
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

MODELING DATA RATE AGILITY IN THE ffiEE 802.11a
WIRELESS LOCAL AREA NETWORKING PROTOCOL

by

Bryan E. Braswell

March 2001 •

Thesis Advisor:
Second Reader:

John McEachen
Murali Tummala

Approved for public release; distribution is unlimited.

20010531 060

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 2001

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE :
Modeling Data Rate Agility in the IEEE 802.1 la Wireless Local Area

Networking Protocol

6. AUTHOR(S)
Braswell, Bryan E.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING
/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The IEEE 802.1 la high-speed wireless local area networking (WLAN) protocol does not specify a mechanism

for dynamically altering network data rates based on changing link conditions. This thesis first presents a baseline
software model of the 802.11a protocol developed using the OPNET simulation tool. The model includes both the
medium access control (MAC) and physical (PHY) layers of the standard. Two data rate agility mechanisms are then
proposed and analyzed using the model. An infrastructure WLAN implementation of the baseline model is first
simulated under standard network conditions to verify its operational characteristics and the results are presented. The
model is then used to simulate two data rate agility mechanisms, one based on the link signal-to-noise ratio (SNR) and
the other based on the frame loss rate at the transmitting station. Each technique is simulated using an infrastructure
WLAN consisting of a fixed access point and a mobile workstation operating with standard network traffic loads. The
results indicate that the link SNR is a better decision criterion for data rate agility than the frame loss rate. The design
and methodology of this analysis provides insight into dynamic rate agility mechanisms and the criteria that may be
used in developing future 802.1 la-compliant hardware implementations.
14 SUBJECT TERMS

Wireless Networking, Protocol Analysis, 802.1 la, Orthogonal Frequency Division
Multiplexing, Medium Access Control, Rate Agility, Optimum Network Performance

15. NUMBER
OF PAGES

224

16. PRICE
CODE

17. SECURITY
CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20.
LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

u

Approved for public release; distribution is unlimited.

MODELING DATA RATE AGILITY IN THE IEEE 802.11a WIRELESS LOCAL
AREA NETWORKING PROTOCOL

Bryan E. Braswell
Lieutenant, United States Navy

BA., University of Virginia, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2001

Author:

Approved by:

H&y*") <£", ßruh/itfAX,
Bryan E. Braswell

Murali Tummala, Second Reader

UA
Jeffrey B. Knorr, Chairman

Department of Electrical Engineering and Computer Engineering

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

The IEEE 802.11a high-speed wireless local area networking (WLAN) protocol
does not specify a mechanism for dynamically altering network data rates based on

changing link conditions. This thesis first presents a baseline software model of the
802.1 la protocol developed using the OPNET simulation tool. The model includes both
the medium access control (MAC) and physical (PHY) layers of the standard. Two data

rate agility mechanisms are then proposed and analyzed using the model. An
infrastructure WLAN implementation of the baseline model is first simulated under

standard network conditions to verify its operational characteristics and the results are
presented. The model is then used to simulate two data rate agility mechanisms, one
based on the link signal-to-noise ratio (SNR) and the other based on the frame loss rate at
the transmitting station. Each technique is simulated using an infrastructure WLAN
consisting of a fixed access point and a mobile workstation operating with standard
network traffic loads. The results indicate that the link SNR is a better decision criterion
for data rate agility than the frame loss rate. The design and methodology of this analysis
provides insight into dynamic rate agility mechanisms and the criteria that may be used in
developing future 802.1 la-compliant hardware implementations.

v

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1
B. OBJECTIVE 2
C. RELATED WORK 3
D. THESIS ORGANIZATION 4

II. THE IEEE 802.11 A PROTOCOL 5
A. NEXT GENERATION WLAN PROTOCOLS 6
B. THE 802.11A MAC LAYER 9
C. THE 802.11A PHYSICAL LAYER 15

m. IEEE 802.11A PROTOCOL MODEL 21
A. OPNET AND THE 802.11 STANDARD MODEL 21
B. THE 802.11A BASELINE MODEL 23

1. The 802.11a Model MAC Layer 26
2. The 802.11a Model PHY Layer 30

C. 802.11A BASELINE MODEL SIMULATION RESULTS 35
IV. DATA RATE AGILITY AND THE 802.11A BASELINE MODEL 45

A. DATA RATE AGILITY MECHANISMS 45
1. Rate Agility Based on Link SNR 46
2. Rate Agility Based on the Frame Loss Rate 49

B. RATE AGILITY MECHANISM SIMULATION RESULTS 55
V. CONCLUSIONS AND RECOMMENDATIONS 63

A. CONCLUSIONS 63
B. RECOMMENDATIONS 64

APPENDIX A. WLAN_MAC_11A PROCESS MODEL OPNET CODE 67
APPENDDC B. SNR-BASED RATE AGILITY OPNET CODE 149
APPENDDC C. PACKET LOSS RATE-BASED RATE AGILITY OPNET CODE 153
APPENDDC D. DRA_SNR_11A PIPELINE STAGE 161
APPENDDC E. DRAJXDELJ1A PIPELINE STAGE 163
LIST OF REFERENCES 165
INITIAL DISTRIBUTION LIST 167

Vll

THIS PAGE INTENTIONALLY LEFT BLANK

Vlll

LIST OF FIGURES

Figure 1. 802.1 la and the OSI and TCP/IP Models 5
Figure 2. Infrastructure and Independent WLAN BSSs 10
Figure 3. Timing Relationships in the 802.11 Standards 13
Figure 4. Timing in a Data Transmission Scenario 14
Figure 5. The 802.11a MPDU 15
Figure 6. The 802.11a PPDU 18
Figure 7. OPNET Design Environment 22
Figure 8. An 802.11a WLAN in OPNET 24
Figure 9. The 802.1 la Model STA Node Model 25
Figure 10. The 802.1 la Model AP Node Model 26
Figure 11. The wlan_mac_lla Process Model 27
Figure 12. The wlan_data_802_lla Packet Format 30
Figure 13. The wlan_control_802_lla Packet Format 30
Figure 14. BER versus Eb/N0 Curves for OFDM in AWGN 33
Figure 15. Simulated 802.1 la Network Environment 36
Figure 16. The Simulated 802.11a WLAN BSS 37
Figure 17. 802.11a Model Simulation Network Load Configuration 38
Figure 18. Total Load on the Simulated WLAN 41
Figure 19. Individual Load Values for the AP and STAs 41
Figure 20. Simulated Medium Access Delay and Packet Delay 42
Figure 21. Simulated Link SNRs 43
Figure 22. Simulated Packet Loss Rate in High Traffic Conditions 52
Figure 23. Simulated Packet Loss Rate in Low Traffic Conditions 53
Figure 24. Rate Agility Simulation Environment 56
Figure 25. Simulated Data Rates with SNR-Based Rate Agility 57
Figure 26. Simulated Link BERs with SNR-Based Rate Agility 57
Figure 27. Simulated Link SNRs with SNR-Based Rate Agility 58
Figure 28. Simulated Data Rates with Frame Loss Rate-Based Rate Agility 60
Figure 29. Data Rates for Both Mechanisms 61
Figure 30. The wlan_mac_lla Process Model 67

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table 1. International 5 GHz WLAN Standards 8
Table 2. Multimedia Applications and Associated Data Rates 8
Table 3. 802.1 la IFS and Slot Time Values and Definitions 13
Table 4. Channelization in the 802.1 la Standard 16
Table 5. 802.1 la Maximum Output Power Levels 17
Table 6. Coding and Modulation in the 802.11a Standard 17
Table 7. User-Defined Wireless LAN Parameters 28
Table 8. Attributes of the wlan_port_tx and wlan_port_rx Node Objects 31
Table 9. Simulated WLAN Traffic Profiles 39
Table 10. WLAN Attributes and Simulation Characteristics 40
Table 11. SNR Thresholds for Rate Agility 49
Table 12. 802.1 la Ranges with SNR-Based Rate Agility 59
Table 13. Nominal Ranges of the Lucent ORiNOCO PC Card 59

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

LIST OF ABBREVIATIONS

ACK Acknowledgement Frame

AP Access Point

BER Bit Error Rate

BPSK Binary Phase Shift Keying

BRAN Broadband Radio Access Networks

BSS Basic Service Set

COFDM Coded Orthogonal Frequency Division Multiplexing

CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CTS Clear To Send Frame

DAB Digital Audio Broadcasting

DCF Distributed Coordination Function

DIFS Distributed Coordination Function Interframe Space

DVB Digital Video Broadcasting

EIFS Extended Interframe Space

ETSI European Telecommunications Standards Institute

„. FCC Federal Communications Commission

FCS Frame Check Sequence

FDM Frequency Division Multiplexing

FEC Forward Error Correction

FTP File Transfer Protocol

HDTV High Definition Television

HIPERLAN High Performance Radio Local Area Network

HTTP Hypertext Transfer Protocol

ICI Intercarrier Interference

IEEE Institute of Electrical and Electronics Engineers

IFS Interframe Space

ISI Intersymbol Interference

ISM Industrial, Scientific, and Medical

MAC Medium Access Control

MMAC Multimedia Mobile Access Communications

MPDU Medium Access Control Protocol Data Unit

Xlll

NAV Network Allocation Vector

OEM Other Equipment Manufacturer

OFDM Orthogonal Frequency Division Multiplexing

OPNET Optimum Network Performance

OSI Open System InterConnectivity

PCF Point Coordination Functions

PHY Physical Layer

PIFS Point Coordination Function Interframe Space

PLCP Physical Layer Convergence Protocol

PPDU Physical Layer Convergence Protocol Protocol Data Unit

PSDU Physical Layer Convergence Protocol Service Data Unit

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

RTS Request To Send Frame

SIFS Short Interframe Space

SNR Signal-To-Noise Ratio

STA Station

STD State Transition Diagram

TCP/IP Transport Control Protocol/Internet Protocol

UDP User Datagram Protocol

UNn Unlicensed National Information Infrastructure

VoIP Voice Over Internet Protocol

WAN Wide Area Network

WATM Wireless Asynchronous Transfer Mode

WLAN Wireless Local Area Network

xiv

EXECUTIVE SUMMARY

The Institute for Electrical and Electronics Engineers (IEEE) 802.11a wireless
local area networking (WLAN) standard presents office, campus, and home networking
consumers with the first viable wireless alternative to wired networks that can support the
simultaneous use of high data rate applications in a mobile, multi-user environment. The
802.11a protocol standardizes both the medium access control (MAC) and the physical
(PHY) layers. 802.1 la-compliant WLANs will be able to support raw data rates ranging
from 6 to 54 Mbps using a distributed Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) MAC scheme in conjunction with a PHY layer based on the use
of Orthogonal Frequency Division Multiplexing (OFDM).

The 802.11a specification promises to deliver WLAN ranges and power levels
commensurate with those of WLANs based on the 802.11 and 802.11b standards. Like
the original 802.11 specification, the 802.11a addendum does not specify a mechanism
through which a WLAN implementation should dynamically alter its data rates if the
preset data rate is not achievable in a given link environment. The 802.11 standards
explicitly address data rate agility insofar as they state that dynamic rate switching is
allowed for, although specific techniques are beyond the scope of the protocol.

This thesis first presents a model of the 802.11a protocol developed using the
Optimum Network Performance (OPNET) network modeling and simulation tool. The
model emulates both the MAC and PHY layers of the standard. Simulation results
obtained using the model are presented as a measure of its validity. Two dynamic data
rate agility mechanisms are then proposed and analyzed using the OPNET 802.11a
model. The first implements rate agility in a WLAN based on the instantaneous link SNR
as measured at the PHY layer of the receiving station while the second technique uses the
frame loss rate at the MAC layer of the transmitting station to achieve dynamic data rate
agility. The goal is to both compare dynamic data rate mechanisms that target separate
layers of the protocol stack and present a methodology for analyzing rate agility in
802.1 la-compliant WLANs using OPNET.

The results obtained during simulations conducted using both mechanisms
indicate that the link SNR is a better criterion than the packet loss rate upon which to base
dynamic data rate agility decisions in IEEE 802.1 la-compliant WLANs. The SNR-based
mechanism achieved a higher mean data rate over the course of the simulation and
exhibited smoother data rate transitions with less oscillation between rates. The
mechanism based on frame loss rates was characterized by highly variable data rates and
a lower mean data rate. The general trends obtained using the frame loss rate-based
mechanism indicate that the frame loss rate is a good measure of the link quality;
however, the link SNR proved to be a far better indicator.

xv

The overall design and methodology of this analysis provides insight into dynamic
rate agility mechanisms and the criteria for rate agility that may be used in developing
future 802.1 la-compliant hardware implementations.

xvi

ACKNOWLEDGMENT

This thesis is dedicated both to my wife Tracy and to my parents. A lifetime of

support and encouragement from my parents led me to graduate school while Tracy's
constant love and understanding ensured my success here. I am forever indebted to them.

My sincerest gratitude goes to my advisor and mentor, Dr. John McEachen, for his
guidance, direction, and support. His supervision and seemingly limitless knowledge of
networking all but guaranteed the success of the model and accompanying analysis
presented in this thesis. My appreciation also goes to Dr. Murali Tummala, whose

superior instructional abilities first led me to the study of networking and have kept me

there ever since.
Finally, I would like to thank Dr. Sunghyun Choi of Philips Research Labs. A

number of the MAC layer features of the wireless network model found herein were
adapted from his group's 802.11a OPNET model work. His collaboration and thoughts
concerning the simulation of 802.1 la were invaluable.

xvn

THIS PAGE INTENTIONALLY LEFT BLANK

XV1U

I. INTRODUCTION

This thesis presents a wireless local area network model based on the Institute of

Electrical and Electronics Engineers (IEEE) 802.11a protocol developed using the

Optimum Network Performance (OPNET) simulation tool. The model incorporates

features of the 802.1 la standard that were developed in OPNET by Dr. Sunghyun Choi of

Philips Research Labs, and it comprehensively models both the medium access control

(MAC) and the physical (PHY) layers of the 802.11a protocol [1]. Some simulation

results obtained using the model are presented as a measure of its validity.

A dynamic data rate agility mechanism was added to the baseline model to

explore the criteria by which an 802.1 la-based wireless local area network (WLAN)

might dynamically alter its link data rates during operation. Like the original 802.11

specification, the 802.11a addendum does not specify a mechanism through which a

WLAN implementation should dynamically alter its data rates if the preset data rate is not

achievable in a given set of link conditions. The 802.11 standards explicitly address data

rate agility insofar as they state that dynamic rate switching is allowed, although specific

techniques are not delineated [2, 3, 4]. The rate agility mechanisms presented herein

offer a methodology for examining and comparing several different criteria upon which a

decision to switch data rates may be based. Specifically, rate-switching mechanisms

based on link signal-to-noise ratios (SNRs) and on frame loss rates are examined and the

results presented.

A. BACKGROUND

Wireless networking technologies have evolved from disparate proprietary

implementations first conceived in the late 1980s and early 1990s to a set of overlapping

global standards. Those early wireless networking realizations were designed for a

limited number of specific applications, such as inventory control and shipment tracking

in a warehouse-like environment. Throughout the 1990s, as international government

and commercial reliance on wired internetworking grew, so too did the emphasis on

mobility and the development of wireless networking standards. Today there are a

number of approved international standards that will allow high-speed wireless networks

to compete effectively with their wired counterparts. The most comprehensive and well

developed of these standards is the IEEE 802.1 la protocol.

1

In June of 1997 the IEEE approved the 802.11 WLAN standard [2]. The initial
802.11 protocol was designed to provide a standard for high data rate (i.e., up to 2 Mbps)

WLAN connectivity in any campus, office, or home environment as well as in other more

specialized settings. The European Telecommunications Standards Institute (ETSI)
concurrently developed the High-Performance Radio LAN (HIPERLAN) protocol, also

designed to provide standardized high data rate WLAN systems [5]. Soon thereafter a

number of WLAN implementations based on the IEEE 802.11 protocol were developed
and fielded by companies like Lucent, Aironet and Bay Networks, among others. These
WLANs eventually obtained a small but solid share of the campus, office and home
networking market.

The IEEE approved the 802.11b addendum to the original 802.11 specification

that allowed for wireless networking at data rates of up to 11 Mbps a year later [3]. This

addendum to the standard was rapidly included in commercial systems, allowing for even

greater commercial adoption of WLAN implementations. Consumer demand for both
mobility and high data rate multimedia applications such as video teleconferencing,
streaming video, and voice over IP (VoJP) was growing. IEEE 802.lib-based networks
providing (at most) 11 Mbps connectivity, although more capable than their predecessors,
are not able to handle the strenuous traffic load imposed given the simultaneous use of
multimedia applications in a multi-user WLAN environment.

To support the consumer demand for mobility and low latency, high data rate
communications, the next generation of WLAN standards has emerged. Foremost among
these is the 802.11a addendum to the JEEE 802.11 standard, with others being the
European HIPERLAN/2 standard and the Japanese Multimedia Mobile Access
Communications (MMAC) protocol in the 5 GHz band [6]. The IEEE 802.11a standard
has received the most attention; due largely in part to the fact that the only fielded WLAN
implementations available today are based largely on the 802.11 protocol family. The
802.11a protocol specifies operation in the 5 GHz band, utilizes orthogonal frequency
division multiplexing (OFDM) in the PHY layer and provides for data rates ranging from
6 to 54 Mbps [4]. These data rates are clearly capable of supporting high traffic
applications in a mobile, multi-user WLAN environment.

B. OBJECTIVE

The performance of the 802.11a protocol has not been extensively analyzed as it
was only recently approved and there are no exiting commercial WLAN implementations

utilizing OFDM in the PHY layer. The first goal of this thesis is to develop a model of
the 802.11a protocol using the OPNET modeling tool that incorporates both the MAC

and the PHY layers of the standard. The model can then be used for further research that
specifically targets either the MAC layer or PHY layer of the protocol or concerns the
performance of 802.11a as a whole. There are a number of possible approaches to
modeling 802.11a in OPNET, especially at the PHY layer. The model outlined herein
presents one technique for modeling 802.1 la.

The second objective of this thesis is to utilize the OPNET 802.11a model to
analyze two dynamic data rate agility mechanisms. The two mechanisms are first

presented and then their performance is compared using the model. The goals here are

twofold: to present the performance analysis results obtained using each rate agility

mechanism and to present a new research methodology for analyzing hypothesized data
rate agility mechanisms. The use of the OPNET simulation tool in conjunction with the
802.1 la model to study dynamic rate agility mechanisms will provide insight into the rate
agility criteria that may be used when developing 802.1 la-compliant WLANs

C. RELATED WORK

There are a number of ongoing efforts to develop models of the 802.1 la protocol
using OPNET. One such research project is underway at Philips Research Labs in New
York. A number of MAC layer features of the model they are developing are included in
the model presented in this thesis [1 j. Moreover, throughout the course of the design and
construction of the model outlined here, the author corresponded with a number of
researchers also involved with the development of OPNET 802.11a protocol models.
Active OPNET 802.11a modeling efforts are underway in universities and companies in
Mexico, Japan, and the Netherlands to name a few. With the exception of the Philips
Research Labs 802.11a MAC layer model, none of the models the author has been

exposed to have yet been completed or used in active simulations.
The use of OPNET to simulate and analyze dynamic data rate agility mechanisms

in 802.1 la-compliant WLANs is a new research methodology. The research literature on
rate agility mechanisms in standardized WLANs is extremely sparse, while
implementation-specific details concerning rate agility techniques utilized in fielded
802.11- and 802.1 lb-compliant WLANs are proprietary and are unavailable to the author.
Hardware vendors currently developing 802.1 la-compliant products are still analyzing
rate agility mechanisms and addressing the trade-offs associated with implementing rate

agility at the MAC and PHY layers, but again, their work is proprietary and is
unavailable. Since the 802.11a standard does not specify a rate agility mechanism, any
agility techniques developed by WLAN vendors will be proprietary in nature.
Accordingly, the research methodology presented herein is a new approach to the

802.1 la-compliant WLAN engineering issues associated with determining the optimum
criteria for dynamic rate agility.

D. THESIS ORGANIZATION

This chapter has provided background information concerning the 802.11a

protocol and its role in wireless networking. The objectives of this thesis were also

presented along with a survey of current efforts in modeling 802.11a and the use of an

802.11a model to analyze dynamic data rate agility. In the next chapter, the important

elements of the 802.1 la protocol are outlined, to include both the MAC and PHY layers.
The specifics of the baseline 802.11a model are then presented in Chapter IE within the
framework of the OPNET modeling and simulation tool. Simulation results obtained
using the baseline model are provided as a measure of the model's validity. Chapter TV
presents the data rate agility mechanisms added to the baseline 802.1 la model along with
a comparison of their rate switching criteria. Conclusions and recommendations are then
included in the final chapter. Appendix A lists the code of the wlan_mac_lla OPNET

process model for the 802.11a baseline model MAC, Appendices B and C outline the

code changes required to implement the two data rate agility mechanisms, and
Appendices D and E provide the two new OPNET pipeline stages required to support the
802.1 la models.

II. THE IEEE 802.11a PROTOCOL

The 802.11a addendum to the original 802.11 standard presents office, campus,

and home networking consumers with the first viable wireless alternative to wired

networks that can support the simultaneous use of high data rate applications in a multi-

user environment. 802.1 la shares a number of features with the original 802.11 standard;
however, its PHY layer is completely different from that of both 802.11 and 802.1 lb and
is able to deliver data rates of up to 54 Mbps. The 802.1 la standard therefore allows for
robust, high data rate wireless connectivity in a variety of network environments.

The standardization scope of the 802.11 protocol family (i.e., the original 802.11

standard and the 802.11a and 802.11b addendums) includes both a portion of the Data
Link Layer and the Physical Layer of the Open System InterConnectivity (OSI) layered

model and the Network Access Layer of the TCP/IP protocol suite's layered model (see
Figure 1). The 802.11 protocol family therefore standardizes the MAC and PHY layers
of the WLAN. With very minor differences the MAC layer of each 802.11 specification
is essentially identical. Furthermore, the PHY layer of the original 802.11 standard and
the 802.11b addendum are, with a few exceptions, very similar in that each uses spread
spectrum transmission techniques.

OSI Model

Application

Presentation

Session TCP/IP Model
Transport

Layers Specified Application Network
Transport

Data Link
HI oux.ua

MAC

^

Internet

Physical PHY Network Access

Figure 1. 802.1 la and the OSI and TCP/IP Models (After Refs. [7, 8]).

The 802.11a standard, however, uses a completely different PHY layer encoding
scheme that operates in a higher frequency band. 802.1 la was designed from the start to
operate in the 5 GHZ band vice the 2.4 GHz band like 802.11 and 802.11b. This

followed the Federal Communications Commission's (FCC's) 1997 decision to allocate
300 MHz of radio frequency (RF) spectrum for unlicensed operation in the new 5 GHz
Unlicensed National Information Infrastructure (UNIT) band [6]. WLAN

implementations currently operating in the 2.4 GHz band have to compete for the same

RF spectrum with cordless phones, microwaves, and other WLAN devices while the

newly available 5 GHz band offers a relatively interference-free spectrum [9]. To take

advantage of this higher frequency band other alterations to the PHY layer were required

to offset the decreases in range and higher power requirements that would have

accompanied the frequency band change alone. At the PHY layer 802.11a uses an

adaptation of OFDM for encoding and transmission called coded OFDM (COFDM).

COFDM is a frequency division multiplexing (FDM) multi-carrier communications
scheme that includes the appplication of convolutional coding to achieve higher data
throughput rates. COFDM will be covered in greater detail in the PHY layer subsection
of this chapter. Before taking a closer look at the specification itself, 802. Ha's role
within the framework of an emerging group of new global WLAN standards will first be
addressed.

A. NEXT GENERATION WLAN PROTOCOLS

The IEEE 802.11a protocol is only one of a number of global WLAN standards
that have been developed to support mobile, high data rate wireless networking. As

discussed in Chapter I, the first wireless networks were proprietary implementations
designed to operate as stand-alone systems. The 802.11 standard was the first to codify a
set of guidelines within which a WLAN should be designed if the vendor sought
interoperability with other WLAN systems. At the same time, the ETSI was developing
the HIPERLAN standard, designed for operation in the 5 GHz band [5J. In the years
following the release of the 802.11 standard, every fielded commercial implementation
(both in the U.S. and in Eurpoe) was based on the 802.11 specification primarily because
802.11 compliant systems achieved a foothold in the global marketplace before the final
HIPERLAN standard was ever released. In addition, the 2.4 GHz industrial, scientific,
and medical (ISM) RF band within which 802.11 (and 802.11b) WLANs operate is

readily available internationally, so consumers could purchase and field 802.11 WLANs
without any serious regulatory concerns.

Consumer demand for a combination of mobility and multimedia applications in
conjunction with the FCC's ruling drove the emergence of the IEEE 802.11a working
group. The group rapidly adopted OFDM as the standard's underlying PHY layer
technology as OFDM could clearly provide the requisite data rates. The ETSI's

Broadband Radio Access Networks (BRAN) HTPERLAN working group was

simultaneously developing HIPERLAN/2, the 5 GHz follow on to the HEPERLAN

standard. Soon after OFDM was chosen by the IEEE 802.11a working group ETSI
BRAN also chose OFDM as the PHY layer technology for HIPERLAN/2 [10]. Shortly
thereafter, the Japanese also adopted OFDM for their 5 GHz MMAC standard.
Essentially these standards bodies collaborated to create, to some degree, a global WLAN
PHY layer standard.

Despite their similarities, there are still a number of differences between the
standards below the surface. The salient features of the three international 5 GHz WLAN
standards are provided in Table 1. Their data rates vary, ranging from 36 Mbps (MMAC)
to 54 Mbps (802.11a and HIPERLAN/2). This range of data rates is ample enough to
support even the most demanding multimedia applications, such as High Definition
Television (HDTV), which requires support for at least 20 Mbps. Other multimedia
applications that are supported by 802.11a, HIPERLAN/2 and MMAC and their
associated traffic loads are shown in Table 2. At the PHY layer, the specific RF bands
and power requirements in the 5 GHz range differ due to varying international regulatory
restrictions and this, in turn, affects channelization and data rates. HIPERLAN/2 also
utilizes a connection-oriented MAC that is essentially a wireless asynchronous transfer
mode (WATM) call set-up scheme that promises interoperability with IP-based networks
[11]. In short, HIPERLAN/2 has a redesigned and very complex MAC layer, one that has
never been commercially implemented.

Attribute
Standard

802.11a HIPERLAN/2 MMAC
Location United States Europe Japan

Governing
Body

IEEE ETSI Ministry of Post and
Telecommunications

Frequency
Bands

5.15-5.25 GHz
5.25 - 5.35 GHz

5.725 - 5.825 GHz

5.15-5.35 GHz
5.470-5.725 GHz

5.15-5.35 GHz

Supported
Data Rates

6,9,12,18,24,36,
48, 54 Mbps

6,9,12,18,27,36,
54 Mbps

6,12,27, 36 Mbps

PHY Layer OFDM OFDM OFDM
MAC Layer CSMA/CA or

PCF
TDMA/TDD with

QoS Support
CSMA/CA or
TDMA/TDD

Table 1. International 5 GHz WLAN Standards.

Application

Streaming Video

Broadcast Quality Video

HDTV

Streaming Audio

Studio Quality Sound

Standard Voice

DSL

„Techniq ue

MPEG-4

MPEG-2

MPEG-2

MPEG Layer 3 (MP3)

MPEG with FFT

G.711PCM

ADSL

Required Data Rate

0.005-10 Mbps

2-4 Mbps

25 - 34 Mbps

0.032-0.32 Mbps

0.384 Mbps

0.064 Mbps

1.5-9 Mbps

Table 2. Multimedia Applications and Associated Data Rates (After Ref. [12]).

The 802.1 la specification is the only one of the three for which a basic hardware

implementation has been developed commercially. In September of 2000 Radiata

Communications, Inc. announced that it had developed the first commercial

implementation of the 802.11a protocol in the form of a chipset that includes both a

modem chip and a transceiver chip [13]. Atheros Communications, Inc. has also released

a similar chipset to implement 802.11a along with a proprietary protocol allowing for a

72 Mbps data rate [14]. Both chipsets are constructed using standard-process CMOS and

8

each is expected to retail for approximately $35.00. No OEM vendors have yet fielded a

WLAN that implements either of these 802.1 la-compliant chipsets.
The 802.1 la protocol is clearly well positioned to succeed in the near-term as the

predominant high data rate WLAN standard, not only because of its status on the market
today but also because it shares the entirety of its MAC layer with already fielded 802.11-
compliant products. As a result, there is a greater degree of familiarity with the 802.11
protocol family MAC and transitioning to new 802.1 la-based products will require less
cost and instructional overhead. The 802.11a MAC will be outlined in the next
subsection and the PHY layer will be described in the subsequent subsection.

B. THE 802.11A MAC LAYER

The WLAN MAC layer is essentially identical across each member of the 802.11
protocol family. The 802.1 la MAC will be addressed here to the extent that it applies to
the model presented in this thesis. Accordingly, the major tenants of the 802.11a MAC
will be covered; however, some minor details will be omitted for the sake of brevity. The
802.11 standard itself and references [15] and [16] are excellent sources of information
on the 802.11 family MAC layer. The primary difference between the members of the
802.11 family of MACs is obviously the set of supported data rates and mandatory rates,
but the rules governing the usage of those rates remain essentially the same. The 802.1 la
protocol allows for data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbps. Of those, the 6,
12, and 24 Mbps speeds comprise the mandatory rate set, meaning that every 802.1 la-
compliant WLAN implementation must, at a minimum, support both transmission and
reception at those data rates. Note that both the Radiata, Inc. and Atheros, Inc. chipsets

support each of the delineated 802.1 la data rates [13,14].
In general, the groups of terminals that comprise a single 802.11 WLAN segment

are referred to as a basic service set (BSS). The 802.11 MAC is designed to operate in
one of two general network architectures: the infrastructure BSS or the independent BSS.
An independent BSS is a WLAN that consists of mobile peer stations (STAs) that operate
in an ad-hoc manner without any external connectivity. The infrastructure BSS is one in
which the mobile STAs all communicate through a single fixed access point (AP) that is
wired to an external network. Figure 2 illustrates the differences between the two. The
vast majority of fielded 802.11 and 802.11b implementations are infrastructure BSSs
since the goal in the home, office, or campus environment is often to use the WLAN to
allow for mobility while bridging to a wired external network. The model presented in

Chapter m is that of an 802.11a infrastructure WLAN. Within a BSS, the 802.11

protocol standardizes both the manner in which a wireless STA joins, or associates with,

the BSS and the authentication and encryption procedures used to maintain security

within the WLAN. Neither feature is modeled here; therefore the details of those
processes will not be discussed.

Independent BSS Infrastructure BSS

Figure 2. Infrastructure and Independent WLAN BSSs.

The primary function of the MAC layer is, as its name suggests, the control of
access to the RF medium by each node in a BSS. The 802.11 protocol family allows for
two access schemes: the distributed coordination function (DCF) and the point
coordination function (PCF). The PCF is a medium reservation scheme applied only to
infrastructure BSSs, as it consists of a polling cycle whereby the AP polls each mobile
member of the BSS to both send and receive traffic in a time slot reserved by the AP.
The PCF is best employed in a WLAN with few users and when each user is dealing with
data that requires a very low latency. Accordingly, the PCF is rarely used in practice, and
(per the standard) is an optional medium access technique in 802.11-compliant WLANs.

All 802.11-compliant WLANs must be able to employ the DCF access scheme
where control of access to the RF medium is distributed amongst each STA in the BSS.
STAs implement the DCF using the Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) algorithm. This access mechanism is similar to the one
employed in conventional 802.3 Ethernet LANs (e.g., CSMA with collision detection),
however collision detection is impossible in a WLAN environment since wireless nodes
cannot simultaneously transmit and sense the medium. As a result, 802.11 STAs use

10

collision avoidance techniques to minimize collisions on the medium and the resulting
cost in terms of network overhead. This collision avoidance mechanism is realized

through the use of physical carrier sensing at each STA. Each STA physically senses the

RF medium to determine if it is busy (i.e., if another STA is transmitting) or idle. If idle,
the STA may transmit, but if the medium is busy the station waits until the medium

becomes idle and then "backs off," or waits, a random amount of time before beginning
transmission. Once the frame has been sent and if no collisions occurred during

transmission, the receiving STA sends an acknowledgement (ACK) frame to the

transmitting STA to confirm that the data was received successfully.
Physical carrier sensing, random back off and the use of ACK frames combine to

reduce the delay and overhead associated with multi-user communications on a shared
medium. For the process to function optimally, each STA in the BSS must be within
communications range of each other and not just the AP. If mobile STAs are out of range
of each other but each within range of the AP, then the physical carrier sensing
mechanism will not be effective in avoiding collisions at the AP's receiver and the
WLAN's performance will suffer as a result. This is commonly referred to as the
"Hidden Node Problem," and the 802.11 MAC has included an additional, optional

technique to address it using a virtual carrier sensing mechanism.
Virtual carrier sensing enables a STA to reserve the RF medium (BSS-wide) for a

specific amount of time so as to prevent other STAs that may be "hidden" from
transmitting simultaneously. When this mechanism is implemented a STA wishing to
transmit sends a Request To Send (RTS) frame to the AP asking for permission to
transmit (i.e., reserve the medium) for a given amount of time, as determined by the
amount of data the STA has to send. If the medium is free the AP responds with a Clear
To Send (CTS) frame, which serves to inform the requesting STA that it may transmit.
When responding with a CTS, the AP includes the duration of the impending
transmission within the body of the CTS frame so that all STAs in the BSS will be
exposed to the length of time that the medium will be busy. When a non-transmitting
STA receives the CTS frame from the AP it sets a timer, called the Network Allocation
Vector (NAV), that tracks the length of time that the medium is expected to be busy. A
STA's NAV therefore, based on the observation of a RTS/CTS exchange, provides the

virtual carrier sensing capability.
The RTS/CTS functionality has the potential to either increase or decrease the

overall performance of a WLAN. The trade-off is between the overhead associated with
the RTS/CTS exchange and the performance degradation due to hidden node collisions

11

when RTS/CTS is disabled. The sizes of the data frames that are transmitted by the STAs

tend to be the deciding factor in terms of efficiency. RTS/CTS benefits performance

when the data frames are larger and the likelihood of a collision on the medium is

increased. When the frames are small, the decreased chance of a collision outweighs the

benefits of employing RTS/CTS. Accordingly, a user-defined frame length threshold is

specified for each WLAN above which the RTS/CTS mechanism is enabled. WLAN

performance can also be enhanced through the use of an optional frame fragmentation

mechanism. Longer frames tend to have higher error rates therefore the transmission of

long frames increases both the number of required retransmissions and the amount of data

that is dropped. To combat this inefficiency the 802.11 standards specify a mechanism

for fragmenting frames when their length is above a user-defined threshold. When a

frame is fragmented each segment is transmitted as if it were a separate frame, while the

fragments are identified at the destination using various fields in the packet header.

For both the CSMA/CA and RTS/CTS mechanisms to function properly, timing is

obviously very important. Proper timing is accomplished through the use of four

different interframe spaces (TFSs) and the slot time, defined below in Table 3 and

illustrated in Figure 3. Note the slot time's importance in detenriining the back off period

used by each station during the contention window, or the window during which each

station vies for use of the RF medium. The EFSs and the slot time are selected based on

the PHY layer characteristics, so the values shown in Table 3 are particular to the 802.1 la

protocol. A typical 802.11 WLAN MAC-level transmission scenario is depicted in

Figure 4, where the timing relationships among the transmitting, receiving, and other BSS
STAs are clearly shown.

12

Timing Parameter Value Description

SIFS 16 fxs Short IFS. The time required for a transceiver to
alternate between transmit and receive modes.
Used with ACK and CTS frames.

Minimum CW 15 Minimum Contention Window Size.
Maximum CW 1023 Maximum Contention Window Size.

Slot Time 9 ns Used to determine the random back off time, given
by: Backoff- Random x Slot Time where the
random number is from the contention window
interval.

DIFS 34 ns DCF IFS. Used in transmitting data and
management frames.

EIFS 94 [is Extended IFS. Used when a frame is received with
an incorrect FCS field.

Table 3. 802.1 la IFS and Slot Time Values and Definitions.

Immedela access when medium
is free >= DIFS

DIFS

DIFS

PIFS

SIFS

Defer Access

Contention Window

TTTT——
BackoffWindow
i..i 1.1.

Next Frame

/Slot time

Figure 3. Timing Relationships in the 802.11 Standards (From Ref. [2]).

13

] RTS Sourc* Ma

Oatthafion

*—>

8IFS
CTS

SIFS

. *-*
SIFS-——

ACK

,

«FS
(^tM*onWlndowf Ottwr NAV(RTS)

HAV(CTS)

OaferAccats Backoff After Defer

Figure 4. Timing in a Data Transmission Scenario (From Ref. [2]).

To allow for the proper operation of a WLAN BSS the 802.11 MAC delineates

the exchange of three basic frame types: data frames, control frames, and management

frames. Data frames are used to convey user data between the WLAN nodes,

management frames are used to allocate and report on network resources (e.g.

authentication/deauthentication, association/disassociation, probing, and beaconing), and

control frames are utilized to control access to the wireless medium (e.g. RTS, CTS, and

ACK frames). The medium access process and data delivery are at the core of the model

presented here, therefore management frames and their roles will not be addressed.

Each 802.11 MAC layer frame, or MAC protocol data unit (MPDU), consists of a

MAC header, a frame body, and a MAC trailer, which is essentially the frame check

sequence (FCS) used in detecting bit errors in the frame. The basic frame format is

shown in Figure 5. The contents of the "Frame Body" and "Frame Control" fields

differentiate data, control, and management frames. Data frames will obviously have user

data in the "Frame Body" field and are therefore variable in length. ACK, RTS, and CTS

frames have specifically delineated fields in the frame body and are of constant length. It

is important to note that the frame format and transmission speed within the BSS are

closely related. Per the specification, data frames may be sent at any of the rates

supported by the standard, while control frames must be transmitted at one of the

mandatory data rates to ensure seamless communication between possibly disparate

802.1 la implementations.

14

Octets: 2 2 6 6 6 2 6 0-2312 *

Frame
Control

Duratton/
tt)

Address 1 Addnn2 Addrea»3 Sequence
(«OflUQI

AddTMs4
Frame
Body FCS

MACHeader

Figure 5. The 802.1 la MPDU (From Ref. [2]).

In the preceding paragraphs the key elements of the 802.1 la MAC layer have been

summarized, and each will play a role in the description of the 802.11a model discussed

in the remainder of this thesis. The data rates supported by the 802.11a standard are

clearly much higher than those of the original 802.11 specification and the 802.11b

addendum. But, the 802.11 MAC was designed to be independent of the PHY layer so

with some minor differences, the 802.11a mechanisms for access to the RF medium are

essentially the same as in prior implementations. In short, the consumer is benefiting

from a nearly five-fold increase in data rate with very little change in the MAC layer.

C. THE 802.11A PHYSICAL LAYER

The IEEE 802.11a standard calls for the use of COFDM in the PHY layer to

realize the full 6-54 Mbps range of data rates. OFDM is a multicarrier communications

scheme in which a single high-rate data stream is split into lower-rate data streams that

are subsequently transmitted in parallel over a number of subcarriers. The subcarriers

overlap and the inter-carrier spacing are chosen such that all the subcarriers are

orthogonal to each other. OFDM is not a new technology; it has been used in digital

audio broadcasting (DAB) and digital video broadcasting (DVB) since the 1970's [6].

However, it has only recently been adopted for use in high data rate wireless packet-based

communications. OFDM was selected for use in the 802.11a standard based on its

mitigation of many of the difficulties associated with wireless communications in the 5

GHz band such as multipath fading and transmission power level restrictions [17]. The

802.11 and 802.1 lb standards utilize spread spectrum communications in the PHY layer,

but spread spectrum encoding at 5 GHz with low power levels would not provide the

requisite operational range in office, campus or home environments (due to the inverse

proportionality of frequency and distance). OFDM offers high-rate data transmission

with a minimal increase in the complexity of the PHY layer implementation.

The 802.1 la standard specifies a channel spacing of 20 MHz with a 16.56 MHz 3-

dB transmission bandwidth per channel. The specified channelization for 802.1 la (in the

15

United States) in the 5 GHz UNII bands is shown in Table 4. Each UNII band has a

corresponding maximum output power level per FCC regulations (see Table 5)

suggesting use of the lower band in shorter-range applications (i.e., the home WLAN
market), use of the middle band in office-like environments, and use of the upper band in

longer-range applications (i.e. cross-campus WLAN bridging and warehouse settings).
The power levels are given assuming full use of the allocated bandwidth along with the

levels in mW/MHz if only a portion of the bandwidth is used. Within a channel, each

OFDM transmission consists of 52 separate subcarriers, 48 of which are used to transmit
data while the other four are used as pilot signals for hardware synchronicity. Each
subcarrier is spaced 312.5 kHz from adjacent subcarriers and each is modulated

independently. Binary phase shift keying (BPSK), quadrature phase shift keying (QPSK),
and both 16- and 64-quadrature amplitude modulation (QAM) can each be used to
modulate the subcarriers in conjunction with specific COFDM coding rates to achieve
each of the supported 802.1 la data rates.

Band (GHz) Channel Number Center Frequency (MHz)

UNII lower band
(5.15-5.25)

36
40
44
48

5180
5200
5220
5240

UNII middle band
(5.25-5.35)

52
56
60
64

5260
5280
5300
5320

UNII upper band
(5.725 - 5.825)

149
153
157
161

5745
5765
5785
5805

Table 4. Channelization in the 802.1 la Standard (From Ref. [4]).

16

Frequency Band (GHz) Maximum Output Power (mW)
[with up to 6 dBi antenna gain]

5.15-5.25 40(or2.5mW/MHz)
5.25 - 5.35 200 (or 12.5 mW/MHz)

5.725 - 5.825 800 (or 50 mW/MHz)

Table 5. 802.1 la Maximum Output Power Levels (From Ref. [4]).

The IEEE 802.11a standard specifies the use of COFDM with convolutional

forward-error correction (FEC) coding. FEC coding allows for the correction of errors
found in the weakest subcarriers that are adversely affected in the multipath fading

channels characteristic of a wireless communications link. 802.11a specifies the use of
several coding rates in conjunction with the modulation schemes listed above: 1/2, 2/3,
and 3/4. The modulation scheme and coding rate combinations are shown in Table 6
along with their corresponding data rates. The shift register size, or constraint length, for
the convolutional coding computations in the 802.1 la standard is set at seven [4].

Data Rate

(Mbps)

Subcarrier

modulation

Coding

Rate (R)

Coded bits per

subcarrier

Coded bits per

OFDM symbol

Data bits per

OFDM symbol

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 16-QAM 1/2 4 192 96

36 16-QAM 3/4 4 192 144

48 64-QAM 2/3 6 288 192

54 64-QAM 3/4 6 288 216

Table 6. Coding and Modulation in the 802.1 la Standard (From Ref. [4]).

COFDM also serves to mitigate another adverse feature of wireless multipath
fading channels: intersymbol interference (ISI) caused by the multipath delay spread.
802.11a utilizes a high symbol rate (250 kilosymbols per second) to achieve higher data
rates, therefore a high degree of ISI due to multipath delays could obviously impact
performance. Typical maximum multipath delay spreads in a WLAN environment range

17

In summary, COFDM was chosen as the 802.1 la PHY layer technology based on
its ability to counter the negative effects of low power, high data rate wireless packet
transmission in a multipath fading environment. The use of orthogonal subcarriers allows
utilization of the allotted bandwidth through conventional modulation techniques when

applied with convolutional FEC coding. ISI is greatly reduced through the use of an 800

ns guard time prefix while ICI is mmirnized by using a cyclic extension of the OFDM
symbol during that guard interval. The MAC and PHY layer characteristics introduced in
this chapter will be applied in Chapter HI where the 802.11a baseline model is detailed.
The timing and medium contention schemes introduced here are features of the model as
are the PHY layer dependent characteristics, like the SIFS and Slot time. The PHY layer
is modeled using data rate-dependent COFDM channels within the framework of the
OPNET transmission scheme. The 802.11a baseline model and the OPNET modeling

and simulation tool are both discussed in Chapter HI.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

III. IEEE 802.11A PROTOCOL MODEL

The IEEE 802.1 la WLAN model presented here was constructed using the

OPNET network modeling and simulation tool. The model includes both the MAC and

PHY layers and incorporates features adapted from the 802.1 la OPNET model created by

Dr. Sunghyun Choi of Philips Reasearch Labs [1]. OPNET was chosen as the software

environment for this model based on its ability to replicate the preponderance of 802.1 la

features, excepting some PHY layer characteristics, with a high degree of design control.

OPNET is geared more toward exploring network-wide design issues and conducting

research at the MAC layer and above (i.e. IP, TCP, UDP) than for examining the physical

behavior of wireless links. This model does, however, incorporate the essential 802.1 la

PHY characteristics. Other modeling and simulation tools used for WLAN research

include MATLAB and NS2.

A. OPNET AND THE 802.11 STANDARD MODEL

The IEEE 802.11a baseline model was created using OPNET Version 7.0B with

software patch level 11 on a Windows NT 4.0 platform. The OPNET simulation tool is

capable of modeling the majority of modern networking protocols and standards. Within

the OPNET interface environment networks are modeled in a layered fashion, not unlike

the actual protocols themselves. The highest level of the modeling framework is the

network domain, where the overall topology of the network is defined [18]. The network

components (e.g., STA, AP, server, router) are referred to as node models, each of which

is further subdivided into node objects. These node objects represent the functions that

take place within a given node model (e.g., MAC, TCP, IP encapsulation). A node object

typically consists of a process model, or state transition diagram (STD). When a state is

entered or exited the underlying model functions and OPNET-specific functions (called

kernel procedures) of a node object are called from the enter executives or exit executives

of the state. These executives essentially dictate the operation of the STD and are written

in the OPNET-specific Proto-C language, as are the underlying functions and kernel

procedures. Figure 7 depicts each of the network domain levels. Most, but not all node

objects consist of process models. For example, the WLAN transmitters and receivers

used here can only be in a single state: either transmitting or receiving, respectively. The

attributes of these node objects are therefore specified via a graphical user interface.

21

/■* Read Che argmtsnti to ©m CREATE_PCRT C
op.1'o_ac;r_gei C»ei_pw, ■'It^n_'ndex■', wtn-ui ndex);
op_ict_«;r_get [1c1_ptr, " 1 ocal jo>-t", fclocal_oortj;

Process model
rip^udp_y3

Figure 7. OPNET Design Environment (From Ref. [19]).

The simulation of frame transmission between wireless node models in the

OPNET network domain, based on the attributes of the transmitter and receiver, is

accomplished by way of a transmission pipeline. The pipeline is broken down into a

series of pipeline stages, each of which takes the form of a C++ executable file that is

designed to emulate a transmission-specific task. The pairing of a wireless transmitter

with a receiver, the calculation of the path loss, and the determination of the link bit error

rate (BER) are all examples of pipeline stage functions. These stages are invoked when a

frame is transmitted by a WLAN transmitter on a channel specified by the MAC. Unlike

actual WLAN systems, a single OPNET channel is associated with a particular data rate.

The transmission/reception channel is identified to the transmitter/receiver from the MAC

by a series of packet streams. In other words, the passing of a frame from the MAC layer

to the PHY layer is modeled by a series of separate data rate-dependent packet streams.

Packet is a generic term used to refer to the vehicle for data transmission within an

OPNET model. The OPNET software package contains a variety of packet formats. The

actual WLAN frames in the 802.11a model are emulated by a set of packet formats.

OPNET allows for customized packet formats that include fields that accurately represent

an actual frame format as well as "null" data fields. These "null" packet fields are

understood by OPNET to not contain any actual simulated data, but rather can be used by

the simulation kernel to pass information between the MAC process model and the

transmission pipeline stages.

22

OPNET's software package includes a number of standard models that represent
common networking protocols, one of which is a basic 802.11 WLAN model that

incorporates some features of the 802.11b addendum. The OPNET standard model
package does not include a model of the 802.11a protocol because the specification was
only recently approved. The 802.11 WLAN model standard model served as the

foundation for the 802.11a model along with a number of features adapted from the
Philips Reasearch Labs 802.11a model [1]. The 802.11 standard model includes node

models of wireless STAs (fixed and mobile), APs, and servers. Each node model

includes a MAC process model (called wlanjnac), a transmitter object and a receiver
object. These three objects, accompanied by the wireless pipeline stages, comprise the
MAC and PHY layers. The wlanjnac process model is the heart of the 802.11 MAC

model, as it contains all of the Proto-C code and functions representative of the rules that
govern the possible states in the medium contention process. The 802.11 wlanjnac
supports the 1, 2, 5.5 and 11 Mbps data rates and incorporates the other features of the
802.11 MAC discussed in Chapter II with the exception of the optional PCF polling

scheme.
The 802.11 standard model PHY layer is represented by the transmitter object,

receiver object, and the wireless pipeline stages. There are a total of 14 wireless pipeline
stages, four of which were developed specifically for the 802.11 WLAN model. Those
four stages concern the determination of eligible WLAN receivers for a BSS, the
matching of receiver and transmitter channels, and the calculation of the propagation
delay and received signal power. Each WLAN transmitter/receiver has four packet
streams from/to the wlanjnac process model, one for each 802.1 lb-supported data rate.

The 802.11 standard model proved to be a good foundation for the 802.1 la model
when used in conjunction with the MAC layer features of the Philips Research Labs
model. The PHY layer required the greatest number of alterations to develop a
comprehensive representation of the 802.11a standard, as will be seen in the following
sections where the 802.1 la model is presented in detail.

B. THE 802.11A BASELINE MODEL

The IEEE 802.1 la model was constructed by altering the OPNET 802.11 standard
WLAN model and incorporating a number of features from the Philips Research Labs
802.1 la OPNET model. The architecture modeled is that of an infrastructure BSS with a
single fixed AP and a variable number of mobile STAs. The infrastructure BSS was

23

chosen vice the independent BSS as it will likely be the configuration of choice in home,

office, or campus environments. The 802.1 la MAC and PHY layers are identical in both

the AP and the STA node models with the exception of several user defined attributes

that will be covered in greater detail later. Layers above the MAC in the node models are

somewhat different, since the AP has to interface with a wired external network. Figure 8

depicts an 802.11a WLAN model with a single AP and ten mobile STAs in the OPNET

network domain.

Figure 8. An 802.1 la WLAN in OPNET.

Each 802.1 la STA node model is called wlan_wkstn_adv_lla while the AP node

model is called wlan_ethernet_router_adv_lla. These two node models are used in

tandem to create an 802.11a infrastructure WLAN within the OPNET design

environment. The node object composition of wlan_wkstn_adv_l la is shown in Figure 9

while that of the wlan_ethernet_router_adv_lla is depicted in Figure 10. Both contain

higher layer node objects representing common protocols like tcp, udp, ip, ip_encap, and

arp. The wlan _ethernet_router_adv_l la has two interfaces, one for a wired Ethernet

network and another for the WLAN. The wlan_mac_lla node object represents the

802.11a WLAN MAC in each node model, while the wlanjportjx and wlan_port_rx

objects represent the components of the WLAN transceiver. The wlan_mac_l 1a,

24

wlan_port_tx, and wlan_port_rx node objects and their interactions are the heart of the

OPNET 802.1 la baseline model.

application cpu

tpal

up tcp

G

ip_encap

iV

wlan_port_rx_

wlan_port_rx. *wl5Ojx>rUx_6_0

wlan_portjx

wlan_port^4"

wlan_port_pr_:

_portjx_7_0

wtaTr^pi;rt_1x_5_0

W_bc4_0

.pV{Jx_3_0

\vlan_port_rx_2_0 wlan_port_rx_1_0 wlan_port_rx_0_0 wlan_portjx_0_0 wlan_port_1x_1 _0 wtan_port_tx_2_0

Figure 9. The 802.1 la Model STA Node Object.

25

otpf

Jt =13=
c^r

udp kc) bgp tsy i

—»Hiuui H—

n
AFPp

E
AFPB

wlanjxxt.

elh_pcr^_rx_0_0 eth_P«L'x„0_0 wtan_port_')<_7^g""

wlan_port_ixj£6l'0

wlan_pott_i}fi^_D

w<an_port_pc^..O/ v jlanj^ct-bt 4_Q

wianjwrtjOLO wlan_pwl_tx„2„0 vulan_port_i^_1_0 wlan_pal_l«_1_0 wlan_portjx_2_0 w[an_pott_b<_3_Q

Figure 10. The 802.1 la Model AP Node Object.

1. The 802.11a Model MAC Layer

The wlan_mac_lla node model and its accompanying process model, adapted

from the 802.11 wlanjnac process model, are used to represent the 802.1 la MAC. The

states and transitions of the wlanjnac_1la process model are the same as those of

wlanjnac, with the 802.11a functionality realized through modifications to the

underlying Proto-C code and function calls. The wlanjnac_lla process model is shown

in Figure 11. Two new functions were added and changes were made to four of the 13

functions already defined in the model code. The Proto-C code make-up of

wlanjnac_lla is provided in its entirety in Appendix A.

26

(default]

ÄFRAME TO TRANSMIT !■& IEXPECTING FRAME) /■M^1WAIT_FQR_FRAME|
IBSSJNITJ *■ IDLE I* —- [FRMJNDJ

Jdefault)

VAIT_FOR_ä. ~y

(REAOY.TO.TRANSMlt-t?, IMEDIUMJSJDLE) /'
\ (FRAME.TOJflANSMIT S,&!EXPECTfNG_FHAME)

(FRAME.RCVD)

DEFER J (default)

(DEFERENCE_OFF]

BKOFFJIEEJ

fPERFORM_BACKOFFl,'^^^^^v<[F1ANSMIT_FRAME)

S

[FRAMEJIMEOUTI FRAME_RCVD)

TRANSMISSION.COMPLETE)

(BACKOFF.COMPLETED)

/ (defau»)

(READYJOJRANSMIT tJk MEDIUMJSJDLE)

Figure 11. The wlan_mac_lla Process Model.

The behavior of wlan_mac_lla is governed by a number of user-defined

parameters, lumped under the Wireless LAN Parameters attribute and selected via an

OPNET graphical user interface. The critical parameters are listed in Table 7. Some

parameters may be assigned any numerical value, but the values shown are those

specified by the 802.11a standard and these must be selected for the model to function

correctly. The OFDM Physical Characteristics attribute ensures that the correct values

for the SIFS time, slot time, and minimum and maximum contention window size (as

specified in Chapter II) are defined when the simulation begins. It also provides for the

definition of the 802.1 la PLCP preamble and PLCP header transmission durations, which

are used by the stations to correctly set their NAVs when RTS/CTS is enabled by

selection of a non-zero RTS threshold value. The RTS Threshold can take any value up

to 2347. The short and long retry limits delineate the number of times a STA may

attempt to retransmit frames that are shorter or longer, respectively, than the RTS

Threshold value. The AP functionality parameter lets the user identify the AP in a BSS if

the WLAN is an infrastructure WLAN.

27

Parameter Name Values

RTS Threshold Any integer < 2347

Fragmentation Threshold Any integer < 2347

Short Retry Limit 4

Long Retry Limit 7

Data Rate 6,9,12,18,24,36,48,
or 54 Mbps

Physical Characteristics OFDM

AP Functionality Yes or No (Boolean)

Table 7. User-defined Wireless LAN Parameters.

The data rate attribute is provided for the user to select the maximum operational
rate for the exchange of data frames within the WLAN by a given STA. Recall from
Chapter n, however, that the control frame transmission rate must be one of the three
rates from the mandatory rate set. To determine the correct control frame rate, a function
was added to the wlan_mac_lla process model to select the highest possible control
frame speed given the data frame transmission rate. This function was adapted from the
Philips Research Labs model [1]. In addition, the STA may receive frames from another
STA that might not be operating at the same data transmission rate. The receiving STA
must then determine the speed at which to respond with either a CTS or ACK frame
based on the incoming frame type. The capability to deal with this scenario was added to
the wlanjnac_lla process model Proto-C code using a mechanism similar to the
function described above.

Once the transmission data rate of a given frame has been determined, the frame
must then be passed to the PHY layer for transmission. The four packet streams
connecting the wlan_mac_lla node object and the PHY layer (i.e., the transmitter and
receiver node objects) in the STA and AP node models of the 802.11 standard model
were replaced with eight packet streams representing each of the 802.11a possible data
rates. These streams can clearly be seen in Figures 9 and 10. Each stream has an
accompanying statistic wire (the dashed lines in the figures) to emulate the physical
carrier sensing capability of the STA. These statistic wires inform the wlan_mac_lla

28

process model when either a transmitter or receiver is busy. The use of transmitter and
receiver node objects to model the PHY layer will be covered in the next subsection.

The virtual carrier sensing capability of the 802.11 standard model MAC had to
be altered to account for both the format and length of the OFDM PPDU and the PLCP

preamble and header transmission durations. Accordingly, each NAV duration

calculation in the underlying functions of wlan_mac_lla was modified to emulate the
correct timing relationships. The new NAV durations were calculated in two steps. First,
a new function was added to determine the duration of the body of a given PPDU, to
include the PLCP Service Data Unit (PSDU), the SERVICE field, the tail bits, and the
required padding to complete the OFDM symbol. This function was adapted from the
Philips Research Labs model [1]. Secondly, the PLCP header duration and the PLCP

preamble duration were added to completely emulate the overhead associated with the
transmission of an OFDM PPDU. Note that the PLCP header and PLCP preamble
durations are the same for each frame regardless of its format since these two packet
fields are always transmitted at the lowest data rate in the mandatory rate set. An
identical change was made to the exit executives of the FRM_END state to accurately
model the operation of the timer used when waiting for expected response frames from

other STAs.
Two proto-C code error repairs to the 802.11 standard model were also adapted

from the Philips Research Labs' 802.11a model to ensure proper operation of the
wlan_mac_lla process model [1]. The first corrects the calculation of the EFS time
while the second corrects the erroneous calculation of the remaining length of a data
frame during the frame fragmentation process. Also adapted from the Philips Labs'
model is the ability to track the net amount of MAC layer traffic sent or received by a
given station for analysis following a simulation. The overhead associated with the PHY
layer can therefore be disregarded if the goal is to just analyze the amount of MAC layer
traffic handled by the WLAN. This feature was included in the model but is not
demonstrated in this thesis. The size of the MSDU is passed between STAs using a null
field in the OPNET formatted packet. The two packet formats associated with the
802.11a model are the wlan_data_802_lla and wlan_control_802_lla packets, shown
in Figures 12 and 13 with their field names and bit sizes. The "MPDU size" field is used
to pass the size of the MPDU between STAs for use in simulation data analysis. These
two 802.11a packets are identical to the 802.11 standard model packet formats with the
exception of the "MPDU size" field and the "Rate" field. The "Rate" field is used in the

29

PHY layer and will be described in greater detail in the next subsection, where the
model's PHY layer components are presented.

Type (2) Accept (0) PktlD(O) Rate (0) MPDU Size (0)

WLAN Header (190 bits)

Frame Body (inherited)

FCS (32 bits)

Figure 12. The wlan data 802 11a Packet Format

Type (2) Accept (0) Rate (0)

WLAN Header (78 bits)

FCS (32 bits)

Figure 13. The wlan_control_802_lla Packet Format

2. The 802.11a Model PHY Layer

The PHY layer of the 802.11a model is represented by eight wlanjportjx and
eight wlan_port_rx node objects in conjunction with the 14 wireless transmission
pipeline stages. The eight transmitters and eight receivers emulate the operation of a
single WLAN transceiver. A single transceiver is modeled in this manner because each
OPNET transmitter and receiver node object is wedded to a specific modulation scheme.
To realize the eight specified data rates with their accompanying modulation and coding
rate combinations a total of 16 transmitter and receiver objects are required. When a
packet is sent from the MAC to the PHY layer, it will travel on one of the eight packet
streams to the appropriate transmitter node object associated with the specified data rate.
When the packet is sent through the pipeline stages, only those receivers associated with
that particular data rate may receive the packet. This model design allows for the
emulation of transmission between ST As and APs at specifically designated data rates.
The transmitter and receiver node objects are modeled as isotropic antennas with typical
isotropic transmission and reception patterns and unity gains.

30

Like the MAC layer, the behavior of the PHY layer is partially governed through
the use of user-defined parameters that are attributes of the receiver and transmitter

nodes. These parameters fall under the heading of four attributes: modulation, channel,

noise figure, and ecc threshold. The channel attribute is used to further specify the
parameters associated with each OPNET wireless transmission channel (i.e., each data
rate), while the modulation attribute is used to specify the transmitter and receiver's
modulation schemes. The noise figure attribute allows for the selection of the receiver
noise figure while the ecc threshold specifies the acceptable BER upper bound for

received packets. The parameters of each attribute and their nominal values are shown in

Table 8.

Attribute Parameter Values

Channel

Supported Packet Formats wlan_data_802_lla and
wlan control 802 11a

Bandwidth 16,560 kHz
Base Frequency One of:

5171.7,5191.7,5211.7,5231.7,
5251.7, 5271.7,5291.7, 5311.7,
5736.7, 5756.7,5776.7, 5796.7 MHz

Spreading Code Disabled
Processing Gain 0.0
_ **
Power 0.04,0.2 or 0.8 W

Modulation Modulation Scheme

One of:
Ofdm_6Mbps
Ofdm_9Mbps

Ofdm_l 2Mbps
Ofdm_l 8Mbps
Ofdm_24Mbps
Ofdm_36Mbps
Ofdm_48Mbps
Ofdm 54Mbps

Noise Figure* N/A Any number > 1.0
(nominally ~ 5)

ECC Threshold* N/A Any number
(nominally ~ lxlO"5)

Receiver Only
" Transmitter Only

Table 8. Attributes of the wlan_port_ pc and wlan_port_rx Node Objects.

31

The first parameter of the channel attribute is the supported OPNET packet
formats. These are specified so that named packet fields can be accessed and/or modified

as a packet traverses the pipeline stages. The wlan_data_802_lla and
wlan_control_802_lla packet formats presented in the previous subsection are specified
for use here. The channel bandwidth delineated in the 802.11a standard is used as the
bandwidth value, while any of the base frequencies of the channels listed in Table 4 are
acceptable as the base frequency value. Note that the corresponding per band
transmission power level as specified in Table 5 must be used in conjunction with the

selected channel frequency. For example, if a base frequency of 5736.7 MHz is chosen

then the transmitter power parameter must be set at or below 0.8 W. The spreading code

parameter is applicable only for 802.11 or 802.11b WLANs and therefore is disabled in

the 802.1 la model. By the same token, the processing gain is an additive gain associated

with direct sequence spread spectrum communications and accordingly should be set to
zero here.

The modulation attribute setting plays a key role in emulating PHY layer channel
characteristics. The dra_ber pipeline stage uses the transmitter and receiver modulation
attribute to determine the BER of the packet transmission by way of a modulation table
look-up based on the link SNR calculated in the drajrnr pipeline stage. A modulation
table contains a range of BER versus Eb/N0 values, and when the table look-up kernel

procedure is invoked in the pipeline stage the BER is determined based on the previously

computed SNR. In other words, the BER is a function of the channel modulation scheme.
Each subcarrier of an OFDM transmission is modulated according to the scheme outlined
in Table 5, but the OPNET simulation environment is not detailed enough to support the
emulation of each individual subcarrier. Instead, the 802.1 la model is designed such that
a single OFDM transmission is treated by OPNET as an aggregated signal based on the
data rate of the transmission.

Recall that each 802.11a data rate is associated with a specific subcarrier
modulation type and convolutional coding rate. Eight new modulation tables were
created in OPNET to represent the BER versus Eb/N0 characteristics of an OFDM
transmission at each data rate. The modulation tables were created using values taken
from BER versus Eb/N0 curves found in reference [17] and shown in Figure 14. These
curves represent values associated with OFDM transmissions in additive white gaussian

noise (AWGN) for a constraint length seven convolutional code given the subcarrier
modulations and coding rates for each 802.11a data rate. Although these curves fail to

capture the Rayleigh fading behavior of a typical wireless communications link, they
32

represent the best, most current data available for use in emulating the actual 802.11a

PHY layer. Ongoing detailed simulations and measurements of 802.11a PHY layer

transmission characteristics using other tools may soon provide more accurate data for
incorporation in future versions of this model [20].

ÜJ10"
m

1<T -

I 1 1 1 1 1 1

(1)BPSK&QPSK,R=1/2
(2) BPSK & QPSK, R=3/4
J3) 16-QAM, R=1/2
(4) 18-QAM, R=3H
(5) 64-QAM, R=2/3
|6) 64-QAM, R=3/4

(1)\ (2)\ (3)\ (+t\ \(5) l«»\

^

1 1 1 \ i \ i i \ \ i \
16 18

Eb/No (dB)

Figure 14. BER versus Eb/N0 Curves for OFDM in AWGN.

The modulation attribute specified by the user represents the modulation table
associated with the maximum rate of data traffic transmission within the WLAN. The
selected data rate is not static however, and changes based on the frame type (i.e., data or
control) and possibly with the transmission rate of incoming data packets. When a packet
is sent to the PHY layer by the MAC layer for transmission at a specified data rate, the
packet is sent to the transmitter object possessing the modulation attribute that
corresponds to that data rate. In this fashion the most accurate BER approximation is
assigned to the calculated SNR in the pipeline stages. The data rate must also be passed
to another pipeline stage, dra_txdel_lla, for use in calculating the transmission delay
associated with that data rate. The drajxdel_lla stage must therefore be able to track
the rate at which a frame is sent and adjust accordingly. It does so through the use of the

33

"Rate" field, a customized packet field added to both the wlan_data_802_lla and
wlan_control_802_lla packet formats. Just prior to a packet's release from the MAC

layer to the PHY layer, the data rate at which that frame is being transmitted is stored in

the packet's "Rate" field. When the drajxdeljla pipeline stage is invoked, the contents

of that field are accessed and the proper data rate is used in calculating the transmission
delay. The drajxdeljla pipeline stage code is provided in Appendix E.

The 802.11 standard model uses a default value of 1.0 for the noise figure (fn),
which equates to a 0 dB thermal noise contribution at the receiver. A 0 dB thermal noise
value represents the ideal-case reception of a frame at the receiver where the thermal

noise value is negligible. Rather than using this default value a nominal value of 5.01

was selected based on the reported noise figure of the Lucent WaveLAN™ 802.11b

network interface card, a popular WLAN implementation [21]. The selection of a noise

figure value found in a fielded WLAN helps reduce the artificiality of the OPNET

transmission process. The total background noise (BN) that effects the received packet (as
calculated by the drajbkgnoise pipeline stage) is therefore given by:

BN=BW{290fn)k + AN+IN

where Boltzmann's Constant £ = 1.379xl0"23 YK, 290 is the receiver background

temperature in degrees Kelvin, BW is the transmission bandwidth of 16.56 MHz, the
OPNET default ambient noise AN = lxlO"26, and the inter-packet interference IN is as
calculated in the drajnoise pipeline stage. Inter-packet interference results from the
occasional slight overlap of two packets as one completes the reception process while the
other is just arriving at the receiver. The overlap is so small as to not be considered a
collision but rather a source of noise. The value of IN is rarely non-zero, highly, and
extremely small.

To add even greater fidelity to the losses encountered in the transmission pipeline
the wlanjjower pipeline stage's default free space path loss calculation was altered. The
path loss equation was modified to more accurately reflect the losses that might take
place in a typical office-like environment. The path loss (JPL) as computed in wlanjjower
is given by:

1 \6n2dn

34

where X denotes the wavelength associated with the channel's center frequency, d is the

distance that separates the transmitting and receiving STAs, and n is the path loss

exponent. A value of n=2 corresponds to the OPNET default of a simple free space path

loss assignment whereby the only losses result from the attenuation of the signal through

the air in a straight line from the transmitter to the receiver. However, in a typical indoor

office environment the signal would suffer from increased attenuation as it passes through

partitions, walls, doors, floors and ceilings. A number of studies have empirically

determined typical path loss exponent values in office, school, and residential

environments [22, 23, 24]. In particular, Medbo and Berg obtained a value of n=3.8

when assessing the losses between rooms in a typical school setting [24]. This value of n

was selected for use in the 802.11a baseline model as it falls within the range of

exponents found in the other studies and because it was obtained in an environment that

more closely resembles the settings we are interested in.

The ecc threshold attribute allows the user to specify an upper bound for the

acceptable BER of a received packet. If the BER exceeds the specified threshold then the

packet is marked as unacceptable in the final pipeline stage and is then discarded by the

wlan_mac_lla process model. This procedure is used to emulate the WLAN's limited

ability to detect and correct frame errors. Typical 802.11 and 802.11b implementations

are able to cope with BERs up to around lxlO"5 [25].

The 802.11a model presented here offers a new approach to comprehensively

modeling both the MAC layer and PHY layer attributes of a wireless protocol using the

OPNET modeling tool. OPNET modeling efforts have traditionally focused on the MAC

layer and above at the expense of PHY layer features and their effects. The baseline

model outlined above serves as a starting point for further research involving the 802.1 la

protocol and its MAC and PHY layer characteristics.

C. 802.11A BASELINE MODEL SIMULATION RESULTS

The 802.1 la baseline model was used in an OPNET simulation to test and verify

its performance. The goal of the simulation was to confirm proper operation of the model

vice the analysis of a particular aspect of the protocol's behavior or examining a specific

network performance characteristic. The simulation was conducted using a variation of

the OPNET 802.11 standard model's wlan_deployment scenario. In this scenario the

behavior of a single infrastructure 802.11a WLAN was examined within the framework

of a deployed wide area network (WAN) to better emulate the configuration of an actual

35

network. The WLAN is connected to an IP gateway (i.e., an enterprise router) which is in

turn connected to an IP cloud used to represent the backbone Internet. The network's

traffic servers are located on the other side of this IP cloud via a firewall. These servers

are used as the source and destination of the file transfer protocol (FTP) and hypertext

transfer protocol (HTTP) traffic that is exchanged with the STAs in the 802.11a WLAN

during the simulation. The high-level network environment is depicted in Figure 15. The

red octagon in Figure 15 titled site_l represents the 802.11a WLAN BSS subnetwork.

Within that subnetwork are the STAs and the AP that comprise the WLAN, as seen in

Figure 16.

Figure 15. Simulated 802.1 la Network Environment.

36

Figure 16. The Simulated 802.11a WLAN BSS.

A single fixed AP and four mobile STAs were chosen as the WLAN configuration

for the simulation. This small WLAN was selected both to limit the scope of the

simulation and to achieve reasonable simulation durations. The simulation of this small

WLAN took approximately two hours given the simulation parameters outlined below.

The four arrows in Figure 16 represent the path of each station as the simulation

progresses, with STA distances from the AP varying. In general, two STAs are closing

the AP while two STAs are moving away from it. Throughout the course of the

simulation each STA remains within 35 m. of the AP so as to maintain the SNR required

to support the data rate of 54 Mbps used in the simulation. The effects of extended

ranges and their impact on the link SNR and data rate are explored in Chapter IV.

The traffic load on the network was configured specifically for this simulation

using OPNET's standard application profiles. The specific types and durations of the

network traffic emulated during the simulation are depicted in Figure 17. Note that sta_l

conducts two video teleconferencing (VTC) sessions during the simulation. Each time,

the STA randomly selects another STA in the WLAN to conduct the VTC session with

since OPNET is not configured to use a server as the source or destination for VTC

37

session traffic. The profile of each network traffic type and its associated load is provided

in Table 9. The OPNET standard FTP profile was altered somewhat to provide for larger

file sizes, thus increasing the load on the network. The network traffic profiles outlined

in Figure 17 were chosen as they represent the mix of high-rate data and multimedia

traffic loads one might expect to see on an 802.11a WLAN.

STA1

STA 2

STA 3

STA 4

VTC Session HTTP Traffic VTC Session

FTP Traffic

HTTP Traffic & FTP Traffic

VTC Session FTP Traffic VTC Session

+
10

Time (minutes)

HTTP Traffic

FTP Traffic

20

Figure 17. 802.11 a Model Simulation Network Load Configuration.

38

Profile Name Profile Attributes Associated
Data Rate (Mbps)

File Transfer
(Heavy)

• Exponentially distributed random
inter-request time (with a mean of
30 seconds)

• Constant 125,000 byte file size

1 Mbps

Web Browsing
(Heavy)

• Exponentially distributed random
page interarrival time (with a mean
of 20 seconds)

• 1000 bytes of text per page
• Five uniformly distributed images

of size 500-2000 bytes per page

28 - 88 kbps

Video Conferencing
(Light)

• Low resolution video
• 10 frames per second
• 128x 120 pixels per frame
• 9 bits per pixel

1.38 Mbps

Table 9. Simulated WLAN Traffic Profiles

The attributes and parameters of the STAs and AP were configured within the
guidelines outlined earlier in this chapter. Specific WLAN settings used during the
simulation are delineated in Table 10. These settings were applied to each STA and AP
in the BSS. Channel 52 was chosen here since it is part of the middle UNII band and is
ideal for use in a typical office environment. Note that the transmitter output power is set
at the value specified for use in the middle UNII band (see Table 5). The RTS threshold
was set at 500 to emulate the conditions found in a typical WLAN when RTS/CTS is
enabled and the frame fragmentation option was disabled [26]. Finally, the data rate was
set at the highest possible 802.11a value to test the model's operation at the fastest data
rate. The simulation was conducted using OPNET version 7.0B on a Windows NT

platform with a 366 MHz processor and 128 MB RAM.

39

WLAN Parameter

Data Rate

Modulation Scheme

RTS Threshold (bytes)

Fragmentation Threshold (bytes)
Bandwidth (kHz)

Base Frequency (MHz)

Transmitter Output Power (W)

Receiver Noise Figure

Setting

54 Mbps

Ofdm 54Mbps

500

None (disabled)

16,560

5251.7

0.2

5.01

Table 10. WLAN Attributes and Simulation Characteristics

The 802.11a baseline model simulation was completed successfully with a
simulation duration of two hours and 11 minutes. A number of model performance
statistics were collected by the OPNET simulation kernel during the trial. Of those,
several are critical indicators used to determine that the model operated correctly. The
total load on the WLAN as a function of time as the simulation progressed is one of the
more important results. The overall WLAN load data is displayed in Figure 18, with the
load given in bits per second. The results are as expected given the traffic profiles
outlined in Table 9. The load on each STA and the AP is illustrated in Figure 19, where
the effects of the differing traffic profiles are obvious. Also important in determining the
successful operation of the MAC layer, its timing operations, and the RTS/CTS
mechanism are the medium access delay and overall packet transmission delay statistics.
Those results are displayed in Figure 20. The delay values increase with the load as we
would expect, but do not exceed approximately 6 ms of overall delay and 3 ms of
medium access delay. These values are typical of an operational WLAN under normal
traffic loads [27].

40

6,000,000

5,000,000

4,000,000

3,000,000

2,000,000

1,000,000

Total Wireless LAN Load [bits/sec)

p^M^ p_^^

iWVA/ lAAv
0m 5m 10m 15m 20m

Figure 18. Total Load on the Simulated WLAN.

4,000,000

2,000,000

0

2,000,000

Access Point Load (bits/sec)

f
Station 1 Load (bits/sec)

1,000,000 _T

0 J

400,000

200,000

Station 2 Load (bits/sec)

oJL
2,000,000

Station 3 Load (bits/sec)

1,000,000 f 0 J T.
120,000

60,000

0

Station 4 Load (bits/sec)

I
0m

I
5m 10m 15m 20m

Figure 19. Individual Load Values for the AP and STAs.

41

0.008

0.00G

0.004

0.002

0.000 .

Overall Wireless LAN Delay (sec)

Y^r

J
0.003

nnn?

Overall Media Access Delay (sec)

nnm

nnnn
1

0m
1

5m
1

10m
I

15m 20

Figure 20. Simulated Medium Access Delay and Packet Delay.

The final results of the simulation are detailed in Figure 21 and they illustrate the

link SNRs between the STAs and the AP. The values obtained here are roughly within

the SNR ranges that might be expected in a typical hardware implementation given the

range of SNRs seen in the OFDM modulation curves (Figure 14) and not accounting for

hardware-specific gains and losses. In Figure 21 it is apparent that the SNR values

change as expected when the STAs move closer to or farther away from the AP, thus

reflecting the relationship between the inter-station distance and the received SNR. This

signals that the internal mechanics of the model are indeed functioning correctly. In

Chapter fV these SNR values will be utilized in one of the data rate agility mechanisms.

42

Station 4 <-■> AP Link SNR
Station 3 <-■> AP Link SNR
Station 2 <-■> AP Link SNR
Station 1 <-->APLinkSNR

20m

Figure 21. Simulated Link SNRs.

The results presented above indicate that the baseline 802.1 la model introduced in

section B of this chapter does function as it was designed to. The load, medium access

delay, and SNR statistical results yielded by the simulation correspond to values that are

characteristic of those obtained using fielded WLAN systems. This model is the first

(that the author is aware of) to successfully wed a robust PHY layer implementation of

the 802.1 la protocol with the 802.1 la MAC using the OPNET simulation tool to create a

comprehensive 802.1 la protocol model.

A model of an 802.1 la-compliant WLAN constructed using the OPNET modeling

and simulation tool was presented in this chapter. The composition of the MAC and

PHY layers of the model were outlined in detail. The simulation results obtained using

the model in standard network traffic conditions were presented as a measure of the

model's validity. Now that the characteristics of the baseline model have been outlined

and the model successfully tested, it will be used to explore several mechanisms through

which an 802.1 la WLAN implementation might dynamically alter its data rate based on

the wireless link conditions.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

IV. DATA RATE AGILITY AND THE 802.11A BASELINE MODEL

The 802.11a standard does not specify a mechanism through which a WLAN

implementation should dynamically alter the transmission data rate in response to

changing link conditions. The standard does explicitly state that such a mechanism is

allowed for; however, the exact mechanics are beyond the scope of the protocol. Most of
the fielded 802.11 and 802.1 lb WLAN systems available today advertise data rate agility,
but the specific mechanisms they use to do so are proprietary and unavailable for
examination except at the most cursory level. The 802.1 la standard and accompanying
high data rates promise wireless access to multimedia applications with performance

levels that parallel wired networks. Dynamic data rate agility and when or how it is
implemented are therefore extremely important to the end-user as altering data rates may
restrict access to the data associated with certain high-traffic applications. Two
mechanisms for dynamically altering the data rate of an 802.1 la WLAN are presented in
the next section using the baseline 802.1 la OPNET model outlined in Chapter IE. The
simulation results obtained using each mechanism are then presented and compared in

Section B.

A. DATA RATE AGILITY MECHANISMS

802.11 and 802.11b WLAN implementations available on the market today
typically include some permutation of data rate agility to reduce the operational speed of
the WLAN in deteriorating link conditions. Particular examples include the popular
Lucent ORiNOCO system and the Aironet 4000-series WLAN components [25, 28]. The
specific techniques used to alter data rates in a given WLAN are commonly realized
through a combination of both hardware and software approaches that are implementation
specific. For instance, in a general sense Lucent's ORiNOCO system uses the link SNR
after decorrelation of the spread spectrum signal in conjunction with receiver antenna
diversity [21]. Additional details concerning specific vendor implementations are
proprietary and were unavailable to the author.

Wireless networks based on the 802.11a protocol are likely to implement similar
rate agility mechanisms. Designers of 802.1 la-based WLAN implementations are still
experimenting with rate agility techniques and algorithms in an effort to develop optimal
adaptation mechanisms [29]. Two dynamic data rate agility mechanisms are presented in
this chapter and implemented using the 802.1 la baseline model. The first mechanism is

45

based on the link SNR while the second is based on the frame loss rate at the transmitting

STA. Each technique is first explained and then simulation results obtained using each

are presented to compare the two. In reality these two mechanisms are not mutually
exclusive and they would likely be used in tandem to present the best possible criteria for
rate adaptation. However, this analysis will examine the performance of each in isolation
to measure their potential contributions to an inclusive dynamic data rate agility
mechanism.

1. Rate Agility Based on Link SNR

An important indicator used in deterrmning the quality of a wireless data link is

the SNR of the transmission as measured at the receiver. Lower measured SNR values

correspond to a higher probability of bit errors in the received frame. This relationship

between the SNR and BER is reflected in the series of OFDM modulation curves outlined

in Chapter m and presented in Figure 14. Higher bit error rates adversely impact both the
PHY and MAC layers' ability to detect and correct errors using the MPDU cyclic
redundancy code (CRC) and the FEC capability provided by convolutionally coded
OFDM. High BBRs translate to MAC failures and thus a cessation of successful frame
exchange. The BER of a given wireless link must remain below a certain threshold for
two STAs to effectively communicate. This threshold is typically on the order of lxlO"5

and a number of 802.11 and 802.11b implementations available today guarantee BERs
below that threshold during a successful data exchange [25].

The relationship between the SNR and BER can be exploited to determine the
quality of a wireless link by measuring the SNR at the receiver and using that

measurement to adapt the link data rate to the link's current environmental conditions. If
the SNR decreases there will likely be a corresponding increase in the BER. A STA can
then alter the modulation scheme and coding rate combination of subsequent
transmissions to provide a more robust, albeit lower data rate, transmitted signal. The
converse is also true: higher received SNR values indicate improving link conditions. A
STA can similarly use that information to alter its modulation and coding combination to
realize a less robust but higher data rate link.

There are a number of choices that must be made concerning the use of received
SNR values to adapt the wireless link data rate to changing link conditions. Either the
most current SNR value could be used to alter the data rate, or the STA could use the
trend in SNR values over a specified time period to adapt its data rate. The capabilities of

46

the STA transceiver hardware certainly impact this choice, as does the throughput of the
link at the specified time. A link with a throughput of hundreds of packets per second
provides a larger data set from which to make a rate agility decision while throughputs of
only a packet or so per second provide far fewer decision points. The SNR-based
mechanism presented and implemented here utilizes the instantaneous received SNR

value to judge the link quality and alter the data rate accordingly (if necessary) rather than

tracking the SNR over time.

If the received SNR is in fact either high or low enough to necessitate a change in
the data rate, the STA must decide how much the rate should be increased or decreased
based on the difference in SNR between the current frame and the previous frame. For
example, suppose a frame is received with a much lower SNR value than that of the
preceding frame. The STA might then either reduce its data rate to the next lower level
or instantaneously reduce it to an even lower level as determined by a series of upper and
lower SNR bounds associated with each data rate. In other words, the SNR-based data
rate adaptation can be gradual or rapid. The former approach may be too slow in
responding to the link conditions and might result in a link failure while the latter
approach is susceptible to widely fluctuating SNR values where a STA couldfind itself
continuously "chasing" the SNR. The mechanism presented in this thesis utilizes the
latter technique. Given the low mobility of the STAs used in the simulation and the
hierarchical distance vs. SNR relationship found in the OPNET pipeline stages, this
approach was deemed to be the most effective for studying SNR-based data rate agility
here.

There are obviously a number of alternative approaches to implementing an SNR-
based dynamic data rate agility mechanism. To reiterate the techniques adopted for use in
the mechanism analyzed here, the salient features of the SNR-based mechanism are
summarized below:

■ The SNR values utilized are associated with data and control frames only, not
management traffic or other inter-STA communications.

■ Rate agility is based on a single received SNR value and not SNR trends over time.
■ The data rate can change to any other rate up to the maximum speed or down to the

lowest mandatory speed without having to progress through any intermediary rates.

This SNR-based data rate agility mechanism was modeled by altering the OPNET
802.11a baseline model presented in Chapter EH. A customized null data field called

47

"Link SNR" was added to both the wlan_data_802_lla and wlan_control_802Jla

packet formats. This yielded two new packet formats: wlan_data_802Jla_agility and

wlan_control_802Jla_agility. The "Link SNR" field is used by the drajmrjla

pipeline stage (a modified version of drajinr) to store the calculated SNR value for each

individual frame that is transmitted through the wireless pipeline. When the frame is

received at the destination, the SNR value is stripped from the "Link SNR" field at the

MAC layer. The wlanjnacjla process model was modified to include the data rate

agility functionality that uses the SNR value once it is obtained from the pipeline stages.

Specifically, the wlan_physicaljayer_data_arrival function resident within

wlanjnacjla contains the proto-C code used to implement the rate agility mechanism.

The modifications to the wlanjnacjla code are procided in Appendix B and the

drajnrjla pipeline stage code can be found in Appendix D.

A logical Proto-C code structure was added to wlanjphysicaljayerjiatajirrival

that compares the received SNR value to an upper and lower bound associated with each

data rate. The lower bounds represent the niinimum acceptable SNR required to keep the

BER below lxlO"5 at each data rate while the upper bound of each rate is simply the

lower bound of the next highest data rate. These data rate specific thresholds are provided

in Table 11. They were selected based on the modulation curve values presented in

Figure 14. However, special limits were constructed for the 9,12, and 18 Mbps data rates

based on the modulation curves. Both the 6 and 12 Mbps rates use BPSK and the 9 and

18 Mbps rates use QPSK, albeit at different coding rates. Since the probability of a bit

error is equal for both BPSK and QPSK given a specific Eb/N0 value, the SNR range

associated with the lower bound of the 9 Mbps rate and the upper bound of the 18 Mbps

rate was divided into three equal ranges to represent the boundaries of the 9, 12, and 18

Mbps data rates [30]. These three ranges were used to provide for a hierarchical

transition from the lowest data rate to the highest and vice versa.

48

Data Rate (Mbps) SNR Lower Bound

(dB)

SNR Upper Bound

(dB)

6 4.38 5.38

9 5.38 5.84

12 5.84 6.30

18 6.30 6.76

24 6.76 8.86

36 8.86 9.70

48 9.70 12.22

54 12.22 N/A

Table 11. SNR Thresholds for Rate Agility.

Based on the comparison of the received SNR value with the rate-specific

thresholds wlan_mac_lla selects the new operational speed at which that STA will

transmit during its next frame transmission. In this manner a dynamic rate agility feature

based on the instantaneous link SNR was added to the baseline 802.1 la model. After the

mechanism was implemented a new statistic collection vehicle was also added to

wlan_mac_lla to track the data rate of the STA over time as link conditions change.

This statistic enables the user to observe the data rate performance of the model during

simulations. A performance analysis of the SNR-based mechanism is conducted in

Section B of this chapter after presentation of the second data rate agility mechanism.

2. Rate Agility Based on the Frame Loss Rate

The number of frames dropped (i.e., lost) during the transmission process by a

STA also serves as an excellent indicator of link performance in a WLAN. Frames can

be dropped by a transmitting STA for one of two reasons. Firstly, the queue for frames

awaiting transmission that were passed down from the higher layer can overflow resulting

in frame losses. Secondly, the retransmission limit for a specific frame can be exceeded

which will force the STA to cease its attempts to retransmit the frame and discard it. The

former state, a higher layer buffer overflow, is caused by either a massive flood of data

from the higher layer or a poor queue design in terms of capacity. Neither condition

49

speaks to the wireless link quality therefore packet losses resulting from a higher layer
buffer overflow will not play a role in the mechanism presented here.

Frame retransmissions, however, are due to either collisions with other frames on
the medium or a failure to receive an expected ACK or CTS frame in response to a

transmitted data or RTS frame. Under typical WLAN operating conditions collisions do
indeed take place, especially when there is a great deal of demand for the medium. Even

in such high-load circumstances frame retry limits are rarely reached and the discarding
of frames due to excessive retransmission attempts is extremely uncommon [26]. An

increase in the number of frames dropped when the retransmission limits are exceeded is

therefore a good indicator that the STA is failing to receive expected ACK and CTS

packets. This in turn points to a deteriorating link since either the originating STA is not

successfully transmitting data and RTS frames or the destination STA is not successfully

transmitting ACK and CTS frames. The frame loss rate at a transmitting STA due to
excessive retransmission attempts can therefore be used as the decision criteria in a
dynamic data rate agility mechanism.

Rate agility cannot solely be based on the total number of frames dropped due to
excessive retransmissions since under standard operating conditions a WLAN will
eventually exceed any loss threshold. A specific time window must be delineated during
which the number of lost frames should be tracked. If the frame loss rate exceeds a
specified threshold (or series of thresholds) during that time window, then the data rate
can be reduced accordingly. Too small a window selection may result in the STA
responding prematurely to a transient environmental effect while too large a window may
result in too slow of a response to a quickly deteriorating link. Additionally, if the traffic
level is very low on the link then small data sets can result in disproportionate effects.
For example, if only one packet traverses the link in the specified time window then the
loss of that packet will translate to a 100% dropped frame rate and the data rate will
automatically be reduced, regardless of whether the frame was dropped due to a transient
effect or not. One second was chosen as the time window length for frame loss rate
assessment in the mechanism implemented here. This selection reflects a balance
between the possible effects given a low-traffic link and a reasonably quick response time
to a truly deteriorating link.

A rate agility mechanism based on the frame loss rate must also be able to
increase the data rate of the WLAN if the frame loss rate drops to an acceptable level.
However, the realization of an acceptable frame loss rate does not necessarily imply that
the link can sustain transmission at the next highest data rate. Perhaps acceptable frame

50

loss rates indicate that the WLAN is operating at the optimal data rate given the current
link conditions. There are a number of possible approaches to the problem of increasing

data rates after they have been reduced. These approaches include the addition of a
second lower bound threshold below which the data rate would be increased, the use of a

waiting period during which the STA cannot attempt to increase its data rates once it has

reached a steady state, and simply allowing the STA to automatically attempt to raise the
data rate immediately. Again, the goal is to prevent the STA from continuously

oscillating back and forth between two adjacent data rates.

The second of the three approaches outlined above is implemented in the
mechanism presented here. The author initially addressed the problem using the first
approach, but the results obtained using a lower bound threshold were not promising.
Those results are not provided here for the sake of brevity. Instead of using a lower
threshold, the frame loss rate-based mechanism analyzed herein uses a steady-state
waiting period during which the STA may not attempt to increase the data rate after it has
been decreased. The drawback to this approach is that a STA might not be able to
immediately take advantage of improving link conditions and increase the data rate;
however, the advantage in terms of preventing rate oscillations outweighed the potential
drawbacks.

The threshold for the acceptable frame loss rate was chosen based on the dropped
frame rate observed in several trials conducted with the baseline 802.1 la model. The first
trial scenario consisted of a single high data rate link between a STA and an AP. The
traffic profile was that of a continuous low-resolution VTC session between the mobile
STA and a client terminal external to the BSS. The STA was given a trajectory that took
it beyond the maximum allowable range for successful communications at 6 Mbps. A
link failure condition was subsequently observed and the STA then moved back within
range of the AP again. Figure 22 displays the number of packets dropped as the STA
moved along its trajectory. The period of link failure during the session is clearly

noticeable.

51

100

Pin

Station 1 Dropped Data Packets (packets/sec)

m ;

/ \

70 f

m

Rn

in

sn

?n

in 1

n i I
1

0m
I I I I I

10m 20m 30m 40m 50m 6C

Figure 22. Simulated Packet Loss Rate in High Traffic Conditions.

The second scenario consisted of a lower data rate link between a STA and an AP.

The traffic profile included heavy FTP and HTTP sessions between the STA and remote

servers external to the BSS. The STA traversed the same trajectory utilized in the first

scenario to include the link failure condition. A plot of the resulting number of packets

dropped per second throughout the simulation is presented in Figure 23. The number of

packets dropped during the link failure period in this trial is substantially lower than in

the previous trial due to the lower traffic rate. These two trials were conducted to

measure the packet loss rate under both high and low traffic conditions, as a data rate

agility mechanism based on packet losses must function properly in both types of network

load conditions.

52

7
Station 1 Dropped Data Packets (packets/sec)

m ;

R

4

^

7

1

0
l-Fffl IN

I
Om

II II
10m 20m 30m 40m 50m

I
60

Figure 23. Simulated Packet Loss Rate in Low Traffic Conditions.

The data collected during the link failure condition in both trials was exported to a

spreadsheet and the mean packet loss rate was calculated for each. The high-traffic link

exhibited a mean packet loss rate of 88.487 packets per second and the low-traffic link

was characterized by a mean packet loss rate of 1.073 packets per second. The standard

deviation of the low-traffic link packet loss rate was found to be 0.6477. The lower loss

rate is clearly the limiting factor in selecting proper thresholds for the rate agility

mechanism as rate agility must be supported in both high and low traffic environments.

Accordingly, a threshold value for the packet loss rate was selected as 0.437 packets per

second, or one standard deviation below the mean packet loss rate associated with the low

traffic simulation. When the frame loss rate increases above this threshold the

transmission data rate is subsequently lowered.

Based on the results obtained during each trial and given the standard nature of

the traffic load used to analyze the rate agility mechanisms, a frame loss rate of zero

frames per second was selected as the frame loss rate that must be attained before a STA

can seek to increase its data rate after the steady-state waiting period. Figures 22 and 23

both show the packet loss rate to be consistently zero under non-failure conditions. The

steady-state waiting period was set at ten seconds in order to minimize data rate

53

oscillations. Whether the mechanism is increasing or decreasing the link data rate, the

rate can only be increased or decreased one level at a time. This "stair step" approach is a

by-product of only utilizing a single threshold to decrease the data rate.

There are obviously a number of alternative approaches to implementing a

dynamic data rate agility mechanism based on the number of frames dropped per unit

time. To reiterate the techniques adopted for use in the mechanism presented herein, the

salient features of the rate agility mechanism based on the packet loss rate are

summarized below:

■ The time window used in determining the dropped frame rate is set at one second.

■ The maximum frame loss rate threshold is set at 0.437 packets per second.

■ The data rate can only "stair step" up one or down one level and cannot jump to and

from non-adjacent rates.

■ The acceptable frame loss rate that must be attained before a STA may seek to

increase its data rate is zero frames per second.

■ The steady-state waiting period that a STA must wait after attaining a zero frame loss

rate before it attempts to increase its data rate is ten seconds.

This dropped frame-based rate agility mechanism was implemented by modifying

the wlan_mac_lla process model to allow for rate agility based on the packet loss rate.

Specifically, a counter was added to the wlanjrame_discardfunction to track the number

of frames discarded and the threshold criteria, time window calculation, and steady-state

waiting period timer were added to the body of the wlan_prepareJrame_to_send

function. These changes were all made using Proto-C code logical structures and they are

provided in Appendix C. Every time a frame is discarded by the MAC, the packet loss

counter is incremented by one. During the subsequent frame transmission attempt, the

packet loss counter is used in conjunction with the time window to calculate the current

packet loss rate. The packet loss rate is then used in a comparison with the maximum

packet loss rate threshold and the data rate of the STA is decreased accordingly (if

necessary). The window size is then verified to be one second or less in size. If the time

window exceeds one second, the packet loss counter is re-initialized so the packet loss

rate can be refreshed for the subsequent interval.

If the packet loss rate reaches zero packets per second, the steady-state waiting

period timer in wlan_prepareJrame_to_send is started. If the timer reaches ten seconds

and the packet loss rate has remained at zero, the data rate is increased to the next highest

54

data rate up to the maximum rate as defined by the user. If the packet loss rate becomes

non-zero before the timer has reached ten seconds, the timer is reset and the data rate may

be decreased if the loss rate has exceeded the threshold. The same statistic collection

vehicle used to track the data rate in the SNR-based mechanism was also added to this

mechanism to provide the capability to monitor the data rate throughout the simulation.

To obviate the effects of the possible effects of a higher layer queue overflow the buffer

size was set to an artificially large value. Both the frame loss mechanism and the link

SNR mechanism were employed in OPNET simulations. The simulation set-ups and the

results are detailed in the next section.

B. RATE AGILITY MECHANISM SIMULATION RESULTS

The two dynamic data rate agility mechanisms detailed in section A were

simulated in an 802.1 la WLAN using OPNET. The simulations were conducted using an

infrastructure BSS with a fixed AP and a single mobile STA. The STA was provided

with a mobility profile that took it from a position adjacent to the AP along a straight path

to a distance great enough to cause a link failure condition. The STA then reversed

direction and returned to its original location. Each leg of the trajectory was 42 m long

and the STA took 90 minutes to traverse it in each direction. The path that the STA

traversed is depicted in Figure 24. These path lengths and mobility rates were chosen

both to allow for a complete examination of the performance of each mechanism across

the full spectrum of ranges expected in an 802.1 la WLAN and to allow enough time for

the WLAN to reach a theoretical steady state at each data rate during the course of the

simulation.

55

a j 5 10 ;15 j20 |25 J30 [35 40 45 j 50 155 160 65 |7G 175 jSO

i I !
03 j 3

10 ggj fe*. ! IrM ft
IÜ IJ2SPJ

I i I I i I I ! ! ^ i. Accesis Point i j j 1 sta_1

20 [! 1 I I
j

-iC j j ; |]

30 1 ! ! i 1 j ill!

-=!!!!! |

40 1 j ! !
;it;

45 1 i i i

50 1 i : !
\ ! I I ! ! ! I i

.55 1 j . j . j j „ . j
I I I I I ! I ! !

|
i ! I I i ! I I I !

Figure 24. Rate Agility Simulation Environment.

Each rate agility mechanism was implemented in identical simulation

environments using a traffic profile consisting of simultaneous heavy FTP and HTTP

sessions with session parameters identical to those outlined in Chapter III, section C.

This traffic profile was chosen because the rate agility mechanisms would be stressed to a

greater extent given the fewer available data points characteristic of lower traffic loads.

In other words, data rate agility is more difficult to implement in lower traffic

environments than it is in high traffic conditions.

The simulation was first conducted with the SNR-based mechanism. With the

traffic parameters and mobility profile outlined above the simulation duration was four

hours and twenty-three minutes on the same machine used for the simulations detailed in

Chapter III. The resulting data rate of the WLAN as a function of time is presented in

Figure 25. These results closely follow the expected outcome, in that the data rate clearly

drops level by level as the STA moves farther away from the AP. The period of link

failure is clearly visible when the STA moves beyond the maximum range of the AP.

The data rate subsequently increases again as the STA moves back toward the AP,

eventually regaining the maximum 54 Mbps data rate. The BER and SNR values for

transmissions on the link are depicted in Figures 26 and 27, respectively. The link SNR

clearly drops as the STA moves away from the AP and then rises again as the STA closes

on the AP while the BER remains at a minimum except during the link failure condition.

56

60,000,000
Station 1 Data Rate (bps)

50,000.000

40,000,000

30,000,000

20,000,000

10,000,000

^

Oh Oh 30m 1h 1h 30m 2h 2h 30m
I

3h

Figure 25. Simulated Data Rates with SNR-Based Rate Agility.

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0-L

Link BER

ilillmiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiuiiiniiiiiiiiiniumiiiiiiiiiiiiiniiiiiiiiiiiiiiiMiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

T-CNCO'd-WeOh-cOOTO
T-ogo^-ificor^coo

tMn<jincos(ooi
CMCO-tflOCOl^-COO}

Figure 26. Simulated Link BERs with SNR-Based Rate Agility.

57

Link SNR (dB)

I i l, 111 ^ :■ 11]. 111 i] 11 -1: ; .,11!: .ill! -MILL J11,11. L; 111L J ;. 111J J111 i, , I i i 111:111:; 1111 -111.111 ■ J11111

'-NM'tiniDNCOOlO'-NlO^lfllOSfflO)

Figure 27. Simulated Link SNRs with SNR-Based Rate Agility.

These results suggest that the instantaneous SNR of a wireless networking link is

an excellent criterion upon which to base dynamic data rate agility decisions in a WLAN

implementation. Throughout the course of the simulation the WLAN MAC layer altered

its data rates in a dynamic fashion to keep the link BER below lxlO"5 based on the

received SNR value. The WLAN therefore avoided BERs that would necessitate a link

failure while maintaining the highest possible data rate. The maximum operational range

of the AP-STA link at each data rate are presented in Table 12. These range values were

calculated using the data rate results from Figure 25 in conjunction with the mobility

profile of the STA during the course of the simulation. Table 13 presents the nominal

ranges of the 802.1 lb-compliant Lucent ORiNOCO PC card in a closed office

environment for comparison. The simulation results support the claim of Atheros

Communications, Inc. that 802.1 la WLAN ranges will be comparable to those of 802.1 lb

systems [14].

58

Data Rate (Mbps) Range(m)

6 34.30

9 40.18

12 42.28

18 48.16

24 49.42

36 51.10

48 52.36

54 54.96

Table 12. 802.1 la Ranges with SNR-Based Rate Agility.

Data Rate (Mbps) Range(m)

1 50

2 40

5.5 35

11 25

Table 13. Nominal Ranges of the Lucent ORiNOCO PC Card (After Ref. [25]).

A simulation was then conducted using a WLAN implementation with data rate

agility based on the frame loss rate mechanism. Again, the same traffic profile and STA

trajectory were used in this simulation. The simulation duration in this instance was four

hours and 48 minutes using the same machine. The data rates of the mobile STA

obtained during the course of the simulation are presented in Figure 28. Although the

data rate is 54 Mbps as expected at the start of the simulation, there is wide variation in

the observed data rates for the remainder of the trial. The general trend in data rates

matches those expected given the STA's trajectory, in that the data rate starts high, drops

to 6 Mbps around the period of the link failure and then increases back to 54 Mbps at the

conclusion of the simulation. The data rate results obtained using this mechanism are not

stable enough to use in calculating the WLAN range per data rate.

59

60,000,000
Station 1 Data Rate (bps)

50,000,000

40,000,000 3
30,000,000

20,000,000

10,000,000

I
Oh 1h 2h 3h

Figure 28. Simulated Data Rates with Frame Loss Rate-Based Agility.

In Figure 28 it is clear that the data rate drops off quickly once the STA exceeds

the range of the 54 Mbps data rate and is slow to increase again as the STA moves closer

to the AP. Based on these results it seems as if the rate agility mechanism based on the

frame loss rate tends to underestimate the link quality and thus delivers lower data rates.

This can be seen in Figure 29 where the two resultant data rate curves are shown together.

The mean data rate for this trial using the frame loss rate mechanism (calculated with the

numerical data used to construct Figure 28) was 20.135 Mbps. The mean data rate

obtained during the simulation conducted with the SNR-based rate agility mechanism was

26.923 Mbps (calculated with the numerical data used to construct Figure 25). The SNR-

based rate agility mechanism was able to produce a higher mean data rate over the course

of the trial.

60

60,000.000

50,000,000

40,000,000

30,000,000

20,000,000

10,000,000

Data Rate using SNR-Based Rate Agilitjj(bps)
Data Rate Using Fiame Loss Rate-Based Rate Agility (bps)

Oh
I I

2h
I

Oh 30m 1h 1h30m 2h 2h30m

Figure 29. Data Rates for Both Mechanisms.

I
3h

In this chapter two dynamic data rate agility mechanisms designed to allow for

adaptive data rate behavior in a WLAN based on the link conditions were presented. The

implementations of these mechanisms using the baseline OPNET 802.11a model were

then outlined. The data rate results obtained using each mechanism were provided to

allow for direct comparison of each method under the same simulated network traffic

conditions. The results indicated that the mechanism based on the link SNR provides for

the highest mean data rates and the smoothest data rate transitions. Conclusions and

recommendations for further research are presented in Chapter V.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The results presented in this thesis indicate that the link SNR is a better criterion
than the packet loss rate upon which to base dynamic data rate agility decisions in IEEE

802.1 la-compliant WLANs. The simulation results obtained using the rate agility
mechanism based on link SNR values illustrate smooth rate transitions during data rate
increases and decreases as the link SNR changes in the presence of nominal WLAN

traffic loads. The results obtained using the rate agility mechanism based on packet loss
rates are characterized by a high degree of oscillation between data rates and a failure to
reach steady-state data rates even during periods of unchanging link conditions. The
SNR-based mechanism demonstrated a higher mean data rate over the course of the
simulation. While packet loss rates do serve as a statistical indicator of adverse link
conditions, the link SNR proved to be the superior criterion for use in 802.11a dynamic
data rate agility mechanisms.

The 802.11a OPNET model used in the simulations conducted with each of the
rate agility mechanisms includes both the MAC and PHY layers of the IEEE 802.11a
standard. The MAC layer emulates each supported 802.11a data rate, correct medium
access and transmission timing relationships, and the optional RTS/CTS mechanism.
The PHY layer model includes the SNR versus BER characteristics of OFDM
transmissions as reported in reference [17] and an experimentally determined path loss
exponent found in reference [24]. The model's PHY layer does not include the Rayleigh-
distributed fading losses typical of a wireless networking channel. Inclusion of these
losses would perhaps effect the smooth data rate transitions seen with the SNR-based rate
agility mechanism. The simulations also did not include the effects of random STA
motion and varying mobility rates, nor did they account for the wide range of possible
traffic profiles. These variables were not included for study due to the large simulation
and computational overhead associated with higher traffic loads and longer simulation
durations.

In reality, neither the link SNR nor the packet loss rate would be used in isolation
to provide for dynamic data rate agility in a fielded 802.11a WLAN implementation.
Both criteria would likely be combined with others, such as a comprehensive link history
and hardware-specific attributes, to realize rate agility. Current 802.1 lb-compliant

63

WLANs utilize a variety of these techniques to achieve rate agility [21]. In any specific
rate agility mechanism, trade-offs exist between responsiveness and rate vacillation and

between providing the highest possible data rate and ensuring the robustness of the link.
However, a direct comparison of SNR- and packet loss rate-based mechanisms for rate
agility using the same model with identical traffic and mobility profiles indicated that link
SNR is superior to the packet loss rate as a criterion for dynamic data rate agility in
802.1 la WLANs.

B. RECOMMENDATIONS

The analysis presented in this thesis resulted from very specific data rate agility

mechanisms implemented in a single model of the 802.11a protocol. The baseline

802.11a OPNET model itself could be further modified to provide a more detailed

representation of the 802.11a protocol, or specific features of the model could be
enhanced to further study a particular aspect of the protocol. The model presented herein
includes a number of the MAC layer features developed at the Philips Research Labs;
however, the PHY layer is a complete redesign of the PHY layer included in the OPNET
802.11 standard model. This comprehensive 802.11a model is the first to be developed
(that the author is aware of) using the OPNET simulation environment. In addition, the
PHY layer fidelity found in this model is rare given the infrequent application of OPNET
to network protocol modeling at the PHY layer.

The 802.11a baseline model presented in Chapter HI is a detailed model, but
further modifications would only serve to increase its fidelity. The model could also be
used in its current form to study other aspects of the 802.1 la protocol and its behavior in
specific network environments. Possibilities for additional research involving the
baseline model include:

■ Creating and including a variety of transceiver antenna designs and studying
the effects of their transmission and reception patterns.

■ The use of the OPNET Terrain Modeling Module (TMM) to explore the
operational attributes of 802.11a WLANs in outdoor and tactical
environments.

■ The addition of a roaming and association feature and analysis of its
performance.

64

■ Analysis of WLAN performance as a function of the number of users in a
BSS.

■ Analysis of WLAN performance given a large number of users under varying

traffic loads.

■ Addition of the optional PCF medium access technique and an analysis of its
performance in low latency traffic environment.

■ Performance analysis of a WLAN given varying RTS and fragmentation
thresholds.

■ Addition of a Rayleigh fading channel loss model to the pipeline stages.

The model could also be applied in its current configuration to analyze different
permutations of the two rate agility mechanisms presented in this thesis as well as to
implement alternative rate agility techniques. Additional research opportunities for
analyzing rate agility with this model include:

■ Modification of the frame loss rate mechanism to base rate agility on the
quantity of subsequent frame losses vice the loss rate over time.

■ Modification of the SNR rate agility thresholds based on the addition of a
Rayleigh fading channel model to the pipeline stages.

■ Analysis of a rate agility mechanism based on the combination of the SNR and
frame loss rate mechanisms.

■ The use of transceiver antenna diversity in conjunction with a MAC-level
mechanism to realize data rate agility.

The IEEE 802.1 la WLAN protocol promises both mobility and the high data rate
wireless connectivity required to deliver multimedia application traffic in a multi-user,
multiple access environment. The 802.11a model presented in this thesis emulates the
MAC and PHY layer behavior of the standard and provides the capability to conduct
detailed investigations of the protocol's behavior. The model's applicability was
demonstrated through the analysis of several dynamic data rate agility mechanisms in
which the link SNR proved to be the most powerful indicator of link quality in the
WLAN environment.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

APPENDIX A. WLAN_MAC_11A PROCESS MODEL OPNET CODE

This appendix provides the OPNET source code for the wlan_mac_lla process

model. The code is an altered version ofthat found in the OPNET 802.11 standard model

wlanjnac process model with additional features incorporated from the Philips Research

Labs 802.11a OPNET model [1]. Comments applicable to the code modifications are

included. The wlanjnacl 1 a STD was presented in Figure 11 and is reproduced below

in Figure 30.

>^^J- -HBSSJNIT

(default)

|FRAME_TO_TRANSMIT a !EXPECTING_FRAME] l(WAIT FOR FRAME)
4FRM_ENDJ •WAIT.FORJ. >

(FRAME.TIMEOUT n FRAME.RCVD)

(default)

(READY TO TRANSMIT-^ MEDIUM IS IDLE) ,*''
\ (FRAMEJOJflANSMIT U. !EXPECT*G_FRAME)

(FRAME.RCVD)

I DEFER
) (default)

(DEFERENCE.OFF)

BKOFFJJEEJ

(PERFORMJACKOFFLV'' ^^^"\{TRANSMIT FRAME)

y

(BACKOFF.COMPLETED)

TRANSMISSION.COMPLETE)

NTRANSM1T

(default)

/
(defaut)

(REA0Y_T0.TRANSMIT 8A MEDIUMJSJDLE)

Figure 30. The wlan_mac_lla Process Model.

67

OPNET Code for wlanjnacjla

March 2001

Header Block

#include <math.h>
«include "oms_pr.h"
#include "oms_tan.h"
#include "oms_bgutil.h"

/* Definitions to all protocol specific parameters. */

/* 802.11a Model Addition. */
/* Include an altered support file to eliminate the control packet */
I* durations and add the new lowest mandatory data rate. */
#include "wlan_support_l la.h"

#include "oms_auto_addr_support.h"
#include "oms_dist_supporth"

/* incoming statistics and stream wires */
«define TRANSMITTER_BUSY_INSTAT 8
#define LOW_LAYER_INPUT_STREAM_CH4 7

/* 802.1 la Model Addition */
/* There are now 8 outgoing streams, one for each 802.1 la data rate. */
#defme LOW_LAYER_OUT_STREAM_CHl 0
#define LOW_LAYER_OUT_STREAM_CH2 I
#define LOW_LAYER_OUT_STREAM_CH3 2
#define LOW_LAYER_OUT_STREAM_CH4 3
#define LOW_LAYER_OUT_STREAM_CH5 4
#define LOW_LAYER_OUT_STREAM_CH6 5
#define LOW_LAYER_OUT_STREAM_CH7 6
#define LOW_LAYER_OUT_STREAM_CH8 7

/* Flags to load different variables based on attribute settings. */
#define WLANAP I
#define WLAN_STA 0

/* Dimension count for global per-stream statistics. */
#define WLANC_STRM_STAT_DIM_COUNT 32

/* Stream index for packets without stream information. */
#define WLANC_STRM_UNSET -1

I* Define interrupt codes for generating handling interrupts */
I* indicating changes in deference, frame timeout which infers */
/* that the collision has occurred, random backoff and transmission */
I* completion by the physical layer (self interrupts). */
typedef enum WlanT_Mac_mtrpt_Code

68

{
WlanC_Deference_Off, /* Deference before frame transmission */
WlanC_Frame_Timeout, /* No frame rcvd in set duration (infer collision) */
WlanCBackoffElapsed, /* Backoff done before frame transmission */
WlanC_CW_Elapsed /* Backoff done after successful frame transmission */
} WlanT_Mac_Intrpt_Code;

/* Define codes for data and managment frames use in DCF */
/* The code defined is consistent with IEEE 802.11 format */
/* There are 6 bits used to define the code and in the following */
/* enumeration the first 6 bits are used in the type field of the frame. */
typedef enum WlanT_Mac_Frame_Type

{
WlanC_Rts = 0x6C, /* Rts code set into the Rts control frame */
WlanC_Cts = 0x70, /* Cts code set into the Cts control frame */
WlanC_Ack =0x74, /* Ack code set into the Ack control frame */
WlanC_Data = 0x80, /* Data code set into the Data frame */
WlanC_None = 0x00 /* None type */
} WlanT_Mac_Frame_Type;

/* Defining codes for the physical layer characteristics type */

/* 802.1 la Model Addition */
/* There is only one physical layer possible with 802.11 a: OFDM. */
typedef enum WlanT_Phy_Char_Code

{
WlanCOFDM
} WlanT_Phy_Char_Code;

/* Define a structure to maintain data fragments received by each */
/* station for the purpose of reassembly (or defragmentation) */
typedef struct WlanT_Mac_Defragmentation_Buffer_Entry

{
int tx_station_address; /* Store the station address of transmitting station */
double time_rcvd; /* Store time the last fragment for this frame was received */
Sbhandle reassembly_buffer_ptr; /* Store data fragments for a particular packet */
} WlanT_Mac_Defragmentation_Buffer_Entry;

/* Define a structure to maintain a copy of each unique data frame */
/* received by the station. This is done so that the station can */
/* discard any additional copies of the frame received by it. */
typedef struct WlanT_Mac_Duplicate_Buffer_Entry

{
int tx_station_address; /* store the station address of transmitting station */
int sequence_id; /* rcvd packet sequence id */
int fragment_number; /* rcvd packet fragment number */
} WlanT_Mac_Duplicate_Buffer_Entry;

/* This structure contains all the flags used in this process model to determine */
/* various conditions as mentioned in the comments for each flag. */
typedef struct WlanT_Mac_Flags

{
Boolean data_frame_to_send; /* Flag to check when station needs to transmit. */

69

Boolean

Boolean

Boolean
Boolean
Boolean
Boolean

Boolean
Boolean
Boolean

Boolean

Boolean

backoffflag;

rts_sent;

rcvd_bad_packet;
receiver_busy;
transmitter_busy;
wait_eifs_dur;

gateway_flag;
bridge_flag;
immediate_xmt;

cw_required;

nav_updated;

} WlanT_Mac_Flags;

/* Backoffflag is set when either the collision is
/* inferred or the channel switched from busy to idle
/* Flag to indicate that wether the Rts for this
/* particular data frame is sent
/* Flag to indicate that the received packet is bad
/* Set this flag if receiver busy stat is enabled
/* Set this flag if we are transmitting something.
/* Set this flag if the station needs to wait for eifs
/* duration.
/* Set this flag if the station is a gateway.
/* Set this flag if the station is a bridge
/* Set this flag if the new frame can be transmitted
/* without deferring.
/* Indicates the arrival of an ACK making the
/* transmission successful. Requires a CW period.
/* Indicates a new NAV value since the last time
/* when self interrupt is scheduled for the end of
/* deference.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* This structure contains the destination address to which the received */
/* data packet needs to be sent and the contents of the recieved packet */
/* from the higher layer.

*/
typedef struct WlanT_Hld_List_Elem

{
double time_rcvd;
int destination_address;
Packet* pkptr;
} WlanT_Hld_List_Elem;

/* Time packet is received by the higher layer
/* Station to which this packet needs to be sent
/* store packet contents

*/
*/

/* Statistic handle array for dimensioned per-stream statistics. */
typedef Stathandle WlanT_Shandle_Array [WLANC_STRM_STAT_DIM_COUNT];

/* Boolean array that stores the registration status of per-stream statistics. */
typedef Boolean WlanT_Stat_Reg_Status_Array rWLANC_STRM_STATJDIM_COUNT];

/** Macros Definition
/** The data frame send flag is set whenever there is a data to be send by
/** the higher layer or the response frame needs to be sent. However,in **/
/** either case the flag will not be set if the receiver is busy
/** Frames cannot be transmitted until medium is idle. Once, the medium
/** is available then the station is eligible to transmit provided there
/** is a need for backoff. Once the transmission is complete then the
/** station will wait for the response provided the frame transmitted
/** requires a response (such as Rts and Data frames). If response
/** is not needed then the station will defer to transmit next packet

**/
**/

**/

**/
**/
**/
**/
**/
**/

/* After receiving a stream interrupt, we need to switch states from */
/* idle to defer or transmit if there is a frame to transmit and the */
/* receiver is not busy */
#define READY_TO_TRANSMIT ((intrptjype = OPC_INTRPT_STRM || (intrpt_type =

OPC_INTRPT_SELF && intrpt_code =

70

WlanC_CW_Elapsed)) && \
(wlanjlags->datajrameJo_send =
OPC_BOOLINT_ENABLED || frespjojend !=
WlanC_None) && \
wlan_flags->receiver_busy = OPC_BOOLINT_DISABLED
&&\
(current_time >= cw_end || fresp_to_send != WlanC_None))

/* When we have a frame to transmit, we move to transmit state if the */
/* medium was idle for at least a DIFS time, otherwise we go to defer */
/* state.

*/
#define MEDIUMJSJDLE ((currentJime - nav_duration >= difsjime) && \

(wlan_flags->receiver_busy =
OPC_BOOLINT_DISABLED) && \
(current_time - rcv_idle_time >= difs_time))

/* Change state to Defer from Frm_End, if the input buffers are not empty or a frame needs */
/* to be retransmitted or the station has to respond to some frame.

*/
#define FRAME_TO_TRANSMIT ((wlan_flags->data_frame_to_send =

OPC_BOOLINT_ENABLED && currentjime >= cw_end) ||
fresp_to_send != WlanC_None || retry_count != 0)

/* After defering for either collision avoidance or interframe gap */
/* the channel will be available for transmission */
#define DEFERENCE_OFF (intrptJype = OPC_INTRPT_SELF && \

intrptcode = WlanC_Deference_Off && \
wlan_flags->receiver_busy =
OPC_BOOLINT_DISABLED)

/* Isssue a transmission complete stat once the packet has successfully */
/* been transmitted from the source station */
#define TRANSMISSION_COMPLETE (intrptJype = OPC_INTRPT_STAT && \

op_intrpt_stat () = TRANSMITTER_BUSY_INSTAT)

/* Backoff is performed based on the value of the backoff flag. */
#define PERFORM_BACKOFF (wlan_flags->backoff_flag = OPC_BOOLINT_ENABLED)

/* Need to start transmitting frame once the backoff (self intrpt) completed */
#define BACKOFF_COMPLETED (intrpt_type = OPC_INTRPT_SELF && \

intrptcode = WlanCJBackoffJElapsed && \
wlan_flags->receiver_busy =
OPC_BOOLINT_DISABLED)

/* After transmission the station will wait for a frame response for */
/* Data and Rts frames. */
#defme WAIT_FOR_FRAME (expected_frame_type != WlanC_None)

/* Need to retransmit frame if there is a frame timeout and the */
/* required frame is not received */
#define FRAMEJTIMEOUT (intrptjype = OPCJNTRPTSELF && intrptjode =

WlanCJFrame_Timeout)

71

/* If the frame is received appropriate response will be transmitted */
/* provided the medium is considered to be idle */
#define FRAME_RCVD (intrptjype = OPC_INTRPT_STRM && wlanjlags-

>rcvd_badjpacket = OPC_BOOLINT_DISABLED && \
i_strm <= LOW_LAYER_INPUT_STREAM_CH4)

/* Skip backoff if no backoff is needed */
#define TRANSMIT_FRAME (wlan_flags->backoff_flag = OPC_BOOLINT_DISABLED)

/* Expecting frame response after data or Rts transmission */
#defme EXPECTING_FRAME (expected_frame_type != WlanC_None)

/* Macros that check the change in the busy status of the receiver. */
#define RECEIVER_BUSY_HIGH (intrptjype = OPC_INTRPT_STAT &&

intrpt_code < TRANSMITTER_BUSY_INSTAT && \
op_stat_local_read (intrpt_code) = 1.0 &&
(rcv_channel_status A (1 «intrpt_code) = 0))

#define RECEIVER_BUSY_LOW (intrpt_type = OPC_INTRPT_STAT && intrpt_code <
TRANSMITTER_BUSY_INSTAT && \
rcv_channel_status = 0)

/* Function declarations. */
static void wlan_mac_sv init ();
static void wlan_higher_layer_data_arrival ();
static void wlan_physical_layer_data_arrival ();
static void wlan_hlpk_enqueue (Packet* hld_pkptr, int dest_addr);
Boolean wlan_tuple_find (int sta_addr, int seq_id, int frag_num);

static void wlan_data_process (Packet* segjpkptr, int sta_addr, int
final_dest_addr, int fragjtium, int more_frag, int pkt_id, int rcvd_sta_bssid);

static void wlan_accepted_frame_stats_update (Packet* seg_pkptr);
static void wlanjper_stream_stat_register (int streamjndex);
static void wlan_interrupts_process ();
static void wlan_prepare_frame_to_send (int framejype);
static void wlan_frame_transmit ();
static void wlan_schedule_deference ();
static void wlan_frame_discard 0;
static void wlan_mac_rcv_channel_status_update (int channel_id);
static void wlan_mac_error (char* msgl, char* msg2, char* msg3);

/* 802.11a Model Addition */
/* Add function for determining the control frame speed based on the operational data rate. */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
static double control_speed (double data_rate);

/* 802.1 la Model Addition */
/* Add function to compute the data field duration of an OFDM PPDU (in bits). */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
static double ppdu_duration (int PSDUJength, double transmissionjate);

72

State Variables Block

/* Internal state tracking for FSM */
FSM SYS STATE

/* State Variables */
int
int
WIanT_MacJntrpt_Code
int
List*
double
int
int
int
int
Sbhandle
WlanT_Mac_Frame_Type
double
int
int
WlanTJVfacJFrame_Type
int
double
Stathandle
double
Packet *
Stathandle
int
int
int
int
List*
WlanT_Mac_Flags*
OmsT_Aa_Address_Handle
double
double
double
WlanT_Mac_Duplicate_Buffer_
Pmohandle
int
char
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
Stathandle

retry_count;
intrpt_type;
intrpt_code;
my_address;
hld_listjptr;
operational_speed;
rrag_threshold;
packet_seq_number;
packet_fiag_number,
destination_addr;
fragmentation_buffer_ptr;
fresp_to_send;
nay_duratk>n;
rts_threshold;
duplicate_entry;
expected_fxame_type;
remote_sta_addr;
backoff_slots;
packet_load_handle;
intrpt_time;
wlan_transrnit_rrame_copy_ptr;
backoffjslotsjhandle;
instrm_rrom_mac_if;
outstrm_to_mac_if;
num_rragments;
remainder_size;
def3ragmentation_list_ptr;
wlan_flags;
oms_aa_handle;
current_time;
rcv_idle_time;
cw_end;

Entry** duplicate_list_ptr;
hld_pmh;

max_backoff;
current_state_name [32];
hljpackets_rcvd;
media_access_delay;
ete_delay_handle;
global_ete_delay_handle;
global_throughput_handle;
globalJk>ad_handle;
global_dropped_data_handle;
global_mac_delay_handle;
ctrl_traffic_rcvd_handle_inbits;
ctrl_traffic_sent_handle_inbits;
ctrl_traffic_rcvd_handle;

73

Stathandle
Stathandle
Stathandle
Stathandle
Stathandle
WlanT_Shandle_Array
WlanT_Shandle_Array
WlanT_Shandle_Array
WlanT_Stat_Reg_Status_An-ay
double
double
hit
int
double
Stathandle
Stathandle
Stathandle
int
int
int
WlanT_Mac_Frame_Type
Evhandle
Evhandle
Evhandle
Evhandle
double
int
Boolean
int
Stathandle
int
int
int
int
double
WlanT_Phy_Char_Code
OmsT_Aa_Address_Handle
int
Stathandle
Stathandle
Log_Handle
Boolean
int
int
double
Ici*
int
int*
int
double
double
double
double

ctrl_traffic_sent_handle;
data_traffic_rcvd_handle_inbits;
data_traffic_sent_handle_inbits;
data_traffic_rcvd_handle;
data_traffic_sent_handle;
ete_delay_per_strm_sh_array;
dropped_data_per_strm_sh_atTay;
throughput_per_strm_sh_array;
stat_reg_status_array;
sifs_time;
slot_time;
cw_min;
cwjmax;
difs_time;
channel_reserv_handle;
retrans_handle;
throughput_handle;
long_retry_limit;
short_retry_limit;
retry_limit;
last_frametx_type;
deference_evh;
backoff_elapsed_evh;
frame_timeout_evh;
cw_end_evh;
eifs_time;
i_strm;
wlan_trace_active;
pkt_in_service;
bitsloadhandle;
ap_flag;
bss_flag;
bss_id;
hld_max_size;
max_receive_lifetime;
phy_char_flag;
oms_aa_wlan_handle;
total_hlpk_size;
drop_packet_handle;
dropjpacket_handle_inbits;
drop_pkt_log_handle;
dropjpkt_entry_log_flag;
packet_size;
packet_strm_id;
receive_time;
Uc_iciptr;
rcv_channel_status;
bss_stn_list;
bss_stn_count;
plqjjpreamble_duration;
plcp_header_duration;
plq^overhead;
response_speed;

74

} wlan_mac_lla_state;

#define pr_state_ptr ((wlan_mac_l la_state*) SimI_Mod_State_Ptr)
#define retry_count pr_statejptr->retry_count
#define intrpt_type pr_state_ptr->intrpt_type
#define intrpt_code pr_state_ptr->intrpt_code
#define my_address pr_state_ptr->my_address
#define hld_list_ptr pr_state_ptr->hld_list_ptr
#define operational_speed pr_state_ptr->operational_speed
#defme frag_threshold pr_state_ptr->ftag_threshold
#define packet_seq_number pr_statejptr->packet_seq_number
#define packet_frag_number pr_state_ptr->packet_frag_number
#define destination_addr pr_state_ptr->destination_addr
#define fragmentation_buffer_ptr pr_statejptr->fragmentation_buflfer_ptr
#define fresp_to_send pr_state_ptr->fresp_to_send
#define nav_duration pr_state_ptr->nav_duration
#define rts_threshold pr_state_ptr->rts_threshold
#define duplicate_entry pr_state_ptr->duplicate_entry
#define expected_frame_type pr_state_ptr->expected_frame_type
#define remote_sta_addr pr_state_ptr->remote_sta_addr
#define backoff_slots pr_state_ptr->backoff_slots
#define packet_load_handle pr_statejptr->packet_load_handle
#define intrpt_time pr_state_ptr->intrpt_time
#define wlan_transmit_frame_copy_ptr pr_state_ptr->wlan_transmit_frame_copy_ptr
#define backoff_slots_handle pr_state_ptr->backoff_slots_handle
#define instrm_from_mac_if pr_state_ptr->instrm_from_mac_if
#define outstrm_to_mac_if pr_state_ptr->outstrm_to_mac_if
#define num_fragments pr_state_ptr->num_fragments
#define remainder_size pr_state_ptr->remainder_size
#define defragmentation_list_ptr pr_state_ptr->defragmentation_list_ptr
#defme wlan_flags pr_state_ptr->wlan_flags
#define oms_aa_handle pr_state_ptr->oms_aa_handle
#define cuirent_time pr_state_ptr->current_time
#define rcv_idle_time pr_state_ptr->rcv_idle_time
#define cw_end pr_state_ptr->cw_end
#define duplicate_list_ptr pr_state_ptr->duplicate_list_ptr
#define hld_pmh pr_state_ptr->hld_pmh
#define max_backoff pr_state_ptr->max_backoff
#define cuirent_state_name pr_state_ptr->current_state_name
#define hl_packets_rcvd pr_state__ptr->hl_packets_rcvd
#define media_access_delay pr_state_ptr->media_access_delay
#define ete_delay_handle pr_state_ptr->ete_delay_handle
#define global_ete_delay_handle pr_state_ptr->global_ete_delay_handle
#define global_throughput_handle pr_state_ptr->global_tbxoughput_handle
#define global_load_handle pr_state_ptr->global_load_handle
#define global_dropped_data_handle pr_statejptr->global_dropped_data_handle
#define global_mac_delay_handle pr_state_ptr->global_mac_delay_handle
#define ctrl_traffic_rcvd_handle_inbits pr_statejptr->ctrl_trafific_rcvd_handle_inbits
#define ctrl_traffic_sent_handle_inbits pr_state_ptr->ctrl_traffic_sent_handle_inbits
#define ctrl_traffic_rcvd_handle pr_state_ptr->ctrl_trafific_rcvd_handle
#define ctrl_trafKc_sent_handle pr_state_ptr->ctrl_traffic_sent_handle
#define data_traflfic_rcvd_handle_inbits pr_state_ptr->data_traffic_rcvd_handle_inbits
#define data_traffic_sent_handle_inbits pr_state_ptr->data_traffic_sent_handle_inbits

75

#define data_rraffic_rcvd_handle
#define data_traffic_sent_handle
#define ete_delay_per_strm_sh_array
#define dropped_datajper_strm_sh_array
#define throughput_per_stmi_sh_array
#define stat_reg_status_array
#define sifs_time
#define slot_time
#define cw_min
#define cw_max
#define difs_time
#define channel_reserv_handle
#define retransjiandle
#define throughput_handle
#defme long_retry_limit
#define short_retry_limit
#define retry_limit
#defme lastjrametxjype
#define deference_evh
#define backoff_elapsed_evh
#define frame_timeout_evh
#define cw_end_evh
#define eifs_time
#define i_strm
#define wlan_trace_active
#define pkt_in_service
#define bits_load_handle
#define ap_flag
#define bss_flag
#define bss_id
#define hld_max_size
#define max_receive_lifetime
#define phy_char_flag
#define oms_aa_wlan_handle
#define total_hlpk_size
#define drop_packet_handle
#define drop_packet_handle_inbits
#define drop_pkt_log_handle
#define drop_pkt_entry_log_flag
#define packetsize
#define packet_strm_id
#define receive_time
#define llc_iciptr
#defme rcv_channel_status
#define bss_stn_list
#define bss_stn_count
#define plcp_preamble_duration
#define plcp_header_duration
#define plcp_overhead
#define response_speed

pr_state_ptr->data_traffic_rcvd_handle
pr_statejptr->data_trafFic_sent_handle
pr_state_ptr->ete_delay_per_strm_sh_aiTay
pr_state_ptr->dropped_data_per_strm_sh_array
pr_state_ptr->throughput_per_strm_sh_array
pr_state_ptr->stat_reg_status_array

pr_statejptr->sifs_time
pr_statejptr->slot_time

pr_state_ptr->cw_min
pr_state_ptr->cw_max

pr_state_ptr->difs_time
pr_state_ptr->channel_reserv_handle
pr_state_ptr->retrans_handle
pr_state_ptr->throughput_handle
pr_statejptr->long_retry_limit
pr_state_ptr->short_retry_limit

pr_state_ptr->retry_limit
pr_statejptr->lastjrametx_type
pr_state_ptr->deference_evh
pr_state_ptr->backoff_elapsed_evh
pr_statejptr->frame_timeout_evh
pr_state_ptr->cw_end_evh

pr_state_ptr->eifs_time
pr_state_ptr->i_strm
pr_state_ptr->wlan_trace_active
pr_state_ptr->pkt_in_service
pr_state_ptr->bits_load_handle

pr_state_ptr->ap_flag
pr_state_ptr->bss_flag

pr_statejptr->bss_id
pr_state_ptr->hld_max_size
pr_state_ptr->max_receive_lifetime
pr_state_ptr->phy_char_flag
pr_statejptr->oms_aa_wlan_handle
pr_statejptr->total_hlpk_size
pr_state_ptr->drop_packet_handle
pr_state_ptr->drop_packet_handle_inbits
pr_state_ptr->drop_pkt_log_handle
pr_state_ptr->dropj3kt_entry_log_flag
pr_state_ptr->packet_size
pr_state_ptr->packet_strm_id
pr_state_ptr->receive_time
pr_state_ptr->llc_iciptr
pr_state_ptr->rcv_channel_status
pr_state_ptr->bss_stn_list
pr_statejptr->bss_stn_count
pr_state_ptr->plqp_preamble_duration
pr_state_ptr->plq)_header_duration
pr_statejptr->plq)_overhead
pr_state_ptr->response_speed

/* This macro definition will define a local variable called */
/* "op_svjptr" in each function containing a FIN statement. */

76

/* This variable points to the state variable data structure, */
I* and can be used from a C debugger to display their values. */
#undefFIN_PREAMBLE
#define FIN_PREAMBLEwlan_mac_l Ia_state *op_sv__ptr = pr_state__ptr,

Temporary Variables Block

/* variables used for registering and discovering process models */
OmsT Pr Handle process_record_handle;
List* proc_record_handle_list_ptr,
int record_handle_list_size;
int ap_count;
int count;
double sta addr;
double statype;
Objid mac_if_module_objid;
char proc_model_name [300];
Objid my_subnet_pbjid;
Objid my_objid;
Objid my_node_objid;
Objid params_attr_objid;
Objid wlan_params_comp_attr_objid;
Objid strm_objid;
int strm;
int y;
hit addr_index;
int num_out_assoc;
int node_count;
int node_objid;
WianT Hid List Elem* hld_ptr.
Prohandle ownjprohandle;
double timer duration;
double cw slots;
char msgl [320];
char msg2 [120];
WlanT_Phy_Char_Code stajphy_char_flag;

static void
wlan_mac_sv_init ()

{
Objid
Objid
Objid
Objid
Objid
Objid
Objid
Objid
Objid

mac_params_comp_attr_objid;
params_attr_objid;
phy_params_comp_attr_objid;
my_objid;
my_node_objid;
my_subnet_objid;
rx_objid;
tx_objid;
charmjparams_comp_attr_objid;

77

0);

Objid subchannjparams_attr_objid;
Objid chann_objid;
Objid sub_chann_objid;
int num_chann;
cnar subnet_name[512];
double bandwidth;
double frequency;
int apl_flag, i;

/** 1. Initialize state variables. **/
/** 2. Read model attribute values in variables. **/
/** 3. Create global lists **/
/** 4. Register statistics handlers **/
FIN (wlan_mac_sv_init ());

/* object id of the surrounding processor. */
my_objid = op_id_self ();

/* Obtain the node's object identifier */
my_node_objid = op_topo_parent (my_objid);

/* Obtain subnet objid. */
my_subnet_objid = op_topo_parent (my_node_objid);

/* Obtain the values assigned to the various attributes */
op_ima_obj_attr_get (my_objid, "Wireless LAN Parameters", &mac_params_comp_attf_objid);
params_attr_objid = op_topo_child (mac_params_comp_attr_objid, OPC_OBJTYPE_GENERIC,

/* Determine the assigned MAC address. */
op_ima_obj_attr_get (my_objid, "station_address", &my_address);

/* Obtain an address handle for resolving WLAN MAC addresses. */
oms_aa_handle = oms_aa_address_handle_get ("MAC Addresses", "station_address");

/* Creating a pool of station addresses for each subnet based on subnet name. */
op_ima_obj_attr_get (my_subnet_objid, "name", &subnet_name);
oms_aa_wlan_handle = oms_aa_address_handle_get (subnet_name, "station_address");

/* Get model attributes. */
op_ima_obj_attr_get (params_attr_objid, "Data Rate", &operational_speed);
op_ima_obj_attr_get (params_attr_objid, "Fragmentation Threshold", &frag_threshold);
op_ima_obj_attr_get (params_attr_objid, "Rts Threshold", &rts_threshold);
op_ima_obj_attr_get (params_attr_objid, "Short Retry Limit", &short_retry_limit);
op_ima_obj_attr_get (params_attr_objid, "Long Retry Limit", &long_retry_limit);
op_ima_obj_attr_get (params_attr_objid, "Access Point Functionality", &ap_flag);
op_ima_obj_attr_jet (params_attr_objid, "Buffer Size", &hld_max_size);
op_ima_obj_attr_get (params_attr_objid, "Max Receive Lifetime", &max_receive_lifetime);

/* Initialize the retry limit for the current frame to long retry limit. */
retryjimit = long_retry_limit;

78

/* Get the Channel Settings.
*/

/* Extracting Channel 0,1,2,3,4,5,6,7 (i.e. 6,9,12,18,24,36,48 and 54 Mbps) settings. */
op_ima_obj_attr_get (params_attr_objid, "Channel Settings", &chann_params_comp_attr_objid);
subchann_params_attr_objid = op_topo_child (chann_params_comp_attr_objid,

OPC_OBJTYPE_GENERIC, 0);
op_ima_obj_attr_get (subchann_params_attr_objid, "Bandwidth", &bandwidth);
op_ima_obj_attr_get (subchannjDarams_attr_objid, "Min Frequency", &frequency);

/* Load the appropriate physical layer characteristics. Here, this will only be OFDM. */
op_ima_obj_attr_get (params_attr_objid, "Physical Characteristics", &phy_char_flag);

/* 802.1 la Model Addition */
/* Based on physical charateristics of OFDM, set appropriate values for SIFS time, */
/* Slot time, and the min/max contention window sizes. */
/* Also, include values for the PLCP preamble and PLCP header (minus the SERVICE field) */
/* in terms of seconds for use later. */
switch (phy_char_flag)

{
case WlanCJDFDM:

{
/* Slot duration in units of sec. */
slot_time = .000009;

/* Short interframe gap (SIFS) in units of sec. */
sifsjime = .000016;

/* Minimum contention window size for selecting backoff slots. */
cw_min= 15;

/* Maximum contention window size for selecting backoff slots. */
cw_max= 1023;

/* PLCP Preamble in units of seconds. */
plcp_preamble_duration = .000016;

/* PLCP Header (not including the SERVICE field) in units of seconds. */
plcp_header_duration = .000004;
break;
}

default:

OPC_NIL, OPC_NIL);

}

{
wlan_mac_error ("Unexpected Physical Layer Characteristic encountered.",

break;
}

/* 802.1 la Model Addition */
/* Calculate the 802.11aPLCP overhead (preamble andheader) in units of seconds. */
plcpoverhead = plcp_preamble_duration + plcp_header_duration;

79

/* By default stations are configured for IBSS unless an Access Point is found, */
/* then the network will have an infrastructure BSS configuration. ' */
bss_flag = OPC_BOOLINT_DISABLED;

/* Computing DIFS interval which is interframe gap between successive */
/* frame transmissions. */
difs_time = sifs_time + 2* slot_time;

/* 802.1 la Model Addition */
/* If the receiver detects that the received frame is erroneous then it */
/* will set the network allocation vector to EIFS duration. */
/* The EIFS time for 802.1 la is calculated per the 802.11 specification */
/* (see Section 9.2.10, page 85) using the lowest mandatory data rate of 6 Mbps */
eifsjime = difsjime + sifsjime + plcp_overhead + ppdu duration (WLAN ACK LENGTH

WLAN_MIN_MAN_DATA_RATE); ~

/* Creating list to store data arrived from higher layer.*/
hld_list_ptr = op_prg_list_create ();

/* Initialize segmentation and reassembly buffer. */
defragmentation_list_ptr = op_prg_list_create 0;
fragmentation_buffer_ptr = op_sar_buf_create(OPC SAR BUF TYPE SEGMENT

OPC_SAR_BUF_OPT_PK_BNDRY); - - - _

/* Registering local statistics. */
packet_load_handle = 0p_stat reg ("Wireless LanXoad (packets)"

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
bits_load_handle = op_stat_reg ("Wireless LanXoad (bits/sec)"

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
hl_packets_rcvd = op_stat_reg ("Wireless Lan.Hld Queue Size (packets)"

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
backoff_slots_handle = op_stat_reg ("Wireless Lan.Backoff Slots (slots)"

OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
data_traffic_sent_handle = op_stat_reg ("Wireless Lan.Data Traffic Sent (packets/sec)"
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

data_traffic_rcvd_handle = op_stat_reg ("Wireless Lan.Data Traffic Rcvd
(packets/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

data_traffic_sent_handle_inbits = op_stat_reg ("Wireless Lan.Data Traffic Sent (bits/sec)"
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); '

data_traffic_rcvd_handle_inbits = op_stat_reg ("Wireless Lan.Data Traffic Rcvd (bits/sec)"
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); '

ctrl_traffic_sent_handle = op_stat_reg ("Wireless Lan.Control Traffic Sent
(packets/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

ctrl_traffic_rcvd_handle = op_stat_reg ("Wireless Lan.Control Traffic Rcvd
(packets/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);
™„ ctrl_traffic_sent_handle_inbits = op_stat_reg ("Wireless Lan.Control Traffic Sent (bits/sec)"
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

ctrl_traffic_rcvd_handle_inbits = op_stat_reg ("Wireless Lan.Control Traffic Rcvd (bits/sec)"
OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

drop_packet_handle = op_stat_reg ("Wireless Lan.Dropped Data Packets
(packets/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

drop_packet_handle_inbits = op_stat_reg ("Wireless Lan.Dropped Data Packets
(bits/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

80

retrans_handle = op_stat_reg ("Wireless Lan.Retransmission Attempts
(packets)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL);

media_access_delay = op_stat_reg ("Wireless Lan.Media Access Delay (sec)",
OPC_STAT_INDEX_NONE,OPC_STAT_LOCAL);

ete_delay_handle = op_stat_reg ("Wireless Lan.Delay (sec)",
OPC_STAT_INDEX_NONE,OPC_STAT_LOCAL);

channel_reserv_handle = op_stat_reg ("Wireless Lan.Channel Reservation (sec)",
OPC_STAT_INDEX_NONE,OPC_STAT_LOCAL);

throughput_handle = op_stat_reg ("Wireless Lan.Throughput (bits/sec)",
OPC_STAT_INDEX_NONE,OPC_STAT_LOCAL);

/* Registering global statistics. */
global_ete_delay_handle = op_stat_reg ("Wireless LAN.Delay (sec)",

OPC_STAT_INDEX_NONE,OPC_STAT_GLOBAL);
global_load_handle = op_stat_reg ("Wireless LANXoad (bits/sec)",

OPC_STAT_INDEX_NONE,OPC_STAT_GLOBAL);
global_throughput_handle = op_stat_reg ("Wireless LAN.Throughput (bits/sec)",

OPC_STAT_INDEX_NONE,OPC_STAT_GLOBAL);
global_dropped_data_handle = op_stat_reg ("Wireless LANLData Dropped (bits/sec)",

OPC_STAT_INDEX_NONE,OPC_STAT_GLOBAL);
global_mac_delay_handle = op_stat_reg ("Wireless LAN.Media Access Delay (sec)",

OPC_STAT_IKTOEX_NONE,OPC_STAT_GLOBAL);

/* Initialize the registration status array for per-stream*/
/* statistics. We will register them only if we detect a */
/* packet that belongs to that particular stream. */
for (i = 0; i < WLANC_STRM_STAT_DIM_COUNT; i++)

{
stat_reg_status_array [i] = OPC_FALSE;
}

/* Registering log handles */
drop_pkt_log_handle = op_prg_log_handle_create (OpC_Log_Category_Conflguration,

"Wireless Lan", "Data packet Drop", 128);
drop_pkt_entry_log_flag = OPC_FALSE;

/* Allocating memory for the flags used in this process model. */
wlan_flags = (WlanT_Mac_Flags *) opjprg_mem_alloc (sizeof (WlanT_Mac_Flags));

/* Disabling all flags as a default.
wlan_flags->data_frame_to_send
wlan_flags->backoff_flag
wlan_flags->rts_sent
wlan_flags->rcvd_bad_packet
wlan_flags->receiver_busy
wlan_flags->transmitter_busy
wlan_flags->gateway_flag
wlan_flags->bridge_flag
wlan_flags->wait_eifs_dur
wlan_flags->immediate_xmt
wlan_flags->cw_required
wlan_flags->nav_updated

*/
= OPCJBOOLINTJDISABLED:
= OPC_BOOLINT_DISABLED;
= OPC_BOOLINT_DISABLED
= OPCJBOOLINT_DISABLED
= OPC_BOOLINT_DISABLED
= OPCJBOOLINTJDISABLED
= OPC_BOOLINT_DISABLED
= OPC_BOOLINT_DISABLED

= OPC_BOOLINT_DISABLED;
= OPC_BOOLINT_DISABLED
= OPCJBOOLINTJDISABLED
= OPC BOOLINT DISABLED

81

/* Intialize retry count. */
retry_count = 0;

/* Initialize the packet pointer that holds the last */
/* transmitted packet to be used for retransmissions when */
/* necessary. */
wlan_transmit_frame_copy_ptr = OPCJNIL;

/* Initialize nav duration */
nav_duration = 0;

/* Initialize receiver idle and conetion window timers.*/
rcyjdlejime = -2.0 * difs_time;
cw_end = 0.0;

/* Initializing the sum of sizes of the packets in the higher layer queue. */
total_hlpk_size = 0;

/* Initialize the state variables related with the current frame that is being handled. */
packetsize = 0;
receive_time =0.0;
packet_strm_id = WLANC_STRM_UNSET;

/* Initialize the receiver channel status. */
rcv_channel_starus = 0;

/* Data arrived from higher layer is queued in the buffer. Pool memory is used for */
/* allocating data structure for the higher layer packet and the random destination */
/* for the packet. This structure is then inserted in the higher layer arrival queue. */
hld_pmh = op_prg_pmo_define ("WLAN hid list elements", sizeof (WlanT_Hld_List_Elem), 32);

/* Obtaining transmitter objid for accessing channel data rate attribute. */
tx_objid = op_topo_assoc (my_objid, OPC_TOPO_ASSOC_OUT, OPC_OBJTYPE_RATX, 0);

/* If no receiver is attached then generate error message and abort the simulation. */
if (tx_objid = OPC_OBJID_INVALID)

{
wlan_mac_error ("No transmitter attached to this MAC process", OPCJNIL, OPCJNIL);

/* Obtaining number of channels available. */
op_ima_obj_attr_get (tx_objid, "channel", &chann_objid);
numchann = op_topo_child_count (chann_objid, OPC_OBJTYPE_RATXCH);

/* Generate error message and terminate simulation if no channel is available for transmission
*/
if (num_chann = 0)

{
wlan_mac_error (" No channel is available for transmission", OPC NIL, OPC NIL)-
} "

/* Setting the Frequency and Bandwidth for the transmitting channels. */
for (i = 0; i < num_chann; i++)

82

{
/* Accessing channel to set the frequency and bandwidth. */
sub_chann_objid = op_topo_child (chann_objid, OPC_OBJTYPE_RATXCH, i);

/* Setting the operating freqeuncy and channel bandwidth for the transmitting channels.
*/

op_ima_obj_attr_set (sub_chann_objid, "bandwidth", bandwidth);
op_ima_obj_attr_set (sub_chann_objid, "min frequency", frequency);

}

/* Obtaining receiver's objid for accessing channel data rate attribute. */
rx_objid = op_topo_assoc (my_objid, OPC_TOPO_ASSOC_IN, OPC_OBJTYPE_RARX, 0);

/* If no receiver is attached then generate error message and abort the simulation. */
if (rx_objid = OPC_OBJID_INVALID)

{
wlan_mac_error ("No receiver attached to this MAC process", OPCJNIL, OPC_NIL);

}

/* Obtaining number of channels available. */
op_ima_obj_attr_get (rx_objid, "channel", &chann_objid);
num_chann = op_topo_child_count (chann_objid, OPC_OBJTYPE_RARXCH);

/* Generate error message and terminate simulation if no channel is available for reception.*/
if (num_chann = 0)

{
wlan_mac_error (" No channel is available for reception", OPCJNIL, OPC_NIL);

}

/* Setting the Frequency and Bandwidth for the transmitting channels. */
for (i = 0; i < num_chann; i++)

{
/* Accessing channel to set the frequency and bandwidth. */
sub_chann_objid = op_topo_child (chann_objid, OPC_OBJTYPE_RARXCH, i);

/* Setting the operating freqeuncy and channel bandwidth for the receiving channels.
*/

op_ima_obj_attr_set (sub_chann_objid, "bandwidth", bandwidth);
op_ima_obj_attr_set (sub_chann_objid, "min frequency", frequency);

}

llcjciptr = op_ici_create ("wlanmacind");

if (llc_iciptr = OPC_NIL)
{
wlanmacerror ("Unable to create ICI for communication with LLC", OPCJNIL,

OPC_NIL);
}

FOUT;
}

static void

83

wlan_higher_layer_data_arrival ()
{
Packet*
int
int
int
Ici*
Ici*
Boolean

hld_pkptr;
pk_size, orig_pk_size, stream_id;
i;
dest_addr;
icijptr;
strm_info_iciptr;
stn_det_flag;

/** Queue the packet as it arrives from higher layer.
/** Also, store the destination address of the packet
/** in the queue and the arrival time.
FIN (wlan_higher_layer_data_arrival 0);

/* Get packet from the incomming stream from higher layer and
/* obtain the packet size
hld_pkptr = op_pk_get (op_intrpt_strm ());

*/
*/

/* For bridge and gateway, only accept packet from the higher */
/* layer if the access point functionality is enabled. */
if (((wlan_flags->gateway_flag = OPC_BOOLINT_ENABLED) |[

(wlan_flags->bridge_flag = OPC_BOOLINT_ENABLED)) &&
(ap_flag = OPC_BOOLINT_DISABLED))
{
op_pk_destroy (hld_pkptr);
FOUT;
}

pk_size = op_pk_total_size_get (hld_pkptr);

/* maintaining total packet size of the packets in the higer layer queue. */
total_hlpk_size = total_hlpk_size + pk_size;

/* If fragmentation is enabled and packet size is greater than the threshold
/* then MSDU length will not be more than fragmentation threshold, hence
/* the packet will be fragmented into the size less than or equal to fragmentaion
/* threshold.
origjpk_size = pk_size;
if «pk_size > fragjhreshold * 8) && (fragjhreshold != -1))

pk_size = fragjhreshold * 8;
}

/* Destroy packet if it is more than max msdu length or its
/* size zero. Also, if the size of the higher layer queue
/* will exceed its maximum after the insertion of this packet,
/* then discard the arrived packet.
/* The higher layer is reponsible for the retransmission of
/* this packet.
if (pk_size > WLAN_MAXMSDU_LENGTH || pk_size = 0 ||

total_hlpk_size > hld_max_size)
{

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

84

/* Write an appropriate simulation log message. */
if (drop_pkt_entry_log_flag = OPC_FALSE)

{
if (total_hlpk_size > hld_max_size)

{
/* Writing log message for dropped packets. */
op_prg_log_entry_write(dropjpkt_log_handle,
MSYMPTOMS(S):\n"

" Wireless LAN MAC layer discarded some packets due to\n "
" insufficient buffer capacity. \n"

"\n"
" This may lead to: \n"
" - application data loss.\n"
" - higher layer packet retransmission.\n"
"\n"
" PvEMDEDIAL ACTION (S): \n"
" 1. Reduce Network laod. \n"
" 2. User higher speed wireless Ian. \n"
" 3. Increase buffer capacityW);

}

if (pk_size > WLAN_MAXMSDU_LENGTH)
{
/* Writing log message for dropped packets due to packet size.*/
op_prg_log_entry_write(dropjpkt_log_handle,
"SYMPTOMS(S):\n"

" Wireless LAN MAC layer discarded some packets due to\n "
" large packet size. \n"

"\n"
"This may lead to: \n"
" - application data loss.\n"
" - higher layer packet retransmissionAn"
"\n"
" REMDEDIAL ACTION (S): \n"
" 1. Enable fragmentation threshold. \n"
" 2. Set the higher layer packet size to \n"

" be smaller than max MSDU size \n");
}

drop_pkt_entry_log_flag = OPC_TRUE;
}

/* Change the total hold queue size to original value */
/* as this packet will not be added to the queue. */
total_hlpk_size = total_hlpk_size - origjpk_size;

/* Report stat when data packet is dropped due to overflow buffer. */
op_stat_write (drop_packet_handle, 1.0);
op_stat_write (drop_packet_handle, 0.0);

/* Report stat when data packet is dropped due to overflow buffer. */
op_stat_write (drop_packet_handle_inbits, (double) (orig_pk_size));
op_stat_write (drop_packet_handle_inbits, 0.0);
op_stat_write (global_dropped_data_handle, (double) (orig_pk_size));

85

op_stat_write (global_dropped_data_handle, 0.0);

/* Retrieve the traffic stream information of the packet and */
/* update the corresponding per-stream statistics.
strm_info_iciptr = opjpk_ici_get (hld_pkptr);
if ((strm_mfo_iciptr != OPCJNIL) && (op_ici_attr_exists (strm info iciptr,

"streamed") = OPC_TRUE))
{
opJci_attr_get (strm_info_iciptr, "stream_id", &stream_id);

/* Register the statistics if this is the first packet we */
/* received belonging to that stream. */
if (stat_reg_status_array [streamjd] = OPCJFALSE)

{
wlan_per_stream_stat_register (streamjd);
}

(orig_pk_size));

/* Update the related per-stream statistics. */
op_stat_write (dropped_datajper_strm_sh_array [streamjd], (double)

op_stat_write (dropped_data_per_strm_sh_array [streamjd], 0.0);

/* Destroy the dropped packet.
op_pk_destroy (hldjpkptr);

FOUT;
}

/* Read ICI parameters at the stream interrupt. */
ici_ptr = opjntrptjci 0;

/* Retrieve destination address from the ici set by the interface layer. */
if (ici_ptr = OPC_NIL || opJci_attr_get (ici_ptr, "dest_addr", &dest addr) =

OPC_COMPCODEJFAILURE)
{
/* Generate error message. */
wlan_mac_error ("Destination address in not valid.", OPC_NIL, OPC_NIL);

/* If it is a broadcast packet or the station doesn't exist in the subnet */
/*if ((dest_addr < 0) || (oms_aa_addressJind (oms_aa_wlan_handle, dest_addr) < 0))*/
if(dest_addr<0)

{
/* change the total hid queue size to original value */
/* as this packet will not be added to the queue. */
totalJilpk_size = totalJJpk_size - orig_pk_size;

op_pk_destroy (hld_pkptr);

FOUT;
}

86

/* For an AP bridge, check whether the destination stations exist in the BSS or not. */
/* If not, then no need to broadcast the packet. */
if (wlan_fiags->bridge_fiag = OPC_BOOLINT_ENABLED && ap_fiag =

OPC_BOOLINT_ENABLED)
{
stn_det_flag = OPC_FALSE;
for (i = 0; i < bss_stn_count; i++)

{
if (dest_addr = bss_stn_list [i])

{
stn_det_flag = OPCJTRUE;
}

}

/* If the destination station doesn't exist in the BSS then */
/* no need to broadcast the packet. */
if (stn_det_fiag = OPC_FALSE)

{
/* change the total hid queue size to original value */
/* as this packet will not be added to the queue. */
total_hlpk_size = total_hlpk_size - orig_pk_size;

op_pk_destroy (hld_pkptr);

FOUT;
}

}

/* Stamp the packet with the current time. This information will remain */
/* unchanged even if the packet is copied for retransmissions, and */
/* eventually it will be used by the destination MAC to compute the end-to- */
/* end delay. */
op_pk_stamp (hld_pkptr);

/* Insert the arrived packet in higher layer queue. */
wlan_hlpk_enqueue (hldjpkptr, dest_addr);
FOUT;
}

static void
wlan_hlpk_enqueue (Packet* hldjpkptr, int dest_addr)

{
int list_index;
char msg_string [120];
char .msg_stringl [120];
WlanT_Hld_List_Elem* hldjptr;
double datasize;

/* Enqueuing data packet for transmission. */
FIN (wlan_hlpk_enqueue (Packet* hldjpkptr, int dest_addr));

/* Allocating pool memory to the higher layer data structure type. */

87

hld_ptr = (WlanT_Hld_List_Elem *) op_prgjpmo_alloc (hld_pmh);

/* Generate error message and abort simulation if no memory left for data received from higher
layer. */

if(hld_ptr = OPC_NIL)
{
wlan_mac_error ("No more memory left to assign for data received from higher laver"

OPC_NIL, OPC_NIL); '
}

/* Updating higher layer data structure fields. */
hld_ptr->time_rcvd = currentjime;
hld_ptr->destination_address = dest_addr;
hld_ptr->pkptr = hld_pkptr;

/* Insert a packet to the list.*/
op_prg_list_insert (hld_list_ptr, hld_ptr, OPCJLISTPOSJTAIL);

/* Enable the flag indicating that there is a data frame to transmit. */
wlan_flags->data_frame_to_send = OPC_BOOLINT_ENABLED;

/* Printing out information to ODB.*/
if (wlan_trace_active = OPC_TRUE)

{
sprintf (msg_string, "Just arrived outbound Data packet id %d ", opjpkjd (hld_ptr-

>pkptr));

sprintf (msg_stringl, "The outbound Data queue size is %d", op pre list size
(hld_list_ptr)); -

op_prg_odb_print_major (msg_string, msg_stringl, OPC_NIL);

/* Report stat when outbound data packet is received. */
op_stat_write (packet_load_handle, 1.0);
op_stat_write (packet_load_handle, 0.0);

/* Report stat in bits when outbound data packet is received. */
data_size = (double) op_pk_total_size_get (hld_pkptr);
op_stat_write (bits_load_handle, data_size);
op_stat_write (bits_load_handle, 0.0);

/* Update the global statistics as well. */
op_stat_write (globaljoadjiandle, data_size);
op_stat_write (global_load_handle, 0.0);

/* Report outbound data packets queue size at the arrival of every packet. */
op_stat_write (hljpackets_rcvd, (double) (op_prg_list_size (hld_list_ptr)));

FOUT;
}

static void
wlan_frame_transmit 0

{

88

char msg_string [120];
char msg_stringl [120];
WlanT_Hld_List_Elem* hldjptr;
int frag_list_size;
int type;
double pkt_tx_time;
Ici* strm_info_iciptr;

/** Main procedure to call functions for preparing frames. **/
/** The procedure to prepare frame is called in this routine **/
FIN (wlan_frame_transmit());

/* If Ack and Cts needs to be sent then prepare the appropriate */
/* frame type for transmission */
if ((fresp_to_send = WlanC_Cts) || (fresp_to_send = WlanC_Ack))

{
wlanjprepare_frame_to_send(fresp_to_send);

/* Break the routine if Cts or Ack is already prepared to tranmsit */
FOUT;
}

/* If it is a retransmission then check which type of frame needs to be */
/* retransmitted and then prepare and transmit that frame */
else if (retry_count != 0)

{
/* If the last frame unsuccessfully transmitted was Rts then transmit it again. */
if ((last_frametx_type = WlanCJRts) && (wlan_flags->rts_sent =

OPC_BOOLINT_DISABLED))
{
/* Retransmit the Rts frame. */
wlan_prepare_frame_to_send (WlanC_Rts);
}

/* For the retransmission of data frame first check whether Rts needs to be sent */
/* or not. If it Rts needs to be sent and it is not already sent then first transmit */
/* Rts and then transmit data frame. */
else if (last_frametx_type = WlanCJData)

{
if ((op_pk_total_size_get (wlan_transmit_frame_copyjptr) > (8 * rtsthreshold

+ WLANC_MSDU_HEADER_SIZE)) &&
(rts_threshold != -1) && (wlan_flags->rts_sent =

OPC_BOOLINT_DISABLED))
{
/* Retransmit the Rts frame to again contend for the data. */
wlanjprepare_frame_to_send (WlanC_Rts);
}

else

else

{
wlanjprepare_frame_to_send (WlanCJData);
}

89

0))

{
/* We continue with the retransmission process. We */
/* received the expected Cts for our last Rts. */
/* Hence, now we can retransmit our data frame. */
wlanjprepare_frame_to_send(WlanC_Data);
}

FOUT;
}

"stream_id"))

/* If higher layer queue is not empty then dequeue a packet */
/* from the higher layer and insert it into fragmentation */
/* buffer check whether fragmentation and Rts-Cts exchange */
/* is needed based on thresholds */
/* Check if fragmenetation buffer is empty. If it is empty */
/* then dequeue a packet from the higher layer queue. */
else if ((op_prg_list_size (hld_list_ptr) != 0) && (op_sar_buf_size (fragmentation_buffer_ptr) =

{
/* If rts is already sent then transmit data otherwise */
/* check if rts needs to be sent or not. */
if (wlan_flags->rts_sent = OPC_BOOLINT_DISABLED)

{
/* Remove packet from higher layer queue. */
hldjptr = (WlanT_Hld_ListJElem*) op_prg_list_remove (hldjistjptr, 0);

/* Update the higher layer queue size statistic. */
op_stat_write (hl_packets_rcvd, (double) (op_prg_list_size (hld_list_ptr)));

/* Determine packet size to determine later whether fragmentation */
/* and/or rts-cts exchange is needed. */
packetsize = op_pk_total_size_get (hld_ptr->pkptr);

/* Updating the total packet size of the higher layer buffer. */
total_hlpk_size = total_hlpk_size - packet_size;

/* Retrieve the traffic stream information if available. */
packet_strm_id = WLANC_STRM_UNSET;
strm_info_iciptr = op_pk_ici_get (hldjptr->pkptr);
if (strm_info_iciptr != OPC_NEL && op_ici_attr_exists (strm_info_iciptr,

{
op_ici_attr_get (strm_info_iciptr, "stream_id", &packet_strm_id);

/* Setting destination address state variable */
destination_addr = hldjptr->destination_address;

/* Packet seq number modulo 4096 counter. */
packet_seq_number = (packet_seq_number + 1) % 4096;

/* Packet fragment number is initialized. */
packet_frag_number = 0;

90

buffer", pkt_in_service);

/* Packet needs to be fragmented if it is more */
/* than fragmentation threshold, provided */
/* fragmentation is enabled. */
if ((packet_size > (fragjhreshold * 8)) && (fragjhreshold != -1))

{
/* Determine number of fragments for the packet */
/* and the size of the last fragment */

numjragments = (int) (packet_size / (fragjhreshold * 8));
remainder_size = packet_size - (numjragments * fragjhreshold * 8);

/* If the remainder size is non zero it means that the */
/* last fragment is fractional but since the number */
/* of fragments is a whole number we need to transmit */
/* one additional fragment to ensure that all of the */
/* data bits will be transmitted */
if (remainder_size != 0)

{
numjragments = numjragments + 1;

else

}
}

{
/* If no fragments needed then number of */
/* packets to be transmitted is set to 1 */

num_fragments = 1;
remaindersize = packetsize;
}

/* Storing Data packet id for debugging purposes. */
pkt_in_service = op_pk id (hld_ptr->pkptr);

/* Insert packet to fragmentation buffer */
op_sar_segbuf_pk_insert (fragmentation_buffer_ptr, hld_ptr->pkptr, 0);

/* Computing packet duration in the queue in seconds */
/* and reporting it to the statistics */
pkt_tx_time = (current_time - hld_ptr->time_rcvd);

/* Printing out information to ODB. */
if (wlan_trace_active = OPCJTRUE)

{
sprintf (msg_string, "Data packet %d is removed from higher layer

sprintf (msg_stringl, "The queueing delay for data packet %d is %fs",

pkt_in_service, pkt_tx_time);
op_prg_odb__print_major (msg_string, msg_stringl, OPC_NIL);

}

91

/* Store the arrival time of the packet.
receive_time = hld_ptr->time_rcvd;

*/

layer queue.
/* Freeing up allocated memory for the data packet removed from the higher

op_prg_mem_free (hld_ptr);

/* Send its if rts is enabled and packet size is more than rts threshold */
if ((packet_size > (rtsjhreshold * 8)) && (rtsjhreshold != -1))

{
retry_limit = long_retry_limit;
/* Prepare Rts frame for transmission */
wlan_prepare_frame_to_send (WlanC_Rts);

/* Break the routine as Rts is already prepared
FOUT:

*/

else
}

{
retryjimit = short_retry_limit;
}

}

/* Prepare data frame to transmit */
wlanjprepare_frame_to_send(WlanC_Data);

FOUT;
}

static void
wlan_prepare_frame_to_send (int frame_type)

{
char
Packet*
Packet*
int
int
int
int
char
int
double
WlanT_Data_Header_Fields*
WlanT_Control_Header_Fields*
Packet*

msg_string [120];
hld_pkptr;
seg_pkptr;
dest_addr, src_addr;
protocol_type = -l;
tx_datapacket_size;
type;
error_string[512];
outstrm_to_phy;
duration, mac_delay;
pk_dhstruct_ptr;
pk_chstruct_ptr;
wlan_transmit_frame_ptr;

/* 802.1 la Model Addition */
/* Add a variable to keep track of the data rate so it can be passed to the pipeline stages. */
hit rateholder;

/* 802.1 la Model Addition */
/* The control frame transmission rate depends on the given data rate. */

92

/* Adapted from the Philips Lab 802.1 la model (dated 11/15/00). */
double control_frame_speed; /* Speed for control frames. */
int next_frag_length; /* Length of the next fragment (in bits). */
kit MPDU_size; /* MPDU length (in bits). */

/** Prepare frames to transmit by setting appropriate fields in the **/
/** packet format for Data,Cts,Rts or Ack. If data or Rts packet needs **/
/** to be retransmitted then the older copy of the packet is resent. **/
FIN (wlan_prepare_frame_to_send (int framejype));

outstrm_to_phy = LOW_LAYER_OUT_STREAM_CHl;

/* 802.1 la Model Addition */
rate_holder= 1;

/* 802.1 la Model Addition */
/* Compute the control frame speed based on the operational data rate. */
/»Adapted from the Philips Lab 802.11a model code (dated 11/15/00). */
control_frame_speed = control_speed (operational_speed);

/* The code is divided as per the frame types */
switch (frame_type)

{
case WlanC_Data:

{
/* 802.1 la Model Addition */
/* Base the outgoing data channel on the link speed. */
if (operational_speed = 9000000)

{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH2;
ratejtiolder = 2;
}

else if (operationalspeed = 12000000)
{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH3;
rate_holder = 3;
}

else if (operational_speed = 18000000)
{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH4;
rate_holder = 4;
}

else if (operational_speed = 24000000)
{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH5;
ratejholder = 5;
}

else if (operational_speed = 36000000)
{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH6;
rate_holder = 6;
}

else if (operational_speed = 48000000)

93

(wlan_transmit_frame_copyjptr);

&pk_dhstruct_ptr);

{
outstrm_to_phy = L0W_LAYER_0UT_STREAM_CH7;
rate_holder = 7;
}

else if (operational_speed = 54000000)
{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH8;
rate_holder = 8;
}

/* If it is a retransmission of a packet then no need */
/* of preparing data frame. */
if ((retry_count > 0) && (wlan_transmit_frame_copy_ptr != OPC_NIL))

{
/* If it is a retransmission then just transmit the previous frame*/
wlan_transmit_frame_ptr = opjpk_copy

/* If retry count is non-zero means that the frame is a */
/* retransmission of the last transmitted frame */
op_pk_nfd_access (wlan_transmit_framejptr, "Wlan Header",

pk_dhstruct_ptr->retry = 1;

/* Printing out information to ODB.*/
if (wlan_trace_active = OPC_TRUE)

{
sprintf (msg_string, "Data fragment %d for packet %d is

retransmitted", pk_dhstruct_ptr->fragment_number, pkt_in_service);

°P_Prg_odb_print_major (msgstring, OPC_NIL);
}

/* 802.1 la Model Addition */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00).

/* Calculate the nav duration that the channel will be occupied by

/* the station. The duration is calculated per the 802.11 specification.

/* The duration of the ACK frame is determined based on the control
frame */

/* rate. */
duration = ppdu_duration (WLAN_ACKJLENGTH,

control_frame_speed) + sifsjime + \ WLAN_AIR_PROPAGATION_TIME + plcp_overhead;

/* Since the number of fragments for the last transmitted frame is*/
/* already decremented, there will be more fragments to transmit */
/* if number of fragments is more than zero. */
if (num_fragments != 1)

{
/* If more fragments need to be transmitted then the station*/
/* needs to broadcast the time until the receipt of the */

94

(header */
/* the acknowledgement for the next fragment. 224 bits

/* size) is the length of the control fields in the data */
/* frame and needs to be accounted in the duration calculation

*/

11/15/00) */

(remainder_ size = = 0)))

/* 802.1 la Model Addition */
/* This situation involves 2 cases: either there are more than */
/* 2 fragments left or exactly two fragments left. If there are */
/* exactly 2 fragments left, then the size of the next fragment */
/* will be the header + remainder size. This result affects the */
/* duration that will be calculated.

/* Adapted from the Philips Lab 802.1 la model (dated

if ((num_fragments > 2) || ((num_fragments = 2) &&

{
next_frag_length =

WLANC_MSDU_HEADER_SIZE + fragjhreshold * 8;
}

else if ((num_fragments = 2) && (remainder_size != 0))
{
next_frag_length =

WLANC_MSDU_HEADER_SIZE + remainder_size;
}

/* Use the next_frag_length to recalculate the duration.
*/

duration = 2 * duration + ppdu_duration (next_frag_length,
operational_speed) + \

sifs_time +
WLAN_AIR_PROPAGATION_TIME + plcp_overhead;

}

/* Station update of it's own nav_duration. To keep track of the next
*/

/* available contention window.
*/

nav_duration = current_time + duration + (double)
(op_pk_total_size_get (wlan_transmit_frame_ptr)) / operational_speed;

}

else
{
/* 802.1 la Model Addition */
/* Creating transmit data packet type for use in the 802.11a model. */
wlan_transmit_frame_ptr = op_pk_create_fmt ("wlan_data_802_l la");

/* Prepare data frame fields for transmission.*/
pk_dhstruct_ptr = wlan_mac_pk_dhstruct_create ();
type = WlanC_Data;

95

pk_dhstruct_ptr->retry = 0;
pk_dhstruct_ptr->order = 1;
pk_dhstructjptr->sequence_number = packet_seq_number;

/* 802.1 la Model Addition */
/* Calculate the nav duration that the channel will be occupied by */

/* the station. The duration is calculated per the 802.11 specification.
*/

/* The duration of the ACK frame is determined based on the control
frame */

/* rate.
*/

/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00).

duration = ppdu_duration (WLAN_ACK_LENGTH,
control_frame_speed) + sifs_time + \

WLAN_AIR_PROPAGATION_TIME + plcp_overhead;

/* If there is more than one fragment to transmit and there are */
/* equal sized fragments then remove fragmentation threshold size

*/
/* length of data from the buffer for transmission.

*/
if ((num_fragments > 1) || (remainder_size = 0))

{
/* Remove next fragment from the fragmentation buffer for

/* transmission and set the appropriate fragment number.
*/

*/
segjpkptr = op_sar_srcbuf_seg_remove

(fragmentation_buffer_ptr, frag_threshold * 8);

be sent */

station */

*/

bits (header

*/

calculation

/* Indicate in transmission frame that more fragments need to

/* if more than one fragments are left
. */

if (num_fragments != 1)
{
pk_dhstruct_ptr->more_frag = 1;

/* If more fragments need to be transmitted then the

/* need to broadcast the time until the receipt of the

/* the acknowledgement for the next fragment. 224

/* size) is the length of control fields in the data frame

/* and need to be accounted for in the duration

/* 802.1 la Model Addition */

96

more than */

there are */

fragment */

affects the */

(dated 11/15/00) */

&& (remainder_size = 0)))

/* This situation involves 2 cases: either there are

/* 2 fragments left or exactly two fragments left. If

/* exactly 2 fragments left, then the size of the next

/* will be the header + remainder size. This result

/* duration that will be calculated.

/* Adapted from the Philips Lab 802.1 la model code

if ((num_fragments > 2) || ((num_fragments = 2)

{
next_frag_length =

WLANC_MSDU_HEADER_SIZE + fragjhreshold * 8;
}

else if ((num_fragments = 2) && (remainder_size !=
0))

{
next_frag_length =

WLANC_MSDU_HEADER_SIZE + remainder_size;
}

/* Use the next_frag_length to recalculate the
duration. */

duration = 2 * duration + ppdu_duration
(next_frag_length, operational_speed) + \

sifstime +
WLAN_AIR_PROPAGATION_TIME + plcp_overhead;

}
else

{
/* If no more fragments to transmit then set more

fragment field to be 0 */
pk_dhstruct_ptr->more_frag = 0;
}

/* Set fragment number in packet field */
pk_dhstruct_ptr->fragment_number = packet_frag_number;

/* Printing out information to ODB. */
if (wlan_trace_active = OPC_TRUE)

{
sprintf (msg_string, "Data fragment %d for packet

%d is transmitted" ,packet_frag_number, pkt_in_service);

opjprg_odb_print_major (msg_string, OPC_NIL);
}

/* Setting packet fragment number for next fragment to be
transmitted */

97

0

packet_frag_number = packet_frag_number + 1;
}

else

{
/* Remove last fragments (if any left) from the fragmentation

buffer for */

/* transmission and disable more fragmentation bit. */
seg_pkptr = op_sar_srcbuf_seg_remove

(fragmentation_buffer_ptr, remainder_size);

pk_dhstruct_ptr->more_frag = 0;

/* Printing out information to ODB. */
if (wlanjraceactive = OPC_TRUE)

{
sprintf (msg_string, "Data fragment %d for packet

%d is transmitted",packet_frag_number, pkt_in_service);

°P_Prg_odb_prmt_major (msg_string, OPC_NIL);
}

pk_dhstruct_ptr->fragment_number = packet_frag_number;
}

/* Setting the Header field structure. */
pk_dhstruct_ptr->duration = duration;
pk_dhstruct_ptr->addressl = destination_addr;
pk_dhstruct_ptr->address2 = my_address;

/* In the BSS network the Data frame is going from AP to sta then

if (ap_flag = OPC_BOOLINT_ENABLED)
{
pk_dhstruct_ptr->fromds = 1;
}

else

{
pk_dhstractjptr->fromds = 0;
}

/* if in the BSS network the Data frame is going from sta to AP then
tods bit is set. */

if ((bss_flag = OPC_BOOLINT_ENABLED) && (ap_flag =
OPC_BOOLINT_DISABLED))

{
pk_dhstruct_ptr->tods = 1;

fromds bit is set. */

Access point, which
/* If Infrastructure BSS then the immediate destination will be

/* then forward the frame to the appropriate destination.
*/

pk_dhstructjptr->addressl =bss_id;
pk_dhstructjptr->address3 = destination_addr;

98

(fragmentation_buffer_ptr))

else
{
pk_dhstruct_ptr->tods = 0;
}

/* If we are sending the first fragment of the data fragment for the */
/* first time, then this is the end of media access duration, hence */
/* we must update the media access delay statistics. */
if (packet_size = op_pk_total_size_get (seg_pkptr) + op_sar_buf_size

{
mac_delay = current_time - receive_time;
op_stat_write (media_access_delay, mac_delay);
op_stat_write (media_access_delay, 0.0);
op_stat_write (global_mac_delay_handle, mac_delay);
op_stat_write (global_mac_delay_handle, 0.0);

}

opjpk_nfd_set (wlan_transmit_framejptr, "Type", type);

/* Setting the variable which keeps track of the last transmitted frame.
*/
last_frametx_type = type;

pkt_in_service);

pk_dhstruct_ptr,

(WlanT_Data_Header_Fields));

op_pk_nfd_set (wlan_transmit_frame_ptr, "Accept", OPC_TRUE);
op_pk_nfd_set (wlan_transmit_frame_ptr, "Data Packet ED",

/* Set the frame control field and nav duration. */
opjpk_nfd_set (wlan_transmit_frame_ptr, "Wlan Header",

wlan_mac_pk_dhstruct_copy, wlan_mac_pk_dhstruct_destroy, sizeof

/* The actual data is placed in the Frame Body field */
op_pk_nfd_set (wlan_transmit_framejptr, "Frame Body", seg_pkptr);

(wlan_transmit_framejptr);

/* Make copy of the frame before transmission
wlan_transmit_frame_copy_ptr = op_pk_copy

*/

/* 802.1 la Model Addition */
/* Obtain the MSDU size before adding the OFDM PLCP overhead.*/
/* Adapted from the Philips Lab 802.1 la model code (dated 11/15/00).

MPDU_size = op_pk_total_size_get (wlan_transmit_frame_ptr);
op_pk_nfd_set (wlan_transmit_frame_ptr, "MPDU size", MPDU_size);

/* 802.1 la Model Addition */
/* Include the PLCP overhead in the packet size that will be */
/* transmitted through the transceiver pipeline. */

99

/* Adapted from the Philips Lab 802.1 la model code (dated 11/15/00).

op_pk_total_size_set (wlan_transmit_frame_ptr, \
(int) (ppdu_duration (opjpk_total_size_get

(wlan_transmit_frame_ptr), operational_speed) * operational_speed));

/* Station update of its own nav_duration */
nav_duration = current_time + duration + (double)

(op_pk_total_size_get (wlan_transmit_frame_ptr)) / operational_speed •
}

/* 802.1 la Model Addition */
/* Reporting total number of bits in a data frame. */
/* Note: This reports only the number of bits in the MSDU and does not */
/* include the overhead associated with the PLCP header and preamble. */
op_stat_write (data_traffic_sent_handle_inbits, (double) MPDU_size);
op_stat_write (data_fraffic_sent_handle_inbits, 0.0);

/* If there is nothing in the higher layer data queue and fragmentation */
/* buffer then disable the data frame flag which will indicate to the */
/* station to wait for the higher layer packet. */
if (op_prg_list_size (hld_list_ptr) = 0 && op_sar_buf_size

(fragmentation_buffer_ptr) = 0)

{
wlan_flags->data_frame_to_send = OPC_BOOLINT_DISABLED;

/* Only expect Acknowledgement for directed frames. */
if (destination_addr < 0)

{
expected_frame_type = WlanC_None;
}

else

{
/* Ack frame is expected in response to data frame */
expected_frame_type = WlanC_Ack;
}

/* Update data traffic sent stat when the transmission is complete */
op_stat_write (data_traffic_sent_handle, 1.0);
op_stat_write (data_traffic_sent_handle, 0.0);
break;
}

case WlanCJRts:
{
/* 802.1 la Model Addition */
/* Determine the transmission speed of the RTS frame based on the */
/* control frame speed calculated above. The default is already 6 Mbps. */
if(control_frame_speed= 12000000)

{
outstrmjojphy = LOW_LAYER_OUT_STREAM_CH3;
rate_holder = 3;

100

}
else if (control_frame_speed = 24000000)

{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH5;
rate_holder = 5;
}

/* 802.1 la Model Addition */
/* Creating RTS packet format type for use in the 802.11a model. */
wlan_transmit_frame_ptr = op_pk_create_fmt ("wlan_control_802_l la");

/* Initializing Rts frame fields */
pk_chstruct_ptr = wlan_mac_pk_chstruct_create 0;

/* Type of frame */
type = WlanC_Rts;

/* if in the infrastructure BSS network then the immediate receipient for */
/* the transmitting station will always be an Access point. Otherwise */
/* the frame is directly sent to the final destination. */

if ((bss_flag = OPC_BOOLINT_ENABLED) && (ap_flag =
OPC_BOOLINT_DISABLED))

{
/* If Infrastructure BSS then the immediate destination will be Access

/* then forward the frame to the appropriate destination. * */
pk_chstruct_ptr->rx_addr = bss_id;
}

{
/* Otherwise set the final destination address. */

pk_chstruct_ptr->rx_addr = destinationaddr;
}

point, which

else

response. */

/* Source station address. */
pk_chstruct_ptr->rx_addr = my_address;

/* Setting the Rts frame type. */
op_pk_nfd_set (wlan_transmit_framejptr, "Type", type);

/* Setting the accept field to true, meaning the frame is a good frame. */
op_pk_nfd_set (wlan_transmit_frame_ptr, "Accept", OPCJTRUE);

/* Setting the variable which keeps track of the last transmitted frame that needs

last_framerx_type = type;

/* Determining the size of the first data fragment or frame that need */
/* to be transmitted following the Rts transmission. */

if (num fragments > 1)
{

101

/* If there are more than one fragment to transmit then the */
/* data segment of the first data frame will be the size of*/
/* fragmentation threshold. The total packet size will be */
/* data plus the overhead (which is 224 bits).

*/
tx_datapacket_size = frag_threshold * 8 +

WLANC_MSDU_HEADER_SIZE;
}

else
/* If there is one data frame to transmit then the */
/* data segment of the first data frame will be the size of */
/* the remainder computed earlier. The total packet size */
/* will be data plus the overhead (which is 224 bits). */
{
tx_datapacket_size = remainder_size +

WLANC_MSDU_HEADER_SIZE;
}

/* 802.1 la Model Addition */
/* Station is reserving channel bandwidth by using Rts frame, so */
/* in Rts the station will broadcast the duration it needs to send */

/* one data frame and receive ack for it. The total duration is the */
/* the time required to transmit one data frame, plus one Cts frame */
/* plus one ack frame, plus three sifs interval, and plus */
/* air propagation time for three frames */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
duration = ppdu_duration (WLAN_CTS_LENGTH, control_frame_speed) +

ppdu_duration (WLAN_ACK_LENGTH, control_frame_speed) + \
ppdu_duration (tx_datapacket_size, operational_speed) + 3 * (sifs time

+ WLAN_AIR_PROPAGATION_TIME + plcp_overhead);

pk_chstructjptr->duration = duration;

/* Setting Rts frame fields. */
opjpk_nfd_set (wlan_transmit_frame_ptr, "Wlan Header", pk_chstruct_ptr,

wlan_mac_pk_chstruct_copy, wlan_mac_pk_chstruct_destroy, sizeof (WlanT_Control_Header_Fields));

/* 802.1 la Model Addition */
/* Include PLCP overhead when setting the total size of the RTS packet.

*/
op_pk_total_size_set (wlan_transmit_frame_ptr, (int) ((ppdu_duration

(WLAN_RTS_LENGTH, control_frame_speed) + plcp_overhead) * control_frame_speed));

/* Station update of its own nav_duration */
nav_duration = currentjime + duration + (double) (op_pk_total_size_get

(wlan_transmit_frame_ptr)) / control_frame_speed;

/* Cts is expected in response to Rts. */

expected_frame_type = WlanC_Cts;

102

pkt_in_service);

/* Printing out information to ODB.*/
if (wlan_trace_active = OPCJTRUE)

{
sprintf (msg_string, "Rts is being transmitted for data packet %d",

op_prg_odbjprint_major (msg_string, OPC_NIL);
}

/* Reporting total number of bits in a control frame. */
op_stat_write (ctrl_traffic_sent_handle_inbits, (double)

WLAN_RTS_LENGTH);
op_stat_write (ctrl_traffic_sent_handle_inbits, 0.0);

/* Update control traffic sent stat when the transmission is complete */
op_stat_write (ctrl_traffic_sent_handle, 1.0);
op_stat_write (ctrl_traffic_sent_handle, 0.0);
break;
}

case WlanC_Cts:
{
/* 802.11a Model Addition */
/* Determine the transmission speed of the CTS frame based on the response */
/* speed. The default is already 6 Mbps. */
if (response_speed= 12000000)

{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH3;
rate_holder = 3;
}

else if (response_speed = 24000000)
{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH5;
rate_holder = 5;
}

/** Preparing Cts frame in response to the received Rts frame **/
/** from the remote station. No response needed for Cts frame.**/

/* 802.1 la Model Addition */
/* Creating CTS packet format type for use in the 802.1 la model. */
wlan_transmit_frame_ptr = op_pk_create_frnt ("wlan_control_802_l la");

/* Initializing Rts frame fields */
pk_chstruct_ptr = wlan_mac_pk_chstruct_create ();

/* Type of frame */
type = WlanC_Cts;

/* Destination station address. */
pk_chstruct_ptr->rx_addr = remote_sta_addr;

/* 802.1 la Model Addition */
/* Station is reserving channel bandwidth by using Rts frame, so */

103

response_speed) \

current_time);

/* in Rts the station will broadcast the duration it needs to send */

/* one data frame and receive ack for it. The total duration is the */
/* the time required to transmit one Cts frame, plus one data */
/* frame, plus one Ack frame, plus three sifs interval, and plus */
/* three air propagation time for three frames. */
/* In Cts frame the station will transmit the remaining time needed */
/* by the station after the exchange of Rts-Cts */
/* Include the PLCP overhead for the CTS frame. */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
duration = nav_duration - (sifsjime + ppdu_duration (WLAN_CTS_LENGTH,

+ plcp_overhead + WLAN_AIR_PROPAGATION_TIME +

pk_chstruct_ptr->duration = duration;

/* Setting Cts frame type. */
op_pk_nfd_set (wlan_transmit_frame_ptr, "Type", type);

/* Setting the accept field to true, meaning the frame is a good frame. */
op_pk_nfd_set (wlan_transmit_frame_ptr, "Accept", OPCJTRUE);

/* Setting Cts frame fields. */
op_pk_nfd_set (wlan_transmit_frame_ptr, "Wlan Header", pk_chstruct_ptr,

wlan_macjpk_chstruct_copy,
wlan_macjpk_chstruct_destroy, sizeof (WlanT_Control_Header_Fields));

/* Setting the total frame size to Cts length. */
/* The PLCP overhead is included in the size. */
op_pk_total_size_set (wlan_transmit_frame_ptr, (int) ((ppdu_duration

(WLAN_CTS_LENGTH, response_speed) + plcp_overhead) * response_speed));

/* Once Cts is transmitted in response to Rts then set the frame */
/* response indicator to none frame as the response is already generated */
fresp_to_send = WlanC_None;

/* No frame is expected once Cts is transmitted */
expected_frame_type = WlanC_None;

/* Printing out information to ODB.*/
if (wlan_trace_active = OPCJTRUE)

{
sprintf (msg_string, "Cts is being transmitted in response to Rts");
°P_Prg_odb_print_major (msg_string, OPC_NIL);
}

WLAN_CTS_LENGTH);

/* Reporting total number of bits in a control frame */
op_stat_write (ctrl_traffic_sent_handle_inbits, (double)

op_stat_write (ctrl_traffic_sent_handle_inbits, 0.0);

/* Update control traffic sent stat when the transmission is complete */

104

op_stat_write (ctrl_traffic_sent_handle, 1.0);
op_stat_write (ctrl_traf5c_sent_handle, 0.0);
break;

case WlanC_Ack:
{
/** Preparing acknowledgement frame in response to the data **/
/** frame received from the remote stations. Note that no **/
/** response is needed for the ack frame. **/

for which

response_speed) \

current_time);

/* 802.1 la Model Addition */
/* Determine the transmission speed of the ACK frame based on the */
/* response speed. The default is already 6 Mbps. */
if(response_speed= 12000000)

{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH3;
rate_holder = 3;
}

else if (response_speed = 24000000)
{
outstrm_to_phy = LOW_LAYER_OUT_STREAM_CH5;
rate_holder=5;
}

/* 802.1 la Model Addition */
/* Creating ACK packet format type for the 802.1 la model. */
wlan_transmit_frame_ptr = op_pk_create_fmt ("wlan_control_802_l la");

/* Setting ack frame fields */
pk_chstructjptr = wlan_mac_pk_chstruct_create ();
type = WlanC_Ack;
pk_chstruct_ptr->Tetry = duplicate_entry;

/* 802.1 la Model Addition */
/* If there are more fragments to transmit then broadcast the remaining duration

*/
*/

/* the station will be using the channel.
/* Add PLCP overhead to the ACK packet
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
duration = nav_duration - (ppdu_duration (WLAN_ACK_LENGTH,

+ plcp_overhead + WLAN_AIR_PROPAGATION_TIME +

pk_chstruct_ptr->duration = duration;

/* Destination station address. */
pk_chstruct_ptr->rx_addr = remote_sta_addr;

/* Setting Ack type. */
op_pk_nfd_set (wlan_transmit_frame_ptr, "Type", type);

105

/* Setting the accept field to true, meaning the frame is a good frame. */
op_pk_nfd_set (wlan_transmit_frame_ptr, "Accept", OPCJRUE);

op_pk_nfd_set (wlan_transmit_frame_ptr, "Wlan Header", pk_chstract_ptr,
wlan_mac_pk_chstract_copy,

wlan_macjpk_chstract_destroy, sizeof (WlanT_Control_Header_Fields));

/* 802.1 la Model Addition */
/* Setting the total frame size to Ack length. */
/* The PLCP overhead is included in the size. */
op_pk_total_size_set (wlan_transmit_frame_ptr, (int) ((ppdu_duration

(WLAN_CTS_LENGTH, response_speed) + plcp_overhead) * response_speed));

/* since no frame is expected,the expected frame type field */
/* to nil. */
expected_frame_type = WlanC_None;

/* Once Ack is transmitted in response to Data frame then set the frame */
/* response indicator to none frame as the response is already generated */
fresp_to_send = WlanC_None;

/* Printing out information to ODB. */
if (wlan_trace_active = OPC_TRUE)

{
sprintf (msg_string, "Ack is being transmitted for data packet

received");

op_prg_odb_print_major (msg_string, OPC_NDL);
}

/* Reporting total number of bits in a control frame. */
op_stat_write (ctrl_traffic_sent_handle inbits, (double)

WLAN_ACK_LENGTH);
op_stat_write (ctrl_traffic_sent_handle_inbits, 0.0);

/* Update control traffic sent stat when the transmission is complete*/
op_stat_write (ctrl_trafFic_sent_handle, 1.0);
op_stat_write (ctrl_traffic_sent_handle, 0.0);
break;
}

default:

OPCNIL);

}

{
wlan_mac_error ("Transmission request for unexpected frame type.", OPC_NIL,

break;
}

/* 802.1 la Model Addition */
/* Before sending the packet to the transmitter, set the Data Rate field */
/* in the packet header as a way to pass the current link data rate to */
/* the pipeline stages so the correct OFDM modulation table can be used */
/* in the dra_ber_ 11 a pipeline stage. */

106

op_pk_nfd_set (wlan_transmit_framejptr, "Rate", rate_holder);

/* Sending packet to the transmitter */
op_pk_send (wlan_transmit_frame_ptr, outstrm_to_phy);
wlan_flags->transmitter_busy = OPC_BOOLINT_ENABLED;

FOUT;
}

void
wlan_interrupts_process ()

{
/** This routine handles the appropriate processing need for each type **/
/** of remote interrupt. The type of interrupts are: stream interrupts **/
/** (from lower and higher layers), stat interrupts (from receiver and **/
/** transmitter). **/
FIN (wlan_interrupts_process ());

/* Check if debugging is enabled. */
wlan_trace_active = opjprg_odb_ltrace_active ("wlan");

/* Determine the current simualtion time */
current_time = op_sim_time ();

/* Determine interrupt type and code to divide treatment */
/* along the lines of interrupt type */
intrpt_type = op_intrpt_type ();
intrpt_code = op_intrpt_code ();

/* Stream interrupts are either arrivals from the higher layer, */
/* or from the physical layer
*/
if (intrptjype = OPC_INTRPT_STRM)

{
/* Determine the stream on which the arrival occurred*/
i_strm = op_intrpt_strm ();

/* If the event arrived from higher layer then queue the packet */
/* and the destination address
if (i_strm = instrm_from_mac_if)

{
/* Process stream interrupt received from higher layer*/
wlan_higher_layer_data_arrival ();
}

/* If the event was an arrival from the physical layer, */
/* accept the packet and decapsulate it
else

{
/* Process stream interrupt received from physical layer

/* 802.1 la Model Addition */
/* Capture the data rate of the incoming packet for use in

107

/* responding to the data packet. */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
switch (i_strm)

{
case LOW_LAYER_OUT_STREAM_CHl:
{
response_speed = 6000000;
break;
}
case LOW_LAYER_OUT_STREAM_CH2:
{
response_speed = 6000000;
break;
}
case LOW_LAYER_OUT_STREAM_CH3:
{
response_speed = 12000000;
break;
}
case LOW_LAYER_OUT_STREAM_CH4:
{
response_speed = 12000000;
break;
}
case LOW_LAYER_OUT_STREAM_CH5:
{
response_speed = 24000000;
break;
}
case LOW_LAYER_OUT_STREAM_CH6:
{
response_speed = 24000000;
break;
}
case LOW_LAYER_OUT_STREAM_CH7:
{
response_speed = 24000000;
break;
}
case LOW_LAYER_OUT_STREAM_CH8:
{
response_speed = 24000000;
break;
}
}

wlan_physical_layer_data_arrival ();
}

}

/* Handle stat interrupt received from the receiver */
else if (intrpt_type = OPC_INTRPT_STAT)

{

108

/* Make sure it is not a stat interrupt from the transmitter. */
if (intrpt_code < TRANSMITTER_BUSY_INSTAT)

{
/* One of receiver channels is changing its status.
/* Update the channel status vector. */
wlan_mac_rcv_channel_status_update(intrpt_code);

/* Update the flag value based on the new status of the
/* receiver channels.
if (rcv_channel_status = 0)

{
wlan_flags->receiver_busy = OPCBOOLINTDISABLED;

/* Reset the receiver idle timer to the current time since
/* it became available.
rcv_idle_time = currenttime;
}

*/
*/

*/
*/

else
{
wlan_flags->receiver_busy = OPC_BOOLINT_ENABLED;
}

}

else if (intrptjype = OPC_INTRPT_SELF)
{
if (intrptcode = WlanC_CW_Elapsed)

{
/* Reset the CW timer, since the period is over, to
/* enable state transitions,
cwend = 0.0;
}

*/
*/

FOUT;
}

static void
wlan_physical_layer_data_arrival ()

{
char
int
int
int
int
int
WlanTJDataHeaderJFields*
WlanT_Control_Header_Fields*
WlanT_Mac_Frame_Type
Packet*
Packet*

/* 802.1 la Model Addition */

msg_string [120];
dest_addr, src_addr;
accept;
data_pkt_id;
final_dest_addr;
rcvd_sta_bssid;
pk_dhstruct_ptr;
pk_chstruct_ptr;
rcvd_frame_type;
wlan_rcvd_frame_ptr;
seg_pkptr;

109

/* Add new variables for the received data rate and the MPDU size of the */
/* received data packet. */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
double received_data_rate;
int MPDU_size;

/** Process the frame received from the lower layer. **/
/** This routine decapsulate the frame and set appropriate **/
/** flags if the station needs to generate a response to the **/
/** received frame. **/
FIN (wlan_physical_layer_data_arrival ());

/* Access received packet from the physical layer stream. */
wlan_rcvd_frame_ptr = op_pk_get (i_strm);

opjpk_nfd_access (wlan_rcvd_frame_ptr, "Accept", &accept);

/* If the packet is received while the station is in transmission */
/* the packet will not be processed and if needed the station will */
/* need to retransmit the packet. */
if ((wlan_flags->rcvd_badjpacket = OPC_BOOLINT_ENABLED) || (accept = OPCFALSE))

{
/* If the pipeline stage set the accept flag to be false then it means that */
/* the packet is erroneous. Enable the EIFS duration flag and set */
/* nav duration to be EIFS duration. */
if (accept = OPCJALSE)

{
wlan_flags->wait_eifs_dur = OPC_BOOLINT_ENABLED;

/* Setting nav duration to EIFS. */
nav_duration = current_time + eifs_time;

/* Reporting the amount of time the channel will be busy. */
op_stat_write (channel_reserv_handle, (nav_duration - current_time));
op_stat_write (channel_reserv_handle, 0.0);
}

/* We have experienced a collision during transmission. We */
/* could be transmitting a packet which requires a response (an*/
/* Rts or a data frame requiring an Ack). Even, this is the */
/* case, we do not take any action right now and wait for the */
/* related timers to expire; then we will retransmit the frame. */
/* This is the approach described in the standard, and it is */
/* necessary because of the slight possibility that our peer */
/* may receive the frame without collision and send us the */
/* response back, which we should be still expecting. */

/* Check whether the timer for the expected response has */
/* already expired. If yes, we must initiate the retransmission. */
if ((expected_frame_type != WlanC_None) && (wlan_flags->transmitter_busy =

OPC_BOOLINT_DISABLED) &&
(op_ev_valid (frame_timeout_evh) = OPC_FALSE))
{

110

channel. */

frame. */

retry_count = retry_count + 1;

/* If Rts sent flag was enable then disable it as the station will recontend for the

if (wlan_flags->rts_sent = OPCJBOOLINT_ENABLED)

{
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED;
}

/* Check whether further retries are possible or */
/* the data frame needs to be discarded. */
wlan_frame_discard 0;

/* Set expected frame type flag to none as the station needs to retransmit the

expected_frame_type = WlanC_None;

/* Reset the NAV duration so that the */
/* retransmission is not unnecessarily delayed. */
nav_duration = current_time;
}

/* No frame response will be generated for bad frame.*/
fresp_to_send = WlanC_None;

/* Reset the bad packet receive flag for subsequent receptions. */
wlan_flags->rcvd_bad_packet = OPC_BOOLINT_DISABLED;

/* Printing out information to ODB. */
if (wlan_trace_active = OPCJTRUE)

{
sprintf (msg_string, "Received bad packet. Discarding received packet");
op_prg_odb_print_major (msgstring, OPC_NIL);
}

/* Destroy the bad packet. */
op_pk_destroy (wlan_rcvd_frame_ptr);

/* Break the routine as no further processing is needed. */
FOUT;
}

/* If waiting for EIFS duration then set the nav duration such that */
/* the normal operation is resumed. */
if (wlan_flags->wait_eifs_dur = OPC_BOOLINT_ENABLED)

{
nav_duration = current_time;
wlan_flags->wait_eifs_dur = OPC_BOOLINT_DISABLED;
}

/* Getting frame control field and duration information from */
/* the received packet. */
op_pk_nfd_access (wlan_rcvd_framejptr, "Type", &rcvd_frame_type) ;

111

/* Divide processing based on frame type
switch (rcvd_frame_type)

{
case WlanC_Data:

{
**/
**/
**/

/** First check that wether the station is expecting
/** any frame or not. If not then decapsulate relevant
/** information from the packet fields and set the
/** frame response variable with appropriate **/
/** frame type.

/* 802.1 la Model Addition */
/* Extract the size of the MPDU from the received data frame and */
/* report it. */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
op_pk_nfd_access (wlan_rcvd_frame_ptr, "MPDU size", &MPDU_size);
op_stat_write (data_traffic_rcvd_handle_inbits, MPDU_size);
op_stat_write (data_traffic_rcvd_handle_inbits, 0.0);

/* Data traffic received report in terms of number of packets. */
op_stat_write (data_traffic_rcvd_handle, 1.0);
op_stat_write (data_traffic_rcvd_handle, 0.0);

*/
*/

address. */

station. */

/* Address information, sequence control fields,
/* and the data is extracted from the rcvd packet.
opjpk_nfd_access (wlan_rcvd_frame_ptr, "WlanHeader",

&pk_dhstructjptr);

/* Data packet id of the received data frame is extracted. */
op_j>k_nfd_access (wlan_rcvd_frame_ptr, "Data Packet ED", &data_pkt_id);

dest_addr = pk_dhstruct_ptr->addressl;
remote_sta_addr = pk_dhstruct_ptr->address2;

/* If the station is an AP then it will need to forward the receiving data to this

/* Otherwise this field will be zero and will be ignored. */
final_dest_addr = pk_dhstruct_ptr->address3;

fresp_to_send = WlanC_None;

/* Process frame only if it is destined for this station. */
/* Or it is a broadcast frame. */
if ((dest_addr = my_address) || (dest_addr < 0))

{
/* Extracting the MSDU from the packet only if the packet */
/* is destined for this station. */
op_pk_nfd_get (wlan_rcvd_frame_ptr, "Frame Body", &seg_pkptr);

/* Only send acknowledgement if the data frame is destined for this

/* No Acks for broadcast frame. */

112

if (dest_addr = my_address)
{
/* Send the acknowledgement to any received data frame.*/
fresp_to_send = WlanC_Ack;

}

/* If its a duplicate packet then destroy it and do nothing */
/* otherwise insert it in the defragmentation list. */
if (wlan_tuple_find (remote_sta_addr, pk_dhstruct_ptr-

>sequence_number, pk_dhstruct_ptr->fragment_number) = OPC_FALSE)
{
wlan_data_process (seg_pkptr, remote_sta_addr,

final_dest_addr, pk_dhstruct_ptr->fragment_number,
pk_dhstruct_ptr-

>more_frag, data_pkt_id, rcvd_sta_bssid);

}
else

}

discarded", data_pkt_id);

{
/* Printing out information to ODB. */
if (wlan_trace_active = OPCJRUE)

{
sprintf (msg_string, "Data packet %d is received and

op_prg_odb_print_major (msg_string, OPC_NIL);

}

/* If the frame is not destined for this station */
/* then do not respond with any frame. *
fresp_to_send = WlanCJNone;
}

if(expected_frame_type != WlanC_None)

{
/* Since the station did not receive the expected frame
/* it has to retransmit the packet.
retry_count = retry_count + 1;

*/
*/

for the channel. */
/* If Rts sent flag was enable then disable it as the station will recontend

if (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED)

{
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED;

}

/* Reset the NAV duration so that the
/* retransmission is not unnecessarily delayed.
nav_duration = current_time;
}

/* Update nav duration if the received nav duration is greater */
/* than the current nav duration. */
if (nav_duration < (pk_dhstruct_ptr->duration + current_time))

*/
*/

113

{
nav_duration = pk_dhstruct_ptr->duration + currentjime;

/* Set the flag that indicates updated NAV value. */
wlan_flags->nav_updated = OPCJBOOLINT ENABLED-
}

break;
}

case WlanC_Rts:
{
/** First check that wether the station is expecting any frame or not **/
/** If not then decapsulate the Rts frame and set a Cts frame response **/
/** if frame is destined for this station. Otherwise, just update the **/
/** network allocation vector for this station. * */

/* Control Traffic received report in terms of number of bits. */
op_stat_write (ctrl_traffic rcvd handle inbits, (double)

WLAN_RTS_LENGTH); ~ " '

op_stat_write (ctrl_traffic_rcvd_handle_inbits, 0.0);

/* Control Traffic received report in terms of number of packets. */
op_stat_write (ctrl_traffic_rcvd_handle, 1.0);
op_stat_write (ctrl_traffic_rcvd_handle, 0.0);

°P_Pk_nfd_access (wlan_rcvd_frame_ptr, "Wlan Header",
&pk_chstruct_ptr);

dest_addr = pk_chstructjptr->rx_addr;
remote_sta_addr = pk_chstruct_ptr->tx_addr;

if (expected_frame_type = WlanC_None)
{
/* We will respond to the Rts with a Cts only if a) the */
/* Rts is destined for us, and b) our NAV duration is */
/* not larger than current simulation time. */
if ((my_address = dest_addr) && (current_time >= nav_duration))

/* Set the frame response field to Cts. */
fresp_to_send = WlanC_Cts;

/* Printing out information to ODB. */
if (wlan_trace_active = OPC_TRUE)

{
sprintf (msg_string, "Rts is received and Cts will be

transmitted");

}

op_prg_odbjprint_major (msg_string, OPC_NIL);

else
{
/* If Rts is not destined for this station then set the */
/* frame response field to None */

114

retransmit the packet

for the channel. */

else

fresp_to_send = WlanC_None;

/* Printing out information to ODB.*/
if (wlan_trace_active = OPCJTRUE)

{
sprintf (msg_string, "Rts is received and discarded");
opjprg_odb_print_major (msg_string, OPC_NIL);

}
}

}

{
/* Since the station did not receive the expected frame it has to

retry_count = retry_count + 1;

/* If Rts sent flag was enable then disable it as the station will recontend

if (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED)
{
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED;
}

/* Reset the NAV duration so that the
/* retransmission is not unnecessarily delayed.
nav_duration = current_time;

/* Reset the expected frame type variable since we */
/* will retransmit. */
fresp_to_send = WlanC_None;
}

/* Update nav duration if the received nav duration is greater */
/* than the current nav duration. */
if (nav_duration < (pk_chstruct_ptr->duration + current_time))

{
nav_duration = pk_chstruct_ptr->duration + current_time;

/* Set the flag that indicates updated NAV value. */
wlan_flags->nav_updated = OPC_BOOLINT_ENABLED;
}

break;
}

caseWlanC Cts:
{
/** First check that whether the station is expecting any frame or not
/** If not then decapsulate the Rts frame and set a Cts frame response
/** if frame is destined for this station. Otherwise, just update the
/** network allocation vector for this station. **/

/* Control Traffic received report in terms of number of bits. */

*/
*/

**/
**j

**/

115

op_stat_write (ctrl_traffic_rcvd handle inbits, (double)
WLAN_CTS_LENGTH);

op_stat_write (ctrl_traffic_rcvd_handle_inbits, 0.0);

/* Control Traffic received report in terms of number of packets. */
op_stat_write (ctrl_traffic_rcvd_handle, 1.0);
op_stat_write (ctrl_traffic_rcvd_handle, 0.0);

op_pk_nfd_access (wlan_rcvd_frame__ptr, "Wlan Header",
&pk_chstruct_ptr);

dest_addr = pk_chstruct_ptr->rx_addr;

/* If the frame is destined for this station and the station is expecting */
/* Cts frame then set appropriate indicators. */
if ((dest_addr = my_address) && (expected_frame_type = rcvd_frame_type))

{
/* The receipt of Cts frame indicates that Rts is successfully */
/* transmitted and the station can now respond with Data frame */
fresp_to_send = WlanC_Data;

/* Set the flag indicating that Rts is succesfully transmitted */
wlan_flags->rts_sent = OPC_BOOLINT_ENABLED;

op_stat_write (retrans_handle, (double) (retry_count * 1.0));
op_stat_write (retransjhandle, 0.0);

/* Printing out information to ODB. */
if (wlan_trace_active = OPC_TRUE)

{
sprintf (msg_string, "Cts is received for Data packet %d",

pkt_in_service);

}

°P_Prg_odb_print_major (msg_string, OPC NIL);
}

else
{
/* Printing out information to ODB. */
if (wlan_trace_active = OPC_TRUE)

{
sprintf (msg_string, "Cts is received and discarded.");
°P_Prg_odbjprint_major (msg_string, OPC_NIL);
}

/* No response needed as the frame is either not destined for */
/* this station and/or the station is not expecting this frame. */
fresp_to_send = WlanC_None;

/* Check whether we were expecting another frame. If yes */
/* then we need to retransmit the frame for which we were */
/* expecting a reply. */
if(expected_frame_type != WlanC_None)

{

116

retransmit the packet

recontend for the channel. */

OPC BOOLINT DISABLED;

/* Since the station did not receive the expected frame it has to

retry_count = retry_count + 1;

/* If Rts sent flag was enable then disable it as the station will

if (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED)

{
wlan_flags->rts_sent =

}

/* Reset the NAV duration so that the */
/* retransmission is not unnecessarily delayed. */
nav_duration = current_time;

}
}

/* If network allocation vector is less than the received duration */
/* value then update its value. */
if (nav_duration < (pk_chstruct_ptr->duration + current_time))

{
nav_duration = pk_chstruct_ptr->duration + current_time;

/* Set the flag that indicates updated NAV value. */
wlan_flags->nav_updated = OPC_BOOLINT_ENABLED;

}
break;
}

case WlanC_Ack:
{
/* No response needed for ack frame. */
fresp_to_send = WlanCNone;

op_pk_nfd_access (wlan_rcvd_frame_ptr,"Wlan Header", &pk_chstructjptr);

dest_addr = pk_chstruct_ptr->rx_addr;

/* Control Traffic received report in terms of number of bits. */
op_stat_write (ctrl_traffic_rcvd_handle_inbits, (double)

WLAN_ACK_LENGTH);
op_stat_write (ctrl_traffic_rcvd_handle_inbits, 0.0);

/* Control Traffic received report in terms of number of packets. */
op_stat_write (ctrl_traffic_rcvd_handle, 1.0);
op_stat_write (ctrl_traffic_rcvd_handle, 0.0);

if ((dest_addr = my_address) && (rcvd_frame_type = expected_frame_type))

{
/* Printing out information to ODB.*/
if (wlan_trace_active = OPCTRUE)

117

pkt_in_service);

successfully transmitted. */

sent flag */

exchange is */

period. */

OPC_BOOLINT_ENABLED))

*/

data, */

else

sprintf (msg_string, "Ack received for data packet %d",

°P_Prg_odb_print_major (msg_string, OPC_NIL);

op_stat_write (retrans_handle, (double) (retry_count * 1.0));
op_stat_write (retransjiandle, 0.0);

/* Reset the retry counter as the expected frame is received */
retry_count = 0;

/* Decrement number of fragment count because one fragment is

num_fragments = num_fragments -1;

/* When there are no more fragments to transmit then disable the Rts

/* if it was enabled because the contention period due to Rts/Cts

/* over and another Rts/Cts exchange is needed for next contention

if ((num_fragments = 0) && (wlan_flags->rts_sent =

{
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED;

/* Set the contention window flag. Since the ACK for the last

/* fragment indicates a sucessful transmission of the entire

/* we need to back-off for a contention window period. */
wlan_flags->cw_required = OPCJTRUE;
}

/* Data packet is successfully delivered to remote station, */
/* since no further retransmission is needed the copy of the data */
/* packet will be destroyed. */
°PJPk_destroy(wlan_transrnit_frame_copy_ptr);
wlan_transmit_frame_copy_ptr = OPC_NIL-
}

{
/* Printing out information to ODB. */
if (wlan_trace_active = OPCJTRUE)

{
sprintf (msg_string, "Ack is received and discarded.");
°P_Prg_odb_print_major (msgstring, OPC_NIL);

/* Check whether we were expecting another frame. If yes then */
/* we need to retransmit the frame for which we were expecting */

118

retransmit the packet

recontend for the channel. */

OPC BOOLINT DISABLED;

/* a reply. */
if(expected_frame_type != WlanCJNone)

{
/* Since the station did not receive the expected frame it has to

retry_count = retry_count + 1;

/* If Rts sent flag was enable then disable it as the station will

if (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED)
{
wlan_flags->rts_sent =

}

/* Reset the NAV duration so that the */
/* retransmission is not unnecessarily delayed. */
nav_duration = current_time;
}

}

/* If network allocation vector is less than the received duration */
/* value then update its value. */
if (nav_duration < (pk_chstruct_ptr->duration + current_time))

{
nav_duration = pk_chstruct_ptr->duration + current_time;

/* Set the flag that indicates updated NAV value. */
wlan_flags->nav_updated = OPC_BOOLINT_ENABLED;
}

break;
}

default:
{
wlan_mac_error ("Unexpected frame type received.", OPC_NEL, OPC_NIL);
break;
}

}

/* Reporting the amount of time the channel will be busy. */
op_stat_write (channel_reserv_handle, (nav_duration - current_time));
op_stat_write (channel_reserv_handle, 0.0);

/* Check whether further retries are possible or */
/* the data frame needs to be discarded. */
wlan_frame_discard 0;

/* Set the expected frame type to None because either the */
/* expected frame is recieved or the station will have to */
/* retransmit the frame
*/
expected_frame_type = WlanC_None;

119

/* Destroying the received frame once relevant information is taken out of it. */
op_pk_destroy (wlan_rcvd_frame_ptr);

FOUT;
}

Boolean
wlan_tuple_find (int sta_addr, int seq_id, int fragjnum)

{
Boolean result = OPC_BOOLINT_DISABLED;
int list_index;
int list_size;
WlanT_Mac_Duplicate_Buffer_Entry* tuple_ptr;

/** This routine determines whether the received data frame already exists in the **/
/** duplicate buffer. If it is not then it will be added to the list and the list is updated **/
/** such that its size will will not be greater then the MAX TUPLE SIZE. **/
FIN (wlan_tuple_find (sta_addr, seq_id, frag_num));

/* Finding the index of the station address in the list, */
/*ifthe station belongs to this subnet. */
list_index = oms_aa_address_find (oms_aa_wlan_handle, sta_addr);

/* If remote station entry doesn't exist then create new node. */
if(list_index>=0)

{
if (duplicate_list_ptr [list_index] = OPC_NIL)

{
/* Creating struct type for duplicate frame (or tuple) structure. */
tuple_ptr = (WlanT_Mac_Duplicate_Buffer_Entry *)

op_prg_mem_alloc (sizeof
(WlanT_Mac_Duplicate_Buffer_Entry));

duplicate buffer */

OPC_NIL, OPC.NIL);

else

/* Generate error and abort simulation if no more memory left to allocate for

if (tuple_ptr = OPC_NIL)
{
wlan_mac_error ("Cannot allocate memory for duplicate buffer entry",

}

tuple_ptr->tx_station_address = remote_sta_addr;

tuple_ptr->sequence_id = seq_id;
tuple_ptr->fragment_number = frag_num;

/* Insert new entry in the list. */
duplicate_list_ptr [list_index] = tuple_ptr;

}

120

{
if (duplicate_list_ptr [list_index]->sequence_id = seq_id &&

duplicate_list_ptr [list_index]->fragment_number = frag_num)

{
/* This will be set in the retry field of Acknowledgement. */
duplicate_entry = 1;

/* Break the routine as the packet is already received by the station.*/
FRET (OPCTRUE);

}
else

{
/* Update the sequence id and fragment number fields of the */
/* remote station in the duplicate buffer list. The list */
/* maintains the sequence id and fragment number of the */
/* previously received frame from this remote station. */
duplicate_list_ptr [list_index]->sequence_id = seq_id;
duplicate_list_ptr [list_index]->fragment_number = frag_num;

}
}

}
else

{
/* Its not possible for a station to directly receive packet from a station that */
/* does not exist in its BSS.

*/
wlan_mac_error ("Receiving packet from a station that does not exist in this BSS",

"Possibly wrong destination address", "Please check the configuration");
}

/* This will be set in the retry field of Acknowledgement. */
duplicate_entry = 0;

/* Packet is not already received by the station. */
FRET (OPCJFALSE);
}

static void
wlan_data_process (Packet* seg_pkptr, int sta_addr, int final_dest_addr, int frag_num, int more_frag, int
pkt_id, int rcvd_sta_bssid)

{
char msg_string [120];
int current_mdex;
int list_index;
int list_size;
int protocoltype;
WlanT_Mac_Defragmentation_Buffer_Entry* defragjptr;

/** This routine handles defragmentation process and also sends data to the **/
/** higher layer if all the fragments have been received by the station. **/

121

FIN (wlan_data_process (seg_pkptr, sta_addr, final_dest_addr, frag num, more frag, pkt id,
rcvd_sta_bssid)); ~ -

/* Defragmentation of the received data frame.
/* Inserting fragments into the reassembly buffer. There are */
/* two possible cases:

*/
/* 1. The remote station has just started sending the */
/* fragments and it doesn't exist in the list. */
/* 2. The remote station does exist in the list and the */
/* and the new fragment is a series of fragments for the data */
/* packet. */

/* Get the size of the defragmentation list. */
list_size = opjprg_list_size (defragmentation_list_ptr);

/* Initialize the current node index which will indicate whether */
/* the entry for the station exists in the list. */
current_index = -l;

/* Searching through the list to find if the remote station address */
/* exists i.e. the source station has received fragments for this */
/* data packet before.

*/
/* Also, removing entries from the defragmentation buffer which has */
/* reached its maximum receieve lifetime. */
for (list_index = 0; list_index < list_size; list_index++)

{
/* Accessing node of the list for search purposes. */

*/

list_index);

defrag_ptr - (WlanT_Mac_Defragmentation_Buffer_Entry*)
op_prg_list_access (defragmentation_list_ptr,

/* Removing station entry if the receive lifetime has expired. */
if((cun-ent_time-defrag_ptr->time_rcvd)>=max receive lifetime)

{ "
/* Removing the partially completed fragment once its lifetime has reached.*/
defrag_ptr =(WlanT_Mac_Defragmentation_Buffer_Entry *)

op_prg_list_remove (defragmentation_list_ptr, list_index);
op_sar_buf_destroy(defrag_ptr->reassembly_buffer_ptr);

op_prg_mem free (defrag_ptr);

/* Updating the total list size. */
list_size = list_size -1;
}

/* If the station entry already exists in the list then store its index for future use. */
else if (remotestaaddr = defrag_ptr->tx_station_address)

current_index = list_index;
}

122

}

/* If remote station entry doesn't exist then create new node */
if (current_index = -1)

{
/* If the entry of the station does not exist in the defrag list */
/* and the fragment received is not the first fragment of the packet */
/* then it implies that the maximum receive lifetime of the packet */
/* has expired. In this case the received packet will be destroyed and */
/* the acknowledgement is sent to the receiver as specified by the */
/* protocol. */
if(frag_num>0)

{
op_pk_destroy (seg_pkptr);
FOUT;
}

/* Creating struct type for defragmentation structure */

defrag_ptr = (WlanT_Mac_Defragmentation_Buffer_Entry *) opjprg_mem_alloc (sizeof
(WlanT_Mac_Defragmentation_Buffer_Entry));

/* Generate error and abort simulation if no more memory left to allocate for duplicate
buffer */

if (defrag_ptr= OPC_NIL)
{
wlan_mac_error ("Cannot allocate memory for defragmentation buffer entry",

OPC_NIL, OPC_NIL);
}

/* Source station address is store in the list for future reference. */
defrag_ptr->tx_station_address = sta_addr;

/* For new node creating a reassembly buffer */
defrag_ptr->reassembly_buffer_ptr = op_sar_buf_create

(OPC_SAR_BUF_TYPE_REASSEMBLY,OPC_SAR_BUF_OPT_DEFAULT);
op_prg_list_insert (defragmentation_list_ptr, defrag_ptr, OPCLISTPOSTAIL);
}

/* Record the received time of this fragment. */
defragjptr->time_rcvd = current_time;

/* Insert fragment into the reassembly buffer */
op_sar_rsmbuf_seg_insert (defrag_ptr->reassembly_bufferjptr, segjpkptr);

/* If this is the last fragment then send the data to higher layer. */
if (more_frag = 0)

{
/* If no more fragments to rev then send the data to higher */
/* layer and increment revd fragment count. */
seg_pkptr = op_sar_rsmbuf_pk_remove (defrag_ptr->reassembly_buffer_ptr);

123

address then

if (ap_flag = OPC_BOOLINT_ENABLED)
{
/* If the address is not found in the address list then access point will sent the

data to higher */
/* layer for address resolution. Note that if destination address is same as AP's
*/
/* the packet is sent to higher layer for address resolution. */
if ((oms_aa_address_frnd (oms_aa_wlan_handle, final_dest_addr) >= 0) &&

(final_dest_addr != my_address))
{
/* Printing out information to ODB. */
if (wlan_trace_active = OPC_TRUE)

{
sprintf (msg_string, "All fragments of Data packet %d is

received and enqueued for transmission within a subnet", pkt_id);
°P_Prg_odbjprint_major (msg_strmg, OPC_NIL);
}

/* Enqueuing packet for transmission within a subnet. */
wlan_hlpk_enqueue (seg_pkptr, final_dest_addr);

else
}

{
/* Update the local/global throughput and end-to-end */
/* delay statistics based on the packet that will be
/* forwarded to the higher layer.
wlan_accepted_frame_stats_update(segjpkptr);

*/
*/

OPC_COMPCODE_FAILURE)

OPC_NIL, OPC_NIL);

OPC_COMPCODE_FAILURE)

ICL", OPC_NIL, OPCNIL);

OPC_COMPCODE_FAILURE)

OPC_NIL, OPC_NIL);

/* Set the contents of the LLC-destined ICI - set the address */
/* of the transmitting station. */
if (op_ici_attr_set (llc_iciptr, "src_addr", remote_sta_addr) =

{
wlan_mac_error ("Unable to set source address in LLC ICI.",

}

/* Set the destination address (this mainly serves to */
/* distinguish packets received under broadcast conditions.) */
if (op_ici_attr_set (Uc_iciptr, "dest_addr", final_dest_addr) =

{
wlan_mac_error("Unable to set destination address in LLC

}

/* Set the protocol type field contained in the Wlan frame. */
protocol_type = 0;
if (op_ici_attr_set (llc_iciptr, "protocol_rype", protocoltype) =

{
wlan_mac_error("Unable to set protocol type in LLC ICL",

124

}

/* Printing out information to ODB. */
if (wlan_trace_active = OPCJRUE)

{
sprintf (msg_string, "All fragments of Data packet %d is

received and sent to the higher layer", pkt_id);
op_prg_odbjprint_major (msg_string, OPC_NIL);

}

/* Setting an ici for the higher layer */
op_ici_install (llcjciptr);

/* Sending data to higher layer through mac interface. */
op_pk_send (seg_pkptr, outstrm_to_mac_if);

}
}

else
{
/* If the station is a gateway and not an access point then do not send */
/* data to higher layer for address resolution. This is for not allowing */
/* data to go out of the Adhoc BSS. */
if ((wlan_fiags->gateway_flag = OPC_BOOLINT_ENABLED) ||

(wlan_flags->bridge_flag = OPC_BOOLINT_ENABLED))

{
/* Printing out information to ODB. */
if (wlan_trace_active = OPCJRUE)

{
sprintf (msg_string, "Gateway is not an access point so all

received fragments are discarded.");
op_prg_odb_print_major (msg_string, OPC_NIL);

}
op_pk_destroy (seg_pkptr);
}

else
{
/* Update the local/global throughput and end-to-end */
/* delay statistics based on the packet that will be */
/* forwarded to the higher layer. */
wlan_accepted_frame_stats_update(seg_pkptr);

/* Printing out information to ODB.*/
if (wlan_trace_active = OPCJRUE)

{
sprintf (msg_string, "All fragments of Data packet %d is

received and sent to the higher layer", pkt_id);
op_prg_odbjprint_major (msgstring, OPC_NIL);

}

/* Sending data to higher layer through mac interface */
op_pk_send (segjpkptr, outstrm_to_mac_if);

}

125

else

",pkt_id);

/* Freeing up memory space once the received data frame is sent to higher layer. */
defrag_ptr =(WlanTJVlacJDefragmentation_Buffer_Entry *)

op_prg_list_remove (defragrnentationJist_ptr, current_index);
op_sar_buf_destroy(defragjptr->reassembly_buffer_ptr);

op_prg_mem_free (defrag_ptr);
}

{
/* Printing out information to ODB. */
if (wlan_trace_active = OPC_TRUE)

{
sprintf (msg_string, "Data packet %d is received and waiting for more fragments

°P_Prg_odbjprint_major (msg_string, OPC_NIL);

FOUT;
}

static void
wlan_accepted_frame_stats_update (Packet* seg_pkptr)

double ete_delay, pk_size;
Ici* strm_info_iciptr;
int stream_id;

/** This function is called just before a frame received from **/
/** physical layer being forwarded to the higher layer to **/
/** update end-to-end delay and throughput statistics. **/
FIN (wlan_accepted_frame_stats_update (seg_pkptr));

/* Total number of bits sent to higher layer is equivalent to a */
/* throughput. */
pk_size = (double) op_pk_total_size_get (seg_pkptr);
op_stat_write (throughput_handle, pk_size);
op_stat_write (throughputjiandle, 0.0);

/* Also update the global WLAN throughput statistic. */
op_stat_write (global_throughput_handle, pk_size);
op_stat_write (global_throughput_handle, 0.0);

/* Compute the end-to-end delay for the frame and record it. */
ete_delay = current_time - opjpk_stamp_time_get (seg_pkptr);
op_stat_write (ete_delay_handle, ete_delay);
op_stat_write (etedelayjiandle, 0.0);
op_stat_write (global_ete_delay_handle, ete_delay);
op_stat_write (global_ete_delay_handle, 0.0);

/* Retrieve the traffic stream information of the packet and */
/* update the corresponding per-stream statistics. */

126

strm_info_iciptr = op_pk_ici_get (segjpkptr);
if ((strm_info_iciptr != OPC_NIL) && (op_ici_attr_exists (strm_info_iciptr, "stream_id"):

OPC_TRUE))
{
op_ici_attr_get (strm_info_iciptr, "stream_id", &stream_id);

/* Register the statistics if this is the first packet we */
/* received belonging to that stream. */
if (stat_reg_status_array [stream_id] = OPCJFALSE)

{
wlanjper_strearn_stat_register(stream_id);

}

/* Update the related per-stream statistics. */
op_stat_write (ete_delayjper_strm_sh_array [stream_id], ete_delay);
op_stat_write (ete_delay_per_strm_sh_array [stream_id], 0.0);
op_stat_write (throughput_per_strm_sh_array [stream_id], pk_size);
op_stat_write (throughputjper_strm_sh_array [stream_id], 0.0);
}

FOUT;
}

static void
wlan_per_stream_stat_register (int stream_index)

{
char stat_annot_str [16];

/** Registers the dimensional per-stream statistics for the given **/
/** stream index and updates its status in the status array. **/
FIN (wlan_per_stream_stat_register (int stream_index));

/* Register the statistics at the corresponding dimension. */
ete_delay_per_strm_sh_array [stream_index] = op_stat_reg ("Wireless LAN Traffic

Stream.Delay (sec)", stream_index, OPC_STAT_GLOBAL);
dropped_data_per_strm_sh_array [stream_index] = op_stat_reg ("Wireless LAN Traffic

StrearaData Dropped (bits/sec)", stream_index, OPC_STAT_GLOBAL);
throughputjperstrmsharray [stream_index] = op_stat_reg ("Wireless LAN Traffic

Stream-Throughput (bits/sec)", streamjndex, OPC_STAT_GLOBAL);

/* Annotate the dimensioned statistics to improve their readibility.*/
sprintf (stat_annot_str," Stream %d", stream_index);
op_stat_annotate (ete_delay_per_strm_sh_array [stream_index], stat_annot_str);
op_stat_annotate (dropped_data_per_strm_sh_array [stream_index], stat_annot_str);
op_stat_annotate (throughput_per_strm_sh_array [stream_index], stat_annot_str);

/* Update the registration status. */
stat_reg_status_array [stream_index] = OPCTRUE;

FOUT;
}

static void

127

wlan_schedule_deference ()
{
/** This routine schedules self interrupt for deference **/
/** to avoid collision and also deference to observe **/
/** interframe gap between the frame transmission. **/
FIN (wlan_schedule_deference ());

/* Check the status of the receiver. If it is busy, exit the */
/* function, since we will schedule the end of the deference */
/* when it becomes idle. */
if (wlan_flags->receiver_busy = OPC_BOOLINT_ENABLED)

FOUT;
}

/* Extracting current time at each interrupt */
current_time = op_sim_time 0;

/* Adjust the NAV if necessary. */
if (nav_duration < rcv_idle_time)

{
nav_duration = rcv_idle_time;
}

/* Station needs to wait SIFS duration before responding to any */
/* frame. Also, if Rts/Cts is enabled then the station needs */
/* to wait for SIFS duration after acquiring the channel using */
/* Rts/Cts exchange. */
if ((fresp_to_send != WlanCJNone) || (wlan_flags->rts_sent = OPC_BOOLINT_ENABLED))

deference_evh = op_intrpt_schedule_self (currentjime + sifs time
WlanC_Deference_Off);

/* Disable backoff flag because this frame is a response frame to the */
/* previously received frame (this could be Ack or Cts) */
wlan_flags->backoff_flag = OPC_BOOLINT_DISABLED;
}

/* If more fragments to send then wait for SIFS duration and transmit. */
/* Station need to contend for the channel if one of the fragments is */
/* not successfully transmitted. */
else if ((retry_count = 0) && (op_sar_buf_size (fragmentation_buffer_ptr) > 0))

/* Scheduling a self interrupt after SIFS duration ' */
deference_evh = op_intrpt_schedule_self (currentjime + sifs time

WlanC_Deference_Off);

/* Disable backoff because the frame need to be transmitted after SIFS duration */
/* This frame is part of the fragment burst */
wlan_flags->backoff_flag = OPC_BOOLINT_DISABLED;
}

else

{

128

/* If the station needs to transmit or retransmit frame, it will */
/* defer for nav duration plus DIFS duration and then backoff */
deference_evh = op_intrpt_schedule_self ((nav_duration + difs_time),

WlanCJDeferenceOff);

/* Before sending data frame or Rts backoff is needed. */
wlan_flags->backoff_flag = OPC_BOOLINT_ENABLED;

}

/* Reset the updated NAV flag, since as of now we scheduled a new */
/* "end of deference" interrupt after the last update. */
wlan_flags->nav_updated = OPC_BOOLINT_DISABLED;

FOUT;
}

static void
wlan_frame_discard ()

{
int seg_bufsize;
Packet* seg_pkptr;

/** No further retries for the data frame for which the retry limit has reached. **/
/** As a result these frames are discarded. **/
FIN (wlan_frame_discard ());

/* If retry limit has reached then drop the frame. */
if (retry_count = retry_limit)

{
/* Update retransmission count statistic. */

op_stat_write (retrans_handle, (double) (retry_count * 1.0));
op_stat_write (retrans_handle, 0.0);

/* Update the local and global dropped packet statistics. */
op_stat_write (drop_packet_handle, 1.0);
op_stat_write (drop_packet_handle, 0.0);
op_stat_write (drop_packet_handle_inbits, (double) packet_size);
op_stat_write (drop_packet_handle_inbits, 0.0);
op_stat_write (global_dropped_data_handle, (double) packet_size);
op_stat_write (global_dropped_data_handle, 0.0);

/* Also update the per-stream statistics if the packet belongs */
/* to a traffic stream.

*/
if (packet_strm_id != WLANC_STRM_UNSET)

{
printf ("I got it\n");/* IUM */
/* Register the statistics if this is the first packet we */
/* received belonging to that stream. */
if (stat_reg_status_array [packet_strm_id] = OPC_FALSE)

{
wlan_per_stream_stat_register(packet_strm_id);

129

transmitted.

seg_bufsize);

OPC_NIL))

}

/* Update the related per-stream statistics. */
op_stat_write (dropped_datajper_strm_sh_array [packet_strm_id], packet_size);
op_stat_write (dropped_data_per_strm_sh_array [packet_strm_id], 0.0);

/* Reset the retry count for the next packet. */
retry_count = 0;

/* Get the segmenation buffer size to check if there are more fragments left to be

seg_bufsize = (int) op_sar_buf_size (fragmentation_buffer_ptr);

if (seg_bufsize != 0)
{
/* Discard remaining fragments */

seg_pkptr = op_sar_srcbuf_seg_remove (fragmentation_buffer_ptr,

op_pk_destroy (seg_pkptr);
}

/* If expecting Ack frame then destroy the tx data frame as this frame will * /
/* no longer be transmitted (even if we are not expecting an Ack at this */
/* moment, we still may have a copy of the frame if at one point in the
/* retransmission history of the original packet we received a Cts for our
/* Rts but then didn't receive an Ack for our data transmission; hence
/* consider this case as well).
if ((expected_frame_type = WlanC_Ack) || (wlan_transmit_frame_copy_ptr !=

{
/* Destroy the copy of the frame as the packet is discarded. */
op_pk_destroy (wlan_transmit_frame_copy_jptr);
wlan_transmit_frame_copy_ptr = OPC NIL-
}

/* Reset the flag that indicates successful RTS transmission. */
wlan_flags->rts_sent = OPC_BOOLINT_DISABLED;

*/
*/
*/
*/

/* Reset the "frame to respond" variable unless we have a CTS or
/* ACK to send.
if (fresp_to_send = WlanC_Data)

{
fresp_to_send = WlanC_None;
}

*/
*/

/* If there is not any other data packet sent from higher layer and */
/* waiting in the buffer for transmission, reset the related flag. */
if (op_prg_list_size (hldjistjptr) = 0)

{
wlan_flags->data_frame_to_send = OPC BOOLINT DISABLED-
}

130

FOUT;
}

static void
wlan_mac_rcv_channel_status_update (int channel_id)

{
int mask=l;

/** This function updates the status of the receiver's **/
/** channel by setting or resetting the corresponding **/
/** bit in the rcv_channel_status state variable based **/
/** the channel from which the stat interrupt is **/
/** received and the value of that channel's statwire. **/
FIN (wlan_mac_rcv_channel_status_update (int channel_id));

/* Create a mask which will access the corresponding */
/* bit of the channel that is changing its status. */
mask = mask « channeled;

/* Set the bit to 1 if channel became busy and to 0 if */
/* the channel became idle without changing the other*/
/* bits. */
if (op_stat_local_read (channel_id) = 1.0)

{
rcv_channel_status = rcv_channel_status | mask;
}

else
{
rcv_channel_status = rcv_channel_status A mask;
}

FOUT;
}

/****** Error handling procedure ******/
static void
wlan_mac_error (char* msgl, char* msg2, char* msg3)

{

/** Terminates simulation with an error message. **/
FIN (wlan_mac_error (msgl, msg2, msg3));

op_sim_end ("Error in Wireless LAN MAC process:", msgl, msg2, msg3);

FOUT;
}

/* 802.1 la Model Addition */
/* This funcion is called to calculate the rate of transmission of control */
/* frames based on the operational data rate provided by the user. The control */
/* frame transmission rate is one of 6,12,24 Mbps (i.e. the mandatory data rates */

131

/* per the 802.1 la specification). */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
static double
control_speed (double datajrate)

{
FIN (control_speed (double data_rate));

if ((data_rate = 54E6) || (data_rate = 48E6) |j (data_rate = 36E6) (| (data_rate = 24E6))
{
FRET (24000000);
}

else if ((data_rate = 18E6) || (data_rate = 12E6))
{
FRET (12000000);

else

FRET (6000000);
}

FOOT;
}

I* 802.1 la Model Addition */
/'* This function is called to calculate the duration of the data field in a */'
/* given PPDU. This duratiion includes the PSDU, SERVICE field (16 bits), tail*/
/* bits (6 bits) and enough bit padding to complete the final OFDM symbol. */
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
static double
ppdu_duration (int PSDUJength, double transmission_speed)

{
int number_ofdm_symbols;
FIN (ppdu_duration (int PSDUJength, double transmission_speed));
number_ofdm_symbols = ceil((16 + 6 + PSDUJength) / (transmission_speed * .000004));
FRET ((double) number_ofdm_symbols * .000004);
FOUT;
}

ENTT State

/*** Enter Executives ***/

/* Initialization of the process model. */
I* All the attributes are loaded in this routine */
wlan_mac_sv_init ();

/* Schedule a self interrupt to wait for mac interface */
/* to move to next state after registering */
opJntrpt_schedule_self (op_sim_time (), 0);

/*** Exit Executives ***/

132

/* object id of the surrounding processor */
my_objid = op_id_self ();

/* Obtain the node's object identifier */
my_node_objid = op_topo_parent (my_objid);

my_subnet_objid = op_topo_parent (my_node_objid);

/* Obtain the process's process handle */
own_prohandle = op_pro_self 0;

/* Obtain the values assigned to the various attributes */
op_ima_obj_attr_get (myobjid, "Wireless LAN Parameters", &wlan_params_comp_attr_objid);
params_attr_objid = op_topo_child (wlan_params_comp_attr_objid, OPC_OBJTYPE_GENERIC, 0);

/* Obtain the name of the process */
op_ima_obj_attr_get (my_objid, "process model", proc_model_name);

/* Determine the assigned MAC address which will be used for address resolution. */
/* Note this is not the final MAC address as there may be static assignments in */
/* the network. */
op_ima_obj_attr_get (my_objid, "station_address", &my_address);

/* Perform auto-addressing for the MAC address. Apart */
/* from dynamically addressing, if auto-assigned, the */
/* address resolution function also detects duplicate */
/* static assignments. The function also initializes */
/* every MAC address as a valid destination. */
oms_aa_address_resolve (oms_aa_handle, my_objid, &my_address);

/* Register Wlan MAC process in the model wide registry */
process_record_handle = (OmsT_Pr_Handle) oms_pr_process_register (
mynodeobjid, my_objid, own_prohandle, proc_model_name);

/* If this station is an access point then it has to be registered as an Access Point. */
/* This is because the network will be treated as Infrastructure network once AP is */
/* detected. */
if (ap_flag = OPC_BOOLINT_ENABLED)

{
/* Register this protocol attribute and the station address of */
/* this process into the model-wide registry. */
oms_pr_attr_set(process_record_handle,

"protocol", OMSC_PR_STRING, "mac",
"macjype", OMSC_PR_STRING, "wirelessjan",
"subprotocol", OMSC_PR_NUMBER, (double) WLAN_AP,
"subnetid", OMSC_PR_OBJID, my_subnet_objid,
"address", OMSC_PR_NUMBER, (double) my_address,
"auto address handle", OMSC_PR_ADDRESS, oms_aa_handle,
OPC_NIL);

}
else

{
/* Register this protocol attribute and the station address of

133

/* this process into the model-wide registry. */
oms_pr_attr_set (process_record_handle,

"protocol", OMSC_PR_STRING, "mac",
"macjype", OMSC_PR_STRING, "wirelessjan",
"subprotocol", OMSC_PR_NUMBER, (double) WLAN_STA
"subnetid", OMSC_PR_OBJID, my_subnet_objid,
"address", OMSC_PR_NUMBER, (double) my_address,
"auto address handle", OMSC_PR_ADDRESS, oms aa handle
OPCJNIL);

}

/* Obtain the MAC layer information for the local MAC */
/* process from the model-wide registry. */
/* This is to check if the node is a gateway or not. */
proc_record_handle_list_ptr = op_prg_list_create ();

oms_pr_process_discover (OPC_OBJID_INVALID, proc_record_handle_list_ptr
"nodeobjid", OMSC_PR_OBJID, myjnode\>bjid,
"protocol", OMSC_PR_STRING, "bridge"
OPCJNIL);

/* If the MAC interface process registered itself, */
/* then there must be a valid match */
record_handle_list_size = op_prg_list_size (proc_record_handle_listjptr);

if (record_handle_list_size != 0)
{
wlan_flags->bridge_flag = OPC_BOOLINT_ENABLED;
}

/* If the station is not a bridge only then check for arp */
if (wlan_flags->bridge_flag = OPC_BOOLINT_DISABLED)

/* Deallocate memory used for process discovery */
while (op_prg_list_size (proc_record_handle_list_ptr))

{
opjprg_list_remove (proc_record_handle_list_ptr, OPC_LISTPOS_HEAD);

op_prg_mem_free(proc_record_handle_list_ptr);

/* Obtain the MAC layer information for the local MAC */
/* process from the model-wide registry. */
proc_record_handle_list_ptr = opjprg_list_create 0;

oms_pr_process_discover (my_objid, proc_record_handle_list_ptr,
"node objid", OMSC_PR_OBJID, my_node_objid,
"protocol", OMSC_PR_STRING, "arp"
OPC_NIL);

/* If the MAC interface process registered itself, */
/* then there must be a valid match */
record_handle_list_size = op_prg_list_size (proc_record_handle_list_ptr);

134

if (record_handie_list_size != 1)

/* An error should be created if there are more */
/* than one WLAN-MAC process in the local node, */
/* or if no match is found. */
wlan_mac_error ("Either zero or several WLAN MAC interface processes found in the node.",

OPC.NIL, OPCNIL);
}

else
{
/* Obtain a handle on the process record */
processjrecowijbandle = (OmsT_Pr_Handle) op_prg_list_access (proc_record_handk_list_ptr,

OPC_LISTPOS_HEAD);

/* Obtain the module objid for the Wlan MAC Interface module */'
onTS_pr_attr_get (process_record_handle, "module objid", OMSC_PR_OBJID,

&mac_if_module_objid);

/* Obtain the stream numbers connected to and from the */
/* Wlan MAC Interface layer process */
oms_tan_neighbor_streams_find (my_objid, mac_if_module_objid. &instrm_from_mac_if,

&outstrm_to_mac_if);
}

/* Deallocate memory used for process discovery */
while (op_jprg_list_size (proc_record_handle_list_ptr))

i
op_prg_Iist_remove (proc_record_handle_Iist_ptr, OPC_LISTPOS_HEAD);

opjprg_mem_free{proc_record_handle_list_ptr);

if (wlan_trace_active)
{
/* Cache the state name from which this function was */
/* called.

*/
strcpy (current_state_name, "init");
}

BSS INIT State

/*** Enter Executives ***/

/* Schedule a self interrupt to wait for mac interface */
/* to move to next state after registering */
op_intrpt_scheduie_self (op_sim_time (), 0);

/*** Exit Executives ***/

135

/* object id of the surrounding processor */
my_objid = op_id_self ();

/* Obtain the node's object identifier */
my_node_objid = op_topo_parent (my_objid);
my_subnet_objid = op_topo_parent (my_node_objid);

/* Obtain the values assigned to the various attributes */
op_ima_obj_attr_get (my_objid, "Wireless LAN Parameters", &wlanjparams_comp_attr_objid);
params_attr_objid = op_topo_child (wlan_params_comp_attr_objid, OPC_OBJTYPE_GENERIC, 0);

/* Determining the final MAC address after address resolution.*/
op_ima_obj_attr_get (my_objid, "station_address", &my_address);

/* Once the station addresses are resolved, then create a pool for wlan addresses. */
oms_aa_address_resolve (oms_aa_wlan_handle, my_objid, &my_address);

/* Obtain the MAC layer information for the local MAC */
/* process from the model-wide registry. */
proc_record_handle_list_ptr = op_prg_list_create ();

oms_pr_process_discover (OPC_OBJID_INVALID, proc_record_handle_list_ptr,
"subnetid", OMSC_PR_OBJID, my_subnet_objid,
"mac_type", OMSC_PR_STRING, "wirelessjan",
"protocol", OMSC_PR_STRING, "mac",
OPC_NEL);

/* If the MAC interface process registered itself, */
/* then there must be a valid match */
record_handle_list_size = op_prg_list_size (proc_record_handle_list_ptr);

/* Allocating memory for the duplicate buffer based on number of stations in the subnet. */
duplicate_list_ptr = (WlanT_Mac_Duplicate_Buffer_Entry**)

op_prg_mem_alloc (record_handle_list_size * sizeof (WlanT_Mac_Duplicate_Buffer_Entry*));

/* Initializing duplicate buffer entries. */
for (i = 0; i <= (record_handle_list_size - 1); i++)

{
duplicate_list_ptr [i] = OPC_NIL;
}

/* Initialize the address list index to zero. */
addrjndex = 0;

/* Variable to counting number of access point in the network. */
ap_count = 0;

/* Maintain a list of stations in the BSS if it is an AP and a bridge */
if (ap_flag = OPC_BOOLINT_ENABLED && wlan_flags->bridge_flag =
OPC_BOOLINT_ENABLED)

{
bss_stn_list = op_prg_mem_alloc ((record_handle_list_size - 1) * sizeof (int));
count = 0;

136

/* Number of stations in the BSS */
bss_stn_count = record_handle_list_size -1;

}

/* Traversing the process record handle list to determine if there is any access point in the subnet. */
for (i = 0; i < record_handle_list_size; i++)

{
/* Obtain a handle on the process record */
process_record_handle = (OmsT_Pr_Handle) opjprg_list_access (proc_record_handle_list_ptr, i);

/* Get the Station type. */
oms_pr_attr_get (process_record_handle, "subprotocol", OMSC_PR_NUMBER, &statype);

/* If the station is an Access Point then its station id will be a BSS id for all the station in that
subnet. */

if (statype = (double) WLAN_AP)
{
/* If access point found then it means that it is a Infrastructured BSS. */
bss_flag = OPC_BOOLINT_ENABLED;

&sta_addr);

subnet. */

/* Get the BSS ID. */
oms_pr_attr_get (process_record_handle, "address", OMSC_PR_NUMBER,

bss_id = (int) sta_addr;

/* According to IEEE802.11 there cannot be more than one Access point in the same

ap_count = ap_count + 1;
if(ap_count = 2)

{
wlan_mac_error ("More than one Access Point found.", "Check the

configuration.", OPC_NIL);
}

}

/* If the station is a bridge and an access point then */
/* maintain a list of stations in the BSS */
if (ap_flag = OPC_BOOLINT_ENABLED && wlan_flags->bridge_flag =

OPC_BOOLINT_ENABLED)
{
/* Get the station id */
oms_pr_attr_get (process_record_handle, "address", OMSC_PR_NUMBER,

&sta_addr);

/* Maintain a list of stations in the BSS not including itself
if ((int) sta_addr != my_address)

{
bss_stn_list [count] = (int) sta_addr;
count = count + 1;
}

}

137

0);

/* Checking the physical characteristic configuration for the subnet. */
oms_pr_attr_get (process_record_handle, "module objid", OMSC_PR_OBjn>, &my_objid);

/* Obtain the values assigned to the various attributes */
op_ima_obj_attr_get (my_objid, "Wireless LAN Parameters", &wlanjparams_comp_attr_objid);
params_attr_objid = op_topo_child (wlan_params_comp_attr_objid, OPC_OBJTYPE_GENERIC,

/* Load the appropriate physical layer characteristics. */
op_ima_obj_attr_get (params_attr_objid, "Physical Characteristics", &sta_phy_char_flag);

if (sta_phy_char_flag != phy_char_flag)
{
wlan_mac_error ("Physical Characteristic configuration mismatch in the subnet",

"All stations in the subnet should have same physical
characteristics", "Check the configuration");

}
}

/* Deallocate memory used for process discovery */
while (op_prg_list_size (proc_record_handle_list_ptr))

{
°P_PrgJist_remove (proc_record_handle_list_ptr, OPC_LISTPOS_HEAD);

op_prg_mem_free(proc_record_handle_list_ptr);

/* Obtain the MAC layer information for the local MAC */
/* process from the model-wide registry. */
/* This is to check if the node is a gateway or not. */
proc_record_handle_list_ptr = op_prg_list_create 0;

oms_pr_process_discover (OPCJDBJIDJNVALID, proc_record_handle_list_ptr,
"node objid", OMSC_PR_OBJID, my_node_objid,
"gateway node", OMSC_PR_STRING, "gateway"
OPC_NIL);

/* If the MAC interface process registered itself, */
/* then there must be a valid match */
record_handle_list_size = opjprg_list_size (proc_record_handle_list_ptr);

if (record_handle_list_size != 0)
{
wlan_flags->gateway_flag = OPCJBOOLINTENABLED;
}

/* Deallocate memory used for process discovery */
while (op_prg_list_size (proc_record_handle_list_ptr))

{
op_prg_list_remove (proc_record_handle_list_ptr, OPC_LISTPOS_HEAD);

°P_Pr8_mem_free(proc_record_handle_list_ptr);

138

IDLE State

/*** Enter Executives ***/

/** The purpose of this state is to wait until the packet has **/
/** arrived from the higher or lower layer. **/
/** In this state following intrpts can occur: **/
/** 1. Data arrival from application layer **/
/** 2. Frame (DATA,ACK?RTS,CTS) rcvd from PHY layer **/
/** 3. Busy intrpt stating that frame is being rcvd **/
/** 4. Coll intrpt indicating that more than one frame is rcvd **/
/* When Data arrives from the application layer, insert it */
I* in the queue. */
/* If rcvr is not busy then set Deference to DIPS */
/* and Change state to "DEFER" state */

I* Rcvd RTS,CTS,DATA,or ACK (frame rcvd intrpt) */
I* Set Backoff flag if the station needs to backoff */
/* If the frame is destined for this station then send */
/* appropriate response and set deference to SIFS */
/* clear the rcvr busy flag and clamp any data transmission */
/* */
/* If if s a broadcast frame then set deference to NAV */
/* and schedule self intrpt and change state to "DEFER". */
/* Copy the frame (RTS/DATA) in retransmission variable */
/* if rcvr start receiving frame (busy stat intrpt) then set */
/* a flag indicating rcvr is busy,if rcvr start receiving */
/* more than one frame (collision stat intrpt) then set the */
/* rcvd frame as invalid frame set deference time to EIFS */

if (wlan_trace_acti ve)
i
/* Determine the current state name. */
strcpy (current_state_name5 "idle");
}

/*** Exit Executives ***/'

/* Interrupt processing routine */
wlan_interruptsjprocess ();

/* Schedule deference interrupt when there is a frame to transmit */
/* at the stream interrupt and the receiver is not busy */'
if(READY_TO_TRANSMIT)

{
/* If the medium was idling for a period equal or longer than */
/* DIPS time then we don't need to defer. */
if (MEDIUMJSJDLE)

{
/* We can start the transmission immediately. */
wlan_flags->immediate_xmt=OPCJTRUE;
backoff_slots = 0;

139

}
else

{
/* We need to defer. Schedule the end of it.
wlan_schedule_deference ();

I* If we are in the contention window period, cancel the self */
/* interrupt that indicates the end of it We will reschedule */
/* if it will be necessary.
*/

if (intrptjype = OPC_INTRPT_STRM && op_ev_valid (cw end evh) = OPC TRUE)
{ '
OD_ev_cancel (cw_end_evh);
}

DEFER State

/*** Enter Executives ***/

/** This state defer until the medium is available for transmission **/
/** Interrupts that can occur in this state are: **/
/** 1. Data arrival from application layer **/
/** 2. Frame (DATA^CK,RTS,CTS) rcvd from PHY layer **/
/** 3. Busy intrpt stating that frame is being rcvd ' **/
/** 4. Collision intrpt stating that more than one frame is rcvd **/
/** 5. Deference timer has expired (self intrpt) **/
/** For Data arrival from application layer queue the packet **/
/** Set Backoff flag if the station needs to backoff **/
/** after deference because the medium is busy **/
/** If the frame is destined for this station then set **/
/** frame to respond and set a deference timer to SIFS. **/
/** Set deference timer to SIFS and don't change states **/
/** If rcvr start receiving more than one frame then flag the **/
/** rcvd frame as invalid frame and set a deference to EIFS. **/

if (wlan_trace_active)

/* Determine the current state name. */
strcpy (current_state_name, "defer");

/*** Exit Executives ***/

/* Call the interrupt processing routine for each interrupt */
wlan_interrupts_process ();

/* If the receiver is busy while the station is deferring */
/* then clear the self interrupt As there will be a new self */
/* interrupt generated once the receiver becomes idle again. */'

140

if (RECEIVERJBUSYJHIGH && (op_ey_valid (deference_evh) = OPC_TRUE))
s
op_ev_cancel (deference_evh);
x

I* If the receiver becomes idle again schedule the end of the */
/* deference. */
if(RECEIVER_BUSY_LOW)

{
wlan_schedule_deference 0;
}

/* While we were deferring, if we receive a frame which */
/* requires a response, then we need to re-schedule our end of */
/* deference interrupt, since the deference time for response */
/* frames is shorter. Similarly, we need to re-schedule it if */
/* the received frame made us set our NAV to a higher value. */
else if (FRAMEJRCVD && (fresp_to_send != WlanC_None J! wlan_fiags->nav_updated =
OPC_BOOLINT_ENABLED) &&

(op_ev_valid (deference_evh) = OPCJTRUE))
s
/* Cancel the current event and schedule a new one. */
op_ev_cancel (deference_evh);
wlan_schedule_deference ();
}

BKOE^HEE&M) State .;" / '■> r . \ "\

/*** Enter Executives ***/

/** Determining wether to backoff. It is needed when station preparing **/
/** to transmit frame discovers that the medium is busy or when the **/
/** the station infers collision. **/
/** Backoff is not needed when the station is responding to the frame. **/
/** If backoff needed then check wether the station completed its **/
/** backoff in the last attempt If not then resume the backoff **/
/** from the same point, otherwise generate a new random number **/
/** for the number of backoff slots. **/

/* Checking wether backoff is needed or not */
if (wlan_flags->backoff_flag = OPC_BOOLINT_ENABLED)

if (backoffslots = 0)

/* Compute backoff interval using binary exponential process */
if (retrv_count != 0)

i
/* Set the maximum backoff for the uniform distribution */
max backoff = max backoff * 2 + 1;

else

141

/* if retry count is set to 0 then set the */
/* maximum backoff slots to min window size */
max_backoff= cwjmin;
}

/* The number of possible slots grows exponentially */
/* until it exceeds a fixed limit ' */
if (max_backoff > cwjmax)

{
maxjbackoff = cw_max;
}

/* Obtain a uniformly distributed random integer between 0 and the minimum contention
window size */

/* Scale the number of slots according to the number of retransmissions.*/
backoff_slots = floor (op_dist_uniform (max_backoff + 1));
f

I* Set a timer for the end of the backoff interval. */
intrpt_time = (currentjime + backoff_slots * siotjime);

/* Scheduling self interrupt for backoff*/
backoff_elapsed_evh = opJntrpt_schedule_self (mtrptjime, WlanCJBackoffJElapsed);

/* Reporting number of backoff slots as a statistic */
op_stat_write (backoff_slots_handle, backoff_slots);
°P_stat_write (backoff_slots_handle, 0.0);

BACKOFF State |
/*** Enter Executives ***/

/** Processing Random Backoff **/
/** In this state following intrpts can occur **/
/** 1. Data arrival from application layer **/
/** 2. Frame (DATAACK,RTS,CTS) rcvd from PHY layer **/
/** 3. Busy intrpt stating that frame is being rcvd **/
/** 4. Coll intrpt stating that more than one frame is rcvd **/
/** Queue the packet for Data Arrival from application **/
/** layer and do not change the state. **/
/** If the frame is destined for this station men prepare **/
/** appropriate frame to respond and set deference to SIFS **/
/** Update NAV value (if needed) and reschedule deference **/
/** Change state to "DEFER" **/
I** If it's a broadcast frame then check wether NAV needs **/
/** to be updated. Schedule self interrupt and change **/
/** state to Deference **/
/** If rcvr start receiving frame (busy stat intrpt) then **/
/** set a flag indicating rcvr is busy. **/
/** if rcvr start receiving more than one frame then flag **/
/** the rcvd frame as invalid and set deference **/

142

/** timer to EIFS **/

/* Change State to DEFER */
if (wlan_trace_active)

{
/* Determine the current state name. */
strcpy (current_state_name, "backoff');
}

/*** Exit Executives ***/

/* Call the interrupt processing routine for each interrupt */
wlan_interrupts_process ();

/* Set the number of slots to zero, once the backoff is completed */
if (BACKOFF_COMPLETED)

{
backoff_slots = 0.0;
}

/* Storing remaining backoff slots if the frame is rcvd from the remote station*/
if(RECEIVER_BUSY_HIGH)

{
/* Computing remaining backoff slots for next iteration */
backoff_slots = ceil ((intrpt_time - current_time) / slot_time);

if (op_ev_valid (backoff_elapsed_evh) = OPCJTRUE)
{
/* clear the self interrupt as station needs to defer */
op_ev_cancel (backoff_elapsed_evh);

}

/* Schedule deference if the frame is received while the station is backing off.*/
if(FRAME_RCVD)

wlan_schedule_deference 0;
}

TRANSMIT State

/** In this state following intrpts can occur: **/
/** 1. Data arrival from application layer. **/
/** 2. Frame (DATA^CK,RTS,CTS) rcvd from PHY layer. **/
/** 3. Busy intrpt stating that frame is being rcvd. **/
/** 4. Collision intrpt means more than one frame is rcvd. **/
/** 5. Transmission completed intrpt from physical layer
/** Queue the packe for Data Arrival from the higher layer,
/** and do not change state. **/
/** After Transmission is completed change state to FRMJEND **/

**/

143

/** No response is generated for any lower layer packet arrival **/

/* Prepare transmission frame by setting appropriate */
/* fields in the control/data frame. */
/* Skip this routine if any frame is received from the */
/* higher or lower layer(s) */
if (wlan_flags->immediate_xmt = OPC_TRUE)

{
wlan_frame_transmit 0;
wlan_flags->immediate_xmt = OPC_FALSE;
}

else if (wlan_flags->rcvd_bad_packet = OPC_BOOLINT_DISABLED &&
intrpt_type = OPC_INTRPT_SELF)

{
wlan_frame_transmit ();
}

if (wlan_trace_active)
{
/* Determine the current state name */
strcpy (current_state_name, "transmit");
}

/*** Exit Executives ***/

/* If the packet is received while the the station is */
/* transmitting then mark the received packet as bad. */
if (op_intrpt_type () = OPC_INTRPT_STAT)

{
intrpt_code = op_intrpt_stat ();
if (intrpt_code < TRANSMITTER_BUSY_INSTAT && op_stat_local_read (intrpt_code) = 1.0

&& rcy_channel_status = 0)
{
wlan_flags->rcvd_bad_packet = OPCJBOOLINTJENABLED-
}

/* If we completed the transmission then reset the */
/* transmitter flag. */
else if (intrpt_code = TRANSMITTERJBUSYJNSTAT)

{
wlan_flags->transmitter_busy = OPC_BOOLINT_DISABLED;

/* Also reset the receiver idle time, since with */
/* the end of our transmission, we expect that the */
/* medium became idle again (but make sure we are */
/* also not receiving a packet). */
if (rcv_channel_status = 0)

{
rcv_idle_time = op_sim_time ();
}

}

144

else if ((op_mtrpt_type () = OPC_INTRPT_STRM) && (opJntrpt_strm 0 != mstojromjrnacjf})

/* While transmitting, we received a packet from */
/* physical layer. Mark the packet as bad. */
wlan_flags->rcvd_badjpacket = OPCJBOOLINTJENABLED;
}

/* Call the interrupt processing routine for each interrupt*/
wlan_interrapts__process 0;

' FRM END State

/*** Enter Executives ***/

/** The purpose of this state is to determine the next unforced **/
/** state after completing transmission. **/

/** 3 cases **/
/** 1 .If just transmitted RTS or DATA frame then wait for **/
/** response with expected_frame_type variable set and change **/
/** the states to Wait for Response otherwise just DEFER for **/
/** next transmission **/
/** 2.1f expected frame is rcvd then check to see what is the **/
/** next frame to transmit and set appropriate deference timer **/
/** 2a.If all the data fragments are transmitted then check **/
/** wether the queue is empty or not **/
/** If not then based on threshold fragment the packet **/
/** and based on threshold decide wether to send RTS or not **/
/** If there is a data to be transmitted then wait for DIPS **/
/** duration before contending for the channel **/
/** If nothing to transmit then go to IDLE state **/
/** and wait for the packet arrival from higher or lower layer **/
/** 3.1f expected frame is not rcvd then infer collision, **/
/** set backoff flag, if retry limit is not reached **/
/** retransmit the frame by contending for the channel **/

/* If there is no frame expected then check to see if there */
/* is any other frame to transmit Also mark the channel as idle */
if (expected_frame_type = WlanC_None)

{
/* If the frame needs to be retransmitted or there is */
/* something in the fragmentation buffer to transmit or the */
/* station needs to respond to a frame then schedule */
/* deference. */
if (op_sar_buf_size (fragmentation_buffer_ptr) != 0 j| retry_count != 0 j| fresp_to_send !=

WlanC_None)
{
/* Schedule deference before frame transmission */
wlan_schedule_deference 0;
}

145

else

/* After completing a successful frame transmission, even */
/* though we don't have any other frame to transmit, still */
/* we need to execute to backoff algorithm to generate a */
/* contention window period and back-off during that period */
/* as stated in the protocol. */
else if (wlan_flags->cw_required = OPCJTRUE)

{
/* Determine the size of the contentions window. */
cw_slots = floor (op_dist_uniform (cw_min + 1));
cw_end = current_time + difs_time + cw_slots * slot_time;

/* Schedule a self interrupt indicating the end of the */
/* contention window. */
cw_end_evh = op_intrpt_schedule_self (cw_end, WlanC_CW_Elapsed);

/* Update the backoff time statistic. */
op_stat_write (backoff_slots_handle, cw_slots);
op_stat_write (backoff_slots_handle, 0.0);

/* Reset the flag since we scheduled the period. */
wlan_flags->cw_required = OPC_FALSE;
}

else if (cw_end > current_time)
{
/* We are in the contention window period, but we had */
/* to leave the "idle" state to send a response (Cts, */
/* Ack) for a frame we received. Now we are moving back */
/* to idle state. Hence, re-schedule the self interrupt */
/* that will indicate the end of the contention window. */
cw_end_evh = op_intrpt_schedule_self (cw_end, WlanC_CW_Elapsed);

else
{
/* Schedule the deference if we have a frame in the */
/* buffer sent from higher layer for transmission, */
/* since the contention window period is over. */
if (op_prg_list_size (hld_list_ptr) != 0)

{
/* Schedule deference before frame transmission */
wlan_schedule_deference ();
}

/* Reset the end of the CW timer, since it is over. */
cw_end = 0.0;
}

}

{
/* 802.1 la Model Addition */
/* The station needs to wait for the expected frame type */
/* So it will set the frame timeout interrupt which will be */

146

/* exectued if no frame is received in the set duration. */'
/* Adapted from the Philips Labs 802.1 la model code (dated 11/15/00). */
timer_duration = WLAN_ACK_LENGTH / control_speed (operational_speed) ■*■ sifsjime +

plcp_overhead + WLAN_AIR_PROPAGATION_TIME;
frame_timeout_evh = opJntrpt_schedule_self (current_time + timer_duration,

WlanC_Frame_Timeout);

WAIT FOR RESPONSE State

/*** Enter Executives ***/

/** The purpose of this state is to wail for the response after **/
/** transmission. The only frames which require acknowlegements **/
/** are RTS and DATA frame. *" **/
/** In this state following intrpts can occur: **/
/** 1. Data arrival from application layer **/
/** 2. Frame (DATAACK,RTS,CTS) rcvd from PHY layer **/
/** 3. Frame timeout if expected frame is not rcvd **/
/** 4. Busy intrpt stating that frame is being rcvd **/
/** 5. Collision intrpt stating that more than one frame is rcvd **/
/** Queue the packet as Data Arrives from application layer **/
/** If Rcvd unexpected frame then collision is inferred and **/'
/** retry count is incremented **/
/** if a collision stat interrupt from the rcvr then flag the **/
/** received frame as bad **/

if (wlan_trace_acti ve)
{
/* Determine the current state name. */
strcpy (current_state_name, "waitjEbrjesponse'');
}

/*** Exit Executives ***/

/* Clear the frame timeout interrupt once the receiver is busy */
/* or the frame is received (in case of collisions, the */
/* frames whose reception has started while we were */
/* transmitting are excluded in the FRAME_RCVD macro). */
intrpt_type = op_intrpt_type ();
if (((intrptjype = OPCJNTRPTJSTAT && op_intrpt_stat () < TRANSMFTTERJBUSYJNSTAT &&

op_stat_locaI_read (op_intrpt_stat ())= 1 -0 && rcv_channel_status = 0) [|
FRAME_RCVD) &&

(op_ey_valid (frame_timeout_evh) = OPCTRUE))
i
op_ev_cancel (frame_timeout_evh);

/* Call the interrupt processing routine for each interrupt
/* request.
wlan_interrupts_process ();

147

/* If expected frame is not received in the set */
/* duration or the there is a collision at the */
/* receiver then set the expected frame type to */
/* be none because the station needs to retransmit */
/* the frame. */
if (FRAME_TIMEOUT)

{
/* Setting expected frame type to none frame */
expected_frame_type = WlanC_None;

/* retransmission counter will be incremented */
retry_count = retry_count + 1;

/* Reset the NAV duration so that the */
/* retransmission is not unnecessarily delayed. */
nav_duration = current_time;

/* Check whether further retries are possible or */
/* the data frame needs to be discarded */
wlan_frame_discard ();
}

148

APPENDIX B. SNR-BASED RATE AGILITY OPNET CODE

This appendix contains the modifications to the wlan_rnac_lla process model

used to realize the SNR-based dynamic data rate agility mechanism presented in Chapter

IV. With the exception of the maxoperational_speed variable initialization in the

wlan_mac_svc_mit function and the addition of the data rate statistic collection function,

the only code additions required to implement the SNR-based rate agility mechanism are

to the wlanjphysicaljayer_data_arrival function. The block of code presented below

was added to wlan_physicaljayer_data_arrival immediately after the code used to

obtain the frame control field and duration information from the arriving packet (i.e., line

1667 of the wlart_mac_lla function block). Comments indicating the nature of the code

changes are included.

OPNET Code additions to \vlanjphysical layer_data_arrival
Bryan E. Braswell

March 2001

/* SNR-Based Data Rate Agility Addition. */
/* Access the SNR from the received packet and use the SNR to adjust */
/* the data rate based on the maximum speed as defined by the user. */
op_pk_nfd_access (wlan_rcvd_frame_ptr, "Link SNR", &snr_holder);

/* SNR-Based Data Rate Agility Addition. */

/* This structure is used to Compare the received SNR to the */
/* thresholds to determine the new data rate. The new data */
/* rate can only be as high as the user-defined max data rate */
/* obtained at the start of the simulation. */
if (max_operational_speed = 54000000)

{
if (snr_holder>= 12.22)

{
new_operational_speed = max_operational_speed;
}

else if ((snr_holder >= 9.70) && (snr_hoIder < 12.22))
<
t

new_operational_speed = 48000000;
}

else if «snr_holder >= 8.86) && (snrjbolder < 9.70))
{
new_operational_speed = 36000000;
}

else if ((snrjiolder >= 6.76) && (snrjbolder < 8.86))
{
new_operational_speed = 24000000;

149

}
else if ((snr_holder >= 6.30) && (snrjiolder < 6.76))

{
new_operational_speed = 18000000;
}

else if ((snrjiolder >= 5.84) && (snr_holder < 6.30))
{
new_operational_speed= 12000000;
}

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84))
{
new_operational_speed = 9000000;
}

else

{
new_operational_speed = 6000000;
}

}
else if (max_operational_speed = 48000000)

{
if (snrjiolder >= 9.70)

{
new_operational_speed = max_operational_speed;
}

else if ((snrjiolder >= 8.86) && (snrjiolder < 9.70))
{
new_operational_speed = 36000000;
}

else if ((snrjiolder >= 6.76) && (snrjiolder < 8.86))
{
new_operational_speed = 24000000;
}

else if ((snrjiolder >= 6.30) && (snrjiolder < 6.76))
{
new_operational_speed= 18000000;
}

else if ((snrjiolder >= 5.84) && (snrjiolder < 6.30))
{
new_operational_speed = 12000000;
}

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84))
{
new_operational_speed = 9000000;
}

else
{
new_operational_speed = 6000000;
}

}
else if (max_operational_speed = 36000000)

{
if (snrjiolder >= 8.86)

{

150

newoperationalspeed = max_operational_speed;

}
else if ((snrjiolder >= 6.76) && (snr_holder < 8.86))

{
new_operational_speed = 24000000;

}
else if ((snrjiolder >= 6.30) && (snrjiolder < 6.76))

{
new_operational_speed = 18000000;

}
else if ((snrjiolder >= 5.84) && (snrjiolder < 6.30))

{
new_operational_speed = 12000000;
}

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84))

{
new_operational_speed = 9000000;
}

else
{
new_operational_speed = 6000000;

}
}

else if (max_operational_speed = 24000000)
{
if (snrjiolder >= 6.76)

{
new_operational_speed = max_operational_speed;
}

else if ((snrjiolder >= 6.30) && (snrjiolder < 6.76))
{
new_operational_speed = 18000000;
}

else if ((snrjiolder >= 5.84) && (snrjiolder < 6.30))
{
new_operational_speed = 12000000;
}

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84))
{
new_operational_speed = 9000000;
}

else
{
new_operational_speed = 6000000;
}

}
else if (max_operational_speed = 18000000)

{
if (snrjiolder >= 6.30)

{
new_operational_speed = max_operational_speed;
}

else if ((snrjiolder >= 5.84) && (snrjiolder < 6.30))

151

{
new_operational_speed = 12000000;
}

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84))
{
new_operational_speed = 9000000;
}

else

{
new_operational_speed = 6000000;
}

}
else if (max_operational_speed = 12000000)

{
if(snr_holder>=5.84)

{
new_operational_speed = max_operational_speed;
}

else if ((snrjiolder >= 5.38) && (snrjiolder < 5.84))
{
new_operational_speed = 9000000;
}

else
{
new_operational_speed = 6000000;
}

}
else if (max_operational_speed = 9000000)

{
if(snrJiolder>=5.38)

{
new_operational_speed = max_operational_speed;
}

else

}

{
new_operational_speed = 6000000;
}

else
{
new_operational_speed = 6000000;
}

/* Set the new data rate for the STA. */
operational_speed = new_operational_speed;
/* Report the operational speed of the WLAN using the new Statistic. */
op_stat_write (operational_rateJiandle, operational_speed);
op_stat_write (global_operational_rateJiandle, operational_speed);

152

APPENDIX C. PACKET LOSS RATE-BASED RATE AGILITY OPNET CODE

This appendix contains the modifications to the wlan_mac_lla process model

used to realize the packet loss rate-based dynamic data rate agility mechanism presented

in Chapter IV. The preponderance of alterations are to the wlan_preparejrornejo_send

function. Those modifications are included in this appendix. Additional changes to

wlan_mac_lla include:

• Initialization of the max_operational_speed variable and addition of the

data rate statistic collection function in the wlanjnacjsvcjnit function.

• Incrementation of the drop_coimter variable in the wlanjrame_discard

function.

The block of code presented below is the first portion of the

wlan_prepareJrame_to_send function that includes the rate agility mechanism additions.

The remainder of the function remainsthe same. Comments indicating the nature of the

code changes are included.

OPNET Code additions to wian_prepare_p-ameJo_send
Brvan E. Braswell
 March 2001

static void
wlan__prepare_frame_to_send (int ftame type)

{
char rosg_strmg [120];
Packet* hldjpkptr;
Packet* seg_pkptr;
int dest_addr, src_addr;
int protocol_type = -1;
int tx_datapacket_size;
int type;
char error_string [512];
int outstrm_to_phy;
double duration, mac_delay;
WlanTJDataJHeaderJFields* pk_dhstract_ptr;
WlanT_Control_Header_Fields* pk_chstruct_ptr;
Packet* wlanjransmfcJSramejptr;

/* 802.1 la Model Addition */
/* Add a variable to keep track of the data rate so it can be passed to the pipeline stages. */'

153

mt ratejiolder;

/* 802.1 la Model Addition */
/* The control frame transmission rate depends on the given data rate. */
/* Adapted from the Philips Lab 802.11 a model (dated 11/15/00). */
double control_frame_speed; /* Speed for control frames. */
"* next_frag_length; /* Length of the next fragment (in bits). */
"* MPDU_size; /* MPDU length (in bits). */

/* Dropped Packet Data Rate Agility Mechansim Addition. */
double window;
double dropjrate;
double new_operational_speed;
double steady_state_timer;

/** Prepare frames to transmit by setting appropriate fields in the **/
/** packet format for Data,Cts,Rts or Ack. If data or Rts packet needs **/
/** to be retransmitted then the older copy of the packet is resent. **/
FIN (wlanjprepare_frame_to_send (int framejype));

outstrmjojphy = LOW_LAYER_OUT_STREAM_CHl;

/* 802.1 la Model Addition */
rate_holder = 1;

/* 802.1 la Model Addition */
/* Compute the control frame speed based on the operational data rate. */
/* Adapted from the Philips Lab 802.1 la model code (dated 11/15/00). */
control_frame_speed = control_speed (operational_speed);

/* Dropped Packet Data Rate Agility Mechansim Addition. */
/* Compute the time window size. */
window = current_time - time_counter;
steady_state_timer = currentjime - steady_state_counter;

/* Compute the number of packets dropped per unit time in this window. */
dropjrate = drop_counter / window;

/* Based on the dropped packet rate, adjust the data rate if necessary. */
if (dropjrate > 0.11249)

{
if (operational_speed = 54000000)

{
new_operational_speed = 48000000;
steady_state_counter = current_time;
}

else if (operational_speed = 48000000)
{
new_operational_speed = 36000000;
steady_state_counter = current_time;
}

else if (operational_speed = 36000000)
{

154

new_operational_speed = 24000000;
steady_state_counter = current_time;
}

else if (operational_speed = 24000000)
{
new_operational_speed = 18000000;
steady_state_counter = current_time;
}

else if (operational_speed = 18000000)
{
new_operational_speed = 12000000;
steady_state_counter = current_time;
}

else if (operational_speed = 12000000)
{
new_operational_speed = 9000000;
steady_state_counter = current_time;
}

else
{
new_operational_speed = 6000000;
steady_state_counter = current_time;
}

}
else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed =

54000000) && (operational_speed = 54000000))
{
new_operational_speed = 54000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed =
54000000) && (operational_speed = 48000000))

{
new_operational_speed = 54000000;
steady_state_counter = currenttime;
}

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed =
54000000) && (operational_speed = 36000000))

{
new_operational_speed = 48000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (dropjrate = 0.0) && (max_operational_speed =
54000000) && (operational_speed = 24000000))

{
new_operational_speed = 36000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed =
54000000) && (operational_speed= 18000000))

{
new_operational_speed = 24000000;
steady_state_counter = current_time;

155

0.0) && (max_pperational_speed =

0.0) && (max_operational_speed =

0.0) && (max_operational_speed =

}
else if ((steady_state_timer > 10.0) && (drop_rate

54000000) && (operational_speed= 12000000))
{
new_operational_speed= 18000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (dropjrate
54000000) && (operational_speed = 9000000))

{
new_operational_speed = 12000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
54000000) && (operational_speed = 6000000))

{
new_operational_speed = 12000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational speed =
48000000) && (operational_speed = 48000000))

{
new_operational_speed = 48000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (dropjrate
48000000) && (operational_speed = 36000000))

{
new_operational_speed = 48000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (dropjrate
48000000) && (operationalspeed = 24000000))

{
new_operational_speed = 36000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (dropjrate
48000000) && (operationaljspeed = 18000000))

{
new_operationaljspeed = 24000000;
steady_state_counter = currenttime;
}

else if ((steady_state_timer > 10.0) && (dropjrate
48000000) && (operationaljspeed = 12000000))

{
new_operational_speed = 18000000;
steady_state_counter = currentjtime;
}

else if ((steady_state_timer > 10.0) && (dropjrate
48000000) && (operationaljspeed = 9000000))

{
new_operationaljspeed = 12000000;

— 0.0) && (maxjDperationaljspeed =

— 0.0) && (max_operational_speed =

— 0.0) && (max_operational_speed =

— 0.0) && (max_operationalj5peed

0.0) && (maxj)perational_speed =

156

steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
48000000) && (operational_speed = 6000000))

{
new_operational_speed = 9000000;
steady_state_counter = cuiTent_time;
}

else if ((steady_state_timer > 10.0) && (dropjrate
36000000) && (operational_speed = 36000000))

{
new_operational_speed = 36000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (dropjrate
36000000) && (operational_speed = 24000000))

{
new_operational_speed = 36000000;
steady_state_counter = current_time;

}
else if ((steady_state_timer > 10.0) && (dropjrate

36000000) && (operationaljspeed = 18000000))
{
newoperationaljspeed = 24000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (dropjrate
36000000) && (operationaljspeed = 12000000))

{
new_operationaljspeed = 18000000;
steady_state_counter = currenttime;
}

else if ((steady_state_timer > 10.0) && (dropjate
36000000) && (operationaljspeed = 9000000))

{
new_operationaljspeed = 12000000;
steady_state_counter = currentjtime;
}

else if ((steady_state_timer > 10.0) && (drop_rate
36000000) && (operationaljspeed = 6000000))

{
newoperationaljspeed = 9000000;
steady_state_counter = currentjdme;
}

else if ((steady_state_timer > 10.0) && (dropjrate
24000000) && (operationaljspeed = 24000000))

{
new_operational_speed = 24000000;
steady_state_counter = currentjdme;
}

else if ((steadyjstatejdmer > 10.0) && (drop_rate
24000000) && (operationaljspeed = 18000000))

{

= 0.0) && (maxjDperational_speed =

= 0.0) && (maxjDperational_speed

0.0) && (max_operationaljspeed

0.0) && (max_operationaljspeed

= 0.0) && (max_operational_speed =

= 0.0) && (max_operational_speed

0.0) && (max_operationaljspeed

= 0.0) && (max_operationalj5peed =

= 0.0) && (max_operational_speed =

157

— 0.0) && (max_operational_speed

— 0.0) && (max_operational_speed

— 0.0) && (max_operational_speed =

0.0) && (max_operational_speed =

new_operational_speed = 24000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
24000000) && (operational_speed = 12000000))

{
new_operational_speed = 18000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
24000000) && (operational_speed = 9000000))

{
new_operational_speed = 12000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
24000000) && (operational_speed = 6000000))

{
new_operational_speed = 9000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
18000000) && (operational_speed = 18000000))

{
new_operational_speed = 18000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
18000000) && (operational_speed = 12000000))

{
new_operational_speed = 18000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational speed
18000000) && (operational_speed = 9000000))

{
new_operational_speed = 12000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
18000000) && (operational_speed = 6000000))

{
new_operational_speed = 9000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
12000000) && (operational_speed = 12000000))

{
new_operational_speed = 12000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate
12000000) && (operational_speed = 9000000))

0.0) && (max_pperational_speed =

0.0) && (max_operational_speed =

0.0) && (max_operational_speed =

— 0.0) && (max_operational_speed =

158

{
new_operational_speed = 12000000;
steady_state_counter = current_time;
}

else if ((steady_state_tirner > 10.0) && (drop_rate = 0.0) && (max_operational_speed
12000000) && (operational_speed = 6000000))

{
new_operational_speed = 9000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed
9000000) && (operational_speed = 9000000))

{
new_operational_speed = 9000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed
9000000) && (operational_speed = 6000000))

{
new_pperational_speed = 9000000;
steady_state_counter = current_time;
}

else if ((steady_state_timer > 10.0) && (drop_rate = 0.0) && (max_operational_speed
6000000) && (operationalspeed = 6000000))

{
new_operational_speed = 6000000;
steady_state_counter = current_time;
}

else
{
new_operational_speed = operational_speed;
}

/* Now assign the new data rate to the station. */
operational_speed = new_operational_speed;

/* Now we need to check the window size and adjust if the window has become too big. */
/* The window size utilized here is 2 seconds. */
if (window > 1.0)

{
drop_counter = 0;
time_counter = current_time;
}

159

THIS PAGE INTENTIONALLY LEFT BLANK

160

APPENDIX D. DRA_SNR_11A PIPELINE STAGE

This appendix presents the source code for the dra_snr_lla pipeline stage used in

conjunction with the SNR-based rate agility mechanism OPNET model. This code is a

modified version of the default dra_snr pipeline stage. Comments indicating the nature

of the code changes are included.

, v. .: ■.. dra_snr_lla Pipeline Stage
'„,.'". ~ Bryan E. Brasviell
 March 2001 _j

/* dra_snr.ps.c */
/* Default Signal-to-Noise-Ratio (SNR) model for radio link Transceiver Pipeline */

I* Copyright (c) 1993-2000 */
I* by OPNET Technologies, Inc. */
/* (A Delaware Corporation) */
/* 3400 International Drive, N.W. */
/* Washington, D.C., U.SA. */
/* All Rights Reserved. */

#include "opneLh"
#include <math.h>

#if defined (cplusplus)
extern "C"
#endif
void
dra_snr (Packet * pkptr)

{
double bkgjaoise, accumnoise, rcvd_power;
double s_n_r,

/** Compute the signal-to-noise ratio for the given packet. **/'
FIN (dra_snr (pkptr));

/* Get the packet*s received power level. */
rcvd_power = op_td_jet_dbl (pkptr, OPC_TDA_RA_RCVD_POWER);

I* Get the packet's accumulated noise levels calculated by the */
/* interference and background noise stages. */
accum_noise = op_td_get_dbl (pkptr, OPC_TDA_RA_NOISE_ACCUM);
bkg_noise = op_td_get_dbl (pkptr, OPC_TDA_RA_BKGNOISE);

/* Compute the SNR */
s_n_r = (10.0 * log 10 (rcvdjpower / (accum_noise ■*- bkg_noise)));

161

/* Assign the SNR in dB. */
op_td_set_dbl (pkptr, OPC_TDA_RA_SNR, s_n_r);

/* Place the SNR in the Link SNR packet header field for use */
/* in the SNR-based rate agility mechanism. */
op_pk_nfd_set (pkptr, "Link SNR", s_n_r);

/* Set field indicating the time at which SNR was calculated. */
op_td_set_dbl (pkptr, OPC_TDA_RA_SNR_CALC_TIME, op_sim_time ());

FOUT;
}

162

APPENDIX E. DRA_TXDEL_11A PIPELINE STAGE

This appendix presents the source code for the dra_txdel_l la pipeline stage used

in conjunction with the baseline 802.1 la OPNET model. This code is a modified version

of the default drajxdel pipeline stage. Comments indicating the nature of the code

changes are included.

dra_txde!_lla Pipeline Stage
Bryan E. Braswell

V ' March 2001 \

I* dra_txdel.ps.c */
/* Default transmission delay model for radio link Transceiver Pipeline */

/* Copyright (c) 1993-2000 */
/* by OPNET Technologies, Inc. */
I* (A Delaware Corporation) */
/* 3400 International Drive, N.W. */
I* Washington, D.C., U.S.A. */
I* All Rights Reserved. */

#include "opnet.h"

#if defined (cplusplus)
extern "C"
#endif
void
dra_txdel (Packet *

i
pkptr)

int pklen;
double rx_drate, tx_delay;
int rate_index;

/** Compute the transmission delay associated with the **/
/** transmission of a packet over a radio link. **/
FIN (drajxdel (pkptr));

/* Obtain the transmission rate ofthat channel. */
//tx_drate = op_td_get_dbl (pkptr, OPC_TDA_RA_TX_DRATE);

/* Change for the 802.1 la model. */
/* The transmission data rate is variable based on the */
/* use of control or data frames. So, the Rate packet */
/* field is used to determine the data rate for the calculation. */
op_jpk_nfd_access (pkptr, "Rate", &rate_index);

163

if(rate_index= 1)
{
tx_drate = 6000000;
}

else if (rate_index = 2)
{
tx_drate = 9000000;
}

else if (rate_index = 3)
{
tx_drate = 12000000;
}

else if (rate_index = 4)
{
tx_drate = 18000000;
}

else if (rate_index = 5)

{
tx_drate = 24000000;
}

else if (rate_index = 6)
{
tx_drate = 36000000;
}

else if (rate_index = 7)
{
txdrate = 48000000;
}

else

{
tx_drate = 54000000;
}

/* Obtain length of packet. */
pklen = op_pk_total_size_get (pkptr);

/* Compute time required to complete transmission of packet. */
tx_delay = pklen / tx_drate;

/* Place transmission delay result in packet's */
/* reserved transmission data attribute. */
op_td_set_dbl (pkptr, OPC_TDA_RA_TX_DELAY, tx_delay);

FOUT;
}

164

\

LIST OF REFERENCES

1. Choi, S., Philips Research Labs, OPNET Model of the 802.11 a Protocol, 15 November, 2000.

2. Institute of Electrical and Electronics Engineers, 802.11, Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, 20 August 1999.

3. Institute of Electrical and Electronics Engineers, 802.1 lb, Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the
2.4 GHz Band, 16 September 1999.

4. Institute of Electrical and Electronics Engineers, 802.1 la, Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band,
16 September 1999.

5. European Telecommunications Standards Institute, EN 300 652 V1.2.1, High Performance Radio
Local Area Network (HIPERLAN) Type 1; Functional Specification, July 1998.

6. Awater, G., van Nee, R, Morikura, M., Takanashi, H., Webster, M., and Halford, K. W., "New
High-Rate Wireless LAN Standards," IEEE Communications Magazine, Vol 37 Issue 12, pp. 82-
88, December 1999.

7. Stallings, W., Data and Computer Communications, Prentice Hall, 1997.

8. 3Com Corporation, "What's New in Wireless LANs: The IEEE 802.1 lb Standard."
[http://www.3com.com/teclmology/tech_net/white_papers/503072a.html]. October 2000.

9. Moore, C, "Faster Wireless LANs on Tap," Infoworld.com.
[h.t(p://www.mfoworld.com/articles/lm/xml/00/09/15/000915hru-adiata.xrnl]. 15 September 2000.

10. European Telecommunications Standards Institute, ETSITR 101 683 V'1.1.1, Broadband Radio
Access Networks (BRAN); HIPERLAN Type 2; System Overview, February 2000.

11. Johnsson, M., "HiperLAN/2 - The Broadband Radio Transmission Technology Operating in the 5
GHz Frequency Band," HiperLAN/2 Global Forum, 1999.

12. Fisher, C, "The Wireless Market: Growth Hinges on the Right Solution," Radiata, Inc., 15
September 2000.

13. Radiata, Inc. Press Release, "Radiata First to Deliver High-performance, Low-Cost Wireless
Networking Solution," 15 September 2000.

14. Atheros Communications AR5000 Wireless LAN Solution Product Specification, "Next-
Generation Wireless LAN in Mainstream CMOS Technology," 2000.

15. Bing, B., High-Speed Wireless ATM and LANs, Artech House, 2000.

16. O'Hara, B., Petrick, A., The IEEE 802.11 Handbook: A Designer's Companion, IEEE Press,
December 1999.

17. Prasad, R., van Nee, R., OFDM For Wireless Multimedia Communications, Artech House, 2000.

165

18. OPNET Modeler Version 7.0B Online Documentation, OPNET Technologies, Inc., 16 May 2000.

19. OPNET Tutorial, "Introduction to OPNET Modeler," OPNETWORK 2000, 28 August 2000.

20. Tan, K. C, Development and Simulation of the 802.11a Physical Layer to Study the the Effects of
Multipath on its Performance, Master's Thesis, Naval Postgraduate School, Monterey, California
March 2001.

21. Electronic Mail Message from Haug, N. B., Lucent Technical Support Center, Subject: WaveLAN
Questions, 26 February 2001.

22. Perez-Vega, C. and Garcia, J. L. G., "A Simple Approach to a Statistical Path Loss model for
Indoor Communications," Proceedings of the 2fh European Microwave Conference and
Exhibition, pp. 617-623, 08-12 September 1997.

23. Durgin, G. D., Rappaport, T. S., and Xu, H., "Partition-Based Path Loss Analysis for In-Home and
Residential Areas at 5.85 GHz," Proceedings of the 1998 Global Telecommunications Conference
Vol. 2, pp. 904-909,08-12 November 1998.

24. Berg, J. E. and Medbo, J., "Simple and Accurate Path Loss Modeling at 5 GHz in Indoor
Environments with Corridors," Proceedings of the 2000 Vehicular technology Conference Vol 1
pp. 30-36, 24-28 September 2000.

25. Lucent Technologies, Inc., "ORiNOCO PC Card Specifications," 2000.

26. Lucent Technologies, Inc., "ORiNOCO Manager Suite User's Guide," August 2000. •

27. Chow, C. C. and Leung, V. C. M., "Performance of IEEE 802.11 Medium Access Control
Protocol Over a Wireless Local Area Network with Distributed Radio Bridges,"

28. Aironet Wireless Communications, Inc., "PCI & ISA 4800/4500 Wireless LAN Adapter
Specifications," 1998.

29. Electronic Mail Message from Chesson, G, Atheros Communications, Inc., Subject: Rate
Adaptation, 30 January 2001.

30. Rappaport, T. S., Wireless Communications, Prentice Hall, January 1996.

I

166

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, California 93943-5101

3. Commanding Officer, Naval Information Warfare Activity 1
9800 Savage Road
Fort George G. Meade, MD 20755-6000

4. Director, CNO Strategic Studies Group 1
686 Cushing Road
Newport, RI02841-1207

5. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

6. Professor John McEachen, Code EC/Mj 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

7. Professor Murali Tummala, Code EC/Tu 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

8. Dr. Sunghyun Choi 1
Video Communications Department
Philips Research Labs
345 Scarborough Road
Briarcliff Manor, NY 10510

9. Mr. Matthew Sherman 1
PTSM - Communications Technology Research
AT&T Labs - Shannon Laboratory
Room 3K18, Building 104
180 Park Avenue
Florham Park, NJ 07932-0971

167

10. LT Bryan E. Braswell, USN 1
7902 Red Globe Court
Severn, MD 21144

11. LTC (Ret) BiUie E. Braswell, USA 1
12215 Dell Way
Fredericksburg, VA 22407

12. Department of Defense \
ATTN: R531
9800 Savage Rd.
Fort George G. Meade, MD 20755

13. Office of Naval Research \
800 N. Quincy St.
Arlington, VA 22217-5660

14. SPAWAR Systems Center 1
ATTN: D855
53560 Hull St.
San Diego, CA 92152-5001

15. Naval Information Warfare Analysis Center 1
Code 5707
4555 Overlook Ave. SW
Washington, DC 20375-5707

16. Atheros Communications, Inc \
ATTN: Dr. Greg Chesson
529 Almanor Ave.
Sunnyvale, CA 94085-3512

168

