 at a point a distance d from the

transmitter is a decreasing function of d. Usually, this function is represented by a path-

loss-power law of the form :

Po~d-Y (3-10)

In free space the path-loss law exponent 7=2, so the power law obeys an inverse-

square law [12]. For WLAN, the signal attenuation is dependent not only on distance and

transmitted power but also on reflecting objects, physical obstructions, and the amount of

mutual interference from other transmitting nodes. While the free-space exponent may

be relevant for short distance transmition (eg. up to 10m), the path loss is usually

modeled with a higher-valued exponent of 3 to 5 for longer distances [18].

37

7. Rayleigh And Ricean Distribution

a. Rayleigh Fading Distribution

A Rayleigh distribution is commonly used to describe the statistical time

varying nature of the received envelope of a flat fading signal, or the envelope of an

individual multipath component.

b. Ricean Fading Distribution

When there is a dominant stationary (nonfading) signal component

present, such as a line-of-sight propagation path, the small-scale fading envelope

distribution is Ricean. In such a situation, random multipath components arriving at

different angles are superimposed on a stationary dominant signal

The effect of a dominant signal arriving with many weaker multipath

signals gives rise to the Ricean distribution. As the dominant signal becomes weaker, the

composite signal resembles a noise signal which has an envelope that is Rayleigh. Thus,

the Ricean distribution degenerates to a Rayleigh distribution when the dominant

component fades away.

D. IEEE 802.11 CHANNEL MODEL

In an environment where performance measurement of the same radio is used in

the same location, over time the results may not agree. This is due to the changing

position of people in the room and slight changes in the environment. These can produce

significant changes in the signal power at the radio receiver. A consistent channel model

is required to allow comparison of different WLAN systems and to provide consistent

results. In doing so, the IEEE 802.11 Working Group adopted the following model as the

baseline for predicting multipath in modulations schemes used in IEEE 802.11a and

IEEE 802.11b. This model is ideal for software simulations prediction performance

results of a given implementation. The channel impulse response illustrated in Figure 19

38

is composed of complex samples with random uniformly distributed phase and Rayleigh

distributed magnitude with average power decaying exponentially [2].

Magnitude

ttM4 i—r
O Ts 2TS 3TS 4TS 5Ta 6T. 7TB ST. 9T« 10T,

Time

Figure 19. Channel Impulse Response For IEEE 802.1 la.

Similar models were implemented in [10] and [15], and the multipath delay

profile is shown in Figure 20. It consists of 18 path signals at interval of 50ns. This

model is chosen and implemented in this thesis.

is pat» RayMflh dtaMwtedmunpMh tadtoff

DopphM- frequency * 40 Hz |tO Had
RMS tfelay apraocf ~ too n» (400 »*]

(J:VaJu»for 1/4 seal* m«M

l^aej»de

ioo 200 aoo 40o < BOO eoo TOO aoo
[400] [aOOf ttaOO] I1O0O] |2000] |Z4O0] [20001 (3200]

Ralativ* d«tay (rts)

Delay Profile
(in nsec)

Gain Profile
(in dB)

Delay Profile
(in nsec)

Gain Profile
(in dB)

0 0 450 -19.54
50 -2.17 500 -21.71
100 -4.34 550 -23.89
150 -6.51 600 -26.06
200 -8.69 650 -28.23
250 -10.86 700 -30.40
300 -13.03 750 -32.57
350 -15.20 800 -34.74
400 -17.37 850 -36.92

Figure 20. Multipath Delay And Gain Profile.

39

In this chapter we first discussed the AWGN noise channels. The AWGN noise

has no multiplicative mechanisms, and is noise that is simply superimposed or added to

the signal. It is implemented in this thesis so as to investigate its effect on the

performance of coded OFDM. We have covered multipath which is one of the

performance concerns for indoor IEEE 802.11 WLAN systems. A consistent multipath

channel model adopted by the IEEE 802.11 Working Group, and implemented in thesis is

also discussed in this chapter.

40

IV. MATLAB COFDM SYSTEM MODEL

A. GENERAL

The next step in the research was the implementation of a COFDM computer

system model. The work of [17] was adopted for the purpose of this thesis. For this

thesis, all signal processing and channel transmission through the simulated links are

performed at baseband. Since the objective of this thesis is to emulate and simulate the

physical layer, it is deemed not necessary to have a physical implementation, hence, the

functions normally associated with RF up-conversion and down-conversion are not

necessary to generate meaningful tradeoff results. Thus, filtering, digital-to-analog

conversion (DAC), up/down frequency translation and analog-to-digital conversion

(ADC) functional sub-blocks necessary for actual implementation are not included in the

computer model. A block diagram of the complete system model which is emulated in

MATLAB and simulations performed is presented in Figure 21.

Convolutional
Encoding

Block
Interleaver

q-bit to p-bit
Symbol
Reformater

Guard
Interval
Insertion

IFFT
Processing

Differential
BSK/PSK
Channel
Encoder

Noisy Channel With Multipath And Doppler Shift

Guard
Interval
Removal

FFT
Processing

Differential
Decoder &
Symbol
Manner

Block
Deinterleaver

Figure 21. Complete System Model.

p-bit to q-bit
Symbol
Reformater

41

B. COFDM TRANSMITTER

The COFDM transmitter functional block diagram is illustrated in Figure 22 with

each of the sub-blocks subsequently described.

Message Source

^

q-bit to p-bit

Convolutional
Encoding

Block
Interleaver

iymDOi
Reformater

—w w w

^
Guard
Interval
Insertion

4
IFFT
Processing 4—

Differential
BSK/PSK
Channel
Encoder

^ ^ < '
Transmitted
Baseband
signal

Figure 22. COFDM Transmitter Functional Block Diagram.

1. Random Bit Generator

This functional block originates a random message bit pattern representing the

information source. The bit sequence length is variable as defined by the user. The

random property of each binary element is determined by a seed parameter setting the

internal computer's random number generator seed. If multiple simulations are

performed using the same seed values, identical results occur. This property is useful

when comparing and contrasting simulation outputs with different system configurations.

By fixing seed values, optimal system configurations can be ascertained based upon

superior BER performance while using consistent channel characteristics and source

message symbol patterns. It is also possible to set the seed randomly by the internal PC

processor.

2. Convolutional Encoding

Convolutional coding is a special case of error-control coding. A convolutional

coder is not a memoryless device. Even though a convolutional coder accepts a fixed

number of message symbols and produces a fixed number of code symbols, its

computations depend not only on the current set of input symbols but on some of the

previous input symbols.

42

3. Block Interleaver

A block interleaver accepts a set of symbols and rearranges them, without

repeating or omitting any of the symbols in the set. The number of symbols in each set is

fixed for a given interleaver. The interleaver's operation on a set of symbols is

independent of its operation on all other sets of symbols.

4. Symbol Reformatter

In preparation for the appropriate N-ary modulation scheme, N=2P (Note : the N

used for N-ary signaling is not the same N used for N-point FFT calculations). Since 2-

PSK (BPSK) and 4-PSK (QPSK) are predominately used during simulation runs, symbol

lengths are resized as either 1-bit (p=l) or 2-bit (P=2) length words. If necessary, zero bit

padding may be required during the reformatting process to account for incomplete word

formations.

As a result of symbol reformatting, the dimensions of the original source message

array may change to compensate for the addition or deletion of redefined symbols.

Regardless of the number of new PSK symbols formed, the number of matrix columns

corresponding to OFDM subcarriers remains fixed. Hence, any necessary message

symbol quantity adjustment is accommodated by increasing or decreasing the number of

matrix symbol rows instead. For example, if during the symbol reformatting process the

OFDM symbols are changed from 8-bits to 4-bits, then the total number of message

symbols double from their original amount. Consequently after reformatting, the number

of message matrix rows double while the number of message matrix columns remains

constant.

5. Differential PSK Channel Encoder

PSK is the preferred modulation technique for channel encoding in multipath

channels. Prior to signal constellation mapping, differential encoding is performed on the

symbols within the message matrix. Two types of differential encoding are included.

43

Considering differential encoding along the time dimension (symbol rows), a cumulative

summation down each column of the message symbol array is calculated. For differential

encoding along the frequency dimension (OFDM frequencies), a cumulative summation

across each row of the message symbol array is calculated. Recall that construction of

the message block matrix is designed so that column represent OFDM frequencies

(frequency dimension), while rows represent symbols generated in time (time

dimension). During- subsequent simulation trials, either frequency and/or time

differential encoding may be selected to evaluate system performance.

The differential encoding/deconding technique introduces memory into the

system and allows for decoding of the current received symbol with respect to the

previously decoded symbol. Consequently, detection decisions are based upon relative

differences between consecutively received symbols. This technique may be

advantageous in a slowly fading multipath channel where the variations among

successive received symbols are negligible. A cumulative summation can be best

illustrated through an example.

Given V = [123 45 67 8 9]' (4-1)

Then, CsumV16 = [1 3 6 10 15 5 12 4 13]' (4-2)

V is a column vector whose elements represent message symbols taken from the

set of N integers, where N=2P. CsumV is formed by consecutively adding in modulo-N

fashion successive elements in V beginning with one to the current running total in

CsumV beginning with zero. For this example N=16; thus, 0 +1 =1, 1+2 (the next

element in V)=3, 3 + 3 =6, 6+4=10, 10+5=15, 15+6=21 =5 (modulo-16) and so on. In

this way, all the elements in CsumV are calculated with respect to the first element in V.

A more concise expression is :

CsumVk =Vk® CsumVk - 1 (4-3)

where {V*} is a modulo-N message sequence input to the differential encoder,

{CsumVk} is the encoder output sequence, and © denotes modulo-N addition.

44

Following differential encoding, each symbol in the differentially encoded

message array is channel encoded as a complex modulation value with unit magnitude

and one of N possible phases (N-PSK modulation); that is,

Dk = e N (4-4)

In continuation of the previous example (i.e. CsumVi6 = [13610155124 13]'

), the corresponding vector of 16-ary complex modulation value phase angles are,

Ang[D]=[22.5° 67.5° 135° 225° 337.5° 112.5° 270° 90° 292.5°]' (4-5)

A row of ones representing zero phase complex modulation values is appended to

the top of the message array during time differential encoding, representing a decoding

reference for the receiver. For frequency differential encoding, a pair of columns

containing ones elements is appended to the extreme left side of the message array as a

similar decoding reference. Two ones columns are included instead of a single column to

maintain an even number of OFDM frequencies (even number of columns).

6. IFFT Processing

To convert the frequency array to time domain representation, an N-point IFFT is

performed producing a corresponding output sequence of time domain samples. The

input array complex modulation values have the left and right half swapped by the

previous frequency arranger block to account for the automatic frequency index shift that

results from the IFFT.

7. Guard Interval Insertion

A guard interval composed of a period extension of the symbol is inserted at the

beginning of each symbol for channel impluse response compensation purposes. The

length of the guard interval is fixed at 800ns to account for multipath delays. The guard

interval is represented by additional 16 time domain samples added to the resulting

sequence derived from IFFT processing.

45

C. COFDM RECEIVER

The receiver functional block diagram is illustrated in Figure 23. The blocks in

the receiver perform the reciprocal functions of the transmitter and are described as

follows.

Received

b

Differential
Decoder &
Symbol
Mapper

Baseband Guard
Interval
Removal

IFFT
Processing b w w

^

p-bit to q-bit
Symbol
Reformater

^ Sink \ Viterbi
Decoder

Block
Deinterleaver Message [^

Block J

A ^

Figure 23. Receiver Functional Block Diagram.

1. Guard Interval Removal

The guard interval precursor appended to each symbol in the transmitter is

initially removed, leaving behind the remaining information portion of the symbol for

further processing. The information symbol consists of a sequence of 16 time domain

samples.

2. FFT Processing

The sequence of time domain samples are transformed into the frequency domain

using an 64-point FFT to recover the OFDM frequency tones information. In a linear

time-invariant channel, the orthogonality of carriers is preserved; however, in a multipath

environment with frequency Doppler shifting, this is not always the case. The output is

an array of complex modulation values with the left half portion shifted to the right N

positions as a result of the FFT operation.

46

3. Channel Decoding

Differential decoding is first performed either in the frequency dimension (matrix

column) or time dimension (matrix rows), maintaining compatibility with the transmitter

differential encoding method. In addition, the previously appended reference ones

elements are removed. Afterwards, channel decoding is accomplished, inverse mapping

each received complex modulation value with magnitude and phase into a corresponding

N-ary symbol representation composed of p bits. Considering QPSK, 2 bit long symbols

are reconstructed.

4. Block Deinterleaving

The message is next deinterleaved to reconstruct proper ordering of the

information symbol stream according to the particular interleaving configured in the

transmitter. After deinterleaving, any corrupted symbol errors caused by burst noise in

the channel should be sufficiently redistributed within the message array, creating a more

random, uncorrelated error distribution.

5. Received Message

The output of the receiver represents the received sink message block. After

transmission through the system channel model prone to noise and multipath distortions,

symbol errors may exist. The distribution of error events within a message array is

recorded and the bit error rates calculated to generate corresponding performance curves.

The resulting simulation data is compared to the theoretical performance criteria for

evaluation.

D. CHANNEL MODELS

Three channel models are emulated as part of the overall communication system

model and used during simulations (a noise free channel 0 model is also included for

system functional verification) (Figure 24). One emulated channel type is the AWGN

47

model and represents additive noise only. The second is the multipath channel model and

is characterized by frequency selective fading (loss) in dB, Doppler frequency shifting in

Hz and multipath time delays in microseconds which vary for each transmission link

according to the specified multipaths. The composite channel 3 model is a combination

of channel 1 and channel 2 models; thus, the AWGN model is added to the multipath

model representing the actual communication environment.

Model 2: Fading Doppler Delay

1 r V V
^

1 ^ MUitl paw i^nannei Moaei

Doppler

Multipath Channel Model

Noise

AWGN Channel Model

/ Received \

L_J Signal

Figure 24. Channel Models.

48

V. MATLAB PROGRAMMING AND DEVELOPMENT

A. OFDM SYSTEM CONSTRUCTION OF FUNCTIONAL BLOCKS

Emulation of the COFDM communication system as shown in Figure 25 is done

by initially portioning the overall system according to functionality and forming

functional interconnecting subblocks. The COFDM system model consists of three

primary components : a COFDM transmitter, the channel and a COFDM receiver.

Within the transmitter are two separate functional blocks, a source encoder block and an

IFFT processing block. The channel consists of four separate models: the channel 0

model, the channel 1 model, the channel 2 model and the channel 3 model. Each channel

model corresponds to a different type of noise (except for the channel 0 model which is

noise free). The receiver block consists of two blocks : the FFT processing block and the

message decoding block. Recall that all simulations are preformed at baseband;

therefore, no additional block associated with RF bandpass transmissions are required nor

included in the model.

rOFDM Tfänsnüfte'f

Input Parameter-

Source
Encoding

IFFT
processing

Cdrcdlft.m tda. m
Noise Free Channel

I"

Received Message
Decdrdlm

tiin.ru

Message
Decoding

OFDM Receiver

FFT
processing

Figure 25. Emulation Of The COFDM Communication System.

49

The model 0 block diagram is shown in Figure 26 and represents a noise free

perfect channel, (i.e. , the absence of AWGN and any multipath influence within the

channel). Transmitter source encoding is performed within the m-file macro, cdrcdlfi.m.

The functional sub-blocks associated with cdrcdlft.m are depicted in Figure 27. The

IFFT processing block responsible for generating OFDM frequency tones and appending

guard intervals is represented by the m-file macro, tda.m. Correspondingly in the

receiver, the inverse functions of the transmitter are performed, namely FFT processing

and guard interval removal is accomplished by the itda.m m-file, while signal decoding is

accomplished by macro decdrcdLm.

r"
Cdrcdlft.m

Random
Message
rSRTiPxaror

Input Parameteb
marymsg.m

FrequenavDorriain Message Signal

Convolutional
Encoding

Block
Interleaver

cnvencd.m
cdlilv.m

cmv2fa.m

Frequency
Array
Arranger

M-ary to
N-ary
Converter

mb.m & bm.m

difcdrft.m

Complex value
modulation&
Differential
Encoder

.J

Figure 26. Model 0 Block Diagram.

B. COFDM TRANSMITTER

The hierarchical arrangement of m-files within cdrcdlfl.m, including subroutine

macros, are presented in Figure 27 and are subsequently described in detail.

50

Cmv2fa.m

Figure 27. Hierarchical Arrangement Of M-files Within Cdrcdlft.m.

The source message is randomly generated by the m-file marymsg.m. The

general form of the function is depicted by the functional block shown below.

(q,s,n,m) t , (vmary_ce,random_bit)

marymsg.m

This function first generates an array of randomly generated q-bit long symbols

representing the random bit source, randomjbit. The random_bit source is then fed into

a convoultional encoder which generates the coded message of vmary_ce. The input

arguments, n and m, determine the overall output message matrix dimensions, where n is

the number of rows and m is the number of columns. The value selected for m also

represents the number of OFDM frequency tones and must be an even positive integer so

as to completely fill the available transmission bandwidth without spectral cutoff of the

endpoint symbols. The value selected for n is any arbitrary positive integer and

represents rows of symbols generated in time. The input argument, s, is the seed
51

parameter used for setting the seed of the internal MATLAB random number generator

function. The remaining input argument, q, represents the number of bits contained in

each of the symbol words considering M-ary signaling, M=2q. The function marymsg.m

requires three other subroutine m-files, msg.tn, bm.m and cnvjmcd.

(s,k)

(q>v)

The function msg.m randomly generates a k-length binary output sequence, u,

with the random number generator seed set by parameter, s. The function bm.m,

representing a binary to M-ary converter, transforms a variable length binary input

sequence, v, into an equivalent M-ary output sequence, m, depending on the value

selected for q, the word bit length. By accepting as an input the random binary output

generated by m-file msg.m, bm.m groups bits together ^-bits at a time to form words

representing M-ary symbols whose output is a vector of equivalent decimal numbers.

Padding with zeros may be necessary to ensure a complete q-bit word formation.

(l,k,case,s,SYNC)
Cdlilv.m

[si]

After the randomly generated source message is encoded by the convolutional

encoder, the array is next interleaved by the m-file function cdlilv.m. This m-file has a

five argument input and a single output. Parameters, I and k, determine the dimensions of

52

the interleaver intermediate matrix where / is the number of rows and k is the number of

columns. The parameter, case, is an input that selects which desired interleaveing

method should be included. There are nine different interleaving cases. Case 0

represents a conventional block interleaver which is used for simulation in this thesis.

Case 1 through 8 are not necessary and therefore are not used.

After the interleaving operation, the interleaved message array is converted from

an M-ary format to a N-ary format suitable for N-PSK modulation. The symbol format

conversion process is accomplished by two separate m-file routines, mb.m and bm.m.

The function mb.m accepts two input variables and represents a M-ary to binary

converter. The input q is the number of bits defining the M-ary symbols where M=2q.

The remaining input, m represents the incoming M-ary message array. The single output

from this block, b, is a binary data sequence whose information content is equivalent to

the coded M-ary symbols.

(q„m) i I lb]

The binary output sequence generated by mb.m is next fed as an input to bm.m.

Recall that the function bm.m converts a variable length binary input sequence, v, into an

equivalent N-ary output symbol sequence, TO, where N=2q. In this way, the combination

of m-files mb.m and bm.m functions effectively convert the interleaved message

information block from an array containing M-ary symbol to one consisting of N-ary

symbols.

With the desired bit values determining M and N chosen by the user, the size of

the N-ary message array may change since additional symbols may be formed, or

likewise there may be a reduction in the number of symbols. However, the number of

columns in the final symbol message matrix consistently remains unaltered as they

represent the number of OFDM sub-carriers and remain fixed for each simulation. If the

message block size must increase or decrease as a result of M-ary to N-ary symbol format

53

conversion, the adjustment is accomplished by increasing or decreasing the number of

rows in the message block only, never the number of columns. For example, given an

arbitrary message array to be converted form M-ary symbol format to equivalent N-ary

symbols, the input message array will increase two-fold from the original total.

Consequently, the number of rows forming the output matrix doubles, while the column

number remains the same. As a function of the desired M-ary and N-ary configuration, a

pad of zero symbols may be automatically inserted to ensure a full array. In the receiver,

the zero pad is removed, leaving behind the randomly generated message source.

After the interleaving and M-ary to N-ary conversion operations are

accomplished, the message array containing information symbols represented in decimal

notation, is differentially encoded then channel encoded as an array of complex

modulation values suitable for N-PSK modulation. The symbol-to-complex-modulation-

value mapping process is accomplished using the m-file, difcdrfi.m. This function has a

three argument input and a single output consisting of differentially encoded complex

modulation values, MD, in array format.

(q,m,fort) difcdrft.m [MD]

The input, fort, determines how the array, m, is processed. If fort is zero, time

differential encoding is performed on the message array, m, by executing a cumulative

summation down each column. If fort is one, frequency differential encoding is

performed by similarly performing a cumulative summation across each row in the

message array, m. Recall that array columns correspond to OFDM frequencies, while

array rows represent information symbols generated in time.

Cumulative summations of the input array are accomplished by adding in

modulo-N fashion the first element of the appropriate column or row vector to the next

adjacent element, replacing the second element by the current summation, then adding

this current sum to the third element and replacing that element with the current sum.

This process is repeated until all elements in the row (frequency differential encoding) or

54

column (time differential encoding) are exhausted. The cumulative summation process is

then repeated beginning with the first element of the next row of column respectively.

After differential encoding with modulo-N cumulative summations, the array, m,

is channel encoded as N-ary complex modulation values. The input, p, indicates the

number of unit circle phase partitions formed based upon the N-PSK modulation scheme

where N=2P. The mapping process begins by accepting the input symbol message array,

m, and generating corresponding complex modulation values, MD, with unit magnitude

and one of N possible phases. Recall that complex modulation numbers are described by

a magnitude of one(A=l) and possible phase values selected from the set,

{+ 22.5+45+67.5+90+112.5+135+157.5,0,180} degrees.

As a final step, a reference row of ones (zero phase angles) are appended to the

message array, m, at the top to provide a reference starting point for the differential

decoding performed in the COFDM receiver. Similarly, for frequency differential

encoding, a reference column pair of ones (zero phase angles) are appended to the

message array, m at the left. Two reference ones columns are appended to maintain an

even number of OFDM frequencies. Consequently, MD includes the additional reference

ones within the complex modulation array. In the receiver, these reference values are

stripped off during differential decoding.

(N,M)
Cmvlfa.m

X

 p.

As a final step in the source encoding block and in preparation of OFDM

frequency generation through the IFFT, the input array of complex modulation values, M,

are rearranged into a special frequency array by the m-file cmv2fa.m. The second input

variable, N, is the number of FFT points used which must be larger than the number of

columns of complex modulation values in the array (number of OFDM frequencies).

This function also swaps the positions of the modulation values by grouping the left half

portion of the matrix elements and shifting them to the rightmost positions, and likewise

55

grouping the right half portion of the matrix elements and shifting them to the leftmost

positions. Swapping is performed in anticipation of the frequency spectrum shifting that

automatically results from FFT processing. When the MATLAB FFT command is

invoked, the negative spectral frequencies are shifted to the rightmost positive locations

by N positions. Thus, the spectrum is no longer symmetrical about the origin but instead

becomes symmetrical about the frequency point N/2. If the frequency halves are

swapped before IFFT processing, then the frequencies can be later recovered in their

correct orientation by filtering.

The shifted frequency array output is represented by X. A pad of zeros is

included in the middle of the array whose amount is the difference between the number

of FFT points, N, and the number of modulation values. The zero pad is included as a

guard band to account for filter slopes during subsequent bandpass filtering after up-

conversion and RF transmission. This filtering is not actually performed for the thesis

simulations, however, the guard band is included for actual implementation purposes.

(Ng,X)

After source encoding, the complex modulation frequency array, X, is IFFT

processed within the m-file, tda.m, generating the OFDM frequencies. The tda.m

function also prepares the transmitted symbols for channel compensation by first

appending the periodic guard interval whose length is indicated by the input, Ng. Ng

represents the number of additional time domain waveform samples to add to the

beginning of the information symbol interval. The output, x, is the time domain samples

suitable for transmission and consisting of an array of complex samples. This functional

block is the final block the message signal enters before transmission through the

channel. Again, for purposes of this thesis, DAC and up-conversion of the signal is not

included, permitting all simulations to be performed at baseband.

56

C. COFDM RECEIVER

1. Model 1 System

The model 1 block diagram is shown in Figure 28 and represents the channel 1

model consisting of the AWGN channel, implemented using the m-file awgn.m.

, ,

i OFDM Transmitter
i Source

Encoding

Input parimete

-!-► Cdrcdlft.m

Received Message
<

IFFT
processing

tda.m
Awgn.m

r"

Decdrdl.m tdam

I Message
I Decoding FFT

processing

OFDM Receiver

(X,s,N,sigma)

Figure 28. Model 1 Block Diagram.

The receiver decoding functions are performed within the decdrcdlm block by

multiple sub-blocks which are presented above in Figure 28. The hierarchical

arrangement of m-files within decdrcdl.m are presented in Figure 29.

Decdrcdlm

Fa2ma.m Dfdcdrft.m Mb.m Bm.m Cdldlv.m

Rotm.m

Figure 29. M-file Hierarchy for Decdrcdl.m.

57

The frequency array is restructured back into the proper complex modulation

array format by the fa2cma.m m-file within decdrcdlm. The function fa2cma.m accepts

the input K indicating half the number of OFDM frequency tones (corresponds to

frequencies occupying one-half of the frequency array). The remaining input, X, are the

complex frequency array values to be rearranged. The output, Mn, is the equivalent

complex modulation array representation with the correct ordering of frequencies.

(K,X) Fa2cma.m
Mn

After the fa2cma.m block, the complex modulation values are differentially

decoded either in time or in frequency, then decoded into corresponding N-ary symbols.

(qp,q,MD,fort) dfdcdrft.m [s,M]
-►

This functionality is accomplished by the m-file dfdcdrft.m. The complex

modulation values, MD, fromfa2cma.m are accepted as an input, and inverse mapping of

the complex numbers to N-ary symbols is performed based upon the value of q, where

N=2q. If fort is equal to one, frequency differential decoding is performed. Differential

decoding is the inverse operation performed in the transmitter; however, regardless of the

type of differential decoding, all reference one values are removed after decoding

allowing the received message matrix to remain. The output, s indicates phase sector

numbers corresponding to N-ary demodulation also representing corresponding inverse

mapped symbols in decimal notation. The remaining output, M, is the differentially

decoded modulation array.

With the reception of the message in N-ary format consisting of PSK symbols, a

reformatting of symbols to M-ary is next performed to form OFDM symbols. Once again

58

the functions mb.m and bm.m perform the reformatting procedure as previously

described in the transmitter section.

(I, k, case, si, SYNC) Cdldlv.m

As a final operation in the receiver, the message symbol array is deinterleaved by

the function cdldlv.m which performs the inverse operation of cdlilv.m. The input, si, is

the received interleaved message, while case determines which deinterleaving case to

follow (block interleaving is used for this thesis). The output, s, provides the final

message array read out of the intermediate matrix by rows. Cdldlv.m calls the subroutine

m-file, rotm.m which performs the array rotations as previously described in cdlilv.m.

2. Model 2 System

The COFDM model 2 system is presented in Figure 30 and has identical

transmitter and receiver components as the model 1 system, differing only in the channel

model. The channel 2 model consists of the multipath channel exclusively which is

implemented using the chuhf.m m-file. No other types of noise such as AWGN are

added to this model; thus, the multipath effects on the transmitted signal can be

individually analyzed.

OFDM Transmitter IFFT
processing

Multipath Channel

Input parameters
Cdrcdlft.m

Tda.m Chuhf.m

Source Encoding

Received Message Decdrdl.m Itda.m

Message
Decoding FFT

processing

OFDM Receiver

Figure 30. System Model 2 Block Diagram.

59

The m-file chuhf.m represents the channel 2 multipath model. The hierarchy for

chuhf.m is shown in Figure 31.

(s, x, loss, dly, dop, N, freqspace)
Cdldlv.m

Chuhf.m

dline.m ofst.m Ray_dop.m

cvdd.m

Figure 31. M-file Hierarchy For Chuhf.m.

This m-file accepts as inputs the Received Signal Loss, loss (dB), time delays,

dly, and Doppler frequency shifting, dop (Hz). The transmitted signal, x, represents the

time domain output of the COFDM transmitter consisting of complex numbers and is the

input signal parameter to the channel model. Initially, the m-file dline.m is called to set-

up the multipath delayed paths. Since the input, dly, can be a vector of delays, the

number of delay lines corresponds to the number of elements in the vector. Dline.m in

turn calls the subrountine m-file cvdd.m which implements a "continuously variable

digital delay element" [13]. This m-file filters the x input using an eight-tap Finite

Impulse Response (FIR) filter whose tap coefficients are a function of the desired delay.

Later, the m-file ray_dop.m, calculates the maximum Doppler shift frequency as a

fraction of OFDM tone spacing as provided by the input, freqspace. This m-file

generates a random sequence of length L*N independent points of complex numbers with

zero mean, and 0.5 variance real and imaginary parts. The envelope is Rayleigh with a

mean square value of one. N is the number of FFT points. The amount of Doppler

shifting is randomly calculated up to the maximum allowed using the seed parameter, s,

to set the seed of the random number generator. The real and imaginary parts are

independently generated, and it is acceptable to enter a vector of Doppler shift values

60

equal to the number of delay paths. Additionally, the direct path is offset by 0.7 of the

maximum input Doppler shift which is calculated by m-file ofst.m. As a final step in

chuhf.m, the power losses for the individual multipaths are accounted for by multiplying

each loss amount times the respective delay line output vectors. The output, y, is a time

domain representation of the transmitted signal plus multipath effects, presented as an

array of complex received time domain samples.

3. Model 3 System

The COFDM model 3 system is depicted in Figure 32. In agreement with

COFDM system model 1 and 2, the OFDM transmitter and OFDM receiver are identical.

The only differences are in the channel of model 3.

rüFDM Transmitter —I

Input Parameter.

Source
Encoding

IFFT
processing

Cdrcdlft.m rda.m

Multipath Channel AWGN Channel

Chuhf.m Awgn.m

Received Message
Decdrdl.m

I Message
\ Decoding

Itda.m

FFT
processin

OFDM Receiver

Figure 32. COFDM Model 3 System.

The channel 3 model consists of the channel 1 model (AWGN) combined with the

channel 2 model (multipath) to form an overall complete channel 3 model. Both the

channel 1 model and channel 2 model have been previously described in detail,

implemented by m-files awgn.m and chuhf.m respectively. The channel 3 model is used

extensively in system performance analysis presented in the next chapter.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

VI. SYSTEM SIMULATION METHODOLOGY AND TEST
RESULTS

A. GENERAL TEST PLAN

After construction of the various system models and functional verification of the

partially integrated sub-blocks are accomplished, the research progressed to the

simulation test phase where complete integrated system simulation trials were performed

using different channel models and the corresponding performance curves were

generated. The general system simulation test plan is presented in Table 4 along with the

associated m-files governing each respective test phase.

Test phase Simulation M-file
1 System Model 0 ChnOcdLm
2. System Model 1 Cofdmsim.m
3. System Model 2 Cofdmsim.m
4. System Model 3 Cofdmsim.m

Table 4. General Test Plan.

As indicated in Table 4, there are four independent test phases, advancing in the

level of channel complexity starting from the easiest, channel model 0, to the most

challenging and complex, channel model 3. Throughout the collection and evaluation of

simulation data, the hierarchical test approach from simple to complex allows for careful

study and evaluation of each channel model output individually.

B. TEST PHASE 1 - SYSTEM MODEL 0 SIMULATIONS

Initial system model 0 simulations are performed to verify proper integration of

all system sub-blocks and to ensure a correctly working overall model. Recall that the

COFDM model 0 system incorporates the channel 0 model, representing a perfect noise

free channel without AWGN and multipath distortions. Hence, this model can be viewed

simply as the OFDM transmitter output connected directly to the OFDM receiver input

with no intervening channel block. With the prior assumption that the transmitter and

receiver are functioning correctly according to design, then the source and sink message

blocks should have identical content without symbol errors since there can not be any

channel noise influences corrupting the signal. Consequently, any symbol error

63

occurrences in the sink message must be the result of an incorrectly implemented m-file

program model.

With this mind, numerous system model 0 simulation were repeatedly conducted

using m-file chnOcdlm with various input configurations, and the resulting data collected

and evaluated. A table of sample results reflecting model 0 system simulations with

various input configurations is presented in Table 5.

» chn0cdl(0)0)0,0,222,4,4>6,8,4,4,8,8,8,6,0) % Block interleaver selected, random seed of 222 is chosen, 4
OFDM column and 6 rows. Guard interval of 6 is used. The number of FFT point used is 8. The M-ary
number is 16.

Random Source_Msg =

5
2
3
8
2
10

4
2
4
8
6
5

13 12
10 0
1 9
9 15
15 13
9 14

Sink_msg =

5
2
3
8
2
10

4
2
4
8
6
5

13 12
10 0

9
15

15 13
9 14

GREAT!! Ithere are no errors.

Test Passed!!!
Table 5. Model 0 Verification Example.

With the conclusion of transmitter and receiver functional verification, the

remaining system test simulations including channel noise and multipath and are oriented

around the channel 1, channel 2 and channel 3 models. Channel 3 simulates an actual

indoor transmission environment, hence, it is the most indicative of the type of channel

influences that will affect real-time RF communications during transmission by the

WLAN.

C. TEST PHASE 2 - SYSTEM MODEL 1 SIMULATIONS

Test phase 2 performs channel 1 model simulations exclusively (AWGN channel)

and compared the test results to [14]. In [14], the COFDM evalution was done by means
64

of computer simulations and it was implemented with DQPSK modulation, an AWGN

channel, a convolution^ rate of ¥1, and a constraint length ranging from 3 to 7. However,

Viterbi soft decision decoding was used in [14] instead of the hard decision decoding that

is adopted in this thesis. The BER performance presented in [14] is shown in Figure 33.

10° m

tu
CO

4 6 6

Et/No(clB)
Figure 33. BER vs Eb/No For Different Constraint Length (CL) In AWGN Channel,

After Thibault And Le, [14].

Recall that AWGN is emulated in MATLAB using the m-file awgn.m and is part

of the COFDM model 1 system. During this test phase, the batch m-file cofdmsim.m is

configured for system model 1 simulations and used to generate numerous test data sets.

The data results are presented graphically in the form of performance curves representing

the Bit Error Rates (BER) versus the ratio of bit energy to noise power density (Eb/N0).

Simulation data are compared to [14] COFDM AWGN performance curves (Figure 33)

with similar system configurations. Evaluations of the results are conducted to measure

the integrity of the system in the presence of AWGN.

65

As mentioned previously, the magnitude of each randomly generated message

symbol and the corresponding complex modulation value are fixed at unity and represent

the signal energies. However, the noise power density, N0, is variable and configurable

by the user. Consequently, during simulation configurations, selection of noise powers

by setting suitable noise variance range (sigma parameter) promotes the generation of

meaningful performance plots and allows for comparisons among various test

configurations. Table 6 presents a portion of a cofdmsim.m simulation configured for

system model 1 (AWGN channel) using 48 OFDM frequency tones and frequency

differential encoding, per 802.11a, while Figure 34 depicts the corresponding

performance plot associated with the configured inputs. Figure 35 and 36 show the

transmitted signal and the effects of AWGN on the received signal.

» cofdmsim

This batch m-file runs COFDM simulations using different channel models.

To run the frequency version, enter l(one), To run the time version, enter 0 (zero), or to run both' enter
2(two):l

Enter the # of OFDM frequencies (note : must be even):48

Enter the number of FFT points (Note : This number must be larger than # of OFDM frequencies):64

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3 ? (Enter 0,1,2
or3):l

Channel model 1 simulation performed.

Enter the sigma noise parameter range or single value. (Ex linspace(0,0.02,20)or
.003):[linspace(0,0.0542,30)]

Simulate all interleaver cases (yes) or specific ones(no)? (l=yes,0=no):0

Enter specific case numbers from (0 to 8)(Ex [0 4 5 8]):0

Enter the total minimum number of symbols to simulate (Ex 10000):20000

Note:Based on the parameters thus far, the actual total number of symbol to be simulated will be :20016
For the interleaver, do you want to calculate all possible intermediate matrix dimension
pairs?(l=yes,0=no):0

Desired interleaver pair? (Ex [row # col #] = [20 50] (Note: entering [1 20016],or [20016 1], offers no
interleaving functionality):[139 144]

Enter the number of M-ary bits, q (i.e. for 256-ary, q=8):l

Enter the number of N-ary bits,q(i.e. for 16-ary, q=4):2

66

Enter the guard interval length (Number of sample points): 16

Enter specific seed values, or 0 for a random seed (ex [103 22, 60] or [0]):222

Do you want signal plots? (l=yes, 0=no):0

Do you want print outs? (l=yes, 0=no):0
Table 6. Model 1 Simulation Run Using Cofdmsim.m.

Custom Link Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Tota! errors= 187578)
10

10

10

(ID"3

10

■" 'Loss=T0]' ! ! ! !
belay=[0] ■ ' .! [

I I i"""^-^ ' ' '

' ! ^^x_

M
 i

t
I

M
t

M
M

M

M

M
M

t
il
l

M
M

I

I
It

I

I
II

I

M
l

M
M

t
il
l

t
il
l

H
 H

I

I
I I

I

I
I I

M

M

t
il
l

M
M

II
 I

I

I
I
It

II
II

M

M

M
M

It

 I
I

L
I

U

I

I
II

 /

1
I
It

 /

M

M

 /

t
i
l
l
/

1

t
11

/

^4
t-

t

M
M

1

M
l

I
M

l
It

 I
I

M
M

II
 I

t

1
M

l
1

M
l

M
M

It
 I

I
I

1
It

II
 I

t

1 1 t 1 1 1
1 1 1 1 1 1
till -L 1

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
Eb/No(dB)(# of OFDM=48)(case=0)(lnterlea\rer pair=139,144) M-ary=2,N-ary=4

Figure 34. System Model 1 With AWGN Channel.

A corresponding received signal magnitude plot is depicted in Figure 36 with

noticeable variation in the Received Signal Level. In contrast to the pre-transmitted

magnitude plot (Figure 35), the noticeable signal variations in the received magnitude

plot demonstrate the consequence of white Gaussian noise influences on the transmitted

signal.

67

Magnitude of Transmitted Signal(Unity Magnitude)

Symbol Row Number
0 0

OFDM Freq #

Figure 35. A Flat Planar Magnitude Representation Of Symbols Prior To Transmission.

Magnitude Variation of Received Signal (Sigma=0.0542)

Symbol Row Number 0 0 OFDM Freq #

Figure 36. Effect Of AWGN Found On The Received Signal.

68

Comparison of the simulation BER performance graph in Figure 34 to the

corresponding COFDM DQPSK graph shown in Figure 33 is depicted in Table 7 below.

Pb Eb/No for simulation
(Figure 34)

Eb/No for reference
(Figure 33)

Difference, 6

io-2 6.80 5.75 1.05
io-J 7.40 6.50 0.90

Table 7. BERVs Eb/N0 : Comparison Of Simulated and Reference Plots (Figure 35).

The comparison in Table 7 shows that the simulated result is approximately 0.9dB

(at Pb=10"3) and 1.05dB (at Pb=10"2) worse than [14]. The difference in performance

may be due to Viterbi soft decision decoding that was used in [14] as compared to the

hard decision decoding adopted in this thesis. A Viterbi decoder with soft decision data

inputs quantized to three or four bits of precision perform better than one working with

hard decision inputs [5].

It is apparent from phase 1 test result that system model 1 DQPSK simulation

yields results similar to the BER performance in [14].

D. TEST PHASE 3 - SYSTEM MODEL 2 SIMULATIONS

The objective of this test phase is to simulate the system transmitting symbols

through the multipath channel exclusively to reveal the burst error patterns. Phase 3

simulations were conducted using the batch file cofdmsim.m configured for system

model 2 testing as shown in Table 8 below.

» cofdmsim

This batch m-file runs COFDM simulations using different channel models.

To run the frequency version, enter l(one), To run the time version, enter 0 (zero), or to run both enter

2(two):l

Enter the # of OFDM frequencies (note : must be even):48

Enter the number of FFT points (Note : This number must be larger than # of OFDM frequencies) :64

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3 ? (Enter 0,1,2

or 3):2

69

Channel model 2 simulation performed.

Do you want to run linkl ,link2, link3 or a custom link ? (Enter 1,2,3 or 4 for custom):l

Simulate all interleaver cases (yes) or specific ones(no)? (l=yes,0=no):0

Enter specific case numbers from (0 to 8)(Ex [0 4 5 8]):0

Enter the total minimum number of symbols to simulate (Ex 10000): 10000

Note:Based on the parameters thus far, the actual total number of symbol to be simulated will be : 10032

For the interleaver, do you want to calculate all possible intermediate matrix dimension

pairs?(1 =yes,0=no):0

Desired interleaver pair? (Ex [row # col #] = [20 50] (Note: entering [1 10032],or [10032 1], offers no

interleaving functionality):[114 88]

Enter the number of M-ary bits, q (i.e. for 256-ary, q=8):l

Enter the number of N-ary bits,q(i.e. for 16-ary, q=4):2

Enter the guard interval length (Number of sample points): 16

Do you want to include error correction coding ? (l=yes, 0=no):0

Enter specific seed values, or 0 for a random seed (ex [103 22, 60] or [0]):222

Do you want signal plots? (l=yes, 0=no):l

How many seconds of delay between pictures? 1

Do you want print outs? (l=yes, 0=no):0

Table 8. Model 2 Simulation - Only Multipath Channel.

While performing cofdmsim.m system model 2 simulations, output plots

depicting various forms of the signal data at strategic stages in the signal path are

possible if desired and configured by the user. As an example of the types of plots

generated during the simulation, Figure 37 through Figure 41 depict corresponding

information generated by batch m-file cofdmsim.m configured as shown in Table 8.

Figure 37 depicts the constellation plot characteristic of DQPSK type modulation.

As expected, 4 individual phase points are generated resulting from symbol mapping of

2-bit words into complex modulation values with unit magnitude and one of 4 possible

phases. The constellation points, denoted by an asterisk, are symmetrically spaced on the

unit circle, partitioning the circle into 4 equally sized sector formations.

70

Transmitted Signal4-ary Constellation Plot

0.8

0.6

0.4

0.2

O"-

-0.2

-0.4

-0.6

-0.8

-1

■+•

-1 -0.5 0 0.5
Magnitude=1

Figure 37. Constellation Plot Of DQPSK Modulation.

The corresponding message array of reformatted 2-bit PSK symbols with unit

magnitude are depicted in Figure 38 and are transmitted through the channel. Notice the

flat planar magnitude representation of the symbols prior to transmission. Recall that

once a simulation is configured for a specified number of OFDM frequency tones, the

number of tones remain fixed throughout the simulation duration. Consequently,

additional symbols may be generated as a result of symbol word reformatting, increasing

the original message array size in the time dimension (added symbol rows).

71

Magnitude of Transmitted Signal(Unity Magnitude)

Symbol Row Number 0 0
OFDM Freq #

Figure 38. Transmitted Signal.

The corresponding received signal constellation plot is shown in Figure 39 and

40. As a consequence of multipath distortions within the channel causing constructive

and destructive signal interference, the received constellation points are scattered from

their normal pre-transmitted position (Figure 39). The figure also suggests that without

additional signal conditioning, a majority of the received symbols would be decoded in

error since many points cross sector borders into adjacent phase sectors. However, with

the inclusion of differential encoding as demonstrated in Figure 40, the constellation

points realign within their respective sector spaces forming a distinct star like structure.

72

Received4-ary Signal Constellation Plot,before Differential Decoding
8

V if

■+•

\ %i

-8-6-4-202468

Figure 39. Signal Constellation Plot Before Differential Decoding.

Received4-ary Sigal Constellation Plot, After Differential Decoding
50

40 r

30

20 h

10

Or

-10

-20

-30

-40

-50

.&.

.*.-*««>. ■+----4£s*irHfcf-

-50 50

Figure 40. Signal Constellation Plot After Differential Decoding.

73

The corresponding received signal magnitude plot is depicted in Figure 41 with

noticeable variations in the Received Signal Level (RSL), indicative of frequency

selective fading.

Magnitude Variation of Received Signal (Sigma=0)

Symbol Row Number OFDMFreq*

Figure 41. Received Signal With Frequency Selective Fading.

In stark contrast to the pre-transmitted magnitude plot (Figure 38), the noticeable

peak and valley in the received magnitude plot demonstrate the consequences of

multipath distortion influences on the transmitted signal through constructive and

destructive signal interference by altering the message symbol magnitudes from their pre-

transmitted unity levels. It is apparent that for this model 2 simulation, frequency

selective fading occurs causing the frequency dependent peak and valley of the RSL.

74

E. TEST PHASE 4 - SYSTEM MODEL 3 SIMULATIONS

In this comprehensive test, complete system model 3 simulations are performed

using channel 3 model (AWGN and multipath) to generate corresponding system

performance curves. The multipath propagation model used in this test has been

explained in Chapter 3 (Figure 20). There are total of 3 links created with different

Doppler frequencies of 5, 10 and 15 Hz. Simulations were performed separately with

these 3 links using the batch m-file cofdmsim.m. A sample system model 3 simulation

configuration using batch m-file cofdmsim.m is presented in Table 9.

» cofdmsim

This batch m-file runs COFDM simulations using different channel models.

To run the frequency version, enter l(one), To run the time version, enter 0 (zero), or to run both enter

2(two):l

Enter the # of OFDM frequencies (note : must be even):48

Enter the number of FFT points (Note : This number must be larger than # of OFDM frequencies):64

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3 ? (Enter 0,1,2

or3):3

Channel model 3 simulation performed

Enter the sigma noise parameter range or single value. (Ex linspace (0,0.02,20) or

.003):[linspace(0,0.06,20)]

Do you want to run linkl, link2, link3 or a custom link ?(Enter 1,2,3 or 4 for custom): 1

Simulate all interleaver cases (yes) or specific ones(no)? (l=yes,0=no):0

Enter specific case numbers from (0 to 8)(Ex [0 4 5 8]):0

Enter the total minimum number of symbols to simulate (Ex 10000):20000

Note:Based on the parameters thus far, the actual total number of symbol to be simulated will be :20016

For the interleaver, do you want to calculate all possible intermediate matrix dimension

pairs?(l=yes,0=no):0

Desired interleaver pair? (Ex [row # col #] = [20 50] (Note: entering [1 20016],or [20016 1], offers no

interleaving functionality):[1668 12]

Enter the number of M-ary bits, q (i.e. for 256-ary, q=8):l

Enter the number of N-ary bits,q(i.e. for 16-ary, q=4):2

Enter the guard interval length (Number of sample points): 16

Enter specific seed values, or 0 for a random seed (ex [103 22, 60] or [0]):33

75

Do you want signal plots? (l=yes, 0=no):l

How many seconds of delay between pictures? 1

Do you want print outs? (l=yes, 0=no):0

Table 9. Model 3 Link 1 Simulation.

1. Link 1 With Doppler Frequency of 5 Hz

For this example, link 1 with a Doppler frequency of 5 Hz is used along with

noise variance range of 0 to 0.06. The batch file generates performance curves similar to

the ones presented during test phase 1, however, the performance is greatly degraded

from AWGN theoretical curves due to the added multipath influences. The effect of the

AWGN and multipath on the received signal is shown in Figure 42. Furthermore, an

additional overhead loss of 25% from the inclusion of a 16 sample point guard interval

precursor with 64 FFT points (16/64 = 0.25) reduces the effective information rate

(Figure 43).

Magnitude Variation of Received Signal (Sigma=0.06)

Symbol Row Number

Figure 42. Effect of AWGN and Multipath On the Received Signal.

76

Frequency Array Plot (number of FFT frequency points are 64)

0.9

0.8

0.7 -

0.6 •

0.5

0.4 -

0.3 -

0.2

0.1

0 twtwww
0 10 20 30 40 50

Guard interval length is 16
60 70

Figure 43. 16 Sample Point Guard Interval Precursor With 64 FFT Points.

The corresponding performance curve of the configured simulation in Table 9 is

presented in Figure 44. From the plots in Figure 44 and Figure 33, the difference in

performance is tabulated in Table 10 below.

Pb Eb/No for
Simulation Plot

(Figure 44)

Eb/No for
Reference Plot

(Figure 33)

Difference,
8

Difference after
correction for soft vs

hard decision
decoding

10"z 8.65 5.75 2.90 2.90-1.05 = 1.85
10"J 10.20 6.50 3.70 3.70 - 0.90 = 2.80

Table 10. BER vs. Eb/N0: Comparison Of Simulated (Figure 44) And Reference Plots.

The comparison in Table 10 shows that model 3 link 1 which is subjected to the

influence of AWGN and multipath, requires 2.9 to 3.7dB more than [14]. Recall that the

result in [14] is exclusively due to AWGN only. Compensating for the difference in soft

and hard Viterbi decoding decision used, we can deduce that the dB required for

77

multipath with link 1 (Doppler Frequency of 5 Hz) is between 1.85dB (at 10"2) and

2.80dB (at 10"3).

Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=25546)
^10°
CO
CO
II

■D
CO
CO

CO

CD

1 io'1

CM
II

O
.Q
E

CO

~10"2

CM
ii

CO
I

DC

S"
o

2-103

cj
c a rr
co
E

«> 10'

izzzzzzjizz rzzzjizzz zzz^z :::::-:::::i: :::: z^zzzzzz^zzzzzz:

i i i i i < i

i 1 1 i i

i

1 1
1 i

EEEE

i 1
i i

i i i i^. i ' '

I ^\1 i [

= = =x

i i i i i ' x. '

i i \

i
i

i
i

z z z z :J::::::^:\:::::

i i i i i i ' \
i i i i i i ' \

! i 1 1 _; 4-—A.

t

i
i

i i

i i
i i
t i

3456 78 9 10 11
Eb/No(dB)(# of OFDM=48)(case=0)(lnterleaver pair=1668,12) M-ary=2,N-ary=4

Figure 44. BER vs. Eb/N0 Performance - With Multipath & AGWN For Link 1.

2. Link 2 With Doppler Frequency of 10 Hz

The batch m-file cofdmsim.m was repeated, and link 2 was selected along with

noise variance range of 0 to 0.06. The BER performance curve was obtained as shown in

Figure 45. From the plot in Figure 45 and in comparison to Figure 33, the difference in

performance is tabulated in Table 11.

Pb Eb/No for
Simulation Plot

(Figure 45)

Eb/No for
Reference Plot

(Figure 33)

Difference,
8

Difference after
correction for soft vs

hard decision
decoding

10"* 8.60 5.75 2.85 2.85- 1.05=1.80

10J 10.25 6.50 3.75 3.75 - 0.90 = 2.85
Table 11. BER vs. Eb/N0 : Comparison Of Simulated (Figure 45) And Reference Plots.

78

Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=38007)
_ 10°
CO
CO
ll -o
Q)
Q)

CO

co

I 10"1
CM

II *
O
.Q
E
>>

CO

P 10
CM

II
CO

I
rx
to o
ö
S 10':
ö
c
OS

DC
CO

£

w 10"

: = = r;z; = = z = :d = = = = ::i= = = = = = t:: = = = :4 = = :: = =i=: = = = =l= = = - = = r = = = = = :

i i i i i i i i

i i i i i i i i

i i i i i i i i
i i i i i i i i

ii i i i i \ i _ _ i

-(
H

I
1

1
-

J
U

I
1 _

 J
 _

m
i

I-
_

I~

l
Ll
 L

 l

l

-n
r~

s
n

i-

i i i i i i ' v '

i i i i i i i Y

i i i i i i i >
i i i i i i i i
i ' i i i i i - J

3 4 5 6 7 8 9 10 11 12

Eb/No(dB)(# of OFDM=48)(case=0)(lnterleaver pair=1668,12) M-ary=2,N-ary=4

Figure 45. BER vs. Eb/N0 Performance - With Multipath & AGWN For Link 2.

The comparison in Table 11 shows that the difference in signal power due to

multipath with link 2 (Doppler Frequency of 10 Hz) is between 1.80dB (at 10"2) and

2.85dB (at 10"3). The result obtained is very close to that achieved for link 1.

3. Link 3 With Doppler Frequency of 15 Hz

The BER performance curve for link 3 was obtained by running the batch m-file

cofdmsim.m along with noise sigma parameter range of 0 to 0.06. The BER performance

curve is shown in Figure 46. From the plots in Figure 46 and Figure 33, the difference in

performance is tabulated in Table 12.

Pb Eb/No for
Simulation Plot

(Figure 46)

Eb/No for
Reference Plot

(Figure 33)

Difference,
8

Difference after
correction for soft vs

hard decision
decoding

10"2 8.60 5.75 2.85 2.85-1.05=1.80
io-3 10.15 6.50 3.65 3.65 - 0.90 = 2.75

Table 12. BER vs. Eb/N0: Comparison Of Simulated (Figure 46) And Reference Plot.

79

Link 3 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=37949)
^ 10
CO
CO
II

■a
CD
0)

CO

CO

I io-1

CM
II *
O
.Q
E
>>

</>

c\i
II

W
I

f£
(D
O

Or

10 ::
o
c
CO

«> 10

l l I 1 I I l I

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 ^^ 1 '

1 1 1 1 1 1 1 '
1 1 1 1 1 1 1 1
1,11111 —1

3 4 5 6 7 8 9 10 11 12
Eb/No(dB)(# of OFDM=48)(case=0)(lnterleaver pair=1668,12) M-ary=2,N-ary=4

Figure 46. BER vs. Eb/N0 Performance - With Multipath & AGWN For Link 3.

The comparison in Table 12 shows that the difference in signal power due to

multipath with link 3 (Doppler Frequency of 15 Hz) is between 1.80dB (at 10") and

2.75dB (at 10"3). Again the result obtained is similar with that achieved for link 1 and 2.

The results obtained for links 1 to 3 show that this COFDM configuration is

immune to Doppler shift of 5 to 15 Hz. It is known that additional Doppler shifting

causes symbol spectra and their respective sub-carriers to shift their frequency location

into adjacent symbol areas causing spectral overlap. Our COFDM configuration uses

only 48 tones, thus it offers good Doppler immunity since the frequency spacing is larger.

In [16], the maximum Doppler shift, fdm in Hz is defined as :

fdm = — = l .4815fGVmph
A

(6-1)

80

Where Vmph is the speed expressed in m.p.h, and the radio frequency,/G is in GHz.

Hence with 15Hz of Doppler shift, and assuming fG used is 5.2GHz per 802.11a then the

actual speed is :

15 = 1.4815*5.2*Vmph (6-2)

Vmph=1.95mph = 0.87m/s (6-3)

Doppler Frequency (Hz) Speed (m/s)
5 0.29
10 0.58
15 0.87

Table 13. The Equivalent Speed For Doppler Frequencies Of 5, 10 And 15.

The above Doppler Shifts would be seen only if the velocity is entirely in the

radial direction. The above Doppler frequencies used are all less than lm/s which are a

good representation of a human's walking speed in an indoor environment [11]. Hence

we can further deduce that this COFDM configuration is robust enough to withstand the

indoor mobility requirements.

F. PERFORMANCE OF COFDM WITH DBPSK MODULATION

After successful implementation of COFDM with DQPSK modulations, it is also

desirable to examine the COFDM's performance using DBPSK modulation. The

following simulations were conducted to evaluate the configuration performance under

the influence of AWGN (exclusively) and combination of both AWGN and multipath

effects :

• Test 1 - Model 1 with Only AWGN channel is used.

• Test 2- Model 3 using link 1 with 5Hz Doppler frequency.

• Test 3 - Model 3 using link 2 with 10Hz Doppler frequency.

• Test 4 - Model 3 using link 3 with 15Hz Doppler frequency.

81

The BER performance curves for the above tests are shown from Figure 47 to 50.

The test results are tabulated in Table 14, and comparisons are made against DQPSK's

performances.

Test Pb Eb/N0 for
DBPSK

Simulation

Eb/N0 for
DQPSK

Simulation

Difference, 8

Model 1 With
AWGN

10"2 5.75 6.80 -1.05

10'3 6.75 7.40 -0.65

Model 3 With
Linkl

10'2 7.30 8.65 -1.35

io-3 8.40 10.20 -1.80

Model 3 With
Link 2

lo-2 7.30 8.60 -1.30

IO"3 8.40 10.15 -1.75

Model 3 With
Link 3

10"2 7.00 8.60 -1.60

IO"3 8.40 10.25 -1.85 |

Table 14. DBPSK vs. DQPSK.

The above comparisons show that DBPSK required less Eb/N0 then DQPSK.

Under the influence of AWGN and multipath, the DBPSK modulations show that the

Eb/N0 required for links 1 to 3 simulations are similar, except link 3 at 10"2 probability

which is 0.30dB less.

82

Custom Ij'rfc Performance grEph: BTT Error Rate vs. ED/ND (Freq. Dff. Enc.)(Total emors=23158)

CO

10

T3
CD
CD

CO

CD p

510
o
C\J
II
*
o

X2

if) .3
p103

CM
II

(D
I

o
Ö

1

o 10
<D
D)
C
CO

CC
CO

E
D)

C73
2> -5

10

i i\. i '

 : [..75^..^ :

i i i \^ ■
i i i \^ '

' i i\

i i i i

5 5.5 6 6.5 7 7.5

Efc/No(cB)(# of OFDK/W8)(case=0)(lnterieaver pair=1112,18) l\/karyi=2,N-ary=2

Figure 47. COFDM DBPSK Modulation With Model 1 (AWGN).

83

Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=24359)

oo

II
■o
<u
<D

CO

CD

O
O
CM

10"'

X .„-3

*
O

XI
E >^
co

c\i
II

CO
I

cr
ST 1 o
Ö

I o,
0

c
CO

CL
CO

E
DJ

w K

I l ^v i ' i r\ i i

I ! x \ ! i

I I I \ I ' '

! ! i \ ' ■

i i ' ' V ' '
1 1 1 i ^sl '

' • \ '

, i i \
i \

i ! ! ! ! \i

i
i

V\
3456789 10

Eb/No(dB)(# of OFDM=48)(case=0)(lnterleaver pair=1112,18) M-ary=2,N-ary=2

Figure 48. COFDM DBPSK Modulation With Model 3 Link 1.

84

Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=24359)
^io-1

00

T\ -a
CD
CD

CO

o
o
CM
II

o .a
E

CO

CM
II

CO

10

CO
o
ö

i o_
0
c
CO

CL
CO

£

CO

10

10

 ,

I i ^SJ I I I

i |\ 1

I i i ^

: i i \ i i
*~

i i i i V i '
! 1 1 1 X. 1 '

! ! . ' : :v :
J i

i

!
I

!
\

I

1

1

1

T

"]

i i i i i \ '
i]

i i i i i \ i
i i i i ' \'

i

i
1

1

1

1 iV

3456789 10
Eb/No(dB)(# of OFDM=48)(case=0)(lnterleaver pair=1112,18) M-ary=2,N-ary=2

Figure 49. COFDM DBPSK Modulation With Model 3 Link 2.

85

Link 3 : Performance graph: BIT Error Rate \s. Eb/No (Freq. Diff. Enc.)(Tbtal errors=12273)

00

"*I7
■o
CD
CD

CO

O o
CM
II
*
o

.Q
E
>>

CO

CM
II

CO
I

cr

10
-2

10' co
o
d

i

CD
O) c TO
tr

cö 10

I I l I \. I I I I I
I I I I \ I I I I I

I I I I I I I I I
I I I I I I I I '

jilll I I I !

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
Eb/No(dB)(# of OFDM=48)(case=0)(lnterleaver pair=1112,18) M-ary=2,N-ary=2

Figure 50. COFDM DBPSK Modulation With Model 3 Link 3.

86

VII. CONCLUSIONS

A. DISCUSSION OF SIMULATION RESULTS

The objective of simulating the physical layer of the IEEE 802.11a has been

successfully achieved in this thesis. The simulation results showed that COFDM system

is capable of indoor environment communications in the presence of known multipath

and noise conditions. Further discussions relating to specific test phases are presented

below.

1. Test Phase 1 and Test Phase 2 Discussions

Test phase 1 validated a functionally correct model, as there was an absence of

errors in the sink message with no channel included. This indicated that all system sub-

blocks within the transmitter and the receiver were operating correctly according to

design, and no obvious design flaws existed due to inaccurate m-file construction. Test

phase 2 carries the functional verification one step further by also including complete

system model 1 simulations (with AWGN only). This test permits performance curve

comparisons to [14] AWGN curves for DQPSK to further verify correct simulation.

Results of system simulations indicated that system model 1 performance is

approximately 0.9dB (at Pb=10"3) and 1.05dB (at Pb=10"2) worse than [14]. The

difference in performance may be due to Viterbi soft decision decoding that was used in

[14] as compared to the hard decision decoding adopted in this thesis. A Viterbi decoder

with soft decision data inputs quantized to three or four bits of precision perform better

than one working with hard decision inputs [5].

2. Test Phase 3 Discussions

Test phase 3 simulation using the channel 2 model (multipath channel only)

exclusively demonstrated the effects of multipath on the received signal and the

corresponding sink message array error event manifestations. As expected, frequency

selective fading occurred as well as partial flat fading. This test phase was also useful in

depicting the behaviors of the received signal magnitudes and phases as seen by the

87

constellation and magnitude plots. As anticipated, these plots demonstrated constructive

and destructive interference due to channel multipath distortions, as evident by the

distinguishing peak and valley apparent in the received signal magnitude plots. The

received constellation plots demonstrated the manner in which individual symbol signal

points were shifted in phase from their characteristic pre-transmitted positions.

3. Test Phase 4 Discussions

Test phase 4 involved comprehensive testing of a complete system model 3

simulations using channel 3 model (AWGN and multipath) to generate corresponding

system performance curves. The multipath propagation model used in this test has been

explained in Chapter 3 (Figure 20). There are total of 3 links created with different

Doppler frequency of 5, 10 and 15 Hz. Simulations were performed separately with these

3 links using the batch m-file cofdmsim.m. In comparison to test phase 2 (AWGN only),

the results showed that more power is required to combat the multipath effect. The extra

power needed is between 1.80 to 1.85dB at 10"2 probability and between 2.75 to 2.80dB

at 10"3 probability. The results obtained for links 1 to 3 also showed that the COFDM

configuration is immune to a Doppler shift of 5 to 15 Hz. Since our COFDM

configuration uses only 48 tones, it offers good Doppler immunity as the frequency

spacing is larger. The above Doppler frequencies are all from a transmitter velocity of

less than lm/s which is a good representation of a human's walking speed in an indoor

environment [11]. Hence, we can further deduce that this COFDM configuration is

robust enough to withstand the indoor mobility requirements.

4. COFDM DBPSK Modulation Discussions

The COFDM configuration was further examined with DBPSK modulation. As

expected, the results showed that DBPSK required less Eb/N0 than DQPSK. Under the

influence of AWGN and multipath, the DBPSK modulation shows that the Eb/N0

required for links 1 to 3 simulations are similar.

88

B. FUTURE WORK

The research presented in this thesis has successfully demonstrated the COFDM

performance in the presence of known AWGN and multipath conditions. However, it is

noted that a soft decision Viterbi decoder with three or four bits of precision would

perform better than the present one that is working with hard decision inputs. The

MATLAB function viterbLm implemented in this thesis can also be used for soft decision

decoding of convolution codes. The separate file metric.m defines the metric used in the

decoding process. For hard decision decoding, this metric uses the Hamming distance;

for soft decision decoding, it is the Euclidean distance.

The code rate used for the convolutional encoder can also be increased from Vi to
3
ä by employing "puncturing". Puncturing is a procedure for omitting some of the

encoded bits in the transmitter (thus reducing the number of transmitted bits and

increasing the coding rate) and inserting a dummy "zero" metric into the Viterbi decoder

on the receiver side in place of the omitted bits.

Further work can explore replacing the Differential M-PSK with the M-ary

Quadrature Amplitude Modulation (QAM). It is envisaged that the modification would

mainly involve m-files such as difcdrft.m and dfdcdrft.m. In addition, pilot tones or

equalization must be used for QAM in mobile systems [11].

Finally, the performance curves obtained in this thesis have the potential for high

visibility and impact in several operational projects [1]. The increasing prevalence of

WLAN, both within the Defense establishment and in the public domain, underscores the

need for a simulation of this kind. The results obtained from this thesis can be included

into the Radio pipeline of OPNET simulation package. The OPNET version 7 comes

with an IEEE 802.11 model, and it can be modified to function as an IEEE 802.11a

89

WLAN. Hence, the performance of this newly proposed IEEE 802.1 la WLAN protocol

in either an office or submarine environment can be completely analyzed.

90

Additive White Gaussian Noise (Channel Model 1)
Prof J. McEachen, Naval Postgraduate School
Prof. Paul H. Moose, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

APPENDIX A. COFDM MATLAB SOURCE CODE

AWGN

%function [Y]=awgn(X,s,N,sigma)
%

%

%Title
%Thesis Advisor
%Author
%Modified by
%
%

%INPUTS:
% X : Input array of time domain complex modulation values
% s : Seed parameter for random number generator
% N : Number of OFDM frequencies (FFT size),includes zero pad
% sigma : Noise parameter for calculating Eb/No (function of the noise
variance)
%
%OUTPUTS:
% Y : Output signal plus noise,array of time domain complex numbers
%

function Y = awgn(X,s,N,sigma)
%
%Find dimensions of the input array
[rr,cc]=size(X);
%
%Seed configurations to set the random* generator seed
randn('seed',s+30);
%
%Generate a random real part
wreal=randn(rr,cc);
%
%Generate a random imaginary part
randn('seed',s+40);
wimg=i*randn(rr,cc);
%
% An array of random complex entries chosen from a normal distribution with
%mean 0.0 and variance 1.0. Array dimensions is the same as X.
W=wreal+wimg;
%
%Random noise multiplied by the sigma factor and added to the signal.
Y=X+(sigma.*W);
%

91

BIN2DECI

%function [vy]=bin2deci(vx)
%

%
%Title : Binary To Decimal Conversion
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Tan Kok Chye, Naval Postgraduate School
%
%

%INPUTS:
% vx
%
%OUTPUTS:
% vy
%

Binary inputs

Decimal output

function v_y=bin2deci(v_x)
v_l=length(v_x);
v_y=(v_l-l:-l:0);
v_y=2.Av_y;
v_y=v_x*v_y';

92

BM

%function [m]=bm(q,v)
%

%
%Title : Binary To M-ary Converter
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Prof. Paul H. Moose, Naval Postgraduate School
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%INPUTS:
% q : Base 2 exponent for M-ary symbol generation
% v : Binary data vector
%
%OUTPUTS:
% m : M-ary output vector in decimal notation
%

function m=bm(q,v)
%
%Find the length of input vector,v,and determine if there is a remainder
% after dividing by q
n=length(v);
r=rem(n,q);
%
%If there is no remainder,don't pad v input vector. Otherwise add the appropriate
%number of zeros to generate a code word with an exact multiple of q bits.
%
if r==0

v=v;
else

v=[vzeros(l,q-r)];
end
%
%Place least significant bit of the symbol on the left end.

map=l;
forj=l:q-l

map=[map 2Aj];
end
%
%Remove q bits at a time from v to generate m-ary symbol values.

n=length(v);
p=round(n/q);
A=zeros(q,p);

93

A(:)=v;
m=map*A;
m_ary_msg=m;
%

94

CDLDLV

%function [s]=cdldlv(l,k,case,si,SYNC)
%

CDL Block Deinterleaver
Prof J. McEachen, Naval Postgraduate School
Prof. Paul H. Moose, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

%
%Title
% Thesis Advisor
%Author
%Modified by
%
%

%INPUTS:
% 1 : Number of rows in intermediate matrix
% k : Number of columns in intermediate matrix
% case : Variable indicating the deinterleaving method to be
% used (9 different cases)
% si : Input message string to be deinterleaved
% sine : Frame synchronization bits (Not used in COFDM simulation)
%
%OUTPUTS:
% s : Interleaved output string
%

function s=cdldlv(l,k,case,si,SYNC)
si(length(si)+l-length(SYNC):length(si))=zeros(l,length(SYNC));
N=length(si);
ifl*k=N

x=zeros(l,k);
x(:)=si;
K=(l:k)-1;
CR=K.*(K+l)/2;
L=(l:l)-1;
RR=L.*(L+l)/2;
%
if case==l

forkk=l:k
x(:,kk)=rotm(x(:,kk),CR(kk));

end
elseif case==2

forkk=l:k
[z,x(: ,kk)]=rotm(x(: ,kk),CR(kk));

end
elseif case==3

forkk=l:l
x(kk,:)=rotm(x(kk,:),RR(kk));

end
elseif case==4

95

forkk=l:l
[z,x(kk,:)]=rotm(x(kk,:),RR(kk));

end
elseif case==5

forkk=l:k
x(:,kk)=rotm(x(:,kk),CR(kk));

end
for 11=1:1

x(ll,:)=rotm(x(ll,:),RR(ll));
end

elseif case==6
forkk=l:k

[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
for 11=1:1

x(ll,:)=rotm(x(ll,:),RR(ll));
end

elseif case==7
forkk=l:k

x(: ,kk)=rotm(x(: ,kk),CR(kk));
end
for 11=1:1

[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end

elseif case==8
forkk=l:k

[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
for 11=1:1

[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end

end
x=x';
s=x(:);
s=s';

end
%

96

CDLILV

%functionsi=cdlilv(l,k,case,s,SYNC)
%

%
%Title : CDL Block Interleaver
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Prof. Paul H. Moose, Naval Postgraduate School
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%INPUTS:
% 1 : Number of rows in intermediate matrix
% k : Number of columns in intermediate matrix
% case : Variable indicating the deinterleaving method to be
% used (9 different cases)
% s : Input message string to be deinterleaved
% SYNC : Frame synchronization bits (Not used in COFDM simulation)
%
%OUTPUTS:
% si : Interleaved output string
%
%Subroutines Used : rotm.m
%

function si = cdlilv(l,k,case,s,SYNC)
N=length(s);
ifl*k==N

x=zeros(l,k);
x=x';
x(:)=s;
x=x';
Intermediate_mx=x;
K=(l:k)-1;
CR=K.*(K+l)/2;
L=(l:l)-1;
RR=L.*(L+l)/2;
%
if case==l

forkk=l:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));

end
elseif case==2

forkk=l:k
x(:,kk)=rotm(x(:,kk),CR(kk));

end
elseif case==3

97

forkk=l:l
[z,x(kk,:)]=rotm(x(kk,:),RR(kk));

end
elseif case==4

forkk=l:l
x(kk,:)=rotm(x(kk,:),RR(kk));

end
elseif case==5

for 11=1:1
[z,x(ll,:)]=rotm(x(ll,:),RR(ll));

end
forkk=l:k

[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end

elseif case==6
for 11=1:1

[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end
forkk=l:k

x(: ,kk)=rotm(x(: ,kk),CR(kk));
end

elseif case==7
for 11=1:1

x(ll,:)=rotm(x(ll,:),RR(ll));
end
forkk=l:k

[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end

elseif case==8
for 11=1:1

x(ll,:)=rotm(x(ll,:),RR(ll));
end
forkk=l:k

x(:,kk)=rotm(x(:,kk),CR(kk));
end

end
si=x(:);
si=si';

end
si(length(si)-length(SYNC)+l:length(si))=SYNC;
%

98

CDRCDLFT

%function
[Fa,MD,B_ce,B_random,nsymno]=cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,
nary,fort)
%

%
%Title : COFDM Encoder with CDL Interleaver
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Prof. Paul H. Moose, Naval Postgraduate School
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%INPUTS:
picy_n : Switch variable to allow or disallow the generation of figures
pic : Argument passed by another calling m-file to indicate the loop

s : Seed parameter for random number generator
freqno : Number of OFDM frequencies (sub-carriers) used in each message

rintlv
cintlv
N
mary
nary
fort

%
%
number
%
%
array
%
%
%
%
%
%
encoding
%
%OUTPUTS:
% Fa
% MD
%
% B
%
%
%Subroutines Used : marymsg.m,cdlilv.m,mb.m,bm.m,difcdrft.m,cmv2fa.m
%

function
[Fa;MD,B_ce,B_random,nsymno]=cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,
nary,fort);
%
%Determine whether the number of OFDM frequencies are even (# of matrix
columns),indicated
% by the "freqno" parameter. If odd go to error message. Odd frequencies are not
allowed
% since the formation of the frequency array is symmetrical and even.

Interleaver parameter for intermediate matrix row #
Interleaver parameter for intermediate matrix column #
Number of FFT frequency sample points,must be larger than freqno
Initial M-ary symbol format (OFDM symbol bit length)
Final N-ary symbol format (PSK symbol bit length)
Selects either frequency (fort=l) or time (fort=0) differential

: Frequency array of prearranged modulation values
: Matrix of differentially encoded complex values (unit magnitude)
and one of N-ary possible phases (N-PSK)

: Matrix of 8-ary symbols
nsymno: Number of N-ary generated symbols

99

%
if rem(freqno,2)~=0

dispC'ERROR: The number of matrix columns,freqno,representing OFDM frequencies
must be an even number!')
elseif rem(freqno,2)==0
%
% Determine if the row and column interleave parameters are greater than freqno when
% multiplied together. If not, then display error message and stop.
%

if (rintlv*cintlv)<(freqno)
disp(")
dispC'ERROR: The row and column interleave parameters are not compatible with #

of OFDM frequencies!')
disp(")

else
% Calculate the row symbol number

symno=rintlv*cintlv/freqno;
%
% Display error message if symno and freqno not compatible with rintlv and cintlv and
stop.
% If not compatible,the interleaver function does not work correctly.
%

if rem(symno, 1)~=0
disp(")
dispCERROR: The row and column interleave parameters are not compatible with #

of OFDM frequencies!')
dispC For the enetered rintlv, cintlv, and freqno parameters, the calculated symno

is:')
disp(symno)
multiesall=mltpl(rintlv,cintlv);
multies=multiesall(l,(2:length(multiesall)-l));
dispC Possible choices for freqno based upon rintlv and cintlv are:')
disp(")
disp(multies)

elseif rem(symno, 1)==0
if freqno >= N;

disp(")
dispCERROR: The number of frequency points, N, needs to be mcresaed !')
disp('N must be larger than:')
disp(")
disp(freqno)
disp(")

elseif freqno < N;
%
% Generate a random message matrix of m-ary symbols,based upon

parameter,mary.

100

%
Nmbr_of_symbols =symno*freqno;
%
[B_ce,B_random]=marymsg(mary,s,symno,freqno);
Rndm_m_ary_msg=B_random;
%
% Perform a block interleaving function on the matrix, B, with rintlv rows
% and cintlv columns.
%
SYNC=[];
[Br Bc]=size(B_ce);
Bt=B_ce';
Bvect=Bt(:)';
si=cdlilv(rintlv,cintlv,case,Bvect,SYNC);
Bi=reshape(si,Bc,Br)';
Intrlvd_array=Bi;
%

ml=bm(nary,mb(mary,Bi));
lengthm 1 =length(m 1);
nsymno=lengthm 1;
remm 1 =rem(lengthml ,freqno);
if remml==0;

ml=ml;
else

zero=zeros (freqno-remm 1);
ml=[ml zero(l,:)];

end
length2m 1 =length(m 1);
m=(reshape(ml,freqno,length2ml/freqno))';
N_ary_msg=m;
%
% Generate a differentially encoded matrix of complex
% values with unit magnitude and one of (2An) equal phases.
MDD=difcdrft(nary ,m,fort);
[MDm MDn]=size(MDD);
MD=MDD;
Cmplx_mod_array=MDD;
%
% Form the frequency array of modulation values that include guard interval.
%
Fa=cmv2fa(N,MD);
Freq_array=Fa;

end
end

end
end

101

CHANCDL

%function [errmax,errors,freqerrs]=
chancdl(chnmdl,wait,prnt,picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary
%nary,n,k,blklgth,N,g,sigs,loss,dly4op,freqspace,fort)
%

%
%Title : Simulations for AWGN & Multipath Fading Channel
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Dave Roderick, Naval Postgraduate School
%Modified By : Tan Kok Chye, Naval Postgraduate School
%
%Subroutines Used: cdrcdlft.m,tda.m,awgn.m,chuhf.m,itda.m,decdrcdl.m,check.m
%

%
function[errrnax,errors,freqerrs]=chancdl(chnmdl,wait,prnt,picy_n,pic,case,s,freqno,rintlv
,cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly4op,freqspace,fort)
sigvect=sigs;
klgth=length(k);
chklp=l;
errvect=[];
bervect=[];
freqerrmx=[];
errsperpr=[];
Es_No=[];
Eb_No=[];
sermx=[];
bermx=[];
rowerrmx=[];
symno=rintlv*cintlv/freqno;
for lp=l:length(sigvect);
%
[xmt,modvals3_ce3_random,nsymno]=cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,
mary,nary,fort);
xmtifft=tda(Ng,xmt);
xmtpts= 1: length(xmtifft);
if chnmdl==0

%
sandn=xmtifft;

elseif chnmdl==l
%
disp(['Sigma=',num2str(sigvect(lp))]);
sandn=awgn(xmtifft,s,N,sigvect(lp));

elseif chnmdl=2
%
sandn=chuhf(s+l,xmtifft,loss,dly,dop,N,freqspace);

102

elseif chnmdl==3
%
sandmltpth=chuhf(s+l,xmtifft,loss,dly,dop,N,freqspace);
disp(['Sigma=',num2str(sigvect(lp))]);
sandn=awgn(sandmltpth,s,N,sigvect(lp));

end
%
sandnfft=itda(Ng,sandn);
%
K=(length(modvals(1, :)))/2;
[rcvd,rcvd3it,random_msg,random_bit,M,MM]=decdrcdl(picy_n,pic,case,K,sandnfft,ns
ymno,freqno,rintlv,cintlv,mary,nary,fort,B_random);
%Transmitted_msg=B_random;
Transmitted_msg=random_msg;
Received_msg=rcvd;
%
[errors,bit_erTor,freqerrs,errmx,rowerrs]=check(pic,randoni_msg,random_bit,rcvd,rcvd_b
it,n,k(chklp),blklgth);
errvect=[errvect,errors];
bervect= [bervect,bit_error];
freqerrmx=[freqerrmx;freqerrs];
rowerrmx=[rowerrmx;rowerrs];
crntEs_No= 1 /(2*N* (sigvect(lp) A2));
%
%based on M=4 i.e. for coded QPSK, Eb=Es.
crntEb_No=crntEs_No;
Es_No=[Es_No,crntEs_No];
Eb_No=[Eb_No,crntEb_No];
Es_Nodb=10*loglO(Es_No);
Eb_Nodb= 10*log 10(Eb_No);
end
ser=errvect/(symno*freqno);
ber=bervect/(2*symno*freqno);
sermx=[sermx; ser];
bermx=[bermx ;ber];
errsum=sum(errvect);
errsperpr=[errsperpr,errsum];
errmax=max(rowerrmx');
%
% plot
%
if picy_n==l

figure(pic+l)
plot(modvals,'*')
hold on;
plot(0,0,'+')

103

hold off;
title(['Transmitted Signal',int2str(2Anary),'-ary Constellation Plot'])
xlabel(['Magnitude=l'])
axis('square');
orient tall
grid
if prnt==l;

print
pause(lO);

end
pause(wait);

end
%
%
ifpicy_n==l

figure(pic+2)
plot([0:N-l],abs(xmt),'*')
title(['Frequency Array Plot (number of FFT frequency points are ',mt2str(N)/)'])
xlabel(['Guard interval length is ',int2str(N-freqno)])
axis('square');
orient tall
grid
if prnt==l;

print
pause(lO)

end
pause(wait);

end
%
%
if picy_n==l

figure(pic+3)
surf(abs(modvals));
shading interp
grid
orient tall
title(['Magnitude of Transmitted Signal(Unity Magnitude)'])
xlabel('OFDM Freq #')
ylabel('Symbol Row Number')
zlabel([,Magnitude(seed=',int2str(s),')'])
ifprnt==l;

print
pause(lO)

end
pause(wait);

end

104

%
%
if picy_n==l

figure(pic+6)
plot(M,'*')
hold on;
plot(0,0,'+')
hold off;
title(['Received',int2str(2Anary),'-ary Signal Constellation Plot,before Differential

Decoding'])
orient tall
axis('square');
grid
if prnt==l;

print
pause(lO)

end
pause(wait);

end
%
%
if picy_n==l

figure(pic+7)
plot(MM,'+')
hold on;
plot(0,0,'+')
hold off;
title(['Received',int2str(2Anary),'-ary Sigal Constellation Plot, After Differential

Decoding'])
orient tall
axis('square');
grid
if prnt==l;

print
pause(lO)

end
pause(wait);

end
%
%
if picy_n==l

roty_n=input('Do you want to rotate 3-D plot?(yes=l,no=0):');
figure(pic+8)
surf(abs(M));
shading interp
grid

105

orient tall
title(['Magnitude Variation of Received Signal (Sigma=',num2str(sigvect(lp)),')'])
xlabel('OFDM Freq #')
ylabel('Symbol Row Number')
zlabel(['Magnitude(seed=,,int2str(s),')'])
if roty_n==l

%Rotate the 3-D plot
fork=l:5

view(-70+10*k,15+10*k)
disp(-);
disp('Press "enter" to rotate plot...');
pause

end
end
if prnt==l;

print
pause(lO)

end
pause(wait);

end
%

if errsum~=0
%
%2-D Error Performance Curve showing BER vs. Es/No.
%
figure(pic+12)
semilogy(Eb_Nodb,ber)
grid
iffort==l

ifdop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
title(['Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.

Enc.)(Totalerrors=',int2stx(sum(erTvect)),')'])
elseifdop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]

title(['Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.
Enc.)(Totalerrors=',int2str(sum(errvect)),')'])

elseifdop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
title(['Link 3 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.

Enc.)(Total errors=',int2str(sum(errvect)),')'])
else

title(['Custom Link Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.
Enc.)(Total errors=',int2str(sum(errvect)),')'])

end
elseif fort==0

if dop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
title(['Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.

Enc.)(Totalerrors=',int2str(sum(errvect)),')'])

106

elseifdop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]
title(['Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.

Enc.)(Totalerrors=',int2str(sum(errvect)),')'])
elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]

title(['Link 3 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.
Enc.)(Totalerrors=',int2str(sum(errvect)),')'])

else
title(['Custom Link Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff.

Enc.)(Total errors=',int2str(sum(errvect)),')'])
end

end
%
xlabel(['Eb/No(dB)(#ofOFDM=',int2str(freqno),')(case=,,int2str(case),')(Interleaver

pair=',int2str(rintlv),';,int2str(cintlv),,)M-ary=,,int2str(2Amary),',N-
ary=',int2str(2Anary)]);

ylabel([,SigmaRange:(',num2str(min(sigs)),'-',num2str(max(sigs)),')(R-
S=',int2str(floor((n-k)/2)),')(Symbol#=',int2str(symno*freqno),,)(Seed=',num2str(s),')']);

orient tall
%
%2-D Error Performance Curve showing SER vs. Eb/No.
%
figure(pic+13)
semilogy(Es_Nodb,ser)
grid
iffort==l

ifdop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
title(['Link 1 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff.

Enc.)(Totalerrors=',int2str(sum(errvect)),')'])
elseifdop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]

title(['Link 2 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff.
Enc.)(Totalerrors=,,int2str(sum(errvect)),')'])

elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
title(['Link 3 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff.

Enc.)(Total errors=',int2str(sum(errvect)),')'])
else

title(['Custom Link Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff.
Enc.)(Totalerrors=',int2str(sum(errvect)),')'])

end
elseif fort==0

ifdop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
title(['Link 1 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff.

Enc.)(Totalerrors=',int2str(sum(errvect)),')'])
elseif dop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]

title(['Link 2 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff.
Enc.)(Totalerrors=',int2str(sum(errvect)),')'])

elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]

107

title(['Link 3 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff.
Enc.)(Totalerrors=',int2str(sum(errvect)),')'])

else
title(['Custom Link Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff.

Enc.)(Totalerrors=',int2str(sum(errvect)),')'])
end

end
text(min(ceil(Es_Nodb)),.18,['Loss=[',num2str(loss),T]);
text(min(ceil(Es_Nodb))v12,['Delay=[',num2str(dly),T]);
text(min(ceil(Es_Nodb)),.08,['Doppler=[',num2str(dop),']']);
xlabel(['Es/No(dB)(#ofOFDM=',int2str(freqno),')(case=',int2str(case),')(Interleaver

pair=,,int2str(rintlv),',',int2str(cintlv),')M-ary=',int2str(2Amary),',N-
ary=',int2str(2Anary)]);

ylabel(['SigmaRange:(',num2str(min(sigs)),'-',num2str(max(sigs)),')(R-
S=',int2str(floor((n-k)/2)),')(Symbol#=',int2str(symno*freqno);)(Seed=',num2str(s),')']);

orient tall
end

if prnt==l
print
pause(lO)

end
%

108

CHECK

%function[error_no,bit_error_total/reqerrs,errmx,rowerrs]=check(pic,x,y,n,k,blklgth)
%
%

%
% Title : Source and Sink Message Checker
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Prof. Paul H. Moose, Naval Postgraduate School
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%
function[error_no,bit_error_total,freqeiTS,errmx,rowerrs]=check(pic,x,xbit,y,ybit,n,k,blkl
gth)
ifblklgth>n

dispO
disp('ERROR! The block length, blklgth, must be equal or less than the code word

lengthen.')
disp('Please enter a smaller value for blklgth, or change n.')
disp(")

elseif blklgth<=n
if n<k

disp(")
disp('Error! The code word length,n,must be equal or larger than the information

length,k.')
disp('Please enter a larger value for n, or chnage k to a smaller number.')
dispO

elseif n>=k
First_matrix=x;
Second_matrix=y;
[rx cx]=size(x);
%
%Compare inputs x and y and generate error matrix, "errors"
%
errors=(x~=y);
%
First=xbit;
Second=ybit;
[rxl cxl]=size(xbit);
%
%Compare inputs xbit and ybit and generate BET error matrix, "bit_errors"
%
bit_errors=(xbit~=ybit);
%
%Find the error distribution vs. OFDM frequencies

109

%
freqerrs=sum(errors);
%
%Find the error location in "errors" where element in x and y differ.
%
Error_locations=(find(errors))';
Error_number=sum(sum(errors));
Correct_symbl_num=(size(y, 1)*size(y,2))-Error_number;
%
%Find the bit error location in "errors" where element in xl and yl differ.
%bit_Error_locations=(find(bit_errors))';
bit_error_total=sum(sum(bit_errors));
%Correct_bit_num=(size(yl,l)*size(yl,2))-bit_Error_number;
%
%
%Reed-Solomon 8-bit symbol correction for (n-k)/2 symbols
%
symcorr=floor((n-k)/2);
ifblklgth<=(n-k)

dispCError!! !The block length is too short for the given n and k values')
disp(")

elseifblklgth>(n-k)
errtrans=errors';
%
%Reshape the error matrix as a vector of errors
%
errvect=errtrans(:)';
%
blkrem=rem(length(errvect),blklgth);
if blkrem~=0;

zeropad=zeros(blklgth-blkrem);
errvectpad=[errvect zeropad(l,:)];

elseif blkrem=0;
errvectpad=errvect;

end
%
blknos=length(errvectpad)/blklgth;
%
errcorct=[];
errblksum=[];
%
forlp=l:blknos;
errblk=errvectpad(((blklgth*(lp-l))+l):(blklgth*lp));
errblklgth=length(errblk);
if sum(errblk)<=symcorr;

noerr=zeros(errblklgth);

110

errblk=noerr(l,:);
elseif sum(errblk)>symcorr;

errblk=errblk;
end
errcorct=[errcorct errblk];
errblksum=[errblksum sum(errblk)];

end
newerrvect=errcorct(1 :length(errvect));
errtot=sum(newerrvect);
RSerrs=(reshape(newerrvect,size(errors,2),size(errors,l)))';
%
%Find the error distribution vs. OFDM Frequencies
%
freqerrs=sum(RSerrs);
errindex=(find(RSerrs))';
RS errtot=sum(errblksum);
RS errdif=Error_number-RS errtot;
errperblk=[(l :blknos);errblksum];
%
%Check to see if x and y are the same. If not, display error message
%
if x==y;

disp('GREAT!! Ithere are no errors.')
error_no=0;
errmx=errors;
rowerrs=sum(errors');

else
disp('WARNING!:Errors were detected!')
disp(")
ifn==k
disp('WARNING!: Since n=k,there is no R-S error correcting possible')
disp(")

end
disp(['For the given input parameters:n=',int2str(n),'and k=',int2str(k),',the Reed-

Solomon code is capable'])
disp(['of correcting',int2str(symcorr),'errors.'])
disp(")
%
%Check to see if xbit and ybit are the same. If not, display error message
%
if xbit==ybit;

dispCGREAT!!!there are no bit errors.')
bit_error_no=0;
bit_errmx=bit_errors;
bit_rowerrs=sum(bit_errors');

else

111

disp('WARNING!:Errors were detected!')
dispO
if n==k
dispCWARNING!: Since n=k,there is no R-S error correcting possible')
disp(")
end

end
%
%RS code was able to correct all errors
%
iferrtot==0

Pre_RS_error_matrix=errors;
disp('EXCELLENT: The Reed-Solomon code corrected all detected errors!')
disp(['Originally the error total was:',int2str(Error_number)])

dispO
error_no=0;
errmx=zeros(rx,cx);
rowerrs=sum(errmx');
%
%RS code was able to correct some errors but not all of them
%

elseif errtot<Error_number
Pre_RS_error_matrix=errors;
Post_RS_error_matrix=RS errs;
errmx=RSerrs;
rowerrs=sum(errmx');
disp('OOOPS: The Reed-Solemon code corrected some detected errors, but not all.')
disp(['Originally the error total was : ',int2str(Error_number)])
dispO
disp(['After R-S decoding, the error number was reduced to:',int2str(RSerrtot)])
disp(")
error_no=RSerrtot;
disp([The total number of correct symbols are:',int2str((size(y,l)*size(y,2))-

RSerrtot)])
disp(")
disp('The error number distribution per block number is :')
disp(errperblk)
%figure(pic+3)
%bar((1 :blknos),errblksum)
%axis([0.5(blknos+0.5)0(max(errblksum)+l)])
%title(['Simulation#',int2str(pic),':Error Distribution Per Message Block (Error

count=',int2str(error_no),')'])
%xlabel(['Message Block Number(block size:',int2str(blklgth),'symbols)'])
%
%RS code did not correct any errors
%

112

elseif errtot==Error_number
Error_matrix=errors;
errmx=errors;
rowerrs=sum(errors');
disp('OOOPS!:The Reed-Solomon code did not correct any errors.')
disp('Perhaps a more powerful R-S code is required.')
dispO
disp(['The total number of error occurrences is:',int2str(Error_nurnber)])
disp(")
error_no=errtot;
disp('The error number distribution per block number is :')
disp(errperblk)
%figure(pic+4)
%bar((l :blknos),errblksum)
%axis([0.5 (blknos+.5) 0 (max(errblksum)+l)])
%title(['Simulation#',int2str(pic),':Error Distribution Per Message Block. (Error count

=',int2str(error_no),')'])
%xlabel(['Message Block Number (block size:',int2str(blklgth)',symbols)'])
%

end
end
end
end
end
dispO ');

113

CHNOCDL

%

%
%Title : Model Zero (Noise Free) simulation
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Dave Roderick, Naval Postgraduate School
%Modified By : Tan Kok Chye, Naval Postgraduate School
%
%

%
function
[emnax,errors,freqerrs]=chnOcdl(prnt,picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary,
n,k,blklgth,Ng,fort)
dispC');
klgth=length(k);
chklp=l;
errvect=[];
freqerrmx=[];
errsperpr=[];
Es_No=[];
sermx=[];
rowerrmx=[];
symno=rintl v* cintl v/freqno;
%
[xmt,modvals,B,nsymno]=cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary,fort

);
Random_Source_Msg=B
%
xmtifft=tda(Ng,xmt);
xmtpts= 1 :length(xmtifft);
%
sandnfft=itda(Ng,xmtifft);
K=(length(modvals(l ,:)))/2;
[rcvd,M]=decdrcdl(picy_n,pic,case,K,sandnfft,nsymno,freqno,rintlv,cintlv,rnary,nary,fort

);
Transmitted_msg=B;
Sink_msg=rcvd
%
%
[errors,freqen:s,errrnx,rowerrs]=check(pic,B,rcvd,n,k(chklp),blklgth);
errvect=[errvect,errors];
freqerrmx=[freqerrmx ;freqerrs];
ro werrmx=[ro werrmx ;ro werrs];
end
ser=errvect/(symno*freqno);

114

sermx=[sermx; ser];
errsum=sum(errvect);
errsperpr=[errsperpr,errsum];
errmax=max(rowerrmx');
if errsum==0;

disp('Test Passed!!!')
dispO

elseif errsum~=0;
dispCWARNING! Test Failed!')
dispO

end
%

115

UHF Channel Model (multipath Channel Model2)
Prof J. McEachen, Naval Postgraduate School
Prof. Paul H. Moose, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

CHUHF

%

%
%Title
%Thesis Advisor
%Author
%Modified by
%
%

%
function y=chuhf(s,x,loss,dly,dop,N,freqspace)
c=10.A(-loss./20);
deltat= 1 /(N*freqspace);
d=(dly.*.00000 l)./deltat;
e=dop./freqspace;
[L,Nt]=size(x);
D=length(d);
x=x.';
x=x(:).';
%
%D path with delays from d. (Uses macro dline.m)
%

xd=dline(x,d);
[rr,cc]=size(xd);
x=xd(l,:);
% Offsets direct path by .7 of max doppler freq. (uses macro ofst.m)
%
xo=ofst(.7*e(l),N,x);
%
% First path with no fading, (uses macro ray_dop.m)
%
for 1=1 :D

a=ray_dop(s,cc,N,e(l));
xd(l,:)=a.*xd(l,:);

end
%Sums the fading paths
y=c*xd;
%
%Adds in the First path without fading for the GSM-Ricean.
%
y=y+xo;
y=y(l:L*Nt);
y=reshape(y ,Nt,L).';
%

116

Complex Frequency Array Generator
Prof J. McEachen, Naval Postgraduate School
Dave Roderick, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

CMV2FA

%
%
%Title
%Thesis Advisor
%Author
%Modified By
%
% .

%
function X=cmv2fa(N,M)
[m n]=size(M);
if rem(n,2)==0;

M=M;
else

%
M=[zeros(m,l)M];

end
[m n]=size(M);
K=round(n/2);
%
%Generate a matrix of zeros with m row and N columns.
%
X=zeros(m,N);
%
X(:,1:K)=M(:,K+1:2*K);
X(:,N-K+1:N)=M(:,1:K);
%

117

CMVDIFCK

%

%
%Title : Frequency Array & Differential Encoder/Decoder Verifier
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : DaveRoderick, Naval Postgraduate School
%Modified By : Tan Kok Chye, Naval Postgraduate School
%
%

%
function cmvdifck(s,symno,freqno,N,mary,nary)
dispC ')
disp(This m-file checks the correctness of the differential encloder/decoder & the
frequnecy arrangers.')
fort=input('To run the frequency version, enter l(one); otherwise, enter O(zero) torun the
time version:');
%
%Generate random m-ary message array
%
B=marymsg(mary, s, symno,freqno);
Source_msg=B
[Br Bc]=size(B);
Bt=B';
Bvect=Bt(:)';
si=Bvect;
Bi=reshape(si,Bc,Br)';
%
%
%

m 1 =bm(nary,mb(mary,Bi));
lengthm 1 =length(m 1);
nsymno=lengthml;
remm 1 =rem(lengthm 1 ,freqno);
if remml==0;

ml=ml;
else

zero=zeros (freqno-remm 1);
ml=[ml zero(l,:)];

end
length2m 1 =length(m 1);
m=(reshape(ml,freqno,length2ml/freqno))';
N_ary_msg=m;
%
% Generate a differentially encoded matrix of complex values with unit
% magnitude and one of (2An) equal phases.

118

%
MDD=difcdrft(nary,m,fort);
[MDm MDn]=size(MDD);
MD=MDD;
Cmplx_mod_array=MDD;
%
% Form the frequency array of modulation values that include guard interval.
%
Fa=cmv2fa(N,MD);
Freq_array=Fa;
%
% Generate the corresponding complex modulation values from the received frequency
array.
%
K=(length(MD(l,:)))/2;
M=fa2cma(K,Fa);
Cmplx_mod_vals=M;
%
% Perform differential decoding.
%
naryp=nary;
[s,MM]=dfdcdrft(naryp,nary,M,fort);
[L,cc]=size(s);
strans=s';
svect=strans(:)';
corrs=svect(l:nsymno);
%
% Convert from N-ary symbols to the final message format of M-ary symbols.
%
nsymno;
Br=bm(mary,mb(nary,corrs));
lengthBr=length(Br);
rmndr=rem(length(Br),freqno);
if rmndr==0;

Br=Br;
elseif rmndr~=0;

Br=Br(l :(lengthBr-rmndr));
end
rcvd=(reshape(Br,freqno,length(Br)/freqno))';
[Br Bc]=size(rcvd);
SYNC=[];
sr=rcvd';
si=sr(:)';
sd=si;
outmsg=reshape(sd,Bc,Br)';
Sink_Msg=outmsg

119

%
% Check results for correctness
%
[error_no,freqerrs,errmx,rowerrs]=check(0,B,rcvd,freqno,freqno,freqno);
if sum(rowerrs)==0

disp('Test Passed!!!');
elseif sum(rowerrs)~=0

dispCOOOOPS - Test Failed!')
end
disp('__ ')
%

120

CNV ENCD

%-
%
%Title
%Thesis Advisor
% Reference

Convoultional Encoding
Prof J. McEachen, Naval Postgraduate School
Contemporary Communication System using MatLab

%John G. Proakis & Masoud Salehi.
%

%
function ce_output=cnv_encd(ce_g,ce_kO,ce_input)
% cnv_encd(ce_g,ce_kO,ce_input)
% determines the output sequence of a binary convolutional encoder
% ce_g is the generator matrix of the convolutional code
% with ce_nO rows and ce_l*ce_kO columns. Its rows are ce_gl,ce_g2,....ce_gn.
% ce_kO is the number of bits entering the encoder at each clock cycle.

% check to see if extra zero padding is necessary
if rem(length(ce_input),ce_kO)>0

ce_input=[ce_input,zeros(size(1 :ce_kO-rem(length(ce_input),ce_kO)))];
end
ce_n=length(ce_input)/ce_kO;
%check the size of matrix ce_g
if rem(size(ce_g,2),ce_k0)>0

error ('Error, ce_g is not of the right size.')
end
% determine ce_l and ce_nO
ce_l=size(ce_g,2)/ce_k0;
%disp([The value of ce_l is:',int2str(ce_l)]);
ce_nO=size(ce_g, 1);
%disp('')
%disp(['The value of ce_nO is:',int2str(ce_n0)]);
%add extra zeros
ce_u=[zeros(size(l:(ce_l-l)*ce_kO)),ce_input,zeros(size(l:(ce_l-l)*ce_kO))];
%generate ce_uu, a matrix whose column are the contents of
%conv. encoder at various cycles.
ce_ul=ce_u(ce_l*ce_kO:-l: 1);
for ce_i=l:ce_n+ce_l-2

ce_u l=[ce_u 1 ,ce_u((ce_i+ce_l)*ce_kO:-1 :ce_i*ce_kO+1)];
end
ce_uu=reshape(ce_u 1 ,ce_l*ce_kO,ce_n+ce_l-1);
% determine the ce_output
ce_output=reshape(rem(ce_g*ce_uu,2),l,ce_n0*(ce_l+ce_n-l));

121

CODERIFT

COFDM Encoder Without Interleaving
Prof J. McEachen, Naval Postgraduate School
Dave Roderick, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

%
%
%Title
%Thesis Advisor
%Author
%Modified By
%
%
function [Fa,MD,B,nsymno]=coderift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,fort);

%
if rem(freqno,2)~=0

disp('ERROR: The number of matrix column, freqno, representing OFDM frequencies
must be an even number!')
elseif rem(freqno,2)==0

%
if(rintlv * cintlv)<(freqno)

dispC)
dispC'ERROR: The row and column interleave parameters are not compatible with #

of OFDM frequencies!')
disp(")

else
%
symno=rintlv*cintlv/freqno;
%
if freqno>=N;

dispC)
dispC'ERROR: The number of frequency points, N, needs to be increased!')
disp('N must be larger than:')
disp(")
disp(freqno)
dispC)

elseif freqno<N;
Nmbr_of_symbols=symno*freqno;
%
B=marymsg(mary,s,symno,freqno);
Rndm_m_ary_msg=B;
%

m 1 =bm(nary ,mb(mary ,B));
lengthm 1 =length(m 1);
nsymno=lengthm 1;
remm 1 =rem(lengthm 1 ,freqno);
if remml==0;

ml=ml;

122

else
zero=zeros(freqno-remm 1);
ml=[ml zero(l,:)];

end
length2m 1 =length(m 1);
m=(reshape(ml,freqno,length2ml/freqno))';
N_ary_msg=m;
%
MDD=difcdrft(nary,m,fort);
[MDm MDn]=size(MDD);
MD=MDD;
Cmplx_mod_array=MDD;
%
Fa=cmv2fa(N,MD);
Freq_array=Fa;
%
if picy_n==l

if pic==l
figure(pic)
plot(MD,'*')
hold on;
plot(0,0,'+')
hold off;
title([Transmitted Signar,int2str(nary),'-ary Constellation Plot'])
axis('square');
orient tall
grid
%
figure(pic+l)
%
xaxis=[0:N-l];
plot(xaxis,abs(Fa),'*')
title([Frequency Arrary Plot (number of frequency point are',int2str(N),')'])
xlabel(['Guard interval length is',int2str(N-freqno)])
axis('square');
orient tall
grid

end
end

end
end

end
end
end
end
%

123

COFDMSIM

%

%
%Title : Simulation Of COFDM
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Dave Roderick, Naval Postgraduate School
%Modified By : Tan Kok Chye, Naval Postgraduate School
%
%

%

dispC ');
disp('This batch m-file runs COFDM simulations using different channel models.')
fort=input(To run the frequency version, enter l(one), To run the time version, enter 0
(zero), or to run both enter 2(two):');
freqno=input('Enter the # of OFDM frequencies (note : must be even):');
N=input('Enter the number of FFT points (Note : This number must be larger than # of
OFDM frequencies):');
chnmdl=input('Do you want to run channel model 0, channel model 1, channel model 2
or channel model 3 ? (Enter 0,1,2 or 3):');
if chnmdl==0

disp('Channel model 0 simulation performed.');
sigs=0;
loss=0;
dop=0;
dly=0;

elseif chnmdl==l
disp('Channel model 1 simulation performed.');
sigs=input('Enter the sigma noise parameter range or single value. (Ex

linspace(0,0.02,20)or .003):');
loss=0;
dop=0;
dly=0;

elseif chnmdl==2
disp('Channel model 2 simulation performed.');
sigs=0;
pthno=input('Do you want to run linkl ,link2, link3 or a custom link ? (Enter 1,2,3 or 4

for custom):');
%
%Link parameters
%
if pthno==3

%my link 3

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];

124

dop=[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15];

dly=[0,0.05,0.10,0.15;0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];

elseif pthno==2
%my link 2

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];

dop=[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];

elseif pthno==l
%my link 1

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];

dop=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];

elseif pthno==4
dispOCustom link simulation...')
loss=input('Enter the apth loss in db (Ex [0 4 7]):');
dop=input('Enter the doppler frequency in Hertz (Ex [30 20 15]):');
dly=input('Enter the time delays of the multipaths in microsecs (Ex [0 0.6 3.9]):');

end
elseif chnmdl==3

disp('Channel model 3 simulation performed');
sigs=input('Enter the sigma noise parameter range or single value. (Ex linspace

(0,0.02,20) or .003):');
pthno=input('Do you want to run linkl, link2, link3 or a custom link ?(Enter 1,2,3 or 4

for custom):');
%
%Link parameters
%
if pthno==3

%my link 3

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];

dop=[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15];

125

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];

elseif pthno==2
%my link 2

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];

dop=[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.

85];

elseif pthno==l
%my link 1

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];

dop=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];

elseif pthno==4
disp('Custom link simulation...')
loss=input('Enter the apth loss in db (Ex [0 4 7]):');
dop=input('Enter the doppler frequency in Hertz (Ex [30 20 15]):');
dly=input('Enter the time delays of the multipaths in microsecs (Ex [0 0.6 3.9]):');

end
end
allcase=input('Simulate all interleaver cases (yes) or specific ones(no)? (l=yes,0=no):');
if allcase==l

disp('All cases,(0-8),will be tested.');
cases=[0:8];

elseif allcase==0
cases=input('Enter specific case numbers from (0 to 8)(Ex [0 4 5 8]):');

end
iffort~=2

if length(cases)~=l
casey_n=input('Do you want to find optimal interleaver case(s) ? (l=yes, 0=no):');

end
end
totsym=input('Enter the total minimum number of symbols to simulate (Ex 10000):');
rowno=ceil(totsym/freqno);
if totsym~=(rowno*freqno)

126

disp(['Note:Based on the parameters thus far, the actual total number of symbol to be
simulated will be :',int2str(rowno*freqno)]);
end
pry_n=input('For the interleaver, do you want to calculate all possible intermediate
matrix dimension pairs?(l=yes,0=no):');
pairl=l;
pair2=rowno*freqno;
if pry_n==l

%
%
%
Intrlvr_pairs=intlvprs(rowno,freqno);
intlvrprs=Intrl vr_pairs;
disp(")
disp('For these input parameters, all possible acceptable interleaver dimension pairs are

:')
disp(Intrlvr_pairs)

end
pairs=input(['Desired interleaver pair? (Ex [row # col #] = [20 50] (Note: entering
[',int2str(pairl),' ',int2str(pair2),'],or [',int2str(pair2),' ',int2str(pairl),'], offers no
interleaving functionality):']);
rintlv=pairs(l);
cintlv=pairs(2);
mary=input('Enter the number of M-ary bits, q (i.e. for 256-ary, q=8):');
nary=input('Enter the number of N-ary bits,q(i.e. for 16-ary, q=4):');
freqspace=round(16600000/freqno);
Ng=input(Enter the guard interval length (Number of sample points):');
ecc=input('Do you want to include error correction coding ? (l=yes, 0=no):');
if ecc==l

code=input('Entern,k and error correction block length (Ex [240 200 240]):');
n=code(l);
k=code(2);
blklgth=code(3);

elseif ecc==0
n=freqno;
k=freqno;
blklgth=freqno;

end
svals=input('Enter specific seed values, or 0 for a random seed (ex [103 22, 60] or [0]):');
picy_n=input('Do you want signal plots? (l=yes, 0=no):');
if picy_n==l

wait=input('How many seconds of delay between pictures?');
wait=round(wait);

elseif picy_n==0
wait=0;

end

127

prnty_n=input('Do you want print outs? (l=yes, 0=no):');
pic=0;
svect=[];
for run=l :length(svals);

errcase=[];
errtot=[];
if min(svals)==0

rand('seed',sum(100*clock));
s=round(abs(rand(l)*pi*10*(pic+l)*run));

elseif min(svals)~=0
s=svals(run);

end
svect=[svect,s];
forl=l:length(cases);

dispC.
disp(['Run#:',int2str(run)]);
disp(['Seed=',int2str(s)]);
disp(['Interleavercase=',int2str(cases(l))]);
%
%
iffort<=l

[errmax,errors,freqerrs]=chancdl(chnmdl,wait,prnty_n,picy_n,pic,cases(l),s,freqno,rintlv,
cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,fort);

elseif fort==2
disp('Frequency differential encoding/decoding simulation...')
dispC ')

[errmax,errors,freqerrs]=chancdl(chnmdl,wait,prnty_n,picy_n,pic,cases(l),s,freqno,rintlv,
cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,l);

disor1**')
dispCTime differential encoding/decoding simulation....')
dispC ')

[errmax,errors,freqerrs]=chancdl(chnmdl,wait,prnty_n,picy_n,pic+12,cases(l),s,freqno,rin
tlv,cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,0);

end
errtot=[errtot sum(errors)];
errvect= [errvect,errtot];
errcase=[errcase sum(errmax)];

end
iffort~=2

casearry= [cases; errcase];
%
%
%

128

%if casey_n==l
% figure(pic+13)
% bar(cases,errcase)
%grid
%orient tall
iffort==l

title([int2str(pic),':Maximum Error Total Vs. Interleaver Case Number (Freq.
Diff. Enc.) (OFDM Freq.#=',int2str(freqno),')'])

elseif fort==0
title([int2str(pic),':Maximum Error Total Vs. Interleaver Case Number (Time

Diff. Enc.) (OFDM Freq.#=',int2str(freqno),')'])
end
xlabel(['CDL Interleaver Case Number'])
ylabel(['Maximum Error Count For Any Symbol Row (Seed=',int2str(s),')'])
axis([-.5 8.5 0 (max(errcase)+l)])
if prnty_n==l;

print
pause(lO)

end
pause(wait);
%
figure(pic+14)
bar(cases,errtot)
grid
orient tall
title([int2str(pic),':Error Totals Vs. Interleaver Case Number'])
xlabel(['CDL Interleaver Case Number'])
ylabel(['Sigma:(',num2str(min(sigs)),'-',num2str(max(sigs)),') Error Total'])
axis([-.5 8.5 (min(errtot)-l) (max(errtot)+l)])
if prnty_n==l;

print
pause(lO)

end
pause(wait);

end
pic=pic+l;

end
end

)
disp(")
disp('Channel model batch run is finished!')
Seed=svect
%

129

CVDD

%

%
%Title : Continuous Variable digital delay element.
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Reference : C.W. Farrow," A Continuously Variable Digital Element", IEEE
%International Symposium on Circuits & Systems,pp.2641-2645,1988.
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%
function [y]=cvdd(x,alpha)
if ((nargin~=2)l(nargout~=l))

error('ERROR:usage:y=y=cvdd(x,alpha);');
return;

end
if (size(x)~=size(alpha))

error('ERROR:x and alpha must be the same size');
return;

end
if (abs(alpha)>0.5)

error('ERROR:alpha must be within -0.5 and 0.5');
return;

end
%
%

% Initialization
%

%
% Initialize FIR filter coefficients are in [1] (0,0.328 pass band)
C0=[-0.013824 0.054062 -0.157959 0.616394 0.616394 -0.157959 0.054062 -0.013824];
Cl=[0.003143 -0.019287 0.1008 -1.226364 1.226364 -0.1008 0.019287 -0.003143];
C2=[0.055298 -0.216248 0.631836 -0.465576 -0.465576 0.631836 -0.216248 0.055298];
C3=[-0.012573 0.077148 -0.403198 0.905457 -0.905457 0.403198 -0.077148 0.012573];

%
%

% 4 parallel FIR and add together based on [1]
%

y0=filter(C0,[l],x);
yl=filter(Cl,[l],x);
y2=filter(C2,[l],x);
y3=filter(C3,[l],x);
%
y=alpha.*y3;
y=alpha.*(y+y2);

130

y=alpha.*(y+yl);
y=y+yO;
%

131

DECDRCDL

%

%
%Title : COFDM Decoder With Deinterleaveing
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Dave Roderick, Naval Postgraduate School
%Modified By : Tan Kok Chye, Naval Postgraduate School
%
%

%
function[outmsg,viterbi_output3itjandom_msg,random3it,M,MM]=decdrcdl(picy_n,p
ic,case,K,Fa,nsymno,freqno,rdintlv,cdintlv,rnary,nary,fort,B_random)
%
%modified on 4 Jan.
%to generate BER vs Eb/No.
%to provide bit outputs
%
M=fa2cma(K,Fa);
Cmplx_mod_vals=M;
%
naryp=nary;
[s,MM]=dfdcdrft(naryp,nary,M,fort);
[L,cc]=size(s);
strans=s';
svect=strans(:)';
corrs=svect(1: nsymno);
%
%
nsymno;
Br=bm(mary,mb(nary,corrs));
lengthBr=length(Br);
rmndr=rem(length(Br),freqno);
if rmndr==0;

Br=Br;
elseif rmndr~=0;

Br=Br(1: (lengthBr-rmndr));
end
rcvd=(reshape(Br,freqno,length(Br)/freqno))';
Rcvd_Intlv_Ary=rcvd;
%
%
[Br Bc]=size(rcvd);
SYNC=[];
sr=rcvd';
si=sr(:)';

132

sd=cdldlv(rdintlv,cdintlv,case,si,SYNC);
viter_G=[10 1 1 0 1 1;1 1 1 1 00 1];
viter_k=l;
binary_value=mb(mary,sd);
[viterbi_output,survivor_sta,cumul_metrix]=viterbi(viter_G,viter_k,binary_value);
mary_dec=bm(mary,viterbi_output);
viterbi_output_bit=viterbi_output;
%outmsg=reshape(sd,Bc,Br)';
%
random_bit=B_random;
random_msg=bm(mary,random_bit);
[Brow Bcol]=size(random_msg);
%
outmsg=reshape(mary_dec,Bcol,Brow)';

Sink_Msg=outmsg;
%

133

DECDRIFT

%

%
%Title : COFDM Decoder Without Deinterleaving
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Dave Roderick, Naval Postgraduate
%Modified By : Tan Kok Chye, Naval Postgraduate School
%
%

%
function
[outmsg]=decdrift(picy_n,pic,K,Fa,nsyrrmo/reqno,rdintlv,cdintlv,mary,nary,fort)
M=fa2cma(K,Fa);
Cmplx_mod_vals=M;
%
if picy_n==l

figure(pic+5)
plot(M,'*')
hold on;
plot(0,0,'+')
hold off;
title(['Received',int2str(nary),'-ary Signal Constellation Plot, before Differential

Decoding'])
orient tall
axis('square');
grid

end
%
naryp=nary;
[s,MM]=dfdcdrft(naryp,nary,M,fort);
[L,cc]=size(s);
strans=s';
svect=strans(:)';
corrs=svect(1 :nsymno);
%
if picy_n==l

figure(pic+6)
plot(MM,'+')
hold on;
plot(0,0,'+')
hold off;
title(['Received',int2str(nary),'-ary Signal Constellation Plot, After Differential

Decoding'])
orient tall
axis('square');

134

grid
end
%
nsymno;
Br=bm(mary,mb(nary,corrs));
lengthBr=length(Br);
rmndr=rem(length(Br),freqno);
if rmndr==0;

Br=Br;
elseif rmndr~=0;

Br=Br(1 :(lengthBr-rmndr));
end
rcvd=(reshape(Br,freqno,length(Br)/freqno))';
M_ary_rcvd=rcvd;
outmsg=rcvd;
%

135

DECI2BIN

%
%
%Title
%Thesis Advisor
%Author
%
%

%
function y=deci2bin(x,l)
y=zeros(l,l);
vi=l;
while x>=0 & vi<=l

y(vi)=rem(x,2);
x=(x-y(vi))/2;
vi=vi+l;

end
y=y(i:-i:D;

Convert Decimal To Binary
Prof J. McEachen, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

136

DFDCDRFT

%

%
%Title : Complex Number Demodulator & Frequency/Time Differential Decoder
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Prof. Paul H. Moose, Naval Postgraduate School
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%
function [s,M]=dfdcdrft(qp,q,MD,fort)
if fort==0 %Time Differential decoding

%
%
MD=MD';
[m n]=size(MD);
%
% Perform a looping routine to find the phase differences between adjacent values in

the
% array,MD,and put these calculated values into array,M.
%
for 1=1 :m

forj=l:n-l
M(l,j)=MD(lo+l)*conj(MD(l,j));

end
end
%
%Transpose the array back to its original form
.%
M=M';
%
% Calculate the number of M-ary symbols based upon the exponent qp,then use this

number
% to find the number of equally spaced phases in a unit circle.
N=2Aqp;
dph=2*pi/N;
%
% Divide the phase arguments of elements in M, by the equal phases generated by dph.
phn=angle(M) ./dph;
%
% Calculate the phase sector number by finding the remainders.
%
s=rem(round(phn)+N,N);

elseif fort==l % Frequency Differential decoding
%

137

% Transpose the modulation array, and find the dimensions
%
[m,n]=size(MD);
MD=MD(:,2:n);
[m n]=size(MD);
%
% Perform a looping routine to find the phase differences between
% adjacent values in the array, MD, and put these calculated values into array,M.
%
for 1=1 :m

forj=l:n-l
M(l,j)=MD(l,j+l)*conj(MD(l,j));

end
end
%
N=2Aqp;
dph=2*pi/N;
%
% Calculate the phase sector number by finding the remainders.
phn=angle(M)./dph;
s=rem(round(phn)+N,N);

end
% .

138

DIFCDRFT

%

%
%Title : Complex Number Modulator & Frequency/Time Differential Encoder
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Prof. Paul H. Moose, Naval Postgraduate School
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%
function MD=difcdrft(q,m,fort)
if fort==0 %Time differential encoding

%
% M-ary alphabet size
%
N=2Aq;
% Determine the number of equal phases based upon the m-ary symbol length
%
dph=2*pi/N;
%
% Find the size of the input symbol matrix (# of row & # of columns)
[rr n]=size(m);
%
% Perform the time differential encoding of phase values by cumulative summing

matrix,
% m, down one column at a time across the entire matrix. This function generates a

matrix.
%
fork=l:n

md=cumsum(m(: ,k));
%
% Generate the complex numbers with correspondiing phase values.
%
MD(:,k)=exp(i*dph.*md);

end
%
% Inject the reference row of ones (zero phase) at top of output matrix for
% differential encoding synchronization
%
MD=[ones(l,n);MD];

el seif fort==l % Frequency Differential encoding
%
% M-ary alphabet size
N=2Aq;
%

139

dph=2*pi/N;
%
% Find the size of the input symbol matrix (# of row & # of columns)
%
[rr n]=size(m);
%
%
md=cumsum(m');
md=md';
%
% Generate the complex numbers with corresponding phase values.
%
MD=exp(i*dph. *md);
%
% Inject the reference row of ones (zero phase) at top of output matrix for
% differential encoding synchronization.
%
MD=[ones(rr,2)MD];

end
%

140

DIFFCHKR

%

%
%Title : Differential Encoder/Decoder Checker
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Dave Roderick, Naval Postgraduate School
%Modified By : Tan Kok Chye, Naval Postgraduate School
%
%

%
function diffchkx(s,symno,freqno,mary,nary)
fort=input('To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run
the time version:');
%
B=marymsg(mary,s,symno,freqno);
Rndm_m_ary_msg=B;
%
m 1 =bm(nary,mb(mary,B));
lengthm 1 =length(m 1);
m=(reshape(ml,lengthml/symno,syrnno))';
N_ary_msg=m;
%
iffort==l

dispO
disp('Frequency Differential Encode/Decode version')
%
%Freq. Diff. Enc.
%
MDD=difcdrf(mary ,m);

elseif fort~=l
disp(")
dispCTime Differential Encode/Decode version')
%
MDD=difcdrt(mary ,m);

end
%
maryq=mary;
iffort==l

%
[s M]=difdcdrf(maryq,mary,MDD);

elseif fort ~=1
%
[s M]=difdcdrt(maryq,mary,MDD);

end
%

141

%Check results for correctness, (uses m-file check.m)
%
[erxor_no,freqerrs,enTTix,rowerrs]=check(0,rn,s,freqno,freqno,freqno);
% -—

142

DLINE

%
%
%Title
%Thesis Advisor
%Author
%Modified by
%
%

UHF Channel Delay Line Generator
Prof J. McEachen, Naval Postgraduate School
Prof. Paul H. Moose, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

,0

%

function xd=dline(x,d)
x=x.';
dmax=max(d);
dmin=min(d);
nmin=floor(dmin);
nmax=ceil(dmax);
x=[x ;zeros(nmax+3,1)];
N=length(x);
Nd=length(d);
%
forn=l:Nd;

di=d(n);
D=floor(di);
deld=di-D;
xd(:,n)=cvdd(x,deld-.5);
xd(: ,n)=[zeros(D, 1);xd(1 :N-D,n)];

end
xd=xd.';
[rr,cc]=size(xd);
xd=xd(:,4+nmin:cc);
%

143

FA2CMA

%
%
%Title
%Thesis Advisor
%Author
%Modified by
%
%

Frequency Array To Complex Modulation Array Converter
Prof J. McEachen, Naval Postgraduate School
Prof. Paul H. Moose, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

,0

%
function Mm=fa2cma(K,X)
%
%
[m n]=size(X);
%
Mm(:,l:K)=X(:,n-K+l:n);
Mm(:,K+l:2*K)=X(:,l:K);
Cmplx_mod_vals=Mm;
%

144

INTLVCHK

%-
%

Interleaver/Deinterleaver Verifier
Prof J. McEachen, Naval Postgraduate School
Dave Roderick, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

%Title
%Thesis Advisor
%Author
%Modified By
%
%

%
function intlvchk(s,symno,freqno,rintlv,cintlv,mary,case)
%
multiples=mltpl (s ymno ,freqno);
Intrlvr_nbr_mltpls=multiples;
%
%
if (symno*freqno)~=(rintlv*cintlv)

disp('ERROR: The interleaver parameters, rintlv and cintlv, are not compatible with the
message array size.')

disp(' The acceptable choice of possible number are:')
dispO
disp(multiples)
disp('Note: The selected pair of numbers must be divisible by the number of rows and

columns of the input matrix multiplied together.')
disp(' In this case the number of rows times the number of columns is:')
disp(")
disp(symno*freqno)

elseif(symno*freqno)/(rintlv*cintlv)==l
%
B=marymsg(mary,s,symno,freqno);
Random_msg=B
%
SYNC=[];
[Br Bc]=size(B);
Bt=B';
Bvect=Bt(:)';
si=cdlilv(rintlv,cintlv,case,Bvect,SYNC);
Bi=reshape(si,Bc,Br)';
Interleaved_array=Bi
%
[Br Bc]=size(Bi);
SYNC=[];
sr=Bi';
si=sr(:)';
sd=cdldlv(rintlv,cintlv,case,si,SYNC);

145

Bd=reshape(sd,Bc,Br)';
Deinterleaved_array=B d
%
[error_no,freqerrs,errmx,rowerrs]=check(0,B,Bd,freqno,freqno,freqno);

end
%

146

INTLVPRS

%
%

%Title
%Thesis Advisor
%Author
%Modified By
%
%

Intermediate Matrix Interleaver Dimension Pairs
Prof J. McEachen, Naval Postgraduate School
Dave Roderick, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

i0

%
function pairs=intlvprs(n,m)
%
prod=n*m;
%
multvect=[l];
%
for i=2:prod;

remdr=rem(prod,i);
if remdr==0

multvect=[multvect i];
else

multvect=multvect;
end
%
mult=multvect;

end
lngth=length(mult);
nbr=mult(lngth);
result=[l nbr];
for i=2:lngth;

crntpr=[mult(i) nbr/mult(i)];
result=[result;crntpr];

end
pairs=result;
%

147

ITDA

%

%
%Title : Frequency Domain Samples Without Guard Interval
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Prof. Paul H. Moose, Naval Postgraduate School
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%
function Y=itda(Ng,y)
%
[L Nt]=size(y);
% Remove the guard interval for channel compensation, Ng, precursor.
%
y=y(:,Ng+l:Nt);
% Take the FFT of array,y
%
Y=fft(y.').';
%

148

MARYMSG

%

%
%Title
%Thesis Advisor
%Author
%
%

M-ary Message Test Pattern Generator
Prof J. McEachen, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

•0

%
function [vmary_ce,random_bit]=marymsg(q,s,n,m)
%
%for input of 100 symbols
[random_bit]=msg(s,66);
%for input of 5000 symbols
%[random_bit]=msg(s,2514);
%for input of 20000 symbols with 48 sub-carriers
% [random_bit]=msg(s, 10002);
%
conv_g=[10 1 10 1 1;1 1 1 10 01];
conv_k0=l;
conv_output=cnv_encd(conv_g,conv_kO,random_bit);

vmary_ce=(reshape(bm(q,conv_output),m,n))';
%
%

149

MB

%

%
%Title
%Thesis Advisor
%Author
%Modified by
%
%

%
function [b]=mb(q,m)
%
row=size(m,l);
col=size(m,2);
%
m=reshape(m',l,(row*col));
%
b0=rem(m,2);
m=(m-b0)./2;
B=bO;
%
%
forj=l:q-l

bj=rem(m,2);
m=(m-bj)./2;
%
%
B=[B;bj];

end
%
b=B(:)';
binary=b;
%

M-ary To Binary Converter
Prof J. McEachen, Naval Postgraduate School
Prof. Paul H. Moose, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

150

METRIC

%

%
%Title : Viterbi Hard Decision Decoding matric
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Tan Kok Chye, Naval Postgraduate School
%
%

%
function distance=metric(v_x,v_y)
if v_x==v_y

distance=0;
else

distance=l;
end

151

MLTPL

%

%
%Title : Common Multiples
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
% Author : Tan Kok Chye, Naval Postgraduate School
%
%

%
function [mult]=mltpl(n,m)
%
max=n*m;
%
multvect=[l];
%
for i=2:max;

remdr=rem(max ,i);
if remdr==0

multvect=[multvect i];
else

multvect=multvect;
end
%
mult=multvect;

end
%

152

MSG

%

%
%Title : Message Test Pattern Generator
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Prof. Paul H. Moose, Naval Postgraduate School
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%
function u=msg(s,k)
%

%rand('uniform');
%
temp=rand('seed');
%
rand('seed',s);
%
u=round(rand(l ,k));
%
%

153

NXT_STAT

%

%
%Title : Next State
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Tan Kok Chye, Naval Postgraduate School
%
%

%
function [next_state,memory_contents]=nxt_stat(current_state,input,v_L,v_k)
binary_state=deci2bin(current_state,v_k*(v_L-1));
binary_input=deci2bin(input,v_k);
next_state_binary=[binary_input,binary_state(l:(v_L-2)*v_k)];
next_state=bin2deci(next_state_binary);
memory_contents=[binary_input,binary_state];

154

Channel Offset
Prof J. McEachen, Naval Postgraduate School
Prof. Paul H. Moose, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

OFST

%
%
%Title
%Thesis Advisor
%Author
%Modified by
%
%

%
function xo=ofst(e,N,x)
[m Nt]=size(x);
xo=x.';
x=x.';
x=x(:);
x=x.';
Nt=length(x);
1=1 :Nt;
%
%
ex=x.*exp(i*(2*pi/N)*e.*l);
xo(:)=x;
xo=xo.';
%

155

RAY DOP

%
%
%Title
%Thesis Advisor
%Author
%Modified by
%
%

%
function c=ray_dop(s,M,N,es)
m=0:M-l;
randn('seed',s+10);
prl=randn(l,20);
randn('seed',s+20);
pim=i*randn(l,20);
p=prl+pim;
p=p/(40*5);
rand('seed',s+30);
e=rand(l,20);
e=es*cos(2*pi*(e-.5));
E=exp(i*2*pi*e'*m/N);
c=p*E;
%

Rayleigh Doppier
Prof J. McEachen, Naval Postgraduate School
Prof. Paul H. Moose, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

156

Rotate Vector
Prof J. McEachen, Naval Postgraduate School
Prof. Paul H. Moose, Naval Postgraduate School
Tan Kok Chye, Naval Postgraduate School

ROTM

%
%
%Title
%Thesis Advisor
%Author
%Modified by
%
%

%
function [vp,vn]=rotm(v,m)
L=length(v);
m=rem(m,L);
ii=(l:L)-l;
isp=rem(ii-m+L,L)+1;
isn=rem(ii+m+L,L)+l;
vp=v(isp);
vn=v(isn);
% ____

157

TDA

%

%
%Title : Time Domain Samples With Guard Interval Precursor
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Prof. Paul H. Moose, Naval Postgraduate School
%Modified by : Tan Kok Chye, Naval Postgraduate School
%
%

%
function x=tda(Ng,X)
[m N]=size(X);
%
% Perform inverse FFT on frequency values in array,X
%
x=ifft(X.');
% Add precursor of Ng samples to the beginning of the time domain array for channel
% compensation.
%
x=x.';
ifNg==0

x=x;
else

x=[x(:,N-Ng+l:N)x];
end
%

158

UHFIFT

%

%
%Title : Channel 2 Simulation w/o Interleaving
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Dave Roderick, Naval Postgraduate School
%Modified By : Tan Kok Chye, Naval Postgraduate School
%
%

%
function
[errors,freqerrs]=uhfift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,n,k,blklgth,Ng,loss,
dly,dop,freqspace,fort)
%
[xmt,modvals,B,nsymno]=coderift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,fort);
%
xmtifft=tda(Ng,xmt);
xmtpts=l: length (xmtifft);
%
if picy_n==l

xmtpts= 1 :length(xmtifft);
figure(3)
plot(xmtpts,xmtifft)
title('Transmitted Time Domain Signal')
axis('square');
orient tall
grid

end
%
%
sandn=chuhf(s+l,xmtifft,loss,dly,dop,N,freqspace);
%
%
if picy_n==l

rcvdpts=l :length(sandn);
figure(4)
plot(rcvdpts,sandn)
title('Received Time Domain Signal')
axis('square');
orient tall
grid

end
%
%
sandnfft=itda(Ng,sandn);

159

%
%
K=(length(modvals(1 ,:)))/2;
rdintlv=rintlv;
cdintlv=cintlv;
rcvd=decdrift(picy_n,pic,K,sandnfft,nsymno,freqno,rdintlv,cdintlv,mary,nary,fort);
Transmitted_msg=B;
Received_msg=rcvd;
%
%
[errors,freqerrs,errmx,rowerrs]=check(pic,B,rcvd,n,k,blklgth);
errmx;
[rn cm]=size(errmx);
errsum=sum(errors);
if errsum~=0

symno=rintlv*cintlv/freqno;
freqno;
if picy_n==l

ifdop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
figure(2)
mesh(errmx)
title(['Link 3: Error Distribution Without Interleaving (M-ary bits:

,,int2str(mary),',','N-arybits:',int2str(nary),')'])
axis([0 freqno 0 symno 0 max(max(errmx))])
xlabel(['Freq.#(Total=',int2str(freqno),')'])
ylabel(['Row#(Symbol#=',int2str(symno*freqno),')'])
zlabel([Error Occurance (Total =',int2str(errsum),')(seed =',num2str(s),')'])
text(-150,0,1.95,['Error Correction =',int2str(floor((n-k)/2))])
grid
orient tall
%
%

elseifdop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]
figure(2)
mesh(errmx)
title(['Link 2: Error Distribution Without Interleaving (M-ary

bits:',int2str(mary),,,','N-arybits:',int2str(nary),')'])
axis([0 freqno 0 symno 0 max(max(errmx))])
xlabel(['Freq.#(Total=,,int2str(freqno),')'])
ylabel(['Row#(Symbol#=',int2str(symno*freqno),')'])
zlabel([Error Occurance (Total =',int2str(errsum),')(seed =',num2str(s),')'])
text(-150,0,1.95,['Error Correction =',int2str(floor((n-k)/2))])
grid
orient tall
%
%

160

elseif dop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
figure(2)
mesh(errmx)
title(['Link 1: Error Distribution Without Interleaving (M-ary

bits:',int2str(mary),',,,'N-arybits:',int2str(nary),')'])
axis([0 freqno 0 symno 0 max(max(errmx))])
xlabel(['Freq.#(Total=',int2str(freqno);')'])
ylabel(['Row#(Symbol#=',int2str(symno*freqno);')'])
zlabel(['Error Occurance (Total =',int2str(errsum),')(seed =',num2str(s),')'])
text(-150,0,1.95,['Error Correction =',int2str(floor((n-k)/2))])
grid
orient tall
%
%

end
end

else
dispO
dispCGREAT!!! Test passed.')

end
if sum(rowerrs)~=0

figure(3)
cony=(max(rowerrs)+5)/60;
conx=symno/80;
errindx=l :length(rowerrs);
bar(errindx,rowerrs)
title(['Error Count Per Symbol Row (Total Errors=',int2str(sum(rowerrs)),')'])
xlabel('Row Number')
ylabel('Number of Errors')
axis([0.5,(symno+.5),0,(max(rowerrs)+(6*cony))])
if sum(rowerrs)~=0

for i=l :length(rowerrs)
text(i-(1.5*conx),rowerrs(i)+(4*cony),int2str(rowerrs(i)))

end
end
orient tall

end
%

161

UHFSEEDS

%

%
%Title : Seed Error Report
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School
%Author : Dave Roderick, Naval Postgraduate School
%Modified By : Tan Kok Chye, Naval Postgraduate School
%
%

dispC
.');

fort=input(To run the frequency versioü, enter 1 (one); otherwise, enter 0 (zero) to run
the time version:');
pthno=input('Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2,3 or 4
for custom):');
%
%
if pthno==3

%my link 3

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];

dop=[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];

elseif pthno==2
%my link 2

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];

dop=[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10];

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];

elseif pthno==l
%my link 1

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4,
32.57,34.74,36.92];

dop=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5];

162

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.
85];

elseif pthno==4
dispCCustom link simulation..')
loss=input('Enter the path loss in dB (Ex. [0 4 7]):');
dop=input('Enter the doppler frequency in Hertz (Ex. [30 20 15]):');
dly=input('Enter the time delays of the multipaths in microsecs (Ex. [0 0.6 3.9]):');

end
prnty_n=input('Do you want print outs? (l=yes, 0=no):');
%
%
symbols=input('Enter the minimum number of symbols to test:');
freqno=input('Enter the number of FFT points (NOTE: Must be larger than # of OFDM
frequencies):');
N=input('Enter the number of FFT points (Note : Must be larger than # of OFDM
frequencies):');
smax=input('All tested seeds begin with one and end with a max number. Enter Smax
(Integer*):');
disp(['Tested seed range is 1 - ',int2str(floor(smax)),'...'])
mary=8;
nary=4;
symno=ceil (symbol s/freqno);
freqspc=l 6600000/freqno;
errvect=[];
incvect=[];
topervect=[];
sindex=l :floor(smax);
for s=sindex;

%
%

[errors,freqerrs]=uhfift(0,0,s,freqno,freqno,symno,N,mary,nary,0,0,freqno,6,loss,dly,dop,
freqspc,fort);

errtot=sum(errors);
errvect=[errvect,errtot];

end
totalerr=sum(errvect);
avgerr=ceil(totalerr/floor(smax));
[inc rj=sort(errvect);
errmx=[I;inc]
Error_Seeds=incvect
Total_Errors=totalerr
Avg_Errors=avgerr
save unfhist errmx

163

dispCAll Done!!!')
disp(")
if sum(inc)==0

disp('GREAT!!! Simulation passed with no errors.')
elseif sum(inc)~=0

dispCOOOPS!!! Errors occured.')
end
%
% Plot
%
figure(3)
bar(sindex,errvect)
grid
orient tall
xlabel(['UHFSEEDS: Seed Value (Symbol#=',int2str(freqno*symno),')'})
ylabel(['Error Number (OFDM Freq.#=',int2str(freqno),')(M-ary=',int2str(2Amary),',N-
ary=',int2str(2Anary),')'])
if fort=l

if pthno==l
title(['Linkl:ErrorDist. vs. Seed Values (Freq. Diff. Enc.)

(Loss=',num2str(loss),')(Dop=',num2str(dop),')(Delay=',num2str(dly),')']);
elseif pthno==2

title(['Link2:Error Dist. vs. Seed Values (Freq. Diff. Enc.)
(Loss=,,num2str(loss);)(Dop=',num2str(dop),')(Delay=',num2str(dly),')']);

elseif pthno==3
title(['Link3:Error Dist. vs. Seed Values (Freq. Diff. Enc.)

(Loss=',num2str(loss),,)(Dop=',num2str(dop),,)(Delay=',num2str(dly);)']);
elseif pthno==4

title(['Custom Link:Error Dist. vs. Seed Values (Freq. Diff. Enc.)
(Loss=',num2str(loss);)(Dop=',num2str(dop),')(Delay=',num2str(dly),')']);

end
elseif fort~=1

if pthno==l
title(['Linkl:Error Dist. vs. Seed Values (Freq. Diff. Enc.)

(Loss=,,num2str(loss),')(Dop=',num2str(dop),')(Delay=',num2str(dly),')']);
elseif pthno==2

title(['Link2:Error Dist. vs. Seed Values (Freq. Diff. Enc.)
(Loss=',num2str(loss),')(Dop=',num2str(dop),')(Delay='Jnum2str(dly),')']);

elseif pthno==3
title(['Link3:Error Dist. vs. Seed Values (Freq. Diff. Enc.)

(Loss=',num2str(loss);)(Dop=',num2str(dop),')(Delay=',num2str(dly),')']);
elseif pthno==4

title(['Custom Link:Error Dist. vs. Seed Values (Freq. Diff. Enc.)
(Loss=',num2str(loss),')(Dop=',num2str(dop),')(Delay=',num2str(dly),')']);

end
end

164

axis([.5 (max(s)+.5) 0 (max(errvect)+l)])
if prnty_n==l

print
pause(lO)

end
figure(4)
bar(inc)
grid
orient tall
xlabelC'UHFSEEDS: Seed Value (out of order)')
ylabel('Error Number')
title('Ordered Error Dist. vs. Seed Values (Corresponding Seed Shown on Plot)')
axis([.5 (max(s)+.5) 0 (max(errvect)+l)])
for i=l:length(errvect)

if inc(i)>(max(inc))*.8
incvect=[incvect,I(i)];
topervect=[topervect,inc(i)];
errlth=length(topervect);
yinc=(max(inc(i))-min(inc(i)))/2;
text(5,(inc(i)+l),int2str(I(i)))

end
end
if prnty_n==l

print
pause(lO)

end
figure(5)
hist(errvect)
title(['Error Histogram (Average* of Errors Per Seed=',int2str(avgerr),')'])
xlabel('Error Bins')
ylabel('Number of Seeds')
grid
orient tall
if prnty_n==l

print
end
%

165

VITERBI

%

%Title
%Thesis Advisor
%Reference

Viterbi Decoder
Prof J. McEachen, Naval Postgraduate School
Contemporary Communication System using MatLab

%John G. Proakis & Masoud Salehi.
%

%
function
[decoder_output,survivor_state,cumulated_metric]=viterbi(v_G,v_k,channel_output)

%
v_n=size(v_G,l);
% check the sizes
if rem(size(v_G,2),v_k)~=0

error('Size of v_G and v_k do not agree')
end
if rem(size(channel_output,2),v_n)~=0

error('channel output not of the right size')
end
v_L=size(v_G,2)/v_k;
number_of_states=2A((v_L-l)*v_k);
%generate state transition matrix, output matrix, and input matrix
for vj=0:number_of_states-l

forv_l=0:2Av_k-l
[next_state,memory_contents]=nxt_stat(vJ,v_l,v_L,v_k);
input(vJ+1 ,next_state+1)=v_l;
branch_output=rem(memory_contents*v_G',2);
nextstate(vj+l,v_l+l)=next_state;
output(vJ+l,v_l+l)=bin2deci(branch_output);

end
end
state_metric=zeros(number_of_states,2);
depth_of_trelli s=length(channel_output)/v_n;
channel_output_matrix=reshape(channel_output,v_n,depth_of_trellis);
survivor_state=zeros(number_of_states,depth_of_trellis+1);
% start decoding of non-tail channel outputs
for v_i=l :depth_of_trellis-v_L+l

flag=zeros(1 ,number_of_states);
if v_i<=v_L

step=2A((v_L-v_i)*v_k);
else

step=l;
end
for v_j=0:step:number_of_states-l

166

forv_l=0:2Av_k-l
branch_metric=0;
binary_output=deci2bin(output(v J+1 ,v_l+1),v_n);
for v_ll=l:v_n

branch_metric=branch_metric+metric(channel_output_matrix(v_ll,v_i),binary_output(v_

ID);
end

if((state_metric(nextstate(vj+l,vj+l)+l,2)>state_metric(vj+l,l)+branch_metric)lflag(
nextstate(vJ+l,v_l+l)+l)==0)

state_metric(nextstate(vj+l,v_l+l)+l,2)=state_rnetric(vj+l,l)+branch_metric;
survivor_state(nextstate(v J+1, v_l+1)+1, v_i+1)=v J;
flag(nextstate(v J+1 ,v_l+1)+1)=1;

end
end

end
state_metric=state_metric(:,2:-l:l);

end
%start decoding of the tail channel_outputs
forv_i=depth_of_trellis-v_L+2:depth_of_trellis

flag=zeros(1 ,number_of_states);
last_stop=number_of_states/(2A((v_i-depth_of_trellis+v_L-2)*v_k));
for vj=0:last_stop-l

branch_metric=0;
binary_output=deci2bin(output(vJ+l,l),v_n);
for v_ll=l:v_n

branch_metric=branch_metric+metric(channel_output_matrix(v_ll,v_i),binary_output(v_

ID);
end
if

((state_metric(nextstate(vj+l, 1)+1,2)>state_metric(vJ+l, l)+branch_metric)lflag(nextst
ate(vj+l,l)+l)=0)

state_metric(nextstate(v J+1,1)+l ,2)=state_metric(vJ+1, l)+branch_metric;
survivor_state(nextstate(v J+1,1)+1 ,v_i+1)=v J;
flag(nextstate(vj+l,l)+l)=l;

end
end
state_metric=state_metric(:, 2: -1:1);

end
% generate the decoder output from the optimal path
state_sequence=zeros(1 ,depth_of_trellis+1);
state_sequence(l,depth_of_trellis)=survivor_state(l,depth_of_trellis+l);
for v_i=l:depth_of_trellis

167

state_sequence(1 ,depth_of_trellis-
v_i+1)=survivor_state((state_sequence(1 ,depth_of_trellis+2-v_i)+1),depth_of_trellis-
v_i+2);
end
decoder_output_matrix=zeros(v_k,depth_of_trellis-v_L+1);
for v_i=l:depth_of_trellis-v_L+l

dec_output_deci=input(state_sequence(1, v_i)+1 ,state_sequence(1, v_i+1)+1);
dec_output_bin=deci2bin(dec_output_deci,v_k);
decoder_output_matrix(: ,v_i)=dec_output_bin(v_k> 1:1)';

end
decoder_output=reshape(decoder_output_matrix,l,v_k*(depth_of_trellis-v_L+l));
cumulated_metric=state_metric(1,1);
%

168

LIST OF REFERENCES

1. Yun, Xiaoping & Lewis, Ted, Feasibility Analysis of Deploying Wireless LAN
Onboard Submarines and Surface Ships, Naval Postgraduate School Research, Volume
9, No. 3, pg.l, Monterey, CA, October 1999.

2. Bob O'Hara & Al Petrick, IEEE 802.11 Handbook: A Designer's Companion,
Standards Information Network IEEE Press, 3 Park Avenue, NY, 1999.

3. R Van Nee & R. Prasad, OFDM for Mobile Multimedia Communications, Artech
House, MA, 1999

4. T.S. Rappaport, S.Y. Seidel & K. Takamizawa, "Statistical Channel Impulse
Response Models for Factory and Open Plan Building Radio Communication System
Design," IEEE Transactions on Communications, vol.39, pp. 794-807, May 1991.

5. Bernard Sklar, Digital Communications Fundamentals and Applications, Prentice
Hall, Upper Saddle River, NJ, 2000.

6. P. Shelswell, M.A, The COFDM Modulation System, The Heart of Digital Audio
Broadcasting, BBC Research and Development Report, 1995

7. William Y. Zou & Yiyan Wu, "COFDM An Overview," IEEE Transactions on
Broadcasting, Vol. 41, No. 1, pp. 1-8, March 1995.

8. Leonard J. Cimini, "Analysis and Simulation of a Digital Mobile Channel Using
Othogonal Frequency Division Multiplexing," IEEE Transactions on Broadcasting, Vol.
33, No. 1, pp. 665-675, July 1985.

9. E. Oran Brigham, The Fast Fourier Transform, Prentice Hall, Lie, Englewood
Cliffs, NJ, 1974

10. Masato, Kiyoshi & Takeshi, "The Performance of a Packet Mode OFDM Modem
for 5 GHz Band High-Data-Rate Wireless LANs," IEEE Transactions on Broadcasting,
Vol 24, No. 1, pp. 295-299, June 1999.

11. Theodore S. Rappaport, Wireless Communications, Prentice Hall, Upper Saddle
River, NJ, 2000.

12. Ramjee Prasad, CDMA For Wireless Personnel Communications, Artech House,
MA, 1996.

13. C.W. Farrow, "A Continuously Variable Digital Delay Element," Proceedings of
IEEE International Symposium on Circuits and Systems, NY, pp. 2641-2645, May 1988.

169

14. Louis Thibault & Minh Thien Le, "Performance Evaluation Of COFDM For
Digital Audio Broadcasting Part I : Parametric Study," IEEE Transactions on
Broadcasting, Vol 43, No. 1, pp. 64-75, March 1997.

15. R. Hoshyar, S. H. Jamali & A. R. S. Bahai, "Turbo Coding Performance In
OFDM Packet Transmission," IEEE Transactions on Broadcasting, Vol 21, No. 1,
pp.805-810, July 2000.

16. Ramakrishna Janaswamy, Radiowave Propagation And Smart Antennas For
Wireless Communications, Kluwer Academic Publishers, Norwell, MA, 2000.

17. David V. Roderick, A Coded Orthogonal Frequency Division Multipath
Simulation Of A High Data Rate, Line-Of-Sight, Digital Radio For Mobile Maritime
Communications, Master's Thesis, Naval Postgraduate School, Monterey, CA, June
1997.

18. Benny Bing, Wireless Local Area Networks, Artech House, MA, 2000.

170

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. John McEachen, Code EC/MJ 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Xiaoping Yun, Code EC/YX 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

6. Engineering and Technology Curriculum, Code 34 1
Naval Postgraduate School
700 Dyer Road, Room 115
Monterey, CA 93943-5107

7. MsWinnifer 2
Defence Science & Technology Agency
71 Science Park Drive
#02-05, Singapore 118253

8. VooLinMei 2
BLK 725, Ang Mo Kio, Ave 6, #12-4142
Singapore (560725)

9. TohBanHuat 1
BLK 117, Serangoon North, Ave 1, #09-241
Singapore (550117)

171

10. Department Of Defense
9800 Savage Rd
Ft. Meade, MD 20755
ATTN:R531

11. Naval Engineering Logistics Office.
4555 Overlook Ave SW
Code 5707
Washington DC 20375-5707

172

