
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

AN ARCHITECTURE AND PROTOTYPE SYSTEM FOR
AUTOMATICALLY PROCESSING NATURAL-

LANGUAGE STATEMENTS OF POLICY

by

Vanessa L. Ong

March 2001

Thesis Advisor:
Thesis Co-Advisor:

James Bret Michael
Neil C. Rowe

Approved for public release; distribution is unlimited

20010612 101

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 2001

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
An Architecture and Prototype System for Automatically Processing Natural-
language Statements of Policy

6. AUTHOR(S) Ong, Vanessa L.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

. PERFORMING ORGANIZATION
EPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Organizations are policy-driven entities. Policy bases can be very large and complex; these factors are compounded
by the dynamic nature of policy evolution. Thus, comprehension of the ramifications of both policy modification and assurance
of the consistency, completeness, and correctness of a policy base necessarily requires some level of computer-based support.

A policy workbench is an integrated set of computer-based tools for developing, reasoning about, and maintaining
policy. A workbench takes as input a computationally equivalent form of policy statements.

In this thesis we explore approaches for translating natural-language policy statements into their equivalent
computational form with minimal user interaction. We present the architecture of a natural-language input-processing tool
(NLIPT), which we designed to augment a policy workbench. NLIPT components consist of an extractor, index-term
generator, structural modeler, and logic modeler.

We experimented with a prototype of the extractor. The extractor successfully parsed twenty-seven of a sample of
ninety-nine of U.S. Department of Defense security policy statements. An additional twenty-one statements were correctly
parsed based on the syntactic structure of the input.

14. SUBJECT TERMS Natural-language Processing, Policy, Security, Formal Methods 15. NUMBER OF
PAGES

108
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution is unlimited

AN ARCHITECTURE AND PROTOTYPE SYSTEM FOR AUTOMATICALLY
PROCESSING NATURAL-LANGUAGE STATEMENTS OF POLICY

Vanessa L. Ong
Lieutenant, United States Naval Reserve

B.S., University of Oklahoma, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2001

Author:

Approved by:

Vanessa L. Ong

James Bret Michael, Thesis Advisor

^hjuUe^^e
Neil C. Rowe, Co-Advisor

7Xf/
TJan C. Boger,'"Cnairinan

Department of Computer Science

111

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

Organizations are policy-driven entities. Policy bases can be very large

and complex; these factors are compounded by the dynamic nature of policy evolution.

Thus, comprehension of the ramifications of both policy modification and assurance of

the consistency, completeness, and correctness of a policy base necessarily requires some

level of computer-based support.

A policy workbench is an integrated set of computer-based tools for developing,

reasoning about, and maintaining policy. A workbench takes as input a computationally

equivalent form of policy statements.

In this thesis we explore approaches for translating natural-language policy

statements into their equivalent computational form with minimal user interaction. We

present the architecture of a natural-language input-processing tool (NLIPT), which we

designed to augment a policy workbench. NLIPT components consist of an extractor,

index-term generator, structural modeler, and logic modeler.

We experimented with a prototype of the extractor. The extractor successfully

parsed twenty-seven of a sample of ninety-nine of U.S. Department of Defense security

policy statements. An additional twenty-one statements were correctly parsed based on

the syntactic structure of the input.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

II. A POLICY WORKBENCH 5
A. POLICY 5
B. POLICY WORKBENCH 6
C. A GENERAL POLICY WORKBENCH 7

III. NATURAL-LANGUAGE INPUT PROCESSING TOOL 13
A. INTRODUCTION 13
B. POLICY WORKBENCH ARCHITECTURE 14
C. NLIPT ARCHITECTURE 16

1. Extractor 17
2. Index-Term Generator 18
3. Structural Modeler 19
4. Logic Modeler 20

D. SUMMARY 21

IV. RELATED WORK 23
A. CONTEXT FREE GRAMMARS AND MODAL LOGIC 23

1. Context-Free Grammars (CFG) 23
2. Modal Logic 25

B. THE BRITISH NATIONALITY ACT AS A LOGIC PROGRAM 25
C. INCAS: A LEGAL EXPERT SYSTEM FOR CONTRACT TERMS

IN ELECTRONIC COMMERCE 27
D. SACD: A SYSTEM FOR ACQUIRING KNOWLEDGE FROM

REGULATORY TEXTS 29
E. PARALLEL NATURAL-LANGUAGE PROCESSING ON A

SEMANTIC NETWORK ARRAY PROCESSOR 31
F. KNOWLEDGE EXTRACTION FROM TEXT: MACHINE

LEARNING FOR TEXT-TO-RULE TRANSLATION 33
G. UNDERSTANDING OF TECHNICAL CAPTIONS VIA

STATISTICAL PARSING 36

V. EXTRACTOR COMPONENT OF NLIPT 39
A. INTRODUCTION 39
B. OVERVIEW 39
C. EXTRACTOR PROGRAM 41
D. SAMPLE OUTPUT FROM EXTRACTOR COMPONENT 43

VI. TESTING THE EXTRACTOR COMPONENT 47
A. OBSERVATIONS 48

VII. CONCLUSIONS AND FUTURE WORK 51
A. CONCLUSIONS 51

vii

B. FUTURE WORK 52

APPENDIX A: EXTRACTOR CODE 55

APPENDIX B: PENN TREEBANK TAG-SET (CONDENSED) 79

APPENDIX C: SAMPLE OUTPUT FROM THE EXTRACTOR 81

LIST OF REFERENCES 83

INITIAL DISTRIBUTION LIST 87

vm

LIST OF FIGURES

Figure 1: Relationship between the Policy Workbench Tools. After [SIBL92] 10
Figure 2: Natural-language Input Processing Tool is an integral part of the Policy

Workbench 14
Figure 3: Policy Workbench with Natural-language Input Processing Tool 16
Figure 4: Proposed Architecture of Natural-language Input Processing Tool 17
Figure 5: Data flow diagram of the Extractor Component of NLIPT 41

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table 1: Results from Testing the Extractor Component 48

XI

THIS PAGE INTENTIONALLY LEFT BLANK

xn

ACKNOWLEDGMENTS

I gratefully acknowledge and thank both Professor Rowe and Professor Michael

for their guidance, support, and vision. I thank the Language Technology Group for

granting an academic research license to evaluate the LT CHUNK system. I also thank

Dr. Moulin, who graciously provided copies of his published papers - twice. Finally, I

thank my parents, Veronica and William Thorpe, whose love and support have made all

things possible.

xni

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

EXECUTIVE SUMMARY

Organizations are policy-driven entities. Policy bases can be very large and

complex; these factors are compounded by the dynamic nature of policy evolution. Thus,

comprehension of the ramifications of both policy modification and assurance of the

consistency, completeness, and correctness of a policy base necessarily requires some

level of computer-based support.

A policy workbench is an integrated set of computer-based tools for developing,

reasoning about, and maintaining policy. A workbench takes as input a computationally

equivalent form of policy statements.

In this thesis we develop a system that maps natural-language policy statements

to an equivalent computational from with minimal user interaction. We propose the

architecture of a natural-language input-processing tool (NLIPT), which we designed to

augment a policy workbench. The primary components of the NLIPT are the following:

an extractor, which generates a meaning list representative of the natural-language input;

an index-term generator, which identifies the key terms used to index relevant policy

schema in the policy base; a structural modeler, which structures a schema for input; and

a logic modeler, which maps the schema to an equivalent logical form.

We experimented with a prototype of the extractor. The extractor successfully

parsed twenty-seven of a sample of ninety-nine of U.S. Department of Defense security

policy statements. An additional twenty-one statements were correctly parsed based on

the syntactic structure of the input.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

I. INTRODUCTION

Organizations are policy-driven entities. Promulgation of policies to those

expected to adhere to them can be fastidious or lackadaisical. Nonetheless, organizations

expect their members to adhere to both explicit and implicit (unwritten) policies.

Adherence to an organization's policies can be difficult, especially when the policy base

is large or there is much implicit policy. Moreover, complex relationships among

policies and conflicting policies can lead to errors in the interpretation, refinement (i.e.,

implementation of policy as procedures in information systems) and enforcement of

policy.

Ideally, an organization's policies would be stored in a computational form in a

central repository. Users could search the repository for policies that are applicable to a

given action or plan (i.e., a sequence of actions for reaching a goal state) within a specific

context. Queries to the repository would be through an interface. In addition, authorized

users could update the policy base to reflect changes in the organization's policy. Such

an interface could be part of a larger system that we term a "policy workbench." A

workbench is a suite of tools that serves as an expert database management system. A

policy workbench could update policy and test the policy for gaps; by "gap" we refer to

any type of error in policy, its refinement, or implementation. It could also map the

policy to procedures, which are the mechanisms that implement policy. Thus, a policy

workbench is intended to enable the user to represent, reason about, maintain, implement,

and enforce policy [SIBL92].

1

A policy workbench could assist members of an organization to better understand

and become more aware of policy, which is necessary for acting in a manner that

conforms to policy. Usability of the interface is important. People are less likely to use a

system that requires cumbersome structured input, no matter how spectacular its results.

An alternative would be to interact with the workbench using a natural language.

However, efficient automated processing necessitates converting the natural language

into a computational form, usually expressible as well-formed formulae in a formal

language [MICH93].

In this thesis we examine processes that map policies submitted in a natural

language to formats suitable for further processing by a policy workbench. The

applicability and extensibility of various approaches proposed within the natural-

language processing community are explored. Correct semantic interpretation of the

input is also important. Errors in interpreting policy could become embedded in the

computational model of the policy making the resulting model of dubious value for use

by the tools. Processing inputs submitted in a natural language entails the following:

semantic interpretation of submitted input; mapping the interpretation to an equivalent

computational form; identifying applicable existing policies; and submitting everything

to the appropriate workbench tools for further processing such as consistency checking.

The scope of this thesis is limited to the first two processes.

The organization of this thesis is as follows. Chapter II provides an overview of

the policy workbench proposed in [SIBL92]. Chapter III explores issues to be addressed

in developing the input-processing component. Chapter IV summarizes some of the

previous research that is closely related to this thesis; we discuss the extensibility and
2

applicability of each approach to processing natural-language statements of policy, in the

context of the overall operation of the policy workbench. Chapter V chronicles the

development of part of an automated process for converting policy to an appropriate

computational format. Chapter VI summarizes the results of testing the automated tool

presented in Chapter V. Chapter VII presents conclusions and recommendations for

future work.

THIS PAGE INTENTIONALLY LEFT BLANK

II. A POLICY WORKBENCH

This chapter provides an overview of policy and policy workbenches.

A. POLICY

Random House Unabridged Dictionary [RAND93] defines policy as follows:

1. A definite course of action adopted for the sake of expediency, facility,
etc.; 2. A course of action adopted and pursued by a government, ruler,
political party, etc.

Policy serves as a guide in decision-making processes. It can exist either

explicitly or implicitly. Explicit policies are deliberately articulated. Implicit policies

can arise from traditionally accepted and expected behaviors within an organization; they

can also evolve to address gaps in explicit policies.

Policies typically exist in a hierarchy, progressing from broad-spectrum policies

at the top to more narrowly defined policies at the lower levels. Policies have both a

domain and scope [MICH93A]. The domain specifies the objects in the organization's

environment. For instance, policy pertaining to computer security might include system

administrators, user accounts, and passwords as part of the domain. Scope identifies the

range of roles, obligations, and rights of objects within its domain. As an example, the

scope of a system administrator's role might include review of audit trails but not

procurement of new equipment.

There are many different types of policy. In this thesis we distinguish among

meta-policy, goal-oriented policy, and operational policy. Meta-policy is policy about

policy [MICH91]; meta-structures can prove useful in indexing heterogeneous systems.

An example of a meta-policy is "Anypolicy related to system access is a security policy."

Goal-oriented policy states the desired outcome but gives little or no indication of how to

obtain the outcome [MICH91]. An example of goal-oriented policy is "Passwords must

be difficult to guess." Operational policy defines required actions but rarely identifies the

goal [MICH91]. An example of an operational policy is "Passwords shall be changed

every six months."

There has been much research in the area of formal representation of policy.

Ambiguities in natural-language statements used to represent policy can lead to several

interpretations of the policy. Formal representation of policy can, to some extent, remove

the ambiguity. Formally represented policies can be defined by axioms and reasoned

about using automated systems [MICH91, CHOV91]. Three particular properties of

policy are of significance when translating it to a formal representation: completeness,

consistency, and correctness. Completeness means that the entire policy base is

represented. Consistency means that contradictions within the policy base do not exist.

Correctness means that the representation of the policy actually conforms to the real-

world intent [SIBL92].

B. POLICY WORKBENCH

A policy workbench is an automated knowledge-based system comprised of a

suite of tools designed to assist the user in the representation of policy; reasoning about

the properties of policy such as consistency, completeness, soundness, and correctness;

refinement of policy; maintenance of policy; and possibly enforcement of policy. A

policy workbench can provide several functions depending on the implementation.

Ultimately, a policy workbench's purpose is to facilitate adherence to policy.

Use of automation to maintain, reason about, refine, or enforce policy has been

examined in several projects. In 1982 ZOG, a menu-based display system developed at

Carnegie-Mellon University, was installed on the aircraft carrier USS CARL VINSON.

It served as an aid in information management and decision-making in combat situations.

Aspects of the ship's tasks, including policy and knowledge from subject-matter experts,

were elicited and represented in the knowledge base. [SLOA91]

Regulating Internet and network traffic policies has provided the impetus for

many commercial-off-the-shelf (COTS) middleware releases. Although not necessarily a

policy workbench, much of this middleware (such as intrusion-detection devices and

firewalls) allows a network administrator to select predefined policies or generate their

own to enforce an organization's network traffic policies.

The Internet Engineering Task Force (IETF) is developing a policy management

architecture that will allow consistent recognition and enforcement of policy protocols.

This includes a central policy repository, a common policy definition language, and a

common policy object model. The goal is to allow consistent interpretation of protocol

policy regardless of the device [STRA99]. Formal languages, such as Ponder [DAMI01]

and Path-based Policy Language (PPL) [STON00], have been developed to specify

policy about the management of networks and distributed systems.

C. A GENERAL POLICY WORKBENCH

Sibley, Michael, and Wexelblat propose a architecture for a generic policy

workbench in [SIBL92].

The authors identify five user classes that should be accounted for in the design of

a policy workbench:

1) The policy maker enters policy, maintains a current resource dictionary,

confirms consistency of proposed policy statements, allows users to

propose scenarios for feedback, and partitions policies into subsets as

applicable and necessary.

2) The policy maintainer performs regression testing1 to ascertain the

consequences of modifying policy. It distributes modified policies, in

addition to performing configuration management and control tasks.

3) The policy implementer translates policy into procedures, maintains

records of rule applications, and maintains a current account of

relationships or linkages among policies.

4) The policy enforcer identifies violations of policies and recommends

appropriate responses, checks procedures for consistency with policy, and

provides authorizations for exceptions to policies.

5) The policy user analyzes the existing policy base via queries.

Figure 1 shows the authors' policy workbench architecture. [SIBL92] described

three tools of the workbench:

1) "A theorem and assertion analyzer (entering and exercising policy) to

check inputs stated as axioms and theorems."

1 The term "regression testing," as used here, means testing changes in policy from a baseline against
some criteria such as correctness or consistency.

8

2) "A rule compiler-generator-interpreter (selecting, merging and generating

parts of systems) to produce an executable component of the system2."

An example of an executable component is a procedure that models a

proposed policy environment and provides a run-time scenario for user

queries.

3) "An interactive policy structurer and selector (aiding in understanding and

applying policy) to check what rules are applicable to a given situation and

preprocessing the rules into pre- and post-conditions."

Policy input is accepted in a quasi-natural format that is checked for syntactic

correctness, then mapped to a formal rule. The rule is submitted to a theorem prover that

performs semantic evaluation of the rule to check consistency with policies in the

database and to eliminate duplication. If the rule is acceptable, it is sent to the policy

database. Conflicts or errors are reported back to the user for action.

The theorem and assertion analyzer also accepts queries regarding policy

statements. Accepted in natural language, queries are first submitted to an extractor and

translator module, which converts the query to an appropriate computational form. The

translation is then processed in a fashion similar to direct policy input with the exception

that the policy database is not updated. Rather, a query response is directed to the user.

2 Although the proposed architecture for the workbench could theoretically support many different
data models, the examples of policy given in [SIBL92] are represented as conditional rules.

Policy input

and requests

Policy I
Policy Workbench

2

Policy
Input
System

Theorem
and
assertion
analyzer

V
Policy

Database

I
User

Request

«%!»

Policy
structurer and
selector

Rule
compiler-
generator-
interpreter

; Note
«3 changes

^G^^*.^^j«c^«^^'QKa2^-«ffi<;^^^^^-G«^:-:;^.SK2^f;:sa^

User Request ! Executable ;
[i
1 Component i
I i

Policy workbench flow

Effective action through the workbench flow

Figure 1: Relationship between the Policy Workbench Tools. After
[SIBL92].

The rule compiler-generator-interpreter allows the operation of a simulated

system determined by user procedural inputs or scenario requests. Policy changes can

essentially be seen "in action."

10

This policy structurer and selector tool finds policies represented as pre- and post-

conditions in the policy database that are applicable to a given input (e.g., scenario or

direct policy input). It does so by finding commonalities in policy statements. This

information is updated in the resource dictionary. The "understanding module" in

conjunction with regression testing would allow the user to discern the effects of policy

changes. The understanding module of the policy selector and structurer identifies the

relationships between a policy and other components in the database. This tool could

also aid in the development of the exceptions required for a policy set.

For this thesis, we will develop the fourth tool of the policy workbench, the

policy-input system. We propose to expand the functionality of the policy input system

to accept natural-language statements instead of statements in a quasi-natural format. We

have renamed this component the natural-language input-processing tool (NLIPT).

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

III. NATURAL-LANGUAGE INPUT
PROCESSING TOOL

A. INTRODUCTION

A tool within a policy workbench can require as input either update requests or

queries about policy. One approach to policy specification is to require that the users of a

policy workbench articulate policy in a quasi-natural language3 "until a more friendly

user interface is developed" [SIBL92]. In this approach the policy maker or a formal-

methods engineer would be responsible for translating the quasi-natural language

statements into a formal language. This expectation, however, may prove to be

impractical. The policy base of an organization can be quite large, making the process of

manual translation into an acceptable format almost insurmountable. In addition, as

policy bases are typically not static entities, frequent updates may be required, placing a

further burden on the users. Furthermore, manual translation of policy is an error-prone

process, as was demonstrated in experiments reported in [MICH93]. Developing a

policy workbench that accepts input and returns output in natural language would greatly

relieve the user of repetitive tasks. Otherwise, potential users may balk at using the

policy workbench, as they did with ZOG, rendering the workbench ineffective.

We propose that the architecture presented in [SIBL92] be modified to include a

natural-language input-processing tool (NLIPT). The NLIPT could consolidate the

common input-processing tasks in the workbench. It could extract the meaning from the

input and isolate the key components necessary to identify all applicable policies and

3 We use the term "quasi-natural language" to refer to a language with a restricted vocabulary, syntax,
or semantics.

13

real-world facts (information otherwise unstated in the policy but known to be true and

necessary to maintain consistency, completeness, and correctness of the policy base).

Most importantly, it could generate the logically equivalent form of the input. The

NLIPT should be transparent to the user (Figure 2). In this thesis we do not address the

inverse process, that is, translating the computational representation of policy into a

natural-language response of the system to the user, such as the answer to a user query

about policy.

Input] NL

NLIPT

Policy
Workbench

Figure 2: Natural-language Input Processing Tool is an integral part
of the Policy Workbench.

B. POLICY WORKBENCH ARCHITECTURE

[MICH93] shows object-oriented modeling of policy appears to produce fewer

structuring errors than a non-object-oriented approach. The object-oriented approach

begins with a schema, a structural model that defines the entities, mechanisms and

relationships contained within the policies. [MICH93] proposes deriving the schema

from an extended entity-relationship diagram, where labeled arcs signify the relationships

between policy objects. The schema controls the axiomatization of the policies

[MICH93]. This does-require rephrasing of some policy statements to explicitly refer to
14

constructs of the schema before formalizing the statement; this assures correct linkage

within the model. However, using a structured information model to represent policy

and real-world facts can produce a more compact and less error-laden representation than

an unstructured approach.

The role of the NLIPT in the policy workbench is illustrated in Figure 3. User

input is translated into an equivalent computational form (e.g., first-order predicate

logic4) via a conceptual schema. This is done for all input, be it policy, queries, or

scenarios. Key terms of the input are determined and sent to the policy-element identifier

tool, which identifies applicable elements (i.e., policy schema) in the policy base. The

inability to find any applicable schema could be used as an indicator that an automatic

modification should be tried or that an error message should be sent to the user depending

on the type of workbench request. The retrieved schema would be used to formulate a

schema for the input, which would then be translated to first-order predicate logic. The

input schema and computational form are submitted for processing by the appropriate

workbench tools.

Figure 3 shows that the policy workbench connects the user to the tools via a

user-interface module, which permits the user to select the desired functionality of the

workbench (e.g., policy-base modification, scenario generation, searching). An internal

handler would also be required to direct the processed input to the appropriate workbench

tool (discussed in Chapter III) and to an exception handler if needed.

4 Studies show the advantages of representing policy using first-order logic: reduction of ambiguity
and ability to automate reasoning to name two [CHOV86, SERG86, SIBL92, MOUL92, MICH93]

15

The policy-element identifier is an extension of the policy-selector tool proposed

in [SIBL92], which the authors believed could prove instrumental in the input-processing

phase. However, the policy-element identifier differs from the policy-selector tool in

that it would retrieve the structural schema of the pertinent items, rather than the

computational form. The computational form would not be needed to generate a

schema of the input.

InputNL 5j

Z

OS
-■«•

Input error

.jJfMMHP'''
-► NLIPT

Key terms

Input Object^ Handler
Input Object

'Schema

Tool
Policy-element
Identifier

Policy Workbench
(Simplified)

Policy and real'
world facts

(schema and/oi
computational
forms)

Input Object contains InputFOpL and InputSCHEMA

Figure 3: Policy Workbench with Natural-language Input Processing Tool.

C. NLIPT ARCHITECTURE

The proposed architecture of the NLIPT is illustrated in Figure 4. There are four

parts: the extractor, which generates a meaning list representing the input; the structural

modeler, which generates the schema for the part of the input that is consistent with the

schema; the logic modeler, which generates the properly quantified and scoped formal

16

representation of the input; and the index-term generator, which identifies key concepts

of the input. A data dictionary identifies synonyms and probable substitutions for

misspelled input.

InputN

^Handler) ^Handler)

,' Exception
Conceptua ..-; ■'"'—"" , . ,. t ■ÄW^ ' conceptual Object

smm&mmmrMoMmg ilst StrQCtural schema : Logic : _!
-► Extractor Modeler Modeler

Index-Teim

Generator

Key index
terms

(Po

Data
Dictionary

(Handler)

rolicy-Elementl

Identifier Tool)

Schema of applicable
elements

Figure 4: Proposed Architecture of Natural-language Input Processing Tool.

1. Extractor

The extractor generates a meaning from each important word of the natural-

language input. At a minimum, the meaning list should identify the subject, object, and

attributes of all actions. As an example, consider:

(PI) All passwords must be at least eight characters in length.

Alternatively, it could be stated as follows: All passwords must contain at least eight

characters. At some point in time the system should be able to recognize that both

statements are semantically equivalent. A meaning list for (PI) could be as follows:

ML[subject(passwords),subjectquantifier(all),object(characters),
objectmodifer(eight), objectquantifier(at least), subjectattribute(length),
action(modal(must), verb(be))J5

5 The presented format is not an implementation requirement.

17

Identifying and correctly attributing modifiers, quantifiers, and conditionals is

important. From the example, the extractor should identify the prepositional object

"length" as an attribute of password to which "eight" refers. In addition, the adverbial

term "at least" signifies that the minimum requirement for the length of a password is

provided in that statement.

2. Index-Term Generator

The index-term generator extracts the terms from the meaning list most likely to

find a relevant match in the policy base. At a minimum, the subjects, objects, and

attributes are tried. Verbs are important as well; for instance, the verb group "must be"

signifies that the object is an attribute of the subject. So for the example, the following

index terms should be:

subject(passwords), object(characters), attribute(lßngth), verb(be)

The root form of each candidate term is looked up in the lexicon to find synonyms

and possible substitutions for morphological variants and misspellings. For example:

Synonyms (password, [password, password,code word, key, logon, access])

Synonyms (character, [symbol, term])

Synonyms (length, [size, measurement, duration])

VerbSense(be, [property])

The index-term generator must weight the index terms to maximize the likelihood

of selecting schema in the policy base that have a high degree of relevance to the input.

Subject terms should have the highest weighting; original input should have a greater

weighting than synonyms. The synonym term "duration" in the example is not accurate

in the context it is used in the sentence; appropriate weighting of synonyms would

account for this. Weighting should generally increase with the rarity (i.e., infrequency of

18

use) of the word; for instance, the term "property" is a commonly used term and likely to

generate a number of hits in the policy base if the term is used in a query about policy.

3. Structural Modeler

The structural modeler would analyze any schema retrieved by the policy-element

identifier to match the input. The retrieved schema identifies implicit facts and

hierarchical relationships. If no applicable schema can be found in the policy base, the

structural modeler can either proceed or generate an exception. For query processing or

scenario generation, an exception should be noted; for policy assertion, the modeler

should continue since the input is a new policy.

Continuing the example, the policy-element identifier should find the following

applicable schema:

password(pre_condition(agent: user, agentjstatus: authorized, action: issued),
property(valid), post_condition(agent: user, action: logon))

userfagent: employee, property(issued_password), status: authorized)

logon(pre_condition(agent: user, action: enter, object: password, object_status:
valid, purpose: system_access))

access(pre_condition(agent: user, agent_status: authorized, action: logon,
action_status: completed(success)), status (granted), post_condition(agent: user,
agent_status: authorized, action: use_of_system, action_status: persistent))

This says that a valid password is issued to an authorized user, an employee, to

allow the user to logon. The user must logon to obtain access to the system. Access is

granted when a valid password is entered to complete a logon. Nothing was retrieved

that defines a valid password, but the new policy proposal states that the length must be

at least eight characters. Linkages to the term 'valid' should be made to the schema.

(These linkages are not available to concurrent users until the policy is actually accepted

19

into the database.) The structural modeler should infer that passwords have a minimum

length and are comprised of characters. This can be done via the lexicon reference

through recognition that the adverbial phrase "at least" is a minimum constraint and that

the term "characters" is not a unit of measurement but an object. The term "be" allows

the connection to composition. Quantifiers must also be inferred and their scope

determined. Further, appropriate generalizations should be made to control the overall

policy base size and to ensure that the schema is not too specific, which could affect

proper indexing especially for related policies. For our example, the generalization is

made that length is actually the size of the password. Hence:

password(applies_to: all, property (size (minimum(eight)),
composition(characters))

4. Logic Modeler

The logic modeler uses the schema developed by the structural modeler to

generate a first-order predicate logic representation of the input. An appropriate logical

representation can vary depending on whether the input is for a query or some other type

of request [MICH93]; modularizing the structural modeler from the logic modeler allows

for separate generation of the schema, independent of the user request.

Like the structural modeler, the logic modeler must determine quantifiers and

their scope. Inferences should also be made as appropriate; for our example, the logic

modeler should infer that "composition" from the schema signifies a "part_of

relationship between "character" and "password." For a policy assertion, our example

should become:

Vx (password(X) -+ (3s(Vc (character(C) /\ part_of(C,X)) -> member (C,S))) -> (3N

size(S,N)AN>8)))))

20

D. SUMMARY

The NLIPT should be a general-purpose tool that requires minimal user

interaction after the initial setup. Initial setup should include modification of the data

dictionary to accommodate domain specific words and synonyms. The ultimate goal for

the NLIPT is to fully automate formal policy representation; while total automation may

not be possible, we believe that a good approximation can be made. To demonstrate this,

we will implement the proposed NLIPT components.

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

IV. RELATED WORK

In this chapter we highlight the work of eight groups of researchers. We provide

our observations about the applicability of each group's findings to the policy

workbench, and in particular, the NLIPT component of the workbench. We begin,

however, with a brief background on grammars and modal logic.

A. CONTEXT FREE GRAMMARS AND MODAL LOGIC

1. Context-Free Grammars (CFG)

A grammar is a finite set of productions (i.e., rules) and symbols used to generate

strings that are valid in a language or to analyze the structure of strings ("parse" them).

Context-free grammars are used to formalize parsing rules for languages. Natural-

language statements can be parsed to identify the key components of the statement (i.e.,

subject, predicate, and object). A CFG has [HOPC79]:

• a set of terminal symbols (T), which make up the valid strings;

• a set of variables (V), which are a placeholder for sequences of terminal

symbols;

• a start symbol (S) that represents the initial string during statement generation;

and

• a set of productions (P) that define legal ways to replace a variable in a string

by a string of terminal symbols or variables.

23

As an example, suppose we are given CFG = (V, T, P, S) where V = {<sentence>,

<noun phrase>, <verb phrase>, <noun>, <adjective>, <verb>}, T= {dogs, little, bark},

S=<sentence>, and P consists of

<sentence> -» <noun phrase> <verb phrase>

<noun phrase> -»<adjective><noun>

<noun phrase>-»<noun>

<verb phrase>-»<verb>

<noun>-»dogs

<adj ective>-»little

<verb>-»bark

With this grammar, we can use the first production (since its left side has a

matching variable) to replace the start symbol with "<noun phrase><verb phrase>." We

can use the second production to replace the variable "<noun phrase>" to get

"<adjective><noun><verb phrase>." The fourth production is used to replace "<verb

phrase>" to produce "<adjective><noun><verb>." Finally, terminal symbols are used to

replace the variables, resulting in the string "little dogs bark."

A CFG cannot provide a complete description of a natural language such as

English, but one can come close. Semantic constraints should also be applied to

eliminate meaningless strings that are syntactically correct.

24

2. Modal Logic

A modal is a special marker of verb tenses in English, appearing as an "auxiliary"

before the verb, and that often denotes prescriptive information. Examples of modals are

"can," "necessarily," "must," and "may". Some modals like "may" or "shall" can convey

several meanings, which is of particular concern in policy interpretation. Modal logic

includes reasoning about knowledge and the expressions "it is necessary that" and "it is

possible that" [STAN1]. Modal logic has evolved, however, to represent a range of

related ideas; for instance, deontic logic is concerned with obligation, permission, and

interdiction. Modal logic augments first-order logic with modal quantifiers on sentences

[RUSS95]. Modal logic allows inferences to be made concerning the knowledge base.

Modal logic is particularly useful in analyzing a policy base because policy is

typically prescriptive in nature containing modalities indicating obligations, permissions,

and interdictions.

B. THE BRITISH NATIONALITY ACT AS A LOGIC PROGRAM

Sergot, Sadri, Kowalski, Kriwaczek, Hammand, and Cory [SERG86] explore the

feasibility of using logic statements to represent part of The British Nationality Act of

1981 and mechanically determine the consequences of the Act when applied to test cases.

They showed that formalization of legislation by rules can be used to develop an expert

system without requiring much elicitation of knowledge from an expert. The authors list

three benefits to be realized through the formalization of regulations: 1) identification and

elimination of ambiguity and imprecision; 2) clarification and simplification of the

natural-language statement of the regulation; and 3) derivation of logical consequences of

the regulations.

25

The system represents a portion of the Act using extended Horn clauses; the

clauses are implemented as a Prolog program using APES, a Prolog-based expert system

shell developed by Sergot and Hammond. The collection of clauses is an axiomatic

theory, which can be mechanically analyzed by theorem provers; Prolog serves as a

limited-purpose theorem prover. The shell queries a user to dynamically supply facts as

required.

Sergot and his colleagues followed a top-down, goal-directed manual approach

when formalizing the Act. They defined high-level concepts before the lower-level

concepts. This allowed them to postpone the representation of lower-level concepts until

high-level concepts were refined in their model. They addressed vague concepts such as

"good character" by assuming that vague concepts always applied when generating

answers; that is, if a person had to be of "good character" to be a citizen, the assumption

was that the person had "good character." The authors determined a meaning for

ambiguous or imprecise concepts of the Act that could not be addressed by assuming

their truth.

Formalized statements of the Act were manually generated and progressively

refined on a trial-and-error basis. Modification and restructuring of previously

formalized concepts was made as needed when later sections of the Act refined earlier

concepts. A closed-world assumption implemented negation as failure (anything which

is not known is assumed to be false). Double negation, if treated classically, would

cancel out (not [not p] implies p). However, this was not the intent of the Act for all

cases. The authors avoid special explicit clauses for every occurrence of double negation

26

by treating the negative information as part of the input from the user, though they

concede that this approach has drawbacks.

The authors also found that counterfactual conditional statements were not

adequately handled by extended Horn clause logic, as with the following statement from

the Act:

...became a British citizen by descent or would have done so but for his having
died or ceased to be a citizen... [by] renunciation.

They addressed the inadequacy by writing additional rules to address the conditionals.

This process required a thorough analysis of the provisions of the act and knowledge of

the drafter's intent when writing the counterfactual. Addressing counterfactuals

substantially increased the overall number of clauses. Finally, discretionary clauses

(clauses which give an authority the discretion to modify application of other sections of

the Act) were handled by generating two clauses: one for the standard case and one for

the discretionary case.

The manual generation of the Horn clauses was an involved task, often requiring

revisions. The trial-and-error approach would place a huge burden on policy makers if

the policy base were large, so this approach would not scale. Modification or

restructuring of rules could easily get out of hand as the number of formalized statements

increased. Moreover, the closed-world assumption, while convenient for domains where

all cases are specified, would not apply to most real-world policy.

C. INCAS: A LEGAL EXPERT SYSTEM FOR CONTRACT TERMS IN
ELECTRONIC COMMERCE

Tan and Thoen [TANOO] developed an automated expert system that provides

advice on the use of Incoterms. (Incoterms are thirteen terms used in legal trade contracts
27

that stipulate which party (i.e., buyer or seller) is responsible for arranging and paying for

transport and arranging the required documents for the transport.) INCAS (INCoterms

Advise System) is a Prolog-based system that defines Incoterms to the user, reasons using

the Incoterms knowledge base to advise on queried scenarios, and proposes the optimal

Incoterm for both buyer and seller given their obligations. This system is intended to

assist organizations involved in international trade.

INCAS uses formal specification of the Incoterms in Prolog, manually derived

from the International Chamber of Commerce (ICC) book Guide to Incoterms 1990. A

graphical user interface allows the user to view the INCAS response to a query along

with the assumptions used to derive the conclusion when applicable. Users can change

the assumptions to refine the conclusion and rerun the query. Users can also introduce

hypothetical assumptions to generate responses to what-if scenarios.

The Incoterms domain has many instances where defeasible reasoning is

involved. Defeasibility means that rules can be superseded by another rule or fact. The

authors address defeasibility by incorporating exception predicates into the rules and

adopting the closed-world assumption. Exceptions to exceptions are also addressed in a

similar fashion.

INCAS performs symbolic processing on strings and does not use any semantic

constructs. A user is required to provide the data concerning the situation for which the

query has been formulated. It can also accommodate correcting or otherwise modifying

assumptions used in deriving a conclusion to generate a new conclusion.

28

The authors provided no data regarding the difficulty of development and the

approach used in the derivation of the predicate statements. Scalability [SERG86] is still

a problem since manually formalizing policy is difficult.

D. SACD: A SYSTEM FOR ACQUIRING KNOWLEDGE FROM
REGULATORY TEXTS

Moulin and Rousseau [MOUL94] developed a Prolog system named SACD

(Systeme d'Acquisition des Connaissances Deontique) capable of generating a

knowledge base from regulatory text by analyzing the text's logical structure. Semantic

content is not analyzed by SACD. SACD is specifically designed to work with

prescriptive text, especially the normative propositions found in instructional text.

Normative propositions are sentences that describe instructions and characteristically

contain modal operators. Most regulatory text, such as policies and legal manuals, are

prescriptive in nature. The authors use portions of the National Building Code of Canada

for analysis.

Regulatory texts contain three types of formats:

1. Definitions (sentences that clarify domain objects). Definitions do not

typically contain modals.

2. Normative propositions, propositions containing verb expressions that

explicitly indicate obligations, permissions, or restrictions.

3. Meta-textual statements (cross-references to the text structure).

Regulatory text can typically be segregated into three layers:

29

1. The macrostructure layer, corresponding to headings, titles, chapters, and

sections;

2. The microstructure layer, the logical content of the text featuring the

expressions that identify conditions, exceptions, modalities, and

references; and

3. The domain layer, domain-specific information that belongs to neither of

the other two layers.

SACD initially uses context-free macrostructure and microstructure text

grammars to parse the input text. The grammars have multiple entry points and behave

like chart parsers, the classic bottom-up approach to parsing with a context-free grammar.

Macrostructure analysis detects the presentation elements; microstructure analysis uses

modal operators (e.g., "may," "must," "cannot"), conjunctions, internal references, and

punctuation in order to identify relevant objects in the domain and applicable deontic

rules. Deontic rules characterize the modal object to which they refer and require modal

logic.

The knowledge base is generated in two phases: (1) for every verb-phrase in the

text a deontic rule is generated without considering the internal references (i.e., cross-

references to other portions of the same text); (2) for each meta-textual statement

encountered, the conditions and exceptions of the rules that are affected by an internal

reference are modified to reflect the influence. The knowledge base eventually contains

an object-type hierarchy, object descriptions, rule specifications which indicate the

modality and characterize the related object, relationships between the data structures,

30

and the relationships between the structures and the text provisions. Data structures are

represented using Prolog predicates.

After each microstructure analysis, the results are presented to the user for

acceptance or correction. A "domain specialist" creates the object-domain hierarchy,

partly domain-specific, and resolves anaphoric references.

SACD was used on a subset of the National Building Code of Canada (NBC). Of

100 provisions evaluated, the macrostructure analysis took roughly five minutes overall.

The microstructure analysis averaged five seconds per sentence depending on the

complexity; the total number of sentences was not identified. A simple expert system

checked situations against the provisions of the code.

This approach requires well-structured input text. However, many policies are

well structured, so this system should work well on them. However, system may not be

suitable for handling queries to the policy workbench using natural language. Features of

particular use in the policy workbench are its recognition of meta-textual structures and

the refinement of rules based on cross-references. SACD requires a lot of user

interaction; this makes scalability a concern. Also, the user must have an intimate

knowledge of the input text to correctly generate the domain hierarchy, which makes it

subject to personal interpretation.

E. PARALLEL NATURAL-LANGUAGE PROCESSING ON A SEMANTIC
NETWORK ARRAY PROCESSOR

Minhwa Chung and Dan Moldovan developed a system with a parallel memory-

based parser called PARALLEL [CHUN95] that is implemented on a dedicated marker-

passing computer called the Semantic Network Array Processor (SNAP). It exploits a

31

large case memory instead of complex parsing rules and grammars. Parsing is achieved

through a marker-passing search that matches input text with template patterns called

concept sequences stored in memory in the form of a semantic network of interrelated

facts.

Marker-passing is an inference method used to find connections between concepts

in a semantic network. Inferences are developed by first propagating markers forward

along the superconcept hierarchy from the origin concept and checking for intersections

of markers. Next, markers are propagated along the reverse-semantic links. At the end

of the processing, inferences can be made about nodes that have both markers. In a

parallel implementation, the markers are propagated concurrently to reduce execution

time.

A preprocessor applies domain-specific modifications, such as grouping noun

groups and expanding contractions, to each input sentence. A phrasal parser groups the

relevant words into the following phrasal segments of noun group, verb group, adverb

group, date/time group, conjunction, preposition, relative pronoun, punctuation, "that"

group, or possessive marker. Concept sequences (i.e., phrasal patterns stored in the

knowledge base) are represented as a set of concept-sequence-element nodes attached to

concept nodes in the semantic concept hierarchy, arranged in order to match the sequence

of input phrases.

The experiments used 500 complex sentences from MUC-4, of which sixty-eight

percent were correctly parsed. The authors attributed most of the errors to no appropriate

32

concept sequences in the knowledge base, unanticipated linguistic phenomena, and

unknown input words.

This approach creates a meaning list of the input. It performs the same function

as the extractor tool proposed for the policy workbench. It relies on phrasal pattern

matching, which makes it somewhat domain-specific. It is also tightly coupled to both a

specific hardware platform and system configuration.

F. KNOWLEDGE EXTRACTION FROM TEXT: MACHINE LEARNING
FOR TEXT-TO-RULE TRANSLATION

Delannoy, Feng, Matwin, and Szpakowicz [DEL93] investigate natural-language

processing to extract knowledge from technical expository texts in the MaLTe (Machine

Learning from Text) system. By incorporating both machine learning and natural-

language processing, the authors believe they can more thoroughly represent a text than a

system using only one of the processes. MaLTe operates with a minimum of a priori

knowledge. It extracts from both the narrative text (the authors used part of the personal

income tax law as described in Revenue Canada 1991) and examples provided.

Additional knowledge required to resolve ambiguities and inconsistencies and to define

synonyms are elicited from the user as needed.

Facts are generalized automatically from the examples into the higher-level

concepts found in the narrative. In doing so, implicit knowledge is made explicit and a

hierarchical domain (for the text) is generated. The authors propose absorption, an

operator used in inductive logic programming, to achieve this abstraction, but over-

generalization is a danger. Related facts obtained from the examples are aggregated. The

33

constants in the facts are generalized to variables and the aggregation method becomes a

rule.

In order to handle texts with nested concepts, explanation-based generalization

(EBG) integrates the applicable rules into one that makes the most useful features of the

concepts explicit. This will operationalize the rule, that is, make it a procedure. But an

acceptable operationality criterion must be determined, and EBG requires a complete

domain-knowledge base.

MaLTe is not autonomous; users must supply missing facts, correct mistakes,

and address synonyms. The actual extent of the interaction required for a complete

knowledge base for some domain is uncertain.

Delannoy and Rios further refined of MaLTe [DELA94] in conjunction with

TANKA, a domain-independent, interactive natural-language analyzer. TANKA has two

main components: 1) DIPETT, a syntactic parser; and 2) HAIKU, an interactive semantic

analyzer using case-based reasoning. Users are required to select which of the proposed

relationships is most correct. HAIKU produces a "protonetwork," a collection of

syntactic and semantic constructs. MaLTe translates the protonetwork to Horn clauses.

The techniques discussed in [DELA93] are applied to the Horn clauses to both generate a

domain theory and refine the existing clauses. MaLTe then converts the refined Horn

clauses back to protonetwork form, which is submitted to TANKA for assimilation into

the semantic network. MaLTe is implemented using Quintus Prolog.

Barker, Delisle, and Szpakowicz [BARK98] developed a metric for evaluating the

performance of TANKA. There were three criteria for the evaluation: 1) the ability of

34

HAIKU to learn to make better proposals to the user measured as the total number of

assignments made by the user compared to the total number of correct assignments

suggested by HAIKU; 2) the total number of relationships analyzed by HAIKU compared

to the actual number in the text; and 3) the burden to the user of having to make a

determination of the relationships proposed by HAIKU.

The authors chose a text about small engines to test the system. They drew three

main conclusions:

1) TANKA can learn. The system was able to generate correct analyses of

inputs it had never seen before by using partial matching on the semantic

patterns it had in its knowledge base.

2) Knowledge can be acquired from text with fragmentary parses and even

misparses. Imperfect parses do not necessarily result in no of knowledge

acquired.

3) The system did not prove to be too onerous for the user. The average user

time to determine a correct relationship proposed by HAIKU decreased

over the course of the experiment. As the knowledge base grew, the user

made fewer corrections to the proposed inferences. The experiments

regarding the burden to the user are of note. However, very large bodies

of policy may prove onerous to the user if much action is required on

every input.

35

G. UNDERSTANDING OF TECHNICAL CAPTIONS VIA STATISTICAL
PARSING

Processing of multimedia captions has some similarities to processing policy

statements in having a limited descriptive semantics. The MARIE-2 system [ROWE1]

relies extensively on an accurate and domain-specific lexicon stored as Horn clauses and

facts. A database containing a full synonym list, an a-kind-of hierarchy and a.part-of

hierarchy was created for the domain words. The Wordnet thesaurus system was used to

generate most of the information. Implicit lexicon information is generated using

special-format rules that recognized patterns for various kinds of code words and

abbreviations. The lexicon contains over 21,000 words from Wordnet (6,000 caption

words and 15,000 synonyms) and 1700 domain-specific words that required explicit

definition. Synonyms for technical word senses were also added. The lexicon is

necessarily large to address the technical jargon unique to the domain such as code

words, acronyms and unusual words. The domain was technical captions from military

photographs.

The system uses a context-free grammar of 192 syntax rules. One hundred sixty

rules are binary (involving replacement of one symbol by two); seventy-one of which are

context-sensitive. The remaining rules are unary (involving replacement of a symbol by

another). The binary rules have associated semantic rules that check semantic

consistency, calculate the total probability, and generate the meaning list. Of the 114

associated semantic rules, fourteen are specific to the domain dialect.

A bottom-up chart parser with word-sense statistics determines the most likely

interpretation of the input. The word-sense statistics were obtained by extrapolating the

36

counts of each word from the training corpus. A branch-and-bound search is performed

to build up the best phrase interpretations. Ranking uses four factors: (1) word-sense

statistics, (2) counts on the grammar rules used, (3) counts on the co-occurrence of pairs

of headword senses conjoined in the parse tree, and (4) miscellaneous factors.

This approach also performs the functionality of the Extractor tool proposed in

Chapter III while avoiding phrasal pattern matching. This makes it theoretically suitable

to all forms of input. However, a representative training corpus must be used to generate

the appropriate statistics by forcing the system to backtrack until it obtains the correct

parse. This may prove burdensome to the user when initially setting up the knowledge

base. This system also requires lexicon information in advance for all words it is to

handle.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

V. EXTRACTOR COMPONENT OF NLIPT

A. INTRODUCTION

We now describe a prototype component of a natural-language input-processing

tool that we implemented, the extractor. The extractor analyzes the input and generates a

meaning list identifying the subjects, objects, attributes (subject and object modifiers),

verbs, and modal qualifications.

The extractor component was designed to capitalize on the typical policy structure

as described in [MOUL92]. Most policy statements can be segmented into three sections:

1) the main verb group, most likely with a modal qualifier; 2) iht front scope of the

statement containing the subject; and 3) the back scope of the statement containing the

object of the verb group. Though the program recognizes a typical policy structure, it

can also handle statements with different syntactic structures. The intent was to develop

a general-purpose component for many policy domains.

B. OVERVIEW

Input policy statements were initially submitted to an English tagger. This

significantly reduced the complexity of the extractor program, which used the part-of-

speech tags to more easily identify the key items for the meaning list. The tagger used

was a syntactic partial parser, LT CHUNK, developed by the Language Technology

Group of Edinburgh, United Kingdom [LTG1, LTG2]. Its output assigns a part-of-

speech tag to each word or symbol of the input and it brackets key multi-word syntactic

units such as noun phrases. LT POS, a component used in LT CHUNK, assigns part-of-

39

speech tags to words and symbols using hidden Markov models using maximum entropy

probability estimators [GROV1]. It contains a tokenizer, a morphological classifier, and

a morphological disambiguator [LTG2]. LT POS achieves ninety-six to ninety-eight

percent accuracy at correctly assigning POS-tags when all the domain words are in the

lexicon [LTG2]. Noun groups and verb groups that it recognizes are also bracketed.

We converted the tagged output via a Java program to a format suitable for

manipulation via Prolog. Next a Prolog extractor program generates a meaning list using

the tags and basic grammar rules. Figure 5 illustrates the data flow associated with the

extractor component. Referring to the design in Chapter III, the output from the extractor

component could be submitted to an index-term generator and a structural modeler.

40

Input

Policy in
natural
language LT

CHUNK

POS-Tagged and
syntactically
grouped

 ►
Intermediate

Processing

Prolog
predicate fact
for each
sentence (unit)

EXTRACTOR

I Meaning List for
each sentence

(unit)

Figure 5: Data flow diagram of the Extractor Component of NLIPT.

C. EXTRACTOR PROGRAM

This program was developed using Prolog. Prolog is advantageous in natural-

language processing because of its automatic backtracking feature. If a goal fails,

backtracking checks alternative means of satisfying the goals until all possibilities are

exhausted [ALLE95]. This is important for natural-language processing because there

are usually many ways to interpret a statement in English; parsing may require several

attempts before the correct rule is found.

41

The extractor program approximates a finite-state grammar developed to cover

sentences in the test corpus while remaining as general as possible. A full context-free

grammar is more desirable, but proved to be impractical in the time available to conduct

this research. The program code for the extractor program is included as Appendix A.

The algorithm for the extractor is as follows. For a given natural-language

sentence:

• Identify the first verb group that is not part of a clause or phrase. Verb

groups with modals are preferred over those without.

• Segment the input into the front scope (the input left of the verb group),

the verb group, and the back scope (the remainder of the input).

• Find the subject of the verb group in the front scope of the input. The

subject and its modifiers should be in the last noun group that is not part of

a phrase or clause.

• Find the verb, its modals, and its modifiers in the verb group.

• Find the object of the verb group in the back scope of the input. The

object and its modifiers should be in the first noun group that is not part of

a phrase or clause.

• Construct a meaning list listing the subject(s), the subject modifiers, the

object(s) and modifiers, and the verb(s) and its modifiers including

modals.

42

All three segments may contain modifiers, subclauses, and subphrases. The

extractor does permit input that is not a complete sentence.

The input is first checked for a compound sentence; if so, its parts are processed

separately. Appositives are then extracted. Modals or verbal groupings not part of a

clause or phrase are sought as the main verb group. Bracketed noun groups are submitted

to a recursive routine written by Professor Rowe and modified by the author, which

identifies quantifiers, adjectives, and other attributes of the head noun (the subject of the

group). The subparse routine also recognizes infinitive groupings as the subject (or

object) if no bracketed noun groups were found. The verb group was parsed with a

routine written by Professor Rowe that identifies modals, tense markers, adverbs,

embedded objects, and conjunctions within the grouping.

Relevant subordinate terms are also identified; phrases and clauses are parsed

using the split algorithm mentioned earlier. While it is relatively easy to identify the

beginning of a phrase or clause, identifying the end is another matter. To address this

problem, phrases and clauses are consecutively extracted from the rear of the scope

fragment. We identify the last occurrence of a word that could begin a phrase or clause

(preposition, pronoun, or adverb) and attribute the words following it as part of the phrase

or clause.

D. SAMPLE OUTPUT FROM EXTRACTOR COMPONENT ,

This provides an example of the extractor operation:

• Input in natural-language format.

43

o Information of questionable value to the genera! public must

be evaluated before worldwide dissemination to assess the risk

to the DoD.

LT CHUNK output indicated the part of speech of each input word as well

as noun phrase and verb phrase groupings. (LT CHUNK uses with the

Perm Treebank tag set [MARC1]. Appendix B provides a listing of the

most significant tags used by LT CHUNK.)

o [Information_NN] of_IN [questionableJJ valueNN]

to_TO [the_DT general_JJ public_NN] < must_MD be_VB

evaluated_VBN > beforeIN [worldwideJJ

dissemination_NN] < to_TO assess_VB > [the DT

risk_NN] to_TO [the_DT DoD_NNP]._.

The extractor program produced a meaning list that identified the main

subject(s), object(s), and verbs of the input. Subordinate terms (from

phrases and clauses) were also identified.

o [[main_subject_Group([subject(information), relationship(of),

subj(value), modifier(value,questionable), relationship(to),

subj (public), determiner(public,the),

modifier(public,general)]),

mam_object_Group([relationship(before), obj(dissemination),

modifier(dissemination,worldwide), obj(risk), obj(to_assess),

44

determiner(risk,the), relationship(to), obj(dod),

determiner(dod,the)]),

main_verb_Group([modal(must), passive(must,be),

verb(must,evaluated)])]

Key terms from the meaning list can be identified for further processing.

Modifiers are attributes of the subjects, objects, and verbs to which they refer.

Any determiners provide for existential or universal quantification of the subject

or object they modify. Subordinate terms and their relationships to their subject

establish a hierarchical, part-of, a-kind-of, or a conditional relationship depending

on the clause or phrase-head term.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

VI. TESTING THE EXTRACTOR COMPONENT

This section summarizes the results of testing the extractor component. The

following conditions were tabulated:

• Whether the meaning list (ML) correctly identifies main subject(s), verb(s),

and objects(s) based on the natural-language input

• Whether the meaning list is incorrect but correctly identifies main constructs

of input based on the tagger and intermediate output

• Whether the meaning list is incorrect

The test corpus was comprised of policy statements pertaining to web page

content at the Naval Postgraduate School. Many of the policy statements were in a

prescriptive format; they had a modal grouping as well as well-defined front and back

scopes. However, quite a few statements were expository in nature; free-form with the

intent to clarify a point. Some statements were bulleted items that were dependent

clauses or phrases. Many of the statements contained technical constructs such as

Uniform Resource Locator (URL) addresses.

Table 1 summarizes the results of the testing. Input sentences (excluding lists)

contained twenty-two words on average; the average meaning list contained eighteen

facts. Some words were combined and presented as unknown facts in a meaning list.

47

THIS PAGE INTENTIONALLY LEFT BLANK

50

VII. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

In this thesis we developed an architecture for a natural-language processing tool

to be used as a part of a policy workbench. We hypothesized that the NLIPT, when

properly implemented, could minimize user interaction when formalizing policy

statements. This is desirable when large policy bases are involved; it saves time and

increases the likelihood that the system will be consistently used. As part of a partial

proof of concept, we developed a prototype component, the extractor, for the NLIPT.

The extractor program proved adequate for parsing simple policy statements. It

correctly identifies the subject, object, attributes, and the verb. However, the program

must be refined if it is to adequately handle the complex sentences that exist in policy

corpora.

The inadequacies of extractor program do not disprove our hypothesis that policy

formalization can be largely automated. Nor do they invalidate the proposed architecture

of the NLIPT. Our efforts must be directed to improving the extractor component and to

implementing the other components of NLIPT. Modifying the program to use a full

context-free grammar instead of ad hoc rules could increase the robustness of the

program. The use of the partial tagger greatly simplified the algorithm of the extractor

program; it also introduced modularity into the NLIPT that allows replacement or

modifications without affecting the other components. Augmenting the tagger output by

identifying phrases (prepositional, adverbial, etc.) before submitting it to the extractor

51

program could help. Also, examining the possible word-senses of the input based on the

assigned tag could provide a means to correct mistagged words.

B. FUTURE WORK

Future research topics include the implementation and further refinement of the

proposed components of the NLIPT. We incorporated a commercial-off-the-shelf

(COTS) solution into the extractor. There may be suitable COTS solutions for all the

components. Evaluation and testing of COTS solutions could significantly reduce the

policy workbench development time.

Evaluation metrics for the NLIPT is another area of research. Some issues to

address when developing metrics might include the following:

• How easy is it to reconstruct the policy from the schema?

• How accurate is the logical representation?

• How relevant are the indexed schema retrieved from the policy base?

• Should the schema be indexed?

The NLIPT is only one of many components of a larger system. Moreover, the

NLIPT must be complemented with a natural-language response system, which remains

to be investigated.

Another avenue of research is that of exploring the interaction or degree of

coupling of the natural-language interface with the other policy-workbench tools. For

example, thesis research is being conducted at the Naval Postgraduate School on the

52

automated testing of policy. For instance, the testing tools may place tool-specific

requirements on the natural-language interface.

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

APPENDIX A: EXTRACTOR CODE

/* File: Extractor.pl
Author: V.L.Ong

Professor Rowe

Written in B-Prolog

This program parses sentences to find subjects, objects, and verb
phrases

INPUT: Sentence - natural language input to be parsed
Tags - part of speech tags for Sentence

OUTPUT: ML - Meaning List identifying the subject, object,
main verb phrase

*/

preparse(Sentence,_,_) :-
write('Preparsing the sentence: '), nl,
write(Sentence), nl, fail.

/* process compound sentences */
preparse(Sentence, Tags, ML) :-

is_compound_sentence(Sentence, Tags, SI, Tl, S2, T2, Conj),
preparse(SI, Tl, ML1),
preparse(S2, T2, ML2),
Rel=..[relationship, Conj],
append(ML1,[Rel],Temp),
append(Temp, ML2, ML), !.

/* Segments opening clauses/phrases offset by comma from input
Processes each separately, assumes first noun group following
phrase is subject

*/

preparse(FS, FT, FML) :-
append(Tl, [','|T2], FT), length(Tl, Nl),
(appendf ['IN'] , Dl, Tl) ,-
append(['WRB'] ,D1,T1) ,-append(['RB'] ,D1,T1)) ,
append(Sl,[','|S2], FS), length(SI,Nl),
append(PhrsHD, DS1, SI), length(PhrsHD,1),
find_noun_group(T2,S2,NGT,NGS,_,),
extract_subject(NGT,NGS,Sub),
interiorparse(DSl,Dl,ML),
(member(subject(S),Sub),CML = [relationship(S,PhrsHD)|ML];
CML = [relationship(PhrsHD)|ML]),

preparse(S2,T2,ML2),!,
append(ML2,CML,FML),!.

/* Segments opening clause offset with comma
that starts with a determiner such as Which
*/

55

preparse(FS, FT, FML) :-
append(Tl, [\'|T2], FT), length (Tl, Nl) ,
append(SI,[','|S2], FS), length(SI,Nl),
find_noun_group(Tl,SI,NGT,NGS,_,_,_,_) ,
NGT=['WDT'],
find_noun_group(T2,S2,NGT2,NGS2 ,_,_),
extract_subject(NGT2,NGS2,Sub),
interiorparse(Sl,Tl,ML),!,
(member(subject(S),Sub),CML = [relationship(S,NGS) |ML]
CML = [relationship(NGS)|ML]),
preparse(S2,T2,ML2) , ! ,
append(CML,ML2,FML),!.

/* Extracts appositives offset by commas from sentence
and concatenates the remaining input for processing.
Processes the appositive separately,
Assumes noun group immediately preceeding appositive
is subject of appositive

*/

preparse(Sentence, Tags, ML) :-
append(Tl, [','|T2], Tags), length(Tl, Nl),

append(AposT,[','|T3],T2), length(AposT,N2),
\+member(',',AposT),
\+member('<',AposT),\+member('>',AposT),
\+append(['CC'],DMY,T3),!,
append(SI,[','|S2],Sentence), length(SI, Nl), !,
append(AposS,[',' |S3] ,S2) , length(AposS, N2), !,
last_noun_group(Tl,SI,LNGTags,LNGSent,_,_,_,_),
extract_subj ect_np(LNGTags,LNGSent,Sub),
interiorparse(AposS,AposT,ApML),
(member(subject(S),Sub), append([apos_subj(S)],ApML,APML),-
append([apos],ApML,APML)),

append(Tl,T3,NTags),
append(SI,S3,NSentence),!,
preparse(NSentence, NTags, NML),
append(NML,APML,ML),!.

/♦segments a clause from a sentence and processes each
separately*/
preparse(Sentence, Tags, ML) :-

append(Tl, [','|T2], Tags), length(Tl, Nl),
append(Cist,[','|T3],T2), length(Cist,N2),
\+member(',',Clst), member('<',Clst),member('>',Clst),
member('[',Clst),member(']',Clst),!,
append(SI,[','|S2],Sentence), length(SI, Nl) ,
append(ClsS,[','|S3],S2), length(ClsS, N2), !,

interiorparse(ClsS,Cist,ApML),
append(Tl,T3,NTags),
append(Si,S3,NSentence),!,
preparse(NSentence, NTags, NML),
append(NML,ApML,ML),!.

56

/* Process sentence with modal*/
preparse(Sentence,Tags, ML) :-

append(Tl,['MD'|T2],Tags),
splitscope(Sentence,Tags, 'MD' , SF, SVG, SB,TF,TVG ,TB),

process_front_scope(SF,TF,Subj ect),
process_back_scope(SB,TB, Object),
process_modal_group(SVG, TVG, Modal, Verb),!,
Subj=..[main_subject_Group,Subject],
Obj=..[main_object_Group,Object],
Vb =..[main_verb_Group,Verb],
append([Subj],[Obj],Temp),
append(Temp,[Vb],ML),!.

/* No modal but verb in sentence*/
preparse(Sentence,Tags,ML) :-

member(Tagtype,Tags),verbtagtTagtype),
splitscope(Sentence,Tags,Tagtype,SF, SVG, SB,TF,TVG ,TB),
process_front_scope(SF,TF,Subj ect),
process_back_scope(SB,TB, Object),
process_verb_group(SVG, TVG, Verb,VerbList),
Subj=..[main_subject_Group,Subject],
Obj = .. [main_object_Group,Object],
Vb=..[main_verb_Group,VerbList],
append([Subj],[Obj],Temp),
append(Temp,[Vb],ML),!.

/* no modal and no verb in sentence */
preparse(Sentence,Tags,ML) :- !,

process_front_scope(Sentence,Tags,ML),!.

preparse(Sentence,Tags, []) :- !.

/* SEGMENTING INPUT INTO FRONT SCOPE, BACK SCOPE, VERB GROUPING*/

/* Splitscope */
% Splits sentence into three parts based on verb grouping (verb
%or modal)
% Checks first to make sure verb grouping is not part of a clause

splitscope(Sentence, Tags, TagType, SFront,VerbGroup, SBack,
TFront,VGTags, TBack):-

not_part_of_clause(Sentence,Tags, TagType, FScopeLength),
\+ infinitive(Sentence,Tags,TagType, Dmy),!,
append(TFront,Tl,Tags),
length(TFront,FScopeLength),
append(VGT, ['>'|TBack], Tl),length(TBack, N2),
append(VGT, ['>'], VGTags),
append(SFront,LI,Sentence), length(SFront,FScopeLength),!,

57

append(VerbGroup, SBack, Ll), length(SBack,N2)

/*is_compound_sentence*/
%This function succeeds if the submitted input
%has the properties of a compound sentence. Returns
%the two independent clauses and the conjunction
%Input: sentence, tags
%Output: sentencel, tagsl, sentence2, tags2, conjunction

is_compound_sentence(Sentence, Tags, SI, Tl, S2, T2, Conj) :-
(append(SI,[',',Conj|S2],Sentence);
append(SI,[';',Conj|S2], Sentence)),
(coorconj(Conj); conjadv(Conj)), length(Sl, Nl) ,
member('[',S1),member(']',S1),member('[',S2),member(']',S2),
member('<',S1),member(■>',S1),member('<',S2),member('>',S2),
append(Tl,[',',CT|T2], Tags), length(Tl, Nl), !.

/* not_part_of_clause */
% This function succeeds if the word immediately before
% the grouping with the Tagtype is a not clause word. Returns
% length of list preceeding group with TagType

% Handles verbs or modals
not_part_of_clause(Fragment, Tags, TagType, FLength) :-

(verbtag(TagType); TagType = 'MD'),
append(Front,['<'|Back],Tags), length(Front,FLength)
append(CheckFront,[TagType|Backl],Back),
\+append(Dcl,['<'|Dc2],CheckFront),!,
append(SF,['<'|SB],Fragment),length(SF,FLength),
last(Front,MaybeCls),!,
\+cls(MaybeCls), \+tocls(MaybeCls),
last_noun_group(Front,SF,NGT1,NGS1,TF1,SF1,_,_),
(\+spcls(NGTl);spcls(NGTl),\+member('[',TF1)),!.

%Handles with nouns, pronouns
not_part_of_clause(Fragment, Tags, TagType, FLength) :-

nountag(TagType),!,
append (Front , [' ['' |Back], Tags) , 1 ength (Front, FLength)
append(CheckFront, [TagType|Backl],Back),
\+append(Dcl,['['|Dc2],CheckFront),
append(SF,['['|SB],Fragment),length(SF,FLength),
last(Front,MaybeCls),!,
\+cls(MaybeCls), \+tocls(MaybeCls),
last_noun_group(Front,SF,NGT1,NGS1,TF1, SF1,_,_),
(\+spcls(NGTl);spcls(NGTl),\+member(•[',TF1)),!.

% Checks to see if the verb grouping is actually an infinitive
% Succeeds if it is an infinitive

infinitive(Fragment, Tags, TagType, []) :-
TagType = 'VB',!,
append(Front,['<'|Back],Tags),

58

append(VerbGp,['>'|Backl],Back),
member('TO',VerbGp),!,member('VB',VerbGp)

/* FRONT SCOPE PROCESSING */

/* Process_front_scope
Extracts the subject from the grouping, identifies any
determiners, any adjectives (attributes) */

process_front_scope([],[],[]).

/* clause as opening statement with 'IN' tag as first grouping
Assumption: first noun group following comma is subject

*/
process_front_scope(FS, FT, FML) :-

append(Tl, [',■|T2], FT), length(Tl, Nl),
append(['IN'], Dl, Tl),!,
append(SI,[','|S2], FS), length(SI,Nl),
append(Clause, DS1, SI), length(Clause,1),
interiorparse(DSl,Dl,ML),
find_noun_group(T2,S2,NounTags,NounGrp,_,_,_,_),
extract_subject(NounTags, NounGrp, Subj),
member(subj ect(S),Subj),
CML = [relationship(S,Clause)|ML],
process_front_scope(S2,T2,ML2) , ! ,
append(CML,ML2,FML),!.

/* clause as opening statement with 'WDT' tag as first grouping
Form: brackets surround WDT

Assumption: first noun group following comma is subject
'/

process_front_scope(FS, FT, FML) :-
append(Tl, [','|T2], FT), length(Tl, Nl),
append(['[','WDT',']'],Dl,Tl),!,
append(SI,[','|S2], FS), length(Sl,Nl),!,
append(Clause, DS1, SI), length(Clause,3),!,
interiorparse(DSl,Dl,ML) , !,
find_noun_group(T2,S2,NounTags,NounGrp,_,_,_,_)
extract_subject(NounTags, NounGrp, Subj),!,
member(subj ect(S),Subj) ,
append(['['],[Cl|']'],Clause),
CML = [relationship(S,C1)|ML],
process_front_scope(S2,T2,ML2),!,
append«CML,ML2,FML),!.

Segments rear phrase and sends it for subordinate processing
Assumes noun group nearest phrase is subject of phrase.
Assumes noun group that is nearest main verbal grouping that

is not part of a clause is the subject of the verb.
*/

59

/* identifies last occurance of clause word */
process_front_scope(FS, FT, FML) :-

get_last_cls(FT, Cls, BLength),
append(Tl, [Cls|T2], FT), (cls(Cls);tools(Cls)),
length(T2,BLength),!,
append(SI, [SCls|S2],FS), length(S2,BLength),! ,
interiorparse(S2,T2,ML),!,
PML = [relationship(SCls)|ML],
process_front_scope(Sl,Tl,NML),!,
append(NML,PML,FML),!.

%This routine addresses multiple objects
process_front_scope(FS, FT, FML) :-

find_noun_group(FT,FS,NT,NS,Fronts,FrontT,RestT,RestS) ,
extract_subject(NT,NS,Subl),
subs_headnoun_subj ect(Subl,Sub2),
first(RestT, X), (X=',';X='CC),
process_front_scope(Rests,RestT,ML1),
interiorparse(Fronts,FrontT,NML),!,
append(NML,Sub2,ML),

append(ML,ML1,FML),!.

process_front_scope(FS, FT, FML) :-
find_noun_group(FT,FS,NT,NS,Fronts,FrontT,RestT, Rests) ,
extract_subject(NT,NS,Sub2),!,
subs_headnoun_subj ect(Sub2,Subl),
interiorparse(Fronts,FrontT,NML1),
interiorparse(Rests,RestT,NML),!,
append(NML1,Subl,ML),
append(ML,NML,FML),

/* only noun group supplied */
process_front_scope(FS, FT, FML) :-

append(['['], Back, FT),
last(Back,X), X= ']',!,
delimit_list(FT,FS,'[',Ftags,Fsent),!
extract_subj ect_np(Ftags,Fsent,FML1),
subs_headnoun_subject(FML1,FML),!.

/* only infinitive left */
process_front_scope(FS, FT, FML) :-

first(FT,Y), Y= '<■,
last(FT,X), X= •>',
member{'TO', FT),
member('VB', FT),
delimit_list(FT,FS,'<',Ftags,Fsent),!
make_word_from_list(Fsent,Infinitive)
FML = [subject(Infinitive)],!.

60

process_front_scope(FS,FT,FML) :-
member(X,FT), punc(X),
delete(X,FT,FTl), delete(X,FS,FS1),
process_front_scope(FSl,FTl,FML),!.

process_front_scope(FS, FT, FML) :-
length(FT,1), (FT=[•VBG'];FT=['IN1];FT=['TO'];FT=['VBN'])
FS=[X],
FML=[relationship(X)],!.

process_front_scope(FS,FT, FML) :-
length(FT,1), FT=['CC'],
FS=[X],
FML=[conj(X)],!.

process_front_scope(FS,FT,[]) :-
length(FT,1), FT=[X],punc(X),!.

/*program identifies as unknown things it does not handle */
process_front_scope(FS, FT, FML) :-

member(X,FT),\+punc(X),
make_word_from_list(FS, Unknown),
FML = [unknown(Unknown)],!.

process_front_scope(_,_,[]).

/* get_last_cls */
% finds last clause and returns position
% from the back up to (but not including) the els tag

% makes sure infinitive with to is not selected
get_last_cls(Tags, Cls, BLength) :-

reversa(Tags, RT),
append(Tl,[Cls|T2],RT), tocls(Cls),
\+append(X,['VB'],T1),length(Tl,BLength),!.

get_last_cls(Tags, Cls, BLength) :-
reversa(Tags, RT),!,
append(Tl,[Cls|T2],RT), cls(Cls),length(Tl, BLength),!.

/* SUB PARSE SECTION */

/* Input: Tags - phrase tags to be processed
Sent - phrase content

NGT - tags of noun group (no brackets) most likely subject
NGS - noun group (no brackets)
OUTPUT: ML with subordinate phrase parsed

*/
/* interiorparse */

interiorparse([],[],[])-

61

/* clauses with modals*/
interiorparse(SentFrag, Tags, ML):-

append(Tl,['MD'|T2],Tags),
splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB)

process_front_scope(SF,TF,Sub),
member(subject(S),Sub),
process_modal_group(SVG, TVG, Modal, Verb),
delete(subject(S),Sub,Subl),
member(verb(VI,V2),Verb),
append([subj(S)],Subl,Sub2),
sub_hd_subj(Sub2,V2,Subj ect),
process_back_scope(SB,TB, Object),

member(object(01),Object),!,
delete(object(01),Object,OB),
append«[obj(01)] ,0B,0B2),
sub_hd_obj(0B2,V2,0B3),
append(Subject,Verb,ML3),
append(ML3, 0B3, ML),!.

interiorparse(SentFrag, Tags, ML) : -
append(Tl,['MD'|T2],Tags),

splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB)
process_front_scope(SF,TF,Subj ect),
member(subj ect(S) , Subj ect),
process_modal_group(SVG, TVG, Modal, Verb),
member(verb(VI,V2),Verb),!,
delete(subject(S),Subject,Sb),
append([subj(S)],Sb,MLl),
sub_hd_sub j (MLl, V2, ML2) , .
append(ML2,Verb, ML),!.

% no subject, but has back scope
interiorparse(SentFrag, Tags, ML) :-

append(Tl,['MD'|T2],Tags),
splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB),
process_modal_group(SVG, TVG, Modal, Verb),
member(verb(VI,V2),Verb),
process_back_scope(SB,TB,Obj ect),
member(obj ect(01),Obj ect), !,
delete(obj ect(01),Obj ect,OB),
append« [obj(01)],OB,MLl),
sub_hd_obj(MLl,V2,ML2),
append(Verb,ML2,ML),!.

% only modal present, not front or back scope
interiorparse(SentFrag,Tags, ML) :-

member('MD', Tags),
process_modal_group(SVG, TVG, Modal, ML),!.

/* clauses with verbs */
% subject, verb, object; splits on first verbform encountered
interiorparse(SentFrag,Tags,ML) :-

62

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype),
\+infinitive(SentFrag,Tags,Tagtype,_),

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB) ,
process_front_scope(SF,TF,Subj ect),
process_verb_group(SVG, TVG, Verb,VerbList),
process_back_scope(SB,TB, Object),
member(subj ect(S),Subj ect),
member(verb(VI,V2),VerbList),
delete(subject(S),Sujbect,S2),
append([subj(S)],S2,S3) ,
sub_hd_subj(S3,V2,SML),
delete(obj ect(01),Obj ect, OBI),
append([obj(01)],OBI,OB),
sub_hd_obj(OB,V2,OML),
append(SML,VerbList,Temp),!,
append(Temp,OML, ML),!.

% subject, verb, no object
interiorparse(SentFrag, Tags, ML) :-

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype),
\+infinitive(SentFrag,Tags,Tagtype,_),

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB)
process_front_scope(SF,TF,Subj ect),
process_verb_group(SVG, TVG, Verb,VerbList),
member(subj ect(S),Subj ect),
member(verb(VI,V2),VerbList),!,
delete(subject(S),Subject,S2),
append([subj(S)],S2,S3) ,
sub_hd_subj(S3,V2,SML),
append(SML,VerbList, ML),!.

% no subject, but has backscope
interiorparse(SentFrag, Tags, ML) :-

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype),
\+infinitive(SentFrag,Tags,Tagtype,_),

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB)
process_verb_group(SVG, TVG, Verb,VerbList),
process_back_scope(SB,TB,Obj ect),
member(verb(VI,V2),VerbList),
member(object(01),Object),!,
delete(object(01),Object,OB),
appendt[obj(01)],OB,OML),
sub_hd_obj(OML,V2,0ML1),
append(VerbList,OMLl,ML),!.

% only verb in phrase/clause
interiorparse (SentFrag, Tags, ML) -.-

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype)
\+infinitive(SentFrag,Tags,Tagtype,_),
process_verb_group(SVG, TVG, Verb,ML),!.

/* clause with no verbs */
interiorparse(SentFrag, Tags, ML)

63

process_front_scope(SentFrag,Tags,Subj ect) ,
member(subj ect(S),Subj ect),
delete(subject(S),Subject,SB),
append([subj(S)],SB,ML) , !.

%no brackets around phrase words
interiorparse(SentFrag, Tags, ML) :-

process_front_scope(SentFrag,Tags,Subj ect),
ML=Subject,!.

/* return nothing */
interiorparse(_, _, []).

/*interiorparseBS is the same as interiorparse, but handles the
back scope */

/* interiorparseBS */

interiorparseBS([],[],[]).

/* clauses with modals*/
interiorparseBS(SentFrag, Tags, ML):-

append(Tl,['MD'|T2],Tags),
splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB)

process_front_scope(SF,TF,Sub),
member(subject(S),Sub),
process_modal_group(SVG, TVG, Modal, Verb),
delete(subject(S),Sub,Subl),
member(verb(VI,V2),Verb),
append([subj(S)],Subl,Sub2),
sub_hd_subj(Sub2,V2,Subj ect),
process_back_scope(SB,TB, Object),

member(obj ect(01),Obj ect),!,
delete(object(01),Object,OB),
append([obj(01)],0B,0B2),
sub_hd_obj(0B2,V2,0B3),
append(Subj ect,Verb,ML3),
append(ML3, 0B3, ML),!.

interiorparseBS(SentFrag, Tags, ML):-
append(Tl,['MD'|T2],Tags),

splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB)
process_front_scope(SF,TF,Subject),
member(subject(S)»Subject),
process_modal_group(SVG, TVG, Modal, Verb),
member(verb(VI,V2),Verb),!,
delete(subject(S),Subject,Sb),
append([subj(S)],Sb,MLl),
sub_hd_subj(ML1,V2,ML2),

append(ML2,Verb, ML),!.

% no subject, but has backscope
interiorparseBS(SentFrag, Tags, ML) :-

64

append(Tl,['MD'|T2],Tags),
splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB)
process_modal_group(SVG, TVG, Modal, Verb),
member(verb(VI,V2),Verb),
process_back_scope(SB,TB,Obj ect) ,
member(obj ect(01),Obj ect),!,
delete(object(01),Object,OB),
appendt[obj(01)],0B,ML1),
sub_hd_obj(ML1,V2,ML2),
append(Verb,ML2,ML),!.

% only modal
interiorparseBS(SentFrag,Tags, ML) :-

member('MD', Tags),
process_modal_group(SVG, TVG, Modal, ML),!.

/* clauses with verbs */
% subject, verb, object; splits on first verbform encountered
interiorparseBS(SentFrag,Tags,ML) :-

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype),
\+infinitive(SentFrag,Tags,Tagtype,_),

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB),
process_front_scope(SF,TF,Subj ect) ,
process_verb_group(SVG, TVG, Verb,VerbList),
process_back_scope(SB,TB, Object),
member(subj ect(S),Subj ect),
member(verb(VI,V2),VerbList),
member(object(01),Object),!,
delete(subject(S),Sujbect,S2),
append([subj(S)],S2,S3),
sub_hd_subj(S3,V2,SML),
delete (ob j ect (01) , Obj ect, OBI) ,
append([obj(01)],OBI,OB),
sub_hd_obj(OB,V2,OML),
append(SML,VerbList,Temp),!,
append(Temp,OML, ML),!.

% subject, verb, no object
interiorparseBS(SentFrag, Tags, ML) :-

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype),
\+infinitive(SentFrag,Tags,Tagtype,_),

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB),
process_front_scope(SF,TF,Subj ect) ,
process_verb_group(SVG, TVG, Verb,VerbList),
member(subject(S),Subject) ,
member(verb(VI,V2),VerbList),!,
delete(subject(S),Subject,S2) ,
appendt[subj(S)],S2,S3),
sub_hd_subj (S3, V2, SML) ,
append«SML,VerbList, ML),!.

% no subject, but has backscope
interiorparseBS(SentFrag, Tags, ML) :-

65

append(Tl,[Tagtype|T2],Tags),verbtagtTagtype),
\+infinitive(SentFrag,Tags,Tagtype,_),

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB),
process_verb_group(SVG, TVG, Verb,VerbList),
process_back_scope(SB,TB,Object) ,
member(verb(VI,V2),VerbList),
member(obj ect(01),Obj ect),!,
delete(object(01),Object,OB),
append([obj(01)],0B,0ML),
sub_hd_obj(OML,V2,0ML1),
append(VerbList,OMLl,ML),!.

i only verb in phrase/clause
interiorparseBS(SentFrag, Tags, ML) :-

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype),
\+infinitive(SentFrag,Tags,Tagtype,_),
process_verb_group(SVG, TVG, Verb,ML) , !.

/* clause with no verbs */
interiorparseBS(SentFrag, Tags, ML) :-

process_back_scope(SentFrag,Tags,Obj ect),
member(object(0),Object),
delete(object(0)»Object,OB) ,
append([obj(0)],OB,ML),

%no brackets around phrase words
interiorparseBS(SentFrag, Tags, ML) :-

process_back_scope(SentFrag,Tags,Obj ect),
ML=0bject,!.

/* return nothing */
interiorparseBS(_, _, []).

/* Segments phrases based on first verb encountered
Used for interior parsing of phrases*/

/* splitinscope */
% splits on first verb encountered

splitinscope(Sentence,Tags,TagType,SFront,VerbGroup,SBack,TFront,VGTag,
TBack):-

append(TFr,[TagType|Back],Tags),
reversa(TFr,RFT),!,
append(Tl,['<'|TF1],RFT),!, length(TF1,N1),!,
append(TFront,TF2,TFr), length(TFront,Nl),!,
append(TF2,[TagType],VGT),!,
append(VGTB, ['>'|TBack], Back),length(TBack, N2),
append(VGT, VGTB, VGTC),
append(VGTC, ['>'], VGTags) , !,
append(SFront,LI,Sentence), length(SFront,Nl),!,
append(VerbGroup, SBack, Ll), length(SBack,N2),

66

i

/* BACK SCOPE PROCESSING */

/* process_back_scope */
% Finds the object of the verb

process_back_scope([],[],[]).

/* identifies last occurance of clause word */
process_back_scope(BS, BT, BML) :-

get_last_cls(BT, Cls, BLength),
append(Tl, [Cls|T2], BT), (cls(Cls);tocls(Cls)),
length(T2,BLength) , !,
append(SI, [SCls|S2],BS), length(S2,BLength) ,!,
interiorparseBS(S2,T2,ML),!,
PML = [relationship(SCls)|ML],
process_back_scope(Sl,Tl,NML),!,
append(NML,PML,BML),!.

%This routine addresses multiple objects
process_back_scope(BS, BT, BML) :-

find_noun_group(BT,BS,NT,NS,Fronts,FrontT,RestT, Rests),
extract_object(NT,NS,Objl),
subs_headnoun_object(Objl,OBl),
first(RestT, X), (X=',';X='CC'),
process_back_scope(Rests,RestT,ML1),
interiorparseBS(Fronts,FrontT,NML),!,
append(NML,OBI,ML) ,
append(ML,ML1,BML),

process_back_scope(BS, BT, BML) :-
find_noun_group(BT,BS,NT,NS,Fronts,FrontT,RestT,RestS),
extract_object(NT,NS,Subl),
subs_headnoun_obj ect{Subl,OBI),
interiorparseBS(Fronts,FrontT,NML1),
interiorparseBS(Rests,RestT,NML),!,
append(NML1,OBI,ML) ,
append(ML,NML,BML),!.

/* only noun group supplied */
process_back_scope(BS, BT, BML) :-

append(['['], Back, BT), ! ,
last(Back,X), X= ']',!,
delimit_list(BT,BS,'[',Btags,BSent)
extract_obj ect_np(Btags,BSent,BML),

/* only infinitive left */
process_back_scope(BS, BT, BML) :-

first(BT,Y), Y= '<',

67

last(BT,X), X= '>' ,
member('TO' , BT),
member('VB', BT),
delimit_list(BT,BS,'<',Ftags,BSent),!,
make_word_from_list(BSent,Infinitive),
BML = [object(Infinitive)],!.

%punctuation appears the same in both tag lists and sentences
process_back_scope(FS, FT, FML) :-

member(X,FT), punc(X),
delete(X,FT,FT1), delete(X,FS,FS1),
process_back_scope(FS1,FT1,FML), !.

process_back_scope(BS, BT, BML) :-
length(BT,1), (BT=['VBG'];BT=['TO'];BT=['IN']),
BML =[relationship(BS)], !.

process_back_scope(BS,BT,BML) :-
length(BT,l) , BT=['CC],
BML =[conj(BS)],!.

process_back_scope(BS,BT,[]) :-
length(BT,1), BT=[X],punc(X),!.

process_back_scope(FS, FT, FML) :-
member(X,FT),\+punc(X),
make_word_from_list(FS, Unknown),
FML = [unknown(Unknown)],!.

process_back_scope(_,_,[]) :- !.

/* NOUN GROUP PROCESSING */

/* find_noun_group
Returns first noun group in fragment
Returned with brackets*/

% Finds first noun group in fragment.
% Noun group returned with brackets

find_noun_group(TagsFrag, SentFrag, NGTags, NGSent,SFront,TFront,
TRest, SRest):-

append(TFront,['['|TB],TagsFrag),
length(TFront,Nl), !,
append(TFront,Tl,TagsFrag), !,
append(NGT, [']'|TRest], Tl),length(TRest, N2),!,
append(NGT, [']'], NGTags),
append(SFront,LI,SentFrag), length(SFront,Nl),!,
append(NGSent, SRest, LI), length(SRest,N2),!.

68

%Finds last noun group in fragment and extracts it from the submitted
%fragment

%Noun group returned without brackets

last_noun_group([],[],[],[],[],[],[],[])•

^returns infinitive if noun group is not behind it
last_noun_group(Tags, Sent, LNGTags, LNGSent, TFront,

SFront, TRest, SRest):-
reversa(Tags,RTags),

append(RTback,['>'|Tb],RTags),
\+member('[',RTback),\+member(']',RTback),
length(RTback,Nl),

append(RLNGTags,['<'|RTfront],Tb),
member('TO',RLNGTags),member('VB',RLNGTags),
reversa (Sent, RSent) ,
append(RSback,['>'|Sb],RSent), length(RSback,Nl),
append(RLNGSent,['<'|RSfront],Sb),
reversa(RLNGTags,LNGTags),
reversa(RTfront,TFront),
reversa(RTback,TRest),
reversa(RLNGSent,LNGSent),
reversa(RSback,SRest),
reversa(RSfront,SFront),!.

%returns the last noun group in the fragment submitted
last_noun_group(Tags, Sent, LNGTags, LNGSent, TFront, SFront, TRest,

SRest):-
reversa(Tags,RTags),
append(RTback,[']'|Tb],RTags),
append(RLNGTags,['['|RTfront],Tb),
reversa(Sent,RSent),
append(RSback,[']'|Sb],RSent),
append(RLNGSent,['['|RSfront],Sb),
reversa(RLNGTags,LNGTags),
reversa(RTfront,TFront),
reversa(RTback,TRest),
reversa(RLNGSent,LNGSent),
reversa(RSback,SRest),
reversa(RSfront,SFront),!.

last_noun_group(_,_,[],[],[],[],[],[])•

/* extract_subject */
% Extracts subject from noun group
extract_subject(NT, NS, Subj) :-

delimit_list(NT, NS, '[',NTags, NSent),
extract_subject_np(NTags, NSent, Subj).

/* extract_object */
% Extracts object from noun group
extract_object(NT, NS, Obj) :-

delimit_list(NT, NS, '[',NTags, NSent)

69

extract_object_np(NTags, NSent, Obj).

/* delimit_list */
% Extracts tags, and words from single grouping

delimit_list(TagList, SentList, Delim, TagsOnly, SentOnly)
butlast(TagList, TL1), butlast(SentList, SL1) ,
append(_,[Delim|TagsOnly],TL1),

\+ member(Delim, TagsOnly),
append(_,[Delim|SentOnly],SL1),
\+ member(Delim, SentOnly),!.

Extracts subject from unbracketed noun group,
Identifies modifiers and determiners
Written by Professor Rowe and modified by author

*/

/* extract_subject_np */
extract_subject_np([T] , [S]
extract_subject_np([T] , [S]
extract_subject_np([T] , [S]
extract_subject_np([T] , [S]
extract_subject_np([T] , [S]
extract_subject_np([Tl|TL]

adjtag(Tl), Tl>
extract_subject_np([Tl|TL]

adjtag(Tl), !,

:- nountag(T)
:- T='VBG',!.
.subject(S)])
:- T='CD',!.
.subject(S)])

- T='WDT'

.[subject(S)])

.[subject(S)])
[anaphoric(S)
[subject(S)])
[anaphoric(S),subject(S)]) :- spPrn(S)
[SI|SL],[determiner(noun,SI)|ML]) :-

='DT',!, extract_subject_np(TL,SL,ML),
[S1|SL],[modifier(noun,SI)|ML]) :-
extract_subject_np(TL,SL,ML), !.

extract_subject_np([T1,T2|TL],[S1,S2|SL]
nountag(Tl), nountag(T2), !,

extract_subject_np([T2|TL],[S2|SL],ML),
extract_subject_np([T1,T2|TL],[S1,S2|SL]

[modifier(noun,SI)|ML])

[modifier(S2,SD |ML])
T1='RB' extract_subject_np([T2|TL],[S2|SL],ML), !

extract_subject_np([T1,T2|TL],[S1,S2|SL],[relationship(SI,S2)])
(nountag(Tl); T1='CD'), T2='IN',!,
extract_subject_np(TL,SL,ML), !.

extract_subject_np([T1|TL], [SI|SL],ML):-
extract_subject_np(TL,SL,ML), !.

/* extract_object_np */
extract_object_np([T1|TL],[S1|SL],[determiner(noun,SI)|ML]) :-

adjtag(Tl), T1='DT',!, extract_object_np(TL,SL,ML)
extract_object_np([T1|TL],[S1|SL],[modifier(noun,SI)|ML]) :-

adjtag(Tl), extract_object_np(TL,SL,ML),

extract_object_np([T1,T2|TL],[S1,S2|SL],[modifier(noun,SI)|ML])
nountag(Tl), nountag(T2), !,

extract_object_np([T2|TL],[S2|SL],ML), !.
extract_object_np([T],[S],[object(S)]) :- nountag(T), !.
extract_object_np([T],[S],[object(S)]) :- T='VBG',!.

70

extract_object_np([T],[S],[object(S)]) :- T='WDT\!.
extract_object_np([T],[S],[object(S)]) :- spPrn(S),!.
extract_object_np([T1,T2|TL],[S1,S2|SL],[modifier(S2,SI)|ML]) :-

T1='RB', extract_object_np([T2|TL],[S2|SL],ML), !.
extract_object_np([T1,T2[TL],[S1,S2|SL],[object(verb,SI)]) :-

nountag(Tl), (T2='IN'; T2='VBG'; T2='VBN'),
!,extract_object_np(TL,SL,ML), !.

extract_object_np([T1|TL],[S1|SL],ML) :- extract_object_np(TL,SL,ML)

/* process_modal_group */
% This routine assumes only a modal grouping in SVG, TVG
process_modal_group(SVG, TVG, Modal, Verb) :-

delimit_list(TVG, SVG, '<', ModalTags, ModalSent),!,
append(Tl,['MD'|T2],TVG), length(T1,N1),!,
append(SI,[Modal|S2],SVG), length(SI,Nl),!,
polpreparse_modverb(ModalSent, ModalTags, Modal, List,_,_),
Verb = [modal(Modal)|List] ,!.

/* process_verb_group*/
% This routine assumes only a verb grouping in SVG, TVG

process_verb_group(SVG, TVG, Verb, ML) :-
delimit_list(TVG, SVG, '<', VerbTags, VerbSent),!,
append(Tl,[X|T2],TVG), verbtag(X), length(Tl,Nl),!,
append(SI,[Verb|S2],SVG), length(SI,Nl),!,

parse_verb(VerbSent, VerbTags, Verb, ML),!.

/* This routine identifies the verb, modal and any modifiers in
a verb group.

WRITTEN: PROFESSOR ROWE
*/
polpreparse_modverb([Adverb|S],['RB'|Tags],Modal,

[modifier(Modal,Adverb)|ML],SB,TB) :-
!,polpreparse_modverb(S,Tags,Modal,ML,SB,TB).

polpreparse_modverb([Verb,Adverb|S],[Verbtag,'RB'|Tags],Modal,
[modifier(Modal,Adverb)|ML],SB,TB) :-

verbtag(Verbtag), \+(first(Tags,Nexttag),
verbtag(Nexttag)) , !,
polpreparse_modverb([Verb|S],[Verbtag|Tags],Modal,ML,SB,TB.

polpreparse_modverb([Noun|S],[NountagjTags],Modal,[subject(Modal,Noun)|
ML],SB,TB):-
nountag(Nountag), !, polpreparse_modverb(S,Tags,Modal,ML,SB,TB).

polpreparse_modverb([Beform|S],[Verbtag|Tags],Modal,
[passive(Modal,Beform)|ML],SB,TB):-

verbtag(Verbtag), beform(Beform), \+first(Tags,'CC'),
member(Verbtag2,Tags), verbtag(Verbtag2), !,
polpreparse_modverb(S,Tags,Modal,ML,SB,TB).

polpreparse_modverb([Haveform|S],[Verbtag|Tags],Modal,
[passive(Modal,Haveform)|ML],SB,TB):-

verbtag(Verbtag), haveform(Beform), \+ first(Tags,'CC'),

71

member(Verbtag2,Tags), verbtag(Verbtag2), !,
polpreparse_modverb(S,Tags,Modal,ML,SB,TB).

polpreparse_modverb([Verbl,Conj,Verb2|S],[Verbtag,'CC',Verbtag|Tags],
Modal,[verb(Modal,Verbl2)],S,Tags) :-

verbtag(Verbtag), name(Verbl,AVI), name(Verb2,AV2),
name('_and_',AVO),append(AVI,AVO,AV10),
append(AVI0,AV2,AV12), name(Verbl2,AV12), !.

polpreparse_modverb([Verb|S],[Verbtag|Tags],Modal,[verb(Modal,Verb)],S,
Tags) :-

verbtag(Verbtag), !.
polpreparse_modverb([_|S],[PS|Tags],Modal,ML,SB,TB) :-

polpreparse_modverb(S,Tags,Modal,ML,SB,TB).

/*Same routine as above but no modal in verb group*/

parse_verb([Adverb|S],['RB'|Tags],Verb,[modifier(Verb,Adverb)|ML):- !
parse_verb(S,Tags,Verb,ML).

parse_verb([Vb,Adverb|S],[Verbtag,'RB'|Tags],Verb,
[modifier(Verb,Adverb)|ML]) :-

verbtag(Verbtag), \+(first(Tags,Nexttag),
verbtag(Nexttag)) , !,
parse_verb([Vb|S] , [Verbtag|Tags],Verb,ML) .

parse_verb([Noun|S],[Nountag|Tags],Verb,
[subject(Verb,Noun)|ML]):-

nountag(Nountag), !, parse_verb(S,Tags,Verb,ML).
parse_verb([Beform|S],[Verbtag|Tags],Verb,

[passive(Verb,Beform)|ML]):-
verbtag(Verbtag), beform(Beform), \+first(Tags,'CC')

member(Verbtag2,Tags), verbtag(Verbtag2), !,
parse_verb(S,Tags,Verb,ML).

parse_verb([Haveform|S],[Verbtag|Tags],Verb,
[passive(Verb,Haveform)|MLJ):-

verbtag(Verbtag), haveform(Beform), \+ first(Tags,'CC'),
member(Verbtag2,Tags), verbtag(Verbtag2), !,
parse_verb(S,Tags,Verb,ML).

parse_verb([Verbl,Conj,Verb2|S],[Verbtag,'CC,Verbtag|Tags],Verb,
[verb(Verbl2,Verbl2)]) :-
verbtag(Verbtag), name(Verbl,AVI), name(Verb2,AV2),
name('_and_',AVO),append(AVI,AVO,AVI0),
append(AVI0,AV2,AVI2), name(Verbl2,AVI2)

parse_verb([Vb|S],[Verbtag|Tags],Verb,[verb(Verb,Vb)])
verbtag(Verbtag), !.

parse_verb([_|S],[PS|Tags],Verb,ML) :-
parse_verb(S,Tags,Verb,ML).

i

%FACTS

verbtag('VB').
verbtag('VBD').
verbtag('VBG').
verbtag('VBN').
verbtag('VBP').
verbtag('VBZ').

72

nountag(' NN') .
nountag('NNS')
nountag('NNP')
nountag('NNP')
nountag('NNPS'
nountag('PRP')
nountag (' FW) .
nountag('WP').

adj tag('JJ').
adj tag('JJR').
adj tag('JJS').
adjtag('CD').
adj tag('DT') .
adj tag('PDT') .
adjtag('POS').
adjtagt'PRP$').
adjtag('WP$').
adj tag('RB') .
adjtagt'VBG').

speist'WDT').
toclst'TO').
cls('IN')-
cist'WP').
eist'WRB').
cls('WP$').

beformt'is').
beformt'are').
beformt'was').
beformt'were').
beformt'be').
beformt'being').
beformt'been').
haveform('has').
haveformt'have').
haveform('had').
haveformt'having').

clausewordt'who').
clauseword('that').
clausewordt'which').
clausewordt'whom').
clausewordt'whose').

coorconj('and').
coorconj('but').
coorconj('nor').
coorconj('or').
coorconj('for').
coorconj('yet').

conjadvt'also').

73

conjadv
conjadv
conjadv
conjadv
conjadv
conjadv
conjadv
conjadv
conjadv
conjadv
conjadv

'besides').
'consequently1)
'furthermore') .
'however') .
'moreover').
'nevertheless')
'otherwise') .
'then').
1 therefore').
'thus').
'still') .

%May be used as adj
%parts of speech

or pronouns, as well as other

spPrn (a 11) -
spPrn (another).
spPrn (any).
spPrn (both).
spPrn (each).
spPrn (either).
spPrn (few).
spPrn (many).
spPrn more).
spPrn (neither).
spPrn (one).
spPrn (other).
spPrn several).
spPrn some).
spPrn that).
spPrn these).
spPrn this).
spPrn those).
spPrn what).
spPrn which).

punc (
punc (
punc (
punc (
punc (
punc (
punc (
punc (<
punc (>
punc(') ') •
punc (/
punc(' II

/* Utility functions
Written by: Professor Rowe*/

%Combines list contents into one item with underscores between
%the original items
make_word_from_list([S], S) : - !.

74

make_word_from_list([SI|SL],S) :-
make_word_from_list(SL,S2),
name(S2,AS2), name(SI, AS1),
append(AS1,[95|AS2], AS12),
name(S, AS12) , !.

butlast(L,NL) :- append(NL,[_],L), !.

first([X|_],X)-

last([X],X) :- !.
last([_|L],X) :-last(L,X).

delete(X, [],[]) :- !.
delete(X,[X|L],NL) :- !, delete(X,L,NL), !.
delete(X,[Y|L],[Y|NL]) :- delete(X,L,NL), !.

reversa(L,RL) :- reversa2(L,[],RL), !.
reversa2([],L,L).
reversa2([X|L],L2,RL) :- reversa2(L,[X|L2],RL).

%Written by Professor Rowe and modified by Ong
% The following routines are used to clean up lists from
%extract_subject_np, extract_object_np, and the equivalent
%routines for the phrases. They relate the modifiers to the
%modified noun, and places the head noun at the list head

substitute_headnoun_subject(ML,Verb,NML) :-
member(subject(Subject),ML),
substitute_headnoun2(ML,Subject,ML3), NML =
[subject(Verb,Subject)|ML3], !.

substitute_headnoun_subject(_,_,[]):-!.

substitute_headnoun2([],_,[]).
substitute_headnoun2([modifier(noun,M)|ML],Subject,[modifier(Subject,M)

|NML]):-
!, substitute_headnoun2(ML,Subject,NML).

substitute_headnoun2([determiner(noun,M)|ML],Subject,
[determiner(Subject,M)|NML]):- !,

substitute_headnoun2(ML,Subject,NML).
substitute_headnoun2([M1|ML],Subject,[Ml|NML]):-

!, substitute_headnoun2(ML,Subject,NML).

sub_hd_subj(ML,Verb,NML) :-
member!subj(Subject),ML),
sub_hd_subj2(ML,Subject,ML3), NML= [subj(Verb,Subject)|ML3]

i

sub_hd_subj([]):-!.
sub_hd_subj2([],_,[]).
sub_hd_subj2([modifier(noun,M)|ML],Subject,[modifier(Subject,M)|NML])

!, sub_hd_subj2(ML,Subject,NML).
sub_hd_subj2([determiner(noun,M)|ML],Subject,

[determiner(Subject,M)|NML]):-

75

!, sub_hd_subj2(ML,Subject,NML).
sub_hd_subj2([M1|ML],Subject,[Ml|NML])

sub_hd_subj2(ML,Subject,NML). i

subs_headnoun_subj ect(ML1,NML) :-
member(subject(Subject),MLl) , delete(subject(Subject),ML1,ML),
subs_headnoun2(ML,Subject,ML3), NML = [subject(Subject)|ML3],
i

subs_headnoun_subject(_,_,[]):-!.
subs_headnoun2([],_,[]).
subs_headnoun2([modifier(noun,M)|ML],Subject,[modifier(Subject,M)|NML]

!, subs_headnoun2(ML,Subj ect,NML).
subs_headnoun2([determiner(noun,M)|ML]»Subject,

[determiner(Subject,M)|NML]):-
!, subs_headnoun2(ML,Subj ect,NML).

subs_headnoun2([Ml|ML],Subj ect,[Ml|NML]):-
!, subs_headnoun2(ML,Subject,NML).

subs_headnoun_object(MLl,NML) :-
member(object(Object),ML1) ,delete(object(Object),ML1,ML),
subs_headnoun2(ML,Object,ML3), NML = [object(Object)|ML3]

subs_headnoun_object(_,_,[]):-!.

subs_headnoun2([],_,[])-
subs_headnoun2([modifier(noun,M)|ML],Object,

[modifier(Object,M)|NML]):-
!, subs_headnoun2(ML,Obj ect,NML) .

subs_headnoun2([determiner(noun,M)|ML],Object,
[determiner(Object,M)|NML]):-

!, subs_headnoun2(ML,Object,NML).
subs_headnoun2([M1|ML],Object,[Ml|NML]):- !,

subs_headnoun2(ML,Object,NML).

substitute_headnoun_object(ML,Verb,NML) :-
member(object(Object),ML),
sub_obj2(ML,Object,ML3), NML= [object(Verb,Object)|ML3], !

substitute_headnoun_object(_,_,[]):- !-

sub_obj2([],_,[]).
sub_obj2([modifier(noun,M)|ML],Object,[modifier(Object,M)|NML]):-

!, sub_obj2(ML,0bject,NML).
sub_obj2([determiner(noun,M)|ML]»Object,

[determiner(Object,M)|NML]):-
!, sub_obj2(ML,Object,NML).

sub_obj2([Ml|ML],Object,[Ml|NML]):-
!, sub_obj2(ML,Object,NML).

sub_hd_obj(ML,Verb,NML) :-

76

member(obj(Object),ML),
sub2(ML,Object,ML3), NML = [obj(Verb,Object)|ML3], !.

sub_hd_obj([]) :- ! -
sub2([],_,[]).
sub2([modifier(noun,M) |ML],Object, [modifier(Object,M) |NML])

:- !, sub2(ML,Object,NML).
sub2([determiner(noun,M)|ML],Object,[determiner(Object,M)|NML])

:- !, sub2(ML,Object,NML).
sub2([Ml|ML],Object,[Ml|NML])

:- !, sub2(ML,Object,NML).

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

APPENDIX B: PENN TREEBANK TAG-SET (CONDENSED)
FROM: [LTG3]

POS Tag Description i Example
—

CC coordinating conjunction j and

CD cardinal number | 1, third
——

DT determiner j the

EX existential there there is

FW foreign word d'hoevre

IN
preposition/subordinating
conjunction

in, of, like

JJ adjective green

JJR adjective, comparative greener

! JJS adjective, superlative greenest

1 LS
i

list marker 1) •

MD modal could, will

1 NN noun, singular or mass table

| NNS noun plural tables

| NNP proper noun, singular John

1 NNPS proper noun, plural Vikings

; PDT predeterminer both the boys

j POS possessive ending friend's

i PRP personal pronoun I, he, it

PRP$ possessive pronoun my, his

RB adverb
however, usually,
naturally, here, good

RBR adverb, comparative better

] RBS adverb, superlative best

j RP particle give up

TO to to go, to him

! UH interjection uhhuhhuhh

| VB verb, base form take

| VBD verb, past tense i took

j VBG verb, gerund/present participle i taking

j VBN verb, past participle j taken

79

IPOS Tag Description Example

1 VBP verb, sing, present, non-3 d take

j VBZ verb, 3rd person sing, present j takes

| WDT wh-determiner] which

! WP wh-pronoun j who, what

WP$ possessive wh-pronoun j whose

WRB
i

wh-abverb | where, when

80

APPENDIX C: SAMPLE OUTPUT FROM THE EXTRACTOR

This section provides two more examples of correct output obtained from the

prototype extractor component that most accurately reflects the structure of the input text.

1. Sentence with multiple subjects and objects and modal group.

a. INPUT

Analysis and recommendations concerning lessons learned which would reveal
sensitive military operations, exercises or vulnerabilities.

b. TAGGER OUTPUT
[Analysis_NNP] and_CC [recommendations_NNS] concerning_VBG
[lessons_NNS] < learned_VBD > [which_WDT]
< would_MD reveal_VB > [sensitive_JJ military_JJ operations_NNS],_,

[exercises_NNS] or_CC [vulnerabilities_NNS] ._.

c. MEANING LIST
[main_subject_Group([subject(analysis), conj(and), subject(recommendations),
subj(learned,lessons), subj (lessons), verb(learned,learned), obj (learned,which),
obj (which)]),
main_object_Group([object(operations), modifier(operations,sensitive),
modifier(operations,military), object(exercises), conj([or]),
obj ect(vulnerabilities)]),
main_verb_Group([modal(would),verb(would,reveal)])]

d. COMMENTS
The extractor successfully identified each subject of the main verb as well

as each object and the appropriate modifier. The facts with predicates "subj" and
"obj" are part of a phrase or clause. The participial term "concerning" is omitted
however, but the main terms are identified.

2. Sentence with modal and phrases.
a. INPUT

Information of questionable value to the general public must be evaluated before
worldwide dissemination to assess the risk to the DoD.

b. TAGGER OUTPUT
[Information_NN] ofJN [questionable^ value_NN] to_TO [the_DT
general_JJ public_NN] < must_MD be_VB evaluated_VBN > before_IN
[worldwide_JJ dissemination_NN] < to_TO assess_VB >
[the_DT risk_NN] to_TO [the_DT DoD_NNP]._.

81

c. OUTPUT
[main_subject_Group([subject(information),relationship(of)5subj(value),modifier(
value,questionable),relationship(to),subj(public),determiner(public,the),
modifier(public,general)]),
main_object_Group([relationship(before),obj(dissemination),modifier(disseminati
on,worldwide),obj(risk),obj(to_assess),determiner(risk,the),relationship(to),
obj (dod),determiner(dod,the)]),
main_verb_Group([modal(must),passive(must,be),verb(must,evaluated)])]

d. COMMENTS
The extractor correctly identified the main subject of the statement, the

main verb grouping, and the objects that were part of a phrase. Notice that the
infinitive "to assess" was also identified. Phrase heads were presented as
relationship predicate facts. Notice that the main subject is at the head of the list.

82

LIST OF REFERENCES

[ALLE95] Allen, James, Natural Language Understanding, The
Benjamin/Cummings Publishing Company, Inc., Redwood City,
California, 1995.

[BARK98] Barker, K., S. Delisle, and S. Szpakowicz, "Test-Driving TANKA:
Evaluating a Semi-Automatic System of Text Analysis for Knowledge
Acquisition." Proceedings of the 12th Canadian Artificial Intelligence
Conference-CAI-98, Vancouver, BC (Canada), June 18-20 1998, pp. 60-
71.

[CHOV97] Cholvy, Laurence and Frederic Cuppens, "Analyzing Consistency of
Security Policies," in Proceedings of the IEEE Symposium on Security
andPrivacy, 1997, pp.103-112.

[CHUN95] Chung, Minhwa and Dan I. Moldovan, "Parallel Natural Language
Processing on a Semantic Network Array Processor," IEEE Transactions
on Knowledge and Data Engineering, Vol. 7, No. 3, June 1995, pp. 391-
406.

[DAMI01] Damianou, N., N. Dulay, E. Lupu, and M. Sloman, "The Ponder
Specification Language," in Lecture Notes in Computer Science No. 1995,
Springer-Verlag, Berlin, 2001, pp. 18-38.

[DELA93] Delannoy, J. F., C. Feng, S. Matwin, and S. Szpakowicz, "Knowledge
Extraction from Text: Machine Learning for Text-to-rule Translation."
Proceedings of the Machine Learning Text Analysis Workshop, European
Conference on Machine Learning (ECML-93), pp. 1-7.

[DELA94] Delannoy, Jean-Francois and Riverson Rios, "Translating a detailed
linguistic semantic representation into Horn clause logic." Brazilian
Symposium on Artificial Intelligence (SBIA), Fortaleza, Ceara, Brazil,
October 1994.

[GROV1] Grover, Claire, Colin Matheson, and Andrei Mikheev, "TTT: Text
Tokenisation Tool." Language Technology Group, 2 Buccleuch Place,
Edinburgh EH8 9LW, UK
http://www.ltg.ed.ac.Uk/software/ttt/tttdoc.html#CHAPLTPOS

[HOPC79] Hopcraft, John E. and Jeffrey D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley Publishing
Company, Inc., Menlo Park, California, 1979.

83

[LTG1]

[LTG2]

[LTG3]

[MARC1]

[MICH91]

[MICH93]

Language Technology Group, "LTG software: LT CHUNK." Language
Technology Group, 2 Buccleuch Place, Edinburgh EH8 9LW, UK
http://wwwJtg.ed.ac.uk/sofhvare/chunk/index.html

Language Technology Group, "LTG software: LT POS." Language
Technology Group, 2 Buccleuch Place, Edinburgh EH8 9LW, UK.
http://www.ltg.ed.ac.uk/software/pos

Language Technology Group, "LTG software: Perm Treebank Tag-Set."
Language Technology Group, 2 Buccleuch Place, Edinburgh EH8 9LW,
UK. http://www.ltg.ed.ac.uk/software/penn.html

Marcus, M., Beatrice Santorini, and M.A. Marcinkiewicz, "Building a
large annotated corpus of English: The Perm Treebank," in Computational
Linguistics, Vol. 19, No. 2, pp313-330.

Michael, James Bret, Edgar H. Sibley, and Richard L. Wexelblat, "A
Modeling Paradigm for Representing Intentions in Information Systems
Policy." Proceedings of the First Workshop of Information Technologies
and Systems, Massachusetts Institute of Technology Sloan School of
Management, Cambridge, Massachusetts. 1991, pp. 21-34.

Michael, James Bret, Edgar H. Sibley, Richard F. Baum, and Fu Li, "On
the Axiomatization of Security Policy: Some Tentative Observations
About Logic Representation," in Database Security, VI: Status and
Prospects, North-Holland, Amsterdam, 1993, pp. 367-386.

[MICH93A] Michael, James Bret, "A Formal Process for Testing the Consistency of
Composed Security Policies," Ph.D. dissertation, George Mason
University, Fairfax, Virginia, 1993.

[M0FF91] Moffett, Jonathan D. and Morris. S. Sloman, "The Representation of
Policies as System Objects." Domino Report: Bl/IC/6.1, 20 Aug 91, in
Proceedings of the Conference on Organizational Computer Systems,
SIGIOS Bulletin Vol. 12, Nos. 2 & 3, pp. 171-184.

[MOUL92] Moulin, Bernard and Daniel Rousseau, "Automated Knowledge
Acquisition from Regulatory Texts," in IEEE, Vol. 7, No. 5, October
1992, pp. 27-35.

[MOUL94] Moulin, Bernard and Daniel Rousseau, "SACD: A System for Acquiring
Knowledge From Regulatory Texts," Computers Elect. Engng, Vol. 20,
No. 2,1994, pp. 131-149.

84

[RAND93] Flexner, Struart Berg Ed., Random House Unabridged Dictionary, Second
Edition, Random House, Incorporated, New York, 1993.

[ROWE1] Rowe, Neil C, "Understanding of Technical Captions via Statistical
Parsing," http://www.cs.nps.navv.mil/research/marie/nlang.html

[RUSS95] Russell, Stuart J. and Peter Norvig, Artificial Intelligence A Modem
Approach, Prentice Hall, Englewood Cliffs, New Jersey, 1995.

[SERG86] Sergot, M.J., F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and
H. T. Cory. "The British Nationality Act as a Logic Program,"
Communications of the ACM, Vol. 29, No. 5, May 1986, pp. 370- 386.

[SBL92] Sibley, Edgar H., James Bret Michael, and Richard L. Wexelblat, "Use of
an Experimental Policy Workbench: Description and Preliminary
Results," in Database Security, V: Status and Prospects, Elsevier Science
Publishers (North-Holland), Amsterdam, 1992, pp.47-76.

[SLOA91] Sloane, S. B., "The Use of Artificial Intelligence by the United States
Navy: Case Study of a Failure." AI Magazine, Vol. 12, No. 1, 1991,
pp.80-92.

[STAN 1] Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/logic-modal

[STONOO] Stone, G. N., "A Path-based Network Policy Language," Ph. D.
dissertation, Naval Postgraduate School, 2000.

[STRA99] Strassner, J., E. Ellensson, and B. Moore (editor), Policy Framework Core
Information Model, Internet Engineering Task Force: Network Working
Group, Internet Draft draft-ietf-policy-core-schema-02.txt, February 1999.

[TANOO] Tan, Yao-Hua and Walter Thoen, 'TNCAS: a legal expert system for
contract terms in electronic commerce." Decision Support Systems 29,
2000, pp. 389-411.

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center....
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Dean Dan Boger
Chair, C3 Academic Group
Naval Postgraduate School
Monterey, CA 93943

4. Professor J. Bret Michael
Department of Computer Science,
Code CS/Mj
Naval Postgraduate School
Monterey, CA 93943-5118

5. Professor Neil C. Rowe
Department of Computer Science,
Code CS/Rn
Naval Postgraduate School
Monterey, CA 93943-5118

6. LT Vanessa Ong
Commander, Naval Surface Reserve Force (N6)
4400 Dauphine Street
New Orleans, LA 70146-5100

7. Mr. Terry Mayfield
Computer and Software Engineering Division
Instituted for Defense Analysis
1801 North Beauregard Street
Alexandria, VA 22311 -1772

Dr. Richard L. Wexelblat...
543 Prescott Road
Merion Station, PA 19066

87

Dr. Bernard Moulin
Departement d'informatique
Universite Laval
Ste-Foy
Quebec, Canada G1K 7P4

10. Professor M. Sergot
Department of Computing
Imperial College
180 Queen's Gate
London SW7 2BZ
UNITED KINGDOM

11. Professor Edgar Sibley ;
Department of Information and Software Engineering
George Mason University
Mail Stop 4A4
Fairfax, VA 22030-4444

12. Professor Morris Sloman...
Department of Computing
Imperial College
180 Queen's Gate
London SW7 2BZ
UNITED KINGDOM

13. Mr. John Custy
SPAWAR Systems Center
Code D4521
53560 Hull Street, Bldg. C60, Rm 207
San Diego, CA 92152-5800

14. Dr. Jonathan Moffett
Department of Computer Science
University of York
York Y01D 5DD
UNITED KINGDOM

15. Language Technology Group
2 Buccleuch Place
Edinburgh EH8 9LW
UNITED KINGDOM

88

