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ABSTRACT 

This thesis describes the development and simulation of the newly proposed IEEE 

802.11a Wireless Local Area Network (WLAN) physical layer and demonstrates the 

effects of Additive White Gaussian Noise (AWGN) and multipart! on its performances. 

The IEEE 802.11a WLAN standardization group has selected Orthogonal Frequency 

Division Multiplexing (OFDM) as the basis for the new 5 GHz standard, targeting a 

range of data rates from 6 up to 54 Mbps. Coded OFDM (COFDM) is a channel coding 

and modulation scheme which mitigates the adverse effects of fading by using wideband 

multicarrier modulation combined with time interleaving and a convolutional error 

correcting code. A guard interval is inserted at the transition between successive symbols 

to absorb the intersymbol interference created by the time domain spread of the mobile 

radio channel. The decoding process is performed using differential demodulation in 

conjunction with a hard decision Viterbi decoder. The simulation results show a 

COFDM system is capable of indoor environment communications in the presence of 

known multipath and noise conditions. The results obtained also show that the COFDM 

configuration is immune to Doppler shift of 5 to 15 Hz. 
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EXECUTIVE SUMMARY 

This thesis describes the simulation of the newly proposed IEEE 802.1 la physical 

layer and demonstrates the effects of Additive White Gaussian Noise (AWGN) and 

multipath on its performance. The IEEE 802.11a standardization group has selected 

Orthogonal Frequency Division Multiplexing (OFDM) as the basis for the new 5 GHz 

standard, targeting a range of data rates from 6 up to 54 Mbps. 

Coded OFDM (COFDM) is a channel coding and modulation scheme which 

mitigates the adverse effects of fading by using wideband multicarrier modulation 

combined with time interleaving and a convolutional error correcting code. A guard 

interval is inserted at the transition between successive symbols to absorb the intersymbol 

interference created by the time domain spread of the mobile radio channel. The 

decoding process is performed using differential demodulation in conjunction with a hard 

decision Viterbi decoder. 

The objective of simulating the physical layer of IEEE 802.11a using MATLAB 

has been successfully achieved in this thesis. The simulation results show a COFDM 

system capable of indoor environment communications in the presence of known 

multipath and noise conditions. Further discussions relating to specific test phases are 

presented below. 

Test phase 1 validated a functionally correct model, as there were an absence of 

errors in the sink message with no channel included. This indicated that at least 

functionally all system sub-blocks within the transmitter and the receiver were operating 

correctly according to design, and no obvious design flaws existed due to inaccurate m- 

file construction. Test phase 2 carried the functional verification one step further by also 

including complete system model 1 simulations (with AWGN only). This test permitted 

performance curve comparisons to the work reported by Louis Thibault and Minh Thien 

Le,   IEEE  1997.     Results  of system  simulations  indicated that  system model   1 

xv 



performance is approximately 0.9dB (at Pb=10"3) and 1.05dB (at Pb=10"2) worse than 

Louis Thibault and Minh Thien Le, IEEE 1997 most likely due to hard decision decoding. 

Test phase 3 simulation using the channel 2 model (multipath channel only) 

exclusively demonstrated the effects of multipath on the received signal and the 

corresponding sink message array error event manifestations. As expected, frequency 

selective fading occurred as well as partial flat fading. As anticipated, these plots 

demonstrated constructive and destructive interference due to channel multipath 

distortions, as evident by the distinguishing peak and valley apparent in the received 

signal magnitude plots. 

Test phase 4 involved comprehensive testing of a complete system simulations 

using a combined model (AWGN and multipath) to generate corresponding system 

performance curves. In comparison to test phase 2 (AWGN only), the results shown that 

extra dB are required to combat the multipath effect. The extra dB needed is between 

1.80 to 1.85dB at 10"2 probability and between 2.75 to 2.80dB at 10"3 probability. The 

results obtained also show that the COFDM configuration is immune to Doppler shift of 

5 to 15 Hz. Since our COFDM configuration uses only 48 tones, it offers good Doppler 

immunity as the frequency spacing is larger. The above Doppler frequencies used are all 

less than lm/s which are good representation of human's walking speed in an indoor 

environment. Hence we can further deduce that this COFDM configuration is robust 

enough to withstand the indoor mobility requirements. 

The COFDM configuration was further examined with DBPSK modulation. As 

expected, the results shown that DBPSK required less Eb/N0 then DQPSK. Under the 

influence of AWGN and multipath, the DBPSK modulations show that the Eb/N0 

required for links 1 to 3 simulations are similar. 

xvi 
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I.       INTRODUCTION 

The IEEE 802.11a WLAN standardization group has selected Orthogonal 

Frequency Division Multiplexing (OFDM) as the basis for the new 5 GHz standard, 

targeting a range of data rates from 6 up to 54 Mbps. The objective of this thesis is to 

develop a simulation of the IEEE 802.1 la's physical layer using MATLAB, and to study 

the effects of multipath on its symbol and bit error performance. The performance curves 

obtained in this thesis have the potential for high visibility and impact in several 

operational projects [1]. The increasing prevalence of WLAN, both within the Defense 

establishment and in the public domain, underscores the need for a simulation of this 

kind. The results obtained from this thesis can be included into the Radio pipeline of 

OPNET simulation package. The OPNET version 7 comes with an IEEE 802.11 model, 

and it can be modified to function as an IEEE 802.1 la WLAN. Hence, the performance 

of this newly proposed IEEE 802.11a WLAN protocol in either an office or submarine 

environment can be completely analyzed. 

A.   BACKGROUND 

The need for mobile communications and computing, combined with the 

explosive growth in demand for Internet access, suggest a very promising future for 

wireless data services. Every day, more and more applications are found that can benefit 

from wireless networks. The wide range of applications varies from home and small 

office uses to military uses. 

Since ships have limited personnel, it is vital to increase the productivity of every 

crewmember onboard. Accurate, timely communications between the casualty scene, 

different stations around the ship, and damage control central have always been of the 

utmost importance when combating shipboard casualties. Similarly, the efficient 

dissemination of accurate information is also critical to the success of a submarine's 

operations.    To tap the benefits of wireless networking, the NAVSEA New Attack 

1 



Submarine (NSSN) program has identified two key areas, damage control 

communications and watchstander logs, for productivity improvement by deploying 

wireless local area networks (WLANs) onboard submarines [1]. 

B.        WIRELESS LOCAL AREA NETWORKS - IEEE 802.11A 

Since the beginning of the 1990s, WLANs for the 900 MHz, 2, 4, and 5 GHz 

industrial, scientific, and medical (ISM) bands have been available based on a range of 

proprietary products. In June 1997 the JJEEE adopted the first standard for WLANs, 

IEEE Std 802.11-1997. This standard was revised in 1999. The standard specifies both 

medium access control (MAC) procedures and three different physical layers (PHY). 

There are two radio-based PHYs using the 2.4GHz band. The third PHY uses infrared 

light. All PHYs support a data rate of 1 Mbps and optionally 2 Mbps [2]. 

A second IEEE 802.11a working group was formed to standardize yet another 

PHY option, which offers higher data rates in the 5.2 GHz band. This development was 

motivated by the U.S. Federal Communications Commission amendment to part 15 of its 

rules. The amendment made available 300 MHz of spectrum in the 5.2 GHz band, 

intended for use by a new category of unlicensed equipment called unlicensed national 

information infrastructure (UNIT) devices. 

In July 1998, the IEEE 802.11a standardization group decided to select 

orthogonal frequency-division multiplexing (OFDM) as the basis for their new 5GHz 

standard, targeting a range of data rates from 6 up to 54 Mbps. This new standard is the 

first to use OFDM in packet-based communications; the use of OFDM was previously 

limited to continuous transmission systems like digital audio broadcasting (DAB) and 

digital video broadcasting (DVB). Following the IEEE 802.11 decision, in Europe the 

High-Performance LAN (HIPERLAN) type 2, and in Japan the Multimedia Mobile 

Access Communication (MMAC) also adopted OFDM for their PHY standards. The 

three bodies have worked in close cooperation since then to ensure that differences 

between the various standards are kept to a minimum, thereby enabling the 

manufacturing of equipment that can be used worldwide [3]. 



C. OFDM 

In indoor radio communication, special propagation problems arise due to the 

highly reflective, shadowing environment. Radio signals propagate via multiple paths 

which differ in amplitude, phase and delay time[4]. If the symbol period gets shorter 

than the root mean square delay spread of the radio channel, significant distortion and 

intersymbol interference occurs in the receiver signals. Equalization in this case is 

complicated, complex and expensive. 

A totally different way to overcome the problem of multipath fading is the 

multicarrier approach. The given system bandwidth is divided into an appropriate 

number of subbands each of which is modulated with a low data rate modulation, 

corresponding to a long symbol period. OFDM is a special case of multicarrier 

modulation, where a guard time is inserted between consecutive symbols. This guard 

interval avoids intersymbol interference and if differential modulation schemes are 

applied to the subcarriers, no equalization is required at all. 

D. RELATED WORK 

In [14], Thibault and Le had configured a COFDM system based on DQPSK 

modulation, convolutional code of V2 with constraint length of 7, and the decoding 

process is performed using differential demodulation in conjunction with a soft decision 

Viterbi decoder. The BER vs Eb/No curves were simulated in the Additive White 

Gaussian Noise (AWGN) channel. This research provides a basis for validating the 

COFDM simulation of this thesis and acts a starting point for further comparative 

analysis. 

In [17], David V. Roderick explored the application of COFDM toward a high- 

data-rate line-of-sight maritime communications modem. The modem model was 

simulated in MATLAB, and it was used to investigate the feasibility and reliability of 

digital communications system for ship-to-ship, ship-to-shore, and ship-to-relay type 

connectivity. This simulation work acted as a starting point for the simulations of this 

thesis. 



E.        ORGANIZATION OF THE STUDY 

This thesis is organized as follows : 

Chapter II provides an overview of the system configuration, and offers the reader 

a detailed concept description of the coded OFDM model used in this thesis. Chapter III 

discusses the noise channels. It provides descriptions of the additive white Gaussian 

noise (AWGN) channel multipath channel. Chapter IV focuses on the MATLAB 

COFDM System models. It covers the implementations of the transmitter, receiver and 

noise channels. In Chapter V, the MATLAB programming and development are 

described. Three different OFDM receiver models are covered. The three models are 

namely the noise free model, the AWGN model and the combination of AWGN and 

multipath model. Chapter VI offers the system simulation methodology and the test 

results. The test plan consists of four different phases aim to verify proper integration of 

various sub-blocks and validation of system model. Finally, Chapter VII summarizes this 

thesis research and offers a road map for future researches. 



II.     MODEL DESCRIPTIONS 

A.       OVERVIEW OF CONFIGURATION 

The basic configuration of a coded OFDM model is shown in Figure 1. The data 

to be transmitted are first encoded using a convolutional encoding technique, next the 

data are interleaved via conventional block interleaver. The purpose of the block 

interleaver and convolutional encoder is to improve the symbol/bit error rate 

performance. The data to be transmitted are divided among several subcarriers, and the 

subcarrier signals, which are modulated by the divided data, are transformed into a time 

domain signal using an inverse fast Fourier transform (IFFT). The IFFT output signal is 

then formed into an OFDM symbol by extending the IFFT output cyclically. This cyclic 

extension is often called the guard interval. At the receiver side, the inverse operation is 

performed to demodulate the received signal. The guard interval is removed from the 

received signal and the resulting signal is demultiplexed into subcarrier signals by the 

FFT. The subcarrier signals are detected and the results combined to yield the received 

data. The detailed descriptions of the above mentioned main components are provided in 

the following sections. 

w 
Kanaom 
Binary 
Generator 

i_onvoiunonai 
encoding interleaver modulator ^ 

IFFT 
fe Interval 

Insertion 
 W —W W w w 

Viterbi 
Decoding 

Block Deinterleaver DQPSK 
Demodulator 4 

Guard 
Interval 
Removal 

1 r 

FFT 

g AWGN -^  ^ ^ 

Figure 1. Basic Configuration Of a Coded OFDM Model. 
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B.        CONVOLUTIONAL ENCODING 

The Convolutional Encoder receives the messages from the Random Binary 

Generator and encodes them into codewords. Convolutionally encoding the data is 

accomplished using a shift register and associated combinatorial logic that performs 

modulo-two addition. A shift register is merely a chain of flip-flops wherein the output of 

the nth flip-flop is tied to the input of the (n+l)th flip-flop. Every time the active edge of 

the clock occurs, the input to the flip-flop is clocked through to the output, and thus the 

data are shifted over one stage. The combinatorial logic is often in the form of cascaded 

exclusive-or gates. 

The convolutional encoder in this COFDM model is depicted below [5]: 

Figure 2. Convolutional Encoder. 

As shown in Figure 2, each summing node represents modulo-two addition. Each 

box marked Z"1 represents a memory register that holds the input values from previous 

sample times. Since there are six memory registers, the output at a given time depends 

on seven input values, including the current one. Thus the constraint length of the code 

is 7. Since the code has one input and two outputs, the code rate is Vi. 

6 



A pair of octal numbers called the code generator indicates the connections from 

the memory registers to the modulo-two summing nodes. The pair [133g 171g] (i.e. 

[ 10110112 1111001 d) describes the encoder in the figure. 

C.       BLOCK INTERLEAVER 

A block interleaver accepts the coded symbols in blocks from the encoder, 

permutes the symbols, and then feeds the rearranged symbols to the modulator. The 

usual permutation of the block is accomplished by filling the columns of an M-row-by N- 

column (MxN) array with the encoded sequence. After the array is completely filled, the 

symbols are then fed to the modulator one row at a time and transmitted over the channel. 

At the receiver, the deinterleaver performs the inverse operation; it accepts the symbols 

from the demodulator, deinterleaves them, and feeds them to the decoder. Symbols are 

entered into the deinterleaver array by rows, and removed by column. Figure 3 illustrates 

an example demonstrating the effects of interleaving a message prone to burst errors prior 

to transmission through the channel. In this example, the symbol coded source message 

block is structured as a M by N matrix, S, with M = 4 rows and N=6 columns and the 

dimension product of S equal to MxN =24. As part of the interleaving algorithm an 

intermediate matrix must be temporarily constructed using the symbols taken from S. 

Therefore, the dimension product of the intermediate matrix, L, (# of column times # of 

rows) also equal to M x N. Given the value of S for this example, all possible row and 

column intermediate matrix dimension pairs are : (1, 24), (2, 12), (3, 8), (4, 6), (6, 4), (8, 

3), (12, 2), and (24, 1). During the formation and subsequent filling of the intermediate 

arrays having each of these dimensions, the symbols provided by matrix S are read out 

row-by-row and into L row-by-row until S is empty. After matrix L becomes full, the 

individual symbols within are read out column-by-column, representing the transmission 

sequence. It is evident that effective decorrelation of adjacent errored symbols within the 

transmitted message sequence depends on selective formation of intermediate matrices 

using appropriate array dimensions. Varied matrix dimensions tend to space the errors 

differently throughout the message block after deinterleaving is performed. 



Figure 3 supports this example pictorially. It is instructive to note that formation 

of intermediate arrays with dimension (1, 24) (row vector) and (24, 1) (column vector) 

are not generally implemented since no effective interleaving occurs. For instructional 

purposes, this example uses intermediate matrix interleaver dimension pairs : (2, 12), (3, 

8) and (4, 6) only. From Figure 3, the dimensions of intermediate matrix A are (12, 2), 

having 12 rows and 2 column. After being filled completely with the symbol taken from 

the source message block read in row by row, the transmitted sequence, TA, is read out of 

matrix A column by column. During transmission through the channel, hypothetical 

burst noise occurs corrupting a group of three adjacent symbols in the sequence. Upon 

reception, the receiver deinterleaves the sequence to reconstruct the original source 

message. It is apparent from the figure that the burst errors become decorrelated from the 

group after deinterleaving, becoming isolated non-adjacent symbol errors spaced every 

other symbol apart. 
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Intermediate Matrix A 



Source Message Block 

1 1 3 4 D 6 
7  8 9  TO 11 12 
13 14 15 "IS -ir 18 
19 20 21 22 23 24 

Output sequerce readout hy^gg^ 

JO, 9,8,7,6,5,4,3,2,1 

M,. = 8 

1 2 3 
4 5 6 
7 8 9 
10 11 "12 

"13" "IT" "15  
16 17 18 

"19 20'" "21" 
'22 23 24  

Transmitted sequence T=s read out 
^columns : 

5,2,22,19,16,13,10,7,4,1 

Intermediate Matrix B 

Source. 

12 3 4 5 6 

7  8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

Intermediate 

...10,9,8,7,6,5,4,3,2,1 

12 3 4 

5     6 7 8 

9    10 11 12 

13   14 15 16 

-> 17   18 19 20 

21   22 23 24 

Output sequence read out by rows 

—► 
...14,10,6,2,21,17,13,9,5,1 

Transmitted sequence Tc read out by 
columns 



Transmitted Interleaved sequence TA Received Deinterleaved sequence RA 

19   17   15   13   11   9   7   5   3_J ....   10   9 
Noisy Channel 

...   19   17   15   13   11   9   7   5   3   1 

Krrors 

Burst Error 

Transmitted Interleaved sequence TB Received Deinterleaved sequence RB 

5   2   22   19   16   13   10   7   4   1 
Noisv Channel 

...   1Q-9   8   76   5   4   3   2   1 

5   2   22   19   16   13   10  7   4   1 
31 

Errors 

BurstError 

Transmitted Interleaved sequence TC 

14   10   6   2   21   17   13   9   5   1 

Received Deinterleaved sequence RC 

...   10 

Noisv Channel 

^6i^ 3   2   1 

14   10   6   2   21   17   13  9   5   1 

^ 
Errors 

Burst Error 

Figure 3. Demonstrating The Effects of Interleaving a Message Prone To Burst Errors. 

In a similar example, using intermediate matrix B with 8 rows and 3 columns, the 

identical channel burst error event once again affects a group of three symbols in the 

transmitted sequence, TB. Following deinterleaving in the receiver, the group of 

contiguous errors become decorrelated forming   isolated symbol errors in the received 
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sequence, RB, spaced every two symbols apart. Similarly, for the last intermediate matrix 

C example, following transmission of the interleaved sequence, Tc, through the channel 

and deinterleaving in the receiver , the group of errored symbols afflicted by burst noise 

in the channel become singly occurring error events spread out in the received message 

sequence, Rc, and are spaced every third symbol apart. If this example continued for 

every possible interleaver intermediate matrix dimension, it becomes apparent that the 

spacing of isolated errors appearing in deinterleaved message sequences are directly 

related to the intermediate matrix dimensions [5]. 

D.       DQPSK MODULATION 

The term differential PSK (DPSK) refers to the procedure of encoding the data 

differentially; that is, the presence of a binary one or zero is manifested by the symbol's 

similarity or difference when compared to the preceding symbol. The term DPSK is 

often classified as noncoherent because it does not require a reference in phase with the 

received carrier [5]. 

With noncoherent systems, no attempt is made to determine the actual value of 

the phase of the incoming signal. Therefore, if the transmitted waveform is 

Si = J— cos [0)0t + em 0<t<T (2-1) 

i = i, M 

the received signal can be characterized by : 

r(t) = J— cos[C00t + 0t(t) + a] + n(t) 0< t<T (2-2) 

i = l, M 

Where a is an arbitrary constant and is typically assumed to be a random variable 

uniformly distributed between zero and 2/r, and n(t) is an AWGN process. 

For coherent detection, matched filters are used; for noncoherent detection, this is 

not possible because the matched filter output is a function of the unknown angle. 
11 



However, if we assume that a varies slowly relative to two period times (2T), the phase 

difference between two successive waveforms 0j(Tl) and 0k(T2) is independent of a , 

that is, 

[9k(T2) +a]- lOßr) + a] = 6k(T2) - 0/Tj) = # (T2) (2-3) 

The basis for differentially coherent detection of differentially encoded PSK 

(DPSK) is as follows. The carrier phase of the previous signaling interval can be used as 

a phase reference for demodulation. Its use requires differential encoding of the message 

sequence at the transmitter since the information is carried by the difference in phase 

between two successive waveforms. To send the ifh message (i= 1,2,....M), the present 

signal waveform must have its phase advanced by # = 2^i/M radians over the previous 

waveform. The detector, in general, calculates the coordinates of the incoming signal by 

correlating it with locally generated waveforms such as J— cosO)0t and J— sm0)ot. The 

detector then measures the angle between the currently received signal vector and the 

previously received signal vector. 

In general, DPSK signaling performs less efficiently than PSK, because the errors 

in DPSK tend to propagate (to adjacent symbol times) due to the correlation between 

signaling waveforms. One way of viewing the difference between PSK and DPSK is that 

the former compares the received signal with a clean reference; in the latter, however, 

two noisy signals are compared with each other. One might say that there is twice as 

much noise associated with DPSK signaling compared to PSK signaling. It is estimated 

that DPSK manifests a degradation of approximately 3 dB when compared with PSK; 

this degradation decreases rapidly with increasing signal-to-noise ratio. The trade-off for 

this performance loss is reduced system complexity [5]. 

The use of coherent demodulation (PSK) will give better performance if the 

channel is not varying too much. For mobile reception, the channel response may vary 

rapidly in phase, and so the potential benefits of coherent demodulation (PSK) are lost in 
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the implementation [6]. It is easier to implement a DPSK system than a PSK system, 

since the DPSK receiver does not need phase synchronization. For this reason, DPSK, 

although less efficient than PSK, is the preferred choice. 

E.       OFDM 

In a traditional serial data digital communication system, data is sent as a serial 

pulse train of information symbols. During the sequence transmission of each symbol 

through the channel, the symbol frequency spectrum is allowed to occupy the entire 

available bandwidth. However, in a multipath environment (i.e. highly reflective and 

shadowing indoor communication or a maritime environment with scattered reflections 

from the ocean surface) the signal envelope fluctuates. The time dispersion nature of the 

multipath channel also causes adjacent symbols of the serial stream to interfere when the 

symbols are short compared to the time spread [7]. 

A parallel communication system differs from the serial counterpart by allowing 

the simultaneous transmission of several sequential data streams using much longer 

symbols. At any instance in time, there are many data elements (symbol) being 

transmitted through the channel. With this type of system, the individual spectrums of 

each data symbol occupy only a small portion of the overall available bandwidth. This 

approach is advantageous in spreading out the frequency-selective fade over many 

different symbols. Thus, instead of there being a high concentration of errors with 

several adjacent symbols being completely destroyed by the fade, the errors are spread 

out over many symbols and appear less bursty. In this situation, precise reconstruction of 

a majority of the symbols is possible even without the addition of error correcting codes. 

Additionally, in a parallel system, by partitioning the entire bandwidth into multiple non- 

overlapping frequency sub-bands (sub-channels), equalization of each sub-channel is 

much easier than the serial system because the symbols are now much longer than the 

time dispersion of the channel, which greatly reduces the effects of ISI. 

The approach to implementing a parallel communications system is done in 

different ways.   In a classical parallel data system using conventional FDM technology 
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(Figure 4), the total signal frequency bandwidth is partitioned into N non-overlapping 

sub-channels and are frequency-division multiplexed for transmission. 

.Magnitude Symbol Bandwidth Ws 

—►I U~ 

Symbol 1 Symbol 2 Symbol 3 Symbol N 

-► Frequency Axis 

Overall Bandwidth 
W=NxWs 

Figure 4. Ideal Frequency-Division Multiplexing Spectrum. 

At the receiving end, separation of the sub-band traditionally is accomplished by a 

bank of bandpass filters. However, due to the roll-off effect of physically filters, the 

actual bandwidth of each sub-channel must be further widened. Sufficient guard bands 

must be inserted in the frequency spectrum between adjacent sub-channels to permit 

effective filtering without in-band signal attenuation and adjacent band signal 

interference. This method, with the addition of guard bands, does not offer the best 

possible spectrum efficiency (Figure 5) since now the overall bandwidth is lengthened by 

multiple guard bands that do not carry any useful information. [8]. 

Magnitude 

▲ 

Symbol 1 Symbol 2 Symbol N 

-►    Frequency Axis 

Guard Band 

Figure 5. Additional Guard Band In Frequency Spectrum. 

An alternative to traditional FDM is a system that uses the discrete Fourier 

transform (DFT) to modulate and demodulate parallel data. Using the DFT in the 

transmitter, the individual sub-channel spectra can be represented with sine functions 
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which are not band-limited.  Multiplexing of the sub-channels is accomplished by base- 

band processing instead of bandpass filtering. 

One such technique which uses the DFT for implementation is Orthogonal 

Frequency Division Multiplexing (OFDM), which is defined as a form of multi-carrier 

modulation where the carrier spacing is carefully selected so that each sub-carrier (tone) 

is orthogonal to the other sub-carriers. In order for a signal set to be orthogonal, any pair 

of sub-carriers must have a frequency separation of a multiple of 1/Ts [8]. OFDM differs 

from traditional FDM by allowing the OFDM spectrum of individual orthogonal 

subcarriers to mutually overlap; thus, a more optimum spectrum efficiency is gained over 

FDM. With the inclusion of coherent detection at the receiver and the use of orthogonal 

subcarrier tones separated by the reciprocal of the signaling element duration, 

independent separation of the multiplexed tones is possible, specifically by using the 

DFT. 

Consider a data sequence (Do, Di, D2,....DN-I), where each Dn is a complex 

number of the form Dn=An +jBn. If a DFT is performed on the sequence, the result is a 

vector d = (do, di,di,... dn-i) of N complex numbers with : 

AM 27mm      N~l 

dm = YJDnexp(-j(=^—) = YJ
D

»exp(-y(2^.fm)),    m=0, 1, 2, ....N-1,    (2-4) 

Where /„ =   n 

NAt 
tm ~ mAt, 

At- —, 
N 

and Ts is an arbitrary chosen duration of the serial data sequence Dn [7]. Taking the real 

part only of the d vector, we get the following components : 

AM AM 

]T An COS(27mfntm) + ^T 
n=0 n=0 

jv —i jy    i 

ym = ^An cos(2mfntm) + ]T Bn sin(2mifntm)     m=0, 1, 2,.. .N-1 (2-5) 
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Applying these components to an ideal low-pass filter with cutoff frequency 

fi       1 
2     2At 

, we now obtain the frequency division multiplexed signal: 

N-\ N-l 

y(t)=Yd An cos(2mfnt) + £ Bn sin(2^»/«r) 0 < t < T, (2-6) 
n=0 n=0 

As an illustration of a general OFDM based communication system using the 

orthogonality principle, Figure 6 represents a block diagram of major system components 

with substitutions of more efficient fast Fourier transform (FFT) and inverse fast Fourier 

transform (IFFT) algorithms to reduce the number of operations from N2 in the DFT 

down to approximately —log 2JV for the radix two FFT [9]. 

Serial Data 

Input 
Serial-to-Parallel     ►   Signal 
Converter ►   Mapper 

do 

^    IFFT P/S 

dn-1 

Guard 
Interval 
Insertion 

D/A 
►I   LPF 

Up 
Converter 

Channel 

Parallel-to-Serial 
Converter 

Signal 
Mapper 

Serial Data Output 

FFT S/P Guard 
Interval 
Remov 
al 

A/D 
LPF 

Down 
Converter 

Figure 6. FFT-based OFDM System. 

Initially, the incoming serial data bit stream is grouped to form symbols, q bits 

long, in preparation for a M-ary digital modulation scheme, where M=2q. Each symbol 

passes through a signal constellation mapper, such as 4-phase shift keyed (4-PSK) for 

example (for this case, q=log2M=log24=2), to generate a complex modulation 

value,{DN},corresponding to a particular 2-bit symbol. The sequence of complex 

modulation values are converted from serial to parallel format by a multiplexer to form a 

block size of N symbols, where each member of N corresponds to a baseband fashion by 
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the IKFT performing the mapping into the time domain. Finally a multiplexer converts 

from parallel format to a serial data stream suitable for up conversion and RF 

transmission. Before the up conversion process can be accomplished, an analog-to- 

digital (A/D) converter is used to convert the discrete values to the analog equivalent and 

perform low-pass filtering. After transmission through the channel, the OFDM receiver 

portion of the system performs the inverse process of the transmitter. Specifically, down 

conversion and low-pass filtering is initially performed to recreate the baseband 

transmitted signal. The baseband serial data stream is converted to parallel forming N 

paths, which are fed to an FFT block. The N-point FFT operation recovers the complex 

modulation values, allowing the inverse signal mapper to generate the corresponding 

symbol bit pattern. The q-bit length symbols are multiplexed into a serial data stream to 

complete the process and recover the original information. 

During the signal constellation mapping stage, each data symbol is encoded as a 

truncated sinusoid within the interval (0,TS). Signal truncation causes the frequency 

response of y(t) to be a sine function. As seen in Figure 7, the spectral shape of an 

OFDM subchannel contains zero crossings at multiples of 1/TS. The other sub-carriers 

are generated by the IDFT in such a way that their spacing generates a nearly flat overall 

spectrum with no interference among individual spectra. For example, an OFDM 

spectrum would be similar to the one depicted in Figure 8. In this figure the 

orthogonality of the subcarriers is demonstrated by the overlapping of individual 

subcarrier spectra at their respective zero crossings, thus, the spectra of the individual 

subchannels are zero at the other subcarrier frequencies. 
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Figure 7. Spectrum For Single Symbol With Length Ts. 
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Figure 8. OFDM Spectrum. 

As previously mentioned, generation of this orthogonal structure is accomplished by 

using the IFFT, and assuming a distortionless channel, orthogonality is maintained after 

transmission with each individual subchannel completely separable by the FFT process in the 

receiver. Unfortunately, in practice, ideal distortionless channel conditions cannot be guaranteed 

and are typically nonexistent in actual RF transmission environments. Also, since each OFDM 

symbol spectrum is not band limited, channel distortions such as multipath cause each subchannel 

to spread energy into the adjacent subchannels causing intercarrier interference (ICI). 

Orthogonal Frequency Division Multiplexing (OFDM) is a modulation method that, like 

all wireless transmission schemes, encodes data onto a radio frequency signal.   Conventional 
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Single carrier transmission schemes like AM/FM (amplitude or frequency modulation) send only 

one signal at a time using one radio frequency. OFDM sends multiple high-speed signals 

concurrently on different frequencies. This results in very efficient use of bandwidth, and 

provides robust communications in the presence of noise, intentional or unintentional 

interference, and reflected signals that degrade radio communications. 

F.        GUARD INTERVAL 

As mentioned in the above section, the basic principle of OFDM is to split a high- 

rate data stream into a number of lower-rate streams which are transmitted 

simultaneously over a number of subcarriers. Since the symbol duration increases for 

lower-rate parallel subcarriers, the relative amount of time dispersion caused by multipath 

delay spread is decreased. ISI is eliminated almost completely by introducing a guard 

time in every OFDM symbol. In the guard time, the OFDM symbol is cyclically 

extended to avoid intercarrier interference. Figure 9 shows an example of four 

subcarriers from one OFDM symbol. It can be seen in Figure 9 that all subcarriers differ 

by an integer number of cycles within the FFT integration time, which ensures 

orthogonality between the different subcarriers. This orthogonality is maintained in the 

presence of multipath delay spread, as shown in Figure 9. Because of multipath, the 

receiver sees a summation of time-shifted replicas of each OFDM symbol. As long as the 

delay spread is smaller than the guard time, there is no ISI or intercarrier interference 

within the FFT interval of an OFDM symbol [10]. 

M?V\AAAA/VWW\! 

Direct path "V" 
signal *\ 

Multi pa«i 
dalayad signal* 

Figure 9. An Effect Of Guard Interval. 
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Table 1 below lists the main parameters of the IEEE 802.1 la OFDM standard. A 

key parameter which largely determined the choice of the other parameters is the guard 

interval of 800ns (0.8ns). This guard interval provides robustness to RMS delay spreads 

up to several hundreds of nanosecond, depending on the coding rate and modulation 

used. In practice, this means that the modulation is robust enough to be used in any 

indoor environment, including large factory buildings. It can also be used in outdoor 

environments, although directional antennas may be needed in this case to reduce the 

delay spread to an acceptable amount and increase the range. 

Data Rate 
Modulation 
Coding Rate 
Number of subcarriers 
Number of FJhT points 
OFDM symbol period 
Guard Interval 

Subcarrier spacing 
-3dB bandwidth 
Channel spacing 

6,9,12,18,24,36,48,54 Mbps 
BPSK, QPSK, 16-QAM, 64-QAM 
Vi, 2/3, 3/4 
48 (without pilot tones) 
64 
4 [is 
800ns 
312.5KHz 
16.6MHz 
20MHz 

Table 1. Main Parameters Of The OFDM Standard. 

G.       VITERBI DECODER 

The Viterbi algorithm is a method commonly used for decoding bit streams 

encoded by convolutional encoders. This algorithm is a maximum-likelihood decoding 

algorithm, which upon receiving the channel output, searches through the trellis to find 

the path that is most likely to have generated the received sequence. If hard-decision 

decoding is used, this algorithm finds the path that is at the minimum Hamming distance 

from the received sequence, and if soft-decision decoding is employed, the Viterbi 

algorithm finds the path that is at the minimum Euclidean distance from the received 

sequence. 
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1.        Code Trellis 

For ease of explanation, a simple convolutional encoder with constraint length of 

3, and rate Vi is used (Figure 10). 

Input: Binary digits 

pQ 

Du D1 Dl 

<y 

First Output 

Code digits 

Second Output 

Figure 10. A simplified Convoluational Encoder. 

For the rate 1/2 convolutional code presented in Figure 10, the Code Trellis is 

drawn as shown in Figure 11. Notice that it is simply another way of drawing the state 

diagram, which is presented on the right hand side. 

Code Trellis : rate V?. Convolutional Code State   Dia$n-am   :   rate   ¥>. 
I7IS 

00 

01 

10 

11 

0/00 ^° 00(0) 

01(1) 

10(2) 

11(3) 

Solid:    Input '0' 
Dotted: Input '1' 

Figure 11. Code Trellis And State Diagram. 
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The four possible states (00, 01, 10, 11) are labeled 0, 1, 2, 3 (shown in brackets 

in the code trellis diagram). Notice that there are two branches entering each state, which 

will be referred to as the upper and lower branches respectively. For example, the state 

01 has an upper branch which comes from the state 10, and a lower branch which comes 

from state 11. The branch codeword is the codeword associated with a branch. For 

example, the upper branch entering state 01 has the branch codeword 10. It's labeled 

0/10 in the diagram which means that a binary digit 0 input to the encoder in state 10, 

will output the codeword 10 and move to the state 01. 

Using the code trellis, the Viterbi Trellis is drawn as shown in Figure 12. Notice 

that it is simply a serial concatenation of many code trellis diagrams (ignore the "X", and 

the highlighted text (yellow) for now). The only important feature at this stage is that the 

Viterbi trellis consists of many code trellis diagrams. The trellis depth of a Viterbi trellis 

is the number of code trellis replications used. For example, the trellis depth is 7 in the 

example below. The diagram below shows the internal operation of the Viterbi decoder 

using a specific example in which the code sequence 11101111010111 is received from 

without error. 

Time 

11 10 11 

Received codeword from BSC 

11 01 01 

Figure 12. Viterbi Trellis Diagram. 

11 
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2. Viterbi Algorithm 

Any given state in the Viterbi trellis may be identified by the state s and time t. 

For example the (0, 1) in Figure 13 below represents the state s = 0 at time t=\, and (3, 

5) represents the state s = 3 at time t = 5. These states are shown in Figure 13 below so 

that we can relate them to the main Viterbi trellis diagram in Figure 12. 

Figure 13. Extract Of Viterbi Trellis Diagram In Figure 12. 

Let the metric for a state s at time t be represented by m(s, t). A metric is just a 

number. This will become clear very shortly. For example, for the two states shown 

above, the metrics are shown in highlighted, yellow text. Thus m(0, 1) = 0 and ra(3, 5) = 

0. At time t = 0, we initialize all state metrics to zero (i.e. m(0,0) = m(l,0) = ra(2,0) = 

m(3,0) = 0). By setting each state metric to zero, we are taking into account that the 

encoder may have started in any of the possible states. This is typically the case because 

even though the encoder does in fact start in the all-zero state, the transmitted codeword 

sequence may have been segmented and sent as a series of packets. In this case, the 

starting state of any given segment cannot be assumed to be the all-zero state. If 

however, we know that the encoder started in the all-zero state for the codeword 

sequence we are decoding, then for the first code trellis, we need only calculate the 

metrics which geminate from the state s = 0 at time t = 0. For example, for the above 

convolutional code, you need only calculate the metrics m(0,l) and m(2,l) within the first 

code trellis. 

Let the hamming distance for the upper branch entering a state s at time t be 

HD_upper (s, t), and the hamming distance for the lower branch be HDJower (s, t). The 
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Hamming distance is the number of differences between the received codeword and the 

branch codeword. 

The Viterbi Trellis shown in Figure 12 is analyzed in the following steps : 

Step 1. At time t, for a given state s, compare the received binary codeword with 

each branch codeword entering this state to calculate HD_upper (s, t) and HDJower (s, 

t). For example, HD_upper (0, 1) = 2 and HD_lower(0,l) = 0. 

Step 2. Calculate y_up = HD_upper (s, t) + m(s*, t-1), where s is the state at time 

t, and s* is the pervious state at time (t-1) for a given branch. For example, for the first 

state s = 0 at t = 1, y_up = HD_upper (0,1) + m(0,0) = 2 + 0 = 2. 

Step 3. Calculate y_low = HDJower (s, t) + m(s*, t-1) For example, for the first 

state s = 0 at t = 1, y_low = HDJower (0, 1) + m(l,0) = 0 + 0 = 0. 

Step 4. Identify the surviving branch entering the state at time t as follows: 

Choose upper branch as the survivor if y_up < yjow, and let yJinal = y_up. Otherwise 

choose the lower branch, and let yjinal = yjow. If y_up = yjow, then randomly select 

any branch as the survivor. For example, for the first state s = 0 at t = 1, yjinal = yjow 

= 0. 

Step 5. The branch which does NOT survive is marked with an "X". Only one 

branch survives per state (or node on the trellis). These X's are only shown in the diagram 

above up to time t = 2. For example, for the first state s = 0 at t = 1, the upper branch is 

marked with an "X". This means that this branch does not survive. Only the lower branch 

entering the state 00 survives. 

Step 6. Set the state metric m(s,t) = yjinal. The final metric for each state is 

shown in Yellow text in the above diagram. For example, for the first state s = 0 at t = 1, 

m(0,l) = yj?inal = 0. 

Step 7.  Repeat steps 1 to 6 until we reach the end of the Viterbi trellis at time 7. Of 

course we must determine the metrics m(s,l) first before we can calculate m(s, 2). 
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Step 8. From all final state metrics [m(0,7) m(l,7) m(2,7) m(3, 7)], choose the 

minimum metric, and trace back the path from this state. In the above example this trace 

back path is shown as a solid black line, which starts from state s = 0 at time t = 7, and 

ends at state s = 0 at time t = 0. 

Step 9. Output the information binary digits which correspond to branches on this trace 

back path. 

3.        Metrics 

Referring back to the Viterbi Trellis diagram in Figure 12, notice that if we trace 

back the path which starts at s = 2, t = 5, the codewords on that trace-back path are as 

shown in Table 2 below in the first row. Note that at this state, the metric m(2, 5) = 3. 

Codeword sequence on trace back path from 
s = 2,t=5 

1111101111 

Codeword sequence received from channel 1110111101 

Hamming    distance   between   these   two 
sequences 

3 

Table 2. Codewords On The Trace-back Path. 

A total cumulative metric m(2, 5) = 3 means that the codeword sequence on a path 

traced back from this state differs with the received codeword sequence in 3 positions. 

Hence we select the trace-back path from time t =7 based on which state has the 

minimum metric. This is because we want to select a codeword sequence within the 

trellis, which is as close as possible to the received codeword sequence from the channel, 

i.e. Maximum likelihood decoding [5]. 

In this chapter we discussed the transmission and reception components of 

COFDM signals. The next chapter will discuss the communications channel and aspects 

important to analysis of COFDM. 
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III.    WIRELESS CHANNEL CHARACTERISTICS 

A.       NOISE IN COMMUNICATION SYSTEMS 

The term noise refers to unwanted electrical signals that are always present in 

electrical systems. The presence of noise superimposed on a signal tends to obscure or 

mask the signal. It limits the receiver's ability to make correct symbol decisions, and 

thereby limits the rate of information transmission. Good engineering design can 

eliminate much of the noise or its undesirable effect through filtering, shielding, the 

choice of modulation, and the selection of an optimum receiver site. However, there is 

one natural source of noise, called thermal or Johnson noise, that cannot be eliminated. 

Thermal noise is caused by the thermal motion of electrons in all dissipative components 

- resistors, wires, and so on. The same electrons that are responsible for electrical 

conduction are also responsible for thermal noise [5]. 

We can describe thermal noise as a zero-mean Gaussian random process. A 

Gaussian process, n(t), is a random function whose value, n, at any arbitrary time, t, is 

statistically characterized by the Gaussian probability density function, p(n): 

1 l^"^2 

p(n)=—=exp[-- 
(JV2^ 2 

n 
] (3-D 

where a1 is the variance of n. The normalized or standardized Gaussian density function 

of a zero-mean process is obtained by assuming that <j=l. This normalized pdf is shown 

sketched in Figure 14. 
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Figure 14. Normalized (cr=l) Gaussian Probability Density Function. 

A random signal is often represented as the sum of a Gaussian noise random 
variable and a dc signal: 

z = a + n (3-2) 

Where z is the random signal, a the dc component, and n the Gaussian noise random 
variable. The pdf p(z) is then expressed as 

P(z) = 
1 
.— exp[-- 

z-a \
2 

V    CT    ) 
] (3-3) 

where, as before, <72 is the variance of n. The Gaussian distribution is often used as the 

system noise model because of a theorem, called the central limit theorem, which states 

that under very general conditions the probability distribution of the sum of j statistically 

independent random variables approaches the Gaussian distribution as j -> <=°, no matter 

what the individual distribution functions may be. Therefore, even though individual 

noise mechanisms might have other than Gaussian distributions, the aggregate of many 

such mechanisms will tend toward the Gaussian distribution. 

B.       WHITE NOISE 

The primary spectral characteristic of thermal noise is that its power spectral 

density is the same for all frequencies of interest in most communication systems. In 

other words, a thermal noise source emanates an equal amount of noise power per unit 
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bandwidth at all frequencies - from dc to about 1012 Hz. Therefore, a simple model for 

thermal noise assumes that its power spectral density G„(f) is flat for all frequencies, as 

shown in Figure 15, and is denoted as follows : 

G„(f)= — watts/hertz (3-4) 

Where the factor of 2 is included to indicate that Gn(f) is a two-sided power 

spectral density. When the noise power has such a uniform spectral density, we refer to it 

as white noise. The adjective "white" is used in the sense that white light contains equal 

amounts of all frequencies within the visible band of electromagnetic radiation. 

The autocorrelation function of white noise is given by the inverse Fourier 

transform of the noise power spectral density denoted as follows : 

.!,„ ....     No 
Rn(r)=S-l{Gn(f)J = —S{r) (3-5) 

Thus the autocorrelation of white noise is a delta function weighted by the factor 

NJ2 and occurring at T = 0, as seen in Figure 15(b). Note that Rn(r) is zero for x * 0; that 

is, any two different sample of white noise, no matter how close together in time they are 

taken, are uncorrelated. 

The delta function in equation 1 means that the noise signal, n(t), is totally 

decorrelated from its time-shifted version, for any x > 0. Equation 1 indicates that any 

two different samples of a white noise process are uncorrelated. Since thermal noise is a 

Gaussian process and the samples are uncorrelated, the noise samples are also 

independent. Therefore, the effect on the detection process of a channel with additive 

white Gaussian noise (AWGN) is that the noise affects each transmitted symbol 

independently. Such a channel is called a memoryless channel. The term "additive" 

means that the noise is simply superimposed or added to the signal - that there are no 

multiplicative mechanisms at work [5]. 
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Figure 15. (a) Power Spectral Density Of White Noise, (b) Autocorrelation Function Of 
White Noise. 

C.       MULTIPATH 

Multipath is one of the performance concerns for indoor IEEE 802.11 WLAN 

systems. Multipath occurs when the direct path of the transmitted signal is combined 

with paths of the reflected signal paths, resulting in a corrupted signal at the receiver, as 

show in Figure 16. The delay of the reflected signals (measured in microsecond (usec) in 

this thesis) is commonly known as delay spread. Delay spread is the parameter used to 

characterize multipath. 

Multipath Interference^ „ 

Direct path 

ES: 

Figure 16. Multipath Interference. 
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The amount of delay spread varies for indoors home, office, and manufacturing 

environments, as shown in Table 3. Surfaces of furniture, elevator shafts, walls, factory 

machinery, and metal constructed buildings all contribute to the amount of delay spread 

in a given environment [2]. 

Environment Delay Spread 

Home < 0.05 (isec (50 nsec) 

Office ~0.1(J.sec (100 nsec) 

Manufacturing floor 0.2 - 0.3 |isec (200-300 nsec) 

Table 3. Typical Multipath Delay Spread For Indoor Environments. 

1.        Small-Scale Fading And Multipath 

Small-scale fading, or simply fading, is used to describe the rapid fluctuation of 

the amplitude of a radio signal over a short period of time or travel distance. Fading is 

caused by interference between two or more versions of the transmitted signal which 

arrive at the receiver at slightly different times. These waves, called multipath waves, 

combine at the receiver antenna to give a resultant signal which can vary widely in 

amplitude and phase, depending on the distribution of the intensity, relative propagation 

time of the waves and the bandwidth of the transmitted signal [11]. 

a.        Small-Scale Multipath Propagation 

Multipath in the radio channel creates small-scale fading effects. The 

three most important effects are : 

• Rapid changes in signal strength over a small travel distance or 

time interval. 

• Random frequency modulation due to varying Doppler shift on 

different multipath signals. 

• Time dispersion (echoes) caused by multipath propagation delays. 

Although a mobile receiver may be stationary, the receiver signal may 

fade due to movement of surrounding objects in the radio channel. If objects in the radio 

channel are static, and motion is considered to be only due to that of the mobile, then 

fading is purely a spatial phenomenon.   The spatial variations of the resulting signal are 
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seen as temporal variations by the receiver as it moves through the multipath field. A 

receiver moving at high speed can pass through several fades in a small period of time. 

Maintaining good communication can then become very difficult. 

Due to the relative motion between the mobile and the base station, each 

multipath wave experience an apparent shift in frequency. The shift in received signal 

frequency due to motion is called the Doppler shift, and is directly proportional to the 

velocity and direction of motion of the mobile with respect to the direction of arrival of 

the received multipath wave. 

b.        Time Dispersion Parameters 

In order to compare different multipath channels and to develop some 

general design guidelines for wireless systems, parameters which grossly quantify the 

multipath channel are used. The mean excess delay, rms delay spread, and excess delay 

spread are multipath channel parameters that can be determined from a power delay 

profile. The time dispersive properties of wide band multipath channels are most 

commonly quantified by their mean excess delay (f ) and rms delay spread (or). The 

mean excess delay is the first moment of the power delay profile and is defined to be : 

^Ta2kik    2]PO)Zfc 
-- * - *  (3-6) T=- 3>2*   £/>(*) 

The rms delay spread is the square root of the second central moment of the power delay 

profile and is defined to be : 

(jr = 4t1-(j)2 (3-7) 

Where f2 =   *       2     =  * ^ (3-8) 

32 



These delays are measured relative to the first detectable signal arriving at 

the receiver at xo=0. Typical values of rms delay spread are on the order of microseconds 

in outdoor mobile radio channels and on the order of nanoseconds in indoor radio 

channels. 

2. Doppler Spread 

Delay spread parameters describe the time dispersive nature of the channel in a 

local area. However, they do not offer information about the time varying nature of the 

channel caused by either relative motion between the mobile and base station, or by 

movement of objects in the channel. 

Doppler spread is a measure of the spectral broadening caused by the time rate of 

change of the mobile radio channel and is defined as the range of frequencies over which 

the received Doppler spectrum is essentially non-zero. When a pure sinusoidal tone of 

frequency fc is transmitted, the received signal spectrum, called the Doppler spectrum, 

will have components in the range fc -fd to fc + fd, where fd is the Doppler shift. The 

amount of spectral broadening depends on fd which is defined as : 

fd=YL = Y£ (3-9) 
X      c 

where c is the speed of light, vr is the relative velocity, and/c is the carrier frequency. For 

example, at 5200 MHz, and a mobile speed of lm/s (walking speed), the Doppler shift is 

17.33 Hz. 

3. Types Of Small-Scale Fading 

Depending on the relation between the signal parameters (such as bandwidth, 

symbol period, etc) and the channel parameters (such as rms delay spread and Doppler 

spread), different transmitted signals will undergo different types of fading. The time 

dispersion and frequency dispersion mechanisms in a mobile radio channel lead to four 

possible distinct effects as shown as follows : 

33 



 Small-Scale Fading (Based on Multipath time delay spread) 
Flat Fading | Frequency Selective Fading 
1. B W of signal < B W of channel 1. BW of signal > BW of channel 
2. Delay spared < Symbol period 2. Delay spread > Symbol period 

Small-Scale Fading (Based on Doppler spread) 
Fast Fading Slow Fading 
1. High Doppler spread 1. Low Doppler spread 
2. Coherence time < Symbol period 2. Coherence time > Symbol period 
3. Channel variations faster than baseband 
signal variations   

3. Channel variations slower than baseband 
signal variations. 

4.        Fading Effect Due to Multipath Time Delay Spread 

Time dispersion due to multipath causes the transmitted signal to undergo either 

flat or frequency selective fading. 

a.        Flat Fading 

If the mobile radio channel has a constant gain and linear phase response 

over a bandwidth which is greater than the bandwidth of the transmitted signal, then the 

received signal will undergo flat fading. In flat fading, the multipath structure of the 

channel is such that the spectral characteristics of the transmitted signal are preserved at 

the receiver. However the strength of the received signal changes with time due to 

fluctuations in the gain of the channel caused by multipath. Figure 17 illustrates how flat 

fading can distort the amplitude and phase of a received signal. In this scenario a 

sinusoidal signal is directly transmitted to the receiver and the same signal being reflected 

and then received. For simplicity, it is assumed that the received signal comprises the 

sum of the directed signal and the reflected signals. Whether the sum of two such 

modulated signals cancel or reinforce each other strongly depends on the difference in 

their phase angles. The phase of the received signal may also differ considerably from 

the directed signal (see Figure 17(a-f)). If the reflected signal is attenuated, the impact on 

the amplitude and phase of the received signal becomes limited (Figure 17(b) and (d)). A 

reflected signal need not always produce a negative effect in a multipath link. As shown 

in Figure 17(e), although reflected signal 1 virtually cancels out the directed signal, 

reflected signal 2 actually provides a means to recover the original signal. 
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Directed signal 

Received signal 

Spatial displacement Spatial displacement 

Figure 17(a & b). Impact Of Multipath Reflections On Received Signal. 

Reflected signal 

Directed signal 

Received signal 

Spatial displacement 

24-degree phase shift with 
increased amplitude 

Spatial displacement 

Figure 17(c & d). Impact Of Multipath Reflections On Received Signal. 
12. 

Reflected signal 1 
Reflected signal 2 
Directed signal 
Received signal 

Spatial displacement Spatial displacement 

Figure 17(e & f). Impact Of Multipath Reflections On Received Signal. 
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b.        Frequency Selective Fading 

If the channel possesses a constant-gain and linear phase response over a 

bandwidth that is smaller than the bandwidth of transmitted signal, then the channel 

creates frequency selective fading on the received signal. Under such conditions the 

channel impulse response has a multipath delay spread which is greater than the 

reciprocal bandwidth of the transmitted message waveform. When this occurs, the 

received signal includes multiple versions of the transmitted waveform which are 

attenuated (faded) and delayed in time, and hence the received signal is distorted. 

Frequency selective fading is due to time dispersion of the transmitted symbols within the 

channel. Thus the channel induces intersymbol interference (ISI). 

5.        Intersymbol Interference 

In general, the effect of the delay spread is to cause the smearing of individual 

symbols in the case where the symbol rate is sufficiently low, or to further cause time- 

dispersive fading and intersymbol interference if the symbol rate is high (see Figure 18). 

Low symbol rate 
Original data 

symbols are separate 
s 

Received data symbols broaden 
and move closer to each other 

Multipath 

Original data 
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/h    /h 
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High symbol rate 
Received data symbols overlap 
and are barely distinguishable 

D 

Multipath &S- 

Legend 
D = Delay spread 
S = Symbol interval 

Figure 18. Effects Of Delay Spread. 
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Intersymbol interference (ISI) is a form of self-interference that increases the 

error rate in digital transmission, an impairment that cannot be overcome simply by 

improving the signal-to-noise ratio. This is because increasing the signal power in turn 

increases the self-interference. At higher symbol rates or larger delay spreads, the 

difference in delay among the various signal reflections arriving at the receiver can be a 

significant fraction of the symbol interval. Normally, a delay spread of more than half a 

symbol interval results in indistinguishable symbols and a sharp rise in the error rate. 

The ISI is prevented in IEEE 802.11a (with COFDM) by creating a cyclically 

extended guard interval, where each OFDM symbol is preceded by a periodic extension 

of the signal itself. 

6. Path Loss 

In general, the spatially averaged power P0 at a point a distance d from the 

transmitter is a decreasing function of d. Usually, this function is represented by a path- 

loss-power law of the form : 

Po~d-Y (3-10) 

In free space the path-loss law exponent 7=2, so the power law obeys an inverse- 

square law [12]. For WLAN, the signal attenuation is dependent not only on distance and 

transmitted power but also on reflecting objects, physical obstructions, and the amount of 

mutual interference from other transmitting nodes. While the free-space exponent may 

be relevant for short distance transmition (eg. up to 10m), the path loss is usually 

modeled with a higher-valued exponent of 3 to 5 for longer distances [18]. 

37 



7.        Rayleigh And Ricean Distribution 

a. Rayleigh Fading Distribution 

A Rayleigh distribution is commonly used to describe the statistical time 

varying nature of the received envelope of a flat fading signal, or the envelope of an 

individual multipath component. 

b. Ricean Fading Distribution 

When there is a dominant stationary (nonfading) signal component 

present, such as a line-of-sight propagation path, the small-scale fading envelope 

distribution is Ricean. In such a situation, random multipath components arriving at 

different angles are superimposed on a stationary dominant signal 

The effect of a dominant signal arriving with many weaker multipath 

signals gives rise to the Ricean distribution. As the dominant signal becomes weaker, the 

composite signal resembles a noise signal which has an envelope that is Rayleigh. Thus, 

the Ricean distribution degenerates to a Rayleigh distribution when the dominant 

component fades away. 

D.       IEEE 802.11 CHANNEL MODEL 

In an environment where performance measurement of the same radio is used in 

the same location, over time the results may not agree. This is due to the changing 

position of people in the room and slight changes in the environment. These can produce 

significant changes in the signal power at the radio receiver. A consistent channel model 

is required to allow comparison of different WLAN systems and to provide consistent 

results. In doing so, the IEEE 802.11 Working Group adopted the following model as the 

baseline for predicting multipath in modulations schemes used in IEEE 802.11a and 

IEEE 802.11b. This model is ideal for software simulations prediction performance 

results of a given implementation. The channel impulse response illustrated in Figure 19 

38 



is composed of complex samples with random uniformly distributed phase and Rayleigh 

distributed magnitude with average power decaying exponentially [2]. 

Magnitude 

ttM4 i—r 
O       Ts    2TS   3TS   4TS   5Ta   6T.   7TB   ST.   9T«   10T, 

Time 

Figure 19. Channel Impulse Response For IEEE 802.1 la. 

Similar models were implemented in [10] and [15], and the multipath delay 

profile is shown in Figure 20. It consists of 18 path signals at interval of 50ns. This 

model is chosen and implemented in this thesis. 
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Delay    Profile 
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Delay Profile 
(in nsec) 

Gain Profile 
(in dB) 

0 0 450 -19.54 
50 -2.17 500 -21.71 
100 -4.34 550 -23.89 
150 -6.51 600 -26.06 
200 -8.69 650 -28.23 
250 -10.86 700 -30.40 
300 -13.03 750 -32.57 
350 -15.20 800 -34.74 
400 -17.37 850 -36.92 

Figure 20. Multipath Delay And Gain Profile. 
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In this chapter we first discussed the AWGN noise channels. The AWGN noise 

has no multiplicative mechanisms, and is noise that is simply superimposed or added to 

the signal. It is implemented in this thesis so as to investigate its effect on the 

performance of coded OFDM. We have covered multipath which is one of the 

performance concerns for indoor IEEE 802.11 WLAN systems. A consistent multipath 

channel model adopted by the IEEE 802.11 Working Group, and implemented in thesis is 

also discussed in this chapter. 
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IV.    MATLAB COFDM SYSTEM MODEL 

A.       GENERAL 

The next step in the research was the implementation of a COFDM computer 

system model. The work of [17] was adopted for the purpose of this thesis. For this 

thesis, all signal processing and channel transmission through the simulated links are 

performed at baseband. Since the objective of this thesis is to emulate and simulate the 

physical layer, it is deemed not necessary to have a physical implementation, hence, the 

functions normally associated with RF up-conversion and down-conversion are not 

necessary to generate meaningful tradeoff results. Thus, filtering, digital-to-analog 

conversion (DAC), up/down frequency translation and analog-to-digital conversion 

(ADC) functional sub-blocks necessary for actual implementation are not included in the 

computer model. A block diagram of the complete system model which is emulated in 

MATLAB and simulations performed is presented in Figure 21. 
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Figure 21. Complete System Model. 
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B.        COFDM TRANSMITTER 

The COFDM transmitter functional block diagram is illustrated in Figure 22 with 

each of the sub-blocks subsequently described. 
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Figure 22. COFDM Transmitter Functional Block Diagram. 

1. Random Bit Generator 

This functional block originates a random message bit pattern representing the 

information source. The bit sequence length is variable as defined by the user. The 

random property of each binary element is determined by a seed parameter setting the 

internal computer's random number generator seed. If multiple simulations are 

performed using the same seed values, identical results occur. This property is useful 

when comparing and contrasting simulation outputs with different system configurations. 

By fixing seed values, optimal system configurations can be ascertained based upon 

superior BER performance while using consistent channel characteristics and source 

message symbol patterns. It is also possible to set the seed randomly by the internal PC 

processor. 

2.        Convolutional Encoding 

Convolutional coding is a special case of error-control coding. A convolutional 

coder is not a memoryless device. Even though a convolutional coder accepts a fixed 

number of message symbols and produces a fixed number of code symbols, its 

computations depend not only on the current set of input symbols but on some of the 

previous input symbols. 
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3. Block Interleaver 

A block interleaver accepts a set of symbols and rearranges them, without 

repeating or omitting any of the symbols in the set. The number of symbols in each set is 

fixed for a given interleaver. The interleaver's operation on a set of symbols is 

independent of its operation on all other sets of symbols. 

4. Symbol Reformatter 

In preparation for the appropriate N-ary modulation scheme, N=2P (Note : the N 

used for N-ary signaling is not the same N used for N-point FFT calculations). Since 2- 

PSK (BPSK) and 4-PSK (QPSK) are predominately used during simulation runs, symbol 

lengths are resized as either 1-bit (p=l) or 2-bit (P=2) length words. If necessary, zero bit 

padding may be required during the reformatting process to account for incomplete word 

formations. 

As a result of symbol reformatting, the dimensions of the original source message 

array may change to compensate for the addition or deletion of redefined symbols. 

Regardless of the number of new PSK symbols formed, the number of matrix columns 

corresponding to OFDM subcarriers remains fixed. Hence, any necessary message 

symbol quantity adjustment is accommodated by increasing or decreasing the number of 

matrix symbol rows instead. For example, if during the symbol reformatting process the 

OFDM symbols are changed from 8-bits to 4-bits, then the total number of message 

symbols double from their original amount. Consequently after reformatting, the number 

of message matrix rows double while the number of message matrix columns remains 

constant. 

5.        Differential PSK Channel Encoder 

PSK is the preferred modulation technique for channel encoding in multipath 

channels. Prior to signal constellation mapping, differential encoding is performed on the 

symbols within the message matrix.   Two types of differential encoding are included. 
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Considering differential encoding along the time dimension (symbol rows), a cumulative 

summation down each column of the message symbol array is calculated. For differential 

encoding along the frequency dimension (OFDM frequencies), a cumulative summation 

across each row of the message symbol array is calculated. Recall that construction of 

the message block matrix is designed so that column represent OFDM frequencies 

(frequency dimension), while rows represent symbols generated in time (time 

dimension). During- subsequent simulation trials, either frequency and/or time 

differential encoding may be selected to evaluate system performance. 

The differential encoding/deconding technique introduces memory into the 

system and allows for decoding of the current received symbol with respect to the 

previously decoded symbol. Consequently, detection decisions are based upon relative 

differences between consecutively received symbols. This technique may be 

advantageous in a slowly fading multipath channel where the variations among 

successive received symbols are negligible. A cumulative summation can be best 

illustrated through an example. 

Given V = [123 45 67 8 9]' (4-1) 

Then, CsumV16 = [1 3 6 10 15 5 12 4 13]' (4-2) 

V is a column vector whose elements represent message symbols taken from the 

set of N integers, where N=2P. CsumV is formed by consecutively adding in modulo-N 

fashion successive elements in V beginning with one to the current running total in 

CsumV beginning with zero. For this example N=16; thus, 0 +1 =1, 1+2 (the next 

element in V)=3, 3 + 3 =6, 6+4=10, 10+5=15, 15+6=21 =5 (modulo-16) and so on. In 

this way, all the elements in CsumV are calculated with respect to the first element in V. 

A more concise expression is : 

CsumVk =Vk® CsumVk - 1 (4-3) 

where {V*} is a modulo-N message sequence input to the differential encoder, 

{CsumVk} is the encoder output sequence, and © denotes modulo-N addition. 
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Following differential encoding, each symbol in the differentially encoded 

message array is channel encoded as a complex modulation value with unit magnitude 

and one of N possible phases (N-PSK modulation); that is, 

Dk = e    N (4-4) 

In continuation of the previous example (i.e. CsumVi6 = [13610155124 13]' 

), the corresponding vector of 16-ary complex modulation value phase angles are, 

Ang[D]=[22.5° 67.5° 135° 225° 337.5° 112.5° 270° 90° 292.5°]' (4-5) 

A row of ones representing zero phase complex modulation values is appended to 

the top of the message array during time differential encoding, representing a decoding 

reference for the receiver. For frequency differential encoding, a pair of columns 

containing ones elements is appended to the extreme left side of the message array as a 

similar decoding reference. Two ones columns are included instead of a single column to 

maintain an even number of OFDM frequencies (even number of columns). 

6. IFFT Processing 

To convert the frequency array to time domain representation, an N-point IFFT is 

performed producing a corresponding output sequence of time domain samples. The 

input array complex modulation values have the left and right half swapped by the 

previous frequency arranger block to account for the automatic frequency index shift that 

results from the IFFT. 

7. Guard Interval Insertion 

A guard interval composed of a period extension of the symbol is inserted at the 

beginning of each symbol for channel impluse response compensation purposes. The 

length of the guard interval is fixed at 800ns to account for multipath delays. The guard 

interval is represented by additional 16 time domain samples added to the resulting 

sequence derived from IFFT processing. 
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C.        COFDM RECEIVER 

The receiver functional block diagram is illustrated in Figure 23. The blocks in 

the receiver perform the reciprocal functions of the transmitter and are described as 

follows. 
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Figure 23. Receiver Functional Block Diagram. 

1. Guard Interval Removal 

The guard interval precursor appended to each symbol in the transmitter is 

initially removed, leaving behind the remaining information portion of the symbol for 

further processing.   The information symbol consists of a sequence of 16 time domain 

samples. 

2. FFT Processing 

The sequence of time domain samples are transformed into the frequency domain 

using an 64-point FFT to recover the OFDM frequency tones information. In a linear 

time-invariant channel, the orthogonality of carriers is preserved; however, in a multipath 

environment with frequency Doppler shifting, this is not always the case. The output is 

an array of complex modulation values with the left half portion shifted to the right N 

positions as a result of the FFT operation. 
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3. Channel Decoding 

Differential decoding is first performed either in the frequency dimension (matrix 

column) or time dimension (matrix rows), maintaining compatibility with the transmitter 

differential encoding method. In addition, the previously appended reference ones 

elements are removed. Afterwards, channel decoding is accomplished, inverse mapping 

each received complex modulation value with magnitude and phase into a corresponding 

N-ary symbol representation composed of p bits. Considering QPSK, 2 bit long symbols 

are reconstructed. 

4. Block Deinterleaving 

The message is next deinterleaved to reconstruct proper ordering of the 

information symbol stream according to the particular interleaving configured in the 

transmitter. After deinterleaving, any corrupted symbol errors caused by burst noise in 

the channel should be sufficiently redistributed within the message array, creating a more 

random, uncorrelated error distribution. 

5.        Received Message 

The output of the receiver represents the received sink message block. After 

transmission through the system channel model prone to noise and multipath distortions, 

symbol errors may exist. The distribution of error events within a message array is 

recorded and the bit error rates calculated to generate corresponding performance curves. 

The resulting simulation data is compared to the theoretical performance criteria for 

evaluation. 

D.        CHANNEL MODELS 

Three channel models are emulated as part of the overall communication system 

model and used during simulations (a noise free channel 0 model is also included for 

system functional verification) (Figure 24).   One emulated channel type is the AWGN 
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model and represents additive noise only. The second is the multipath channel model and 

is characterized by frequency selective fading (loss) in dB, Doppler frequency shifting in 

Hz and multipath time delays in microseconds which vary for each transmission link 

according to the specified multipaths. The composite channel 3 model is a combination 

of channel 1 and channel 2 models; thus, the AWGN model is added to the multipath 

model representing the actual communication environment. 

Model 2: Fading Doppler Delay 
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Figure 24. Channel Models. 
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V.      MATLAB PROGRAMMING AND DEVELOPMENT 

A.        OFDM SYSTEM CONSTRUCTION OF FUNCTIONAL BLOCKS 

Emulation of the COFDM communication system as shown in Figure 25 is done 

by initially portioning the overall system according to functionality and forming 

functional interconnecting subblocks. The COFDM system model consists of three 

primary components : a COFDM transmitter, the channel and a COFDM receiver. 

Within the transmitter are two separate functional blocks, a source encoder block and an 

IFFT processing block. The channel consists of four separate models: the channel 0 

model, the channel 1 model, the channel 2 model and the channel 3 model. Each channel 

model corresponds to a different type of noise (except for the channel 0 model which is 

noise free). The receiver block consists of two blocks : the FFT processing block and the 

message decoding block. Recall that all simulations are preformed at baseband; 

therefore, no additional block associated with RF bandpass transmissions are required nor 

included in the model. 
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Figure 25. Emulation Of The COFDM Communication System. 
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The model 0 block diagram is shown in Figure 26 and represents a noise free 

perfect channel, (i.e. , the absence of AWGN and any multipath influence within the 

channel). Transmitter source encoding is performed within the m-file macro, cdrcdlfi.m. 

The functional sub-blocks associated with cdrcdlft.m are depicted in Figure 27. The 

IFFT processing block responsible for generating OFDM frequency tones and appending 

guard intervals is represented by the m-file macro, tda.m. Correspondingly in the 

receiver, the inverse functions of the transmitter are performed, namely FFT processing 

and guard interval removal is accomplished by the itda.m m-file, while signal decoding is 

accomplished by macro decdrcdLm. 
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cmv2fa.m 

Frequency 
Array 
Arranger 

M-ary to 
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Converter 

mb.m & bm.m 

difcdrft.m 

Complex value 
modulation& 
Differential 
Encoder 

.J 

Figure 26. Model 0 Block Diagram. 

B.        COFDM TRANSMITTER 

The hierarchical arrangement of m-files within cdrcdlfl.m, including subroutine 

macros, are presented in Figure 27 and are subsequently described in detail. 
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Cmv2fa.m 

Figure 27. Hierarchical Arrangement Of M-files Within Cdrcdlft.m. 

The source message is randomly generated by the m-file marymsg.m.    The 

general form of the function is depicted by the functional block shown below. 

(q,s,n,m) t , (vmary_ce,random_bit) 

marymsg.m 

This function first generates an array of randomly generated q-bit long symbols 

representing the random bit source, randomjbit. The random_bit source is then fed into 

a convoultional encoder which generates the coded message of vmary_ce. The input 

arguments, n and m, determine the overall output message matrix dimensions, where n is 

the number of rows and m is the number of columns. The value selected for m also 

represents the number of OFDM frequency tones and must be an even positive integer so 

as to completely fill the available transmission bandwidth without spectral cutoff of the 

endpoint symbols.    The value selected for n is any arbitrary positive integer and 

represents rows of symbols generated in time.    The input argument, s, is the seed 
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parameter used for setting the seed of the internal MATLAB random number generator 

function. The remaining input argument, q, represents the number of bits contained in 

each of the symbol words considering M-ary signaling, M=2q. The function marymsg.m 

requires three other subroutine m-files, msg.tn, bm.m and cnvjmcd. 

(s,k) 

(q>v) 

The function msg.m randomly generates a k-length binary output sequence, u, 

with the random number generator seed set by parameter, s. The function bm.m, 

representing a binary to M-ary converter, transforms a variable length binary input 

sequence, v, into an equivalent M-ary output sequence, m, depending on the value 

selected for q, the word bit length. By accepting as an input the random binary output 

generated by m-file msg.m, bm.m groups bits together ^-bits at a time to form words 

representing M-ary symbols whose output is a vector of equivalent decimal numbers. 

Padding with zeros may be necessary to ensure a complete q-bit word formation. 

(l,k,case,s,SYNC) 
Cdlilv.m 

[si] 

After the randomly generated source message is encoded by the convolutional 

encoder, the array is next interleaved by the m-file function cdlilv.m. This m-file has a 

five argument input and a single output. Parameters, I and k, determine the dimensions of 

52 



the interleaver intermediate matrix where / is the number of rows and k is the number of 

columns. The parameter, case, is an input that selects which desired interleaveing 

method should be included. There are nine different interleaving cases. Case 0 

represents a conventional block interleaver which is used for simulation in this thesis. 

Case 1 through 8 are not necessary and therefore are not used. 

After the interleaving operation, the interleaved message array is converted from 

an M-ary format to a N-ary format suitable for N-PSK modulation. The symbol format 

conversion process is accomplished by two separate m-file routines, mb.m and bm.m. 

The function mb.m accepts two input variables and represents a M-ary to binary 

converter. The input q is the number of bits defining the M-ary symbols where M=2q. 

The remaining input, m represents the incoming M-ary message array. The single output 

from this block, b, is a binary data sequence whose information content is equivalent to 

the coded M-ary symbols. 

(q„m) i I lb] 

The binary output sequence generated by mb.m is next fed as an input to bm.m. 

Recall that the function bm.m converts a variable length binary input sequence, v, into an 

equivalent N-ary output symbol sequence, TO, where N=2q. In this way, the combination 

of m-files mb.m and bm.m functions effectively convert the interleaved message 

information block from an array containing M-ary symbol to one consisting of N-ary 

symbols. 

With the desired bit values determining M and N chosen by the user, the size of 

the N-ary message array may change since additional symbols may be formed, or 

likewise there may be a reduction in the number of symbols. However, the number of 

columns in the final symbol message matrix consistently remains unaltered as they 

represent the number of OFDM sub-carriers and remain fixed for each simulation. If the 

message block size must increase or decrease as a result of M-ary to N-ary symbol format 
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conversion, the adjustment is accomplished by increasing or decreasing the number of 

rows in the message block only, never the number of columns. For example, given an 

arbitrary message array to be converted form M-ary symbol format to equivalent N-ary 

symbols, the input message array will increase two-fold from the original total. 

Consequently, the number of rows forming the output matrix doubles, while the column 

number remains the same. As a function of the desired M-ary and N-ary configuration, a 

pad of zero symbols may be automatically inserted to ensure a full array. In the receiver, 

the zero pad is removed, leaving behind the randomly generated message source. 

After the interleaving and M-ary to N-ary conversion operations are 

accomplished, the message array containing information symbols represented in decimal 

notation, is differentially encoded then channel encoded as an array of complex 

modulation values suitable for N-PSK modulation. The symbol-to-complex-modulation- 

value mapping process is accomplished using the m-file, difcdrfi.m. This function has a 

three argument input and a single output consisting of differentially encoded complex 

modulation values, MD, in array format. 

(q,m,fort) difcdrft.m [MD] 

The input, fort, determines how the array, m, is processed. If fort is zero, time 

differential encoding is performed on the message array, m, by executing a cumulative 

summation down each column. If fort is one, frequency differential encoding is 

performed by similarly performing a cumulative summation across each row in the 

message array, m. Recall that array columns correspond to OFDM frequencies, while 

array rows represent information symbols generated in time. 

Cumulative summations of the input array are accomplished by adding in 

modulo-N fashion the first element of the appropriate column or row vector to the next 

adjacent element, replacing the second element by the current summation, then adding 

this current sum to the third element and replacing that element with the current sum. 

This process is repeated until all elements in the row (frequency differential encoding) or 
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column (time differential encoding) are exhausted. The cumulative summation process is 

then repeated beginning with the first element of the next row of column respectively. 

After differential encoding with modulo-N cumulative summations, the array, m, 

is channel encoded as N-ary complex modulation values. The input, p, indicates the 

number of unit circle phase partitions formed based upon the N-PSK modulation scheme 

where N=2P. The mapping process begins by accepting the input symbol message array, 

m, and generating corresponding complex modulation values, MD, with unit magnitude 

and one of N possible phases. Recall that complex modulation numbers are described by 

a magnitude of one(A=l) and possible phase values selected from the set, 

{+ 22.5+45+67.5+90+112.5+135+157.5,0,180} degrees. 

As a final step, a reference row of ones (zero phase angles) are appended to the 

message array, m, at the top to provide a reference starting point for the differential 

decoding performed in the COFDM receiver. Similarly, for frequency differential 

encoding, a reference column pair of ones (zero phase angles) are appended to the 

message array, m at the left. Two reference ones columns are appended to maintain an 

even number of OFDM frequencies. Consequently, MD includes the additional reference 

ones within the complex modulation array. In the receiver, these reference values are 

stripped off during differential decoding. 

(N,M) 
Cmvlfa.m 

X 

 p. 

As a final step in the source encoding block and in preparation of OFDM 

frequency generation through the IFFT, the input array of complex modulation values, M, 

are rearranged into a special frequency array by the m-file cmv2fa.m. The second input 

variable, N, is the number of FFT points used which must be larger than the number of 

columns of complex modulation values in the array (number of OFDM frequencies). 

This function also swaps the positions of the modulation values by grouping the left half 

portion of the matrix elements and shifting them to the rightmost positions, and likewise 
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grouping the right half portion of the matrix elements and shifting them to the leftmost 

positions. Swapping is performed in anticipation of the frequency spectrum shifting that 

automatically results from FFT processing. When the MATLAB FFT command is 

invoked, the negative spectral frequencies are shifted to the rightmost positive locations 

by N positions. Thus, the spectrum is no longer symmetrical about the origin but instead 

becomes symmetrical about the frequency point N/2. If the frequency halves are 

swapped before IFFT processing, then the frequencies can be later recovered in their 

correct orientation by filtering. 

The shifted frequency array output is represented by X. A pad of zeros is 

included in the middle of the array whose amount is the difference between the number 

of FFT points, N, and the number of modulation values. The zero pad is included as a 

guard band to account for filter slopes during subsequent bandpass filtering after up- 

conversion and RF transmission. This filtering is not actually performed for the thesis 

simulations, however, the guard band is included for actual implementation purposes. 

(Ng,X) 

After source encoding, the complex modulation frequency array, X, is IFFT 

processed within the m-file, tda.m, generating the OFDM frequencies. The tda.m 

function also prepares the transmitted symbols for channel compensation by first 

appending the periodic guard interval whose length is indicated by the input, Ng. Ng 

represents the number of additional time domain waveform samples to add to the 

beginning of the information symbol interval. The output, x, is the time domain samples 

suitable for transmission and consisting of an array of complex samples. This functional 

block is the final block the message signal enters before transmission through the 

channel. Again, for purposes of this thesis, DAC and up-conversion of the signal is not 

included, permitting all simulations to be performed at baseband. 
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C.       COFDM RECEIVER 

1.        Model 1 System 

The model 1 block diagram is shown in Figure 28 and represents the channel 1 

model consisting of the AWGN channel, implemented using the m-file awgn.m. 

, , 

i       OFDM Transmitter 
i Source 

Encoding 

Input parimete 

-!-► Cdrcdlft.m 

Received Message 
<  

IFFT 
processing 

tda.m 
Awgn.m 

r" 

Decdrdl.m tdam 

I Message 
I Decoding FFT 

processing 

OFDM Receiver 

(X,s,N,sigma) 

Figure 28. Model 1 Block Diagram. 

The receiver decoding functions are performed within the decdrcdlm block by 

multiple sub-blocks which are presented above in Figure 28. The hierarchical 

arrangement of m-files within decdrcdl.m are presented in Figure 29. 

Decdrcdlm 

Fa2ma.m Dfdcdrft.m Mb.m Bm.m Cdldlv.m 

Rotm.m 

Figure 29. M-file Hierarchy for Decdrcdl.m. 
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The frequency array is restructured back into the proper complex modulation 

array format by the fa2cma.m m-file within decdrcdlm. The function fa2cma.m accepts 

the input K indicating half the number of OFDM frequency tones (corresponds to 

frequencies occupying one-half of the frequency array). The remaining input, X, are the 

complex frequency array values to be rearranged. The output, Mn, is the equivalent 

complex modulation array representation with the correct ordering of frequencies. 

(K,X) Fa2cma.m 
Mn 

After the fa2cma.m block, the complex modulation values are differentially 

decoded either in time or in frequency, then decoded into corresponding N-ary symbols. 

(qp,q,MD,fort) dfdcdrft.m [s,M] 
-► 

This functionality is accomplished by the m-file dfdcdrft.m. The complex 

modulation values, MD, fromfa2cma.m are accepted as an input, and inverse mapping of 

the complex numbers to N-ary symbols is performed based upon the value of q, where 

N=2q. If fort is equal to one, frequency differential decoding is performed. Differential 

decoding is the inverse operation performed in the transmitter; however, regardless of the 

type of differential decoding, all reference one values are removed after decoding 

allowing the received message matrix to remain. The output, s indicates phase sector 

numbers corresponding to N-ary demodulation also representing corresponding inverse 

mapped symbols in decimal notation. The remaining output, M, is the differentially 

decoded modulation array. 

With the reception of the message in N-ary format consisting of PSK symbols, a 

reformatting of symbols to M-ary is next performed to form OFDM symbols. Once again 
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the functions mb.m  and bm.m  perform the reformatting procedure as previously 

described in the transmitter section. 

(I, k, case, si, SYNC) Cdldlv.m 

As a final operation in the receiver, the message symbol array is deinterleaved by 

the function cdldlv.m which performs the inverse operation of cdlilv.m. The input, si, is 

the received interleaved message, while case determines which deinterleaving case to 

follow (block interleaving is used for this thesis). The output, s, provides the final 

message array read out of the intermediate matrix by rows. Cdldlv.m calls the subroutine 

m-file, rotm.m which performs the array rotations as previously described in cdlilv.m. 

2.        Model 2 System 

The COFDM model 2 system is presented in Figure 30 and has identical 

transmitter and receiver components as the model 1 system, differing only in the channel 

model. The channel 2 model consists of the multipath channel exclusively which is 

implemented using the chuhf.m m-file. No other types of noise such as AWGN are 

added to this model; thus, the multipath effects on the transmitted signal can be 

individually analyzed. 

OFDM Transmitter IFFT 
processing 

Multipath Channel 

Input parameters 
Cdrcdlft.m 

Tda.m Chuhf.m 

Source Encoding 

Received Message Decdrdl.m Itda.m 

Message 
Decoding FFT 

processing 

OFDM Receiver 

Figure 30. System Model 2 Block Diagram. 
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The m-file chuhf.m represents the channel 2 multipath model. The hierarchy for 

chuhf.m is shown in Figure 31. 

(s, x, loss, dly, dop, N, freqspace) 
Cdldlv.m 

Chuhf.m 

dline.m ofst.m Ray_dop.m 

cvdd.m 

Figure 31. M-file Hierarchy For Chuhf.m. 

This m-file accepts as inputs the Received Signal Loss, loss (dB), time delays, 

dly, and Doppler frequency shifting, dop (Hz). The transmitted signal, x, represents the 

time domain output of the COFDM transmitter consisting of complex numbers and is the 

input signal parameter to the channel model. Initially, the m-file dline.m is called to set- 

up the multipath delayed paths. Since the input, dly, can be a vector of delays, the 

number of delay lines corresponds to the number of elements in the vector. Dline.m in 

turn calls the subrountine m-file cvdd.m which implements a "continuously variable 

digital delay element" [13]. This m-file filters the x input using an eight-tap Finite 

Impulse Response (FIR) filter whose tap coefficients are a function of the desired delay. 

Later, the m-file ray_dop.m, calculates the maximum Doppler shift frequency as a 

fraction of OFDM tone spacing as provided by the input, freqspace. This m-file 

generates a random sequence of length L*N independent points of complex numbers with 

zero mean, and 0.5 variance real and imaginary parts. The envelope is Rayleigh with a 

mean square value of one. N is the number of FFT points. The amount of Doppler 

shifting is randomly calculated up to the maximum allowed using the seed parameter, s, 

to set the seed of the random number generator. The real and imaginary parts are 

independently generated, and it is acceptable to enter a vector of Doppler shift values 
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equal to the number of delay paths. Additionally, the direct path is offset by 0.7 of the 

maximum input Doppler shift which is calculated by m-file ofst.m. As a final step in 

chuhf.m, the power losses for the individual multipaths are accounted for by multiplying 

each loss amount times the respective delay line output vectors. The output, y, is a time 

domain representation of the transmitted signal plus multipath effects, presented as an 

array of complex received time domain samples. 

3.        Model 3 System 

The COFDM model 3 system is depicted in Figure 32. In agreement with 

COFDM system model 1 and 2, the OFDM transmitter and OFDM receiver are identical. 

The only differences are in the channel of model 3. 

rüFDM Transmitter —I 

Input Parameter. 

Source 
Encoding 

IFFT 
processing 

Cdrcdlft.m rda.m 

Multipath Channel       AWGN Channel 

Chuhf.m Awgn.m 

Received Message 
Decdrdl.m 

I Message 
\ Decoding 

Itda.m 

FFT 
processin 

OFDM Receiver 

Figure 32. COFDM Model 3 System. 

The channel 3 model consists of the channel 1 model (AWGN) combined with the 

channel 2 model (multipath) to form an overall complete channel 3 model. Both the 

channel 1 model and channel 2 model have been previously described in detail, 

implemented by m-files awgn.m and chuhf.m respectively. The channel 3 model is used 

extensively in system performance analysis presented in the next chapter. 
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VI.    SYSTEM SIMULATION METHODOLOGY AND TEST 
RESULTS 

A.       GENERAL TEST PLAN 

After construction of the various system models and functional verification of the 

partially integrated sub-blocks are accomplished, the research progressed to the 

simulation test phase where complete integrated system simulation trials were performed 

using different channel models and the corresponding performance curves were 

generated. The general system simulation test plan is presented in Table 4 along with the 

associated m-files governing each respective test phase. 

Test phase Simulation M-file 
1 System Model 0 ChnOcdLm 
2. System Model 1 Cofdmsim.m 
3. System Model 2 Cofdmsim.m 
4. System Model 3 Cofdmsim.m 

Table 4. General Test Plan. 

As indicated in Table 4, there are four independent test phases, advancing in the 

level of channel complexity starting from the easiest, channel model 0, to the most 

challenging and complex, channel model 3. Throughout the collection and evaluation of 

simulation data, the hierarchical test approach from simple to complex allows for careful 

study and evaluation of each channel model output individually. 

B.        TEST PHASE 1 - SYSTEM MODEL 0 SIMULATIONS 

Initial system model 0 simulations are performed to verify proper integration of 

all system sub-blocks and to ensure a correctly working overall model. Recall that the 

COFDM model 0 system incorporates the channel 0 model, representing a perfect noise 

free channel without AWGN and multipath distortions. Hence, this model can be viewed 

simply as the OFDM transmitter output connected directly to the OFDM receiver input 

with no intervening channel block. With the prior assumption that the transmitter and 

receiver are functioning correctly according to design, then the source and sink message 

blocks should have identical content without symbol errors since there can not be any 

channel  noise  influences  corrupting the  signal.     Consequently,  any  symbol  error 
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occurrences in the sink message must be the result of an incorrectly implemented m-file 

program model. 

With this mind, numerous system model 0 simulation were repeatedly conducted 

using m-file chnOcdlm with various input configurations, and the resulting data collected 

and evaluated. A table of sample results reflecting model 0 system simulations with 

various input configurations is presented in Table 5. 

» chn0cdl(0)0)0,0,222,4,4>6,8,4,4,8,8,8,6,0) % Block interleaver selected, random seed of 222 is chosen, 4 
OFDM column and 6 rows. Guard interval of 6 is used. The number of FFT point used is 8. The M-ary 
number is 16. 

Random Source_Msg = 

5 
2 
3 
8 
2 
10 

4 
2 
4 
8 
6 
5 

13 12 
10 0 
1 9 
9 15 
15 13 
9 14 

Sink_msg = 

5 
2 
3 
8 
2 
10 

4 
2 
4 
8 
6 
5 

13    12 
10     0 

9 
15 

15    13 
9    14 

GREAT!! Ithere are no errors. 

Test Passed!!! 
Table 5. Model 0 Verification Example. 

With the conclusion of transmitter and receiver functional verification, the 

remaining system test simulations including channel noise and multipath and are oriented 

around the channel 1, channel 2 and channel 3 models. Channel 3 simulates an actual 

indoor transmission environment, hence, it is the most indicative of the type of channel 

influences that will affect real-time RF communications during transmission by the 

WLAN. 

C.       TEST PHASE 2 - SYSTEM MODEL 1 SIMULATIONS 

Test phase 2 performs channel 1 model simulations exclusively (AWGN channel) 

and compared the test results to [14]. In [14], the COFDM evalution was done by means 
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of computer simulations and it was implemented with DQPSK modulation, an AWGN 

channel, a convolution^ rate of ¥1, and a constraint length ranging from 3 to 7. However, 

Viterbi soft decision decoding was used in [14] instead of the hard decision decoding that 

is adopted in this thesis. The BER performance presented in [14] is shown in Figure 33. 

10° m 

tu 
CO 

4       6        6 

Et/No(clB) 
Figure 33. BER vs Eb/No For Different Constraint Length (CL) In AWGN Channel, 

After Thibault And Le, [14]. 

Recall that AWGN is emulated in MATLAB using the m-file awgn.m and is part 

of the COFDM model 1 system. During this test phase, the batch m-file cofdmsim.m is 

configured for system model 1 simulations and used to generate numerous test data sets. 

The data results are presented graphically in the form of performance curves representing 

the Bit Error Rates (BER) versus the ratio of bit energy to noise power density (Eb/N0). 

Simulation data are compared to [14] COFDM AWGN performance curves (Figure 33) 

with similar system configurations. Evaluations of the results are conducted to measure 

the integrity of the system in the presence of AWGN. 
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As mentioned previously, the magnitude of each randomly generated message 

symbol and the corresponding complex modulation value are fixed at unity and represent 

the signal energies. However, the noise power density, N0, is variable and configurable 

by the user. Consequently, during simulation configurations, selection of noise powers 

by setting suitable noise variance range (sigma parameter) promotes the generation of 

meaningful performance plots and allows for comparisons among various test 

configurations. Table 6 presents a portion of a cofdmsim.m simulation configured for 

system model 1 (AWGN channel) using 48 OFDM frequency tones and frequency 

differential encoding, per 802.11a, while Figure 34 depicts the corresponding 

performance plot associated with the configured inputs. Figure 35 and 36 show the 

transmitted signal and the effects of AWGN on the received signal. 

» cofdmsim 

This batch m-file runs COFDM simulations using different channel models. 

To run the frequency version, enter l(one), To run the time version, enter 0 (zero), or to run both' enter 
2(two):l 

Enter the # of OFDM frequencies (note : must be even):48 

Enter the number of FFT points (Note : This number must be larger than # of OFDM frequencies):64 

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3 ? (Enter 0,1,2 
or3):l 

Channel model 1 simulation performed. 

Enter the sigma noise parameter range or single value. (Ex linspace(0,0.02,20)or 
.003):[linspace(0,0.0542,30)] 

Simulate all interleaver cases (yes) or specific ones(no)? (l=yes,0=no):0 

Enter specific case numbers from (0 to 8)(Ex [0 4 5 8]):0 

Enter the total minimum number of symbols to simulate (Ex 10000):20000 

Note:Based on the parameters thus far, the actual total number of symbol to be simulated will be :20016 
For the interleaver, do you want to calculate all possible intermediate matrix dimension 
pairs?(l=yes,0=no):0 

Desired interleaver pair? (Ex [row # col #] = [20 50] (Note: entering [1 20016],or [20016 1], offers no 
interleaving functionality):[139 144] 

Enter the number of M-ary bits, q (i.e. for 256-ary, q=8):l 

Enter the number of N-ary bits,q(i.e. for 16-ary, q=4):2  
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Enter the guard interval length (Number of sample points): 16 

Enter specific seed values, or 0 for a random seed (ex [103 22, 60] or [0]):222 

Do you want signal plots? (l=yes, 0=no):0 

Do you want print outs? (l=yes, 0=no):0 
Table 6. Model 1 Simulation Run Using Cofdmsim.m. 

Custom Link Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Tota! errors= 187578) 
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Figure 34. System Model 1 With AWGN Channel. 

A corresponding received signal magnitude plot is depicted in Figure 36 with 

noticeable variation in the Received Signal Level. In contrast to the pre-transmitted 

magnitude plot (Figure 35), the noticeable signal variations in the received magnitude 

plot demonstrate the consequence of white Gaussian noise influences on the transmitted 

signal. 
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Magnitude of Transmitted Signal(Unity Magnitude) 

Symbol Row Number 
0     0 

OFDM Freq # 

Figure 35. A Flat Planar Magnitude Representation Of Symbols Prior To Transmission. 

Magnitude Variation of Received Signal (Sigma=0.0542) 

Symbol Row Number 0     0 OFDM Freq # 

Figure 36. Effect Of AWGN Found On The Received Signal. 
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Comparison of the simulation BER performance graph in Figure 34 to the 

corresponding COFDM DQPSK graph shown in Figure 33 is depicted in Table 7 below. 

Pb Eb/No for simulation 
(Figure 34) 

Eb/No for reference 
(Figure 33) 

Difference, 6 

io-2 6.80 5.75 1.05 
io-J 7.40 6.50 0.90 

Table 7. BERVs Eb/N0 : Comparison Of Simulated and Reference Plots (Figure 35). 

The comparison in Table 7 shows that the simulated result is approximately 0.9dB 

(at Pb=10"3) and 1.05dB (at Pb=10"2) worse than [14]. The difference in performance 

may be due to Viterbi soft decision decoding that was used in [14] as compared to the 

hard decision decoding adopted in this thesis. A Viterbi decoder with soft decision data 

inputs quantized to three or four bits of precision perform better than one working with 

hard decision inputs [5]. 

It is apparent from phase 1 test result that system model 1 DQPSK simulation 

yields results similar to the BER performance in [14]. 

D.       TEST PHASE 3 - SYSTEM MODEL 2 SIMULATIONS 

The objective of this test phase is to simulate the system transmitting symbols 

through the multipath channel exclusively to reveal the burst error patterns. Phase 3 

simulations were conducted using the batch file cofdmsim.m configured for system 

model 2 testing as shown in Table 8 below. 

» cofdmsim 

This batch m-file runs COFDM simulations using different channel models. 

To run the frequency version, enter l(one), To run the time version, enter 0 (zero), or to run both enter 

2(two):l 

Enter the # of OFDM frequencies (note : must be even):48 

Enter the number of FFT points (Note : This number must be larger than # of OFDM frequencies) :64 

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3 ? (Enter 0,1,2 

or 3):2 
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Channel model 2 simulation performed. 

Do you want to run linkl ,link2, link3 or a custom link ? (Enter 1,2,3 or 4 for custom):l 

Simulate all interleaver cases (yes) or specific ones(no)? (l=yes,0=no):0 

Enter specific case numbers from (0 to 8)(Ex [0 4 5 8]):0 

Enter the total minimum number of symbols to simulate (Ex 10000): 10000 

Note:Based on the parameters thus far, the actual total number of symbol to be simulated will be : 10032 

For   the   interleaver,   do   you   want   to   calculate   all   possible   intermediate   matrix   dimension 

pairs?( 1 =yes,0=no):0 

Desired interleaver pair? (Ex [row # col #] = [20 50] (Note: entering [1 10032],or [10032 1], offers no 

interleaving functionality):[114 88] 

Enter the number of M-ary bits, q (i.e. for 256-ary, q=8):l 

Enter the number of N-ary bits,q(i.e. for 16-ary, q=4):2 

Enter the guard interval length (Number of sample points): 16 

Do you want to include error correction coding ? (l=yes, 0=no):0 

Enter specific seed values, or 0 for a random seed (ex [103 22, 60] or [0]):222 

Do you want signal plots? (l=yes, 0=no):l 

How many seconds of delay between pictures? 1 

Do you want print outs? (l=yes, 0=no):0 

Table 8. Model 2 Simulation - Only Multipath Channel. 

While performing cofdmsim.m system model 2 simulations, output plots 

depicting various forms of the signal data at strategic stages in the signal path are 

possible if desired and configured by the user. As an example of the types of plots 

generated during the simulation, Figure 37 through Figure 41 depict corresponding 

information generated by batch m-file cofdmsim.m configured as shown in Table 8. 

Figure 37 depicts the constellation plot characteristic of DQPSK type modulation. 

As expected, 4 individual phase points are generated resulting from symbol mapping of 

2-bit words into complex modulation values with unit magnitude and one of 4 possible 

phases. The constellation points, denoted by an asterisk, are symmetrically spaced on the 

unit circle, partitioning the circle into 4 equally sized sector formations. 
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Transmitted Signal4-ary Constellation Plot 
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Figure 37. Constellation Plot Of DQPSK Modulation. 

The corresponding message array of reformatted 2-bit PSK symbols with unit 

magnitude are depicted in Figure 38 and are transmitted through the channel. Notice the 

flat planar magnitude representation of the symbols prior to transmission. Recall that 

once a simulation is configured for a specified number of OFDM frequency tones, the 

number of tones remain fixed throughout the simulation duration. Consequently, 

additional symbols may be generated as a result of symbol word reformatting, increasing 

the original message array size in the time dimension (added symbol rows). 
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Magnitude of Transmitted Signal(Unity Magnitude) 

Symbol Row Number 0     0 
OFDM Freq # 

Figure 38. Transmitted Signal. 

The corresponding received signal constellation plot is shown in Figure 39 and 

40. As a consequence of multipath distortions within the channel causing constructive 

and destructive signal interference, the received constellation points are scattered from 

their normal pre-transmitted position (Figure 39). The figure also suggests that without 

additional signal conditioning, a majority of the received symbols would be decoded in 

error since many points cross sector borders into adjacent phase sectors. However, with 

the inclusion of differential encoding as demonstrated in Figure 40, the constellation 

points realign within their respective sector spaces forming a distinct star like structure. 
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Received4-ary Signal Constellation Plot,before Differential Decoding 
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Figure 39. Signal Constellation Plot Before Differential Decoding. 

Received4-ary Sigal Constellation Plot, After Differential Decoding 
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Figure 40. Signal Constellation Plot After Differential Decoding. 
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The corresponding received signal magnitude plot is depicted in Figure 41 with 

noticeable variations in the Received Signal Level (RSL), indicative of frequency 

selective fading. 

Magnitude Variation of Received Signal (Sigma=0) 

Symbol Row Number OFDMFreq* 

Figure 41. Received Signal With Frequency Selective Fading. 

In stark contrast to the pre-transmitted magnitude plot (Figure 38), the noticeable 

peak and valley in the received magnitude plot demonstrate the consequences of 

multipath distortion influences on the transmitted signal through constructive and 

destructive signal interference by altering the message symbol magnitudes from their pre- 

transmitted unity levels. It is apparent that for this model 2 simulation, frequency 

selective fading occurs causing the frequency dependent peak and valley of the RSL. 
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E.        TEST PHASE 4 - SYSTEM MODEL 3 SIMULATIONS 

In this comprehensive test, complete system model 3 simulations are performed 

using channel 3 model (AWGN and multipath) to generate corresponding system 

performance curves. The multipath propagation model used in this test has been 

explained in Chapter 3 (Figure 20). There are total of 3 links created with different 

Doppler frequencies of 5, 10 and 15 Hz. Simulations were performed separately with 

these 3 links using the batch m-file cofdmsim.m. A sample system model 3 simulation 

configuration using batch m-file cofdmsim.m is presented in Table 9. 

» cofdmsim 

This batch m-file runs COFDM simulations using different channel models. 

To run the frequency version, enter l(one), To run the time version, enter 0 (zero), or to run both enter 

2(two):l 

Enter the # of OFDM frequencies (note : must be even):48 

Enter the number of FFT points (Note : This number must be larger than # of OFDM frequencies):64 

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3 ? (Enter 0,1,2 

or3):3 

Channel model 3 simulation performed 

Enter    the    sigma    noise    parameter    range    or    single    value.    (Ex    linspace    (0,0.02,20)    or 

.003):[linspace(0,0.06,20)] 

Do you want to run linkl, link2, link3 or a custom link ?(Enter 1,2,3 or 4 for custom): 1 

Simulate all interleaver cases (yes) or specific ones(no)? (l=yes,0=no):0 

Enter specific case numbers from (0 to 8)(Ex [0 4 5 8]):0 

Enter the total minimum number of symbols to simulate (Ex 10000):20000 

Note:Based on the parameters thus far, the actual total number of symbol to be simulated will be :20016 

For   the   interleaver,    do   you   want   to   calculate   all   possible   intermediate   matrix   dimension 

pairs?(l=yes,0=no):0 

Desired interleaver pair? (Ex [row # col #] = [20 50] (Note: entering [1 20016],or [20016 1], offers no 

interleaving functionality):[1668 12] 

Enter the number of M-ary bits, q (i.e. for 256-ary, q=8):l 

Enter the number of N-ary bits,q(i.e. for 16-ary, q=4):2 

Enter the guard interval length (Number of sample points): 16 

Enter specific seed values, or 0 for a random seed (ex [103 22, 60] or [0]):33 
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Do you want signal plots? (l=yes, 0=no):l 

How many seconds of delay between pictures? 1 

Do you want print outs? (l=yes, 0=no):0 

Table 9. Model 3 Link 1 Simulation. 

1.        Link 1 With Doppler Frequency of 5 Hz 

For this example, link 1 with a Doppler frequency of 5 Hz is used along with 

noise variance range of 0 to 0.06. The batch file generates performance curves similar to 

the ones presented during test phase 1, however, the performance is greatly degraded 

from AWGN theoretical curves due to the added multipath influences. The effect of the 

AWGN and multipath on the received signal is shown in Figure 42. Furthermore, an 

additional overhead loss of 25% from the inclusion of a 16 sample point guard interval 

precursor with 64 FFT points (16/64 = 0.25) reduces the effective information rate 

(Figure 43). 

Magnitude Variation of Received Signal (Sigma=0.06) 

Symbol Row Number 

Figure 42. Effect of AWGN and Multipath On the Received Signal. 
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Frequency Array Plot (number of FFT frequency points are 64) 
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Figure 43. 16 Sample Point Guard Interval Precursor With 64 FFT Points. 

The corresponding performance curve of the configured simulation in Table 9 is 

presented in Figure 44. From the plots in Figure 44 and Figure 33, the difference in 

performance is tabulated in Table 10 below. 

Pb Eb/No for 
Simulation Plot 

(Figure 44) 

Eb/No for 
Reference Plot 

(Figure 33) 

Difference, 
8 

Difference after 
correction for soft vs 

hard decision 
decoding 

10"z 8.65 5.75 2.90 2.90-1.05 = 1.85 
10"J 10.20 6.50 3.70 3.70 - 0.90 = 2.80 

Table 10. BER vs. Eb/N0: Comparison Of Simulated (Figure 44) And Reference Plots. 

The comparison in Table 10 shows that model 3 link 1 which is subjected to the 

influence of AWGN and multipath, requires 2.9 to 3.7dB more than [14]. Recall that the 

result in [14] is exclusively due to AWGN only. Compensating for the difference in soft 

and hard Viterbi decoding decision used, we can deduce that the dB required for 
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multipath with link 1 (Doppler Frequency of 5 Hz) is between 1.85dB (at 10"2 ) and 

2.80dB (at 10"3). 

Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=25546) 
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Figure 44. BER vs. Eb/N0 Performance - With Multipath & AGWN For Link 1. 

2.        Link 2 With Doppler Frequency of 10 Hz 

The batch m-file cofdmsim.m was repeated, and link 2 was selected along with 

noise variance range of 0 to 0.06. The BER performance curve was obtained as shown in 

Figure 45. From the plot in Figure 45 and in comparison to Figure 33, the difference in 

performance is tabulated in Table 11. 

Pb Eb/No for 
Simulation Plot 

(Figure 45) 

Eb/No for 
Reference Plot 

(Figure 33) 

Difference, 
8 

Difference after 
correction for soft vs 

hard decision 
decoding 

10"* 8.60 5.75 2.85 2.85- 1.05=1.80 

10J 10.25 6.50 3.75 3.75 - 0.90 = 2.85 
Table 11. BER vs. Eb/N0 : Comparison Of Simulated (Figure 45) And Reference Plots. 
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Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=38007) 
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Figure 45. BER vs. Eb/N0 Performance - With Multipath & AGWN For Link 2. 

The comparison in Table 11 shows that the difference in signal power due to 

multipath with link 2 (Doppler Frequency of 10 Hz) is between 1.80dB (at 10"2 ) and 

2.85dB (at 10"3). The result obtained is very close to that achieved for link 1. 

3.        Link 3 With Doppler Frequency of 15 Hz 

The BER performance curve for link 3 was obtained by running the batch m-file 

cofdmsim.m along with noise sigma parameter range of 0 to 0.06. The BER performance 

curve is shown in Figure 46. From the plots in Figure 46 and Figure 33, the difference in 

performance is tabulated in Table 12. 

Pb Eb/No for 
Simulation Plot 

(Figure 46) 

Eb/No for 
Reference Plot 

(Figure 33) 

Difference, 
8 

Difference after 
correction for soft vs 

hard decision 
decoding 

10"2 8.60 5.75 2.85 2.85-1.05=1.80 
io-3 10.15 6.50 3.65 3.65 - 0.90 = 2.75 

Table 12. BER vs. Eb/N0: Comparison Of Simulated (Figure 46) And Reference Plot. 
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Link 3 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=37949) 
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Figure 46. BER vs. Eb/N0 Performance - With Multipath & AGWN For Link 3. 

The comparison in Table 12 shows that the difference in signal power due to 

multipath with link 3 (Doppler Frequency of 15 Hz) is between 1.80dB (at 10" ) and 

2.75dB (at 10"3). Again the result obtained is similar with that achieved for link 1 and 2. 

The results obtained for links 1 to 3 show that this COFDM configuration is 

immune to Doppler shift of 5 to 15 Hz. It is known that additional Doppler shifting 

causes symbol spectra and their respective sub-carriers to shift their frequency location 

into adjacent symbol areas causing spectral overlap. Our COFDM configuration uses 

only 48 tones, thus it offers good Doppler immunity since the frequency spacing is larger. 

In [16], the maximum Doppler shift, fdm in Hz is defined as : 

fdm = — = l .4815fGVmph 
A 

(6-1) 
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Where Vmph is the speed expressed in m.p.h, and the radio frequency,/G is in GHz. 

Hence with 15Hz of Doppler shift, and assuming fG used is 5.2GHz per 802.11a then the 

actual speed is : 

15 = 1.4815*5.2*Vmph (6-2) 

Vmph=1.95mph = 0.87m/s (6-3) 

Doppler Frequency (Hz) Speed (m/s) 
5 0.29 
10 0.58 
15 0.87 

Table 13. The Equivalent Speed For Doppler Frequencies Of 5, 10 And 15. 

The above Doppler Shifts would be seen only if the velocity is entirely in the 

radial direction. The above Doppler frequencies used are all less than lm/s which are a 

good representation of a human's walking speed in an indoor environment [11]. Hence 

we can further deduce that this COFDM configuration is robust enough to withstand the 

indoor mobility requirements. 

F.        PERFORMANCE OF COFDM WITH DBPSK MODULATION 

After successful implementation of COFDM with DQPSK modulations, it is also 

desirable to examine the COFDM's performance using DBPSK modulation. The 

following simulations were conducted to evaluate the configuration performance under 

the influence of AWGN (exclusively) and combination of both AWGN and multipath 

effects : 

• Test 1 - Model 1 with Only AWGN channel is used. 

• Test 2- Model 3 using link 1 with 5Hz Doppler frequency. 

• Test 3 - Model 3 using link 2 with 10Hz Doppler frequency. 

• Test 4 - Model 3 using link 3 with 15Hz Doppler frequency. 
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The BER performance curves for the above tests are shown from Figure 47 to 50. 

The test results are tabulated in Table 14, and comparisons are made against DQPSK's 

performances. 

Test Pb Eb/N0 for 
DBPSK 

Simulation 

Eb/N0 for 
DQPSK 

Simulation 

Difference, 8 

Model 1 With 
AWGN 

10"2 5.75 6.80 -1.05 

10'3 6.75 7.40 -0.65 

Model 3 With 
Linkl 

10'2 7.30 8.65 -1.35 

io-3 8.40 10.20 -1.80 

Model 3 With 
Link 2 

lo-2 7.30 8.60 -1.30 

IO"3 8.40 10.15 -1.75 

Model 3 With 
Link 3 

10"2 7.00 8.60 -1.60 

IO"3 8.40 10.25 -1.85          | 

Table 14. DBPSK vs. DQPSK. 

The above comparisons show that DBPSK required less Eb/N0 then DQPSK. 

Under the influence of AWGN and multipath, the DBPSK modulations show that the 

Eb/N0 required for links 1 to 3 simulations are similar, except link 3 at 10"2 probability 

which is 0.30dB less. 
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Custom Ij'rfc Performance grEph: BTT Error Rate vs. ED/ND (Freq. Dff. Enc.)(Total emors=23158) 
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Figure 47. COFDM DBPSK Modulation With Model 1 (AWGN). 
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Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=24359) 
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Figure 48. COFDM DBPSK Modulation With Model 3 Link 1. 
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Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. Enc.)(Total errors=24359) 
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Figure 49. COFDM DBPSK Modulation With Model 3 Link 2. 
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Link 3 : Performance graph: BIT Error Rate \s. Eb/No (Freq. Diff. Enc.)(Tbtal errors=12273) 
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Figure 50. COFDM DBPSK Modulation With Model 3 Link 3. 
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VII.   CONCLUSIONS 

A.       DISCUSSION OF SIMULATION RESULTS 

The objective of simulating the physical layer of the IEEE 802.11a has been 

successfully achieved in this thesis. The simulation results showed that COFDM system 

is capable of indoor environment communications in the presence of known multipath 

and noise conditions. Further discussions relating to specific test phases are presented 

below. 

1. Test Phase 1 and Test Phase 2 Discussions 

Test phase 1 validated a functionally correct model, as there was an absence of 

errors in the sink message with no channel included. This indicated that all system sub- 

blocks within the transmitter and the receiver were operating correctly according to 

design, and no obvious design flaws existed due to inaccurate m-file construction. Test 

phase 2 carries the functional verification one step further by also including complete 

system model 1 simulations (with AWGN only). This test permits performance curve 

comparisons to [14] AWGN curves for DQPSK to further verify correct simulation. 

Results of system simulations indicated that system model 1 performance is 

approximately 0.9dB (at Pb=10"3) and 1.05dB (at Pb=10"2) worse than [14]. The 

difference in performance may be due to Viterbi soft decision decoding that was used in 

[14] as compared to the hard decision decoding adopted in this thesis. A Viterbi decoder 

with soft decision data inputs quantized to three or four bits of precision perform better 

than one working with hard decision inputs [5]. 

2. Test Phase 3 Discussions 

Test phase 3 simulation using the channel 2 model (multipath channel only) 

exclusively demonstrated the effects of multipath on the received signal and the 

corresponding sink message array error event manifestations. As expected, frequency 

selective fading occurred as well as partial flat fading. This test phase was also useful in 

depicting the behaviors of the received signal magnitudes and phases as seen by the 
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constellation and magnitude plots. As anticipated, these plots demonstrated constructive 

and destructive interference due to channel multipath distortions, as evident by the 

distinguishing peak and valley apparent in the received signal magnitude plots. The 

received constellation plots demonstrated the manner in which individual symbol signal 

points were shifted in phase from their characteristic pre-transmitted positions. 

3. Test Phase 4 Discussions 

Test phase 4 involved comprehensive testing of a complete system model 3 

simulations using channel 3 model (AWGN and multipath) to generate corresponding 

system performance curves. The multipath propagation model used in this test has been 

explained in Chapter 3 (Figure 20). There are total of 3 links created with different 

Doppler frequency of 5, 10 and 15 Hz. Simulations were performed separately with these 

3 links using the batch m-file cofdmsim.m. In comparison to test phase 2 (AWGN only), 

the results showed that more power is required to combat the multipath effect. The extra 

power needed is between 1.80 to 1.85dB at 10"2 probability and between 2.75 to 2.80dB 

at 10"3 probability. The results obtained for links 1 to 3 also showed that the COFDM 

configuration is immune to a Doppler shift of 5 to 15 Hz. Since our COFDM 

configuration uses only 48 tones, it offers good Doppler immunity as the frequency 

spacing is larger. The above Doppler frequencies are all from a transmitter velocity of 

less than lm/s which is a good representation of a human's walking speed in an indoor 

environment [11]. Hence, we can further deduce that this COFDM configuration is 

robust enough to withstand the indoor mobility requirements. 

4. COFDM DBPSK Modulation Discussions 

The COFDM configuration was further examined with DBPSK modulation. As 

expected, the results showed that DBPSK required less Eb/N0 than DQPSK. Under the 

influence of AWGN and multipath, the DBPSK modulation shows that the Eb/N0 

required for links 1 to 3 simulations are similar. 
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B.       FUTURE WORK 

The research presented in this thesis has successfully demonstrated the COFDM 

performance in the presence of known AWGN and multipath conditions. However, it is 

noted that a soft decision Viterbi decoder with three or four bits of precision would 

perform better than the present one that is working with hard decision inputs. The 

MATLAB function viterbLm implemented in this thesis can also be used for soft decision 

decoding of convolution codes. The separate file metric.m defines the metric used in the 

decoding process. For hard decision decoding, this metric uses the Hamming distance; 

for soft decision decoding, it is the Euclidean distance. 

The code rate used for the convolutional encoder can also be increased from Vi to 
3
ä by employing "puncturing". Puncturing is a procedure for omitting some of the 

encoded bits in the transmitter (thus reducing the number of transmitted bits and 

increasing the coding rate) and inserting a dummy "zero" metric into the Viterbi decoder 

on the receiver side in place of the omitted bits. 

Further work can explore replacing the Differential M-PSK with the M-ary 

Quadrature Amplitude Modulation (QAM). It is envisaged that the modification would 

mainly involve m-files such as difcdrft.m and dfdcdrft.m. In addition, pilot tones or 

equalization must be used for QAM in mobile systems [11]. 

Finally, the performance curves obtained in this thesis have the potential for high 

visibility and impact in several operational projects [1]. The increasing prevalence of 

WLAN, both within the Defense establishment and in the public domain, underscores the 

need for a simulation of this kind. The results obtained from this thesis can be included 

into the Radio pipeline of OPNET simulation package. The OPNET version 7 comes 

with an IEEE 802.11 model, and it can be modified to function as an IEEE 802.11a 
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WLAN.  Hence, the performance of this newly proposed IEEE 802.1 la WLAN protocol 

in either an office or submarine environment can be completely analyzed. 
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Additive White Gaussian Noise (Channel Model 1) 
Prof J. McEachen, Naval Postgraduate School 
Prof. Paul H. Moose, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

APPENDIX A.  COFDM MATLAB SOURCE CODE 

AWGN 

%function [Y]=awgn(X,s,N,sigma) 
%  

% 

%Title 
%Thesis Advisor 
%Author 
%Modified by 
% 
%  

%INPUTS: 
% X : Input array of time domain complex modulation values 
% s : Seed parameter for random number generator 
% N : Number of OFDM frequencies (FFT size),includes zero pad 
% sigma : Noise parameter for calculating Eb/No (function of the noise 
variance) 
% 
%OUTPUTS: 
% Y : Output signal plus noise,array of time domain complex numbers 
%  

function Y = awgn(X,s,N,sigma) 
% 
%Find dimensions of the input array 
[rr,cc]=size(X); 
% 
%Seed configurations to set the random* generator seed 
randn('seed',s+30); 
% 
%Generate a random real part 
wreal=randn(rr,cc); 
% 
%Generate a random imaginary part 
randn('seed',s+40); 
wimg=i*randn(rr,cc); 
% 
% An array of random complex entries chosen from a normal distribution with 
%mean 0.0 and variance 1.0. Array dimensions is the same as X. 
W=wreal+wimg; 
% 
%Random noise multiplied by the sigma factor and added to the signal. 
Y=X+(sigma.*W); 
%  
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BIN2DECI 

%function [vy]=bin2deci(vx) 
%  

% 
%Title : Binary To Decimal Conversion 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Tan Kok Chye, Naval Postgraduate School 
% 
%  

%INPUTS: 
% vx 
% 
%OUTPUTS: 
% vy 
%  

Binary inputs 

Decimal output 

function v_y=bin2deci(v_x) 
v_l=length(v_x); 
v_y=(v_l-l:-l:0); 
v_y=2.Av_y; 
v_y=v_x*v_y'; 
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BM 

%function [m]=bm(q,v) 
%  

% 
%Title : Binary To M-ary Converter 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Prof. Paul H. Moose, Naval Postgraduate School 
%Modified     by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

%INPUTS: 
% q : Base 2 exponent for M-ary symbol generation 
% v : Binary data vector 
% 
%OUTPUTS: 
% m        : M-ary output vector in decimal notation 
%  

function m=bm(q,v) 
% 
%Find the length of input vector,v,and determine if there is a remainder 
% after dividing by q 
n=length(v); 
r=rem(n,q); 
% 
%If there is no remainder,don't pad v input vector. Otherwise add the appropriate 
%number of zeros to generate a code word with an exact multiple of q bits. 
% 
if r==0 

v=v; 
else 

v=[vzeros(l,q-r)]; 
end 
% 
%Place least significant bit of the symbol on the left end. 

map=l; 
forj=l:q-l 

map=[map 2Aj]; 
end 
% 
%Remove q bits at a time from v to generate m-ary symbol values. 

n=length(v); 
p=round(n/q); 
A=zeros(q,p); 
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A(:)=v; 
m=map*A; 
m_ary_msg=m; 
%  
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CDLDLV 

%function [s]=cdldlv(l,k,case,si,SYNC) 
%  

CDL Block Deinterleaver 
Prof J. McEachen, Naval Postgraduate School 
Prof. Paul H. Moose, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

% 
%Title 
% Thesis Advisor 
%Author 
%Modified by 
% 
%  

%INPUTS: 
% 1 : Number of rows in intermediate matrix 
% k : Number of columns in intermediate matrix 
% case : Variable indicating the deinterleaving method to be 
% used (9 different cases) 
% si : Input message string to be deinterleaved 
% sine : Frame synchronization bits (Not used in COFDM simulation) 
% 
%OUTPUTS: 
% s : Interleaved output string 
%  

function s=cdldlv(l,k,case,si,SYNC) 
si(length(si)+l-length(SYNC):length(si))=zeros(l,length(SYNC)); 
N=length(si); 
ifl*k=N 

x=zeros(l,k); 
x(:)=si; 
K=(l:k)-1; 
CR=K.*(K+l)/2; 
L=(l:l)-1; 
RR=L.*(L+l)/2; 
% 
if case==l 

forkk=l:k 
x(:,kk)=rotm(x(:,kk),CR(kk)); 

end 
elseif case==2 

forkk=l:k 
[z,x(: ,kk)]=rotm(x(: ,kk),CR(kk)); 

end 
elseif case==3 

forkk=l:l 
x(kk,:)=rotm(x(kk,:),RR(kk)); 

end 
elseif case==4 
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forkk=l:l 
[z,x(kk,:)]=rotm(x(kk,:),RR(kk)); 

end 
elseif case==5 

forkk=l:k 
x(:,kk)=rotm(x(:,kk),CR(kk)); 

end 
for 11=1:1 

x(ll,:)=rotm(x(ll,:),RR(ll)); 
end 

elseif case==6 
forkk=l:k 

[z,x(:,kk)]=rotm(x(:,kk),CR(kk)); 
end 
for 11=1:1 

x(ll,:)=rotm(x(ll,:),RR(ll)); 
end 

elseif case==7 
forkk=l:k 

x(: ,kk)=rotm(x(: ,kk),CR(kk)); 
end 
for 11=1:1 

[z,x(ll,:)]=rotm(x(ll,:),RR(ll)); 
end 

elseif case==8 
forkk=l:k 

[z,x(:,kk)]=rotm(x(:,kk),CR(kk)); 
end 
for 11=1:1 

[z,x(ll,:)]=rotm(x(ll,:),RR(ll)); 
end 

end 
x=x'; 
s=x(:); 
s=s'; 

end 
%  
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CDLILV 

%functionsi=cdlilv(l,k,case,s,SYNC) 
%  

% 
%Title : CDL Block Interleaver 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Prof. Paul H. Moose, Naval Postgraduate School 
%Modified     by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

%INPUTS: 
% 1 : Number of rows in intermediate matrix 
% k : Number of columns in intermediate matrix 
% case     : Variable indicating the deinterleaving method to be 
% used (9 different cases) 
% s : Input message string to be deinterleaved 
% SYNC : Frame synchronization bits (Not used in COFDM simulation) 
% 
%OUTPUTS: 
% si : Interleaved output string 
% 
%Subroutines Used : rotm.m 
%  

function si = cdlilv(l,k,case,s,SYNC) 
N=length(s); 
ifl*k==N 

x=zeros(l,k); 
x=x'; 
x(:)=s; 
x=x'; 
Intermediate_mx=x; 
K=(l:k)-1; 
CR=K.*(K+l)/2; 
L=(l:l)-1; 
RR=L.*(L+l)/2; 
% 
if case==l 

forkk=l:k 
[z,x(:,kk)]=rotm(x(:,kk),CR(kk)); 

end 
elseif case==2 

forkk=l:k 
x(:,kk)=rotm(x(:,kk),CR(kk)); 

end 
elseif case==3 
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forkk=l:l 
[z,x(kk,:)]=rotm(x(kk,:),RR(kk)); 

end 
elseif case==4 

forkk=l:l 
x(kk,:)=rotm(x(kk,:),RR(kk)); 

end 
elseif case==5 

for 11=1:1 
[z,x(ll,:)]=rotm(x(ll,:),RR(ll)); 

end 
forkk=l:k 

[z,x(:,kk)]=rotm(x(:,kk),CR(kk)); 
end 

elseif case==6 
for 11=1:1 

[z,x(ll,:)]=rotm(x(ll,:),RR(ll)); 
end 
forkk=l:k 

x(: ,kk)=rotm(x(: ,kk),CR(kk)); 
end 

elseif case==7 
for 11=1:1 

x(ll,:)=rotm(x(ll,:),RR(ll)); 
end 
forkk=l:k 

[z,x(:,kk)]=rotm(x(:,kk),CR(kk)); 
end 

elseif case==8 
for 11=1:1 

x(ll,:)=rotm(x(ll,:),RR(ll)); 
end 
forkk=l:k 

x(:,kk)=rotm(x(:,kk),CR(kk)); 
end 

end 
si=x(:); 
si=si'; 

end 
si(length(si)-length(SYNC)+l:length(si))=SYNC; 
%  
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CDRCDLFT 

%function 
[Fa,MD,B_ce,B_random,nsymno]=cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary, 
nary,fort) 
%  

% 
%Title : COFDM Encoder with CDL Interleaver 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Prof. Paul H. Moose, Naval Postgraduate School 
%Modified     by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

%INPUTS: 
picy_n : Switch variable to allow or disallow the generation of figures 
pic       : Argument passed by another calling m-file to indicate the loop 

s : Seed parameter for random number generator 
freqno : Number of OFDM frequencies (sub-carriers) used in each message 

rintlv 
cintlv 
N 
mary 
nary 
fort 

% 
% 
number 
% 
% 
array 
% 
% 
% 
% 
% 
% 
encoding 
% 
%OUTPUTS: 
% Fa 
% MD 
% 
% B 
% 
% 
%Subroutines Used : marymsg.m,cdlilv.m,mb.m,bm.m,difcdrft.m,cmv2fa.m 
%  

function 
[Fa;MD,B_ce,B_random,nsymno]=cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary, 
nary,fort); 
% 
%Determine whether the number of OFDM frequencies are even (# of matrix 
columns),indicated 
% by the "freqno" parameter. If odd go to error message. Odd frequencies are not 
allowed 
% since the formation of the frequency array is symmetrical and even. 

Interleaver parameter for intermediate matrix row # 
Interleaver parameter for intermediate matrix column # 
Number of FFT frequency sample points,must be larger than freqno 
Initial M-ary symbol format (OFDM symbol bit length) 
Final N-ary symbol format (PSK symbol bit length) 
Selects either frequency (fort=l) or time (fort=0) differential 

: Frequency array of prearranged modulation values 
: Matrix of differentially encoded complex values (unit magnitude) 
and one of N-ary possible phases (N-PSK) 

: Matrix of 8-ary symbols 
nsymno: Number of N-ary generated symbols 
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% 
if rem(freqno,2)~=0 

dispC'ERROR: The number of matrix columns,freqno,representing OFDM frequencies 
must be an even number!') 
elseif rem(freqno,2)==0 
% 
% Determine if the row and column interleave parameters are greater than freqno when 
% multiplied together. If not, then display error message and stop. 
% 

if (rintlv*cintlv)<(freqno) 
disp(") 
dispC'ERROR: The row and column interleave parameters are not compatible with # 

of OFDM frequencies!') 
disp(") 

else 
% Calculate the row symbol number 

symno=rintlv*cintlv/freqno; 
% 
% Display error message if symno and freqno not compatible with rintlv and cintlv and 
stop. 
% If not compatible,the interleaver function does not work correctly. 
% 

if rem(symno, 1 )~=0 
disp(") 
dispCERROR: The row and column interleave parameters are not compatible with # 

of OFDM frequencies!') 
dispC For the enetered rintlv, cintlv, and freqno parameters, the calculated symno 

is:') 
disp(symno) 
multiesall=mltpl(rintlv,cintlv); 
multies=multiesall(l,(2:length(multiesall)-l)); 
dispC Possible choices for freqno based upon rintlv and cintlv are:') 
disp(") 
disp(multies) 

elseif rem(symno, 1 )==0 
if freqno >= N; 

disp(") 
dispCERROR: The number of frequency points, N, needs to be mcresaed !') 
disp('N must be larger than:') 
disp(") 
disp(freqno) 
disp(") 

elseif freqno < N; 
% 
% Generate a random message matrix of m-ary symbols,based upon 

parameter,mary. 
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% 
Nmbr_of_symbols =symno*freqno; 
% 
[B_ce,B_random]=marymsg(mary,s,symno,freqno); 
Rndm_m_ary_msg=B_random; 
% 
% Perform a block interleaving function on the matrix, B, with rintlv rows 
% and cintlv columns. 
% 
SYNC=[]; 
[Br Bc]=size(B_ce); 
Bt=B_ce'; 
Bvect=Bt(:)'; 
si=cdlilv(rintlv,cintlv,case,Bvect,SYNC); 
Bi=reshape(si,Bc,Br)'; 
Intrlvd_array=Bi; 
% 

ml=bm(nary,mb(mary,Bi)); 
lengthm 1 =length(m 1); 
nsymno=lengthm 1; 
remm 1 =rem(lengthml ,freqno); 
if remml==0; 

ml=ml; 
else 

zero=zeros (freqno-remm 1); 
ml=[ml zero(l,:)]; 

end 
length2m 1 =length(m 1); 
m=(reshape(ml,freqno,length2ml/freqno))'; 
N_ary_msg=m; 
% 
% Generate a differentially encoded matrix of complex 
% values with unit magnitude and one of (2An) equal phases. 
MDD=difcdrft(nary ,m,fort); 
[MDm MDn]=size(MDD); 
MD=MDD; 
Cmplx_mod_array=MDD; 
% 
% Form the frequency array of modulation values that include guard interval. 
% 
Fa=cmv2fa(N,MD); 
Freq_array=Fa; 

end 
end 

end 
end 
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CHANCDL 

%function [errmax,errors,freqerrs]= 
chancdl(chnmdl,wait,prnt,picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary 
%nary,n,k,blklgth,N,g,sigs,loss,dly4op,freqspace,fort) 
%  

% 
%Title : Simulations for AWGN & Multipath Fading Channel 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Dave Roderick, Naval Postgraduate School 
%Modified By      : Tan Kok Chye, Naval Postgraduate School 
%  
%Subroutines Used: cdrcdlft.m,tda.m,awgn.m,chuhf.m,itda.m,decdrcdl.m,check.m 
%  

% 
function[errrnax,errors,freqerrs]=chancdl(chnmdl,wait,prnt,picy_n,pic,case,s,freqno,rintlv 
,cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly4op,freqspace,fort) 
sigvect=sigs; 
klgth=length(k); 
chklp=l; 
errvect=[]; 
bervect=[]; 
freqerrmx=[]; 
errsperpr=[]; 
Es_No=[]; 
Eb_No=[]; 
sermx=[]; 
bermx=[]; 
rowerrmx=[]; 
symno=rintlv*cintlv/freqno; 
for lp=l:length(sigvect); 
% 
[xmt,modvals3_ce3_random,nsymno]=cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N, 
mary,nary,fort); 
xmtifft=tda(Ng,xmt); 
xmtpts= 1: length(xmtifft); 
if chnmdl==0 

% 
sandn=xmtifft; 

elseif chnmdl==l 
% 
disp(['Sigma=',num2str(sigvect(lp))]); 
sandn=awgn(xmtifft,s,N,sigvect(lp)); 

elseif chnmdl=2 
% 
sandn=chuhf(s+l,xmtifft,loss,dly,dop,N,freqspace); 
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elseif chnmdl==3 
% 
sandmltpth=chuhf(s+l,xmtifft,loss,dly,dop,N,freqspace); 
disp(['Sigma=',num2str(sigvect(lp))]); 
sandn=awgn(sandmltpth,s,N,sigvect(lp)); 

end 
% 
sandnfft=itda(Ng,sandn); 
% 
K=(length(modvals( 1, :)))/2; 
[rcvd,rcvd3it,random_msg,random_bit,M,MM]=decdrcdl(picy_n,pic,case,K,sandnfft,ns 
ymno,freqno,rintlv,cintlv,mary,nary,fort,B_random); 
%Transmitted_msg=B_random; 
Transmitted_msg=random_msg; 
Received_msg=rcvd; 
% 
[errors,bit_erTor,freqerrs,errmx,rowerrs]=check(pic,randoni_msg,random_bit,rcvd,rcvd_b 
it,n,k(chklp),blklgth); 
errvect=[errvect,errors]; 
bervect= [bervect,bit_error]; 
freqerrmx=[freqerrmx;freqerrs]; 
rowerrmx=[rowerrmx;rowerrs]; 
crntEs_No= 1 /(2*N* (sigvect(lp) A2)); 
% 
%based on M=4 i.e. for coded QPSK, Eb=Es. 
crntEb_No=crntEs_No; 
Es_No=[Es_No,crntEs_No]; 
Eb_No=[Eb_No,crntEb_No]; 
Es_Nodb=10*loglO(Es_No); 
Eb_Nodb= 10*log 10(Eb_No); 
end 
ser=errvect/(symno*freqno); 
ber=bervect/(2*symno*freqno); 
sermx=[sermx; ser]; 
bermx=[bermx ;ber]; 
errsum=sum(errvect); 
errsperpr=[errsperpr,errsum]; 
errmax=max(rowerrmx'); 
% 
% plot 
% 
if picy_n==l 

figure(pic+l) 
plot(modvals,'*') 
hold on; 
plot(0,0,'+') 
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hold off; 
title(['Transmitted Signal',int2str(2Anary),'-ary Constellation Plot']) 
xlabel(['Magnitude=l']) 
axis('square'); 
orient tall 
grid 
if prnt==l; 

print 
pause(lO); 

end 
pause(wait); 

end 
% 
% 
ifpicy_n==l 

figure(pic+2) 
plot([0:N-l],abs(xmt),'*') 
title(['Frequency Array Plot (number of FFT frequency points are ',mt2str(N)/)']) 
xlabel(['Guard interval length is ',int2str(N-freqno)]) 
axis('square'); 
orient tall 
grid 
if prnt==l; 

print 
pause(lO) 

end 
pause(wait); 

end 
% 
% 
if picy_n==l 

figure(pic+3) 
surf(abs(modvals)); 
shading interp 
grid 
orient tall 
title(['Magnitude of Transmitted Signal(Unity Magnitude)']) 
xlabel('OFDM Freq #') 
ylabel('Symbol Row Number') 
zlabel([,Magnitude(seed=',int2str(s),')']) 
ifprnt==l; 

print 
pause(lO) 

end 
pause(wait); 

end 
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% 
% 
if picy_n==l 

figure(pic+6) 
plot(M,'*') 
hold on; 
plot(0,0,'+') 
hold off; 
title(['Received',int2str(2Anary),'-ary Signal Constellation Plot,before Differential 

Decoding']) 
orient tall 
axis('square'); 
grid 
if prnt==l; 

print 
pause(lO) 

end 
pause(wait); 

end 
% 
% 
if picy_n==l 

figure(pic+7) 
plot(MM,'+') 
hold on; 
plot(0,0,'+') 
hold off; 
title(['Received',int2str(2Anary),'-ary Sigal Constellation Plot, After Differential 

Decoding']) 
orient tall 
axis('square'); 
grid 
if prnt==l; 

print 
pause(lO) 

end 
pause(wait); 

end 
% 
% 
if picy_n==l 

roty_n=input('Do you want to rotate 3-D plot?(yes=l,no=0):'); 
figure(pic+8) 
surf(abs(M)); 
shading interp 
grid 
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orient tall 
title(['Magnitude Variation of Received Signal (Sigma=',num2str(sigvect(lp)),')']) 
xlabel('OFDM Freq #') 
ylabel('Symbol Row Number') 
zlabel(['Magnitude(seed=,,int2str(s),')']) 
if roty_n==l 

%Rotate the 3-D plot 
fork=l:5 

view(-70+10*k,15+10*k) 
disp(-); 
disp('Press "enter" to rotate plot...'); 
pause 

end 
end 
if prnt==l; 

print 
pause(lO) 

end 
pause(wait); 

end 
% 

if errsum~=0 
% 
%2-D Error Performance Curve showing BER vs. Es/No. 
% 
figure(pic+12) 
semilogy(Eb_Nodb,ber) 
grid 
iffort==l 

ifdop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] 
title(['Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. 

Enc.)(Totalerrors=',int2stx(sum(erTvect)),')']) 
elseifdop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10] 

title(['Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. 
Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 

elseifdop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15] 
title(['Link 3 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. 

Enc.)(Total errors=',int2str(sum(errvect)),')']) 
else 

title(['Custom Link Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. 
Enc.)(Total errors=',int2str(sum(errvect)),')']) 

end 
elseif fort==0 

if dop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] 
title(['Link 1 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. 

Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 
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elseifdop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10] 
title(['Link 2 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. 

Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 
elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15] 

title(['Link 3 : Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. 
Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 

else 
title( ['Custom Link Performance graph: BIT Error Rate vs. Eb/No (Freq. Diff. 

Enc.)(Total errors=',int2str(sum(errvect)),')']) 
end 

end 
% 
xlabel(['Eb/No(dB)(#ofOFDM=',int2str(freqno),')(case=,,int2str(case),')(Interleaver 

pair=',int2str(rintlv),';,int2str(cintlv),,)M-ary=,,int2str(2Amary),',N- 
ary=',int2str(2Anary)]); 

ylabel([,SigmaRange:(',num2str(min(sigs)),'-',num2str(max(sigs)),')(R- 
S=',int2str(floor((n-k)/2)),')(Symbol#=',int2str(symno*freqno),,)(Seed=',num2str(s),')']); 

orient tall 
% 
%2-D Error Performance Curve showing SER vs. Eb/No. 
% 
figure(pic+13) 
semilogy(Es_Nodb,ser) 
grid 
iffort==l 

ifdop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] 
title(['Link 1 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. 

Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 
elseifdop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10] 

title(['Link 2 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. 
Enc.)(Totalerrors=,,int2str(sum(errvect)),')']) 

elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15] 
title(['Link 3 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. 

Enc.)(Total errors=',int2str(sum(errvect)),')']) 
else 

title(['Custom Link Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. 
Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 

end 
elseif fort==0 

ifdop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] 
title(['Link 1 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. 

Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 
elseif dop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10] 

title(['Link 2 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. 
Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 

elseif dop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15] 
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title(['Link 3 : Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. 
Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 

else 
title(['Custom Link Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. 

Enc.)(Totalerrors=',int2str(sum(errvect)),')']) 
end 

end 
text(min(ceil(Es_Nodb)),.18,['Loss=[',num2str(loss),T]); 
text(min(ceil(Es_Nodb))v12,['Delay=[',num2str(dly),T]); 
text(min(ceil(Es_Nodb)),.08,['Doppler=[',num2str(dop),']']); 
xlabel(['Es/No(dB)(#ofOFDM=',int2str(freqno),')(case=',int2str(case),')(Interleaver 

pair=,,int2str(rintlv),',',int2str(cintlv),')M-ary=',int2str(2Amary),',N- 
ary=',int2str(2Anary)]); 

ylabel(['SigmaRange:(',num2str(min(sigs)),'-',num2str(max(sigs)),')(R- 
S=',int2str(floor((n-k)/2)),')(Symbol#=',int2str(symno*freqno);)(Seed=',num2str(s),')']); 

orient tall 
end 

if prnt==l 
print 
pause(lO) 

end 
% 
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CHECK 

%function[error_no,bit_error_total/reqerrs,errmx,rowerrs]=check(pic,x,y,n,k,blklgth) 
% 
%  

% 
% Title : Source and Sink Message Checker 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Prof. Paul H. Moose, Naval Postgraduate School 
%Modified by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function[error_no,bit_error_total,freqeiTS,errmx,rowerrs]=check(pic,x,xbit,y,ybit,n,k,blkl 
gth) 
ifblklgth>n 

dispO 
disp('ERROR! The block length, blklgth, must be equal or less than the code word 

lengthen.') 
disp('Please enter a smaller value for blklgth, or change n.') 
disp(") 

elseif blklgth<=n 
if n<k 

disp(") 
disp('Error! The code word length,n,must be equal or larger than the information 

length,k.') 
disp('Please enter a larger value for n, or chnage k to a smaller number.') 
dispO 

elseif n>=k 
First_matrix=x; 
Second_matrix=y; 
[rx cx]=size(x); 
% 
%Compare inputs x and y and generate error matrix, "errors" 
% 
errors=(x~=y); 
% 
First=xbit; 
Second=ybit; 
[rxl cxl]=size(xbit); 
% 
%Compare inputs xbit and ybit and generate BET error matrix, "bit_errors" 
% 
bit_errors=(xbit~=ybit); 
% 
%Find the error distribution vs. OFDM frequencies 
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% 
freqerrs=sum(errors); 
% 
%Find the error location in "errors" where element in x and y differ. 
% 
Error_locations=(find(errors))'; 
Error_number=sum(sum(errors)); 
Correct_symbl_num=(size(y, 1 )*size(y,2))-Error_number; 
% 
%Find the bit error location in "errors" where element in xl and yl differ. 
%bit_Error_locations=(find(bit_errors))'; 
bit_error_total=sum(sum(bit_errors)); 
%Correct_bit_num=(size(yl,l)*size(yl,2))-bit_Error_number; 
% 
% 
%Reed-Solomon 8-bit symbol correction for (n-k)/2 symbols 
% 
symcorr=floor((n-k)/2); 
ifblklgth<=(n-k) 

dispCError!! !The block length is too short for the given n and k values') 
disp(") 

elseifblklgth>(n-k) 
errtrans=errors'; 
% 
%Reshape the error matrix as a vector of errors 
% 
errvect=errtrans(:)'; 
% 
blkrem=rem(length(errvect),blklgth); 
if blkrem~=0; 

zeropad=zeros(blklgth-blkrem); 
errvectpad=[errvect zeropad(l,:)]; 

elseif blkrem=0; 
errvectpad=errvect; 

end 
% 
blknos=length(errvectpad)/blklgth; 
% 
errcorct=[]; 
errblksum=[]; 
% 
forlp=l:blknos; 
errblk=errvectpad(((blklgth*(lp-l))+l):(blklgth*lp)); 
errblklgth=length(errblk); 
if sum(errblk)<=symcorr; 

noerr=zeros(errblklgth); 
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errblk=noerr(l,:); 
elseif sum(errblk)>symcorr; 

errblk=errblk; 
end 
errcorct=[errcorct errblk]; 
errblksum=[errblksum sum(errblk)]; 

end 
newerrvect=errcorct( 1 :length(errvect)); 
errtot=sum(newerrvect); 
RSerrs=(reshape(newerrvect,size(errors,2),size(errors,l)))'; 
% 
%Find the error distribution vs. OFDM Frequencies 
% 
freqerrs=sum(RSerrs); 
errindex=(find(RSerrs))'; 
RS errtot=sum(errblksum); 
RS errdif=Error_number-RS errtot; 
errperblk=[(l :blknos);errblksum]; 
% 
%Check to see if x and y are the same. If not, display error message 
% 
if x==y; 

disp('GREAT!! Ithere are no errors.') 
error_no=0; 
errmx=errors; 
rowerrs=sum(errors'); 

else 
disp('WARNING!:Errors were detected!') 
disp(") 
ifn==k 
disp('WARNING!: Since n=k,there is no R-S error correcting possible') 
disp(") 

end 
disp(['For the given input parameters:n=',int2str(n),'and k=',int2str(k),',the Reed- 

Solomon code is capable']) 
disp(['of correcting',int2str(symcorr),'errors.']) 
disp(") 
% 
%Check to see if xbit and ybit are the same. If not, display error message 
% 
if xbit==ybit; 

dispCGREAT!!!there are no bit errors.') 
bit_error_no=0; 
bit_errmx=bit_errors; 
bit_rowerrs=sum(bit_errors'); 

else 
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disp('WARNING!:Errors were detected!') 
dispO 
if n==k 
dispCWARNING!: Since n=k,there is no R-S error correcting possible') 
disp(") 
end 

end 
% 
%RS code was able to correct all errors 
% 
iferrtot==0 

Pre_RS_error_matrix=errors; 
disp('EXCELLENT: The Reed-Solomon code corrected all detected errors!') 
disp(['Originally the error total was:',int2str(Error_number)]) 

dispO 
error_no=0; 
errmx=zeros(rx,cx); 
rowerrs=sum(errmx'); 
% 
%RS code was able to correct some errors but not all of them 
% 

elseif errtot<Error_number 
Pre_RS_error_matrix=errors; 
Post_RS_error_matrix=RS errs; 
errmx=RSerrs; 
rowerrs=sum(errmx'); 
disp('OOOPS: The Reed-Solemon code corrected some detected errors, but not all.') 
disp(['Originally the error total was : ',int2str(Error_number)]) 
dispO 
disp(['After R-S decoding, the error number was reduced to:',int2str(RSerrtot)]) 
disp(") 
error_no=RSerrtot; 
disp([The total number of correct symbols are:',int2str((size(y,l)*size(y,2))- 

RSerrtot)]) 
disp(") 
disp('The error number distribution per block number is :') 
disp(errperblk) 
%figure(pic+3) 
%bar(( 1 :blknos),errblksum) 
%axis([0.5(blknos+0.5)0(max(errblksum)+l)]) 
%title(['Simulation#',int2str(pic),':Error Distribution Per Message Block (Error 

count=',int2str(error_no),')']) 
%xlabel( ['Message Block Number(block size:',int2str(blklgth),'symbols)']) 
% 
%RS code did not correct any errors 
% 
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elseif errtot==Error_number 
Error_matrix=errors; 
errmx=errors; 
rowerrs=sum(errors'); 
disp('OOOPS!:The Reed-Solomon code did not correct any errors.') 
disp('Perhaps a more powerful R-S code is required.') 
dispO 
disp(['The total number of error occurrences is:',int2str(Error_nurnber)]) 
disp(") 
error_no=errtot; 
disp('The error number distribution per block number is :') 
disp(errperblk) 
%figure(pic+4) 
%bar((l :blknos),errblksum) 
%axis([0.5 (blknos+.5) 0 (max(errblksum)+l)]) 
%title(['Simulation#',int2str(pic),':Error Distribution Per Message Block. (Error count 

=',int2str(error_no),')']) 
%xlabel(['Message Block Number (block size:',int2str(blklgth)',symbols)']) 
% 

end 
end 
end 
end 
end 
dispO '); 
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CHNOCDL 

%  

% 
%Title : Model Zero (Noise Free) simulation 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Dave Roderick, Naval Postgraduate School 
%Modified By : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function 
[emnax,errors,freqerrs]=chnOcdl(prnt,picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary, 
n,k,blklgth,Ng,fort) 
dispC'); 
klgth=length(k); 
chklp=l; 
errvect=[]; 
freqerrmx=[]; 
errsperpr=[]; 
Es_No=[]; 
sermx=[]; 
rowerrmx=[]; 
symno=rintl v* cintl v/freqno; 
% 
[xmt,modvals,B,nsymno]=cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary,fort 

); 
Random_Source_Msg=B 
% 
xmtifft=tda(Ng,xmt); 
xmtpts= 1 :length(xmtifft); 
% 
sandnfft=itda(Ng,xmtifft); 
K=(length(modvals(l ,:)))/2; 
[rcvd,M]=decdrcdl(picy_n,pic,case,K,sandnfft,nsymno,freqno,rintlv,cintlv,rnary,nary,fort 

); 
Transmitted_msg=B; 
Sink_msg=rcvd 
% 
% 
[errors,freqen:s,errrnx,rowerrs]=check(pic,B,rcvd,n,k(chklp),blklgth); 
errvect=[errvect,errors]; 
freqerrmx=[freqerrmx ;freqerrs]; 
ro werrmx=[ro werrmx ;ro werrs]; 
end 
ser=errvect/(symno*freqno); 
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sermx=[sermx; ser]; 
errsum=sum(errvect); 
errsperpr=[errsperpr,errsum]; 
errmax=max(rowerrmx'); 
if errsum==0; 

disp('Test Passed!!!') 
dispO 

elseif errsum~=0; 
dispCWARNING! Test Failed!') 
dispO 

end 
% 
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UHF Channel Model (multipath Channel Model2) 
Prof J. McEachen, Naval Postgraduate School 
Prof. Paul H. Moose, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

CHUHF 

%  

% 
%Title 
%Thesis Advisor 
%Author 
%Modified     by 
% 
%  

% 
function y=chuhf(s,x,loss,dly,dop,N,freqspace) 
c=10.A(-loss./20); 
deltat= 1 /(N*freqspace); 
d=(dly.*.00000 l)./deltat; 
e=dop./freqspace; 
[L,Nt]=size(x); 
D=length(d); 
x=x.'; 
x=x(:).'; 
% 
%D path with delays from d. (Uses macro dline.m) 
% 

xd=dline(x,d); 
[rr,cc]=size(xd); 
x=xd(l,:); 
% Offsets direct path by .7 of max doppler freq. (uses macro ofst.m) 
% 
xo=ofst(.7*e(l),N,x); 
% 
% First path with no fading, (uses macro ray_dop.m) 
% 
for 1=1 :D 

a=ray_dop(s,cc,N,e(l)); 
xd(l,:)=a.*xd(l,:); 

end 
%Sums the fading paths 
y=c*xd; 
% 
%Adds in the First path without fading for the GSM-Ricean. 
% 
y=y+xo; 
y=y(l:L*Nt); 
y=reshape(y ,Nt,L).'; 
%  
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Complex Frequency Array Generator 
Prof J. McEachen, Naval Postgraduate School 
Dave Roderick, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

CMV2FA 

%  
% 
%Title 
%Thesis Advisor 
%Author 
%Modified By 
% 
% .  

% 
function X=cmv2fa(N,M) 
[m n]=size(M); 
if rem(n,2)==0; 

M=M; 
else 

% 
M=[zeros(m,l)M]; 

end 
[m n]=size(M); 
K=round(n/2); 
% 
%Generate a matrix of zeros with m row and N columns. 
% 
X=zeros(m,N); 
% 
X(:,1:K)=M(:,K+1:2*K); 
X(:,N-K+1:N)=M(:,1:K); 
%  
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CMVDIFCK 

%  

% 
%Title : Frequency Array & Differential Encoder/Decoder Verifier 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : DaveRoderick, Naval Postgraduate School 
%Modified By : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function cmvdifck(s,symno,freqno,N,mary,nary) 
dispC ') 
disp(This m-file checks the correctness of the differential encloder/decoder & the 
frequnecy arrangers.') 
fort=input('To run the frequency version, enter l(one); otherwise, enter O(zero) torun the 
time version:'); 
% 
%Generate random m-ary message array 
% 
B=marymsg(mary, s, symno,freqno); 
Source_msg=B 
[Br Bc]=size(B); 
Bt=B'; 
Bvect=Bt(:)'; 
si=Bvect; 
Bi=reshape(si,Bc,Br)'; 
% 
% 
% 

m 1 =bm(nary,mb(mary,Bi)); 
lengthm 1 =length(m 1); 
nsymno=lengthml; 
remm 1 =rem(lengthm 1 ,freqno); 
if remml==0; 

ml=ml; 
else 

zero=zeros (freqno-remm 1); 
ml=[ml zero(l,:)]; 

end 
length2m 1 =length(m 1); 
m=(reshape(ml,freqno,length2ml/freqno))'; 
N_ary_msg=m; 
% 
% Generate a differentially encoded matrix of complex values with unit 
% magnitude and one of (2An) equal phases. 
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% 
MDD=difcdrft(nary,m,fort); 
[MDm MDn]=size(MDD); 
MD=MDD; 
Cmplx_mod_array=MDD; 
% 
% Form the frequency array of modulation values that include guard interval. 
% 
Fa=cmv2fa(N,MD); 
Freq_array=Fa; 
% 
% Generate the corresponding complex modulation values from the received frequency 
array. 
% 
K=(length(MD(l,:)))/2; 
M=fa2cma(K,Fa); 
Cmplx_mod_vals=M; 
% 
% Perform differential decoding. 
% 
naryp=nary; 
[s,MM]=dfdcdrft(naryp,nary,M,fort); 
[L,cc]=size(s); 
strans=s'; 
svect=strans(:)'; 
corrs=svect(l:nsymno); 
% 
% Convert from N-ary symbols to the final message format of M-ary symbols. 
% 
nsymno; 
Br=bm(mary,mb(nary,corrs)); 
lengthBr=length(Br); 
rmndr=rem(length(Br),freqno); 
if rmndr==0; 

Br=Br; 
elseif rmndr~=0; 

Br=Br(l :(lengthBr-rmndr)); 
end 
rcvd=(reshape(Br,freqno,length(Br)/freqno))'; 
[Br Bc]=size(rcvd); 
SYNC=[]; 
sr=rcvd'; 
si=sr(:)'; 
sd=si; 
outmsg=reshape(sd,Bc,Br)'; 
Sink_Msg=outmsg 
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% 
% Check results for correctness 
% 
[error_no,freqerrs,errmx,rowerrs]=check(0,B,rcvd,freqno,freqno,freqno); 
if sum(rowerrs)==0 

disp('Test Passed!!!'); 
elseif sum(rowerrs)~=0 

dispCOOOOPS - Test Failed!') 
end 
disp('__ ') 
%  
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CNV ENCD 

%- 
% 
%Title 
%Thesis Advisor 
% Reference 

Convoultional Encoding 
Prof J. McEachen, Naval Postgraduate School 
Contemporary Communication System using MatLab 

%John G. Proakis & Masoud Salehi. 
%  

% 
function ce_output=cnv_encd(ce_g,ce_kO,ce_input) 
% cnv_encd(ce_g,ce_kO,ce_input) 
% determines the output sequence of a binary convolutional encoder 
% ce_g is the generator matrix of the convolutional code 
% with ce_nO rows and ce_l*ce_kO columns. Its rows are ce_gl,ce_g2,....ce_gn. 
% ce_kO is the number of bits entering the encoder at each clock cycle. 

% check to see if extra zero padding is necessary 
if rem(length(ce_input),ce_kO)>0 

ce_input=[ce_input,zeros(size( 1 :ce_kO-rem(length(ce_input),ce_kO)))]; 
end 
ce_n=length(ce_input)/ce_kO; 
%check the size of matrix ce_g 
if rem(size(ce_g,2),ce_k0)>0 

error ('Error, ce_g is not of the right size.') 
end 
% determine ce_l and ce_nO 
ce_l=size(ce_g,2)/ce_k0; 
%disp([The value of ce_l is:',int2str(ce_l)]); 
ce_nO=size(ce_g, 1); 
%disp('') 
%disp(['The value of ce_nO is:',int2str(ce_n0)]); 
%add extra zeros 
ce_u=[zeros(size(l:(ce_l-l)*ce_kO)),ce_input,zeros(size(l:(ce_l-l)*ce_kO))]; 
%generate ce_uu, a matrix whose column are the contents of 
%conv. encoder at various cycles. 
ce_ul=ce_u(ce_l*ce_kO:-l: 1); 
for ce_i=l:ce_n+ce_l-2 

ce_u l=[ce_u 1 ,ce_u((ce_i+ce_l)*ce_kO:-1 :ce_i*ce_kO+1)]; 
end 
ce_uu=reshape(ce_u 1 ,ce_l*ce_kO,ce_n+ce_l-1); 
% determine the ce_output 
ce_output=reshape(rem(ce_g*ce_uu,2),l,ce_n0*(ce_l+ce_n-l)); 
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CODERIFT 

COFDM Encoder Without Interleaving 
Prof J. McEachen, Naval Postgraduate School 
Dave Roderick, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

%  
% 
%Title 
%Thesis Advisor 
%Author 
%Modified By 
% 
%  
function [Fa,MD,B,nsymno]=coderift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,fort); 

% 
if rem(freqno,2)~=0 

disp('ERROR: The number of matrix column, freqno, representing OFDM frequencies 
must be an even number!') 
elseif rem(freqno,2)==0 

% 
if(rintlv * cintlv)<(freqno) 

dispC) 
dispC'ERROR: The row and column interleave parameters are not compatible with # 

of OFDM frequencies!') 
disp(") 

else 
% 
symno=rintlv*cintlv/freqno; 
% 
if freqno>=N; 

dispC) 
dispC'ERROR: The number of frequency points, N, needs to be increased!') 
disp('N must be larger than:') 
disp(") 
disp(freqno) 
dispC) 

elseif freqno<N; 
Nmbr_of_symbols=symno*freqno; 
% 
B=marymsg(mary,s,symno,freqno); 
Rndm_m_ary_msg=B; 
% 

m 1 =bm(nary ,mb(mary ,B)); 
lengthm 1 =length(m 1); 
nsymno=lengthm 1; 
remm 1 =rem(lengthm 1 ,freqno); 
if remml==0; 

ml=ml; 
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else 
zero=zeros(freqno-remm 1); 
ml=[ml zero(l,:)]; 

end 
length2m 1 =length(m 1); 
m=(reshape(ml,freqno,length2ml/freqno))'; 
N_ary_msg=m; 
% 
MDD=difcdrft(nary,m,fort); 
[MDm MDn]=size(MDD); 
MD=MDD; 
Cmplx_mod_array=MDD; 
% 
Fa=cmv2fa(N,MD); 
Freq_array=Fa; 
% 
if picy_n==l 

if pic==l 
figure(pic) 
plot(MD,'*') 
hold on; 
plot(0,0,'+') 
hold off; 
title([Transmitted Signar,int2str(nary),'-ary Constellation Plot']) 
axis('square'); 
orient tall 
grid 
% 
figure(pic+l) 
% 
xaxis=[0:N-l]; 
plot(xaxis,abs(Fa),'*') 
title([Frequency Arrary Plot (number of frequency point are',int2str(N),')']) 
xlabel(['Guard interval length is',int2str(N-freqno)]) 
axis('square'); 
orient tall 
grid 

end 
end 

end 
end 

end 
end 
end 
end 
%  
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COFDMSIM 

%  

% 
%Title : Simulation Of COFDM 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Dave Roderick, Naval Postgraduate School 
%Modified By      : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 

dispC '); 
disp('This batch m-file runs COFDM simulations using different channel models.') 
fort=input(To run the frequency version, enter l(one), To run the time version, enter 0 
(zero), or to run both enter 2(two):'); 
freqno=input('Enter the # of OFDM frequencies (note : must be even):'); 
N=input('Enter the number of FFT points (Note : This number must be larger than # of 
OFDM frequencies):'); 
chnmdl=input('Do you want to run channel model 0, channel model 1, channel model 2 
or channel model 3 ? (Enter 0,1,2 or 3):'); 
if chnmdl==0 

disp('Channel model 0 simulation performed.'); 
sigs=0; 
loss=0; 
dop=0; 
dly=0; 

elseif chnmdl==l 
disp('Channel model 1 simulation performed.'); 
sigs=input('Enter the sigma noise parameter range or single value. (Ex 

linspace(0,0.02,20)or .003):'); 
loss=0; 
dop=0; 
dly=0; 

elseif chnmdl==2 
disp('Channel model 2 simulation performed.'); 
sigs=0; 
pthno=input('Do you want to run linkl ,link2, link3 or a custom link ? (Enter 1,2,3 or 4 

for custom):'); 
% 
%Link parameters 
% 
if pthno==3 

%my link 3 

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4, 
32.57,34.74,36.92]; 
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dop=[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]; 

dly=[0,0.05,0.10,0.15;0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0. 
85]; 

elseif pthno==2 
%my link 2 

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4, 
32.57,34.74,36.92]; 

dop=[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]; 

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0. 
85]; 

elseif pthno==l 
%my link 1 

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4, 
32.57,34.74,36.92]; 

dop=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]; 

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0. 
85]; 

elseif pthno==4 
dispOCustom link simulation...') 
loss=input('Enter the apth loss in db (Ex [0 4 7]):'); 
dop=input('Enter the doppler frequency in Hertz (Ex [30 20 15]):'); 
dly=input('Enter the time delays of the multipaths in microsecs (Ex [0 0.6 3.9]):'); 

end 
elseif chnmdl==3 

disp('Channel model 3 simulation performed'); 
sigs=input('Enter the sigma noise parameter range or single value. (Ex linspace 

(0,0.02,20) or .003):'); 
pthno=input('Do you want to run linkl, link2, link3 or a custom link ?(Enter 1,2,3 or 4 

for custom):'); 
% 
%Link parameters 
% 
if pthno==3 

%my link 3 

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4, 
32.57,34.74,36.92]; 

dop=[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]; 
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dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0. 
85]; 

elseif pthno==2 
%my link 2 

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4, 
32.57,34.74,36.92]; 

dop=[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]; 

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0. 

85]; 

elseif pthno==l 
%my link 1 

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4, 
32.57,34.74,36.92]; 

dop=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]; 

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0. 
85]; 

elseif pthno==4 
disp('Custom link simulation...') 
loss=input('Enter the apth loss in db (Ex [0 4 7]):'); 
dop=input('Enter the doppler frequency in Hertz (Ex [30 20 15]):'); 
dly=input('Enter the time delays of the multipaths in microsecs (Ex [0 0.6 3.9]):'); 

end 
end 
allcase=input('Simulate all interleaver cases (yes) or specific ones(no)? (l=yes,0=no):'); 
if allcase==l 

disp('All cases,(0-8),will be tested.'); 
cases=[0:8]; 

elseif allcase==0 
cases=input('Enter specific case numbers from (0 to 8)(Ex [0 4 5 8]):'); 

end 
iffort~=2 

if length(cases)~=l 
casey_n=input('Do you want to find optimal interleaver case(s) ? (l=yes, 0=no):'); 

end 
end 
totsym=input('Enter the total minimum number of symbols to simulate (Ex 10000):'); 
rowno=ceil(totsym/freqno); 
if totsym~=(rowno*freqno) 
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disp(['Note:Based on the parameters thus far, the actual total number of symbol to be 
simulated will be :',int2str(rowno*freqno)]); 
end 
pry_n=input('For the interleaver, do you want to calculate all possible intermediate 
matrix dimension pairs?(l=yes,0=no):'); 
pairl=l; 
pair2=rowno*freqno; 
if pry_n==l 

% 
% 
% 
Intrlvr_pairs=intlvprs(rowno,freqno); 
intlvrprs=Intrl vr_pairs; 
disp(") 
disp('For these input parameters, all possible acceptable interleaver dimension pairs are 

:') 
disp(Intrlvr_pairs) 

end 
pairs=input(['Desired interleaver pair? (Ex [row # col #] = [20 50] (Note: entering 
[',int2str(pairl),' ',int2str(pair2),'],or [',int2str(pair2),' ',int2str(pairl),'], offers no 
interleaving functionality):']); 
rintlv=pairs(l); 
cintlv=pairs(2); 
mary=input('Enter the number of M-ary bits, q (i.e. for 256-ary, q=8):'); 
nary=input('Enter the number of N-ary bits,q(i.e. for 16-ary, q=4):'); 
freqspace=round( 16600000/freqno); 
Ng=input(Enter the guard interval length (Number of sample points):'); 
ecc=input('Do you want to include error correction coding ? (l=yes, 0=no):'); 
if ecc==l 

code=input('Entern,k and error correction block length (Ex [240 200 240]):'); 
n=code(l); 
k=code(2); 
blklgth=code(3); 

elseif ecc==0 
n=freqno; 
k=freqno; 
blklgth=freqno; 

end 
svals=input('Enter specific seed values, or 0 for a random seed (ex [103 22, 60] or [0]):'); 
picy_n=input('Do you want signal plots? (l=yes, 0=no):'); 
if picy_n==l 

wait=input('How many seconds of delay between pictures?'); 
wait=round(wait); 

elseif picy_n==0 
wait=0; 

end 
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prnty_n=input('Do you want print outs? (l=yes, 0=no):'); 
pic=0; 
svect=[]; 
for run=l :length(svals); 

errcase=[]; 
errtot=[]; 
if min(svals)==0 

rand('seed',sum(100*clock)); 
s=round(abs(rand(l)*pi*10*(pic+l)*run)); 

elseif min(svals)~=0 
s=svals(run); 

end 
svect=[svect,s]; 
forl=l:length(cases); 

dispC. 
disp(['Run#:',int2str(run)]); 
disp(['Seed=',int2str(s)]); 
disp(['Interleavercase=',int2str(cases(l))]); 
% 
% 
iffort<=l 

[errmax,errors,freqerrs]=chancdl(chnmdl,wait,prnty_n,picy_n,pic,cases(l),s,freqno,rintlv, 
cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,fort); 

elseif fort==2 
disp('Frequency differential encoding/decoding simulation...') 
dispC  ') 

[errmax,errors,freqerrs]=chancdl(chnmdl,wait,prnty_n,picy_n,pic,cases(l),s,freqno,rintlv, 
cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,l); 

disor1************************************************************') 
dispCTime differential encoding/decoding simulation....') 
dispC  ') 

[errmax,errors,freqerrs]=chancdl(chnmdl,wait,prnty_n,picy_n,pic+12,cases(l),s,freqno,rin 
tlv,cintlv,N,mary,nary,n,k,blklgth,Ng,sigs,loss,dly,dop,freqspace,0); 

end 
errtot=[errtot sum(errors)]; 
errvect= [errvect,errtot]; 
errcase=[errcase sum(errmax)]; 

end 
iffort~=2 

casearry= [cases; errcase]; 
% 
% 
% 
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%if casey_n==l 
% figure(pic+13) 
% bar(cases,errcase) 
%grid 
%orient tall 
iffort==l 

title([int2str(pic),':Maximum Error Total Vs. Interleaver Case Number (Freq. 
Diff. Enc.) (OFDM Freq.#=',int2str(freqno),')']) 

elseif fort==0 
title([int2str(pic),':Maximum Error Total Vs. Interleaver Case Number (Time 

Diff. Enc.) (OFDM Freq.#=',int2str(freqno),')']) 
end 
xlabel(['CDL Interleaver Case Number']) 
ylabel(['Maximum Error Count For Any Symbol Row (Seed=',int2str(s),')']) 
axis([-.5 8.5 0 (max(errcase)+l)]) 
if prnty_n==l; 

print 
pause(lO) 

end 
pause(wait); 
% 
figure(pic+14) 
bar(cases,errtot) 
grid 
orient tall 
title([int2str(pic),':Error Totals Vs. Interleaver Case Number']) 
xlabel(['CDL Interleaver Case Number']) 
ylabel(['Sigma:(',num2str(min(sigs)),'-',num2str(max(sigs)),') Error Total']) 
axis([-.5 8.5 (min(errtot)-l) (max(errtot)+l)]) 
if prnty_n==l; 

print 
pause(lO) 

end 
pause(wait); 

end 
pic=pic+l; 

end 
end 

) 
disp(") 
disp('Channel model batch run is finished!') 
Seed=svect 
%  
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CVDD 

%  

% 
%Title : Continuous Variable digital delay element. 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Reference : C.W. Farrow," A Continuously Variable Digital Element", IEEE 
%International Symposium on Circuits & Systems,pp.2641-2645,1988. 
%Modified     by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function [y]=cvdd(x,alpha) 
if ((nargin~=2)l(nargout~=l)) 

error('ERROR:usage:y=y=cvdd(x,alpha);'); 
return; 

end 
if (size(x)~=size(alpha)) 

error('ERROR:x and alpha must be the same size'); 
return; 

end 
if (abs(alpha)>0.5) 

error('ERROR:alpha must be within -0.5 and 0.5'); 
return; 

end 
% 
%  

% Initialization 
%  

% 
% Initialize FIR filter coefficients are in [1] (0,0.328 pass band) 
C0=[-0.013824 0.054062 -0.157959 0.616394 0.616394 -0.157959 0.054062 -0.013824]; 
Cl=[0.003143 -0.019287 0.1008 -1.226364 1.226364 -0.1008 0.019287 -0.003143]; 
C2=[0.055298 -0.216248 0.631836 -0.465576 -0.465576 0.631836 -0.216248 0.055298]; 
C3=[-0.012573 0.077148 -0.403198 0.905457 -0.905457 0.403198 -0.077148 0.012573]; 

% 
%  

% 4 parallel FIR and add together based on [1] 
%  

y0=filter(C0,[l],x); 
yl=filter(Cl,[l],x); 
y2=filter(C2,[l],x); 
y3=filter(C3,[l],x); 
% 
y=alpha.*y3; 
y=alpha.*(y+y2); 
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y=alpha.*(y+yl); 
y=y+yO; 
%  
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DECDRCDL 

%  

% 
%Title : COFDM Decoder With Deinterleaveing 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Dave Roderick, Naval Postgraduate School 
%Modified By : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function[outmsg,viterbi_output3itjandom_msg,random3it,M,MM]=decdrcdl(picy_n,p 
ic,case,K,Fa,nsymno,freqno,rdintlv,cdintlv,rnary,nary,fort,B_random) 
% 
%modified on 4 Jan. 
%to generate BER vs Eb/No. 
%to provide bit outputs 
% 
M=fa2cma(K,Fa); 
Cmplx_mod_vals=M; 
% 
naryp=nary; 
[s,MM]=dfdcdrft(naryp,nary,M,fort); 
[L,cc]=size(s); 
strans=s'; 
svect=strans(:)'; 
corrs=svect( 1: nsymno); 
% 
% 
nsymno; 
Br=bm(mary,mb(nary,corrs)); 
lengthBr=length(Br); 
rmndr=rem(length(Br),freqno); 
if rmndr==0; 

Br=Br; 
elseif rmndr~=0; 

Br=Br( 1: (lengthBr-rmndr)); 
end 
rcvd=(reshape(Br,freqno,length(Br)/freqno))'; 
Rcvd_Intlv_Ary=rcvd; 
% 
% 
[Br Bc]=size(rcvd); 
SYNC=[]; 
sr=rcvd'; 
si=sr(:)'; 
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sd=cdldlv(rdintlv,cdintlv,case,si,SYNC); 
viter_G=[10 1 1 0 1 1;1 1 1 1 00 1]; 
viter_k=l; 
binary_value=mb(mary,sd); 
[viterbi_output,survivor_sta,cumul_metrix]=viterbi(viter_G,viter_k,binary_value); 
mary_dec=bm(mary,viterbi_output); 
viterbi_output_bit=viterbi_output; 
%outmsg=reshape(sd,Bc,Br)'; 
% 
random_bit=B_random; 
random_msg=bm(mary,random_bit); 
[Brow Bcol]=size(random_msg); 
% 
outmsg=reshape(mary_dec,Bcol,Brow)'; 

Sink_Msg=outmsg; 
%       
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DECDRIFT 

%  

% 
%Title : COFDM Decoder Without Deinterleaving 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Dave Roderick, Naval Postgraduate 
%Modified By : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function 
[outmsg]=decdrift(picy_n,pic,K,Fa,nsyrrmo/reqno,rdintlv,cdintlv,mary,nary,fort) 
M=fa2cma(K,Fa); 
Cmplx_mod_vals=M; 
% 
if picy_n==l 

figure(pic+5) 
plot(M,'*') 
hold on; 
plot(0,0,'+') 
hold off; 
title(['Received',int2str(nary),'-ary Signal Constellation Plot, before Differential 

Decoding']) 
orient tall 
axis('square'); 
grid 

end 
% 
naryp=nary; 
[s,MM]=dfdcdrft(naryp,nary,M,fort); 
[L,cc]=size(s); 
strans=s'; 
svect=strans(:)'; 
corrs=svect( 1 :nsymno); 
% 
if picy_n==l 

figure(pic+6) 
plot(MM,'+') 
hold on; 
plot(0,0,'+') 
hold off; 
title(['Received',int2str(nary),'-ary Signal Constellation Plot, After Differential 

Decoding']) 
orient tall 
axis('square'); 
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grid 
end 
% 
nsymno; 
Br=bm(mary,mb(nary,corrs)); 
lengthBr=length(Br); 
rmndr=rem(length(Br),freqno); 
if rmndr==0; 

Br=Br; 
elseif rmndr~=0; 

Br=Br( 1 :(lengthBr-rmndr)); 
end 
rcvd=(reshape(Br,freqno,length(Br)/freqno))'; 
M_ary_rcvd=rcvd; 
outmsg=rcvd; 
%  
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DECI2BIN 

%  
% 
%Title 
%Thesis Advisor 
%Author 
% 
%  

% 
function y=deci2bin(x,l) 
y=zeros(l,l); 
vi=l; 
while x>=0 & vi<=l 

y(vi)=rem(x,2); 
x=(x-y(vi))/2; 
vi=vi+l; 

end 
y=y(i:-i:D; 

Convert Decimal To Binary 
Prof J. McEachen, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 
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DFDCDRFT 

%  

% 
%Title : Complex Number Demodulator & Frequency/Time Differential Decoder 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Prof. Paul H. Moose, Naval Postgraduate School 
%Modified     by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function [s,M]=dfdcdrft(qp,q,MD,fort) 
if fort==0 %Time Differential decoding 

% 
% 
MD=MD'; 
[m n]=size(MD); 
% 
% Perform a looping routine to find the phase differences between adjacent values in 

the 
% array,MD,and put these calculated values into array,M. 
% 
for 1=1 :m 

forj=l:n-l 
M(l,j)=MD(lo+l)*conj(MD(l,j)); 

end 
end 
% 
%Transpose the array back to its original form 
.% 
M=M'; 
% 
% Calculate the number of M-ary symbols based upon the exponent qp,then use this 

number 
% to find the number of equally spaced phases in a unit circle. 
N=2Aqp; 
dph=2*pi/N; 
% 
% Divide the phase arguments of elements in M, by the equal phases generated by dph. 
phn=angle(M) ./dph; 
% 
% Calculate the phase sector number by finding the remainders. 
% 
s=rem(round(phn)+N,N); 

elseif fort==l % Frequency Differential decoding 
% 

137 



% Transpose the modulation array, and find the dimensions 
% 
[m,n]=size(MD); 
MD=MD(:,2:n); 
[m n]=size(MD); 
% 
% Perform a looping routine to find the phase differences between 
% adjacent values in the array, MD, and put these calculated values into array,M. 
% 
for 1=1 :m 

forj=l:n-l 
M(l,j)=MD(l,j+l)*conj(MD(l,j)); 

end 
end 
% 
N=2Aqp; 
dph=2*pi/N; 
% 
% Calculate the phase sector number by finding the remainders. 
phn=angle(M)./dph; 
s=rem(round(phn)+N,N); 

end 
%  .  
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DIFCDRFT 

%  

% 
%Title : Complex Number Modulator & Frequency/Time Differential Encoder 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Prof. Paul H. Moose, Naval Postgraduate School 
%Modified     by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function MD=difcdrft(q,m,fort) 
if fort==0 %Time differential encoding 

% 
% M-ary alphabet size 
% 
N=2Aq; 
% Determine the number of equal phases based upon the m-ary symbol length 
% 
dph=2*pi/N; 
% 
% Find the size of the input symbol matrix (# of row & # of columns) 
[rr n]=size(m); 
% 
% Perform the time differential encoding of phase values by cumulative summing 

matrix, 
% m, down one column at a time across the entire matrix. This function generates a 

matrix. 
% 
fork=l:n 

md=cumsum(m(: ,k)); 
% 
% Generate the complex numbers with correspondiing phase values. 
% 
MD(:,k)=exp(i*dph.*md); 

end 
% 
% Inject the reference row of ones (zero phase) at top of output matrix for 
% differential encoding synchronization 
% 
MD=[ones(l,n);MD]; 

el seif fort==l % Frequency Differential encoding 
% 
% M-ary alphabet size 
N=2Aq; 
% 

139 



dph=2*pi/N; 
% 
% Find the size of the input symbol matrix (# of row & # of columns) 
% 
[rr n]=size(m); 
% 
% 
md=cumsum(m'); 
md=md'; 
% 
% Generate the complex numbers with corresponding phase values. 
% 
MD=exp(i*dph. *md); 
% 
% Inject the reference row of ones (zero phase) at top of output matrix for 
% differential encoding synchronization. 
% 
MD=[ones(rr,2)MD]; 

end 
%        
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DIFFCHKR 

%  

% 
%Title : Differential Encoder/Decoder Checker 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Dave Roderick, Naval Postgraduate School 
%Modified By : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function diffchkx(s,symno,freqno,mary,nary) 
fort=input('To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run 
the time version:'); 
% 
B=marymsg(mary,s,symno,freqno); 
Rndm_m_ary_msg=B; 
% 
m 1 =bm(nary,mb(mary,B)); 
lengthm 1 =length(m 1); 
m=(reshape(ml,lengthml/symno,syrnno))'; 
N_ary_msg=m; 
% 
iffort==l 

dispO 
disp('Frequency Differential Encode/Decode version') 
% 
%Freq. Diff. Enc. 
% 
MDD=difcdrf(mary ,m); 

elseif fort~=l 
disp(") 
dispCTime Differential Encode/Decode version') 
% 
MDD=difcdrt(mary ,m); 

end 
% 
maryq=mary; 
iffort==l 

% 
[s M]=difdcdrf(maryq,mary,MDD); 

elseif fort ~=1 
% 
[s M]=difdcdrt(maryq,mary,MDD); 

end 
% 
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%Check results for correctness, (uses m-file check.m) 
% 
[erxor_no,freqerrs,enTTix,rowerrs]=check(0,rn,s,freqno,freqno,freqno); 
% -— 
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DLINE 

%  
% 
%Title 
%Thesis Advisor 
%Author 
%Modified     by 
% 
% 

UHF Channel Delay Line Generator 
Prof J. McEachen, Naval Postgraduate School 
Prof. Paul H. Moose, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

,0  

% 

function xd=dline(x,d) 
x=x.'; 
dmax=max(d); 
dmin=min(d); 
nmin=floor(dmin); 
nmax=ceil(dmax); 
x=[x ;zeros(nmax+3,1)]; 
N=length(x); 
Nd=length(d); 
% 
forn=l:Nd; 

di=d(n); 
D=floor(di); 
deld=di-D; 
xd(:,n)=cvdd(x,deld-.5); 
xd(: ,n)=[zeros(D, 1 );xd( 1 :N-D,n)]; 

end 
xd=xd.'; 
[rr,cc]=size(xd); 
xd=xd(:,4+nmin:cc); 
%  
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FA2CMA 

%  
% 
%Title 
%Thesis Advisor 
%Author 
%Modified     by 
% 
% 

Frequency Array To Complex Modulation Array Converter 
Prof J. McEachen, Naval Postgraduate School 
Prof. Paul H. Moose, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

,0  

% 
function Mm=fa2cma(K,X) 
% 
% 
[m n]=size(X); 
% 
Mm(:,l:K)=X(:,n-K+l:n); 
Mm(:,K+l:2*K)=X(:,l:K); 
Cmplx_mod_vals=Mm; 
%  
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INTLVCHK 

%- 
% 

Interleaver/Deinterleaver Verifier 
Prof J. McEachen, Naval Postgraduate School 
Dave Roderick, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

%Title 
%Thesis Advisor 
%Author 
%Modified By 
% 
%  

% 
function intlvchk(s,symno,freqno,rintlv,cintlv,mary,case) 
% 
multiples=mltpl (s ymno ,freqno); 
Intrlvr_nbr_mltpls=multiples; 
% 
% 
if (symno*freqno)~=(rintlv*cintlv) 

disp('ERROR: The interleaver parameters, rintlv and cintlv, are not compatible with the 
message array size.') 

disp('     The acceptable choice of possible number are:') 
dispO 
disp(multiples) 
disp('Note: The selected pair of numbers must be divisible by the number of rows and 

columns of the input matrix multiplied together.') 
disp('     In this case the number of rows times the number of columns is:') 
disp(") 
disp(symno*freqno) 

elseif(symno*freqno)/(rintlv*cintlv)==l 
% 
B=marymsg(mary,s,symno,freqno); 
Random_msg=B 
% 
SYNC=[]; 
[Br Bc]=size(B); 
Bt=B'; 
Bvect=Bt(:)'; 
si=cdlilv(rintlv,cintlv,case,Bvect,SYNC); 
Bi=reshape(si,Bc,Br)'; 
Interleaved_array=Bi 
% 
[Br Bc]=size(Bi); 
SYNC=[]; 
sr=Bi'; 
si=sr(:)'; 
sd=cdldlv(rintlv,cintlv,case,si,SYNC); 
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Bd=reshape(sd,Bc,Br)'; 
Deinterleaved_array=B d 
% 
[error_no,freqerrs,errmx,rowerrs]=check(0,B,Bd,freqno,freqno,freqno); 

end 
%   
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INTLVPRS 

%  
% 

%Title 
%Thesis Advisor 
%Author 
%Modified By 
% 
% 

Intermediate Matrix Interleaver Dimension Pairs 
Prof J. McEachen, Naval Postgraduate School 
Dave Roderick, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

i0  

% 
function pairs=intlvprs(n,m) 
% 
prod=n*m; 
% 
multvect=[l]; 
% 
for i=2:prod; 

remdr=rem(prod,i); 
if remdr==0 

multvect=[multvect i]; 
else 

multvect=multvect; 
end 
% 
mult=multvect; 

end 
lngth=length(mult); 
nbr=mult(lngth); 
result=[l nbr]; 
for i=2:lngth; 

crntpr=[mult(i) nbr/mult(i)]; 
result=[result;crntpr]; 

end 
pairs=result; 
%  
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ITDA 

%  

% 
%Title : Frequency Domain Samples Without Guard Interval 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Prof. Paul H. Moose, Naval Postgraduate School 
%Modified     by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function Y=itda(Ng,y) 
% 
[L Nt]=size(y); 
% Remove the guard interval for channel compensation, Ng, precursor. 
% 
y=y(:,Ng+l:Nt); 
% Take the FFT of array,y 
% 
Y=fft(y.').'; 
%  
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MARYMSG 

%  

% 
%Title 
%Thesis Advisor 
%Author 
% 
% 

M-ary Message Test Pattern Generator 
Prof J. McEachen, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

•0  

% 
function [vmary_ce,random_bit]=marymsg(q,s,n,m) 
% 
%for input of 100 symbols 
[random_bit]=msg(s,66); 
%for input of 5000 symbols 
%[random_bit]=msg(s,2514); 
%for input of 20000 symbols with 48 sub-carriers 
% [random_bit]=msg(s, 10002); 
% 
conv_g=[10 1 10 1 1;1 1 1 10 01]; 
conv_k0=l; 
conv_output=cnv_encd(conv_g,conv_kO,random_bit); 

vmary_ce=(reshape(bm(q,conv_output),m,n))'; 
% 
%  
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MB 

%  

% 
%Title 
%Thesis Advisor 
%Author 
%Modified     by 
% 
%  

% 
function [b]=mb(q,m) 
% 
row=size(m,l); 
col=size(m,2); 
% 
m=reshape(m',l,(row*col)); 
% 
b0=rem(m,2); 
m=(m-b0)./2; 
B=bO; 
% 
% 
forj=l:q-l 

bj=rem(m,2); 
m=(m-bj)./2; 
% 
% 
B=[B;bj]; 

end 
% 
b=B(:)'; 
binary=b; 
%  

M-ary To Binary Converter 
Prof J. McEachen, Naval Postgraduate School 
Prof. Paul H. Moose, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 
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METRIC 

%  

% 
%Title : Viterbi Hard Decision Decoding matric 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function distance=metric(v_x,v_y) 
if v_x==v_y 

distance=0; 
else 

distance=l; 
end 
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MLTPL 

%  

% 
%Title : Common Multiples 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
% Author : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function [mult]=mltpl(n,m) 
% 
max=n*m; 
% 
multvect=[l]; 
% 
for i=2:max; 

remdr=rem(max ,i); 
if remdr==0 

multvect=[multvect i]; 
else 

multvect=multvect; 
end 
% 
mult=multvect; 

end 
%  
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MSG 

%  

% 
%Title : Message Test Pattern Generator 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Prof. Paul H. Moose, Naval Postgraduate School 
%Modified     by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function u=msg(s,k) 
% 

%rand('uniform'); 
% 
temp=rand('seed'); 
% 
rand('seed',s); 
% 
u=round(rand(l ,k)); 
% 
%  
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NXT_STAT 

%  

% 
%Title : Next State 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function [next_state,memory_contents]=nxt_stat(current_state,input,v_L,v_k) 
binary_state=deci2bin(current_state,v_k*(v_L-1)); 
binary_input=deci2bin(input,v_k); 
next_state_binary=[binary_input,binary_state(l:(v_L-2)*v_k)]; 
next_state=bin2deci(next_state_binary); 
memory_contents=[binary_input,binary_state]; 
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Channel Offset 
Prof J. McEachen, Naval Postgraduate School 
Prof. Paul H. Moose, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

OFST 

%  
% 
%Title 
%Thesis Advisor 
%Author 
%Modified     by 
% 
%  

% 
function xo=ofst(e,N,x) 
[m Nt]=size(x); 
xo=x.'; 
x=x.'; 
x=x(:); 
x=x.'; 
Nt=length(x); 
1=1 :Nt; 
% 
% 
ex=x.*exp(i*(2*pi/N)*e.*l); 
xo(:)=x; 
xo=xo.'; 
%  
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RAY DOP 

%  
% 
%Title 
%Thesis Advisor 
%Author 
%Modified     by 
% 
%  

% 
function c=ray_dop(s,M,N,es) 
m=0:M-l; 
randn('seed',s+10); 
prl=randn(l,20); 
randn('seed',s+20); 
pim=i*randn(l,20); 
p=prl+pim; 
p=p/(40*5); 
rand('seed',s+30); 
e=rand(l,20); 
e=es*cos(2*pi*(e-.5)); 
E=exp(i*2*pi*e'*m/N); 
c=p*E; 
%  

Rayleigh Doppier 
Prof J. McEachen, Naval Postgraduate School 
Prof. Paul H. Moose, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 
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Rotate Vector 
Prof J. McEachen, Naval Postgraduate School 
Prof. Paul H. Moose, Naval Postgraduate School 
Tan Kok Chye, Naval Postgraduate School 

ROTM 

%  
% 
%Title 
%Thesis Advisor 
%Author 
%Modified     by 
% 
%  

% 
function [vp,vn]=rotm(v,m) 
L=length(v); 
m=rem(m,L); 
ii=(l:L)-l; 
isp=rem(ii-m+L,L)+1; 
isn=rem(ii+m+L,L)+l; 
vp=v(isp); 
vn=v(isn); 
% ____ 
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TDA 

%  

% 
%Title : Time Domain Samples With Guard Interval Precursor 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Prof. Paul H. Moose, Naval Postgraduate School 
%Modified     by : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function x=tda(Ng,X) 
[m N]=size(X); 
% 
% Perform inverse FFT on frequency values in array,X 
% 
x=ifft(X.'); 
% Add precursor of Ng samples to the beginning of the time domain array for channel 
% compensation. 
% 
x=x.'; 
ifNg==0 

x=x; 
else 

x=[x(:,N-Ng+l:N)x]; 
end 
%  
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UHFIFT 

%  

% 
%Title : Channel 2 Simulation w/o Interleaving 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Dave Roderick, Naval Postgraduate School 
%Modified By : Tan Kok Chye, Naval Postgraduate School 
% 
%  

% 
function 
[errors,freqerrs]=uhfift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,n,k,blklgth,Ng,loss, 
dly,dop,freqspace,fort) 
% 
[xmt,modvals,B,nsymno]=coderift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,fort); 
% 
xmtifft=tda(Ng,xmt); 
xmtpts=l: length (xmtifft); 
% 
if picy_n==l 

xmtpts= 1 :length(xmtifft); 
figure(3) 
plot(xmtpts,xmtifft) 
title('Transmitted Time Domain Signal') 
axis('square'); 
orient tall 
grid 

end 
% 
% 
sandn=chuhf(s+l,xmtifft,loss,dly,dop,N,freqspace); 
% 
% 
if picy_n==l 

rcvdpts=l :length(sandn); 
figure(4) 
plot(rcvdpts,sandn) 
title('Received Time Domain Signal') 
axis('square'); 
orient tall 
grid 

end 
% 
% 
sandnfft=itda(Ng,sandn); 

159 



% 
% 
K=(length(modvals( 1 ,:)))/2; 
rdintlv=rintlv; 
cdintlv=cintlv; 
rcvd=decdrift(picy_n,pic,K,sandnfft,nsymno,freqno,rdintlv,cdintlv,mary,nary,fort); 
Transmitted_msg=B; 
Received_msg=rcvd; 
% 
% 
[errors,freqerrs,errmx,rowerrs]=check(pic,B,rcvd,n,k,blklgth); 
errmx; 
[rn cm]=size(errmx); 
errsum=sum(errors); 
if errsum~=0 

symno=rintlv*cintlv/freqno; 
freqno; 
if picy_n==l 

ifdop==[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15] 
figure(2) 
mesh(errmx) 
title(['Link 3: Error Distribution Without Interleaving (M-ary bits: 

,,int2str(mary),',','N-arybits:',int2str(nary),')']) 
axis([0 freqno 0 symno 0 max(max(errmx))]) 
xlabel(['Freq.#(Total=',int2str(freqno),')']) 
ylabel(['Row#(Symbol#=',int2str(symno*freqno),')']) 
zlabel([Error Occurance (Total =',int2str(errsum),')(seed =',num2str(s),')']) 
text(-150,0,1.95,['Error Correction =',int2str(floor((n-k)/2))]) 
grid 
orient tall 
% 
% 

elseifdop==[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10] 
figure(2) 
mesh(errmx) 
title(['Link 2: Error Distribution Without Interleaving (M-ary 

bits:',int2str(mary),,,','N-arybits:',int2str(nary),')']) 
axis([0 freqno 0 symno 0 max(max(errmx))]) 
xlabel(['Freq.#(Total=,,int2str(freqno),')']) 
ylabel(['Row#(Symbol#=',int2str(symno*freqno),')']) 
zlabel([Error Occurance (Total =',int2str(errsum),')(seed =',num2str(s),')']) 
text(-150,0,1.95,['Error Correction =',int2str(floor((n-k)/2))]) 
grid 
orient tall 
% 
% 
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elseif dop==[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] 
figure(2) 
mesh(errmx) 
title(['Link 1: Error Distribution Without Interleaving (M-ary 

bits:',int2str(mary),',,,'N-arybits:',int2str(nary),')']) 
axis([0 freqno 0 symno 0 max(max(errmx))]) 
xlabel(['Freq.#(Total=',int2str(freqno);')']) 
ylabel(['Row#(Symbol#=',int2str(symno*freqno);')']) 
zlabel(['Error Occurance (Total =',int2str(errsum),')(seed =',num2str(s),')']) 
text(-150,0,1.95,['Error Correction =',int2str(floor((n-k)/2))]) 
grid 
orient tall 
% 
% 

end 
end 

else 
dispO 
dispCGREAT!!! Test passed.') 

end 
if sum(rowerrs)~=0 

figure(3) 
cony=(max(rowerrs)+5)/60; 
conx=symno/80; 
errindx=l :length(rowerrs); 
bar(errindx,rowerrs) 
title(['Error Count Per Symbol Row (Total Errors=',int2str(sum(rowerrs)),')']) 
xlabel('Row Number') 
ylabel('Number of Errors') 
axis([0.5,(symno+.5),0,(max(rowerrs)+(6*cony))]) 
if sum(rowerrs)~=0 

for i=l :length(rowerrs) 
text(i-(1.5*conx),rowerrs(i)+(4*cony),int2str(rowerrs(i))) 

end 
end 
orient tall 

end 
%  
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UHFSEEDS 

%  

% 
%Title : Seed Error Report 
%Thesis Advisor : Prof J. McEachen, Naval Postgraduate School 
%Author : Dave Roderick, Naval Postgraduate School 
%Modified By      : Tan Kok Chye, Naval Postgraduate School 
% 
%  

dispC  
.'); 

fort=input(To run the frequency versioü, enter 1 (one); otherwise, enter 0 (zero) to run 
the time version:'); 
pthno=input('Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2,3 or 4 
for custom):'); 
% 
% 
if pthno==3 

%my link 3 

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4, 
32.57,34.74,36.92]; 

dop=[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]; 

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0. 
85]; 

elseif pthno==2 
%my link 2 

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4, 
32.57,34.74,36.92]; 

dop=[10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10]; 

dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0. 
85]; 

elseif pthno==l 
%my link 1 

loss=[0,2.17,4.34,6.51,8.69,10.86,13.03,15.20,17.37,19.54,21.71,23.89,26.06,28.23,30.4, 
32.57,34.74,36.92]; 

dop=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]; 
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dly=[0,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0. 
85]; 

elseif pthno==4 
dispCCustom link simulation..') 
loss=input('Enter the path loss in dB (Ex. [0 4 7]):'); 
dop=input('Enter the doppler frequency in Hertz (Ex. [30 20 15]):'); 
dly=input('Enter the time delays of the multipaths in microsecs (Ex. [0 0.6 3.9]):'); 

end 
prnty_n=input('Do you want print outs? (l=yes, 0=no):'); 
% 
% 
symbols=input('Enter the minimum number of symbols to test:'); 
freqno=input('Enter the number of FFT points (NOTE: Must be larger than # of OFDM 
frequencies):'); 
N=input('Enter the number of FFT points (Note : Must be larger than # of OFDM 
frequencies):'); 
smax=input('All tested seeds begin with one and end with a max number. Enter Smax 
(Integer*):'); 
disp(['Tested seed range is 1 - ',int2str(floor(smax)),'...']) 
mary=8; 
nary=4; 
symno=ceil (symbol s/freqno); 
freqspc=l 6600000/freqno; 
errvect=[]; 
incvect=[]; 
topervect=[]; 
sindex=l :floor(smax); 
for s=sindex; 

% 
% 

[errors,freqerrs]=uhfift(0,0,s,freqno,freqno,symno,N,mary,nary,0,0,freqno,6,loss,dly,dop, 
freqspc,fort); 

errtot=sum(errors); 
errvect=[errvect,errtot]; 

end 
totalerr=sum(errvect); 
avgerr=ceil(totalerr/floor(smax)); 
[inc rj=sort(errvect); 
errmx=[I;inc] 
Error_Seeds=incvect 
Total_Errors=totalerr 
Avg_Errors=avgerr 
save unfhist errmx 
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dispCAll Done!!!') 
disp(") 
if sum(inc)==0 

disp('GREAT!!! Simulation passed with no errors.') 
elseif sum(inc)~=0 

dispCOOOPS!!! Errors occured.') 
end 
% 
% Plot 
% 
figure(3) 
bar(sindex,errvect) 
grid 
orient tall 
xlabel(['UHFSEEDS: Seed Value (Symbol#=',int2str(freqno*symno),')'}) 
ylabel(['Error Number (OFDM Freq.#=',int2str(freqno),')(M-ary=',int2str(2Amary),',N- 
ary=',int2str(2Anary),')']) 
if fort=l 

if pthno==l 
title(['Linkl:ErrorDist. vs. Seed Values (Freq. Diff. Enc.) 

(Loss=',num2str(loss),')(Dop=',num2str(dop),')(Delay=',num2str(dly),')']); 
elseif pthno==2 

title(['Link2:Error Dist. vs. Seed Values (Freq. Diff. Enc.) 
(Loss=,,num2str(loss);)(Dop=',num2str(dop),')(Delay=',num2str(dly),')']); 

elseif pthno==3 
title(['Link3:Error Dist. vs. Seed Values (Freq. Diff. Enc.) 

(Loss=',num2str(loss),,)(Dop=',num2str(dop),,)(Delay=',num2str(dly);)']); 
elseif pthno==4 

title( ['Custom Link:Error Dist. vs. Seed Values (Freq. Diff. Enc.) 
(Loss=',num2str(loss);)(Dop=',num2str(dop),')(Delay=',num2str(dly),')']); 

end 
elseif fort~=1 

if pthno==l 
title(['Linkl:Error Dist. vs. Seed Values (Freq. Diff. Enc.) 

(Loss=,,num2str(loss),')(Dop=',num2str(dop),')(Delay=',num2str(dly),')']); 
elseif pthno==2 

title(['Link2:Error Dist. vs. Seed Values (Freq. Diff. Enc.) 
(Loss=',num2str(loss),')(Dop=',num2str(dop),')(Delay='Jnum2str(dly),')']); 

elseif pthno==3 
title(['Link3:Error Dist. vs. Seed Values (Freq. Diff. Enc.) 

(Loss=',num2str(loss);)(Dop=',num2str(dop),')(Delay=',num2str(dly),')']); 
elseif pthno==4 

title(['Custom Link:Error Dist. vs. Seed Values (Freq. Diff. Enc.) 
(Loss=',num2str(loss),')(Dop=',num2str(dop),')(Delay=',num2str(dly),')']); 

end 
end 
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axis([.5 (max(s)+.5) 0 (max(errvect)+l)]) 
if prnty_n==l 

print 
pause(lO) 

end 
figure(4) 
bar(inc) 
grid 
orient tall 
xlabelC'UHFSEEDS: Seed Value (out of order)') 
ylabel('Error Number') 
title('Ordered Error Dist. vs. Seed Values (Corresponding Seed Shown on Plot)') 
axis([.5 (max(s)+.5) 0 (max(errvect)+l)]) 
for i=l:length(errvect) 

if inc(i)>(max(inc))*.8 
incvect=[incvect,I(i)]; 
topervect=[topervect,inc(i)]; 
errlth=length(topervect); 
yinc=(max(inc(i))-min(inc(i)))/2; 
text(5,(inc(i)+l),int2str(I(i))) 

end 
end 
if prnty_n==l 

print 
pause(lO) 

end 
figure(5) 
hist(errvect) 
title(['Error Histogram (Average* of Errors Per Seed=',int2str(avgerr),')']) 
xlabel('Error Bins') 
ylabel('Number of Seeds') 
grid 
orient tall 
if prnty_n==l 

print 
end 
%  
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VITERBI 

%  

%Title 
%Thesis Advisor 
%Reference 

Viterbi Decoder 
Prof J. McEachen, Naval Postgraduate School 
Contemporary Communication System using MatLab 

%John G. Proakis & Masoud Salehi. 
%  

% 
function 
[decoder_output,survivor_state,cumulated_metric]=viterbi(v_G,v_k,channel_output) 

% 
v_n=size(v_G,l); 
% check the sizes 
if rem(size(v_G,2),v_k)~=0 

error('Size of v_G and v_k do not agree') 
end 
if rem(size(channel_output,2),v_n)~=0 

error('channel output not of the right size') 
end 
v_L=size(v_G,2)/v_k; 
number_of_states=2A((v_L-l)*v_k); 
%generate state transition matrix, output matrix, and input matrix 
for vj=0:number_of_states-l 

forv_l=0:2Av_k-l 
[next_state,memory_contents]=nxt_stat(vJ,v_l,v_L,v_k); 
input(vJ+1 ,next_state+1 )=v_l; 
branch_output=rem(memory_contents*v_G',2); 
nextstate(vj+l,v_l+l)=next_state; 
output(vJ+l,v_l+l)=bin2deci(branch_output); 

end 
end 
state_metric=zeros(number_of_states,2); 
depth_of_trelli s=length(channel_output)/v_n; 
channel_output_matrix=reshape(channel_output,v_n,depth_of_trellis); 
survivor_state=zeros(number_of_states,depth_of_trellis+1); 
% start decoding of non-tail channel outputs 
for v_i=l :depth_of_trellis-v_L+l 

flag=zeros( 1 ,number_of_states); 
if v_i<=v_L 

step=2A((v_L-v_i)*v_k); 
else 

step=l; 
end 
for v_j=0:step:number_of_states-l 
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forv_l=0:2Av_k-l 
branch_metric=0; 
binary_output=deci2bin(output(v J+1 ,v_l+1 ),v_n); 
for v_ll=l:v_n 

branch_metric=branch_metric+metric(channel_output_matrix(v_ll,v_i),binary_output(v_ 

ID); 
end 

if((state_metric(nextstate(vj+l,vj+l)+l,2)>state_metric(vj+l,l)+branch_metric)lflag( 
nextstate(vJ+l,v_l+l)+l)==0) 

state_metric(nextstate(vj+l,v_l+l)+l,2)=state_rnetric(vj+l,l)+branch_metric; 
survivor_state(nextstate(v J+1, v_l+1)+1, v_i+1 )=v J; 
flag(nextstate(v J+1 ,v_l+1)+1 )=1; 

end 
end 

end 
state_metric=state_metric(:,2:-l:l); 

end 
%start decoding of the tail channel_outputs 
forv_i=depth_of_trellis-v_L+2:depth_of_trellis 

flag=zeros( 1 ,number_of_states); 
last_stop=number_of_states/(2A((v_i-depth_of_trellis+v_L-2)*v_k)); 
for vj=0:last_stop-l 

branch_metric=0; 
binary_output=deci2bin(output(vJ+l,l),v_n); 
for v_ll=l:v_n 

branch_metric=branch_metric+metric(channel_output_matrix(v_ll,v_i),binary_output(v_ 

ID); 
end 
if 

((state_metric(nextstate(vj+l, 1)+1,2)>state_metric(vJ+l, l)+branch_metric)lflag(nextst 
ate(vj+l,l)+l)=0) 

state_metric(nextstate(v J+1,1 )+l ,2)=state_metric(vJ+1, l)+branch_metric; 
survivor_state(nextstate(v J+1,1)+1 ,v_i+1 )=v J; 
flag(nextstate(vj+l,l)+l)=l; 

end 
end 
state_metric=state_metric(:, 2: -1:1); 

end 
% generate the decoder output from the optimal path 
state_sequence=zeros( 1 ,depth_of_trellis+1); 
state_sequence(l,depth_of_trellis)=survivor_state(l,depth_of_trellis+l); 
for v_i=l:depth_of_trellis 

167 



state_sequence( 1 ,depth_of_trellis- 
v_i+1 )=survivor_state((state_sequence( 1 ,depth_of_trellis+2-v_i)+1 ),depth_of_trellis- 
v_i+2); 
end 
decoder_output_matrix=zeros(v_k,depth_of_trellis-v_L+1); 
for v_i=l:depth_of_trellis-v_L+l 

dec_output_deci=input(state_sequence( 1, v_i)+1 ,state_sequence( 1, v_i+1)+1); 
dec_output_bin=deci2bin(dec_output_deci,v_k); 
decoder_output_matrix(: ,v_i)=dec_output_bin(v_k> 1:1)'; 

end 
decoder_output=reshape(decoder_output_matrix,l,v_k*(depth_of_trellis-v_L+l)); 
cumulated_metric=state_metric( 1,1); 
%  
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