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The main thrust of this research program was to demonstrate the potential of a new approach to 
enhance the survivability of an armor system. The basic concept is to employ a high wave 
speed layer to rapidly spread (|as time scales) the impact load in a target or substrate and, thus, 
reduce the damage imparted to the armor system. In particular, the potential use of thick 
diamond films for lateral distribution of stresses is an important element of the research effort. 

Some inherent challenges associated with the proposed research effort are as follows: How to 
demonstrate the feasibility of the load spreading concept? How to quantify load spreading? 
How to compare load spreading for various composite targets in a consistent manner? How to 
isolate load spreading from other phenomena during penetration? How to correlate load 
spreading with penetration resistance? 

Our approach to address the research objectives was mainly through numerical simulations. 
The computer codes used included PRONTO and ALEGRA developed by Sandia National Lab., 
EPIC developed by G. R. Johnson, and DYNA2D developed by Lawrence Livermore Lab. 
Some preliminary qualitative experiments were also performed. To explore the layering 
concept, we first used idealized numerical simulations to demonstrate the feasibility of load 
spreading and wave shaping by layered structures. After the proof of concept, we then devised 
a measure, based on normalized dissipative energy density (NDE), to quantitatively 
characterize load spreading. The measure is defined as, 

NDE = D/E, 

where D is the dissipative energy per unit initial volume, i.e. D = (plp0)[<jyd£[j with ds^. being 

the inelastic strain increment, p and po are the current and initial density respectively, and E is 

the total energy imparted to the substrate divided by the initial substrate volume. Essentially, 
this measure is an indication of the degree of localization of dissipative energy in the substrate. 
The effectiveness of load spreading can be evaluated quantitatively by the distribution of the 
NDE in the substrate. Using this measure, we were able to gain considerable insight into the 
mechanisms that govern load spreading and the behavior of layered structures to impact. The 
target properties examined included deformation and fracture behavior of layer materials, 
layering configuration, and interface properties. Three different approaches were used to treat 
interfaces, namely, a thin epoxy layer, a slideline, and an interface element governed by 
irreversible cohesive law. Finally, to correlate load spreading with penetration resistance, we 
also developed a new energy approach to study the time dependence of the penetration 
process. 

The convention to identify the various targets discussed in this report is shown in Table 1. 
Shown in Figure 1 is a demonstration of the load spreading by high wave speed layers. Target 
(a), i.e. OS, is made completely of aluminum. Target (b), i.e. 6S, consists of a 20mm thick 
aluminum substrate and a 6mm thick SiC layer on the top. Target (c), i.e., 2S-2a-2S, has a 
multilayered configuration in which three 2mm thick layers, namely, SiC-aluminum-SiC, are laid 
on top of a 20mm substrate. To facilitate a consistent comparison, target (a) should be viewed 
as composed of 20mm substrate and a 6 mm aluminum (same material as the substrate) layer. 
It should also be mentioned that load distributions are compared when the shock front reaches 
some fixed reference points inside the substrate, namely, 1 cm and 2 cm into the substrate. 
Without layers, target (a) shows a typical quasi-spherical wave diverging from the impact region. 
With the addition of a high-wave speed SiC layer on the top, the impact stress is spread laterally 



as indicated by the stretch of the pressure contour from the top. Target (c) again shows that 
SiC layer helps spread the load. However because of the low-wave-speed aluminum layer in 
the middle, the stress distribution becomes more complicated. 

Table 1: Definition of layering configurations 

Designation Layer 1 Layer 2 Layer 3 Total 
Thickness 

OS 0.0 mm SiC 6.0 mm aluminum — 6.0 mm 
2S 2.0 mm SiC 4.0 mm aluminum ~ 6.0 mm 
4S 4.0 mm SiC 2.0 mm aluminum — 6.0 mm 
6S 6.0 mm SiC 0.0 mm aluminum — 6.0 mm 

2S-2a-2S 2.0 mm SiC 2.0 mm aluminum 2.0 mm SiC 6.0 mm 
2S-2p-2S 2.0 mm SiC 2.0 mm PMMA 2.0 mm SiC 6.0 mm 

2S-2steel(s)-2S 2.0 mm SiC 2.0 mm steel 2.0 mm SiC 6.0 mm 
2s-2S-2a 2.0 mm steel 2.0 mm SiC ~ 6.0 mm 

Figure 2 demonstrates the use of NDE to study the effect of layer properties on load spreading. 
Specifically, SiC and diamond layers are compared. Both the radial and axial distributions for 
the SiC have larger gradients and peak values than those for the diamond. A combination of 
these two distribution yields a simple and clear picture that the dissipative work is more 
localized in the substrate for SiC than for diamond. Hence, diamond provides a better load 
spreading capability. Compared to SiC, diamond has higher wave speed, and higher 
impedance and strength. The better load spreading capability is attributed to all of these 
properties. 

Figure 3 demonstrates the use of NDE to study the effect of layer thickness and layering 
configuration on load spreading. Comparison of the NDE distributions of OS, 2S, 4S, and 6S 
targets demonstrates that load spreading increases with the layer thickness. The figure also 
shows that multilayered targets that incorporate a soft material in the layering system, function 
through a combination of shock absorption (gradual and slow load transmission) by the layers 
and load spreading. Because of the shock absorption by the layers, the impact energy can not 
be absorbed very quickly by the substrate. Hence the multilayered targets are not as effective 
as single layered target for load spreading purpose. 

Figure 4 shows that layer damage degrades significantly the load distribution capability of the 
target as demonstrated by the steeper NDE distribution in the damaged targets. Figures 5 and 
6 show the imperfect interface also degrades load spreading. The interface was modeled as 
thin epoxy layer in Figure 5 and a slideline in Figure 6. The initiation and propagation of 
interfacial crack as modeled by an interface element and a cohesive law is shown in Figure 7. 

Figure 8 shows the time dependence of the penetration process as indicated by various energy 
histories. The dissipative energy in the projectile and the layer energy fraction (the ratio of the 
energy in the layer to the total energy imparted to the target) are used here as examples. Note 
that both the projectile defeat capability, as indicated by the dissipative energy in the projectile, 
and load spreading capability, as indicated by the initial slope of the layer energy history, 
increase with the layer thickness. Also, layer fracture leads to degraded projectile defeat and 
load spreading. 



Significant results obtained from the current research effort are as follows: 
(1) Effective load spreading requires high stiffness or high wave speed to spread the load 

faster, and high impedance and strength to transmit the load from the layer to the substrate 
effectively. 

(2) The strength of the layer system is the dominant factor for defeating the projectile and 
reducing the transient time of the penetration event. 

(3) Under ideal condition, i.e. no layer fracture or imperfect bonding, a single thick high wave 
speed layered target offers the best penetration resistance for several reasons. The high 
strength of the layer allows more impact energy to be converted to the dissipative energy of 
the projectile, and less to be absorbed by the target. The high stiffness of the layer allows 
the energy absorbed by the target to be transferred from the layer to the substrate quickly. 
Furthermore, the high stiffness of the layer allows the impact load and energy transmitted to 
the substrate to be spread more widely and thus minimize the localized damage in the 
substrate. 

(4) A multilayered target with a relatively soft layer sandwiched between two hard layers offers 
less penetration resistance than a single thick hard layer because the soft layer reduces 
both the strength and stiffness of the layer system. 

(5) Layer damage degrades significantly the capability of the target to defeat the projectile and 
spread the load. 

(6) Imperfect interface appears to play limited role on projectile defeat and transient time of the 
penetration event. Its major effect appears to be a more localized distribution of impact load 
and energy. 

(7) Since load spreading enhances the integrity of the target, it is also expected to enhance the 
penetration resistance because the projectile can penetrate only if it can move away the 
target material ahead of it. However, the extent of the contribution of load spreading to 
overall penetration resistance is still not clear at this point. 

(8) The single or multiple initiation of interface cracks occurs in shear or pure mode II loading 
irrespective of the interface depth from the impact surface and the material on either side. 
The initiation speed of interface cracks is more than the longitudinal wave speed of the 
materials. However, the crack speed reduces quickly and falls below the shear wave speed 
of the more compliant material. The subsequent crack propagation depends on the shape 
of the traveling stress wave, target material response to wave loading, interface properties, 
and friction. 
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Figure 1: Numerical demonstration of load spreading by a SiC layer. Target (a) is made 
completely of aluminum, target (b) has a 6 mm SiC layer, and target (c) has three 2 mm thick 
layers, SiC-aluminum-SiC, above the substrate. The total thickness of all the targets is 26 mm. 
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Figure 2: NDE distribution for an aluminum substrate in response to two different layering 
materials (2mm thick), SiC vs. diamond. 
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Figure 5: NDE distributions for 6S target with and without epoxy bond between layer and 
substrate. The shock front is at, (a) 1 cm, and (b) 2 cm, into the substrate. 
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