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Abstract 

The use of adaptive optics entails the design of a controller. This requires the 

development of a model of the plant to be controlled, which, in this case, consists of the 

atmosphere through which light is traveling. In optics, Zernike polynomials are used as a 

basis set for the expansion of wavefront phase distortions. Due to the turbulence induced 

stochastic nature of the underlying process involved, the spatial-temporal correlation 

functions of the Zernike polynomial phase expansion coefficients must be evaluated if a 

proper stochastic model of the plant is to be developed and adaptive optics is to be 

employed. In this work, these correlation functions are developed using a layered 

atmospheric model which takes into account wind effects and anisoplanatism. 

Calculations are provided for the first few low-order Zernike modes. Using these 

correlation functions, an underlying linear, stochastic, dynamical system, which 

represents the atmosphere and is adequate for control synthesis, is identified. Within an 

acceptable error bound, the correlation functions of this system are representative of the 

calculated functions. The deformable mirror is also modeled, output equations are 

specified, and the complete system is constructed. This system, in turn, provides the 

basis for the employment of advanced control and estimation concepts. The control 

objective is to apply the estimated conjugate phase to the deformable mirror so that, at the 

target, the outbound wavefront distortion is minimized and the Strehl ratio is maximized. 



ALGORITHM DEVELOPMENT FOR ON-LINE 
CONTROL OF THE AIRBORNE LASER 

/. Introduction 

1.1 Overview 

For years, scientists have been concerned about the effects of atmospheric 

turbulence on the propagation of light. Atmospheric turbulence has the effect of 

randomly varying the index of refraction of the propagation medium. These fluctuations 

cause the familiar "twinkling" of stars and "shimmering of heat" over hot pavement [25]. 

Due to the randomly varying index of refraction, atmospheric turbulence causes random 

wavefront distortion which in turn degrades the performance of optical imaging systems, 

below the limit set by diffraction theory. However, it has been shown that real-time 

wavefront compensation, commonly called adaptive optics, can improve system 

performance [11]. Adaptive Optics (AO) is a broad term used to cover a system which, 

in real time, measures the optical aberrations induced in the wavefront over the 

propagation path and corrects for their adverse effects. 

The root of all evil in the propagation of light in the atmosphere is the existence of 

fluctuations in the index of refraction. Index of refraction fluctuations are due to 

turbulent air motion which obtains its energy from differential heating and cooling of the 

atmosphere. These fluctuations vary both spatially and temporally. Because of this, 

when an optical wave propagates through a random medium (like the atmosphere), the 

wave undergoes chaotic changes in its phase, amplitude, and other parameters [28]. 



Stochastic models for turbulence specify second-order statistics, such as the spatial 

correlation, of the index of refraction fluctuations. Hence, it follows that the turbulence- 

induced wavefront phase and amplitude deformations can be characterized by their spatial 

correlation properties. Therefore, the statistical properties of the phase and amplitude 

fluctuations must be determined. 

Adaptive optics is a method of compensating for the random phase and amplitude 

fluctuations of an optical wave propagating through turbulence. An adaptive optics 

system consists of three basic components: 

1. Wavefront Sensor (WFS) which is a device to measure wavefront 
deformations. 

2. Wavefront modifying device which corrects wavefront deformations, 
commonly called a Deformable Mirror (DM). 

3. Controller which processes measurements and provides commands to the 
wavefront modifying device. 

In general terms, adaptive optics involves the measurement and control of wavefronts in 

real time in order to deposit light effectively on a detector or target. 

In the most basic current application, adaptive optics is used in ground-based 

imaging systems. In this case, the receiving telescope is fixed on the ground and is 

directed to an astronomical object. This scenario is depicted in Figure 1. 



WAVEFRONT 
SENSOR   (WFS) 

TURBULENCE 

Figure 1: Conventional adaptive optics system used in astronomy. 

In Figure 1, the three main components of an adaptive optics system are shown. 

Specifically, these are a wavefront modifying device or, in this case, a deformable mirror 

(the actuator), a wavefront sensor, and an information processing device (controller). The 

WFS accepts light and provides a measurement of the wavefront slope, while the 

controller accepts the output of the WFS and converts it to appropriate control signals 

sent to the deformable mirror. Indeed, an AO enhanced telescope is a feedback control 

system in which the (uncertain) plant is the turbulent atmosphere. Atmospheric 

turbulence induces phase shifts in the light's wavefront which are measured by the WFS, 



processed by the controller, and corrected by the DM. Hence, the feedback control 

system is a regulator - the control objective being to drive the atmospheric turbulence- 

induced phase distortion to zero. In the scenario depicted in Figure 1, the WFS accepts 

light reflected from the deformable mirror. In this case, the WFS measures the wavefront 

distortion in the corrected wavefront. Thus, the WFS directly provides a measurement of 

the error signal, as is required in conventional SISO control systems. 

Figure 2 shows a modified adaptive optics system that can be used in astronomy. 

TURBULENCE 

BEAMSPLITTER 

Figure 2: Modified adaptive optics system used in astronomy. 

In this case, the WFS measures the distortion in the incident light's wavefront. The 

incident radiation may be either the object being imaged or a beacon. The beacon is an 

object, either a natural star or a laser guide star, which provides light to the WFS. Many 



times beacons are necessary because the object being imaged does not provide an 

adequate amount of light. The metrological laser in Figure 2 is used to provide a minor 

feedback loop which is useful when the dynamics of the deformable mirror are not known 

precisely. Figures 3 and 4 show the AO control systems for the configurations shown in 

Figures 1 and 2. 
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Figure 3. Control system which corresponds to the AO arrangement shown in Figure 1. 
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Figure 4. Control system which corresponds to the AO arrangement shown in Figure 2. 



In Figures 3 and 4, the controller is denoted by G; the atmospheric model is denoted by 

PLANT; w denotes white process noise which drives the plant; the phase distortion of the 

light deposited on the detector is y; and v, vi, and v2 are the WFS white noise signals. 

The subscript 'c' denotes the command signal, which is zero in the regulator control 

systems used in AO. 

If the AO components discussed above worked perfectly, the AO system would 

achieve ideal performance, namely, the diffraction limit. However, there are numerous 

factors which degrade the performance of an AO system. The fundamental limiting 

factors include [23]: 

1. Finite light levels in the WFS. 

2. Finite degrees of freedom of the DM. 

3. Finite spatial sampling of the WFS. 

4. Finite temporal response of the AO system. 

5. Anisoplanatism. 

Until recently, factors (1) - (4) were severe problems. Fortunately, with advances in 

WFS, DM, and AO hardware design, these degradations play a much smaller role. The 

same cannot be said for anisoplanatism. Anisoplanatism is a term referring to the object 

and beacon wavefronts sampling different volumes of the atmosphere. Anisoplanatism 

results when the object and beacon have a spatial separation. This spatial separation 

between the beacon, or reference, and object causes the optical paths from the reference 

and the object to traverse different regions of the atmosphere, resulting in distinct 



wavefront perturbations for each wavefront [23]. Figure 5 displays a common 

anisoplanatic scenario. 

BEACDN DBJEC 

TURBULENC 

APERTURE 

Figure 5: Anisoplanatism. 

However, just because a spatial separation exists between the reference and object 

does not mean that anisoplanatic effects are observed. In fact, the two objects may lie 

within the isoplanatic angle, defined as the maximum angular separation for which the 

turbulence-induced wavefront deformations for the object and beacon wavefronts are still 

essentially the same. In the visible spectrum, the object being imaged must be within 5 to 

10 [irad of the beacon [23]. At infrared wavelengths, the isoplanatic angle is significantly 

larger, on the order of 100's of |irad. 



1.2 AirBorne Laser 

The AirBorne Laser (ABL) is an atmospherically based directed energy weapon 

system currently being developed by the United States Air Force. This program uses a 

high-energy laser, mounted in an airplane, to deposit energy on and disable a theater 

ballistic missile in boost phase. The ABL scenario is significantly different from typical 

optical imaging systems. First, the ABL operates at an altitude of about 40,000 ft. Unlike 

ground-based imaging systems, in which the wavefronts propagate perpendicularly to the 

earth's surface, the propagation paths of the beacon and High-Energy Laser (HEL) are 

approximately horizontal to the earth's surface. Second, there is an enormous amount of 

motion in this problem. Both the aperture (mounted in the airplane) and target are 

moving at large velocities. Hence, unlike conventional imaging systems in which the 

wind introduces a temporal dependence in the index of refraction fluctuations, dynamic 

aperture and target motion account for the majority of temporal effects. 

The arrangements shown in Figures 1 and 2 do not allow for anisoplanatism and 

do not account for time delays inherent in the control system. For use in the ABL, the 

adaptive optics configurations shown in Figures 1 and 2 must be modified. Figure 6 

shows the ABL's adaptive optics arrangement. In this situation, there are two wavefronts 

of interest. First is the beacon, incident, or inbound, radiation. The beacon wavefront is a 

spherical wavefront emanating from the sharp tip of the missile - or a fixed anchor point. 

This is unlike the astronomical case in which radiation from the laser guide star beacon is 
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Figure 6: ABL adaptive optics system. 

scattered from the layer in the ionosphere. Hence, in astronomy, the beacon is subject to 

constant turbulence-induced fluctuations due to the upward passage of the beacon's laser 

beam through the turbulent atmosphere. This does not allow for tilt estimation (and 

correction) in the astronomical application of straight-forward AO. This is not so in the 

ABL case in which the target's tip is flooded by laser illumination and most of the 

radiation is reflected off the fixed tip of the missile. The beacon wavefront is the same as 

the ones displayed in Figures 1 and 2. Second is the high-energy beam which is used to 

deposit the corrected, or controlled, high-energy laser on the target. As in Figure 2, the 

metrological laser is used to provide a minor feedback loop if the mirror dynamics are not 

known precisely. 

Atmospheric turbulence will induce random temporal variations in the laser 

beam's wavefront which, in turn, will reduce the light intensity at the target and hence the 



directed energy weapon's effectiveness. This fact provides the motivation for the 

employment of AO in order to correct for the deleterious effects caused by atmospheric 

turbulence. 

In order to apply AO to the AirBorne Laser (ABL), a model of the plant to be 

controlled must be developed. The plant, in this case, is the turbulent atmosphere through 

which light is traveling. Because of atmospheric turbulence, the plant, which models the 

atmosphere, will be stochastic. 

1.3 Historical Overview 

Pioneering work in optical wave propagation through atmospheric turbulence was 

performed in the 1950's by Tatarski [27]. In his work, Tatarski considered the medium 

between the source and aperture as a continuum. However, the most common forms of 

the Power Spectral Density (PSD) of the index of refraction fluctuations contain 

singularities at the origin. Thus, evaluation of the necessary integrals requires special 

care. In the simple astronomical scenario considered by Tatarski, integrations in the z- 

direction, i.e., the direction of wavefront propagation, could be performed in closed-form. 

In the process, the singularity in the PSD of the index of refraction fluctuations did not 

pose any difficulty; however, no such analytical techniques present themselves in the 

more dynamic ABL scenario. A layered (discrete) atmospheric model can be used to 

avoid integration in the direction of wavefront propagation. In this model, the 

atmosphere is assumed to be composed of a finite number of properly separated layers so 

that the spatial correlation can be described as the sum of the contributions from all 



layers. Hence, the layered atmospheric model requires simpler, two-dimensional 

integrations as opposed to the three-dimensional integrations in Tatarski's original work. 

Other seminal work in optical propagation through atmospheric turbulence is due to 

Kolmogorov [14] and Fried [4, 5]. Kolmogorov developed a statistical model for the 

structure of turbulent air flows. His model is widely used as the spatial PSD of the index 

of refraction fluctuations. Fried has extended the results of Tatarski and also developed 

the seeing cell size, commonly called the Fried parameter, r0. The seeing cell size is 

interpreted as the aperture size beyond which further increases in diameter result in no 

further increases in resolution. 

Zernike polynomials have been extensively used for analysis in optical systems [6, 

12, 18]. These orthonormal polynomials, which are defined within a circle of unit radius, 

form a complete set and represent many specific phase aberrations [23]. Due to the fact 

that the ABL application requires the consideration of two distinct wavefronts at two 

different time instants, the spatial-temporal correlation of the Zernike polynomials' phase 

expansion coefficients of the wavefronts of interest is required. For implementation in 

adaptive optics systems, some partial results for these correlation functions have been 

provided by Takato and Yamaguchi [26], Valley and Wandzura [30], Whiteley, et. al 

[35],andWhiteley [36]. 
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1.4 Problem Statement 

The application of AO to the ABL is a vast problem. In no way could one 

dissertation attempt to tackle the entire problem. Therefore, a viable, but challenging 

problem statement for this dissertation is as follows: 

The objectives are to develop fully a unified approach to beam control for the 
ABL so that advanced control techniques can be applied, and to quantify the 
performance improvements that can be achieved by utilizing these techniques. 

To this end, a generic ABL engagement geometry is selected as the basis for this problem. 

Simplifications can be made to transform this work into special cases which are 

applicable to imaging and laser communications. For this general geometry, the 

performance degradation due to turbulence-induced optical aberrations is investigated and 

the associated optimal estimation and control theory is developed. The results obtained in 

this research are for a layered, homogeneous, isotropic, wide-sense stationary turbulence 

model. For a homogeneous, isotropic random process, the autocorrelation function of 

X(f), denoted Tx (?), is a function only of the scalar distance r = |r|. Tilt compensation 

is the main concern in this problem, with model inadequacies and time delays also 

included. The control objective is to provide commands to the DM so that the estimated 

conjugate phase can be applied to the mirror such that, at the target, the high-energy 

laser's wavefront distortion is minimized and the Strehl ratio is maximized. In this way, 

the HEL is correctly pointed to the aim point. The Strehl ratio is a performance metric 

defined as the irradiance with wavefront aberrations present divided by the diffraction- 

limited irradiance on the optical axis. A perfect Strehl ratio is one, while typical imaging 

systems have Strehl ratios well below the theoretical limit; however, an exact number is 
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difficult to present because many factors contribute to the Strehl ratio. A good Strehl 

ratio would be 0.6 or higher. 

1.5 Key Results 

The analysis conducted in this research has led to the following key results: 

• A unified framework for the application of adaptive optics to the ABL. 

• A fully developed engagement geometry for the ABL encompassing target and 

aperture motion as well as wind effects. 

• A modified Frozen Flow Hypothesis (FFH) which takes into account translation and 

rotation of the aperture and target. 

• A new approach to developing an atmospheric model which directly uses correlation 

kernel data instead of designing shaping filters for the atmospheric states. This results 

in a lower-order, and therefore, more practical atmospheric model. 

• Development of an atmospheric model that provides a good representation of the 

atmosphere. This is validated by examining the robustness of the Kaiman filter based 

upon that model. 

• A complete AO control system which accounts for anisoplanatism and time delays. 

• Significant improvement in the reduction of wavefront phase deformations that can be 

obtained by simply performing tilt correction. This result is displayed using 

simulations of the entire ABL AO control system. 



•    Strehl ratios that are improved by about 0.15 using tilt compensation as compared to 

the no compensation case. In terms of simple conjugation, Strehl ratios are improved 

by about 0.04. 

1.6 Organization 

Due to the atmospheric turbulence-induced stochastic nature of the underlying 

processes involved, the spatial-temporal correlation functions of the Zernike polynomial 

phase expansion coefficients must be evaluated if a proper stochastic model of the plant is 

to be developed and adaptive optics is to be employed. In this research, these correlation 

functions are developed using a layered atmospheric model, and calculations for the first 

few low-order Zernike modes are performed. The spatial-temporal correlation of the 

Zernike phase expansion coefficients is developed for a generic adaptive optics 

configuration. In fact, the general situation, as it applies to the ABL scenario, is 

considered. Specifically, two separate wavefronts at two distinct time instants are 

considered. With the dynamic scenario in mind, a novel modified frozen flow hypothesis 

which accounts for translation as well as rotation of the aperture and target is also 

developed. 

The use of AO entails the design of a controller. This requires the development of 

a model of the plant to be controlled. In AO, the plant consists of the atmosphere through 

which light is traveling. Moreover, a distinct feature of the AO control application is the 

presence of random signals in the plant. Thus, in order to apply control concepts to the 

ABL scenario and realize the benefits of AO, an underlying linear, stochastic, dynamical 
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system model which generates the correlation functions of the Zernike expansion 

coefficients and is adequate for control synthesis must be developed. This work 

addresses the attendant realization problem. Using the calculated correlation functions, 

an atmospheric model (plant) is constructed. This model will then serve in a Kaiman 

filter-based optimal stochastic controller (Linear Quadratic Gaussian controller) 

mechanization of an adaptive optics control system for the ABL. In the ABL paradigm, 

the deformable mirror is the actuator element for the control system. Thus, a model of 

the DM compatible with the modal approach is developed. An equivalent discrete-time 

model of the realized continuous-time system is constructed and the complete adaptive 

optics control system is discussed and simulated. 

This dissertation is organized as follows. Atmospheric models and Zernike 

polynomials are discussed in Chapter 2. In Chapter 3, the ABL-specific engagement 

scenario is introduced, including all of the necessary geometrical relations. Next, the 

attendant auto- and cross-correlations of the atmosphere's Zernike polynomial phase 

expansion coefficients are derived in Chapter 4. Also, the correlation functions are 

calculated and a linear, stochastic, dynamical system is synthesized using the developed 

correlation functions. Chapter 5 contains a description of the modeling of the deformable 

mirror dynamics, using a modal approach. The complete system model as well as the 

equivalent discrete-time system are also discussed in Chapter 5. Chapter 6 describes the 

Kaiman filter and Linear Quadratic Gaussian (LQG) controller design while Chapter 7 

provides results of the control system simulation as well as a discussion of these results. 

Last, appendices, a succinct list of relevant references, and a vita are provided. 
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1.7 Summary 

In this chapter, the compensation of atmospheric turbulence using adaptive optics 

has been introduced. The main components of an AO system as well as some common 

AO configurations have also been considered. Some of the most prevalent performance 

degrading factors, with emphasis on anisoplanatism, have also been discussed. To 

achieve the goal of successfully applying AO to the ABL, a general engagement geometry 

must be considered. This allows development of the correlation between the inbound 

(beacon) and outbound (HEL) wavefronts. Advanced control concepts can then be used 

to compensate for optical wavefront aberrations. 

In the next chapter, second-order statistics of the index of refraction fluctuations 

will be discussed. In particular, the two most common spectral representations of the 

fluctuations, namely, the Kolmogorov and von Karman spectra, will be delineated. The 

layered atmospheric model and Zernike polynomials will also be covered. 



//. Atmospheric Models and Zernike Polynomials 

2.1 Introduction 

Atmospheric models and Zernike polynomials will be discussed in the upcoming 

sections. In order to describe the atmosphere mathematically, the physical nature of 

turbulence must be understood. In particular, index of refraction fluctuations, the 

Kolmogorov spectrum, and the von Karman spectrum will be covered. Also, the layered 

atmospheric model will be examined. Following this, a description of Zernike 

polynomials and their application to optics will be included. 

2.2 Index of Refraction Fluctuations 

Index of refraction fluctuations arise from turbulent air motion which obtains its 

energy from differential heating and cooling of the atmosphere. Turbulent eddies are 

pockets of air which have a uniform index of refraction. The statistical description of the 

number and size of these eddies is given by the Power Spectral Density (PSD) of the 

randomly fluctuating index of refraction term, n,(r,t), where r is a three-dimensional 

position vector and t is time. Denoting this PSD by Wn| (K,Q (explicitly a function of 

spatial wavenumber K and altitude £), two widely used forms can be delineated, namely, 

the Kolmogorov and von Karman spectra [13]: 

V3 r 
^2, Wj(K,0= ^C*(QK3 (1) 
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where Ko = 27t / L0, L0 is the outer scale of turbulence, Cn
2(Q is structure constant of the 

index of refraction fluctuations, r(«) is the gamma function, and the superscripts 'K' and 

'V represent the Kolmogorov and von Karman spectra, respectively. Cn (Q can be 

thought of as a term which characterizes the strength of the index of refraction 

fluctuations. Many Cn
2(Q profiles exist, for example, the SLC-Day, Hufnagel-Valley, 

and Greenwood models [10, 21]. The L0 term represents the characteristic dimension of 

the largest turbulent eddies which break up following Kolmogorov theory. The von 

Karman spectrum will be used extensively in the upcoming work because it does not 

contain the non-integrable pole at K = 0 which is present in the Kolmogorov spectrum. 

Thus far, only the spectral characteristics of the index of refraction fluctuations 

have been considered. These spectral representations have corresponding spatial 

representations, with the two being related through the Fourier transform. As already 

stated, the second-order statistics of the Zernike polynomial phase expansion coefficients 

are of interest. However, to obtain this expression requires evaluation of the second- 

order statistics of the index of refraction fluctuations. In order to examine this, two 

definitions related to three-dimensional random processes will be required. First, let K(f) 

be a three-dimensional random process where f is a position vector. The process K(f) is 

said to be homogeneous if the autocorrelation of K( r), 



rK(7,,72) = E{K(r,)K(?2)}, (3) 

where E{»} denotes the expectation operator, is a function only of the difference r, - r2. 

Second, a random process is isotropic if its autocorrelation function is spherically 

symmetric. In other words, for a homogeneous, isotropic random process, the 

autocorrelation function, rK(f), is a function only of the scalar distance r = |r|, where |»| 

denotes the magnitude of the corresponding vector. In all cases, the index of refraction 

fluctuations in the atmosphere are assumed to be homogeneous and isotropic. 

2.3 Layered Atmospheric Model 

In this model, the atmosphere is assumed to be composed of a finite number of 

properly separated layers. The term properly refers to the layers being treated as 

independent. A more thorough discussion of independent layers is presented later in this 

section. Basically, the layered model can be thought of as the discrete counterpart to the 

continuous model. Hence, integrations along the propagation path (z-direction) in the 

continuous model are replaced by summations in the discrete model. Therefore, the 

desired spatial correlation between wavefronts can be described as the sum of the 

contributions from all layers. This layering of the turbulence significantly simplifies the 

calculations to follow. 

For a layered model, the Cn
2(Q profile is broken up into a finite number of slabs, 

with each slab characterized by a turbulence strength which is nearly constant in each 

layer. Letting Cn
2(C0, Ci> and A^; be the structure constant, altitude, and thickness of the 

ith turbulent layer, the structure constant and altitude are selected in such a way that the 



zeroth through seventh moments, £, of the continuous model match the discrete model 

[23]: 

J^Od^XCfC^QACi. (4) 
o < 

In eq. (4), L is the propagation path length and 0 < £, < 7. Moments zero through seven 

are used to provide enough fidelity in the layered model. Higher order moments could be 

used, but the rate of return is negligible. The weights and heights of the most common 

four-layer models have been calculated by Troxel, et. al. [29]. Also, it should be 

mentioned that A^j surrounds ^ symmetrically. 

If diffraction effects are assumed to be negligible, then the turbulence-induced 

phase at position x can be written as 

<D(x)=     f  n,(x,z)dz (5) 

where X is the wavelength. Equation (5) displays the computation of wavefront phase 

when the atmosphere is considered a continuum. Since O(x) is the sum of a large 

number of zero-mean random variables, namely n,(x,z), then, by the Central Limit 

Theorem [3], <E>(x) will be zero-mean and Gaussian. 

For a layered atmospheric model, the expression analogous to eq. (5) is 

o(x)=^5Xn.(*.g. (6) 

By the Fourier transform relation between the PSD and autocorrelation, the PSD of the 

turbulence-induced phase is 
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W0(K) = FT[E{O(X>(X + Ax)}] 

27U (2K\ = IX[f \lKAf FT[E{nI(x,Ci)n1(x + M,ClO}] 
X, V A, y 

'2^ 
= 1^ ^   W^K.C,) 

V X y 
(7) 

where FT{») denotes the Fourier transform. The term in the summation is the PSD of the 

phase in the i' layer, denoted W^K,^). Thus, 

W<t(K) = XW0(K,C,)- (8) 

Substituting eq. (2) into eq. (7) yields the von Karman spectrum for the phase in the il 

layer: 

Mi '2TIY..       C^,) 
T|AC, 

(K
2
+K^) 

For ^ = 0, eq. (4) implies that 

1 Jc^(C)dC 

(9) 

(10) 

The term in eq. (10) can be identified as a turbulence-dependent layer weight w;: 

AC,c2
n(g 

w. = 
i L (ID 

Jc2(CK 

Defining the atmospheric coherence diameter, or Fried parameter [4], r0, as 
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2.91 (2n 
X ) 6.: TfeßK (12) 

and using this result and eq. (11) in eq. (9) gives 

V3 r 
w(P

v(K,ci) = v-v ^6.88^ 

2(2TI)
/3 V2.91y 

W.^K'+KJ)" (13) 

Equation (13) provides the final form of the von Karman spectrum and will be used in 

subsequent calculations. 

When using a layered atmospheric model, the problem of calculating the 

correlation properties of the field perturbations reduces to calculating those for a single 

layer and then extending the results to account for all layers. Tatarski [27], Goodman [8], 

and Troxel, et. al. [29] have argued that the layers can be treated as approximately 

independent if the separation of layer centers is greater than the largest distance between 

field points in the pupil [23]. This allows the spatial correlation of phase perturbations to 

be calculated for each layer separately, with the results being added to account for 

propagation through the entire turbulent region. The independence condition will be 

satisfied by choosing the locations of the turbulent layers such that the separation of layer 

centers is greater than the largest distance between field points in the pupil, i.e., the 

aperture diameter in this case. 

The results in this dissertation are derived using geometrical optics which is 

equivalent to assuming that near field conditions exist. Near field conditions exist if the 

total thickness of the turbulent region satisfies [37] 
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N Ax ^AC    L^i (14) 
^ XK n=l 

where N is the number of layers, X is the wavelength, and A xmax is the maximum 

separation in the aperture. When near field conditions exist, the turbulence region is 

close enough to the aperture plane that refraction caused by index of refraction variations 

can be neglected [23]. This allows the correlation between the inbound and outbound 

wavefronts to be derived based on straight ray path calculations. As the turbulent region 

extends outward from the aperture plane, refraction cannot be ignored. In this case, the 

propagation paths cross and interfere with each other, which in turn causes amplitude 

perturbations. This scenario is referred to as far field turbulence. In the case of near field 

conditions, the perturbations in the aperture plane are entirely phase perturbations. Near 

field conditions will exist in the ABL scenario, which implies that only phase 

perturbations will be investigated. 

2.4 Zernike Polynomials 

Zernike polynomials, denoted by Z,- (x), are a complete set of orthonormal 

polynomials defined within a circle of unit radius. They are commonly used in optics 

because they represent many specific phase aberrations [1]. In the study of optics, it is 

necessary to have some means to express the phase distortion in a wavefront. 

Considering a circular aperture with an incident wavefront propagating through 

turbulence, the absolute phase, 0(x, y, t), of the wave within the aperture is a function of 

time and the spatial coordinates within the aperture. Here, x and y are normalized x- 
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and y-coordinates, for describing the plane of the aperture, such that 

0 < Ixl < 1,0 < |y| < 1. Because Zernike polynomials are orthonormal only on a unit 

circle, the aperture's radius must be normalized to apply Zernikes to non-unit radius 

apertures. The appropriate transformation is 

x=A     y=Z (15) 
R R 

where R is the radius of the aperture. 

Since Zernike functions are a complete set which span the functional space 

containing 0(x,y,t), the phase can be written as a linear combination of Zernikes, that 

is, 

<D(x,y,t) = 0(Rx,Ry,t) = Xai(t)Z,(x,y) (16) 
i 

where aj(t) are the Zernike polynomial phase expansion coefficients. Letting (Rx, Ry) = 

Rx and (x, y) = x,eq.(16) can be equivalently written as 

0(Rx,t) = Xai(t)Zi(x). (17) 
i 

Other basis functions exist, for example, Legendre [24] and Karhunen-Loeve [18, 

34]. The decision to use Zernike polynomials in this work is due simply to personal 

preference. Zernike polynomials are suitable to optics problems since they represent 

many specific phase aberrations such as tilt, coma, astigmatism, etc. Hence, they provide 

a physical understanding of the turbulence-corrupted wavefront. The drawback of 

Zernikes is that all of the modes are not uncorrelated with each other. Karhunen-Loeve 

basis functions are simply linear combinations of Zernike functions and are uncorrelated 

[23]. However, since they are linear combinations of Zernikes, the physical 
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understanding of wavefront distortion is lost. Hence, the decision was made to use the 

more common and physically practical Zernike polynomials. 

The expansion coefficients in eqs. (16) and (17) can be obtained by projecting the 

wavefront phase onto the space of Zernike polynomials, that is, 

ai(t) = JO(Rx,t)Zi(x)W(x)dx (18) 

where W(x) is a weighting function defined as 

W(x) = {%      if       I*'"1 (19) 
[0 otherwise 

and the integration is over the entire two-dimensional plane. Also, Zernike polynomials 

form an orthonormal basis set which satisfies 

jW(x)Zi(x)ZJ(x)dx = 51J (20) 

where Si j is the Kronecker delta defined by 

fl   if   i = j 
8.-H (21) 1J     JO   if    i*j. 

Table 1 lists some low-order Zernike polynomials, Z;(r,6) in polar coordinates, Z(x,y) in 

rectangular coordinates, their corresponding radial and azimuthal orders [18], n and m, 

and the optical aberrations they represent [1]. 
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Zernike # 
i 

n m Zi(r,9) Zi(x,y) Aberration 

1 0 0 1 1 Piston 

2 1 1 2rcos9 
R 

2x 
R 

X-tilt 

3 1 1 2r sin0 
R 

2y 
R 

Y-tilt 

4 2 0 
V5 2 — u 

\2 

-1 ^|(2x2
+2y2-R2) 

Focus 

5 2 2 

V 

T-j sin(29) 
2V6,           V 
R2 (xy) 

Astigmatism 

6 2 2 f 

V 
-    cos(26) 
Ry #(x2-y2) 

Astigmatism 

7 3 1 
V£ 3^ 

AR, 

3 

-2 
vR,. 

sin(9) ^-(3x2+3y2-2R2)y 
Coma 

8 3 1 
v§ 3 —    -2 

RJ. 
cos(9) ^-(3x2 + 3y2-2R2)x 

Coma 

Table 1. Zernike polynomials. 

2.5 Summary 

In this chapter, index of refraction fluctuations and the Kolmogorov and von 

Karman spectra were discussed. The layered atmospheric model was introduced and the 

turbulence-induced phase, using this model, was delineated. Zernike polynomials and 

their application to optics were also covered. 

In Chapter 3, the ABL engagement geometry will be introduced. The objective is 

to determine the projections of the aperture vectors into the turbulent layers. These 

projections are necessary since the only contributions to the correlation between 
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wavefronts are due to the turbulent slabs. Once the projections have been determined, the 

separation between the projected vectors can be evaluated. The effect of wind is also 

taken into account and the necessary kinematic variables are delineated. 
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Z/7. ABL Engagement Geometry 

3.1 Introduction 

The engagement geometry for the ABL is introduced in this chapter. Due to the 

dynamic nature of the ABL engagement scenario, the geometry has been chosen to be as 

general as possible. Two times instants of interest, ti and tz, are considered and both 

aperture and source motion as well as wind effects are included. In conventional AO, the 

latter is responsible for introducing a temporal dependence in the index of refraction 

fluctuations. In the ABL application, dynamic object and source motion cause the major 

temporal dependence. Since the object and source velocities are much greater than the 

wind velocity, the wind has a diminished effect in this application. However, wind is also 

included so that the general results derived in this work can be specialized to classical AO 

situations such as fixed target or source and fixed target and source. Also, a layered 

atmospheric turbulence model is used with a wind vector of general direction. In using a 

layered atmospheric model, it is necessary to project the aperture vectors into the 

turbulent layers. 

In the ABL, there are two wavefronts of interest, namely, the inbound (beacon) 

and outbound (HEL) wavefronts. Currently, for the ABL, the inbound wavefront's 

wavelength is 1.03 fim while the wavelength of the outbound wavefront is 1.05 urn. 

Therefore, in the simulations in this work, it will be assumed that the beacon's 

wavelength is 1.03 |im and the HEL's wavelength is 1.05 |im. 
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It is desired to determine the correlation between these two wavefronts. This is 

needed since measurements come from the inbound propagation path; that is, only the 

turbulence-induced wavefront deformations of the inbound wavefront are measured. In 

order to fire the HEL successfully, the effects of turbulence on the propagation of the 

outbound wavefront must be determined. A method of achieving this result is to evaluate 

the correlation between the inbound and outbound wavefronts. Since a layered 

atmospheric model has been selected, the spatial separation between inbound and 

outbound wavefront points, in the turbulent layer, is needed. Thus, the objective in this 

section is to develop an expression for the separation of projected aperture vectors. 

However, to obtain this quantity it will be necessary to project the aperture vectors, 

perform transformations between reference frames, determine the time t2 kinematic 

variables in terms of their time tj counterparts, and include the wind effect. In this 

process, a novel frozen flow hypothesis needs to be developed. 

3.2 ABL Engagement 

Consider the simplified ABL engagement geometry depicted in Figure 7. This 

figure displays the aperture and target at two time instants of interest, ti and t2, where t2 > 

ti. Aperture and target motion are considered with corresponding constant velocity 

vectors VA and VT, respectively. Constant velocity vectors have been assumed since the 

sample period, At = t2 - ti, will be small (on the order of tenths of milliseconds). 
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AT TIME  t *(0(R01 .t2) 

Figure 7. Simplified ABL engagement geometry. 

Two wavefronts are depicted, namely, the inbound (beacon) and outbound (HEL). 

Measurements for the ABL come from the inbound wavefront, that is, the tip of the 

missile is flooded with a laser and the returned light is sampled by a WFS to determine 

the amount of distortion in the inbound wavefront's phase. The HEL is pointed to the 

aim point, or that point where the beam will be directed to disable the target. It can be 

seen that there is a spatial separation between the inbound and outbound wavefronts, 

resulting in some degree of anisoplanatism. Due to the fact that there are two wavefronts, 

two aperture locations at each time instant are denoted, namely, RX; and ROj, i = 1,2. 

Also, it is assumed that the aperture accurately tracks the target at all times. 

The layered atmospheric model is depicted by displaying turbulent layer m with 

thickness ALm. The wind has the effect of shifting the turbulent layer; therefore, turbulent 

layer m is moved by wind vector Vw . There are two reference frames included in this 
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figure, the first being (x,z), which is coincident with the aperture at time ti and has the 

Z-axis normal to the aperture. Likewise, frame (0,WJ is coincident with the aperture at 

time t2 and the W-axis is normal to the aperture. 

Figure 7 was shown here simply to display an uncluttered drawing. Figure 8 

shows the full ABL engagement geometry first introduced in [19]. 

TURBULENT 
LAYER  m 

^(RQ, ,t2) 

Figure 8. ABL engagement geometry. 

This figure is the same as Figure 7 with all of the necessary geometrical constructs 

included. In particular, there are three reference frames of interest: 

1. Frame 1 = (ix, iz J with origin Oi coincident with the aperture and the ix axis 

aligned with the aperture at time t\. 
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2. Frame 2 = (iu, iw) with origin O2 coincident with the aperture and the iu axis 

aligned with the aperture at time t2. 

3. Frame 3 = (i   , i    ) with origin Om located on the mth turbulent layer and the i 

axis aligned with the turbulent layer. 

The notation L is used to denote a unit vector and the subscripts 'FT, 'F2', and 'Fm' 

denote vectors written in Frame 1, Frame 2, and Frame m, respectively. Without loss of 

generality, the vectors ix and iu lie in the plane of the aperture at times ti and t2 and VA 

and VT are in the (ix,iz) plane. In other words, this is a planar engagement. The planar 

engagement has been selected because the ABL operates on missiles in boost phase. 

Hence, the aperture can be aligned so that the majority of motion occurs in the x- 

direction. Although this is somewhat restrictive, it is more than adequate for the 

development of the framework for the application of AO to the ABL. Moreover, the 

following notation is used to denote the kinematic variables of the engagement geometry: 

y(ti), y(t2) = angles from the ix, iu axes to the turbulent layer at times ti, t2. 

d(tj) = distance from the aperture to the turbulent layer at time t\, measured 
normal to the aperture, i = 1,2. 

Lr(tj) = distance from the aperture normal to the tip of the missile, i = 1,2. 

Li (ti) = distance from the tip of the missile to the aperture measured along the 
aperture normal, i = 1,2. 

L2(tj) = distance from the intersection of the aperture normal and the missile to the 
aperture measured along the aperture normal, i = 1, 2. 

9(tj) = angle measured from the aperture velocity vector to the aperture normal 
vectors, Z and W, respectively, i = 1, 2. 
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ALm = thickness of the ml turbulent layer. 

Vw = turbulent layer wind vector, yw = angle that the turbulent layer wind vector 

makes with iv   . 

0(,)(Rx1,t]), 0
(l)(Ru,,t2) = inbound, or beacon, wavefront phase. 

O(0) (Rx 2, t,), O(0) (Rü 2,12) = outbound, or high-energy laser, wavefront phase. 

For the upcoming development, it will be necessary to transform vectors written in 

reference frames 1 and 2 to vectors written in frame m. To accomplish this, two 

transformations are necessary. The first transformation embodies the novel modified 

frozen flow hypothesis [20] which takes into account translation as well as rotation of the 

system as time progresses from t] to t2. In mathematical terms, given a vector r , written 

in frame 2, the required transformation to express this vector in frame 1 is 

cos A 9     0    sinA0 
0 1        0 

-sin A 9   0   cos A 9 
rF2 + 

sin9(t,) 
0 

cos8(t,) 
VA At = ROT(A6)rF2+TRANS 1     (22) 

where AG = 0(ti) - 9(t2), At = t2 - th ROT(A8) denotes a rotation matrix, TRANS 1 is a 

translation vector to frame 1, and |»| denotes the magnitude of the corresponding vector. 

The reason for the opposite conventions in the definitions of At and A0 is that a positive 

At will yield a positive A9. 

The second transformation is as follows: given a vector f , written in frame 1, the 

required transformation to express this vector in frame m is 

'Fm 

cosy(t,)    0   siny(tj) -d(t,)sinY(t,) 

0          1         0 fF1 + 0 

-siny(t,)   0   cosy^) -d(t,)cosY(t,) 

= ROT{y(t, )}rF1 + TRANSm .(23) 
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3.3 Aperture Vector Projections 

In this section, the projections of the aperture vectors, Rx; and Rüj, i = 1,2, into 

the turbulent layer will be determined. Recall that the only contributions to the 

correlation between inbound and outbound wavefronts are from the layers. Hence, the 

spatial separation between aperture vectors projected into the layers must be evaluated. 

Figure 9 is used to perform these projections. Figure 9 shows the aperture, target, and 

turbulent layer at one time instant along with the turbulent layer normal vector, in. It is 

desired to determine an expression for the point (X,Y,Z), in terms of the kinematic 

variables, which requires evaluation of the line that connects the points (x,y,0) and 

(LT,0,L(t)). 

To begin, the equation of the plane in which the turbulent layer resides must be 

determined. The normal vector to the turbulent layer, written in frame 1 coordinates, can 

be expressed as 

in=[-siny   0   cosy]T. (24) 

Then, the equation of the plane in which the turbulent layer lies is 

-siny(X-0) + 0(Y-0) + cosy(Z-d) = 0 =>  -tanyX + (Z-d) = 0. (25) 
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TURBULENT 
LAYER   m 

(LT,0,L(t)) 

(x,y,0) 

Figure 9. Aperture, target, and turbulent layer for determination of projected vectors. 

Now, letting 'sf be a scale factor, differences in the three components for the line 

between (x,y,0) and (LT,0,L(t)) are 

X-x = (sf)(LT-x) 

Y-y = -(sf)y 

Z = (sf)L(t) . 

Using these expressions in the equation of the plane, eq. (25), yields 

x tan 7 + d 
sf = . 

L(t) - LT tan Y + x tan y 

Substituting eq. (27) into eq. (26) gives 

LTd + x{L(t)-d}      L(t)-LTtany-d      L(t)d + L(t)xtany 

(26) 

(27) 

[X   Y   Z\ = 
L(t) - tan y(LT - x)    L(t) - tan y(LT - x)    L(t) - tan y(LT - x) 

• (28) 
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Jh Therefore, the projection of aperture point (x,y,0) onto the m   layer is given by (X,Y,Z) 

in eq. (28). In a similar manner, projections for the vectors Rx( and Rui; i = 1, 2 can be 

computed. Utilizing the kinematic variables defined in Figure 8 yields the following 

expressions for the projections of the two aperture vectors at each time instant: 

"x, 
XkpFl  — 

"•kp 

Yv, 

'npP2 

Jkp 

w„, 

LkltO-tanY^^L^tJS^-RxJ 

Ln(t2)-tany(t2){LT(t2)5n,-Ru„} 

{L^tJ-tany^L^^-d^Ry, 
Lk(t.)d(ti) + Lk(ti)tan"Kt1)Rxk 

LT(t2)d(t2)8,„+{Ln(t2)-d(t2)}Run 

{Ln(t2)-tany(t2)LT(t2)5n]-d(t2)}Rvn 

Ln(t2)d(t2) + Ln(t2)tany(t2)Ru„ 

(29) 

(30) 

where pRXkl rRii,,-! 
= Rxk, 

LRyJ LRVnJ 
= Run, the subscript 'p' denotes a projected vector, the 

subscripts 'FT and 'F2' denote vectors written in frames 1 and 2, 8ki, 5ni are Kronecker 

fl   if   k = l fl  if   n = l 
deltas such that 8t, = <^ , 5nl =< , and k = 1, 2, n = 1, 2. It can be kl     [0  if   k*l     nl     [0  if   n^l 

seen that eq. (30) contains kinematic variables defined at time t2. Hence, relationships 

between the time t2 and time ti variables must be determined so that expressions in 

subsequent chapters only contain time ti quantities. 

3.4 Calculation ofd(t2), jit2), and the Apparent Thickness of the Turbulent Layer 

In this section, relationships between time t2 kinematic variables and their time ti 

counterparts will be determined. It should be pointed out that d(t2) and y(t2) are 

determined by the engagement geometry and the time interval t2 - tj. Letting co be the 

slew rate of the aperture, it is clear that 
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e(t2) = e(t1)+a>(t2-t1). (31) 

A constant slew rate has been assumed since the sample period is short. 

To aid in the calculation of y(t2), Figure 10 will be used. Figure 10 shows the 

turbulent layer, the aperture at time t2, the time ti aperture normal vector, Z, lines which 

are normal to the Z- and W-axes, and some other geometrical constructs. 

TURBULENT 
LAYER   m 

TIME  i> 

Figure 10. Time t2 geometry for calculation of y(t2). 

As can be seen in Figure 10, 
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y(t2) = y(t1)+p. (32) 

Utilizing triangle QRS and the fact that the sum of the included angles is 180 produces 

b+9o°+e(t,)-e(t2) = i8o° => b = 9o°-e(t1)+e(t2). (33) 

Then, looking at the Z axis at point R, the following relationship becomes apparent: 

b + p + 90° = 180°   =>  p = 9(t,)-e(t2). (34) 

Using eq. (34) in eq. (32) yields the desired result: 

y(t2) = y(t,)+e(t1)-e(t, 

In order to determine d(t2), Figure 11 will be used. This figure displays the 

aperture and target at both time instants along with other necessary quantities. 

(35) 

TURBULENT 
LAYER m 

TIME t2 

Figure 11. Aperture and target for calculation of d(t2). 
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The first step in this process is to determine the length A. This can be accomplished 

using the law of sines on triangle BCD which produces 

d(t,) _ A 

sin[7(t1) + e(t1)-9(r]     sin^O'-TtO] 

or 

(36) 

(38) 

d t, cos-flt,, 
A = rj—, r^r. (37) 

-coslYitJ + elt,)] 

Using the law of sines once again, this time on triangle BEF, gives 

d(t2) =A + |vA|(t2-t.) 

sin^tj + e^,)-^0]     sin[90°-y(t2)] ' 

Substituting eq. (37) into eq. (38) and rearranging yields the desired result: 

, ^tQcosy^J-lv.l^-tJcos^t^ + e^,)] 
(t2J" cos[e(t2)-e(t,)-y(t,)] ■ ( 

The last quantity of interest in this section is the apparent thickness of the 

turbulent layer. The thickness of the layer is denoted by ALm. However, since the rays 

from the beacon and HEL do not pass perpendicular to the turbulent layer, the apparent 

thickness of the turbulent layer, that is, that amount of each slab which is traversed by 

each ray, must be determined. Figure 12 will be used to evaluate this quantity. This 

figure shows the aperture, target, and turbulent layer at one time instant. Other quantities 

displayed in this figure are the angles h and f and the apparent thickness, denoted by 

ALm
(l). Using this figure, angle h can be obtained as 
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h = tan" L,(t.) 
LT( tj J - K. Xj 

(40) 

The expression for h can be simplified by considering the physical dimensions of the 

problem. In particular, the ABL operates with Li(ti) on the order of 100 kilometers, 

LT(ti) = 2 meters, and R|x,| < 0.875 meters. Therefore, Li(ti) » LT(ti) - R|x,|. Hence, h 

~%I2. Now, using Figure 12, it can be seen that h = f + y(ti) => f ~ n 12 - y(U). Then, 

by simple geometry, 

sinf 
AL. 

AL( (0 AL^«- 
AL. AL„ 

sin 
71 

-Y(t.) 
cos T(t>) 

(41) 

TURBULENT 
LAYER   m 

Figure 12. Engagement at one time instant for apparent layer thickness. 
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In a similar manner, the apparent thicknesses for the other rays can be determined. The 

expressions are the same as that in eq. (41) with y(ti) replaced by y(t2) for time t2 

thicknesses. 

3.5 Wind Effect 

To incorporate the effect of wind on the turbulent layer, the wind vector is 

resolved into components written in reference frame 2. Thus, 

Vw = Vw Vw smri 
T 

(42) COST)     0 

where r\ = y(t2) + yw and Vw cosr), Vw sinr| are the components of Vw in the U-, W- 

axis directions, respectively. The wind vector is written in terms of frame 2 coordinates 

because the effect of wind between times ti and t2 is of interest. Obviously, for t > t2, 

wind effects also occur, but only two time instants need to be considered in the 

development. The results can then be propagated to later time instants. In the upcoming 

development, the subscript 'Vw' on a variable is used to indicate that the wind effects 

have been incorporated into that quantity. 

First, consider the wind in the W-axis direction. Figure 13 shows the geometry 

for this case. In this figure, the aperture and target (source) are shown along with the 

turbulent layer at times ti and t2. The term source is used since the tip of the target, i.e., 

the point of reflection of the beacon laser, can be considered a point source. Notice that 

the W-axis component of the wind moves the turbulent layer only along the W-axis. The 
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two quantities that need to be evaluated are the new d(t2) distance, denoted d(t2 )v , and 

the new projected u vector, denoted ü ipvw F2 ' 

d(t2)v~d(t
2)

=lVwlsin7'At TURBULENT 
LAYER 
AT TIME t„ 

TURBULENT 
LAYER 
AT TIME t 

V     Sin 7} =WIND  COMPONENT 

TIME t2 

WIND  EFFECT  FOR  WIND  IN  W-AXIS  DIRECTION  ONLY 

Figure 13. Wind effect in W-axis direction. 

IN  W-AXIS  DIRECTION 

0 

It can be seen, from Figure 13, that 

where 

u      ci =u- c1 +AÜ ipvwF2        "ipF2 (43) 

Ä0 0    0 V„ 
iT 

sinri At (44) 

and 

d(t2)v   =d(t2) + |vw sinrjAt. (45) 
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Now, the U-axis contribution of the wind can be examined. Figure 14 shows the 

geometry for this case. In this figure, the aperture and source are once again shown, but 

now the turbulent layer has moved from point B, at time ti, to point C at time t2. As in 

the case of the W-axis wind, the two quantities of interest are d(t2 )v   and üip ipvw F2 • 

Clearly, eq. (43) holds, but eq. (44) becomes 

AÜ: V„ COST)     0     0 'At (46) 

and the new d(t2) distance is 

d(t2)v   =d(t2)-M(t2) (47) 

where Ad(t2) is determined by simple geometry using triangle ABC in Figure 14: 

Ad(t2) = tany(t2)|vw cosTjAt. (48) 

W SOURCE 

Vw|cOS7JAt 

WIND EFFECT FOR WIND IN  U-AXIS DIRECTION  ONLY 

Ad(t2) 

V«. COS 77 =WIND COMPONENT 
1   Wl IN U-AXIS DIRECTION 

Figure 14. Wind effect in U-axis direction. 
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Putting these results together, that is, using eqs. (43-48) leads to the desired results: 

UipvwF2  ~~ UipF2 + 

Vw COST)At 

0 

sinrjAt V, w 

,i= 1,2 (49) 

and 

d(t2)v   =d(t2)-tanY(t2)|vw cosriAt+ Vw sinr|At (50) 

3.6      Projected Aperture Vector Separation and Relationships Between Aperture 
and Projected Aperture Vectors 

To begin, first consider the projected aperture vector separation. As previously 

stated, in using a layered atmospheric model, the correlation between inbound and 

outbound wavefronts is due only to the turbulent layers. Hence, the separation between 

aperture vectors, projected into the slabs, must be determined. The notation used is as 

follows:   xk Fm ,unpv Fm are the projections of aperture vectors Rxk ,Run written in 

frame m. Figure 15 will be used in this case. Here, the projected vectors are shown, 

written in frame m and frame 2. From this figure, it is clear that the difference in 

projected vectors is simply 

^Sm ~ UnpvwFm       XkpFm • (51) 

Notice that in order to obtain unnv F , the transformations described in eqs. (22) and (23) 

must be applied to u     F2. 
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TURBULENT 
LAYER m 1 

Figure 15. Projected vector separation. 

In the upcoming development, an expression for the correlation functions will 

contain projected and non-projected aperture vectors. In order to determine the 

correlation contribution from each layer, it is pertinent to have only projected vectors in 

this expression. Hence, a relationship between projected and non-projected aperture 

vectors must be determined. First, consider the relationship between Rx^, and xkpFm. 

Applying the transformation in eq. (23) to eq. (29) gives 

kpFm 
Lk(t.) 

Lk(t,)-d(t,) 
0 

cosyCt,) 
0 Lk(t,)-d(t,) 

Rx,,-, + 

LT(t,)d(t,), 
 < 

cosy(t,) 
0 Mt,) 

A,kRxkF1+Bxk   ,k = l,2 

(52) 
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Then, it is clear that 

Rxjjj - Axk {Lk(tl)XkpFm-Bxk}'k = 1^ (53) 

The expressions in eq. (52) were obtained using an approximation which produced a 

linear relationship between RxkF1 and xkpFm . In the full expression, the relationship 

between RxkF, and xkpFm is nonlinear; however, letting 

Lk(t1)»tany(t1){LT(t,)5kl-R|xkF1|},k=l,2, 

the linear result in eq. (52) is produced. For the case of RunF2 and ü     Fm, the same 

(54) 

reasoning has been employed to produce 

u npvlvFm 
Ln(t2) 

L„(t2) -+a 0 
cosy(t2) 

0 Ln(t2)-d(t2)Vu, 

RÜ nF2 

1 

L„(t,) 

where 

a = -cosy(t2)d(t2)v   -tany(t2){x}, 

bun =d(t2)    {cosy(t2)LT(t2)5nl +sinY(t2)Ln(t2)}-Ln(t2){%}, 

{AunRünF2+Bun},n = l,2 

(55) 

(56) 

(57) 

and 

X = cosy(t2)|vw|cosriAt + siny(t2)|vw|sinriAt-sin[Y(tJ + e(tJ]|vA|At + d(t1)sinY(t1),(58) 

n = 1,2. Therefore, it can be seen that 

RÜnF2=Aun {L„(t2)3„pvwFm-Bu„}.n = l- (59) 

It should be noted that A^, k = 1,2, and Aun, n = 1, 2 are diagonal matrices. Hence, 

multiplication of these matrices with each other will be commutative. 
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3.7 Summary 

In this chapter, the aperture vectors have been projected into the turbulent layers, 

the desired vector separation has been determined, and the kinematic variable 

relationships have been evaluated. At this point, all of the required geometrical analysis 

for this problem has been performed. It is now necessary to evaluate the correlation of 

the Zernike polynomial expansion coefficients using the analysis in this chapter. As can 

be seen in Figure 8, the inbound (beacon) and outbound (high-energy laser) wavefronts 

propagate through different regions of the atmosphere at different times. In other words, 

the sensed wavefront perturbations and the high-energy laser wavefront are associated 

with different observation directions. Therefore, the phase perturbations associated with 

the two wavefronts are different. This performance degradation is referred to as an 

anisoplanatic effect. To account for anisoplanatic effects, the correlation between 

wavefronts arising from the two directions must be evaluated. In Chapter 4, an 

expression for this correlation is derived. 
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IV. Atmospheric Modeling 

4.1 Introduction 

The correlation between inbound and outbound wavefronts is determined in this 

chapter. Since measurements in the ABL scenario are of the inbound wavefront's phase, 

the correlation between the inbound and outbound wavefronts must be evaluated in order 

to determine the effects of turbulence on the outbound wavefront's propagation path. The 

outbound propagation path is important since the HEL is fired through this section of 

atmosphere. Once the correlation functions are determined, this data will be used to 

synthesize a stochastic, linear, dynamical system which will serve as the model for the 

atmosphere. 

4.2 Correlation of Inbound and Outbound Wavefronts 

With the analysis from Chapter 3 in place, the correlation between Zernike 

polynomial phase expansion coefficients can now be determined. Much of the 

development of the correlation functions follows the work of Takato and Yamaguchi 

[26], Valley and Wandzura [30], and Whiteley [35, 36]. Modifications have been made 

including the modified frozen flow hypothesis, appropriate layer thicknesses, and the 

ABL-specific geometry. 

Utilizing the Zernike polynomial expansion in eq. (17), the inbound and outbound 

wavefront phases can be written as 

*(i)(RxIF1,t,) = Xa(
f
i)(t1)Zf(x1F1),   ^(Rx^O^a^OZfCx^)      (60) 
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and 

*(i)(Rü1F2,t2) = XaSi)(t2)Zj(ü1F2),   0>(o)(RÜ2F2,t2) = 5;aSo)(t2)Zj(ü2K2)>   (61) 
j j 

where af
(l)(ti), af

(o)(ti), aj(l)(t2), and a/o)(t2) are the Zernike polynomial phase expansion 

coefficients. The superscripts (i) and (o) refer to the inbound and outbound wavefronts. 

The expansions used in this work will include two modes, that is, f = 2, 3 and j = 2, 3. 

Zernike mode number one is termed piston (aperture averaged phase) and is not a 

distortive contributor. Hence, it is ignored in the expansions. The general forms in eqs. 

(60) and (61) will be used to allow the framework to be built using as many modes as one 

desires. The decision to use two modes will be discussed later in this work. 

These equations can be written in more compact forms as 

O(,'0)(RxkF1,tl) = Xa<
f
i'°)(t.)Zf(^F1)>k = l,2 (62) 

f 

and 

^(i'0,(Rö„F2>t2) = Xa!i,0)(t.)Z
J(

ünF2)>n = l,2 (63) 
j 

where the notation <f>(l'o)(»,») and a(l0)(t) designate the inbound and outbound phase and 

Zernike coefficients depending on which aperture vectors are used. In other words, if 

using aperture location x1F1 in eq. (62), i.e., k = 1, then the inbound wavefront, 

superscript (i), is under consideration. If aperture location x2F1 in eq. (62) is used, i.e., k 

= 2, then the outbound wavefront, superscript (o), is under consideration. The same holds 

for the expressions in eq. (63). This notation allows derivation of the correlation between 

inbound and outbound wavefronts to be evaluated in the general case, with the desired 
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combination of wavefronts substituted later. The Zernike coefficients can now be 

determined as specified in eq. (18): 

a(
f''

0)(t1) = Jw(xkF,)zf(xkF1)o
(i'0)(RxkF1,t1)dxkF1 (64) 

and 

aSi'°)(t2) = Jw(0jF2)ZJ(ünF2)o
(i'o)(RünF2,t2)dünF2 (65) 

where the integration is taken over the entire two-dimensional plane and W(») was 

defined in eq. (19). Since it is desired to determine the correlation between the 

wavefronts, and the wavefronts have been expanded using eqs. (60) and (61), it follows 

that the desired expression can be evaluated by computing the correlation between the 

Zernike expansion coefficients. Hence, the correlation becomes 

= E{JJw(xkF,)Zf(xkF1)w(^ 

= JJw(xkFI)zf(xkF])w(u^ 

(66) 

where the last expression was obtained using the linearity property of the expectation 

operator and T (i0)     (i,0)      is the correlation between Zernike coefficients. 

In order to evaluate the integral in eq. (66), it is necessary to determine 

E{o(i0)(RxkF1,t,)a)(i'0)(RünF2,t2)}. (67) 

Some of the properties described in Chapter 2 are now necessary. In particular, using a 

layered atmospheric model and assuming that all layers are of equal thickness and the 
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index of refraction fluctuations are uncorrelated layer to layer (by suitably placing the 

layers as discussed in Chapter 2), a wavefront's turbulence-induced phase can be 

expressed as 

$(x) = KXAL(»nB(x,t) (68) 
m 

where K = 2n IX is the spatial wavenumber, A, is the wavelength, m is a layer subscript, 

AL(k) is the apparent thickness of the mlh layer as seen by the kth wavefront, and nm(x,t) 

is the mth layer's randomly fluctuating index of refraction term. Using eq. (68) in eq. (67) 

produces 

E{#(i'0)(RxkF^
(''^ (69) 

where ALm
(k), ALm

(n) are the apparent layer thicknesses for the kth, nth wavefronts and 

xk F1 ,un F2 are the projected aperture vectors written in frame 1 and frame 2. Frame 2 is 

used for ü     since the modified frozen flow hypothesis (FFH) has not been included. In 

fact, applying the modified FFH, as described in eq. (22), yields 

nm(unpF2,t2) = nm(ünpF1,t,). (70) 

In other words, the modified FFH takes into account target and source motion and thus 

relates frame 2, time t2 variables to frame 1, time ti variables. 

Now, transforming the vectors in eq. (69) to frame m and incorporating the effects 

of wind produces 
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E{0(i'0)(RXkF1)0
(^ 

J[K2ÄL2
mE{nm(xkpFm,t1)nm(ünpVwFm,t1)} 

(71) 
cosy(t,)cosy(t2) 

where the cosine terms arise because the expression for the apparent layer thickness has 

been included. It can be seen that the term in brackets is the spatial autocorrelation of the 

phase in the mth layer. Thus 

/ A d>m (^kpFm 'Unpv„,Fm ' ' 1 j 

E{d>(i'0)(RxkF1W
(i'0)(RünF9)} = ^ -- j—  (72) 

I        v ;        v ') cosY(t1)cosy(t2) 

where T^ [•,m,tlj denotes the spatial autocorrelation. Under the assumptions of 

homogeneous and isotropic statistics, as addressed in Chapter 2, ro (».M,) will be a 

function only of the vector separation between its arguments. Therefore, using eq. (51), 

I"*,,, (^kpFm'"npvwFm'tl ) = ^V,, (A Sm ' * 1 ) = *<t>m (Unpv„,Fm ~ "kpFm^l j • C'^) 

Substituting eq. (73) into eq. (72), using this result in eq. (66), and interchanging the 

order of integration and summation produces 

r.r(,).r<.J)
=EK')(t')a?'0,(t2)} 

= ?cosy(toLy(t2)flr°"t5"p^^ 

(74) 
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Due to the fact that eq. (74) contains projected and non-projected aperture vectors, the 

transformations given in eqs. (53) and (59) must be used to obtain only projected vectors. 

Applying these transformations yields 

1 A 
r

al «„>,; c, = I CY(t )cY(t0 Ifr».<5Tv.pm - VJW -^{L(t,)xkpFn, - Bx} -^-{L(t,)xkpFm-Bx} 

*W 
R 
r{L(t2)G„Pv„Pm-Bu} Y{Ut2)GnpVwFm-Bu} 

R 

A:'L(t,) 

R 
dx kpFm 

A;'L(t2) 
R 

du npvwFm 

(75) 

where A;1 ,L(t,),Bx are Aj ,L,(t,),Bxl if k = 1 or A;2 ,L2(t,),Bx2 if k = 2, and 

likewise for the 0 components. 

There are well-known forms for the Power Spectral Density (PSD) corresponding 

to the spatial autocorrelation of the phase, namely, the Kolmogorov and von Karman 

spectra. Since the autocorrelation of the phase and its PSD form a Fourier transform pair, 

transform techniques can be applied to eq. (75) to obtain a PSD term. This analysis 

follows the development in the work of Takato and Yamaguchi [26] and simplifies the 

integrations described in eq. (75). The following transform property, among others, will 

be useful, assuming that s(r) is Fourier transformable: FT{»} denotes the Fourier 

transform of {•}. 

•    Scaling and shifting property [7]: 

FT{s(a1x + b1y + cI,a2x + b2y + c2)} = pje-j2"(x-'0>'+y'',D2)S 
b, a,        -b, a, 
-co, —L(ü2,—

Lco, +—Lco2 
D D D D 

(76) 
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„        , , b.c-, — b,c,        , ä,c, — a,c9 
where D = a,b?-a7b, ,xn =   12^   21,andy0=-2 '      ' 2 

D D 

First, consider the integral over ü     Fm in eq. (75). Letting 

A.. = 
Aulil       0 

0      Au2, 
B, 

B 
ul,l 

0 
,u npvwFm 

UnpvwFm W 

UnpvwFnA^/ 
,k = (77) 

the terms inside the weighting function and Zernike polynomial can be expressed as 

AML(t2)ünpVivFm-Bu} = 
R 

L(t2)u     Fm(l)      Bu u 
RAul, RAuU j 

L(t2)unpv^Fm(2) 

RAu2,2 

(78) 

Using eqs. (75) and (77), the components ai, bi, ci, a2, b2, c2, D, x0, and y0 can be 

identified and the Fourier transform of Zj(»)W(») can be written as 

FINZ; A^-{L(t2)0„^F„,-Bu} W ^{L(t2)ünpVwFni-Bu} 
R R 

R2 1 -J2" 

L-(t2) det(A-') 
••'Q; 

RA„K 

L(t2) 

(79) 

where Qj*(f) is the Fourier transform of Zf (f)W(f), '*' denotes complex conjugation, and 

the dot (•) in e 
-j2jIK" 

L(t2) denotes dot product. Using this result and Parseval's Theorem 

[8] in eq. (75) produces 

V'O.rc,) = Icy(twt)JlFTK (5npv„Fm - ^pFm)}W ^{L(t,)xkpFm -Bx} 
m   *— f V •-1 

R 
-{L(t,)xkpFm-Bx} 

R j -j2jtic. 
L(l,) 

L(t2) deKA;1) 
Q; 

RAU 

L(t2) 

A:'L(t,)' 

R 
dxkpFmA-'dK. 

(80) 

Using the Wiener-Khinchin theorem [7] and the shifting property of the Fourier transform 

gives 
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Fr{ro,„ Kpv„Fm - xkpFm)} = W*_ (icje-^-^1 (81) 

where W0 (ic) is the PSD of the spatial autocorrelation of the phase in the m1 layer. 

Substituting eq. (81) into eq. (80) and rearranging yields 

r =y -  
a<r'-"(.1)a<j'-'"(.2)        Z,CY(t   )cy(t 

R 1 

Y(t,)cy(t2)L(t2) detCA"1) üjW*m(*)
e 

-J2TUK» 

L(t2) RAU - 
 —K 
L(t2) 

Jei2^-"W^{L(t,)xkpFm-Bx} 
R 

Zf R rW'-^-B*} 
Ax-'L(t.) 

R 
dx kpFm 

A:'dK.(82) 

Using the Fourier transform properties once again, the term in parentheses in eq. (82) can 

be transformed to yield 

1 R2 

al
1
i'D)(t1)a;i-0,(l2) 'I cYOcya^LCt,)!^) 

|det(Ax)|det(Au)| 

^JW0| (K)e 
-)2KK< 

B„ Bv 

L(t2)    L(l,) RAx _ 
 -K 
L(t,) 

Q; 
RAU _ 
 —K 
L(t2) 

A:'A:'dK (83) 

where Ax and Au are 2-by-2 diagonal matrices. Thus, multiplication of these two 

matrices is commutative. 

Equation (83) provides the desired result, that is, the correlation between Zernike 

polynomial phase expansion coefficients. However, double integrations are not feasible 

in an on-line situation. Therefore, it would be desirable to obtain a simplified expression 

by integrating out one component of the frequency vector. To simplify eq. (83), consider 

converting the Cartesian integral into an equivalent polar integral. Letting 

A:
1
A:

1
K = K     =»    A:'A-'dK = dK, (84) 

it can be seen that (recalling the Ax and Au are diagonal, so that they commute) 
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K = AxAuic     , 
RA„ -     RA A   - 

-K = - 
L(t2) L(t2) 

K    , and   -K = 
RAV _     RA A„ - x^-u 

L(t,) L(t,) 
(85) 

- R R 
Also, W. (K^W,. (A A„K) and letting d = —!L-+—— yields 

*" *m     * L(t2)    L(t,) 

e-j2,ric.a _^ e-j27tAxA„K.ä _ Thereforej eq (83) becomes 

^'■"'(Ua'-'O;) 

1 R2 

cyCtJcyCt^LCt^Ut,) 
|det(Ax)||det(Au)| 

, f-.Tr        , .       .      ^    —j2jt| A,A0K|»ä _. *jW„m(AxAuK)e J   [ " "'   Qf 
RA A.. = 

L(t.) 
-K Q- 

RAX~ 
L(t2) 

die. (86) 

For notational simplicity, let 

=      -     A   A   = =      RA*Al - ,   =      RAXAU - K,=K = AXAUK     ,     K2 =   T /   N   K    , and   K3 - K, 
L(t?) L(t.) 

(87) 

where ic, = vector whose angle to ix   is 0,, K2= vector whose angle to i    is 02, K3 

vector whose an sie to i    is 0,, and oc = vector whose angle to i    is 0„. Thus, 

converting eq. (86) to an equivalent polar integral produces 

r^r\hwr\h)   ^ 
l R2 

cy(t1)cy(t2)L(t1)L(t2) 
|det(Ax)|det(Au)| 

:JJw^(|K1|)e-Hf'H°-(9.-.)Qf K2 ,e2" Q; *3 -03 ic d ic d0 (88) 

Now, letting 

A. xl,l 0 
and A„ = 

A„,., 0 

Ü Ax2,2 0 AU2,2 
(89) 

it can be seen that 
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K 
K, 

K, 

•^x2,2-^u2,2Kl 

^xl,l^ul,lK2 

detA   detA 
9 = tan" 

X u 

Axl,lAUl,lK2 

V^x2,2-^u2,2Kl J 

K, 
Axi,iAul ,K, 

•^x2,2i^'u2,2K2 

0, = tan" •^x2,2^u 2,2 

V ^xl,l^ul,l 

tan0 (90) 

and 

*2 = 

R^xl,l^ul,IKl 

L(t2) 

R-^-x2,2-^u2,2K2 

L(t2) 

02 = tan" 
f A      A2 ^ 'rt'x2,2-rvu2,2   .       n  —tan0 
V^xl.l^-ul.l ) 

K3 = 
L(t,) 

R^-x2.2^u2,2K2 

(  A   2 

6, = tan" 
A-     A ■rvx2,2-rvu2,2 

A?,,A 
tan 9 

V   'xi.i-1 vui,i y 

(91) 

Using Noll's expressions for the Fourier transform of the Zernike polynomials [18], that 

is, 

Qf(K)e) = A/nf+l(-l)2'V2( -smr.„) J„r+i(2icK) 

71K 
cos{mfe + ^(l-6m(,0)[(-l)

f-l]|   (92) 

where n, m are the radial degree and azimuthal frequency of the Zernike polynomials, 

J „.+,(•) is a Bessel function of the first kind of order (nf + 1), and 5m0 is a Kronecker 

[\ if mf = Ol 
delta such that 8m 0 = \ >, in eq. (88) yields 

'       [0 otherwisej 
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= y 
al,,'"'(l,)a'J

,'",(l!)        ZJ 

1 R2 

cy(t,)cY(t2) L(t,)L(t2) 
|det(Ax)|det(Au)|{(nr+l)(nJ+l)p(-l)   2   (-l)n'V2l 

*j|*K K, 
J„r+.I27C K9 

71 K- 

Jni+1(27t|ß3|)so^ , 

-    J     6 

«cos|mfe3 +^(l-8ni|0)[(-l)
f -l]|cos|mje2 +^(l-5mj0)[(-l)

j -l]|d9d K (93) 

Unfortunately, there is not a readily available closed-form solution to the integral 

over 6. The closed form is essential for the real-time applicability of this work. Without 

performing the integration over 9, numerical double integrations would be required in 

real time. Since the turbulence-induced wavefront deformations change relatively quickly 

and the system must be updated at speeds commensurate with these changes, on-line 

numerical double integrations are not feasible. However, single integrations are 

acceptable and hence it is desirable to integrate out the 0 dependence. Therefore, to aid 

in the evaluation of the integral over 6, two additional assumptions are now introduced. 

The two assumptions are as follows: 

1. Y(t,) = 0°      and      2. At«l sec. (94) 

Recall that y(ti) is the angle from the plane of the aperture to the turbulent layer at time t\. 

The first assumption can be justified by noticing that the layered turbulence model 

o 

requires y(ti) ~ 0 . This would correspond to the classical situation of an optical imaging 

system. Clearly, y(ti) = 90 is not a practical physical situation since the propagation 

paths would always lie within a single layer. The second assumption comes from the 
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prediction of correlation times on the order of tenths of milliseconds. With these 

assumptions, it can be seen, using eqs. (31) and (35) that 

e(t,)-e(t2)=^y(t2)-y(t1)^y(t2)-0o. (95) 

Also, using eqs. (53)-(59), (89), and (94), it is found that 

Av,.=Ax97    and     A^^A,,,,. ul,l  ~~ il'u2,2- (96) 

Therefore, after some manipulation, the integral over 0 in eq. (93) reduces to 

INTg =-9"f V^'I'^^fcosflm, +rnj)e + g} + COs{(mf -mj)e + h}]d0    (97) 

where 

^{f{0-5
mio)[(-l)

f-l] + (l-5m,o)[(-l)-l]} (98) 

and 

^fe{0-5m,o)[(-l)f-l]-(l-8m]O)[(-l)
J-l]} (99) 

By a change of variables, a trigonometric identity, and the definition for a Bessel function 

of the first kind [9], denoted by J * (•), it is found that 

3 m. +ni: 

INTB=coS{(mf+mj)ea+g}7c(-l)     2     J(nr+m,l2* 
»J)(2 

K, a 

3(mf-n)j) 

+ cos|(mf-mj)0a+hW-l)     2     J, 2% K, a . (100) 

The details of integrating eq. (97) are shown in Appendix A. Therefore, the expression 

for the correlation between Zernike polynomial phase expansion coefficients becomes 
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1 rij+iij 

r ,..„,„.„ ,=y |det(A,)|det(Au)|{(nr+l)(n,+l)p(-l)   2   (-l)n'V2( 

*1NK(KI) k  5 * cos{(mf+mj)9K+g}(-l)     '     J(Bf+nj)(2« K, a 

3(mf-mj) 

+ cos{(mf -mi)Qa +h}(-l)~2     J 2TC K, :a K (101) 

The final component of eq. (101) that must be specified is the power spectrum. In this 

work, the von Karman spectrum, eq. (13), is used and with a weighted turbulence- 

dependent layer model can be expressed as 

V3T 

W0 (K,U = 
V-V '6^       ^ 

2(27t): V2.91y 
w

mr0
3(K2+K;) (102) 

Using eq. (102) in eq. (101) produces the final result: 

i      ■>[+", 

r,,.,,,,,,,,,     =y IdeUAjlldetCAjljfn, + l)(n,+ l)}2 (-1)   2   (-1)"'V2 
2-5„.„-5 1 I 3 

2(2TI) 
3 

6.88 

2.91 

r»3JN(i^r+K' 
±ij ■[+.(2n|K2|)jn]+l(27t|R,| 

KJ 

3(m, tin,) 

cos{(mf + mj)9a +g}(-l)     2     J(mi+m)(27i|s,||ä|) 

+ 
-Hm'-mi) ,      _       > 

cos{(mf -mj)9a +h}(-l)     2     Vv-ill271^1 ldl) K (103) 

4.5 Calculations 

Now that the analysis has been set into place, the correlation functions for the first 

few combinations of Zernike polynomials will be determined. These calculations are 

performed by numerically integrating eq. (103) over the spatial frequency vector. 
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The following scenario, similar to that used by Whiteley, et. al. [35, 36] is 

considered: one turbulent layer is used and is placed a distance of 25,000 meters from the 

aperture at time t[. The geometry is shown in Figure 16 and the engagement parameters 

are as follows: 

VA=[300   0   0]  ,VT=[0   0   0]  ,VW=[0   0   0] 

L2 (t, ) = 50,000, LT(t1) = l,y(t1) = 0°,R = 0.875 

where the velocity and distance units are meters/sec and meters, respectively. 

(104) 

TURBULENT 
LAYER   m 
AT TIME t 

L,^) 

TIME  t. 

Figure 16. Engagement geometry for calculations. 

For the simulations and modeling to follow, two Zernike modes (tilts) are used to 

approximate the wavefront phases. This number may seem quite small, however, the 

order of the linear, stochastic, dynamical system modeling the atmosphere (plant) that is 

derived from these correlations is two times the number of Zernike modes used for each 
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wavefront expansion. Thus, if more Zernike modes were used, the order of the system 

would increase to the point that advanced control concepts would be difficult to apply in 

an on-line application as required in adaptive optics. The Zernike modes used in this case 

are Z2(x) and Z3(x). These modes represent wavefront tilt at the aperture. Tilt can be 

described as the least squares sense best fit to the aperture phase. It is an important 

component of wavefront expansions since x- and y-tilts represent about 87% of the power 

in the phase fluctuations [23]. The first Zernike mode, Z,(x), is termed piston and 

represents the aperture averaged wavefront phase. Piston is not a distortive contributor 

and is not considered in any calculations. 

The following notation, as introduced in Chapter 3, has been adopted to represent 

the Zernike polynomial phase expansion coefficients: an
(1), an

(o) are Zernike coefficient n, 

(n = 2, 3), of the inbound (i) and outbound (o) wavefronts. Using two Zernike modes, 

there are ten correlation functions of interest. To see this, consider the stacked vector 

which contains the Zernike expansion coefficients: 

a(a'(t) = [a^(t)    a?>(t)    a'°>(t)    a<">(t)f (105) 

where the superscript 'a' implies atmosphere. Integration of eq. (103) will yield the 

correlation kernel function of the vector in eq. (105) which can be expressed as 

E{a(a)(t)a(a)(t + x)T} 

Efa^a,0} Efa^a*0} E{a2
:)a2

0)} E{afa<0)} 

E{a^af} E{a^a^} E{a^a^} E{a^a<0)} 

Efafa^} Efa^a^} E{a2
0)a2

0)} E{a2
0)a3

o)} 

Efa^a^} E{a^a(
3
0)} E{a2

0)a3
0)} E{a3

0)a3
o)} 

(106) 

where T = At = tj+i - tj. This matrix is symmetric, thus only the diagonal and upper or 

lower diagonal terms need be calculated. Hence, there are ten correlation functions to be 
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determined. Figures 17-21 show the correlation functions which are the result of 

integrating eq. (103) using the parameters displayed in Figure 16. 

x10" E{a2i : a2i} 

CO 
0 ^ _____  _  __-,_-■ —  -, — —  — —  —  —  — 
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0.06 
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Figure 17.  EJa^a^} and EJa^a^} versus At. 

x10" E{a2i : a2o} 

CD 0 

"0 
. x 10": 

0.02 0.04 
E{a2i : a3o} 

0.06 

CO 

Co 

1  \ 

0 0.02 0.04 
delta t (sec) 

0.06 

Figure 18. E^a^} and EJa^a^} versus At. 

0.08 

1                                    1 

\               i                 i 

0.08 

J. i 1 . _____  

0.08 

. 2 i i  

_ _ _S>*__. J. -J 1 ,  

0.08 

63 



x10" 

X 10" 

TO 
XJ TO 2      0 

0.02 

0.02 

E{a3i : a3i} 

 _^V J. » •  

0.04 
E{a3i : a2o} 

0.04 
delta t (sec) 

0.06 

0.06 

0.08 

i i -; ;  

_ _ _S* J. I ■  

0.08 
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Figure 21. E{a<0)a<0)} and E{a!,0)a<0)} versus At. 

As can be seen from these figures, four of the correlations are at least fifteen orders of 

magnitude less than the others. Therefore, EJa^a^}, E{a<i}a<0)}, EJa^a^}, and 

EJa^V,0' ] will be set to zero in the upcoming work. Now that the calculations are in 

place, it is necessary to realize an underlying linear, stochastic, dynamical system which 

has correlations that are representative of those in Figure 17-21. The next section 

addresses this task. 

4.4 Stochastic Modeling 

Since the correlation functions calculated in Section 4.3 are due to the turbulent 

atmosphere, the linear, stochastic, dynamical system to be derived will in turn be a model 
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[f" f.2 f.3 f.4 gn §12 

f2, 

f3, 

f 22 

f32 

f23 

f33 

f24 
-  Ga = 

§21 

§31 

§22 

§32 

k. f42 f43 f44j _§41 §42 

of the atmosphere, i.e., the plant. Due to the random nature of the atmosphere, this model 

will be stochastic. Let the linear system to be identified be represented by [16] 

da(a)(t) = Faa
(a)(t)dt + GadBa(t) (107) 

where Ba(t) is Brownian motion with statistics E{Ba(t)} = 0 and 

E{[Ba(t)-Ba(t')][Ba(t)-Ba(tO]T} = jQa(t)dx=JldT (108) 
t t 

for all t > t, I is the identity matrix, and Fa, Ga have the following forms: 

(109) 

The dimensionality of Fa was determined by the number of states in the state vector, i.e., 

a(a) (t) = [a^° (t)    a^ (t)    a^] (t)    a(,0) (t)]. The four element state vector contains the x- 

and y-tilt Zernike expansion coefficients of the inbound and outbound wavefronts. Tilts 

were used since they contain most of the power in the wavefront aberrations. Higher 

order modes can be used, but their inclusion does not significantly improve the developed 

model. Ga was selected as a 4-by-2 matrix through iterative testing. It was desired that 

the realized system's correlation kernel functions accurately represent those which were 

calculated. In this case, a 4-by-2 input noise matrix sufficed. Notice that in eq. (108), the 

diffusion of Ba(t) was set to I. This simply eliminates one of the design parameters and 

allows system identification to be performed with more ease. Also, it can be seen that eq. 

(107) lacks a Bu(t)dt term. This is due to the obvious fact that the atmosphere is 

uncontrollable. 
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Using eq. (107), the correlation kernel matrix of the state process, denoted Pa(t,x), 

satisfies 

E{a(a)(t)a(a)(t + T)T} = Pa(t,t + T) (110) 

where 

Pa(t,t + x) = Pa(t)eF*\x>0 (111) 

and Pa(t) is the correlation matrix. Taking the derivative of eq. (111) with respect to x 

and manipulating yields 

• = Pa(t)e^Fa
T=Pa(t,t + T)Fa\ (112) 

3x 

Equation (112) is needed to obtain the system matrix. The calculations in Section 4.3 

provide the correlation kernel matrix. The derivative of this matrix, with respect to x, can 

then be obtained. Hence, the only unknown in eq. (112) is the system matrix. Therefore, 

using the correlation data in Section 4.3 and eq. (112), the system matrix, Fa, can be 

identified. In order to obtain the input matrix, Ga, consider the correlation of the state 

process which satisfies the following differential equation: 

Pa(t) = FaPa(t) + Pa(t)Fa
T+GaIGl. (113) 

Letting t —> °° while maintaining a fixed separation between t and t + x, which is the 

steady-state case and produces a stationary process, provides 

P*a(t) = 0 = FP   (t) + P   (t)Fa
T+GaIGl (114) 
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where the subscript 'ss' implies steady-state.  Pa (t) is found from the calculated 

correlation kernel data by letting x = 0. Then, Ga can be determined by taking the 

Cholesky decomposition [16] of 

GaGl--(raPass(t) + Pass(t)Fa
T). 

After performing the computations, the atmospheric model becomes 

(115) 

da<a)(t) = 

-410.35         0 420          0 

0 -437.47 0 464.41 

-207.88         0 199.75       0 

0 -186.53 0 165.59 

.(») a(a,(t)dt + 

.4445 0 

0 .2687 

.27 0 

0 .2516 

dB.(t) 

= Faa
(a)(t) + GadBa(t).     (116) 

By computing the eigenvalues of the Fa matrix, namely, -29.48, -70.39, -181.12, and 

-201.48, it can be seen that the system is stable. Figures 22-24 show the nonzero 

correlation functions from the calculations in Section 4.3 with those from the atmospheric 

model in eq. (116) superimposed. These three figures convey the fact that the model does 

provide a good representation of the calculated correlation functions. However, there is 

some modeling error. It would appear that using more Zernike modes in the wavefront 

expansions would provide a better representation of the calculated correlation functions. 

In fact, using 5 Zernike modes in the wavefront expansions was investigated. Although 

the accuracy did improve with more modes, the modeling error was consistently present. 

There is a trade-off between modeling accuracy and computation time. More modes 

increases accuracy, at the expense of increased computational delays. Since the modeling 

error decreased only slightly with more modes, the decision was made to use tilts (two 

modes) in the wavefront expansions. 
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One final point concerning the Zernike phase expansion coefficients. According 

to Noll [18], these coefficients are well modeled as zero-mean, Gaussian random 

variables. They are zero-mean because the wavefront phases, 0(1)(Rx, ,t,), 

0(i)(Ru,,t2), O'^Rx^t,), and O(0)(Rü2,t2) are the deviation of the phase from the 

ideal, or unperturbed wavefront. Gaussianness is the result of the wavefront phases being 

the sum of a large number of random variables. The Central Limit Theorem [3] then 

states that the phases will be Gaussian. 

4.5 Summary 

At this point, the correlation between Zernike polynomial expansion coefficients 

has been determined. Using these correlations, a state-space model of the atmosphere 
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was constructed. In order to characterize the AO control system fully, a model of the 

mirror must be developed and an output equation must be specified. The next chapter 

addresses the mirror and complete models. 
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V. Deformable Mirror and Complete Models 

5.1 Introduction 

In the upcoming work, a model for the deformable mirror is derived. The 

deformable mirror (DM) currently used has a continuous mirror surface worked by 49 

actuators. It will be assumed that all actuators can be driven by control voltages, i.e., 

there are no slave actuators. Actuator linearity is also assumed which implies that the 

graph of actuator displacement versus applied control voltage is a straight line. 

Additionally, the deformable mirror is a linear device. In this case, inter-actuator 

superposition holds. For example, if a voltage is applied to actuator 1 and the mirror's 

response is measured, then a control voltage is applied to actuator 2, the sum of the two 

responses would be equivalent to applying the voltages simultaneously. After completing 

the mirror modeling, the complete system will be formed by appending the mirror and 

atmospheric models. Output equations for the system, that is, measurements of the 

inbound and reflected wavefronts, will be covered. Lastly, the continuous-time system 

will be converted to an equivalent discrete-time system for implementation in a digital 

computer. 

5.2 Steady-State Mirror Behavior 

In this section, it is desired to determine the relation between applied control 

voltages and the mirror's behavior. The term steady-state implies that a finite time has 

elapsed since the last occurrence of a control voltage, i.e., the mirror is not deforming. 
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The analysis used to determine the mirror model and output equations follows the 

derivation in the work of Von Bokern, et. al. [32] and Von Bokern [33]. However, the 

determination of some of the required matrices, as detailed in Appendix B, are specific to 

this work. This is due to the functions chosen to represent certain parameters, as will be 

shown. 

To begin the derivation, consider the HEL beam. The HEL wavefront, prior to 

reaching the DM, is planar and in phase. For a section of the DM that has not been 

actuated, the change in Optical Path Lengths (OPL) is zero. However, there is a decrease 

in the OPL for a section of the DM that has moved. This decreased OPL causes the 

reflected light's path length to be decreased by two times the change in OPL. Thus, the 

absolute phase of the reflected wavefront, corresponding to a section of the DM that has 

been actuated, is larger than for a section of the DM that has not moved. Since the 

incident HEL wavefront is planar, any phase distortion in the reflected image will be 

solely due to the DM's shape. 

To determine the steady-state behavior of the mirror, influence functions will be 

used. Influence functions represent the effect of a single actuator voltage on the mirror 

shape and manifest themselves in differences in OPL for the HEL. Utilizing the influence 

functions and the fact that there are in general nA actuators, the DM's shape can be 

represented by 

0(m)(x) = ]Llk(x)vak (117) 
k=l 
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,th • where x is a spatial location on the DM, Ik (x) is the k   influence function, and vak is the 

control voltage applied to the kth actuator. Now, the reflected wavefront's phase 

distortion, excluding piston, is given by 

0(m)(x) = ]Llk(x)vak-E ]Llk(x)vak 
k=1 k=l 

(118) 

where the expected value term, E[*], is piston and the superscript 'm' implies the mirror. 

The reflected wavefront can also be written as a linear combination of Zernike 

polynomials, that is, 

0(m)(x,t) = Xa1
(m)(t)Zi(x) (119) 

where ai(m)(t) are the Zernike polynomial phase expansion coefficients associated with the 

mirror. As shown in Chapter 2, the mirror expansion coefficients are given by 

a[m)(t) = J\V(x)Z1(x)0(m)(x,t)dx. (120) 

Substituting the reflected wavefront's phase distortion, eq. (118), into the above equation 

yields 

a|m)(t) = jW(x)Z1(x) Xlk(x)vak-E 
k=i 

£lk(x)v ak 
k=l 

>dx 

= jW(x)Z1(x)Xlk(x)vakdx-jW(x)Z1(x)E 
k=l 

£ik(^ ak 
k=l 

dx.(121) 

Notice that the second term is the product of piston and a non-piston Zernike polynomial. 

Using the orthogonality property of the Zernike polynomials shows that the second term 

is identically zero. Thus, 
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ar)(t) = jW(x)Zi(x)Xlk(x)vakdx 
k=l 

= i;[JW(x)Zi(x)Ik(x)dx]vA 
k=l 

T 
miVa (122) 

where 

T m. = Jw^z^i.^dx   Jw^Z^I^dx   •••   Jwc^ZiC^i^Cxjdx (123) 

and 

Val        Va2 vanJ
T- (124) 

Therefore, 

a<m)(t) = mX 

a<m)(t) = mjv. 

a(
n:!(t) = m^va 

a(m;(t) = Mva (125) 

where m^ has size 1 x nA, va has size nA x 1, and M is n x nA where n is the number of 

Zernike modes used in the expansion and nA is the number of actuators. In physical 

terms, the matrix M can be considered the steady-state influence function matrix since it 

relates control voltages to the steady-state influence of the mirror. Complete specification 

of matrix M can be found in Appendix B. 

5.3 Actuator Dynamics 

Now that the steady-state behavior of the mirror has been considered, it is 

necessary to model its transient behavior. Piezoelectric actuators, used in the 
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construction of deformable mirrors, can be modeled as first-order, linear, time-invariant, 

deterministic systems [33]. Thus, the dynamics equation for the displacement of an 

actuator can be modeled by the scalar equation 

-1 
5(t) = — 6(t) + bu(t) (126) 

where u(t) is the command signal (voltage) applied to the actuator, 8(t) is the path length 

decrease, and xa, b are free parameters to be determined by empirical data. In fact, xa is 

the time constant of the actuators. Under the assumption that all actuators behave in the 

same manner, nA equations identical to the above would be written. As discussed earlier, 

the states in this case, S(t), are the 2-way decrease in path length since the light is 

reflected from the mirror. 

Now, it is desired to formulate the dynamics of the mirror in the form 

. (m) 

a     (t) = Fma
(m)(t) + Bmu(t) (127) 

where a(m) (t) = [a<m) (t)    a<m) (t)    • ■ •    aj,™} (t)] T and Fm, Bm are the dynamics and 

control input matrices, respectively. Since all actuators have the same dynamics 

equation, the entire mirror exhibits dynamic behavior with a time constant of xa. Thus, 

the mirror's contribution to the phase distortion of the reflected image [33], denoted by 

0(m)(x,t), can be written as 

. (m) _] 

O    (x,t) = — <D(m)(x,t)+b^(x)u(t) (128) 

where b^(x) maps control voltages to the rate of change of phase at spatial location x. 

Zernike polynomials can also be used to write 
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^n,>(x,t) = Xa|m)(t)Zi(x). (129) 

Taking the time derivative of the above equation yields 

. (m) .(m) 

O    (x,t) = Xa,   (tJZiCx). (130) 

Substituting eqs. (129) and (130) into eq. (128) produces 

. (m) . (m) . (m) 

a2   (t)Z2(x) + a3   (t)Z3(x)+ — +a„+i(t)Zn+1(x) 

= — [a2
m)(t)Z2(x) + a3m)(t)Z3(x)+---+a(

n
n

+
1}(t)Zn+](x)]+b;i(x)u(t).        (131) 

In more compact notation, eq. (131) becomes 

Xai   (t)Zi(x) = —Xa^COZiCxJ + Xbjtx^Ct) (132) 
i=2 "a  i=2 j=l 

where bj(x),uj(t) are the j   components of bm(x),u(t), respectively. Multiplying the 

above equation by W(x)Z 2 (x) and integrating over the area of the mirror yields 

n + l . (m) _i 

1-   '   i=i j=l 

(133) 

n + l  . (m) _i       n+I nA 

JXai    (t)Zi(x)W(x)Z2(x)dx= — jXa,<m)(t)Z1(x)W(x)Z2(x)dx + jXbi(x)uj(t)W(x)Z2(x)dx. 

Utilizing the orthogonality property of Zernike polynomials produces 

.(m) _\ 

a2   (t) = — a2
mJ(t) + r>(t). (134) 

Performing the same procedure for Z3 (x), • • •, Zn+1 (x) gives 
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. (m) _i 

a2   (t) = — a2
m)(t) + r2

Tu(t) 

.(m) _i 

a3   (t) = — a<m)(t) + r,Tu(t) (135) 

.(m) 

an+i(t)=-a:;(t) + rn>(t) 1 „(m)/tN   ,   _T 

where it can be seen, from eqs. (133) and (134), that 

Mjb.OOWOOZ^dx    jb2(x)W(x)Z,(x)dx    •••    Jb^W^Z^dx (136) 

and 

u(t) = [u,(t)    u2(t)    ■••    u^Ct)]1 (137) 

Thus, 

.(m) 

a    (t) = DIAG 
'-0 
VTa7 

a(m;(t) + r'u(t) (138) 

where DIAG(-l/xa) is a diagonal matrix with (-l/xa) along the main diagonal and zeros 

.(m) 

everywhere else. At steady-state, a     (t) = 0 . Therefore, 

0 = DIAG 
f   1^ 

\X»J 

Am) a^(t) + r*u„(t) (139) 

where the subscript 'ss' implies steady-state. Rearranging produces 

aLm)(t)--DIAG(-Ta)r
Tuss(t). (140) 

Using the steady-state information developed earlier, that is, eq. (125), gives 

Mu„(t) = -DIAG(-Ta)r
Tuss(t) => rT - -DIAG — JVI. (141) 

Hence, the mirror model becomes 
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.(m) 

a    (t) = DIAG 
f   1A 

vxay 
a<m,(t) + -DIAG 

'-0 
\X,J 

Mu(t) Fma(mJ(t) + Bmu(t).     (142) 

5.4 Complete System Model 

Thus far, two separate models have been developed. The first is the atmospheric 

model, viz., the plant, which is a linear, stochastic, dynamical system driven by Brownian 

motion. This model, described in eq. (116), is given by 

da(a)(t) = Faa
(a)(t)dt + GadBa(t) (143) 

or, in less-rigorous, white-noise notation, 

a\t) = Faa
(a)(t) + Gawa(t). (144) 

Here, the state vector a(a)(t) contains the coefficients of the Zernike polynomials which 

expand the distortion in the phase of the inbound (beacon) and outbound (HEL) 

wavefronts. The second is the deformable mirror model, eq. (142) and is given by 

.(m) 

a    (t) = Fma
(m)(t) + Bmu(t) (145) 

where a(m)(t) contains the coefficients of the Zernike polynomials which expand the DM's 

shape. The complete system model is formed by appending these two systems: 

a(t) = 

.(a) 

a    (t) 
.(m) 

a    (t) 

Fa      0 

0    F„ 

a(a)(t) 

a(m)(t) 
+ 

= Fa(t) + Bu(t) + Gwa(t). 

0 

Bm 
u(t) + 

Ga 

0 
wa(t) 

(146) 
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An output equation must also be specified. This development is described in the next 

section. 

5.5 Output Equations 

Recall that the state vector is given by 

a(t) = 
aw(t) 

a,m'(t) 

a(i)(t) 

a(0)(t) 

a(m)(t) 

(147) 

The quantities that can be measured in this case are the Zernike coefficients associated 

with the inbound and reflected wavefronts. Measurements of the reflected wavefront are 

considered only if the metrological laser shown in Figures 2 and 6 is used. Considering 

the inbound wavefront first, a matrix selector can be used to extract the relevant Zernike 

coefficients, that is, 

a(,)(t) = [l   0   0]a(t) = E.a(t) (148) 

where I and 0 are n by n identity and zero matrices, respectively, and E; is a selection 

matrix. It is desired to derive the measurement equation in the form 

zi(tj) = H,a(tj) + v,(tj) (149) 

where Vj(tj) is a white, Gaussian, zero-mean, discrete-time process with variance 

Efv.Opv^tJ^R.Ct^. (150) 

It is assumed that the measurement device is a Hartmann wavefront sensor 

(HWFS) [11, 23]. Basic operation of this sensor is as follows: the HWFS contains 

square subapertures, each of which focuses its share of incident light onto a reticon 

80 



detector. The location of the focused light on the detector provides a measurement of the 

average x- and y-tilts. Thus, the HWFS is essentially a slope sensor. Hence, phase 

distortion in the inbound wavefront's image manifests itself in a set of subaperture tilt 

measurements. For a WFS with p subapertures, there are 2p outputs (p x-tilts and p y- 

tilts). It is further assumed that the HWFS directly outputs these slope measurements. 

To begin the derivation, consider the phase distortion in the inbound image at 

discretized times, <D(l)(x,tj), where x= (X,Y) defines a rectangular position on the 

aperture with respect to the aperture center. Since the HWFS is a slope sensor, the x-tilt 

prior to reaching the square subaperture, at position Xi, Yi, is 

x - tilt 
dY 

(151) 
X,,Y, 

Let Xs, Ys define the center of the sth subaperture with respect to the entire sensor array. 

Then, the average x-tilt going into the sth subaperture is [33] 

_ f     2        2   ^ ^dXdY (152) 
AJY VäJX  Vä 3Y 

•      2 2 

where A is the area of a subaperture. From Peterson and Cho [22], the output of a HWFS 

is a similar integral, but with the slopes spatially weighted. In particular, for the x-tilt 

channel, the output is 

!   Y^rxs+^~ 30(X,Y,ti) 

^(tj)=LA"lY-ilx-iWx(X_Xs'Y"Ys)—ä^dXdY+v',(ti)    (153) 
s
     2 s     2 

where L is a constant which depends on wavelength, lenslet focal length, and output 

scaling and V;   (tj) is an element from the vector Vj(tj). Peterson and Cho [22] have also 



derived a normalized version of the spatial weighting function, which for the x-tilt 

channel can be expressed as 

WX(X',Y> 
1 

21n2 
21n2- 

(       <w^ 
1- 

2Y_ 
In 

(     1X<\ 

V      -v«. j V       A/Ay 

f       2Y'\ 
1 + _r= V     VAy 

(     ™'\ 
In 

2Y 
1 + 

v    -v^-y 
.   (154) 

The inbound wavefront's distorted phase image can be written as a linear 

combination of Zernike polynomials, that is, 

0(i)(x,tj) = Xa(,;l1(tj)Zn+1(x). (155) 

Taking the partial derivative of <J>(,)(x,t p with respect to Y, as described in eq. (151), 

produces 

BQ^x.tj) 

dY 
^aS'dp 

gZn+l(x) 

3Y 
(156) 

Using eq. (156) in eq. (153) yields 

1   fY,+— rX,+— x-   ,-^ 3Z    ,(x) 
^(tj) = LTj    M    ^Wx(X-Xi,Y-YjXa^,(tJ)-^LicKdY + vii4(tJ) 

/\    Y x,.  n 
2 2 

3Y 

4i 2 J,Y<+—<■•**+— 9Z    , fx) 

Ys-—   X, s     2        >     2 

,(i) dXdYa^(tj) + vix (tj) 

= ^pla(i)(tj) + vix (tj) 
A s 

= -plEia(tj) + vixs(tj) (157) 

where 
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IK 3Z2(x) 
3y 

dXdY   W, 11' 3Z3(x) 

3y 
dXdY II W, dZn+,(x) dXdY (158) 

and Wx = WX(X-XS, Y-Ys). In order to specify measurements of the inbound wavefront 

completely, expressions similar to those in eq. (157) would have to be written for y-tilts 

and for each of the p subapertures. Putting these equations into matrix form gives 

zi(tj)=-NE,a(tj) + v,(tj) 

= Hia(tj) + v,(tj) (159) 

L where FT = — NE, and N is a 2p x n matrix with the following form: 
A 

N 
iT 

PxlPx2'"PxpPyiPy2---PyF 
(160) 

More information on matrix N can be found in Appendix B. 

Proceeding in a similar manner for measurements of the reflected wavefront, the 

selection matrix is 

a(m)(t) = [0   0   l]a(t) = Ema(t) (161) 

where I and 0 are n by n identity and zero matrices. The measurement equation in this 

case becomes 

Zm(tj) = Hma(tj) + vm(tj) (162) 

where vm(tj) is a white, Gaussian, zero-mean, discrete-time process with variance 

E{vm(tj)v^(tk)} = Rm(tj)8jk (163) 

and Vj(tj) and vm(tj) are independent random vectors. In this case, the x-tilt output of the 

HWFS is 
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1    fV^fX-^ 3Zn+,(x) fT.H fAsH  x—,       ,     . O £,       , (XI 

A"Y-—•% 
2 2 

:-plEma(tj) + v     (tp. 
A J (164) 

Writing equations for each subaperture and for the y-tilts produces 

zm(tJ) = -NEma(tj) + vm(tJ) 

= Hma(tJ) + vm(tJ) (165) 

where H   =—NEm. m A 

In summary, the following dynamics model and output equation have been 

developed: 

a(t) = 

" . (a) 

a    (t) 
. (m) 

a     (t)_ 

= 
X   o 
.0        Fn,_ 

"a(a)(t)" 

a(m)(t) 
+ 

" 0 " 
u(t) + 

G/ 
0 

w,(t)=Fa(t)+Bu(t) + Gw,(t).  (166) 

zi(tj) = Hia(tj) + vi(tj), 

zm(tj) = Hma(tj) + vm(tj), 

(167) 

(168) 

Z(tj) = 
^(tj) 

zm(tj) 

Hi 
H„ 

a(tj) + 
'Vi(tj)' 

vm(tj). 
= Ha(tj) + v(tj), (169) 

where wa(t) is a zero-mean, white, Gaussian noise with E{wa (t)wa (t + T)} = I8(x), Vj(tj) 

is azero-mean, white, Gaussian, discrete-time process with EJvi(tj)v^(tk)j = Ri(t j)8jk, 

vm(tj) is a zero-mean, white, Gaussian, discrete-time process with 
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E{vm(tj)v:(tk)} = Rm(tj)8jk, H = 
H, , and v(tj): 

'Vi(tj)' 

vm(tj) 
. Also, v(tj) is a zero- 

mean, white, Gaussian, discrete-time process with variance 

E{v(tj)vT(tk)} = 
E^Ctpv^t,)}     E{vi(tj)vm(tk)} 
E{vm(tj)vi(tk)}   E{vm(tj)vm(tk)} 

Y»i(tj) o   ^ 

= I ° Rm(tj)J 
= R(tj)  j = k 

j*k 

(170) 

Equation (166) represents the underlying dynamic system for the Kaiman filter. 

5.6 Discrete-Time Systern 

The system in eq. (166) is a continuous-time model of the atmosphere and 

deformable mirror. Since the Kaiman filter and controller to be developed in the next 

chapter will be implemented in a digital computer, it is necessary to convert eq. (166) to 

an equivalent discrete-time system [16]. To perform this conversion, consider the 

solution to eq. (166) which can be written as 

a(tj+I) = o(tJ+1,tJ)a(tJ) + 

= °(t
J+1>tJ)

a(tJ) 
+ 

'HI 

Jo>(tJ+1,T)Bu(x)dt + 

'HI 

J<D(tj+1,<c)BdT u(tp + 

J0(tj+1,T)Gwa(T)dT 

|o(tj+],T)Gwa(x)dx 

= 0(tj+1,tj)a(tj) + Bd(tj)u(tj) + wd(tj) (171) 

Note that the second expression in eq. (171) can be written since it is assumed that the 

control, u(t), is held constant over each sample period. Also, in eq. (171), <J>(tj+i,tj) is the 
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<l+l 

state transition matrix, Bd(t]) =  f 3>(tj+1 ,x)Bdx , and wd(tj) is a white, Gaussian, 

discrete-time stochastic process with statistics duplicating those of 

f 4>(t j+l ,x)Gwa (x)dx. In other words, wd(tj) has statistics 

E{wd(tj)} = 0 

E{wd(tJ)w][(tj)} = Qd(tj)= j"o(tJ+l,x)GIGTc&T(tj+,,x)dx (172) 

EJw/tpw^tjJ^O   j*k. 

Since the complete system model is linear and time-invariant, 0(tj+i,tj) reduces to a 

function of the time difference At = tj+i - tj. Therefore, 

*(tJ+1,tj) = *(tj+I-tj) = eF(,^). (173) 

Appendix B contains a complete explanation of the determination of the discrete-time 

system matrices for simulation purposes. 

5.7 Summary 

At this point, all of the required modeling has been performed. In particular, 

atmospheric and mirror models have been formed, output equations have been specified, 

and an equivalent discrete-time system has been developed. Now, these models can be 

embedded in a Kaiman filter so that estimation of the outbound wavefront Zernike 
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expansion coefficients can be performed. Using these estimates, a linear quadratic 

Gaussian controller will apply the estimated conjugate phase to the mirror. The next 

chapter addresses design of the filter and controller. 
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VI. Kaiman Filter and LQG Controller 

6.1 Introduction 

The objective of this research is to design a control system which can provide 

commands to the deformable mirror to cancel the effects of atmospheric turbulence in the 

highly dynamic scenario of the ABL. The atmospheric model, mirror model, and 

measurement equations have been discussed and are given by eqs. (166) - (170). 

6.2 Kaiman Filter 

A Kaiman filter is used to estimate the state vector a(tj). Recall that a(tj) is 

composed of the inbound, outbound, and mirror Zernike polynomial expansion 

coefficients, i.e., a(t) {a(i>(t)}T    {a(°'(t)}T    {a^t)}1 
T 

The Kaiman filter accepts 

measurements, z(tj), and outputs estimates of the system state, a(tj), where the 

superscript 'A' is used to denote an estimate. The filter performs these estimates using an 

internal model, eq. (171), propagating the state estimate and state estimation error 

covariance, and then appropriately incorporating the measurements, eq. (167). The 

filter's state estimation error covariance, denoted Pf(t), is defined by 

Pf (t) = E{[a(t) - a(t)] [a(t) - a(t)f|Z(t)} (174) 

where the expectation is conditioned on the measurement history Z(t). 

Operation of the Kaiman filter can be divided into two processes: propagation and 

measurement update. Propagation is the change in state estimate and filter covariance as 



time is moved forward from tj_i to tj. Measurement update is the change in state estimate 

and filter covariance as measurements are processed. The governing equations for these 

two cycles are [16]: 

ä(t:) = 0(tJ-tH)ä(t;,)+Bd(tj_1)u(tH), (175) 

Pf(t:) = 0(tJ-tJ_1)Pf(t;_1)0
T(tJ-tH) + Qd(tJ), (176) 

K(tJ) = Pf(tpHT[HPf(t:)HT+R(tJ)]~\ (177) 

ä(t|) = ä(tT) + K(tj)[zj-Hä(tT)]> (178) 

and 

where 

Pr(t;) = Pf(t7)-K(tj)HPf(t7) (179) 

a(t|_,) = state estimate at the start of the tj_i to tj propagation cycle and after the 

measurement update at tj_i, 

Pf (t|_,) =       filter covariance at the start of the tj_i to tj propagation cycle and after the 

measurement update at tj.i, 

a(t~) = state estimate at the end of the tj_i to tj propagation cycle and before the 

measurement update at tj, 

Pf (t~) = filter covariance at the end of the tj.i to tj propagation cycle and before the 

measurement update at tj, 

K(tj) = Kaiman filter gain, 

a(t|) = state estimate at the end of the tj.i to tj propagation cycle and after the 

measurement update at tj, 

Pf (t J) =        filter covariance at the end of the tj.i to tj propagation cycle and after the 

measurement update at tj, 
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and 

Zj = measurement realization at the update time. 

Initial conditions on the filter, that is, a(t0) and Pf(to), must also be specified. Therefore, 

the initial conditions and eqs. (166) - (171), (175) - (179) fully describe the Kaiman filter. 

6.3 LQG Controller 

In this section, an LQG (Linear dynamic system model, Quadratic cost, and 

Gaussian noise inputs) controller [17] will be developed. The general idea here is that the 

behavior of some underlying dynamic system is to be affected by control inputs in such a 

way that the controlled variables exhibit some desired characteristics [17]. The controller 

will in fact be a regulator, which is based on the assumption that there are costs 

associated with nonzero controlled variables and nonzero controls. The cost function is 

quadratic in nature, that is, the cost is proportional to the weighted squares of the 

controlled variables and inputs. 

For the ABL, the inbound wavefront's phase is measured to determine the 

turbulence-induced wavefront aberrations. It is then desired to apply the estimated 

conjugate (opposite) phase to the mirror so that the HEL's wavefront phase perturbation 

will be minimal upon reaching the target, viz., the Strehl ratio at the target is maximized. 

Therefore, the controlled variables are 

y(tj) = [0   -I   l]a(tJ) = Eca(tj) = -a(0)(tj) + a(m)(tj) (180) 

where the size of y(tj) is n by 1. 
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A useful form of quadratic cost function is [17] 

J = EJ|;|[yT(tj)Y(tj)y(tj) + uT(tj)U(tj)u(tj)] + lyT(tN+1)Yfy(tN+1)l      (181) 

where Y(tj) V tj and Yf are selected as n by n (n = 2 for tilts) positive definite matrices and 

U(tj) is a positive definite matrix of dimension equal to the number of actuators. In the 

simulations discussed in Chapter 7, the quadratic cost function matrices were selected as 

Yd^Y, 
5    0 

0    1 
,11(1:) = 0.51. (182) 

These values were selected after many iterations to provide satisfactory state regulation 

without expending too much control energy. Recall that the controlled variables are 

y(tj) = [-a^0)(t) + a2m)(t)   -a30)(t) + a3m)(t)]  . Since dynamic motion occurs only in the x- 

direction, it is expected that there will be more error in the x-tilt controlled variables as 

compared to the y-tilt variables. Hence, entry (1,1) of Y(tj) and Yf was set to 5 to place 

more emphasis on regulation of the x-tilt controlled variables. 

Equation (181) does not include any cross-terms between the controlled variables 

and controls. Cross-terms are useful when it is desired to exert control influence on the 

state vector over the entire sample period, not just at the sample points. However, since 

the sample period is small for this system, it is expected that cross-terms would be of 

negligible benefit and thus will not be necessary. Using the expression for the controlled 

variables, eq. (180), in eq. (181), the cost function becomes 

J = E X|[aT(tj)A(tj)a(tj) + uT(tj)U(tj)u(tj)] + ^aT(tN+1)Afa(tN+I)i        (183) 
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where A(tj) = Ec
TY(tj)Ec and Af = Ec

TYf Ec. It is desired to determine the control 

function u (•) which minimizes the cost function given in eq. (183). It can be shown that 

the cost minimizing controller [17] is 

u*(tj) = -G;(tJ)a(tp (184) 

where Gc (tj) is the controller gain. This gain can be calculated from the solution to 

G:(tJ) = [U(tJ)+B^(tJ)Kc(tJ+1)Bd(tJ)]",[B^(tj)Kc(tJ+!)0(tJ+1,tJ)] (185) 

where Kc(tj) satisfies the backward Riccati equation [17] 

Ke(tj) = A(tJ) + *T(tJtl,tJ)Ke(t}fI)0(tH,tj)-[0T(tjtl,tj)Ke(tH)Bd(tJ)]G;(tj) 

= A(tJ) + $T(tj+1,tJ)Kc(tj+,)[0(tJ+1,tJ)-Bd(tj)G:(tJ)] (186) 

solved backwards from the terminal condition 

Kc(tN+1) = Ar. (187) 

The filter and associated measurements devices are denoted by Kaiman filter 1, 

Kaiman filter 2 and WFS 1, WFS 2 in Figure 25. The input to Kaiman filter 1 is z;(tj), 

that is, the measured Zernike coefficients of the inbound wavefront, while the input to 

Kaiman filter 2 is zm(tj), that is, the measured Zernike coefficients of the reflected 

wavefront. Measurements zm(tj) are included in this figure in case the metrological laser 

is used. Currently, a metrological laser is not used in the ABL and thus these 

measurements are not incorporated into the simulations. The blocks ACT and DM in 

Figure 25 represent the actuator dynamics and deformable mirror, respectively. Also, Gc 

and u represent the LQG controller gain and the cost minimizing control function. The 

atmospheric and DM models contain no coupling between each other, therefore, the 
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single augmented Kaiman filter (atmospheric and DM models) can be decomposed into 

the two decoupled filters, Kaiman filter 1 and Kaiman filter 2, displayed in Figure 25. 

«a«- 
ATMOSPHERIC 

MODEL 

(a) 
a     (t.) [~o o 1  o~l 

|_o o 0  1J 

LQR 

Pi O o 6] 
|_o 1 o oj 

a     (tj) KALMAN   FILTER   2 
DM  AND  ACTUATOR 

BASED   MODELS 

a    (tp 
KALMAN   FILTER   1 

ATMOSPHERICS 

ACT DM 

(m) 
O      (tj) 

o(0(t 

WFS2 

35 
j:t,)=H^tJ)+vm(tJ) 

(o) 
ai    (tj) 

±0 ►yCtp 

WFS1 

0), 3? 
j     z,(tj)=H. aw(t.) + v. (t.) 

■vm(tj) 

■v,(tj) 

Figure 25. Adaptive optics control system. 

The dimensionality of the variables associated with the control system is given in Tables 

2a and 2b. In these tables, n is the number of Zernike modes used in the wavefront 

expansions, p is the number of subapertures in the Hartmann wavefront sensor, and nA is 

the number of actuators. 
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Matrix/Vector Dimension 

a(t) 3n-by-l 

a(a)(t) 2n-by-l 
a(m)(t) n-by-1 

a(1)(t) n-by-1 
a(0)(t) n-by-1 

mi nA-by-l 
M n-by-nA 

va nA-by-l 

r, nA-by-l 
r nA-by-n 

DIAG(l/x) n-by-n 

Ej and Em n-by-3n 

Fa 2n-by-2n 

Fm n-by-n 
F 3n-by-3n 

<l>(tj+i,ti) 3n-by-3n 

Bm n-by-nA 

B 3n-by-nA 

u(t) nA-by-l 
Ga 2n-by-2 
G 3n-by-2 

Wa(t) 2-by-l 

Zi(tj) 2p-by-l 
Hi 2p-by-3n 

Ri(ti) 2p-by-2p 

Zm(tj) 2p-by-l 

Vi(ti) 2p-by-l 

Table 2a. Variable dimensions. 
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Matrix/Vector Dimension 

Hm 2p-by-3n 

Vm(tj) 2p-by-l 
Rm(tj) 2p-by-2p 
Z(tj) 4p-by-l 
H 4p-by-3n 

v(tO 4p-by-l 

R(tj) 4p-by-4p 
N 2p-by-n 

T        T 
Px  ,Pv 1-by-n 
Bd(ti) 3n-by-nA 
Wd(tj) 3n-by-l 
Qd(tj) 3n-by-3n 

ä(t|_,),ä(t:),ä(tp 3n-by-l 

Pf(t|_,),Pf(t:),Pf(t|) 3n-by-3n 

K(tj) 3n-by-4p 

Zi 4p-by-l 
Ec n-by-3n 

y(tO n-by-1 
U(tj) nA-by-nA 

A(tj), Af 3n-by-3n 
U*(tj) nA-by-l 

Gc¥(tj) nA-by-3n 
U(tj) nA-by-nA 

Y(tO, Yf n-by-n 
Y(tN+i) n-by-n 
Kc(ti) 3n-by-3n 

Kc(tN+l) 3n-by-3n 

Table 2b. Variable dimensions. 

95 



6.4 Summary 

A Kaiman filter and LQG controller were designed in the last few sections. The 

filter produces estimates of the state variables while the controller is used to drive the 

controlled variables to zero. That is, the controller generates gains which are used to 

provide commands to the DM. 

At this point, all of the analysis has been set into place. Therefore, the complete 

system, that is, atmospheric and mirror models, output equations, filter and controller can 

be simulated to evaluate performance. To accomplish this simulation, a phase screen, 

which will be discussed in Chapter 7, will be generated to provide the measured quantity. 

Simulation results involve the Root Mean Square (RMS) phase distortions, Strehl ratios, 

phase screen and estimated quantities, and Monte Carlo statistics. The next chapter 

addresses the simulations and analyzes the results. 
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VII. Simulations 

7.1 Introduction 

Now that all of the modeling has been performed, the entire system can be 

simulated to evaluate its performance. Before the simulations can be run, a few other 

items must be covered, including performance metrics, the phase screen, and 

development of the simulated correlation functions. 

7.2 Performance Metrics 

In this section, the metrics used to evaluate system performance are delineated. 

These quantities provide a measure of the performance of the controller. There are two 

metrics that will be used in this work. Imaging performance is specified by a quantity 

termed the Strehl Ratio (SR) and the Root Mean Square (RMS) phase distortion. The 

Strehl ratio is defined as the irradiance with wavefront aberrations present divided by the 

diffraction-limited irradiance on the optical axis [1]. A useful estimate of the Strehl ratio 

can be made if the aperture averaged, squared, residual wavefront phase, 3)^(0 > *s ^ess 

than (271 / 10)2 rad2 [23]. In this case, the Strehl ratio becomes 

SR~exp{-OL(t)}. (188) 

From eq. (188), it is obvious that if <E>^s(t) = 0, that is, perfect correction of the 

wavefront phase deformations is performed, then SR = 1. This is the upper bound on the 

Strehl ratio. In most applications, a Strehl ratio of 0.6 or higher is adequate. However, it 

should be noted that the Strehl ratio is dependent on the seeing conditions (clear, 
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overcast, precipitation, etc.), AO hardware, and other factors. Hence, a measure of a 

"good" Strehl ratio is difficult to present. 

There are three Strehl ratios that are of interest in this work. The first is the Strehl 

ratio of the outbound wavefront which provides a measure of the uncompensated system 

performance. The second is the Strehl ratio of the corrected wavefront using simple 

phase conjugation. Simple phase conjugation implies that measurements of the inbound 

wavefront's phase deformations (x- and y-tilts) are directly, negatively, applied to the 

DM. In this case, there are no correlation functions to determine. It is still a closed-loop 

system; however, anisoplanatism is not taken into account. This is the most rudimentary 

phase conjugation scheme available and is currently used in most AO applications. 

Simple phase conjugation provides an algorithm on which to base the performance of the 

AO tilt compensation algorithm developed in this work. The last Strehl ratio is that of the 

compensated wavefront obtained from the work in previous chapters. In this case, the 

necessary correlation functions are calculated, estimates of the outbound wavefront 

Zernike phase expansion coefficients are obtained, and the LQG controller attempts to 

drive the controlled variables to zero. Comparing these three Strehl ratios, which involve 

increasing system complexity, provides a measure of the performance enhancement that 

can be obtained using tilt compensation. 

Since the wavefronts have been expanded using Zernike polynomials, the Strehl 

ratios take on a form involving the Zernike expansion coefficients. In particular, for the 

fully compensated wavefront, the residual wavefront phase becomes 

<Dres(x,t) = -O(0)(x,t) + cD(m)(x,t) (189) 
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where O(0)(x,t),O(m)(x,t) are the outbound wavefront phase and the phase correction 

applied by the DM, respectively. The aperture averaged, squared, residual wavefront 

phase is 

*L(t) = Jw(x)*2„(X,t)dx (190) 

where <£^s(x,t) is the squared, residual wavefront phase. Using the Zernike polynomial 

expansions, that is, 

0<°,(x,t) = Xar)(t)ZJ(x)   ,  0<m)(x,t) = X4m,(t)Zk(x) (191) 

in eq. (190) produces 

*L(0 = Jw(x) -Xa<->(t)Zj(x) + Xar(t)Zk(x) dx. (192) 

Up to this point, only x- and y-tilts have been considered in wavefront expansions. 

However, in terms of computing Strehl ratios, it is advantageous to use more Zernike 

modes in the inbound, and therefore, outbound, wavefront expansions. If the inbound 

wavefront was described entirely by tilts, then the Strehl ratios would be unusually high, 

since tilts are removed from the corrected wavefront. For example, assume that the 

inbound wavefront phase is only corrupted by tilts. Then, after compensating and 

applying the conjugate phase to the mirror, the residual wavefront phase would be near 

zero, assuming the filter/controller performed well. In this case, the Strehl ratio would be 

near one, that is, the diffraction limit. Unfortunately, this type of AO performance is not 

feasible. To rectify this situation, more Zernike modes can be used to expand the inbound 

and outbound wavefronts. In practice, an accurate representation of these actual 
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wavefronts would require an infinite number of Zernike modes. Obviously, the 

expansion must be truncated at some point; however, tilts are not the only components of 

atmospherically distorted wavefront phases. In fact, five modes, x- and y-tilts, focus, and 

orthogonal components of astigmatism, were used to provide a more accurate 

representation of the actual inbound and outbound wavefronts. The AO scheme 

developed in this work only compensates for the tilt modes, therefore, the outbound 

wavefront, after compensation, is still corrupted by the remaining three modes. In this 

way, more accurate Strehl ratios will be obtained. 

For n Zernike modes (n = 5 for tilts, coma, astigmatisms), eq. (192) becomes 

*L(t) = Jw(x)[-a^>(^ 

Notice that tilt compensation results in including only a2(m)(t) and a3
(m)(t). Expanding the 

term in brackets in eq. (193) and using the orthonormality property of the Zernike 

polynomials produces 

®L(0 = Ho,(t) + a<m>(t)]2 +[-a<°>(t) + ar)(t)]2 +[K>(t)}2 +- + {a£,(t)}2 

Therefore, the third Strehl ratio becomes 

SR3 -exJc-l/l-arW + a'-'W]2 +[-a«"(t) + a«»>(t)]2 +[{a<"(t)}2 +- + RU0} 

. (194) 

•(195) 

For the Strehl ratio of the outbound wavefront, the residual wavefront phase is 

«MM = 0(o)(x,t) = laf'^Z^x). (196) 
j 

Then, 
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*L(0 = Jw(x) Xar>(t)Zj(x)    dx = Jw(x)[ar(t)Z2(x) + - + al;'1(t)Zn+1(x)]2dx. (197) 
L j J 

Applying the orthonormality property again produces 

^L(t) = {a<°)(t)}2
+{ar(t)}2

+-+{a(;+
)
1(t)}2- (198) 

Hence, the first Strehl ratio becomes 

SR, «exp (-1) {ar(t)}2
+{ar(t)}2

+-+{a^,(t)}2 (199) 

For the simple phase conjugation Strehl ratio, a little more analysis is needed. In 

the simple conjugation case, what is measured, that is, the set of inbound wavefront 

Zernike coefficients, is negatively applied to the DM. Therefore, it is desired to have 

a(m)(t) = -a(,)(t). (200) 

In eq. (200), it is assumed that only tilt compensation is performed. Thus, even though 

five Zernike modes are used to represent the inbound wavefront, only the negatives of the 

tilt modes are applied to the mirror. For the simple phase conjugation case, the Kaiman 

filter developed in Chapter 6 is not needed. Recall that the filter was used to estimate the 

outbound wavefront Zernike coefficients. With simple phase conjugation, no outbound 

wavefront estimates are required since only the set of inbound wavefront Zernike 

coefficients is applied to the mirror. Therefore, a weighted least squares algorithm can be 

used to estimate the inbound wavefront Zernike coefficients from the noisy measurements 

as described in that which follows. Of course, a Kaiman filter could also be built to 

estimate the inbound wavefront Zernike coefficients, but the performance benefit over the 

least squares estimate probably would not be substantial. 

101 



Unfortunately, the inbound coefficients are not directly measured. Instead, recall 

that the measured quantity is 

^(tj) = H,a(1)(tj) + v,(tj). (201) 

Therefore, it is necessary to generate an estimate, ä(1>(tj J, of a(1)(tj j. Hence the value 

of a(l) (t j) which minimizes the weighted sum of squares of the components of the vector 

hw-H^y (202) 

is desired. Stated in another fashion, the ä(1)ftj j, which minimizes the cost function 

Jie=^1(tj)-H1a«»(tJ)]TW1,[z1(tJ)-H1fi«>(tJ)]. (203) 

must be evaluated. In eq. (203), the subscript 'sc' implies simple conjugation and Wsc is 

the weighting matrix. Minimization of the cost function in eq. (203) is accomplished by 

satisfying the following criteria: 

3J. 

d*°%) 
aj. aj. 

3ä-(tj)  aä-(tj) 

a2j„ 

oT 

a^(tj) 

(204) 

>0 

where ä^ftjj.ä^tj) are estimates of the x- and y-tilts of the inbound wavefront. 

Performing the differentiation in eq. (204) yields 

a(,)(tj) = [H^WlcH1]"1H?-Wiez1(tj). 

Therefore, using eq. (200), the desired phase conjugation scheme becomes 

a(M>(tj) = -ä(i)(tj) = -[H?-WicH1]",H^WIcz1(tj). 

(205) 

(206) 
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The Strehl ratio for this case is the same as that given in eq. (195) with a(m)(t) replaced by 

the expression in eq. (206). 

The second performance metric that will be used is the RMS phase distortion. 

This quantity can be expressed as 

O RMS (t) = ^j"w(x)02(x,t)dx. (207) 

For the outbound wavefront, 

*&s(t) = Jjw(x) XaroozjOo dx 

= A/jw(x)[a<0)(x)Z2(x) + -+a(;+
)
1(x)Zn+1(x)]2dx . (208) 

Expanding the term in brackets and once again using the orthonormality property of the 

Zernike polynomials gives 

*i5is(t) - ^t)}V.. + {a<;>(t)}2 =  |XK>(t)}2 . (209) 

For the corrected image, 

O(c0mcted)(x!t) = X-a(
J°

)(t)ZJ(x) + Xa(
k
m)(t)Zk(x) 

j k 

Substituting this expression into eq. (207) yields 

>K (corrected) 
VRMS (t) = jfw(> I-arW^W + Ia^WZ^x) dx 

(210) 

(211) 

Performing some simplifications, as detailed in Appendix B, produces the desired result, 

that is, 
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Orrd)(t) = ^/[-ar(t) + ar)(0]2 +H0,(t) + ar(t)]2 + {a4
0)(t)}2 + - + {a<B"+

)
I(t)}2 • (212) 

This then provides a set of rather simple equations to be used as the metrics in evaluating 

system performance. The next section discusses the simulations in more detail along with 

a description of the phase screen. 

7.3 Simulation Methodology 

A digital simulation of the adaptive optics system was desired in order to evaluate 

the effectiveness of the LQG controller. This simulation was performed using code 

written in MATLAB [15]. To begin the simulation, the time history of the covariance 

matrices was developed. This was accomplished in the following manner: given the 

form of the system, input, and covariance matrices, F, G, and P(t), 

P(t) 

0 P.,(t)       0       Pl3(t) 
0       p22(t)       0       p24(t) 

P,3(0 0 

0       P24(t) 
P33(t) 

0 

0 

p44(t) 

[f.. 0 f,3 0 

,F = 
0 

f3, 

f 

0 

0 
f I 33 0 

,G = 

0 f« 0 f 
*44_ 

"g. o 
o g2 

g3 o 
o g4 

,(213) 

form the system of equations P(t) = FP(t) + P(t)FT + GGT . Performing the algebra 

required by the differential equation discussed above provides 

P(t)=[COLl COL2 COL3 COL4] (214) 

where 

COLl = [2fnpI1(t) + 2f13p13(t) + gJ    0   f31p11(t) + (f„+f33)pl3(0 + fl3P33(t)   Of 

COL2 = [0   2f22p22(t) + 2f24pM(t) + g*    0   f42p22(t) + (f22+f44)p24(t) + f24p44(t)]
T   (215) 

COL3=[f3lpI1(t)+(f11+f33)p13(t) + f]3P33(t)      0      2f33P33(t)+2f31p3|(t)+gj       Of 

COL4 = [0   f42p22(t) + (f22+f44)p24(t) + f24p44(t)   0   2f44p44(t) + 2f42p42(t) + g^]T. 
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Now, form the linear system 

• ••••• 
Pi,    P.3    P22    P24    P33    P44    (t) = Asim(Pll    p,3    p22    p24    p33    p44) (t) + Bsimu (216) 

where 

A-sim  ~ 

2f„ 

f3. 
0 

0 

0 

0 

2f,3 

f.. + f 33 

0 

.0 

2f31 

0 

0 

0 

2f. 22 

f42 

0 

0 

0 

0 

2f24 

*22 "*" M4 

0 

2f 42 

0 

f.3 

0 

0 

2f z.133 

0 

0 ^ rgH 
0 0 

0 

24 

0 

'           sim 
si 
0 

el 
f ^J 

(217) 

and u = 1 V time. The linear system in eq. (216) can then be simulated which results in 

the time history of the covariance matrix. The MATLAB command LSIM [15] can be 

used, along with other routines, to solve eq. (216). 

Having obtained the covariance matrix for each time instant, a phase screen [23] 

must be generated. This screen represents the random effects of the atmosphere on a 

wavefront and provides random draws of wavefront phase for each time instant. It is 

desired that the phase screens have the correct spatial-temporal statistics; that is, those 

given by the covariance matrices. To achieve this, consider the Cholesky factorization 

[16]ofP(t), 

P(t) = Rp(t)R;(t), (218) 

which can be performed since the covariance matrix is guaranteed to be positive definite. 

Consider now a random draw of a vector of zero-mean, uncorrelated, unit-variance, 

Gaussian random variables, b(t). The covariance of b(t) is 

E{b(t)bT(t)} = I (219) 
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where I is the identity matrix. 

Recall that a realization of the wavefront phase can be written as 

<£(Rx, t) = ^ a, (t)Zj (x). Now consider a random draw of the vector 
i 

a(t) = [a2 (t)    a3 (t)   • • •   an+1 (t)]. Note that ai(t) is not included since only piston 

removed quantities are considered. This random draw is accomplished using the vector 

b(t) in the following manner: 

a(t) = Rp(t)b(t). (220) 

Then, the covariance of a(t) will match the desired covariance given by P(t). This can be 

seen by considering 

E{a(t)aT(t)} = EJRp(t)b(t)(Rp(t)b(t))T} = E{Rp(t)b(t)bT(t)R,:(t)} 

= Rp(t)E{b(t)bT(t)}R;(t) = Rp(t)IR,:(t) = Rp(t)Rp'(t) = P(t). (221) 

By repeated application of this algorithm, a phase screen is generated which has the 

desired covariance time history. The vector a(t), for each time instant, provides the truth 

model for the AO system. In the development of the phase screen, the covariance matrix, 

not the covariance kernel matrix, was used. Recall that in deriving the atmospheric 

model in Chapter 4, the covariance kernel matrix was used. Therefore, the atmospheric 

model contains the kernel information. For the phase screen, the Cholesky factorization 

requires a positive definite matrix. Since the covariance matrix is positive definite, it was 

decided to use this information instead of the covariance kernel matrix; however, the 

covariance kernel matrix information is embedded in the phase screen since this was used 

to determine the atmospheric model. 
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Outputs from the simulation consist of time histories of the state variables, the 

filter's estimate of these states, and filter covariance matrices. Post-simulation data 

processing produces plots of the outbound wavefront's RMS phase distortion, the RMS 

phase distortion after wavefront correction, and the Strehl ratios. In addition to these 

single realizations, a Monte Carlo analysis consisting of 10 runs was conducted to 

generate ensemble statistics. In terms of ensemble statistics, the following equations 

were used: 

where 

and 

i      NR 

NR 

^^^EKw-^wlKw-meW] , 
NR-l k = l 

NR = number of Monte Carlo runs, 

ek(t) = ak(t)-ak(t) = error, 

k = sample number realization, 

me(t) = mean of random process ek(t), 

s2
e (t) = variance of random process ek (t) 

(222) 

(223) 

7.4 Simulation Results 

In this section, the plots obtained from the simulation will be displayed. Since it 

is expected that shot noise and photon count entering the HWFS will vary greatly and 

these are the main components of measurement noise, a parameter study was performed 
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on the noise variance. The robustness of the controller, to a parameter variation, was also 

evaluated by varying the process noise in the truth model. Recall, when synthesizing the 

atmospheric model, that the process noise strength was set to Qa = I. In the simulations, 

Qa of the truth model was set to I, 101, and 201. For the larger strengths, the simulation is 

being conducted with a mismatched model. If the system performs well in these cases, it 

can be concluded that the complete model is accurate and robust to variations in the Qa 

parameter. Lastly, the actuator time constant was varied. It is expected that the actuators 

for the ABL will be very fast. In fact, it may be possible to model the actuators as a 

constant gain multiplier, i.e., able to respond instantaneously to changes in command 

inputs. However, in order to simulate a basic time delay, the actuator time constant was 

made larger by five orders of magnitude. By no means does this represent a transport 

delay. In fact, the larger time constant simply delays the application of the conjugate 

phase to the mirror. Table 3 lists the parameters for the simulations. 

Ri Qa xa (sec.) 

SIMULATION #1 54.74 I 0.0000075 
SIMULATION #2 25.16 I 0.0000075 
SIMULATION #3 25.16 101 0.0000075 
SIMULATION #4 25.16 201 0.0000075 
SIMULATION #5 25.16 I 0.75 

Table 3. Simulation parameters. 
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In Table 3, the values of R; were determined by the MATLAB [15] simulation. The 

desired values were 50 and 25. However, with a finite number of samples, precise values 

are unobtainable. 

7.4.1 Simulation Run #1 

The first plots shown here are a sample realization of the outbound wavefront's x- 

and y-tilts from the phase screen with the filter's estimates superimposed. In this figure, 

the phase screens are in red while the filter estimates are in blue. 

Filter error is defined as the true state minus the filter's estimate of the state (state 

refers to the Zernike coefficients). The filter covariance, Pf, is the filter's indication of 

the uncertainty in its estimates, as in Eq. (174). The square root of the (j, j) element of 

the Pf matrix is what the filter believes to be the one sigma value of its error. 

Outbound Wavefrontx-tilt:Estimate &  Screen 
0.5 

-0.5 

•>wvvyyA^^^ 

0.2 0.4 0.6 0.8 1 
Outbound Wavefronty-tilt:Estimate &  Screen 

1 .2 

-0.2 
1 .2 

Figure 26. Outbound wavefront tilts: estimates and screen. 
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Although Figure 26 shows that the filter appears to be tracking the true state, it does not 

indicate how the filter error compares with what it thinks are its one sigma values. 

Figures 27 and 28 show a single sample time history of the filter error for the x- and y- 

tilts, along with the filter computed one sigma values. 

Filtererrorand +-filterstnd.dev.,outbound x-tilt 
0.15 

o 
UJ 

-0 .1 5 
0 .2 0 .4 0 .6 0 . 

Time  (sec) 
1 .2 

Figure 27. Outbound x-tilt filter error and filter standard deviation. 

Filtererrorand  +-filterstnd.dev., outbound   y-tilt 
0 .1 

0.0 5 

E    -0.0 5 

-0 .1 

-0 .1 5 
1 .2 

Figure 28. Outbound y-tilt filter error and filter standard deviation. 
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Looking at these single sample realizations of filter error, it appears that 

±A/Pr (3,3) and ±^/Pr (4,4) are reasonable one sigma values for the error and that the 

error is zero-mean. Note that the (3,3) and (4,4) elements of the Pf matrix are used since 

the outbound wavefront tilts are the third and fourth components of the state vector a(t). 

The actual values for the filter standard deviations are •N/pf~(3,3) = 0.074 and ^/pf
+(3,3) 

= 0.020 where the superscripts '-' and '+' designate values before measurement update (- 

) and after measurement update (+). Also, ^/pf"(4,4) = 0.063 while A/pf
+(4,4) = 0.012. 

Time-averaged means and standard deviations of the filter errors were also computed. 

For the x-tilt case, the mean error is -0.00023, while for the y-tilt, the mean error is 

0.00021. The standard deviation of the x-tilt error is 0.045 and that of the y-tilt error is 

0.026. These statistics were computed using the single sample run errors. Thus, they do 

not accurately portray the average system performance. In order to get a true description 

of the errors, a Monte Carlo analysis must be conducted. 

In order to obtain the true error mean and variance, a Monte Carlo analysis 

consisting of 10 runs was performed. Statistics were computed using eqs. (222) and 

(223). Figures 29 and 30 show the mean and mean ± one standard deviation of the filter 

error for the outbound wavefront x- and y- tilts. It appears that the error process is 

approximately zero-mean with standard deviations less than the ±^/Pf (3,3) and 

±^/Pf (4,4) values from Figures 27 and 28. Hence, it appears that the filter is not 

properly tuned. The time-average of the mean x-tilt error is -0.0011, the time-average of 

the mean y-tilt error is 0.00093, and the time-averaged standard deviations are 0.037 for 
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the mean x-tilt error and 0.019 for the mean y-tilt error. Hence, the standard deviations 

are much less than the average -y/Pf
+(j, j) and yPf~(j. j) values. Thus, the filter is not 

properly tuned. 

Outbound   x-tilt error: mean  and   mean  +-one   stnd. deviation 
0.15 

-0 .2 
0 .2 0 .4 0.6 0 .£ 

Time   (sec) 
1 .2 

Figure 29. Outbound x-tilt, mean and mean ± one standard deviation. 

Outbound   y-tilt e rro r: m e a n  and   mean  t- one   stnd. deviation 

-0 .0 6 

Figure 30. Outbound y-tilt, mean and mean ± one standard deviation. 

Figures 31-33 show single sample realizations of the controlled variables. Recall 

that it is desired to drive the controlled variables to zero, that is, to have -a2
(o)(t) = a2

(m)(t) 

and -a3
(o)(t) = a3

(m)(t). Notice that there is a little error in the x-tilt case, but almost zero 
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error in the y-tilt case. This is because of the planar engagement geometry discussed in 

Chapter 3. In this engagement, dynamic motion occurs only in the x-direction. Figures 

32 and 33 show a sample realization of the controlled variables before (blue) and after 

(red) correction. 

0 .2 
Negative   Mirror and    Outbound   Wavefrontx-tilt 

■0 .2 
0 0 .2 0.4 0.6 0.8 1 1  .2 

Negative   Mirror and   Outbound   Wavefront y-tilt 

•0 .2 
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Figure 31. Controlled variables. 

x - ti It co n tro lie d  variables with and  without compensation vs.time 
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Figure 32. X-tilt controlled variables. 
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Figure 33. Y-tilt controlled variables. 

It appears that, after compensation, the tilt variables are much nearer their desired set 

point, namely, zero; however, ensemble statistics must also be computed. Figures 34 and 

35 show the mean and mean ± one standard deviation of the x- and y-tilt controlled 

variables. 

X  - ti It con tro lied variables:mean and  mean +- one stnd.deviation 

Figure 34. X-tilt controlled variables: mean and mean ± one standard deviation. 
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Y - ti It controlled  variables: mean and   mean +-one  stnd. deviation 

-0 .1 5 
1 .2 

Figure 35. Y-tilt controlled variables: mean and mean ± one standard deviation. 

From these figures, it can be seen that the controlled variables are nearly zero-mean. The 

y-tilt variance is smaller than that of the x-tilt. Again, this can be attributed to the planar 

engagement geometry. The time-averaged mean and standard deviation of the x-tilt 

controlled variables are -0.00096 and 0.031, while the time-averaged mean and standard 

deviation of the y-tilt controlled variables are -0.00017 and 0.023. Thus, the standard 

deviation on the y-tilt controlled variables is less than those of the x-tilt controlled 

variables, with both processes being nearly zero-mean. 

Figures 36 and 37 show the Strehl ratio after tilt compensation minus the 

outbound wavefront Strehl ratio and the simple conjugation Strehl ratio, respectively, 

along with a zero line for reference. These figures were generated using a single sample 

realization. 
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Figure 36. Strehl ratio after tilt compensation minus Strehl ratio before correction. 

0.15 
Strehl after tilt comp. minus strehl after simple conjugation 

O.I I 

CO 0.05 - ikklLA ill m „.dIU == r    \J  IM HA A \ L 
o fl    v WH  p\ U D'H U   ' V u n 

-0.05 I.      .      .     " 
0.2 O -4 0.6 OS 

Time (sec) 
1   2 

Figure 37. Strehl ratio after tilt compensation minus Strehl ratio after simple 
conjugation. 

Figures 36 and 37 show the improvement in Strehl ratio by using the tilt compensation 

scheme. From the last two figures, it can be seen that, for this particular single sample 

realization, the Strehl is increased by an average of 0.144 for the no compensation case 

and about 0.031 for the simple conjugation case. 
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Figures 38-40 show the mean and mean ± one standard deviation of the three 

Strehl ratios. The mean Strehl is 0.484 for the uncompensated case, 0.638 for tilt 

compensation, and 0.591 for simple conjugation. Hence, better Strehl ratios are obtained 

when the tilt compensation scheme is used. Also, the standard deviation decreases 

slightly from the uncompensated case (standard deviation of 0.293), to simple 

conjugation (standard deviation = 0.267), to the tilt compensation case (standard 

deviation = 0.245). 

Strehl ratio   before   compensation:  mean   and   mean   +-one   stnd. deviation 

0 .6 
Time   (sec) 
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Figure 38. Uncompensated Strehl ratio. 

Strehlratio  alter till com pensation: mean and  mean +-one  stnd. deviation 
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Figure 39. Tilt compensation Strehl ratio. 
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Strehl ratio  aftersimple  conjugation: mean and   mean +-one  stnd.deviation 
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Figure 40. Simple phase conjugation Strehl ratio. 

Figure 41 shows a single sample realization of the RMS phase distortion of the 

outbound (red) and compensated (blue) wavefronts. 

Outbound   and   corrected   RMS   phase   distortion 

1  .2 

Figure 41. RMS phase distortions. 

It appears that the RMS phase distortion is decreased using tilt compensation. Figures 

42 and 43 show the RMS statistics from the Monte Carlo analysis. It can be seen that 

the mean and variance are significantly reduced by employing tilt compensation. 
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Outbound   Wave   frontRMS:mean   and   mean   +-one   stnd.  deviation 

1  .2 

Figure 42. Outbound wavefront RMS statistics. 

Figure 43. Corrected wavefront RMS statistics. 

For the outbound wavefront, the time-averaged mean and standard deviation are 0.102 

and 0.055, respectively. For the corrected wavefront, the time-averaged mean and 

standard deviation are 0.048 and 0.024. Hence, the RMS means and variances are 

reduced using tilt compensation. 

In conclusion, the system seems to be performing adequately for this particular 

set of parameters, i.e., measurement and process noise strength and actuator time 
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constant. That is, the Strehl ratios and RMS phase distortions are notably better when 

tilt compensation is applied. Table 4 displays the time-averaged means and standard 

deviations of the plots displayed in this section. 

However, since the measurement noise variance is unknown, more simulations 

must be run. Simulation set #2 examines the effects of decreasing the measurement 

noise variance. In this case, the filter will weigh the measurements more heavily and 

place less emphasis on the internal model. 

Figure # Variable Name Mean Std. Deviation 

27 X-tilt filter error -0.00023 0.045 
28 Y-tilt filter error 0.00021 0.026 
29 Outbound x-tilt -0.0011 0.037 
30 Outbound y-tilt 0.00093 0.019 
34 X-tilt controlled variables -0.00096 0.031 
35 Y-tilt controlled variables -0.00017 0.023 
38 Uncompensated Strehl ratio 0.484 0.293 
39 Tilt compensation Strehl ratio 0.638 0.245 
40 Simple phase conjugation Strehl ratio 0.591 0.267 
42 Outbound wavefront RMS 0.102 0.055 
43 Corrected wavefront RMS 0.048 0.024 

Table 4. Statistics for run #1 plots. 

7.4.2 Simulation Run #2 

In this case, Rj is nearly one-half that of run #1. Figure 44 shows a single sample 

realization of tilts while Figures 45 and 46 show single sample realizations of filter error 

and filter computed one sigma values. 
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Figure 44. Outbound wavefront tilts: estimates and screen. 

The mean errors are 0.00019 and -0.0002 for the x- and y-tilts, respectively. In this case, 

the filter error standard deviations are smaller than those of the filter errors shown in 

Figures 27 and 28. Recall that in simulation run #1, the standard deviations were 0.045 

(x-tilt) and 0.026 (y-tilt). Here, the standard deviation of the x-tilt filter error is 0.033 

while that of the y-tilt is 0.018. The filter computed standard deviations are: ^Pf
+(3,3) = 

0.014, ^Pf~(3,3) = 0.052, ^Pf
+(4,4) = 0.008, and ^"(4,4) = 0.045. As compared to 

simulation run #1, the filter computed standard deviations are less which implies that the 

filter is more confident about its estimates. 
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Filter error and   +- filter stnd.dev., outbound   x-tilt 
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Figure 45. Outbound x-tilt filter error and filter standard deviation. 

Filter error and   +- filter stnd. d e v ., outbound   y-tilt 

-0 .0 6 
0 .6 

Time   (sec) 
1 .2 

Figure 46. Outbound y-tilt filter error and filter standard deviation. 

Figures 47 and 48 show the mean and mean ± one standard deviation of the 

outbound tilts. The errors are approximately zero-mean and once again, the variances are 

smaller than those displayed in simulation run #1. For run #2, the standard deviations of 

the error are 0.03 (x-tilt) and 0.017 (y-tilt). Those for run #1 were 0.037 (x-tilt) and 

0.019 (y-tilt). Also, the standard deviations are nearly equal to the ±^/Pf (3,3) and 

±-y/Pf (4,4) values. This would imply that the filter is better tuned. 
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Outbound   x-tilt e rro r: m ean and  mean +-one  stnd. deviation 
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Figure 47. Outbound x-tilt, mean and mean ± one standard deviation. 

Outbound   y-tilterror:mean  and   mean  +-one   stnd.deviation 
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Figure 48. Outbound y-tilt, mean and mean ± one standard deviation. 

Figure 49 shows a single sample realization of the controlled variables, while 

Figures 50 and 51 show the mean and mean ± one standard deviation of the controlled 

variables. Here, the means and variances are smaller than those displayed in run #1. The 

time-averaged means of the controlled variables are as follows (those from run #1 are in 

parenthesis): -0.00016 (-0.00096) for x-tilt and 0.00015 (-0.00017) for y-tilt. The time- 
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averaged standard deviations are (run #1 values in parenthesis): 0.027 (0.031) for x-tilt 

and 0.017 (0.023) for y-tilt. 
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Figure 49. Controlled variables. 

X   - tilt controlled   variables  vs.time:mean  and   mean  t- one   stnd. deviation 
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Figure 50. X-tilt controlled variables. 

1  .2 

124 



Y   -tilt controlled   variables   vs. time: mean   and   mean   +-one   stnd. deviation 
0.15 

Figure 51. Y-tilt controlled variables. 

Figures 52 and 53 show the differences in Strehl ratios from a single sample 

realization. There is an increase in the gain in Strehl in this situation as compared to run 

#1. Hence, the controller seems to perform better with this set of simulation parameters. 

This performance should be expected since the measurements are more precise. In fact, 

the average change in Strehl ratio is 0.164 for no compensation and 0.038 for simple 

conjugation. For run #1, the increases were 0.144 and 0.031. 

035 
Strehl after tilt comp. minus strehl before correctior 
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Figure 52. Strehl ratio after tilt compensation minus Strehl ratio before correction. 
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Strehl after tilt comp- minus strehl after simple conjugation 
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Figure 53. Strehl ratio after tilt compensation minus Strehl ratio after simple 
conjugation. 

Figures 54-56 show the mean and mean ± one standard deviation of the Strehl ratios. 

Figure 54. Uncompensated Strehl ratio. 
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Figure 55. Tilt compensation Strehl ratio. 
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Strehl ratio   aftersimple   conjugation: mean  and   mean  +-one   stnd.deviation 
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Figure 56. Simple phase conjugation Strehl ratio. 

The time-averaged mean Strehl ratios are (run #1 values in parenthesis): 0.481 

uncompensated, 0.621 (0.591) simple phase conjugation, and 0.643 (0.638) for tilt 

compensation. Hence, the Strehl ratios have increased. The time-averaged standard 

deviations are (run #1 values in parenthesis) are: 0.285 uncompensated, 0.265 (0.267) 

simple conjugation, and 0.242 (0.245) for tilt compensation. Thus, the Strehl ratios have 

increased and the variances decreased as compared to run #1. 

Figures 57-59 show the RMS phase distortion and the associated Monte Carlo 

statistics. Note that the corrected RMS values are smaller than those in run #1. Recall 

that with Rj = 25.16 instead of 54.74, more emphasis is placed on the measurements and 

less is placed on the internal model. 
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Outbound   and   corrected   RMS   phase   distortion 
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Figure 57. RMS phase distortions. 
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Figure 58. Outbound wavefront RMS statistics. 
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Figure 59. Corrected wavefront RMS statistics. 
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The time-averaged mean RMS values are (run #1 values in parenthesis): 0.104 for the 

outbound wavefront and 0.045 (0.048) for the corrected wavefront. The time-averaged 

RMS standard deviations are: 0.051 (0.055) for the outbound wavefront and 0.021 

(0.024) for the corrected wavefront. 

In this case, system performance is better than in run #1. That is, more accurate 

estimates of the outbound wavefront Zernike coefficients are made. This, in turn, results 

in better regulation of the controlled variables and hence, better Strehl ratios and RMS 

phase distortions. Table 5 summarizes the results of this simulation run. 

Figure # Variable Name Mean Std. Deviation 

45 X-tilt filter error 0.00019 0.033 
46 Y-tilt filter error -0.0002 0.018 
47 Outbound x-tilt -0.00022 0.03 
48 Outbound y-tilt 0.00015 0.017 
50 X-tilt controlled variables -0.00016 0.027 
51 Y-tilt controlled variables 0.00015 0.017 
54 Uncompensated Strehl ratio 0.481 0.285 
55 Tilt compensation Strehl ratio 0.643 0.242 
56 Simple phase conjugation Strehl ratio 0.621 0.265 
58 Outbound wavefront RMS 0.104 0.051 
59 Corrected wavefront RMS 0.045 0.021 

Table 5. Statistics for run #2 plots. 

Now, the robustness of the Kaiman filter to variations in the process noise strength will 

be tested. This simulation is used to determine the effects of model mismatches upon the 

operation of the system. Simulation run #3 displays these results. 
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7.4.3 Simulation Run #3 

Recall that in this case, the process noise of the truth model, Qa, was set to 101, 

while the filter was run with Qa = I. Therefore, the simulation is being run to evaluate 

the robustness of the filter to variations in the process noise strength. Figure 60 shows a 

sample realization of the outbound tilts. 

Outbound   Wavefrontx-tilt:  Estimate   &   Screen 
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Figure 60. Outbound wave front tilts: estimates and screen. 

It still appears that the filter is accurately estimating the outbound wavefront coefficients. 

Figures 61 and 62 show a single realization of filter error along with the filter computed 

one sigma values. The mean errors are -0.00021 for x-tilt and 0.00041 for y-tilt. Thus, 

the errors are still nearly zero-mean; however, the standard deviations of the errors are 

much greater than in the previous simulation run. In fact, the x-tilt standard deviation is 

0.057 while the y-tilt standard deviation is 0.036. For run #2, the standard deviations 

were 0.033 (x-tilt) and 0.018 (y-tilt). Hence, the model inadequacies are causing 

problems with the estimation of the outbound wavefront Zernike coefficients. In other 
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words, the filter underestimates the size of its own errors since Qa = 10 I for the truth 

model and Qa = I for the filter. 

Filter error and   + - fi Ite r s tn d . d e v ., outbound   x-tilt 
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Figure 61. Outbound x-tilt filter error and filter standard deviation. 

Filter error and   +-filterstnd.dev., outbound   y-tilt 
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Figure 62. Outbound y-tilt filter error and filter standard deviation. 

Figures 63 and 64 show the mean and mean ± one standard deviation of the error in the 

outbound tilts. The errors are zero-mean, but the error variances are larger than those in 

run #2. The error standard deviations for this run are (run #2 values in parenthesis): 

0.054 (0.03) for the x-tilt and 0.032 (0.017) for the y-tilt. 

131 



Outbound  x-tilterror:mean and  mean +-one  stnd. deviation 
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Figure 63. Outbound x-tilt error. 

Outbound y-tilterror:mean and  mean +- one stnd.deviation 
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Figure 64. Outbound y-tilt error. 

Figures 65-67 display the controlled variables. The controlled variables are 

approximately zero-mean, however, the variances are significantly greater as compared 

to run #2. 
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Figure 65. Controlled variables. 
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Figure 66. X-tilt controlled variables. 
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Figure 67. Y-tilt controlled variables. 
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Although the standard deviations of the controlled variables are larger than those 

displayed in simulation run #2, the controller is still regulating the controlled variables to 

zero. The standard deviations of the controlled variables are (run #2 values in 

parenthesis): 0.039 (0.027) for the x-tilt and 0.031 (0.017) for the y-tilt. 

Figures 68-70 show ensemble statistics of the Strehl ratios. Although the 

compensated Strehl ratios are still high, they are worse than in the previous two cases. 

The tilt compensated time-averaged mean Strehl ratio is 0.495, while for run #2 the value 

was 0.643. The simple phase conjugation Strehl ratio is 0.47, while for run #2 it was 

0.621. However, the compensated Strehls are better than the uncompensated case (Strehl 

of 0.44). This would imply that even with model inadequacies of the magnitude 

described in this simulation run, tilt compensation and simple conjugation are better than 

no compensation. 

0 .6 
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Figure 68. Uncompensated Strehl ratio. 
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Figure 69. Tilt compensation Strehl ratio. 

Strehlratio  aftersimple  conjugation: mean and   mean +-one  stnd. deviation 
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Figure 70. Simple conjugation Strehl ratio. 

System performance is definitely worse in this case as compared to run #2, 

however, it appears that the controller is rather robust to variations in the Qa parameter. 

That is, the Strehl ratios are higher for the tilt compensation and simple conjugation 

cases as compared to no compensation. Hence, even if the atmospheric model does not 

provide a precise representation of the physical plant, system performance can be 

enhanced by applying tilt compensation. Table 6 summarizes this simulation run. 
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Figure # Variable Name Mean Std. Deviation 

61 X-tilt filter error -0.00021 0.057 
62 Y-tilt filter error 0.00041 0.036 
63 Outbound x-tilt -0.00029 0.054 
64 Outbound y-tilt 0.00026 0.032 
66 X-tilt controlled variables -0.00082 0.039 
67 Y-tilt controlled variables -0.00021 0.031 
68 Uncompensated Strehl ratio 0.44 — 

69 Tilt compensation Strehl ratio 0.495 — 

70 Simple phase conjugation Strehl ratio 0.47 — 

Table 6. Statistics for run #3 plots. 

7.4.4 Simulation Run #4 

In this case, Qa of the truth model was set to 201. Hence, the model uncertainties 

are more severe than those in simulation run #3. Figure 71 shows a single sample 

realization of the x- and y- tilts. 
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Figure 71. Outbound wavefront tilts: estimate and screen. 
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Figures 72 and 73 show a single realization of filter error along with the filter computed 

one sigma values while Figures 74 and 75 show the mean and mean ± one standard 

deviation of the error in the outbound tilts. 
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Figure 72. Outbound x-tilt filter error and filter standard deviation. 
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Figure 73. Outbound y-tilt filter error and filter standard deviation. 

The mean x-tilt filter error is -0.0003, while the mean y-tilt filter error is 0.00013. The 

standard deviation of the x-tilt filter error is 0.07 and the standard deviation of the y-tilt 

filter error is 0.045. Recall that these standard deviations were 0.033 (run #2 x-tilt), 
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0.057 (run #3 x-tilt), 0.018 (run #2 y-tilt), and 0.036 (run #3 y-tilt). Hence, the standard 

deviations are larger which implies more uncertainty in the errors. 

Outbound x-tilt error: mean and mean +- one stnd. deviation 
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Figure 74. Outbound x-tilt error. 
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Figure 75. Outbound y-tilt error. 

Also, the outbound wavefront tilt errors are much larger than in the previous cases. The 

time-averaged standard deviation of the mean x-tilt error is 0.067 and the time-averaged 
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Standard deviation of the mean y-tilt error is 0.038. Previously, these values were 0.03 

(run #2 x-tilt), 0.054 (run #3 x-tilt), 0.017 (run #2 y-tilt), and 0.032 (run #3 y-tilt). 

Hence, the model inaccuracies are degrading the performance of the controller; however, 

the errors are still zero-mean. 

Figures 76 and 77 show the mean and mean ± one standard deviation of the 

controlled variables. Although the mean and variances have increased from the case 

when Qa = 101, the controlled variables are zero-mean. 

X   - tilt controlled   variables  vs. time: mean  and   mean  t-one   stnd.deviation 

0 .6 
Time   (sec) 

1 .2 

Figure 76. X-tilt controlled variables. 

Y - tilt c o n tro lie d   variables  vs. time: mean  and   mean  t-one   stnd.deviation 
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Figure 77. Y-tilt controlled variables. 
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The standard deviation of the x-tilt controlled variables is 0.064 and for the y-tilt the 

standard deviation is 0.04. For the last two runs, the standard deviations were 0.027 (run 

#2 x-tilt), 0.017 (run #2 y-tilt), 0.039 (run #3 x-tilt), and 0.031 (run #3 y-tilt). 

Figures 78-80 show the three Strehl ratios. In this case, the compensated Strehl 

values are about the same as the uncompensated Strehl values. The time-averaged mean 

uncompensated Strehl ratio is 0.431, while the time-averaged means of the tilt 

compensation and simple conjugation Strehl ratios are 0.444 and 0.421, respectively. 

From run #3, the Strehl ratios were 0.495 (tilt compensated) and 0.47 (simple 

conjugation). 

Strehl ratio   before   compensation:mean   and   mean   +-one   stnd.  deviation 
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Figure 78. Uncompensated Strehl ratio. 
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Figure 79. Tilt compensation Strehl ratio. 

Strehlratio  aftersimple  conjugation: mean and   mean t- one  stnd.deviation 
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Figure 80. Simple conjugation Strehl ratio. 

In conclusion, the severe model inaccuracies investigated in this simulation run 

do hamper the system's performance. In a number of cases, the filter's errors are large. 

These have the effect of applying the incorrect phase compensation to the deformable 

mirror. Hence, at some time instants, the Strehl ratios can actually be less when applying 

compensation with these model inadequacies. Table 7 displays the results of this 

simulation run. 
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Figure # Variable Name Mean Std. Deviation 

72 X-tilt filter error -0.0003 0.07 
73 Y-tilt filter error 0.00013 0.045 
74 Outbound x-tilt 0.00026 0.067 
75 Outbound y-tilt -0.00017 0.038 
76 X-tilt controlled variables -0.00071 0.064 
77 Y-tilt controlled variables -0.00029 0.04 
78 Uncompensated Strehl ratio 0.431 — 

79 Tilt compensation Strehl ratio 0.444 — 

80 Simple phase conjugation Strehl ratio 0.421 — 

Table 7. Statistics for run #4 plots. 

7.4.5 Simulation Run #5 

In this scenario, the actuator time constant was set to 0.75 sec. This simulates a 

coarse approximation to a time delay. In fact, the delay occurs in the actuation of the 

DM. Because the time delay only affects actuation of the DM, the only variables that 

change in this simulation run are the controlled variables, and the ones they affect. That 

is, the outbound wavefront tilts do not change since they depend only on the performance 

of the filter. However, Strehl ratios and controlled variables are affected since they 

require actuation of the DM. Thus, only those plots which change will be shown. For 

the others, see simulation run #2. 

The first plot shown is a single sample realization of the controlled variables. 
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Figure 81. Controlled variables. 
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It appears that there is much more error in the controlled variables as compared to those 

displayed in run #2. Figures 82 and 83 display ensemble statistics of the controlled 

variables. 

X   - tilt controlled   variables   vs.time:mean   and   mean   +-one   stnd.  deviation 

0 .6 
Time   (sec) 

1  .2 

Figure 82. X-tilt controlled variables. 
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Figure 83. Y-tilt controlled variables. 

Here, it can be seen that the variances of the controlled variables are much larger than in 

the previous cases. The time-averaged standard deviation of the x-tilt controlled 

variables is 0.075 while for the y-tilt the time-averaged standard deviation is 0.046. 

Recall that in run #2, the time-averaged standard deviations were 0.027 (x-tilt) and 0.017 

(y-tilt). In fact, as will be discussed shortly, applying AO with slow actuators may 

actually degrade performance below that which is obtained in the uncompensated 

system. To evaluate this statement, ensemble statistics of the Strehl ratios will be 

examined. Figures 84-86 show the mean and mean ± one standard deviation of the 

Strehl ratios. 
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Figure 85. Strehl ratio after tilt compensation. 
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Figure 86. Simple conjugation Strehl ratio. 
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As can be seen in the last three figures, the Strehl ratio, at many time instants, is better in 

the uncompensated case. The time-averaged mean Strehl ratios are 0.44 

(uncompensated), 0.37 (tilt compensation), and 0.39 (simple conjugation). The same 

information is also displayed in the RMS phase distortion. 

In conclusion, with an actuator time constant which is too large, it appears that 

using AO can degrade system performance. What happens is as follows: measurements 

are taken and the outbound wave front Zernike coefficients are estimated. However, the 

estimated conjugate phase is not applied to the DM until a later time because of the 

actuator delay. Hence, compensation is being calculated for one propagation path while 

the actual compensation is applied to a different propagation path. In other words, 

anisoplanatism is not properly taken into account. Thus, with a large actuation delay, 

system performance can actually be degraded by applying AO. Table 8 shows the 

statistics of the variables in this simulation run. 

Figure # Variable Name Mean Std. Deviation 

82 X-tilt controlled variables -0.00083 0.075 
83 Y-tilt controlled variables -0.00032 0.046 
84 Uncompensated Strehl ratio 0.44 — 

85 Tilt compensation Strehl ratio 0.37 — 

86 Simple phase conjugation Strehl ratio 0.39 — 

Table 8. Statistics for run #5 plots. 
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7.5 Summary 

In this chapter, the complete AO control system was simulated. A parameter 

study was performed on the measurement noise variance since it is expected that this 

value will vary greatly in a practical situation. The process noise strength of the truth 

model and the actuator time constant were also varied. In all cases, excluding the larger 

time constant, the controller performs adequately. Hence, accurate estimates of the 

outbound Zernike coefficients are made and the controlled variables are regulated near 

zero. With a time delay that is too large, performance can be substantially degraded. 
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VIII. Conclusions and Recommendations 

8.1 Introduction 

The principle objective in this research was to establish a unified approach to 

beam control for the application of AO to the ABL. The objective was motivated by the 

inadequacy of current analysis methods to address anisoplanatism, the specific ABL 

engagement geometry, and the correct development of the correlation between inbound 

and outbound wavefronts. Specifically, this research was intended to assess the effects of 

anisoplanatism, and to quantify the performance improvements that can be attained by 

applying tilt compensation to the AO system. 

In Chapter 1 of this dissertation, an overview of AO systems and the ABL was 

presented, along with a historical background, problem statement, and key results. 

Chapter 2 provided an overview of atmospheric models and Zernike polynomials. The 

ABL specific engagement geometry was delineated in Chapter 3, including all of the 

necessary kinematic variable and geometrical relationships. The correlation between 

inbound and outbound wavefronts was determined in Chapter 4, along with calculations 

and stochastic modeling. Chapter 5 presented the deformable and complete system 

models, output equations, and the equivalent discrete-time system. A Kaiman filter and 

LQG controller were constructed in Chapter 6, while simulations were performed in 

Chapter 7, including a discussion of the simulation results. In the present chapter, the 

significant advances of this research are summarized and suggestions for future research 

are offered. 
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8.2 Significant Advances 

This research has led to the following significant advances regarding tilt 

compensation for the ABL. 

• A unified approach to applying tilt compensation to the ABL, which accounts for 

anisoplanatism and system time delays. 

• A fully developed engagement geometry for the ABL encompassing target and 

aperture motion as well as wind effects. 

• A modified frozen flow hypothesis (FFH) which takes into account translation and 

rotation of the aperture and target. 

• A new approach to developing an atmospheric model which directly uses correlation 

kernel data instead of designing shaping filters for the atmospheric states. This results 

in a lower-order, and therefore, more practical atmospheric model. 

• Atmospheric model developed provides a good representation of the atmosphere. 

This is validated by examining the performance of the Kaiman filter based upon this 

model and also upon less accurate representations of this model (varying the process 

noise strength). 

• Significant improvement in the reduction of wavefront phase deformations can be 

obtained by simply performing tilt correction. This result is displayed using 

simulations of the entire ABL AO control system. 
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8.3 Summary of Results 

The analysis conducted in the dissertation has led to a number of key results. A 

summary of these results is presented in this section. 

• Tilt compensation can significantly improve the ABL's AO system. In terms of 

Strehl ratios, an improvement of 0.15 was achieved by using tilt compensation as 

compared to the case in which no compensation was used. In comparison to the 

simple phase conjugation case, the improvement was smaller, approximately 0.04. 

However, for a Strehl of 0.5, a 0.04 increase results in a 8% improvement. 

• Tilt compensation reduces the RMS phase distortions by about 50%. Therefore, it is 

clear that tilts are a major factor in wavefront phase deformations. 

• The required control system bandwidth for this application is greater than 1 kHz. 

This is much greater than the bandwidth of current astronomical imaging systems 

employing AO. The bandwidth requirement increases because the control system 

must be updated at rates commensurate with the wavefront phase variations. 

• A Kaiman filter's estimates, with an accurate internal model (plant and deformable 

mirror), can track the wavefront phase deformations. Therefore, the effects of 

anisoplanatism can be taken into account and accurate estimates of the outbound 

wavefront Zernike coefficients can be made. 

• The atmospheric model designed in this work is robust to variations of the process 

noise strength; that is, the Kaiman filter can provide reasonable estimates of the 

outbound wavefront Zernike coefficients. 
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8.4 Recommendations for Future Research 

The research activity in this dissertation provided a description of the design of a 

control system for beam control in the ABL. While this research answered some 

important questions, there are many more that go as yet unanswered. There were several 

considerations that were outside the scope of this work. These issues are outlined in the 

following paragraphs. 

• In this work, a planar engagement geometry was selected. In using this, dynamic 

motion occurred only in the x-direction. In the future, a full three-dimensional 

geometry should be investigated, including dynamic motion in both the x- and y- 

directions. 

• Although tilts represent the majority of power in wavefront phase deformations, 

higher-order modes can be used to capture some of the remaining power. Hence, a 

model, using more than two Zernike modes, may be useful. However, it should be 

mentioned once again that more modes implies a higher-order Kaiman filter which 

requires more computation time. Some analysis was conducted using more Zernike 

modes (5 modes to be precise), but the improvements in performance did not 

outweigh the additional computational loading. 

• The atmospheric model generated here was for one particular engagement geometry 

and one set of atmospheric parameters. A unified modeling approach would be 

useful. Perhaps a multiple model type of adaptive estimator [17] could be used. In 

this case, multiple models would be constructed, one for each entry in a set of 
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geometrical and atmospheric parameters. Then, using an appropriate probability 

function, the filter estimates would be weighted to provide the final result. 

A better understanding of the WFS noise model would also be advantageous. 

Unfortunately, shot noise and photon count, each of which are engagement-specific, 

represent the majority of sensor noise. 
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Appendix A: Evaluation of the Integral Over 0 

In this section, it is desired to derive eq. (100). Recall, from Chapter 4, eq. (97), 

that the integral over 6 was given as 

9„+2TC 

INTs=-"f   e^1'"4 o) cos{(mf + nij)§ + g} + cos{(mf - nij)e + h} d9    (224) 

where 

and 

g = {ffr-5m,o)[(-l)f-l] + (l-8mj0)[(-lV-l]} 

h = i^-5m,o)[(-l)f-l]-(l-5mj0)[(-l)
J-l]} 

(225) 

(226) 

By a change of variables, a trigonometric identity, and the definition for a Bessel function 

of the first kind [28], denoted by J,(»), it is stated, in eq. (100), that 

3 m, +m. 

INT^cosftim+m^+§}*(-!)     *     J(mf+m,l27C K, a 

3f m,--mj} 

+ cos{(mf -mj)0a +hJ7t(-l)     ~2     J,       .lln^ |a|). (227) 

In order to derive eq. (227), first consider a change of variables: let 

ß = e-ea=>e = ß+ea,dß = d9. 

Applying this change of variables to eq. (224) gives 

INTg=-Je"j2,tI^Ncosß[.]dß 

(228) 

(229) 
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where 

H = cos{(mf+mj)ß + (mf+mJea+g} + cos{(mf-mj)ß + (rnf-mj)ea+h}.   (230) 

Considering the first cosine term only, using the identity 

cos(a+b) = cos(a)cos(b)-sin(a)sin(b), (231) 

and identifying a = (nif + nij)ß, b = (mf + mj)9a + g, the term can be rewritten as 

cos{(mf + mi )ß + (mf + m^ )0a + g} = cos{(mf + mi )ß} cos{(mf + nij )0a + g} 

- sin{(mf + mj )ß} sin{(mf + m 3 )9a + g}. (232) 

Likewise, the second cosine term in eq. (229) can be written as 

cosj(mf -mj)ß + fmf -mjJ90! + h| = cosj(mf - mj^|cos|(mf -mjJ0a +h| 

- sin{(mf - mj )ß} sin{(mf - m;)8a + h} . (233) 

Therefore, eq. (229) becomes 

INTg=I2Je""j27Cl"'i|ä|cosß[.]dß (234) 
2 o 

where 

[•] = cos{(mf +mj)ß}cos{(mf +mj)ea +g}-sin{(mf +mj)ß}sin{(mf +mj)8a +g} 

+cosjfmf -mj)ß|cos|(mf -mj)8a + h|-sinj(mf -mjßfsinjfmf -mjj0a +h\. (235) 

Hence, there are four integrals to evaluate. Consider the first integral which is 
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Opart 1 ry 
. je-j2*|Ki||«|=osp cos|^mf +m.)ß|cos|(mf +mj)eo, +gj dß TXTT- ^   f    -J2t|i<i||ä|cosß 

IN Is    ,=—   e 

:Icos{(mf +mj)ea +g}2Je-J2^'l|ä|cosß[cos{(mf +mj)ß}]dß.      (236) 

From Gradshteyn and Ryzhik [9], a Bessel function can be expressed as 

1 

2TC(-1) 
/2 o 

2n 

-JVjzcosßcos(?iß)dß. (237) 

Identifying z = 2TU K, loci and X = (nif + nij) and using eq. (237) in eq. (236) produces 

INT^^co^+mjJe^gJjK-l) 
3 m. +m 

2 J, ,1271 
m, +m 

K, a (238) 

Using another formula from Gradshteyn and Ryzhik [9], namely 

2rc 

jVjzcosßsin(Xß)dß = 0, (239) 

it can be seen that the integrals with sine terms are equal to zero. Performing the same 

procedure for the remaining cosine term in eq. (234) and putting the results together gives 

the desired final form: 

INT§ =cos{(mf +mj)ea +g}7c(-l)     2     J(mf+mj)(27c|ß1||ä|) 
31 m, +m, 

~ J, 

+cosj(mf -mj)8a H-hW-l) 
31 m,-~iTij I 

2    J, 2% K, a (240) 

which is the same as eq. (100) in Chapter 4. 
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Appendix B: Evaluation of Discrete-Time System, M and N Matrices, and Derivation of 
RMS Phase Distortions 

In this section, it is desired to evaluate some of the quantities discussed earlier, 

such as, the equivalent discrete-time system matrices (Section 5.6), N matrix (Section 

5.5), and the M matrix (Section 5.2). Also, the details of deriving eq. (212) will be 

shown. 

B.l Discrete-Time System Matrices 

To begin, consider the equivalent discrete-time system given by eq. (171). In this 

case, 0(tj+i, tj), Bd(tj), and Qd(tj) must be delineated. For the simulations, it has been 

determined that a sample rate of tj+i - tj = 0.0008 sec. is sufficient. With a constant 

sample period, evaluation of the discrete-time matrices is much simpler. In the case of 

0(tj+i, tj) and Qd(tj), an algorithm specified in Brown and Hwang [2] but developed by 

van Loan [31] will be used. The algorithm is as follows: 

1. 

2. 

Form the matrix 

LALG 

-F   GGT 

0      FT (v,-g. (241) 

Form eAALG using the MATLAB command expm(AALG) [15], or some 

other equivalent software tool: 

BALG =e*pm(AALG) = o     oT (242) 
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where the time instants tj+i and tj have been eliminated since the sample 

period is a constant. The upper left partition of BALG is of no concern. 

3. Transpose the lower right partition of BALG to obtain the state-transition 

matrix. 

4. Lastly, Qd is obtained as follows: 

Qd = 3> * (upper right partition of BALG)- 

Bd(tj) can be evaluated by solving the following differential equation over each interval 

[tj,tj+,)[16]: 

Ä(t,tj) = FB(t,tj)+B. (243) 

Equation (243) is integrated forward from B(tj5tj) = 0 to time tj to yield 

Bd(tj) = B(tj+1,tJ) [16]. 

B.2 Mirror Matrix M 

In this section, the matrix M in eq. (125) will be developed. Recall that M is 

M = [m2    m3    ••■   mn+1]  . 

For the case of x- and y- tilts, M becomes 

M = [m2    m3]
T (244) 

where 

jW(x)Zi(x)I1(x)dx    jWOOZ^I^dx   •••    JwOOZ^I^OOdx].   (245) T 
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In order to develop this matrix, the influence functions must be specified. There are 

many different suitable influence functions, i.e., pyramids, cones, etc. A right circular 

cone will be used in this work. It is suitable for describing influence functions since it 

tapers off at the radius of influence and has a peak at the center of the actuator. An 

influence function is displayed in Figure 87, where Ir represents the radius of influence. 

INFLUENCE   FUNCTIDN 
z 

Figure 87. Influence function. 

A functional description of the influence function is as follows: 

Ik(X,Y,XA,YA) = l-i-V(X-XA)
2+(Y-YA)

2] u[l?-{(X-XA)
2
+(Y-YA)

2}] (246) 
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where X, Y = spatial location on the mirror, XA, YA = spatial location of an actuator, and 

u(«) is a step function which specifies the domain of each influence function. 

In this work, Ir has been chosen equal to the actuator spacing, which implies that 

the actuators are independent, i.e., the actuators only effect their particular mirror segment 

and do not effect neighboring segments. An actuator map with numbered actuators is 

shown in Figure 88. Actuators 1, 7, 43, and 49 are inert while all other actuators are 

active. 

Y   <cm> ACTUATDR   MAP 

-0.3 -0.2 -0.1       0       0.1      0.2     0.3 

Figure 88. Actuator map. 

►    X   <cm> 
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Considering each term in the vector m2
T, the following integral is generated by 

substituting eq. (246) into eq. (245) 

m2, W/^'-f^-x*)2^-^)2 dxdy (247) 

where m2j denotes the jth term in the vector m2
T and ly, uy, lx, ux are the upper and lower 

limits for the y and x integrations and are determined by the step function in eq. (246). 

Performing the integration in eq. (247) yields 

™»' =^U- -'-IK-1']-^-!3^1' +3XAI?+I;]- (248) 

In the determination of eq. (248), the integrals in eq. (247) were converted to equivalent 

polar integrals. In doing so, the polar radius was allowed to vary with the spatial location 

X. Utilizing this fact along with the actuator map in Figure 88, it can be determined that 

all rows of actuators will have the same m2 j terms. Therefore, using an actuator spacing 

of 0.1 cm gives 

mLp. = [0-08909    0.02339    0.00169    0   -0.00569    -0.03933   -0.12509] 
mLp2=[°   0.02339    0.00169    0   -0.00569    -0.03933   0] 

(249) 

1 
m I=—[mLp2    mLp,    mLpi    mLP,    m^rep,    mLpl    m^rep2] (250) 

where m]^, and mLp2 represent the repeated entries in the m2 row vector. Using the 

same type of analysis, ni3T becomes 
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m 3repl 

0 

0.02339 

0.00169 

0 

-0.00569 

-0.03933 

0 

m 3rep2 

0.08909 

0.02339 

0.00169 

0 

-0.00569 

-0.03933 

-0.12509 

m, 
R 

m 3repl m 3rep2 m 3 rep 2       m3rep m 3 rep 2 m 3 rep 2       m3repl 

(251) 

(252) 

B.3 Output Equation Matrix N 

Recall from the work in Chapter 5 that N = 
iT 

Px,Px2---PxpPy,Py2---Py P. 

Therefore, the vectors p^ , p^ , j = 1, 2, ..., p, must be determined, each of which 

contain two entries, one for x-tilt and one for y-tilt. In the case of x- and y- tilts only, the 

N matrix becomes 

N = 

PI,(D    P!.(2)" 

PL(D    PL(2) 

Pip (1) Plp(2) 
Py,(D Pj,(2) 

Py20) Pj2(2) 

Pvpd) PVP(2) 

(253) 

where pxkT( 1) and pXkT(2) are the first and second elements in the pXkT row vector. From 

eq.(157), 

ploo = 2 
J'Y,+-—r**+-— dZ,    ,(\) 

dXdY,n= 1,2. (254) 
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Taking the partial derivatives of the Zernike polynomials yields 

2X      3Z,      2   3Z, 
z, =■ 

R        dX     R'9Y 
0 

_2Y_9Z3_n9Z3_2 
3      R        ax 3Y     R 

(255) 

Therefore, it is easily seen that the first entry in each p^ row vector is zero, while the 

second entry in each p^j is zero. In terms of the other entries, consider first the row 

vectors p^. The integral in this case becomes 

Pi (2) = JJ 
1 

2 In 2 
21n2- 

2(Y-Y.)\J,     2(Y~Ys) In 
VÄ 

1+- 
2(Y-YS)^ (1 _ 2(Y-YS) 

In 1 + - — dXdY. 
R 

Performing the integrations in eq. (256) produces 

(In 2-1)        1 
Px(2) = - 

2A 
R 

1-- 
In 2 21n2 

(256) 

(257) 

It can also be seen that p^ (1) will be exactly the same as the expression in eq. (257). 

Hence, the N matrix becomes 
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N: 

0 

0 
pxl 

2A 

R 

2A 

R 

2A 

1 

1- 

(ln2-l) 

In 2        21n2 

(In 2-1)        1 

In 2 

R 

(In 2-1) 

In 2 

21n2 

21n2 

2A 

R 

2A 

R 

2A 

R 

In 2        21n2 

In 2 21n2 

t    Q°2-l) 1_ 
In 2        21n2 

pxl 

0 

0 
pxl 

pxl 

(258) 

B.4 Derivation of Corrected Wavefront RMS Phase Distortion 

In this section, it is desired to derive the expression displayed in eq. (212). Recall 

that the RMS phase distortion can be expressed as 

0RMS(t) = Vw(x)02(x,t)dx. (259) 

For the corrected wavefront, the expression for the phase becomes 

^(co.eCed) (x, t) = I) -a)0' (t)Zj (X) + £ ^ (t)Z, (x) 
j=2 k=2 

(260) 

where the negative sign arises because the conjugate phase is being applied to the mirror. 

Note that both summations start at index two. This is because Zernike number one is 

piston and is not included in any calculations. Also, only modes two and three, i.e., x- 

and y-tilts, of the mirror coefficients are included. Even though an accurate 
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representation of the outbound wavefront requires n Zernike modes, only tilts are 

corrected. Substituting eq. (260) into eq. (259) gives 

.».(corrected) 
^RMS (t) = jfw(x) 

n+l 

X-a^OZ^ + Xa^COZ.Cx) 
j=2 k=2 

dx (261) 

Expanding the summations produces 

<™ (t) = J(w(x)[-a«"(t)Z2 (x) - a<"> (t)Z3 (x)- • -a<;+>, (t)Zn+l (x) + a« (t)Z2 (x) + a<m> (t)Z3 (x)fdx 

(262) 

Expanding the term in brackets in eq. (262) yields 

[.]-{a^}2Z2Z2+a^a^Z2Z3+---+a<o)a<;+
)
]Z2Zn+,-a^a<m)Z2Z2-a<0)a<m)Z2Z3 

+a<o)a<0)Z3Z2 +{a3
0)}2Z3Z, +--+a(30)a(

n°+
)

1Z3Zn+, -a^a^'Z,^, -a<0)ar)Z3Z3 

+ -+a(
n'?Ia«OJZ1I+IZ2 +a[°y°)Zn+]ZJ +-+{a(;+> }2Zn+1Zn+l -a^a^Z^Z, -a(

n°+
)
1a<m)Zll+1Z3 

_„(m)„(o)y   y    _o(m)n(°)'7   7 a2m an°+i^2Zn+i +{a2   ) Z2Z2+a2   a3   Z2Z3 

—a3   a2 Z3Z2—a3   a3 Z,3Zi3—• — a3   an+]Zi3Z,n+|+a3   a2  Zi3Z/2+^a3   !■ Zi3z>3 yZbi) 

where Zj, j = 2, 3,..., n+l is Zj(x). The vector dependence has been dropped to simplify 

notation. Now, the orthonormality property of the Zernike polynomials can be used. 

Recall that 

r 1  if  j = k 
[W(x)Zi(x)Z,(x)dx = <^ 
J J        k [0  if   j^k. 

(264) 

Substituting eq. (263) into eq. (262) and performing the integration using the property in 

eq.(264) gives 
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^rc,cd)(t) = )/[-ar(t) + ar,(t)]2 +[-a<")(t) + a<m,(t)]2 +{a«0)(t)}2 +•-- +{a^+> (t)}2   (265) 

which is the result shown in eq. (212) of Chapter 7. 
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