
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

FEASIBILITY ANALYSIS AND DESIGN OF A FAULT
TOLERANT COMPUTING SYSTEM:

A TMR MICROPROCESSOR SYSTEM DESIGN OF 64-BIT
COTS MICROPROCESSORS

by

Huseyin Baha Eken

March 2001

Thesis Co-advisors: Alan A. Ross
Herschel H. Loomis

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Farm Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2001
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE: Feasibility Analysis and Design of a Fault Tolerant
Computing System: A TMR Microprocessor System Design of 64-bit COTS
Microprocessors

6. AUTHOR(S)
Eken, Huseyin Baha
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

5. FUNDING NUMBERS

i. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The purpose of this thesis is to analyze and determine the feasibility of implementing a fault tolerant computing
system that is able to function in the presence of radiation induced Single Event Upsets (SEU) by using the Triple
Modular Redundancy (TMR) technique with 64-bit Commercial-Off-The-Shelf (COTS) microprocessors.

Due to the radiation environment in space, electronic devices must be designed to
tolerate the radiation effects. While there are radiation-hardened devices that can tolerate radiation effects, they
offer lower performance and higher cost than COTS devices. On the other hand, COTS devices offer lower cost,
orders of magnitude higher performance, shorter design time and better software availability and compatibility.
However, COTS devices are susceptible to the radiation effects. In order to use COTS devices in space
environment, a fault tolerance technique such as TMR needs to be implemented.
This thesis presents the design and analysis of a TMR 64-bit COTS microprocessor implementation. The system
incorporates three 64-bit microprocessors, the memory system including SRAM and PROM memory modules and
the programmable logic devices that are used to implement the TMR technique. The validity of the design is
verified by the timing analysis conducted on read and write operations.
14. SUBJECT TERMS
Fault Tolerant Computing, Triple Modular Redundancy (TMR), Commercial-Off-The-Shelf
(COTS) Devices, Single Event Upsets (SEU)

17. SECURITY
CLASSmCATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

15. NUMBER OF
PAGES 126

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution unlimited

FEASIBILITY ANALYSIS AND DESIGN OF A FAULT TOLERANT
COMPUTING SYSTEM:

A TMR MICROPROCESSOR SYSTEM DESIGN OF 64-BIT COTS
MICROPROCESSORS

HuseyinBahaEken
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2001

Author:
Huseyin Baha Eken

Approved by: ^2Az^ (2 f^C^ld
Alan A. Ross, Thesis Co-Advisor

Jeffrey B^Knorr, Chairman
Department of Electrical and Computer Engineering

m

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

The purpose of this thesis is to analyze and determine the feasibility of

implementing a fault tolerant computing system that is able to function in the presence of

radiation induced Single Event Upsets (SEU) by using the Triple Modular Redundancy

(TMR) technique with 64-bit Commercial-Off-The-Shelf (COTS) microprocessors.

Due to the radiation environment in space, electronic devices must be designed to

tolerate the radiation effects. While there are radiation-hardened devices that can tolerate

radiation effects, they offer lower performance and higher cost than COTS devices. On

the other hand, COTS devices offer lower cost, orders of magnitude higher performance,

shorter design time and better software availability and compatibility. However, COTS

devices are susceptible to the radiation effects. In order to use COTS devices in space

environment, a fault tolerance technique such as TMR needs to be implemented.

This thesis presents the design and analysis of a TMR 64-bit COTS

microprocessor implementation. The system incorporates three 64-bit microprocessors,

the memory system including SRAM and PROM memory modules and the

programmable logic devices that are used to implement the TMR technique. The validity

of the design is verified by the timing analysis conducted on read and write operations.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. THE SPACE ENVIRONMENT 2
B. SINGLE EVENT PHENOMENA (SEP) 3

1. Single Event Latchup (SEL) 4
2. Single Event Transient (SET) 4
3. Single Event Upset (SEU) 4
4. Single Event Burnout (SEB) 5

C. COMMERCIAL-OFF-THE-SHELF (COTS) VS. RADIATION
HARDENED DEVICES 5
1. Cutting Edge Technology 6
2. Faster Design-to-Orbit Time 6
3. Reduced Cost 7

D. PURPOSE 7
E. THESIS ORGANIZATION 9

II. BACKGROUND 11
A. FAULT TOLERANCE 11

1. Software Redundancy 12
2. Passive Redundancy 13
3. Time Redundancy 13
4. Hardware Redundancy 14

a) Triple Modular Redundancy (TMR) 14
B. TMR MICROPROCESSOR DESIGN 17

1. Processor Selection 17
2. Hardware Design 18
3. Fault Detection and Recovery 20

C. DESIGN IMPLEMENTATION 21

III. MICROPROCESSOR SELECTION 25
A. CHARACTERISTICS & CRITERIA 26

1. COTS vs. RadHard 26
2. CISC vs. RISC 27
3. Size, Pinout, Power 27
4. Bus Width 28
5. Speed 28

B. REVffiW OF CURRENT MICROPROCESSORS 29
C. CHARACTERISTICS OF SELECTED MICROPROCESSOR 30

1. System Control Coprocessor (CPO) 32
2. Floating Point Coprocessor (CP1) '. 33
3. CPU Core 33
4. Instruction and Data Caches 34

vii

5. System Interface 34

IV. HARDWARE DESIGN 37
A. MICROPROCESSOR AND LATCHES 37

1. Microprocessor 38
2. Latches 39

B. MEMORY SPACE 40
1. PROM 42
2. SRAM 42

V. PROGRAMMABLE LOGIC DESIGN 45
A. FPGA DESIGN 47

1. FPGA Selection 47
2. Address/Control Voter, Memory Decoder FPGA 48

a) Address/Control Voter 48
b) Memory Decoder 51
c) Memory Control/Memory Enable Signals 52

3. Data Voter/Transceiver FPGA 54
B. PLD DESIGN 57

1. PLD1 57
a) Counter 58
b) Cycle End (CYCEND*) 58
c) Validln* 59
d) Write Enable Signals 59

2. PLD2 61
a) Read Ready (RdRdy*) 61
b) Write Ready (WrRdy*) 62

VI. SYSTEM TIMING ANALYSIS 63
A. READ CYCLES 63
B. WRITE CYCLES 66
C. TIMING ANALYSIS 68

VII. CONCLUSIONS AND FOLLOW-ON RESEARCH 71
A. CONCLUSIONS 71
B. FOLLOW-ON RESEARCH 72

1. Completion of TMR Hardware Implementation 73
2. Hardware-Software Integration 73
3. Radiation Testing 74

APPENDIX A. TMR DESIGN SCHEMATICS 75

APPENDIX B. PROGRAMMABLE LOGIC DESIGN EQUATIONS 85
1. PLD Programming Equations 85
2. FPGA Programming Equations 86

APPENDIX C. XILINX FOUNDATION SERIES FPGA DESIGN 87
1. Address/Control Voter FPGA 87

viii

2. Data Voter FPGA 96

LIST OF REFERENCES 101

INITIAL DISTRIBUTION LIST 103

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure 2.1. Three-Bit Majority Voter Logic Diagram from Ref. 11 15
Figure 2.2. Basic TMR Circuit Implementation from Ref. 11 16
Figure 2.3. Tripled TMR Voters from Ref. 11 16
Figure 2.4. Simple R3081 Board Design from Ref. 2 19
Figure 2.5. TMRR3081 Board Design from Ref. 1 19
Figure 2.6. TMR FIFO Interface from Ref. 1 21
Figure 2.7. TMR R3081 Block Diagram from Ref. 2 23
Figure 3.1. RC4650 Block Diagram from Ref. 13 32
Figure 3.2. Typical RC4650 System Architecture from Ref. 13 36
Figure 4.1. Virtual Memory Segments supported by RC4650 from Ref. 13 41
Figure 5.1. Three-bit Majority Voter/Error Detector from Ref. 2 50
Figure 5.2. One-bit Slice of the Transceiver Logic Design from Ref. 2 56
Figure 6.1. TMR RC4650 Top Level Schematic 64
Figure 6.2. Read Timing Diagram 65
Figure 6.3. Write Timing Diagram 66
Figure A.l. TMR RC4650 Top Level Schematic 76
Figure A.2. One of the three microprocessors and the associated latches 77
Figure A3. Address/Control Voter FPGA with PLD1 and PLD2 78
Figure A.4. Data Voter FPGA Pinout 79
Figure A.5. PROM Memory Block 80
Figure A.6. KRAM and SRAMO Segments of SRAM Memory Block 81
Figure A.7 SRAM1 and SRAM2 Segments of SRAM Memory Block 82
Figure A.8 SRAM3 Segment of SRAM Memory Block 83
Figure C. 1. Address Voter/Memory Decoder Section of Address/Control Voter FPGA. 88
Figure C.2. Control Voter Section of Address/Control Voter FPGA 89
Figure C.3. Memory Interface Section of Address/Control Voter FPGA 90
Figure C.4. 4-bit Wide Majority Voter Macro (VOTER4) 91
Figure C.5. One 30-bit Address Bus Input Macro 92
Figure C.6 Voted Address Bus Output Macro 93
Figure C.7 9-bit Wide Majority Voter Macro (VOTER9) 94
Figure C.8 9-bit System Command (Control) Bus Input Macro 95
Figure C.9. Top Level Schematic of Data Voter FPGA 97
Figure CIO. One 64-bit Data Bus Input Macro 98
Figure C. 11. 64-bit Voted Data Bus Output Macro 99
Figure C.12. 16-bit Wide Majority Voter Macro (VOTER16) '. 100

XI

THIS PAGE INTENTIONALLY LEFT BLANK

XII

LIST OF TABLES

Table 2.1. 3-Bit Majority Voter Truth Table 15
Table 3.1. List of Candidate Microprocessors 29
Table 4.1. Address Range of Memory Segments supported by RC4650 from Ref. 13 41
Table 5.1. Chip Select Memory Map from Ref 2. 52
Table 5.2. Byte Write Enable Strobes Assertion Table 60

Xlll

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

ACKNOWLEDGMENTS

The author would like to take this opportunity to thank all the people who

provided the support and assistance that made this work possible.

To Captain David Summers and Lieutenant Damen Hofheinz: Your expertise

provided great insight to the hardware design requirements in this project. Additionally,

your friendships provided the nucleus of a team that I am proud to have worked with.

To Professor Alan Ross and Professor Herschel Loomis: Your guidance, patience

and tutelage were instrumental in the completion of this thesis.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

EXECUTIVE SUMMARY

The effects of radiation on electronic devices to be used in critical systems forced

system designers to use radiation hardened devices to avoid the penalties of having

system malfunctions due to those effects. However, the cost of using those special parts

introduced itself as the reduced performance, higher cost and less availability and

compatibility. Those problems combined with the shrinking budgets for developing

systems directed designers towards switching to Commercial-Off-The-Shelf (COTS)

products instead of radiation hardened devices. In order to utilize COTS devices in a

radiation environment, a method of increasing the reliability of the system has to be

employed to overcome the susceptibility of those devices to transient radiation effects.

One such method emerging from the research efforts in this area is Triple Modular

Redundancy (TMR).

A previous project at the Naval Postgraduate School in this area produced a fault

tolerant computing testbed implementing the TMR technique using a 32-bit

microprocessor. The results of this project verified the feasibility and validity of

implementing the TMR technique. The objectives of this research are to analyze and

determine the feasibility of implementing a 64-bit TMR microprocessor system design, to

design a sample system and to verify the correct operation thereof. The research began

with the selection of a 64-bit COTS microprocessor suitable for this system. The selected

microprocessor, IDT 79RC4650, met all the criteria except being resistant to destructive

radiation effects, which cannot be addressed by employing the TMR technique. Since the

xvii

devices used in a TMR implementation must be resistant to destructive radiation effects,

further testing is necessary before final selection of the microprocessor.

The next phase of the design was to determine the configuration of the hardware

design to accommodate the TMR technique and the design of the programmable logic

devices. The programmable logic design space included PLDs and FPGAs. The design

and simulation of FPGAs was accomplished using the Xilinx Foundation Series design

tool. On the other hand, PLDs were designed but not simulated by using a design tool.

After the completion of the design and simulation of programmable logic devices,

a thorough timing analysis of the whole system was conducted. The final analysis proved

that the system works correctly and the design of a complete fault tolerant computing

system featuring TMR implementation is feasible. The analysis also gave an initial

estimate of the performance penalty due to the implementation of the TMR concept.

Thus, the benefits of using low-cost, better-performance COTS devices vice radiation-

hardened devices have been justified.

xvin

I. INTRODUCTION

Nations all around the world are trying to decrease their defense expenditures

since the end of the Cold War without sacrificing the capabilities of their equipment. In

spite of the improvements in development of cost-effective systems, military equipment

has always been expensive both in cost and design time due to the special requirements

necessary to operate under extreme conditions. One example is the electronic equipment

that is used in space environment and exposed to the high rates of radiation. Under budget

restrictions, it has been crucial to find alternative ways to decrease costs and improve

performance of electronic devices. One way is to use commercial-off-the-shelf (COTS)

devices instead of radiation-hardened (rad-hard) devices. COTS devices dramatically cut

the research and development costs, reduce design time, drop overall system costs, offer

much better system performance and compatibility with other systems and software when

compared with radiation hardened devices. In addition, radiation hardened devices have

limited availability and come at a high cost. On the other hand, COTS devices are more

susceptible to radiation effects such as total dose and Single Event Upsets (SEU) since

they are not developed to operate under these conditions.

This thesis is a follow-on work to a multi-thesis project conducted by Lieutenant

Payne [Ref. 1], Captain David Summers [Ref. 2], Lieutenant Damen Hofheinz [Ref. 3]

and Captain Kim Whitehouse and Lieutenant Susan Groening [Ref. 4] who designed and

implemented a fault tolerant computer evaluation system using a 32-bit Reduced

Instruction Set Computer (RISC) microprocessor. The aim of this thesis is to analyze the

possibility of implementing a similar system using a modern 64-bit COTS microprocessor

and to do the initial design of such a system.

A. THE SPACE ENVIRONMENT

The space environment imposes requirements on and defines characteristics of

devices that are intended to operate in space. The risk posed by the space environment to

electronic devices is mainly in the form of radiation, and special precautions must be

taken to protect electronic devices from malfunctioning under the effect of this radiation.

Radiation is the emission or propagation of waves or particles. It is the biggest

concern about reliability in space applications that this project is taking into

consideration. High-energy charged particles can cause damage or disruptions in

microelectronic devices. These particles are either ions or photons. Ions, except for the

neutron, have both a charge and mass associated with them. There are basically two types

of ions: light ions, and heavy ions. Light ions have a very low mass, such as protons,

which are hydrogen atoms with the electron missing, and alpha particles, which are

helium atoms with both electrons missing. Heavy ions are any element heavier than

helium with one or more electrons missing. Unlike ions, photons have neither mass nor

charge. They are very short wavelengths of electromagnetic energy, such as X-rays and

gamma rays. [Ref. 5]

There are several elements contributing to the radiation effects near the Earth.

The largest contributor to a device's total dose is from particles trapped in the Earth's

geomagnetic field. These trapped particles form an area known as the Van Allen Belts.

Any satellite in orbit is subject to effects from the Van Allen Belts. Another contributor

is solar particles. Due to the high temperatures of the sun, many particles have enough

energy to escape the sun's gravity. Those particles continuously flow across the Earth in

what is called the Solar Wind. Another source of radiation is galactic cosmic rays. These

are heavy ions produced by events, such as exploding stars, outside our solar system.

[Ref. 5]

The effect of radiation on electronic devices can be divided into three kinds of

phenomena: Total Dose Effects, Dose Rate Effects and Single Event Phenomena (SEP).

The first two are calculated to assist in determining the survivability of electronic

equipment designed to operate in space environment. The first factor is the total dose, the

total amount of radiation the device will be exposed to during its lifetime. Device failures

caused by total dose are called Total Dose Effects. The second factor is the dose rate, the

amount of radiation the device is exposed to per unit time. Dose Rate Effects are the

device failures caused at a particular dose rate where the device fails to function. SEP will

be discussed in the next section. [Ref. 6]

B. SINGLE EVENT PHENOMENA (SEP)

SEPs occur when a high-energy particle passes through the microelectronic device

and deposits enough charge to cause a transistor to change state. In most cases, the

transistor only changes state long enough for the charge to be absorbed back into the

system and then resumes its original state. The transistor's state change can lead to

latchup in parasitic transistors, high current state in a power transistor, or can be latched

into a storage element. The four main types of SEP in Complimentary Metal Oxide

Semiconductors (CMOS) are discussed in the following sections. [Ref. 6]

1. Single Event Latchup (SEL)

When CMOS field effect transistors are fabricated near each other on a single

chip, one of the unwanted byproducts is a pair of vertical bipolar junction transistors. An

SEL is caused when a charged particle passes close enough to this circuit to bias the two

parasitic transistors on. This creates a very low impedance path to ground, which has two

possible outcomes. If the current drawn through the parasitic transistors generates more

heat than the device can dissipate, it will be destroyed. On the other hand, even if the

device can dissipate the heat, the large amount of current drawn through the parasitic

transistors prevents the remainder of the circuit from operating correctly, which is a non-

destructive SEL. One example of a non-destructive SEL is that of a hung system, which

requires a system reset for recovery. [Ref. 6]

2. Single Event Transient (SET)

Single Event Transients are unexpected changes of a short duration in the output

value of a combinational logic circuit due to the influence of a charged particle. SETs are

not destructive. They only adversely affect the system if the pulse change due to a SET is

near the clocking edge and is long enough to meet the setup and hold times of the next

storage unit in the cascade of stages. If the SET meets these criteria, then it manifests

itself as a Single Event Upset (SEU). [Ref. 7]

3. Single Event Upset (SEU)

An SEU is any unwanted change of value in a memory cell, whether it is a latch,

register, or cache cell, that is caused by charge introduced into the circuit by radiation.

This is the kind of SEP that this and the previous thesis works are trying to address. In

microprocessors, SEUs are usually categorized into one of two error types: program flow

errors and data errors. Program flow errors are errors that occur in the program counter

(PC), control logic, or any other register that deals with the state of the processor. Data

errors are usually confined to the registers and data cache. These two types of errors are

not necessarily exclusive. A data error could occur in a register that is later used as a

jump address. When the processor jumps to the address held in that register, it is in the

wrong location and begins to execute incorrect code. [Ref. 7]

4. Single Event Burnout (SEB)

Single Event Burnout is another condition that can cause device destruction. It is

caused by a single ion, for example, from a galactic cosmic ray, which induces a high

current state in a MOSFET destroying the circuit. [Ref. 6]

C. COMMERCIAL-OFF-THE-SHELF (COTS) VS. RADIATION
HARDENED DEVICES

The radiation effects discussed in the previous section, with the exception of SETs

and SEUs, are destructive in nature. The best way of reducing their effects is mainly by

using radiation-hardened devices or providing shielding. A radiation-hardened device is

one that is specifically designed to be able to withstand higher amounts of radiation than

standard commercial parts. On the other hand, not all COTS devices are eligible to be

used in space applications. COTS devices that are going to be used in space need to have

a certain level of radiation hardness against destructive effects such as SEB and SEL.

This requires testing COTS devices to determine if they can withstand the specified

amount of radiation. Once this requirement is satisfied, COTS devices can be used in

applications that incorporate fault tolerance techniques, such as TMR, to provide

protection against non-destructive effects such as SEUs.

Determining the suitability of commercial-off-the-shelf (COTS) microprocessors

to be used in space applications is a subject of ongoing research. There are multiple

reasons for utilizing a COTS product within such a harsh environment as space. This

section gives additional insight into the rationale behind those reasons.

1. Cutting Edge Technology

Companies developing and marketing radiation-hardened devices are on the

decline. Without government budget support for research into this area, there is not

sufficient demand from commercial sector customers to motivate companies to invest

large amounts of money in research on these devices. For those reasons, the technology

of radiation-hardened devices is lagging behind state-of-the-art technology by up to two

or more generations. As an example, the highest performance radiation hardened

microprocessor available is a 66 MHz 486 processor while a state of the art COTS

processor such as the Intel Pentium IE, AMD K-6 E, or a RISC design can run at clock

rates in the GHz range. This is a whole order of magnitude or more difference in

processor capability. [Ref. 8]

2. Faster Design-to-Orbit Time

Parts availability is crucial in maintaining a development schedule. Because the

radiation-hardened device market is not a big and fast growing market, radiation-

hardened device manufacturers do not readily stock the parts. This causes a delay in the

design and test phase of the project. With a move toward COTS devices, the order delay

is completely erased. Most of these devices are available from multiple manufacturers,

which give the designer more choices. In addition, use of COTS devices allows for part

compatibility and interchangeability in case of failures. Additionally, data on radiation

testing for more and more COTS devices are becoming available to help the designer

make an informed decision on the correct part to use depending on the environment the

device is to be placed in. [Ref. 8]

3. Reduced Cost

Lack of profit is one of the main reasons only a small number of companies are

manufacturing radiation-hardened devices. The low demand for these devices keeps the

price hundreds of times higher than the commercial models for several different reasons.

Since radiation hardened devices employ different techniques in their design to reduce the

susceptibility to effects from ionized particles, they tend to be larger than the non-

hardened devices. This lowers the number that will fit on the wafer in the first place and

increases the probability that the devices will have defects both of which can be attributed

as contributors to lower yield. Since the demand for commercial devices is much higher,

the manufacturer can adjust the fabrication process in order to increase the yield, which

results in lower cost to the consumer. The best alternative is the development of hardware

and software fault tolerant designs with COTS devices. [Ref. 5] [Ref. 9]

D. PURPOSE

The goal of this research is the design of a fault tolerant computer system using a

64-bit COTS microprocessor that is able to accurately compute in the presence of

radiation induced SEUs. This work does not address error detection and correction

(EDAC) of memory systems, which has been previously researched. [Ref. 10]

There are two major benefits from this study. First, the system can act as a fault

tolerant software testbed. The system is exposed to ion beam radiation to generate SEUs

and monitored for an SEU. When one is detected, a time stamp is generated and the

Operating System is observed in its handling of the error. This allows the testing of the

software algorithms in the environment they were designed to operate in without the

expense of being placed in orbit.

The system can also be used as a hybrid fault tolerant computer system. In this

use, the processor is also monitored for an SEU. When one is detected, the faulty data is

corrected in the processor and it continues to execute its instructions from the corrected

data. A major advance in this implementation is the ease with which the error can be

corrected. The normal mode in these types of systems has been to just reset the processor

when an SEU was detected, effectively losing all computations done up to the time of the

SEU. The concept in this project reduces the recovery time by using the interrupt service

routine support to restore the processors to a fault-free state. Once an SEU is detected, the

processors are interrupted and the operating system interrupt service routine takes over.

The interrupt service routine conducts a context switch on the processors and all

processors are loaded with the majority voted and presumably error-free context. After

returning from the interrupt routine, the processors begin execution in lock step again.

E. THESIS ORGANIZATION

The organization of this thesis follows closely to the design approach used in

developing the system. Chapter I has been a brief introduction into the environment that

the system will be operating in. Chapter II is background material on research that set the

foundation for this design. Chapter HI explains the process of selecting the 64-bit COTS

microprocessor used in this design. Chapter IV presents the hardware design of the

system and points out changes from the previous design. Chapter V contains the design

of the programmable elements of the system, which include the Voter Modules and the

Memory Controllers. Chapter VI explains the system timing analysis and Chapter VH

presents the conclusions developed during this research and discusses topics for follow-

on work.

THIS PAGE INTENTIONALLY LEFT BLANK

10

II. BACKGROUND

The study of fault tolerant computing systems has been going on for many years.

A digital system, though very reliable, does not operate fault free. When a system

experiences a fault, it has to be detected and corrected. The technology of computer

systems has progressed at a rapid rate and fault tolerance requirements didn't get enough

attention for the sake of speed or performance. However, the use of fault tolerant designs

in systems that perform critical tasks, such as the control system of an aircraft or a missile

guidance system, is crucial. [Ref. 11]

The purpose of this chapter is to provide the reader a brief background for this

project and the key issues that make it important. The chapter starts by describing the

general concept of fault tolerance and focuses in on the design on which this system was

based.

A. FAULT TOLERANCE

There are two approaches to increase the survivability or reliability of critical

electronics for space applications, which are radiation hardening and the use of fault

tolerance. The first method, radiation hardening of devices, is simply constructing

devices in such a way as to increase the total dose survivability and reduce the possibility

of an SEP. This method would relate to the designing of a system with fault avoidance by

utilizing parts with a high reliability. This system design has increased radiation

tolerance, but offers little or no redundancy.

The second method, fault tolerance, is simply the ability of the system to

functionally operate in the presence of a fault. Reliability is determined by the design of

11

the system, the parts utilized, and the operating environment. One method of increasing

reliability is by employing the worst-case design, using high quality components, which

in turn adds cost. An alternative method of improving system reliability is to use a fault-

tolerant design. Fault tolerance is usually achieved by increasing the redundancy of parts

or systems. Fault tolerance can be accomplished in either software or hardware. This

section will discuss the redundancy methods that are relevant to this design, which are

time, software, passive, and hardware redundancy. [Refs. 11]

1. Software Redundancy

No matter how capable the programmer, almost all software contains faults. A

way to achieve some level of protection from these faults is the implementation of a

software redundancy method. One such method is N-version programming, which is the

addition of software modules to provide checks. For example, five individual programs

are designed for the same function. They are all executed, and their outputs are voted

upon. Additional methods of software redundancy are consistency checks of the data

against known correct values and capability checks to ensure those functional programs

are operating correctly. [Ref. 11]

A subset of software redundancy is error-correcting codes. These codes can be

utilized to provide automatic fault detection. Two good examples of information

redundancy are the parity bit and the Hamming Code. The parity bit is a single bit

appended to the data set that allows for error detection. Parity can either be even or odd.

If even parity is selected, the number of ones in the data set and the parity bit should add

up to an even number. If odd parity is selected, the ones should add up to an odd number.

12

If they do not, there is an error in the information. The limit of the parity bit is its

inability to determine which bit is in error. The Hamming Code appends multiple bits to

the data set, which allows for error detection and correction by pointing out the faulty bit.

The additional bits appended by the Hamming Code are actually weighted parity bits. By

determining which Hamming Code bits are in error, the faulty data bit can be determined

and corrected. [Ref. 11]

2. Passive Redundancy

Passive redundancy employs multiple units, some of which are not continuously

operating and are command selectable. In this configuration, redundant items act in

response to a specific failure or anomaly. The detection of a fault is achieved by

conducting periodic tests, employing self-checking circuits or watchdog timers. Passive

redundancy allows mission operations to continue in the presence of one or more failures.

[Ref. 11]

3. Time Redundancy

Time redundancy is one of the easiest methods to implement; it involves the

restoration of a system to the last saved point immediately after experiencing a fault. This

fault is detected by placing checkpoints and with a timeout mechanism. If the system

fails to perform a task within a certain amount of time, a fault is detected. The restoration

of the system is accomplished by rollback of either instructions, segments of programs, or

entire programs to the last checkpoint. The problem with this method is that it can be time

consuming, which is determined by the size of the program and memory that is restored.

13

Additionally, there is a loss of information from the point that the system last saved data.

[Ref. 11]

An alternative method of time redundancy is the performance of a calculation

numerous times for accuracy. This requires the system to save the state before the

calculation, perform the calculation and save it, make a context switch back to the

beginning of the calculation, perform it again, and then compare the results of the two

different calculations. This results in a large computational drain on the system and two-

fold increase in calculation time. [Ref. 11]

4. Hardware Redundancy

There are basically three forms of hardware redundancy: passive, dynamic, and

hybrid. Passive redundancy uses fault masking to keep the fault from propagating out of

the current process. This is implemented using multiple modules and voting hardware. It

. does not require any actions from the system or operator. Dynamic redundancy monitors

the outputs of the modules looking for faulty units. When one is detected, the system

removes the faulty unit from the system and replaces it with a good one if it is available.

The hybrid approach uses portions of both the passive and dynamic approaches. [Ref. 11]

a) Triple Modular Redundancy (TMR)

A subset of passive hardware redundancy is the Triple Modular Redundant

(TMR) system. As the name implies, the TMR system takes the outputs of three

replicated modules and compares them in a voting unit. The voting unit passes the most

common input to the output, essentially masking out any single fault. The heart of a TMR

system, the voting unit, and its truth table are shown below in Figure 2.1 and Table 2.1.

14

A

B

C

OUT

Figure 2.1. Three-Bit Majority Voter Logic Diagram from Ref. 11.

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

OUT 0 0 0 1 0 1 1 1

Table 2.1. 3-Bit Majority Voter Truth Table

The table shows that anytime two or more inputs have the same logic

value, either a zero or a one, that value is propagated to the output. The concept of TMR

can be expanded to include multiple modules to produce an N-modular redundant system.

As N gets larger, the logic required to realize the circuit and the added levels of delay get

prohibitively large. Typically N is held to three or five.

As stated before, by placing the three modules in parallel and voting their

outputs, a TMR circuit can be implemented, The basic TMR circuit is shown below in

Figure 2.2. The inputs and output of the modules do not have to be single bits. There can

be X inputs and Y outputs associated with each module. All that needs to be done is to

15

place Y single bit voters in parallel, connected such that they vote each of the respective

Y outputs.

Input A

Input B

Input C

•^"■.jJ--!Vyi:i->JL^i.-->a.V.WJ'*!>'lJ-.i

:"MöaB>'';v

,i.-Modj3p-. mammäm

Figure 2.2. Basic TMR Circuit Implementation from Ref. 11.

The single voter on the output of the TMR system is a single point of

failure. That is, if the voter fails and generates or propagates an error, then the error will

be propagated throughout the circuit. This could become a major problem in cascaded

circuits. To solve this problem, the voters at the end of each stage can also be tripled. An

example of this is shown in Figure 2.3. [Ref. 11]

Ihput A

Input B

Input C

Modi

Figure 2.3. Tripled TMR Voters from Ref. 11.

16

B. TMR MICROPROCESSOR DESIGN

The framework for the system implemented in this work was originally designed

and simulated by Lieutenant John C. Payne, Jr., USN, as a Fault Tolerant Computing

Testbed using the Verilog design suite. Following this, Captain David Summers, USMC

improved, implemented and fabricated the design and Lieutenant Damen Hofheinz, USN

continued implementation and testing of the testbed. The remainder of this section is a

brief synopsis of the TMR Testbed Design. For a more detailed explanation, please see

Ref. 1, Ref. 2 and Ref. 3.

1. Processor Selection

Lt. Payne began his design with the logical step of selecting a microprocessor. In

his selection process he took into account such factors as COTS vs. Radhard, CISC vs.

RISC, size, pinout, power, bus width, memory size, speed, and multiple chip vs. single

chip implementations. His research led him to select the MIPS R3081 RISController

produced by Integrated Device Technologies (IDT). This device was selected over

AMD's AM29000 and AM29050; IBM and Motorola's PowerPC 603e, 604e, and 750;

and IDT's R36100, R4650, and R5000. The determining factor for selecting the R3081

was the availability of radiation environment performance data because the processor had

to be latch-up resistant. The R3081 was tested in a space experiment by the Naval

Research Laboratory (NRL) to measure SEU and total dose effects on the processor.

Another factor was the compact size of the R3081 due to its small number of pins. A

detailed description of the R3081 can be found in Ref. 12.

17

2. Hardware Design

With the processor selected, the next step was to integrate all the peripheral

components required for the R3081 to function as a TMR computer system. For

comparison purposes, a block diagram of a single processor system and a TMR system

are provided on the following page in Figure 2.4 and Figure 2.5, respectively.

From comparison of Figures 2.4 and 2.5, the architecture of the TMR

implementation has relatively few changes from the single processor design. The major

additions are CPU B and CPU C along with the Address, Data, and Control Voters.

The processors are connected in such a way that the Operating System acts as if

there is only one processor in the system. The processors are kept in lock step from boot

up by executing the same instructions in parallel. The processors' Address, Data, and

Control busses are then routed to their respective voters. The voters perform a majority

vote on the signals and pass them on to the Memory Space and Memory Controller as in a

single processor system. If an error is detected in a voter, the Memory Controller

generates an interrupt. [Ref. 1]

18

Figure 2.4. Simple R3081 Board Design from Ref. 2.

R3081
RISC

CPU A

R3081
RISC

CPUB

R3081
RISC

CPUC

Address
Latches

Address
Busses

Address
Latches

Address
Voter

Voted
Address

Bus

Address
Error

Address
Latches

Data
Susses

RAM

Data
Voter/Xcvr

Data
Error

Voted
Data '
Bus

Control Busses

t—

Control
Error
 L_
Control
Voter

Voted
Control

Bus

Memory/
Error

Controller

Vote Error Interrupt

EPROM

Figure 2.5. TMR R3081 Board Design from Ref. 1.

19

3. Fault Detection and Recovery

The voters allow the fault generated in one of the processors to be masked out and

the bus cycle to complete correctly, but that does not completely remedy the situation.

The processor that had the error is now out of synchronization with the other two

processors. That is where the Interrupt Handler comes into play.

When a voter detects a miss compare on its inputs, it signals the Memory

Controller, which asserts an interrupt input to the processors. The Interrupt Handler

resets the invalid processor in a very simplistic way. It starts by saving the processors'

internal registers to memory. Since all three processors will be executing the instructions

to save the internal registers, the Data Voter will mask out the invalid data from the

corrupted CPU. The Interrupt Handler then reloads the processors' internal registers from

memory. This puts the corrupted processor back into synchronization with the other two

processors. The Interrupt Handler then acknowledges the interrupt and returns from the

exception. The processors then continue execution with the next instruction.

In order to determine which processor was corrupted, the internal registers of each

processor must be examined. The data must be captured prior to being voted or the error

is lost. By placing First-In-First-Out (FIFO) Registers on the address, control, and data

busses between the processors and voter, each processor's internal state can be captured

in its corresponding FIFO. The arrangement is shown below in Figure 2.6.

20

R3081
RISC

CPU A

Address
Latches

Address
Bus.

Data
Bus

Control Bus

Buffer
A

7Y2

FIFO
A

R3081
RISC

CPUB

Address
Latches

Address
Bus .

Data
Bus

Control Bus

Buffer
B

R3081
RISC

CPUC

Y

FIFO
B FIFO Write

Enable
& Buffer Select

Lines

From
Memory

Controller

Figure 2.6. TMR FIFO Interface from Ref. 1.

C. DESIGN IMPLEMENTATION

Lieutenant Payne's design and simulations was the framework for the concept of

the TMR system. His design product was the software verification in Verflog of his

implementation of TMR. The thesis presented by Captain David Summers, [Ref. 2],

describes the implementation of the TMR design in hardware and the required changes.

Finally, the thesis presented by Lieutenant Hofheinz, [Ref. 3], completes the hardware

implementation and shows the results of the preliminary testing of the testbed. The

following paragraphs will provide a brief overview of these design changes and further

information regarding them can be found in Ref. 1, Ref. 2 and Ref. 3.

21

The process in the design of any system is driven by many factors including part

availability and compatibility. The three major changes Captain Summers was required to

implement in order to provide a working board for future test and space applications were

the addition of a system controller FPGA and I/O interface ports. The system controller

FPGA was added to replace some of the functionality provided by the computer in the

Verilog design of Ref. 1. The I/O interface was added to provide the means to upload

programs and control the board during testing.

The design and manufacture of the TMR board were completed by Captain

Summers, but he was unable to complete the programming of the System Controller

FPGA, and testing and verification of the overall design. Lieutenant Hofheinz continued

and completed this follow-on work as part of the preparation of the board for eventual

cyclotron testing and space-based applications. The follow-on work carried out by

Lieutenant Hofheinz included the design and implementation of the system controller

FPGA as well as doing the preliminary tests and verification of the system functions.

These design changes are highlighted and shown in Figure 2.5.

The joint efforts of Lieutenant Payne, Captain Summers and Lieutenant Hofheinz

proved the fundamental concept and produced a working example of a TMR system.

Beginning with the next chapter, the design of a new TMR system using 64-bit

microprocessors is presented.

22

Control —w
Interface

Address
Rn«p<:

D
Ol E
u u

>

Control I/O

R3081
CPU A

Voted
— AHHrecs

Memory

Latch
Anrir

>1 I
Bus

c CO

Q

I—

I O O:. -
tS :-SV.:

<

 »

:5"? j"

€
R3081
CPUB

A Aft

Latch
O

a
« a

Data
T 1 Russe'; (1 I Voted

"3
B w

ü B
]3 >
«

Dnrn
(

O

►—

-g
. E

l>

R3081
CPUC

. _< ► Address
Latch 1

Control
Rinne«

1
—H

Voted
Control

Memory
and Error
Controller

o
c £
u -1

5.
u. HI

Bus

Data
Interface

^
1

Figure 2.7. TMR R3081 Block Diagram from Ref. 2.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

in. MICROPROCESSOR SELECTION

The intent of this thesis is to take another step in the design and implementation of

a fault tolerant TMR system by using 64-bit COTS microprocessors. The benefits of

using COTS parts and implementing the TMR concept using them have been mentioned

in the previous chapter. The benefit expected from this work is the performance

improvement of the TMR system by further exploitation of the power of COTS devices.

One of the features of a microprocessor that is expected to enhance performance is the

address/data bus width. The wider the bus width is, the more data is processed per bus

cycle. The growing number of applications using 64-bit microprocessors and the wide

range of 64-bit microprocessors available supports the rationale for this work. This thesis

was driven by that challenge of whether a more capable and current microprocessor could

be used in the TMR design and the necessary changes to the current design in order to

accommodate that kind of microprocessors.

This chapter presents the process of microprocessor selection. The system design

depends on the type of microprocessor to be used, so the first step is to select the

microprocessor. The challenge in selecting a microprocessor was the availability of a

wide range of 64-bit microprocessors. In order to reduce the number of candidates and

focus in on the best choice, certain criteria had to be brought up and employed. The

following sections explain the criteria used for the selection of the microprocessor to be

used, the variety of microprocessors available and their characteristics, and the

characteristics of the microprocessor that was selected and used in this design.

25

A. CHARACTERISTICS & CRITERIA

The first step in microprocessor selection is to set up the criteria on which the

selection process is to be based. The characteristics of different microprocessors are

reviewed and the decision is made on which microprocessor best suits the design at hand.

The criteria consisted of considerations such as COTS vs. rad-hard, CISC vs. RISC, size,

pin-out and power consumption, performance, bus width and compatibility to the

previous system.

1. COTS vs. RadHard

As discussed previously in Chapter I, the availability, cost and performance of

COTS devices compared to rad-hard devices present significant advantages in using

COTS devices. First of all, COTS devices tend to be state-of-the-art and therefore more

capable than rad-hard devices. Second, COTS devices are widely available and they offer

a wide variety to the designer. Third, rad-hard. devices often have uncertain delivery time,

which adds to the overall system design time. These devices often must be specially

ordered from a limited number of vendors due to declining rad-hard device market. On

the contrary, COTS devices, as the name implies, are available over the counter in a short

time. Fourth, the software support and compatibility for COTS devices is better than rad-

hard devices. Usually, the software must be specially designed for rad-hard devices and

thus, is less proven, more expensive and takes more time to develop. Finally, the cost of

rad-hard devices are multiple times higher than that of COTS devices which have

multiple times better performance compared to their rad-hard counterparts.

26

However, COTS devices have disadvantages, too. First of all, the techniques used

to design fault-tolerant systems utilizing COTS devices require the use of both part

redundancy and physical shielding which contribute to the overall system cost, weight

and space restriction on the board. Second, while some COTS devices may have hardness

levels of 100 kRads or more, this hardness varies greatly from device to device and is less

proven than rad-hard devices. Third, in many cases, the safety and reliability

specifications for military applications cannot be met by COTS devices. Lastly, as the

semiconductor industry changes technology and the devices get smaller, faster and more

complex, they are becoming more susceptible to radiation.

2. CISC vs. RISC

Reduced Instruction Set Computer (RISC) machines are designed to reduce the

number and complexity of instructions in the microprocessor, thus allowing a reduction

of actual hardware complexity. The simpler the hardware, the less susceptible it is to

radiation-induced failures. RISC machines take advantage of caching, prefetching,

pipelining and superscalar methods to improve performance while CISC machines are

unable to take full advantage of these due to their variable-length, complex instructions.

3. Size, Pinout, Power

The size of the device determines the physical space requirement. Since the

weight and space constraints are critical limitations in space applications, smaller devices

with smaller number of pins are preferred. Many devices have reduced number of pins by

having multiplexed address and data busses. Similarly, power consumption is another

27

critical factor to take into consideration when selecting a device to be used in space

applications where power is a precious commodity.

4. Bus Width

The bus width of COTS devices follows the current trends. Although many

systems still effectively employ 32-bit microprocessors, the current trend is towards 64-

bit busses to improve the performance of the machine by increasing the amount of data

processed in each cycle. While some manufacturers realize this transition by offering

microprocessors with flexible bus width that can be switched between 32 bits and 64 bits,

the others offer strictly 64-bit architectures.

Although the 64-bit architecture brings increased power consumption and

hardware complexity, the performance benefits of using a 64-bit microprocessor, which is

increasingly finding more commercial applications and growing its market share, weighs

heavier.

5. Speed

One of the most important factors in selecting a microprocessor is its speed which

is basically the clock rate the machine runs at and which has considerable effect in

determining overall system performance. However, the speed, thus the system

performance, will be limited by the additional propagation time introduced by the voting

and control logic in a TMR design. The processor chosen for this design may not have the

highest speed available in the market due to the performance penalty of TMR technique

but should still introduce a performance leap when compared to the R3081, TMR design

in Ref. 2 and Ref. 3.

28

B. REVIEW OF CURRENT MICROPROCESSORS

As part of this research, several microprocessors were analyzed based on the

criteria discussed in the previous section. The microprocessor to be selected would

obviously be a COTS device due to their numerous advantages explained earlier in detail.

So there was no need to include rad-hard devices in this process. Table 3.1 contains data

concerning the various microprocessors that were considered. These are all RISC

processors because the first criteria employed in selection process was the RISC vs. CISC

consideration and RISC processors were focused on due to their advantages mentioned

before.

Microprocessor Data Bus Address Bus Performance in

Dhrystone MIP S

Number of Pins Power (W)

IDT79R3081 32 32 40 @ 50 MHz 84 2.375-4.125

EDT79RC32364 32 32 175 @ 133 MHz 144 0.6-0.9

IDT79R4700 64 64 260 @ 200 MHz 179/208 4.25-7.5

IDT79RC5000 64 64 330 @ 250 MHz 223/272 7.59-8.25

IDT79RC4650 32/64 32/64 175 @ 133 MHz 208 1.646-3.465

IBM PowerPC 40IGF 32 32 53 @ 50 MHz 80 0.2

IBM PowerPC 403GCX 32 32 112 @ 80 MHz 160 0.51

IBM PowerPC 405CR 32 32 282 @ 200 MHz 316 0.8

IBM PowerPC 603e 32/64 32/64 135 @ 100 MHz 240/255 3.5-5.8

IBM PowerPC 750CX 32/64 32 1160@500MHz 256 4.7-11.0

Motorola PowerPC

MPC/MPEC603e

32 32 188 @ 133 MHz 240/255 3.5-5.8

Table 3.1. List of Candidate Microprocessors.

29

C. CHARACTERISTICS OF SELECTED MICROPROCESSOR

The microprocessor chosen was IDT79RC4650 RISC Processor manufactured by

Integrated Device Technologies (IDT). The RC4650 is a single-chip, COTS RISC

architecture with a 32/64-bit multiplexed address/data bus. The determining factor in

selecting the RC4650 was its numerous similarities and its compatibility with the R3081

processor that was used in the previous design, as well as its higher performance, its 64-

bit multiplexed address/data bus width, which is one of the driving factors of this thesis,

and its compact size. One concern is that not all COTS devices are suitable to be used in

TMR system. They need to be resistant to destructive radiation effects such as total dose

effect, SEL or SEB. However, the radiation environment performance data for the

RC4650 was not available at the time of research. Thus, its selection is conditional,

subject to the risk of experiencing a destructive fault due to total dose effect, SEL or SEB.

However, this is a concept design and a future design based on a processor resistant to

destructive effects can use basically the same concept.

The IDT79RC4650 is a low-cost, simplified and power sensitive microprocessor

that offers high performance through 64-bit architecture, high-speed pipelines and high-

bandwidth caches and bus interface. [Ref. 13] The main features of the RC4650 include:

• 64-bit architecture with 64-bit integer operations, 64-bit registers and 64-bit
multiplexed address/data busses.

• High performance microprocessor with DSP capability at 175 Dhrystone MIPS,
66.7M Multiply-Add per second or 44 Mflops at 133 MHz

• High level of integration provides 64-bit integer CPU, single-precision floating-
point unit and integer DSP/multiply unit

30

• Large, on-chip, user configurable, 2-way set associative 8KB data and 8KB
instruction caches

• Bus compatible with RC4600 and RC4700 family of processors

• Low power operation at less than 2W at 100 MHz and active power management
units

• Low-cost 208-pin package

Figure 3.1 shows a block diagram of the IDT79RC4650 microprocessor. Some of

the highlights are:

• System Control Coprocessor (CPO)
• translates virtual addresses into physical addresses
• manages exceptions and transitions between kernel and user states
• controls cache subsystem
• controls the power management unit.

• Floating Point Coprocessor (CP1)
• Decodes and executes instructions in parallel with the integer unit
• Performs single-precision arithmetic
• Operation set includes floating-point add, subtract, multiply, divide, square

root, conversion between fixed-point and floating-point format and compare.

• Integer CPU core
• 32 general purpose 64-bit registers
• ALU, shifter, multiply/DSP unit, pipeline controller

• User configurable instruction and data caches

• 32/64 bit synchronized system interface

31

133 MIPS 64-bit Orion CPU System Control Coprocessor

Register fill

a e
a
£
.»
a.

Adder

Load iligrter

Store Aligner

Logic Unit

Higb-Perforoanct
Integer Muliphr/DSP

Address Translation/
Cache Attribute Control

Exception Management

Functions

l n
£

Control Bus

InslructionBus

Instruction Cache
Set A

lUciable)

Instruction Cache
SetB

R
PitiBll?

Synchronized
System Interface

«MFLOPS Single-Precision FPA

u
x a.

FT

FP regster fie

Pact/Unpack

FP Add/SuUCrU

DMSqrt

FP Mulipry

3
I

Data Cache
Set A

(Loekable|

Dab Cache
SelB

Figure 3.1. RC4650 Block Diagram from Ref. 13.

1. System Control Coprocessor (CPO)

The integrated on-chip System Control Coprocessor manages virtual to physical

address translation and the exceptions and transitions between user and kernel states. By

sharing common virtual addresses that are mapped to separate physical addresses, the

RC4650 supports multiple user tasks in parallel. This facility enables multiple user

processes in a single physical memory without the use of a TLB and is implemented via

the base-bounds registers in CPO. Kernel mode addresses do not use the base-bounds

registers but rather undergo a fixed virtual to physical address translation. CPO also

32

controls the cache subsystem as well as providing diagnostic control and error recovery

facilities. In addition, it is used to control the power management unit in order to reduce

power consumption of the internal core of the CPU. [Ref. 13]

2. Floating Point Coprocessor (CP1)

The RC4650 incorporates an on-chip, single-precision floating-point coprocessor

that includes a floating-point register file of 32 32-bit registers and execution units. The

floating-point coprocessor forms a seamless interface with the integer unit, decoding and

executing instructions in parallel. CP1 performs single-precision arithmetic as specified

in IEEE Standard 754. The execution unit is broken into a separate multiply unit and a

combined add/convert/divide/square root unit. The floating-point unit's operation set

includes floating-point add, subtract, multiply, divide, square root, conversion between

fixed-point and floating-point format and floating-point compare. [Ref. 13]

3. CPU Core

The CPU core is a pipelined, 64-bit RISC integer execution unit that includes

ALU, shifter, multiply/DSP unit and pipeline controller. It features a load/store

architecture with single-cycle ALU operations and an autonomous multiply/divide unit.

The register file has 32 64-bit registers, two read ports and one write port. The RC4650

uses a 5-stage pipeline that requires fewer stalls. Once the pipeline is filled, five

instructions are executed simultaneously. The simplicity of the pipeline allows the

RC4650 to be lower cost and less power-consuming than super-scalar processors. [Ref.

13]

33

4. Instruction and Data Caches

The RC4650 incorporates 2-way set-associative, virtually-indexed, physically-

tagged, on-chip data and instruction caches default configured to 8kB each. Both the

instruction cache and the data cache are organized with line sizes of 32 bytes (8

instructions in the instruction cache) to maximize performance. The default write policy

in the data cache is write-back, which means that a store to a cache line doesn't

immediately cause memory to be updated. This increases system performance by

reducing bus traffic and eliminating the bottleneck of waiting for each store operation to

finish before issuing a subsequent memory operation. However, the data cache can be

reconfigured to write-through mode. Associated with the data cache is a store buffer that

allows the RC4650 to execute a store instruction every processor cycle without penalty.

In addition, there is a 4-deep on-chip write buffer, that holds up to 4 data and address

pairs and decouples the speed of the processor from the speed of the memory system,

minimizing processor stalls due to data write operations. [Ref. 13]

The influence of internal caches on TMR system has. not been addressed in this

thesis. The TMR concept of error recovery does not include dealing with errors in internal

caches. Instead, the internal caches are invalidated by the interrupt handling routine

during the context switch operation, which restores the processor register contents to an

error-free state.

5. System Interface

The system interface of the RC4650 consists of a 64-bit multiplexed address and

data bus called SysAD, a 9-bit command bus called SysCmd and 6 handshake signals,

34

namely RdRdy*, WrRdy*, ExtRqst*, Release*, Validln*, ValidOut*. Cycles in which

SysAD bus contains a valid address are called address cycles and cycles in which SysAD

bus contains valid data are called data cycles. Validity of the contents of SysAD and

SysCmd busses is indicated by the Validln* and ValidOut* signals. The command bus

specifies the nature of the request, whether a read cycle or a write cycle will take place,

and identifies the contents of SysAD bus, either address or data, during any cycle in

which it is valid. The RdRdy* and WrRdy* signals determine whether a read or a write

cycle is beginning. After one of them is sampled, the processor initiates corresponding

cycle by putting a valid address on the SysAD bus. The Extrqst* and Release* signals are

used to control the transition between master and slave states if there are more than one

possible bus masters in a system. [Ref. 13]

A bus interface of a typical RC4650 system contains transparent latches to

demultiplex address and data busses. The data path between the memory system and the

processor is managed by octal transceivers and a set of PLDs or an FPGA that is used to

control the handshake process between the memory system and the processor. A typical

RC4650 system is presented in Figure 3.2. [Ref. 13]

This chapter has discussed the issues relevant to the microprocessor selection

process and presented a review of the RC4650 microprocessor features. Having selected

the microprocessor, the hardware design of the new TMR system using the RC4650

microprocessor will be presented in the following chapter.

35

RC4650

" 4 Address
Boot
ROM

DRAM
(80ns)

32 or 64
 il_

TZ ^

T 32 Of 64

y

4 Control

SCSI

4-
Control

- /
Control

Memory I/O
Controller

^JL

ENET

r
Figure 3.2. Typical RC4650 System Architecture from Ref. 13.

36

IV. HARDWARE DESIGN

The scope of the design described in this thesis does not include the full

functionality of the design in Ref. 2 and Ref.3, such as loading and running of user

programs. This design rather focuses on the possibility of implementing a TMR system

using 64-bit microprocessors and determining a reasonable performance level achievable

in the new design, such as maximum clock rate this processor can run at in a TMR

design.

Having selected the 64-bit microprocessor, the next step was to identify and

implement the changes necessary to accommodate this processor in a TMR design. In

some areas, the RC4650 has such compatibility with the R3081 that little or no changes

were necessary from the design in Ref. 2 and Ref.3. Examples include memory space and

memory decoding unit. This was not the case for other parts of the design where

significant changes were necessary, such as the system interface and handshake signals.

A. MICROPROCESSOR AND LATCHES

The key element in the system is the microprocessor. In the case of TMR system,

there are actually three microprocessors. Since the address latches are used to demultiplex

the address/data busses, they are presented here with the microprocessors. In addition, the

SysCmd bits issued by the processors at the beginning of each read/write cycle are latched

to make them available for the rest of the read/write cycle and that latch is presented here,

too. The schematic diagram of the three microprocessor and the associated latches are

given in Figure A.2 in Appendix A.

37

1. Microprocessor

The microprocessor used in the design in Ref. 2 and Ref.3, the R3081, ran at

clock rates of up to 40 MHz with a half-frequency bus. On the other hand, the RC4650

has operation frequencies from 100 MHz up to 267 MHz. This allows a great

improvement in performance compared to previous design, thus addressing one of the

main advantages of using COTS devices. However, there are some factors that need to be

taken into account when selecting the operational clock rate. Although the processors can

execute instructions internally at very high speeds, the actual performance is limited by

the bus speed. The speed of external busses that connect processors to peripheral units

cannot keep up with the internal speeds of modern microprocessors. So, whenever the

processor needs to access external resources, the execution of the instruction is limited by

the bus speed. Similarly, the semiconductor industry has not improved the speeds of

memory chips as much as they improved the speeds of microprocessors. In addition to

these, the propagation delay due to the voting logic is the most important factor limiting

the execution speed in a TMR system. The voting circuitry inserted between the

microprocessor and the memory system adds two more levels of logic, which increases

the propagation time of voted signals (address, data and control) between the

microprocessor and the memory system. Other signals generated by the programmable

devices based on some of the voted signals are also delayed due to voting. Thus, the clock

rate the processors will run at was decided after the voting logic was designed and the

timing analysis of the system was completed. A slow clock rate would degrade the overall

system performance while a high clock rate would introduce excessive number of wait

38

states and stall the pipelined processors during a memory access. The simulation results

presented in Chapter VI showed that a clock rate of 100 MHz would be ideal for the

design without excessive number of wait states in each memory access cycle.

2. Latches

In order to reduce the pin count of the RC4650, IDT chose to multiplex the

address and data busses into a SysAD bus. This generates a requirement for the designer

to split the SysAD bus into data and address busses by using latches. Similarly, the bi-

directional SysCmd bus needs to be latched because the command identifier issued during

the address cycle on the SysCmd bus contains control bits that are used to generate the

memory interface signals. These signals are shown in the programmable device design

equations in Appendix B. Normally, demultiplexing is done by using transparent latches

that allow the address to appear on the address bus a short propagation delay after the

latches are enabled. Since the processor has no pin that indicates the signal on the

multiplexed address/data bus is data or address, the latch enable signal has to be

generated externally by the designer. The latch enable signal was generated by a NOR

gate whose inputs are the most significant bit of SysCmd bus (SysCmd[8]) and

ValidOut* signal. ValidOut* is an active-low signal that indicates the signal output on

SysCmd and SysAD busses by the processor are valid. SysCmd[8], when low, indicates

that the current clock cycle is an address cycle, thus the signals on SsyAD bus is an

address and the signals on SysCmd bus is a command identifier. The same signal enables

both the address latches and the SysCmd latch because the processor drives both address

and SysCmd busses simultaneously.

39

B. MEMORY SPACE

There are three types of devices in the memory system of the TMR design:

Programmable Read Only Memory (PROM), Random Access Memory (RAM) and

memory-mapped I/O peripherals. This section will present an overview of the memory

space supported by the RC4650 and incorporation of PROM, RAM and I/O peripherals

into that memory space.

As mentioned in the section about the microprocessor selection, the memory

space supported by the RC4650 is the same as that of the R3081, which minimizes the

changes necessary in the memory decoder unit of the design in Ref. 2 and Ref. 3. As in

the case of the R3081, the RC4650 supports a 4 GByte memory space, broken down into

four distinct virtual address areas: kernel-user segment (KUSEG), kernel segment 0

(KSEGO), kernel segment 1 (KSEG1) and kernel segment 2 (KSEG2). KUSEG is a

cacheable 2 GByte area used for kernel and user processes. KSEGO is a cacheable 512

MByte space normally used for kernel executable code and kernel data. KSEG1 is a non-

cacheable 512 MByte area normally used for memory-mapped I/O, boot ROM code and

operating system data. KSEG2 is a cacheable 1 GByte area normally used by operating

system for stacks, process data and dynamically allocated memory. A diagram of the

virtual memory segments is shown in Figure 4.1 and the corresponding virtual address

ranges are given in Table 4.1. [Ref. 13]

Although the RC4650 supports a 4 GByte memory space, the entire space is not

usually populated. The size and location of the memory space populated in this design is

explained in following sections.

40

Ox FFFF FFFF

OrCOOO OOOff

tttADOO OOOO

uiaocoiiooo

Unmapped

0.5 GB
Unmapped
Uncadietf

0.5 GB
Unmapped
Cached1

Ox CC03 COO»

2 GB

Mapped

tsegl

tscgl

tsegO

tuseg

Figure 4.1. Virtual Memory Segments supported by RC4650 from Ref. 13.

Address
Bit

Values

Status Register
Is

One Of These
Values

Segment
Name

Virtual
Address
Range

Segment Size
UNI EXL ERL

A(31) = 0

UM-0

or

EXL = 1

or

PDI „1

kuseg 0x0000 0000
through
0x7FFF FFFF

2 Gbytes (2J1 bytes)

A(31:29) =

1002

ksegO 0x8000 0000
through
0x9FFF FFFF

512 Mbytes {229

bytes)

A(31:29) =

1012

ksegl OxAOOO 0000
through
OxBFFF FFFF

512 Mbytes (229

bytes)

A(31:30) = 112 kseg2 OxCOOO 0000
through
OxFFFF FFFF

1 Gbyte (232 bytes)

Table 4.1. Address Range of Memory Segments supported by RC4650 from Ref. 13

41

1. PROM

As explained in Ref. 2, the size and type of PROM is dictated mainly by the

operating system. Since this design merely focuses on the incorporation of a 64-bit

microprocessor into the previous 32-bit system and the selected processor is both

software and memory space compatible with the processor of the design in Ref. 2 and

Ref. 3, it was assumed that the same operating system PROM address space could be

implemented in this design. So, the location of the 512 KBytes of PROM within the 4

GByte memory space is the physical address space between 1FC0_0000 and 1FC7_FEFF.

One of the two changes in the design was the type of PROM chips being used.

Due to increased clock rate of the system, a faster PROM chip would be better in order to

avoid excessive number of wait states during accesses to PROM. Another version of the

PROM chip that was used in the design in Ref. 2 and Ref. 3, AMD 27C010-45 which has

a data access time of 45 ns and which is available from the same manufacturer (AMD),

was selected. The other change necessary was the use of eight of those chips instead of

four since data bus width is 64 bits in the current design while it was 32 bits in the design

in Ref. 2 and Ref. 3. The schematic of the PROM memory unit can be found in Figure

A.5 in Appendix A.

2. SRAM

The size and location of SRAM memory space is also based on the design in Ref.

2 and Ref. 3 due to the same reasons expressed in the PROM section, namely software

and memory space compatibility of the microprocessors used in the two systems. The

factors leading to the selection of SRAM memory size and location was discussed in Ref.

42

2. In the case of SRAM memory space, the only change necessary was the use of eight

instead of four SRAM chips in each of the five 0.5-MByte SRAM blocks due to the

expansion of data bus width from 32 bits to 64 bits, bringing the total number of chips to

40 compared to 20 in the design in Ref. 2 and Ref. 3. The same types of SRAM chips

(IDT71024S12) were used because the access time of 12 ns was sufficient for the new

system with the increased clock rate.

As discussed in the beginning of the memory section, the RC4650 supports four

distinct virtual address segments. From Ref. 2, the design was determined to consist of

five 0.5-Mbyte SRAM blocks. These are denoted as KRAM, URAMO, URAM1, URAM2

and URAM3 in the schematic diagram of SRAM memory unit, which can be found in

Appendix A. It was also determined that only two of the four virtual address segments

would be populated with SRAM which are KUSEG and KSEGO. One of the two SRAM

blocks allocated to the operating system (KRAM) was placed in memory segment

KSEGO to provide a random access memory location for the PROM contents to be

transferred to and executed from. The remaining operating system SRAM block and the

three user SRAM blocks (URAM0-URAM3) were placed in memory segment KUSEG.

The schematic diagram of the SRAM memory unit can be found in Figures A.6-A.8 in

Appendix A.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

V. PROGRAMMABLE LOGIC DESIGN

Several key functions in the TMR design are performed by programmable logic,

including programmable logic devices (PLD) and field programmable gate arrays

(FPGA). Most of the design changes required to accommodate a 64-bit microprocessor in

TMR system were made in this part of the system. The first step in the transformation

from the previous 32-bit design to the current 64-bit design was to understand the

functions performed by the programmable logic in the design in Ref. 2 and Ref. 3 and

reconfigure the programmable devices to perform the same functions in the new design.

Although the RC4650 was selected due to its similarities and compatibility with the

R3081 of the design in Ref. 2 and Ref. 3, it had a completely different system interface

which required considerable change in the design of programmable logic devices that

generate the memory interface signals.

The functions performed by the PLDs and the FPGAs were clearly defined and

distinct in the design in Ref. 2 and Ref. 3, which facilitated understanding how the system

worked. The two PLDs were designed to perform memory control and memory enable

functions while the FPGAs were designed to perform voting, address decoding and

system controller functions. The first approach was to follow the same technique by

dividing the functions among each device in the same way. The initial design showed that

the differences in the system interfaces of the two microprocessors, especially the

complexity of the RC4650 system interface compared to that of R3081, required the use

of twice as many PLDs as was used in the design in Ref. 2 and Ref. 3 if the functions

performed by PLDs and FPGAs were to be divided in the same distinctive way. However,

45

the restrictions imposed by the space and power limitations of a space application dictated

the use of as few devices as possible to perform the same functions.

The second approach was to include the functions performed by PLDs into an

FPGA to reduce the number of devices being used, thus covering less space and

consuming less power. But this approach was not feasible due to the longer propagation

delay of the FPGAs being used compared to that of the PLDs. Some memory control

signals had to be generated in a shorter time than could be achieved by the FPGA,

otherwise the read/write cycle would be stalled with a prohibitively excessive number of

wait states. The propagation delay of the FPGA would allow the system to achieve only

twice the performance level of the R3081 TMR system, which means a system clock rate

of 20 MHz vice 10 MHz clock rate of the R3081 TMR design. This was not a satisfactory

performance improvement compared to what was expected from this system designed

using a 64-bit modern microprocessor capable of running at clock rates of up to 267

MHz.

The final design of the programmable logic incorporated two functions. First one

is generating some critical memory control/enable signals, which might have an adverse

effect on system interface timing, by using PLDs. This allows minimizing the number of

PLDs to be used. Second one is generating other memory control/enable signals, which

did not cause additional wait states, by using FPGAs. This approach led to a design using

two PLDs and two FPGAs, which is considered to be the optimum design that

accommodates the 64-bit microprocessors.

46

A. FPGA DESIGN

The system in Ref. 2 used three FPGAs to perform voter, address decoder, timer

and system control functions. Since the scope of this thesis includes the feasibility

analysis of implementing the TMR fault tolerance concept using 64-bit microprocessors

and a performance evaluation rather than a complete TMR system design using 64-bit

microprocessors, this design focused on the core function in the TMR concept of voting

and error detection. For this reason, the system controller functionality was not

implemented in the FPGA design. The FPGAs in this design were used to perform the

functions of voting, address decoding and some of the memory control/enable functions

due to the design considerations explained in the previous section. This section presents

the FPGA selection process and the design of the two FPGAs used in the system.

Schematics of the FPGA designs are presented in Appendix C.

1. FPGA Selection

The initial approach in FPGA selection was using the same XILINX

XC4013XLA-PQ240 FPGAs from the design in Ref. 2 and Ref. 3 due to their advantages

explained in Ref. 2 and to facilitate continuity. The first consideration in the selection

process was the number of pins required for the function of each FPGA. Since RC4650

microprocessor issued 32-bit addresses although it has a 64-bit multiplexed address/data

bus, the address voting/decoding and the added functionality of voting the 9-bit system

command bus and generating some memory control/enable signals could be

accommodated in a XC4013XLA-PQ240 FPGA which offered 192 I/O pins. However,

voting the 64-bit data busses from the three processors to produce a 64-bit voted data bus

47

output requires at least 256 I/O pins, more than the total number of I/O pins available on a

XC4013XLA-PQ240 FPGA.

The second consideration was the requirement of the TMR concept to use

radiation hardened FPGAs since the FPGAs are a single point of failure in the TMR

concept. There were three members of the XC4000XLA family that had a radiation-

hardened version available at the time of the design. Only one of those three, the

XC4062XLA-BG432 package with 352 I/O pins, had enough number of I/O pins to

accommodate the data voting function, and that chip was selected to be used as the data

voter FPGA. [Ref. 14]

2. Address/Control Voter, Memory Decoder FPGA

The functions implemented in this FPGA are the majority voting of the three 30-

bit address and 9-bit system command busses, the decoding of the upper thirteen bits of

the voted address lines to generate chip select signals, and the generation of some of the

memory control/memory enable signals. The logic design of these functions is presented

in this section.

a) Address/Control Voter

Since the RC4650 multiplexes its address and data pins, latches are used

to separate the address and data busses. In this design, the system address/data busses,

SysAD, of the microprocessors are split into two different paths, one registered and the

other not. The registered path is the address path and the unregistered path is the data

path. When the RC4650 initiates a bus cycle, the SysAD bus is driven with the address to

be accessed and the ValidOut* signal is asserted which was used to generate the latch

48

enable signal. Then, the transparent latches drive the address bus with the latched address

to be accessed. The address is held on the address bus by the latch until the following bus

cycle when latches are enabled to latch a new address. The three address busses driven

similarly must be majority voted before being passed to the memory system.

The voting is done using macros, which are building blocks used to create

a hierarchical design in Xilinx Foundation Series Design Suite. Voting the address is

achieved by using the Majority Voter/Error Detector macros called VOTER4. Each

VOTER4 macro consists of four of the voter/error detector sub-macro presented in Figure

5.1 and votes three 4-bit inputs and generates a 4-bit majority-voted output and a 4-bit

error output that shows which bit in the 4-bit inputs had a mismatch. Since the number of

address lines voted is 30, eight of the VOTER4 macros were used for address voting.

Similarly, voting the 9-bit command identifiers from the three

microprocessors is achieved by using the Majority Voter/Error Detector macro called

VOTER9. The VOTER9 macro consists of nine of the voter/error detector sub-macros

presented in Figure 5.1 and one VOTER9 macro is sufficient for control voting. For more

information about the design and function of the sub-macro in Figure 5.1, see Ref. 2.

49

, DATA83

, DATAC3

AND2

f AN02 I

M2 1

0R3 rpRCg

AND2

0 VOTDATA

AND3 T>
OR2

NOR3

Figure 5.1. Three-bit Majority Voter/Error Detector from Ref. 2.

The address voter takes three 30-bit address busses and a Force input to

^ generate a 30-bit voted address bus and a 30-bit error bus. This is implemented by placing

eight of the four-bit wide voter/error detectors in parallel. The 30-bit error bus is reduced

to a single address vote error output, AVOTERR. This is implemented by using a

cascaded AND-NAND logic because individual error signals are active-low and

AVOTERR output is active-high. The address voter also separates the voted address bus

into two sections. The lower seventeen bits of the voted address are sent to the output

pins to form the VOTADDR[18:2] bus which is passed to the memory system to be used

as address inputs to the memory chips. The upper thirteen bits are passed to the memory

decoder, which is presented in the next section.

Similarly, the control voter takes three 9-bit command identifier busses

and a Force input to generate a 9-bit voted command identifier named VOTCTRL and a

9-bit error bus. This is implemented by using a single 9-bit wide voter/error detector

50

module (VOTER9), which was mentioned above. The 9-bit error bus is reduced to a

single control vote error output, CVOTERR. This was implemented in the same way as

address vote error signal (AVOTERR) was generated as explained above.

Although not a part of the command identifier word, the ValidOut* signal

from the microprocessor is another control signal in the system interface that indicates the

validity of the signals on the address/data bus SysAD and system command bus SysCmd.

The ValidOut* signals from the three microprocessors are voted in the Address/Control

Voter FPGA and a voted ValidOut* signal, VotValidOut*, is output which is used to

generate some of the memory control/enable signals.

b) Memory Decoder

Memory decoder takes the upper thirteen bits of the voted address bus and

decodes them into chip select signals. A chip select signal is generated for each of the five

SRAM memory blocks, the EPROM, the UART, the Timer and the Interrupt

Acknowledge. Table 5.1 shows the chip select name, its physical address, its virtual

address and the memory segment it belongs to. The addresses correspond to the upper

thirteen bits of the voted address bus with zeros concatenated to the end. The table shows

that the Kernel SRAM resides in KSEGO, the remainder of the SRAM resides in the

KUSEG, and all of the peripherals and the EPROM reside in the non-cached KSEG1 as

discussed in Chapter IV. The Memory Decoder schematic is presented in Figure C.l in

Appendix C.

51

Signal Name Peripheral Physical
Address

Virtual Address Memory
Segment

KRAMCS* SRAM 0x0000 0x8000 KSEGO
URAMOCS* SRAM 0x4000 0x0000 KUSEG
URAM1CS* SRAM 0x4008 0x0008 KUSEG
URAM2CS* SRAM 0x4010 0x0010 KUSEG
URAM3CS* SRAM 0x4018 0x0018 KUSEG
TIMERCS* TIMER 0x0440 0xA440 KSEG1

INTCS* INTERRUPT 0x1000 OxBOOO KSEG1
EPROMCS* EPROM Oxl FCO OxBFCO KSEG1
UARTCS* UART OxlFEO OxBFEO KSEG1

Table 5.1. Chip Select Memory Map from Ref 2.

c) Memory Control/Memory Enable Signals

Due to the reasons and design considerations mentioned at the beginning

of this section, read enable (RDEN*), read (RD), write (WR) and write data enable

(WRDATAEN) signals were generated using the Address/Control Voter FPGA where all

the signals required to generate these signals were available. The equations that represent

the design of the logic to generate those signals are presented in Appendix B.

The RDEN* signal works in concert with the chip select signals to activate

the output drivers of memory devices. Since all the logic between the processors and the

chip select signals is combinatorial, there is the possibility that the wrong chip select

signal may glitch while the voted address bus is settling, which may cause a wrong

memory address to be accessed. This is avoided by activating the outputs of the memory

devices with the RDEN* signal which is asserted later in the cycle after the chip select

signals stabilize and thus, gives memory device time to access the memory location and

move the data to its outputs. Unlike the write enable signals presented in the section on

52

PLD design, only one RDEN* signal is required since reads are done in complete words.

RDEN* signal is passed to all of the devices in the memory block in parallel.

The RDEN* signal is generated using the RESET*, CYCEND* signals

and the three bits from the voted command identifier that indicate the nature of the bus

cycle, VOTCTRL[7:5]. It is asserted when those three command identifier bits are 000

indicating a read request, unless RESET* or CYCEND* is asserted. It is de-asserted by

CYCEND* being asserted. This turns the output drivers of the memory device off at the

end of a bus cycle as soon as possible and reduces the possibility of bus contention.

RD signal was designed to decode the read request, represented in the

command identifier with the three bits VOTCTRL[7:5] being 000, into an active-high RD

signal in order to reduce the number of pins and thus, the complexity in the memory

enable/memory control logic.

Similarly, WR signal was designed to decode the write request,

represented in the command identifier with the three bits VOTCTRL[7:5] being 010, into

an active-high WR signal.

During a write cycle, the data from all three microprocessors are voted and

the voted data signals drive the voted-data-bus output of the Data Voter FPGA. Since not

all 64 voted data signals are generated at the same time due to different delays in each of

their individual paths, those signals will be bouncing for a short time before they settle.

To avoid those 64 data lines bouncing and generating noise, which may cause other

problems in the system, the voted data output of the Data Voter FPGA needs to be

enabled after a time when all signals in the voted data bus have settled. Hence,

53

WRD ATAEN signal was designed to enable and control the direction of data flow on the

bi-directional data path in the Data Voter FPGA. It is generated by using the CYCEND*,

RESET* signals and the VOTCTRL[8:5] bits of the voted command identifier. It is

asserted when the current transaction is a write request indicated by VOTCTRL[7:5]

being 010 and there is valid data on the data bus indicated by VOTCTRL[8] being 1. It is

de-asserted by CYCEND* being asserted at the end of the bus cycle or RESET* being

asserted.

During a read cycle, data from memory is passed to the Data Voter FPGA

and, passing through the bi-directional data path in the Data Voter FPGA without bein*

voted, distributed to the address/data busses of all three microprocessors. Similarly, the

direction of data flow during a read cycle is controlled by another data enable signal

called Read Data Enable RDDATAEN*. However, it was not necessary to generate a new

signal because the timing of the RDEN* signal, which was designed to enable the output

drivers of the memory devices, made it suitable to be used as RDDATAEN* signal, too.

Although there is no signal named RDDATAEN*, its function is carried out by the

RDEN* signal.

3. Data Voter/Transceiver FPGA

The only function implemented in the Data Voter FPGA is the majority voting of

the three 64-bit data busses and controlling the direction of data flow. Its design is very

similar to the Address Voter FPGA but it uses a different macro to perform the voting

function and it is bi-directional. A new voter/error detector macro named VOTER16 was

designed in the same manner as VOTER4 macro of the Address Voter FPGA. However,

54

it consists of 16 of the sub-macro that was presented in Figure 5.1 instead of four. They

are connected in parallel and this gives a 16-bit wide voted output path. Thus, the number

of macros needed for a 64-bit data path is reduced to four. The four 16-bit error busses,

one from each macro, are combined in the same manner as the error busses in the Address

Voter to a single data vote error output named DVOTERR.

The Data Voter/Transceiver FPGA had to be designed for bi-directional data flow

because the information passing across the data bus flows in both directions: from

microprocessors to memory devices and from memory devices to microprocessors. The

data on the address/data busses of the three microprocessors need to be combined through

the voting logic and sent to the memory devices during write cycles. During read cycles,

the data on the single data bus coming from the memory devices needs to bypass the

voting logic and be split into three copies that drive the address/data busses of the three

microprocessors. This functionality was achieved using tri-state buffers enabled by the

RDDATAEN* and WRDATAEN signals to control the direction of data flow. The

design of this logic was done in Ref. 2 and the concept is presented in Figure 5.2 for one

of the 64 bits of the data bus. The transceiver design of Ref. 2 was expanded from a 32-

bit data path to a 64-bit data path to be used in this design.

55

■-•pa-T-ei ^

«■SATA««* Q-

Figure 5.2. One-bit Slice of the Transceiver Logic Design from Ref. 2.

During a write cycle, all three input pins are driven by the microprocessors. The

WRDATAEN signal enables BUFE tri-state buffers on each side of the voter logic. The

data flows through input tri-state buffers, the voter logic and the output tri-state buffers.

The voted data also returns towards input pins but it is blocked by the BUFT tri-state

buffers disabled by the RDDATAEN* signal.

During a read cycle, the input pin on the right side is driven by the memory

devices. The signal is routed through the input buffer and the three BUFT tri-state buffers

enabled by RDDATAEN* signal, to the output pins on the microprocessor side. The

WRDATAEN signal prevents data from flowing back into the voting logic by disabling

BUFE tri-state buffers.

56

B. PLD DESIGN

A different version of the ATF22V10C PLDs, which were also used in the design

in Ref. 2 and Ref. 3, was used in this design to facilitate continuity. It has a maximum

delay of 5 ns. The system design presented in Ref. 2 and Ref. 3 used two PLDs to perform

Memory Enable and Memory Controller functions. As stated in the previous section, in

this design, those functions are implemented in both PLDs and FPGAs due to the timing

requirements and the limited number of input/output pins available in the PLDs. In

addition, the memory enable and memory control functions are not divided among

different PLDs but performed mutually because one PLD would not be enough for the

memory enable function which requires 12 output pins while 22V10 PLD has only 10.

Thus, there is no distinction among the PLDs as memory control PLD and memory enable

PLD as was the case in previous design. Instead, they are called as PLD1 and PLD2.

The schematics showing how the PLDs are interconnected within the TMR

system are provided in Appendix A and the design equations used to program the PLDs

are provided in Appendix B. The next two subsections describe the functions of the

PLDs.

1. PLD1

When the microprocessors generate the signals initiating a bus transaction, the

address, data and control signals are voted, memory control signals are generated by the

FPGAs based on those voted signals and the necessary signals are passed on to the PLDs.

PLD1 uses lowest three bits of the voted command identifier (VOTCTRL[2:0]), read

signal (RD), write signal (WR), RESET*, system clock (SYSCLK), and the cycle end

57

Signal (CYCEND*) to generate the memory control signals Validln*, CYCEND* and the

memory enable signals WRENA*, WRENB*, WRENC*, WREND*. This section

describes the signals generated by PLD1.

a) Counter

Both PLD1 and PLD2 use an internal 4-bit counter to count the clock

cycles and to provide timing reference for different bus cycles. This allows the

microprocessor to interact with devices of various speeds by introducing wait states into

the bus cycle for devices that cannot respond in a single access time.

The counter is implemented in each PLD by using four of the ten I/O pins.

It uses the RESET*, CYCEND*, SYSCLK, RD and WR inputs to determine when to

count and when to reset back to zero. RESET* signal is used to reset the counter

whenever a system reset is required. CYCEND* signal is used to identify the end of the

current bus cycle and reset the counter back to zero. RD and WR signals are generated by

the Address/Control Voter FPGA using voted command identifier signals. Unless

RESET* or CYCEND* is asserted, the counter increments on each rising edge of

SYSCLK after RD or WR signal has been asserted.

b) Cycle End (CYCEND*)

The CYCEND* signal is an active-low signal used to indicate the end of

the current bus cycle. It is generated from RESET*, RD, WR, EPROMCS* inputs and the

counter contents. The timing of the CYCEND* signal is dependent on the latency

required to access the device and the type of bus cycle that is being run. RD and WR

signals are used to determine the type of bus cycle. The active-low EPROMCS* signal

58

and the counter contents are used to determine device latency. All the memory system,

except EPROM for which only read cycle is applicable, can perform a read in 7 clock

cycles or a write in 6 clock cycles. EPROM requires three additional wait states and

completes a read in 10 clock cycles.

c) Validln*

The Validln* is an active-low signal generated by memory control unit and

indicates to the microprocessors that memory is accessed and data placed on the

address/data bus is valid. The Validln* signal is generated using EPROMCS*, RD,

RESET* signals and the counter contents. Since address/data bus is driven by memory

only during a read cycle, this signal is only asserted on read transactions. All the memory

system, except EPROM, can perform a read in 7 clock cycles and Validln* is asserted at

the end of the read transaction when counter content is 7. Since access to EPROM

requires three additional clock cycles, Validln* is asserted when counter content is 10

during EPROM read cycle. Since the counter content changes every clock cycle, this

signal is asserted only for one clock cycle and then de-asserted.

d) Write Enable Signals

Since RC4650 supports byte, two-byte, three-byte, halfword, four-byte,

five-byte, six-byte, seven-byte and fullword writes, Write Enable strobes are used to

determine which bytes of the word are going to be involved in the transaction. The eight

write enable signals are WRENA*, WRENB*, WRENC*, WREND*, WRENE*,

WRENF*, WRENG* and WRENH*. WRENH* corresponds to the most significant byte

and WRENA* corresponds to the least significant byte. Since one PLD was not able to

59 "" '

generate all the eight write enable strobes as well as a 4-bit counter, the task was divided

between the two PLDs. However, it is more suitable to present all of the strobes in this

section because both PLD1 and PLD2 use the same inputs to generate these signals.

Write Enable strobes are generated using the least significant three bits of

the voted command identifier VOTCTRL[2:0], WR, RESET* signals and the counter

contents. RESET* signal de-asserts write enable strobes when system is reset. When WR

signal is asserted, the corresponding write enable strobes will be asserted based on the

coding in the least significant three bits of the command identifier. The truth table for this

function is given in Table 5.2. For the negative logic signals indicated by an asterisk, 0

signifies an asserted signal.

WR VOTCTRL[2:0] WRH* WRG* WRF* WRE* WRD* WRC* WRB* WRA*

000 1 1 1 1 0

001 1 1 1 0 0

010 1 1 0 0 0

011 1 0 0 0 0

100 0 0 0 0 0

101 0 0 0 0 0 0

110 0 0 0 0 0 0 0

111 0 0 0 0 0 0 0 0

Table 5.2. Byte Write Enable Strobes Assertion Table.

60

2. PLD2

When the microprocessors generate the signals initiating a bus transaction, the

address, data and control signals are voted, memory control signals are generated by the

FPGAs based on those voted signals and the necessary signals are passed on to the PLDs.

PLD2 uses lowest three bits of the voted command identifier VOTCTRL[2:0], read signal

(RD), write signal (WR), RESET*, system clock (SYSCLK), voted ValidOut* signal

(VotValidOut*), and the cycle end signal (CYCEND*) to generate the system interface

signals WrRdy*, RdRdy* and the memory enable signals WRENE*, WRENF*,

WRENG*, WRENH*. This section describes the signals generated by PLD2 other than

the write enable strobes and the 4-bit internal counter, which were mentioned in the

section about PLD1.

a) Read Ready (RdRdy*)

RdRdy* is an active-low signal used to indicate to the microprocessor that

memory system is ready for a read transaction. After the microprocessor senses that

RdRdy* is asserted, it initiates the read cycle by driving the address/data bus with a valid

address and the system command bus with a valid command identifier that indicates the

nature of the transaction and by asserting the ValidOut* signal that indicates the signals

on those two busses are valid. PLD2 uses CYCEND*, voted ValidOut* and the current

RdRdy* signals to generate the RdRdy* signal. RdRdy* is de-asserted when voted

ValidOut* signal is asserted meaning that processor has initiated a bus transaction.

RdRdy* stays asserted as long as voted ValidOut* is de-asserted meaning that the

processor hasn't initiated a bus transaction.

61

b) Write Ready (WrRdy*)

WrRdy* is an active-low signal used to indicate to the processor that

memory system is ready for a write transaction. After the processor senses that WrRdy* is

asserted, it initiates the transaction by driving the address/data bus with a valid address

and the system command bus with a command identifier that indicates the nature of the

transaction and asserting the ValidOut* signal that indicates the signals on those two

busses are valid. PLD2 uses CYCEND*, voted ValidOut* and the current RdRdy*

signals to generate the WrRdy* signal. WrRdy* is de-asserted when voted ValidOut*

signal is asserted meaning that processor has initiated a bus transaction. WrRdy* stays

asserted as long as voted ValidOut* is de-asserted meaning that the processor hasn't

initiated a bus transaction.

This chapter has presented the design of the programmable devices used in

the implementation of the TMR system. Having completed the hardware design

associated with this thesis, the results of the simulation of the system and the detailed

system timing analysis are presented in the next chapter.

62

VI. SYSTEM TIMING ANALYSIS

After the hardware and the programmable devices were designed, system

simulation and timing analysis was conducted. The purpose of the timing analysis is to

determine if the system operates as expected and to ensure that no bus contention occurs.

The system is designed to operate with a clock rate of 100 MHz, which means a clock

cycle of 10 ns.

The timing analysis was conducted on the two basic types of bus transaction:

Read Cycles and Write Cycles. The following sections present the results of the timing

analysis.

A. READ CYCLES

During a read cycle, the processor initiates the bus cycle after it is informed that

memory system is ready, memory system responds to the request and the bus cycle is

terminated. When the timing analysis was conducted, it was found that SRAM and

EPROM have different timing diagrams due to the difference in memory access times of

the devices. The read cycle timing diagram for SRAM memory is presented in Figure 6.2.

Once the processors sense the RdRdy* signal which remains asserted until a new

bus transaction is initiated, they initiate the read bus cycle by driving the SysAD bus with

the address, the SysCmd bus with the command identifier and by asserting the ValidOut*

signal which indicates that valid address and command identifier are driven on the

corresponding busses. The address and the command identifier are latched after

ValidOut* signal is asserted and they continue to the Address/Control Voter FPGA. In

the next clock cycle, latches are blocked by the negation of ValidOut* signal and do not

63

are m pass the input to the output anymore. SysAD/SysCmd busses are not driven (they

high impedance state) and are available to receive data supplied by the memory devices.

-3—

r^f

3S|gg

StH

S73r
3? OwSE o tttcuSSS

r
£

5*230

JT
sllf

si

f mn * s ss

513SÖ5 3?335gg5g

#-F

»=—ES ID

8g

1°

Ä*i? ÜltniL?: DO

§£.-,

•'OAAA

Q$C C« 09

F=-
Ijlftf 9>-

—TT

"

Figure 6.1. TMR RC4650 Top Level Schematic

64

Ons 25n s

I I

50ns 75ns

I I I I I I I I I

SysCIk

RdRdy

SysAD/SysCm d

ValidOut'/ALE

Latched Address/Control

VOTADDR

VOTCTRL

CS'

RDEN*

RD

DATA ■

ValidlnVCYCEND*

PLD -HPLD

-€___>

latch

15 nslatch to CS'

20 ns latch to RDEN'

-*j10 nsmemory access ti me

Figure 6.2. Read Timing Diagram

After the address and the command identifier have been latched, the

Address/Control Voter FPGA receives, votes and decodes. Voted address and command

identifier, as well as CS*, RDEN*, RD signals required by the memory system, are

generated and output by the Address/Control Voter FPGA. Voted address, CS* and

RDEN* signals are used to drive memory devices. Once RDEN* and CS* signals are

asserted, the specified memory devices access the appropriate memory location and

output the requested data on the SysAD bus. If the memory section being accessed is in

the EPROM block, the memory access time requires insertion of three additional wait

state clock cycles compared to SRAM read cycle. With the rising edge of the clock cycle

after the wait states, two signals that terminate the bus cycle are asserted: the Validln*

65

signal, which indicates to the processors that data on SysAD busses from memory is

valid, and the CYCEND* signal, which indicates the end of cycle and de-asserts RDEN*

and CS* signals. After sensing Validln* signal, processors read the data on their SysAD

busses and the read cycle is terminated.

B. WRITE CYCLES

During a write cycle, the processor initiates the bus cycle and issues data to be

written, memory system responds to the request and the bus cycle is terminated. Since

EPROM is a read-only device, write cycle timing analysis was conducted based on only

SRAM device parameters. The write cycle timing diagram is presented in Figure 6.3.

Ons 25ns
I I I I I

50ns 75ns

SysClk

WrRdy"

SysAD/SysCmd

ValidOuf/ALE

Latched Address/Control

VOTADDR ■

VOTCTRL -

cs- "

WR/WRDATAEN

VOTDATA -

CYCEND7WREN*

PLD

J I f

Addr/Cntr

J-C

^Latch

vote

ivote

Data

15 ns latch to CS*

I F
PLD

-»|20 ns latch to WRDATAEN

-HPLD

Figure 6.3. Write Timing Diagram

66

Once the processors sense the WrRdy* signal which remains asserted unless a

new bus transaction is initiated, they initiate the write bus cycle by driving the SysAD bus

with the address, the SysCmd bus with the command identifier and by asserting the

ValidOut* signal which indicates that valid address and command identifier are driven on

the corresponding busses. The address and the command identifier are latched after

ValidOut* signal is asserted and they continue to the Address/Control Voter FPGA. In

the next clock cycle, latches are blocked by the negation of ValidOut* signal and do not

pass the input signals from the SysAD bus to the output anymore. At this time, SysAD

busses are driven by the processors with data to be written to the memory.

After the address and the command identifier have been latched, the

Address/Control Voter FPGA where they are voted and decoded receives them. Voted

address and command identifier, as well as CS*, WRDATAEN, WR signals required by

the memory system, are generated and output by the Address/Control Voter FPGA. In

addition, data on SysAD bus is received and voted by Data Voter FPGA. Voted data is

output by Data Voter FPGA when output drivers are enabled by the WRDATAEN signal.

Finally, Write Enable signals that enable the memory devices are generated by PLDs at

the end of the cycle when voted data is available at the data inputs of memory devices.

Voted address, voted data, CS* and write enable signals drive the memory devices.

Two signals are asserted at the end of the write cycle: write enable signals and

CYCEND* signal. Once the write enable signals are asserted, the specified memory

devices write data on the SysAD bus to the appropriate memory location. Simultaneously,

67

CYCEND* signal, which indicates the end of bus cycle and de-asserts WRDATAEN and

CS* signals, is asserted and the write cycle terminates.

C. TIMING ANALYSIS

The timing diagrams are based on the data provided by the datasheets of the

components being used. The latches have a typical latch enable to output delay of 4.7-5.6

ns which is approximated to 5 ns in timing diagrams. The PLDs have a delay of 5 ns

which applies to signals generated thereby. The delay of FPGAs depend on the specific

function. The voting function takes between 5-7 ns, address decoding (CS*) and memory

enable (RDEN*, WRDATAEN) functions take 15 and 20 ns, respectively.

For the read cycle, the time between when the memory is enabled and when data

is available is 6 ns for SRAM which is approximated to 10 ns and 45 ns for PROM. The

difference causes 3 additional wait states during PROM memory access. For the write

cycle, the time when data is valid and the memory is write-enabled is 7 ns which is the

setup time. No hold time is necessary.

Looking at the timing diagrams in Figures 6.2 and 6.3 and considering the

allocation of timing to the components, it is concluded that the system works as described

without contention. However, the effect of voting on the bus speed is clearly seen. A

typical single-processor RC4650 system without TMR completes a read cycle in 5 clock

cycles and a write cycle in 4 clock cycles. [Ref. 13] On the other hand, the RC4650 TMR

system completes a read cycle in 7 clock cycles and a write cycle in 6 clock cycles. The

bus speed is reduced by approximately %50 due to voting and other delays of TMR

68

implementation. This performance is considered acceptable when the speed advantage of

COTS microprocessors is taken into account.

This chapter presented the timing analysis conducted using the method of adding

up delays of each functional unit cascaded in the system to determine the overall system

performance. The following chapter concludes this thesis and discusses possible areas for

follow on research.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

VII. CONCLUSIONS AND FOLLOW-ON RESEARCH

The previous chapters have provided background information about the TMR

concept and presented the work done in this project. This chapter will present the

conclusions drawn from this project and the areas to be worked on for follow-on research.

A. CONCLUSIONS

Due to rapidly shrinking radiation hardened device market and increasing cost of

such devices, the use of COTS devices, which offer state-of-the-art technology, in

radiation environment has been gaining support increasingly. However, the susceptibility

of COTS devices to SEUs requires the implementation of a protection mechanism, one

example of which is the TMR concept used in this project.

The TMR system implemented in this thesis incorporates 64-bit microprocessors

with the intent of increasing the system performance compared to the previously designed

32-bit TMR system of Ref. 2 and Ref. 3 while maintaining the same functionality. Thus,

by the use of COTS devices in space applications, state-of-the-art technology is

introduced. However, the scope of this thesis was limited to a system designed to verify

the possibility of implementing a 64-bit TMR design and to observe the performance

improvement rather than presenting a fully functional fault-tolerant computing unit. So, it

does not include all the functionality of the previous design although it was based on this

previous work.

The system consists of processors, memory system and the programmable glue

logic in between. The processor was selected based on the criteria presented in Chapter

HI. The memory system includes ROM and RAM units. The programmable logic where

71

most of the design work was focused contains the address decoder, voter and memory

control/enable units. The use of 64-bit processors introduced the difficulty of dealing with

increased number of pins and required the use of programmable devices with more I/O

pins to accommodate the functions to be executed on those 64-bit busses. After schematic

designs were drawn and the programmable devices were designed, the timing analysis of

the system was conducted to determine that there were no bus contentions and that the

system functioned äs expected.

The implementation in this research and the work of previous researchers on this

topic prove that the TMR concept is a valid method of protecting against the effects of

SEUs on COTS devices. In addition, this thesis supports the claim that the higher

performance COTS processors can be incorporated into a TMR system to realize the

objective of increasing the system performance while maintaining fault tolerance. The

performance figures in Chapter VI verify this conclusion.

The fact that the performance penalty of TMR implementation is applicable only

during external memory access cycles and not during the internal operation of the

processors, suggests that the performance penalty of TMR implementation can be

tolerated in return for the benefit of fault tolerance gained from the implementation.

B. FOLLOW-ON RESEARCH

Since the scope of the projects as large as this one is too wide to be completed

during the research period of one student, the project needs to be completed by other

students as a result of their follow-on research. The possible areas of follow-on research

are explained in this section.

72

1. Completion of TMR Hardware Implementation

This thesis presented a partial design of a TMR RC4650 system. The current

design includes only the core of a TMR system that consists of the RC4650

microprocessors, the memory system and the programmable logic that performs the

system interface function between the processors and the memory system. This

configuration allows verifying the possibility of implementing a TMR system using 64-

bit microprocessors and evaluating its performance.

In order to provide the full functionality of the system, the design has to be

completed to make it ready to be manufactured on a board. The design and

implementation of a System Controller FPGA, which controls data transfer to the

operating system during an interrupt for analysis, and the associated FIFO array are the

most important features to complete the TMR system. Besides the functional units of the

TMR concept, the support elements are also essential to make the actual hardware work.

They need to be completed before the design can be converted to an actual board. The

support elements include the I/O interface to communicate with peripheral units and to

load programs, the clock circuit, the reset circuit, the interrupt logic and the power/ground

connections.

2. Hardware-Software Integration

Once the hardware design is complete and the board is manufactured and fully

tested, the software necessary to control and operate the system needs to be integrated.

This includes an operating system and a software interface module that is in charge of the

interrupt handling and error recovery process. The software integration section of this

73

project will have similarities with the previous software integration work on the TMR

R3081 design, which was presented in Ref. 4. Thus, this follow-on research may begin by

following the steps taken in the thesis work mentioned above.

3. Radiation Testing

After the hardware and software integration and testing is completed, the system

will be ready for radiation testing. Since the system is designed to detect and correct

radiation induced SEUs, it must be tested in a radiation environment before it can be

declared operational. Radiation testing can be conducted at the test facilities in University

of California, Berkeley and University of California, Davis. The influence of SEUs on the

system can be analyzed by using the data captured by the software interface module that

will be developed during software integration.

In addition, the system can be used to compare TMR hardware fault tolerance

technique with software fault tolerance techniques. This requires conducting tests in TMR

mode and single processor mode since the system can operate in either of those modes.

74

APPENDIX A. TMR DESIGN SCHEMATICS

This appendix presents the schematics for the TMR RC4650 System. Table A.l

lists the schematics and the pages they appear on.

Figure Number and Description Page Number

Figure A. 1. TMR RC4650 Top Level Schematic 76

Figure A.2. One of the three microprocessors and the associated latches 77

Figure A.3. Address/Control Voter FPGA with PLD1 and PLD2 78

Figure A.4. Data Voter FPGA 79

Figure A.5. PROM Memory Block 80

Figure A.6 KRAM and SRAMO Segments of SRAM Memory Block 81

Figure A.7 SRAM1 and SRAM2 Segments of SRAM Memory Block 82

Figure A. 8 SRAM3 Segment of SRAM Memory Block 83

75

Figure A.l. TMR RC4650 Top Level Schematic
76

iiiüiii Hi iliii iiiiilli iiilill

Figure A.2. One of the three microprocessors and the associated latches

77

I

Figure A.3. Address/Control Voter FPGA with PLD1 and PLD2
78

Pin No Signal Pin No Signal Pin No Siaial Pin No Signal Pin No Signal
AJ2 FORCE V28 DATAA48 AF2 DATAB37 AK20 DATAC26 U31 VOTDATA15
AK3 WRDATAEN P28 DATAA49 AD2 DATAB38 AK19 DATAC27 W31 VOTDATA16
AK4 RDENN J28 DATAA50 AB2 DATAB39 AK17 DATAC28 Y31 VOTDATA17
AI7 DVOTERR G28 DATAA51 Y2 DATAB40 AK15 DATAC29 AB31 VOTDATA18
J3 SYNC D29 DATAAS2 W2 DATAB41 AK13 DATAC30 AD31 VOTDATA19
A17 DATAAO B25 DATAA53 U2 DATAB42 AK12 DATAC31 AF31 VOTDATA20
A19 DATAA1 B23 DATAA54 R2 DATAB43 AK10 DATAC32 AG31 VOTDATA21
A20 DATAA2 B18 DATAASS N2 DATAB44 AK8 DATAC33 AL27 VOTDATA22
A22 DATAA3 A15 DATAA56 M2 DATAB45 AKfi DATAC34 AL26 VOTDATA23
A24 DATAA4 A13 DATAA57 K2 DATAB46 AK5 DATAC35 AL24 VOTDATA24
A26 DATAA5 A12 DATAA58 H2 DATAB47 AG3 DATAC36 AL22 VOTDATA25
A27 DATAA6 A10 DATAA59 V29 DATAB48 AF3 DATAC37 AL20 VOTDATA26
A28 DATAA7 A6 DATAA60 P29 DATAB49 AD3 DATAC38 AL19 VOTDATA27
E28 DATAA8 A5 DATAA61 J29 DATAB50 AB3 DATAC39 AU7 VOTDATA28
F28 DATAA9 El DATAA62 G29 DATAB51 Y3 DATAC40 AL15 VOTDATA29
H28 DATAA10 Fl DATAA63 C30 DATAB52 W3 DATAC4I AU3 VOTDATA30
K28 DATAA11 B17 DATABO C25 DATAB53 U3 DATAC42 AL12 VOTDATA31
M28 DATAA12 B19 DATAB1 C23 DATAB54 R3 DATAC43 AUO VOTDATA32
N2S DATAA13 B20 DATAB2 C18 DATAB55 N3 DATAC44 AJL8 VOTDATA33
R28 DATAA14 B22 DATAB3 B15 DATAB56 M3 DATAC45 AL6 VOTDATA34
U28 DATAA1S B24 DATAB4 B13 DATAB57 K3 DATAC46 ALS VOTDATA35
W28 DATAA16 B26 DATAB5 B12 DATABS8 H3 DATAC47 AG4 VOTDATA36
Y28 DATAA17 B27 DATAB6 BIO DATAB59 V30 DATAC48 AF4 VOTDATA37
AB28 DATAA18 B28 DATAB7 B6 DATAB60 P30 DATAC49 AD4 VOTDATA38
AD28 DATAA19 E29 DATAB8 BS DATAB61 J30 DATAC50 AB4 VOTDATA39
AF28 DATAA20 F29 DATAB9 E2 DATABÖ2 G30 DATAC5L Y4 VOTDATA40
AG28 DATAA21 K29 DATABIO F2 DATAB63 D30 DATAC52 W4 VOTDATA41
AH27 DATAA22 K29 DATAB11 C17 DATACO D25 DATAC53 U4 VOTDATA42
AH26 DATAA23 M29 DATAB12 C19 DATAC1 D23 DATAC54 R4 VOTDATA43
AH24 DATAA24 N29 DATAB13 C20 DATAC2 D18 DATAC55 N4 VOTDATA44
AH22 DATAA25 R29 DATAB14 C22 DATAC3 C15 DATAC56 M4 VOTDATA4S
AH20 DATAA26 U29 DATAB15 C24 DATAC4 C13 DATAC57 E4 I VOTDATA46
AH19 DATAA27 W29 DATAB16 C26 DATAC5 C12 DATAC58 H4 VOTDATA47
AH17 DATAA28 Y29 DATAB17 C27 DATAC6 CIO DATACS9 T30 VOTDATA48
AH15 DATAA29 AB29 DATAB18 C28 DATAC7 C6 DATAC60 T31 VOTDATA49
AHI3 DATAA30 AD29 DATAB19 E30 DATAC8 C5 DATAC61 130 VOTDATA50
AH12 DATAA31 AF29 DATAB20 F30 DATAC9 E3 DATAC62 139 VOTDATA51
AH10 DATAA32 AG29 DATAB21 H30 DATACIO F3 DATAC63 D31 VOTDATA52
AH8 DATAA33 AJ27 DATAB22 K30 DATAC11 D17 VOTDATAO B29 VOTDATA53
AH6 DATAA34 AJ26 DATAB23 M30 DATAC12 D19 VOTDATA1 C21 VOTDATA54

AH5 DATAA35 AJ24 DATAB24 N30 DATAC13 D20 VOTDATA2 B21 VOTDATA55
AG1 DATAA36 AJ22 DATAB25 R30 DATACI4 D22 VOTDATA3 DI5 VOTDATA56
AF1 DATAA37 AJ20 DATAB26 U30 DATAC15 D24 VOTDATA4 D13 VOTDATA57
AD1 DATAA38 AJ19 DATAB27 W30 DATAC16 D26 VOTDATA5 DI2 VOTDATA58
AB1 DATAA39 AJ17 DATAB28 Y30 DATAC17 D27 VOTDATA6 D10 VOTDATA59
Yl DATAA40 AJ15 DATAB29 AB30 DATACI8 D28 VOTDATA7 D6 VOTDATA60
WI DATAA41 AJ13 DATAB30 AD30 DATACI9 E31.. VOTDATA8 D5 VOTDATA61
Ul DATAA42 AJ12 DATAB31 AF30 DATAC20 P31 VOTDATA9 E4 VOTDATA62
Rl DATAA43 AJIO DATAB32 AG30 DATAC21 H31 VOTOATA10 F4 VOTDATA63
Nl DATAA44 AJ8 DATAB33 AK27 DATAC22 K31 VOTDATAll

Ml DATAA45 AJ6 DATAB34 AK26 DATAC23 M31 V0fTOATA12

KI DATAA46 AJ5 DATAB35 AK24 DATAC24 N31 VOTDATA13

HI DATAA47 AG2 DATAB36 AK22 DATAC25 R31 VOTDATA14

Figure A.4. Data Voter FPGA Pinout

79

aisssis

15355551

! ?<35I3I5?l555;35=

KEEEEEKKEKE

H IS
t

2 5 SfefeÖ&fel

85555555

«sa«ss««<;iss B»

SSSSSSSS
1115533
5S sppss

„,,iü:.::i."i
4-

sssssss
§3555155
aiiiissB

o
o-
>

Isä5ä55i §

i SI3333J5 **<<<<i<

ggfiEEEEECKEKE
21

■<< ISO 5s

4>

CO
Ü
5
O az
a.
UJ

Öü
UJ
Q
EC

SSSSSSSS
35351:!;
ajäpppjin

§1555556

EiEEEEpra

D
ftüö
i

SSSSSS'

IssJis

25SS555S

jiajjasss?;

ggEEEE'KKEEEE
s;-Koiaiibst:itn

'S/'rS^jr/-/-S'S-S-/-S-y-, H>

O o.
■SSSSSSS

s i 51
• i ;

rHl"

isSs521S I
lim EigCECiCDI
iic-i..'.i,,t._iit^ii

"sT 'W^s
5535*5}
Ipgfsg i i i

ss«:

5si55§5e

I
EfüEEEEEKKKE

Figure A.5. PROM Memory Block

80

«E-0
Q
D <
o >

5ÄZ2ggzzzz < ^
2 E tr cc EEtnrcca: O 5

i 6üö06 0000-
OT ZZzZZZZZZ
O UJZ^ZZZZZZ

< cccnScca: OCXECCC

Figure A.6. KRAM and SRAMO Segments of SRAM Memory Block

81

mm»
miiiiM.nm» m SS

MHHI

HfHHJ

wmi»«HS5» m t!

«Uflll

«HU»

mnroiiliWil ■ H

HIHHI

taft»iw—Si3s5t; IB Bi

1HKIB

tttnxnnHBHI B H

ü1
w«iy*»t»näaä3? Me 2J

Ihi öö Ö

i—CO

o >

m ZZZ22Z2ZZ « O
£! UJZZZZZZZZ ? 23
^ QLUUltULULLILUUJai £■£.

O >

Figure A.7 SRAM1 and SRAM2 Segments of SRAM Memory Block

82

OZXCj£ujQÜ0Q<
2UJZZZ2ZZZZ
SQiiiujuJUJUJUJiULU garcoimrcccccca:

Figure A.8 SRAM3 Segment of SRAM Memory Block

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

APPENDIX B. PROGRAMMABLE LOGIC DESIGN EQUATIONS

When programming the programmable devices such as PLDs and FPGAs,

equations must be written that define the signals to be generated when input signals are

applied to the devices. The PLD programming equations are based on paper design rather

than actually being compiled and simulated. However, the FPGA programming equations

were compiled and simulated using the Xilinx Foundation Series Design Suite. Section 1

contains the programming equations for PLDs and Section 2 contains the programming

equations for the Address/Control Voter FPGA.

In the following equations, a dot (.) means a logical AND operation, a plus (+)

means a logical OR operation and an exclamation mark (!) means a logical NOT

operation.

1. PLD Programming Equations

RdRdy* = CYCEND* . RdRdy* + IValidOut*

WrRdy* = CYCEND* . WrRdy* + JValidOut*

CYCEND* = !(RESET* . (RD . CNTR==7 + IEPROMCS* . RD . CNTR=10

WR . CNTR==6 + CNTR==F))

Validln* = !(RESET* . (RD . CNTR==7 + IEPROMCS* . RD . CNTR=10))

WRENA* = !(RESET* . WR . CNTR=6)

WRENB* = !(RESET* . (VOTCTRL2 + VOTCTRL1 + VOTCTRLO) . WR .

CNTR==6)

WRENC* = !(RESET* . (VOTCTRL2 + VOTCTRL1). WR . CNTR=6)

85

WREND* = .'(RESET* . (V0TCTRL2 + V0TCTRL1 . VOTCTRLO) . WR

CNTR==6)

WRENE* = !(RESET* . VOTCTRL2 . WR . CNTR=6)

WRENF* = !(RESET* . (.'VOTCTRL2 + 1VOTCTRL1 . IVOTCTRLO). WR

CNTR==6)

WRENG* = !(RESET* . (IVOTCTRL2 + JVOTCTRL1). WR . CNTR==6)

WRENH* = !(RESET* . (!VOTCTRL2 + IVOTCTRL1 + IVOTCTRLO). WR .

CNTR=6)

2. FPGA Programming Equations

RD = .'VOTCTRL7. IVOTCTRL6 . IVOTCTRL5

WR = IVOTCTRL7 . VOTCTRL6 . IVOTCTRL5

RDEN* = !(RESET* . CYCEND* . IVOTCTRL7 . IVOTCTRL6 . 1VOTCTRL5)

WRDATAEN* = RESET* . CYCEND* . VOTCTRL8 . IVOTCTRL7

JVOTCTRL6. IVOTCTRL5

86

APPENDIX C. XILINX FOUNDATION SERIES FPGA DESIGN

The FPGAs also need to be programmed just like the PLDs. However, schematic

diagrams were used to program the FPGAs instead of writing the programming code in

ABEL or Verilog because the Xilinx Foundation Series FPGA design tool offered

schematic programming of the FPGAs. The designer can enter the design in schematic

format and the tool converts it to a netlist and compiles to get the FPGA programming

code. Section 1 of this appendix presents the schematics for the Address/Control Voter

FPGA and Section 2 presents the schematics for the Data Voter FPGA.

1. Address/Control Voter FPGA

The design schematics of the Address/Control Voter FPGA are presented in the

following figures and Table C.l lists the figures and the pages they appear on.

Figure Number and Description Page

Figure C.l. Address Voter/Memory Decoder Section of Address/Control Voter

FPGA

88

Figure C.2. Control Voter Section of Address/Control Voter FPGA 89

Figure C.3. Memory Interface Section of Address/Control Voter FPGA 90

Figure C.4. 4-bit Wide Majority Voter Macro (VOTER4) 91

Figure C.5. One 30-bit Address Bus Input Macro 92

Figure C.6 Voted Address Bus Output Macro 93

Figure C.7 9-bit Wide Majority Voter Macro (VOTER9) 94

Figure C.8 9-bit System Command (Control) Bus Input Macro 95

87

Figure C.l. Address Voter/Memory Decoder Section of Address/Control Voter FPGA
88

ti

Figure C.2. Control Voter Section of Address/Control Voter FPGA

89

A«

a a

P

8 8
S

If
<v Cp[£

9

A* A«

A«

rp*

a a
I- H od
i-t- oo >>

A»

AJ

_ ou

>>>

a a
i-1-

V y u

a
do ü

cu

l-l-l—l-l- ooooo
 öd
i-(-1-1-1- ooooo

Figure C.3. Memory Interface Section of Address/Control Voter FPGA
90

m

Figure C.4. 4-bit Wide Majority Voter Macro (VOTER4)
91

CM

£2.
h-
O
Q.
Z.

vvvvvvvvvv y y V V TT

Mffl™™™^

CM « ■*■ w
eg CM CM CM
l-
3 5 •=>
Q. Q. Q. Q.
Z Z 7 7" _
IL u. IL „
riJ äf tdy \ri A

Oi

!Q<

O _j o

= * =
X W CO

-. .«. — T-loco n <o ^ ^ a) N
0- 0.0.0.0.0.0.0.0.0.0.0.

.« A A A JJ » » II ii M "
? 2 S ? ? ? ß ß 5 S 8 8 I I § =

§s§i§ilii§ll§llillilliiiglllll

Figure C.5. One 30-bit Address Bus Input Macro

92

01 Ö) o> o> O)

B. a. o. Q.
8
o. £ 2! £ _

ii ii ii ii n n ii II ii ii

88888 8 8888
 i i i i i i i

o u o
S-& -

r? ™ 2 U _j o
2 9 "*

X CM CO

AAAAAAAAAAAA

<M

Q.
■I-
D
O

Figure C.6 Voted Address Bus Output Macro

93

Figure C.7 9-bit Wide Majority Voter Macro (VOTER9)
94

o
£. <
3
Q.
O
_1
tr
O

/ / /

o ,_ w CO ■<t IT)
< < < < < <
-> 3 D 3 3 3
a. a. a. a. a. a.
o o o o ü q
_i _i _j _i _J -i
IZ n: a: DC EC DC
t- t- i- H 1- H o o o O O O

/ J5/
u. u.

\1J
u.

A A

Ü

y
\

•

o *■■ oa s 3 in CD <*• CO
m CD m m m m m
3 3 3 3 3 3 3 3 3
Q. Q. a. a. a. a. a. a. 0.
O O o (> O (> o o O
_l _J _i _J _i -i -i _J _l
QC DC oc DC DC QC DC a. DC
1- 1- H t- f- H t- ^- 1-
Ü o ü Ü Ü O O o o

/ y»/

u.

A)
U. U. u.

M} Ji/1
*/

u.

©
2. 5
3 a. o

!

a. a. a. a.

St- CM

■■ « « a. a.
o o
O Q 88 8

u> <c* r»

a. a. a. a. a.

8-8

)) ^ •

o ^ CM CO s w CO 1^ on
Ü O O O O C) O O
3 3 3 3 ■3 3 3 3 3
a. a. a. 0. a. a. a. a. a.
o o O o o O o O o
_i _j _i -1 _i _j _i -i _i
DC DC DC DC DC DC oc oc (t
h- ■(- t- y- h- H H- 1- i-
Ü Ü Ü o Ü Ü Ü o o

}
U.

J J \»/ JIJ vi/ £/ J/ ̂ i/ jg

©
CO

Ü
3 a. o

f
S 5 <

|f S
X Q ">

o.. a. a.
ii a ii
o o O
O O O

a. a. a. a.

Figure C.8 9-bit System Command (Control) Bus Input Macro

95

2. Data Voter FPGA

The design schematics of the Data Voter FPGA are presented in the following

figures and Table C.2 lists the figures and the pages they appear on.

Figure Number and Description Page

Figure C.9. Top Level Schematic of Data Voter FPGA 97

Figure C. 10. One 64-bit Data Bus Input Macro 98

Figure C. 11. 64-bit Voted Data Bus Output Macro 99

Figure C. 12. 16-bit Wide Majority Voter Macro (VOTER16) 100

96

Figure C.9. Top Level Schematic of Data Voter FPGA
97

Figure CIO. One 64-bit Data Bus Input Macro
98

Figure C.l 1. 64-bit Voted Data Bus Output Macro
99

—C -M J ' m

i

Figure C.12. 16-bit Wide Majority Voter Macro (VOTER16)
100

LIST OF REFERENCES

1. Payne, Jr., J. C, "Fault Tolerant Computing Testbed: A Tool for the Analysis of
Hardware and Software Fault Handling Techniques," Master's Thesis, Naval
Postgraduate School, Monterey, CA, December 1998.

2. Summers, David., "Implementation of a Fault Tolerant Computing Testbed: A
tool for the analysis of hardware and software fault handling techniques,"
Master's Thesis, Naval Postgraduate School, Monterey, CA, June 2000.

3. Hofheinz, Damen, "Completion and Testing of a TMR Computing Testbed and
Recommendation for a Flight-Ready Follow-On Design," Master's Thesis, Naval
Postgraduate School, Monterey, CA, December 2000.

4. Groening, S. E., and Whitehouse, K. D., "Application of Fault-Tolerant
Computing for Spacecraft Using Commercial-Off-The-Shelf Microprocessors,"
Master's Thesis, Naval Postgraduate School, Monterey, CA, June 2000.

5. National Semiconductor, Radiation Owner's Manual, National Semiconductor,
1999.

6. Weste, N. H. E. and Eshraghian, K., Principals of CMOS VLSI Design: A
Systems Perspective, 2nd Edition, Addison-Wesley, Menlo Park, CA, 1994.

7. Asenek, V., et al., "SEU Induced Errors Observed in Microprocessor Systems,"
IEEE Transactions on Nuclear Science, Vol. 45, No. 6, December 1998. pp 2876-
2883.

8. Underwood, C. I. and Oldfield, M. K., "Observed Radiation-Induced Degradation
of Commercial-Off-The-Shelf (COTS) Devices Operating in Low-Earth Orbit,"
IEEE Transactions on Nuclear Science, Vol. 45, No. 6, December 1998. pp 2737-
2744.

9. Savio, Chau. "Experience of using COTS Components for Deep Space
Missions," Proceedings, 4th IEEE International Symposium on High-Assurance
Systems Engineering, 1999.

10. Johansson, R., "Two Error-Detecting and Correcting Circuits for Space
Applications," Proceedings of Annual Symposium on Fault Tolerant Computing,
1996. pp 436-439.

11. Johnson, B.W., Design and Analysis of Fault Tolerant Digital Systems, Addison-
Wesley, New York, NY, 1989.

101

12. Integrated Device Technology, Inc., The IDT79R3071. IDT79R3081
RISController Hardware User's Manual. Revision 2. Santa Clara, CA, 1994.

13. Integrated Device Technology, Inc., The IDT79RC4630/IDT79RC4650 RISC
Processor Hardware User's Manual. Version 2.1. Santa Clara, CA, August 1998.

14. XILINX, The Programmable Logic Data Book. 1999.

102

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8275 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Herschel H. Loomis Code EC/Lm. 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Professor Alan A. Ross Code SP/Ra 2
Space Systems Academic Group
Naval Postgraduate School
Monterey, CA 93943-5110

6. Engineering and Technology Curricular Office, Code 34 1
Naval Postgraduate School
Monterey, CA 93943-5109

7. Ltjg. Huseyin Baha Eken, Turkish Navy 1
Millet Cad. Intibah Sok. Guner Ap. D: 11
42040 Konya-Turkey

8. Deniz Kuvvetleri Komutanligi 1
Bakanliklar-Ankara
Turkey

103

