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ABSTRACT 

The IEEE 802.11a high-speed wireless local area networking (WLAN) protocol 
does not specify a mechanism for dynamically altering network data rates based on 

changing link conditions. This thesis first presents a baseline software model of the 
802.1 la protocol developed using the OPNET simulation tool. The model includes both 
the medium access control (MAC) and physical (PHY) layers of the standard. Two data 

rate agility mechanisms are then proposed and analyzed using the model. An 
infrastructure WLAN implementation of the baseline model is first simulated under 

standard network conditions to verify its operational characteristics and the results are 
presented. The model is then used to simulate two data rate agility mechanisms, one 
based on the link signal-to-noise ratio (SNR) and the other based on the frame loss rate at 
the transmitting station. Each technique is simulated using an infrastructure WLAN 
consisting of a fixed access point and a mobile workstation operating with standard 
network traffic loads. The results indicate that the link SNR is a better decision criterion 
for data rate agility than the frame loss rate. The design and methodology of this analysis 
provides insight into dynamic rate agility mechanisms and the criteria that may be used in 
developing future 802.1 la-compliant hardware implementations. 
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EXECUTIVE SUMMARY 

The Institute for Electrical and Electronics Engineers (IEEE) 802.11a wireless 
local area networking (WLAN) standard presents office, campus, and home networking 
consumers with the first viable wireless alternative to wired networks that can support the 
simultaneous use of high data rate applications in a mobile, multi-user environment. The 
802.11a protocol standardizes both the medium access control (MAC) and the physical 
(PHY) layers. 802.1 la-compliant WLANs will be able to support raw data rates ranging 
from 6 to 54 Mbps using a distributed Carrier Sense Multiple Access with Collision 
Avoidance (CSMA/CA) MAC scheme in conjunction with a PHY layer based on the use 
of Orthogonal Frequency Division Multiplexing (OFDM). 

The 802.11a specification promises to deliver WLAN ranges and power levels 
commensurate with those of WLANs based on the 802.11 and 802.11b standards. Like 
the original 802.11 specification, the 802.11a addendum does not specify a mechanism 
through which a WLAN implementation should dynamically alter its data rates if the 
preset data rate is not achievable in a given link environment. The 802.11 standards 
explicitly address data rate agility insofar as they state that dynamic rate switching is 
allowed for, although specific techniques are beyond the scope of the protocol. 

This thesis first presents a model of the 802.11a protocol developed using the 
Optimum Network Performance (OPNET) network modeling and simulation tool. The 
model emulates both the MAC and PHY layers of the standard. Simulation results 
obtained using the model are presented as a measure of its validity. Two dynamic data 
rate agility mechanisms are then proposed and analyzed using the OPNET 802.11a 
model. The first implements rate agility in a WLAN based on the instantaneous link SNR 
as measured at the PHY layer of the receiving station while the second technique uses the 
frame loss rate at the MAC layer of the transmitting station to achieve dynamic data rate 
agility. The goal is to both compare dynamic data rate mechanisms that target separate 
layers of the protocol stack and present a methodology for analyzing rate agility in 
802.1 la-compliant WLANs using OPNET. 

The results obtained during simulations conducted using both mechanisms 
indicate that the link SNR is a better criterion than the packet loss rate upon which to base 
dynamic data rate agility decisions in IEEE 802.1 la-compliant WLANs. The SNR-based 
mechanism achieved a higher mean data rate over the course of the simulation and 
exhibited smoother data rate transitions with less oscillation between rates. The 
mechanism based on frame loss rates was characterized by highly variable data rates and 
a lower mean data rate. The general trends obtained using the frame loss rate-based 
mechanism indicate that the frame loss rate is a good measure of the link quality; 
however, the link SNR proved to be a far better indicator. 

xv 



The overall design and methodology of this analysis provides insight into dynamic 
rate agility mechanisms and the criteria for rate agility that may be used in developing 
future 802.1 la-compliant hardware implementations. 
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I. INTRODUCTION 

This thesis presents a wireless local area network model based on the Institute of 

Electrical and Electronics Engineers (IEEE) 802.11a protocol developed using the 

Optimum Network Performance (OPNET) simulation tool. The model incorporates 

features of the 802.1 la standard that were developed in OPNET by Dr. Sunghyun Choi of 

Philips Research Labs, and it comprehensively models both the medium access control 

(MAC) and the physical (PHY) layers of the 802.11a protocol [1]. Some simulation 

results obtained using the model are presented as a measure of its validity. 

A dynamic data rate agility mechanism was added to the baseline model to 

explore the criteria by which an 802.1 la-based wireless local area network (WLAN) 

might dynamically alter its link data rates during operation. Like the original 802.11 

specification, the 802.11a addendum does not specify a mechanism through which a 

WLAN implementation should dynamically alter its data rates if the preset data rate is not 

achievable in a given set of link conditions. The 802.11 standards explicitly address data 

rate agility insofar as they state that dynamic rate switching is allowed, although specific 

techniques are not delineated [2, 3, 4]. The rate agility mechanisms presented herein 

offer a methodology for examining and comparing several different criteria upon which a 

decision to switch data rates may be based. Specifically, rate-switching mechanisms 

based on link signal-to-noise ratios (SNRs) and on frame loss rates are examined and the 

results presented. 

A.   BACKGROUND 

Wireless networking technologies have evolved from disparate proprietary 

implementations first conceived in the late 1980s and early 1990s to a set of overlapping 

global standards. Those early wireless networking realizations were designed for a 

limited number of specific applications, such as inventory control and shipment tracking 

in a warehouse-like environment. Throughout the 1990s, as international government 

and commercial reliance on wired internetworking grew, so too did the emphasis on 

mobility and the development of wireless networking standards. Today there are a 

number of approved international standards that will allow high-speed wireless networks 

to compete effectively with their wired counterparts. The most comprehensive and well 

developed of these standards is the IEEE 802.1 la protocol. 

1 



In June of 1997 the IEEE approved the 802.11 WLAN standard [2]. The initial 
802.11 protocol was designed to provide a standard for high data rate (i.e., up to 2 Mbps) 

WLAN connectivity in any campus, office, or home environment as well as in other more 

specialized settings. The European Telecommunications Standards Institute (ETSI) 
concurrently developed the High-Performance Radio LAN (HIPERLAN) protocol, also 

designed to provide standardized high data rate WLAN systems [5]. Soon thereafter a 

number of WLAN implementations based on the IEEE 802.11 protocol were developed 
and fielded by companies like Lucent, Aironet and Bay Networks, among others. These 
WLANs eventually obtained a small but solid share of the campus, office and home 
networking market. 

The IEEE approved the 802.11b addendum to the original 802.11 specification 

that allowed for wireless networking at data rates of up to 11 Mbps a year later [3]. This 

addendum to the standard was rapidly included in commercial systems, allowing for even 

greater commercial adoption of WLAN implementations. Consumer demand for both 
mobility and high data rate multimedia applications such as video teleconferencing, 
streaming video, and voice over IP (VoJP) was growing. IEEE 802.lib-based networks 
providing (at most) 11 Mbps connectivity, although more capable than their predecessors, 
are not able to handle the strenuous traffic load imposed given the simultaneous use of 
multimedia applications in a multi-user WLAN environment. 

To support the consumer demand for mobility and low latency, high data rate 
communications, the next generation of WLAN standards has emerged. Foremost among 
these is the 802.11a addendum to the JEEE 802.11 standard, with others being the 
European HIPERLAN/2 standard and the Japanese Multimedia Mobile Access 
Communications (MMAC) protocol in the 5 GHz band [6]. The IEEE 802.11a standard 
has received the most attention; due largely in part to the fact that the only fielded WLAN 
implementations available today are based largely on the 802.11 protocol family. The 
802.11a protocol specifies operation in the 5 GHz band, utilizes orthogonal frequency 
division multiplexing (OFDM) in the PHY layer and provides for data rates ranging from 
6 to 54 Mbps [4]. These data rates are clearly capable of supporting high traffic 
applications in a mobile, multi-user WLAN environment. 

B.        OBJECTIVE 

The performance of the 802.11a protocol has not been extensively analyzed as it 
was only recently approved and there are no exiting commercial WLAN implementations 



utilizing OFDM in the PHY layer. The first goal of this thesis is to develop a model of 
the 802.11a protocol using the OPNET modeling tool that incorporates both the MAC 

and the PHY layers of the standard. The model can then be used for further research that 
specifically targets either the MAC layer or PHY layer of the protocol or concerns the 
performance of 802.11a as a whole. There are a number of possible approaches to 
modeling 802.11a in OPNET, especially at the PHY layer. The model outlined herein 
presents one technique for modeling 802.1 la. 

The second objective of this thesis is to utilize the OPNET 802.11a model to 
analyze two dynamic data rate agility mechanisms. The two mechanisms are first 

presented and then their performance is compared using the model. The goals here are 

twofold: to present the performance analysis results obtained using each rate agility 

mechanism and to present a new research methodology for analyzing hypothesized data 
rate agility mechanisms. The use of the OPNET simulation tool in conjunction with the 
802.1 la model to study dynamic rate agility mechanisms will provide insight into the rate 
agility criteria that may be used when developing 802.1 la-compliant WLANs 

C.       RELATED WORK 

There are a number of ongoing efforts to develop models of the 802.1 la protocol 
using OPNET. One such research project is underway at Philips Research Labs in New 
York. A number of MAC layer features of the model they are developing are included in 
the model presented in this thesis [1 j. Moreover, throughout the course of the design and 
construction of the model outlined here, the author corresponded with a number of 
researchers also involved with the development of OPNET 802.11a protocol models. 
Active OPNET 802.11a modeling efforts are underway in universities and companies in 
Mexico, Japan, and the Netherlands to name a few. With the exception of the Philips 
Research Labs 802.11a MAC layer model, none of the models the author has been 

exposed to have yet been completed or used in active simulations. 
The use of OPNET to simulate and analyze dynamic data rate agility mechanisms 

in 802.1 la-compliant WLANs is a new research methodology. The research literature on 
rate agility mechanisms in standardized WLANs is extremely sparse, while 
implementation-specific details concerning rate agility techniques utilized in fielded 
802.11- and 802.1 lb-compliant WLANs are proprietary and are unavailable to the author. 
Hardware vendors currently developing 802.1 la-compliant products are still analyzing 
rate agility mechanisms and addressing the trade-offs associated with implementing rate 



agility at the MAC and PHY layers, but again, their work is proprietary and is 
unavailable. Since the 802.11a standard does not specify a rate agility mechanism, any 
agility techniques developed by WLAN vendors will be proprietary in nature. 
Accordingly, the research methodology presented herein is a new approach to the 

802.1 la-compliant WLAN engineering issues associated with determining the optimum 
criteria for dynamic rate agility. 

D.       THESIS ORGANIZATION 

This chapter has provided background information concerning the 802.11a 

protocol and its role in wireless networking. The objectives of this thesis were also 

presented along with a survey of current efforts in modeling 802.11a and the use of an 

802.11a model to analyze dynamic data rate agility. In the next chapter, the important 

elements of the 802.1 la protocol are outlined, to include both the MAC and PHY layers. 
The specifics of the baseline 802.11a model are then presented in Chapter IE within the 
framework of the OPNET modeling and simulation tool. Simulation results obtained 
using the baseline model are provided as a measure of the model's validity. Chapter TV 
presents the data rate agility mechanisms added to the baseline 802.1 la model along with 
a comparison of their rate switching criteria. Conclusions and recommendations are then 
included in the final chapter. Appendix A lists the code of the wlan_mac_lla OPNET 

process model for the 802.11a baseline model MAC, Appendices B and C outline the 

code changes required to implement the two data rate agility mechanisms, and 
Appendices D and E provide the two new OPNET pipeline stages required to support the 
802.1 la models. 



II. THE IEEE 802.11a PROTOCOL 

The 802.11a addendum to the original 802.11 standard presents office, campus, 

and home networking consumers with the first viable wireless alternative to wired 

networks that can support the simultaneous use of high data rate applications in a multi- 

user environment. 802.1 la shares a number of features with the original 802.11 standard; 
however, its PHY layer is completely different from that of both 802.11 and 802.1 lb and 
is able to deliver data rates of up to 54 Mbps. The 802.1 la standard therefore allows for 
robust, high data rate wireless connectivity in a variety of network environments. 

The standardization scope of the 802.11 protocol family (i.e., the original 802.11 

standard and the 802.11a and 802.11b addendums) includes both a portion of the Data 
Link Layer and the Physical Layer of the Open System InterConnectivity (OSI) layered 

model and the Network Access Layer of the TCP/IP protocol suite's layered model (see 
Figure 1). The 802.11 protocol family therefore standardizes the MAC and PHY layers 
of the WLAN. With very minor differences the MAC layer of each 802.11 specification 
is essentially identical. Furthermore, the PHY layer of the original 802.11 standard and 
the 802.11b addendum are, with a few exceptions, very similar in that each uses spread 
spectrum transmission techniques. 

OSI Model 

Application 

Presentation 

Session TCP/IP Model 
Transport 

Layers Specified Application Network 
Transport 

Data Link 
HI oux.ua 

MAC 

^ 

Internet 

Physical PHY Network Access 

Figure 1. 802.1 la and the OSI and TCP/IP Models (After Refs. [7, 8]). 



The 802.11a standard, however, uses a completely different PHY layer encoding 
scheme that operates in a higher frequency band. 802.1 la was designed from the start to 
operate in the 5 GHZ band vice the 2.4 GHz band like 802.11 and 802.11b. This 

followed the Federal Communications Commission's (FCC's) 1997 decision to allocate 
300 MHz of radio frequency (RF) spectrum for unlicensed operation in the new 5 GHz 
Unlicensed National Information Infrastructure (UNIT) band [6]. WLAN 

implementations currently operating in the 2.4 GHz band have to compete for the same 

RF spectrum with cordless phones, microwaves, and other WLAN devices while the 

newly available 5 GHz band offers a relatively interference-free spectrum [9]. To take 

advantage of this higher frequency band other alterations to the PHY layer were required 

to offset the decreases in range and higher power requirements that would have 

accompanied the frequency band change alone. At the PHY layer 802.11a uses an 

adaptation of OFDM for encoding and transmission called coded OFDM (COFDM). 

COFDM is a frequency division multiplexing (FDM) multi-carrier communications 
scheme that includes the appplication of convolutional coding to achieve higher data 
throughput rates. COFDM will be covered in greater detail in the PHY layer subsection 
of this chapter. Before taking a closer look at the specification itself, 802. Ha's role 
within the framework of an emerging group of new global WLAN standards will first be 
addressed. 

A.       NEXT GENERATION WLAN PROTOCOLS 

The IEEE 802.11a protocol is only one of a number of global WLAN standards 
that have been developed to support mobile, high data rate wireless networking. As 

discussed in Chapter I, the first wireless networks were proprietary implementations 
designed to operate as stand-alone systems. The 802.11 standard was the first to codify a 
set of guidelines within which a WLAN should be designed if the vendor sought 
interoperability with other WLAN systems. At the same time, the ETSI was developing 
the HIPERLAN standard, designed for operation in the 5 GHz band [5J. In the years 
following the release of the 802.11 standard, every fielded commercial implementation 
(both in the U.S. and in Eurpoe) was based on the 802.11 specification primarily because 
802.11 compliant systems achieved a foothold in the global marketplace before the final 
HIPERLAN standard was ever released. In addition, the 2.4 GHz industrial, scientific, 
and medical (ISM) RF band within which 802.11 (and 802.11b) WLANs operate is 



readily available internationally, so consumers could purchase and field 802.11 WLANs 
without any serious regulatory concerns. 

Consumer demand for a combination of mobility and multimedia applications in 
conjunction with the FCC's ruling drove the emergence of the IEEE 802.11a working 
group. The group rapidly adopted OFDM as the standard's underlying PHY layer 
technology as OFDM could clearly provide the requisite data rates. The ETSI's 

Broadband Radio Access Networks (BRAN) HTPERLAN working group was 

simultaneously developing HIPERLAN/2, the 5 GHz follow on to the HEPERLAN 

standard. Soon after OFDM was chosen by the IEEE 802.11a working group ETSI 
BRAN also chose OFDM as the PHY layer technology for HIPERLAN/2 [10]. Shortly 
thereafter, the Japanese also adopted OFDM for their 5 GHz MMAC standard. 
Essentially these standards bodies collaborated to create, to some degree, a global WLAN 
PHY layer standard. 

Despite their similarities, there are still a number of differences between the 
standards below the surface. The salient features of the three international 5 GHz WLAN 
standards are provided in Table 1. Their data rates vary, ranging from 36 Mbps (MMAC) 
to 54 Mbps (802.11a and HIPERLAN/2). This range of data rates is ample enough to 
support even the most demanding multimedia applications, such as High Definition 
Television (HDTV), which requires support for at least 20 Mbps. Other multimedia 
applications that are supported by 802.11a, HIPERLAN/2 and MMAC and their 
associated traffic loads are shown in Table 2. At the PHY layer, the specific RF bands 
and power requirements in the 5 GHz range differ due to varying international regulatory 
restrictions and this, in turn, affects channelization and data rates. HIPERLAN/2 also 
utilizes a connection-oriented MAC that is essentially a wireless asynchronous transfer 
mode (WATM) call set-up scheme that promises interoperability with IP-based networks 
[11]. In short, HIPERLAN/2 has a redesigned and very complex MAC layer, one that has 
never been commercially implemented. 



Attribute 
Standard 

802.11a HIPERLAN/2 MMAC 
Location United States Europe Japan 

Governing 
Body 

IEEE ETSI Ministry of Post and 
Telecommunications 

Frequency 
Bands 

5.15-5.25 GHz 
5.25 - 5.35 GHz 

5.725 - 5.825 GHz 

5.15-5.35 GHz 
5.470-5.725 GHz 

5.15-5.35 GHz 

Supported 
Data Rates 

6,9,12,18,24,36, 
48, 54 Mbps 

6,9,12,18,27,36, 
54 Mbps 

6,12,27, 36 Mbps 

PHY Layer OFDM OFDM OFDM 
MAC Layer CSMA/CA or 

PCF 
TDMA/TDD with 

QoS Support 
CSMA/CA or 
TDMA/TDD 

Table 1. International 5 GHz WLAN Standards. 

Application 

Streaming Video 

Broadcast Quality Video 

HDTV 

Streaming Audio 

Studio Quality Sound 

Standard Voice 

DSL 

„Techniq ue 

MPEG-4 

MPEG-2 

MPEG-2 

MPEG Layer 3 (MP3) 

MPEG with FFT 

G.711PCM 

ADSL 

Required Data Rate 

0.005-10 Mbps 

2-4 Mbps 

25 - 34 Mbps 

0.032-0.32 Mbps 

0.384 Mbps 

0.064 Mbps 

1.5-9 Mbps 

Table 2. Multimedia Applications and Associated Data Rates (After Ref. [12]). 

The 802.1 la specification is the only one of the three for which a basic hardware 

implementation has been developed commercially. In September of 2000 Radiata 

Communications, Inc. announced that it had developed the first commercial 

implementation of the 802.11a protocol in the form of a chipset that includes both a 

modem chip and a transceiver chip [13]. Atheros Communications, Inc. has also released 

a similar chipset to implement 802.11a along with a proprietary protocol allowing for a 

72 Mbps data rate [14]. Both chipsets are constructed using standard-process CMOS and 
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each is expected to retail for approximately $35.00. No OEM vendors have yet fielded a 

WLAN that implements either of these 802.1 la-compliant chipsets. 
The 802.1 la protocol is clearly well positioned to succeed in the near-term as the 

predominant high data rate WLAN standard, not only because of its status on the market 
today but also because it shares the entirety of its MAC layer with already fielded 802.11- 
compliant products. As a result, there is a greater degree of familiarity with the 802.11 
protocol family MAC and transitioning to new 802.1 la-based products will require less 
cost and instructional overhead. The 802.11a MAC will be outlined in the next 
subsection and the PHY layer will be described in the subsequent subsection. 

B.        THE 802.11A MAC LAYER 

The WLAN MAC layer is essentially identical across each member of the 802.11 
protocol family. The 802.1 la MAC will be addressed here to the extent that it applies to 
the model presented in this thesis. Accordingly, the major tenants of the 802.11a MAC 
will be covered; however, some minor details will be omitted for the sake of brevity. The 
802.11 standard itself and references [15] and [16] are excellent sources of information 
on the 802.11 family MAC layer. The primary difference between the members of the 
802.11 family of MACs is obviously the set of supported data rates and mandatory rates, 
but the rules governing the usage of those rates remain essentially the same. The 802.1 la 
protocol allows for data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbps. Of those, the 6, 
12, and 24 Mbps speeds comprise the mandatory rate set, meaning that every 802.1 la- 
compliant WLAN implementation must, at a minimum, support both transmission and 
reception at those data rates. Note that both the Radiata, Inc. and Atheros, Inc. chipsets 

support each of the delineated 802.1 la data rates [13,14]. 
In general, the groups of terminals that comprise a single 802.11 WLAN segment 

are referred to as a basic service set (BSS). The 802.11 MAC is designed to operate in 
one of two general network architectures: the infrastructure BSS or the independent BSS. 
An independent BSS is a WLAN that consists of mobile peer stations (STAs) that operate 
in an ad-hoc manner without any external connectivity. The infrastructure BSS is one in 
which the mobile STAs all communicate through a single fixed access point (AP) that is 
wired to an external network. Figure 2 illustrates the differences between the two. The 
vast majority of fielded 802.11 and 802.11b implementations are infrastructure BSSs 
since the goal in the home, office, or campus environment is often to use the WLAN to 
allow for mobility while bridging to a wired external network.  The model presented in 



Chapter m is that of an 802.11a infrastructure WLAN. Within a BSS, the 802.11 

protocol standardizes both the manner in which a wireless STA joins, or associates with, 

the BSS and the authentication and encryption procedures used to maintain security 

within the WLAN. Neither feature is modeled here; therefore the details of those 
processes will not be discussed. 

Independent BSS Infrastructure BSS 

Figure 2. Infrastructure and Independent WLAN BSSs. 

The primary function of the MAC layer is, as its name suggests, the control of 
access to the RF medium by each node in a BSS. The 802.11 protocol family allows for 
two access schemes: the distributed coordination function (DCF) and the point 
coordination function (PCF). The PCF is a medium reservation scheme applied only to 
infrastructure BSSs, as it consists of a polling cycle whereby the AP polls each mobile 
member of the BSS to both send and receive traffic in a time slot reserved by the AP. 
The PCF is best employed in a WLAN with few users and when each user is dealing with 
data that requires a very low latency. Accordingly, the PCF is rarely used in practice, and 
(per the standard) is an optional medium access technique in 802.11-compliant WLANs. 

All 802.11-compliant WLANs must be able to employ the DCF access scheme 
where control of access to the RF medium is distributed amongst each STA in the BSS. 
STAs implement the DCF using the Carrier Sense Multiple Access with Collision 
Avoidance (CSMA/CA) algorithm. This access mechanism is similar to the one 
employed in conventional 802.3 Ethernet LANs (e.g., CSMA with collision detection), 
however collision detection is impossible in a WLAN environment since wireless nodes 
cannot simultaneously transmit and sense the medium.   As a result, 802.11 STAs use 
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collision avoidance techniques to minimize collisions on the medium and the resulting 
cost in terms of network overhead. This collision avoidance mechanism is realized 

through the use of physical carrier sensing at each STA. Each STA physically senses the 

RF medium to determine if it is busy (i.e., if another STA is transmitting) or idle. If idle, 
the STA may transmit, but if the medium is busy the station waits until the medium 

becomes idle and then "backs off," or waits, a random amount of time before beginning 
transmission. Once the frame has been sent and if no collisions occurred during 

transmission, the receiving STA sends an acknowledgement (ACK) frame to the 

transmitting STA to confirm that the data was received successfully. 
Physical carrier sensing, random back off and the use of ACK frames combine to 

reduce the delay and overhead associated with multi-user communications on a shared 
medium. For the process to function optimally, each STA in the BSS must be within 
communications range of each other and not just the AP. If mobile STAs are out of range 
of each other but each within range of the AP, then the physical carrier sensing 
mechanism will not be effective in avoiding collisions at the AP's receiver and the 
WLAN's performance will suffer as a result. This is commonly referred to as the 
"Hidden Node Problem," and the 802.11 MAC has included an additional, optional 

technique to address it using a virtual carrier sensing mechanism. 
Virtual carrier sensing enables a STA to reserve the RF medium (BSS-wide) for a 

specific amount of time so as to prevent other STAs that may be "hidden" from 
transmitting simultaneously. When this mechanism is implemented a STA wishing to 
transmit sends a Request To Send (RTS) frame to the AP asking for permission to 
transmit (i.e., reserve the medium) for a given amount of time, as determined by the 
amount of data the STA has to send. If the medium is free the AP responds with a Clear 
To Send (CTS) frame, which serves to inform the requesting STA that it may transmit. 
When responding with a CTS, the AP includes the duration of the impending 
transmission within the body of the CTS frame so that all STAs in the BSS will be 
exposed to the length of time that the medium will be busy. When a non-transmitting 
STA receives the CTS frame from the AP it sets a timer, called the Network Allocation 
Vector (NAV), that tracks the length of time that the medium is expected to be busy. A 
STA's NAV therefore, based on the observation of a RTS/CTS exchange, provides the 

virtual carrier sensing capability. 
The RTS/CTS functionality has the potential to either increase or decrease the 

overall performance of a WLAN. The trade-off is between the overhead associated with 
the RTS/CTS exchange and the performance degradation due to hidden node collisions 
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when RTS/CTS is disabled. The sizes of the data frames that are transmitted by the STAs 

tend to be the deciding factor in terms of efficiency. RTS/CTS benefits performance 

when the data frames are larger and the likelihood of a collision on the medium is 

increased. When the frames are small, the decreased chance of a collision outweighs the 

benefits of employing RTS/CTS. Accordingly, a user-defined frame length threshold is 

specified for each WLAN above which the RTS/CTS mechanism is enabled. WLAN 

performance can also be enhanced through the use of an optional frame fragmentation 

mechanism. Longer frames tend to have higher error rates therefore the transmission of 

long frames increases both the number of required retransmissions and the amount of data 

that is dropped. To combat this inefficiency the 802.11 standards specify a mechanism 

for fragmenting frames when their length is above a user-defined threshold. When a 

frame is fragmented each segment is transmitted as if it were a separate frame, while the 

fragments are identified at the destination using various fields in the packet header. 

For both the CSMA/CA and RTS/CTS mechanisms to function properly, timing is 

obviously very important. Proper timing is accomplished through the use of four 

different interframe spaces (TFSs) and the slot time, defined below in Table 3 and 

illustrated in Figure 3. Note the slot time's importance in detenriining the back off period 

used by each station during the contention window, or the window during which each 

station vies for use of the RF medium. The EFSs and the slot time are selected based on 

the PHY layer characteristics, so the values shown in Table 3 are particular to the 802.1 la 

protocol. A typical 802.11 WLAN MAC-level transmission scenario is depicted in 

Figure 4, where the timing relationships among the transmitting, receiving, and other BSS 
STAs are clearly shown. 

12 



Timing Parameter Value Description 

SIFS 16 fxs Short IFS. The time required for a transceiver to 
alternate between transmit and receive modes. 
Used with ACK and CTS frames. 

Minimum CW 15 Minimum Contention Window Size. 
Maximum CW 1023 Maximum Contention Window Size. 

Slot Time 9 ns Used to determine the random back off time, given 
by: Backoff- Random x Slot Time where the 
random number is from the contention window 
interval. 

DIFS 34 ns DCF IFS. Used in transmitting data and 
management frames. 

EIFS 94 [is Extended IFS. Used when a frame is received with 
an incorrect FCS field. 

Table 3. 802.1 la IFS and Slot Time Values and Definitions. 

Immedela access when medium 
is free >= DIFS 

DIFS 

DIFS 

PIFS 

SIFS 

Defer Access 

Contention Window 

TTTT——  
BackoffWindow 
i..i 1.1. 

Next Frame 

/Slot time 

Figure 3. Timing Relationships in the 802.11 Standards (From Ref. [2]). 
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Figure 4. Timing in a Data Transmission Scenario (From Ref. [2]). 

To allow for the proper operation of a WLAN BSS the 802.11 MAC delineates 

the exchange of three basic frame types: data frames, control frames, and management 

frames. Data frames are used to convey user data between the WLAN nodes, 

management frames are used to allocate and report on network resources (e.g. 

authentication/deauthentication, association/disassociation, probing, and beaconing), and 

control frames are utilized to control access to the wireless medium (e.g. RTS, CTS, and 

ACK frames). The medium access process and data delivery are at the core of the model 

presented here, therefore management frames and their roles will not be addressed. 

Each 802.11 MAC layer frame, or MAC protocol data unit (MPDU), consists of a 

MAC header, a frame body, and a MAC trailer, which is essentially the frame check 

sequence (FCS) used in detecting bit errors in the frame. The basic frame format is 

shown in Figure 5. The contents of the "Frame Body" and "Frame Control" fields 

differentiate data, control, and management frames. Data frames will obviously have user 

data in the "Frame Body" field and are therefore variable in length. ACK, RTS, and CTS 

frames have specifically delineated fields in the frame body and are of constant length. It 

is important to note that the frame format and transmission speed within the BSS are 

closely related. Per the specification, data frames may be sent at any of the rates 

supported by the standard, while control frames must be transmitted at one of the 

mandatory data rates to ensure seamless communication between possibly disparate 

802.1 la implementations. 
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Octets: 2              2             6             6             6             2             6         0-2312         * 

Frame 
Control 

Duratton/ 
tt) 

Address 1 Addnn2 Addrea»3 Sequence 
(«OflUQI 

AddTMs4 
Frame 
Body FCS 

MACHeader 

Figure 5. The 802.1 la MPDU (From Ref. [2]). 

In the preceding paragraphs the key elements of the 802.1 la MAC layer have been 

summarized, and each will play a role in the description of the 802.11a model discussed 

in the remainder of this thesis. The data rates supported by the 802.11a standard are 

clearly much higher than those of the original 802.11 specification and the 802.11b 

addendum. But, the 802.11 MAC was designed to be independent of the PHY layer so 

with some minor differences, the 802.11a mechanisms for access to the RF medium are 

essentially the same as in prior implementations. In short, the consumer is benefiting 

from a nearly five-fold increase in data rate with very little change in the MAC layer. 

C. THE 802.11A PHYSICAL LAYER 

The IEEE 802.11a standard calls for the use of COFDM in the PHY layer to 

realize the full 6-54 Mbps range of data rates. OFDM is a multicarrier communications 

scheme in which a single high-rate data stream is split into lower-rate data streams that 

are subsequently transmitted in parallel over a number of subcarriers. The subcarriers 

overlap and the inter-carrier spacing are chosen such that all the subcarriers are 

orthogonal to each other. OFDM is not a new technology; it has been used in digital 

audio broadcasting (DAB) and digital video broadcasting (DVB) since the 1970's [6]. 

However, it has only recently been adopted for use in high data rate wireless packet-based 

communications. OFDM was selected for use in the 802.11a standard based on its 

mitigation of many of the difficulties associated with wireless communications in the 5 

GHz band such as multipath fading and transmission power level restrictions [17]. The 

802.11 and 802.1 lb standards utilize spread spectrum communications in the PHY layer, 

but spread spectrum encoding at 5 GHz with low power levels would not provide the 

requisite operational range in office, campus or home environments (due to the inverse 

proportionality of frequency and distance). OFDM offers high-rate data transmission 

with a minimal increase in the complexity of the PHY layer implementation. 

The 802.1 la standard specifies a channel spacing of 20 MHz with a 16.56 MHz 3- 

dB transmission bandwidth per channel. The specified channelization for 802.1 la (in the 
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United States) in the 5 GHz UNII bands is shown in Table 4. Each UNII band has a 

corresponding maximum output power level per FCC regulations (see Table 5) 

suggesting use of the lower band in shorter-range applications (i.e., the home WLAN 
market), use of the middle band in office-like environments, and use of the upper band in 

longer-range applications (i.e. cross-campus WLAN bridging and warehouse settings). 
The power levels are given assuming full use of the allocated bandwidth along with the 

levels in mW/MHz if only a portion of the bandwidth is used. Within a channel, each 

OFDM transmission consists of 52 separate subcarriers, 48 of which are used to transmit 
data while the other four are used as pilot signals for hardware synchronicity. Each 
subcarrier is spaced 312.5 kHz from adjacent subcarriers and each is modulated 

independently. Binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 
and both 16- and 64-quadrature amplitude modulation (QAM) can each be used to 
modulate the subcarriers in conjunction with specific COFDM coding rates to achieve 
each of the supported 802.1 la data rates. 

Band (GHz) Channel Number Center Frequency (MHz) 

UNII lower band 
(5.15-5.25) 

36 
40 
44 
48 

5180 
5200 
5220 
5240 

UNII middle band 
(5.25-5.35) 

52 
56 
60 
64 

5260 
5280 
5300 
5320 

UNII upper band 
(5.725 - 5.825) 

149 
153 
157 
161 

5745 
5765 
5785 
5805 

Table 4. Channelization in the 802.1 la Standard (From Ref. [4]). 
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Frequency Band (GHz) Maximum Output Power (mW) 
[with up to 6 dBi antenna gain] 

5.15-5.25 40(or2.5mW/MHz) 
5.25 - 5.35 200 (or 12.5 mW/MHz) 

5.725 - 5.825 800 (or 50 mW/MHz) 

Table 5. 802.1 la Maximum Output Power Levels (From Ref. [4]). 

The IEEE 802.11a standard specifies the use of COFDM with convolutional 

forward-error correction (FEC) coding. FEC coding allows for the correction of errors 
found in the weakest subcarriers that are adversely affected in the multipath fading 

channels characteristic of a wireless communications link. 802.11a specifies the use of 
several coding rates in conjunction with the modulation schemes listed above: 1/2, 2/3, 
and 3/4. The modulation scheme and coding rate combinations are shown in Table 6 
along with their corresponding data rates. The shift register size, or constraint length, for 
the convolutional coding computations in the 802.1 la standard is set at seven [4]. 

Data Rate 

(Mbps) 

Subcarrier 

modulation 

Coding 

Rate (R) 

Coded bits per 

subcarrier 

Coded bits per 

OFDM symbol 

Data bits per 

OFDM symbol 

6 BPSK 1/2 1 48 24 

9 BPSK 3/4 1 48 36 

12 QPSK 1/2 2 96 48 

18 QPSK 3/4 2 96 72 

24 16-QAM 1/2 4 192 96 

36 16-QAM 3/4 4 192 144 

48 64-QAM 2/3 6 288 192 

54 64-QAM 3/4 6 288 216 

Table 6. Coding and Modulation in the 802.1 la Standard (From Ref. [4]). 

COFDM also serves to mitigate another adverse feature of wireless multipath 
fading channels: intersymbol interference (ISI) caused by the multipath delay spread. 
802.11a utilizes a high symbol rate (250 kilosymbols per second) to achieve higher data 
rates, therefore a high degree of ISI due to multipath delays could obviously impact 
performance. Typical maximum multipath delay spreads in a WLAN environment range 
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In summary, COFDM was chosen as the 802.1 la PHY layer technology based on 
its ability to counter the negative effects of low power, high data rate wireless packet 
transmission in a multipath fading environment. The use of orthogonal subcarriers allows 
utilization of the allotted bandwidth through conventional modulation techniques when 

applied with convolutional FEC coding. ISI is greatly reduced through the use of an 800 

ns guard time prefix while ICI is mmirnized by using a cyclic extension of the OFDM 
symbol during that guard interval. The MAC and PHY layer characteristics introduced in 
this chapter will be applied in Chapter HI where the 802.11a baseline model is detailed. 
The timing and medium contention schemes introduced here are features of the model as 
are the PHY layer dependent characteristics, like the SIFS and Slot time. The PHY layer 
is modeled using data rate-dependent COFDM channels within the framework of the 
OPNET transmission scheme. The 802.11a baseline model and the OPNET modeling 

and simulation tool are both discussed in Chapter HI. 
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III. IEEE 802.11A PROTOCOL MODEL 

The IEEE 802.1 la WLAN model presented here was constructed using the 

OPNET network modeling and simulation tool. The model includes both the MAC and 

PHY layers and incorporates features adapted from the 802.1 la OPNET model created by 

Dr. Sunghyun Choi of Philips Reasearch Labs [1]. OPNET was chosen as the software 

environment for this model based on its ability to replicate the preponderance of 802.1 la 

features, excepting some PHY layer characteristics, with a high degree of design control. 

OPNET is geared more toward exploring network-wide design issues and conducting 

research at the MAC layer and above (i.e. IP, TCP, UDP) than for examining the physical 

behavior of wireless links. This model does, however, incorporate the essential 802.1 la 

PHY characteristics. Other modeling and simulation tools used for WLAN research 

include MATLAB and NS2. 

A.       OPNET AND THE 802.11 STANDARD MODEL 

The IEEE 802.11a baseline model was created using OPNET Version 7.0B with 

software patch level 11 on a Windows NT 4.0 platform. The OPNET simulation tool is 

capable of modeling the majority of modern networking protocols and standards. Within 

the OPNET interface environment networks are modeled in a layered fashion, not unlike 

the actual protocols themselves. The highest level of the modeling framework is the 

network domain, where the overall topology of the network is defined [18]. The network 

components (e.g., STA, AP, server, router) are referred to as node models, each of which 

is further subdivided into node objects. These node objects represent the functions that 

take place within a given node model (e.g., MAC, TCP, IP encapsulation). A node object 

typically consists of a process model, or state transition diagram (STD). When a state is 

entered or exited the underlying model functions and OPNET-specific functions (called 

kernel procedures) of a node object are called from the enter executives or exit executives 

of the state. These executives essentially dictate the operation of the STD and are written 

in the OPNET-specific Proto-C language, as are the underlying functions and kernel 

procedures. Figure 7 depicts each of the network domain levels. Most, but not all node 

objects consist of process models. For example, the WLAN transmitters and receivers 

used here can only be in a single state: either transmitting or receiving, respectively. The 

attributes of these node objects are therefore specified via a graphical user interface. 

21 



/■* Read Che argmtsnti to ©m CREATE_PCRT C 
op.1'o_ac;r_gei C»ei_pw, ■'It^n_'ndex■', wtn-ui ndex); 
op_ict_«;r_get [1c1_ptr, " 1 ocal jo>-t", fclocal_oortj; 

Process model 
rip^udp_y3 

Figure 7. OPNET Design Environment (From Ref. [19]). 

The simulation of frame transmission between wireless node models in the 

OPNET network domain, based on the attributes of the transmitter and receiver, is 

accomplished by way of a transmission pipeline. The pipeline is broken down into a 

series of pipeline stages, each of which takes the form of a C++ executable file that is 

designed to emulate a transmission-specific task. The pairing of a wireless transmitter 

with a receiver, the calculation of the path loss, and the determination of the link bit error 

rate (BER) are all examples of pipeline stage functions. These stages are invoked when a 

frame is transmitted by a WLAN transmitter on a channel specified by the MAC. Unlike 

actual WLAN systems, a single OPNET channel is associated with a particular data rate. 

The transmission/reception channel is identified to the transmitter/receiver from the MAC 

by a series of packet streams. In other words, the passing of a frame from the MAC layer 

to the PHY layer is modeled by a series of separate data rate-dependent packet streams. 

Packet is a generic term used to refer to the vehicle for data transmission within an 

OPNET model. The OPNET software package contains a variety of packet formats. The 

actual WLAN frames in the 802.11a model are emulated by a set of packet formats. 

OPNET allows for customized packet formats that include fields that accurately represent 

an actual frame format as well as "null" data fields. These "null" packet fields are 

understood by OPNET to not contain any actual simulated data, but rather can be used by 

the simulation kernel to pass information between the MAC process model and the 

transmission pipeline stages. 
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OPNET's software package includes a number of standard models that represent 
common networking protocols, one of which is a basic 802.11 WLAN model that 

incorporates some features of the 802.11b addendum. The OPNET standard model 
package does not include a model of the 802.11a protocol because the specification was 
only recently approved. The 802.11 WLAN model standard model served as the 

foundation for the 802.11a model along with a number of features adapted from the 
Philips Reasearch Labs 802.11a model [1]. The 802.11 standard model includes node 

models of wireless STAs (fixed and mobile), APs, and servers. Each node model 

includes a MAC process model (called wlanjnac), a transmitter object and a receiver 
object. These three objects, accompanied by the wireless pipeline stages, comprise the 
MAC and PHY layers. The wlanjnac process model is the heart of the 802.11 MAC 

model, as it contains all of the Proto-C code and functions representative of the rules that 
govern the possible states in the medium contention process. The 802.11 wlanjnac 
supports the 1, 2, 5.5 and 11 Mbps data rates and incorporates the other features of the 
802.11 MAC discussed in Chapter II with the exception of the optional PCF polling 

scheme. 
The 802.11 standard model PHY layer is represented by the transmitter object, 

receiver object, and the wireless pipeline stages. There are a total of 14 wireless pipeline 
stages, four of which were developed specifically for the 802.11 WLAN model. Those 
four stages concern the determination of eligible WLAN receivers for a BSS, the 
matching of receiver and transmitter channels, and the calculation of the propagation 
delay and received signal power. Each WLAN transmitter/receiver has four packet 
streams from/to the wlanjnac process model, one for each 802.1 lb-supported data rate. 

The 802.11 standard model proved to be a good foundation for the 802.1 la model 
when used in conjunction with the MAC layer features of the Philips Research Labs 
model. The PHY layer required the greatest number of alterations to develop a 
comprehensive representation of the 802.11a standard, as will be seen in the following 
sections where the 802.1 la model is presented in detail. 

B.        THE 802.11A BASELINE MODEL 

The IEEE 802.1 la model was constructed by altering the OPNET 802.11 standard 
WLAN model and incorporating a number of features from the Philips Research Labs 
802.1 la OPNET model. The architecture modeled is that of an infrastructure BSS with a 
single fixed AP and a variable number of mobile STAs.   The infrastructure BSS was 
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chosen vice the independent BSS as it will likely be the configuration of choice in home, 

office, or campus environments. The 802.1 la MAC and PHY layers are identical in both 

the AP and the STA node models with the exception of several user defined attributes 

that will be covered in greater detail later. Layers above the MAC in the node models are 

somewhat different, since the AP has to interface with a wired external network. Figure 8 

depicts an 802.11a WLAN model with a single AP and ten mobile STAs in the OPNET 

network domain. 

Figure 8. An 802.1 la WLAN in OPNET. 

Each 802.1 la STA node model is called wlan_wkstn_adv_lla while the AP node 

model is called wlan_ethernet_router_adv_lla. These two node models are used in 

tandem to create an 802.11a infrastructure WLAN within the OPNET design 

environment. The node object composition of wlan_wkstn_adv_l la is shown in Figure 9 

while that of the wlan_ethernet_router_adv_lla is depicted in Figure 10. Both contain 

higher layer node objects representing common protocols like tcp, udp, ip, ip_encap, and 

arp. The wlan _ethernet_router_adv_l la has two interfaces, one for a wired Ethernet 

network and another for the WLAN. The wlan_mac_lla node object represents the 

802.11a WLAN MAC in each node model, while the wlanjportjx and wlan_port_rx 

objects represent the components of the WLAN transceiver.    The wlan_mac_l 1a, 
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wlan_port_tx, and wlan_port_rx node objects and their interactions are the heart of the 

OPNET 802.1 la baseline model. 

application cpu 
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Figure 9. The 802.1 la Model STA Node Object. 
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Figure 10. The 802.1 la Model AP Node Object. 

1. The 802.11a Model MAC Layer 

The wlan_mac_lla node model and its accompanying process model, adapted 

from the 802.11 wlanjnac process model, are used to represent the 802.1 la MAC. The 

states and transitions of the wlanjnac_1la process model are the same as those of 

wlanjnac, with the 802.11a functionality realized through modifications to the 

underlying Proto-C code and function calls. The wlanjnac_lla process model is shown 

in Figure 11. Two new functions were added and changes were made to four of the 13 

functions already defined in the model code. The Proto-C code make-up of 

wlanjnac_lla is provided in its entirety in Appendix A. 
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Figure 11. The wlan_mac_lla Process Model. 

The behavior of wlan_mac_lla is governed by a number of user-defined 

parameters, lumped under the Wireless LAN Parameters attribute and selected via an 

OPNET graphical user interface. The critical parameters are listed in Table 7. Some 

parameters may be assigned any numerical value, but the values shown are those 

specified by the 802.11a standard and these must be selected for the model to function 

correctly. The OFDM Physical Characteristics attribute ensures that the correct values 

for the SIFS time, slot time, and minimum and maximum contention window size (as 

specified in Chapter II) are defined when the simulation begins. It also provides for the 

definition of the 802.1 la PLCP preamble and PLCP header transmission durations, which 

are used by the stations to correctly set their NAVs when RTS/CTS is enabled by 

selection of a non-zero RTS threshold value. The RTS Threshold can take any value up 

to 2347. The short and long retry limits delineate the number of times a STA may 

attempt to retransmit frames that are shorter or longer, respectively, than the RTS 

Threshold value. The AP functionality parameter lets the user identify the AP in a BSS if 

the WLAN is an infrastructure WLAN. 
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Parameter Name Values 

RTS Threshold Any integer < 2347 

Fragmentation Threshold Any integer < 2347 

Short Retry Limit 4 

Long Retry Limit 7 

Data Rate 6,9,12,18,24,36,48, 
or 54 Mbps 

Physical Characteristics OFDM 

AP Functionality Yes or No (Boolean) 

Table 7. User-defined Wireless LAN Parameters. 

The data rate attribute is provided for the user to select the maximum operational 
rate for the exchange of data frames within the WLAN by a given STA. Recall from 
Chapter n, however, that the control frame transmission rate must be one of the three 
rates from the mandatory rate set. To determine the correct control frame rate, a function 
was added to the wlan_mac_lla process model to select the highest possible control 
frame speed given the data frame transmission rate. This function was adapted from the 
Philips Research Labs model [1]. In addition, the STA may receive frames from another 
STA that might not be operating at the same data transmission rate. The receiving STA 
must then determine the speed at which to respond with either a CTS or ACK frame 
based on the incoming frame type. The capability to deal with this scenario was added to 
the wlanjnac_lla process model Proto-C code using a mechanism similar to the 
function described above. 

Once the transmission data rate of a given frame has been determined, the frame 
must then be passed to the PHY layer for transmission. The four packet streams 
connecting the wlan_mac_lla node object and the PHY layer (i.e., the transmitter and 
receiver node objects) in the STA and AP node models of the 802.11 standard model 
were replaced with eight packet streams representing each of the 802.11a possible data 
rates. These streams can clearly be seen in Figures 9 and 10. Each stream has an 
accompanying statistic wire (the dashed lines in the figures) to emulate the physical 
carrier sensing capability of the STA.   These statistic wires inform the wlan_mac_lla 
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process model when either a transmitter or receiver is busy. The use of transmitter and 
receiver node objects to model the PHY layer will be covered in the next subsection. 

The virtual carrier sensing capability of the 802.11 standard model MAC had to 
be altered to account for both the format and length of the OFDM PPDU and the PLCP 

preamble and header transmission durations. Accordingly, each NAV duration 

calculation in the underlying functions of wlan_mac_lla was modified to emulate the 
correct timing relationships. The new NAV durations were calculated in two steps. First, 
a new function was added to determine the duration of the body of a given PPDU, to 
include the PLCP Service Data Unit (PSDU), the SERVICE field, the tail bits, and the 
required padding to complete the OFDM symbol. This function was adapted from the 
Philips Research Labs model [1]. Secondly, the PLCP header duration and the PLCP 

preamble duration were added to completely emulate the overhead associated with the 
transmission of an OFDM PPDU. Note that the PLCP header and PLCP preamble 
durations are the same for each frame regardless of its format since these two packet 
fields are always transmitted at the lowest data rate in the mandatory rate set. An 
identical change was made to the exit executives of the FRM_END state to accurately 
model the operation of the timer used when waiting for expected response frames from 

other STAs. 
Two proto-C code error repairs to the 802.11 standard model were also adapted 

from the Philips Research Labs' 802.11a model to ensure proper operation of the 
wlan_mac_lla process model [1]. The first corrects the calculation of the EFS time 
while the second corrects the erroneous calculation of the remaining length of a data 
frame during the frame fragmentation process. Also adapted from the Philips Labs' 
model is the ability to track the net amount of MAC layer traffic sent or received by a 
given station for analysis following a simulation. The overhead associated with the PHY 
layer can therefore be disregarded if the goal is to just analyze the amount of MAC layer 
traffic handled by the WLAN. This feature was included in the model but is not 
demonstrated in this thesis. The size of the MSDU is passed between STAs using a null 
field in the OPNET formatted packet. The two packet formats associated with the 
802.11a model are the wlan_data_802_lla and wlan_control_802_lla packets, shown 
in Figures 12 and 13 with their field names and bit sizes. The "MPDU size" field is used 
to pass the size of the MPDU between STAs for use in simulation data analysis. These 
two 802.11a packets are identical to the 802.11 standard model packet formats with the 
exception of the "MPDU size" field and the "Rate" field. The "Rate" field is used in the 
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PHY layer and will be described in greater detail in the next subsection, where the 
model's PHY layer components are presented. 

Type (2) Accept (0) PktlD(O) Rate (0) MPDU Size (0) 

WLAN Header (190 bits) 

Frame Body (inherited) 

FCS (32 bits) 

Figure 12. The wlan data 802 11a Packet Format 

Type (2) Accept (0) Rate (0) 

WLAN Header (78 bits) 

FCS (32 bits) 

Figure 13. The wlan_control_802_lla Packet Format 

2. The 802.11a Model PHY Layer 

The PHY layer of the 802.11a model is represented by eight wlanjportjx and 
eight wlan_port_rx node objects in conjunction with the 14 wireless transmission 
pipeline stages. The eight transmitters and eight receivers emulate the operation of a 
single WLAN transceiver. A single transceiver is modeled in this manner because each 
OPNET transmitter and receiver node object is wedded to a specific modulation scheme. 
To realize the eight specified data rates with their accompanying modulation and coding 
rate combinations a total of 16 transmitter and receiver objects are required. When a 
packet is sent from the MAC to the PHY layer, it will travel on one of the eight packet 
streams to the appropriate transmitter node object associated with the specified data rate. 
When the packet is sent through the pipeline stages, only those receivers associated with 
that particular data rate may receive the packet. This model design allows for the 
emulation of transmission between ST As and APs at specifically designated data rates. 
The transmitter and receiver node objects are modeled as isotropic antennas with typical 
isotropic transmission and reception patterns and unity gains. 

30 



Like the MAC layer, the behavior of the PHY layer is partially governed through 
the use of user-defined parameters that are attributes of the receiver and transmitter 

nodes. These parameters fall under the heading of four attributes: modulation, channel, 

noise figure, and ecc threshold. The channel attribute is used to further specify the 
parameters associated with each OPNET wireless transmission channel (i.e., each data 
rate), while the modulation attribute is used to specify the transmitter and receiver's 
modulation schemes. The noise figure attribute allows for the selection of the receiver 
noise figure while the ecc threshold specifies the acceptable BER upper bound for 

received packets. The parameters of each attribute and their nominal values are shown in 

Table 8. 

Attribute Parameter Values 

Channel 

Supported Packet Formats wlan_data_802_lla and 
wlan control 802 11a 

Bandwidth 16,560 kHz 
Base Frequency One of: 

5171.7,5191.7,5211.7,5231.7, 
5251.7, 5271.7,5291.7, 5311.7, 
5736.7, 5756.7,5776.7, 5796.7 MHz 

Spreading Code Disabled 
Processing Gain 0.0 
_         ** 
Power 0.04,0.2 or 0.8 W 

Modulation Modulation Scheme 

One of: 
Ofdm_6Mbps 
Ofdm_9Mbps 

Ofdm_l 2Mbps 
Ofdm_l 8Mbps 
Ofdm_24Mbps 
Ofdm_36Mbps 
Ofdm_48Mbps 
Ofdm 54Mbps 

Noise Figure* N/A Any number > 1.0 
(nominally ~ 5) 

ECC Threshold* N/A Any number 
(nominally ~ lxlO"5) 

Receiver Only 
" Transmitter Only 

Table 8. Attributes of the wlan_port_ pc and wlan_port_rx Node Objects. 
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The first parameter of the channel attribute is the supported OPNET packet 
formats. These are specified so that named packet fields can be accessed and/or modified 

as a packet traverses the pipeline stages. The wlan_data_802_lla and 
wlan_control_802_lla packet formats presented in the previous subsection are specified 
for use here. The channel bandwidth delineated in the 802.11a standard is used as the 
bandwidth value, while any of the base frequencies of the channels listed in Table 4 are 
acceptable as the base frequency value. Note that the corresponding per band 
transmission power level as specified in Table 5 must be used in conjunction with the 

selected channel frequency. For example, if a base frequency of 5736.7 MHz is chosen 

then the transmitter power parameter must be set at or below 0.8 W. The spreading code 

parameter is applicable only for 802.11 or 802.11b WLANs and therefore is disabled in 

the 802.1 la model. By the same token, the processing gain is an additive gain associated 

with direct sequence spread spectrum communications and accordingly should be set to 
zero here. 

The modulation attribute setting plays a key role in emulating PHY layer channel 
characteristics. The dra_ber pipeline stage uses the transmitter and receiver modulation 
attribute to determine the BER of the packet transmission by way of a modulation table 
look-up based on the link SNR calculated in the drajrnr pipeline stage. A modulation 
table contains a range of BER versus Eb/N0 values, and when the table look-up kernel 

procedure is invoked in the pipeline stage the BER is determined based on the previously 

computed SNR. In other words, the BER is a function of the channel modulation scheme. 
Each subcarrier of an OFDM transmission is modulated according to the scheme outlined 
in Table 5, but the OPNET simulation environment is not detailed enough to support the 
emulation of each individual subcarrier. Instead, the 802.1 la model is designed such that 
a single OFDM transmission is treated by OPNET as an aggregated signal based on the 
data rate of the transmission. 

Recall that each 802.11a data rate is associated with a specific subcarrier 
modulation type and convolutional coding rate. Eight new modulation tables were 
created in OPNET to represent the BER versus Eb/N0 characteristics of an OFDM 
transmission at each data rate. The modulation tables were created using values taken 
from BER versus Eb/N0 curves found in reference [17] and shown in Figure 14. These 
curves represent values associated with OFDM transmissions in additive white gaussian 

noise (AWGN) for a constraint length seven convolutional code given the subcarrier 
modulations and coding rates for each 802.11a data rate. Although these curves fail to 

capture the Rayleigh fading behavior of a typical wireless communications link, they 
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represent the best, most current data available for use in emulating the actual 802.11a 

PHY layer. Ongoing detailed simulations and measurements of 802.11a PHY layer 

transmission characteristics using other tools may soon provide more accurate data for 
incorporation in future versions of this model [20]. 
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Figure 14. BER versus Eb/N0 Curves for OFDM in AWGN. 

The modulation attribute specified by the user represents the modulation table 
associated with the maximum rate of data traffic transmission within the WLAN. The 
selected data rate is not static however, and changes based on the frame type (i.e., data or 
control) and possibly with the transmission rate of incoming data packets. When a packet 
is sent to the PHY layer by the MAC layer for transmission at a specified data rate, the 
packet is sent to the transmitter object possessing the modulation attribute that 
corresponds to that data rate. In this fashion the most accurate BER approximation is 
assigned to the calculated SNR in the pipeline stages. The data rate must also be passed 
to another pipeline stage, dra_txdel_lla, for use in calculating the transmission delay 
associated with that data rate. The drajxdel_lla stage must therefore be able to track 
the rate at which a frame is sent and adjust accordingly. It does so through the use of the 
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"Rate" field, a customized packet field added to both the wlan_data_802_lla and 
wlan_control_802_lla packet formats. Just prior to a packet's release from the MAC 

layer to the PHY layer, the data rate at which that frame is being transmitted is stored in 

the packet's "Rate" field. When the drajxdeljla pipeline stage is invoked, the contents 

of that field are accessed and the proper data rate is used in calculating the transmission 
delay. The drajxdeljla pipeline stage code is provided in Appendix E. 

The 802.11 standard model uses a default value of 1.0 for the noise figure (fn), 
which equates to a 0 dB thermal noise contribution at the receiver. A 0 dB thermal noise 
value represents the ideal-case reception of a frame at the receiver where the thermal 

noise value is negligible. Rather than using this default value a nominal value of 5.01 

was selected based on the reported noise figure of the Lucent WaveLAN™ 802.11b 

network interface card, a popular WLAN implementation [21]. The selection of a noise 

figure value found in a fielded WLAN helps reduce the artificiality of the OPNET 

transmission process. The total background noise (BN) that effects the received packet (as 
calculated by the drajbkgnoise pipeline stage) is therefore given by: 

BN=BW{290fn)k + AN+IN 

where Boltzmann's Constant £ = 1.379xl0"23 YK, 290 is the receiver background 

temperature in degrees Kelvin, BW is the transmission bandwidth of 16.56 MHz, the 
OPNET default ambient noise AN = lxlO"26, and the inter-packet interference IN is as 
calculated in the drajnoise pipeline stage. Inter-packet interference results from the 
occasional slight overlap of two packets as one completes the reception process while the 
other is just arriving at the receiver. The overlap is so small as to not be considered a 
collision but rather a source of noise. The value of IN is rarely non-zero, highly, and 
extremely small. 

To add even greater fidelity to the losses encountered in the transmission pipeline 
the wlanjjower pipeline stage's default free space path loss calculation was altered. The 
path loss equation was modified to more accurately reflect the losses that might take 
place in a typical office-like environment. The path loss (JPL) as computed in wlanjjower 
is given by: 

1    \6n2dn 
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where X denotes the wavelength associated with the channel's center frequency, d is the 

distance that separates the transmitting and receiving STAs, and n is the path loss 

exponent. A value of n=2 corresponds to the OPNET default of a simple free space path 

loss assignment whereby the only losses result from the attenuation of the signal through 

the air in a straight line from the transmitter to the receiver. However, in a typical indoor 

office environment the signal would suffer from increased attenuation as it passes through 

partitions, walls, doors, floors and ceilings. A number of studies have empirically 

determined typical path loss exponent values in office, school, and residential 

environments [22, 23, 24]. In particular, Medbo and Berg obtained a value of n=3.8 

when assessing the losses between rooms in a typical school setting [24]. This value of n 

was selected for use in the 802.11a baseline model as it falls within the range of 

exponents found in the other studies and because it was obtained in an environment that 

more closely resembles the settings we are interested in. 

The ecc threshold attribute allows the user to specify an upper bound for the 

acceptable BER of a received packet. If the BER exceeds the specified threshold then the 

packet is marked as unacceptable in the final pipeline stage and is then discarded by the 

wlan_mac_lla process model. This procedure is used to emulate the WLAN's limited 

ability to detect and correct frame errors. Typical 802.11 and 802.11b implementations 

are able to cope with BERs up to around lxlO"5 [25]. 

The 802.11a model presented here offers a new approach to comprehensively 

modeling both the MAC layer and PHY layer attributes of a wireless protocol using the 

OPNET modeling tool. OPNET modeling efforts have traditionally focused on the MAC 

layer and above at the expense of PHY layer features and their effects. The baseline 

model outlined above serves as a starting point for further research involving the 802.1 la 

protocol and its MAC and PHY layer characteristics. 

C.       802.11A BASELINE MODEL SIMULATION RESULTS 

The 802.1 la baseline model was used in an OPNET simulation to test and verify 

its performance. The goal of the simulation was to confirm proper operation of the model 

vice the analysis of a particular aspect of the protocol's behavior or examining a specific 

network performance characteristic. The simulation was conducted using a variation of 

the OPNET 802.11 standard model's wlan_deployment scenario. In this scenario the 

behavior of a single infrastructure 802.11a WLAN was examined within the framework 

of a deployed wide area network (WAN) to better emulate the configuration of an actual 
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network. The WLAN is connected to an IP gateway (i.e., an enterprise router) which is in 

turn connected to an IP cloud used to represent the backbone Internet. The network's 

traffic servers are located on the other side of this IP cloud via a firewall. These servers 

are used as the source and destination of the file transfer protocol (FTP) and hypertext 

transfer protocol (HTTP) traffic that is exchanged with the STAs in the 802.11a WLAN 

during the simulation. The high-level network environment is depicted in Figure 15. The 

red octagon in Figure 15 titled site_l represents the 802.11a WLAN BSS subnetwork. 

Within that subnetwork are the STAs and the AP that comprise the WLAN, as seen in 

Figure 16. 

Figure 15. Simulated 802.1 la Network Environment. 

36 



Figure 16. The Simulated 802.11a WLAN BSS. 

A single fixed AP and four mobile STAs were chosen as the WLAN configuration 

for the simulation. This small WLAN was selected both to limit the scope of the 

simulation and to achieve reasonable simulation durations. The simulation of this small 

WLAN took approximately two hours given the simulation parameters outlined below. 

The four arrows in Figure 16 represent the path of each station as the simulation 

progresses, with STA distances from the AP varying. In general, two STAs are closing 

the AP while two STAs are moving away from it. Throughout the course of the 

simulation each STA remains within 35 m. of the AP so as to maintain the SNR required 

to support the data rate of 54 Mbps used in the simulation. The effects of extended 

ranges and their impact on the link SNR and data rate are explored in Chapter IV. 

The traffic load on the network was configured specifically for this simulation 

using OPNET's standard application profiles. The specific types and durations of the 

network traffic emulated during the simulation are depicted in Figure 17. Note that sta_l 

conducts two video teleconferencing (VTC) sessions during the simulation. Each time, 

the STA randomly selects another STA in the WLAN to conduct the VTC session with 

since OPNET is not configured to use a server as the source or destination for VTC 
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session traffic. The profile of each network traffic type and its associated load is provided 

in Table 9. The OPNET standard FTP profile was altered somewhat to provide for larger 

file sizes, thus increasing the load on the network. The network traffic profiles outlined 

in Figure 17 were chosen as they represent the mix of high-rate data and multimedia 

traffic loads one might expect to see on an 802.11a WLAN. 

STA1 

STA 2 

STA 3 

STA 4 

VTC Session HTTP Traffic VTC Session 

FTP Traffic 

HTTP Traffic & FTP Traffic 

VTC Session FTP Traffic VTC Session 

+ 
10 

Time (minutes) 

HTTP Traffic 

FTP Traffic 

20 

Figure 17. 802.11 a Model Simulation Network Load Configuration. 
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Profile Name Profile Attributes Associated 
Data Rate (Mbps) 

File Transfer 
(Heavy) 

• Exponentially distributed random 
inter-request time (with a mean of 
30 seconds) 

• Constant 125,000 byte file size 

1 Mbps 

Web Browsing 
(Heavy) 

• Exponentially distributed random 
page interarrival time (with a mean 
of 20 seconds) 

• 1000 bytes of text per page 
• Five uniformly distributed images 

of size 500-2000 bytes per page 

28 - 88 kbps 

Video Conferencing 
(Light) 

• Low resolution video 
• 10 frames per second 
• 128x 120 pixels per frame 
• 9 bits per pixel 

1.38 Mbps 

Table 9. Simulated WLAN Traffic Profiles 

The attributes and parameters of the STAs and AP were configured within the 
guidelines outlined earlier in this chapter. Specific WLAN settings used during the 
simulation are delineated in Table 10. These settings were applied to each STA and AP 
in the BSS. Channel 52 was chosen here since it is part of the middle UNII band and is 
ideal for use in a typical office environment. Note that the transmitter output power is set 
at the value specified for use in the middle UNII band (see Table 5). The RTS threshold 
was set at 500 to emulate the conditions found in a typical WLAN when RTS/CTS is 
enabled and the frame fragmentation option was disabled [26]. Finally, the data rate was 
set at the highest possible 802.11a value to test the model's operation at the fastest data 
rate. The simulation was conducted using OPNET version 7.0B on a Windows NT 

platform with a 366 MHz processor and 128 MB RAM. 
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WLAN Parameter 

Data Rate 

Modulation Scheme 

RTS Threshold (bytes) 

Fragmentation Threshold (bytes) 
Bandwidth (kHz)  

Base Frequency (MHz) 

Transmitter Output Power (W) 

Receiver Noise Figure 

Setting 

54 Mbps 

Ofdm 54Mbps 

500 

None (disabled) 

16,560 

5251.7 

0.2 

5.01 

Table 10. WLAN Attributes and Simulation Characteristics 

The 802.11a baseline model simulation was completed successfully with a 
simulation duration of two hours and 11 minutes. A number of model performance 
statistics were collected by the OPNET simulation kernel during the trial. Of those, 
several are critical indicators used to determine that the model operated correctly. The 
total load on the WLAN as a function of time as the simulation progressed is one of the 
more important results. The overall WLAN load data is displayed in Figure 18, with the 
load given in bits per second. The results are as expected given the traffic profiles 
outlined in Table 9. The load on each STA and the AP is illustrated in Figure 19, where 
the effects of the differing traffic profiles are obvious. Also important in determining the 
successful operation of the MAC layer, its timing operations, and the RTS/CTS 
mechanism are the medium access delay and overall packet transmission delay statistics. 
Those results are displayed in Figure 20. The delay values increase with the load as we 
would expect, but do not exceed approximately 6 ms of overall delay and 3 ms of 
medium access delay. These values are typical of an operational WLAN under normal 
traffic loads [27]. 
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Figure 18. Total Load on the Simulated WLAN. 
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Figure 19. Individual Load Values for the AP and STAs. 
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Figure 20. Simulated Medium Access Delay and Packet Delay. 

The final results of the simulation are detailed in Figure 21 and they illustrate the 

link SNRs between the STAs and the AP. The values obtained here are roughly within 

the SNR ranges that might be expected in a typical hardware implementation given the 

range of SNRs seen in the OFDM modulation curves (Figure 14) and not accounting for 

hardware-specific gains and losses. In Figure 21 it is apparent that the SNR values 

change as expected when the STAs move closer to or farther away from the AP, thus 

reflecting the relationship between the inter-station distance and the received SNR. This 

signals that the internal mechanics of the model are indeed functioning correctly. In 

Chapter fV these SNR values will be utilized in one of the data rate agility mechanisms. 
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Station 4 <-■> AP Link SNR 
Station 3 <-■> AP Link SNR 
Station 2 <-■> AP Link SNR 
Station 1 <-->APLinkSNR 

20m 

Figure 21. Simulated Link SNRs. 

The results presented above indicate that the baseline 802.1 la model introduced in 

section B of this chapter does function as it was designed to. The load, medium access 

delay, and SNR statistical results yielded by the simulation correspond to values that are 

characteristic of those obtained using fielded WLAN systems. This model is the first 

(that the author is aware of) to successfully wed a robust PHY layer implementation of 

the 802.1 la protocol with the 802.1 la MAC using the OPNET simulation tool to create a 

comprehensive 802.1 la protocol model. 

A model of an 802.1 la-compliant WLAN constructed using the OPNET modeling 

and simulation tool was presented in this chapter. The composition of the MAC and 

PHY layers of the model were outlined in detail. The simulation results obtained using 

the model in standard network traffic conditions were presented as a measure of the 

model's validity. Now that the characteristics of the baseline model have been outlined 

and the model successfully tested, it will be used to explore several mechanisms through 

which an 802.1 la WLAN implementation might dynamically alter its data rate based on 

the wireless link conditions. 
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IV. DATA RATE AGILITY AND THE 802.11A BASELINE MODEL 

The 802.11a standard does not specify a mechanism through which a WLAN 

implementation should dynamically alter the transmission data rate in response to 

changing link conditions. The standard does explicitly state that such a mechanism is 

allowed for; however, the exact mechanics are beyond the scope of the protocol. Most of 
the fielded 802.11 and 802.1 lb WLAN systems available today advertise data rate agility, 
but the specific mechanisms they use to do so are proprietary and unavailable for 
examination except at the most cursory level. The 802.1 la standard and accompanying 
high data rates promise wireless access to multimedia applications with performance 

levels that parallel wired networks. Dynamic data rate agility and when or how it is 
implemented are therefore extremely important to the end-user as altering data rates may 
restrict access to the data associated with certain high-traffic applications. Two 
mechanisms for dynamically altering the data rate of an 802.1 la WLAN are presented in 
the next section using the baseline 802.1 la OPNET model outlined in Chapter IE. The 
simulation results obtained using each mechanism are then presented and compared in 

Section B. 

A.       DATA RATE AGILITY MECHANISMS 

802.11 and 802.11b WLAN implementations available on the market today 
typically include some permutation of data rate agility to reduce the operational speed of 
the WLAN in deteriorating link conditions. Particular examples include the popular 
Lucent ORiNOCO system and the Aironet 4000-series WLAN components [25, 28]. The 
specific techniques used to alter data rates in a given WLAN are commonly realized 
through a combination of both hardware and software approaches that are implementation 
specific. For instance, in a general sense Lucent's ORiNOCO system uses the link SNR 
after decorrelation of the spread spectrum signal in conjunction with receiver antenna 
diversity [21]. Additional details concerning specific vendor implementations are 
proprietary and were unavailable to the author. 

Wireless networks based on the 802.11a protocol are likely to implement similar 
rate agility mechanisms. Designers of 802.1 la-based WLAN implementations are still 
experimenting with rate agility techniques and algorithms in an effort to develop optimal 
adaptation mechanisms [29]. Two dynamic data rate agility mechanisms are presented in 
this chapter and implemented using the 802.1 la baseline model. The first mechanism is 
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based on the link SNR while the second is based on the frame loss rate at the transmitting 

STA. Each technique is first explained and then simulation results obtained using each 

are presented to compare the two. In reality these two mechanisms are not mutually 
exclusive and they would likely be used in tandem to present the best possible criteria for 
rate adaptation. However, this analysis will examine the performance of each in isolation 
to measure their potential contributions to an inclusive dynamic data rate agility 
mechanism. 

1. Rate Agility Based on Link SNR 

An important indicator used in deterrmning the quality of a wireless data link is 

the SNR of the transmission as measured at the receiver. Lower measured SNR values 

correspond to a higher probability of bit errors in the received frame. This relationship 

between the SNR and BER is reflected in the series of OFDM modulation curves outlined 

in Chapter m and presented in Figure 14. Higher bit error rates adversely impact both the 
PHY and MAC layers' ability to detect and correct errors using the MPDU cyclic 
redundancy code (CRC) and the FEC capability provided by convolutionally coded 
OFDM. High BBRs translate to MAC failures and thus a cessation of successful frame 
exchange. The BER of a given wireless link must remain below a certain threshold for 
two STAs to effectively communicate. This threshold is typically on the order of lxlO"5 

and a number of 802.11 and 802.11b implementations available today guarantee BERs 
below that threshold during a successful data exchange [25]. 

The relationship between the SNR and BER can be exploited to determine the 
quality of a wireless link by measuring the SNR at the receiver and using that 

measurement to adapt the link data rate to the link's current environmental conditions. If 
the SNR decreases there will likely be a corresponding increase in the BER. A STA can 
then alter the modulation scheme and coding rate combination of subsequent 
transmissions to provide a more robust, albeit lower data rate, transmitted signal. The 
converse is also true: higher received SNR values indicate improving link conditions. A 
STA can similarly use that information to alter its modulation and coding combination to 
realize a less robust but higher data rate link. 

There are a number of choices that must be made concerning the use of received 
SNR values to adapt the wireless link data rate to changing link conditions. Either the 
most current SNR value could be used to alter the data rate, or the STA could use the 
trend in SNR values over a specified time period to adapt its data rate. The capabilities of 
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the STA transceiver hardware certainly impact this choice, as does the throughput of the 
link at the specified time. A link with a throughput of hundreds of packets per second 
provides a larger data set from which to make a rate agility decision while throughputs of 
only a packet or so per second provide far fewer decision points. The SNR-based 
mechanism presented and implemented here utilizes the instantaneous received SNR 

value to judge the link quality and alter the data rate accordingly (if necessary) rather than 

tracking the SNR over time. 

If the received SNR is in fact either high or low enough to necessitate a change in 
the data rate, the STA must decide how much the rate should be increased or decreased 
based on the difference in SNR between the current frame and the previous frame. For 
example, suppose a frame is received with a much lower SNR value than that of the 
preceding frame. The STA might then either reduce its data rate to the next lower level 
or instantaneously reduce it to an even lower level as determined by a series of upper and 
lower SNR bounds associated with each data rate. In other words, the SNR-based data 
rate adaptation can be gradual or rapid. The former approach may be too slow in 
responding to the link conditions and might result in a link failure while the latter 
approach is susceptible to widely fluctuating SNR values where a STA couldfind itself 
continuously "chasing" the SNR. The mechanism presented in this thesis utilizes the 
latter technique. Given the low mobility of the STAs used in the simulation and the 
hierarchical distance vs. SNR relationship found in the OPNET pipeline stages, this 
approach was deemed to be the most effective for studying SNR-based data rate agility 
here. 

There are obviously a number of alternative approaches to implementing an SNR- 
based dynamic data rate agility mechanism. To reiterate the techniques adopted for use in 
the mechanism analyzed here, the salient features of the SNR-based mechanism are 
summarized below: 

■ The SNR values utilized are associated with data and control frames only, not 
management traffic or other inter-STA communications. 

■ Rate agility is based on a single received SNR value and not SNR trends over time. 
■ The data rate can change to any other rate up to the maximum speed or down to the 

lowest mandatory speed without having to progress through any intermediary rates. 

This SNR-based data rate agility mechanism was modeled by altering the OPNET 
802.11a baseline model presented in Chapter EH.   A customized null data field called 
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"Link SNR" was added to both the wlan_data_802_lla and wlan_control_802Jla 

packet formats. This yielded two new packet formats: wlan_data_802Jla_agility and 

wlan_control_802Jla_agility. The "Link SNR" field is used by the drajmrjla 

pipeline stage (a modified version of drajinr) to store the calculated SNR value for each 

individual frame that is transmitted through the wireless pipeline. When the frame is 

received at the destination, the SNR value is stripped from the "Link SNR" field at the 

MAC layer. The wlanjnacjla process model was modified to include the data rate 

agility functionality that uses the SNR value once it is obtained from the pipeline stages. 

Specifically, the wlan_physicaljayer_data_arrival function resident within 

wlanjnacjla contains the proto-C code used to implement the rate agility mechanism. 

The modifications to the wlanjnacjla code are procided in Appendix B and the 

drajnrjla pipeline stage code can be found in Appendix D. 

A logical Proto-C code structure was added to wlanjphysicaljayerjiatajirrival 

that compares the received SNR value to an upper and lower bound associated with each 

data rate. The lower bounds represent the niinimum acceptable SNR required to keep the 

BER below lxlO"5 at each data rate while the upper bound of each rate is simply the 

lower bound of the next highest data rate. These data rate specific thresholds are provided 

in Table 11. They were selected based on the modulation curve values presented in 

Figure 14. However, special limits were constructed for the 9,12, and 18 Mbps data rates 

based on the modulation curves. Both the 6 and 12 Mbps rates use BPSK and the 9 and 

18 Mbps rates use QPSK, albeit at different coding rates. Since the probability of a bit 

error is equal for both BPSK and QPSK given a specific Eb/N0 value, the SNR range 

associated with the lower bound of the 9 Mbps rate and the upper bound of the 18 Mbps 

rate was divided into three equal ranges to represent the boundaries of the 9, 12, and 18 

Mbps data rates [30]. These three ranges were used to provide for a hierarchical 

transition from the lowest data rate to the highest and vice versa. 
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Data Rate (Mbps) SNR Lower Bound 

(dB) 

SNR Upper Bound 

(dB) 

6 4.38 5.38 

9 5.38 5.84 

12 5.84 6.30 

18 6.30 6.76 

24 6.76 8.86 

36 8.86 9.70 

48 9.70 12.22 

54 12.22 N/A 

Table 11. SNR Thresholds for Rate Agility. 

Based on the comparison of the received SNR value with the rate-specific 

thresholds wlan_mac_lla selects the new operational speed at which that STA will 

transmit during its next frame transmission. In this manner a dynamic rate agility feature 

based on the instantaneous link SNR was added to the baseline 802.1 la model. After the 

mechanism was implemented a new statistic collection vehicle was also added to 

wlan_mac_lla to track the data rate of the STA over time as link conditions change. 

This statistic enables the user to observe the data rate performance of the model during 

simulations. A performance analysis of the SNR-based mechanism is conducted in 

Section B of this chapter after presentation of the second data rate agility mechanism. 

2. Rate Agility Based on the Frame Loss Rate 

The number of frames dropped (i.e., lost) during the transmission process by a 

STA also serves as an excellent indicator of link performance in a WLAN. Frames can 

be dropped by a transmitting STA for one of two reasons. Firstly, the queue for frames 

awaiting transmission that were passed down from the higher layer can overflow resulting 

in frame losses. Secondly, the retransmission limit for a specific frame can be exceeded 

which will force the STA to cease its attempts to retransmit the frame and discard it. The 

former state, a higher layer buffer overflow, is caused by either a massive flood of data 

from the higher layer or a poor queue design in terms of capacity.   Neither condition 
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speaks to the wireless link quality therefore packet losses resulting from a higher layer 
buffer overflow will not play a role in the mechanism presented here. 

Frame retransmissions, however, are due to either collisions with other frames on 
the medium or a failure to receive an expected ACK or CTS frame in response to a 

transmitted data or RTS frame. Under typical WLAN operating conditions collisions do 
indeed take place, especially when there is a great deal of demand for the medium. Even 

in such high-load circumstances frame retry limits are rarely reached and the discarding 
of frames due to excessive retransmission attempts is extremely uncommon [26]. An 

increase in the number of frames dropped when the retransmission limits are exceeded is 

therefore a good indicator that the STA is failing to receive expected ACK and CTS 

packets. This in turn points to a deteriorating link since either the originating STA is not 

successfully transmitting data and RTS frames or the destination STA is not successfully 

transmitting ACK and CTS frames. The frame loss rate at a transmitting STA due to 
excessive retransmission attempts can therefore be used as the decision criteria in a 
dynamic data rate agility mechanism. 

Rate agility cannot solely be based on the total number of frames dropped due to 
excessive retransmissions since under standard operating conditions a WLAN will 
eventually exceed any loss threshold. A specific time window must be delineated during 
which the number of lost frames should be tracked. If the frame loss rate exceeds a 
specified threshold (or series of thresholds) during that time window, then the data rate 
can be reduced accordingly. Too small a window selection may result in the STA 
responding prematurely to a transient environmental effect while too large a window may 
result in too slow of a response to a quickly deteriorating link. Additionally, if the traffic 
level is very low on the link then small data sets can result in disproportionate effects. 
For example, if only one packet traverses the link in the specified time window then the 
loss of that packet will translate to a 100% dropped frame rate and the data rate will 
automatically be reduced, regardless of whether the frame was dropped due to a transient 
effect or not. One second was chosen as the time window length for frame loss rate 
assessment in the mechanism implemented here. This selection reflects a balance 
between the possible effects given a low-traffic link and a reasonably quick response time 
to a truly deteriorating link. 

A rate agility mechanism based on the frame loss rate must also be able to 
increase the data rate of the WLAN if the frame loss rate drops to an acceptable level. 
However, the realization of an acceptable frame loss rate does not necessarily imply that 
the link can sustain transmission at the next highest data rate. Perhaps acceptable frame 
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loss rates indicate that the WLAN is operating at the optimal data rate given the current 
link conditions. There are a number of possible approaches to the problem of increasing 

data rates after they have been reduced. These approaches include the addition of a 
second lower bound threshold below which the data rate would be increased, the use of a 

waiting period during which the STA cannot attempt to increase its data rates once it has 

reached a steady state, and simply allowing the STA to automatically attempt to raise the 
data rate immediately. Again, the goal is to prevent the STA from continuously 

oscillating back and forth between two adjacent data rates. 

The second of the three approaches outlined above is implemented in the 
mechanism presented here. The author initially addressed the problem using the first 
approach, but the results obtained using a lower bound threshold were not promising. 
Those results are not provided here for the sake of brevity. Instead of using a lower 
threshold, the frame loss rate-based mechanism analyzed herein uses a steady-state 
waiting period during which the STA may not attempt to increase the data rate after it has 
been decreased. The drawback to this approach is that a STA might not be able to 
immediately take advantage of improving link conditions and increase the data rate; 
however, the advantage in terms of preventing rate oscillations outweighed the potential 
drawbacks. 

The threshold for the acceptable frame loss rate was chosen based on the dropped 
frame rate observed in several trials conducted with the baseline 802.1 la model. The first 
trial scenario consisted of a single high data rate link between a STA and an AP. The 
traffic profile was that of a continuous low-resolution VTC session between the mobile 
STA and a client terminal external to the BSS. The STA was given a trajectory that took 
it beyond the maximum allowable range for successful communications at 6 Mbps. A 
link failure condition was subsequently observed and the STA then moved back within 
range of the AP again. Figure 22 displays the number of packets dropped as the STA 
moved along its trajectory. The period of link failure during the session is clearly 

noticeable. 
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Figure 22. Simulated Packet Loss Rate in High Traffic Conditions. 

The second scenario consisted of a lower data rate link between a STA and an AP. 

The traffic profile included heavy FTP and HTTP sessions between the STA and remote 

servers external to the BSS. The STA traversed the same trajectory utilized in the first 

scenario to include the link failure condition. A plot of the resulting number of packets 

dropped per second throughout the simulation is presented in Figure 23. The number of 

packets dropped during the link failure period in this trial is substantially lower than in 

the previous trial due to the lower traffic rate. These two trials were conducted to 

measure the packet loss rate under both high and low traffic conditions, as a data rate 

agility mechanism based on packet losses must function properly in both types of network 

load conditions. 
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Figure 23. Simulated Packet Loss Rate in Low Traffic Conditions. 

The data collected during the link failure condition in both trials was exported to a 

spreadsheet and the mean packet loss rate was calculated for each. The high-traffic link 

exhibited a mean packet loss rate of 88.487 packets per second and the low-traffic link 

was characterized by a mean packet loss rate of 1.073 packets per second. The standard 

deviation of the low-traffic link packet loss rate was found to be 0.6477. The lower loss 

rate is clearly the limiting factor in selecting proper thresholds for the rate agility 

mechanism as rate agility must be supported in both high and low traffic environments. 

Accordingly, a threshold value for the packet loss rate was selected as 0.437 packets per 

second, or one standard deviation below the mean packet loss rate associated with the low 

traffic simulation. When the frame loss rate increases above this threshold the 

transmission data rate is subsequently lowered. 

Based on the results obtained during each trial and given the standard nature of 

the traffic load used to analyze the rate agility mechanisms, a frame loss rate of zero 

frames per second was selected as the frame loss rate that must be attained before a STA 

can seek to increase its data rate after the steady-state waiting period. Figures 22 and 23 

both show the packet loss rate to be consistently zero under non-failure conditions. The 

steady-state waiting period was set at ten seconds in order to minimize data rate 
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oscillations. Whether the mechanism is increasing or decreasing the link data rate, the 

rate can only be increased or decreased one level at a time. This "stair step" approach is a 

by-product of only utilizing a single threshold to decrease the data rate. 

There are obviously a number of alternative approaches to implementing a 

dynamic data rate agility mechanism based on the number of frames dropped per unit 

time. To reiterate the techniques adopted for use in the mechanism presented herein, the 

salient features of the rate agility mechanism based on the packet loss rate are 

summarized below: 

■ The time window used in determining the dropped frame rate is set at one second. 

■ The maximum frame loss rate threshold is set at 0.437 packets per second. 

■ The data rate can only "stair step" up one or down one level and cannot jump to and 

from non-adjacent rates. 

■ The acceptable frame loss rate that must be attained before a STA may seek to 

increase its data rate is zero frames per second. 

■ The steady-state waiting period that a STA must wait after attaining a zero frame loss 

rate before it attempts to increase its data rate is ten seconds. 

This dropped frame-based rate agility mechanism was implemented by modifying 

the wlan_mac_lla process model to allow for rate agility based on the packet loss rate. 

Specifically, a counter was added to the wlanjrame_discardfunction to track the number 

of frames discarded and the threshold criteria, time window calculation, and steady-state 

waiting period timer were added to the body of the wlan_prepareJrame_to_send 

function. These changes were all made using Proto-C code logical structures and they are 

provided in Appendix C. Every time a frame is discarded by the MAC, the packet loss 

counter is incremented by one. During the subsequent frame transmission attempt, the 

packet loss counter is used in conjunction with the time window to calculate the current 

packet loss rate. The packet loss rate is then used in a comparison with the maximum 

packet loss rate threshold and the data rate of the STA is decreased accordingly (if 

necessary). The window size is then verified to be one second or less in size. If the time 

window exceeds one second, the packet loss counter is re-initialized so the packet loss 

rate can be refreshed for the subsequent interval. 

If the packet loss rate reaches zero packets per second, the steady-state waiting 

period timer in wlan_prepareJrame_to_send is started. If the timer reaches ten seconds 

and the packet loss rate has remained at zero, the data rate is increased to the next highest 
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data rate up to the maximum rate as defined by the user. If the packet loss rate becomes 

non-zero before the timer has reached ten seconds, the timer is reset and the data rate may 

be decreased if the loss rate has exceeded the threshold. The same statistic collection 

vehicle used to track the data rate in the SNR-based mechanism was also added to this 

mechanism to provide the capability to monitor the data rate throughout the simulation. 

To obviate the effects of the possible effects of a higher layer queue overflow the buffer 

size was set to an artificially large value. Both the frame loss mechanism and the link 

SNR mechanism were employed in OPNET simulations. The simulation set-ups and the 

results are detailed in the next section. 

B.       RATE AGILITY MECHANISM SIMULATION RESULTS 

The two dynamic data rate agility mechanisms detailed in section A were 

simulated in an 802.1 la WLAN using OPNET. The simulations were conducted using an 

infrastructure BSS with a fixed AP and a single mobile STA. The STA was provided 

with a mobility profile that took it from a position adjacent to the AP along a straight path 

to a distance great enough to cause a link failure condition. The STA then reversed 

direction and returned to its original location. Each leg of the trajectory was 42 m long 

and the STA took 90 minutes to traverse it in each direction. The path that the STA 

traversed is depicted in Figure 24. These path lengths and mobility rates were chosen 

both to allow for a complete examination of the performance of each mechanism across 

the full spectrum of ranges expected in an 802.1 la WLAN and to allow enough time for 

the WLAN to reach a theoretical steady state at each data rate during the course of the 

simulation. 
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Figure 24. Rate Agility Simulation Environment. 

Each rate agility mechanism was implemented in identical simulation 

environments using a traffic profile consisting of simultaneous heavy FTP and HTTP 

sessions with session parameters identical to those outlined in Chapter III, section C. 

This traffic profile was chosen because the rate agility mechanisms would be stressed to a 

greater extent given the fewer available data points characteristic of lower traffic loads. 

In other words, data rate agility is more difficult to implement in lower traffic 

environments than it is in high traffic conditions. 

The simulation was first conducted with the SNR-based mechanism. With the 

traffic parameters and mobility profile outlined above the simulation duration was four 

hours and twenty-three minutes on the same machine used for the simulations detailed in 

Chapter III. The resulting data rate of the WLAN as a function of time is presented in 

Figure 25. These results closely follow the expected outcome, in that the data rate clearly 

drops level by level as the STA moves farther away from the AP. The period of link 

failure is clearly visible when the STA moves beyond the maximum range of the AP. 

The data rate subsequently increases again as the STA moves back toward the AP, 

eventually regaining the maximum 54 Mbps data rate. The BER and SNR values for 

transmissions on the link are depicted in Figures 26 and 27, respectively. The link SNR 

clearly drops as the STA moves away from the AP and then rises again as the STA closes 

on the AP while the BER remains at a minimum except during the link failure condition. 
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Figure 25. Simulated Data Rates with SNR-Based Rate Agility. 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

0.001 

0-L 

Link BER 

ilillmiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiuiiiniiiiiiiiiniumiiiiiiiiiiiiiniiiiiiiiiiiiiiiMiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 

T-CNCO'd-WeOh-cOOTO 
T-ogo^-ificor^coo 

tMn<jincos(ooi 
CMCO-tflOCOl^-COO} 

Figure 26. Simulated Link BERs with SNR-Based Rate Agility. 
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Figure 27. Simulated Link SNRs with SNR-Based Rate Agility. 

These results suggest that the instantaneous SNR of a wireless networking link is 

an excellent criterion upon which to base dynamic data rate agility decisions in a WLAN 

implementation. Throughout the course of the simulation the WLAN MAC layer altered 

its data rates in a dynamic fashion to keep the link BER below lxlO"5 based on the 

received SNR value. The WLAN therefore avoided BERs that would necessitate a link 

failure while maintaining the highest possible data rate. The maximum operational range 

of the AP-STA link at each data rate are presented in Table 12. These range values were 

calculated using the data rate results from Figure 25 in conjunction with the mobility 

profile of the STA during the course of the simulation. Table 13 presents the nominal 

ranges of the 802.1 lb-compliant Lucent ORiNOCO PC card in a closed office 

environment for comparison. The simulation results support the claim of Atheros 

Communications, Inc. that 802.1 la WLAN ranges will be comparable to those of 802.1 lb 

systems [14]. 
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Data Rate (Mbps) Range(m) 

6 34.30 

9 40.18 

12 42.28 

18 48.16 

24 49.42 

36 51.10 

48 52.36 

54 54.96 

Table 12. 802.1 la Ranges with SNR-Based Rate Agility. 

Data Rate (Mbps) Range(m) 

1 50 

2 40 

5.5 35 

11 25 

Table 13. Nominal Ranges of the Lucent ORiNOCO PC Card (After Ref. [25]). 

A simulation was then conducted using a WLAN implementation with data rate 

agility based on the frame loss rate mechanism. Again, the same traffic profile and STA 

trajectory were used in this simulation. The simulation duration in this instance was four 

hours and 48 minutes using the same machine. The data rates of the mobile STA 

obtained during the course of the simulation are presented in Figure 28. Although the 

data rate is 54 Mbps as expected at the start of the simulation, there is wide variation in 

the observed data rates for the remainder of the trial. The general trend in data rates 

matches those expected given the STA's trajectory, in that the data rate starts high, drops 

to 6 Mbps around the period of the link failure and then increases back to 54 Mbps at the 

conclusion of the simulation. The data rate results obtained using this mechanism are not 

stable enough to use in calculating the WLAN range per data rate. 
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Figure 28. Simulated Data Rates with Frame Loss Rate-Based Agility. 

In Figure 28 it is clear that the data rate drops off quickly once the STA exceeds 

the range of the 54 Mbps data rate and is slow to increase again as the STA moves closer 

to the AP. Based on these results it seems as if the rate agility mechanism based on the 

frame loss rate tends to underestimate the link quality and thus delivers lower data rates. 

This can be seen in Figure 29 where the two resultant data rate curves are shown together. 

The mean data rate for this trial using the frame loss rate mechanism (calculated with the 

numerical data used to construct Figure 28) was 20.135 Mbps. The mean data rate 

obtained during the simulation conducted with the SNR-based rate agility mechanism was 

26.923 Mbps (calculated with the numerical data used to construct Figure 25). The SNR- 

based rate agility mechanism was able to produce a higher mean data rate over the course 

of the trial. 
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Figure 29. Data Rates for Both Mechanisms. 
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In this chapter two dynamic data rate agility mechanisms designed to allow for 

adaptive data rate behavior in a WLAN based on the link conditions were presented. The 

implementations of these mechanisms using the baseline OPNET 802.11a model were 

then outlined. The data rate results obtained using each mechanism were provided to 

allow for direct comparison of each method under the same simulated network traffic 

conditions. The results indicated that the mechanism based on the link SNR provides for 

the highest mean data rates and the smoothest data rate transitions. Conclusions and 

recommendations for further research are presented in Chapter V. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A.       CONCLUSIONS 

The results presented in this thesis indicate that the link SNR is a better criterion 
than the packet loss rate upon which to base dynamic data rate agility decisions in IEEE 

802.1 la-compliant WLANs. The simulation results obtained using the rate agility 
mechanism based on link SNR values illustrate smooth rate transitions during data rate 
increases and decreases as the link SNR changes in the presence of nominal WLAN 

traffic loads. The results obtained using the rate agility mechanism based on packet loss 
rates are characterized by a high degree of oscillation between data rates and a failure to 
reach steady-state data rates even during periods of unchanging link conditions. The 
SNR-based mechanism demonstrated a higher mean data rate over the course of the 
simulation. While packet loss rates do serve as a statistical indicator of adverse link 
conditions, the link SNR proved to be the superior criterion for use in 802.11a dynamic 
data rate agility mechanisms. 

The 802.11a OPNET model used in the simulations conducted with each of the 
rate agility mechanisms includes both the MAC and PHY layers of the IEEE 802.11a 
standard. The MAC layer emulates each supported 802.11a data rate, correct medium 
access and transmission timing relationships, and the optional RTS/CTS mechanism. 
The PHY layer model includes the SNR versus BER characteristics of OFDM 
transmissions as reported in reference [17] and an experimentally determined path loss 
exponent found in reference [24]. The model's PHY layer does not include the Rayleigh- 
distributed fading losses typical of a wireless networking channel. Inclusion of these 
losses would perhaps effect the smooth data rate transitions seen with the SNR-based rate 
agility mechanism. The simulations also did not include the effects of random STA 
motion and varying mobility rates, nor did they account for the wide range of possible 
traffic profiles. These variables were not included for study due to the large simulation 
and computational overhead associated with higher traffic loads and longer simulation 
durations. 

In reality, neither the link SNR nor the packet loss rate would be used in isolation 
to provide for dynamic data rate agility in a fielded 802.11a WLAN implementation. 
Both criteria would likely be combined with others, such as a comprehensive link history 
and hardware-specific attributes, to realize rate agility.    Current 802.1 lb-compliant 
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WLANs utilize a variety of these techniques to achieve rate agility [21]. In any specific 
rate agility mechanism, trade-offs exist between responsiveness and rate vacillation and 

between providing the highest possible data rate and ensuring the robustness of the link. 
However, a direct comparison of SNR- and packet loss rate-based mechanisms for rate 
agility using the same model with identical traffic and mobility profiles indicated that link 
SNR is superior to the packet loss rate as a criterion for dynamic data rate agility in 
802.1 la WLANs. 

B.       RECOMMENDATIONS 

The analysis presented in this thesis resulted from very specific data rate agility 

mechanisms implemented in a single model of the 802.11a protocol. The baseline 

802.11a OPNET model itself could be further modified to provide a more detailed 

representation of the 802.11a protocol, or specific features of the model could be 
enhanced to further study a particular aspect of the protocol. The model presented herein 
includes a number of the MAC layer features developed at the Philips Research Labs; 
however, the PHY layer is a complete redesign of the PHY layer included in the OPNET 
802.11 standard model. This comprehensive 802.11a model is the first to be developed 
(that the author is aware of) using the OPNET simulation environment. In addition, the 
PHY layer fidelity found in this model is rare given the infrequent application of OPNET 
to network protocol modeling at the PHY layer. 

The 802.11a baseline model presented in Chapter HI is a detailed model, but 
further modifications would only serve to increase its fidelity. The model could also be 
used in its current form to study other aspects of the 802.1 la protocol and its behavior in 
specific network environments. Possibilities for additional research involving the 
baseline model include: 

■ Creating and including a variety of transceiver antenna designs and studying 
the effects of their transmission and reception patterns. 

■ The use of the OPNET Terrain Modeling Module (TMM) to explore the 
operational attributes of 802.11a WLANs in outdoor and tactical 
environments. 

■ The addition of a roaming and association feature and analysis of its 
performance. 
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■ Analysis of WLAN performance as a function of the number of users in a 
BSS. 

■ Analysis of WLAN performance given a large number of users under varying 

traffic loads. 

■ Addition of the optional PCF medium access technique and an analysis of its 
performance in low latency traffic environment. 

■ Performance analysis of a WLAN given varying RTS and fragmentation 
thresholds. 

■ Addition of a Rayleigh fading channel loss model to the pipeline stages. 

The model could also be applied in its current configuration to analyze different 
permutations of the two rate agility mechanisms presented in this thesis as well as to 
implement alternative rate agility techniques. Additional research opportunities for 
analyzing rate agility with this model include: 

■ Modification of the frame loss rate mechanism to base rate agility on the 
quantity of subsequent frame losses vice the loss rate over time. 

■ Modification of the SNR rate agility thresholds based on the addition of a 
Rayleigh fading channel model to the pipeline stages. 

■ Analysis of a rate agility mechanism based on the combination of the SNR and 
frame loss rate mechanisms. 

■ The use of transceiver antenna diversity in conjunction with a MAC-level 
mechanism to realize data rate agility. 

The IEEE 802.1 la WLAN protocol promises both mobility and the high data rate 
wireless connectivity required to deliver multimedia application traffic in a multi-user, 
multiple access environment. The 802.11a model presented in this thesis emulates the 
MAC and PHY layer behavior of the standard and provides the capability to conduct 
detailed investigations of the protocol's behavior. The model's applicability was 
demonstrated through the analysis of several dynamic data rate agility mechanisms in 
which the link SNR proved to be the most powerful indicator of link quality in the 
WLAN environment. 
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APPENDIX A. WLAN_MAC_11A PROCESS MODEL OPNET CODE 

This appendix provides the OPNET source code for the wlan_mac_lla process 

model. The code is an altered version ofthat found in the OPNET 802.11 standard model 

wlanjnac process model with additional features incorporated from the Philips Research 

Labs 802.11a OPNET model [1]. Comments applicable to the code modifications are 

included. The wlanjnacl 1 a STD was presented in Figure 11 and is reproduced below 

in Figure 30. 

>^^J- -HBSSJNIT 

(default) 

|FRAME_TO_TRANSMIT a !EXPECTING_FRAME] l(WAIT FOR FRAME)        
4FRM_ENDJ •WAIT.FORJ.      > 

(FRAME.TIMEOUT n FRAME.RCVD) 

(default) 

(READY TO TRANSMIT-^ MEDIUM IS IDLE) ,*'' 
\ (FRAMEJOJflANSMIT U. !EXPECT*G_FRAME) 

(FRAME.RCVD) 

I DEFER 
 )  (default) 

(DEFERENCE.OFF) 

BKOFFJJEEJ 

(PERFORMJACKOFFLV'' ^^^"\{TRANSMIT FRAME) 

y 

(BACKOFF.COMPLETED) 

TRANSMISSION.COMPLETE) 

NTRANSM1T 

(default) 

/ 
(defaut) 

(REA0Y_T0.TRANSMIT 8A MEDIUMJSJDLE) 

Figure 30. The wlan_mac_lla Process Model. 
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OPNET Code for wlanjnacjla 

March 2001 

Header Block 

#include <math.h> 
«include "oms_pr.h" 
#include "oms_tan.h" 
#include "oms_bgutil.h" 

/* Definitions to all protocol specific parameters.   */ 

/*  802.11a Model Addition.   */ 
/* Include an altered support file to eliminate the control packet  */ 
I* durations and add the new lowest mandatory data rate. */ 
#include "wlan_support_l la.h" 

#include "oms_auto_addr_support.h" 
#include "oms_dist_supporth" 

/* incoming statistics and stream wires */ 
«define TRANSMITTER_BUSY_INSTAT 8 
#define LOW_LAYER_INPUT_STREAM_CH4 7 

/*  802.1 la Model Addition  */ 
/* There are now 8 outgoing streams, one for each 802.1 la data rate.    */ 
#defme LOW_LAYER_OUT_STREAM_CHl 0 
#define LOW_LAYER_OUT_STREAM_CH2 I 
#define LOW_LAYER_OUT_STREAM_CH3 2 
#define LOW_LAYER_OUT_STREAM_CH4 3 
#define LOW_LAYER_OUT_STREAM_CH5 4 
#define LOW_LAYER_OUT_STREAM_CH6 5 
#define LOW_LAYER_OUT_STREAM_CH7 6 
#define LOW_LAYER_OUT_STREAM_CH8 7 

/* Flags to load different variables based on attribute settings. */ 
#define WLANAP I 
#define WLAN_STA 0 

/* Dimension count for global per-stream statistics.    */ 
#define WLANC_STRM_STAT_DIM_COUNT      32 

/* Stream index for packets without stream information. */ 
#define WLANC_STRM_UNSET -1 

I* Define interrupt codes for generating handling interrupts */ 
I* indicating changes in deference, frame timeout which infers */ 
/* that the collision has occurred, random backoff and transmission */ 
I* completion by the physical layer (self interrupts). */ 
typedef enum WlanT_Mac_mtrpt_Code 
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{ 
WlanC_Deference_Off,       /* Deference before frame transmission */ 
WlanC_Frame_Timeout,     /* No frame rcvd in set duration (infer collision) */ 
WlanCBackoffElapsed,   /* Backoff done before frame transmission */ 
WlanC_CW_Elapsed /* Backoff done after successful frame transmission */ 
} WlanT_Mac_Intrpt_Code; 

/* Define codes for data and managment frames use in DCF */ 
/* The code defined is consistent with IEEE 802.11 format */ 
/* There are 6 bits used to define the code and in the following */ 
/* enumeration the first 6 bits are used in the type field of the frame. */ 
typedef enum WlanT_Mac_Frame_Type 

{ 
WlanC_Rts = 0x6C, /* Rts code set into the Rts control frame */ 
WlanC_Cts = 0x70, /* Cts code set into the Cts control frame */ 
WlanC_Ack =0x74, /* Ack code set into the Ack control frame */ 
WlanC_Data = 0x80, /* Data code set into the Data frame */ 
WlanC_None = 0x00 /* None type */ 
} WlanT_Mac_Frame_Type; 

/* Defining codes for the physical layer characteristics type     */ 

/*   802.1 la Model Addition  */ 
/* There is only one physical layer possible with 802.11 a: OFDM.   */ 
typedef enum WlanT_Phy_Char_Code 

{ 
WlanCOFDM 
} WlanT_Phy_Char_Code; 

/* Define a structure to maintain data fragments received by each */ 
/* station for the purpose of reassembly (or defragmentation) */ 
typedef struct WlanT_Mac_Defragmentation_Buffer_Entry 

{ 
int tx_station_address;       /* Store the station address of transmitting station */ 
double time_rcvd; /* Store time the last fragment for this frame was received */ 
Sbhandle reassembly_buffer_ptr; /* Store data fragments for a particular packet */ 
} WlanT_Mac_Defragmentation_Buffer_Entry; 

/* Define a structure to maintain a copy of each unique data frame */ 
/* received by the station. This is done so that the station can */ 
/* discard any additional copies of the frame received by it. */ 
typedef struct WlanT_Mac_Duplicate_Buffer_Entry 

{ 
int        tx_station_address; /* store the station address of transmitting station       */ 
int sequence_id; /* rcvd packet sequence id */ 
int fragment_number; /* rcvd packet fragment number */ 
} WlanT_Mac_Duplicate_Buffer_Entry; 

/* This structure contains all the flags used in this process model to determine     */ 
/* various conditions as mentioned in the comments for each flag. */ 
typedef struct WlanT_Mac_Flags 

{ 
Boolean    data_frame_to_send;    /* Flag to check when station needs to transmit. */ 
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Boolean 

Boolean 

Boolean 
Boolean 
Boolean 
Boolean 

Boolean 
Boolean 
Boolean 

Boolean 

Boolean 

backoffflag; 

rts_sent; 

rcvd_bad_packet; 
receiver_busy; 
transmitter_busy; 
wait_eifs_dur; 

gateway_flag; 
bridge_flag; 
immediate_xmt; 

cw_required; 

nav_updated; 

} WlanT_Mac_Flags; 

/* Backoffflag is set when either the collision is 
/* inferred or the channel switched from busy to idle 
/* Flag to indicate that wether the Rts for this 
/* particular data frame is sent 
/* Flag to indicate that the received packet is bad 
/* Set this flag if receiver busy stat is enabled 
/* Set this flag if we are transmitting something. 
/* Set this flag if the station needs to wait for eifs 
/* duration. 
/* Set this flag if the station is a gateway. 
/* Set this flag if the station is a bridge 
/* Set this flag if the new frame can be transmitted 
/* without deferring. 
/* Indicates the arrival of an ACK making the 
/* transmission successful. Requires a CW period. 
/* Indicates a new NAV value since the last time 
/* when self interrupt is scheduled for the end of 
/* deference. 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* This structure contains the destination address to which the received */ 
/* data packet needs to be sent and the contents of the recieved packet */ 
/* from the higher layer. 

*/ 
typedef struct WlanT_Hld_List_Elem 

{ 
double   time_rcvd; 
int destination_address; 
Packet* pkptr; 
} WlanT_Hld_List_Elem; 

/* Time packet is received by the higher layer 
/* Station to which this packet needs to be sent 
/* store packet contents 

*/ 
*/ 

/* Statistic handle array for dimensioned per-stream statistics. */ 
typedef Stathandle WlanT_Shandle_Array [WLANC_STRM_STAT_DIM_COUNT]; 

/* Boolean array that stores the registration status of per-stream statistics. */ 
typedef Boolean WlanT_Stat_Reg_Status_Array rWLANC_STRM_STATJDIM_COUNT]; 

/**        Macros Definition 
/** The data frame send flag is set whenever there is a data to be send by 
/** the higher layer or the response frame needs to be sent. However,in **/ 
/** either case the flag will not be set if the receiver is busy 
/** Frames cannot be transmitted until medium is idle. Once, the medium 
/** is available then the station is eligible to transmit provided there 
/** is a need for backoff. Once the transmission is complete then the 
/** station will wait for the response provided the frame transmitted 
/** requires a response (such as Rts and Data frames). If response 
/** is not needed then the station will defer to transmit next packet 

**/ 
**/ 

**/ 

**/ 
**/ 
**/ 
**/ 
**/ 
**/ 

/* After receiving a stream interrupt, we need to switch states from        */ 
/* idle to defer or transmit if there is a frame to transmit and the */ 
/* receiver is not busy */ 
#define READY_TO_TRANSMIT ((intrptjype = OPC_INTRPT_STRM || (intrpt_type = 

OPC_INTRPT_SELF && intrpt_code = 
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WlanC_CW_Elapsed)) && \ 
(wlanjlags->datajrameJo_send = 
OPC_BOOLINT_ENABLED || frespjojend != 
WlanC_None) && \ 
wlan_flags->receiver_busy = OPC_BOOLINT_DISABLED 
&&\ 
(current_time >= cw_end || fresp_to_send != WlanC_None)) 

/* When we have a frame to transmit, we move to transmit state if the    */ 
/* medium was idle for at least a DIFS time, otherwise we go to defer    */ 
/* state. 

*/ 
#define MEDIUMJSJDLE ((currentJime - nav_duration >= difsjime) && \ 

(wlan_flags->receiver_busy = 
OPC_BOOLINT_DISABLED) && \ 
(current_time - rcv_idle_time >= difs_time)) 

/* Change state to Defer from Frm_End, if the input buffers are not empty or a frame needs */ 
/* to be retransmitted or the station has to respond to some frame. 

*/ 
#define FRAME_TO_TRANSMIT ((wlan_flags->data_frame_to_send = 

OPC_BOOLINT_ENABLED && currentjime >= cw_end) || 
fresp_to_send != WlanC_None || retry_count != 0) 

/* After defering for either collision avoidance or interframe gap     */ 
/* the channel will be available for transmission */ 
#define DEFERENCE_OFF (intrptJype = OPC_INTRPT_SELF && \ 

intrptcode = WlanC_Deference_Off && \ 
wlan_flags->receiver_busy = 
OPC_BOOLINT_DISABLED) 

/* Isssue a transmission complete stat once the packet has successfully */ 
/* been transmitted from the source station */ 
#define TRANSMISSION_COMPLETE     (intrptJype = OPC_INTRPT_STAT && \ 

op_intrpt_stat () = TRANSMITTER_BUSY_INSTAT) 

/* Backoff is performed based on the value of the backoff flag. */ 
#define PERFORM_BACKOFF (wlan_flags->backoff_flag = OPC_BOOLINT_ENABLED) 

/* Need to start transmitting frame once the backoff (self intrpt) completed */ 
#define BACKOFF_COMPLETED (intrpt_type = OPC_INTRPT_SELF && \ 

intrptcode = WlanCJBackoffJElapsed && \ 
wlan_flags->receiver_busy = 
OPC_BOOLINT_DISABLED) 

/* After transmission the station will wait for a frame response for */ 
/* Data and Rts frames. */ 
#defme WAIT_FOR_FRAME (expected_frame_type != WlanC_None) 

/* Need to retransmit frame if there is a frame timeout and the    */ 
/* required frame is not received */ 
#define FRAMEJTIMEOUT (intrptjype = OPCJNTRPTSELF && intrptjode = 

WlanCJFrame_Timeout) 
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/* If the frame is received appropriate response will be transmitted  */ 
/* provided the medium is considered to be idle */ 
#define FRAME_RCVD (intrptjype = OPC_INTRPT_STRM && wlanjlags- 

>rcvd_badjpacket = OPC_BOOLINT_DISABLED && \ 
i_strm <= LOW_LAYER_INPUT_STREAM_CH4) 

/* Skip backoff if no backoff is needed */ 
#define TRANSMIT_FRAME (wlan_flags->backoff_flag = OPC_BOOLINT_DISABLED) 

/* Expecting frame response after data or Rts transmission */ 
#defme EXPECTING_FRAME (expected_frame_type != WlanC_None) 

/* Macros that check the change in the busy status of the receiver. */ 
#define RECEIVER_BUSY_HIGH (intrptjype = OPC_INTRPT_STAT && 

intrpt_code < TRANSMITTER_BUSY_INSTAT && \ 
op_stat_local_read (intrpt_code) = 1.0 && 
(rcv_channel_status A (1 «intrpt_code) = 0)) 

#define RECEIVER_BUSY_LOW (intrpt_type = OPC_INTRPT_STAT && intrpt_code < 
TRANSMITTER_BUSY_INSTAT && \ 
rcv_channel_status = 0) 

/* Function declarations. */ 
static void wlan_mac_sv init (); 
static void wlan_higher_layer_data_arrival (); 
static void wlan_physical_layer_data_arrival (); 
static void wlan_hlpk_enqueue (Packet* hld_pkptr, int dest_addr); 
Boolean wlan_tuple_find (int sta_addr, int seq_id, int frag_num); 

static void wlan_data_process (Packet* segjpkptr, int sta_addr, int 
final_dest_addr, int fragjtium, int more_frag, int pkt_id, int rcvd_sta_bssid); 

static void wlan_accepted_frame_stats_update (Packet* seg_pkptr); 
static void wlanjper_stream_stat_register (int streamjndex); 
static void wlan_interrupts_process (); 
static void wlan_prepare_frame_to_send (int framejype); 
static void wlan_frame_transmit (); 
static void wlan_schedule_deference (); 
static void wlan_frame_discard 0; 
static void wlan_mac_rcv_channel_status_update (int channel_id); 
static void wlan_mac_error (char* msgl, char* msg2, char* msg3); 

/*   802.11a Model Addition  */ 
/* Add function for determining the control frame speed based on the operational data rate.   */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
static double control_speed (double data_rate); 

/*   802.1 la Model Addition  */ 
/* Add function to compute the data field duration of an OFDM PPDU (in bits). */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
static double ppdu_duration (int PSDUJength, double transmissionjate); 
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State Variables Block 

/* Internal state tracking for FSM */ 
FSM SYS STATE 

/* State Variables */ 
int 
int 
WIanT_MacJntrpt_Code 
int 
List* 
double 
int 
int 
int 
int 
Sbhandle 
WlanT_Mac_Frame_Type 
double 
int 
int 
WlanTJVfacJFrame_Type 
int 
double 
Stathandle 
double 
Packet * 
Stathandle 
int 
int 
int 
int 
List* 
WlanT_Mac_Flags* 
OmsT_Aa_Address_Handle 
double 
double 
double 
WlanT_Mac_Duplicate_Buffer_ 
Pmohandle 
int 
char 
Stathandle 
Stathandle 
Stathandle 
Stathandle 
Stathandle 
Stathandle 
Stathandle 
Stathandle 
Stathandle 
Stathandle 
Stathandle 

retry_count; 
intrpt_type; 
intrpt_code; 
my_address; 
hld_listjptr; 
operational_speed; 
rrag_threshold; 
packet_seq_number; 
packet_fiag_number, 
destination_addr; 
fragmentation_buffer_ptr; 
fresp_to_send; 
nay_duratk>n; 
rts_threshold; 
duplicate_entry; 
expected_fxame_type; 
remote_sta_addr; 
backoff_slots; 
packet_load_handle; 
intrpt_time; 
wlan_transrnit_rrame_copy_ptr; 
backoffjslotsjhandle; 
instrm_rrom_mac_if; 
outstrm_to_mac_if; 
num_rragments; 
remainder_size; 
def3ragmentation_list_ptr; 
wlan_flags; 
oms_aa_handle; 
current_time; 
rcv_idle_time; 
cw_end; 

Entry**      duplicate_list_ptr; 
hld_pmh; 

max_backoff; 
current_state_name [32]; 
hljpackets_rcvd; 
media_access_delay; 
ete_delay_handle; 
global_ete_delay_handle; 
global_throughput_handle; 
globalJk>ad_handle; 
global_dropped_data_handle; 
global_mac_delay_handle; 
ctrl_traffic_rcvd_handle_inbits; 
ctrl_traffic_sent_handle_inbits; 
ctrl_traffic_rcvd_handle; 
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Stathandle 
Stathandle 
Stathandle 
Stathandle 
Stathandle 
WlanT_Shandle_Array 
WlanT_Shandle_Array 
WlanT_Shandle_Array 
WlanT_Stat_Reg_Status_An-ay 
double 
double 
hit 
int 
double 
Stathandle 
Stathandle 
Stathandle 
int 
int 
int 
WlanT_Mac_Frame_Type 
Evhandle 
Evhandle 
Evhandle 
Evhandle 
double 
int 
Boolean 
int 
Stathandle 
int 
int 
int 
int 
double 
WlanT_Phy_Char_Code 
OmsT_Aa_Address_Handle 
int 
Stathandle 
Stathandle 
Log_Handle 
Boolean 
int 
int 
double 
Ici* 
int 
int* 
int 
double 
double 
double 
double 

ctrl_traffic_sent_handle; 
data_traffic_rcvd_handle_inbits; 
data_traffic_sent_handle_inbits; 
data_traffic_rcvd_handle; 
data_traffic_sent_handle; 
ete_delay_per_strm_sh_array; 
dropped_data_per_strm_sh_atTay; 
throughput_per_strm_sh_array; 
stat_reg_status_array; 
sifs_time; 
slot_time; 
cw_min; 
cwjmax; 
difs_time; 
channel_reserv_handle; 
retrans_handle; 
throughput_handle; 
long_retry_limit; 
short_retry_limit; 
retry_limit; 
last_frametx_type; 
deference_evh; 
backoff_elapsed_evh; 
frame_timeout_evh; 
cw_end_evh; 
eifs_time; 
i_strm; 
wlan_trace_active; 
pkt_in_service; 
bitsloadhandle; 
ap_flag; 
bss_flag; 
bss_id; 
hld_max_size; 
max_receive_lifetime; 
phy_char_flag; 
oms_aa_wlan_handle; 
total_hlpk_size; 
drop_packet_handle; 
dropjpacket_handle_inbits; 
drop_pkt_log_handle; 
dropjpkt_entry_log_flag; 
packet_size; 
packet_strm_id; 
receive_time; 
Uc_iciptr; 
rcv_channel_status; 
bss_stn_list; 
bss_stn_count; 
plqjjpreamble_duration; 
plcp_header_duration; 
plq^overhead; 
response_speed; 
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} wlan_mac_lla_state; 

#define pr_state_ptr ((wlan_mac_l la_state*) SimI_Mod_State_Ptr) 
#define retry_count pr_statejptr->retry_count 
#define intrpt_type pr_state_ptr->intrpt_type 
#define intrpt_code pr_state_ptr->intrpt_code 
#define my_address pr_state_ptr->my_address 
#define hld_list_ptr pr_state_ptr->hld_list_ptr 
#define operational_speed pr_state_ptr->operational_speed 
#defme frag_threshold pr_state_ptr->ftag_threshold 
#define packet_seq_number pr_statejptr->packet_seq_number 
#define packet_frag_number pr_state_ptr->packet_frag_number 
#define destination_addr pr_state_ptr->destination_addr 
#define fragmentation_buffer_ptr pr_statejptr->fragmentation_buflfer_ptr 
#define fresp_to_send pr_state_ptr->fresp_to_send 
#define nav_duration pr_state_ptr->nav_duration 
#define rts_threshold pr_state_ptr->rts_threshold 
#define duplicate_entry pr_state_ptr->duplicate_entry 
#define expected_frame_type pr_state_ptr->expected_frame_type 
#define remote_sta_addr pr_state_ptr->remote_sta_addr 
#define backoff_slots pr_state_ptr->backoff_slots 
#define packet_load_handle pr_statejptr->packet_load_handle 
#define intrpt_time pr_state_ptr->intrpt_time 
#define wlan_transmit_frame_copy_ptr pr_state_ptr->wlan_transmit_frame_copy_ptr 
#define backoff_slots_handle pr_state_ptr->backoff_slots_handle 
#define instrm_from_mac_if pr_state_ptr->instrm_from_mac_if 
#define outstrm_to_mac_if pr_state_ptr->outstrm_to_mac_if 
#define num_fragments pr_state_ptr->num_fragments 
#define remainder_size pr_state_ptr->remainder_size 
#define defragmentation_list_ptr pr_state_ptr->defragmentation_list_ptr 
#defme wlan_flags pr_state_ptr->wlan_flags 
#define oms_aa_handle pr_state_ptr->oms_aa_handle 
#define cuirent_time pr_state_ptr->current_time 
#define rcv_idle_time pr_state_ptr->rcv_idle_time 
#define cw_end pr_state_ptr->cw_end 
#define duplicate_list_ptr pr_state_ptr->duplicate_list_ptr 
#define hld_pmh pr_state_ptr->hld_pmh 
#define max_backoff pr_state_ptr->max_backoff 
#define cuirent_state_name pr_state_ptr->current_state_name 
#define hl_packets_rcvd pr_state__ptr->hl_packets_rcvd 
#define media_access_delay pr_state_ptr->media_access_delay 
#define ete_delay_handle pr_state_ptr->ete_delay_handle 
#define global_ete_delay_handle pr_state_ptr->global_ete_delay_handle 
#define global_throughput_handle pr_state_ptr->global_tbxoughput_handle 
#define global_load_handle pr_state_ptr->global_load_handle 
#define global_dropped_data_handle pr_statejptr->global_dropped_data_handle 
#define global_mac_delay_handle pr_state_ptr->global_mac_delay_handle 
#define ctrl_traffic_rcvd_handle_inbits pr_statejptr->ctrl_trafific_rcvd_handle_inbits 
#define ctrl_traffic_sent_handle_inbits pr_state_ptr->ctrl_traffic_sent_handle_inbits 
#define ctrl_traffic_rcvd_handle pr_state_ptr->ctrl_trafific_rcvd_handle 
#define ctrl_trafKc_sent_handle pr_state_ptr->ctrl_traffic_sent_handle 
#define data_traflfic_rcvd_handle_inbits pr_state_ptr->data_traffic_rcvd_handle_inbits 
#define data_traffic_sent_handle_inbits pr_state_ptr->data_traffic_sent_handle_inbits 
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#define data_rraffic_rcvd_handle 
#define data_traffic_sent_handle 
#define ete_delay_per_strm_sh_array 
#define dropped_datajper_strm_sh_array 
#define throughput_per_stmi_sh_array 
#define stat_reg_status_array 
#define sifs_time 
#define slot_time 
#define cw_min 
#define cw_max 
#define difs_time 
#define channel_reserv_handle 
#define retransjiandle 
#define throughput_handle 
#defme long_retry_limit 
#define short_retry_limit 
#define retry_limit 
#defme lastjrametxjype 
#define deference_evh 
#define backoff_elapsed_evh 
#define frame_timeout_evh 
#define cw_end_evh 
#define eifs_time 
#define i_strm 
#define wlan_trace_active 
#define pkt_in_service 
#define bits_load_handle 
#define ap_flag 
#define bss_flag 
#define bss_id 
#define hld_max_size 
#define max_receive_lifetime 
#define phy_char_flag 
#define oms_aa_wlan_handle 
#define total_hlpk_size 
#define drop_packet_handle 
#define drop_packet_handle_inbits 
#define drop_pkt_log_handle 
#define drop_pkt_entry_log_flag 
#define packetsize 
#define packet_strm_id 
#define receive_time 
#define llc_iciptr 
#defme rcv_channel_status 
#define bss_stn_list 
#define bss_stn_count 
#define plcp_preamble_duration 
#define plcp_header_duration 
#define plcp_overhead 
#define response_speed 

pr_state_ptr->data_traffic_rcvd_handle 
pr_statejptr->data_trafFic_sent_handle 
pr_state_ptr->ete_delay_per_strm_sh_aiTay 
pr_state_ptr->dropped_data_per_strm_sh_array 
pr_state_ptr->throughput_per_strm_sh_array 
pr_state_ptr->stat_reg_status_array 

pr_statejptr->sifs_time 
pr_statejptr->slot_time 

pr_state_ptr->cw_min 
pr_state_ptr->cw_max 

pr_state_ptr->difs_time 
pr_state_ptr->channel_reserv_handle 
pr_state_ptr->retrans_handle 
pr_state_ptr->throughput_handle 
pr_statejptr->long_retry_limit 
pr_state_ptr->short_retry_limit 

pr_state_ptr->retry_limit 
pr_statejptr->lastjrametx_type 
pr_state_ptr->deference_evh 
pr_state_ptr->backoff_elapsed_evh 
pr_statejptr->frame_timeout_evh 
pr_state_ptr->cw_end_evh 

pr_state_ptr->eifs_time 
pr_state_ptr->i_strm 
pr_state_ptr->wlan_trace_active 
pr_state_ptr->pkt_in_service 
pr_state_ptr->bits_load_handle 

pr_state_ptr->ap_flag 
pr_state_ptr->bss_flag 

pr_statejptr->bss_id 
pr_state_ptr->hld_max_size 
pr_state_ptr->max_receive_lifetime 
pr_state_ptr->phy_char_flag 
pr_statejptr->oms_aa_wlan_handle 
pr_statejptr->total_hlpk_size 
pr_state_ptr->drop_packet_handle 
pr_state_ptr->drop_packet_handle_inbits 
pr_state_ptr->drop_pkt_log_handle 
pr_state_ptr->dropj3kt_entry_log_flag 
pr_state_ptr->packet_size 
pr_state_ptr->packet_strm_id 
pr_state_ptr->receive_time 
pr_state_ptr->llc_iciptr 
pr_state_ptr->rcv_channel_status 
pr_state_ptr->bss_stn_list 
pr_statejptr->bss_stn_count 
pr_state_ptr->plqp_preamble_duration 
pr_state_ptr->plq)_header_duration 
pr_statejptr->plq)_overhead 
pr_state_ptr->response_speed 

/* This macro definition will define a local variable called       */ 
/* "op_svjptr" in each function containing a FIN statement.     */ 

76 



/* This variable points to the state variable data structure,        */ 
I* and can be used from a C debugger to display their values.   */ 
#undefFIN_PREAMBLE 
#define FIN_PREAMBLEwlan_mac_l Ia_state *op_sv__ptr = pr_state__ptr, 

Temporary Variables Block 

/* variables used for registering and discovering process models */ 
OmsT Pr Handle process_record_handle; 
List* proc_record_handle_list_ptr, 
int record_handle_list_size; 
int ap_count; 
int count; 
double sta addr; 
double statype; 
Objid mac_if_module_objid; 
char proc_model_name [300]; 
Objid my_subnet_pbjid; 
Objid my_objid; 
Objid my_node_objid; 
Objid params_attr_objid; 
Objid wlan_params_comp_attr_objid; 
Objid strm_objid; 
int strm; 
int y; 
hit addr_index; 
int num_out_assoc; 
int node_count; 
int node_objid; 
WianT Hid List Elem* hld_ptr. 
Prohandle ownjprohandle; 
double timer duration; 
double cw slots; 
char msgl [320]; 
char msg2 [120]; 
WlanT_Phy_Char_Code stajphy_char_flag; 

static void 
wlan_mac_sv_init () 

{ 
Objid 
Objid 
Objid 
Objid 
Objid 
Objid 
Objid 
Objid 
Objid 

mac_params_comp_attr_objid; 
params_attr_objid; 
phy_params_comp_attr_objid; 
my_objid; 
my_node_objid; 
my_subnet_objid; 
rx_objid; 
tx_objid; 
charmjparams_comp_attr_objid; 
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0); 

Objid subchannjparams_attr_objid; 
Objid chann_objid; 
Objid sub_chann_objid; 
int num_chann; 
cnar subnet_name[512]; 
double bandwidth; 
double frequency; 
int apl_flag, i; 

/** 1. Initialize state variables. **/ 
/** 2. Read model attribute values in variables. **/ 
/** 3. Create global lists **/ 
/** 4. Register statistics handlers **/ 
FIN (wlan_mac_sv_init ()); 

/* object id of the surrounding processor.     */ 
my_objid = op_id_self (); 

/* Obtain the node's object identifier */ 
my_node_objid = op_topo_parent (my_objid); 

/* Obtain subnet objid. */ 
my_subnet_objid = op_topo_parent (my_node_objid); 

/* Obtain the values assigned to the various attributes */ 
op_ima_obj_attr_get (my_objid, "Wireless LAN Parameters", &mac_params_comp_attf_objid); 
params_attr_objid = op_topo_child (mac_params_comp_attr_objid, OPC_OBJTYPE_GENERIC, 

/* Determine the assigned MAC address.      */ 
op_ima_obj_attr_get (my_objid, "station_address", &my_address); 

/* Obtain an address handle for resolving WLAN MAC addresses.        */ 
oms_aa_handle = oms_aa_address_handle_get ("MAC Addresses", "station_address"); 

/* Creating a pool of station addresses for each subnet based on subnet name.      */ 
op_ima_obj_attr_get (my_subnet_objid, "name", &subnet_name); 
oms_aa_wlan_handle = oms_aa_address_handle_get (subnet_name, "station_address"); 

/* Get model attributes.     */ 
op_ima_obj_attr_get (params_attr_objid, "Data Rate", &operational_speed); 
op_ima_obj_attr_get (params_attr_objid, "Fragmentation Threshold", &frag_threshold); 
op_ima_obj_attr_get (params_attr_objid, "Rts Threshold", &rts_threshold); 
op_ima_obj_attr_get (params_attr_objid, "Short Retry Limit", &short_retry_limit); 
op_ima_obj_attr_get (params_attr_objid, "Long Retry Limit", &long_retry_limit); 
op_ima_obj_attr_get (params_attr_objid, "Access Point Functionality", &ap_flag); 
op_ima_obj_attr_jet (params_attr_objid, "Buffer Size", &hld_max_size); 
op_ima_obj_attr_get (params_attr_objid, "Max Receive Lifetime", &max_receive_lifetime); 

/* Initialize the retry limit for the current frame to long retry limit. */ 
retryjimit = long_retry_limit; 
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/* Get the Channel Settings. 
*/ 

/* Extracting Channel 0,1,2,3,4,5,6,7 (i.e. 6,9,12,18,24,36,48 and 54 Mbps) settings.        */ 
op_ima_obj_attr_get (params_attr_objid, "Channel Settings", &chann_params_comp_attr_objid); 
subchann_params_attr_objid = op_topo_child (chann_params_comp_attr_objid, 

OPC_OBJTYPE_GENERIC, 0); 
op_ima_obj_attr_get (subchann_params_attr_objid, "Bandwidth", &bandwidth); 
op_ima_obj_attr_get (subchannjDarams_attr_objid, "Min Frequency", &frequency); 

/* Load the appropriate physical layer characteristics. Here, this will only be OFDM.   */ 
op_ima_obj_attr_get (params_attr_objid, "Physical Characteristics", &phy_char_flag); 

/*   802.1 la Model Addition  */ 
/* Based on physical charateristics of OFDM, set appropriate values for SIFS time,   */ 
/* Slot time, and the min/max contention window sizes.   */ 
/* Also, include values for the PLCP preamble and PLCP header (minus the SERVICE field)   */ 
/* in terms of seconds for use later.   */ 
switch (phy_char_flag) 

{ 
case WlanCJDFDM: 

{ 
/* Slot duration in units of sec.        */ 
slot_time = .000009; 

/* Short interframe gap (SIFS) in units of sec. */ 
sifsjime = .000016; 

/* Minimum contention window size for selecting backoff slots. */ 
cw_min= 15; 

/* Maximum contention window size for selecting backoff slots. */ 
cw_max= 1023; 

/* PLCP Preamble in units of seconds.   */ 
plcp_preamble_duration = .000016; 

/* PLCP Header (not including the SERVICE field) in units of seconds.   */ 
plcp_header_duration = .000004; 
break; 
} 

default: 

OPC_NIL, OPC_NIL); 

} 

{ 
wlan_mac_error ("Unexpected Physical Layer Characteristic encountered.", 

break; 
} 

/*   802.1 la Model Addition  */ 
/* Calculate the 802.11aPLCP overhead (preamble andheader) in units of seconds.   */ 
plcpoverhead = plcp_preamble_duration + plcp_header_duration; 
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/* By default stations are configured for IBSS unless an Access Point is found,    */ 
/* then the network will have an infrastructure BSS configuration. '    */ 
bss_flag = OPC_BOOLINT_DISABLED; 

/* Computing DIFS interval which is interframe gap between successive */ 
/* frame transmissions. */ 
difs_time = sifs_time + 2* slot_time; 

/*   802.1 la Model Addition  */ 
/* If the receiver detects that the received frame is erroneous then it       */ 
/* will set the network allocation vector to EIFS duration. */ 
/* The EIFS time for 802.1 la is calculated per the 802.11 specification  */ 
/* (see Section 9.2.10, page 85) using the lowest mandatory data rate of 6 Mbps */ 
eifsjime = difsjime + sifsjime + plcp_overhead + ppdu duration (WLAN ACK LENGTH 

WLAN_MIN_MAN_DATA_RATE); ~ 

/* Creating list to store data arrived from higher layer.*/ 
hld_list_ptr = op_prg_list_create (); 

/* Initialize segmentation and reassembly buffer.        */ 
defragmentation_list_ptr = op_prg_list_create 0; 
fragmentation_buffer_ptr = op_sar_buf_create(OPC SAR BUF TYPE SEGMENT 

OPC_SAR_BUF_OPT_PK_BNDRY); -      -       - _ 

/* Registering local statistics. */ 
packet_load_handle = 0p_stat reg ("Wireless LanXoad (packets)" 

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
bits_load_handle = op_stat_reg ("Wireless LanXoad (bits/sec)" 

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
hl_packets_rcvd = op_stat_reg ("Wireless Lan.Hld Queue Size (packets)" 

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
backoff_slots_handle = op_stat_reg ("Wireless Lan.Backoff Slots (slots)" 

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
data_traffic_sent_handle = op_stat_reg ("Wireless Lan.Data Traffic Sent (packets/sec)" 
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 

data_traffic_rcvd_handle = op_stat_reg ("Wireless Lan.Data Traffic Rcvd 
(packets/sec)",      OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 

data_traffic_sent_handle_inbits      = op_stat_reg ("Wireless Lan.Data Traffic Sent (bits/sec)" 
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); ' 

data_traffic_rcvd_handle_inbits      = op_stat_reg ("Wireless Lan.Data Traffic Rcvd (bits/sec)" 
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); ' 

ctrl_traffic_sent_handle = op_stat_reg ("Wireless Lan.Control Traffic Sent 
(packets/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 

ctrl_traffic_rcvd_handle = op_stat_reg ("Wireless Lan.Control Traffic Rcvd 
(packets/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
™„      ctrl_traffic_sent_handle_inbits       = op_stat_reg ("Wireless Lan.Control Traffic Sent (bits/sec)" 
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 

ctrl_traffic_rcvd_handle_inbits       = op_stat_reg ("Wireless Lan.Control Traffic Rcvd (bits/sec)" 
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 

drop_packet_handle = op_stat_reg ("Wireless Lan.Dropped Data Packets 
(packets/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 

drop_packet_handle_inbits = op_stat_reg ("Wireless Lan.Dropped Data Packets 
(bits/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
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retrans_handle = op_stat_reg ("Wireless Lan.Retransmission Attempts 
(packets)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 

media_access_delay = op_stat_reg ("Wireless Lan.Media Access Delay (sec)", 
OPC_STAT_INDEX_NONE,OPC_STAT_LOCAL); 

ete_delay_handle = op_stat_reg ("Wireless Lan.Delay (sec)", 
OPC_STAT_INDEX_NONE,OPC_STAT_LOCAL); 

channel_reserv_handle = op_stat_reg ("Wireless Lan.Channel Reservation (sec)", 
OPC_STAT_INDEX_NONE,OPC_STAT_LOCAL); 

throughput_handle = op_stat_reg ("Wireless Lan.Throughput (bits/sec)", 
OPC_STAT_INDEX_NONE,OPC_STAT_LOCAL); 

/* Registering global statistics.        */ 
global_ete_delay_handle = op_stat_reg ("Wireless LAN.Delay (sec)", 

OPC_STAT_INDEX_NONE,OPC_STAT_GLOBAL); 
global_load_handle = op_stat_reg ("Wireless LANXoad (bits/sec)", 

OPC_STAT_INDEX_NONE,OPC_STAT_GLOBAL); 
global_throughput_handle = op_stat_reg ("Wireless LAN.Throughput (bits/sec)", 

OPC_STAT_INDEX_NONE,OPC_STAT_GLOBAL); 
global_dropped_data_handle = op_stat_reg ("Wireless LANLData Dropped (bits/sec)", 

OPC_STAT_INDEX_NONE,OPC_STAT_GLOBAL); 
global_mac_delay_handle = op_stat_reg ("Wireless LAN.Media Access Delay (sec)", 

OPC_STAT_IKTOEX_NONE,OPC_STAT_GLOBAL); 

/* Initialize the registration status array for per-stream*/ 
/* statistics. We will register them only if we detect a */ 
/* packet that belongs to that particular stream. */ 
for (i = 0; i < WLANC_STRM_STAT_DIM_COUNT; i++) 

{ 
stat_reg_status_array [i] = OPC_FALSE; 
} 

/* Registering log handles */ 
drop_pkt_log_handle        = op_prg_log_handle_create (OpC_Log_Category_Conflguration, 

"Wireless Lan", "Data packet Drop", 128); 
drop_pkt_entry_log_flag = OPC_FALSE; 

/* Allocating memory for the flags used in this process model. */ 
wlan_flags = (WlanT_Mac_Flags *) opjprg_mem_alloc (sizeof (WlanT_Mac_Flags)); 

/* Disabling all flags as a default. 
wlan_flags->data_frame_to_send 
wlan_flags->backoff_flag 
wlan_flags->rts_sent 
wlan_flags->rcvd_bad_packet 
wlan_flags->receiver_busy 
wlan_flags->transmitter_busy 
wlan_flags->gateway_flag 
wlan_flags->bridge_flag 
wlan_flags->wait_eifs_dur 
wlan_flags->immediate_xmt 
wlan_flags->cw_required 
wlan_flags->nav_updated 

*/ 
= OPCJBOOLINTJDISABLED: 
= OPC_BOOLINT_DISABLED; 
= OPC_BOOLINT_DISABLED 
= OPCJBOOLINT_DISABLED 
= OPC_BOOLINT_DISABLED 
= OPCJBOOLINTJDISABLED 
= OPC_BOOLINT_DISABLED 
= OPC_BOOLINT_DISABLED 

= OPC_BOOLINT_DISABLED; 
= OPC_BOOLINT_DISABLED 
= OPCJBOOLINTJDISABLED 
= OPC BOOLINT DISABLED 
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/* Intialize retry count. */ 
retry_count = 0; 

/* Initialize the packet pointer that holds the last */ 
/* transmitted packet to be used for retransmissions when */ 
/* necessary. */ 
wlan_transmit_frame_copy_ptr = OPCJNIL; 

/* Initialize nav duration   */ 
nav_duration = 0; 

/* Initialize receiver idle and conetion window timers.*/ 
rcyjdlejime = -2.0 * difs_time; 
cw_end =       0.0; 

/* Initializing the sum of sizes of the packets in the higher layer queue. */ 
total_hlpk_size = 0; 

/* Initialize the state variables related with the current frame that is being handled. */ 
packetsize   = 0; 
receive_time  =0.0; 
packet_strm_id = WLANC_STRM_UNSET; 

/* Initialize the receiver channel status. */ 
rcv_channel_starus = 0; 

/* Data arrived from higher layer is queued in the buffer. Pool memory is used for */ 
/* allocating data structure for the higher layer packet and the random destination */ 
/* for the packet. This structure is then inserted in the higher layer arrival queue. */ 
hld_pmh = op_prg_pmo_define ("WLAN hid list elements", sizeof (WlanT_Hld_List_Elem), 32); 

/* Obtaining transmitter objid for accessing channel data rate attribute.  */ 
tx_objid = op_topo_assoc (my_objid, OPC_TOPO_ASSOC_OUT, OPC_OBJTYPE_RATX, 0); 

/* If no receiver is attached then generate error message and abort the simulation. */ 
if (tx_objid = OPC_OBJID_INVALID) 

{ 
wlan_mac_error ("No transmitter attached to this MAC process", OPCJNIL, OPCJNIL); 

/* Obtaining number of channels available.   */ 
op_ima_obj_attr_get (tx_objid, "channel", &chann_objid); 
numchann = op_topo_child_count (chann_objid, OPC_OBJTYPE_RATXCH); 

/* Generate error message and terminate simulation if no channel is available for transmission 
*/ 
if (num_chann = 0) 

{ 
wlan_mac_error (" No channel is available for transmission", OPC NIL, OPC NIL)- 
} " 

/* Setting the Frequency and Bandwidth for the transmitting channels.   */ 
for (i = 0; i < num_chann; i++) 
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{ 
/* Accessing channel to set the frequency and bandwidth.        */ 
sub_chann_objid = op_topo_child (chann_objid, OPC_OBJTYPE_RATXCH, i); 

/* Setting the operating freqeuncy and channel bandwidth for the transmitting channels. 
*/ 

op_ima_obj_attr_set (sub_chann_objid, "bandwidth", bandwidth); 
op_ima_obj_attr_set (sub_chann_objid, "min frequency", frequency); 

} 

/* Obtaining receiver's objid for accessing channel data rate attribute.    */ 
rx_objid = op_topo_assoc (my_objid, OPC_TOPO_ASSOC_IN, OPC_OBJTYPE_RARX, 0); 

/* If no receiver is attached then generate error message and abort the simulation. */ 
if (rx_objid = OPC_OBJID_INVALID) 

{ 
wlan_mac_error ("No receiver attached to this MAC process", OPCJNIL, OPC_NIL); 

} 

/* Obtaining number of channels available.   */ 
op_ima_obj_attr_get (rx_objid, "channel", &chann_objid); 
num_chann = op_topo_child_count (chann_objid, OPC_OBJTYPE_RARXCH); 

/* Generate error message and terminate simulation if no channel is available for reception.*/ 
if (num_chann = 0) 

{ 
wlan_mac_error (" No channel is available for reception", OPCJNIL, OPC_NIL); 

} 

/* Setting the Frequency and Bandwidth for the transmitting channels.   */ 
for (i = 0; i < num_chann; i++) 

{ 
/* Accessing channel to set the frequency and bandwidth.        */ 
sub_chann_objid = op_topo_child (chann_objid, OPC_OBJTYPE_RARXCH, i); 

/* Setting the operating freqeuncy and channel bandwidth for the receiving channels. 
*/ 

op_ima_obj_attr_set (sub_chann_objid, "bandwidth", bandwidth); 
op_ima_obj_attr_set (sub_chann_objid, "min frequency", frequency); 

} 

llcjciptr = op_ici_create ("wlanmacind"); 

if (llc_iciptr = OPC_NIL) 
{ 
wlanmacerror ("Unable to create ICI for communication with LLC", OPCJNIL, 

OPC_NIL); 
} 

FOUT; 
} 

static void 
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wlan_higher_layer_data_arrival () 
{ 
Packet* 
int 
int 
int 
Ici* 
Ici* 
Boolean 

hld_pkptr; 
pk_size, orig_pk_size, stream_id; 
i; 
dest_addr; 
icijptr; 
strm_info_iciptr; 
stn_det_flag; 

/** Queue the packet as it arrives from higher layer. 
/** Also, store the destination address of the packet 
/** in the queue and the arrival time. 
FIN (wlan_higher_layer_data_arrival 0); 

/* Get packet from the incomming stream from higher layer and 
/* obtain the packet size 
hld_pkptr = op_pk_get (op_intrpt_strm ()); 

*/ 
*/ 

/* For bridge and gateway, only accept packet from the higher */ 
/* layer if the access point functionality is enabled. */ 
if (((wlan_flags->gateway_flag = OPC_BOOLINT_ENABLED) |[ 

(wlan_flags->bridge_flag = OPC_BOOLINT_ENABLED)) && 
(ap_flag = OPC_BOOLINT_DISABLED)) 
{ 
op_pk_destroy (hld_pkptr); 
FOUT; 
} 

pk_size  = op_pk_total_size_get (hld_pkptr); 

/* maintaining total packet size of the packets in the higer layer queue.  */ 
total_hlpk_size = total_hlpk_size + pk_size; 

/* If fragmentation is enabled and packet size is greater than the threshold 
/* then MSDU length will not be more than fragmentation threshold, hence 
/* the packet will be fragmented into the size less than or equal to fragmentaion 
/* threshold. 
origjpk_size = pk_size; 
if «pk_size > fragjhreshold * 8) && (fragjhreshold != -1)) 

pk_size = fragjhreshold * 8; 
} 

/* Destroy packet if it is more than max msdu length or its 
/* size zero. Also, if the size of the higher layer queue 
/* will exceed its maximum after the insertion of this packet, 
/* then discard the arrived packet. 
/* The higher layer is reponsible for the retransmission of 
/* this packet. 
if (pk_size > WLAN_MAXMSDU_LENGTH || pk_size = 0 || 

total_hlpk_size > hld_max_size) 
{ 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
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/* Write an appropriate simulation log message. */ 
if (drop_pkt_entry_log_flag = OPC_FALSE) 

{ 
if (total_hlpk_size > hld_max_size) 

{ 
/* Writing log message for dropped packets. */ 
op_prg_log_entry_write(dropjpkt_log_handle, 
MSYMPTOMS(S):\n" 

" Wireless LAN MAC layer discarded some packets due to\n " 
" insufficient buffer capacity. \n" 

"\n" 
" This may lead to: \n" 
" - application data loss.\n" 
" - higher layer packet retransmission.\n" 
"\n" 
" PvEMDEDIAL ACTION (S): \n" 
" 1. Reduce Network laod. \n" 
" 2. User higher speed wireless Ian. \n" 
" 3. Increase buffer capacityW); 

} 

if (pk_size > WLAN_MAXMSDU_LENGTH) 
{ 
/* Writing log message for dropped packets due to packet size.*/ 
op_prg_log_entry_write(dropjpkt_log_handle, 
"SYMPTOMS(S):\n" 

" Wireless LAN MAC layer discarded some packets due to\n " 
" large packet size. \n" 

"\n" 
"This may lead to: \n" 
" - application data loss.\n" 
" - higher layer packet retransmissionAn" 
"\n" 
" REMDEDIAL ACTION (S): \n" 
" 1. Enable fragmentation threshold. \n" 
" 2. Set the higher layer packet size to \n" 

" be smaller than max MSDU size \n"); 
} 

drop_pkt_entry_log_flag = OPC_TRUE; 
} 

/* Change the total hold queue size to original value   */ 
/* as this packet will not be added to the queue. */ 
total_hlpk_size = total_hlpk_size - origjpk_size; 

/* Report stat when data packet is dropped due to overflow buffer.        */ 
op_stat_write (drop_packet_handle, 1.0); 
op_stat_write (drop_packet_handle, 0.0); 

/* Report stat when data packet is dropped due to overflow buffer.        */ 
op_stat_write (drop_packet_handle_inbits, (double) (orig_pk_size)); 
op_stat_write (drop_packet_handle_inbits, 0.0); 
op_stat_write (global_dropped_data_handle, (double) (orig_pk_size)); 
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op_stat_write (global_dropped_data_handle, 0.0); 

/* Retrieve the traffic stream information of the packet and      */ 
/* update the corresponding per-stream statistics. 
strm_info_iciptr = opjpk_ici_get (hld_pkptr); 
if ((strm_mfo_iciptr != OPCJNIL) && (op_ici_attr_exists (strm info iciptr, 

"streamed") = OPC_TRUE)) 
{ 
opJci_attr_get (strm_info_iciptr, "stream_id", &stream_id); 

/* Register the statistics if this is the first packet we */ 
/* received belonging to that stream. */ 
if (stat_reg_status_array [streamjd] = OPCJFALSE) 

{ 
wlan_per_stream_stat_register (streamjd); 
} 

(orig_pk_size)); 

/* Update the related per-stream statistics. */ 
op_stat_write (dropped_datajper_strm_sh_array [streamjd], (double) 

op_stat_write (dropped_data_per_strm_sh_array [streamjd], 0.0); 

/* Destroy the dropped packet. 
op_pk_destroy (hldjpkptr); 

FOUT; 
} 

/* Read ICI parameters at the stream interrupt. */ 
ici_ptr = opjntrptjci 0; 

/* Retrieve destination address from the ici set by the interface layer.     */ 
if (ici_ptr = OPC_NIL || opJci_attr_get (ici_ptr, "dest_addr", &dest addr) = 

OPC_COMPCODEJFAILURE) 
{ 
/* Generate error message. */ 
wlan_mac_error ("Destination address in not valid.", OPC_NIL, OPC_NIL); 

/* If it is a broadcast packet or the station doesn't exist in the subnet      */ 
/*if ((dest_addr < 0) || (oms_aa_addressJind (oms_aa_wlan_handle, dest_addr) < 0))*/ 
if(dest_addr<0) 

{ 
/* change the total hid queue size to original value   */ 
/* as this packet will not be added to the queue. */ 
totalJilpk_size = totalJJpk_size - orig_pk_size; 

op_pk_destroy (hld_pkptr); 

FOUT; 
} 
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/* For an AP bridge, check whether the destination stations exist in the BSS or not. */ 
/* If not, then no need to broadcast the packet. */ 
if (wlan_fiags->bridge_fiag = OPC_BOOLINT_ENABLED && ap_fiag = 

OPC_BOOLINT_ENABLED) 
{ 
stn_det_flag = OPC_FALSE; 
for (i = 0; i < bss_stn_count; i++) 

{ 
if (dest_addr = bss_stn_list [i]) 

{ 
stn_det_flag = OPCJTRUE; 
} 

} 

/* If the destination station doesn't exist in the BSS then */ 
/* no need to broadcast the packet. */ 
if (stn_det_fiag = OPC_FALSE) 

{ 
/* change the total hid queue size to original value     */ 
/* as this packet will not be added to the queue. */ 
total_hlpk_size = total_hlpk_size - orig_pk_size; 

op_pk_destroy (hld_pkptr); 

FOUT; 
} 

} 

/* Stamp the packet with the current time. This information will remain */ 
/* unchanged even if the packet is copied for retransmissions, and */ 
/* eventually it will be used by the destination MAC to compute the end-to- */ 
/* end delay. */ 
op_pk_stamp (hld_pkptr); 

/* Insert the arrived packet in higher layer queue.       */ 
wlan_hlpk_enqueue (hldjpkptr, dest_addr); 
FOUT; 
} 

static void 
wlan_hlpk_enqueue (Packet* hldjpkptr, int dest_addr) 

{ 
int list_index; 
char msg_string [120]; 
char .msg_stringl [120]; 
WlanT_Hld_List_Elem* hldjptr; 
double datasize; 

/* Enqueuing data packet for transmission.    */ 
FIN (wlan_hlpk_enqueue (Packet* hldjpkptr, int dest_addr)); 

/* Allocating pool memory to the higher layer data structure type. */ 
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hld_ptr = (WlanT_Hld_List_Elem *) op_prgjpmo_alloc (hld_pmh); 

/* Generate error message and abort simulation if no memory left for data received from higher 
layer.     */ 

if(hld_ptr = OPC_NIL) 
{ 
wlan_mac_error ("No more memory left to assign for data received from higher laver" 

OPC_NIL, OPC_NIL); ' 
} 

/* Updating higher layer data structure fields. */ 
hld_ptr->time_rcvd = currentjime; 
hld_ptr->destination_address = dest_addr; 
hld_ptr->pkptr = hld_pkptr; 

/* Insert a packet to the list.*/ 
op_prg_list_insert (hld_list_ptr, hld_ptr, OPCJLISTPOSJTAIL); 

/* Enable the flag indicating that there is a data frame to transmit. */ 
wlan_flags->data_frame_to_send = OPC_BOOLINT_ENABLED; 

/* Printing out information to ODB.*/ 
if (wlan_trace_active = OPC_TRUE) 

{ 
sprintf (msg_string, "Just arrived outbound Data packet id %d ", opjpkjd (hld_ptr- 

>pkptr)); 

sprintf   (msg_stringl, "The outbound Data queue size is %d", op pre list size 
(hld_list_ptr)); - 

op_prg_odb_print_major (msg_string, msg_stringl, OPC_NIL); 

/* Report stat when outbound data packet is received. */ 
op_stat_write (packet_load_handle, 1.0); 
op_stat_write (packet_load_handle, 0.0); 

/* Report stat in bits when outbound data packet is received.    */ 
data_size = (double) op_pk_total_size_get (hld_pkptr); 
op_stat_write (bits_load_handle, data_size); 
op_stat_write (bits_load_handle, 0.0); 

/* Update the global statistics as well. */ 
op_stat_write (globaljoadjiandle, data_size); 
op_stat_write (global_load_handle, 0.0); 

/* Report outbound data packets queue size at the arrival of every packet. */ 
op_stat_write (hljpackets_rcvd, (double) (op_prg_list_size (hld_list_ptr))); 

FOUT; 
} 

static void 
wlan_frame_transmit 0 

{ 
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char msg_string [120]; 
char msg_stringl [120]; 
WlanT_Hld_List_Elem* hldjptr; 
int frag_list_size; 
int type; 
double pkt_tx_time; 
Ici* strm_info_iciptr; 

/** Main procedure to call functions for preparing frames. **/ 
/** The procedure to prepare frame is called in this routine **/ 
FIN (wlan_frame_transmit()); 

/* If Ack and Cts needs to be sent then prepare the appropriate */ 
/* frame type for transmission */ 
if ((fresp_to_send = WlanC_Cts) || (fresp_to_send = WlanC_Ack)) 

{ 
wlanjprepare_frame_to_send(fresp_to_send); 

/* Break the routine if Cts or Ack is already prepared to tranmsit */ 
FOUT; 
} 

/* If it is a retransmission then check which type of frame needs to be    */ 
/* retransmitted and then prepare and transmit that frame */ 
else if (retry_count != 0) 

{ 
/* If the last frame unsuccessfully transmitted was Rts then transmit it again.       */ 
if ((last_frametx_type = WlanCJRts) && (wlan_flags->rts_sent = 

OPC_BOOLINT_DISABLED)) 
{ 
/* Retransmit the Rts frame. */ 
wlan_prepare_frame_to_send (WlanC_Rts); 
} 

/* For the retransmission of data frame first check whether Rts needs to be sent */ 
/* or not. If it Rts needs to be sent and it is not already sent then first transmit */ 
/* Rts and then transmit data frame. */ 
else if (last_frametx_type = WlanCJData) 

{ 
if ((op_pk_total_size_get (wlan_transmit_frame_copyjptr) > (8 * rtsthreshold 

+ WLANC_MSDU_HEADER_SIZE)) && 
(rts_threshold != -1) && (wlan_flags->rts_sent = 

OPC_BOOLINT_DISABLED)) 
{ 
/* Retransmit the Rts frame to again contend for the data.        */ 
wlanjprepare_frame_to_send (WlanC_Rts); 
} 

else 

else 

{ 
wlanjprepare_frame_to_send (WlanCJData); 
} 
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0)) 

{ 
/* We continue with the retransmission process. We   */ 
/* received the expected Cts for our last Rts. */ 
/* Hence, now we can retransmit our data frame.        */ 
wlanjprepare_frame_to_send(WlanC_Data); 
} 

FOUT; 
} 

"stream_id")) 

/* If higher layer queue is not empty then dequeue a packet */ 
/* from the higher layer and insert it into fragmentation */ 
/* buffer check whether fragmentation and Rts-Cts exchange */ 
/* is needed based on thresholds */ 
/* Check if fragmenetation buffer is empty. If it is empty */ 
/* then dequeue a packet from the higher layer queue. */ 
else if ((op_prg_list_size (hld_list_ptr) != 0) && (op_sar_buf_size (fragmentation_buffer_ptr) = 

{ 
/* If rts is already sent then transmit data otherwise     */ 
/* check if rts needs to be sent or not. */ 
if (wlan_flags->rts_sent = OPC_BOOLINT_DISABLED) 

{ 
/* Remove packet from higher layer queue. */ 
hldjptr = (WlanT_Hld_ListJElem*) op_prg_list_remove (hldjistjptr, 0); 

/* Update the higher layer queue size statistic. */ 
op_stat_write (hl_packets_rcvd, (double) (op_prg_list_size (hld_list_ptr))); 

/* Determine packet size to determine later whether fragmentation */ 
/* and/or rts-cts exchange is needed. */ 
packetsize = op_pk_total_size_get (hld_ptr->pkptr); 

/* Updating the total packet size of the higher layer buffer.       */ 
total_hlpk_size = total_hlpk_size - packet_size; 

/* Retrieve the traffic stream information if available. */ 
packet_strm_id = WLANC_STRM_UNSET; 
strm_info_iciptr = op_pk_ici_get (hldjptr->pkptr); 
if (strm_info_iciptr != OPC_NEL && op_ici_attr_exists (strm_info_iciptr, 

{ 
op_ici_attr_get (strm_info_iciptr, "stream_id", &packet_strm_id); 

/* Setting destination address state variable   */ 
destination_addr = hldjptr->destination_address; 

/* Packet seq number modulo 4096 counter. */ 
packet_seq_number = (packet_seq_number + 1) % 4096; 

/* Packet fragment number is initialized.       */ 
packet_frag_number = 0; 
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buffer", pkt_in_service); 

/* Packet needs to be fragmented if it is more */ 
/* than fragmentation threshold, provided */ 
/* fragmentation is enabled. */ 
if ((packet_size > (fragjhreshold * 8)) && (fragjhreshold != -1)) 

{ 
/* Determine number of fragments for the packet       */ 
/* and the size of the last fragment */ 

numjragments = (int) (packet_size / (fragjhreshold * 8)); 
remainder_size = packet_size - (numjragments * fragjhreshold * 8); 

/* If the remainder size is non zero it means that the */ 
/* last fragment is fractional but since the number */ 
/* of fragments is a whole number we need to transmit */ 
/* one additional fragment to ensure that all of the */ 
/* data bits will be transmitted */ 
if (remainder_size != 0) 

{ 
numjragments = numjragments + 1; 

else 

} 
} 

{ 
/* If no fragments needed then number of     */ 
/* packets to be transmitted is set to 1 */ 

num_fragments = 1; 
remaindersize = packetsize; 
} 

/* Storing Data packet id for debugging purposes.      */ 
pkt_in_service = op_pk id (hld_ptr->pkptr); 

/* Insert packet to fragmentation buffer        */ 
op_sar_segbuf_pk_insert (fragmentation_buffer_ptr, hld_ptr->pkptr, 0); 

/* Computing packet duration in the queue in seconds */ 
/* and reporting it to the statistics */ 
pkt_tx_time = (current_time - hld_ptr->time_rcvd); 

/* Printing out information to ODB. */ 
if (wlan_trace_active = OPCJTRUE) 

{ 
sprintf (msg_string, "Data packet %d is removed from higher layer 

sprintf   (msg_stringl, "The queueing delay for data packet %d is %fs", 

pkt_in_service, pkt_tx_time); 
op_prg_odb__print_major (msg_string, msg_stringl, OPC_NIL); 

} 
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/* Store the arrival time of the packet. 
receive_time = hld_ptr->time_rcvd; 

*/ 

layer queue. 
/* Freeing up allocated memory for the data packet removed from the higher 

op_prg_mem_free (hld_ptr); 

/* Send its if rts is enabled and packet size is more than rts threshold     */ 
if ((packet_size > (rtsjhreshold * 8)) && (rtsjhreshold != -1)) 

{ 
retry_limit = long_retry_limit; 
/* Prepare Rts frame for transmission */ 
wlan_prepare_frame_to_send (WlanC_Rts); 

/* Break the routine as Rts is already prepared 
FOUT: 

*/ 

else 
} 

{ 
retryjimit = short_retry_limit; 
} 

} 

/* Prepare data frame to transmit     */ 
wlanjprepare_frame_to_send(WlanC_Data); 

FOUT; 
} 

static void 
wlan_prepare_frame_to_send (int frame_type) 

{ 
char 
Packet* 
Packet* 
int 
int 
int 
int 
char 
int 
double 
WlanT_Data_Header_Fields* 
WlanT_Control_Header_Fields* 
Packet* 

msg_string [120]; 
hld_pkptr; 
seg_pkptr; 
dest_addr, src_addr; 
protocol_type = -l; 
tx_datapacket_size; 
type; 
error_string[512]; 
outstrm_to_phy; 
duration, mac_delay; 
pk_dhstruct_ptr; 
pk_chstruct_ptr; 
wlan_transmit_frame_ptr; 

/*  802.1 la Model Addition  */ 
/* Add a variable to keep track of the data rate so it can be passed to the pipeline stages. */ 
hit rateholder; 

/*   802.1 la Model Addition  */ 
/* The control frame transmission rate depends on the given data rate.   */ 
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/* Adapted from the Philips Lab 802.1 la model (dated 11/15/00).   */ 
double control_frame_speed;       /* Speed for control frames. */ 
int next_frag_length; /* Length of the next fragment (in bits). */ 
kit MPDU_size; /* MPDU length (in bits). */ 

/** Prepare frames to transmit by setting appropriate fields in the **/ 
/** packet format for Data,Cts,Rts or Ack. If data or Rts packet needs **/ 
/** to be retransmitted then the older copy of the packet is resent.    **/ 
FIN (wlan_prepare_frame_to_send (int framejype)); 

outstrm_to_phy = LOW_LAYER_OUT_STREAM_CHl; 

/*   802.1 la Model Addition   */ 
rate_holder= 1; 

/*   802.1 la Model Addition  */ 
/* Compute the control frame speed based on the operational data rate. */ 
/»Adapted from the Philips Lab 802.11a model code (dated 11/15/00). */ 
control_frame_speed = control_speed (operational_speed); 

/* The code is divided as per the frame types */ 
switch (frame_type) 

{ 
case WlanC_Data: 

{ 
/*  802.1 la Model Addition  */ 
/* Base the outgoing data channel on the link speed. */ 
if (operational_speed = 9000000) 

{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH2; 
ratejtiolder = 2; 
} 

else if (operationalspeed = 12000000) 
{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH3; 
rate_holder = 3; 
} 

else if (operational_speed = 18000000) 
{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH4; 
rate_holder = 4; 
} 

else if (operational_speed = 24000000) 
{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH5; 
ratejholder = 5; 
} 

else if (operational_speed = 36000000) 
{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH6; 
rate_holder = 6; 
} 

else if (operational_speed = 48000000) 
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(wlan_transmit_frame_copyjptr); 

&pk_dhstruct_ptr); 

{ 
outstrm_to_phy = L0W_LAYER_0UT_STREAM_CH7; 
rate_holder = 7; 
} 

else if (operational_speed = 54000000) 
{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH8; 
rate_holder = 8; 
} 

/* If it is a retransmission of a packet then no need     */ 
/* of preparing data frame. */ 
if ((retry_count > 0) && (wlan_transmit_frame_copy_ptr != OPC_NIL)) 

{ 
/* If it is a retransmission then just transmit the previous frame*/ 
wlan_transmit_frame_ptr = opjpk_copy 

/* If retry count is non-zero means that the frame is a */ 
/* retransmission of the last transmitted frame */ 
op_pk_nfd_access (wlan_transmit_framejptr, "Wlan Header", 

pk_dhstruct_ptr->retry = 1; 

/* Printing out information to ODB.*/ 
if (wlan_trace_active = OPC_TRUE) 

{ 
sprintf (msg_string, "Data fragment %d for packet %d is 

retransmitted", pk_dhstruct_ptr->fragment_number, pkt_in_service); 

°P_Prg_odb_print_major (msgstring, OPC_NIL); 
} 

/*   802.1 la Model Addition  */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). 

/* Calculate the nav duration that the channel will be occupied by 

/* the station. The duration is calculated per the 802.11 specification. 

/* The duration of the ACK frame is determined based on the control 
frame */ 

/* rate. */ 
duration = ppdu_duration (WLAN_ACKJLENGTH, 

control_frame_speed) + sifsjime + \ WLAN_AIR_PROPAGATION_TIME + plcp_overhead; 

/* Since the number of fragments for the last transmitted frame is*/ 
/* already decremented, there will be more fragments to transmit */ 
/* if number of fragments is more than zero. */ 
if (num_fragments != 1) 

{ 
/* If more fragments need to be transmitted then the station*/ 
/* needs to broadcast the time until the receipt of the      */ 
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(header */ 
/* the acknowledgement for the next fragment. 224 bits 

/* size) is the length of the control fields in the data    */ 
/* frame and needs to be accounted in the duration calculation 

*/ 

11/15/00) */ 

(remainder_ size = = 0))) 

/*   802.1 la Model Addition  */ 
/* This situation involves 2 cases: either there are more than */ 
/* 2 fragments left or exactly two fragments left. If there are */ 
/* exactly 2 fragments left, then the size of the next fragment */ 
/* will be the header + remainder size. This result affects the */ 
/* duration that will be calculated. 

/* Adapted from the Philips Lab 802.1 la model (dated 

if ((num_fragments > 2) || ((num_fragments = 2) && 

{ 
next_frag_length = 

WLANC_MSDU_HEADER_SIZE + fragjhreshold * 8; 
} 

else if ((num_fragments = 2) && (remainder_size != 0)) 
{ 
next_frag_length = 

WLANC_MSDU_HEADER_SIZE + remainder_size; 
} 

/* Use the next_frag_length to recalculate the duration. 
*/ 

duration = 2 * duration + ppdu_duration (next_frag_length, 
operational_speed) + \ 

sifs_time + 
WLAN_AIR_PROPAGATION_TIME + plcp_overhead; 

} 

/* Station update of it's own nav_duration.    To keep track of the next 
*/ 

/* available contention window. 
*/ 

nav_duration = current_time + duration + (double) 
(op_pk_total_size_get (wlan_transmit_frame_ptr)) / operational_speed; 

} 

else 
{ 
/*  802.1 la Model Addition  */ 
/* Creating transmit data packet type for use in the 802.11a model. */ 
wlan_transmit_frame_ptr = op_pk_create_fmt ("wlan_data_802_l la"); 

/* Prepare data frame fields for transmission.*/ 
pk_dhstruct_ptr = wlan_mac_pk_dhstruct_create (); 
type = WlanC_Data; 
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pk_dhstruct_ptr->retry = 0; 
pk_dhstruct_ptr->order = 1; 
pk_dhstructjptr->sequence_number = packet_seq_number; 

/*   802.1 la Model Addition  */ 
/* Calculate the nav duration that the channel will be occupied by */ 

/* the station. The duration is calculated per the 802.11 specification. 
*/ 

/* The duration of the ACK frame is determined based on the control 
frame */ 

/* rate. 
*/ 

/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). 

duration = ppdu_duration (WLAN_ACK_LENGTH, 
control_frame_speed) + sifs_time + \ 

WLAN_AIR_PROPAGATION_TIME + plcp_overhead; 

/* If there is more than one fragment to transmit and there are */ 
/* equal sized fragments then remove fragmentation threshold size 

*/ 
/* length of data from the buffer for transmission. 

*/ 
if ((num_fragments > 1) || (remainder_size = 0)) 

{ 
/* Remove next fragment from the fragmentation buffer for 

/* transmission and set the appropriate fragment number. 
*/ 

*/ 
segjpkptr = op_sar_srcbuf_seg_remove 

(fragmentation_buffer_ptr, frag_threshold * 8); 

be sent   */ 

station   */ 

*/ 

bits (header 

*/ 

calculation 

/* Indicate in transmission frame that more fragments need to 

/* if more than one fragments are left 
.    */ 

if (num_fragments != 1) 
{ 
pk_dhstruct_ptr->more_frag = 1; 

/* If more fragments need to be transmitted then the 

/* need to broadcast the time until the receipt of the 

/* the acknowledgement for the next fragment. 224 

/* size) is the length of control fields in the data frame 

/* and need to be accounted for in the duration 

/*   802.1 la Model Addition  */ 
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more than */ 

there are */ 

fragment */ 

affects the */ 

(dated 11/15/00) */ 

&& (remainder_size = 0))) 

/* This situation involves 2 cases: either there are 

/* 2 fragments left or exactly two fragments left. If 

/* exactly 2 fragments left, then the size of the next 

/* will be the header + remainder size. This result 

/* duration that will be calculated. 

/* Adapted from the Philips Lab 802.1 la model code 

if ((num_fragments > 2) || ((num_fragments = 2) 

{ 
next_frag_length = 

WLANC_MSDU_HEADER_SIZE + fragjhreshold * 8; 
} 

else if ((num_fragments = 2) && (remainder_size != 
0)) 

{ 
next_frag_length = 

WLANC_MSDU_HEADER_SIZE + remainder_size; 
} 

/* Use the next_frag_length to recalculate the 
duration. */ 

duration = 2 * duration + ppdu_duration 
(next_frag_length, operational_speed) + \ 

sifstime + 
WLAN_AIR_PROPAGATION_TIME + plcp_overhead; 

} 
else 

{ 
/* If no more fragments to transmit then set more 

fragment field to be 0 */ 
pk_dhstruct_ptr->more_frag = 0; 
} 

/* Set fragment number in packet field */ 
pk_dhstruct_ptr->fragment_number = packet_frag_number; 

/* Printing out information to ODB. */ 
if (wlan_trace_active = OPC_TRUE) 

{ 
sprintf (msg_string, "Data fragment %d for packet 

%d is transmitted" ,packet_frag_number, pkt_in_service); 

opjprg_odb_print_major (msg_string, OPC_NIL); 
} 

/* Setting packet fragment number for next fragment to be 
transmitted */ 
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0 

packet_frag_number = packet_frag_number + 1; 
} 

else 

{ 
/* Remove last fragments (if any left) from the fragmentation 

buffer for */ 

/* transmission and disable more fragmentation bit. */ 
seg_pkptr = op_sar_srcbuf_seg_remove 

(fragmentation_buffer_ptr, remainder_size); 

pk_dhstruct_ptr->more_frag = 0; 

/* Printing out information to ODB. */ 
if (wlanjraceactive = OPC_TRUE) 

{ 
sprintf (msg_string, "Data fragment %d for packet 

%d is transmitted",packet_frag_number, pkt_in_service); 

°P_Prg_odb_prmt_major (msg_string, OPC_NIL); 
} 

pk_dhstruct_ptr->fragment_number = packet_frag_number; 
} 

/* Setting the Header field structure. */ 
pk_dhstruct_ptr->duration = duration; 
pk_dhstruct_ptr->addressl = destination_addr; 
pk_dhstruct_ptr->address2 = my_address; 

/* In the BSS network the Data frame is going from AP to sta then 

if (ap_flag = OPC_BOOLINT_ENABLED) 
{ 
pk_dhstruct_ptr->fromds   = 1; 
} 

else 

{ 
pk_dhstractjptr->fromds   = 0; 
} 

/* if in the BSS network the Data frame is going from sta to AP then 
tods bit is set.      */ 

if ((bss_flag = OPC_BOOLINT_ENABLED) && (ap_flag = 
OPC_BOOLINT_DISABLED)) 

{ 
pk_dhstruct_ptr->tods = 1; 

fromds bit is set. */ 

Access point, which 
/* If Infrastructure BSS then the immediate destination will be 

/* then forward the frame to the appropriate destination. 
*/ 

pk_dhstructjptr->addressl =bss_id; 
pk_dhstructjptr->address3 = destination_addr; 

98 



(fragmentation_buffer_ptr)) 

else 
{ 
pk_dhstruct_ptr->tods = 0; 
} 

/* If we are sending the first fragment of the data fragment for the */ 
/* first time, then this is the end of media access duration, hence */ 
/* we must update the media access delay statistics. */ 
if (packet_size = op_pk_total_size_get (seg_pkptr) + op_sar_buf_size 

{ 
mac_delay = current_time - receive_time; 
op_stat_write (media_access_delay, mac_delay); 
op_stat_write (media_access_delay, 0.0); 
op_stat_write (global_mac_delay_handle, mac_delay); 
op_stat_write (global_mac_delay_handle, 0.0); 

} 

opjpk_nfd_set (wlan_transmit_framejptr, "Type", type); 

/* Setting the variable which keeps track of the last transmitted frame. 
*/ 
last_frametx_type = type; 

pkt_in_service); 

pk_dhstruct_ptr, 

(WlanT_Data_Header_Fields)); 

op_pk_nfd_set (wlan_transmit_frame_ptr, "Accept", OPC_TRUE); 
op_pk_nfd_set (wlan_transmit_frame_ptr, "Data Packet ED", 

/* Set the frame control field and nav duration. */ 
opjpk_nfd_set (wlan_transmit_frame_ptr, "Wlan Header", 

wlan_mac_pk_dhstruct_copy, wlan_mac_pk_dhstruct_destroy, sizeof 

/* The actual data is placed in the Frame Body field   */ 
op_pk_nfd_set (wlan_transmit_framejptr, "Frame Body", seg_pkptr); 

(wlan_transmit_framejptr); 

/* Make copy of the frame before transmission 
wlan_transmit_frame_copy_ptr = op_pk_copy 

*/ 

/*   802.1 la Model Addition  */ 
/* Obtain the MSDU size before adding the OFDM PLCP overhead.*/ 
/* Adapted from the Philips Lab 802.1 la model code (dated 11/15/00). 

MPDU_size = op_pk_total_size_get (wlan_transmit_frame_ptr); 
op_pk_nfd_set (wlan_transmit_frame_ptr, "MPDU size", MPDU_size); 

/*   802.1 la Model Addition  */ 
/* Include the PLCP overhead in the packet size that will be     */ 
/* transmitted through the transceiver pipeline. */ 
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/* Adapted from the Philips Lab 802.1 la model code (dated 11/15/00). 

op_pk_total_size_set (wlan_transmit_frame_ptr, \ 
(int) (ppdu_duration (opjpk_total_size_get 

(wlan_transmit_frame_ptr), operational_speed) * operational_speed)); 

/* Station update of its own nav_duration     */ 
nav_duration = current_time + duration + (double) 

(op_pk_total_size_get (wlan_transmit_frame_ptr)) / operational_speed • 
} 

/*  802.1 la Model Addition  */ 
/* Reporting total number of bits in a data frame. */ 
/* Note: This reports only the number of bits in the MSDU and does not */ 
/* include the overhead associated with the PLCP header and preamble. */ 
op_stat_write (data_traffic_sent_handle_inbits, (double) MPDU_size); 
op_stat_write (data_fraffic_sent_handle_inbits, 0.0); 

/* If there is nothing in the higher layer data queue and fragmentation */ 
/* buffer then disable the data frame flag which will indicate to the */ 
/* station to wait for the higher layer packet. */ 
if (op_prg_list_size (hld_list_ptr) = 0 && op_sar_buf_size 

(fragmentation_buffer_ptr) = 0) 

{ 
wlan_flags->data_frame_to_send = OPC_BOOLINT_DISABLED; 

/* Only expect Acknowledgement for directed frames. */ 
if (destination_addr < 0) 

{ 
expected_frame_type = WlanC_None; 
} 

else 

{ 
/* Ack frame is expected in response to data frame     */ 
expected_frame_type = WlanC_Ack; 
} 

/* Update data traffic sent stat when the transmission is complete */ 
op_stat_write (data_traffic_sent_handle, 1.0); 
op_stat_write (data_traffic_sent_handle, 0.0); 
break; 
} 

case WlanCJRts: 
{ 
/*   802.1 la Model Addition  */ 
/* Determine the transmission speed of the RTS frame based on the       */ 
/* control frame speed calculated above. The default is already 6 Mbps. */ 
if(control_frame_speed= 12000000) 

{ 
outstrmjojphy = LOW_LAYER_OUT_STREAM_CH3; 
rate_holder = 3; 
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} 
else if (control_frame_speed = 24000000) 

{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH5; 
rate_holder = 5; 
} 

/*   802.1 la Model Addition  */ 
/* Creating RTS packet format type for use in the 802.11a model. */ 
wlan_transmit_frame_ptr = op_pk_create_fmt ("wlan_control_802_l la"); 

/* Initializing Rts frame fields        */ 
pk_chstruct_ptr = wlan_mac_pk_chstruct_create 0; 

/* Type of frame */ 
type = WlanC_Rts; 

/* if in the infrastructure BSS network then the immediate receipient for  */ 
/* the transmitting station will always be an Access point. Otherwise */ 
/* the frame is directly sent to the final destination. */ 

if ((bss_flag = OPC_BOOLINT_ENABLED) && (ap_flag = 
OPC_BOOLINT_DISABLED)) 

{ 
/* If Infrastructure BSS then the immediate destination will be Access 

/* then forward the frame to the appropriate destination.       *   */ 
pk_chstruct_ptr->rx_addr = bss_id; 
} 

{ 
/* Otherwise set the final destination address. */ 

pk_chstruct_ptr->rx_addr = destinationaddr; 
} 

point, which 

else 

response. */ 

/* Source station address.  */ 
pk_chstruct_ptr->rx_addr = my_address; 

/* Setting the Rts frame type. */ 
op_pk_nfd_set (wlan_transmit_framejptr, "Type", type); 

/* Setting the accept field to true, meaning the frame is a good frame.    */ 
op_pk_nfd_set (wlan_transmit_frame_ptr, "Accept", OPCJTRUE); 

/* Setting the variable which keeps track of the last transmitted frame that needs 

last_framerx_type = type; 

/* Determining the size of the first data fragment or frame that need */ 
/* to be transmitted following the Rts transmission. */ 

if (num fragments > 1) 
{ 
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/* If there are more than one fragment to transmit then the */ 
/* data segment of the first data frame will be the size of*/ 
/* fragmentation threshold. The total packet size will be   */ 
/* data plus the overhead (which is 224 bits). 

*/ 
tx_datapacket_size = frag_threshold * 8 + 

WLANC_MSDU_HEADER_SIZE; 
} 

else 
/* If there is one data frame to transmit then the */ 
/* data segment of the first data frame will be the size of */ 
/* the remainder computed earlier. The total packet size    */ 
/* will be data plus the overhead (which is 224 bits). */ 
{ 
tx_datapacket_size = remainder_size + 

WLANC_MSDU_HEADER_SIZE; 
} 

/*   802.1 la Model Addition  */ 
/* Station is reserving channel bandwidth by using Rts frame, so   */ 
/* in Rts the station will broadcast the duration it needs to send */ 

/* one data frame and receive ack for it. The total duration is the */ 
/* the time required to transmit one data frame, plus one Cts frame */ 
/* plus one ack frame, plus three sifs interval, and plus */ 
/* air propagation time for three frames */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
duration = ppdu_duration (WLAN_CTS_LENGTH, control_frame_speed) + 

ppdu_duration (WLAN_ACK_LENGTH, control_frame_speed) + \ 
ppdu_duration (tx_datapacket_size, operational_speed) + 3 * (sifs time 

+ WLAN_AIR_PROPAGATION_TIME + plcp_overhead); 

pk_chstructjptr->duration = duration; 

/* Setting Rts frame fields. */ 
opjpk_nfd_set (wlan_transmit_frame_ptr, "Wlan Header", pk_chstruct_ptr, 

wlan_mac_pk_chstruct_copy, wlan_mac_pk_chstruct_destroy, sizeof (WlanT_Control_Header_Fields)); 

/*   802.1 la Model Addition  */ 
/* Include PLCP overhead when setting the total size of the RTS packet. 

*/ 
op_pk_total_size_set (wlan_transmit_frame_ptr, (int) ((ppdu_duration 

(WLAN_RTS_LENGTH, control_frame_speed) + plcp_overhead) * control_frame_speed)); 

/* Station update of its own nav_duration     */ 
nav_duration = currentjime + duration + (double) (op_pk_total_size_get 

(wlan_transmit_frame_ptr)) / control_frame_speed; 

/* Cts is expected in response to Rts. */ 

expected_frame_type = WlanC_Cts; 
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pkt_in_service); 

/* Printing out information to ODB.*/ 
if (wlan_trace_active = OPCJTRUE) 

{ 
sprintf (msg_string, "Rts is being transmitted for data packet %d", 

op_prg_odbjprint_major (msg_string, OPC_NIL); 
} 

/* Reporting total number of bits in a control frame.   */ 
op_stat_write (ctrl_traffic_sent_handle_inbits, (double) 

WLAN_RTS_LENGTH); 
op_stat_write (ctrl_traffic_sent_handle_inbits, 0.0); 

/* Update control traffic sent stat when the transmission is complete      */ 
op_stat_write (ctrl_traffic_sent_handle, 1.0); 
op_stat_write (ctrl_traffic_sent_handle, 0.0); 
break; 
} 

case WlanC_Cts: 
{ 
/*   802.11a Model Addition  */ 
/* Determine the transmission speed of the CTS frame based on the response */ 
/* speed. The default is already 6 Mbps. */ 
if (response_speed= 12000000) 

{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH3; 
rate_holder = 3; 
} 

else if (response_speed = 24000000) 
{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH5; 
rate_holder = 5; 
} 

/** Preparing Cts frame in response to the received Rts frame **/ 
/** from the remote station. No response needed for Cts frame.**/ 

/*   802.1 la Model Addition  */ 
/* Creating CTS packet format type for use in the 802.1 la model. */ 
wlan_transmit_frame_ptr = op_pk_create_frnt ("wlan_control_802_l la"); 

/* Initializing Rts frame fields */ 
pk_chstruct_ptr = wlan_mac_pk_chstruct_create (); 

/* Type of frame */ 
type = WlanC_Cts; 

/* Destination station address. */ 
pk_chstruct_ptr->rx_addr = remote_sta_addr; 

/*  802.1 la Model Addition  */ 
/* Station is reserving channel bandwidth by using Rts frame, so    */ 
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response_speed) \ 

current_time); 

/* in Rts the station will broadcast the duration it needs to send */ 

/* one data frame and receive ack for it. The total duration is the */ 
/* the time required to transmit one Cts frame, plus one data */ 
/* frame, plus one Ack frame, plus three sifs interval, and plus */ 
/* three air propagation time for three frames. */ 
/* In Cts frame the station will transmit the remaining time needed */ 
/* by the station after the exchange of Rts-Cts */ 
/* Include the PLCP overhead for the CTS frame. */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
duration = nav_duration - (sifsjime + ppdu_duration (WLAN_CTS_LENGTH, 

+ plcp_overhead + WLAN_AIR_PROPAGATION_TIME + 

pk_chstruct_ptr->duration = duration; 

/* Setting Cts frame type. */ 
op_pk_nfd_set (wlan_transmit_frame_ptr, "Type", type); 

/* Setting the accept field to true, meaning the frame is a good frame.     */ 
op_pk_nfd_set (wlan_transmit_frame_ptr, "Accept", OPCJTRUE); 

/* Setting Cts frame fields. */ 
op_pk_nfd_set (wlan_transmit_frame_ptr, "Wlan Header", pk_chstruct_ptr, 

wlan_macjpk_chstruct_copy, 
wlan_macjpk_chstruct_destroy, sizeof (WlanT_Control_Header_Fields)); 

/* Setting the total frame size to Cts length.   */ 
/* The PLCP overhead is included in the size. */ 
op_pk_total_size_set (wlan_transmit_frame_ptr, (int) ((ppdu_duration 

(WLAN_CTS_LENGTH, response_speed) + plcp_overhead) * response_speed)); 

/* Once Cts is transmitted in response to Rts then set the frame */ 
/* response indicator to none frame as the response is already generated */ 
fresp_to_send = WlanC_None; 

/* No frame is expected once Cts is transmitted */ 
expected_frame_type = WlanC_None; 

/* Printing out information to ODB.*/ 
if (wlan_trace_active = OPCJTRUE) 

{ 
sprintf (msg_string, "Cts is being transmitted in response to Rts"); 
°P_Prg_odb_print_major (msg_string, OPC_NIL); 
} 

WLAN_CTS_LENGTH); 

/* Reporting total number of bits in a control frame    */ 
op_stat_write (ctrl_traffic_sent_handle_inbits, (double) 

op_stat_write (ctrl_traffic_sent_handle_inbits, 0.0); 

/* Update control traffic sent stat when the transmission is complete      */ 
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op_stat_write (ctrl_traffic_sent_handle, 1.0); 
op_stat_write (ctrl_traf5c_sent_handle, 0.0); 
break; 

case WlanC_Ack: 
{ 
/** Preparing acknowledgement frame in response to the data **/ 
/** frame received from the remote stations. Note that no **/ 
/** response is needed for the ack frame. **/ 

for which 

response_speed) \ 

current_time); 

/*   802.1 la Model Addition  */ 
/* Determine the transmission speed of the ACK frame based on the   */ 
/* response speed. The default is already 6 Mbps. */ 
if(response_speed= 12000000) 

{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH3; 
rate_holder = 3; 
} 

else if (response_speed = 24000000) 
{ 
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH5; 
rate_holder=5; 
} 

/*   802.1 la Model Addition  */ 
/* Creating ACK packet format type for the 802.1 la model. */ 
wlan_transmit_frame_ptr = op_pk_create_fmt ("wlan_control_802_l la"); 

/* Setting ack frame fields */ 
pk_chstructjptr = wlan_mac_pk_chstruct_create (); 
type = WlanC_Ack; 
pk_chstruct_ptr->Tetry = duplicate_entry; 

/*   802.1 la Model Addition  */ 
/* If there are more fragments to transmit then broadcast the remaining duration 

*/ 
*/ 

/* the station will be using the channel. 
/* Add PLCP overhead to the ACK packet 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
duration = nav_duration - (ppdu_duration (WLAN_ACK_LENGTH, 

+ plcp_overhead + WLAN_AIR_PROPAGATION_TIME + 

pk_chstruct_ptr->duration = duration; 

/* Destination station address.        */ 
pk_chstruct_ptr->rx_addr = remote_sta_addr; 

/* Setting Ack type. */ 
op_pk_nfd_set (wlan_transmit_frame_ptr, "Type", type); 
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/* Setting the accept field to true, meaning the frame is a good frame.    */ 
op_pk_nfd_set (wlan_transmit_frame_ptr, "Accept", OPCJRUE); 

op_pk_nfd_set (wlan_transmit_frame_ptr, "Wlan Header", pk_chstract_ptr, 
wlan_mac_pk_chstract_copy, 

wlan_macjpk_chstract_destroy, sizeof (WlanT_Control_Header_Fields)); 

/*   802.1 la Model Addition  */ 
/* Setting the total frame size to Ack length. */ 
/* The PLCP overhead is included in the size. */ 
op_pk_total_size_set (wlan_transmit_frame_ptr, (int) ((ppdu_duration 

(WLAN_CTS_LENGTH, response_speed) + plcp_overhead) * response_speed)); 

/* since no frame is expected,the expected frame type field      */ 
/* to nil. */ 
expected_frame_type = WlanC_None; 

/* Once Ack is transmitted in response to Data frame then set the frame */ 
/* response indicator to none frame as the response is already generated */ 
fresp_to_send = WlanC_None; 

/* Printing out information to ODB. */ 
if (wlan_trace_active = OPC_TRUE) 

{ 
sprintf (msg_string, "Ack is being transmitted for data packet 

received"); 

op_prg_odb_print_major (msg_string, OPC_NDL); 
} 

/* Reporting total number of bits in a control frame.   */ 
op_stat_write (ctrl_traffic_sent_handle inbits, (double) 

WLAN_ACK_LENGTH); 
op_stat_write (ctrl_traffic_sent_handle_inbits, 0.0); 

/* Update control traffic sent stat when the transmission is complete*/ 
op_stat_write (ctrl_trafFic_sent_handle, 1.0); 
op_stat_write (ctrl_traffic_sent_handle, 0.0); 
break; 
} 

default: 

OPCNIL); 

} 

{ 
wlan_mac_error ("Transmission request for unexpected frame type.", OPC_NIL, 

break; 
} 

/*   802.1 la Model Addition  */ 
/* Before sending the packet to the transmitter, set the Data Rate field  */ 
/* in the packet header as a way to pass the current link data rate to    */ 
/* the pipeline stages so the correct OFDM modulation table can be used   */ 
/* in the dra_ber_ 11 a pipeline stage. */ 
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op_pk_nfd_set (wlan_transmit_framejptr, "Rate", rate_holder); 

/* Sending packet to the transmitter */ 
op_pk_send (wlan_transmit_frame_ptr, outstrm_to_phy); 
wlan_flags->transmitter_busy = OPC_BOOLINT_ENABLED; 

FOUT; 
} 

void 
wlan_interrupts_process () 

{ 
/** This routine handles the appropriate processing need for each type   **/ 
/** of remote interrupt. The type of interrupts are: stream interrupts       **/ 
/** (from lower and higher layers), stat interrupts (from receiver and     **/ 
/** transmitter). **/ 
FIN (wlan_interrupts_process ()); 

/* Check if debugging is enabled.    */ 
wlan_trace_active = opjprg_odb_ltrace_active ("wlan"); 

/* Determine the current simualtion time       */ 
current_time = op_sim_time (); 

/* Determine interrupt type and code to divide treatment */ 
/* along the lines of interrupt type */ 
intrpt_type = op_intrpt_type (); 
intrpt_code = op_intrpt_code (); 

/* Stream interrupts are either arrivals from the higher layer,    */ 
/* or from the physical layer 
*/ 
if (intrptjype = OPC_INTRPT_STRM) 

{ 
/* Determine the stream on which the arrival occurred*/ 
i_strm = op_intrpt_strm (); 

/* If the event arrived from higher layer then queue the packet */ 
/* and the destination address 
if (i_strm = instrm_from_mac_if) 

{ 
/* Process stream interrupt received from higher layer*/ 
wlan_higher_layer_data_arrival (); 
} 

/* If the event was an arrival from the physical layer, */ 
/* accept the packet and decapsulate it 
else 

{ 
/* Process stream interrupt received from physical layer 

/*  802.1 la Model Addition  */ 
/* Capture the data rate of the incoming packet for use in 
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/* responding to the data packet. */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00).   */ 
switch (i_strm) 

{ 
case LOW_LAYER_OUT_STREAM_CHl: 
{ 
response_speed = 6000000; 
break; 
} 
case LOW_LAYER_OUT_STREAM_CH2: 
{ 
response_speed = 6000000; 
break; 
} 
case LOW_LAYER_OUT_STREAM_CH3: 
{ 
response_speed = 12000000; 
break; 
} 
case LOW_LAYER_OUT_STREAM_CH4: 
{ 
response_speed = 12000000; 
break; 
} 
case LOW_LAYER_OUT_STREAM_CH5: 
{ 
response_speed = 24000000; 
break; 
} 
case LOW_LAYER_OUT_STREAM_CH6: 
{ 
response_speed = 24000000; 
break; 
} 
case LOW_LAYER_OUT_STREAM_CH7: 
{ 
response_speed = 24000000; 
break; 
} 
case LOW_LAYER_OUT_STREAM_CH8: 
{ 
response_speed = 24000000; 
break; 
} 
} 

wlan_physical_layer_data_arrival (); 
} 

} 

/* Handle stat interrupt received from the receiver     */ 
else if (intrpt_type = OPC_INTRPT_STAT) 

{ 
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/* Make sure it is not a stat interrupt from the transmitter.        */ 
if (intrpt_code < TRANSMITTER_BUSY_INSTAT) 

{ 
/* One of receiver channels is changing its status. 
/* Update the channel status vector. */ 
wlan_mac_rcv_channel_status_update(intrpt_code); 

/* Update the flag value based on the new status of the 
/* receiver channels. 
if (rcv_channel_status = 0) 

{ 
wlan_flags->receiver_busy = OPCBOOLINTDISABLED; 

/* Reset the receiver idle timer to the current time since 
/* it became available. 
rcv_idle_time = currenttime; 
} 

*/ 
*/ 

*/ 
*/ 

else 
{ 
wlan_flags->receiver_busy = OPC_BOOLINT_ENABLED; 
} 

} 

else if (intrptjype = OPC_INTRPT_SELF) 
{ 
if (intrptcode = WlanC_CW_Elapsed) 

{ 
/* Reset the CW timer, since the period is over, to 
/* enable state transitions, 
cwend = 0.0; 
} 

*/ 
*/ 

FOUT; 
} 

static void 
wlan_physical_layer_data_arrival () 

{ 
char 
int 
int 
int 
int 
int 
WlanTJDataHeaderJFields* 
WlanT_Control_Header_Fields* 
WlanT_Mac_Frame_Type 
Packet* 
Packet* 

/*  802.1 la Model Addition  */ 

msg_string [120]; 
dest_addr, src_addr; 
accept; 
data_pkt_id; 
final_dest_addr; 
rcvd_sta_bssid; 
pk_dhstruct_ptr; 
pk_chstruct_ptr; 
rcvd_frame_type; 
wlan_rcvd_frame_ptr; 
seg_pkptr; 
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/* Add new variables for the received data rate and the MPDU size of the */ 
/* received data packet. */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
double received_data_rate; 
int MPDU_size; 

/** Process the frame received from the lower layer.        **/ 
/** This routine decapsulate the frame and set appropriate  **/ 
/** flags if the station needs to generate a response to the **/ 
/** received frame. **/ 
FIN (wlan_physical_layer_data_arrival ()); 

/* Access received packet from the physical layer stream.       */ 
wlan_rcvd_frame_ptr = op_pk_get (i_strm); 

opjpk_nfd_access (wlan_rcvd_frame_ptr, "Accept", &accept); 

/* If the packet is received while the station is in transmission */ 
/* the packet will not be processed and if needed the station will */ 
/* need to retransmit the packet. */ 
if ((wlan_flags->rcvd_badjpacket = OPC_BOOLINT_ENABLED) || (accept = OPCFALSE)) 

{ 
/* If the pipeline stage set the accept flag to be false then it means that   */ 
/* the packet is erroneous. Enable the EIFS duration flag and set */ 
/* nav duration to be EIFS duration. */ 
if (accept = OPCJALSE) 

{ 
wlan_flags->wait_eifs_dur = OPC_BOOLINT_ENABLED; 

/* Setting nav duration to EIFS.      */ 
nav_duration = current_time + eifs_time; 

/* Reporting the amount of time the channel will be busy.        */ 
op_stat_write (channel_reserv_handle, (nav_duration - current_time)); 
op_stat_write (channel_reserv_handle, 0.0); 
} 

/* We have experienced a collision during transmission. We */ 
/* could be transmitting a packet which requires a response (an*/ 
/* Rts or a data frame requiring an Ack). Even, this is the */ 
/* case, we do not take any action right now and wait for the */ 
/* related timers to expire; then we will retransmit the frame. */ 
/* This is the approach described in the standard, and it is */ 
/* necessary because of the slight possibility that our peer */ 
/* may receive the frame without collision and send us the */ 
/* response back, which we should be still expecting. */ 

/* Check whether the timer for the expected response has */ 
/* already expired. If yes, we must initiate the retransmission. */ 
if ((expected_frame_type != WlanC_None) && (wlan_flags->transmitter_busy = 

OPC_BOOLINT_DISABLED) && 
(op_ev_valid (frame_timeout_evh) = OPC_FALSE)) 
{ 
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channel. */ 

frame.    */ 

retry_count = retry_count + 1; 

/* If Rts sent flag was enable then disable it as the station will recontend for the 

if (wlan_flags->rts_sent = OPCJBOOLINT_ENABLED) 

{ 
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED; 
} 

/* Check whether further retries are possible or */ 
/* the data frame needs to be discarded. */ 
wlan_frame_discard 0; 

/* Set expected frame type flag to none as the station needs to retransmit the 

expected_frame_type = WlanC_None; 

/* Reset the NAV duration so that the */ 
/* retransmission is not unnecessarily delayed. */ 
nav_duration = current_time; 
} 

/* No frame response will be generated for bad frame.*/ 
fresp_to_send = WlanC_None; 

/* Reset the bad packet receive flag for subsequent receptions. */ 
wlan_flags->rcvd_bad_packet = OPC_BOOLINT_DISABLED; 

/* Printing out information to ODB. */ 
if (wlan_trace_active = OPCJTRUE) 

{ 
sprintf (msg_string, "Received bad packet. Discarding received packet"); 
op_prg_odb_print_major (msgstring, OPC_NIL); 
} 

/* Destroy the bad packet. */ 
op_pk_destroy (wlan_rcvd_frame_ptr); 

/* Break the routine as no further processing is needed. */ 
FOUT; 
} 

/* If waiting for EIFS duration then set the nav duration such that */ 
/* the normal operation is resumed. */ 
if (wlan_flags->wait_eifs_dur = OPC_BOOLINT_ENABLED) 

{ 
nav_duration = current_time; 
wlan_flags->wait_eifs_dur = OPC_BOOLINT_DISABLED; 
} 

/* Getting frame control field and duration information from    */ 
/* the received packet. */ 
op_pk_nfd_access (wlan_rcvd_framejptr, "Type", &rcvd_frame_type) ; 
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/* Divide processing based on frame type 
switch (rcvd_frame_type) 

{ 
case WlanC_Data: 

{ 
**/ 
**/ 
**/ 

/** First check that wether the station is expecting 
/** any frame or not. If not then decapsulate relevant 
/** information from the packet fields and set the 
/** frame response variable with appropriate **/ 
/** frame type. 

/*  802.1 la Model Addition  */ 
/* Extract the size of the MPDU from the received data frame and */ 
/* report it. */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
op_pk_nfd_access (wlan_rcvd_frame_ptr, "MPDU size", &MPDU_size); 
op_stat_write (data_traffic_rcvd_handle_inbits, MPDU_size); 
op_stat_write (data_traffic_rcvd_handle_inbits, 0.0); 

/* Data traffic received report in terms of number of packets.  */ 
op_stat_write (data_traffic_rcvd_handle, 1.0); 
op_stat_write (data_traffic_rcvd_handle, 0.0); 

*/ 
*/ 

address. */ 

station.  */ 

/* Address information, sequence control fields, 
/* and the data is extracted from the rcvd packet. 
opjpk_nfd_access (wlan_rcvd_frame_ptr, "WlanHeader", 

&pk_dhstructjptr); 

/* Data packet id of the received data frame is extracted. */ 
op_j>k_nfd_access (wlan_rcvd_frame_ptr, "Data Packet ED", &data_pkt_id); 

dest_addr = pk_dhstruct_ptr->addressl; 
remote_sta_addr = pk_dhstruct_ptr->address2; 

/* If the station is an AP then it will need to forward the receiving data to this 

/* Otherwise this field will be zero and will be ignored. */ 
final_dest_addr = pk_dhstruct_ptr->address3; 

fresp_to_send = WlanC_None; 

/* Process frame only if it is destined for this station. */ 
/* Or it is a broadcast frame. */ 
if ((dest_addr = my_address) || (dest_addr < 0)) 

{ 
/* Extracting the MSDU from the packet only if the packet      */ 
/* is destined for this station. */ 
op_pk_nfd_get (wlan_rcvd_frame_ptr, "Frame Body", &seg_pkptr); 

/* Only send acknowledgement if the data frame is destined for this 

/* No Acks for broadcast frame. */ 
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if (dest_addr = my_address) 
{ 
/* Send the acknowledgement to any received data frame.*/ 
fresp_to_send = WlanC_Ack; 

} 

/* If its a duplicate packet then destroy it and do nothing */ 
/* otherwise insert it in the defragmentation list. */ 
if (wlan_tuple_find (remote_sta_addr, pk_dhstruct_ptr- 

>sequence_number, pk_dhstruct_ptr->fragment_number) = OPC_FALSE) 
{ 
wlan_data_process (seg_pkptr, remote_sta_addr, 

final_dest_addr, pk_dhstruct_ptr->fragment_number, 
pk_dhstruct_ptr- 

>more_frag, data_pkt_id, rcvd_sta_bssid); 

} 
else 

} 

discarded", data_pkt_id); 

{ 
/* Printing out information to ODB. */ 
if (wlan_trace_active = OPCJRUE) 

{ 
sprintf (msg_string, "Data packet %d is received and 

op_prg_odb_print_major (msg_string, OPC_NIL); 

} 

/* If the frame is not destined for this station */ 
/* then do not respond with any frame. * 
fresp_to_send = WlanCJNone; 
} 

if(expected_frame_type != WlanC_None) 

{ 
/* Since the station did not receive the expected frame 
/* it has to retransmit the packet. 
retry_count = retry_count + 1; 

*/ 
*/ 

for the channel.   */ 
/* If Rts sent flag was enable then disable it as the station will recontend 

if (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED) 

{ 
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED; 

} 

/* Reset the NAV duration so that the 
/* retransmission is not unnecessarily delayed. 
nav_duration = current_time; 
} 

/* Update nav duration if the received nav duration is greater   */ 
/* than the current nav duration. */ 
if (nav_duration < (pk_dhstruct_ptr->duration + current_time)) 

*/ 
*/ 
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{ 
nav_duration = pk_dhstruct_ptr->duration + currentjime; 

/* Set the flag that indicates updated NAV value.        */ 
wlan_flags->nav_updated = OPCJBOOLINT ENABLED- 
} 

break; 
} 

case WlanC_Rts: 
{ 
/** First check that wether the station is expecting any frame or not **/ 
/** If not then decapsulate the Rts frame and set a Cts frame response **/ 
/** if frame is destined for this station. Otherwise, just update the **/ 
/** network allocation vector for this station. * */ 

/* Control Traffic received report in terms of number of bits. */ 
op_stat_write (ctrl_traffic rcvd handle inbits, (double) 

WLAN_RTS_LENGTH); ~      " ' 

op_stat_write (ctrl_traffic_rcvd_handle_inbits, 0.0); 

/* Control Traffic received report in terms of number of packets. */ 
op_stat_write (ctrl_traffic_rcvd_handle, 1.0); 
op_stat_write (ctrl_traffic_rcvd_handle, 0.0); 

°P_Pk_nfd_access (wlan_rcvd_frame_ptr, "Wlan Header", 
&pk_chstruct_ptr); 

dest_addr = pk_chstructjptr->rx_addr; 
remote_sta_addr = pk_chstruct_ptr->tx_addr; 

if (expected_frame_type = WlanC_None) 
{ 
/* We will respond to the Rts with a Cts only if a) the */ 
/* Rts is destined for us, and b) our NAV duration is */ 
/* not larger than current simulation time. */ 
if ((my_address = dest_addr) && (current_time >= nav_duration)) 

/* Set the frame response field to Cts. */ 
fresp_to_send = WlanC_Cts; 

/* Printing out information to ODB. */ 
if (wlan_trace_active = OPC_TRUE) 

{ 
sprintf (msg_string, "Rts is received and Cts will be 

transmitted"); 

} 

op_prg_odbjprint_major (msg_string, OPC_NIL); 

else 
{ 
/* If Rts is not destined for this station then set the      */ 
/* frame response field to None */ 
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retransmit the packet 

for the channel.   */ 

else 

fresp_to_send = WlanC_None; 

/* Printing out information to ODB.*/ 
if (wlan_trace_active = OPCJTRUE) 

{ 
sprintf (msg_string, "Rts is received and discarded"); 
opjprg_odb_print_major (msg_string, OPC_NIL); 

} 
} 

} 

{ 
/* Since the station did not receive the expected frame it has to 

retry_count = retry_count + 1; 

/* If Rts sent flag was enable then disable it as the station will recontend 

if (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED) 
{ 
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED; 
} 

/* Reset the NAV duration so that the 
/* retransmission is not unnecessarily delayed. 
nav_duration = current_time; 

/* Reset the expected frame type variable since we     */ 
/* will retransmit. */ 
fresp_to_send = WlanC_None; 
} 

/* Update nav duration if the received nav duration is greater   */ 
/* than the current nav duration. */ 
if (nav_duration < (pk_chstruct_ptr->duration + current_time)) 

{ 
nav_duration = pk_chstruct_ptr->duration + current_time; 

/* Set the flag that indicates updated NAV value.       */ 
wlan_flags->nav_updated = OPC_BOOLINT_ENABLED; 
} 

break; 
} 

caseWlanC Cts: 
{ 
/** First check that whether the station is expecting any frame or not 
/** If not then decapsulate the Rts frame and set a Cts frame response 
/** if frame is destined for this station. Otherwise, just update the 
/** network allocation vector for this station. **/ 

/* Control Traffic received report in terms of number of bits.   */ 

*/ 
*/ 

**/ 
**j 

**/ 
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op_stat_write (ctrl_traffic_rcvd handle inbits, (double) 
WLAN_CTS_LENGTH); 

op_stat_write (ctrl_traffic_rcvd_handle_inbits, 0.0); 

/* Control Traffic received report in terms of number of packets. */ 
op_stat_write (ctrl_traffic_rcvd_handle, 1.0); 
op_stat_write (ctrl_traffic_rcvd_handle, 0.0); 

op_pk_nfd_access (wlan_rcvd_frame__ptr, "Wlan Header", 
&pk_chstruct_ptr); 

dest_addr = pk_chstruct_ptr->rx_addr; 

/* If the frame is destined for this station and the station is expecting     */ 
/* Cts frame then set appropriate indicators. */ 
if ((dest_addr = my_address) && (expected_frame_type = rcvd_frame_type)) 

{ 
/* The receipt of Cts frame indicates that Rts is successfully    */ 
/* transmitted and the station can now respond with Data frame */ 
fresp_to_send = WlanC_Data; 

/* Set the flag indicating that Rts is succesfully transmitted      */ 
wlan_flags->rts_sent = OPC_BOOLINT_ENABLED; 

op_stat_write (retrans_handle, (double) (retry_count * 1.0)); 
op_stat_write (retransjhandle, 0.0); 

/* Printing out information to ODB. */ 
if (wlan_trace_active = OPC_TRUE) 

{ 
sprintf (msg_string, "Cts is received for Data packet %d", 

pkt_in_service); 

} 

°P_Prg_odb_print_major (msg_string, OPC NIL); 
} 

else 
{ 
/* Printing out information to ODB. */ 
if (wlan_trace_active = OPC_TRUE) 

{ 
sprintf (msg_string, "Cts is received and discarded."); 
°P_Prg_odbjprint_major (msg_string, OPC_NIL); 
} 

/* No response needed as the frame is either not destined for */ 
/* this station and/or the station is not expecting this frame. */ 
fresp_to_send = WlanC_None; 

/* Check whether we were expecting another frame. If yes */ 
/* then we need to retransmit the frame for which we were */ 
/* expecting a reply. */ 
if(expected_frame_type != WlanC_None) 

{ 
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retransmit the packet 

recontend for the channel. */ 

OPC BOOLINT DISABLED; 

/* Since the station did not receive the expected frame it has to 

retry_count = retry_count + 1; 

/* If Rts sent flag was enable then disable it as the station will 

if (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED) 

{ 
wlan_flags->rts_sent = 

} 

/* Reset the NAV duration so that the */ 
/* retransmission is not unnecessarily delayed. */ 
nav_duration = current_time; 

} 
} 

/* If network allocation vector is less than the received duration */ 
/* value then update its value. */ 
if (nav_duration < (pk_chstruct_ptr->duration + current_time)) 

{ 
nav_duration = pk_chstruct_ptr->duration + current_time; 

/* Set the flag that indicates updated NAV value. */ 
wlan_flags->nav_updated = OPC_BOOLINT_ENABLED; 

} 
break; 
} 

case WlanC_Ack: 
{ 
/* No response needed for ack frame. */ 
fresp_to_send = WlanCNone; 

op_pk_nfd_access (wlan_rcvd_frame_ptr,"Wlan Header", &pk_chstructjptr); 

dest_addr = pk_chstruct_ptr->rx_addr; 

/* Control Traffic received report in terms of number of bits. */ 
op_stat_write (ctrl_traffic_rcvd_handle_inbits, (double) 

WLAN_ACK_LENGTH); 
op_stat_write (ctrl_traffic_rcvd_handle_inbits, 0.0); 

/* Control Traffic received report in terms of number of packets. */ 
op_stat_write (ctrl_traffic_rcvd_handle, 1.0); 
op_stat_write (ctrl_traffic_rcvd_handle, 0.0); 

if ((dest_addr = my_address) && (rcvd_frame_type = expected_frame_type)) 

{ 
/* Printing out information to ODB.*/ 
if (wlan_trace_active = OPCTRUE) 
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pkt_in_service); 

successfully transmitted.    */ 

sent flag */ 

exchange is */ 

period. */ 

OPC_BOOLINT_ENABLED)) 

*/ 

data,      */ 

else 

sprintf (msg_string, "Ack received for data packet %d", 

°P_Prg_odb_print_major (msg_string, OPC_NIL); 

op_stat_write (retrans_handle, (double) (retry_count * 1.0)); 
op_stat_write (retransjiandle, 0.0); 

/* Reset the retry counter as the expected frame is received      */ 
retry_count = 0; 

/* Decrement number of fragment count because one fragment is 

num_fragments = num_fragments -1; 

/* When there are no more fragments to transmit then disable the Rts 

/* if it was enabled because the contention period due to Rts/Cts 

/* over and another Rts/Cts exchange is needed for next contention 

if ((num_fragments = 0) && (wlan_flags->rts_sent = 

{ 
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED; 

/* Set the contention window flag. Since the ACK for the last 

/* fragment indicates a sucessful transmission of the entire 

/* we need to back-off for a contention window period.    */ 
wlan_flags->cw_required = OPCJTRUE; 
} 

/* Data packet is successfully delivered to remote station, */ 
/* since no further retransmission is needed the copy of the data */ 
/* packet will be destroyed. */ 
°PJPk_destroy(wlan_transrnit_frame_copy_ptr); 
wlan_transmit_frame_copy_ptr = OPC_NIL- 
} 

{ 
/* Printing out information to ODB. */ 
if (wlan_trace_active = OPCJTRUE) 

{ 
sprintf (msg_string, "Ack is received and discarded."); 
°P_Prg_odb_print_major (msgstring, OPC_NIL); 

/* Check whether we were expecting another frame. If yes then */ 
/* we need to retransmit the frame for which we were expecting */ 
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retransmit the packet 

recontend for the channel. */ 

OPC BOOLINT DISABLED; 

/* a reply. */ 
if(expected_frame_type != WlanCJNone) 

{ 
/* Since the station did not receive the expected frame it has to 

retry_count = retry_count + 1; 

/* If Rts sent flag was enable then disable it as the station will 

if (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED) 
{ 
wlan_flags->rts_sent = 

} 

/* Reset the NAV duration so that the */ 
/* retransmission is not unnecessarily delayed. */ 
nav_duration = current_time; 
} 

} 

/* If network allocation vector is less than the received duration */ 
/* value then update its value. */ 
if (nav_duration < (pk_chstruct_ptr->duration + current_time)) 

{ 
nav_duration = pk_chstruct_ptr->duration + current_time; 

/* Set the flag that indicates updated NAV value. */ 
wlan_flags->nav_updated = OPC_BOOLINT_ENABLED; 
} 

break; 
} 

default: 
{ 
wlan_mac_error ("Unexpected frame type received.", OPC_NEL, OPC_NIL); 
break; 
} 

} 

/* Reporting the amount of time the channel will be busy.        */ 
op_stat_write (channel_reserv_handle, (nav_duration - current_time)); 
op_stat_write (channel_reserv_handle, 0.0); 

/* Check whether further retries are possible or */ 
/* the data frame needs to be discarded. */ 
wlan_frame_discard 0; 

/* Set the expected frame type to None because either the        */ 
/* expected frame is recieved or the station will have to */ 
/* retransmit the frame 
*/ 
expected_frame_type = WlanC_None; 
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/* Destroying the received frame once relevant information is taken out of it.       */ 
op_pk_destroy (wlan_rcvd_frame_ptr); 

FOUT; 
} 

Boolean 
wlan_tuple_find (int sta_addr, int seq_id, int fragjnum) 

{ 
Boolean result = OPC_BOOLINT_DISABLED; 
int list_index; 
int list_size; 
WlanT_Mac_Duplicate_Buffer_Entry* tuple_ptr; 

/** This routine determines whether the received data frame already exists in the **/ 
/** duplicate buffer. If it is not then it will be added to the list and the list is updated **/ 
/** such that its size will will not be greater then the MAX TUPLE SIZE. **/ 
FIN (wlan_tuple_find (sta_addr, seq_id, frag_num)); 

/* Finding the index of the station address in the list, */ 
/*ifthe station belongs to this subnet. */ 
list_index = oms_aa_address_find (oms_aa_wlan_handle, sta_addr); 

/* If remote station entry doesn't exist then create new node.     */ 
if(list_index>=0) 

{ 
if (duplicate_list_ptr [list_index] = OPC_NIL) 

{ 
/* Creating struct type for duplicate frame (or tuple) structure. */ 
tuple_ptr = (WlanT_Mac_Duplicate_Buffer_Entry *) 

op_prg_mem_alloc (sizeof 
(WlanT_Mac_Duplicate_Buffer_Entry)); 

duplicate buffer   */ 

OPC_NIL, OPC.NIL); 

else 

/* Generate error and abort simulation if no more memory left to allocate for 

if (tuple_ptr = OPC_NIL) 
{ 
wlan_mac_error ("Cannot allocate memory for duplicate buffer entry", 

} 

tuple_ptr->tx_station_address = remote_sta_addr; 

tuple_ptr->sequence_id = seq_id; 
tuple_ptr->fragment_number = frag_num; 

/* Insert new entry in the list. */ 
duplicate_list_ptr [list_index] = tuple_ptr; 

} 
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{ 
if (duplicate_list_ptr [list_index]->sequence_id = seq_id && 

duplicate_list_ptr [list_index]->fragment_number = frag_num) 

{ 
/* This will be set in the retry field of Acknowledgement.        */ 
duplicate_entry = 1; 

/* Break the routine as the packet is already received by the station.*/ 
FRET (OPCTRUE); 

} 
else 

{ 
/* Update the sequence id and fragment number fields of the    */ 
/* remote station in the duplicate buffer list. The list */ 
/* maintains the sequence id and fragment number of the */ 
/* previously received frame from this remote station. */ 
duplicate_list_ptr [list_index]->sequence_id = seq_id; 
duplicate_list_ptr [list_index]->fragment_number = frag_num; 

} 
} 

} 
else 

{ 
/* Its not possible for a station to directly receive packet from a station that */ 
/* does not exist in its BSS. 

*/ 
wlan_mac_error ("Receiving packet from a station that does not exist in this BSS", 

"Possibly wrong destination address", "Please check the configuration"); 
} 

/* This will be set in the retry field of Acknowledgement. */ 
duplicate_entry = 0; 

/* Packet is not already received by the station. */ 
FRET (OPCJFALSE); 
} 

static void 
wlan_data_process (Packet* seg_pkptr, int sta_addr, int final_dest_addr, int frag_num, int more_frag, int 
pkt_id, int rcvd_sta_bssid) 

{ 
char msg_string [120]; 
int current_mdex; 
int list_index; 
int list_size; 
int protocoltype; 
WlanT_Mac_Defragmentation_Buffer_Entry* defragjptr; 

/** This routine handles defragmentation process and also sends data to the        **/ 
/** higher layer if all the fragments have been received by the station.    **/ 
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FIN (wlan_data_process (seg_pkptr, sta_addr, final_dest_addr, frag num, more frag, pkt id, 
rcvd_sta_bssid)); ~ - 

/* Defragmentation of the received data frame. 
/* Inserting fragments into the reassembly buffer. There are */ 
/* two possible cases: 

*/ 
/* 1. The remote station has just started sending the */ 
/* fragments and it doesn't exist in the list. */ 
/* 2. The remote station does exist in the list and the */ 
/* and the new fragment is a series of fragments for the data */ 
/* packet. */ 

/* Get the size of the defragmentation list.     */ 
list_size = opjprg_list_size (defragmentation_list_ptr); 

/* Initialize the current node index which will indicate whether */ 
/* the entry for the station exists in the list. */ 
current_index = -l; 

/* Searching through the list to find if the remote station address */ 
/* exists i.e. the source station has received fragments for this */ 
/* data packet before. 

*/ 
/* Also, removing entries from the defragmentation buffer which has */ 
/* reached its maximum receieve lifetime. */ 
for (list_index = 0; list_index < list_size; list_index++) 

{ 
/* Accessing node of the list for search purposes.       */ 

*/ 

list_index); 

defrag_ptr - (WlanT_Mac_Defragmentation_Buffer_Entry*) 
op_prg_list_access (defragmentation_list_ptr, 

/* Removing station entry if the receive lifetime has expired.    */ 
if((cun-ent_time-defrag_ptr->time_rcvd)>=max receive lifetime) 

{ " 
/* Removing the partially completed fragment once its lifetime has reached.*/ 
defrag_ptr =(WlanT_Mac_Defragmentation_Buffer_Entry *) 

op_prg_list_remove (defragmentation_list_ptr, list_index); 
op_sar_buf_destroy(defrag_ptr->reassembly_buffer_ptr); 

op_prg_mem free (defrag_ptr); 

/* Updating the total list size. */ 
list_size = list_size -1; 
} 

/* If the station entry already exists in the list then store its index for future use.   */ 
else if (remotestaaddr = defrag_ptr->tx_station_address) 

current_index = list_index; 
} 
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} 

/* If remote station entry doesn't exist then create new node     */ 
if (current_index = -1) 

{ 
/* If the entry of the station does not exist in the defrag list */ 
/* and the fragment received is not the first fragment of the packet */ 
/* then it implies that the maximum receive lifetime of the packet */ 
/* has expired. In this case the received packet will be destroyed and */ 
/* the acknowledgement is sent to the receiver as specified by the */ 
/* protocol. */ 
if(frag_num>0) 

{ 
op_pk_destroy (seg_pkptr); 
FOUT; 
} 

/* Creating struct type for defragmentation structure   */ 

defrag_ptr = (WlanT_Mac_Defragmentation_Buffer_Entry *) opjprg_mem_alloc (sizeof 
(WlanT_Mac_Defragmentation_Buffer_Entry)); 

/* Generate error and abort simulation if no more memory left to allocate for duplicate 
buffer    */ 

if (defrag_ptr= OPC_NIL) 
{ 
wlan_mac_error ("Cannot allocate memory for defragmentation buffer entry", 

OPC_NIL, OPC_NIL); 
} 

/* Source station address is store in the list for future reference. */ 
defrag_ptr->tx_station_address = sta_addr; 

/* For new node creating a reassembly buffer */ 
defrag_ptr->reassembly_buffer_ptr = op_sar_buf_create 

(OPC_SAR_BUF_TYPE_REASSEMBLY,OPC_SAR_BUF_OPT_DEFAULT); 
op_prg_list_insert (defragmentation_list_ptr, defrag_ptr, OPCLISTPOSTAIL); 
} 

/* Record the received time of this fragment. */ 
defragjptr->time_rcvd = current_time; 

/* Insert fragment into the reassembly buffer */ 
op_sar_rsmbuf_seg_insert (defrag_ptr->reassembly_bufferjptr, segjpkptr); 

/* If this is the last fragment then send the data to higher layer. */ 
if (more_frag = 0) 

{ 
/* If no more fragments to rev then send the data to higher       */ 
/* layer and increment revd fragment count. */ 
seg_pkptr = op_sar_rsmbuf_pk_remove (defrag_ptr->reassembly_buffer_ptr); 

123 



address then 

if (ap_flag = OPC_BOOLINT_ENABLED) 
{ 
/* If the address is not found in the address list then access point will sent the 

data to higher      */ 
/* layer for address resolution. Note that if destination address is same as AP's 
*/ 
/* the packet is sent to higher layer for address resolution.        */ 
if ((oms_aa_address_frnd (oms_aa_wlan_handle, final_dest_addr) >= 0) && 

(final_dest_addr != my_address)) 
{ 
/* Printing out information to ODB. */ 
if (wlan_trace_active = OPC_TRUE) 

{ 
sprintf (msg_string, "All fragments of Data packet %d is 

received and enqueued for transmission within a subnet", pkt_id); 
°P_Prg_odbjprint_major (msg_strmg, OPC_NIL); 
} 

/* Enqueuing packet for transmission within a subnet. */ 
wlan_hlpk_enqueue (seg_pkptr, final_dest_addr); 

else 
} 

{ 
/* Update the local/global throughput and end-to-end */ 
/* delay statistics based on the packet that will be 
/* forwarded to the higher layer. 
wlan_accepted_frame_stats_update(segjpkptr); 

*/ 
*/ 

OPC_COMPCODE_FAILURE) 

OPC_NIL, OPC_NIL); 

OPC_COMPCODE_FAILURE) 

ICL", OPC_NIL, OPCNIL); 

OPC_COMPCODE_FAILURE) 

OPC_NIL, OPC_NIL); 

/* Set the contents of the LLC-destined ICI - set the address    */ 
/* of the transmitting station. */ 
if (op_ici_attr_set (llc_iciptr, "src_addr", remote_sta_addr) = 

{ 
wlan_mac_error ("Unable to set source address in LLC ICI.", 

} 

/* Set the destination address (this mainly serves to */ 
/* distinguish packets received under broadcast conditions.)     */ 
if (op_ici_attr_set (Uc_iciptr, "dest_addr", final_dest_addr) = 

{ 
wlan_mac_error("Unable to set destination address in LLC 

} 

/* Set the protocol type field contained in the Wlan frame.       */ 
protocol_type = 0; 
if (op_ici_attr_set (llc_iciptr, "protocol_rype", protocoltype) = 

{ 
wlan_mac_error("Unable to set protocol type in LLC ICL", 
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} 

/* Printing out information to ODB. */ 
if (wlan_trace_active = OPCJRUE) 

{ 
sprintf (msg_string, "All fragments of Data packet %d is 

received and sent to the higher layer", pkt_id); 
op_prg_odbjprint_major (msg_string, OPC_NIL); 

} 

/* Setting an ici for the higher layer */ 
op_ici_install (llcjciptr); 

/* Sending data to higher layer through mac interface. */ 
op_pk_send (seg_pkptr, outstrm_to_mac_if); 

} 
} 

else 
{ 
/* If the station is a gateway and not an access point then do not send     */ 
/* data to higher layer for address resolution. This is for not allowing  */ 
/* data to go out of the Adhoc BSS. */ 
if ((wlan_fiags->gateway_flag = OPC_BOOLINT_ENABLED) || 

(wlan_flags->bridge_flag = OPC_BOOLINT_ENABLED)) 

{ 
/* Printing out information to ODB. */ 
if (wlan_trace_active = OPCJRUE) 

{ 
sprintf (msg_string, "Gateway is not an access point so all 

received fragments are discarded."); 
op_prg_odb_print_major (msg_string, OPC_NIL); 

} 
op_pk_destroy (seg_pkptr); 
} 

else 
{ 
/* Update the local/global throughput and end-to-end */ 
/* delay statistics based on the packet that will be */ 
/* forwarded to the higher layer. */ 
wlan_accepted_frame_stats_update(seg_pkptr); 

/* Printing out information to ODB.*/ 
if (wlan_trace_active = OPCJRUE) 

{ 
sprintf (msg_string, "All fragments of Data packet %d is 

received and sent to the higher layer", pkt_id); 
op_prg_odbjprint_major (msgstring, OPC_NIL); 

} 

/* Sending data to higher layer through mac interface */ 
op_pk_send (segjpkptr, outstrm_to_mac_if); 

} 
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else 

",pkt_id); 

/* Freeing up memory space once the received data frame is sent to higher layer. */ 
defrag_ptr =(WlanTJVlacJDefragmentation_Buffer_Entry *) 

op_prg_list_remove (defragrnentationJist_ptr, current_index); 
op_sar_buf_destroy(defragjptr->reassembly_buffer_ptr); 

op_prg_mem_free (defrag_ptr); 
} 

{ 
/* Printing out information to ODB. */ 
if (wlan_trace_active = OPC_TRUE) 

{ 
sprintf (msg_string, "Data packet %d is received and waiting for more fragments 

°P_Prg_odbjprint_major (msg_string, OPC_NIL); 

FOUT; 
} 

static void 
wlan_accepted_frame_stats_update (Packet* seg_pkptr) 

double ete_delay, pk_size; 
Ici* strm_info_iciptr; 
int stream_id; 

/** This function is called just before a frame received from    **/ 
/** physical layer being forwarded to the higher layer to **/ 
/** update end-to-end delay and throughput statistics. **/ 
FIN (wlan_accepted_frame_stats_update (seg_pkptr)); 

/* Total number of bits sent to higher layer is equivalent to a    */ 
/* throughput. */ 
pk_size = (double) op_pk_total_size_get (seg_pkptr); 
op_stat_write (throughput_handle, pk_size); 
op_stat_write (throughputjiandle, 0.0); 

/* Also update the global WLAN throughput statistic. */ 
op_stat_write (global_throughput_handle, pk_size); 
op_stat_write (global_throughput_handle, 0.0); 

/* Compute the end-to-end delay for the frame and record it.    */ 
ete_delay = current_time - opjpk_stamp_time_get (seg_pkptr); 
op_stat_write (ete_delay_handle, ete_delay); 
op_stat_write (etedelayjiandle, 0.0); 
op_stat_write (global_ete_delay_handle, ete_delay); 
op_stat_write (global_ete_delay_handle, 0.0); 

/* Retrieve the traffic stream information of the packet and      */ 
/* update the corresponding per-stream statistics. */ 
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strm_info_iciptr = op_pk_ici_get (segjpkptr); 
if ((strm_info_iciptr != OPC_NIL) && (op_ici_attr_exists (strm_info_iciptr, "stream_id"): 

OPC_TRUE)) 
{ 
op_ici_attr_get (strm_info_iciptr, "stream_id", &stream_id); 

/* Register the statistics if this is the first packet we    */ 
/* received belonging to that stream. */ 
if (stat_reg_status_array [stream_id] = OPCJFALSE) 

{ 
wlanjper_strearn_stat_register(stream_id); 

} 

/* Update the related per-stream statistics. */ 
op_stat_write (ete_delayjper_strm_sh_array [stream_id], ete_delay); 
op_stat_write (ete_delay_per_strm_sh_array [stream_id], 0.0); 
op_stat_write (throughput_per_strm_sh_array [stream_id], pk_size); 
op_stat_write (throughputjper_strm_sh_array [stream_id], 0.0); 
} 

FOUT; 
} 

static void 
wlan_per_stream_stat_register (int stream_index) 

{ 
char stat_annot_str [16]; 

/** Registers the dimensional per-stream statistics for the given **/ 
/** stream index and updates its status in the status array. **/ 
FIN (wlan_per_stream_stat_register (int stream_index)); 

/* Register the statistics at the corresponding dimension. */ 
ete_delay_per_strm_sh_array [stream_index]   = op_stat_reg ("Wireless LAN Traffic 

Stream.Delay (sec)", stream_index, OPC_STAT_GLOBAL); 
dropped_data_per_strm_sh_array [stream_index] = op_stat_reg ("Wireless LAN Traffic 

StrearaData Dropped (bits/sec)", stream_index, OPC_STAT_GLOBAL); 
throughputjperstrmsharray [stream_index]  = op_stat_reg ("Wireless LAN Traffic 

Stream-Throughput (bits/sec)",  streamjndex, OPC_STAT_GLOBAL); 

/* Annotate the dimensioned statistics to improve their readibility.*/ 
sprintf (stat_annot_str," Stream %d", stream_index); 
op_stat_annotate (ete_delay_per_strm_sh_array [stream_index],   stat_annot_str); 
op_stat_annotate (dropped_data_per_strm_sh_array [stream_index], stat_annot_str); 
op_stat_annotate (throughput_per_strm_sh_array [stream_index],  stat_annot_str); 

/* Update the registration status. */ 
stat_reg_status_array [stream_index] = OPCTRUE; 

FOUT; 
} 

static void 
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wlan_schedule_deference () 
{ 
/** This routine schedules self interrupt for deference **/ 
/** to avoid collision and also deference to observe **/ 
/** interframe gap between the frame transmission. **/ 
FIN (wlan_schedule_deference ()); 

/* Check the status of the receiver. If it is busy, exit the */ 
/* function, since we will schedule the end of the deference      */ 
/* when it becomes idle. */ 
if (wlan_flags->receiver_busy = OPC_BOOLINT_ENABLED) 

FOUT; 
} 

/* Extracting current time at each interrupt */ 
current_time = op_sim_time 0; 

/* Adjust the NAV if necessary. */ 
if (nav_duration < rcv_idle_time) 

{ 
nav_duration = rcv_idle_time; 
} 

/* Station needs to wait SIFS duration before responding to any */ 
/* frame. Also, if Rts/Cts is enabled then the station needs */ 
/* to wait for SIFS duration after acquiring the channel using */ 
/* Rts/Cts exchange. */ 
if ((fresp_to_send != WlanCJNone) || (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED)) 

deference_evh = op_intrpt_schedule_self (currentjime + sifs time 
WlanC_Deference_Off); 

/* Disable backoff flag because this frame is a response frame to the      */ 
/* previously received frame (this could be Ack or Cts) */ 
wlan_flags->backoff_flag = OPC_BOOLINT_DISABLED; 
} 

/* If more fragments to send then wait for SIFS duration and transmit.   */ 
/* Station need to contend for the channel if one of the fragments is */ 
/* not successfully transmitted. */ 
else if ((retry_count = 0) && (op_sar_buf_size (fragmentation_buffer_ptr) > 0)) 

/* Scheduling a self interrupt after SIFS duration ' */ 
deference_evh = op_intrpt_schedule_self (currentjime + sifs time 

WlanC_Deference_Off); 

/* Disable backoff because the frame need to be transmitted after SIFS duration */ 
/* This frame is part of the fragment burst */ 
wlan_flags->backoff_flag = OPC_BOOLINT_DISABLED; 
} 

else 

{ 
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/* If the station needs to transmit or retransmit frame, it will */ 
/* defer for nav duration plus DIFS duration and then backoff */ 
deference_evh = op_intrpt_schedule_self ((nav_duration + difs_time), 

WlanCJDeferenceOff); 

/* Before sending data frame or Rts backoff is needed. */ 
wlan_flags->backoff_flag = OPC_BOOLINT_ENABLED; 

} 

/* Reset the updated NAV flag, since as of now we scheduled a new      */ 
/* "end of deference" interrupt after the last update. */ 
wlan_flags->nav_updated = OPC_BOOLINT_DISABLED; 

FOUT; 
} 

static void 
wlan_frame_discard () 

{ 
int seg_bufsize; 
Packet* seg_pkptr; 

/** No further retries for the data frame for which the retry limit has reached.      **/ 
/** As a result these frames are discarded. **/ 
FIN (wlan_frame_discard ()); 

/* If retry limit has reached then drop the frame. */ 
if (retry_count = retry_limit) 

{ 
/* Update retransmission count statistic.       */ 

op_stat_write (retrans_handle, (double) (retry_count * 1.0)); 
op_stat_write (retrans_handle, 0.0); 

/* Update the local and global dropped packet statistics. */ 
op_stat_write (drop_packet_handle, 1.0); 
op_stat_write (drop_packet_handle, 0.0); 
op_stat_write (drop_packet_handle_inbits, (double) packet_size); 
op_stat_write (drop_packet_handle_inbits, 0.0); 
op_stat_write (global_dropped_data_handle, (double) packet_size); 
op_stat_write (global_dropped_data_handle, 0.0); 

/* Also update the per-stream statistics if the packet belongs    */ 
/* to a traffic stream. 

*/ 
if (packet_strm_id != WLANC_STRM_UNSET) 

{ 
printf ("I got it\n");/* IUM */ 
/* Register the statistics if this is the first packet we    */ 
/* received belonging to that stream. */ 
if (stat_reg_status_array [packet_strm_id] = OPC_FALSE) 

{ 
wlan_per_stream_stat_register(packet_strm_id); 

129 



transmitted. 

seg_bufsize); 

OPC_NIL)) 

} 

/* Update the related per-stream statistics. */ 
op_stat_write (dropped_datajper_strm_sh_array [packet_strm_id], packet_size); 
op_stat_write (dropped_data_per_strm_sh_array [packet_strm_id], 0.0); 

/* Reset the retry count for the next packet.   */ 
retry_count = 0; 

/* Get the segmenation buffer size to check if there are more fragments left to be 

seg_bufsize = (int) op_sar_buf_size (fragmentation_buffer_ptr); 

if (seg_bufsize != 0) 
{ 
/* Discard remaining fragments      */ 

seg_pkptr = op_sar_srcbuf_seg_remove (fragmentation_buffer_ptr, 

op_pk_destroy (seg_pkptr); 
} 

/* If expecting Ack frame then destroy the tx data frame as this frame will * / 
/* no longer be transmitted (even if we are not expecting an Ack at this */ 
/* moment, we still may have a copy of the frame if at one point in the 
/* retransmission history of the original packet we received a Cts for our 
/* Rts but then didn't receive an Ack for our data transmission; hence 
/* consider this case as well). 
if ((expected_frame_type = WlanC_Ack) || (wlan_transmit_frame_copy_ptr != 

{ 
/* Destroy the copy of the frame as the packet is discarded.      */ 
op_pk_destroy (wlan_transmit_frame_copy_jptr); 
wlan_transmit_frame_copy_ptr = OPC NIL- 
} 

/* Reset the flag that indicates successful RTS transmission. */ 
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED; 

*/ 
*/ 
*/ 
*/ 

/* Reset the "frame to respond" variable unless we have a CTS or 
/* ACK to send. 
if (fresp_to_send = WlanC_Data) 

{ 
fresp_to_send = WlanC_None; 
} 

*/ 
*/ 

/* If there is not any other data packet sent from higher layer and */ 
/* waiting in the buffer for transmission, reset the related flag. */ 
if (op_prg_list_size (hldjistjptr) = 0) 

{ 
wlan_flags->data_frame_to_send = OPC BOOLINT DISABLED- 
} 
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FOUT; 
} 

static void 
wlan_mac_rcv_channel_status_update (int channel_id) 

{ 
int mask=l; 

/** This function updates the status of the receiver's **/ 
/** channel by setting or resetting the corresponding  **/ 
/** bit in the rcv_channel_status state variable based **/ 
/** the channel from which the stat interrupt is **/ 
/** received and the value of that channel's statwire. **/ 
FIN (wlan_mac_rcv_channel_status_update (int channel_id)); 

/* Create a mask which will access the corresponding */ 
/* bit of the channel that is changing its status. */ 
mask = mask « channeled; 

/* Set the bit to 1 if channel became busy and to 0 if */ 
/* the channel became idle without changing the other*/ 
/* bits. */ 
if (op_stat_local_read (channel_id) = 1.0) 

{ 
rcv_channel_status = rcv_channel_status | mask; 
} 

else 
{ 
rcv_channel_status = rcv_channel_status A mask; 
} 

FOUT; 
} 

/****** Error handling procedure ******/ 
static void 
wlan_mac_error (char* msgl, char* msg2, char* msg3) 

{ 

/** Terminates simulation with an error message.       **/ 
FIN (wlan_mac_error (msgl, msg2, msg3)); 

op_sim_end ("Error in Wireless LAN MAC process:", msgl, msg2, msg3); 

FOUT; 
} 

/*  802.1 la Model Addition  */ 
/* This funcion is called to calculate the rate of transmission of control */ 
/* frames based on the operational data rate provided by the user. The control     */ 
/* frame transmission rate is one of 6,12,24 Mbps (i.e. the mandatory data rates */ 
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/* per the 802.1 la specification). */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
static double 
control_speed (double datajrate) 

{ 
FIN (control_speed (double data_rate)); 

if ((data_rate = 54E6) || (data_rate = 48E6) |j (data_rate = 36E6) (| (data_rate = 24E6)) 
{ 
FRET (24000000); 
} 

else if ((data_rate = 18E6) || (data_rate = 12E6)) 
{ 
FRET (12000000); 

else 

FRET (6000000); 
} 

FOOT; 
} 

I*  802.1 la Model Addition  */ 
/'* This function is called to calculate the duration of the data field in a */' 
/* given PPDU. This duratiion includes the PSDU, SERVICE field (16 bits), tail*/ 
/* bits (6 bits) and enough bit padding to complete the final OFDM symbol. */ 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
static double 
ppdu_duration (int PSDUJength, double transmission_speed) 

{ 
int number_ofdm_symbols; 
FIN (ppdu_duration (int PSDUJength, double transmission_speed)); 
number_ofdm_symbols = ceil((16 + 6 + PSDUJength) / (transmission_speed * .000004)); 
FRET ((double) number_ofdm_symbols * .000004); 
FOUT; 
} 

ENTT State 

/*** Enter Executives ***/ 

/* Initialization of the process model. */ 
I* All the attributes are loaded in this routine */ 
wlan_mac_sv_init (); 

/* Schedule a self interrupt to wait for mac interface   */ 
/* to move to next state after registering */ 
opJntrpt_schedule_self (op_sim_time (), 0); 

/*** Exit Executives ***/ 
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/* object id of the surrounding processor      */ 
my_objid = op_id_self (); 

/* Obtain the node's object identifier */ 
my_node_objid = op_topo_parent (my_objid); 

my_subnet_objid = op_topo_parent (my_node_objid); 

/* Obtain the process's process handle */ 
own_prohandle = op_pro_self 0; 

/* Obtain the values assigned to the various attributes */ 
op_ima_obj_attr_get (myobjid, "Wireless LAN Parameters", &wlan_params_comp_attr_objid); 
params_attr_objid = op_topo_child (wlan_params_comp_attr_objid, OPC_OBJTYPE_GENERIC, 0); 

/* Obtain the name of the process    */ 
op_ima_obj_attr_get (my_objid, "process model", proc_model_name); 

/* Determine the assigned MAC address which will be used for address resolution. */ 
/* Note this is not the final MAC address as there may be static assignments in */ 
/* the network. */ 
op_ima_obj_attr_get (my_objid, "station_address", &my_address); 

/* Perform auto-addressing for the MAC address. Apart */ 
/* from dynamically addressing, if auto-assigned, the */ 
/* address resolution function also detects duplicate */ 
/* static assignments. The function also initializes */ 
/* every MAC address as a valid destination. */ 
oms_aa_address_resolve (oms_aa_handle, my_objid, &my_address); 

/* Register Wlan MAC process in the model wide registry       */ 
process_record_handle = (OmsT_Pr_Handle) oms_pr_process_register ( 
mynodeobjid, my_objid, own_prohandle, proc_model_name); 

/* If this station is an access point then it has to be registered as an Access Point. */ 
/* This is because the network will be treated as Infrastructure network once AP is */ 
/* detected. */ 
if (ap_flag = OPC_BOOLINT_ENABLED) 

{ 
/* Register this protocol attribute and the station address of */ 
/* this process into the model-wide registry. */ 
oms_pr_attr_set(process_record_handle, 

"protocol", OMSC_PR_STRING, "mac", 
"macjype",        OMSC_PR_STRING, "wirelessjan", 
"subprotocol",     OMSC_PR_NUMBER, (double) WLAN_AP, 
"subnetid", OMSC_PR_OBJID, my_subnet_objid, 
"address", OMSC_PR_NUMBER, (double) my_address, 
"auto address handle",      OMSC_PR_ADDRESS, oms_aa_handle, 
OPC_NIL); 

} 
else 

{ 
/* Register this protocol attribute and the station address of 
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/* this process into the model-wide registry. */ 
oms_pr_attr_set (process_record_handle, 

"protocol", OMSC_PR_STRING, "mac", 
"macjype",        OMSC_PR_STRING, "wirelessjan", 
"subprotocol",     OMSC_PR_NUMBER, (double) WLAN_STA 
"subnetid", OMSC_PR_OBJID, my_subnet_objid, 
"address", OMSC_PR_NUMBER, (double) my_address, 
"auto address handle",      OMSC_PR_ADDRESS, oms aa handle 
OPCJNIL);   

} 

/* Obtain the MAC layer information for the local MAC */ 
/* process from the model-wide registry. */ 
/* This is to check if the node is a gateway or not. */ 
proc_record_handle_list_ptr = op_prg_list_create (); 

oms_pr_process_discover (OPC_OBJID_INVALID, proc_record_handle_list_ptr 
"nodeobjid",      OMSC_PR_OBJID, myjnode\>bjid, 
"protocol", OMSC_PR_STRING, "bridge" 
OPCJNIL); 

/* If the MAC interface process registered itself, */ 
/* then there must be a valid match */ 
record_handle_list_size = op_prg_list_size (proc_record_handle_listjptr); 

if (record_handle_list_size != 0) 
{ 
wlan_flags->bridge_flag = OPC_BOOLINT_ENABLED; 
} 

/* If the station is not a bridge only then check for arp */ 
if (wlan_flags->bridge_flag = OPC_BOOLINT_DISABLED) 

/* Deallocate memory used for process discovery       */ 
while (op_prg_list_size (proc_record_handle_list_ptr)) 

{ 
opjprg_list_remove (proc_record_handle_list_ptr, OPC_LISTPOS_HEAD); 

op_prg_mem_free(proc_record_handle_list_ptr); 

/* Obtain the MAC layer information for the local MAC */ 
/* process from the model-wide registry. */ 
proc_record_handle_list_ptr = opjprg_list_create 0; 

oms_pr_process_discover (my_objid, proc_record_handle_list_ptr, 
"node objid",      OMSC_PR_OBJID, my_node_objid, 
"protocol", OMSC_PR_STRING, "arp" 
OPC_NIL); 

/* If the MAC interface process registered itself,        */ 
/* then there must be a valid match */ 
record_handle_list_size = op_prg_list_size (proc_record_handle_list_ptr); 
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if (record_handie_list_size != 1) 

/* An error should be created if there are more */ 
/* than one WLAN-MAC process in the local node,   */ 
/* or if no match is found. */ 
wlan_mac_error ("Either zero or several WLAN MAC interface processes found in the node.", 

OPC.NIL, OPCNIL); 
} 

else 
{ 
/* Obtain a handle on the process record */ 
processjrecowijbandle = (OmsT_Pr_Handle) op_prg_list_access (proc_record_handk_list_ptr, 

OPC_LISTPOS_HEAD); 

/* Obtain the module objid for the Wlan MAC Interface module */' 
onTS_pr_attr_get (process_record_handle, "module objid", OMSC_PR_OBJID, 

&mac_if_module_objid); 

/* Obtain the stream numbers connected to and from the */ 
/* Wlan MAC Interface layer process */ 
oms_tan_neighbor_streams_find (my_objid, mac_if_module_objid. &instrm_from_mac_if, 

&outstrm_to_mac_if); 
} 

/* Deallocate memory used for process discovery       */ 
while (op_jprg_list_size (proc_record_handle_list_ptr)) 

i 
op_prg_Iist_remove (proc_record_handle_Iist_ptr, OPC_LISTPOS_HEAD); 

opjprg_mem_free{proc_record_handle_list_ptr); 

if (wlan_trace_active) 
{ 
/* Cache the state name from which this function was */ 
/* called. 

*/ 
strcpy (current_state_name, "init"); 
} 

BSS INIT State 

/*** Enter Executives ***/ 

/* Schedule a self interrupt to wait for mac interface */ 
/* to move to next state after registering */ 
op_intrpt_scheduie_self (op_sim_time (), 0); 

/*** Exit Executives ***/ 
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/* object id of the surrounding processor      */ 
my_objid = op_id_self (); 

/* Obtain the node's object identifier */ 
my_node_objid = op_topo_parent (my_objid); 
my_subnet_objid = op_topo_parent (my_node_objid); 

/* Obtain the values assigned to the various attributes */ 
op_ima_obj_attr_get (my_objid, "Wireless LAN Parameters", &wlanjparams_comp_attr_objid); 
params_attr_objid = op_topo_child (wlan_params_comp_attr_objid, OPC_OBJTYPE_GENERIC, 0); 

/* Determining the final MAC address after address resolution.*/ 
op_ima_obj_attr_get (my_objid, "station_address", &my_address); 

/* Once the station addresses are resolved, then create a pool for wlan addresses. */ 
oms_aa_address_resolve (oms_aa_wlan_handle, my_objid, &my_address); 

/* Obtain the MAC layer information for the local MAC */ 
/* process from the model-wide registry. */ 
proc_record_handle_list_ptr = op_prg_list_create (); 

oms_pr_process_discover (OPC_OBJID_INVALID, proc_record_handle_list_ptr, 
"subnetid", OMSC_PR_OBJID, my_subnet_objid, 
"mac_type", OMSC_PR_STRING, "wirelessjan", 
"protocol", OMSC_PR_STRING, "mac", 
OPC_NEL); 

/* If the MAC interface process registered itself,        */ 
/* then there must be a valid match */ 
record_handle_list_size = op_prg_list_size (proc_record_handle_list_ptr); 

/* Allocating memory for the duplicate buffer based on number of stations in the subnet.   */ 
duplicate_list_ptr = (WlanT_Mac_Duplicate_Buffer_Entry**) 

op_prg_mem_alloc (record_handle_list_size * sizeof (WlanT_Mac_Duplicate_Buffer_Entry*)); 

/* Initializing duplicate buffer entries. */ 
for (i = 0; i <= (record_handle_list_size - 1); i++) 

{ 
duplicate_list_ptr [i] = OPC_NIL; 
} 

/* Initialize the address list index to zero.     */ 
addrjndex = 0; 

/* Variable to counting number of access point in the network. */ 
ap_count = 0; 

/* Maintain a list of stations in the BSS if it is an AP and a bridge */ 
if (ap_flag = OPC_BOOLINT_ENABLED && wlan_flags->bridge_flag = 
OPC_BOOLINT_ENABLED) 

{ 
bss_stn_list = op_prg_mem_alloc ((record_handle_list_size - 1) * sizeof (int)); 
count = 0; 
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/* Number of stations in the BSS    */ 
bss_stn_count = record_handle_list_size -1; 

} 

/* Traversing the process record handle list to determine if there is any access point in the subnet.      */ 
for (i = 0; i < record_handle_list_size; i++ ) 

{ 
/* Obtain a handle on the process record */ 
process_record_handle = (OmsT_Pr_Handle) opjprg_list_access (proc_record_handle_list_ptr, i); 

/* Get the Station type.      */ 
oms_pr_attr_get (process_record_handle, "subprotocol", OMSC_PR_NUMBER, &statype); 

/* If the station is an Access Point then its station id will be a BSS id for all the station in that 
subnet.   */ 

if (statype = (double) WLAN_AP) 
{ 
/* If access point found then it means that it is a Infrastructured BSS.     */ 
bss_flag = OPC_BOOLINT_ENABLED; 

&sta_addr); 

subnet.   */ 

/* Get the BSS ID. */ 
oms_pr_attr_get (process_record_handle, "address", OMSC_PR_NUMBER, 

bss_id = (int) sta_addr; 

/* According to IEEE802.11 there cannot be more than one Access point in the same 

ap_count = ap_count + 1; 
if(ap_count = 2) 

{ 
wlan_mac_error ("More than one Access Point found.", "Check the 

configuration.", OPC_NIL); 
} 

} 

/* If the station is a bridge and an access point then    */ 
/* maintain a list of stations in the BSS */ 
if (ap_flag = OPC_BOOLINT_ENABLED && wlan_flags->bridge_flag = 

OPC_BOOLINT_ENABLED) 
{ 
/* Get the station id */ 
oms_pr_attr_get (process_record_handle, "address", OMSC_PR_NUMBER, 

&sta_addr); 

/* Maintain a list of stations in the BSS not including itself 
if ((int) sta_addr != my_address) 

{ 
bss_stn_list [count] = (int) sta_addr; 
count = count + 1; 
} 

} 
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0); 

/* Checking the physical characteristic configuration for the subnet.       */ 
oms_pr_attr_get (process_record_handle, "module objid", OMSC_PR_OBjn>, &my_objid); 

/* Obtain the values assigned to the various attributes */ 
op_ima_obj_attr_get (my_objid, "Wireless LAN Parameters", &wlanjparams_comp_attr_objid); 
params_attr_objid = op_topo_child (wlan_params_comp_attr_objid, OPC_OBJTYPE_GENERIC, 

/* Load the appropriate physical layer characteristics. */ 
op_ima_obj_attr_get (params_attr_objid, "Physical Characteristics", &sta_phy_char_flag); 

if (sta_phy_char_flag != phy_char_flag) 
{ 
wlan_mac_error ("Physical Characteristic configuration mismatch in the subnet", 

"All stations in the subnet should have same physical 
characteristics", "Check the configuration"); 

} 
} 

/* Deallocate memory used for process discovery       */ 
while (op_prg_list_size (proc_record_handle_list_ptr)) 

{ 
°P_PrgJist_remove (proc_record_handle_list_ptr, OPC_LISTPOS_HEAD); 

op_prg_mem_free(proc_record_handle_list_ptr); 

/* Obtain the MAC layer information for the local MAC */ 
/* process from the model-wide registry. */ 
/* This is to check if the node is a gateway or not. */ 
proc_record_handle_list_ptr = op_prg_list_create 0; 

oms_pr_process_discover (OPCJDBJIDJNVALID, proc_record_handle_list_ptr, 
"node objid", OMSC_PR_OBJID, my_node_objid, 
"gateway node", OMSC_PR_STRING, "gateway" 
OPC_NIL); 

/* If the MAC interface process registered itself,        */ 
/* then there must be a valid match */ 
record_handle_list_size = opjprg_list_size (proc_record_handle_list_ptr); 

if (record_handle_list_size != 0) 
{ 
wlan_flags->gateway_flag = OPCJBOOLINTENABLED; 
} 

/* Deallocate memory used for process discovery       */ 
while (op_prg_list_size (proc_record_handle_list_ptr)) 

{ 
op_prg_list_remove (proc_record_handle_list_ptr, OPC_LISTPOS_HEAD); 

°P_Pr8_mem_free(proc_record_handle_list_ptr); 
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IDLE State 

/*** Enter Executives ***/ 

/** The purpose of this state is to wait until the packet has **/ 
/** arrived from the higher or lower layer. **/ 
/** In this state following intrpts can occur: **/ 
/** 1. Data arrival from application layer **/ 
/** 2. Frame (DATA,ACK?RTS,CTS) rcvd from PHY layer **/ 
/** 3. Busy intrpt stating that frame is being rcvd **/ 
/** 4. Coll intrpt indicating that more than one frame is rcvd    **/ 
/* When Data arrives from the application layer, insert it */ 
I* in the queue. */ 
/* If rcvr is not busy then  set Deference to DIPS */ 
/* and Change state to "DEFER" state */ 

I* Rcvd RTS,CTS,DATA,or ACK (frame rcvd intrpt) */ 
I* Set Backoff flag if the station needs to backoff */ 
/* If the frame is destined for this station then send */ 
/* appropriate response and set deference to SIFS */ 
/* clear the rcvr busy flag and clamp any data transmission */ 
/* */ 
/* If if s a broadcast frame then set deference to NAV */ 
/* and schedule self intrpt and change state to "DEFER". */ 
/* Copy the frame (RTS/DATA) in retransmission variable */ 
/* if rcvr start receiving frame (busy stat intrpt) then set */ 
/* a flag indicating rcvr is busy,if rcvr start receiving */ 
/* more than one frame (collision stat intrpt) then set the */ 
/* rcvd frame as invalid frame set deference time to EIFS */ 

if (wlan_trace_acti ve) 
i 
/* Determine the current state name. */ 
strcpy (current_state_name5 "idle"); 
} 

/*** Exit Executives ***/' 

/* Interrupt processing routine        */ 
wlan_interruptsjprocess (); 

/* Schedule deference interrupt when there is a frame to transmit */ 
/* at the stream interrupt and the receiver is not busy */' 
if(READY_TO_TRANSMIT) 

{ 
/* If the medium was idling for a period equal or longer than   */ 
/* DIPS time then we don't need to defer. */ 
if (MEDIUMJSJDLE) 

{ 
/* We can start the transmission immediately. */ 
wlan_flags->immediate_xmt=OPCJTRUE; 
backoff_slots = 0; 
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} 
else 

{ 
/* We need to defer. Schedule the end of it. 
wlan_schedule_deference (); 

I* If we are in the contention window period, cancel the self    */ 
/* interrupt that indicates the end of it We will reschedule       */ 
/* if it will be necessary. 
*/ 

if (intrptjype = OPC_INTRPT_STRM && op_ev_valid (cw end evh) = OPC TRUE) 
{ ' 
OD_ev_cancel (cw_end_evh); 
} 

DEFER State 

/*** Enter Executives ***/ 

/** This state defer until the medium is available for transmission **/ 
/** Interrupts that can occur in this state are: **/ 
/** 1. Data arrival from application layer **/ 
/** 2. Frame (DATA^CK,RTS,CTS) rcvd from PHY layer **/ 
/** 3. Busy intrpt stating that frame is being rcvd ' **/ 
/** 4. Collision intrpt stating that more than one frame is rcvd **/ 
/** 5. Deference timer has expired (self intrpt) **/ 
/** For Data arrival from application layer queue the packet **/ 
/** Set Backoff flag if the station needs to backoff **/ 
/** after deference because the medium is busy **/ 
/** If the frame is destined for this station then set **/ 
/** frame to respond and set a deference timer to SIFS. **/ 
/** Set deference timer to SIFS and don't change states **/ 
/** If rcvr start receiving more than one frame then flag the **/ 
/** rcvd frame as invalid frame and set a deference to EIFS. **/ 

if (wlan_trace_active) 

/* Determine the current state name. */ 
strcpy (current_state_name, "defer"); 

/*** Exit Executives ***/ 

/* Call the interrupt processing routine for each interrupt */ 
wlan_interrupts_process (); 

/* If the receiver is busy while the station is deferring */ 
/* then clear the self interrupt As there will be a new self        */ 
/* interrupt generated once the receiver becomes idle again.     */' 
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if (RECEIVERJBUSYJHIGH && (op_ey_valid (deference_evh) = OPC_TRUE)) 
s 
op_ev_cancel (deference_evh); 
x 

I* If the receiver becomes idle again schedule the end of the    */ 
/* deference. */ 
if(RECEIVER_BUSY_LOW) 

{ 
wlan_schedule_deference 0; 
} 

/* While we were deferring, if we receive a frame which */ 
/* requires a response, then we need to re-schedule our end of */ 
/* deference interrupt, since the deference time for response     */ 
/* frames is shorter. Similarly, we need to re-schedule it if       */ 
/* the received frame made us set our NAV to a higher value.  */ 
else if (FRAMEJRCVD && (fresp_to_send != WlanC_None J! wlan_fiags->nav_updated = 
OPC_BOOLINT_ENABLED) && 

(op_ev_valid (deference_evh) = OPCJTRUE)) 
s 
/* Cancel the current event and schedule a new one.   */ 
op_ev_cancel (deference_evh); 
wlan_schedule_deference (); 
} 

BKOE^HEE&M) State     .;" / '■> r     . \ "\ 

/*** Enter Executives ***/ 

/** Determining wether to backoff. It is needed when station preparing **/ 
/** to transmit frame discovers that the medium is busy or when the **/ 
/** the station infers collision. **/ 
/** Backoff is not needed when the station is responding to the frame. **/ 
/** If backoff needed then check wether the station completed its **/ 
/** backoff in the last attempt If not then resume the backoff **/ 
/** from the same point, otherwise generate a new random number **/ 
/** for the number of backoff slots. **/ 

/* Checking wether backoff is needed or not */ 
if (wlan_flags->backoff_flag = OPC_BOOLINT_ENABLED) 

if (backoffslots = 0) 

/* Compute backoff interval using binary exponential process */ 
if (retrv_count != 0) 

i 
/* Set the maximum backoff for the uniform distribution */ 
max backoff = max backoff * 2 + 1; 

else 
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/* if retry count is set to 0 then set the */ 
/* maximum backoff slots to min window size */ 
max_backoff= cwjmin; 
} 

/* The number of possible slots grows exponentially */ 
/* until it exceeds a fixed limit ' */ 
if (max_backoff > cwjmax) 

{ 
maxjbackoff = cw_max; 
} 

/* Obtain a uniformly distributed random integer between 0 and the minimum contention 
window size        */ 

/* Scale the number of slots according to the number of retransmissions.*/ 
backoff_slots = floor (op_dist_uniform (max_backoff + 1)); 
f 

I* Set a timer for the end of the backoff interval. */ 
intrpt_time = (currentjime + backoff_slots * siotjime); 

/* Scheduling self interrupt for backoff*/ 
backoff_elapsed_evh = opJntrpt_schedule_self (mtrptjime, WlanCJBackoffJElapsed); 

/* Reporting number of backoff slots as a statistic */ 
op_stat_write (backoff_slots_handle, backoff_slots); 
°P_stat_write (backoff_slots_handle, 0.0); 

BACKOFF State | 
/*** Enter Executives ***/ 

/** Processing Random Backoff **/ 
/** In this state following intrpts can occur **/ 
/** 1. Data arrival from application layer **/ 
/** 2. Frame (DATAACK,RTS,CTS) rcvd from PHY layer **/ 
/** 3. Busy intrpt stating that frame is being rcvd **/ 
/** 4. Coll intrpt stating that more than one frame is rcvd **/ 
/** Queue the packet for Data Arrival from application **/ 
/** layer and do not change the state. **/ 
/** If the frame is destined for this station men prepare **/ 
/** appropriate frame to respond and set deference to SIFS **/ 
/** Update NAV value (if needed) and reschedule deference **/ 
/** Change state to "DEFER" **/ 
I** If it's a broadcast frame then check wether NAV needs **/ 
/** to be updated. Schedule self interrupt and change **/ 
/** state to Deference **/ 
/** If rcvr start receiving frame (busy stat intrpt) then **/ 
/** set a flag indicating rcvr is busy. **/ 
/** if rcvr start receiving more than one frame then flag **/ 
/** the rcvd frame as invalid and set deference **/ 
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/** timer to EIFS **/ 

/* Change State to DEFER */ 
if (wlan_trace_active) 

{ 
/* Determine the current state name. */ 
strcpy (current_state_name, "backoff'); 
} 

/*** Exit Executives ***/ 

/* Call the interrupt processing routine for each interrupt */ 
wlan_interrupts_process (); 

/* Set the number of slots to zero, once the backoff is completed */ 
if (BACKOFF_COMPLETED) 

{ 
backoff_slots = 0.0; 
} 

/* Storing remaining backoff slots if the frame is rcvd from the remote station*/ 
if(RECEIVER_BUSY_HIGH) 

{ 
/* Computing remaining backoff slots for next iteration */ 
backoff_slots = ceil ((intrpt_time - current_time) / slot_time); 

if (op_ev_valid (backoff_elapsed_evh) = OPCJTRUE) 
{ 
/* clear the self interrupt as station needs to defer */ 
op_ev_cancel (backoff_elapsed_evh); 

} 

/* Schedule deference if the frame is received while the station is backing off.*/ 
if(FRAME_RCVD) 

wlan_schedule_deference 0; 
} 

TRANSMIT State 

/** In this state following intrpts can occur: **/ 
/** 1. Data arrival from application layer. **/ 
/** 2. Frame (DATA^CK,RTS,CTS) rcvd from PHY layer. **/ 
/** 3. Busy intrpt stating that frame is being rcvd. **/ 
/** 4. Collision intrpt means more than one frame is rcvd. **/ 
/** 5. Transmission completed intrpt from physical layer 
/** Queue the packe for Data Arrival from the higher layer, 
/** and do not change state. **/ 
/** After Transmission is completed change state to FRMJEND **/ 

**/ 
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/** No response is generated for any lower layer packet arrival **/ 

/* Prepare transmission frame by setting appropriate */ 
/* fields in the control/data frame. */ 
/* Skip this routine if any frame is received from the */ 
/* higher or lower layer(s) */ 
if (wlan_flags->immediate_xmt = OPC_TRUE) 

{ 
wlan_frame_transmit 0; 
wlan_flags->immediate_xmt = OPC_FALSE; 
} 

else if (wlan_flags->rcvd_bad_packet = OPC_BOOLINT_DISABLED && 
intrpt_type = OPC_INTRPT_SELF) 

{ 
wlan_frame_transmit (); 
} 

if (wlan_trace_active) 
{ 
/* Determine the current state name */ 
strcpy (current_state_name, "transmit"); 
} 

/*** Exit Executives ***/ 

/* If the packet is received while the the station is        */ 
/* transmitting then mark the received packet as bad.     */ 
if (op_intrpt_type () = OPC_INTRPT_STAT) 

{ 
intrpt_code = op_intrpt_stat (); 
if (intrpt_code < TRANSMITTER_BUSY_INSTAT && op_stat_local_read (intrpt_code) = 1.0 

&& rcy_channel_status = 0) 
{ 
wlan_flags->rcvd_bad_packet = OPCJBOOLINTJENABLED- 
} 

/* If we completed the transmission then reset the */ 
/* transmitter flag. */ 
else if (intrpt_code = TRANSMITTERJBUSYJNSTAT) 

{ 
wlan_flags->transmitter_busy = OPC_BOOLINT_DISABLED; 

/* Also reset the receiver idle time, since with */ 
/* the end of our transmission, we expect that the */ 
/* medium became idle again (but make sure we are */ 
/* also not receiving a packet). */ 
if (rcv_channel_status = 0) 

{ 
rcv_idle_time = op_sim_time (); 
} 

} 
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else if ((op_mtrpt_type () = OPC_INTRPT_STRM) && (opJntrpt_strm 0 != mstojromjrnacjf}) 

/* While transmitting, we received a packet from */ 
/* physical layer. Mark the packet as bad. */ 
wlan_flags->rcvd_badjpacket = OPCJBOOLINTJENABLED; 
} 

/* Call the interrupt processing routine for each interrupt*/ 
wlan_interrapts__process 0; 

' FRM END State  

/*** Enter Executives ***/ 

/** The purpose of this state is to determine the next unforced **/ 
/** state after completing transmission. **/ 

/** 3 cases **/ 
/** 1 .If just transmitted RTS or DATA frame then wait for **/ 
/** response with expected_frame_type variable set and change **/ 
/** the states to Wait for Response otherwise just DEFER for **/ 
/** next transmission **/ 
/** 2.1f expected frame is rcvd then check to see what is the **/ 
/** next frame to transmit and set appropriate deference timer **/ 
/** 2a.If all the data fragments are transmitted then check **/ 
/** wether the queue is empty or not **/ 
/** If not then based on threshold fragment the packet **/ 
/** and based on threshold decide wether to send RTS or not   **/ 
/** If there is a data to be transmitted then wait for DIPS **/ 
/**        duration before contending for the channel **/ 
/** If nothing to transmit then go to IDLE state **/ 
/** and wait for the packet arrival from higher or lower layer **/ 
/** 3.1f expected frame is not rcvd then infer collision, **/ 
/** set backoff flag, if retry limit is not reached **/ 
/** retransmit the frame by contending for the channel **/ 

/* If there is no frame expected then check to see if there */ 
/* is any other frame to transmit Also mark the channel as idle */ 
if (expected_frame_type = WlanC_None) 

{ 
/* If the frame needs to be retransmitted or there is */ 
/* something in the fragmentation buffer to transmit or the */ 
/* station needs to respond to a frame then schedule */ 
/* deference. */ 
if (op_sar_buf_size (fragmentation_buffer_ptr) != 0 j| retry_count != 0 j| fresp_to_send != 

WlanC_None) 
{ 
/* Schedule deference before frame transmission */ 
wlan_schedule_deference 0; 
} 
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else 

/* After completing a successful frame transmission, even        */ 
/* though we don't have any other frame to transmit, still */ 
/* we need to execute to backoff algorithm to generate a */ 
/* contention window period and back-off during that period   */ 
/* as stated in the protocol. */ 
else if (wlan_flags->cw_required = OPCJTRUE) 

{ 
/* Determine the size of the contentions window.       */ 
cw_slots = floor (op_dist_uniform (cw_min + 1)); 
cw_end = current_time + difs_time + cw_slots * slot_time; 

/* Schedule a self interrupt indicating the end of the   */ 
/* contention window. */ 
cw_end_evh = op_intrpt_schedule_self (cw_end, WlanC_CW_Elapsed); 

/* Update the backoff time statistic. */ 
op_stat_write (backoff_slots_handle, cw_slots); 
op_stat_write (backoff_slots_handle, 0.0); 

/* Reset the flag since we scheduled the period. */ 
wlan_flags->cw_required = OPC_FALSE; 
} 

else if (cw_end > current_time) 
{ 
/* We are in the contention window period, but we had */ 
/* to leave the "idle" state to send a response (Cts, */ 
/* Ack) for a frame we received. Now we are moving back      */ 
/* to idle state. Hence, re-schedule the self interrupt */ 
/* that will indicate the end of the contention window. */ 
cw_end_evh = op_intrpt_schedule_self (cw_end, WlanC_CW_Elapsed); 

else 
{ 
/* Schedule the deference if we have a frame in the */ 
/* buffer sent from higher layer for transmission, */ 
/* since the contention window period is over. */ 
if (op_prg_list_size (hld_list_ptr) != 0) 

{ 
/* Schedule deference before frame transmission        */ 
wlan_schedule_deference (); 
} 

/* Reset the end of the CW timer, since it is over. */ 
cw_end = 0.0; 
} 

} 

{ 
/*   802.1 la Model Addition */ 
/* The station needs to wait for the expected frame type */ 
/* So it will set the frame timeout interrupt which will be */ 
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/* exectued if no frame is received in the set duration. */' 
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */ 
timer_duration = WLAN_ACK_LENGTH / control_speed (operational_speed) ■*■ sifsjime + 

plcp_overhead + WLAN_AIR_PROPAGATION_TIME; 
frame_timeout_evh = opJntrpt_schedule_self (current_time + timer_duration, 

WlanC_Frame_Timeout); 

WAIT FOR RESPONSE State 

/*** Enter Executives ***/ 

/** The purpose of this state is to wail for the response after **/ 
/** transmission. The only frames which require acknowlegements **/ 
/** are RTS and DATA frame.                                     *" **/ 
/** In this state following intrpts can occur: **/ 
/** 1. Data arrival from application layer **/ 
/** 2. Frame (DATAACK,RTS,CTS) rcvd from PHY layer **/ 
/** 3. Frame timeout if expected frame is not rcvd **/ 
/** 4. Busy intrpt stating that frame is being rcvd **/ 
/** 5. Collision intrpt stating that more than one frame is rcvd **/ 
/** Queue the packet as Data Arrives from application layer **/ 
/** If Rcvd unexpected frame then collision is inferred and **/' 
/** retry count is incremented **/ 
/** if a collision stat interrupt from the rcvr then flag the **/ 
/** received frame as bad **/ 

if (wlan_trace_acti ve) 
{ 
/* Determine the current state name. */ 
strcpy (current_state_name, "waitjEbrjesponse''); 
} 

/*** Exit Executives ***/ 

/* Clear the frame timeout interrupt once the receiver is busy */ 
/* or the frame is received (in case of collisions, the */ 
/* frames whose reception has started while we were */ 
/* transmitting are excluded in the FRAME_RCVD macro). */ 
intrpt_type = op_intrpt_type (); 
if (((intrptjype = OPCJNTRPTJSTAT && op_intrpt_stat () < TRANSMFTTERJBUSYJNSTAT && 

op_stat_locaI_read (op_intrpt_stat ())= 1 -0 && rcv_channel_status = 0) [| 
FRAME_RCVD) && 

(op_ey_valid (frame_timeout_evh) = OPCTRUE)) 
i 
op_ev_cancel (frame_timeout_evh); 

/* Call the interrupt processing routine for each interrupt 
/* request. 
wlan_interrupts_process (); 
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/* If expected frame is not received in the set */ 
/* duration or the there is a collision at the */ 
/* receiver then set the expected frame type to */ 
/* be none because the station needs to retransmit */ 
/* the frame. */ 
if (FRAME_TIMEOUT) 

{ 
/* Setting expected frame type to none frame */ 
expected_frame_type = WlanC_None; 

/* retransmission counter will be incremented */ 
retry_count = retry_count + 1; 

/* Reset the NAV duration so that the */ 
/* retransmission is not unnecessarily delayed. */ 
nav_duration = current_time; 

/* Check whether further retries are possible or */ 
/* the data frame needs to be discarded */ 
wlan_frame_discard (); 
} 
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APPENDIX B. SNR-BASED RATE AGILITY OPNET CODE 

This appendix contains the modifications to the wlan_rnac_lla process model 

used to realize the SNR-based dynamic data rate agility mechanism presented in Chapter 

IV. With the exception of the maxoperational_speed variable initialization in the 

wlan_mac_svc_mit function and the addition of the data rate statistic collection function, 

the only code additions required to implement the SNR-based rate agility mechanism are 

to the wlanjphysicaljayer_data_arrival function. The block of code presented below 

was added to wlan_physicaljayer_data_arrival immediately after the code used to 

obtain the frame control field and duration information from the arriving packet (i.e., line 

1667 of the wlart_mac_lla function block). Comments indicating the nature of the code 

changes are included. 

OPNET Code additions to \vlanjphysical layer_data_arrival 
Bryan E. Braswell 

March 2001 

/* SNR-Based Data Rate Agility Addition. */ 
/* Access the SNR from the received packet and use the SNR to adjust */ 
/* the data rate based on the maximum speed as defined by the user. */ 
op_pk_nfd_access (wlan_rcvd_frame_ptr, "Link SNR", &snr_holder); 

/* SNR-Based Data Rate Agility Addition.  */ 

/* This structure is used to Compare the received SNR to the   */ 
/* thresholds to determine the new data rate. The new data */ 
/* rate can only be as high as the user-defined max data rate */ 
/* obtained at the start of the simulation. */ 
if (max_operational_speed = 54000000) 

{ 
if (snr_holder>= 12.22) 

{ 
new_operational_speed = max_operational_speed; 
} 

else if ((snr_holder >= 9.70) && (snr_hoIder < 12.22)) 
< 
t 

new_operational_speed = 48000000; 
} 

else if «snr_holder >= 8.86) && (snrjbolder < 9.70)) 
{ 
new_operational_speed = 36000000; 
} 

else if ((snrjiolder >= 6.76) && (snrjbolder < 8.86)) 
{ 
new_operational_speed = 24000000; 
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} 
else if ((snr_holder >= 6.30) && (snrjiolder < 6.76)) 

{ 
new_operational_speed = 18000000; 
} 

else if ((snrjiolder >= 5.84) && (snr_holder < 6.30)) 
{ 
new_operational_speed= 12000000; 
} 

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84)) 
{ 
new_operational_speed = 9000000; 
} 

else 

{ 
new_operational_speed = 6000000; 
} 

} 
else if (max_operational_speed = 48000000) 

{ 
if (snrjiolder >= 9.70) 

{ 
new_operational_speed = max_operational_speed; 
} 

else if ((snrjiolder >= 8.86) && (snrjiolder < 9.70)) 
{ 
new_operational_speed = 36000000; 
} 

else if ((snrjiolder >= 6.76) && (snrjiolder < 8.86)) 
{ 
new_operational_speed = 24000000; 
} 

else if ((snrjiolder >= 6.30) && (snrjiolder < 6.76)) 
{ 
new_operational_speed= 18000000; 
} 

else if ((snrjiolder >= 5.84) && (snrjiolder < 6.30)) 
{ 
new_operational_speed = 12000000; 
} 

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84)) 
{ 
new_operational_speed = 9000000; 
} 

else 
{ 
new_operational_speed = 6000000; 
} 

} 
else if (max_operational_speed = 36000000) 

{ 
if (snrjiolder >= 8.86) 

{ 
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newoperationalspeed = max_operational_speed; 

} 
else if ((snrjiolder >= 6.76) && (snr_holder < 8.86)) 

{ 
new_operational_speed = 24000000; 

} 
else if ((snrjiolder >= 6.30) && (snrjiolder < 6.76)) 

{ 
new_operational_speed = 18000000; 

} 
else if ((snrjiolder >= 5.84) && (snrjiolder < 6.30)) 

{ 
new_operational_speed = 12000000; 
} 

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84)) 

{ 
new_operational_speed = 9000000; 
} 

else 
{ 
new_operational_speed = 6000000; 

} 
} 

else if (max_operational_speed = 24000000) 
{ 
if (snrjiolder >= 6.76) 

{ 
new_operational_speed = max_operational_speed; 
} 

else if ((snrjiolder >= 6.30) && (snrjiolder < 6.76)) 
{ 
new_operational_speed = 18000000; 
} 

else if ((snrjiolder >= 5.84) && (snrjiolder < 6.30)) 
{ 
new_operational_speed = 12000000; 
} 

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84)) 
{ 
new_operational_speed = 9000000; 
} 

else 
{ 
new_operational_speed = 6000000; 
} 

} 
else if (max_operational_speed = 18000000) 

{ 
if (snrjiolder >= 6.30) 

{ 
new_operational_speed = max_operational_speed; 
} 

else if ((snrjiolder >= 5.84) && (snrjiolder < 6.30)) 
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{ 
new_operational_speed = 12000000; 
} 

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84)) 
{ 
new_operational_speed = 9000000; 
} 

else 

{ 
new_operational_speed = 6000000; 
} 

} 
else if (max_operational_speed = 12000000) 

{ 
if(snr_holder>=5.84) 

{ 
new_operational_speed = max_operational_speed; 
} 

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84)) 
{ 
new_operational_speed = 9000000; 
} 

else 
{ 
new_operational_speed = 6000000; 
} 

} 
else if (max_operational_speed = 9000000) 

{ 
if(snrJiolder>=5.38) 

{ 
new_operational_speed = max_operational_speed; 
} 

else 

} 

{ 
new_operational_speed = 6000000; 
} 

else 
{ 
new_operational_speed = 6000000; 
} 

/* Set the new data rate for the STA. */ 
operational_speed = new_operational_speed; 
/* Report the operational speed of the WLAN using the new Statistic.   */ 
op_stat_write (operational_rateJiandle, operational_speed); 
op_stat_write (global_operational_rateJiandle, operational_speed); 
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APPENDIX C. PACKET LOSS RATE-BASED RATE AGILITY OPNET CODE 

This appendix contains the modifications to the wlan_mac_lla process model 

used to realize the packet loss rate-based dynamic data rate agility mechanism presented 

in Chapter IV. The preponderance of alterations are to the wlan_preparejrornejo_send 

function. Those modifications are included in this appendix. Additional changes to 

wlan_mac_lla include: 

• Initialization of the max_operational_speed variable and addition of the 

data rate statistic collection function in the wlanjnacjsvcjnit function. 

• Incrementation of the drop_coimter variable in the wlanjrame_discard 

function. 

The block of code presented below is the first portion of the 

wlan_prepareJrame_to_send function that includes the rate agility mechanism additions. 

The remainder of the function remainsthe same. Comments indicating the nature of the 

code changes are included. 

OPNET Code additions to wian_prepare_p-ameJo_send 
Brvan E. Braswell 
 March 2001  

static void 
wlan__prepare_frame_to_send (int ftame type) 

{ 
char rosg_strmg [ 120]; 
Packet* hldjpkptr; 
Packet* seg_pkptr; 
int dest_addr, src_addr; 
int protocol_type = -1; 
int tx_datapacket_size; 
int type; 
char error_string [512]; 
int outstrm_to_phy; 
double duration, mac_delay; 
WlanTJDataJHeaderJFields* pk_dhstract_ptr; 
WlanT_Control_Header_Fields* pk_chstruct_ptr; 
Packet* wlanjransmfcJSramejptr; 

/*  802.1 la Model Addition  */ 
/* Add a variable to keep track of the data rate so it can be passed to the pipeline stages. */' 
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mt ratejiolder; 

/*   802.1 la Model Addition  */ 
/* The control frame transmission rate depends on the given data rate.   */ 
/* Adapted from the Philips Lab 802.11 a model (dated 11/15/00). */ 
double control_frame_speed;       /* Speed for control frames. */ 
"* next_frag_length; /* Length of the next fragment (in bits). */ 
"* MPDU_size; /* MPDU length (in bits). */ 

/* Dropped Packet Data Rate Agility Mechansim Addition.   */ 
double window; 
double dropjrate; 
double new_operational_speed; 
double steady_state_timer; 

/** Prepare frames to transmit by setting appropriate fields in the **/ 
/** packet format for Data,Cts,Rts or Ack. If data or Rts packet needs **/ 
/** to be retransmitted then the older copy of the packet is resent. **/ 
FIN (wlanjprepare_frame_to_send (int framejype)); 

outstrmjojphy = LOW_LAYER_OUT_STREAM_CHl; 

/*   802.1 la Model Addition   */ 
rate_holder = 1; 

/*   802.1 la Model Addition   */ 
/* Compute the control frame speed based on the operational data rate. */ 
/* Adapted from the Philips Lab 802.1 la model code (dated 11/15/00). */ 
control_frame_speed = control_speed (operational_speed); 

/* Dropped Packet Data Rate Agility Mechansim Addition.      */ 
/* Compute the time window size. */ 
window = current_time - time_counter; 
steady_state_timer = currentjime - steady_state_counter; 

/* Compute the number of packets dropped per unit time in this window.   */ 
dropjrate = drop_counter / window; 

/* Based on the dropped packet rate, adjust the data rate if necessary.   */ 
if (dropjrate > 0.11249) 

{ 
if (operational_speed = 54000000) 

{ 
new_operational_speed = 48000000; 
steady_state_counter = current_time; 
} 

else if (operational_speed = 48000000) 
{ 
new_operational_speed = 36000000; 
steady_state_counter = current_time; 
} 

else if (operational_speed = 36000000) 
{ 
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new_operational_speed = 24000000; 
steady_state_counter = current_time; 
} 

else if (operational_speed = 24000000) 
{ 
new_operational_speed = 18000000; 
steady_state_counter = current_time; 
} 

else if (operational_speed = 18000000) 
{ 
new_operational_speed = 12000000; 
steady_state_counter = current_time; 
} 

else if (operational_speed = 12000000) 
{ 
new_operational_speed = 9000000; 
steady_state_counter = current_time; 
} 

else 
{ 
new_operational_speed = 6000000; 
steady_state_counter = current_time; 
} 

} 
else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed = 

54000000) && (operational_speed = 54000000)) 
{ 
new_operational_speed = 54000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed = 
54000000) && (operational_speed = 48000000)) 

{ 
new_operational_speed = 54000000; 
steady_state_counter = currenttime; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed = 
54000000) && (operational_speed = 36000000)) 

{ 
new_operational_speed = 48000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate = 0.0) && (max_operational_speed = 
54000000) && (operational_speed = 24000000)) 

{ 
new_operational_speed = 36000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed = 
54000000) && (operational_speed= 18000000)) 

{ 
new_operational_speed = 24000000; 
steady_state_counter = current_time; 
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0.0) && (max_pperational_speed = 

0.0) && (max_operational_speed = 

0.0) && (max_operational_speed = 

} 
else if ((steady_state_timer > 10.0) && (drop_rate 

54000000) && (operational_speed= 12000000)) 
{ 
new_operational_speed= 18000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
54000000) && (operational_speed = 9000000)) 

{ 
new_operational_speed = 12000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
54000000) && (operational_speed = 6000000)) 

{ 
new_operational_speed = 12000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational speed = 
48000000) && (operational_speed = 48000000)) 

{ 
new_operational_speed = 48000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
48000000) && (operational_speed = 36000000)) 

{ 
new_operational_speed = 48000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
48000000) && (operationalspeed = 24000000)) 

{ 
new_operational_speed = 36000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
48000000) && (operationaljspeed = 18000000)) 

{ 
new_operationaljspeed = 24000000; 
steady_state_counter = currenttime; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
48000000) && (operationaljspeed = 12000000)) 

{ 
new_operational_speed = 18000000; 
steady_state_counter = currentjtime; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
48000000) && (operationaljspeed = 9000000)) 

{ 
new_operationaljspeed = 12000000; 

— 0.0) && (maxjDperationaljspeed = 

— 0.0) && (max_operational_speed = 

— 0.0) && (max_operational_speed = 

— 0.0) && (max_operationalj5peed 

0.0) && (maxj)perational_speed = 
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steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
48000000) && (operational_speed = 6000000)) 

{ 
new_operational_speed = 9000000; 
steady_state_counter = cuiTent_time; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
36000000) && (operational_speed = 36000000)) 

{ 
new_operational_speed = 36000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
36000000) && (operational_speed = 24000000)) 

{ 
new_operational_speed = 36000000; 
steady_state_counter = current_time; 

} 
else if ((steady_state_timer > 10.0) && (dropjrate 

36000000) && (operationaljspeed = 18000000)) 
{ 
newoperationaljspeed = 24000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
36000000) && (operationaljspeed = 12000000)) 

{ 
new_operationaljspeed = 18000000; 
steady_state_counter = currenttime; 
} 

else if ((steady_state_timer > 10.0) && (dropjate 
36000000) && (operationaljspeed = 9000000)) 

{ 
new_operationaljspeed = 12000000; 
steady_state_counter = currentjtime; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
36000000) && (operationaljspeed = 6000000)) 

{ 
newoperationaljspeed = 9000000; 
steady_state_counter = currentjdme; 
} 

else if ((steady_state_timer > 10.0) && (dropjrate 
24000000) && (operationaljspeed = 24000000)) 

{ 
new_operational_speed = 24000000; 
steady_state_counter = currentjdme; 
} 

else if ((steadyjstatejdmer > 10.0) && (drop_rate 
24000000) && (operationaljspeed = 18000000)) 

{ 

= 0.0) && (maxjDperational_speed = 

= 0.0) && (maxjDperational_speed 

0.0) && (max_operationaljspeed 

0.0) && (max_operationaljspeed 

= 0.0) && (max_operational_speed = 

= 0.0) && (max_operational_speed 

0.0) && (max_operationaljspeed 

= 0.0) && (max_operationalj5peed = 

= 0.0) && (max_operational_speed = 
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— 0.0) && (max_operational_speed 

— 0.0) && (max_operational_speed 

— 0.0) && (max_operational_speed = 

0.0) && (max_operational_speed = 

new_operational_speed = 24000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
24000000) && (operational_speed = 12000000)) 

{ 
new_operational_speed = 18000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
24000000) && (operational_speed = 9000000)) 

{ 
new_operational_speed = 12000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
24000000) && (operational_speed = 6000000)) 

{ 
new_operational_speed = 9000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
18000000) && (operational_speed = 18000000)) 

{ 
new_operational_speed = 18000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
18000000) && (operational_speed = 12000000)) 

{ 
new_operational_speed = 18000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational speed 
18000000) && (operational_speed = 9000000)) 

{ 
new_operational_speed = 12000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
18000000) && (operational_speed = 6000000)) 

{ 
new_operational_speed = 9000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
12000000) && (operational_speed = 12000000)) 

{ 
new_operational_speed = 12000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate 
12000000) && (operational_speed = 9000000)) 

0.0) && (max_pperational_speed = 

0.0) && (max_operational_speed = 

0.0) && (max_operational_speed = 

— 0.0) && (max_operational_speed = 
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{ 
new_operational_speed = 12000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_tirner > 10.0) && (drop_rate = 0.0) && (max_operational_speed 
12000000) && (operational_speed = 6000000)) 

{ 
new_operational_speed = 9000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed 
9000000) && (operational_speed = 9000000)) 

{ 
new_operational_speed = 9000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed 
9000000) && (operational_speed = 6000000)) 

{ 
new_pperational_speed = 9000000; 
steady_state_counter = current_time; 
} 

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed 
6000000) && (operationalspeed = 6000000)) 

{ 
new_operational_speed = 6000000; 
steady_state_counter = current_time; 
} 

else 
{ 
new_operational_speed = operational_speed; 
} 

/* Now assign the new data rate to the station.   */ 
operational_speed = new_operational_speed; 

/* Now we need to check the window size and adjust if the window has become too big.   */ 
/* The window size utilized here is 2 seconds. */ 
if (window > 1.0) 

{ 
drop_counter = 0; 
time_counter = current_time; 
} 
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APPENDIX D. DRA_SNR_11A PIPELINE STAGE 

This appendix presents the source code for the dra_snr_lla pipeline stage used in 

conjunction with the SNR-based rate agility mechanism OPNET model. This code is a 

modified version of the default dra_snr pipeline stage. Comments indicating the nature 

of the code changes are included. 

, v.   .:     ■..                       dra_snr_lla Pipeline Stage 
'„,.'". ~                                        Bryan E. Brasviell 
  March 2001 _j 

/* dra_snr.ps.c */ 
/* Default Signal-to-Noise-Ratio (SNR) model for radio link Transceiver Pipeline */ 

I* Copyright (c) 1993-2000 */ 
I* by OPNET Technologies, Inc. */ 
/* (A Delaware Corporation) */ 
/* 3400 International Drive, N.W. */ 
/* Washington, D.C., U.SA. */ 
/* All Rights Reserved. */ 

#include "opneLh" 
#include <math.h> 

#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dra_snr (Packet * pkptr) 

{ 
double bkgjaoise, accumnoise, rcvd_power; 
double s_n_r, 

/** Compute the signal-to-noise ratio for the given packet. **/' 
FIN (dra_snr (pkptr)); 

/* Get the packet*s received power level. */ 
rcvd_power = op_td_jet_dbl (pkptr, OPC_TDA_RA_RCVD_POWER); 

I* Get the packet's accumulated noise levels calculated by the */ 
/* interference and background noise stages. */ 
accum_noise = op_td_get_dbl (pkptr, OPC_TDA_RA_NOISE_ACCUM); 
bkg_noise = op_td_get_dbl (pkptr, OPC_TDA_RA_BKGNOISE); 

/* Compute the SNR   */ 
s_n_r = ( 10.0 * log 10 (rcvdjpower / (accum_noise ■*- bkg_noise))); 
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/* Assign the SNR in dB. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_SNR, s_n_r); 

/* Place the SNR in the Link SNR packet header field for use   */ 
/* in the SNR-based rate agility mechanism. */ 
op_pk_nfd_set (pkptr, "Link SNR", s_n_r); 

/* Set field indicating the time at which SNR was calculated. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_SNR_CALC_TIME, op_sim_time ()); 

FOUT; 
} 
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APPENDIX E. DRA_TXDEL_11A PIPELINE STAGE 

This appendix presents the source code for the dra_txdel_l la pipeline stage used 

in conjunction with the baseline 802.1 la OPNET model. This code is a modified version 

of the default drajxdel pipeline stage. Comments indicating the nature of the code 

changes are included. 

dra_txde!_lla Pipeline Stage 
Bryan E. Braswell 

V ' March 2001 \ 

I* dra_txdel.ps.c */ 
/* Default transmission delay model for radio link Transceiver Pipeline */ 

/* Copyright (c) 1993-2000 */ 
/* by OPNET Technologies, Inc. */ 
I* (A Delaware Corporation) */ 
/* 3400 International Drive, N.W. */ 
I* Washington, D.C., U.S.A. */ 
I* All Rights Reserved. */ 

#include "opnet.h" 

#if defined ( cplusplus) 
extern "C" 
#endif 
void 
dra_txdel (Packet * 

i 
pkptr) 

int pklen; 
double rx_drate, tx_delay; 
int rate_index; 

/** Compute the transmission delay associated with the **/ 
/** transmission of a packet over a radio link. **/ 
FIN (drajxdel (pkptr)); 

/* Obtain the transmission rate ofthat channel. */ 
//tx_drate = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_DRATE); 

/* Change for the 802.1 la model.   */ 
/* The transmission data rate is variable based on the */ 
/* use of control or data frames. So, the Rate packet */ 
/* field is used to determine the data rate for the calculation.   */ 
op_jpk_nfd_access (pkptr, "Rate", &rate_index); 
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if(rate_index= 1) 
{ 
tx_drate = 6000000; 
} 

else if (rate_index = 2) 
{ 
tx_drate = 9000000; 
} 

else if (rate_index = 3) 
{ 
tx_drate = 12000000; 
} 

else if (rate_index = 4) 
{ 
tx_drate = 18000000; 
} 

else if (rate_index = 5) 

{ 
tx_drate = 24000000; 
} 

else if (rate_index = 6) 
{ 
tx_drate = 36000000; 
} 

else if (rate_index = 7) 
{ 
txdrate = 48000000; 
} 

else 

{ 
tx_drate = 54000000; 
} 

/* Obtain length of packet. */ 
pklen = op_pk_total_size_get (pkptr); 

/* Compute time required to complete transmission of packet. */ 
tx_delay = pklen / tx_drate; 

/* Place transmission delay result in packet's */ 
/* reserved transmission data attribute. */ 
op_td_set_dbl (pkptr, OPC_TDA_RA_TX_DELAY, tx_delay); 

FOUT; 
} 
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