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ABSTRACT 

An efficient method of computing structural response of multi-story nonlinear 

base isolated buildings for a given seismic event is presented. Using a recursive block- 

by-block integral equation formulation (RBBIEF) solution to the governing nonlinear 

Volterra integral equation, structural base motion acting through an arbitrary number of 

nonlinear base isolators can be computed quickly and accurately. The general solution to 

the governing nonlinear Volterra integral is formulated and subsequently converted into 

code using MATLAB. The procedure incorporates modal properties, computed from 

conventional finite element (FE) techniques, and the generated MATLAB programs to 

solve a varying set of multi-degree of freedom structures coupled to both linear and 

nonlinear isolators. Ultimately, an analysis is conducted on a 30-story building that was 

overly designed using the 1994 Load Resistance Factor Design [Ref. 1] and the 1994 

Uniform Building Codes [Ref. 2] for earthquake loading. The method demonstrates that 

the Volterra integration scheme in the time domain is very effective and efficient. 
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I.   INTRODUCTION 

Seismic base motion is an important design factor in constructing and retrofitting 

structures. The extensive base displacements and resultant shear forces caused by large 

magnitude earthquakes are major contributors to the eventual failure of the structure. 

Isolating structures from seismic events is currently accomplished through the use of 

passive isolators. 

Originally, it was the engineer's goal to reduce the structural displacements 

through isolation. However, current techniques place equal importance on increasing the 

energy dissipation in an isolation device. An increase in the area contained within the 

device's hysteresis loop is directly related to the energy dissipation provided by the 

device. The plastic properties of passive hysteretic type isolators are mathematically 

modeled as a complex nonlinear equation [Ref. 3]. Modeling and analysis using finite 

element (FE) techniques for nonlinear isolators then becomes equally complex and 

computationally demanding. 

Several Commercial-Off-the-Shelf (COTS) programs such as, EDRAC-3D, 3D- 

BASIS, DRAIN-2DX, SAP, ANSR, N-PAD, LPM, and others have their respective 

limitations and advantages as outlined in [Ref. 3]. The primary solution methods for 

nonlinear base isolation of structures are the pseudo-force iterative method or the 

nonlinear tangent stiffness method [Ref. 3]. However, the incorporation of 3-D motion 

and discrete time histories in conjunction with n-nonlinear isolators to the above- 

mentioned FE programs can be computationally exhaustive and or not practically 

possible. 



Current FE programs can, in seconds, compute normalized mode shapes and 

natural frequencies of several thousand degree of freedom systems. The structure's 

modal properties are used by many of the above programs in order to compute transient 

response or frequency response. Unlike the methods of solving the differential equations 

of motion above, we describe herein a method that solves the transient response directly 

using the Volterra integral form. This method, referred to as time domain synthesis, is 

presented in [Ref. 4] and [Ref. 5], and is a numerically accurate and fast solution for 

structural response due to base motion excitation through nonlinear isolation. 

The addition of nonlinear memory-type isolators to the time domain synthesis is 

presented herein. Currently, the synthesis is solved using the (RBBIEF) method. The 

RBBIEF method obtains its significant efficiency from two characteristics of the 

formulation. First, a structure is described by impulse response functions calculated only 

for those physical DOF of interest. Those DOF for which response is not required can be 

omitted with no loss of accuracy. Second, the block-by-block convolution divides a large 

time history into several "blocks," and the governing Volterra integral equation is solved 

in a block-by-block manner wherein only one block undergoes iterative convolution at a 

time. The converged forces of synthesis from previously iterated blocks are used in 

conjunction with the results of the current iteration to calculate the response for the 

current block. To incorporate memory-type isolators in the synthesis, the isolator 

equations are solved using standard numerical solution techniques for ordinary 

differential equations. This solution of the isolator's governing differential equation is 

incorporated into the RBBIEF method. This revised synthesis method provides fast and 



accurate solutions. Ultimately, the combination of quick eigenvalue solutions of large 

degree of freedom structures, modal reduction, and a block-by-block recursive solution 

of the governing integral equation of the retained nodes that are seismically excited, can 

lead to significant timesavings and accuracy. 
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II. EARTHQUAKE DESIGN AND NONLINEAR ISOLATORS 

A.      STRUCTURAL DESIGN 

Current design techniques and survivability rely upon the structure's total strain 

energy capacity as it plastically deforms during a seismic event. This "hard working" 

process is accounted for by the Uniform Building Code, UBC. In Figure 1 below, the 

UBC's required seismic coefficient is significantly underestimating the various 

earthquakes presented. 

1 3T/2     2 
Period - T, s 

Figure 1. UBC Seismic Acceleration Graph From Ref. [3] 

Additional varying normalized response spectra plots similar to Figure 1 are 

produced in [Ref. 3]. The vertical axis outlines the seismic coefficient and is used in 

various UBC equations, the horizontal axis represents structural periods. The apparent 

differences between the UBC's required protection as seen in Figure 1 and an arbitrary 

seismic excitation is where passive base isolation plays it's important role. In order to 

ensure the reduction of the earthquake's overall input forces using passive isolators, an 

assumed normalized response spectrum is chosen. 



Existing codes outlined in Chapter 23 of [Ref. 3] require that the existing 

structure have several design capacities such as seismic base shear, lateral seismic force, 

lateral deflection, overturning moment, and torsional moment. As part of the seismic 

design procedure, the structure is converted into modal space and a conservative 

participation factor is chosen. The general design equation is presented as: 

= ff 
X ll 2—1       XI 

\m=\ 
(1) 

Replacing \j/ with V for shear, A for drift, 5 for deflection, M for moment, and T for 

torsion into Equation (1) above to arrive at the respective design limits. The subscript 

(m) represents the modal values and (x) the story level. Details of modal decomposition 

and participation can be found in numerous vibration textbooks such as [Ref. 6] and will 

be summarized in subsequent chapters herein. 

A 30 story moment resisting frame (MRF) building was conservatively designed 

using the Manual of Steel Construction, Load Resistance Factor Design (LRFD) [Ref.l], 

the Uniform Building Code (UBC). [Ref.2], and a steel structure design textbook [Ref. 

7]. The structure has an inter-story height of 17 feet and a total building height of 510 ft. 

The columns were spaced 25-ft center to center leading to an overall length of 400 ft at 

the base. A total of 256 columns are present corresponding to 256 base isolators at the 

base. Each floor was designed to support a dead load of 150 psf and the roof, 50 psf. The 

beams were divided as follows: the roof consisted of W36xl35 beams; Floors 30-21 

W36xl50; Floors 20-11 W36xl60; Floors 10-2 W36xl70. The first floor was designed 



as the foundation however, when the structure was redesigned for isolation, W36xl70 

beams were used to connect the columns at the base of the structure. 

Because the isolated and non-isolated structures are two distinct eigenvalue 

problems, due to the free-free nature of the isolated structure, vertical motion, not 

previously seen in a clamped structure, is no longer constrained. The addition of vertical 

displacements at the base is known as uplift. This uplift motion can increase local 

stresses as well as decrease the designed overturning moment. The effects of uplift can 

be seen at some or all frequencies and can have an adverse effect on many types of 

passive isolators. 

B.      EARTHQUAKE SAMPLING 

Seismic events occur worldwide and on a frequent basis. Generally, earthquakes 

who's magnitudes are greater than five can cause significant damage. The following 

uncorrected ground acceleration plotted in Figure 2 is indicative of earthquake 

magnitudes of 6 and above. Various time history data can be obtained through several 

resources such as [Ref. 8]. 



IMPERIAL. VALLEY CA 1 07B ID 15 231 6 
SMDB station: 861 
Owner: UNAMfUCS 
agrarias 

Peak ace:     351 .-4 
Component:      3 
32.621,  -11S.301 

Figure 2. Imperial Valley Accelerometer Graph From Ref. [8] 

Without formally verifying the enormous earthquake time history data for 

ergodicity, many of the earthquakes observed lasted for less than 30 seconds with the 

majority of the energy focused within the first 10-20 seconds. Time sampling from 

various monitoring stations is generally on the order of 10"2 seconds. Therefore time data 

histories can total to about 6000 data points. To reduce the amount of data and speed up 

the subsequent numerical solutions, correlations can be calculated similar to data signal 

processing. 

The equations presented in this section are outlined in Reference [9] and are 

presented here in summary. This direct characterization is best seen in the spectral 

density function plot. Beginning with the auto-correlation function, Equation (2), of the 

acceleration time history a set of characteristics can be determined from the earthquake 

time history. 

1 T 
R„(t) = lim —\x(t)x(t +t)dt 

R^0) = mean square value 

RxJ,^) = mean value squared 

(2) 

(3) 

(4) 



Although Equations (3) and (4) are useful, Equation (2) is necessary in the 

computation of the power spectral density function. Taking the Fourier transform of 

Equation (2) a one-sided spectral density function is developed, Equation (5). This 

function is better known as the power spectral density function (PDF). 

GxxU) = 2\Rxx{T)e-2nfxdx (5) 
o 

Plotting Equation (5) versus frequency will yield a graphical representation of the 

energy distribution of the system. There are many algorithms that take advantage of time 

averaging of the sample data to primarily suppress bias errors in the estimate. From the 

PDF an appropriate sampling frequency can be determined. 

To avoid statistical sampling errors the minimum sampling frequency should be 

equivalent to the Nyquist frequency. 

' nyq ' resolution V   / 

To increase the resolution and to avoid aliasing the general rule of thumb for the 

sampling frequency is: 

/,=10*/w (7) 

Given the value of Equation (7) and the data obtained from plotting Equation (5) 

versus frequency, the previously mentioned 6000 data points can be dramatically 

reduced. Using MATLAB's power spectral density function on the El Centro earthquake, 

of 1940 time history data reveals it's distribution plot in Figure 3. From Figure 3 it is 

apparent that the majority of the energy is well below 1 Hz. Therefore, using a sampling 



frequency of 10 Hz, the time step equivalent of .1 seconds, reduces the proposed 6000 

data points by a factor of 10 to 600. 

a 

Figure 3. El Centro 1940 North South Power Spectral Density Function of the 

Displacement Time History Data 

C.      NONLINEAR BASE ISOLATION 

Since many spectral density plots of seismic events indicate a dispersed 

frequency range, viscous dampers aren't as efficient in energy dissipation than isolators 

that are frequency independent. Frequency independent isolators maintain their unique 

hysteretic loop across a wide range of frequencies. The general topic of base isolation is 

well researched and discussed in [Ref. 10] and is broadly presented in this sub-section. 

The general nonlinear equation that describes general frequency independent 

isolators is: 

F = -Koa + iS)(x-ug) (8) 

10 



Where K0 is the dynamic stiffness, 8 is described as the loss factor, x the base motion, 

and ug is the ground base motion. Graphically, Equation (8) spans the hysteretic loop as 

shown in Figure 4. 

lastic 
unloading 

Displacement 

Plastic 

Figure 4. Hysteretic Loop of an Elastic-Pure Plastic Isolator 

The process by which the hysteretic loop is formed is through cyclical 

deformation along a material's stress strain curve. Deformation below the tensile and 

compressive yield stresses describes typical linear elastic springs. Deformation beyond 

the initial yield stresses results in plastic deformation. In this region the material resists 

additional stress, due to strain hardening, leading to a secondary stiffness rate. In order to 

generate the hysteresis loop the subsequent unloading from the plastic region occurs 

elastically until it plastically deforms again. 

The basic groups of base isolation in use today are linear base isolators and 

nonlinear energy dissipation isolators. Generally, the isolators are not designed to 

plastically deform but to achieve the similar hysteresis loop through hybrid systems. 

11 



Typical linear base isolators are elastic springs such as rubber or high damping rubber 

(HDR). Typical nonlinear isolators are hysteretic, visco-elastic, friction, or material 

devices. The preferred isolators in use today are the hysteretic nonlinear devices and the 

friction devices. 

1.      Rubber Isolators 

Rubber used by it self is categorized as a linear base isolator. Its main advantage 

as an isolator is it's dynamic shear modulus, G, remains relatively constant over a wide 

range of frequencies and temperatures [Ref. 11]. Additionally, it's dynamic damping 

coefficient, 8, in Equation (8), is relatively constant at frequencies lower than 50 Hz 

[Ref. 11]. Given that the majority of the seismic energy was concentrated well below 50 

Hz, the use of rubber isolators is desirable. 

A nonlinear isolator is produced when different types of rubbers are used. The 

resulting combined stress strain curve for the composite rubber isolator is tri-linear 

[Ref.l l:p. 199]. At moderate shear strains, such as wind loading and service loading, the 

effective spring stiffness is very low. At larger shear strains, seismic loads, the stiffness 

can increase dramatically until it decreases to the third stiffness rate. However, since the 

deformation is contained within the elastic regions of the isolator there is no hysteretic 

loop generated. 

Additional materials or devices built into a rubber isolator can produce a 

hysteretic effect. The plastic deformation rate would dominate the isolator's property at 

larger deformations while the elastic stiffness of the rubber would control the subsequent 

12 



moderate cyclical loading and unloading on the isolator. The effect, during seismic 

loading, is generally modeled as a bilinear model as shown in Figure 5. 

Tensile 
Plastic loading 

K2=yp*K, 

Compressive 
Plastic Loading 

V 

Figure 5. Bilinear Hysteretic Loop 

Where Ki and K2 are the two distinct stiffness constants and the variable, yp, is 

the yield to post ratio parameter. 

2.       Elastomeric Isolators 

Elastomeric bearings are engineered from synthetic rubbers. The properties of the 

bilinear hysteresis loop can be readily designed and manufactured with the use of 

synthetic rubbers. These devices, known as High Damping Elastomeric Bearings 

(HDEB), are frequently used in both structural and industrial use. A comprehensive 

study conducted in [Ref. 12] validates work on performance and efficiency issues 

between polymer type bearings and High Damping Rubber Bearings (HDRB). The only 

13 



disadvantage of polymer synthetic rubber isolators is that over time the tensile and tear 

strengths become degraded. 

3.      Hysteretic Isolators 

Not including the HDEB or HDRB devices, hysteretic bearings are developed 

using metals or composites such as the lead core rubber isolator. By varying materials 

and manufacturing processes a wide variety of hysteretic curves can be engineered. 

Modeling hysteretic systems is mathematically challenging due to the nonlinear 

governing equations. An accepted mathematical model to Figure 3 above, is the Wen 

nonlinear Equation [Ref. 13]. The equation is very adaptive to various hysteretic type 

bearings. Another model, not used in this paper, is known as the Özdemir element 

[Ref. 14]. This mathematical model is based on similar principles as the Wen element 

however; it incorporates modifications to allow for Shape Memory Alloy (SMA) device 

modeling. 

D.      MATHEMATICAL MODELS 

The general formulations of the mathematical models below are developed in 

previous works outlined in the respective subsection's reference remarks. The 

presentation of the equations represents general summaries of their work. 

1.      Bilinear Element 

The bilinear element's hysteretic loop is shown above, in Figure 5, and is an 

approximation to the dynamic hysteretic loop as shown in Figure 4 above. The hysteretic 

loop is a function of displacement and velocity across the isolator, primary spring 

stiffness, and the secondary spring stiffness. Program code for the hysteretic loop is 
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formulated using basic logical algorithms, and is executed at the given time step interval 

over the time span. 

In developing the algorithm for the hysteresis loop it is evident that the loop is a 

combination of 4 intersecting linear lines. Additionally, the restorative force is a function 

of the spring constant, displacement, velocity, previous deformation state position, and 

the intercept. Ultimately, to identify which part of the hysteresis loop that the current 

deformation data is on, a set of memorized variables is required. The memorized set of 

variables stores which leg the last deformation state was at and the force intercepts of the 

4 lines. 

As an example, an isolator in equilibrium is subjected to a sinusoidal base 

excitation. Assuming that the excitation begins in the positive direction the initial 

velocity and displacement are positive. Given the primary stiffness as Ki, the force is 

calculated from Equation (9). 

F=KiAx + B1 

(9) 

Since the equilibrium position was at zero velocity and zero displacement the value of Bi 

is zero. If the calculated force from Equation (9) is less than a specified positive 

transition force, Fmax, the intercept, B2, for the subsequent leg is simultaneously 

calculated. This is conducted by numerically solving for the linear equation with a slope 

of K2 that intersects the calculated F and Ax position. When the force, calculated in 

Equation (9), is greater than the transition force, Fmax, Equation (10) is used. 

F=K2Ax+B2 (10) 
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Continuing along this leg the slope of the next leg, B3, is simultaneously 

calculated until the velocity becomes negative and the isolator begins to unload. At 

which point Equation (11) is used. 

F = -KxAx+B3 (11) 

As the deformation progresses along this leg the next leg's intercept, B4 is 

calculated as before. Upon surpassing the negative transition force, -Fmax, Equation (12) 

is used. 

F = -K2Ax+B4 (12) 

The loop continues until the end of the time history is reached. Additionally, at 

each time step, the intercepts and a location variable are updated and stored. 

Furthermore, reloading and unloading along the same leg is also possible given the data 

stored at each step. 

The two distinct types of bilinear elements used in this paper are referred to as 

"ideal" and "real." The real isolator models the basic stress-strain curve, where the 

isolator is allowed to strain harden. Therefore, upon successive reload in either the 

tensile or compressive direction the yield force is increased. The ideal isolator is not 

allowed to strain harden and hence has constant positive and negative transition forces. 

The algorithm of the example above is presented in Figure 6. Incorporating this 

algorithm into the recursive block-by-block formulation is easily conducted because the 

stored data is passed from block to block. However, since the process within a specific 

block is iterative the final block's data is not updated until the respective block has 

converged. 
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Force = Ki*Ax 

Bi, B2, B3, B4, 
Position 

values assigned 

no 

yes 

Force = K] * Ax +B3 

Force = K2 * Ax + B4 

B4 =Force - K2 * Ax 

B,=Force-K, * Ax 

Position =4 

Update Bb B2, B3, B4, 
Position 

Position =3 

yes 

End 

no 

yes 

Force = Kj * Ax +Bj 

Force = K2* Ax + B2 

B2 =Force - K2 * Ax 

B3 =Force - Kj * Ax 

Position = 2 Position =1 

Figure 6. Bilinear Algorithm 
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2.      Wen Element 

As stated earlier, the Wen element is a mathematical equation that accurately 

models the hysteretic behavior of nonlinear isolators. The Wen nonlinear equation takes 

the bilinear hysteretic loop from Figure 4 and generates a more realistic hysteresis. The 

Wen element refines the bilinear element's hysteretic loop through variation of the input 

parameters, as seen in Figure 7. 
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Figure 7. Parameters of the Wen's Model From Ref. [14:p. 355] 

The non-dimensional coefficients A, ß, £, and T| control the shape of the 

hysteresis loop.  Parameter A influences the initial loading slope and subsequent 

unloading and reloading slopes. The ratio of £/ß controls the unloading and reloading 

curvatures. The effect of £/ß>l is equivalent to increasing the (A) parameter and causing 

the loop to curve outward as seen in Figure 7 where £>1. The parameter r\ controls the 
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curves that join the load and unload curves and is best described as the elastic-plastic 

behavior of the material. 

The general formula for calculating the restoring force is: 

F{t) = a-fx(t) + (l+a)Fz{t) (13) 

F. 
Where   a~r S(t)   is the equivalent linear portion and  (l+a)F,Z(t)   is the 

°r 

nonlinear portion. The symbol a, is the respective yield to post ratio parameter, and z(t) 

is the dimensionless hysteretic displacement that is defined by the nonlinear equation: 

dz(t) 
Sy = L-\z(tfh + Sign(z(t)^C (14) 

dx 

Where, x (t) represents the strain. Rearranging Equation (14) and substituting the 

variable notation of £ with y in Equation (14) the equivalent Equations (15) and (16) are 

adopted from [Ref. 13:p. 250]. 

z(t) = -r|i(o|z(0""'lz(d- ßktiz(tf +AS(t) for n = even (15) 

z(t)=-^x(t)z(ty-ßx(t)\z(tf + A 'x(0 for n = odd (16) 

A more refined formula for the dimensionless hysteretic displacement z(t), from 

[Ref. 15:p. 79], is used in this study. 

z= -yj^jzlzl""1 -^Izl" + Ai (17) 

The combination of the nonlinear parameters from Equation (17) yields the 

maximum value of the restoring force. 
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F    = max 
7 + ß. 

(18) 

To reinforce the effects of each of the respective Wen nonlinear equation 

parameters graphical representations are presented. An arbitrary hysteretic isolator was 

chosen and a sinusoidal displacement was imposed. Figure 8 illustrates the hysteresis 

loop for the isolator and sinusoidal excitation. 

Displacement 

Figure 8. Wen Element Hysteresis Loop for Fy=l, A=2, r|=2, ß=l, y=l, 8y=l, a=.01 due 

to Unit Sinusoidal Excitation at .5 Hz 

By varying the constant parameters in Equations (14) and (17), the effects, 

delineated by the dashed lines, are presented in Figure 9. 
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3.       Maxwell Element 

The Maxwell element is another type of nonlinear isolator that is constructed 

from a linear spring and viscous damper in series vice in parallel as in a common shock 

absorber. The formulation was developed in [Ref. 14] and is included in the code to 

provide an additional nonlinear element. Although viscous dampers and shock absorbers 

are frequency dependant, the overall nonlinearity makes them sufficiently more efficient 

in energy dissipation then a linear spring. By placing the spring and viscous damper in 

series the isolator becomes frequency independent. 

The nonlinear restorative force equation is: 

F(t)=--F(t) + kS(t) (19) 
c 

E.  LOAD DEPENDANT ISOLATORS 

Devices that are used in structural applications not only require horizontal 

stiffness but also vertical stiffness as well. The initial loading as well as uplift loads on 

the isolator plays an important role in establishing the horizontal or shear stiffness of the 

bearing. The broad effects of vertical displacements on rubber and elastomeric isolators 

are well documented in [Ref. 9:p. 170], [Ref. 16], and [Ref. 17] and are broadly 

summarized in this section. 

For an isotropic material the loading versus the stiffness function is similar to the 

curve outlined in Figure 11. 
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Vertical Displacement 

Figure 11. Isolator's Properties Versus Vertical Displacements 

For small vertical displacements the change in the isolator loads will be small 

enough that the parameters will be dictated by it's elastic range. Since the vertical spring 

component of the isolator will generally obeys Hooks law. 

a=Ee (20) 

Where a represents the stress, s the strain, and E the elastic modulus. The properties of 

the isolator are then determined by the vertical displacements. 

Generally, when the isolator has been loaded it has stored elastic energy. Rubber 

is particularly strain sensitive which causes the shear modulus, G, to change according to 

the strains imparted due to the connections to the building and ground bearing, 

represented by Figure 12. 



-> 

\ +x. yx 

Figure 12. Shear Stresses on a Load Isolator From [Ref. 9:p.l42] 

The comparison of the total elastic stored energy caused by the shear forces on 

the top and bottom surfaces to the energy obtained from the average shear strain within 

the isolator will influence the overall effective shear modulus. 

2 

7mt ~~ G2At hN^+T>ydA (21) 
A t 

Where, A is the cross sectional area of the isolator, and t the thickness. Depending on the 

type of isolator, the values of the average shear strain can be calculated and the resultant 

G could then be iterated since G is also a function of sc (compression strain). 

Expanding the system to more complex systems such as anisotropic materials 

like composites requires a more detailed knowledge of the property versus loading 

curves. Even a simple model can lead to complex numerical formulations if the 

transition was made into the plastic region. This could easily lead to a hysteretic behavior 

in the vertical component due to the continuous loading and reloading in the plastic 

range. 
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III. EQUATIONS OF MOTION AND NONLINEAR ISOLATORS 

Generating the equations of motion of an arbitrary n-degree of freedom structure 

allows the structure to be described both statically and dynamically in a finite 

mathematical manner. By modeling the structure and directly controlling the number of 

degrees of freedom (DOF), the number of differential equations becomes finite and 

manageable. The left hand side of the equations of motion becomes the representation of 

the elastic-linear structure while the right hand side captures all the forces generated 

from the linear and nonlinear attributes of the isolators. 

A.      GOVERNING EQUATIONS 

Developing a FE model of a structure is covered in various texts [Ref. 18] and 

the basic structural dynamic formulation is covered in [Ref. 19]. The work in this section 

is a basic summary of work developed in these references. 

Taking a continuous model, which has an infinite number of DOF, and 

converting it to a workable yet realistic mathematical model is the goal of FE techniques. 

In order to determine the discretization of the structure a logical determination has to be 

made in respect to retaining a sufficient number of degree of freedoms. The structure can 

then be describe by a continuous mathematical model and is formulated as a partial 

differential equation (PDE). Avoiding the computational effort associated with a PDE, 

the system is transformed into a set of 2nd order ordinary differential equations (ODE). 

The transformation is conducted by using elements of lumped-parameter models. The 

formulation is covered in many vibration and dynamic analysis textbooks as in [Ref. 6] 

and [Ref. 19] and is summarized below. Additionally, it is computationally useful to 
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transform the coupled ODE into modal space to achieve uncoupled ODEs. Again, these 

methods are well documented and are used in summary in this formulation. 

For an arbitrary base isolated structure the free-free structure is connected to the base 

isolators as shown in Figure 12. 

flTITnT 

Base isolators Base isolators 

1 „t n floor 

11 JLJJ'JJLJ_J111 n-l* floor 

] 3re floor 

2nd floor 

2 1st floor 

Figure 12. N-Story Base Isolated Structure 

The structure's nodal degrees of freedom that connect to the isolator are 

contained in the vector (Cset). (Cset) can contain all six degrees of freedom per node but 

generally the lateral and vertical degree of freedoms are chosen for base isolation. 
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The governing equations of motion, assuming proportional structural damping, 

[Ref.4:p. 176], for the coupled free-free structure and the isolators, is presented in 

Equation (22): 

[M]Jx\    +[C]J'x)    +[*L{*L=feL (22) 

Where, (n) represents the total number of degrees of freedom in the system and 

the forcing function, F^s°et(t), contains the external isolator forces of length (Cset) and 

zeros for non-coupled degrees of freedom. The general solution to the second order 

differential equation is of the form: 

x(t) = x(t\+x(t)p (23) 

The homogenous solution for particular degree of freedom becomes: 

x = e~Ca"' (Asin VwW + B cos^l- £(Dnt) (24) 

The derivation of the particular solution depends upon the arbitrary forcing 

function. For simple forces such as linear springs the solution becomes trivial through 

the manipulation of Equation (22). However, for nonlinear elements the particular 

solution can be significantly complex. 

A method to directly solve Equation (22) is to transform the second order 

differential equation into two coupled single ODEs. Pre-multiplying Equation (22) by 

[M]"1 and moving the stiffness and damping components to the right yields: 

{*}=-[Mr'tcjij-tMr'Mxj+tMr'fe} (25) 

The two-coupled single ODEs that represent Equation (25) are: 
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|i} = 4M]-I[c]|iJ-M-IWx}+[Mr1[F^;] 
(26) 

The solution to Equation (26) can be easily completed using any validated ODE 

solver,   however,   it  can  become  significantly problematic  if the  forcing  matrix 

lMV {FcZ,}is nonlinear. 

B.      VOLTERRA INTEGRAL FORMULATION 

The solution of Equation (22) can also be obtained using the Volterra integral 

method. The method of solving for the particular solution of Equation (22) is conducted 

using the convolution integral. The derivation of the convolution integral is developed in 

various vibration textbooks such as [Ref. 6], and is formulated as: 

*(0 = t, /(r)Kt ~ ?)dr (27) 

Where, h(t-x), is the impulse response function defined as: 

h(t) = *?-=     e~™     sin an JTCt (28) 
F      con^f 

Where ©n represents the natural frequency, and t, the damping coefficient. In 

order to sum each discretized time band to yield the entire displacement time history the 

system must be physically realizable: 

*(0 = f> W " 0 AT
 = lf(?W - r)dr (29) 

Substituting the particular solution into Equation (23), the complete solution to 

the general equation of motion reduces to: 
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rt 

xl 
X2 

> zzz ■ 

xi 
X2 + 

xm xm h 
0 

hn(t-t)    hv(t-t) 

hl2(t-t)    hjt-r) 

.M'-D    \S*-*)   -    hjt-r) 

KP-*) 
■dz        (30) 

The resultant equation is the non-homogenous Volterra integral equation as the 

forcing vector F""(T) is a (nonlinear) function of the response and its derivative. The 

forcing vector F"°(T) represents the isolator force due to ground excitation on the DOF 

denoted in the subscript. In order to reduce the computational effort for Equation (30), 

Equation (22) is transformed into modal space. The transformation equation is defined 

as: 

(31) 

Where, n is the number of modes, i is the Ith DOF, and j is the j111 mode. 

Pre-multiply Equation (24) with the transpose of the mass normalized mode 

T 
shape matrix, [<I>] , the modal space equivalent is: 

In 

f + 

2^^ 0 
0       2f2<»2 

0 0 2£>n 

cof    0 

0    co\ 

0      0 «* 
<bi 

H    *2 
I*,2 <J>2 

*f    *i 

(32) 

The modal solution of Equation (32) yields the equivalent Volterra integral form 

of Equation (33): 

1\ 1\ 
1-1 12 

+ 

V V h    . 0 

hu(l-r) 0 

0 hii (t- r) 

0 

0 

hm (f-T)_ 

[< <I>?    <D 2 *5] 

_[*7  *;  ■•■ <t>"n\ 

r~iSO ,    . 
Fi   (r) 

WT (33) 
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Since, the system of equations was transformed into modal space the impulse 

response matrix is uncoupled and is denoted by the (~) symbol. Transforming Equation 

(33) back into normal space by substituting in Equation (31) yields: 

V 
X2 

x\ *! *,2 •f 
/•i 

X2 
+ 

*2 i *2 

xm xm h    . < < 
<J>n 

n   _ J 0 

hii(t-r) 0 

0 h!2(t-T) 

0 

0 

krm(t-T) 

<bf   •, 

[*r *2 - *:] 

Fis\r) 
dr (34) 

Equation (34) contains (n + m) unknowns and (n) coupled equations, where (n) 

represents the total number of nodes and (m) the number of nodal values contained in 

(Cset). Clearly, we have more unknowns than equations to easily substitute values in and 

achieve a simple solution. However, since there are only (m) linear or nonlinear forces, a 

recursive iterative solution process can be conducted solely on a reduced (m) sized 

system of coupled equations. The set of reduced nodes, (Cset), contains the associated 

connected base nodes denoted on the subscript of F^"(t). Therefore, the number of 

equations reduces to (m) and the number of unknowns reduces to (2m). This reduction 

can dramatically reduce the solution time in comparison to methods that solve the entire 

(n) governing ordinary differential equations. 

Therefore, Equation (34) reduces to: 

X] x\ *{ •if •? 
X2 

= 
X2 

+ .•J i *2 

xm xm h    . .< < *«.. Jo 

An(t-T) 0 

0 h2l(t-t) 

0 

0 

him(t-T)\ 

[•{ •! 

Lh" 

Fr(*) 

KjK^l 

■dr(35) 

By employing modal participation methods, the computational effort in solving 

Equation (57) can further be reduced. It is shown, [Ref. 4:ch. 6], that for a system 

30 



transformed into the frequency domain that for a specified nodal maximum displacement 

to a particular (p) mode is as follows: 

kL =M+VW+k2d2 + ->!V.r +W:1qJ-+\®knf   06) 

Where, the superscript identifies the mode, the subscript identifies the node, and (n) the 

total number of modes. From the resultant frequency response spectrum, the 

contributions of the modes closest to the mode in question will have the most significant 

impact. Therefore, the transformation matrix [O], is further reduced from a (n x m) 

matrix into one that is (m x r). Where, (r) represents the number of modes retained. 

The time domain normal mode truncation method approaches the number of 

modes retained in a similar manner. For example, using the i* DOF's modal 

displacement time history solution, defined by Equation (39), it is obvious that the more 

modes retained the accuracy of the solution increases. 

xi(t)=Q)ql(t)+Q?q2(t) + &iq3l(t) + ...&iqn(t) (37) 

However, truncating to a sufficient number of modes with an acceptable error, can 

reduce the computational effort dramatically. 

Equation (35) now reduces to the reduced Volterra integral form: 

x2 
_ ■ 

Xl 

xm 

+ 

h    . < 

•i 

< m 

— 

On.. Jo 

toi(/-r)        0 

0        A22(r-r) 

0 

0 

~hn(t-T). 

VD.2    CD? 
•if 

[«f    <D^    •••   <t>'m ] 

fr«?) 

c<0 

rfr(38) 

th In order to reduce Equation (38) to represent a single i DOF time history, the 

equation is simplified by multiplying the matrices [0][h][ 0]T. Multiplying out [<J>][h] 

yields: 

31 



H x\ 
*2 *2 

'-' ^      + 

V xm h 

OjAnCr-T)   a>fk22(t-r)   ■ ••   <b{~h„(t-r) [<J>|     *1     • • *iT f/f (r) 
<I>2 hu (f-r)   *2Ä22(J-r)   ■ ■    <t>'2 hrr 0- T) p>5 *?_• • *«] if>) 

*JÄII(/-T)   *JÄn(r-r)   • •    *?Ä^(t-T). _[*,' 05 • • *;i .£"<*> 

^      (39) 

Continuing, the time history nodal response for the ith DOF yields: 

xi(t)=xih(t) + 
0 7=1 

i^(hjj(t- T)F(S0(T)dT+l±<S>y2 ljj(t- T)FiL
S°(T)dT+ ... 

C   r .       .    ~ 
l^Jymhjj(t-T)Flso(T)dT (40) 

o;=i 
m 

Where, the notational superscript indicates the respective retained modes and the 

subscript identifies with the DOF values, (i), in (Cset). Therefore, the summation 

notation for (j) signifies that the associated DOFs, contained in (Cset), is summed over 

the total number of modes retained from truncation. 

C.      RECURSIVE ITERATION FORMULATION 

By employing modal truncation and retaining the (Cset) sized set of equations, 

the overall computational effort has been dramatically reduced. The solution of the (un- 

coupled equations is conducted in a recursive iterative manner. From Equation (40), the 

transient response for a particular nodal degree of freedom is dominated by the 

convolution integrals. The isolator forces, ^^(r), within the respective integrals are 

unknown. Therefore, in order to solve for the x;(t) nodal degree of freedom time history 

an initial guess is conducted. For a simple linear isolator the linear approximation can be 

represented as: 

lf = -KbB(xl-xll) (41) 
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Where, Kis0 represents the linear stiffness, the subscript (i) the nodal DOF, and xg 

the ground motion. Substituting all the isolator forces into Equation (40) yields: 

x.(0 = 
r<   r .      .- 
^J

i^(hjj(t-T)(-KiJxl(T)-Xs(T))dT+... 
0 7=' 

r<  r 

2 */*£, hJJ(t ~ T)(-^ Wr> ~ xM^dT (42) 
0 7=1 

The solution for any one nodal DOF then becomes a function of all the (Cset) 

unknown DOF displacements. To achieve a solution a recursive interative process is 

employed for each nodal DOF. Therefore, Equation (42) is rewritten as: 

new , s 

*/   (0 = 
C    r .        .- 

5>/<>/ hjj{t- T)(-KiS0(x^'(T)-xg(r))dT+.. 
07 i=i 

l®J
i®

J
mhjj(t-T)(-Kl50(x^(T)-xs(T)))dT (43) 

0 7=1 

The recursive iteration process uses the xl^\t) values to solve for the x™w(t) 

values. The iterative process begins by assigning initial arbitrary values to x^'(t) 

through x™'(t). These values are then substituted into Equation (43) and the resultant 

x™w(t) values are computed. A tolerance check is conducted between x^"(z) and 

x™w(t), if the criteria is not met the x%s'(z) values are updated to the x™w(t) values. 

The process continues until tolerance is met. An algorithm of the iterative recursive 

method is presented in Figure 13. 
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~, last / ^ \ Set xm  (?) =zero 

Solve for fS°(t) 
last /    \ 

using xm  (1) 

Solve for x™w(t) 
using Equation (45) 

Set 

No 

Figure 13. Basic Recursive Iteration Algorithm 

D.      LINEAR AND NONLINEAR RECURSIVE BLOCK BY 

BLOCK SYNTHESIS 

The algorithm used to solve the governing Volterra integral can still be 

computationally exhaustive for large, finely discretized time spans and or large (Cset) 

DOF systems. For physically realizable systems the computational effort can be further 

decreased by recursive block-by-block iteration. The convolution integral can be divided 
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into blocks and summed up to arrive at the total solution. The blocks take advantage of 

the linear properties of the convolution integral. 

By the formulation of the convolution integral, Equation (27), the transient 

response spanned over some period of time t, is the summation of the time histories of 

the arbitrary impulse forces acting at specified times, x. 

[f(T)h(t - z)dz = [f(0)h{t -T)dr+[ f{tx )h(t- t)dr +...| f(tn)h(t - r)dr       (44) 

Therefore, the incorporation of this linearity of the convolution integral into the 

recursive block-by-block method is presented. In general, each block will synthesize 

both a specified transient time history and an associated forcing function. The recursive 

process requires the use of all previous block's solutions to achieve the total solution. To 

represent the process Equation (44) can be rewritten to represent discrete block times as: 

[f{T)h(t-T)dT=[f{Q...t,)h{t-T)dt+ [f(tv.l2)h(t-T)dT+... 

[ßtn...t)h{t-t)dr (45) 

Where, the forcing functions /(().../,) represent the block's synthesized force 

over the specified block time span. The recursive properties are not outwardly evident in 

the formulation of Equation (45) but is accounted for computationally for each 

successive block. To illustrate the process a system is synthesized using two blocks. 

Equation (45) reduces to: 

[f{T)h(t-r)dr= lf(0...tx)h(t-T)dt+ lf(tx.J)h(tx-r)dT       (46) 
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Computationally, Equation (44) is iterated and converged for the first block. The 

next block then proceeds to solve Equation (44) for the second time block. However, the 

first block's isolator forcing time history solution has to be extended over the second 

block: 

[f{r)h(t-r)dT= lif(0...t])h(t-r)dT+ [f(0...t])h(tl...t-T)dT (47) 

Here, h(tv..t- r) represents the impulse response function that begins at time ti 

vice zero. The time history, x(t), for the extended time block f f(0...tl)h(tl...t- t)dz is 

the X'^XT) of the next block. Although it can be generally said that any arbitrary X™'(T) 

can be chosen for each successive blocks, a closer approximation to the solution can 

reduce the iterative process. More importantly, the computed extension is added to the 

final recursive iterated solution of the second block. The recursive block-by-block 

method algorithm is presented in Figure 14. 
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Figure 14. Recursive Block-by-Block Algorithm 



For linear isolators such as the one presented in Equation (41) block-by-block 

iterations and block summations are straightforward. Each block follows the algorithm 

presented in Figure 16 and Figure 17. However, for nonlinear forces the recursive block- 

by-block synthesis relies more heavily upon the force solutions of the previous blocks. 

A possible model of a nonlinear isolator is presented as: 

r=/((^-^'Ä-4Ä-?)^(o.-) (48) 
Where the superscript * symbol indicates the iterated value achieved from the 

algorithm presented in Figure 16. For the nonlinear isolators presented a Runge-Kutta 4, 

(RK4), ODE solver is used. 

Each successive block requires that the solution to the nonlinear equations have 

the correct initial conditions. Therefore, in order to achieve continuity of the isolator's 

hysteretic response between blocks, the initial condition is interpolated through a direct 

quadratic approximation through the last three force data points of the previous block, as 

shown in Figure 15. 
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Figure 15. Recursive Interpolation 

E.      UPLIFT IN RECURSIVE BLOCK-BY-BLOCK SYNTHESIS 

Beginning with Equation (42) the calculation of uplift requires the retention in 

the analysis of the vertical degrees of freedom. Therefore, if the original retained set of 

nodal degrees of freedom were limited to lateral displacements in (Cset), the new (Cset) 

would include the vertical DOFs associated with the Cset nodes. This would increase 

(Cset) by a factor of two. Including bi-directional excitation with uplift would then result 

in tripling the size of (Cset) [Ref. 20]. 

For different isolators the uplift properties and their effects on lateral stiffness is 

well documented in [Ref. 21], [Ref. 16], and [Ref. 17]. For simplicity the uplift portion 

of the synthesis was modeled as a linear spring: 

F?S° = -K,so(xr*ca!) (49) 

Programming interpolating tables can easily be introduced in the developed 

program if known. Therefore, Equation (40) expands to include uplift synthesis: 

x.(t)= Equation^!) + ££oV +1 hjj(t- r)F^f({T)CIT+ ... 
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Additionally, since many of the parameters are uplift dependant the following 

isolator models are presented: 

if = -iC(x,-^) (51) 

♦ ^      ,.„* . 

F?° = A(*t ~
xi).(*«-*,).(**-*,)>K, (0,17, (0,r, (0-.) (52) 

Where, the superscript symbol, *, represents a now synthesized value as depicted 

in the linear approximation of slope (M) below: 

Paramater* (t) = Parameter™*™1 + M{x]micm'(0) - x^'it)) (53) 

F.       SINGLE ISOLATION TRAPEZIODAL EXTRACTION 

Given an arbitrary excitation displacement time history the resulting forcing 

function can be extracted using a trapezoidal integration scheme. The general formula 

taken from any numerous numerical texts [Ref. 22] is presented as: 

x(t) =| Afft + 2/2 +2/3 +2/4... + /„) (54) 

Applying the formulation to the convolution integral yields: 

X(0) = |A/(A(0)/(0)) (55) 

x(At) = ! Af (A(0)/(0) + h(At)f(At)) (56) 

x(nAt) = - df(A(0)/(0) + 2h(At)f(At) + ...h(nAt)f(nAt)) (57) 

Rearranging Equations (55) through (57) into matrix form yields: 
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f *(0) 1 
x(Ar) 

x(2A0 

x(nAt) 

LA, 
2 

'    0 0 

h(At) 0 

/z(2A/)        h(At) 

• • 

/z(«AO h((n-l)At) 

0       0" f /(0) 1 
0       0 /(A0 
0       0 /(2A0 

• ••    0 • 

h(At)   0 f(nAt) 

(58) 

The impulse response function matrix is a lower triangular matrix that has zeros 

dominating the main diagonal. This in effect negates the weighting factor of the 1/2. The 

integration scheme then turns into a rectangular integration method with an 0(h) global 

error. To achieve the same 0(h ) approximation of the trapezoidal scheme the weight is 

placed on f(0). Rearranging the matrices in order to solve for f(t) yields: 

x(At)' ' h(At)            0           •« ► •       0   " \    2/(0) 
x(2At) h(At)         h(At)        •« »•       0 /(A/) 
x(3At) ■=At h(At)         h(At)        •« 0 /(2Af) 

• •                •            •< »•       • • 

x(nAt) h(nAt)   h((n-l)At)   •* »•   h(At) f((n-\) At) 

(59) 

The solution for the extracted forcing function can be accomplished through 

various numerical methods. The trapezoidal integration scheme is a simple way of 

acquiring the synthesized forces given a non-isolated simple structure. Increasing the 

time step would increase accuracy, but can be computationally exhaustive for large time 

histories. 
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V. RESULTS 

To develop MATLAB code for the RBBIEF method workable and especially 

comparative models were used. A sinusoidal wave and the El Centro North South 

Earthquake of 1940 were used for the base excitation. 

Appendix A presents the validation of the trapezoidal method versus NASTRAN 

and using MATLAB's ode45 function. Using the same model the recursive block-by- 

block method is validated against ode45 using a simple spring. The model is then run for 

an ideal bilinear element and compared to the results of the recursive block-by-block 

method 

In order to demonstrate the advantages and disadvantages of the recursive block- 

by-block method 3 models were synthesized using the 1940 El Centro earthquake data. 

The first finite element model is a 4-story, single square bay, that is 25 feet wide and 

having an inter-story height of 17.5 feet. The structure is modeled using a total of 20 

nodes, 120 DOF, four DOF in excitation, and four DOF in uplift. The second finite 

element model is a 4-story, nine square bays that is have a total width of 75 and having 

an inter-story height of 17.5 feet. The building is modeled using a total of 80 nodes, 480 

DOF, with 16 DOF in excitation, and 16 DOF in uplift. The last model is the 30-story 

structure that is 225 feet by 225 feet at the base and an inter-story height of 17.5 feet for 

a total of 525 feet in height. The 30-story structure is modeled using 2,511 nodes, 15,066 

degrees of freedom, 81 DOFs in excitation, and 81 DOFs in uplift. A summary is 

presented in Table 1. 

43 



1-Bay 4-Story 9-Bay 4-Story 30-Story 

Nodes 20 80 2511 

Degrees of Freedom 120 480 15066 

DOF in exictation 4 16 81 

DOF in Uplift 4 16 81 

Base Dimension 25' x 25' 75' x 75" 225' x 225' 

Total Height 70' 70' 525' 

Table 1. Parameters of Modeled Buildings 

D.      PROGRAM VALIDATION 

1. De-coupled Versus Coupled System 

A similar recursive process is validated in [Ref. 24] and is presented in Appendix B to 

validate the trapezoidal method. Using the trapezoidal method, a 9-DOF spring mass 

system, as shown in Figure 16, is used to present the validity of uncoupling a system. 

The equivalent de-coupled system is illustrated in Figure 17. Using a single block in the 

recursive block-by-block method with a linear spring of 10 lbf/in as the isolator the 

comparison is conducted. Both programs were run using a time step of .01 seconds for a 

ten second duration with a sinusoidal ground excitation of unit amplitude, oscillating at a 

frequency of .5 Hz. 
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Figure 17. Uncoupled Large Mass 9-DOF Spring Mass System 
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Synthesizing a solution using single block in the recursive block-by-block 

program, Figure 18, represents the base displacement time history. 

0.1 

0.08 

0.06 

c 

8     0.04 

Q 

0.02 

Nodal response of first node 

-0.02 

Time (s) 

Figure 18. Base Displacement Time History of 9-DOF System Using Recursive 

Block-by-Block Synthesis 

The trapezoidal results plotted along the curve presented in Figure 18, so absolute 

differences were calculated between the two data sets and revealed that the maximum 

o 

difference is on the order of 10" . 
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2.   Block-by-Block Synthesis Versus MATLAB's ODE45 

The recursive block-by-block validation process will use the simple 9-DOF 

system is modeled in Figure 16. The process will begin with comparing the two methods 

using a simple linear spring. MATLAB's ode45 function will use the state space 

representation of the second order differential equation presented by Equation (14). A 

comparison with an ideal bilinear isolator is then made. Because ode45 is an adaptive 

algorithm, memory-type isolators with distinct discontinuities at transition points along 

the loop can make the adaptive solver computationally exhaustive. For example, the 

bilinear element has sharp transition points around which the ode45 function will tend to 

oscillate. To avoid these oscillations, additional code was required to force the solution 

to stay within the hysteretic loop. 

Using the same model in Figure 16, an arbitrary (nt) number of blocks were 

chosen producing the same plot as Figure 19. For clarification the number of block (nt) 

was set to three, the linear spring's value was 10 lbf/in, and the tolerance in the recursive 

block-by-block synthesis was set at 10"6 of displacement and 10"4 for velocity. 

Conducting the ode45 equivalent and plotting the two graphs together depicted no 

appreciable difference. Therefore an absolute difference plot is again conducted in Figure 

19. 
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x10- 

Figure 19. 9-DOF Spring Mass System, Absolute Base Displacement Differences 

Between a Three Block Recursive Block-by-Block Synthesis and ODE45 

Continuing the comparisons an ideal bilinear element was chosen next. The 

maximum tensile and compressive forces were set to 5 Ibf and -5 lbf respectively. The 

initial spring constant, Ki, was set to lOlbf with a yield to post ratio of .04. Again, the 

ground excitation was a unit sinusoidal waveform with a frequency of .5 Hz. Both 

programs were conducted with a time step of .01 seconds and a duration of 10 seconds. 

Figure 20, presents the two time displacement histories of the bottom node. The dashed 

line represents the ode45 solution. Figure 21, represents the two hysteretic loops. The 

circles represent the recursive ode45 solution. 
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Figure 20. Three Block Synthesis Versus ODE45 Base Displacements 

Comparisons of a Linear Spring Isolated 9-DOF Spring Mass System, from a Unit 

Sinusoidal Ground Excitation at .5 FIz 
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Figure 21. Three Block Synthesis Versus ODE45 Hysteresis Comparisons of a 

Linear Spring Isolated 9-DOF Spring Mass System, From A Unit Sinusoidal Ground 

Excitation At .5 Hz 
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From Figure 21 it is shown how the ode45 function can oscillate about the 

discontinuous transition corners. Ultimately, Figure 20 indicates a very good 

approximation of the synthesis in comparison to the ode45 solution. 

3. Model Isolator Plots 

A sinusoidal wave of unit amplitude and a frequency of .5 Hz was used on the 

following modeled isolators below in Table 2. 

Properties 

Real Bilinear Element 

K = 500 Ibf/in 
Yield to post ratio = .04 

Max Tensile Force = 50 Ibf 
Max Compressive Force = -50 Ibf 

Ideal Bilinear Element 

K = 500 Ibf/in 
Yield to post ratio = .04 

Max Tensile Force = 50 Ibf 
Max Compressive Force = -50 Ibf 

Wen Element 

Fy= 100 Ibf/in 
Max Elastic Displacement =1 in 

A=8 
n = 2 

g = .0001 
v=.0001 

alpha=.04 

Maxwell Element 
K = 500 Ibf/in 

C = 51 lbf-s/in 

Table 2. Model Isolator Paramters of Sinusoidal Input 

Figures 22 through 25 plot the respective hysteretic response loops. The duration 

of excitation was ten seconds and at a time step of .01 seconds. The values in Table 2 are 

arbitrary and were chosen to proved illustration in the figures. 
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Figure 22. Unit Sinusoidal Ground Excitation at .5 Hz on a Real Bilinear Isolator 

100 

O 

■100 
-1 -0.5 0 0.5 1 

Displacement (in) 

Figure 23. Unit Sinusoidal Ground Excitation at .5 Hz on an Ideal Bilinear Isolator 
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Figure 24. Unit Sinusoidal Ground Excitation at .5 Hz on a Wen Isolator 

100    - 

d) u 
o a* 

-150 

Displacement (in) 

Figure 25. Unit Sinusoidal Ground Excitation at .5 Hz on a Maxwell Isolator 
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B.      SINGLE BAY 4-STORY BUILDING 

The 1940 El Centro Earthquake Data, Figure 26, displacement time history is 

used for the ground motion for synthesis. The earthquake data was sampled at. 1 seconds 

for a duration of 50 seconds. 

c 
£ 
O 
CO 

Time (s) 

Figure 26. 1940 El Centro North South Ground Motion Time History 

The uplift isolators were modeled as linear springs. The columns and beams are 50 ksi 

steel structural- members with the following specifications: columns, W36x486; first and 

second floor beams, W36xl70; third floor beams are W36xl60; fourth floor beams, 

W36xl50; roof beams, W36xl35. A simple frame illustration of the building is shown in 

Figure 27. The isolator's properties are listed in Table 3. Figure's 28-39 

illustrates the hysteresis, horizontal and vertical displacement time responses to the 

earthquake input. The direction of excitation is along the weak axis of bending. 

Additionally, a cutoff frequency of 10 Hz was chosen leading to ten retained modes. 
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Figure 27. Single Bay, 4-Story Building Frame 

Properties 

Real And Ideal Bilinear 
Elements 

K = 300 lbf/in 
Yield to post ratio = .04 

Max Tensile Force = 50 Ibf 
Max Compressive Force = -50 Ibf 

K vertical = 30 lbf/in 
Stiffness Slope = 30 lbf/in-in 

Wen Element 

Fy = 20 lbf/in 
Max Elastic Displacement =3 in 

A=3 
n = 4 

g =.0001 
v=.000001 

K vertical = 30 lbf/in 
alpha=.04 

A,g,n,v,xy,Fy slope = 
.08/in*(A,g,n,v,xy,Fy) 

alpha slope=.008/in*alpha 

Maxwell Element 

K = 300 lbf/in 
C = 51 lbf-s/in 

K vertical = 30 lbf/in 
Stiffness Slope = 30 lbf/in-in             | 

Table 3. Single Bay, 4-Story Isolator Properties 
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Figure 28. Single Bay, 4-Story, Real Bilinear Isolator, Corner Node Hysteresis for the 

1940 El Centro North South Earthquake Ground Motion 
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Figure 29. Single Bay, 4-Story, Real Bilinear Isolator, Corner Node Lateral 

Displacement History for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 30. Single Bay, 4-Story, Real Bilinear Isolator, Corner Node Uplift Displacement 

History for the 1940 El Centra North South Earthquake Ground Motion 
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Figure 31. Single Bay, 4-Story, Ideal Bilinear Isolator, Corner Node Hysteresis for the 

1940 El Centra North South Earthquake Ground Motion 
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Figure 32. Single Bay, 4-Story, Ideal Bilinear Isolator, Comer Node Lateral 

Displacement History for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 33. Single Bay, 4-Story, Ideal Bilinear Isolator, Corner Node Uplift Displacement 

History for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 34. Single Bay, 4-Story, Wen Isolator, Corner Node Hysteresis for the 1940 El 

Centro North South Earthquake Ground Motion 

Lateral Corner Node 

Figure 35. Single Bay, 4-Story, Wen Isolator, Corner Node Lateral Displacement History 

for the 1940 El Centro North South Earthquake Ground Motion 
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Corner Node Uplift 

Figure 36. Single Bay, 4-Story, Wen Isolator, Corner Node Uplift Displacement History 

for the 1940 El Centra North South Earthquake Ground Motion 
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Figure 37. Single Bay, 4-Story, Maxwell Isolator, Corner Node Hysteresis for the 1940 

El Centra North South Earthquake Ground Motion 
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Lateral Corner Node 

Figure 38. Single Bay, 4-Story, Maxwell Isolator, Corner Node Lateral Displacement 

History for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 39. Single Bay, 4-Story, Maxwell Isolator, Corner Node Uplift Displacement 

History for the 1940 El Centro North South Earthquake Ground Motion 
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Table 4 and Table 5, present the computational results of the synthesis process 

using MATLAB 5.2.1 on a 733 Mhz Pentium III, Dell Computer. 

Blocks 

Element 4 8 16 24 

Spring 8.3 6 6.4 8.8 

Real Bilinear Element 7.6 5.4 6.6 8.6 

Ideal Bilinear Element 5.5 4.3 6 8.5 

Wen Element 5.1 4.6 6.1 9 

Maxwell Element 8.2 6.4 7.25 10 

Table 4. Single Bay, 4-Story, 1940 El Centro Earthquake Recursive Block-By-Block 

Synthesis Time Results in Seconds 

Blocks 

Element 4 8 16 24 

Spring 5.50E+08 9.30E+07 5.17E+07 4.22E+07 

Real Bilinear Element 1.64E+08 7.11E+07 4.78E+07 3.90E+07 

Ideal Bilinear Element 1.23E+08 6.00E+07 4.38E+07 3.90E+07 

Wen Element 2.10E+08 8.89E+07 4.40E+07 3.77E+07 

Maxwell Element 1.50E+08 7.04E+07 4.93E+07 4.14E+07 

Table 5. Single Bay, 4-Story, 1940 El Centro Earthquake Block-By-Block Synthesis 

FLOP Count Results 

From the preceeding tables there is an indication that although the number of 

FLOPS decrease per block the is an optimum number of blocks. This is due to the 

number of optimum iterations per block. Upon converging to a number of iterations per 

block this number remains relatively the same for each block. Therefore, increasing the 

number of blocks with the same number of iterations increases the computation time. 
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C.      9-BAY, 4-STORY BUILDING 

Increasing the model's complexity, a 9-bay 4-story building, Figure 40, is now 

investigated using the 16 hysteretic isolators that include uplift. Uplift is again calculated 

as in the single bay, 4-story structure. 

Figure 40. 9-Bay, 4-Story Building Frame 

The building is design with 50 ksi steel members. The columns are W36x486, 

first and second floor beams are W36xl70, third floor beams are W36xl60, the fourth 

floor beams are W36xl50, and the roof beams are W36xl35. 
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The structure is synthesized for various isolators listed in Table 6, with a base 

excitation of the 1940 El Centro earthquake. The transient time history is developed 

from a time step of .1 seconds for a duration of 50 seconds. 

Properties 

Real And Ideal Bilinear 
Elements 

K = 300 Ibf/in 
Yield to post ratio = .04 

Max Tensile Force = 50 Ibf 
Max Compressive Force = -50 Ibf 

K vertical = 30 Ibf/in 
Stiffness Slope = 30 lbf/in-in 

Wen Element 

Fy = 20 Ibf/in 
Max Elastic Displacement =3 in 

A=3 
n = 4 

g =.00001 
v=.000001 

K vertical = 30 Ibf/in 
alpha=.04 

A,g,n,v,xy,Fy slope = 
.08/in*(A,g,n,v,xy,Fy) 

alpha slope=.008/in*alpha 

Maxwell Element 

K = 300 Ibf/in 
C = 51 lbf-s/in 

K vertical = 30 Ibf/in 
Stiffness Slope = 30 lbf/in-in 

Table 6. 9-Bay, 4-Story Isolator Properties 

Figures 41-52, illustrate the results of displacement time histories and hysteretic 

loops of the respective isolators. Again, the cutoff frequency was set to 10 Hz retaining 

20 modes. The direction of excitation is along the weak axis of bending. 
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Figure 41. 9-Bay, 4-Story, Real Bilinear Isolator, Coiner Node Hysteresis for the 1940 El 

Centro North South Earthquake Ground Motion 
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Figure 42. 9-Bay, 4-Story, Real Bilinear Isolator, Corner Node Lateral Displacement 

History for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 43. 9-Bay, 4-Story, Real Bilinear Isolator, Corner Node Uplift Displacement 

History for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 44. 9-Bay, 4-Story, Ideal Bilinear Isolator, Corner Node Hysteresis for the 1940 

El Centro North South Earthquake Ground Motion 
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Figure 45. 9-Bay, 4-Story, Ideal Bilinear Isolator, Corner Node Lateral Displacement 

History for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 46. 9-Bay, 4-Story, Ideal Bilinear Isolator, Corner Node Uplift Displacement 

History for the 1940 El Centro North South Earthquake Ground Motion 

66 



150 

100 

9> 50 
v / 

■!_) 

c 
CD o 
b 
D 
O 
CO -50 
a, 
crt 

Q -100 

-150 

-200 

Lateral Hysteresis of Corner Node 

-15 -5 0 5 

Isolator Displacement (in) 

10 15 

Figure 47. 9-Bay, 4-Story, Wen Isolator, Corner Node Hysteresis for the 1940 El Centro 

North South Earthquake Ground Motion 
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Figure 48. 9-Bay, 4-Story, Wen Isolator, Corner Node Lateral Displacement History for 

the 1940 El Centro North South Earthquake Ground Motion 
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Figure 49. 9-Bay, 4-Story, Wen Isolator, Corner Node Uplift Displacement History for 

the 1940 El Centro North South Earthquake Ground Motion 
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Figure 50. 9-Bay, 4-Story, Maxwell Isolator, Corner Node Hysteresis for the 1940 El 

Centro North South Earthquake Ground Motion 
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Figure 51. 9-Bay, 4-Story, Maxwell Isolator, Corner Node Lateral Displacement History 

for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 52. 9-Bay, 4-Story, Maxwell Isolator, Corner Node Uplift Displacement History 

for the 1940 El Centro North South Earthquake Ground Motion 
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Again,   Table 7 and Table 8, present the computational results of the synthesis 

process using MATLAB 5.2 on a 733 Mhz Pentium III, Dell Computer. 

Blocks 

Element 2 4 8 16 

Spring 124 59 50 71 

Real Bilinear Element 50 49 44 47 

Ideal Bilinear Element 61 38 39 65 

Wen Element 57 38 40 66 

Maxwell Element 73 44 45 72 

Table 7. 9-Bay, 4-Story, 1940 El Centro Earthquake Recursive Block-By-Block 

Synthesis Time Results in seconds 

Blocks 

Element 2 4 8 16 

Spring 9.27E+09 2.89E+09 7.37E+09 1.54E+09 

Real Bilinear Element 3.17E+09 2.05E+09 7.01 E+08 1.45E+09 

Ideal Bilinear Element 4.06E+09 1.62E+09 6.74E+08 1.45E+09 

Wen Element 2.70E+09 1.24E+09 6.39E+08 1.22E+09 

Maxwell Element                       | 5.10E+09 1.69E+09 6.93E+08 1.54E+09 

Table 8. 9-Bay, 4-Story, 1940 El Centro Earthquake Block-By-Block Synthesis FLOP 

Count Results 

As before, there indicates an optimum number of blocks. In comparison to the 

single bay 4-story structure the optimum number of blocks were relatively the same 

although the number of FLOPS increased. 
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D.      30 STORY BUILDING 

The 30-story building, Figure 53, is now investigated using 81 various hysteretic 

isolators that include uplift. Uplift calculations are carried from the previous examples. 

The structure is synthesized for various isolators listed in Table 9, with a base excitation 

of the 1940 El Centro earthquake. 

Properties 

Real And 
Ideal Bilinear 

Elements 

K = 300 Ibf/in 
Yield to post ratio = .04 

Max Tensile Force = 50 Ibf 
Max Compressive Force = -50 Ibf 

K vertical = 30 Ibf/in 
Stiffness Slope = 30 lbf/in-in 

Wen Element 

Fy = 20 Ibf/in 
Max Elastic Displacement =3 in 

A=3 
n = 4 

g =.00001 
v=.000001 

K vertical = 30 Ibf/in 
alpha=.04 

A,g,n,v,xy,Fy slope = 
.08/in*(A,g,n,v,xy,Fy) 

alpha slope=.008/in*alpha 

Maxwell 
Element 

K = 300 Ibf/in 
C = 51 lbf-s/in 

K vertical = 30 Ibf/in 
Stiffness Slope = 30 lbf/in-in 

Table 9. 30-Story Isolator Properties 

The transient time history is developed from a time step of .1 seconds for a 

duration of 50 seconds. Again, excitation is in weak axis of bending and Figures 54-65 

represents the results of the displacement time histories and hysteresis. 
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Figure 53. 30-Story Building Wire Frame 
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Figure 54. 30-Story, Real Bilinear Isolator, Corner Node Hysteresis for the 1940 El 

Centro North South Earthquake Ground Motion 
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Figure 55. 30-Story, Real Bilinear Isolator, Corner Node Lateral Displacement History 

for the 1940 El Centro North South Earthquake Ground Motion 
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Corner Node Uplift 

Figure 56. 30-Story, Real Bilinear Isolator, Corner Node Uplift Displacement History for 

the 1940 El Centro North South Earthquake Ground Motion 
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Figure 57. 30-Story, Ideal Bilinear Isolator, Corner Node Hysteresis for the 1940 El 

Centro North South Earthquake Ground Motion 
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Figure 58. 30-Story, Ideal Bilinear Isolator, Corner Node Lateral Displacement History 

for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 59. 30-Story, Ideal Bilinear Isolator, Corner Node Uplift Displacement History 

for the 1940 El Centro North South Earthquake Ground Motion 
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Figure 60, 30-Story, Wen Isolator, Corner Node Hysteresis for the 1940 El Centro North 

South Earthquake Ground Motion 
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Figure 61. 30-Story, Wen Isolator, Corner Node Lateral Displacement History for the 

1940 El Centro North South Earthquake Ground Motion 
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Corner Node Uplift 

Figure 62. 30-Story, Wen Isolator, Corner Node Uplift Displacement History for the 

1940 El Centra North South Ground Motion 
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Figure 63, 30-Story, Maxwell Isolator, Corner Node Hysteresis for the 1940 El Centra 

North South Earthquake Ground Motion 
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Figure 64. 30-Story, Maxwell Isolator, Corner Node Lateral Displacement History for 

the 1940 El Centro North South Earthquake Ground Motion 
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Figure 65. 30-Story, Maxwell Isolator, Corner Node Uplift Displacement History for the 

1940 El Centro North South Earthquake Ground Motion 
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Again, Table 10 and Table 11, present the computational results of the synthesis 

process using MATLAB 5.2 on a 733 Pentium III, Dell Computer. 

Blocks 

Element 2 4 6 I        8 
Spring 1388 823 783 [      870 

Real Bilinear Element 840 611 615 782.7 

Ideal Bilinear Element 847 402 489 625 

Wen Element 819 576 785 989 

Maxwell Element 603 485 576 680 

Table 10. 30-Story, 1940 El Centra Earthquake Recursive Block-By-Block Synthesis 

Time Results in seconds 

Blocks 

Element 2 4 6 8 

Spring 1.21E+11 4.50E+10 2.91 E+10 2.34E+10 

Real Bilinear Element 6.80E+10 3.23E+10 2.27E+10 2.06E+10 

Ideal Bilinear Element 3.15E+10 1.97E+10 1.74E+10 1.60E+10 

Wen Element 9.13E+10 4.50E+10 2.90E+10 2.33E+10 

Maxwell Element 3.82E+10 2.56E+10 2.11E+10 1.82E+10 

Table 11. 30-Story, 1940 El Centra Earthquake Block-By-Block Synthesis Flop Count 

Results 

For the above calculations, the cutoff frequency was set to 1.0 Hz, which retained 

a total of 26 modes. 

Looking at the optimum number of blocks versus time, Table 12, tabulates the 

fastest times for the varying numbers of isolators and DOFs. The table also compares 

time synthesis for various computers and processor speeds. The synthesized values are 
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taken from a 50 second time duration of the 1940 El Centra earthquake displacement 

data for the nonlinear Wen element. 

1-Bay 4-Story 9-Bay 4-Story 15-Bay 30-Story 

NDOF synthesized 8 32 162 

Modes retained 20 20 26 

NDOF 120 480 15066 

Optimum Number of 
Blocks 

8 5 4 

Avg Iterations 10 8 8 

PowerMac G4 350 
Mhz Time (s) 

15 60 1145 

Dell Pentium III 750 
MHz Time (s) 

4.6 38 576 

Table 12. Optimum Times for Nonlinear Wen Element Synthesis 

As Table 12 indicates that for fairly large base isolated structures the optimum 

number of blocks doesn't deviate much from smaller models. Although relatively 

constant the timesavings can be significant from the original integral method. 
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VI. CONCLUSIONS 

The recursive block-by-block method is considerably efficient in computing the 

seismic transient dynamic response of multiple degrees of freedom structures using 

hysteretic type isolators. As Table 12 outlines, there are limits to the number of blocks 

used to save computation time. Though the number of iterations is generally reduced per 

block, the recursive iterative process still requires a minimum amount of iterations to 

converge. Therefore, by increasing the number of blocks will incur added synthesis time 

even though the number of floating point operations, FLOPS, is decreased. 

Although the initial reductions in time computation are attributed to the retention 

of significant modes and computing the synthesis over the retained (Cset) degrees of 

freedom, it is the recursive block-by-block method that can further reduce it up to an 

additional 60%. For large (Cset) models the major computational elements are the 

impulse response matrix assembly and the recursive iterative synthesis. As stated above 

the iterative synthesis will reach a minimum, however, the impulse response function 

program can contain a significant amount of loops which can have a moderate effect on 

time. However, if the time duration and the number of modes retained remain constant a 

flag variable can be entered as to skip this computation if the only thing that changes is 

isolator properties. This can significantly reduce the computation time for large number 

of isolator based structures. 

Since the program only iterates on the retained (Cset) nodal degree of freedoms, 

it will produce the transient dynamic response history and the respective synthesized 

force time history. Because of this, if two structures had an equal number of base 



isolators and the same number of modes retained, the program's run time will be similar 

even though structure two had 10 times as many nodes as structure one did. To compute 

non-isolator coupled degrees of freedom time history responses the integral equation 

formulation of the synthesized forces and the associate impulse response function is 

employed. This integral calculation can be computed directly or by the block-by-block 

method. Either method produces the responses quickly and in a matter of seconds. 

The force extraction of an isolated structure using the trapezoidal integration 

scheme proved very accurate. However, the limitations lay in MATLAB's memory 

intensive backslash command, 'V, and the process only works on system that has only 

one node in vibration. 
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VII.   RECOMMENDATIONS FOR FUTURE WORK 

The work contained herein was conducted to develop and validate a recursive 

block-by-block program that uses nonlinear hysteretic type isolators for base isolation. 

There have been studies conducted on the exact nature of uplift effects on isolators. The 

shared data from these studies or additional laboratory data can be incorporated into the 

program as data files, which MATLAB can easily interpolate from. Using this data, a 

model can be designed and isolated using a known or fabricated isolator. This model can 

then be used for further validation of the program. Additionally, optimizing the program 

code can greatly reduce the computation time by re-writing the loops into a more 

efficient manner, specifically, in assembling the impulse response function. Finally, an 

optimization method can be employed to give the designer an optimal isolator for a given 

excitation and set of structural limitations. 
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APPENDIX: TRAPEZOIDAL FORCE EXTRACTION VERSUS 

NASTRAN AND ODE45 

A W3 6x848 50 ksi steel column was modeled using 16 nodes spaced equally 

over the total length of the column of 375 feet. The column was chosen from the 

designed 30 story building. The MATLAB code, developed for the trapezoidal force 

extraction's data was compared to the large mass method used in NASTRAN, [Ref. 23]. 

NASTRAN generated the modal data as well. The excitation was conducted in the weak 

axis of bending of the column. A 9-DOF system was used to validate the extraction 

process against MATLAB's ode45 function. 

The validation is conducted with a sinusoidal input with an amplitude of 1 

centimeter converted to inches with a frequency of .5 Hz. In NASTRAN, the time step 

was conducted at .1 seconds for a duration of 20 seconds. Figure. 66, depicts the 

transient time history of the tip of the beam. Conducting the Trapezoidal force extraction 

program at a time step of .01 seconds and a duration of 20 seconds and a large mass 

representing the ground, yields a solution that is very similar to the one generated by 

NASTRAN. A better representation of the two plots would be to present the relative 

difference, as shown in Figure 67. Because the time response crosses the time axis, 

calculating the relative errors vice differences would generate gross errors. As the plot 

indicates the comparisons are acceptable. 
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Figure 66. NASTRAN Sinusoidal Base Excitation Tip Displacement Results of a 375 
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Figure 67. 375 Feet Steel W36x487 Column, NASTRAN Versus Trapezoidal Time 

History Difference Plot of Tip DOF 
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Using a 9-DOF spring mass system as presented in Figure 16, MATLAB's ode45 

function was used in accordance with the following state space representation of the 

governing second ordinary differential equation: 

(62) 

; x y = {s} 

|jJ = -wrx [c]|x| - [My1 [K]{X}+[M]-] {F;
S
° } 

Where: 

Fi*° = -(10l-¥)[x(l)-Xofir] (63) 
in 

Using Figure 17, the trapezoidal extraction method was used using a large mass 

to represent the ground and conducted at time step of .01 for 10 seconds. Figure 68, 

illustrates the time history response of the first mass. Again, the ode45 plot is very 

similar and a difference plot was graphed in Figure 69. From the figures the extraction 

method is an acceptable method in developing a transient response. 
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