
Watermarking 3D
Objects f0.r
Vevification *

W e have entered an era where inexpen-
sive, readily available tools and equip-

ment can replicate, manipulate, and distribute digital
multimedia materials with ease. Most often, replication
of digital content can produce perfect copies of the orig-
inal, manipulation and editing of digital copies can

deceive even the most professional
eyes, and mass distribution can take

The watermarking place in a matter of seconds in elec-
tronic forms. Misappropriation of

technique proposed here digital assets greatly concerns con-
tent owners and creators, especially

enables the verification of when the content is made available
through the Internet. Without the

3D polygonal models for assurance of proper protection
against lost revenues, the owners of

detecting unauthorized digital content will be reluctant to
make these assets available.

alterations. Many view digital watermarking
as a potential solution for copyright

protection of valuable digital materials like CD-quality
audio, publication-quality images, and digital video. The
field of digital watermarking is relatively new, and many
of its terms have not been well defined. Among the dif-
ferent media types, watermarking of 2D still images is
comparatively better studied. Inherently, digital water-
marking of 3D objects remains a difficult problem. We
believe a complete solution will not employ a generic
algorithm to watermark objects for a variety of applica-
tions. Instead, different classes of applications will
impose different requirements and call for different
watermarking techniques, ranging from slight modifi-
cation of existing algorithms to completely orthogonal
methods.

Nonetheless, we intend to introduce and investigate
the fundamental similarities and differences of water-
marking 3D graphic models compared to 2D images,
and propose some solutions to address a class of appli-
cations of digital watermarking-the verification of 3D
polygonal models. To our knowledge, watermarking of
3D objects for verification PurDoses has not been

Boon-Lock Yeo and Minerva M. Yeung
Intel Corporation

addressed in any published literature. The proposed
scheme,% its present form, is not intended for use in
applicahons that require robust watermarks. One recent
workin 3D data hiding addressed applications requiring *
robust means of hiding data.’

We will first introduce digital watermarking, discuss
its goals and application domains, and explain the dif-
ferent categories of watermarks. We believe the goals
and applications will remain fairly similar for 2D images
and 3D models.

Digital watermarking
We define watermarking as a process that embeds

data into an object-a watermark. The object can be an
image, an audio clip, a video clip, or a 3D model. Some
papers discuss watermarking other forms of multime-
dia data such as sound clips.2*3Since our research focus-
es on visual data, we say visible and invisible when in a
wider sense we mean perceptible and imperceptible. We
further define visible watermarking as embedding data
intentionally perceptible to a human observer, while
invisible watermarking embeds data not perceptible,
but extractable by a computer program.

In the image domain, a variety of invisible water-
marking schemes have been reported in recent years,2-8
along with commercial systems like Digimarc’s. Two cat-
egories broadly classify these techniques: spatial-domain
and transform-domain based. The earlier watermarking
techniques reported were spatial in nature, the simplest
being the ones that modified the least-significant-bits
(LSB) of an image’s pixel data? Other literature proposed

,

improvement and variants of this technique.2*4
Transform-domain-based techniques can be

employed with common image transforms like discrete
cosine transforms (DCT), wavelets, Fourier transforms
(such as the FFT), and Hadamard transforms. Zhao and
Koch reported one of the earlier transform-domain-
based techniques tailored to JPEG-lossy image com-
pression. Other techniques include the work of
Swanson, Zhu, and Tewfik! Cox et al. proposed a more
robust techniaue based on spread-spectrum principles3

for
Verification

IA-00089

Form SF298 Citation Data

Report Date
("DD MON YYYY")
01011999

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY")

Title and Subtitle
Watermarking 3D Objects for Vevification

Contract or Grant Number

Program Element Number

Authors Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Microcomputer Research Labs Intel Corp., SC12-303 2200
Mission College Blvd. Clara, CA 95052-8119

Performing Organization
Number(s)

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym

Monitoring Agency Report
Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Document Classification
unclassified

Classification of SF298
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
unlimited

Number of Pages
11

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

1/1/99
3. REPORT TYPE AND DATES COVERED

Article
4. TITLE AND SUBTITLE

Watermarking 3D Objects for Verification
5. FUNDING NUMBERS

6. AUTHOR(S)

Boon-Lock Yeo and Minveva M. Yeung

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

IATAC
Information Assurance Technology Analysis
Center
3190 Fairview Park Drive
Falls Church VA 22042
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

 AGENCY REPORT NUMBER

Defense Technical Information Center
DTIC-IA
8725 John J. Kingman Rd, Suite 944
Ft. Belvoir, VA 22060
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

 A

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The watermarking techinque proposed in this article enables the verification of 3D
polygonal models for detecting unauthorized alterations.

14. SUBJECT TERMS

Watermarking,
15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

None

They embed a set of independent and identically dis-
tributed samples drawn from a Gaussian distribution
into the perceptually most significant frequency com-
ponents of the data. These papers have shown the tech-
niques to be somewhat robust against various
image-processing operations, and a few techniques can
even recover the watermarks in some test images after
printing and rescanning.

Depending on the end applications, watermarking
techniques can be further classified into fragile and
robust watermarking. In fragile watermarking the
embedded watermark will change or disappear if a
watermarked object is altered. In other words, the
watermark can be used for verification of an object.
Applications include providing trustworthy images cap-
tured with a digital camera for inclusion into news arti-
cles and trustworthy objects that will be delivered to
remote clients. An invisible watermark is embedded at
capture or creation time; its presence at the time of pub-
lication or upon receipt is intended to indicate that the
image or object has not been altered. In another appli-
cation, objects like VRML9 models or human-fingerprint
images have been delivered or scanned and stored in a
digital archive. In this case, the content owner may want
to detect any unauthorized alteration without compar-
ing the objects to the o&inal models or scans, or send-
ing separate signature files for authentication via digital
signature schemes.

In robust watermarking, the embedded watermark
will persist even in the face of removal. Such removal
can be unintentional transformations like filtering, crop-
ping, translation, rotation, resizing, and lossy compres-
sion; or intentional by processing the objects to remove
the watermark. Intentional attack can include any com-
binations of the aforementioned transformations. The
embedded robust watermarks can serve as evidence of
ownership if the owner’s label is detected in a suspect-
ed copy. The watermarks can also serve as identification
in the fingerprinting application. Here the seller of an
object imprints an invisible label to indicate to whom
the object is sold. If the seller later finds a cdpy of the
object published without royalty payment, the water-
marks can help identify the misappropriator. Further-
more, the embedded watermarks may serve as a form of
copy protection-the detection of these indicators can
trigger protection or royalty collection mechanisms like
the current copy protection standard. Such a standard
would incorporate digital watermarking under consid-
eration in the Digital Versatile Disc (DVD) standardiza-
tion committee, plus some commercial systems
advertising the capabilities of “web-crawling” copy-
righted images.

The end applications of the embedded watermarks
impose specific criteria and requirements on the corre-
sponding watermarking schemes that will give rise to
the desired properties of the watermarks. This is why
we avoid the term “data hiding” or “data embedding”
and prefer the term watermarking. Data hiding refers
to the process of hiding data in an object or media type
in general and does not distinguish the end applications,
nor does it describe adequately the desired properties
of a particular class of watermarks.

Related work
Watermarking research is relatively new in many

fields. In the previous section, we briefly introduced
some published image watermarking techniques, most-
ly from signal-processing perspectives. A majority of
existing techniques focus on embedding data into still
image and video, some of which has shown a certain
degree of robustness against JPEG compression, filter-
ing, limited cropping, and rotation. Interestingly, many
have equated “robust” data hiding to adequate copy
right protection without a clear understanding of the
limitations. Such arguments often understate the
requirements and overstate the goals and benefits of the
techniques developed. For example, counterfeit-water-
marking schemes can be developed to allow multiple
claims of rightful ownerships on an image, despite the
image being watermarked. The attempt to remove the
watermark is not even necessary. (A recent study on the
classes of watermark attacks appears elsewhere.“)

Watermarking techniques not
designed carefully for 3D objects can
easily fall prey to trials and tribula-
tions similar to those experienced by
image watermarking. In this article,
we provide the background and
general formulations of watermark-
ing 3D objects, and address the

In robust watermarking,

the embedded

watermark will
watermarking of 3D models for ver-
ification applications. We focus on
fragile 3D watermarking, which has
a clearly defined set of requirements

persist even in the

face of removal.
and a clear goal of detecting and
locating unauthorized alterations. We do not intend to
address the entire spectrum of issues in 3D watermark-
ing and present solutions for every application.

Embedding data in 3D models
To our knowledge, only one published research paper

addresses the watermarking of 3D objects. Data hiding
in 3D polygonal models was recently studied to address
copyright protection concerns in VRML models.’ The
embedding algorithms operate on 3D polygonal mod-
els of geometry by modifying either the vertex coordi-
nates, the connectivity, or both. The schemes reported
do not need the reference original models to extract the
embedded data. In addition to invisible data embed-
ding, the literature also discusses a method to embed
patterns into a model for visible water-marking with a
focus primarily on embedding data. The embedding
methods reported incorporated certain robustness cri-
teria against some transformations like resection and
local deformation by using repeated strings of data bits.
A randomization of coordinates-a more general class
of geometric transformation, remeshing, and so on-
can destroy the embedded data.

In the reported work, the techniques provide little
security to combat attempts at removal. In fact, anyone
who knows the data embedding and extraction algo-
rithms can extract the embedded data bits, and subse-
quently remove them. An optional stego-key described
was not integrated into the watermark embedding and
extraction processes; rather, it is a key for encrypting a

1 Encoding,
decoding, and
comparing
embedded
watermarks in
an object.

k,

Original object, 0
I I

YEI---

Watermarked object, 8

Test object, 0’ Original object,
I 0 (optional)

LQ,’
c

(optional)

readable message into a sequence of bits for embedding
purposes-even if someone recovers the bit sequence,
they cannot read it. But an attacker does not need to
know the message before he can remove the entire bit
sequence. Since the authors addressed robust water-
marking applications, the lack of protection and secure
decoding may eventually defeat the entire purpose of
watermarking the models.

We believe that any watermarking scheme should
incorporate some form of secure means in the watermark
embedding and extraction processes. (Note that the
degree of security may differ from the stricter require-
ments in data encryption and decryption.) This belief
influences our formulations, described in later sections.

extends the error-diffusion tech-
niques in image half-toning to pro-
duce small and random changes.
This smoothly spreads out errors
produced locally. The watermark
extraction function, wx () , is com-
puted from a given verification key
and can be implemented in the form
of binary lookup-tables. In the image
verification stage, a watermark
image is extracted from a test image
(presumably watermarked) by first
computing the watermark extrac-
tion function from the verification
key, then applying the function to
every pixel to obtain the extracted
watermark pixel. The extracted
watermark image lets users visually

detect unauthorized alterations made to the image (post-
watermarked) and verify or authenticate the content.

The goals and the principles of 2D-image and 3D-
object vGrification have significant similarities. Howev-
er, the method employed in the image domain cannot
be directly mapped to the 3D objects. ,

A generalized model for watermarking
3D objects

t

In robust watermarking research, many issues have
not been well defined, let alone resolved. These include,
but are not limited to, the spectrum of possible attacks
and transformations, performance measurements, and
other issues. Ohbuchi, Masuda, and Aono’s study’ pro-
vides a beginning vertex in the quest for better and more
robust water-marking techniques. Understandably, these
issues warrant further detailed study in the future.

lmage verification with digital watermarks
In the image domain, Yeung and Mintzer described a

technique7 for quickly verifying that the content of an
image has not changed since the image was water-
marked via the use of an invisible watermark embedded
into the image pixel values. This “fragile” watermark-
ing technique consists of a watermarking process that
stamps a watermark pattern invisibly onto a source
image using a verification key, plus a watermark extrac-
tion process that decodes the embedded watermark
from a watermarked (or stamped) image, based on the
verification key. The watermark pattern is designed to
allow quick visual inspection.

In the watermarking process, a binary map of a water-
mark image is embedded into the source image. The pro-
cessing applies a watermark extraction function JO the
selected pixel, tests the extracted watermark value to
determine if it equals the desired watermarkvalue, and,
if necessary, modifies the pixel value to produce the
desired watermark bit value. The modification is cou-
pled with a modified error-diffusion process, which

For better understanding, we present the definitions
and formulations of watermarking 2D and 3D objects,
and discuss the 3D features and verification process fur-
ther. Also note that the formulations presented here are
the generalized forms for both robust and fragile water-
marking.

Definitions and formulations
We have introduced the terminology and different

classes of watermarking schemes. We next present the
generalized formulations of’ invisible watermarking
schemes. We define in general terms the process of
watermarking (watermark insertion/embedding) an
object and the process of watermark extraction. Figure
1 illustrates both the watermarking process, by which a
watermark is inserted into an object, and the extraction
process, by which a watermark is recovered and then
compared to the inserted watermark.

Here we denote an object, 0; a watermark, W, com-
prising a sequence of owner-supplied data bits W = {WI,
~2, . . .}; and the watermarked object, 0. In addition, we
also define a key, K, which is a sequence of bits that helps
define the specific mapping function for additional secu-
rity in watermark insertion and extraction. E is an \
encoder function if it takes an object, 0, and a water-
mark, W, incorporates the mapping supplied by a key, K,
and generates a new object called the watermarked
object, 6, for example, &CO, IV”=6 Note that we do
not exclude the possibility that the watermark, W, is
dependent on the object, 0. In such cases, the encoding
process described above still holds. Also note that in
some watermarking schemes the watermark, W, can
actually be the key, K, or it can include the information
provided in K. In other words, &CO,) = 6.

A decoder function D takes an object, 0’ (0’ can be a

«4! A 's% *' *:••"*■ •

Key,K

Decoded IV
watermark

Key,*

Original
watermark, W

(optional)

watermarked or unwatermarked object, and possibly
corrupted), and recovers a watermark, W, or evidence
of the original watermark’s presence, W, from the object.
If available, a decoding key, K, can help define the spe-
cific mapping of the decoding function. In this process,
an additional object, 0, can also be included, often the
original (and unwatermarked) version of 0’. This hap-
pens because some decoding schemes may use the orig-
inal or reference objects in the water-marking process to
provide extra robustness against intentional and unin-
tentional corruption of pixel values. More formally, if

\ the decoding scheme involves a reference 0, DK (0’, 0)
= P (IV), where P is a function indicating the presence
of a watermark, W, in 0’. We call this type of water-
marking scheme a “private” watermarking scheme.
WhenP(W) = W, the decoding simply returns the
extracted watermark W. P may also be of the form P()
= Evid() that returns a scalar value indicating the evi-
dence of the presence of Win 0’. Again, in some schemes
the watermark itself may suffice as the key for extrac-
tion. In such cases the information encoded is already
anticipated in the decoding process, like checking
whether a presumably watermarked object contains a
particular data sequence supplied by its owner.

If the decoding does not need 0 in the watermark
extraction, we can write a general decoding function as
DK (0’) = P (IV). This type of watermarking scheme is
called a “public” watermarking scheme. Note that in
some water-marking schemes, the decoding function, D,
may depend on the specific watermark embedded in the
encoding process.

When P(w) = W, the extracted watermark, W, is
then compared to the reference watermark, W, by a
comparator function, C6, and a binary output decision
is generated indicating a match or otherwise:

(1)

Here, c is the correlation of the two watermgks. With-
out loss of generality, a watermarking scheme can be
treated as a three-tuple (E, D, Cs), such that D (E(O,W))
= W for any object, 0, and any allowable watermark, W.

In robust watermarking, the encoding and decoding
functions have to be designed such that, given the test
object, 0’, is a derived or transformed object from the
watermarked object, 6, that is, O’=T& for some trans-
formation T: (1) if the decoding returns a value P(W) =
Evid() indicating the presence of the watermark W in
the test object 0’, then the value has to be sufficiently
large; or (2) if P(w) = W, then C(W, VV) = 1 for a suf-
ficiently large c.

In fragile water-marking the encoding and decoding
functions have to be designed such that, given the test
object OLdeviates from the watermarked object 0, that
is, 090: (1) if the decoding returns a value
P(W) =Evid() indicating the presence of the watermark
Win the test object 0’, then the value has to be suffi-
cientlysmall; or (2) ifP(VV) = W, then C(W, w) = 0 for
a sufficiently large c.

Both robust and fragile watermarking schemes can be
further classified into public and private schemes accord-

ing to whether a scheme requires using the reference
original 0 in the decoding. In practice, since fragile
watermarks are used for verification applications-the
benefit of which includes the capability to verify an object
without resorting to comparing with a reference origi-
nal-it does not make sense to have a “private” fragile
watermarking scheme.

30 features for watermarking
Feature-based watermarking schemes that embed a

watermark W = (wl, wz, l ..) into a set of derived fea-
tures F(0) = cfi(O), fi(O), l .+ represent one common
approach towards watermarking an object. Usually, the
feature set cfi(O),f2(0), ...} is chosen such that slight
modification of individual features does not perceptu-
ally degrade the functionality of the object, 0. In the
image domain, it is the perceptual quality of an image.
An example of such a set of features would be transform
domain (like DCT and wavelet) coefficients, which con-
tain significant energy content.

In a 3D model, the modification will have to be done
on a set of features that will not significantly change the
model’s end uses and degrade the perceptual quality of
the graphics generated from the model. A 3D object
model may contain many types of information, includ-
ing geometry, color of the vertices, directions of nor-
mals, and images for texture mapping.

We will assume, without loss of generality, that the 3D
objects of interest are described using a sequence of
polygonal surfaces. In particular, each surface S will be
of the form {vi, v2, . . . , vn}, where Vi is a vertex in 3D space
specified by its 3D coordinate (Xi, yi, Zi). In describing OIU

watermarking algorithm for verification, we will use only
the surface information of an object (the sequence of sur-
faces Si, S2, ...), each of which is a polygon. In VRML,9
surface information of an object is described using the
IndexedFaceSet construct of the following form:

IndexedFaceSet {
coord Coordinate C

vertex [...I
I
coordIndex [...I

I

Polygonal surfaces are fundamental descriptors of 3D
objects. While other descriptors exist, such as global
lighting information, color of the vertices, directions oi
normals, and texture, they’re not always necessary in
describing 3D objects. In addition, it is straightforward
to include them into the watermarking techniques, ij
desired. For example, in texture maps of images, 2C
image watermarking techniques can be directly applied
onto the images in addition to water-marking the polyg
onal 3D objects.

Watermarking 3D objects for
verification

The technique we propose for watermarking 3E
objects for image verification inherits several character,
istics from the 2D image verification technique describec
by Yeung and Mintzer.7 Common to both techniques an

Cs(w',w) = \l clS .
* ' 0 otherwise

2 A flowchart
of the water-
mark decoding
process.

t
i= i+l i

I the processes of stamping an invisible watermark,
I decoding based on a verification key, and
I encoding based on making slight modifications to the

object or image to meet certain criteria.

A key difference is that images lie on a fixed and regular
grid, while 3D objects do not. Our technique overcomes
this additional constraint (or rather, the freedom) inher-
ent in 3D objects.

Before describing the watermarking technique, we
need to state some notations. The list of 3D vertices is
ordered as vi, ~2, vg, The set of vertices, vj’s, are con-
nected on some surface to vi (these vertices are called
the adjacent neighbors of vi) such that j < i and the ver-
tex vi itself is denoted by N(vJ . The number of this col-
lection is denoted by 1 N(vJ I. A watermark signal, W,
represents an ordered set of binary value used for inser-
tion into the 3D object and for testing the authenticity
of the objects. For the discussion that follows, we will
assume W to be a 2D order set indexed by W(i, j) . Aver-
ification key, K, represents a set of lookup tables (LUTs)
with binary entries and is necessary for decoding a 3D
object.

We will describe the water-marking technique on one
3D object, 0. The generalization to several objects is
straightforward. Following the notations introduced ear-
lier, the watermarked object is denoted by 6, and 0’
denotes a test object whose authenticity we want to verify.

Decoding the watermarked object
The goal of decoding is to extract a watermark, W,

from the test object, 0’, and compare against the water-
mark, W, to test for changes made to the 3D object, 0.
Our scheme is a public scheme, meaning our decoding
does not use the original object. We will describe P()
(and thus the comnarator CR of Eauation 1) later.

60 (b)
3 Three sets of location indices on 64 x 64 grids for
three different objects: (a) a chair model with 450
vertices (shown in Figure 9), (b) a coffee pot model
with 524 vertices, and (c) a tank model with 1,512
vertices (shown in Figure 8).

The process follows: Given a vertex v of the object 0’,
we first generate two values, the location index, L(v),
and the value index, p(v). L(v) is used to index into the
watermark, W, for extraction of the bit value, W(L). (We
will refer to the indices as L and p when there is no ambi-
guity regarding the vertex of interest.) The value index,
p, ext+cts the bit from the verification key, K, at loca-
tion p, represented by K(p). If the two bit values W(L)
and K@) do not match, we say that the vertex v is
invalid. The purpose of watermark embedding is to
make sure that every vertex in a 3D object is valid
according to the verification key, K, and watermark, W.
We illustrate this process in Figure 2.

If an arbitrary key is used instead of the correct key, K,
about 50 percent of the vertices will be invalid. Thus,
without a’correct key, you cannot extract the watermark
correctly.

Computing the location index. To generate the
location index, L, we first compute N(v) of the current
vertex v. The 3D coordinates of the vertices in N(v) are
then combined and hashed to produce the index L. The
basic key step to generate a 2D index L = (Lx, LJ follows:

[Algorithm Compute Location Index]

l.Set S=(sx,sy,se)=-l c

I 4
uti(v) u

WV

2.N, = ConvertToInteger(sx), NY = ConvertToInte-
ger(s,), N = ConvertToInteger(s,)

3. Lx = f,(N,, NY, NJ and L, = fyWx, NY, W

In step 1, we find the centroid of the vertices in N(v).
This step seeks to combine the list of 3D coordinates
into a three-tuple. Other methods, like the median and
mode, can also be employed. Step 2 converts the float-
ing-point numbers from step 1 into integers through
the ConvertToInteger() routine. Step 3 then combines
the three integers derived in step 2 to obtain two inte-
gers, L, and Ly. An example fx is (Nx + Ny + Nz) mod
XSZE. In summary, the three steps provide a mapping
from the centroid (or other combinations) of the ver-
tices in N(v) to a discrete 2D grid of size XSIZE by YSIZE.
The location index, L, denotes the location on the grid.
Finure 3 shows three sets of location indices corre-

/■=1

Compute
W(L(VJ)) + K(p(vj))

(c)

/W(L(VJ))\
\ Yes Mark valid

\K(p(vj))S at VJ

x -7 /

Mark invalid
at v/

1

No Yes
Done

sponding to three different objects.
The 2D grid is chosen to be 64 x 64,
and a white vertex represents an
occupied 2D location.

Computing the value index.
Next, to generate the value index,
we take the 3D coordinate of v and
map it into a three-tuple of integers,
denotedbyp = (pl,p2#3)*~j'funC-

tions for scaling a floating-point rep
\ resentation to integers (such as

ConvertToIntegerO) serves for this
purpose. The valuep is analogous to
the color information of a pixel
value. Thus, the combination of
location L andvaluep are analogous
to the combination of pixel location

i= 1F
Compute

WW) + K(PW 4

and color information in 2D images. Note, however, that
mapping the collection of location indices does not cover
all the 2D pixels in a regular grid.

The value index p is then used as the input into the
key, K, to derive the bit K(p). This bit value should
match the watermark bit at location L-the bit W(L)
would validate the 3D vertexv, for example. The LUT in
the key K can be gen&rated using a pseudo-random
number generator. The size of the LUT should also be
sufficiently large to be secure. In our experiments, we
use a key with 256 x 256 x 256 = 224 entries. In fact,
our LUT consists of three separate LUTs, Ki, &, and KS,
each with 256 binary entries. The value of K(p) is then
computed as

K@) =Kl(pd@Kz(pz)@K3@3) (2) be a time-consuming process and require intensive user
interaction (rotating the model and zooming in on

where $ denotes binary XOR. We only need to maintain details to see changes). The difficulty of verification can
256 x 3 = 768 binary entries. grow in complex models. Another method allows the

user to visualize the extent of the modifications madeb Verification. One approach to compare the extract- to object 0 using a 2D technique. This technique allows
ed watermark W and W is to count the numbFr of mis- a user to immediately see the extent of modification
matches between K@(v)) and W(L(v)). Precisely, we (none, some, or a lot) and can be used with the 3D visu-
can compute a number c, the correlation between two al-inspection technique. We describe a technique to visu-
watermarks, as follows: alize and verify models in a 2D image plane later.

l{v : K(p(v)) = w(LW}l Embedding the watermark
C =

II ‘II
(3) The task of watermark embedding is to make slight

V changes to the geometry of an object such that

When no changes have been made to 0, c = 1. To detect
that no changes have been made to 0, we require that
S = 1 in Equation 1.

All the detected invalid vertices in a 3D model can be
highlighted (for example, using different colors at these
vertices) at rendering time for quick identification and
localization of the modifications through visual inspec-
tion. In general, the set of invalid vertices consists of
modified vertices in a 3D object and some of their adja-
cent neighbors. The adjacent neighbors of a modified v
may be flagged “invalid” because their location indices
could be changed by the modification made to v. We will
discuss some experimental results of such later.

Visual inspection of 3D models with a naked eye can

K@(v)) = WLW) (4)

holds for every vertex v in the object. We will describe a
technique for achieving this through the modification
of only v. Generalization to include N(v) and other rel-
evant information (such as lighting) is straightforward.
We illustrate this embedding process in Figure 4.

An important consideration in computing Equation
4 is that of causality. Since we are perturbing vi, it is
essential to perturb them in the correct order (VI, ~2, a.*,
for example). This causality concern is already built into
the definition of N(vi), where the dependence is never on
those unvisited vertices.

Figure 5 shows an ordered traversal and nrocessinn

4 A flowchart
of the water- l

mark embed-
ding process.

5 An illustra-
tion showing an
ordered traver-
sal of the
vertices.

;'=1

i

\ No /W(L(vtf\ \ Yes
/'=/+1

•JYes

\ V/n/u,\\ J

TNO

Perturb Done

= /Cl(pi)0iC2(p2)e/C3(p3)

6 A 2D watermark of size 100 x 63
is a bitmap of a logo (a). The set
of position indices for the tank
model (b).

WMK
(a)

00 W

w

w
7 Visualizing the extracted watermarks: (a) extracted from watermarked object 0’ , (b)
extracted from a slightly modified version of watermarked object 0’ , and (c)alteration detect-
ed (highlighted difference).

/
I*
(

Bf some vertices. If the current vertex in processing is
~4, then vi, ~2, and v3 are already processed. Then, the
calculation of the location indexL(v4) involves only the
vertices 19, ~3, and ~4.

To perturb a vertex v = (x, y, z) to v’ = (x’, y’, z’), we
first move the individual coordinate by L\x (or AY or A,),
and slowly increment the perturbation until Equation 4
holds. The first few steps are

1.v’t(x+4r,yA,
2.v’+ (x-Ax,y,z),
3.v'+ ky + AyA,
4.v'c (x,y-AY,z),
5.v'+ (x,y,z + &I,
6.v'4dx,y,z-&L
7.v'+(x+&,y+LSyA,

and so on.

Visualizing the decoded watermark
After a watermark has been extracted from a 3D

object, the number of times Equation 4 is not satisfied
can indicate the amount of modification made to the
object. The invalid vertices can be highlighted in 3D
using rendering time for visual inspection. Another
method allows the user to visualize the changes in 2D.
This eliminates the need for constant user’s interaction
with the system (no zooming, panning, and rotating of
the 3D model). To achieve this, we select a 2D-water-
marksignal, W, which is meaningful whenviewed as an
image. Figure 6a shows an example watermark, W,
which is a bitmap of a logo. Figure 6b shows the set of
position indices of a 3D object on the same 2D grid, upon
which W is based.

To visualize the extent of modification made to a 3D
model, we propose to superimpose the location indices
onto the watermark signal W. We construct a grayscale
image W’ from W, the set of location indices of 0’,

L(O'), the sets Gl = {v E 0' : K@(v))
= W@(v))), and GZ = {v E 0’ :
K@(v)) z W@(v))}. The image W’
consists of only 4 values: 0,64,192,
and 255. To begin the process, we
set the pixels in W” to take on the
value 192 if the corresponding bit
(at the same location) of W is 1, and
64 if the bit is 0. Then, on the loca-
tions specified by L(0’) we modify
the pixel values to either 0 or 255,
according to whether the corre-
sponding v is in G1 or Gz. For those
valid v’s in Gl, the pixels with value
64 become 0, and pixels with value
192 become 255. On the other
hand, for those invalid v’s in G;2, the
pixels with value 64 become 255,
and pixels with value 192 become
0. The effect is to both highlight the
location indices (using pixel values
0 and 255) and to indicate those
locations where the invalid v’s were
mapped. We call the process visual-

izing the extracted watermark.
If we perform a watermark extraction process for

unwatermarked objects, statistically about 50 percent of
the extracted pixel value v’s are invalid. This acts like
superimposing a noise pattern onto the watermark
image W: the processes of changing the pixel values from
192 to 0 or from 64 to 255 significantly degrade or even
destroy the watermark image for visualization purpos-
es. On the other hand, the extracted results from a
watermarked object clearly show the watermark image.
Figure 7 shows W’ of the object after watermark extrac-
tion and the results after modification of the water-
marked object. Figure 7a shows W” of a watermarked
object that has not been modified. Here, we can clearly
see the logo image. Further-mare, pixels with value 0 and
255 indicate the position indices. Finally, Figure 7b
shows W’ of a watermarked object that has been slight-
ly modified (a view of the object is shown in Figure 8~).
We use a red circle on a location indexhighlighting mod-
ified 3D vertices in Figure 7c. Comparing 7a and 7b, we
can see that a few pixels differ. These locations represent
the location indices of those 3D vertices that have been
modified.

Some enhancement features
A few features will help enhance the watermarking

process. Specifically, we will address those discussed \
earlier.

Detecting object cropping. Protection against
cropping-rather, detection of object cropping
attempts-results from the dependencies built in when
the location index is computed: when a neighboring
vertex u of a vertex v is removed, a different L results.
However, in an alternative to the scheme, further pro-
tection via cropping detection may also be added by
making the computation of the position index, p(v),
also dependent on the neighbors of vertexv. For the fol-

Zv'^U + Ax.y + Ay.z),

»•_.....-,',,...,_.' ,, .

b(v)>
0’ :
1W’
192,
,we
the

3 bit
and
oca-
dify
m,
rre-
lose
Aue
llue
her
the
55,
)me
the

1ues
ose
rere
ual-

for
It of
like
lark
-0m
ven
IOS-
n a
lge.
rac-
ter-
ked
arly
and

7b
:ht-
3c).
od-
we
:ent
een

ing
sed

nst
ing
len
ing
Its.
ro-
bY

:v>,
fol-

lowing discussion, we will denote N(vJ = (~1, ~2, . ..,
UMiMi), and p(vJ = Cpl(ViI, p2(Vi), p3CViII. K(p(viI) can

instead be computed as

where CB denotes binary XOR. Thus, the lookup table K
is applied not just to the position indices of the current
vertex, vi, but also to all of its other elements of N (Vi).
When some of the neighbors are missing, due to crop-
ping for example, a possibly different K(p(vJ) results.
In other words, cropping will produce a mismatch on
about half of the extracted results on the boundaries.

Guarding against potential attacks. In access-
ing the scheme’s resistance against tampering, we have
to look at how easy it is to forge a “good” watermark
after an alteration without the knowledge of the key
(or the set of binary LUTs). In other words, the alter-
ation will go undetected in the verification process.
Deciphering the content of the set of tables proves
tedious thanks to the key length (768 bits) and the
dependencies of one vertex on its neighbors in the
decoding of the watermark, which make the inversion
computationally infeasible without knowledge of the
watermark. The exhaustive inversion computation may
be made slightly easier by having complete or partial
knowledge of the watermark image. For example, while
it is visually pleasant to have corporate logos as water-
mark images, such a practice can lead to an attacker
guessing or experimenting to find partial information
on the watermark for subsequent attacks. Though not
often feasible, we can guard against potentially sophis-
ticated attacks by further scrambling the watermark
with a key. This key can be the same or different from
the one used to generate the watermark extraction

’ function. Alternatively, we could modulate the water-
mark image into some random-looking patterns using
some noise signal, which in turn can serve% the key in
decoding the “chaotic image mixing” technique. In this
case we need ‘to incorporate an additional step of
descrambling the watermark prior to visual verification.

Results and discussion
Figure 8 shows a tank model at different stages of

watermarking. Figure 8a shows the original model 0.
Figure 8b shows the same of view of the watermarked
model 6. We chose this view to show as many 3D ver-
tices as possible and to illustrate that even after water-
marking, the two models are visually identical. In
Figure 8c, we make a slight change to 6 to form 0’: the
top of the tank is now made sharp and pointed. To make
this change, the locations of 12 vertices are changed in
6 to form 0’. The decoding reports that 15 vertices are
invalid. Of the 15 vertices, 12 vertices have been mod-
ified, with the remaining 3 vertices classified as invalid
because some of the modified 12 vertices changed the
location indices of neighboring vertices. This violates
the right-hand side of Equation 4, even though the left-
hand side does not change. Figure 7c lets us visualize

(a)

the extracted watermark from this modified object ir
2D. From this view,
slight modifications

we can immediately see that on13
have been made to the 3D object.

Generally, decoding will report more vertices a!
invalid because of using adjacency information. How
ever, adjacency information is crucial in describing 31:
objects-and thus cannot be omitted. We can furthe!
study methods that precisely locate the altered verticer
and polygons. We will also look into the techniques tha

IEEE Computer Graphics and Applications

B A tank model

rhowing (a) a
view of the

original, (b) the

same view after
the original has

been water-

marked, and

(c) the same

view after the

watermarked
original has

been modified.

K(p(yd) = KifoiCui)) ®K2(p2(ul)) ©K3(p3("i)) ©
Ki(pi(u2)) ©K2(p2(u2)) ®K2(p2(u2)) ©... ©
^(pi(uMi)) ©K2(p2(uMi)) ©K3(pz(.uMd) (5)

43

9 A water-
marked chair
model: (a) one
view, (b) anoth-

er view, and
(c) a zoomed-in
view.

incorporate explicit authentication and verification of
partialVRML models. Currently, verification of a partial
model is implied: all vertices and polygons in the par-

tial model can be verified except those on the outer-
most boundaries, which will appear to have been
altered since watermarking.

In Figure 9, we show a watermarked version of a sim-
ple chair model. This example is chosen to illustrate that
even on models with simple surfaces, watermarking
does not induce visible artifacts. Figures 9a and 9b show
different views of the chair. Figure 9c shows a zoomed-
in view. Even in the zoomed-in view we cannot perceive
any artifact due to watermarking.

For a fragile watermarking scheme to be effective and
secure in verification and authentication applications, it
must be very difficult-better yet impossible-for an
interloper to decide whether an object has been water-
marked, what the watermark is, and where the infor-
mation is embedded. This must be done in such a
manner that an attacker cannot reapply the correct
watermark after an alteration to fool the verification
process. In this sense, the experimental results obtained
indicate that our verification achieves this goal. With-
out the proper key, it’s very unlikely that anyone could
extract the watermark, or even decide if the model is a
watermargd version. In addition, an interloper, after
altering the model, cannot remap the geometry to
restore the changed watermark data to its original ver-
sion without knowing the key and the watermark.

Our proposed technique allows us to detect, local-
ize, and visualize the locations and extent of modifi-
cations made to the geometry of 3D objects. To extend
the idea to indicate modifications to other relevant
information, such as color, normals, and texture, we
can incorporate these parameters, where available,
into the mapping and hashing processes in computing
location and value indices. This allows a multiple-level
verification in which, at the most fundamental level,
only the geometry is verified, then the lighting infor-
mation, followed by texture mapping. Color and tex-
ture maps can be watermarked also by image-based
techniques for respective verification. The incorpora-
tion and integration of these other features warrant
future investigations.

Conclusions and future work
In this article, we have presented definitions and for-

mulations for generalized watermarking of 3D objects.
We also proposed new watermarking techniques for 3D
object verification to detect unauthorized alterations in
the underlying polygonal models. The goal of such
watermarking techniques is to embed watermarks that
are sensitive to slight modification and to allow quick
detection, localization, and visualization of the modifi-
cations. We achieved verification and authentication
without resorting to the original model for comparison.

We have discussed some future investigations, which
include developing visualization tools to detect and
localize alterations, and the techniques that can provide
‘enhanced functionality like authentication and verifi-
cation of partial VRML models and multilevel authenti-
cation of 3D models.

Fragile watermarking is only one category of water-
marking. To broaden the field of applications, we also
need to study robust watermarking of 3D objects. Dif-

ferent sets of criteria and challenges exist for robust
watermarking.

Watermarking technologies are new to many
researchers in the signal (audio/image/video) pro-
cessing and steganography fields, and even newer to the
computer graphics community. Inherently, digital
watermarking of objects, like its image counterparts,
proves a difficult problem. Understandably, the existing
technologies, in particular robust watermarking tech-
niques, may not yet have achieved their ambitious goals
and lived up to the high expectations. Nevertheless, the
topic is an important one in any field that involves media
content creation, manipulation, and delivery-
computer graphics not excluded. We hope introducing
and investigating the topic will help generate more dis-
cussions and prompt future work in this area. n

References
1. R.Ohbuchi, H. Masuda, and M. Aono, “Watermarking

Three-Dimensional Polygonal Models through Geometric
and Topological Modifications,” IEEE J. on Selected Areas
in Comm.,VoI. 16, No. 4, May 1998, pp. 551-560.

2. W.R. Bender, D. GruhI, and N. Morimoto, “Techniques for
Data Hiding,“Proc. SPIE: Storage andRerrieval ofrmage and
Video Databases, Vol. 2420,1995, pp. 164-173.

3. I.J. Cox et al., Secure Spread Spectrum Wa&ermarkingfor
Multimedia, Tech. Report TR-95-10, NEC Research Insti-
tute, Princeton, N.J., 1995.

4. N. Nikolaidis and I. Pitas, “Copyright Protection of Images
using Robust Digital Signatures,” Proc. IEEE Int’l Conf.
Acoustics, Speech, and Signal Processing, IEEE Press, Pis-
cataway, N.J., 1996.

5. R.G. van Schyndel, A.Z Tirkel, and C.F. Osborne, “A Digi-
tal Watermark,” Proc. IEEEZnt7 Con, Image Processing, Vol.
2, IEEE Press, Piscataway, N.J., 1994, pp. 86-90.

6. M. Swanson, B. Zhu, and A. Tewfik, “Transparent Robust
, Image Watermarking,” Proc. Znt7 Con. Image Processing

96, Vol. 3, IEEE Press, Piscataway, N.J., 1996, pp. 211-214.
7. M.M. Yeung and EC. Mintzer, “An Invisible Witermarking

Technique for Image Verification,” Proc. Znt7 Conf. Image
Processing 97, Vol. 2, IEEE Press, Piscataway, N.J., 1997,
pp. 680-683.

8. J. Zhao and E. Koch, “Embedding Robust Labels into
Images for Copyright Protection,” Intellectual Property

Rights and New Technologies, Proc. KnowRight Conf.,
1995, pp. 241-251.

9. ISO/IEC 14772-111997, The Virtual Reality Modeling Lan-

ww 3 1997, http://www.vrml.org/Specifications/
VRML97/.

10. S. Craver, B.L. Yeo, and M.M. Yeung, “Digital Watermark-
ing-Technical Trials and Legal Tribulations,” Comm. ACM,
Vol. 41, No. 7,1998, pp. 45-54.

Boon-Lock Yeo manages the Video
Technology department for the
Microcomputer Research Labs of
Intel Corporation. He received his
BSEE from Purdue University in
1992, and his MA and PhD degrees
from Princeton University in 1994

and 1996, respectively. He holds four US patents, has 73
pendingpatent applications, and was the recipient of the
1996 IEEE Circuits and Systems Society Video Technology
Transactions Best Paper Award. He is an Associate Editor
for IEEE Transactions on Image Processing. His interests
are in the general areas of image and video processing.

Minerva M. Yeung is currently a
Senior Staff Researcher and manag-
er of a research group working on
media protection and management
for the Microcomputer Research Labs
of Intel Corporation. She received a
BSEE (with Highest Distinction)

from Purdue University in 1992, and her PhD and MA
degrees from Princeton University in 1996 and 1994,
respectively. She is an associate editor of the new IEEE
Transactions on MultiMedia, a guest editor of a special
issue of the Communications of the ACM on digital
watermarking, and a co-chair of the Storage and Retrieval
of Images and Video Databases conference in 1999. Her
research interests are in the general areas of image and
video processing, content protection, computer-human
interaction, and muhimedia information systems.

Contact Yeo at Microcomputer Research Labs, Intel
Corp., SC12-303, 2200 Mission College Blvd., Santa
CZara, CA 95052-8119, e-mail boon-Zock.yeo@inteZ.com.

http://www.vrml.org/Specifications/

'wf •■'*•* ISP

't M|>,'**;#, A

	edoc_991137121.sf298.pdf
	Form SF298 Citation Data

