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ABSTRACT 

This thesis investigates detection and classification issues when dealing with 

seismic signals and represents a first step in the direction of automated detection and 

classification of mine-like signals obtained using a seismic approach. A computationally 

cheap detection scheme that utilizes a combination of a simple combination of a short- 

term energy and zero-crossing detector is implemented and tested on five different 

classes of targets, resulting in a 100% detection rate for all non-natural targets and 33% 

detection rate of mine sized rock buried in sand. 

Three feature extraction methods are evaluated for their possible use in a 

Gaussian Mixture Model classifier: higher order moments, pole extraction from impulse 

response modeling using the Steiglitz-McBride iteration, and Radial Basis Function 

Modeling of data. These methods demonstrate promising results for use in a classifier. 

However, only a very limited number of data trials per class was available in this work, 

and the proposed set-up needs to be further validated with additional data. 



THIS PAGE INTENTIONALLY LEFT BLANK 

VI 



TABLE OF CONTENTS 

EXECUTIVE SUMMARY IX 

I.        INTRODUCTION 1 
A. THE MINE PROBLEM 1 

1. Naval Mines 1 
2. Land Mines and Humanitarian Impacts 2 

B. MINE DETECTION TECHNOLOGIES 3 
1. Current Technologies 3 
2. New Technologies 3 

C. RESEARCH OBJECTIVE AND SUMMARY 4 

n.       SEISMIC SONAR APPARATUS 7 
A. PHYSICS OF SEISMIC WAVES 7 

1. Rayleigh Wave Properties 7 
2. Vector Polarization 10 

B. EQUIPMENT AND FIELD ENVIRONMENT 10 
1. Self-Contained, Deployable, Seismic Sonar System (SDS3) 10 
2. Field Environment 13 
3. Targets and Data Collection 15 

III. SIGNAL PREPARATION AND DETECTION 19 
A. DATA PREPARATION 19 

1. Array Processing 19 
2. Coherent Subtraction 19 
3. Vector Polarization Filtering 20 
4. Results of Coherent Subtraction and Vector Polarization 22 

B. DETECTION 24 
1. Short-term Energy and Zero-crossing Rate Detector 25 
2. Results/Extracted Target Signals 27 

C. FAILED METHODS • •• 27 
1. Bandwidth Determination 27 
2. Spectrogams and Harmonic Correlation 29 
3. Kurtosis and Skewness 30 

IV. FEATURE EXTRACTION AND CLASSDHCATION 33 
A. CLASSD7ICATION METHODS 33 

1. Feature Extraction 33 
2. General Classification and Pattern Recognition Methods 34 

B. EVALUATED FEATURE EXTRACTION METHODS 36 
1. Higher Order Moments 37 
2. Impulse Response Modeling Using STMCB Iteration 40 
3. Radial Basis Function Modeling of Data 42 

C. GAUSSIAN MIXTURE MODELS 49 
1. Expectation-Maximization Algorithm 49 
2. Classification Step 51 

V. CONCLUSIONS AND RECOMMENDATIONS 53 

vii 



A. CONCLUSIONS.. 53 
B. RECOMMENDATIONS 54 

APPENDIX A.   MATLAB PROGRAMS   (FOR FUNCTIONS CALLED FROM 
NETLAB TOOLBOX CODE, SEE [REF. 24] FOR CODE) 55 

LIST OF REFERENCES 85 

INITIAL DISTRIBUTION LIST 87 

Vlll 



EXECUTIVE SUMMARY 

The United States Navy has historically relied on the projection of naval power 

ashore which hinges on the ability to perform an expeditious delivery of amphibious 

forces. In response to the threat of unexploded ordinance and buried land mines, the U.S 

Navy has called for an improvement in mine detection technology that would allow for a 

rapid clearing of the surf and beach zone. To meet this challenge, faculty in the Naval 

Postgraduate Graduate School Physics Department are conducting research to develop a 

deployable seismic sonar than can rapidly detect and classify mines in the beach zone. 

Detection and classification issues investigated in this thesis represent a first step in the 

direction of automated detection and classification of mine-like signals obtained using a 

seismic approach. 

Over the course of several months, experiments were conducted on the U.S. Navy 

beach in Monterey, CA, to evaluate the effectiveness of different configurations of a 

seismic sonar apparatus. Signals obtained from those experiments were used to develop 

an automatic target detection algorithm and evaluate different feature extraction methods. 

Five different targets were evaluated: a 1000 lb Mk-83 general purpose inert bomb, a 80 

lb hollow gas cylinder, a M-19 non-metallic inert anti-tank mine, a standard scuba tank, 

and a 85 lb rock. 

An array of 7 seismic shakers was used to produce Rayleigh waves which were 

then recorded by an array of 5 seismometers. The signals were processed using array 

processing, vector polarization filtering, and coherent subtraction techniques. A 

computationally cheap detection scheme was implemented, using a short-term energy 

detector in combination with a zero-crossing rate detector to detect and extract the target 

portion of the signal. The detection scheme was tested on all 5 classes of signals 

resulting in a 100% detection rate for all non-natural targets and a 33% detection rate on 

the rock. 

Three feature extraction methods were evaluated for their possible use in a 

Gaussian Mixture Model classifier.    Higher order moments, which characterize the 

distribution in the data, were calculated and plotted, demonstrating and initial clustering 
ix 



based on two trials per class. Target signals were then modeled as an impulse response 

of a filter using the Steiglitz-McBride iterative method, evaluating the poles as possible 

features. The final method used a Gaussian Mixture Model and the Expectation- 

Maximization (EM) algorithm to model the target signal as a weighted sum of Gaussian 

shaped pulses, automatically finding the centers, weights, and widths of the pulses. The 

two features that provided information that distinguished between classes were the 

weights and the widths. All three methods demonstrate some initial clustering of features 

that could be used in a Gaussian Mixture Model classifier, but additional trials are needed 

to validate the proposed methods presented in this thesis. 



I.       INTRODUCTION 

The threat of unexploded ordinance and buried land mines has become an 

increasingly important problem for militaries and governments worldwide. The threat 

has existed since the United States Civil war, when the world first saw the effective use 

of mines used to blockade a harbor, but countermeasure technology has not kept pace. 

Today, militaries have no practical and expedient method of clearing a beach for an 

amphibious landing without a significant time, personnel, and equipment investment. 

Countries faced with the aftermath of war have a formidable task of clearing areas littered 

with mines and unexploded ordinance that pose a substantial threat to civilian 

populations. The case for improved mine detection and classification has been repeatedly 

made in many documents. 

A.       THE MINE PROBLEM 

1.        Naval Mines 

Of 19 United States ship casualties from 1950-2000, 14 were the direct results of 

damage sustained from mines [Ref. 1]. The United States Navy has a world class Mine 

Counter Measure (MCM) force, consisting of ships, aircraft, remote sensors, trained 

mammals, and explosive ordinance experts, yet it is still not adequate to counter the 

threat in a safe and as expedient manner as desired. 

The importance of expertise in mine warfare was most recently demonstrated in 

The Gulf War, illustrating the evolving nature of mine warfare and highlighted the 

requirement for MCM in shallow water. "...From the Sea" and "Forward...From the 

Sea" by the Chief of Naval Operations (1992 and 1994 respectively) emphasized the 

importance of warfare in littoral areas [Refs. 2,3]. In "Operational Maneuver from the 

Sea" (1996), the Commandant of the Marine Corps spelled out the operational concepts 

of maneuver warfare between sea and land, focusing of the requirement for rapid 

movement from ship to objective [Ref. 3]. 

Amphibious landings have always played a major role in every war in the modern 

era. Defense Guidance and the National Security Act of 1947 require the Marine Corps 
1 



to maintain the capability to affect a forcible entry onto a defended shore by means of 

amphibious assault [Ref. 4]. The projection of naval power ashore, including the 

effective delivery of U.S. amphibious forces, hinges on the ability to avoid and/or 

neutralize any possible mine threat. The United States Navy has specified a time frame 

of six hours in Sea States 0 and 1 (wind speed from 3 to 8 knots and waves up to 1 foot) 

to conduct the MCM component of an amphibious operation in its near time concept of 

operations (0 to 10 years). Mid-Far-term concept (10 to 15 years) calls for remote, high 

speed breaching of a mine field in sea states up to and including Sea State 3 (winds up to 

15 knots and waves up to 4 feet high). This will include real time data reporting of 

detection and mapping of mine fields and obstacles in the beach and surf zones [Ref. 5]. 

All these requirements and historical examples are compelling reasons to investigate and 

develop systems that automate the detection and classification process and take human 

experts out of the loop to facilitate a safe and expeditious landing of an amphibious force. 

2.        Land Mines and Humanitarian Impacts 

The continuing use of cheap and easily attainable landmines continues to be a 

problem for militaries and civilian populations in the aftermath of a war or conflict. 

While most governments are aware of the threat, militaries continue to use them, most 

notably on the Korean Peninsula, where an estimated one million mines divide North 

from South, Kuwait during the Gulf War, Somalia, and the former Yugoslavia. They 

provide an easy and effective method of force protection. 

Problems arise when a conflict is over and unexploded ordinance remains buried 

and undocumented. An estimated 100 million unexploded land mines left over from last 

century's wars and conflicts lie scattered in 64 countries, and it is currently estimated that 

an additional five million new mines are placed in the ground each year. Even if the 

laying of land mines were to immediately grind to a halt today, the United Nations 

estimates that, with conventional methods now being used, it would take over 1,000 

years, at a cost of nearly $33 billion, to safely clear out the world's mine fields [Ref. 6]. 



B.       MINE DETECTION TECHNOLOGIES 

Systems exist to sweep and clear mine fields, but only by bulldozing out safe 

paths and fields. The humanitarian group "People Against Landmines" operates a four- 

layer system in the countries of Angola, Namibia, and Mozambique. It consists of 

scrapping off the surface of the earth with converted anti-tank vehicles that can survive 

mine explosions, fitted with mulchers, then followed up with human and canine detectors 

[Ref. 7]. This system effectively clears a small safe path, but at the same time has 

considerable impact on the environment as well as being time inefficient, as a path will 

be bulldozed regardless if mines are present or not to ensure it is clear. 

1. Current Technologies 

Today's most advanced in-place technology for the detection of buried mines 

consist of hand probes, metal detectors, and canine sniffers, all of which put human 

operators dangerously close to potential mines. In addition, many of today's mines are 

made from plastic, making them potentially undetectable using metal detectors. Some 

more technical systems have been developed and field-tested, such as ground penetrating 

radar (GPR) and infrared imaging [Ref. 7]. GPR is an extremely short-range technology 

(on the order of one meter), requiring the radar to be placed almost directly over the 

minefield and infrared imaging can be hampered by dense vegetation cover. The United 

States Navy also operates a marine mammal program using dolphins, seals, and whales 

but they cannot operate in the surf and beach zone [Ref. 8]. 

2. New Technologies 

Because of the real danger buried or partially buried mines present to amphibious 

landing forces, the United States Navy is developing systems that can rapidly detect and 

classify the threat with low false alarm rates. In the Very Shallow Water (VSW) zone, 

Surf Zone (SZ), and Shore Zone (SZ) this process presents unique challenges, including 

low visibility, instability from sea state conditions, and the fact that mines could be 

buried. Some examples of systems the Navy is developing for this task include bottom- 
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crawler unmanned underwater vehicles (visual ID system), airborne detection systems 

(infrared and radar systems), and remote mine-hunting systems deployed from ships (a 

combination of sonar and visual ID systems). However, none of these possesses the 

ability to detect all types of mines in all conditions, especially ones that are buried [Ref. 

1]. 

Experiments conducted at the Applied Research Laboratories of the University of 

Texas at Austin (ARL:UT) and the Physics Department at the Naval Postgraduate School 

(NPS) have shown that it is possible to detect buried mines using seismic waves 

generated from a vibrational source. Building on work conducted at ARL:UT [Ref. 9], 

Fitzpatrick and Hall conducted simultaneous research demonstrating the feasibility of 

using electromagnetic vibration sources to generate seismic interface, or surface waves. 

These surface waves then scatter from buried objects and can be used to detect, range, 

and determine the target strength of such objects [Refs. 10,11]. Sheetz and Guy further 

developed the concept of the seismic sonar from individual sources and receivers to 

arrays, providing beam-forming features that maximizes energy along a predetermined 

axis and the possibility of mechanical or electronic steering of the beam axis. In the 

process, they developed a more compact and deployable system and evaluated several 

new electromagnetic sources that proved to be superior in performance [Refs. 12,13]. 

C.       RESEARCH OBJECTIVE AND SUMMARY 

Researchers are actively pursuing better methods to detect buried mines and 

combine them with metal detectors in order to reduce false alarm rates. More innovative 

methods include GPR, quadrapole resonance, developing mechanical "sniffers" that 

mimic dogs noses, and a combination seismic and radar apparatus [Ref 7]. It is our goal 

to add to the mine detection and classification arsenal. 

This thesis investigates detection and classification issues when dealing with 

seismic signals obtained during an on-going project held in the Physics Department at the 

Naval Postgraduate School. It represents a first step in the direction of automated 

detection and classification of mine-like signals obtained using a seismic approach.   We 



investigate a basic and computationally cheap detection scheme and three potential 

feature extraction schemes that could be used for classification purposes. 
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II.     SEISMIC SONAR APPARATUS 

The operation of the seismic sonar developed by several researchers here at the 

Naval Postgraduate School (NPS) Physics Department and the Applied Research 

Laboratories of the University of Texas at Austin (ARL:UT) hinges on several key 

features of seismic waves. The following section highlights the features of the waves that 

make them viable for buried land mine detection. A more detailed treatment of the 

physics behind the seismic sonar and waves is presented in [Refs. 9,10,11, 12,13]. 

A.       PHYSICS OF SEISMIC WAVES 

Of the many different types of seismic waves, two main types are of relevance to 

seismic sonar operation: body waves and surface waves. Only body waves propagate in 

an infinite, homogeneous, solid elastic, and isotropic medium whereas in an interface 

region between two different media, both body waves and surface waves exist. Body 

waves consist of P-waves (primary waves) and S-waves (secondary waves). P-waves are 

the longitudinal or compression waves and travel faster than S-waves, which are the 

transverse or shear waves. When body waves (P and S) encounter a solid or an interface 

of two mediums, they are partially converted into each other. The seismic sonar uses this 

mixed type surface wave created at the sand/air interface on the beach to detect mines. 

More specifically, it relies on properties of a specific type of surface wave called a 

Rayleigh wave, which will be introduced next. 

1.        Rayleigh Wave Properties 

Rayleigh waves occur at the interface between a semi-infinite elastic half-space 

and a gas, and have both vertical and horizontal particle motion in vertical plane oriented 

along the direction of propagation. The particles in the wave move in an elliptical 

trajectory that is retrograde (a rolling motion opposite to the direction of propagation) at 

the free surface.   Below a certain depth, depending on the frequency of the wave, the 



particle motion becomes pro-grade elliptical  (rolls in the  same direction  as  the 

propagation), as illustrated in Figure 2.1.    This elliptical particle motion exists because 

Retrograde Elliptical 
Particle Motion 

Direction of Wave 
ProDaeation 

Prograde Elliptical 
Particle Motion 

U 

Direction of Wave 
ProDaeation 

Figure 2.1.      Rayleigh wave particle motion. U and W are horizontal and vertical 
displacement. 

of a phase offset in the vertical and horizontal components of the particle motion. In the 

case of Rayleigh waves, vertical and radial waves are naturally 90 degrees out of phase 

which allows target detection using a technique called "vector polarization", as explained 

in a later section. The depth, h, at which the rotation shifts direction, is approximately 

0.1 XR, where ?iR is the Rayleigh wavelength [Ref. 14]. 

Figure 2.2 shows the dependence of particle motion on depth, illustrating it is 

localized to a layer of 2.0A,R. False returns will not be generated from the substrate or 

topography of the operating environment and will work just as well on the beach or in the 

SZ, as illustrated in Figure 2.3. Experiments conducted by Sheetz, Hall and Fitzpatrick 

as well as others, show that about 67% of the energy produced for a seismic source is 

found in the Rayleigh waves [Refs. 9,10, 11, 12, 13]. Thus, Rayleigh waves are ideal for 

seismic sonar applications due their confinement to the surface layer and unique 

polarization. 



Figure 2.2. The horizontal (U) and vertical (W, down) displacements for Rayleigh waves 
in a homogenous half-space. U vanishes at depth h. The path of the particles is elliptic 

retrograde for z<h and elliptic direct (prograde) for z>h. From [Ref. 15] 

-SEISMIC ENERGY PENETRATES SEDIMENT, 
TRAVELS NARROWLY CONFINED ALONG INTERFACES, 
DOES NOT RESPOND TO SURROUNDING BULK STRUCTURE 

SURFACE-BASED 
! SONAR TRANSCEIVER 

AMPHIBIOUS!':'":;;::.. 
SONAR TRANSCEIVEF 

Figure 2.3. Concept for seismic interface wave sonar. From [Ref. 9] 



2. Vector Polarization 

Vector polarization filtering has successfully been used in the past to extract 

Rayleigh waves from unwanted body waves (P and S) in a seismic recording because of 

the 90 degree phase offset exhibited between vertical and radial components, as discussed 

in the previous section. Note that a phase shift is not present in Body waves, which 

consist of purely in-phase components. Figure 2.4 shows the difference between the two 

types of waves and how a phase offset between the two components results in an 

imaginary component in the complex power for Rayleigh waves and not in P-waves. 

Typical Rayleigh Wave: 
complex^ 
velocity 

plane 

Im v Re 

COMPLEX 
POWER 

Typical P-wave noise signal: 
complex 
velocity 

plane 

z-velocity    — r-velocity 

Im 

Re 

COMPLEX 
POWER 

Figure 2.4. Principles of vector vs. scalar wave velocity and complex power relations. 
From [Ref. 9] 

This unique feature of Rayleigh waves will be used to extract target returns as explained 

in Chapter m, Section A.3. 

B.       EQUIPMENT AND FIELD ENVIRONMENT 

1.        Self-Contained, Deployable, Seismic Sonar System (SDS3) 

The current SDS3 research tool is shown in Figure 2.5 fully deployed on the 
beach.   It is self-contained and well suited to access beach environments.    Figure 2.6 
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shows the interior of the system which consisted of a data acquisition system (Signal 
Processing System's SPS390, a 16 bit, 0-4 kHz analyzer with 8 channels), amplifiers, and 

Figure 2.5. Self-contained, Deployable, Seismic Sonar System (SDS ) fully deployed on 
the Navy Beach, Monterey, California 

Driver signal amplifiers   Battery bank 
Data acquisition filters 

Driver signal generators 

Figure 2.6. Signal processing and amplification equipment inside the trailer 
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a battery bank. A Honda gasoline generator was used to power the equipment, except for 

the signal amplifier bank, powered by a bank of car batteries. 

The sources developed and tested by Sheetz, Guy, and Muir are shown in Figure 

2.7. They are audio base shakers used in car audio systems that are attached back-to- 

back on a 30.5 cm diameter wooden paddle board and excited by a 100 Hz, high current 

sinusoidal pulse. These shakers were buried in the sand about two inches below the 

surface, with approximately 35.6 cm or 14 inches (1/2 wavelength estimated for 100Hz at 

70 m/s) spacing between shakers. An array of seven shakers is shown in Figure 2.8. 

To receive the seismic signals, three-component watertight seismometers, from 

SENSOR Nederland products (SM-6 4.5 Hz model) were used, as shown in Figure 2.9. 

Inside each seismometer are three geophones, one each for the x, y, and z axis. A 

geophone is electro-mechanical device that generates a proportional electrical signal in 

response to the vibration of a seismic wave. The z axis forms the vertical component of 

the signal, while the x and y axis together form the radial component. Because of the 

experimental orientation of the geophones, the radial component is solely comprised of 

the signal from x-axis geophone, as described in Chapter m, Section A.3. If tilted any 

more than roughly zero degrees, the response of the geophone suffers severe attenuation, 

so special attention on the beach was made to ensure they were level. Again, these 

geophones were extensively tested and configured for use by Sheetz and Guy. 

mass 
(magnet) 
spring 

push-pull" force 

U 

Figure 2.7. Bass shakers used as seismic sources to generate Rayleigh waves. 
From [Ref. 12] 
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Figure 2.8. Seven seismic shaker array 

<r 3.75" (9.5 cm) > 

5" (6.4 cm) 

V 

Figure 2.9. Three-component 
seismometer 

2. Field Environment 

As previously mentioned, Sheetz and Guy conducted a series of experiments 

proving beam-forming features that maximizes energy along a predetermined axis can be 

obtained using an array of seismic sources. Their experimental work shows that indeed it 

does and also conforms with predicted values, with the results illustrated in Figure 2.10. 
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ehp= 7.6° = 5.3 ft at 20 ft (6.1m) range 

-— calculated 
— measured 
O   measurement points 

Angle from axis (degrees) 

Figure 2.10. Measured (vertical velocity component) and calculated beam pattern at 20 ft 

(6.1m) range for seven equally spaced, omni-directional elements, driven at uniform 

amplitude and phase. From [Ref. 12] 

The half power angle (-3 dB) of the beam occurs at 6.1 meters (20 ft) with a 

corresponding beam width of 1.6m (5.3 ft). The reach of energy extends further than 

previous attempts at applying seismic energy to detect mines, so this avenue appears very 

promising [Ref. 12]. 

Based on the previous research of Fitzpatrick, the propagating velocity of 

Rayleigh waves at 100 Hz was estimated to be 80 m/s. However, further experiments 

showed that this velocity may vary due to changes in tides, water tables and moisture 

content of the sand [Ref. 9]. Nevertheless, 80 m/s with an uncertainty value of +/-10 m/s 

still remains to be a good estimate. 

Sheetz  and  Guy  conducted research  on  background  noise  present  at  the 

experiment site using a velocity sensitive seismometer.   The results they obtained are 

illustrated in shown in Figure 2.11. The majority of noise is in the 5-20 Hz region, which 

is well below the source frequency of 100 Hz.   As a result, the background noise was 
14 



filtered out by passing the recordings through an analog bandpass with a passband of 30- 

300 Hz before digitization [Ref. 12]. 

3 0.8 

S)0.6 TO 

fl) 0.4 

I 0.2 
14 

ir 

%^... -1 L. 

0        20        40       60       80       100      120      140      160      180     200 
Frequency [Hz] 

Figure 2.11. Frequency content of background noise at experiment site. From [Ref. 12] 

3.        Targets and Data Collection 

The equipment was set up on the beach in what is referred to as a bi-static 

configuration, as shown in Figure 2.12. The seismic source array was composed of seven 

shakers separated by approximately a Vi wavelength, measuring 2.4 m (8 ft) in total 

length. By placing the five-seismometer array recording array off-axis, the strength of 

the direct-arrival blast from the source was somewhat mitigated, allowing the geophones 

to "relax" before the return wave arrival. Seismometer spacing was a Vi wavelength, 

creating a 1.8 m (6 ft) array. The angle between the orientation of the x-geophone and 

the axis connecting the seismometer and target is referred to as the "looking angle", 0. 

Each seismometer was aligned so that it had a zero degree looking angle so that the x- 

geophone pointed towards the target. 

Figure 2.13 shows some of the targets that were used. The largest, a Mk-63 mine 

shape, is an inert Mk-83 general purpose 1000 lb (actual weight 1061 lbs) steel bomb that 

houses mine fusing mechanisms, with dimensions of 2 meters in length and 35 cm in 

diameter. The second largest target is a hollow gas cylinder, with dimension of 1.32 

meters in length and 0.28 meters in diameter, and a weight of 147 lbs. A standard 3000 

psi, 80 cubic inch scuba tank was the third smallest target with dimensions of 0.71 meters 

in length, 0.216 meters in diameter, and a weight of 35 lbs. The M-19 is a square, non- 
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metallic, blast type anti-tank mine with dimensions 33 cm x 33 cm x 7.5 cm, weighing 20 

lbs (9.1 kg). 

Mk-63 Mine Shape 
• 2 m long, 35 cm diameter 
• 1061 lbs (481 kg) 

15 ft (4.6m) 

m 

Seismometer Array 
fc£ 

52° 

M-19Anti-TankMine 
• 33 cm x 33 cm 
• 20 lbs (9.1 kg) 

15 ft (4.6m) 

Source Array 

Figure 2.12 Bi-static experiment configuration 

M-19 
Anti-tank mine 

Mk-63 
Mine shape 

Figure 2.13. Sample Targets 
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All the targets were buried just so the top surface was even with the neighboring 

sand. In the bi-static configuration shown in Figure 2.12, the target is placed at a distance 

of 4.6 m (15 ft) from the sources, requiring that the seismic waves make a total roundtrip 

of 10.2 m (30 ft), significantly lowering the power of the received signal, as will be 

shown in an upcoming section. Each individual seismometer was recorded one at a time 

due to limitations imposed by the current data acquisition equipment. Before any targets 

were buried, a data set was recorded with no target present to get a baseline signal, which 

will be used to subtract out the direct blast and any noise. This concept, called "coherent 

subtraction" will be described in the following section. 

17 
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IE.    SIGNAL PREPARATION AND DETECTION 

This section focuses on the raw data processing and methods used for detection. 

Some methods considered for automatic detection included methods of evaluating the 

time-varying frequency content of the signal for harmonics, looking at the bandwidth, 

correlation techniques, or using the statistics of the signal, but those proved not to work 

reliably. The best method for automatic detection ended up being a simple combination 

of a short-term energy and zero-crossing detector. 

A.       DATA PREPARATION 

1. Array Processing 

The first step in signal processing was to use a simple array technique, adding the 

recorded time traces using MATLAB in the following manner: 

m 

v,(0=I>,n(0, (3-D 

where v,(t) is the total "beam formed" signal, vsn(t) is the signal from the n* seismometer, 

and m is the total number of seismometers. Array processing compacts 15 recorded 

signals (5 seismometers with 3 components each) into 3 x, y, and z components. This 

technique amplifies the on-axis signals that have the least seismic wave path difference 

and eliminates the off-axis signals, which have greater path differences leading to 

positive destructive interference [Ref. 12]. 

2. Coherent Subtraction 

Coherent subtraction is the subtraction of a recorded signal with no target from a 

recorded signal with a target, leaving only information about the target. In MATLAB, it 

can be calculated as: 

vI-/cs(0 = vl7r(0-vl7Wr(0.   i = x,y,z, (3.2) 
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where werft) is the coherent subtracted signal for each of the three components of the 

seismometer, vwrft) is the signal component when the target is present, and vwrft) is 

without a target. 

In an actual unknown environment, one would not have the ability to record a 

clean signal with no target with 100% certainty. However, more often than not a target 

will not be present. If one is present in the initial recording, performing coherent 

subtraction without moving the equipment would cause the target signal to be eliminated. 

Moving the array forward or backward in small increments would eliminate the 

cancellation and allow the target to be detected. 

3.        Vector Polarization Filtering 

The recordings from all five seismometers were combined into a single record 

consisting of an x, y, and z signal after array processing and coherent subtraction are 

performed. The first step in the vector polarization process is to form the radial and 

vertical components from x, y, and z signals recorded from the seismometer. The radial 

component is created from the x and y signals in the following manner: 

r(t,0) = x(t)cos(9) + y(Osin(0), (3.3) 
v(t) = z(t), 

where 9 is the looking angle as described in Chapter II, Section B.3. In our experimental 

setup, the seismometers are aligned so 9 is zero. Thus the radial component consists of 

the x component solely. 

The next step is to apply the Hubert transform to the radial and vertical 

components to produce a complex signal that contains phase information. The complex 

power is then computed by: 

Pr,v(t) = V;(t)xVv(t), (3.4) 

where Pr>v(t) is the complex power, Vm and Vv(t) are the Hubert transformed radial and 

vertical components, respectively and * denotes the complex conjugation operation. At 

this point, one can determine if any Rayleigh waves have been recorded. 
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The following example is illustrative of the process and will demonstrate how the 

Rayleigh waves show up in the imaginary part of the computed complex power. Assume 

the radial and vertical components, r(t) and v(t) are two sinusoidal signals with different 

phases: 

r(t) = AQ cos(2^v0r) 

v(0 = Ax COS(27TV0t + <j>). 

The following results are obtained for r(t) and v(t) if only the positive frequencies are 

used and the Hubert transform is applied,: 

ram*» (0 = V'W = 4> [cos(2;ny) + i sin(2;rvy)] 

v tmer, (0 = A«'2*"0'«" = A1e'(2*v+«>) = A, [cos(2;rvy + <j)) + ism(2xv0t + 0)J 

Now, the complex power, P^t) can be calculated as 

P = Ar,e~n,cv'f * A e'<-2'rv°'+'f> =z A A e'* 

Thus, the signal Pr,v(t) is a purely imaginary quantity due to a phase shift in between 

vertical and radial components. Note that the complex power is a purely real number 

when only body waves (P and S-waves) are present. Another characteristic of Pr,v(t) is 

the imaginary component of the complex power deflects positively or negatively for 

polarized signals according to the direction of rotation of the particle, prograde or 

retrograde. As a result, only the imaginary part of the complex power is plotted to 

determine if a target is present. 

The concept of vector polarization filtering is further illustrated with the 

following simulation. Two signals shown in the top plot Figure 3.1 represent the radial 

and vertical components of a simulated signal. They are in phase, with the exception of 

150 samples from index 151 to 301 when they shift 90 degrees out of phase. This is 

analogous to a real world situation where only body waves with no phase shift are 

recorded up to a point, after which Rayleigh waves are recorded. The ending of the phase 

shift at index 301 indicates the passing of the Rayleigh waves. The two lower plots in 

Figure 3.1 show the imaginary and real parts of the complex power. The plot of the 

imaginary part of the complex power confirms the induced phase shift between the 

simulated radial and vertical waves results non-zero values from time indices 151-300 
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and zero or close to zero values elsewhere when the waves are in phase. In this example, 

the particle rotation would be prograde because the imaginary complex power deflects 

positively, which is what one would expect from a returned surface wave. The plot of the 

real part of the complex power confirms that when a 90° phase shift exists, the real part is 

zero. In real-world signals, a mixture of body waves tend to be present throughout the 

duration signal, causing the real part of the complex power to have a level value. Thus, 

in the real part of the complex power for real-world signals there is differentiation 

between target and no-target and only the imaginary part is used. 

Time series. 

500 

500 

:50O 

Figure 3.1. Illustration of vector polarization processing to extract the complex power 
from two sinusoidal figures representing radial and vertical Rayleigh waves. 

Results of Coherent Subtraction and Vector Polarization 

The top two plots of Figure 3.2 show the radial and vertical components of 

particle velocity as a function of time with and without the Mk-63 mine shape which was 

buried at a range of 15 ft (4.6m) and the bottom trace shows the imaginary component of 
22 



the complex power. An incident wave that arrives directly from the seismic source array 

and lasts about 0.09 seconds is observed. It is present in all signals, imposing a 

"minimum range" for the seismic sonar. For Rayleigh waves with an estimated speed of 

75 m/s, this corresponds to a minimum range of approximately 13 ft (4m). 

Radial Component with and without Buried Target 

0.35 

0.35 

0.15 0.2 
Time (s) 

Figure 3.2. Target Data for Mk-63 Bomb before coherent subtraction 

Coherent subtraction is illustrated in Figure 3.3 using the M-19 anti-tank mine 

signal as an example. The imaginary complex power is plotted before coherent 

subtraction is performed and then after. As stated earlier, the radial and vertical 

components are coherently subtracted before the complex power is calculated. Sheetz 

calculated a 9 dB RMS signal to noise ratio (SNR) for the M-19 mine and a 21 dB RMS 

SNR for the Mk-63 bomb, a significant improvement numerically and visually in target 

detection [Ref. 12]. 
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maginary component of Complex Power before coherent subtraction 

0 500 1000 1500 2000 2500 3000 

Imaginary component of Complex Power after coherent subtraction 

500 1000 1500 2000 2500 3000 

Figure 3.3.      Mk-19 Anti-tank mine imaginary complex power before and after 
coherent subtraction is performed. 

B.       DETECTION 

Significant effort was put into developing a simple and computationally cheap 

routine that could automatically determine if a target was present in a given signal and 

extract the relevant section for further classification. Having this ability would greatly 

speed up the mine clearance process that the Navy desires to complete in a very rapid 

manner, as stated in the ORD [Ref. 5]. 

Several methods, including time-frequency content and harmonic resonance, 

higher order moments (kurtosis and skewness), and bandwidth determination of signals 

were investigated to extract a target signal from the imaginary complex power signal 

before coherent subtraction was performed. Some of these methods only worked on the 

largest of the signal while others did not work at all for an easily automated scheme. In 
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the end, it was determined that using a coherently subtracted signal was a viable option as 

it has merit for future development and implementation in a practical system. Using the 

coherent subtracted signal allowed a very basic and efficient scheme to be implemented, 

as discussed below. 

1.        Short-term Energy and Zero-crossing Rate Detector 

Note that a target signal is easy to see visually on a plot after performing array 

processing, coherence subtraction, and vector polarization filtering. A computationally 

cheap and fast scheme had to be developed to first determine if a target was present and 

then to extract it for classification. All targets signals exhibit some similar properties in 

the time traces that can be taken advantage of: 1) when a target is present, the majority of 

energy in the signal is contained in the portion where target return is present, 2) when no 

target is present, the signal is noise-like and fluctuates rapidly around zero. Short-term 

energy and zero-crossing rates of the signal are calculated and plotted to differentiate 

between target/no-target signals. The short-term energy routine amplifies the portion of 

the signal were energy is present and decreases the lower, noise like levels. The zero- 

crossing rate routine is complimentary to the short-term energy, exaggerating the noise- 

like parts of the signal and forcing higher energy portions to zero. 

The short-term energy and zero-crossing routines in MATLAB both have user 

specified window frame lengths and overlap percentages. The short-term energy is 

calculated in the portion of the signal covered by the frame by summing the squares of 

each sample. The zero-crossing rate is a measure of how many times the signal changes 

signs in the portion of the signal covered by the current frame. Successive frames 

overlap by the percentage specified by the user. Values for window length and 

percentage overlap used (25 samples and 50% overlap) were determined by trial and 

error to give the best generic results for all classes of signals. (See Appendix A for code) 

Figure 3.4 illustrates the detection and extraction process using short-term energy 

and zero-crossing calculations. The mean of the signal is not removed prior to the 

detection algorithm because the no-target portion of the signal is naturally close to zero- 

mean, allowing the zero-crossing algorithm to emphasize the noise-like fluctuation 
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around zero. If a bias was introduced into the system from equipment or an external 

source, it would have to be removed, but this condition did not exist in our experiments. 

A combination of two threshold detectors was used to detect the beginning of the target 

return signal. A value above the specified threshold for the short-term energy combined 

with 25 successive zero-crossing values that were zero indicated that a target signal was 

present. The beginning time index was saved and the ending time index was sought, 

indicated by the short-term energy falling below a specified threshold and zero-crossing 

rates increasing above zero. The starting and ending time indices are used to extract the 

portion of the imaginary complex power signal that contains the target. The threshold 

value and the number of zero-crossing samples to average together were determined by 

trial and error until the detection algorithm was able to pull out the target signal. 

Complex Power Data 
Input 

(After Coherence 
subtraction performed) 

Calculate short term energy 
and zero crossing rate 

(window length: 25 samples 
overlap: 50%) 

NO 

Set start point to 
index after 
Incident wave 

FIND STARTING TIME INDEX 

YES 

FIND ENDING TIME INDEX 

Target signal beginning 
found, decrement starting time 
index by 10 to ensure total signal 
included and begin looking for 
ending 

Target not 
Found 

Increase index 
by one 

Target beginning not found, 
increment start point by one Target end found, extract >^ 

complex power using starting j 
and ending time indices        J 

Figure 3.4. Flow chart for short-term energy and zero-crossing rate detector 
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2.        Results/Extracted Target Signals 

The extracted signals are shown in Figure 3.5 with multiple trials for each target 

type. The short-term energy and zero-crossing rate detector was able to correctly identify 

and extract targets signals from the imaginary coherent subtracted complex power signals 

and reject signals recorded without a target. Experiments conducted using a concrete 

man-made rock-like object found on the Navy Beach in Monterey were an exception to 

the 100% detection rate of the algorithm. Of the three recordings conducted using the 

rock as a target, only one was identified as a potential target using the automatic detection 

algorithm presented in this chapter. 

From a visual inspection, all of the signals seem to have a unique shape and 

reasonably similar results for multiple trials. One trial of the gas cylinder seems to be 

significantly different than the other two and could possibly be an outlier or exception to 

the normal response generated from that type of target. The anti-tank mine and the scuba 

tank appear similar but are slightly time delayed, thus any feature extraction method 

would have to be time-invariant. 

C.       FAILED METHODS 

1.        Bandwidth Determination 

After performing array processing, several observations regarding the behavior of 

the signals were made. All signals are low frequency due to the nature of the seismic 

wave and the source generating them. From visual inspections of the power spectral 

densities of the signals, target signals appeared to be narrowband compared to no-target 

signals, which are more wideband in nature as shown in Figure 3.6. Using a narrowband 

or wideband signal discriminator to detect a signal for sonar applications has been 

proposed and used before with success in an expert classifier system [Ref. 16]. An 

automatic target detection algorithm that would discriminate between wideband and 

narrowband signals was implemented by calculating the ratio of power contained in the 

first 50 Hz of the signal of compared to the overall signal.    For the largest target, the 
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MK-63 mine shape, close to 95% of the energy lie in this region, indicating a narrow 

band target signal was present. Unfortunately, similar results were not obtained with the 

remainder of the targets, with only approximately 50% of the power residing in this 

region, making detection at best a 50% guess at best. 

M-19Anti-TankMine 

0 005       0;01       0:015      :0;02       0:025      0.03       0.035       004       0.045       0.05 
Scuba Tank 

0.02 0.03 0.04 
Time, seconds 

0.05 

0:08 

0.09 

0:07 

0:06 

Figure 3.5. Extracted target signals from imaginary complex power data for multiple 
trials. 
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No TargetPower Spectrum 

50 100 

Anti-tank Power Spectrum 

Figure 3.6. Frequency spectrum of a no-target, anti-tank, and large bomb signal used in a 
bandwidth determination detection scheme. 

2.        Spectrogams and Harmonic Correlation 

After the initial signal processing, the spectrogram, or time-varying frequency 

content of the imaginary complex power was calculated and plotted, as shown in the top 

plot of Figure 3.7. The incident wave clearly shows up as the presence of energy in a 

large portion of the frequencies, along with what appeared to be harmonics due to the 

triangular-like shape of the outgoing pulse. When a target was present it appeared that 

harmonics were being reflected off the object and recorded. A detection scheme was 

implemented to measure the amount of correlation between the outgoing harmonics and 

what was returned. If there was a high amount of correlation, this could be interpreted as 

an indication of the presence of a target. The correlation was normalized by 
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Figure 3.7. Spectrograms of imaginary complex power, time series of data, and 
correlation between outgoing harmonic reference and recorded data. 

the energy contained in the reference signal and the test signal to ensure that only the 

similarity between harmonics was being measured. When these quantities were 

calculated and plotted, as shown in the bottom plots of Figure 3.7, no meaningful results 

were obtained. The amplitude of the correlation between the reference harmonic signal, 

taken from the outgoing wave and the remaining data from the spectrogram, does not 

vary significantly from one. This indicates the presence of target is not dependent on 

returned harmonics, but the magnitude of the energy returned. A possibility also exists 

that the harmonics are an artificiality of the windowing used in processing the data. For 

these reasons, harmonic correlation of spectrogram data was ruled out as a viable method 

for automatic detection. 

3. Kurtosis and Skewness 

Based on an article that successfully used higher-order statistics to detect the 

onset of P and S waves in seismic events by looking at the short time kurtosis and 

skewness of a signal [Ref. 17], a similar method was implemented using a short-term 

kurtosis and skewness measurements of the imaginary part of the complex power. The 

signal was windowed in small segments, calculating the two higher-order statistics of 
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interests, then moving the window over the signal allowing for overlap.   Any large 

change in the kurtosis and skewness would indicate a change in the distribution of the 

15 
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Figure 3.8. Kurtosis and Skewness measurements for multiple trials of a large bomb and 
no target. 

data. Unfortunately, as the results in Figure 3.8 show, the data does not have enough of a 

change in distribution from a target and no-target portion of the signal to be of use in an 

automatic detection scheme. 
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IV.    FEATURE EXTRACTION AND CLASSIFICATION 

In the classification problem, there are three basic steps: low-dimensional signal 

characterization (data projection), feature extraction and optimization, and construction 

of classifier topologies [Ref. 18]. The techniques presented in Chapter HI can be thought 

of as a form of data projection, using array processing, coherent subtraction and vector 

polarization to enhance the signals and make features easier to extract. This section 

deals with the last two steps in signal classification, feature extraction and classifiers. 

Feature extraction and classification of signals is a thoroughly developed area of 

modern signal processing with an abundance of literature on the topic, but methods that 

have been applied directly to seismic data of the nature presented in this paper have not 

been fully explored. This section discusses general methods of classification, past 

methods used, and the steps involved in developing an automatic classification system, 

focusing on feature extraction. Three methods of extracting features of signals are 

presented, followed by a basic description of how these features would be used in a 

computationally simple classification scheme. 

A.       CLASSIFICATION METHODS 

1.        Feature Extraction 

The goal of feature extraction is to extract information about each class of signal 

that is capable of discriminating it from other classes of data. A key attribute of the 

signal is computed and collected in a vector format, which can be considered as a type of 

data compression that removes irrelevant information and preserves the relevant 

information. Good features would include the following attributes: 

1. large interclass mean and distance and small intraclass variance, 

2. insensitivity to extraneous variables (low SNR dependency), 

3. computationally inexpensive to measure, 

4. uncorrelated with other features, 
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5. mathematically definable, and 

6. explainable in physical terms [Ref. 18]. 

In addition, some more mathematical properties have been proposed for desired feature 

attributes that include: 1) invariance to time-shifts, 2) invariance to time-scalings due to 

different propagation speeds in the medium, 3) insensitivity to multiple reflections, and 4) 

insensitivity to additive noise [Ref. 19]. 

Common feature extraction methods include the Fourier Spectrum, Fourier- 

Mellin transform, cepstrum, bispectrum, discrete wavelet transform, pole estimation, 

histogram estimation, and time samples [Ref. 19]. A feature can be time-domain raw 

data, but it is not desirable because of a lack of data reduction, sensitivity to noise and 

other interference, and an exponential increase in data required for training as a function 

of the feature dimension [Ref. 18]. A large majority of these methods were investigated 

for the signals presented in this thesis, but did not exhibit any unique characteristics 

between classes. 

The effectiveness of a feature set is determined by how well different classes can 

be separated. Given a statistically significant number of trials (usually more than 20), 

decision boundaries that separate the features are established, allowing decisions to be 

made with respect to class membership. These boundaries are determined by the 

probability distributions of the patterns belonging to each class, which must be specified 

or learned [Ref. 20]. In this thesis, the patterns and decision boundaries are not known 

and will have to be learned from experimental data. 

2.        General Classification and Pattern Recognition Methods 

Classification architectures used in the mine detection problem fall into several 

main categories: hypothesis testing, pattern recognition, and Hidden Markov Models 

(HMM). Most of the data evaluated using these methods is obtained from sources, such 

as Ground Penetrating Radar (GPR) or various types of imagery which have a much 

wider bandwidth and contain more information in the signal available for feature 

34 



extraction as compared to the very low frequency, low bandwidth seismic signal 

investigated in this thesis [Ref. 19]. 

Hypothesis testing involves comparing the ä-posterior probabilities so that if one 

is given a measurement, and two classes to decide on, Ci and C2, the goal is to define the 

decision statistic so that 

y e c, if p{ci I y) > p{cj I y), i * j. (4.1) 

The ä-posterior probabilities in eq (4.1) are usually difficult to calculate, so the Bayes 

theorem is used to to rewrite the ä-posterior probability as: 

Pfr,ly)-*J"'')f(e'). (4.2) 
p(y) 

Replacing eq (4.2) in (4.1) leads to: 

P(yic,.)>£(c1)=r (43) 

p(yic2)   p(c,) 

This method of classification can be computationally intensive and will not be the 

preferred method in the approach of this thesis. 

Pattern recognition classifiers are usually separated into two different types: 

conventional and artificial neural networks. Conventional methods include Multivariate 

Gaussian (MVG), Gaussian Mixture Models (GMM), k-nearest neighbor (KNN), 

Learning Vector Quantizer (LVQ), and Binary and Polynomial Tree Classifiers 

(BTC/PTC). Artificial Neural Networks include Probabalistic Neural Networks (PNN), 

Back Propagation Network (BPN), and discriminant Neural Networks (DNN) [Ref. 18]. 

Hidden Markov Models (HMMs) are a very powerful technique that models the 

temporal structure of variability of a signal. The HMM theory is based on the Markov 

Chain, a probabilistic description of transitions between a system's states [Ref. 18]. This 

method has been very successful in such fields as speech processing, human face 

identification, optical character recognition, and DNA modeling [Ref. 21]. Conceptually, 

35 



they are very hard to analyze, require a significant amount of data for training, and are 

computationally expensive. 

In earlier work, Zambartas applied HMMs and neural networks to the seismic- 

sonar classification problem from data generated by a different, but very similar method 

to one presented in this thesis [Ref. 21]. No consistent features were found from the 

data provided, so time-domain information was used directly on a very limited data set. 

Back-propagation feed-forward neural networks (BPNN) were also implemented and 

tested on the data. Both classifiers performed at a 97% classification rate. 

Gaussian Mixture Models (GMM) were selected as the next category of classifier 

to investigate due to their computational simplicity and widespread and proven use to 

classify land mines using other types of data. The mechanics of GMMs are explained in 

Section C of this chapter, but the key concept of GMMs relies on features that map to 

separate and distinguishable areas in a multi-dimensional space. 

B.        EVALUATED FEATURE EXTRACTION METHODS 

When evaluating the results of different feature extraction methods, it is important 

to confirm that what is being observed is an actual feature of the class and not a random 

occurrence. A large number of trials under the same experimental conditions that yields 

similar features will ensure this. The data available from experiments conducted by 

Sheetz and Guy [Refs. 12, 13], and aided by the author, yielded only two to three trials 

per class, making statistically significant observations about features and feature 

clustering difficult. The following section describes several feature extraction methods 

evaluated which appear to yield similar features for the very limited number of trials 

available for testing. In order to verify the validity of these feature extraction methods, 

many more trials, on the order of 20 or more, should be used to see if similar results are 

obtained. 
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1.        Higher Order Moments 

The central moment of order k of a distribution is defined as 

mn=E(x-ßf (4.4) 

where E(x) is the expected value of x. The first central moment is zero and the second 

central moment is the variance, or power, of the signal. These moments are most 

commonly used to summarize the probability density function (pdf) of a random variable. 

Under certain conditions, a pdf is can be completely specified if all the expected powers 

of x, or the moments, are known [Ref. 22]. 

Other parameters are available to characterize the pdf of a variable, such as the 

kurtosis and skewness. The kurtosis is a measure of how outlier-prone a distribution is 

and is defined as 

k=SkzlLt (4.5) 
<J 

where ju is the mean of x, a is the standard deviation of x, and E(t) represents the 

expected value of the quantity t. The kurtosis of the normal distribution is 3. Distributions 

that are more outlier-prone than the normal distribution have kurtosis greater than 3; 

distributions that are less outlier-prone have kurtosis less than 3.   The skewness is a 

measure of the degree of asymmetry of the pdf about its mean and is defined as 

E(X-U) ,. ,N y=   v   , ' ■ (4.6) 

It can be shown that the skewness is zero when the pdf is symmetric about its mean [Ref. 

22]. Calculating higher order moments, to include the kurtosis and skewness, reduces the 

input data into a significantly smaller number of data points that could be used as features 

if the distribution of the data is different for each class. 

The detection algorithm developed in Chapter II does not extract signals of equal 

length, as it makes no assumptions about the duration of a return signal. Longer signals 

will contain more energy because there are more data points, so signals from the same 

class could vary based solely on their lengths. As a result, the signals were limited to the 
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shortest signal in all of the classes to avoid this situation. The mean of the signals was 

removed and the signals were normalized to contain unit energy before computing higher 

order moments. 

The higher order moments were plotted in various arrangements to see what 

produced the best clustering for the classes. The best results are shown in Figures 4.1, 

4.2, and 4.3. Although there are only two to three trials per class of target, it would 

appear that this feature extraction method may hold promise for use in a classifier. The 

observed clusters for each class seem to demonstrate the desired property of large 

interclass means and distances and small intraclass variances. Additionally, the time 

invariance property is satisfied as the pdf, which the higher order moments represent in 

some sense, is not effect by a time shift in a signal. The anti-tank and scuba tank clusters 

seem to be the closest to each other with a possibility of some overlap. The scuba tank 

has one outlier that is extremely different from the other two trials and maybe an 

exception to the norm for this case. More trials are needed for each class to see if the 

clustering trend based on higher order moments continues. 
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Figure 4.1. Clustering of features based on the third, fourth, and fifth moment. 
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Third Moment vs Fifth Moment vs Kurtosis, signals normalized to unit energy 
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Figure 4.2. Clustering of features based on the third moment, fifth moment, and 
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2.        Impulse Response Modeling Using STMCB Iteration 

Many methods have been studied for modeling data as an impulse response of a 

filter, the most well known being AR, ARMA, and Prony's method [Ref. 23]. If the 

impulse response of a filter sufficiently represents a signal, then the poles and zeros of the 

filter could be used as features in a classifier if they cluster for each class. Several 

different methods were evaluated in an attempt to model the target signals as an impulse 

response. The best results were obtained by using the Steiglitz-McBride (STMCB) 

method of iterative prefiltering approach to direct modeling of the data, which is 

available as a MATLAB function stmcb.m. Given an impulse response, x, and specifying 

the number of number of poles, P, zeros, Q, and maximum number of iterations, stmcb.m 

finds the coefficients of the system B(z)/A(z). For example, if P = 2 and Q = 1, then 

The block diagram for iterative prefiltering is shown in Figure 4.4. The iterative 

B(z)=      b.+b.z-1 

A{z)    l + axz~l +a2z~2' 
error function is given by 

(4.7) 

£<«) (Z) = X(z)Aii+1)(z)-B'i+1\z) 
Aa)(z) 

(4.8) 

where the superscripts (i) and (i+1) denoted the values of the functions at the 1th and 

(i+1) iterations. The A and B terms are chosen to minimize the corresponding sum of 

squared errors at each iteration. For a more in depth analysis of the Steiglitz-McBride 

method, please consult [Ref. 23]. 

x[n] 
H/)(z) = l/A(i)(z) 

x(i)[n] \(i+D (Z) 

S[n] 
HA

(i)(z) 
(i) hA
{V[n] l(i+D &"»(Z) 

+ ± „(<+'-> e{l+1,[n] 

Figure 4.4. Block diagram for iterative prefiltering. From [Ref. 23]. 
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As illustrated in Figure 4.5, the STMCB iterative method does a reasonably good 

job in estimating the signal by modeling it as the impulse response of a filter. Figure 4.6 

shows the pole-zero plot for all classes of targets using 6 zeros, 4 poles, and 8 iterations. 

The order for the transfer function was determined simply by trial and error, yielding 

poles in locations distinguishable by class. Using a larger number of zeros than poles, or 

a higher order numerator than the denominator, forces the poles to fall in a very small 

region all on top of each other. Therefore, the poles cannot be used as features. Again, if 

more trials were available, it would appear as if the zeros of the transfer function filter 

could be used as features. 

-4 
-4 

Impulse Response Model of Signals using 6 zeros and 4 poles for each target class 

o    Gas Cylinder 

o    Anti-tank 

Scuba Tank 

o    Large Bomb 

i    o    Rock 

<? 
o 
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% 

Figure 4.6. Poles and zeros of impulse response modeling using STMCB iteration with 6 
zeros and 4 poles. 

3.        Radial Basis Function Modeling of Data 

A Radial Basis Function Network (RBFN) is a linear model for a function, t(x) in 

the form: 

/(*) = £«,■&(*). (4.9) 
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where at is a weight and gt(x) is the basis function. A radial function is defined as having 

a response decreasing or increasing monotonically with the distance from a central point. 

The most common radial basis function used is the normal or Gaussian function: 

g(x) = —Lre  lal   . (4.10) 

Representing a function with a radial basis function allows for exact interpolation of a 

data set, requiring every input vector to be mapped exactly into a specific target vector. 

Applying this approach to the target data sets, the input vector corresponds to the time 

index and the target vector corresponds to the signal vector extracted from the automatic 

detection algorithm presented in Chapter IE. The signals are then represented as a 

weighted sum of gaussian shaped pulses and the means, standard deviations, and weights 

can then be evaluated to see if they are unique for each class and suitable for use as 

features in a classifier. 

Several methods are available to automatically model the signal as a sum of 

weighted guassians. The MATLAB function 'newrb.m' automatically designs a RBFN 

that approximates the given function, but the user must specify the width of the 

Gaussians used to represent the signal. Widths could be experimentally determined for 

feature analysis with prior knowledge of the class, but this is not suitable for a field 

environment where the class of target is not known. The algorithm that fits the Gaussian 

functions to the target signal should be able to make a best fit to the input signal with no 

knowledge of the class type. 

A NETLAB MATLAB toolbox available on the Internet provides such algorithms 

[Ref. 24]. The software provided in NETLAB performs simple regression using a radial 

basis function network. The user supplies the input data, the target data, and the number 

of gaussians used to approximate the target data. The toolbox designs a RBFN using a 

Gaussian Mixture Model (GMM) trained with the Expectation Maximization (EM) 

algorithm to find the centers (//,■) of the pulses. The GMM and EM algorithms will be 

explained in the following section. After the centers are found, the standard deviation or 
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widths of each gaussian is set to be the average of the distances between the centers times 

a user specified scale. 

Now the problem is reduced to a simple design matrix: 

liN. 

*l(*,) <*V(*i) 

*Ä)    •••    ®MM 

Wfl 

w. iN 

;   i = l,...,K       (4.11) 

T = OW, 

where T is the target matrix, 0 is the gaussian radial basis function network defined by 

4.10, the means and variances found by the GMM and the input, and W are the weights. 

The next step is to find the weights of each Gaussian, which is accomplished by using the 

pseudo-inverse of the design matrix: 

W = (Or0>)-1«DrT. (4.12) 

The specific functions used from the NETLAB MATLAB code to generate the results are 

rbf.m, rbftrain.m, and rbffwd.m and are included in Appendix A. For more information 

on their operation, please consult [Ref. 24]. 

Figures 4.7 and 4.9 show the results when 15 Gaussians are used to represent the 

data with a scale factor of 0.3. The reconstructed signals are very close approximations 

to the original data, as shown in Figure 4.7. Figure 4.9 shows a plot of the features that 

were evaluated to have the best clustering effect that could be used as features. As a 

reminder only two trials were available per class, so this is only an initial effort at 

establishing these parameters as features. The centers were spread evenly over the input 

range for all classes so they did not contain any information that could help distinguish 

between classes. 

By plotting the weights of the Gaussian pulses against the width of the pulses 

determined by the algorithm, it appears as if the 5 classes available have distinct features. 

The EM algorithm is not guaranteed to converge to the same point every time it is run 

because of two points: 1) it depends on the initial conditions selected, which are normal 

random variables in the NETLAB algorithm, and 2) the algorithm converges to a local 

maximum, not a global maximum with no guarantee that there is more than one local 
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maximum [Ref. 25]. Twenty trials of the EM algorithm were run and plotted in all the 

clustering plots (Figures 4.8, 4.10, 4.12) to ensure that the results would be in a 

reasonable distance from each other and remain separable from other classes. 

Similar results were obtained using 8 and 9 gaussians to represent the data. With 

a smaller number of gaussians the original data sequence is not modeled as well as with 

15, as seen in Figures 4.9 and 4.11, but sufficiently enough to exhibit the same clustering 

as seen with 15 neurons. A smaller number of features is more desirable to reduce 

processing time and computations, but again with only two trials per class, quantitative 

measurements about the optimal number of gaussians to use for feature extraction cannot 

be made. 
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Figure 4.7. RBFN approximation of target signal using 15 hidden layers and a 
spread actor of 0.3. 
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One trial of the gas cylinder is notably different, both in the time domain and in the 

feature plot. Most likely this trial was an aberration and the associated features for this 

trial can be considered an outlier, as indicated in Figures 4.8,4.10, and 4.12. When 

training a classifier, this trial can be ignored or pruned away to prevent incorrect results. 

The two trials for the scuba tank do not yield results that cluster in the same 

manner as the other classes do. Again, one of the signals could be an outlier and could be 

eventually disregarded during classifier training if more trials were available. Even 

though the time series for the two trials of the scuba tank look similar, a larger and longer 

delayed second bump in one signal forces the RBFN algorithm to assign a higher spread 

to the signal. 

25 30 
standard deviation 

Figure 4.8. Weights vs widths of 20 trials per signal using an RBFN network generated 
by GMMs and the EM algorithm, 15 basis functions, spread scale =0.3. 
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Figure 4.9. RBFN approximation of target signal using 9 hidden layers and a spread 
factor = 0.3. 
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Figure 4.12. Weights vs widths of 20 trials per signal using an RBFN network generated 
by GMMs and the EM algorithm, 8 basis functions, spread scale = 0.12. 
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C.       GAUSSIAN MIXTURE MODELS 

When features have been identified and evaluated for clustering, the next step is 

to train a classifier using the extracted feature data. The ultimate goal is to use a trained 

classifier to statistically determine class membership with a high degree of confidence. A 

Gaussian Mixture Model (GMM) is one type of classifier that uses a weighted sum of 

Gaussian distributions to represent the feature vector distribution extracted from the 

target signal. The process was used in the NETLAB software to modeled signals as a 

sum of weighted Gaussians. It has been used extensively in classifying minelike targets 

using GPR data, speaker verification, and many other applications [Refs. 26,27]. 

The GMM is defined as 

M 

^IQ) = £fl,p,w(xlCJ,), (4.13) 

were a, is the mixture weight, M is the number of components and 

p\K){x\CK) = N{mf)Xf)). (4.14) 

The weights vector a,, mean vector m[k), and the covariance matrix 2)w are unknown and 

have to estimated. Sometimes the number of components, M, is known or can be 

assumed. The goal of the EM algorithm, which will be briefly explained in the next 

section, is to estimate these parameters that are not directly accessible to the user from the 

data. After the parameters are learned, unlabeled data can be compared against the GMM 

for each class and a class determination can be made. 

1.        Expectation-Maximization Algorithm 

The pdf of the complete data set, v, is specified as py(y; 9), where 6 is an unknown 

parameter vector. The samples v cannot be directly observed though. What is observed 

are the samples x = g(y), with a corresponding pdf px(x;8). This leads to the pdf of the 

incomplete data: 

49 



px(x;0)= jpy(T,$)dy. (4.15) 
Y(x) 

The maximum likelihood estimate of 6 is given by 

-      ~d\n(Py(yk;e)) 
0ML ■ Z ^ = °- (4-16) 

However, all the y's are not available, so the EM algorithm maximizes the expectation of 

the log-likelihood function, conditioned on the observed samples and the current iteration 

estimate of 0.  The two steps are: 

- The Expectation step (E-step): At the (t+l)th step of the iteration, where 6(t) is 

available, compute the expected value of 

Q(0;e(t)) = E (4.17) J^ln(py(yk;$\X;e(t))) 
_ k 

- The Maximization step (M-step): Compute the next (t+l)th estimate of 6 by 

maximizing Q(&,6(t)): 

«+.)» = 0. (4.18) 
off 

An initial 6(t) is chosen and the E-step and M-step are performed successively until the 

algorithm converges. Convergence can be when parameters stop changing or when 

\\0(t + l)-e(t)\\<e (4.19) 

for some small £ and an appropriate distance measure. For a more detailed description of 

the EM algorithm, consult [Ref. 25]. 

Upon convergence of the EM algorithm, the features can be represented by a 

GMM, unique for each class. If enough trials had been available, the algorithm would 

have been applied to the feature data extracted from the target signals and would look 

similar to the visual representation as shown in Figure 4.13, where each cluster is 

represented a prior probability, mean (center of the cluster) and a covariance matrix 

representing the major and minor axis of the cluster. 
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Figure 4.13. Hypothetical GMM used to represent features for 5 different classes. 

2.        Classification Step 

After the classifier is trained, it can be used to identify unlabeled data. The 

decision rule for a classifier is a maximum-likelihood classifier which can be simplified 

down to 

C = arg max]T logpCx, I Ac), 
l<c<C 

(4.20) 

where p(xt\Ac) is the gaussian distribution given in eq (4.14), specified by the parameters 

given Xc for each class, xt are the observed features from unlabeled data [Ref. 27]. A 

block diagram of a possible mine classification system using GMMs is given in Figure 

4.14. 
Reference Mines 

Mine 1 
Select 
Max 

/ ̂             i 

/ Identified 
xi x2 x3                V. Mine 

(Input Features) ^ Mine 2 

Figure 4.14. Mine Identification system. [Ref. 27] 
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The classifier compares the input feature vectors against the feature vectors for each class 

that has the maximum probability. The computations are straightforward and easily 

implemented because of the nature of the Gaussian distribution. 
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V.      CONCLUSIONS AND RECOMMENDATIONS 

A.       CONCLUSIONS 

This study presented a brief summary of the naval and land mine problem and 

some of the unique challenges they pose to naval forces trying to affect an expeditious 

and safe amphibious landing. One possible solution to the problem of mine clearance on 

the beach has been investigated by faculty in the physics department at the Naval 

Postgraduate School. The goal of this thesis to develop an automatic detection and 

classification algorithm that could run without the use of an expert operator. Many 

possible schemes were investigated, but the most simple and direct method proved to be 

the most successful. The short-term and zero-crossing rate detector algorithm developed 

correctly determined that a target signal was present and extracted the target portion of 

the signal for all man-made targets. Experiments conducted on a rock that is naturally 

found at the beach yielded only one signal identified as containing a target, showing 

potential for the apparatus used to acquire the signal and associated detection algorithms 

to be able to differentiate between man-made and natural features. The automatic 

detection algorithm needs to be tested on more data sets to gather quantitative data on its' 

success rate. 

Various feature extraction methods were evaluated given the target signals 

extracted from the automatic detection algorithm. Three possible feature sets were 

identified out of a number of evaluated methods. The higher order moments, including 

the third, fourth, and fifth moment and the kurtosis and skewness show potential for 

interclass distinction. Modeling the target signals as the impulse response of a filter with 

poles and zeros determined by the Steiglitz-McBride iteration reconstructed the data 

signal and yielded zeros that might continue to show clustering between classes given 

more trials to evaluate. The third feature extraction method presented a GMM that 

represented the data as a sum of weighted Gaussian pulses and then used the weights and 

variances of the Gaussians as features. 
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B.       RECOMMENDATIONS 

A lot of signals that were collected during this experimental phase had to be 

discarded because they were collected using different seismic sources or recorded in a 

manner that was different from what was presented in this thesis. As a result more trials 

using the same experimental setup and targets need to be obtained to confirm the validity 

of the automatic detection algorithm and the evaluated feature extraction methods. 

In addition, significant room for improvement and further experimentation exist. 

For example, it would be very useful to compare the response of a target upon initial 

burying and after several hours or up to a day of settling in the beach zone to determine 

the dependence on target burial time and a reasonably consistent target signal and 

features. 
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APPENDIX A. MATLAB PROGRAMS (FOR FUNCTIONS 
CALLED FROM NETLAB TOOLBOX CODE, SEE [REF. 24] FOR 

CODE) 
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APPENDIX Al. COMPUTATION OF THE COMPLEX 
POWER FROM RAW SIGNALS 

% Name : rw_detect.m % 
% July 11th 2000 by Jeremie Guy, intern % 
% Modified 30 Aug 2000 LT Craig A Wilgenbusch 
% using of the Vector Polarization Filtering methode in the detection 
of Rayleigh % 
% Waves % 

clear all 
cd s:\17NovData 
for k=l:5 

load (strcat('cntl5',num2str(k),'a.mat')); 
load (strcat('cntl5',num2str(k),'b.mat')); 

end 

%Add signals from individual seismometers in array processing format 
%Trial a 
cnta_rad=cntl51a(:,l)+cntl52a(: ,1) 

cntl53a(:,l)+cntl54a(:,1)+cntl55a(:,1); 
cnta_ver=cntl51a(:,3)+cntl52a(:, 3) 

cntl53a(:,3)+cntl54a(:,3)+cntl55a(:,3); 

%Trial b 
cntb_rad=cntl51b(:,1)+cntl52b(:,1) 

cntl53b(:,l)+cntl54b(:,l)+cntl55b(:,1); 
cntb_ver=cntl51b(:,3)+cntl52b(:,3) 

cntl53b(:,3)+cntl54b(:,3)+cntl55b(:,3); 

%Trial c 
cntc_rad=cntl51c(:,1)+cntl52c(:, 1) 

cntl53c(:,1)+cntl54c(:,1)+cntl55c(:,1); 
cntc_ver=cntl51c(:,3)+cntl52c(:,3) 

cntl53c(:,3)+cntl54c(:,3)+cntl55c(:,3); 

%Trial a 
%Hilbert transform of the radial component of the signal% 
radialh_a=hilbert(cnta_rad); 
%Hilbert transform of the vertical component of the signal% 
verticalh_a=hilbert(cnta_ver); 
%Compute complex power 
Cpower_nt_a=conj(radialh_a).*verticalh_a; 

%Trial b 
radialh_b=hilbert(cntb_rad); 
verticalh_b=hilbert(cntb_ver); 
Cpower_nt_b=conj(radialh_b).*verticalh_b; 

%Trial c 
radialh_c=hilbert(cntc_rad); 
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verticalh_c=hilbert(cntc_ver); 
Cpower_nt_c=conj(radialh_c).*verticalh_c; 

%%%%%%%% Data with Target %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cd s:\130ctData 
for k=l:5 

load (strcat( 
load (strcat( 
load (strcat( 

end 

cwtl5',num2str(k) 
cwtl5',num2str(k) 
cwt!5',num2str(k) 

,'a.mat')) 
,'b.mat')) 
,'c.mat')) 

%Add signals from individual seismometers in array processing format 

%Trial a 
cwta_rad=cwtl51a(:,l)+cwtl52a(: 

+cwtl54a(:,l)+cwtl55a(: ,1) ; 
cwta_ver=cwtl51a(:,3)+cwtl52a(: 

+cwtl54a(:,3)+cwtl55a(:,3); 

,1) 

,3) 

+cwtl53a(: 

+cwtl53a(: 

,1) 

,3) 

%Trial b 
cwtb_rad=cwtl51b(:,l)+cwtl52b(: 

+cwtl54b(:,l)+cwtl55b(:,l); 
cwtb_ver=cwtl51b(:,3)+cwtl52b(: 

+cwtl54b(:,3)+cwtl55b(:,3); 

,1) 

,3) 

+cwtl53b(: 

+cwtl53b(: 

,1) 

,3) 

%Trial c 
cwtc_rad=cwtl51c(:,1)+cwtl52c (: 

+cwtl54c(:,l)+cwtl55c(:,1); 
cwtc_ver=cwtl51c( : , 3 )+cwtl52c(: 

+cwtl54c(:,3)+cwtl55c(:,3); 

,1) 

,3) 

+cwtl53c(: 

+cwtl53c(: 

,1) 

,3) 

%Coherence Subtraction, subtracting no target signal 
cwta_rad_ch=cwta_rad-cnta_rad; 
cwta_ver_ch=cwta_ver-cnta_ver; 

from target signal 

cwtb_rad_ch=cwtb_ 
cwtb_ver_ch=cwtb_ 

_rad-cntb_rad; 
_ver-cntb_ver; 

cwtc_rad_ch=cwtc. _rad-cntc_rad; 
cwtc_ver_ch=cwtc_ver-cntc_ver; 

%Hilbert transform of the radial component of the signal% 
radialh_a=hilbert(cwta_rad); 
%Hilbert transform of the vertical component of the signal% 
verticalh_a=hilbert(cwta_ver); 
Cpower_wt_a=conj(radialh_a).*verticalh_a; 

radialh_b=hilbert(cwtb_rad); 
verticalh_b=hilbert(cwtb_ver); 
Cpower_wt_b=conj(radialh_b).*verticalh_b; 

radialh_c=hilbert(cwtc_rad); 
verticalh_c=hilbert(cwtc_ver); 
Cpower_wt_c=conj(radialh_c).*verticalh_c; 
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%Chorence Subtraction complex power 
%Hilbert transform of the radial component of the signal% 
radialh_a=hilbert(cwta_rad_ch); 
%Hilbert transform of the vertical component of the signal% 
verticalh_a=hilbert(cwta_ver_ch); 
Cpower_wt_a_ch=conj(radialh_a).*verticalh_a; 

radialh_b=hilbert(cwtb_rad_ch); 
verticalh_b=hilbert(cwtb_ver_ch); 
Cpower_wt_b_ch=conj(radialh_b).*verticalh_b; 

radialh_c=hilbert(cwtc_rad_ch); 
verticalh_c=hilbert(cwtc_ver_ch); 
Cpower_wt_c_ch=conj(radialh_c).*verticalh_c; 

%Convert into real time index (seconds) 
j=1ength(cwta_rad); 
t=0:j/12800/(j-l):j/12800; 

figure 
subplot(3,1 
hold on 
plot(t,imag 
plot(t,imag 
plot(t,imag 
hold off 
subplot(3,1 
hold on 
plot(t,imag 
plot(t,imag 
plot(t,imag 
hold off 
subplot(3,1 
hold on 
plot(t,imag 
plot(t,imag 
plot(t,imag 
hold off 

,1) 

(Cpower_nt_a),'r') 
(Cpower_nt_b),'b') 
(Cpower_nt_c),'k') 

,2) 

(Cpower_wt_a),'r') 
(Cpower_wt_b),'b') 
(Cpower_wt_c),'k') 

,3) 

(Cpower_wt_a_ch),'r') 
(Cpower_wt_b_ch),'b') 
(Cpower_wt_c_ch),'k') 

Cpower_lb_a 
Cpower_lb_b 
Cpower_gc_c 
Cpower_gc_c 
Cpower_lb_b 
Cpower_lb_a, 
save Cpower 
save Cpower 
save Cpower. 
save Cpower. 
save Cpower. 
save Cpower 
save Cpower 

save Cpower_: 
save Cpowerj 

Cpower_wt_a; 
>=Cpower_wt_b ; 
~Cpower_wt_c; 

.ch=Cpower_wt_c_ch ; 
>_chl 713 =Cpower_wt_b_ch ; 
i_chl 713 =Cpower_wt_a_ch ; 
_lb_a_130ct Cpower_lb_a 
_lb_b_130ct Cpower_lb_b 
.gc_c_130ct Cpower_gc_c 
.gc_c_ch_130ct Cpower_gc_c_ch 
.lb_b_chl713_130ct Cpower_lb_b_chl713 
lb_a_chl713_130ct  Cpower_lb_a_chl713 
nt_a_130ct Cpower_nt_a 

nt_b_130ct Cpower_nt_b 
nt_c_17Nov Cpower_nt_c 
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APPENDIX A3. CODE USED TO DEMONSTRATE 
COMPLEX POWER AND VECTOR POLARIZATION IN FIGURE 

3.1. 

t=l:1:500; 
r=cos(2*pi*t/50); 
v(l:150)=cos(2*pi*t(l:150)/50); 
v(151:300)=cos(2*pi*t(151:3 00)/50+pi/2); 
v(301:500)=cos(2*pi*t(301:500)/50); 
figure 
subplot(3,1,1) 
plot(r) 
hold on 
plot(v, '—r') 
hold off 
title('Time series') 
xlabeK'time') 
ylabel('Amplitude') 
legend('radial', 'vertical') 
rh=hilbert(r); 
vh=hilbert(v); 
Cpower=conj(rh). *vh; 
subplot(3,1,2) 
plot(imag(Cpower)) ; 
title('Imaginary Complex Power') 
xlabel('time') 
ylabel('amplitude') 
subplot(3,1,3) 
plot(real(Cpower)); 
title('Real Complex Power') 
xlabel(time') 
ylabel('amplitude') 
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APPENDIX A4. SHORT-TERM ENERGY AND ZERO- 
CROSSING RATE AUTOMATIC DETECTOR 

%Filename:  ss_detect.m 
%Written by: C. Wilgenbusch 
%Date last modified:  10 Dec 2000 
%Purpose:  Uses a short term energy and a zero-crossing rate detector 
%to detect a possible target signal from the imaginary complex power 
%signal.  If the target is present, it extracts the portion of the 
%signal believed to be a target. 

clear all; 
load e:\ComplexPowerData\Cpower_gc_a_ch_17Nov 
x=Cpower_gc_a_ch; 
fs=12800; 

[ste,tl]=sp_steng(imag(x),25/12800, 50, fs) ,- 
[stzc,t2]=sp_stzcr(imag(x),25/12800,50,fs); 

ste=ste/max(ste); 
stzc=stzc/max(stzc) ; 

figure 
subplot(2,1,1) 
plot(tl,ste) 
title('Short term energy of signal') 
subplot(2,1,2) 
plot(t2,stzc) 
title('Short term zero-crossing rate') 

start=75; 
signal_found=0 ; 
signal_end=0; 

while signal_found == 0 &   (start+25<length(stzc)) 
zero_avg=sum(stzc(start:start+25) ) ; 
if (zero_avg == 0 & ste(start) > 0.01) 

signal_f ound=l ,- 
else 

start=start+l; 
end 

end 

if signal_found == 0 
disp('NO TARGET FOUND') 

else 

ending=start; 
start=start-10 ; 
while signal_end == 0 
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zero_avg=sum(stzc(ending:ending+20)); 
if ste(ending) < 0.0001 & zero_avg > 0 

signal_end=l; 
else 

ending=ending+l; 
end 

end 

%Translate tl into coherence time. 

j=length(x); 
t_ch=0:j/12800/(j-l):j/12800; 

index_start=tl(start)*fs; 
index_end=tl(ending)*fs; 

st_target_b=-imag(x(index_start:index_end)); 
save s:\st_target_b st_target_b 
subplot(2,1,1) 
plot(tl(start:ending),ste(start:ending)); 
title('Extracted STE portion of signal') 
subplot(2,1,2) 
plot(t_ch(index_start:index_end) , imag(x(index_start:index_end))) 
title('Extracted Complex Power of signal') 
end 
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APPENDIX A5. SHORT-TERM ENERGY ROUTINE, 
CODE WRITTEN BY D. BROWN 

function [y,tscale] = sp_steng(x,frame,overlap,fs,window) 
%SP_STENG Short-time energy. 
% [Y,TSCALE] = SP_STENG(X,FRAME,OVERLAP,FS) computes 
% the short-time energy of X using a size FRAME (mili- 
% seconds) and a percentage OVERLAP between successive 
% frames using a rectangular data window.  The sampling 
% frequency is given by FS. The short-time energy 
% curve is returned in Y and a time scale corresponding 
% to the end of the data frame is returned in TSCALE. 
% The curve may be displayed with the command 
% 'plot(y,tscale)'. 
% 
% [Y,TSCALE] = SP_STENG(X,FRAME,OVERLAP,FS,'WINDOW') 
% windows the data through the specified 'WINDOW' before 
% computing the short-time energy.  'WINDOW' can be 
% one of the following: 'hamming', 'harming', 'bartlett', 
% 'blackman' or 'triang'. 
% 
% See also: SP_STENG, SP_STZCR, AVSMOOTH, MDSMOOTH 
% 
% SP_STENG is implemented as a mex function on some 
% installations. 

% LT Dennis W. Brown 7-11-93, DWB 11-11-94 
% Naval Postgraduate School, Monterey, CA 
% May be freely distributed. 
% Not for use in commercial products. 

%      Ref: Rabiner & Schäfer, Digital Processing of Speech 
%      Signals, 1978, ss 4.2, pp 120-126. 

% default values 
y = [];tscale=[]; 

% must have at least 3 args 
if nargin < 4 

error('sp_steng: Requires first three arguments.'); 
end; 

% percentage must be in range 0-100 
if overlap < 0 | overlap > 100, 

error('sp_steng: Overlap percentage must be in range 0-100%'); 
end; 

% figure out if we have a vector 
if min(size(x)) ~= 1, 

error('sp_steng: Input arg "x" must be a lxN or Nxl vector.'); 
end; 
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% work with Nxl vectors 
x = x ( :) ; 

% variables 
Ns = length(x); % number of samples 
N = floor(fs * frame); % samples-per-frame 
Ndiff = floor(N * (1 - overlap/100));   % samples between windows 
L = floor((Ns-N)/Ndiff); % number of windows 
y = zeros(L,l); % space for answer 
tscale = zeros(L,l); % space for indices 

% data window 
datawindow = ones(N,l); % rectangular default 
if nargin == 5 

if strcmp(window,'hamming') 
datawindow = hamming(N); 

elseif strcmp(window,'harming') 
datawindow = hanning(N) ; 

elseif strcmp(window,'blackman') 
datawindow = blackman (N) ,- 

elseif strcmp(window,'bartlett') 
datawindow = bartlett(N); 

elseif strcmp(window,'triang') 
datawindow = triang(N); 

end; 
end; 

% square the data and the window 
datawindow = datawindow ." 2; 
x = x .A 2; 

% windows with overlap 
for k=l:L 

si = (k-1) * Ndiff +1;     % start of window 
tscale(k,l) = k * Ndiff/fs; 
y(k,l) = sum(x(sl:sl+N-l,l) .* datawindow); 

end; 
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APPENDIX A6. ZERO-CROSSING RATE ROUTINE, 
CODE WRITTEN BY D. BROWN 

function [y,tscale] = sp_stzcr(x,frame,overlap,fs,window) 
%SP_STZCR Short-time zero crossings. 
% [Y,TSCALE] = SP_STZCR(X,FRAME,OVERLAP,FS) computes the 
% short-time zero-crossing rate of X using a frame size 
% of LENGTH and a percentage OVERLAP between successive 
% frames using a rectangular data window.  The sampling 
% frequency is given by FS. The short-time zero-crossing 
% curve is returned in Y and a time scale corresponding 
% to the end of the data frame is returned in TSCALE. 
% The curve may be displayed with the command 
% 'plot(y,tscale)'. 
% 
% See also: SP_STMAG, SP_STZCR, AVSMOOTH, MDSMOOTH 
% 
% SP_STZCR is implemented as a mex function on some 
% installations. 

% LT Dennis W. Brown 7-11-93, DWB 11-11-94 
% Naval Postgraduate School, Monterey, CA 
% May be freely distributed. 
% Not for use in commercial products. 

%      Ref: Rabiner & Schäfer, Digital Processing of Speech 
%      Signals, 1978, ss 4.3, pp 127-130. 

% window argument is not used but is here to maintain consistency with 
% the other sp_ routines. 

% default values 
y = [] ,-tscale = [] ; 

% must have at least 3 args 
if nargin < 4 

error('sp_stzcr: Requires first four arguments.'); 
end 

% figure out if we have a vector 
if min(size(x)) ~= 1, 

error('sp_stzcr: Input arg "x" must be a lxN or Nxl vector.'); 
end; 

% work with Nxl vectors 
x = x (:) ; 

% variables 
Ns = length(x); % number of samples 
N = floor(fs * frame); % samples per frame 
Ndiff = floor(N * (1 - overlap/100));      % samples between windows 
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L = floor((Ns-N)/Ndiff); % number of windows 
y = zeros(L,l); % space for answer 
tscale = zeros(L,l); % space for time 

% use the absolute value of x 
t = abs( sign( x(2:Ns,l) ) - sign( x(l:Ns-l,l) ) ) ; 

% windows with overlap 
for k=l:L 

si = (k-1) * Ndiff + 1; % start of window 
tscale(k,l) = k * Ndiff/fs; 
y(k,l) = sum(t(sl:sl+N-l,l))/2/N; 

end 
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APPENDIX A7. EVALUATION OF HIGHER ORDER MOMENTS 
AS POTENTIAL FEATURES 

%Filename:  ss_detect.m 
%Written by: C. Wilgenbusch 
%Date last modified:  01 MAR 2001 
%Purpose:  Calculate the 3rd, 4th, 5th moments, kurtosis and skewness 
%of the data and plot for evaluation as a possible feature. 

clear all 

%Load the target data extracted from ss_detect.m 
load at_target_a 
load at_target_b 
load st_target_a 
load st_target_b 
load gc_target_a 
load gc_target_b 
load gc_target_c 
load lb_target_a 
load lb_target_b 
load rc_target_c 

%Limit signal to shortest signal 
at_a=at_target_a(1:565); 
at_b=at_target_b(1:565); 
st_a=st_target_a(1:565); 
st_b=st_target_b(1:565); 
gc_a=gc_target_a(1:565); 
gc_b=gc_target_b(1:565); 
gc_c=gc_target_c(1:565); 
lb_a=lb_target_a(1:565); 
lb_b=lb_target_b(1:565),- 
rc_c=rc_target_c(1:565); 

%Remove the mean 
at_a=at_a-mean(at_a) 
at_b=at_b-mean(at_b) 
s t_a= s t_a-mean{s t_a) 
s t_b= s t_b-mean(s t_b) 
gc_a=gc_a-mean{gc_a) 
gc_b=gc_b-mean(gc_b) 
gc_c=gc_c-mean(gc_c) 
lb_a=lb_a-mean(lb_a) 
lb_b=lb_b-mean(lb_b) 
rc_c=rc__c-mean(rc_c) 

%Normalize to Unit Energy 
at_a=at_a/(norm(at_a,2)) 
at_b=at_b/(norm(at_b,2)) 
gc_a=gc_a/(norm(gc_a,2)) 
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gc_b=gc_b/(norm(gc_b,2)) 
st_a=st_a/(norm(st_a,2)) 
st_b=st_b/(norm(st_b,2)) 
gc_c=gc_c/(norm(gc_c,2)) 
lb_a=lb_a/(norm(lb_a,2)) 
lb_b=lb_b/(norm(lb_b,2)) 
rc_c=rc_c/(norm(rc_c,2)) 

%Calculate higher order moments 
[at_am2,at_am3,at_am4,at_am5]=mm(at_a) 
[at_bm2,at_bm3,at_bm4,at_bm5]=mm(at_b) 
[st_am2,st_am3,st_am4,st_am5]=mm(st_a) 
[st_bm2,st_bm3,st_bm4,st_bm5]=mm(st_b) 
[gc_cm2,gc_cm3,gc_cm4,gc_cm5]=mm(gc_c) 
[gc_am2,gc_am3,gc_am4,gc_am5]=mm(gc_a) 
[gc_bm2,gc_bm3,gc_bm4,gc_bm5]=mm(gc_b) 
[lb_am2,lb_am3,lb_am4,lb_am5]=mm(lb_a) 
[lb_bm2,lb_bm3,lb_bm4,lb_bm5]=mm(lb_b) 
[rc_cm2,rc_cm3,rc_cm4,rc_cm5]=mm(rc_c) 

%Put results in Matrix 
MM=zeros(10,6); 
MM(1, 
MM(2, 
MM(3, 
MM(4, 
MM(5, 
MM(6, 
MM(7, 
MM(8, 
MM(9, 

=[at_am2,at_am3, 
=[at_bm2,at_bm3, 
=[st_am2,st_am3, 
=[st_bm2,st_bm3, 
=[gc_am2,gc_am3, 
=[gc_bm2,gc_bm3, 
=[gc_bm2,gc_cm3, 
=[lb_am2,lb_am3, 
=[lb_bm2,lb_bm3, 

MM (10, :) = [ rc_cm2 , rc_cm3 

form 

at_am4, 
at_bm4, 
st_am4, 
st_bm4, 
gc_am4, 
gc_bm4, 
gc_cm4, 
lb_am4, 
lb_bm4, 
,rc_cm4 

at_am5,kurtosis(at_a),skewness(at_a) 
at_bm5,kurtosis(at_b),skewness(at_b) 
st_am5,kurtosis(st_a),skewness(st_a) 
st_bm5,kurtosis(st_b),skewness(st_b) 
gc_am5,kurtosis(gc_a),skewness(gc_a) 
gc_bm5,kurtosis(gc_b),skewness(gc_b) 
gc_cm5,kurtosis(gc_c),skewness(gc_c) 
lb_am5,kurtosis(lb_a),skewness(lb_a) 
lb_bm5,kurtosis(lb_b),skewness(lb_b) 
,rc_cm5,kurtosis(rc_c),skewness(rc_c ]; 

%Plot results 
figure 
hold on 
plot3(MM(1 2) ,MM(1, 4) ,MM(1 6) ,'db') 
plot3(MM(2 2) ,MM(2, 4) ,MM(2 6) ,'db') 
plot3(MM(3 2) ,MM(3, 4) ,MM(3 6) ,'+r') 
plot3(MM(4 2) ,MM(4, 4) ,MM(4 6) ,'+r') 
plot3(MM(5 2) ,MM(5, 4) ,MM(5 6) ,'*g') 
plot3(MM(6 2) ,MM(6, 4) ,MM(6 6) ,'*g') 
plot3(MM(7 2) ,MM(7, 4) ,MM(7 6) ,'*g') 
plot3(MM(8 2) ,MM(8, 4) ,MM(8 6) ,'.k') 
plot3(MM(9 2) ,MM(9, 4) ,MM(9 6) ,'.k') 
plot3(MM(10,2 ),MM(10, 4),MM(10 ,6),'om') 
hold off 
title('Third ] foment vs Fifth Moment vs Skewness, 
unit energy') ' 
xlabelC Third Moment' ) 
ylabelC Fifth Moment' ) 
zlabel('Skewness') 
legend('Gas Cylinder' ' , 'J toti-tank','','Scut 
Bomb','','Rock') 
grid on 

signals normalized to 

Tank' 'Large 
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APPENDIX A8. CODE USED TO CALCULATE MOMENTS 

function [m2,m3,m4,m5] =mm(x) 
m2=var(x); 
m3=sum{x.*3)/l; 
m4=sum(x.^4)/l 
m5=sum(x.^5)/l 

APPENDIX A9. CODE USED TO CALCULATE MOMENTS 

% Filename: wav03.m 
% Author: Monique P. Fargues 
% Written: 1/26/01 
% Purpose:   Model target data as impuluse response of filter 
% using stmcb.m and plot poles and zeros to evaluate for use 
% as features. 

iopt=2; 
clear ERR RECON PI data 
ERR=[];RECON=[];Pl=[];RECONC=[];ERRC=[]; 
if idec==l,npt=512;else,npt=1024;end 
data(:,:,1)=gc_target;    % data(:,ktrial,ksig) 
data(:,:,2)=[at_target,zeros(npt,l)] 
data( -., : ,3)=[st_target,zeros(npt,l) ] 
data(:,:,4)=[lb_target,zeros(npt,1)] 
data(:,:,5)=[rc_target,zeros(npt,2)] 
ntrial=[3,2,2,2,l]; 
l_dat  % length of data (ksig,,ktrial) 
clear A AR B BR ar br 
RECON=zeros(1024,3,5); 
for ksig=l:5 

ksig 
for ktrial=l:ntrial(ksig) 

f=data(l:l_dat(ksig,ktrial),ktrial,ksig); 
[b,a]=stmcb(f,6,4,8); 
recon=filter(b,a, [1;zeros(l_dat(ksig,ktrial)-1,1)] 
err=norm(recon-f) ,- 
ERR(ktrial,ksig)=err/(sqrt(norm(recon)*norm(f))); 
A(:,ktrial,ksig)=a; AR(:,ktrial,ksig)=roots(a); 
RECON(1:l_dat(ksig,ktrial),ktrial,ksig)=recon; 
B(:,ktrial,ksig)=b;BR(:,ktrial,ksig)=roots(b); 
plot([f,recon]) 
pause 

end 
end 
ii=0; 

% plot poles/zeros 
% BR(:,ktrial,ksig)=roots(b); 
kcount=l;figure 
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for ksig=l:5 
for ktrial=l:ntrial(ksig) 

br=BR(:,ktrial,ksig);ar=AR(: ktrial,ks ig) ; 

subplot(3,2,kcount),plot(real(ar),imag(ar),' x',real(br),imag(br),'o') 
hold on 

end 
hold off 
kcount=kcount+l; 

end 

figure, 
for ksig=l:5 

for ktrial=l:ntrial(ksig) 
br=BR(:,ktrial,ksig);ar=AR(: ktrial,ksig); 
if ksig==l,plot(real(br),imag(br),'ob' ,real(ar) imag(ar),'xb') 

elseif 
ksig==2,plot(real(br),imag(br),'or ',real(ar) ,imag(ar) 'xr') 

elseif 
ksig==3,plot(real(br),imag(br),'og ',real(ar) ,imag(ar) ,'xg'} 

elseif 
ksig==4,plot(real(br),imag(br),'ok ',real(ar) ,imag(ar) ,'xk') 

elseif 
ksig==5,plot(real(br),imag(br),'om ',real(ar) ,imag(ar) ,'xm') 

end 
hold on 

end 
end 
hold off 

figure, 
for ksig=l:5 

for ktrial=l:ntrial(ksig) 
br=BR(:,ktrial,ksig);ar=AR(: ,ktrial,ks ig) ; 
if ksig==l,plot(real(ar) , imag(ar),'xb' ) 
elseif ksig==2,plot(real(ar) ,imag(ar), 'xr') 
elseif ksig==3,plot(real(ar) ,imag(ar), 'xg') 
elseif ksig==4,plot(real(ar) ,imag(ar), 'xk') 
elseif ksig==5,plot(real(ar) ,imag(ar), 'xm') 
end 
hold on 

end 
end 

hold off 
legend( 'Gas Cylinder' ,",",",'', '','Anti-tank', " , ' ','','Scuba 
Tank',",",",'Large Bomb' '','Rock') 

69 



APPENDIX AlO. CODE USED TO LOAD AND PROCESS INPUT 
DATA 

% Filename: indata.m 
% Author: Monique P. Fargues 
% Written: 1/26/01 
% Purpose:   load target data and prepare for use in stmcb.m 

len_mds=12;iarg=0;idec=0; 
load gc_target_a.mat,ngca=length(gc_target_a); 
load gc_target_b.mat;ngcb=length(gc_target_b); 
load 
gc_target_c.mat;gc_target_c=gc_target_c(1:1024);ngcc=length(gc_target_c 
);l_gc=[ngca,ngcb,ngcc] ; 
length_gc=min(min(length(gc_target_a),length(gc_target_b)),length(gc_ta 
rget_c)); 
gc_target_a=process_sig(gc_target_a,len_mds,idee,iarg),- 
gc_target_b=process_sig(gc_target_b, len_mds, idee, iarg) ,- 
gc_target_c=process_sig(gc_target_c,len_mds,idee,iarg); 
gc_target=[gc_target_a,gc_target_b,gc_target_c]; 

load at_target_a.mat 
load at_target_b.mat;l_at=[length(at_target_a) , length (at_target_b) ] ,- 

%load at_target_c.mat 
length_at=min(length(at_target_a),length(at_target_b)),- 
at_target_a=process_sig(at_target_a,len_mds, idee, iarg) ,- 
at_target_b=process_sig(at_target_b,len_mds,idee,iarg); 
at_target=[at_target_a,at_target_b] ,- 

load st_target_a.mat 
load st_target_b.mat 
%load st_target_c.mat 
length_st=min(length(st_target_a),length(st_target_b)); 
l_st=[ length (st_target_a) , length (st_target_b) ] ,- 
st_target_a=process_sig(st_target_a,len_mds, idee, iarg) ,- 
st_target_b=process_sig(st_target_b,len_mds,idee,iarg); 
%shift scuba tank signal a 
temp=zeros(1,1024) ; 
temp(1:984)=st_target_a(41:1024); 
temp(985:end)=st_target_a(1:40); 
st_target_a=temp'; 
st_target=[st_target_a,st_target_b]; 

load lb_target_a.mat 
load lb_target_b.mat 
%load lb_target_c.mat 
l_lb=[length(lb_target_a),length(lb_target_b)]; 
length_lb=min(length(lb_target_a) , length(lb_target_b) ) ,- 
lb_target_a=process_sig(lb_target_a,len_mds,idee,iarg); 
lb_target_b=process_sig(lb_target_b,len_mds,idee,iarg); 
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lb_target=[lb_target_a,lb_target_b]; 

%load rc_target_a.mat 
%load rc_target_b.mat 
load rc_target_c.mat 
l_rc=length(rc_target_c); 
rc_target=process_sig(rc_target_c,len_mds,idee,iarg),- 
l_dat=[l_gc;l_at,0;l_st,0;l_lb,0;l_rc,0,0]; 
if idec==l,l_dat=fix(l_dat/2.);end 

subplot(321),plot(gc_target_a),hold on 
plot(gc_target_b),plot(gc_target_c) 
hold off 

subplot(322),plot(at_target_a),hold on 
plot(at_target_b) 
hold off 
subplot(323),plot(st_target_a),hold on 
plot(st_target_b),hold off 

subplot(324),plot(lb_target_a),hold on 
plot(lb_target_b),hold off 

subplot(325),plot(rc_target_c) 

% Filename: process_sig.m 
% Author: Monigue P. Fargues 
% Written: 1/26/01 
% Purpose:   smooth data and normalize to unit energy 

function y=process_sig(x,len_mds,idee,iarg) 

l_x=length(x); 
if iarg==0,y0=[mdsmooth(x,len_mds);zeros(1024-l_x,1)]; 
elseif iarg==l,y0= [mdsmooth(x, len_mds) ,-zeros (1024-l_x, 1) ] ;end 
y=y0 ; 
if idec==l,y=decimate(y0,2);end 
y=y-mean(y);y=y/(norm(y,2));  % normalize signal to unit energy 
return 
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APPENDIX All. RADIAL BASIS FUNCTION MODELING CODE 

% Filename: test_rad2.m 
% Author: LT Craig A. Wilgenbusch 
% Written: 3/02/01 
% Purpose:   Model target data as a mixture of Gaussian 
% snapped pulses using routines from NETLAB software 
% toolbox and plot features (widths and weights) 
% for evaluations as features 

clear all 

load at_target_a 
load at_target_b.mat 

load st_target_a.mat 
load st_target_b.mat 

load gc_target_a.mat 
load gc_target_b.mat 
load gc_target_c.mat 

load lb_target_a.mat 
load lb_target_b.mat 

load rc_target_c.mat 

at_target_a=mdsmooth(at_target_a,25); 
at_target_b=mdsmooth(at_target_b,25); 

st_target_a=mdsmooth(st_target_a,45); 
st_target_b=mdsmooth(st_target_b,60); 

gc_target_a=mdsmooth{gc_target_a,25) 
gc_target_b=mdsmooth(gc_target_b,25) 
gc_target_c=mdsmooth{gc_target_c,25) 

lb_target_a=mdsmooth(lb_target_a ,25); 
lb_target_b=mdsmooth(lb_target_b,25); 

rc_target_c=mdsmooth(rc_target_c,25); 

P_at_a=(1:length(at_target_a)) 
P_at_b=(1:length(at_target_b)) 

P_st_a=(l:length(st_target_a)) 
P_st_b=(1:length(st_target_b)) 

P_gc_a=(1:length(gc_target_a)) 
P_gc_b=(1:length(gc_target_b)) 
P_gc_c=(1:length(gc_target_c)) 
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P_lb_a=(1:length(lb_target_a)) ' ; 
P_lb_b=(1:length(lb_target_b))'; 

P_rc_c=(1:length(rc_target_c))'; 

% Set up network parameters. 
nin =1;      % Number of inputs. 
nhidden = 9;        % Number of hidden units. 
nout =1;        % Number of outputs. 

options = foptions; 
options(1) =0;     % Display EM training 
options(14) = 5;  % number of iterations of EM 
options(7)=.3; 
trials=l; 
cent=zeros(nhidden,10,trials); 
wi=zeros(nhidden,10,trials); 
w2=zeros(nhidden,10,trials); 

for j=l:trials 
j 

%Anti-Tank 
% Create and initialize network weight and parameter vectors. 
net = rbf(nin, nhidden, nout, 'gaussian'); 
net = rbftrain(net, options, P_at_a, at_target_a); 
y = rbffwd(net, P_at_a); 

net2 = rbf(nin, nhidden, nout, 'gaussian'); 
net2 = rbftrain(net2, options, P_at_b, at_target_b); 
y2 = rbffwd(net2, P_at_b); 

if j == 1 
figure 
subplot(3,2,1) 
plot(at_target_a, 'r') 
hold on 
plot(y,':') 

title('ANTI-TANK') 
plot(at_target_b,'r') 
plot(y2,':') 
hold off 
end 

cent(:,1,j)=net.c; 
cent(:,2,j)=net2.c; 
wi(:,1,j)=net. wi' ; 
wi (:,2,j)=net2. wi'; 
w2 (:,1,j)=net.w2; 
w2 (:,2,j)=net2.w2; 

%SCUBA TANK 
% Create and initialize network weight and parameter vectors. 
net = rbf(nin, nhidden, nout, 'gaussian'); 
net = rbftrain(net, options, P_st_a, st_target_a); 
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y = rbffwd(net, P_st_a); 

net2 = rbf(nin, nhidden, nout, 'gaussian'); 
net2 = rbftrain(net2, options, P_st_b, st_target_b); 
y2 = rbffwd(net2, P_st_b),- 

if j == 1 

subplot(3,2,2) 
plot(st_target_a,'g') 
hold on 
plot(y,':') 
title('SCUBA TANK') 
plot(st_target_b,'g') 
plot(y2,':') 
hold off 
end 

cent (:, 3, j) =net.c; 
cent(:,4,j)=net2.c; 
wi(: ,3, j)=net.wi'; 
wi(:, 4,j)=net2.wi'; 
w2(:,3,j)=net.w2; 
w2(:,4,j)=net2.w2; 

clear net net2 

clear net net2 

%Gas Cylinder Tank 
% Create and initialize network weight and parameter vectors 
net = rbf(nin, nhidden, nout, 'gaussian'); 
net = rbftrain(net, options, P_gc_a, gc_target_a); 
y = rbffwd(net, P_gc_a); 

net2 = rbf(nin, nhidden, nout, 'gaussian'); 
net2 = rbftrain(net2, options, P_gc_b, gc_target_b); 
y2 = rbffwd(net2, P_gc_b); 

net3 = rbf(nin, nhidden, nout, 'gaussian'); 
net3 = rbftrain(net3, options, P_gc_c, gc_target_c); 
y3 = rbffwd(net3, P_gc_c); 

if j ==1 

subplot(3,2,3) 
plot(gc_target_a) 
hold on 
plotfy,':') 

title('GAS CYLINDER') 

plot(gc_target_b) 
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plot(y2, :') 
plot(gc_target_c) 
plot(y3. :') 
hold off 
end 

cent(:,5 j)=net.c; 
cent(:,6 j)=net2. c; 
cent(:,7 j)=net3. c; 

wi ( ,5,j =net.wi'; 

wi ( ,6,j =net2.wi'; 

wi ( ,7,j =net3.wi'; 
w2( ,5, j =net.w2; 
w2( , 6, j =net2.w2; 

w2 ( ,7,j =net3.w2; 

b(5 =net b2; 

clear net net2 net3 

%LARGE BOMB 
% Create and initialize network weight and parameter vectors. 
net = rbf(nin, nhidden, nout, 'gaussian'); 
net = rbftrain(net, options, P_lb_a, lb_target_a); 
y = rbffwd(net, P_lb_a); 

net2 = rbf(nin, nhidden, nout, 'gaussian'); 
net2 = rbftrain(net2, options, P_lb_b, lb_target_b); 
y2 = rbffwd(net2, P_lb_b); 

if j==l 

subplot(3,2,4) 
plot(lb_target_a,'k') 
hold on 
plot(y,':') 

title('LARGE BOMB') 

plot(lb_target_b,'k') 
plot(y2,':') 
•hold off 
end 

cent(:,8,j)=net.c; 
cent(:,9,j)=net2.c; 
wi(:,8,j)=net.wi'; 
wi(:,9,j)=net2.wi'; 
w2 (:,8,j)=net.w2; 
w2( : ,9,j)=net2.w2; 

clear net net2 

%ROCK 
% Create and initialize network weight and parameter vectors 
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net = rbf(nin, nhidden, nout, 'gaussian'); 
net = rbftrain(net, options, P_rc_c, rc_target_c); 
y = rbffwd(net, P_lb_a); 

if j==l 
subplot(3,2,5) 
plot(rc_target_c,'m') 
hold on 
plot(y,':') 
hold off 
title('ROCK') 
end 

cent(:,10,j)=net.c; 
wi(:,10,j)=net.wi'; 
w2 (: ,10,j)=net.w2; 

clear net 

end 

figure 

hold on 
for j=l:trials 

plot(sqrt(wi( ,1.3)) ,w2(: ,1,3),'xr'); 
plot(sqrt(wi( , 2, j )) ,w2(: ,2,j),'xr') 
plot(sqrt(wi(. ,3,j)) ,w2(: ,3,j),'og') 
plot(sqrt(wi(: ,4,j)) ,w2(: ,4,j),'og') 
plot(sqrt(wi(: ,5,j)) ,w2(: ,5,j),'+'); 
plot(sqrt(wi(: ,6,j)) ,w2(: ,6,j),'+'); 
plot(sqrt(wi(: ,7,3)) ,w2(: , 7,j),' + '); 
plot(sqrt(wi(: ,8,j)) ,w2(: ,8,j),'*k'); 
plot(sqrt(wi(: ,9,j)) ,w2( : ,9,j),'*k'); 
plot(sqrt(wi(: ,10,j) ),w2( :,10,j),'sm'); 

end 
hold off 
grid on 
clear cent wi w2 
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APPENDIX A12. NETLAB TOOLBOX [REF 24] CODE rbf.m USED 
TO CREATE AND INITIALIZE NETWORK 

function net = rbf(nin, nhidden, nout, rbfunc, outfunc, prior, beta) 
%RBF Creates an RBF network with specified architecture 
% 
% Description 
% NET = RBF(NIN, NHIDDEN, NOUT, RBFUNC) constructs and initialises a 
% radial basis function network returning a data structure NET. The 
% weights are all initialised with a zero mean, unit variance normal 
% distribution, with the exception of the variances, which are set to 
% one. This makes use of the Matlab function RANDN and so the seed for 
% the random weight initialization can be  set using RANDN('STATE', S) 
% where S is the seed value. The activation functions are defined in 
% terms of the distance between the data point and the corresponding 
% centre.  Note that the functions are computed to a convenient 
% constant multiple: for example, the Gaussian is not normalised. 
% (Normalisation is not needed as the function outputs are linearly 
% combined in the next layer.) 
% 
% The fields in NET are 
% type = 'rbf 
% nin = number of inputs 
% nhidden = number of hidden units 
% nout = number of outputs 
% nwts = total number of weights and biases 
% actfn = string defining hidden unit activation function: 
% 'gaussian' for a radially symmetric Gaussian function. 
% 'tps' for r^2 log r, the thin plate spline function. 
% 'r41ogr' for r~4 log r. 
% outfn = string defining output error function: 
% 'linear' for linear outputs (default) and SoS error. 
% 'neuroscale' for Sammon stress measure. 
% c = centres 
% wi = squared widths (null for rlogr and tps) 
% w2 = second layer weight matrix 
% b2 = second layer bias vector 
% 
% NET = RBF(NIN, NHIDDEN, NOUT, RBFUND, OUTFUNC) allows the user to 
% specify the type of error function to be used.  The field OUTFN is 
% set to the value of this string.  Linear outputs (for regression 
% problems) and Neuroscale outputs (for topographic mappings) are 
% supported. 
% 
% NET = RBF(NIN, NHIDDEN, NOUT, RBFUNC, OUTFUNC, PRIOR, BETA), in 
which 
% PRIOR is a scalar, allows the field NET.ALPHA in the data structure 
% NET to be set, corresponding to a zero-mean isotropic Gaussian prior 
% with inverse variance with value PRIOR. Alternatively, PRIOR can 
% consist of a data structure with fields ALPHA and INDEX, allowing 
% individual Gaussian priors to be set over groups of weights in the 
% network. Here ALPHA is a column vector in which each element 
% corresponds to a separate group of weights, which need not be 
% mutually exclusive.  The membership of the groups is defined by the 
% matrix INDX in which the columns correspond to the elements of 
ALPHA. 
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% Each column has one element for each weight in the matrix, in the 
% order defined by the function MLPPAK, and each element is 1 or 0 
% according to whether the weight is a member of the corresponding 
% group or not. A utility function RBFPRIOR is provided to help in 
% setting up the PRIOR data structure. 
% 
% NET = RBF(NIN, NHIDDEN, NOUT, FUNC, PRIOR, BETA) also sets the 
% additional field NET.BETA in the data structure NET, where beta 
% corresponds to the inverse noise variance. 
% 
% See also 
% RBFERR, RBFFWD, RBFGRAD, RBFPAK, RBFTRAIN, RBFUNPAK 
% 

% Copyright (c) Ian T Nabney (1996-9) 

net.type = 'rbf'; 
net.nin = nin; 
net.nhidden = nhidden; 
net.nout = nout; 

% Check that function is an allowed type 
actfns = {'gaussian', 'tps', 'r41ogr'}; 
outfns = {'linear', 'neuroscale'}; 
if (strcmp(rbfunc, actfns)) == 0 
error('Undefined activation function.') 

else 
net.actfn = rbfunc,- 

end 
if nargin <= 4 

net.outfn = outfns{l}; 
elseif (strcmp(outfunc, outfns) == 0) 

error('Undefined output function.') 
else 

net.outfn = outfunc; 
end 

% Assume each function has a centre and a single width parameter, and 
that 
% hidden layer to output weights include a bias.  Only the Gaussian 
function 
% requires a width 
net.nwts = nin*nhidden + (nhidden + l)*nout; 
if strcmp(rbfunc, 'gaussian') 

% Extra weights for width parameters 
net.nwts = net.nwts + nhidden; 

end 

if strcmp(net.outfn, 'neuroscale') 
net.mask = rbfprior(rbfunc, nin, nhidden, nout); 

end 

if nargin > 5 
if isstruct(prior) 
net.alpha = prior.alpha; 
net.index = prior.index; 

elseif size(prior) == [1 1] 
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net.alpha = prior; 
else 
error('prior must be a scalar or a structure'); 

end 
end 

w = randnd, net.nwts); 
outfunc = net.outfn; 
net.outfn = 'linear'; 
net = rbfunpak(net, w); 
net.outfn = outfunc; 

% Make widths equal to one 
if strcmp(rbfunc, 'gaussian') 
net.wi = ones(l, nhidden); 

end 

APPENDIX A13. NETLAB TOOLBOX [REF 24] CODE rbftrain.m 
USED TO TRAIN NETWORK USING THE EM ALGORITHM AND 

AGMMMODEL. 

function [net, options] = rbftrain(net, options, x, t) 
%RBFTRAIN Two stage training of RBF network. 
% 
% Description 
% NET = RBFTRAIN(NET, OPTIONS, X, T) uses a  two stage training 
% algorithm to set the weights in the RBF model structure NET. Each 
row 
% of X corresponds to one input vector and each row of T contains the 
% corresponding target vector. The centres are determined by fitting a 
% Gaussian mixture model with circular covariances using the EM 
% algorithm through a call to RBFSETBF.  (The mixture model is 
% initialised using a small number of iterations of the K-means 
% algorithm.) If the activation functions are Gaussians, then the 
basis 
% function widths are then set to the maximum inter-centre squared 
% distance. 
% 
% For linear outputs,  the hidden to output weights that give rise to 
% the least squares solution can then be determined using the pseudo- 
% inverse. For neuroscale outputs, the hidden to output weights are 
% determined using the iterative shadow targets algorithm.  Although 
% this two stage procedure may not give solutions with as low an error 
% as using general purpose non-linear optimisers, it is much faster. 
% 
% The options vector may have two rows: if this is the case, then the 
% second row is passed to RBFSETBF, which allows the user to specify a 
% different number iterations for RBF and GMM training. The optional 
% parameters to RBFTRAIN have the following interpretations. 
% 
% OPTIONS(1) is set to 1 to display error values during EM training. 
% 
% OPTIONS(2) is a measure of the precision required for the value of 
% the weights W at the solution. 
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% 
% OPTIONS(3) is a measure of the precision required of the objective 
% function at the solution.  Both this and the previous condition must 
% be satisfied for termination. 
% 
% OPTIONS(14) is the maximum number of iterations for the shadow 
% targets algorithm;  default 100. 
% 
% See also 
% RBF, RBFERR, RBFFWD, RBFGRAD, RBFPAK, RBFUNPAK, RBFSETBF 
% 

% Copyright (c) Ian T Nabney (1996-9) 

% Check arguments for consistency 
switch net.outfn 
case 'linear' 
errstring = consist(net, 'rbf, x, t) ; 

case 'neuroscale' 
errstring = consist(net, 'rbf, x) ; 

otherwise 
error(['Unknown output function ', net.outfn]) ; 

end 
if ~isempty(errstring) 

error(errstring),- 
end 

% Allow options to have two rows: if this is the case, then the second 
row 
% is passed to rbfsetbf 
if size(options, 1) == 2 
setbfoptions = options(2, :); 
options = options(1, :); 

else 
setbfoptions = options; 

end 

if(-options(14)) 
options(14) = 100; 

end 
% Do we need to test for termination? 
test = (options(2) | options(3)); 

% Set up the basis function parameters to model the input data density 
net = rbfsetbf(net, setbfoptions, x); 

% Compute the design (or activations) matrix 
[y, act] = rbffwd(net, x) ,- 
ndata = size(x, 1) ; 

switch net.outfn 
case 'linear' 

% Sum of squares error function in regression model 
% Solve for the weights and biases using pseudo-inverse from 

activations 
temp = pinv([act ones(ndata, 1)]) * t; 
net.w2 = temp(l:net.nhidden, :); 
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net.b2 = temp(net.nhidden+1, :); 

case 'neuroscale' 
% Use the shadow targets training algorithm 
if nargin < 4 

% If optional input distances not passed in, then use 
% Euclidean distance 
x_dist = sqrt(dist2(x, x)) ,- 

else 
x_dist = t; 

end 
Phi = [act, ones(ndata, 1)]; 
% Compute the pseudo-inverse of Phi 
PhiDag = pinv(Phi); 
% Compute y_dist, distances between image points 
y_dist = sqrt(dist2(y, y) ) ; 

% Save old weights so that we can check the termination criterion 
wold = netpak(net); 
% Compute initial error (stress) value 
errold = 0 .5* (sum(sum( (x_dist - y_dist) ./"2) )) ; 

% Initial value for eta 
eta = 0.1; 
k_up = 1.2; 
k_down = 0.1; 
success = 1;  % Force initial gradient calculation 

for j = 1:options(14) 
if success 

% Compute the negative error gradient with respect to network 
outputs 

D = (x_dist - y_dist)./(y_dist+(y_dist==0)); 
temp = y'; 
neg_gradient = 2.*sum(kron(D, ones(l, net.nout)) .* ... 

(repmat(y, 1, ndata) - repmat((temp(:))', ndata, 1)), 1); 
neg_gradient = (reshape(neg_gradient, net.nout, ndata))'; 

end 
% Compute the shadow targets 
t = y - eta*neg_gradient; 
% Solve for the weights and biases 
temp = PhiDag * t; 
net.w2 = temp(l:net.nhidden, :); 
net.b2 = temp(net.nhidden+1, :); 

% Do housekeeping and test for convergence 
ynew = rbffwd(net, x); 
y_distnew = sqrt (dist2 (ynew, ynew) ) ,- 
err = 0.5.*(sum(sum((x_dist-y_distnew).A2))); 
if err > errold 

success = 0; 
% Restore previous weights 
net = netunpak(net, wold); 
err = errold; 
eta = eta * k_down; 

else 
success = 1; 
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eta = eta * k_up; 
errold = err; 
y = ynew; 
y_dist = y_distnew; 
if test & j > 1 

w = netpak(net); 
if (max(abs(w - wold)) < options(2) & abs(err-errold) < options(3! 

options(8) = err; 
return; 

end 
end 
wold = netpak(net); 

end 
if options(1) 
fprintfd, 'Cycle %4d Error %11.6f\n', j, err) 

end 
if nargout >= 3 

errlog(j) = err; 
end 

end 
options(8) = errold; 
if (options(1) >= 0) 

disp('Warning: Maximum number of iterations has been exceeded'); 
end 

otherwise 
error(['Unknown output function ', net.outfn]); 

end 
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APPENDIX A14. NETLAB TOOLBOX [REF 24] CODE rbffwd.m 
USED TO SIMULATE OUTPUT OF TRAINED RBF NETWORK. 

function [a, z, n2] = rbffwd(net, x) 
%RBFFWD Forward propagation through RBF network with linear outputs. 
% 
% Description 
% A = RBFFWD(NET, X) takes a network data structure NET and a matrix X 
% of input vectors and forward propagates the inputs through the 
% network to generate a matrix A of output vectors. Each row of X 
%  corresponds to one input vector and each row of A contains the 
% corresponding output vector. The activation function that is used is 
%  determined by NET.ACTFN. 
% 
%  [A, Z, N2] = RBFFWD(NET, X) also generates a matrix Z of the hidden 
% unit activations where each row corresponds to one pattern. These 
% hidden unit activations represent the design matrix for the RBF. 
The 
% matrix N2 is the squared distances between each basis function 
centre 
%  and each pattern in which each row corresponds to a data point. 
% 
%  See also 
%  RBF, RBFERR, RBFGRAD, RBFPAK, RBFTRAIN, RBFUNPAK 
% 

% Copyright (c) Ian T Nabney (1996-9) 

% Check arguments for consistency 
errstring = consist(net, 'rbf, x) ; 
if -isempty(errstring); 
error(errstring); 

end 

[ndata, data_dim] = size(x); 

% Calculate squared norm matrix, of dimension (ndata, ncentres) 
n2 = dist2(x, net.c); 

% Switch on activation function type 
switch net.actfn 

case 'gaussian' % Gaussian 
% Calculate width factors: net.wi contains squared widths 
wi2 = ones(ndata, 1) * (2 .* net.wi) ,- 

% Now compute the activations 
z = exp(-(n2./wi2)); 

case 'tps'     % Thin plate spline 
z = n2.*log(n2+(n2==0)); 

case 'r41ogr'      % rA4 log r 
z = n2.*n2.*log(n2+(n2==0)); 
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otherwise 
error('Unknown activation function in rbffwd' 

end 

a = z*net.w2 + ones(ndata, l)*net.b2; 
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