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Section 1: Scientific Progress and Accomplishments 

Introduction 

We have completed a five-year program to develop technologies for MEMS-based systems for 
harsh environment applications. This program leverages MEMS as an enabling technology for 
providing efficient, high performance systems that have inherent simplicity and reliability. Our 
primary aim was the deployment of these systems in a gas turbine engine. However, the results 
of our research, in general, apply to intelligent control of a wide variety of systems unrelated to 
gas turbines by using integrated a distributed sensor and actuator array schemes. A thrust area of 
this program was the development of fabrication and control technologies for arrayed MEMS 
sensors and actuators. To meet the requirements related to harsh environments, we have 
concentrated a significant portion of time, effort, and resources into the development of process 
and materials characterization of SiC as a MEMS material. This report will summarize these 
efforts for the period between July 1, 1995 and June 30, 2000, the termination date of the grant. 



Proposed Research 

The overall theme of the proposed research was the development of highly integrated and 
distributed sensor/actuator arrays (also referred to as microelectromechanical systems or simply 
MEMS) for intelligent control of systems. In general, we proposed to use microfabricated sensor 
arrays to obtain information on the condition of a system. Sensor interface electronics would be 
needed to obtain the data to then be reduced by the signal processing electronics. The results 
would then be communicated to the logic that controls the drive electronics, and therefore, the 
actuators. The actuators then manipulate the system for a desired purpose. Depending on the 
application, there would be a number of feedback levels, ranging from the lowest level where 
actuators are controlled by the adjacent sensors, to a high level of feedback requiring an 
intelligent controller for the entire system. The degree of integration would also depend on the 
application in mind. At least the sensor interface and the actuator drive electronics would have to 
be integrated on the same chip with the sensors and the actuators, respectively. In the most 
aggressive form, all the blocks would be integrated on the same chip. 

The aforementioned control concept required the development of appropriate enabling 
technologies. These include sensor and actuator fabrication, integration of sensors, actuators and 
electronics, real-time signal processing related to large density arrays, wireless communication 
of the distributed sensor and actuator arrays, fault detection, and intelligent control of large 
degree-of-freedom systems. The proposed research was basic with respect to these enabling 
technologies. At the same time, the research was application driven toward a gas turbine engine. 
Our choice of a gas turbine engine was motivated by the significant technical challenges and 
potential benefits. The former required advanced technology development, for example, high- 
temperature silicon carbide (SiC) MEMS. Given the significant challenges in working with gas 
turbine instrumentation, extension of the proposed work to technologically less challenging 
applications was thought to be straightforward. The potential direct benefit would be a smart 
engine that offers higher performance and fuel efficiency compared with conventional designs. 

A "smart" gas-turbine engine that integrates MEMS arrays with the appropriate control schemes 
was proposed. The concepts were to operate on both static and transient phenomenon and 
incorporate a broad intelligence to produce enhanced performance with increased reliability, 
durability, and maintainability. The concept was to integrate microfabricated sensors, actuators, 
and control circuits into materials which can be used as structural elements. Since these systems 
were to be built into the structural components of the engine, they would not disrupt other 
systems; they would be inherently simple; they would not increase engine size or weight; and 
they would operate without pilot control. 

The gas-turbine engine has been the focus of intense research since the first Whittle design in 
1937. Although it has evolved into a very efficient source of power, many areas remain open for 
advances. Instead of continuing along the evolutionary track where more highly engineered and 
complex systems provide higher performance, the MEMS-based, smart-engine concept that we 



proposed took a revolutionary path by potentially providing efficient, high-performance systems 
that have inherent simplicity and reliability. 
A typical "smart" gas turbine engine requires MEMS with the following capabilities: 

(1) bimetallic microvalves for turbine and combustor cooling: 
-ambient pressure, 50 to 200 psi; -ambient temperature, 500°C to 800°C, -air flow rate, 
1.5x 10-4 kg/sec/cm2. 

(2) bimetallic microvalves for combustor fuel/air control: 
-ambient pressure, 100 to 200 psi; -ambient temperature, 500°C to 800°C, -air flow rate, 
6x10-3 kg/sec/cm2. 

(3) ice detection sensors and actuators: 
-ambient pressure, atmospheric to 50 psi, -ambient temperature, -20°C to 5°C, -hot gas 

temperature, 0°C to 300°C. 
(4) pressure sensors and actuators for surge/stall and tip clearance control: 

-ambient pressure, atmospheric to 200 psi, -pressure resolution, 0.02 psi, -ambient 
temperature, 50°C to 500°C, actuator motion, up to 0.7mm. 
-compressor bleed flow, actual numbers cannot be quoted since the phenomenon is 
poorly understood. 

(5) chemical sensors and actuators for combustion product and exhaust gas control: 
-ambient pressure, atmospheric to 200 psi, -ambient temperature, 500°C to 1200°C. 

At the onset of this program, the requisite silicon-based device technologies existed to address 
the needs outlined above, although not to the operational specifications required for gas turbine 
engines. As such, we proposed to develop and demonstrate the proposed sensor and actuator 
arrays in silicon, including the support electronics, signal processing and control during the first 
three years of the program. During the two option years we proposed to transfer this technology 
to SiC in order to achieve device structures that can meet the harsh environment operational 
specifications listed above. 

It is appropriate to re-emphasize that while our work used a gas turbine engine as a vehicle for 
the development of the required enabling technologies discussed, this focus was not limiting. For 
example, we proposed to develop chemical sensor arrays for combustion monitoring. The device 
architectures have potential uses in monitoring chemical agents that may be released into a 
battlefield. Our control concept would then alert appropriate actuators for action. Such action 
could be the closing of microvalves blended into normally porous fabrics of suits to seal a soldier 
from the environment until the hazard was eliminated. Alternatively, the action could be a 
miniature MEMS-based drug delivery system that injects the soldier with the appropriate 
antidote. In another application, the sensors may be accelerometers to monitor vibrations in a 
system (e.g., helicopter rotor blades). The control system would then utilize the information in 
conjunction with macro- or microactuators for vibration suppression. Yet other application areas 
could be sensor and actuator arrays for adaptive optics, noise suppression and skin drag 
reduction for aerospace vehicles. Clearly, there are many civilian applications that parallel those 



described above. For example, automotive engine control for performance and fuel efficiency, 
and efficient environment/building air conditioning would be a direct civilian impact of the 
proposed research. 

The sensors, actuators, and control circuits proposed for the gas turbine application required that 
the devices operate in high pressure and temperature environments as compared with more 
pedestrian applications. The microvalve actuators must also be capable of supplying and/or 
regulating relatively high fluid flow rates in these applications. When fluid flow rates exceed 
those available with microvalves, we proposed to incorporate fluid regulators and amplifiers to 
achieve the desired flow. At the time, this was a primary concern of many of the end users of 
MEMS. As such, we proposed to incorporate fluid amplifiers (e.g., in the variable geometry 
combustor where it is desirable to regulate a significant quantity of air) when necessary. 

Review of Accomplishments 

In terms of materials issues, the program was divided into two distinct subsets, the silicon subset, 
and the silicon carbide subset. At the onset of the program, development of SiC as a MEMS 
material was in its infancy, so a main thrust was to make devices from silicon. We recognized 
that many of the Si-based devices would not meet the operational specifications required for 
most gas turbine applications. However, we believed that the Si fabrication technologies were 
mature enough to allow for the fabrication of Si-based microsensor and microactuator arrays that 
could be used in the development of the control electronics and control methodologies for the 
program. 

Heat Flux Sensors: 

During the first year of the program (1995), work began on the development of Si-based ice 
detection and heat flux sensors. These sensor types were selected as the first to be developed 
since we had concurrent to this MURI, a DARPA-funded program to develop TiNi shape 
memory alloys for microactuator applications. It was hoped that the results of the DARPA 
program would yield a suitable processing technology to produce microvalve arrays for this 
MURI program. The heat flux sensor was based on four resistive temperature sensors configured 
in a Wheatstone Bridge configuration. The heat flux was measured by simply taking differential 
temperature measurements. The sensors consisted of microfabricated aluminum temperature 
sensing elements on a polyimide substrate. Heat fluxes of up to 2000 W/m2 were measured. 
Details concerning the fabrication, calibration, and operation of these sensors can be found in the 
1995, 1996, and 1997 Interim Progress Reports. 

Ice Sensors: 

Development of ice detection sensors also began in 1995. Two sensor designs were developed. 
The first design utilized a micromachined resonant membrane as the sensing element. The sensor 
was fabricated using a combination of Si bulk micromachining, Si-to-pyrex wafer bonding, and 
Si etchback techniques  to  produce  a  sealed-cavity membrane  structure.  The  membrane, 



fabricated from heavily boron doped Si, was excited into resonance by applying an AC voltage 
to Al electrodes deposited and patterned into the micromachined substrate. The resonant 
frequency of the membrane was dependent on its stiffness and mass, therefore the formation of 
ice on the membrane surface effectively increased the mass of the vibrating structure and its 
stiffness. An increase in stiffness produces a smaller deflection than the ice-free membrane. 
Since the sensor is essentially a variable capacitor, such changes could be detected with the 
appropriate circuitry. This sensor design was able to discern the onset of freezing, as well as the 
difference in thickness between 0.6 and 0.8 mm-thick ice, thicknesses that are well below 
dangerous levels for many aerospace applications. 

A second ice sensor prototype based on piezoelectric actuation was developed and reported in 
the 1997 Interim Progress Report. This sensor was constructed from commercial-off-the-shelf 
components and consisted of a piezoelectric transducer excited at its resonant frequency. As ice 
accumulated on the transducer, the resonant frequency changed in accordance with an increase in 
mass and stiffness. Such changes were detectable, and the sensor could be calibrated to correlate 
with observable formation of ice on the sensor surface. A resonant frequency shift of nearly 15 
kHz was observed for a 04 mm increase in ice thickness. Details regarding both ice sensor 
prototypes can be found in the 1995, 1996, and 1997 Interim Progress Reports. 

Control Electronics: 

Research activities in the area of control electronics were performed throughout the entire 
program. Since initial emphasis was placed in the development of microsensor technologies, 
activity in control electronics was focussed on the development of capacitive sensing techniques. 
This proved to be a significant challenge, since the capacitances of many MEMS structures are 
quite small, in the femto-ferad range. Early work (1996) in capacitive sensing concentrated on 
the development of a Delta modulator. The performance of the early prototypes was deemed 
inadequate for harsh environment applications, so the design of a Sigma-Delta modulator was 
initiated in 1997. The Sigma-Delta modulator was designed to provide better resolution than the 
Delta modulator, as well as a digital output. The Sigma-Delta modulator was designed, but never 
fabricated. We believed that the digital output signals of the Sigma-Delta modulator could be 
transmitted over a wireless power/data interface, thus allowing for sensors to be located in the 
harsh environment with the critical Si-based control electronics located remotely. It was found 
that this goal was too ambitious; therefore, work in the remaining years of the program was 
dedicated to the development of a suitable microchip-based Delta modulator for capacitive 
sensing. IC versions of the Delta modulator were fabricated by MOSIS and tested in 1998 and 
1999. During 2000, a package was developed to couple a MOSIS chip with a SiC surface 
micromachined lateral resonant structure in order to permit electronic sensing of the resonant 
frequency. Using this setup, the resonant frequency for this resonator was characterized as a 
function of ambient pressure, and as expected, the mechanical quality factor, Q, increased as the 
pressure decreased. Details concerning this experiment can be found in the 2000 Interim 
Progress Report. Details concerning development of the capacitive sensing cicuitry are presented 
in all Interim Progress Reports. 



Signal Processing and Control: 

The effort to develop signal processing and control techniques was not delayed by the lack of 
fabricated sensors and actuators. Beginning in 1995, models that embodied sensors, actuators, 
local controllers and global controllers for feedback-based systems were being developed. The 
models were developed for large-scale systems with numerous inputs and outputs. Two 
approaches for the controller were developed. The first uses computer synthesis tools for linear 
plants with known dynamics and many failure-prone sensors and actuators. The second uses 
estimation to accommodate plants with unknown nonlinear dynamics. In both cases, algorithms 
were developed to accommodate MEMS-based systems, which are likely to have tens to 
hundreds of sensors and equally as many actuators due to the potential low cost of each MEMS 
unit. Such systems are likely to be subjected to numerous failures creating a situation that would 
require the controller to maintain system stability while maintaining feedback control. 
Algorithms were developed to meet this requirement. Due to issues related to the fabrication of 
arrays and control electronics, actual hardware testing of control schemes could not be 
performed. However, they are developed to a point that when the fabricated arrays and 
associated control electronics are fully developed, the control methods developed during this 
program could be tested. Details concerning developments in this area can be found in all Interim 
Progress Reports. 

Silicon Carbide MEMS 

As stated previously, the intent of this program was to develop "smart" microfabricated sensor 
and actuator arrays for gas turbine engines. It was known from the onset that although Si-based 
devices could be fabricated, the material properties of Si would prohibit their use in the gas 
turbine environment. Therefore, silicon carbide (SiC) was proposed as the material to be used for 
the sensor and actuator structures. Unfortunately, the fabrication technologies for SiC were 
immature at the start of this program, so we proposed to first develop Si-based prototype arrays 
in order to aid in the development of the necessary electronics and signal processing and control 
schemes. Ultimately the sensor and actuator arrays would be fabricated from SiC so as to make 
them suitable for harsh environment applications, but this was to occur during the option years 
(Years 4 and 5). It was presumed that the necessary fabrication technologies for SiC processing 
would be available at that time. This assumption was reasonable since our research group had a 
well-established research program in SiC MEMS that was producing early successes in surface 
and bulk micromachining of SiC. These accomplishments were, however, limited to the 
fabrication of rather simple device structures, such as bulk micromachined SiC diaphragms and 
single layer surface micromachined lateral resonant structures. The fabrication of more complex 
SiC structures, namely 3D bulk micromachined devices and multilayer surface micromachined 
structures proved to be much more difficult owing to difficulties in patterning and etching of 
SiC. Therefore, considerable effort during the first three years was focussed on developing SiC 
processing techniques with an eye towards creating processes that could be used for the 
fabrication of the proposed device array structures. The following is a summary of this 
development effort. 



A. SiC Growth and Characterization 

The cornerstone of this effort was a vertical-geometry, rf induction heated, atmospheric pressure 
chemical vapor deposition (APCVD) reactor constructed using funds from DARPA and NASA 
sources. This reactor is capable of depositing single and polycrystalline SiC films on large-area 
(4-inch diameter) Si wafers using silane and propane precursors and a hydrogen carrier gas. Two 
wafers can be coated with SiC in each run. Although the throughput of this reactor is low relative 
to silicon standards, the ability to deposit on large area substrates enabled full use of the 
processing tools in our Si microfabrication facility, which are also tooled for 4-inch wafers. The 
reactor, in essence, provided a test bed for the feasibility of using SiC as a MEMS material. 

The benchmark process initially developed for this reactor was a heteroepitaxial growth recipe. 
The standard recipe was a three step process involving an in-situ surface cleaning, a 
carbonization step converting surface Si to 3C-SiC, and a film growth step to produce a 
heteroepitaxial film on the converted surface. This process is very effective at producing single 
crystal coatings on Si wafers. However, use of these films is limited to protective coatings and 
single SiC layer device structural layers because single crystal silicon is required as the substrate 
material. Therefore, one of the first SiC-related projects was to develop deposition procedures 
using suitable sacrificial substrates (1996). We began this effort by using polysilicon as a 
sacrificial material. Polysilicon was attractive for the following reasons: (1) SiC grows on Si 
substrates, (2) polysilicon films could be deposited on electrically-insulating SiC"2 and S&N4 
sublayers, (3) and sacrificial etching could be performed using KOH without damaging the other 
layers. Using this material system, we were able to develop the first single layer SiC surface 
micromachining process. During the development phase of this project, we observed that the 
polysilicon substrate exhibited a strong influence on the microstructure of the as-deposited SiC 
films. In fact, under proper conditions, the polysilicon served as a template for the SiC film, thus 
suggesting that grain-to-grain epitaxy was controlling the nucleation process. Further 
investigations verified our initial observations. The results of this study showed that the 
microstructure of the as-deposited SiC films is polycrystalline, with an orientation that is nearly 
identical to the polysilicon underlayer. A subsequent investigation of these films (2000) showed 
variations in Young's modulus and residual stress with respect to film texture, indicating that the 
performance of micromechanical structures can be "tuned" by simply selecting the proper 
microstructure of the substrate. Details regarding developments in this area can be found in the 
1996 and 2000 Interim Progress Reports. 

Polysilicon proved to be an adequate sacrificial material for SiC surface micromachining, but its 
use required an additional electrical insulator in order to achieve electrostatic actuation. In order 
to reduce the number of films needed in a process, we also engaged in a study investigating SiC 
growth on amorphous SiÜ2 and S13N4 substrates (1999). This study involved the deposition of 
SiC films using silane and propane precursors over a temperature range from 950°C to 1300°C. 
In general, we found that the SiC films were randomly oriented polycrystalline films with good 
adhesion to the substrates. The only exception was SiC depositions on SiC>2 at temperatures near 
1300°C, which yielded films with very poor adhesion. The grain size of the films increased with 
increasing temperature, and films grown on SiÜ2 had larger grains than films grown on S|N4 for 



the same temperature. The results of this study led to the development of a lift-off patterning 
process for SiC films. The process involves use of S^N^coated Si wafers as substrates, thick (2 
micron) and SiC>2 films as lift-off molds. The surface kinetics of this material system yield SiC 
films that adhere well to the nitride substrate but do not coat the sidewalls of the patterned S1O2 
mold, thus making lift-off with HF relatively simple. We have implemented this process in a 
number of applications, including the patterning of piezoresistors and shield layers for lateral 
resonant structures. Details in this area of research can be found in the 1999 Interim Progress 
Report. 

Epitaxial 3C-SiC films, while difficult to surface micromachine, are relatively easy to bulk 
micromachine, since SiC is arguably nature's best etch stop in silicon micromachining. To this 
end, we conducted a thorough investigation into the mechanical properties of 3C-SiC films 
grown on Si substrates (1999). We used the load-deflection technique to characterize the 
Young's modulus and residual stress of the films. Our standard test specimen consisted of a 2 
micron-thick epitaxial film that was fabricated into free standing, yet fully supported, membranes 
using standard Si bulk micromachining techniques. Each membrane was supported on a 4x4 
mm2 silicon chip that was mounted on a pressure chuck and associated hardware. Pressure was 
applied to each membrane and the resulting deflection was recorded. The deflection-versus- 
pressure curves were fitted to a polynomial equation, from which the Young's modulus and 
residual stress were extracted. We found vary little fluctuation in Young's modulus regardless of 
film growth conditions. In contrast, the residual stress was highly dependent on the growth 
conditions. Likewise, the Young's modulus varied little across a 4-inch diameter wafer, whereas 
the residual stress was low and uniform only near the center of each wafer. This data suggest that 
while film stiffness (i.e., Young's modulus) is well behaved, residual stress variations can be 
high and control is not straightforward. This finding will most certainly affect the fabrication of 
piezoresistive pressure sensors, which tend to be sensitive to high stresses in the sensor 
membranes. Details concerning this investigation can be found in the 1999 Interim Progress 
Report. 

Epitaxial 3C-SiC films are not only attractive for membranes in pressure sensors and other 
actuators, but also as substrates for growth of GaN, as well as for nanoelectromechanical 
systems. Such uses require relatively thin films (< 0.5 microns), therefore we investigated the 
early stages of 3C-SiC growth, namely the carbonization stage. It is during carbonization that 
crystalline defect formation is highest, and voids tend to form at the SiC/Si interface. Our reactor 
has the unique property of producing void-free films for reasons unclear to us. We therefore 
conducted a simple study looking at the formation of the carbonization layer as a function of 
time. The outcome ofthat study was somewhat predictable, the carbonization layer growth rate is 
parabolic, because the process is self-limiting. We did however, identify that voids tend to form 
by hydrogen etching during the cool down step after carbonization. This phenomenon could be 
suppressed by simply cooling down the wafer in argon. Thus, we believe we have uncovered a 
process route for the preparation of uniform, submicron 3C-SiC films. 

As stated previously, surface micromachining of epitaxial 3C-SiC films is not straightforward, 
due to the lack of a suitable sacrificial substrate layer. During this program, we have developed a 



wafer bonding technique that is useful in transferring 3C-SiC films from their original growth 
substrate to an oxidized silicon wafer. The transfer process uses wafer bonding in conjunction 
with etchback to produce a 3C-SiC-on-Insulator structure. The process is not simple to execute, 
due to the high residual stresses in the 3C-SiC films. Despite these difficulties, we are able to 
achieve transfer yields up to 80% on a 4-inch diameter wafer. The fact that oxidized silicon 
wafers are used in the process results in a substrate that is, in essence, the single crystal 
equivalent to the poly-SiC on SiC"2 substrate useful in "conventional" SiC surface 
micromachining. In fact, we fabricated and tested single crystalline 3C-SiC resonator structures 
in order to show the utility of the 3C-SiC-on-Insulator substrate. In addition, we developed a 
homoepitaxial growth process that can be used to produce low defect density 3C-SiC films. 
Details regarding developments in this area can be found in the 1996 Interim Progress Report. 

B. Finite Element Modeling 

Several finite element modeling (FEM) efforts were performed at various stages throughout the 
program in order to directly support the research efforts in the area of SiC MEMS. These include 
load-deflection modeling of single crystal (1999) and polycrystalline (2000) SiC membranes, 
operational performance of SiC lateral resonant structures (1998), and flow dynamics of the 
APCVD reactor (1997). Details concerning the models and their applications can be found in the 
associated Interim Progress Reports. 

C. SiC Devices and Fabrication Processes 

The aforementioned activities either directly or indirectly supported the main thrust area in the 
SiC subset of this program, namely SiC device fabrication and process development. It was clear 
from the start that early development in these areas would involve limited use of SiC, since the 
patterning and etch processes were unavailable. We know from experience, however that given 
the proper substrate, 3C-SiC should provide an excellent protective coating material for Si 
devices, due to its chemical inertness, wear resistance, and good adhesion to Si. To validate this 
hypothesis, we selected a bulk micromachined Si fuel atomizer as a test vehicle. The atomizer 
was an ideal choice for a number of reasons. First, deep reactive ion etching (DRIE) could be 
used to fabricate Si structures with a high degree of dimensional complexity. Second, fuel 
atomizers are a vital component in a gas turbine engine. Third, test protocols for erosion 
resistance already exist. In another program, we developed and optimized the geometry for Si- 
based fuel atomizers. The structures actually outperformed conventional metal atomizers in 
terms of spray solid angle and droplet size, but failed the erosion test. To see if our deposition 
process was effective in applying a durable SiC coating the complex atomizer geometries, we 
coated a number of atomizers with a 1.5 micron-thick 3C-SiC film and subjected them to the 
complete battery of tests. The results showed that the SiC-coated atomizers performed on par 
with conventional and Si atomizers in terms of atomization and spray angle. Moreover, the SiC 
coating showed no signs of degradation upon completion of the erosion tests. By comparison, 
atomizers coated with S5N4, SiC^, and diamond-like carbon failed the erosion tests. Details 
concerning this work can be found in the 1996 and 1997 Interim Progress Reports. 



Concern over the long-term adhesion of the 3C-SiC coating on the Si atomizer surfaces when 
subjected to a high number of thermal cycles led us to develop a fabrication process for a solid 
SiC atomizer. The process is fundamentally different from the methods used to fabricate Si 
atomizers in that DRIE could not be used on SiC. Instead, we developed a molding-based 
process, involving the fabrication of Si molds using DRIE, filling the molds with SiC, 
planarizing the molds using mechanical polishing, and dissolving the molds in a silicon etchant. 
The resultant structures are "bulk micromachined" SiC components made without having to etch 
the SiC. The structures are hundreds of microns in thickness, with multiple intermediate levels, 
thus having the 3D characteristics of Si components. This was the first process to produce 
micromachined SiC components with a true 3D quality. Like the aforementioned SiC-coated Si 
atomizers, the solid SiC atomizers passed all qualification tests. Issues related to the cost of 
production currently prohibit wide-scale commercialization of these and related structures. 
Details concerning this research topic can be found in the 1998 Interim Process Report. 

Concurrent with the development of robust bulk micromachining processing techniques, we 
embarked on an aggressive development program for SiC surface micromachining. Our early 
work in the area of SiC reactive ion etching (RIE) indicated that although single layer devices 
such as simple cantilever beams and lateral resonant structures could be fabricated using RIE, the 
technical challenges associated with low etch rates, etch-field micromasking, and etch selectivity 
to sacrificial layers would require that an alternative patterning technique be used for multilayer 
devices. Our experience with the molding-based bulk micromachining process suggested that a 
similar technique could be developed for thin films. In fact, the process might just be simpler, 
since more materials could be used. We selected the SiC, Si02, polysilicon material system, 
since each of these materials have a unique etchant that can be used to selectively dissolve 
microfabricated masks and sacrificial layers. Our first "micromolding" process was a single layer 
process and was used to fabricate simple lateral resonant structures and micromotor shapes. In 
1998, this process was extended into the world's first multilayer SiC surface micromachining 
process, as demonstrated by the fabrication and high temperature testing of micromotors. During 
the last 2 years of the program we extended this process further by implementing micromolding 
into a 4-layer SiC surface micromachining process. The process not only addresses key 
fabrication issues, but is also designed around the well-known MCNC MUMPs process used in 
polysilicon surface micromachining. We call our process MUSiC, short for Multi-User Silicon 
Carbide process. MUSiC is able to support device designs from a multitude of designers, as long 
as the designs comply with certain design rules. Our first "test" of the MUSiC process was 
initiated in 1999, using device structures designed by graduate students at CWRU. The 
fabrication run was successful in generating completed chips, however, issues related to the 
material properties of the SiC films, mainly in the areas of residual stress and residual stress 
gradient, prohibited successful testing of most devices. The micromolding process did, however, 
prove to be a viable patterning technique for SiC multilayer processing. 
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