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ABSTRACT 

Organizations are policy-driven entities. Policy bases can be very large 

and complex; these factors are compounded by the dynamic nature of policy evolution. 

Thus, comprehension of the ramifications of both policy modification and assurance of 

the consistency, completeness, and correctness of a policy base necessarily requires some 

level of computer-based support. 

A policy workbench is an integrated set of computer-based tools for developing, 

reasoning about, and maintaining policy. A workbench takes as input a computationally 

equivalent form of policy statements. 

In this thesis we explore approaches for translating natural-language policy 

statements into their equivalent computational form with minimal user interaction. We 

present the architecture of a natural-language input-processing tool (NLIPT), which we 

designed to augment a policy workbench. NLIPT components consist of an extractor, 

index-term generator, structural modeler, and logic modeler. 

We experimented with a prototype of the extractor. The extractor successfully 

parsed twenty-seven of a sample of ninety-nine of U.S. Department of Defense security 

policy statements. An additional twenty-one statements were correctly parsed based on 

the syntactic structure of the input. 
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EXECUTIVE SUMMARY 

Organizations are policy-driven entities. Policy bases can be very large and 

complex; these factors are compounded by the dynamic nature of policy evolution. Thus, 

comprehension of the ramifications of both policy modification and assurance of the 

consistency, completeness, and correctness of a policy base necessarily requires some 

level of computer-based support. 

A policy workbench is an integrated set of computer-based tools for developing, 

reasoning about, and maintaining policy. A workbench takes as input a computationally 

equivalent form of policy statements. 

In this thesis we develop a system that maps natural-language policy statements 

to an equivalent computational from with minimal user interaction. We propose the 

architecture of a natural-language input-processing tool (NLIPT), which we designed to 

augment a policy workbench. The primary components of the NLIPT are the following: 

an extractor, which generates a meaning list representative of the natural-language input; 

an index-term generator, which identifies the key terms used to index relevant policy 

schema in the policy base; a structural modeler, which structures a schema for input; and 

a logic modeler, which maps the schema to an equivalent logical form. 

We experimented with a prototype of the extractor. The extractor successfully 

parsed twenty-seven of a sample of ninety-nine of U.S. Department of Defense security 

policy statements. An additional twenty-one statements were correctly parsed based on 

the syntactic structure of the input. 
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I. INTRODUCTION 

Organizations are policy-driven entities. Promulgation of policies to those 

expected to adhere to them can be fastidious or lackadaisical. Nonetheless, organizations 

expect their members to adhere to both explicit and implicit (unwritten) policies. 

Adherence to an organization's policies can be difficult, especially when the policy base 

is large or there is much implicit policy. Moreover, complex relationships among 

policies and conflicting policies can lead to errors in the interpretation, refinement (i.e., 

implementation of policy as procedures in information systems) and enforcement of 

policy. 

Ideally, an organization's policies would be stored in a computational form in a 

central repository. Users could search the repository for policies that are applicable to a 

given action or plan (i.e., a sequence of actions for reaching a goal state) within a specific 

context. Queries to the repository would be through an interface. In addition, authorized 

users could update the policy base to reflect changes in the organization's policy. Such 

an interface could be part of a larger system that we term a "policy workbench." A 

workbench is a suite of tools that serves as an expert database management system. A 

policy workbench could update policy and test the policy for gaps; by "gap" we refer to 

any type of error in policy, its refinement, or implementation. It could also map the 

policy to procedures, which are the mechanisms that implement policy. Thus, a policy 

workbench is intended to enable the user to represent, reason about, maintain, implement, 

and enforce policy [SIBL92]. 

1 



A policy workbench could assist members of an organization to better understand 

and become more aware of policy, which is necessary for acting in a manner that 

conforms to policy. Usability of the interface is important. People are less likely to use a 

system that requires cumbersome structured input, no matter how spectacular its results. 

An alternative would be to interact with the workbench using a natural language. 

However, efficient automated processing necessitates converting the natural language 

into a computational form, usually expressible as well-formed formulae in a formal 

language [MICH93]. 

In this thesis we examine processes that map policies submitted in a natural 

language to formats suitable for further processing by a policy workbench. The 

applicability and extensibility of various approaches proposed within the natural- 

language processing community are explored. Correct semantic interpretation of the 

input is also important. Errors in interpreting policy could become embedded in the 

computational model of the policy making the resulting model of dubious value for use 

by the tools. Processing inputs submitted in a natural language entails the following: 

semantic interpretation of submitted input; mapping the interpretation to an equivalent 

computational form; identifying applicable existing policies; and submitting everything 

to the appropriate workbench tools for further processing such as consistency checking. 

The scope of this thesis is limited to the first two processes. 

The organization of this thesis is as follows.  Chapter II provides an overview of 

the policy workbench proposed in [SIBL92]. Chapter III explores issues to be addressed 

in developing the input-processing component. Chapter IV summarizes some of the 

previous research that is closely related to this thesis; we discuss the extensibility and 
2 



applicability of each approach to processing natural-language statements of policy, in the 

context of the overall operation of the policy workbench. Chapter V chronicles the 

development of part of an automated process for converting policy to an appropriate 

computational format. Chapter VI summarizes the results of testing the automated tool 

presented in Chapter V. Chapter VII presents conclusions and recommendations for 

future work. 
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II.      A POLICY WORKBENCH 

This chapter provides an overview of policy and policy workbenches. 

A.        POLICY 

Random House Unabridged Dictionary [RAND93] defines policy as follows: 

1. A definite course of action adopted for the sake of expediency, facility, 
etc.; 2. A course of action adopted and pursued by a government, ruler, 
political party, etc. 

Policy serves as a guide in decision-making processes. It can exist either 

explicitly or implicitly. Explicit policies are deliberately articulated. Implicit policies 

can arise from traditionally accepted and expected behaviors within an organization; they 

can also evolve to address gaps in explicit policies. 

Policies typically exist in a hierarchy, progressing from broad-spectrum policies 

at the top to more narrowly defined policies at the lower levels. Policies have both a 

domain and scope [MICH93A]. The domain specifies the objects in the organization's 

environment. For instance, policy pertaining to computer security might include system 

administrators, user accounts, and passwords as part of the domain. Scope identifies the 

range of roles, obligations, and rights of objects within its domain. As an example, the 

scope of a system administrator's role might include review of audit trails but not 

procurement of new equipment. 

There are many different types of policy. In this thesis we distinguish among 

meta-policy, goal-oriented policy, and operational policy. Meta-policy is policy about 

policy [MICH91]; meta-structures can prove useful in indexing heterogeneous systems. 

An example of a meta-policy is "Anypolicy related to system access is a security policy." 



Goal-oriented policy states the desired outcome but gives little or no indication of how to 

obtain the outcome [MICH91]. An example of goal-oriented policy is "Passwords must 

be difficult to guess." Operational policy defines required actions but rarely identifies the 

goal [MICH91]. An example of an operational policy is "Passwords shall be changed 

every six months." 

There has been much research in the area of formal representation of policy. 

Ambiguities in natural-language statements used to represent policy can lead to several 

interpretations of the policy. Formal representation of policy can, to some extent, remove 

the ambiguity. Formally represented policies can be defined by axioms and reasoned 

about using automated systems [MICH91, CHOV91]. Three particular properties of 

policy are of significance when translating it to a formal representation: completeness, 

consistency, and correctness. Completeness means that the entire policy base is 

represented. Consistency means that contradictions within the policy base do not exist. 

Correctness means that the representation of the policy actually conforms to the real- 

world intent [SIBL92]. 

B.        POLICY WORKBENCH 

A policy workbench is an automated knowledge-based system comprised of a 

suite of tools designed to assist the user in the representation of policy; reasoning about 

the properties of policy such as consistency, completeness, soundness, and correctness; 

refinement of policy; maintenance of policy; and possibly enforcement of policy. A 

policy workbench can provide several functions depending on the implementation. 

Ultimately, a policy workbench's purpose is to facilitate adherence to policy. 



Use of automation to maintain, reason about, refine, or enforce policy has been 

examined in several projects. In 1982 ZOG, a menu-based display system developed at 

Carnegie-Mellon University, was installed on the aircraft carrier USS CARL VINSON. 

It served as an aid in information management and decision-making in combat situations. 

Aspects of the ship's tasks, including policy and knowledge from subject-matter experts, 

were elicited and represented in the knowledge base. [SLOA91] 

Regulating Internet and network traffic policies has provided the impetus for 

many commercial-off-the-shelf (COTS) middleware releases. Although not necessarily a 

policy workbench, much of this middleware (such as intrusion-detection devices and 

firewalls) allows a network administrator to select predefined policies or generate their 

own to enforce an organization's network traffic policies. 

The Internet Engineering Task Force (IETF) is developing a policy management 

architecture that will allow consistent recognition and enforcement of policy protocols. 

This includes a central policy repository, a common policy definition language, and a 

common policy object model. The goal is to allow consistent interpretation of protocol 

policy regardless of the device [STRA99]. Formal languages, such as Ponder [DAMI01] 

and Path-based Policy Language (PPL) [STON00], have been developed to specify 

policy about the management of networks and distributed systems. 

C.        A GENERAL POLICY WORKBENCH 

Sibley, Michael, and Wexelblat propose a architecture for a generic policy 

workbench in [SIBL92]. 



The authors identify five user classes that should be accounted for in the design of 

a policy workbench: 

1) The policy maker enters policy, maintains a current resource dictionary, 

confirms consistency of proposed policy statements, allows users to 

propose scenarios for feedback, and partitions policies into subsets as 

applicable and necessary. 

2) The policy maintainer performs regression testing1 to ascertain the 

consequences of modifying policy. It distributes modified policies, in 

addition to performing configuration management and control tasks. 

3) The policy implementer translates policy into procedures, maintains 

records of rule applications, and maintains a current account of 

relationships or linkages among policies. 

4) The policy enforcer identifies violations of policies and recommends 

appropriate responses, checks procedures for consistency with policy, and 

provides authorizations for exceptions to policies. 

5) The policy user analyzes the existing policy base via queries. 

Figure 1 shows the authors' policy workbench architecture.   [SIBL92] described 

three tools of the workbench: 

1) "A theorem and assertion analyzer (entering and exercising policy) to 

check inputs stated as axioms and theorems." 

1 The term "regression testing," as used here, means testing changes in policy from a baseline against 
some criteria such as correctness or consistency. 
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2) "A rule compiler-generator-interpreter (selecting, merging and generating 

parts of systems) to produce an executable component of the system2." 

An example of an executable component is a procedure that models a 

proposed policy environment and provides a run-time scenario for user 

queries. 

3) "An interactive policy structurer and selector (aiding in understanding and 

applying policy) to check what rules are applicable to a given situation and 

preprocessing the rules into pre- and post-conditions." 

Policy input is accepted in a quasi-natural format that is checked for syntactic 

correctness, then mapped to a formal rule. The rule is submitted to a theorem prover that 

performs semantic evaluation of the rule to check consistency with policies in the 

database and to eliminate duplication. If the rule is acceptable, it is sent to the policy 

database.   Conflicts or errors are reported back to the user for action. 

The theorem and assertion analyzer also accepts queries regarding policy 

statements. Accepted in natural language, queries are first submitted to an extractor and 

translator module, which converts the query to an appropriate computational form. The 

translation is then processed in a fashion similar to direct policy input with the exception 

that the policy database is not updated.   Rather, a query response is directed to the user. 

2 Although the proposed architecture for the workbench could theoretically support many different 
data models, the examples of policy given in [SIBL92] are represented as conditional rules. 
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Figure 1: Relationship between the Policy Workbench Tools. After 
[SIBL92]. 

The rule compiler-generator-interpreter allows the operation of a simulated 

system determined by user procedural inputs or scenario requests. Policy changes can 

essentially be seen "in action." 
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This policy structurer and selector tool finds policies represented as pre- and post- 

conditions in the policy database that are applicable to a given input (e.g., scenario or 

direct policy input). It does so by finding commonalities in policy statements. This 

information is updated in the resource dictionary. The "understanding module" in 

conjunction with regression testing would allow the user to discern the effects of policy 

changes. The understanding module of the policy selector and structurer identifies the 

relationships between a policy and other components in the database. This tool could 

also aid in the development of the exceptions required for a policy set. 

For this thesis, we will develop the fourth tool of the policy workbench, the 

policy-input system. We propose to expand the functionality of the policy input system 

to accept natural-language statements instead of statements in a quasi-natural format. We 

have renamed this component the natural-language input-processing tool (NLIPT). 

11 
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III.    NATURAL-LANGUAGE INPUT 
PROCESSING TOOL 

A.       INTRODUCTION 

A tool within a policy workbench can require as input either update requests or 

queries about policy. One approach to policy specification is to require that the users of a 

policy workbench articulate policy in a quasi-natural language3 "until a more friendly 

user interface is developed" [SIBL92]. In this approach the policy maker or a formal- 

methods engineer would be responsible for translating the quasi-natural language 

statements into a formal language. This expectation, however, may prove to be 

impractical. The policy base of an organization can be quite large, making the process of 

manual translation into an acceptable format almost insurmountable. In addition, as 

policy bases are typically not static entities, frequent updates may be required, placing a 

further burden on the users. Furthermore, manual translation of policy is an error-prone 

process, as was demonstrated in experiments reported in [MICH93]. Developing a 

policy workbench that accepts input and returns output in natural language would greatly 

relieve the user of repetitive tasks. Otherwise, potential users may balk at using the 

policy workbench, as they did with ZOG, rendering the workbench ineffective. 

We propose that the architecture presented in [SIBL92] be modified to include a 

natural-language input-processing tool (NLIPT). The NLIPT could consolidate the 

common input-processing tasks in the workbench. It could extract the meaning from the 

input and isolate the key components necessary to identify all applicable policies and 

3 We use the term "quasi-natural language" to refer to a language with a restricted vocabulary, syntax, 
or semantics. 

13 



real-world facts (information otherwise unstated in the policy but known to be true and 

necessary to maintain consistency, completeness, and correctness of the policy base). 

Most importantly, it could generate the logically equivalent form of the input. The 

NLIPT should be transparent to the user (Figure 2). In this thesis we do not address the 

inverse process, that is, translating the computational representation of policy into a 

natural-language response of the system to the user, such as the answer to a user query 

about policy. 

Input] NL 

NLIPT 

Policy 
Workbench 

Figure 2: Natural-language Input Processing Tool is an integral part 
of the Policy Workbench. 

B.       POLICY WORKBENCH ARCHITECTURE 

[MICH93] shows object-oriented modeling of policy appears to produce fewer 

structuring errors than a non-object-oriented approach.   The object-oriented approach 

begins with a schema, a structural model that defines the entities, mechanisms and 

relationships contained within the policies.   [MICH93] proposes deriving the schema 

from an extended entity-relationship diagram, where labeled arcs signify the relationships 

between policy objects.     The schema controls the axiomatization of the policies 

[MICH93]. This does-require rephrasing of some policy statements to explicitly refer to 
14 



constructs of the schema before formalizing the statement; this assures correct linkage 

within the model. However, using a structured information model to represent policy 

and real-world facts can produce a more compact and less error-laden representation than 

an unstructured approach. 

The role of the NLIPT in the policy workbench is illustrated in Figure 3. User 

input is translated into an equivalent computational form (e.g., first-order predicate 

logic4) via a conceptual schema. This is done for all input, be it policy, queries, or 

scenarios. Key terms of the input are determined and sent to the policy-element identifier 

tool, which identifies applicable elements (i.e., policy schema) in the policy base. The 

inability to find any applicable schema could be used as an indicator that an automatic 

modification should be tried or that an error message should be sent to the user depending 

on the type of workbench request. The retrieved schema would be used to formulate a 

schema for the input, which would then be translated to first-order predicate logic. The 

input schema and computational form are submitted for processing by the appropriate 

workbench tools. 

Figure 3 shows that the policy workbench connects the user to the tools via a 

user-interface module, which permits the user to select the desired functionality of the 

workbench (e.g., policy-base modification, scenario generation, searching). An internal 

handler would also be required to direct the processed input to the appropriate workbench 

tool (discussed in Chapter III) and to an exception handler if needed. 

4 Studies show the advantages of representing policy using first-order logic: reduction of ambiguity 
and ability to automate reasoning to name two [CHOV86, SERG86, SIBL92, MOUL92, MICH93] 
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The policy-element identifier is an extension of the policy-selector tool proposed 

in [SIBL92], which the authors believed could prove instrumental in the input-processing 

phase. However, the policy-element identifier differs from the policy-selector tool in 

that it would retrieve the structural schema of the pertinent items, rather than the 

computational form. The computational form would not be needed to generate a 

schema of the input. 

InputNL   5j 

Z 

OS 
-■«• 

Input error 

.jJfMMHP''' 
-► NLIPT 

Key terms 

Input Object^   Handler 
Input Object 

'Schema 

Tool 
Policy-element 
Identifier 

Policy Workbench 
(Simplified) 

Policy and real' 
world facts 

(schema and/oi 
computational 
forms) 

Input Object contains InputFOpL and InputSCHEMA 

Figure 3: Policy Workbench with Natural-language Input Processing Tool. 

C.       NLIPT ARCHITECTURE 

The proposed architecture of the NLIPT is illustrated in Figure 4. There are four 

parts: the extractor, which generates a meaning list representing the input; the structural 

modeler, which generates the schema for the part of the input that is consistent with the 

schema; the logic modeler, which generates the properly quantified and scoped formal 
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representation of the input; and the index-term generator, which identifies key concepts 

of the input. A data dictionary identifies synonyms and probable substitutions for 

misspelled input. 

InputN 

^Handler) ^Handler) 

,' Exception 
Conceptua ..-; ■'"'—"" ,    .    ,. t ■ÄW^ '        conceptual Object 

smm&mmmrMoMmg ilst    StrQCtural     schema   : Logic  :      _!  
-► Extractor Modeler Modeler 

Index-Teim 

Generator 

Key index 
terms 

(Po 

Data 
Dictionary 

(Handler) 

rolicy-Elementl 

Identifier Tool) 

Schema of applicable 
elements 

Figure 4: Proposed Architecture of Natural-language Input Processing Tool. 

1.        Extractor 

The extractor generates a meaning from each important word of the natural- 

language input. At a minimum, the meaning list should identify the subject, object, and 

attributes of all actions. As an example, consider: 

(PI)       All passwords must be at least eight characters in length. 

Alternatively, it could be stated as follows:   All passwords must contain at least eight 

characters.     At some point in time the system should be able to recognize that both 

statements are semantically equivalent. A meaning list for (PI) could be as follows: 

ML[subject(passwords),subjectquantifier(all),object(characters), 
objectmodifer(eight), objectquantifier(at least), subjectattribute(length), 
action(modal(must), verb(be))J5 

5 The presented format is not an implementation requirement. 
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Identifying and correctly attributing modifiers, quantifiers, and conditionals is 

important. From the example, the extractor should identify the prepositional object 

"length" as an attribute of password to which "eight" refers. In addition, the adverbial 

term "at least" signifies that the minimum requirement for the length of a password is 

provided in that statement. 

2.        Index-Term Generator 

The index-term generator extracts the terms from the meaning list most likely to 

find a relevant match in the policy base. At a minimum, the subjects, objects, and 

attributes are tried. Verbs are important as well; for instance, the verb group "must be" 

signifies that the object is an attribute of the subject. So for the example, the following 

index terms should be: 

subject(passwords), object(characters), attribute(lßngth), verb(be) 

The root form of each candidate term is looked up in the lexicon to find synonyms 

and possible substitutions for morphological variants and misspellings.   For example: 

Synonyms (password, [password, password,code word, key, logon, access]) 

Synonyms (character, [symbol, term]) 

Synonyms (length, [size, measurement, duration]) 

VerbSense(be, [property]) 

The index-term generator must weight the index terms to maximize the likelihood 

of selecting schema in the policy base that have a high degree of relevance to the input. 

Subject terms should have the highest weighting; original input should have a greater 

weighting than synonyms. The synonym term "duration" in the example is not accurate 

in the context it is used in the sentence; appropriate weighting of synonyms would 

account for this. Weighting should generally increase with the rarity (i.e., infrequency of 
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use) of the word; for instance, the term "property" is a commonly used term and likely to 

generate a number of hits in the policy base if the term is used in a query about policy. 

3. Structural Modeler 

The structural modeler would analyze any schema retrieved by the policy-element 

identifier to match the input. The retrieved schema identifies implicit facts and 

hierarchical relationships. If no applicable schema can be found in the policy base, the 

structural modeler can either proceed or generate an exception. For query processing or 

scenario generation, an exception should be noted; for policy assertion, the modeler 

should continue since the input is a new policy. 

Continuing the example, the policy-element identifier should find the following 

applicable schema: 

password(pre_condition(agent: user, agentjstatus: authorized, action: issued), 
property( valid), post_condition(agent: user, action: logon)) 

userfagent: employee, property(issued_password), status: authorized) 

logon(pre_condition(agent: user, action: enter, object: password, object_status: 
valid, purpose: system_access) ) 

access(pre_condition(agent: user, agent_status: authorized, action: logon, 
action_status: completed(success)), status (granted), post_condition(agent: user, 
agent_status: authorized, action: use_of_system, action_status: persistent)) 

This says that a valid password is issued to an authorized user, an employee, to 

allow the user to logon. The user must logon to obtain access to the system. Access is 

granted when a valid password is entered to complete a logon. Nothing was retrieved 

that defines a valid password, but the new policy proposal states that the length must be 

at least eight characters. Linkages to the term 'valid' should be made to the schema. 

(These linkages are not available to concurrent users until the policy is actually accepted 
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into the database.) The structural modeler should infer that passwords have a minimum 

length and are comprised of characters.   This can be done via the lexicon reference 

through recognition that the adverbial phrase "at least" is a minimum constraint and that 

the term "characters" is not a unit of measurement but an object.  The term "be" allows 

the connection to composition.    Quantifiers must also be inferred and their scope 

determined.   Further, appropriate generalizations should be made to control the overall 

policy base size and to ensure that the schema is not too specific, which could affect 

proper indexing especially for related policies.   For our example, the generalization is 

made that length is actually the size of the password.  Hence: 

password(applies_to: all, property (size (minimum(eight)), 
composition(characters)) 

4.        Logic Modeler 

The logic modeler uses the schema developed by the structural modeler to 

generate a first-order predicate logic representation of the input. An appropriate logical 

representation can vary depending on whether the input is for a query or some other type 

of request [MICH93]; modularizing the structural modeler from the logic modeler allows 

for separate generation of the schema, independent of the user request. 

Like the structural modeler, the logic modeler must determine quantifiers and 

their scope.    Inferences should also be made as appropriate; for our example, the logic 

modeler  should  infer that "composition"  from the  schema  signifies  a "part_of 

relationship between "character" and "password."    For a policy assertion, our example 

should become: 

Vx (password(X) -+ (3s(Vc (character(C) /\ part_of(C,X)) -> member (C,S))) -> (3N 

size(S,N)AN>8))))) 
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D.       SUMMARY 

The NLIPT should be a general-purpose tool that requires minimal user 

interaction after the initial setup. Initial setup should include modification of the data 

dictionary to accommodate domain specific words and synonyms. The ultimate goal for 

the NLIPT is to fully automate formal policy representation; while total automation may 

not be possible, we believe that a good approximation can be made. To demonstrate this, 

we will implement the proposed NLIPT components. 
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IV.    RELATED WORK 

In this chapter we highlight the work of eight groups of researchers. We provide 

our observations  about the  applicability  of each  group's  findings to  the policy 

workbench, and in particular, the NLIPT component of the workbench.    We begin, 

however, with a brief background on grammars and modal logic. 

A.       CONTEXT FREE GRAMMARS AND MODAL LOGIC 

1.        Context-Free Grammars (CFG) 

A grammar is a finite set of productions (i.e., rules) and symbols used to generate 

strings that are valid in a language or to analyze the structure of strings ("parse" them). 

Context-free grammars are used to formalize parsing rules for languages. Natural- 

language statements can be parsed to identify the key components of the statement (i.e., 

subject, predicate, and object). A CFG has [HOPC79]: 

• a set of terminal symbols (T), which make up the valid strings; 

• a set of variables (V), which are a placeholder for sequences of terminal 

symbols; 

• a start symbol (S) that represents the initial string during statement generation; 

and 

• a set of productions (P) that define legal ways to replace a variable in a string 

by a string of terminal symbols or variables. 
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As an example, suppose we are given CFG = (V, T, P, S) where V = {<sentence>, 

<noun phrase>, <verb phrase>, <noun>, <adjective>, <verb>}, T= {dogs, little, bark}, 

S=<sentence>, and P consists of 

<sentence> -» <noun phrase> <verb phrase> 

<noun phrase> -»<adjective><noun> 

<noun phrase>-»<noun> 

<verb phrase>-»<verb> 

<noun>-»dogs 

<adj ective>-»little 

<verb>-»bark 

With this grammar, we can use the first production (since its left side has a 

matching variable) to replace the start symbol with "<noun phrase><verb phrase>." We 

can use the second production to replace the variable "<noun phrase>" to get 

"<adjective><noun><verb phrase>." The fourth production is used to replace "<verb 

phrase>" to produce "<adjective><noun><verb>." Finally, terminal symbols are used to 

replace the variables, resulting in the string "little dogs bark." 

A CFG cannot provide a complete description of a natural language such as 

English, but one can come close. Semantic constraints should also be applied to 

eliminate meaningless strings that are syntactically correct. 
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2.        Modal Logic 

A modal is a special marker of verb tenses in English, appearing as an "auxiliary" 

before the verb, and that often denotes prescriptive information. Examples of modals are 

"can," "necessarily," "must," and "may". Some modals like "may" or "shall" can convey 

several meanings, which is of particular concern in policy interpretation. Modal logic 

includes reasoning about knowledge and the expressions "it is necessary that" and "it is 

possible that" [STAN1]. Modal logic has evolved, however, to represent a range of 

related ideas; for instance, deontic logic is concerned with obligation, permission, and 

interdiction. Modal logic augments first-order logic with modal quantifiers on sentences 

[RUSS95]. Modal logic allows inferences to be made concerning the knowledge base. 

Modal logic is particularly useful in analyzing a policy base because policy is 

typically prescriptive in nature containing modalities indicating obligations, permissions, 

and interdictions. 

B.        THE BRITISH NATIONALITY ACT AS A LOGIC PROGRAM 

Sergot, Sadri, Kowalski, Kriwaczek, Hammand, and Cory [SERG86] explore the 

feasibility of using logic statements to represent part of The British Nationality Act of 

1981 and mechanically determine the consequences of the Act when applied to test cases. 

They showed that formalization of legislation by rules can be used to develop an expert 

system without requiring much elicitation of knowledge from an expert. The authors list 

three benefits to be realized through the formalization of regulations: 1) identification and 

elimination of ambiguity and imprecision; 2) clarification and simplification of the 

natural-language statement of the regulation; and 3) derivation of logical consequences of 

the regulations. 
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The system represents a portion of the Act using extended Horn clauses; the 

clauses are implemented as a Prolog program using APES, a Prolog-based expert system 

shell developed by Sergot and Hammond. The collection of clauses is an axiomatic 

theory, which can be mechanically analyzed by theorem provers; Prolog serves as a 

limited-purpose theorem prover. The shell queries a user to dynamically supply facts as 

required. 

Sergot and his colleagues followed a top-down, goal-directed manual approach 

when formalizing the Act. They defined high-level concepts before the lower-level 

concepts. This allowed them to postpone the representation of lower-level concepts until 

high-level concepts were refined in their model. They addressed vague concepts such as 

"good character" by assuming that vague concepts always applied when generating 

answers; that is, if a person had to be of "good character" to be a citizen, the assumption 

was that the person had "good character." The authors determined a meaning for 

ambiguous or imprecise concepts of the Act that could not be addressed by assuming 

their truth. 

Formalized statements of the Act were manually generated and progressively 

refined on a trial-and-error basis. Modification and restructuring of previously 

formalized concepts was made as needed when later sections of the Act refined earlier 

concepts. A closed-world assumption implemented negation as failure (anything which 

is not known is assumed to be false). Double negation, if treated classically, would 

cancel out (not [not p] implies p). However, this was not the intent of the Act for all 

cases. The authors avoid special explicit clauses for every occurrence of double negation 
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by treating the negative information as part of the input from the user, though they 

concede that this approach has drawbacks. 

The authors also found that counterfactual conditional statements were not 

adequately handled by extended Horn clause logic, as with the following statement from 

the Act: 

...became a British citizen by descent or would have done so but for his having 
died or ceased to be a citizen... [by] renunciation. 

They addressed the inadequacy by writing additional rules to address the conditionals. 

This process required a thorough analysis of the provisions of the act and knowledge of 

the drafter's intent when writing the counterfactual. Addressing counterfactuals 

substantially increased the overall number of clauses. Finally, discretionary clauses 

(clauses which give an authority the discretion to modify application of other sections of 

the Act) were handled by generating two clauses: one for the standard case and one for 

the discretionary case. 

The manual generation of the Horn clauses was an involved task, often requiring 

revisions.    The trial-and-error approach would place a huge burden on policy makers if 

the policy base were large, so this approach would not scale.     Modification or 

restructuring of rules could easily get out of hand as the number of formalized statements 

increased. Moreover, the closed-world assumption, while convenient for domains where 

all cases are specified, would not apply to most real-world policy. 

C.       INCAS: A LEGAL EXPERT SYSTEM FOR CONTRACT TERMS IN 
ELECTRONIC COMMERCE 

Tan and Thoen [TANOO] developed an automated expert system that provides 

advice on the use of Incoterms. (Incoterms are thirteen terms used in legal trade contracts 
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that stipulate which party (i.e., buyer or seller) is responsible for arranging and paying for 

transport and arranging the required documents for the transport.) INCAS (INCoterms 

Advise System) is a Prolog-based system that defines Incoterms to the user, reasons using 

the Incoterms knowledge base to advise on queried scenarios, and proposes the optimal 

Incoterm for both buyer and seller given their obligations. This system is intended to 

assist organizations involved in international trade. 

INCAS uses formal specification of the Incoterms in Prolog, manually derived 

from the International Chamber of Commerce (ICC) book Guide to Incoterms 1990. A 

graphical user interface allows the user to view the INCAS response to a query along 

with the assumptions used to derive the conclusion when applicable. Users can change 

the assumptions to refine the conclusion and rerun the query. Users can also introduce 

hypothetical assumptions to generate responses to what-if scenarios. 

The Incoterms domain has many instances where defeasible reasoning is 

involved. Defeasibility means that rules can be superseded by another rule or fact. The 

authors address defeasibility by incorporating exception predicates into the rules and 

adopting the closed-world assumption. Exceptions to exceptions are also addressed in a 

similar fashion. 

INCAS performs symbolic processing on strings and does not use any semantic 

constructs. A user is required to provide the data concerning the situation for which the 

query has been formulated. It can also accommodate correcting or otherwise modifying 

assumptions used in deriving a conclusion to generate a new conclusion. 

28 



The authors provided no data regarding the difficulty of development and the 

approach used in the derivation of the predicate statements. Scalability [SERG86] is still 

a problem since manually formalizing policy is difficult. 

D.       SACD:    A    SYSTEM    FOR    ACQUIRING    KNOWLEDGE    FROM 
REGULATORY TEXTS 

Moulin and Rousseau [MOUL94] developed a Prolog system named SACD 

(Systeme d'Acquisition des Connaissances Deontique) capable of generating a 

knowledge base from regulatory text by analyzing the text's logical structure. Semantic 

content is not analyzed by SACD. SACD is specifically designed to work with 

prescriptive text, especially the normative propositions found in instructional text. 

Normative propositions are sentences that describe instructions and characteristically 

contain modal operators. Most regulatory text, such as policies and legal manuals, are 

prescriptive in nature. The authors use portions of the National Building Code of Canada 

for analysis. 

Regulatory texts contain three types of formats: 

1. Definitions (sentences that clarify domain objects).   Definitions do not 

typically contain modals. 

2. Normative propositions, propositions containing verb expressions that 

explicitly indicate obligations, permissions, or restrictions. 

3. Meta-textual statements (cross-references to the text structure). 

Regulatory text can typically be segregated into three layers: 
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1. The macrostructure layer, corresponding to headings, titles, chapters, and 

sections; 

2. The microstructure layer, the logical content of the text featuring the 

expressions that identify conditions, exceptions, modalities, and 

references; and 

3. The domain layer, domain-specific information that belongs to neither of 

the other two layers. 

SACD initially uses context-free macrostructure and microstructure text 

grammars to parse the input text. The grammars have multiple entry points and behave 

like chart parsers, the classic bottom-up approach to parsing with a context-free grammar. 

Macrostructure analysis detects the presentation elements; microstructure analysis uses 

modal operators (e.g., "may," "must," "cannot"), conjunctions, internal references, and 

punctuation in order to identify relevant objects in the domain and applicable deontic 

rules. Deontic rules characterize the modal object to which they refer and require modal 

logic. 

The knowledge base is generated in two phases: (1) for every verb-phrase in the 

text a deontic rule is generated without considering the internal references (i.e., cross- 

references to other portions of the same text); (2) for each meta-textual statement 

encountered, the conditions and exceptions of the rules that are affected by an internal 

reference are modified to reflect the influence. The knowledge base eventually contains 

an object-type hierarchy, object descriptions, rule specifications which indicate the 

modality and characterize the related object, relationships between the data structures, 
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and the relationships between the structures and the text provisions. Data structures are 

represented using Prolog predicates. 

After each microstructure analysis, the results are presented to the user for 

acceptance or correction. A "domain specialist" creates the object-domain hierarchy, 

partly domain-specific, and resolves anaphoric references. 

SACD was used on a subset of the National Building Code of Canada (NBC). Of 

100 provisions evaluated, the macrostructure analysis took roughly five minutes overall. 

The microstructure analysis averaged five seconds per sentence depending on the 

complexity; the total number of sentences was not identified. A simple expert system 

checked situations against the provisions of the code. 

This approach requires well-structured input text.   However, many policies are 

well structured, so this system should work well on them. However, system may not be 

suitable for handling queries to the policy workbench using natural language. Features of 

particular use in the policy workbench are its recognition of meta-textual structures and 

the refinement of rules based on cross-references.     SACD requires a lot of user 

interaction; this makes scalability a concern.    Also, the user must have an intimate 

knowledge of the input text to correctly generate the domain hierarchy, which makes it 

subject to personal interpretation. 

E.   PARALLEL NATURAL-LANGUAGE PROCESSING ON A SEMANTIC 
NETWORK ARRAY PROCESSOR 

Minhwa Chung and Dan Moldovan developed a system with a parallel memory- 

based parser called PARALLEL [CHUN95] that is implemented on a dedicated marker- 

passing computer called the Semantic Network Array Processor (SNAP).   It exploits a 
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large case memory instead of complex parsing rules and grammars. Parsing is achieved 

through a marker-passing search that matches input text with template patterns called 

concept sequences stored in memory in the form of a semantic network of interrelated 

facts. 

Marker-passing is an inference method used to find connections between concepts 

in a semantic network. Inferences are developed by first propagating markers forward 

along the superconcept hierarchy from the origin concept and checking for intersections 

of markers. Next, markers are propagated along the reverse-semantic links. At the end 

of the processing, inferences can be made about nodes that have both markers. In a 

parallel implementation, the markers are propagated concurrently to reduce execution 

time. 

A preprocessor applies domain-specific modifications, such as grouping noun 

groups and expanding contractions, to each input sentence. A phrasal parser groups the 

relevant words into the following phrasal segments of noun group, verb group, adverb 

group, date/time group, conjunction, preposition, relative pronoun, punctuation, "that" 

group, or possessive marker. Concept sequences (i.e., phrasal patterns stored in the 

knowledge base) are represented as a set of concept-sequence-element nodes attached to 

concept nodes in the semantic concept hierarchy, arranged in order to match the sequence 

of input phrases. 

The experiments used 500 complex sentences from MUC-4, of which sixty-eight 

percent were correctly parsed. The authors attributed most of the errors to no appropriate 
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concept sequences in the knowledge base, unanticipated linguistic phenomena, and 

unknown input words. 

This approach creates a meaning list of the input. It performs the same function 

as the extractor tool proposed for the policy workbench.   It relies on phrasal pattern 

matching, which makes it somewhat domain-specific. It is also tightly coupled to both a 

specific hardware platform and system configuration. 

F.        KNOWLEDGE EXTRACTION FROM TEXT:    MACHINE LEARNING 
FOR TEXT-TO-RULE TRANSLATION 

Delannoy, Feng, Matwin, and Szpakowicz [DEL93] investigate natural-language 

processing to extract knowledge from technical expository texts in the MaLTe (Machine 

Learning from Text) system. By incorporating both machine learning and natural- 

language processing, the authors believe they can more thoroughly represent a text than a 

system using only one of the processes. MaLTe operates with a minimum of a priori 

knowledge. It extracts from both the narrative text (the authors used part of the personal 

income tax law as described in Revenue Canada 1991) and examples provided. 

Additional knowledge required to resolve ambiguities and inconsistencies and to define 

synonyms are elicited from the user as needed. 

Facts are generalized automatically from the examples into the higher-level 

concepts found in the narrative. In doing so, implicit knowledge is made explicit and a 

hierarchical domain (for the text) is generated. The authors propose absorption, an 

operator used in inductive logic programming, to achieve this abstraction, but over- 

generalization is a danger. Related facts obtained from the examples are aggregated. The 
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constants in the facts are generalized to variables and the aggregation method becomes a 

rule. 

In order to handle texts with nested concepts, explanation-based generalization 

(EBG) integrates the applicable rules into one that makes the most useful features of the 

concepts explicit. This will operationalize the rule, that is, make it a procedure. But an 

acceptable operationality criterion must be determined, and EBG requires a complete 

domain-knowledge base. 

MaLTe is not autonomous; users must supply missing facts, correct mistakes, 

and address synonyms. The actual extent of the interaction required for a complete 

knowledge base for some domain is uncertain. 

Delannoy and Rios further refined of MaLTe [DELA94] in conjunction with 

TANKA, a domain-independent, interactive natural-language analyzer. TANKA has two 

main components: 1) DIPETT, a syntactic parser; and 2) HAIKU, an interactive semantic 

analyzer using case-based reasoning. Users are required to select which of the proposed 

relationships is most correct. HAIKU produces a "protonetwork," a collection of 

syntactic and semantic constructs. MaLTe translates the protonetwork to Horn clauses. 

The techniques discussed in [DELA93] are applied to the Horn clauses to both generate a 

domain theory and refine the existing clauses. MaLTe then converts the refined Horn 

clauses back to protonetwork form, which is submitted to TANKA for assimilation into 

the semantic network. MaLTe is implemented using Quintus Prolog. 

Barker, Delisle, and Szpakowicz [BARK98] developed a metric for evaluating the 

performance of TANKA.  There were three criteria for the evaluation:   1) the ability of 
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HAIKU to learn to make better proposals to the user measured as the total number of 

assignments made by the user compared to the total number of correct assignments 

suggested by HAIKU; 2) the total number of relationships analyzed by HAIKU compared 

to the actual number in the text; and 3) the burden to the user of having to make a 

determination of the relationships proposed by HAIKU. 

The authors chose a text about small engines to test the system. They drew three 

main conclusions: 

1) TANKA can learn. The system was able to generate correct analyses of 

inputs it had never seen before by using partial matching on the semantic 

patterns it had in its knowledge base. 

2) Knowledge can be acquired from text with fragmentary parses and even 

misparses. Imperfect parses do not necessarily result in no of knowledge 

acquired. 

3) The system did not prove to be too onerous for the user. The average user 

time to determine a correct relationship proposed by HAIKU decreased 

over the course of the experiment. As the knowledge base grew, the user 

made fewer corrections to the proposed inferences. The experiments 

regarding the burden to the user are of note. However, very large bodies 

of policy may prove onerous to the user if much action is required on 

every input. 
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G.       UNDERSTANDING OF TECHNICAL CAPTIONS VIA STATISTICAL 
PARSING 

Processing of multimedia captions has some similarities to processing policy 

statements in having a limited descriptive semantics. The MARIE-2 system [ROWE1] 

relies extensively on an accurate and domain-specific lexicon stored as Horn clauses and 

facts. A database containing a full synonym list, an a-kind-of hierarchy and a.part-of 

hierarchy was created for the domain words. The Wordnet thesaurus system was used to 

generate most of the information. Implicit lexicon information is generated using 

special-format rules that recognized patterns for various kinds of code words and 

abbreviations. The lexicon contains over 21,000 words from Wordnet (6,000 caption 

words and 15,000 synonyms) and 1700 domain-specific words that required explicit 

definition. Synonyms for technical word senses were also added. The lexicon is 

necessarily large to address the technical jargon unique to the domain such as code 

words, acronyms and unusual words. The domain was technical captions from military 

photographs. 

The system uses a context-free grammar of 192 syntax rules. One hundred sixty 

rules are binary (involving replacement of one symbol by two); seventy-one of which are 

context-sensitive. The remaining rules are unary (involving replacement of a symbol by 

another). The binary rules have associated semantic rules that check semantic 

consistency, calculate the total probability, and generate the meaning list. Of the 114 

associated semantic rules, fourteen are specific to the domain dialect. 

A bottom-up chart parser with word-sense statistics determines the most likely 

interpretation of the input.  The word-sense statistics were obtained by extrapolating the 
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counts of each word from the training corpus. A branch-and-bound search is performed 

to build up the best phrase interpretations. Ranking uses four factors: (1) word-sense 

statistics, (2) counts on the grammar rules used, (3) counts on the co-occurrence of pairs 

of headword senses conjoined in the parse tree, and (4) miscellaneous factors. 

This approach also performs the functionality of the Extractor tool proposed in 

Chapter III while avoiding phrasal pattern matching. This makes it theoretically suitable 

to all forms of input. However, a representative training corpus must be used to generate 

the appropriate statistics by forcing the system to backtrack until it obtains the correct 

parse. This may prove burdensome to the user when initially setting up the knowledge 

base. This system also requires lexicon information in advance for all words it is to 

handle. 
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V.  EXTRACTOR COMPONENT OF NLIPT 

A. INTRODUCTION 

We now describe a prototype component of a natural-language input-processing 

tool that we implemented, the extractor. The extractor analyzes the input and generates a 

meaning list identifying the subjects, objects, attributes (subject and object modifiers), 

verbs, and modal qualifications. 

The extractor component was designed to capitalize on the typical policy structure 

as described in [MOUL92]. Most policy statements can be segmented into three sections: 

1) the main verb group, most likely with a modal qualifier; 2) iht front scope of the 

statement containing the subject; and 3) the back scope of the statement containing the 

object of the verb group. Though the program recognizes a typical policy structure, it 

can also handle statements with different syntactic structures. The intent was to develop 

a general-purpose component for many policy domains. 

B. OVERVIEW 

Input policy statements were initially submitted to an English tagger. This 

significantly reduced the complexity of the extractor program, which used the part-of- 

speech tags to more easily identify the key items for the meaning list. The tagger used 

was a syntactic partial parser, LT CHUNK, developed by the Language Technology 

Group of Edinburgh, United Kingdom [LTG1, LTG2]. Its output assigns a part-of- 

speech tag to each word or symbol of the input and it brackets key multi-word syntactic 

units such as noun phrases. LT POS, a component used in LT CHUNK, assigns part-of- 
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speech tags to words and symbols using hidden Markov models using maximum entropy 

probability estimators [GROV1]. It contains a tokenizer, a morphological classifier, and 

a morphological disambiguator [LTG2]. LT POS achieves ninety-six to ninety-eight 

percent accuracy at correctly assigning POS-tags when all the domain words are in the 

lexicon [LTG2].  Noun groups and verb groups that it recognizes are also bracketed. 

We converted the tagged output via a Java program to a format suitable for 

manipulation via Prolog. Next a Prolog extractor program generates a meaning list using 

the tags and basic grammar rules. Figure 5 illustrates the data flow associated with the 

extractor component. Referring to the design in Chapter III, the output from the extractor 

component could be submitted to an index-term generator and a structural modeler. 
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Figure 5: Data flow diagram of the Extractor Component of NLIPT. 

C.       EXTRACTOR PROGRAM 

This program was developed using Prolog. Prolog is advantageous in natural- 

language processing because of its automatic backtracking feature. If a goal fails, 

backtracking checks alternative means of satisfying the goals until all possibilities are 

exhausted [ALLE95]. This is important for natural-language processing because there 

are usually many ways to interpret a statement in English; parsing may require several 

attempts before the correct rule is found. 
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The extractor program approximates a finite-state grammar developed to cover 

sentences in the test corpus while remaining as general as possible. A full context-free 

grammar is more desirable, but proved to be impractical in the time available to conduct 

this research.   The program code for the extractor program is included as Appendix A. 

The algorithm for the extractor is as follows. For a given natural-language 

sentence: 

• Identify the first verb group that is not part of a clause or phrase. Verb 

groups with modals are preferred over those without. 

• Segment the input into the front scope (the input left of the verb group), 

the verb group, and the back scope (the remainder of the input). 

• Find the subject of the verb group in the front scope of the input. The 

subject and its modifiers should be in the last noun group that is not part of 

a phrase or clause. 

• Find the verb, its modals, and its modifiers in the verb group. 

• Find the object of the verb group in the back scope of the input. The 

object and its modifiers should be in the first noun group that is not part of 

a phrase or clause. 

• Construct a meaning list listing the subject(s), the subject modifiers, the 

object(s) and modifiers, and the verb(s) and its modifiers including 

modals. 

42 



All three segments may contain modifiers, subclauses, and subphrases. The 

extractor does permit input that is not a complete sentence. 

The input is first checked for a compound sentence; if so, its parts are processed 

separately. Appositives are then extracted. Modals or verbal groupings not part of a 

clause or phrase are sought as the main verb group. Bracketed noun groups are submitted 

to a recursive routine written by Professor Rowe and modified by the author, which 

identifies quantifiers, adjectives, and other attributes of the head noun (the subject of the 

group). The subparse routine also recognizes infinitive groupings as the subject (or 

object) if no bracketed noun groups were found. The verb group was parsed with a 

routine written by Professor Rowe that identifies modals, tense markers, adverbs, 

embedded objects, and conjunctions within the grouping. 

Relevant subordinate terms are also identified; phrases and clauses are parsed 

using the split algorithm mentioned earlier. While it is relatively easy to identify the 

beginning of a phrase or clause, identifying the end is another matter. To address this 

problem, phrases and clauses are consecutively extracted from the rear of the scope 

fragment. We identify the last occurrence of a word that could begin a phrase or clause 

(preposition, pronoun, or adverb) and attribute the words following it as part of the phrase 

or clause. 

D.       SAMPLE OUTPUT FROM EXTRACTOR COMPONENT , 

This provides an example of the extractor operation: 

• Input in natural-language format. 
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o Information of questionable value to the genera! public must 

be evaluated before worldwide dissemination to assess the risk 

to the DoD. 

LT CHUNK output indicated the part of speech of each input word as well 

as noun phrase and verb phrase groupings. (LT CHUNK uses with the 

Perm Treebank tag set [MARC1]. Appendix B provides a listing of the 

most significant tags used by LT CHUNK.) 

o [ Information_NN ] of_IN [ questionableJJ valueNN ] 

to_TO [ the_DT general_JJ public_NN ]   < must_MD be_VB 

evaluated_VBN > beforeIN [ worldwideJJ 

dissemination_NN ]   < to_TO assess_VB > [ the DT 

risk_NN ] to_TO [ the_DT DoD_NNP ]._. 

The extractor program produced a meaning list that identified the main 

subject(s), object(s), and verbs of the input. Subordinate terms (from 

phrases and clauses) were also identified. 

o [[main_subject_Group([subject(information), relationship(of), 

subj(value), modifier(value,questionable), relationship(to), 

subj (public), determiner(public,the), 

modifier(public,general)]), 

mam_object_Group([relationship(before), obj(dissemination), 

modifier(dissemination,worldwide), obj(risk), obj(to_assess), 

44 



determiner(risk,the), relationship(to), obj(dod), 

determiner(dod,the)]), 

main_verb_Group([modal(must), passive(must,be), 

verb(must,evaluated)])] 

Key terms from the meaning list can be identified for further processing. 

Modifiers are attributes of the subjects, objects, and verbs to which they refer. 

Any determiners provide for existential or universal quantification of the subject 

or object they modify. Subordinate terms and their relationships to their subject 

establish a hierarchical, part-of, a-kind-of, or a conditional relationship depending 

on the clause or phrase-head term. 
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VI. TESTING THE EXTRACTOR COMPONENT 

This section summarizes the results of testing the extractor component. The 

following conditions were tabulated: 

• Whether the meaning list (ML) correctly identifies main subject(s), verb(s), 

and objects(s) based on the natural-language input 

• Whether the meaning list is incorrect but correctly identifies main constructs 

of input based on the tagger and intermediate output 

• Whether the meaning list is incorrect 

The test corpus was comprised of policy statements pertaining to web page 

content at the Naval Postgraduate School. Many of the policy statements were in a 

prescriptive format; they had a modal grouping as well as well-defined front and back 

scopes. However, quite a few statements were expository in nature; free-form with the 

intent to clarify a point. Some statements were bulleted items that were dependent 

clauses or phrases. Many of the statements contained technical constructs such as 

Uniform Resource Locator (URL) addresses. 

Table 1 summarizes the results of the testing. Input sentences (excluding lists) 

contained twenty-two words on average; the average meaning list contained eighteen 

facts. Some words were combined and presented as unknown facts in a meaning list. 
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VII.        CONCLUSIONS AND FUTURE WORK 

A.       CONCLUSIONS 

In this thesis we developed an architecture for a natural-language processing tool 

to be used as a part of a policy workbench. We hypothesized that the NLIPT, when 

properly implemented, could minimize user interaction when formalizing policy 

statements. This is desirable when large policy bases are involved; it saves time and 

increases the likelihood that the system will be consistently used. As part of a partial 

proof of concept, we developed a prototype component, the extractor, for the NLIPT. 

The extractor program proved adequate for parsing simple policy statements. It 

correctly identifies the subject, object, attributes, and the verb. However, the program 

must be refined if it is to adequately handle the complex sentences that exist in policy 

corpora. 

The inadequacies of extractor program do not disprove our hypothesis that policy 

formalization can be largely automated. Nor do they invalidate the proposed architecture 

of the NLIPT. Our efforts must be directed to improving the extractor component and to 

implementing the other components of NLIPT. Modifying the program to use a full 

context-free grammar instead of ad hoc rules could increase the robustness of the 

program. The use of the partial tagger greatly simplified the algorithm of the extractor 

program; it also introduced modularity into the NLIPT that allows replacement or 

modifications without affecting the other components. Augmenting the tagger output by 

identifying phrases (prepositional, adverbial, etc.) before submitting it to the extractor 
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program could help. Also, examining the possible word-senses of the input based on the 

assigned tag could provide a means to correct mistagged words. 

B.        FUTURE WORK 

Future research topics include the implementation and further refinement of the 

proposed components of the NLIPT. We incorporated a commercial-off-the-shelf 

(COTS) solution into the extractor. There may be suitable COTS solutions for all the 

components. Evaluation and testing of COTS solutions could significantly reduce the 

policy workbench development time. 

Evaluation metrics for the NLIPT is another area of research. Some issues to 

address when developing metrics might include the following: 

• How easy is it to reconstruct the policy from the schema? 

• How accurate is the logical representation? 

• How relevant are the indexed schema retrieved from the policy base? 

• Should the schema be indexed? 

The NLIPT is only one of many components of a larger system. Moreover, the 

NLIPT must be complemented with a natural-language response system, which remains 

to be investigated. 

Another avenue of research is that of exploring the interaction or degree of 

coupling of the natural-language interface with the other policy-workbench tools. For 

example, thesis research is being conducted at the Naval Postgraduate School on the 
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automated testing of policy.   For instance, the testing tools may place tool-specific 

requirements on the natural-language interface. 
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APPENDIX A: EXTRACTOR CODE 

/* File: Extractor.pl 
Author:  V.L.Ong 

Professor Rowe 

Written in B-Prolog 

This program parses sentences to find subjects, objects, and verb 
phrases 

INPUT:  Sentence - natural language input to be parsed 
Tags    - part of speech tags for Sentence 

OUTPUT: ML - Meaning List identifying the subject, object, 
main verb phrase 

*/ 

preparse(Sentence,_,_) :- 
write('Preparsing the sentence: '), nl, 
write(Sentence), nl, fail. 

/* process compound sentences */ 
preparse(Sentence, Tags, ML) :- 

is_compound_sentence(Sentence, Tags, SI, Tl, S2, T2, Conj), 
preparse(SI, Tl, ML1), 
preparse(S2, T2, ML2), 
Rel=..[relationship, Conj], 
append(ML1,[Rel],Temp), 
append(Temp, ML2, ML), !. 

/* Segments opening clauses/phrases offset by comma from input 
Processes each separately, assumes first noun group following 
phrase is subject 

*/ 

preparse(FS, FT, FML) :- 
append(Tl, [','|T2], FT), length(Tl, Nl), 
(appendf [ 'IN' ] , Dl, Tl) ,- 
append( [ 'WRB' ] ,D1,T1) ,-append( ['RB'] ,D1,T1) ) , 
append(Sl,[','|S2], FS), length(SI,Nl), 
append(PhrsHD, DS1, SI), length(PhrsHD,1), 
find_noun_group(T2,S2,NGT,NGS,_, ), 
extract_subject(NGT,NGS,Sub), 
interiorparse(DSl,Dl,ML), 
(member(subject(S),Sub),CML = [relationship(S,PhrsHD)|ML]; 
CML = [relationship(PhrsHD)|ML]), 

preparse(S2,T2,ML2),!, 
append(ML2,CML,FML),!. 

/* Segments opening clause offset with comma 
that starts with a determiner such as Which 
*/ 
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preparse(FS, FT, FML) :- 
append(Tl, [\'|T2], FT), length (Tl, Nl) , 
append(SI,[','|S2], FS), length(SI,Nl), 
find_noun_group(Tl,SI,NGT,NGS,_,_,_,_) , 
NGT=['WDT'], 
find_noun_group(T2,S2,NGT2,NGS2 ,_,_), 
extract_subject(NGT2,NGS2,Sub), 
interiorparse(Sl,Tl,ML),!, 
(member(subject(S),Sub),CML = [relationship(S,NGS) |ML] 
CML = [relationship(NGS)|ML]), 
preparse(S2,T2,ML2) , ! , 
append(CML,ML2,FML),!. 

/* Extracts appositives offset by commas from sentence 
and concatenates the remaining input for processing. 
Processes the appositive separately, 
Assumes noun group immediately preceeding appositive 
is subject of appositive 

*/ 

preparse(Sentence, Tags, ML) :- 
append(Tl, [','|T2], Tags), length(Tl, Nl), 

append(AposT,[','|T3],T2), length(AposT,N2), 
\+member(',',AposT), 
\+member('<',AposT),\+member('>',AposT), 
\+append(['CC'],DMY,T3),!, 
append(SI,[','|S2],Sentence), length(SI, Nl), !, 
append(AposS,[',' |S3] ,S2) , length(AposS, N2), !, 
last_noun_group(Tl,SI,LNGTags,LNGSent,_,_,_,_), 
extract_subj ect_np(LNGTags,LNGSent,Sub), 
interiorparse(AposS,AposT,ApML), 
(member(subject(S),Sub), append([apos_subj(S)],ApML,APML),- 
append([apos],ApML,APML)), 

append(Tl,T3,NTags), 
append(SI,S3,NSentence),!, 
preparse(NSentence, NTags, NML), 
append(NML,APML,ML),!. 

/♦segments a clause from a sentence and processes each 
separately*/ 
preparse(Sentence, Tags, ML) :- 

append(Tl, [','|T2], Tags), length(Tl, Nl), 
append(Cist,[','|T3],T2), length(Cist,N2), 
\+member(',',Clst), member('<',Clst),member('>',Clst), 
member('[',Clst),member(']',Clst),!, 
append(SI,[','|S2],Sentence), length(SI, Nl) , 
append(ClsS,[','|S3],S2), length(ClsS, N2), !, 

interiorparse(ClsS,Cist,ApML), 
append(Tl,T3,NTags), 
append(Si,S3,NSentence),!, 
preparse(NSentence, NTags, NML), 
append(NML,ApML,ML),!. 
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/* Process sentence with modal*/ 
preparse(Sentence,Tags, ML) :- 

append(Tl,['MD'|T2],Tags), 
splitscope(Sentence,Tags, 'MD' , SF, SVG, SB,TF,TVG ,TB), 

process_front_scope(SF,TF,Subj ect), 
process_back_scope(SB,TB, Object), 
process_modal_group(SVG, TVG, Modal, Verb),!, 
Subj=..[main_subject_Group,Subject], 
Obj=..[main_object_Group,Object], 
Vb =..[main_verb_Group,Verb], 
append([Subj],[Obj],Temp), 
append(Temp,[Vb],ML),!. 

/* No modal but verb in sentence*/ 
preparse(Sentence,Tags,ML) :- 

member(Tagtype,Tags),verbtagtTagtype), 
splitscope(Sentence,Tags,Tagtype,SF, SVG, SB,TF,TVG ,TB), 
process_front_scope(SF,TF,Subj ect), 
process_back_scope(SB,TB, Object), 
process_verb_group(SVG, TVG, Verb,VerbList), 
Subj=..[main_subject_Group,Subject], 
Obj = .. [main_object_Group,Object], 
Vb=..[main_verb_Group,VerbList], 
append([Subj],[Obj],Temp), 
append(Temp,[Vb],ML),!. 

/* no modal and no verb in sentence */ 
preparse(Sentence,Tags,ML) :- !, 

process_front_scope(Sentence,Tags,ML),!. 

preparse(Sentence,Tags, []) :- !. 

/* SEGMENTING INPUT INTO FRONT SCOPE, BACK SCOPE, VERB GROUPING*/ 

/* Splitscope */ 
% Splits sentence into three parts based on verb grouping (verb 
%or modal) 
% Checks first to make sure verb grouping is not part of a clause 

splitscope(Sentence, Tags, TagType, SFront,VerbGroup, SBack, 
TFront,VGTags, TBack):- 

not_part_of_clause(Sentence,Tags, TagType, FScopeLength), 
\+ infinitive(Sentence,Tags,TagType, Dmy),!, 
append(TFront,Tl,Tags), 
length(TFront,FScopeLength), 
append(VGT, ['>'|TBack], Tl),length(TBack, N2), 
append(VGT, ['>'], VGTags), 
append(SFront,LI,Sentence), length(SFront,FScopeLength),!, 
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append(VerbGroup, SBack, Ll), length(SBack,N2) 

/*is_compound_sentence*/ 
%This function succeeds if the submitted input 
%has the properties of a compound sentence.  Returns 
%the two independent clauses and the conjunction 
%Input:  sentence, tags 
%Output: sentencel, tagsl, sentence2, tags2, conjunction 

is_compound_sentence(Sentence, Tags, SI, Tl, S2, T2, Conj) :- 
(append(SI,[',',Conj|S2],Sentence); 
append(SI,[';',Conj|S2], Sentence)), 
(coorconj(Conj); conjadv(Conj)), length(Sl, Nl) , 
member('[',S1),member(']',S1),member('[',S2),member(']',S2), 
member('<',S1),member(■>',S1),member('<',S2),member('>',S2), 
append(Tl,[',',CT|T2], Tags), length(Tl, Nl), !. 

/* not_part_of_clause */ 
% This function succeeds if the word immediately before 
% the grouping with the Tagtype is a not clause word.  Returns 
% length of list preceeding group with TagType 

% Handles verbs or modals 
not_part_of_clause(Fragment, Tags, TagType, FLength) :- 

(verbtag(TagType); TagType = 'MD'), 
append(Front,['<'|Back],Tags), length(Front,FLength) 
append(CheckFront,[TagType|Backl],Back), 
\+append(Dcl,['<'|Dc2],CheckFront),!, 
append(SF,['<'|SB],Fragment),length(SF,FLength), 
last(Front,MaybeCls),!, 
\+cls(MaybeCls), \+tocls(MaybeCls), 
last_noun_group(Front,SF,NGT1,NGS1,TF1,SF1,_,_), 
(\+spcls(NGTl);spcls(NGTl),\+member('[',TF1)),!. 

%Handles with nouns, pronouns 
not_part_of_clause(Fragment, Tags, TagType, FLength) :- 

nountag(TagType),!, 
append (Front , [' ['' |Back], Tags) , 1 ength (Front, FLength) 
append(CheckFront, [TagType|Backl],Back), 
\+append(Dcl,['['|Dc2],CheckFront), 
append(SF,['['|SB],Fragment),length(SF,FLength), 
last(Front,MaybeCls),!, 
\+cls(MaybeCls), \+tocls(MaybeCls), 
last_noun_group(Front,SF,NGT1,NGS1,TF1, SF1,_,_), 
(\+spcls(NGTl);spcls(NGTl),\+member(•[',TF1)),!. 

% Checks to see if the verb grouping is actually an infinitive 
% Succeeds if it is an infinitive 

infinitive(Fragment, Tags, TagType, []) :- 
TagType = 'VB',!, 
append(Front,['<'|Back],Tags), 

58 



append(VerbGp,['>'|Backl],Back), 
member('TO',VerbGp),!,member('VB',VerbGp) 

/* FRONT SCOPE PROCESSING */ 

/* Process_front_scope 
Extracts the subject from the grouping, identifies any 
determiners, any adjectives (attributes) */ 

process_front_scope([],[],[]). 

/*  clause as opening statement with 'IN' tag as first grouping 
Assumption: first noun group following comma is subject 

*/ 
process_front_scope(FS, FT, FML) :- 

append(Tl, [',■|T2], FT), length(Tl, Nl), 
append(['IN'], Dl, Tl),!, 
append(SI,[','|S2], FS), length(SI,Nl), 
append(Clause, DS1, SI), length(Clause,1), 
interiorparse(DSl,Dl,ML), 
find_noun_group(T2,S2,NounTags,NounGrp,_,_,_,_), 
extract_subject(NounTags, NounGrp, Subj), 
member(subj ect(S),Subj), 
CML = [relationship(S,Clause)|ML], 
process_front_scope(S2,T2,ML2) , ! , 
append(CML,ML2,FML),!. 

/*  clause as opening statement with 'WDT' tag as first grouping 
Form: brackets surround WDT 

Assumption: first noun group following comma is subject 
'/ 

process_front_scope(FS, FT, FML) :- 
append(Tl, [','|T2], FT), length(Tl, Nl), 
append(['[','WDT',']'],Dl,Tl),!, 
append(SI,[','|S2], FS), length(Sl,Nl),!, 
append(Clause, DS1, SI), length(Clause,3),!, 
interiorparse(DSl,Dl,ML) , !, 
find_noun_group(T2,S2,NounTags,NounGrp,_,_,_,_) 
extract_subject(NounTags, NounGrp, Subj),!, 
member(subj ect(S),Subj) , 
append(['['],[Cl|']'],Clause), 
CML = [relationship(S,C1)|ML], 
process_front_scope(S2,T2,ML2),!, 
append«CML,ML2,FML),!. 

Segments rear phrase and sends it for subordinate processing 
Assumes noun group nearest phrase is subject of phrase. 
Assumes noun group that is nearest main verbal grouping that 

is not part of a clause is the subject of the verb. 
*/ 
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/* identifies last occurance of clause word */ 
process_front_scope(FS, FT, FML) :- 

get_last_cls(FT, Cls, BLength), 
append(Tl, [Cls|T2], FT), (cls(Cls);tools(Cls)), 
length(T2,BLength),!, 
append(SI, [SCls|S2],FS), length(S2,BLength),! , 
interiorparse(S2,T2,ML),!, 
PML = [relationship(SCls)|ML], 
process_front_scope(Sl,Tl,NML),!, 
append(NML,PML,FML),!. 

%This routine addresses multiple objects 
process_front_scope(FS, FT, FML) :- 

find_noun_group(FT,FS,NT,NS,Fronts,FrontT,RestT,RestS) , 
extract_subject(NT,NS,Subl), 
subs_headnoun_subj ect(Subl,Sub2), 
first(RestT, X), (X=',';X='CC), 
process_front_scope(Rests,RestT,ML1), 
interiorparse(Fronts,FrontT,NML),!, 
append(NML,Sub2,ML), 

append(ML,ML1,FML),!. 

process_front_scope(FS, FT, FML) :- 
find_noun_group(FT,FS,NT,NS,Fronts,FrontT,RestT, Rests) , 
extract_subject(NT,NS,Sub2),!, 
subs_headnoun_subj ect(Sub2,Subl), 
interiorparse(Fronts,FrontT,NML1), 
interiorparse(Rests,RestT,NML),!, 
append(NML1,Subl,ML), 
append(ML,NML,FML), 

/* only noun group supplied */ 
process_front_scope(FS, FT, FML) :- 

append(['['], Back, FT), 
last(Back,X), X= ']',!, 
delimit_list(FT,FS,'[',Ftags,Fsent),! 
extract_subj ect_np(Ftags,Fsent,FML1), 
subs_headnoun_subject(FML1,FML),!. 

/* only infinitive left */ 
process_front_scope(FS, FT, FML) :- 

first(FT,Y), Y= '<■, 
last(FT,X), X= •>', 
member{'TO', FT), 
member('VB', FT), 
delimit_list(FT,FS,'<',Ftags,Fsent),! 
make_word_from_list(Fsent,Infinitive) 
FML = [subject(Infinitive)],!. 
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process_front_scope(FS,FT,FML) :- 
member(X,FT), punc(X), 
delete(X,FT,FTl), delete(X,FS,FS1), 
process_front_scope(FSl,FTl,FML),!. 

process_front_scope(FS, FT, FML) :- 
length(FT,1), (FT=[•VBG'];FT=['IN1];FT=['TO'];FT=['VBN']) 
FS=[X], 
FML=[relationship(X)],!. 

process_front_scope(FS,FT, FML) :- 
length(FT,1), FT=['CC'], 
FS=[X], 
FML=[conj(X)],!. 

process_front_scope(FS,FT,[]) :- 
length(FT,1), FT=[X],punc(X),!. 

/*program identifies as unknown things it does not handle */ 
process_front_scope(FS, FT, FML) :- 

member(X,FT),\+punc(X), 
make_word_from_list(FS, Unknown), 
FML = [unknown(Unknown)],!. 

process_front_scope(_,_,[]). 

/* get_last_cls */ 
% finds last clause and returns position 
% from the back up to (but not including) the els tag 

% makes sure infinitive with to is not selected 
get_last_cls(Tags, Cls, BLength) :- 

reversa(Tags, RT), 
append(Tl,[Cls|T2],RT), tocls(Cls), 
\+append(X,['VB'],T1),length(Tl,BLength),!. 

get_last_cls(Tags, Cls, BLength) :- 
reversa(Tags, RT),!, 
append(Tl,[Cls|T2],RT), cls(Cls),length(Tl, BLength),!. 

/* SUB PARSE  SECTION */ 

/* Input: Tags - phrase tags to be processed 
Sent - phrase content 

NGT  - tags of noun group (no brackets) most likely subject 
NGS  - noun group (no brackets) 
OUTPUT: ML with subordinate phrase parsed 

*/ 
/* interiorparse */ 

interiorparse([],[],[])- 
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/* clauses with modals*/ 
interiorparse(SentFrag, Tags, ML):- 

append(Tl,['MD'|T2],Tags), 
splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB) 

process_front_scope(SF,TF,Sub), 
member(subject(S),Sub), 
process_modal_group(SVG, TVG, Modal, Verb), 
delete(subject(S),Sub,Subl), 
member(verb(VI,V2),Verb), 
append([subj(S)],Subl,Sub2), 
sub_hd_subj(Sub2,V2,Subj ect), 
process_back_scope(SB,TB, Object), 

member(object(01),Object),!, 
delete(object(01),Object,OB), 
append«[obj(01)] ,0B,0B2), 
sub_hd_obj(0B2,V2,0B3), 
append(Subject,Verb,ML3), 
append(ML3, 0B3, ML),!. 

interiorparse(SentFrag, Tags, ML) : - 
append(Tl,['MD'|T2],Tags), 

splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB) 
process_front_scope(SF,TF,Subj ect), 
member(subj ect(S) , Subj ect), 
process_modal_group(SVG, TVG, Modal, Verb), 
member(verb(VI,V2),Verb),!, 
delete(subject(S),Subject,Sb), 
append([subj(S)],Sb,MLl), 
sub_hd_sub j (MLl, V2, ML2) ,  . 
append(ML2,Verb, ML),!. 

% no subject, but has back scope 
interiorparse(SentFrag, Tags, ML) :- 

append(Tl,['MD'|T2],Tags), 
splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB), 
process_modal_group(SVG, TVG, Modal, Verb), 
member(verb(VI,V2),Verb), 
process_back_scope(SB,TB,Obj ect), 
member(obj ect(01),Obj ect), !, 
delete(obj ect(01),Obj ect,OB), 
append« [obj(01)],OB,MLl), 
sub_hd_obj(MLl,V2,ML2), 
append(Verb,ML2,ML),!. 

% only modal present, not front or back scope 
interiorparse(SentFrag,Tags, ML) :- 

member('MD', Tags), 
process_modal_group(SVG, TVG, Modal, ML),!. 

/* clauses with verbs */ 
% subject, verb, object; splits on first verbform encountered 
interiorparse(SentFrag,Tags,ML) :- 
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append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype), 
\+infinitive(SentFrag,Tags,Tagtype,_), 

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB) , 
process_front_scope(SF,TF,Subj ect), 
process_verb_group(SVG, TVG, Verb,VerbList), 
process_back_scope(SB,TB, Object), 
member(subj ect(S),Subj ect), 
member(verb(VI,V2),VerbList), 
delete(subject(S),Sujbect,S2), 
append([subj(S)],S2,S3) , 
sub_hd_subj(S3,V2,SML), 
delete(obj ect(01),Obj ect, OBI), 
append([obj(01)],OBI,OB), 
sub_hd_obj(OB,V2,OML), 
append(SML,VerbList,Temp),!, 
append(Temp,OML, ML),!. 

% subject, verb, no object 
interiorparse(SentFrag, Tags, ML) :- 

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype), 
\+infinitive(SentFrag,Tags,Tagtype,_), 

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB) 
process_front_scope(SF,TF,Subj ect), 
process_verb_group(SVG, TVG, Verb,VerbList), 
member(subj ect(S),Subj ect), 
member(verb(VI,V2),VerbList),!, 
delete(subject(S),Subject,S2), 
append([subj(S)],S2,S3) , 
sub_hd_subj(S3,V2,SML), 
append(SML,VerbList, ML),!. 

% no subject, but has backscope 
interiorparse(SentFrag, Tags, ML) :- 

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype), 
\+infinitive(SentFrag,Tags,Tagtype,_), 

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB) 
process_verb_group(SVG, TVG, Verb,VerbList), 
process_back_scope(SB,TB,Obj ect), 
member(verb(VI,V2),VerbList), 
member(object(01),Object),!, 
delete(object(01),Object,OB), 
appendt[obj(01)],OB,OML), 
sub_hd_obj(OML,V2,0ML1), 
append(VerbList,OMLl,ML),!. 

% only verb in phrase/clause 
interiorparse (SentFrag, Tags, ML) -.- 

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype) 
\+infinitive(SentFrag,Tags,Tagtype,_), 
process_verb_group(SVG, TVG, Verb,ML),!. 

/* clause with no verbs */ 
interiorparse(SentFrag, Tags, ML) 
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process_front_scope(SentFrag,Tags,Subj ect) , 
member(subj ect(S),Subj ect), 
delete(subject(S),Subject,SB), 
append([subj(S)],SB,ML) , !. 

%no brackets around phrase words 
interiorparse(SentFrag, Tags, ML) :- 

process_front_scope(SentFrag,Tags,Subj ect), 
ML=Subject,!. 

/* return nothing */ 
interiorparse(_, _, []). 

/*interiorparseBS is the same as interiorparse, but handles the 
back scope */ 

/* interiorparseBS */ 

interiorparseBS([],[],[]). 

/* clauses with modals*/ 
interiorparseBS(SentFrag, Tags, ML):- 

append(Tl,['MD'|T2],Tags), 
splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB) 

process_front_scope(SF,TF,Sub), 
member(subject(S),Sub), 
process_modal_group(SVG, TVG, Modal, Verb), 
delete(subject(S),Sub,Subl), 
member(verb(VI,V2),Verb), 
append([subj(S)],Subl,Sub2), 
sub_hd_subj(Sub2,V2,Subj ect), 
process_back_scope(SB,TB, Object), 

member(obj ect(01),Obj ect),!, 
delete(object(01),Object,OB), 
append([obj(01)],0B,0B2), 
sub_hd_obj(0B2,V2,0B3), 
append(Subj ect,Verb,ML3), 
append(ML3, 0B3, ML),!. 

interiorparseBS(SentFrag, Tags, ML):- 
append(Tl,['MD'|T2],Tags), 

splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB) 
process_front_scope(SF,TF,Subject), 
member(subject(S)»Subject), 
process_modal_group(SVG, TVG, Modal, Verb), 
member(verb(VI,V2),Verb),!, 
delete(subject(S),Subject,Sb), 
append([subj(S)],Sb,MLl), 
sub_hd_subj(ML1,V2,ML2), 

append(ML2,Verb, ML),!. 

% no subject, but has backscope 
interiorparseBS(SentFrag, Tags, ML) :- 
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append(Tl,['MD'|T2],Tags), 
splitinscope(SentFrag,Tags,'MD', SF, SVG, SB,TF,TVG ,TB) 
process_modal_group(SVG, TVG, Modal, Verb), 
member(verb(VI,V2),Verb), 
process_back_scope(SB,TB,Obj ect) , 
member(obj ect(01),Obj ect),!, 
delete(object(01),Object,OB), 
appendt[obj(01)],0B,ML1), 
sub_hd_obj(ML1,V2,ML2), 
append(Verb,ML2,ML),!. 

% only modal 
interiorparseBS(SentFrag,Tags, ML) :- 

member('MD', Tags), 
process_modal_group(SVG, TVG, Modal, ML),!. 

/* clauses with verbs */ 
% subject, verb, object; splits on first verbform encountered 
interiorparseBS(SentFrag,Tags,ML) :- 

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype), 
\+infinitive(SentFrag,Tags,Tagtype,_), 

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB), 
process_front_scope(SF,TF,Subj ect) , 
process_verb_group(SVG, TVG, Verb,VerbList), 
process_back_scope(SB,TB, Object), 
member(subj ect(S),Subj ect), 
member(verb(VI,V2),VerbList), 
member(object(01),Object),!, 
delete(subject(S),Sujbect,S2), 
append([subj(S)],S2,S3), 
sub_hd_subj(S3,V2,SML), 
delete (ob j ect (01) , Obj ect, OBI) , 
append([obj(01)],OBI,OB), 
sub_hd_obj(OB,V2,OML), 
append(SML,VerbList,Temp),!, 
append(Temp,OML, ML),!. 

% subject, verb, no object 
interiorparseBS(SentFrag, Tags, ML) :- 

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype), 
\+infinitive(SentFrag,Tags,Tagtype,_), 

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB), 
process_front_scope(SF,TF,Subj ect) , 
process_verb_group(SVG, TVG, Verb,VerbList), 
member(subject(S),Subject) , 
member(verb(VI,V2),VerbList),!, 
delete(subject(S),Subject,S2) , 
appendt[subj(S)],S2,S3), 
sub_hd_subj (S3, V2, SML) , 
append«SML,VerbList, ML),!. 

% no subject, but has backscope 
interiorparseBS(SentFrag, Tags, ML) :- 
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append(Tl,[Tagtype|T2],Tags),verbtagtTagtype), 
\+infinitive(SentFrag,Tags,Tagtype,_), 

splitinscope(SentFrag,Tags,Tagtype, SF, SVG, SB,TF,TVG ,TB), 
process_verb_group(SVG, TVG, Verb,VerbList), 
process_back_scope(SB,TB,Object) , 
member(verb(VI,V2),VerbList), 
member(obj ect(01),Obj ect),!, 
delete(object(01),Object,OB), 
append([obj(01)],0B,0ML), 
sub_hd_obj(OML,V2,0ML1), 
append(VerbList,OMLl,ML),!. 

i  only verb in phrase/clause 
interiorparseBS(SentFrag, Tags, ML) :- 

append(Tl,[Tagtype|T2],Tags),verbtag(Tagtype), 
\+infinitive(SentFrag,Tags,Tagtype,_), 
process_verb_group(SVG, TVG, Verb,ML) , !. 

/* clause with no verbs */ 
interiorparseBS(SentFrag, Tags, ML) :- 

process_back_scope(SentFrag,Tags,Obj ect), 
member(object(0),Object), 
delete(object(0)»Object,OB) , 
append([obj(0)],OB,ML), 

%no brackets around phrase words 
interiorparseBS(SentFrag, Tags, ML) :- 

process_back_scope(SentFrag,Tags,Obj ect), 
ML=0bject,!. 

/* return nothing */ 
interiorparseBS(_, _, []). 

/* Segments phrases based on first verb encountered 
Used for interior parsing of phrases*/ 

/* splitinscope */ 
% splits on first verb encountered 

splitinscope(Sentence,Tags,TagType,SFront,VerbGroup,SBack,TFront,VGTag, 
TBack):- 

append(TFr,[TagType|Back],Tags), 
reversa(TFr,RFT),!, 
append(Tl,['<'|TF1],RFT),!, length(TF1,N1),!, 
append(TFront,TF2,TFr), length(TFront,Nl),!, 
append(TF2,[TagType],VGT),!, 
append(VGTB, ['>'|TBack], Back),length(TBack, N2), 
append(VGT, VGTB, VGTC), 
append(VGTC, ['>'], VGTags) , !, 
append(SFront,LI,Sentence), length(SFront,Nl),!, 
append(VerbGroup, SBack, Ll), length(SBack,N2), 
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/* BACK SCOPE PROCESSING */ 

/* process_back_scope */ 
% Finds the object of the verb 

process_back_scope([],[],[]). 

/* identifies last occurance of clause word */ 
process_back_scope(BS, BT, BML) :- 

get_last_cls(BT, Cls, BLength), 
append(Tl, [Cls|T2], BT), (cls(Cls);tocls(Cls)), 
length(T2,BLength) , !, 
append(SI, [SCls|S2],BS), length(S2,BLength) ,!, 
interiorparseBS(S2,T2,ML),!, 
PML = [relationship(SCls)|ML], 
process_back_scope(Sl,Tl,NML),!, 
append(NML,PML,BML),!. 

%This routine addresses multiple objects 
process_back_scope(BS, BT, BML) :- 

find_noun_group(BT,BS,NT,NS,Fronts,FrontT,RestT, Rests), 
extract_object(NT,NS,Objl), 
subs_headnoun_object(Objl,OBl), 
first(RestT, X), (X=',';X='CC'), 
process_back_scope(Rests,RestT,ML1), 
interiorparseBS(Fronts,FrontT,NML),!, 
append(NML,OBI,ML) , 
append(ML,ML1,BML), 

process_back_scope(BS, BT, BML) :- 
find_noun_group(BT,BS,NT,NS,Fronts,FrontT,RestT,RestS), 
extract_object(NT,NS,Subl), 
subs_headnoun_obj ect{Subl,OBI), 
interiorparseBS(Fronts,FrontT,NML1), 
interiorparseBS(Rests,RestT,NML),!, 
append(NML1,OBI,ML) , 
append(ML,NML,BML),!. 

/* only noun group supplied */ 
process_back_scope(BS, BT, BML) :- 

append(['['], Back, BT), ! , 
last(Back,X), X= ']',!, 
delimit_list(BT,BS,'[',Btags,BSent) 
extract_obj ect_np(Btags,BSent,BML), 

/* only infinitive left */ 
process_back_scope(BS, BT, BML) :- 

first(BT,Y), Y= '<', 
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last(BT,X), X= '>' , 
member('TO' , BT), 
member('VB', BT), 
delimit_list(BT,BS,'<',Ftags,BSent),!, 
make_word_from_list(BSent,Infinitive), 
BML = [object(Infinitive)],!. 

%punctuation appears the same in both tag lists and sentences 
process_back_scope(FS, FT, FML) :- 

member(X,FT), punc(X), 
delete(X,FT,FT1), delete(X,FS,FS1), 
process_back_scope(FS1,FT1,FML), !. 

process_back_scope(BS, BT, BML) :- 
length(BT,1), (BT=['VBG'];BT=['TO'];BT=['IN']), 
BML =[relationship(BS)], !. 

process_back_scope(BS,BT,BML) :- 
length(BT,l) , BT=['CC], 
BML =[conj(BS)],!. 

process_back_scope(BS,BT,[]) :- 
length(BT,1), BT=[X],punc(X),!. 

process_back_scope(FS, FT, FML) :- 
member(X,FT),\+punc(X), 
make_word_from_list(FS, Unknown), 
FML = [unknown(Unknown)],!. 

process_back_scope(_,_,[]) :- !. 

/* NOUN GROUP PROCESSING */ 

/* find_noun_group 
Returns first noun group in fragment 
Returned with brackets*/ 

% Finds first noun group in fragment. 
% Noun group returned with brackets 

find_noun_group(TagsFrag, SentFrag, NGTags, NGSent,SFront,TFront, 
TRest, SRest):- 

append(TFront,['['|TB],TagsFrag), 
length(TFront,Nl), !, 
append(TFront,Tl,TagsFrag), !, 
append(NGT, [']'|TRest], Tl),length(TRest, N2),!, 
append(NGT, [']'], NGTags), 
append(SFront,LI,SentFrag), length(SFront,Nl),!, 
append(NGSent, SRest, LI), length(SRest,N2),!. 

68 



%Finds last noun group in fragment and extracts it from the submitted 
%fragment 

%Noun group returned without brackets 

last_noun_group([],[],[],[],[],[],[],[])• 

^returns infinitive if noun group is not behind it 
last_noun_group(Tags, Sent, LNGTags, LNGSent, TFront, 

SFront, TRest, SRest):- 
reversa(Tags,RTags), 

append(RTback,['>'|Tb],RTags), 
\+member('[',RTback),\+member(']',RTback), 
length(RTback,Nl), 

append(RLNGTags,['<'|RTfront],Tb), 
member('TO',RLNGTags),member('VB',RLNGTags), 
reversa (Sent, RSent) , 
append(RSback,['>'|Sb],RSent), length(RSback,Nl), 
append(RLNGSent,['<'|RSfront],Sb), 
reversa(RLNGTags,LNGTags), 
reversa(RTfront,TFront), 
reversa(RTback,TRest), 
reversa(RLNGSent,LNGSent), 
reversa(RSback,SRest), 
reversa(RSfront,SFront),!. 

%returns the last noun group in the fragment submitted 
last_noun_group(Tags, Sent, LNGTags, LNGSent, TFront, SFront, TRest, 

SRest):- 
reversa(Tags,RTags), 
append(RTback,[']'|Tb],RTags), 
append(RLNGTags,['['|RTfront],Tb), 
reversa(Sent,RSent), 
append(RSback,[']'|Sb],RSent), 
append(RLNGSent,['['|RSfront],Sb), 
reversa(RLNGTags,LNGTags), 
reversa(RTfront,TFront), 
reversa(RTback,TRest), 
reversa(RLNGSent,LNGSent), 
reversa(RSback,SRest), 
reversa(RSfront,SFront),!. 

last_noun_group(_,_,[],[],[],[],[],[])• 

/* extract_subject */ 
% Extracts subject from noun group 
extract_subject(NT, NS, Subj) :- 

delimit_list(NT, NS, '[',NTags, NSent), 
extract_subject_np(NTags, NSent, Subj). 

/* extract_object */ 
% Extracts object from noun group 
extract_object(NT, NS, Obj) :- 

delimit_list(NT, NS, '[',NTags, NSent) 
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extract_object_np(NTags, NSent, Obj). 

/* delimit_list */ 
% Extracts tags, and words from single grouping 

delimit_list(TagList, SentList, Delim, TagsOnly, SentOnly) 
butlast(TagList, TL1), butlast(SentList, SL1) , 
append(_,[Delim|TagsOnly],TL1), 

\+ member(Delim, TagsOnly), 
append(_,[Delim|SentOnly],SL1), 
\+ member(Delim, SentOnly),!. 

Extracts subject from unbracketed noun group, 
Identifies modifiers and determiners 
Written by Professor Rowe and modified by author 

*/ 

/* extract_subject_np */ 
extract_subject_np([T] , [S] 
extract_subject_np([T] , [S] 
extract_subject_np([T] , [S] 
extract_subject_np([T] , [S] 
extract_subject_np([T] , [S] 
extract_subject_np([Tl|TL] 

adjtag(Tl), Tl> 
extract_subject_np([Tl|TL] 

adjtag(Tl), !, 

:- nountag(T) 
:- T='VBG',!. 
.subject(S)]) 
:- T='CD',!. 
.subject(S)]) 

- T='WDT' 

.[subject(S)]) 

.[subject(S)]) 
[anaphoric(S) 
[subject(S)]) 
[anaphoric(S),subject(S)]) :- spPrn(S) 
[SI|SL],[determiner(noun,SI)|ML]) :- 

='DT',!, extract_subject_np(TL,SL,ML), 
[S1|SL],[modifier(noun,SI)|ML]) :- 
extract_subject_np(TL,SL,ML), !. 

extract_subject_np([T1,T2|TL],[S1,S2|SL] 
nountag(Tl), nountag(T2), !, 

extract_subject_np([T2|TL],[S2|SL],ML), 
extract_subject_np([T1,T2|TL],[S1,S2|SL] 

[modifier(noun,SI)|ML]) 

[modifier(S2,SD |ML]) 
T1='RB' extract_subject_np([T2|TL],[S2|SL],ML), ! 

extract_subject_np([T1,T2|TL],[S1,S2|SL],[relationship(SI,S2)]) 
(nountag(Tl); T1='CD'), T2='IN',!, 
extract_subject_np(TL,SL,ML), !. 

extract_subject_np([T1|TL], [SI|SL],ML):- 
extract_subject_np(TL,SL,ML), !. 

/* extract_object_np */ 
extract_object_np([T1|TL],[S1|SL],[determiner(noun,SI)|ML]) :- 

adjtag(Tl), T1='DT',!, extract_object_np(TL,SL,ML) 
extract_object_np([T1|TL],[S1|SL],[modifier(noun,SI)|ML]) :- 

adjtag(Tl), extract_object_np(TL,SL,ML), 

extract_object_np([T1,T2|TL],[S1,S2|SL],[modifier(noun,SI)|ML]) 
nountag(Tl), nountag(T2), !, 

extract_object_np([T2|TL],[S2|SL],ML), !. 
extract_object_np([T],[S],[object(S)]) :- nountag(T), !. 
extract_object_np([T],[S],[object(S)]) :- T='VBG',!. 
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extract_object_np([T],[S],[object(S)]) :- T='WDT\!. 
extract_object_np([T],[S],[object(S)]) :- spPrn(S),!. 
extract_object_np([T1,T2|TL],[S1,S2|SL],[modifier(S2,SI)|ML]) :- 

T1='RB', extract_object_np([T2|TL],[S2|SL],ML), !. 
extract_object_np([T1,T2[TL],[S1,S2|SL],[object(verb,SI)]) :- 

nountag(Tl), (T2='IN'; T2='VBG'; T2='VBN'), 
!,extract_object_np(TL,SL,ML), !. 

extract_object_np([T1|TL],[S1|SL],ML) :- extract_object_np(TL,SL,ML) 

/* process_modal_group */ 
% This routine assumes only a modal grouping in SVG, TVG 
process_modal_group(SVG, TVG, Modal, Verb) :- 

delimit_list(TVG, SVG, '<', ModalTags, ModalSent),!, 
append(Tl,['MD'|T2],TVG), length(T1,N1),!, 
append(SI,[Modal|S2],SVG), length(SI,Nl),!, 
polpreparse_modverb(ModalSent, ModalTags, Modal, List,_,_), 
Verb = [modal(Modal)|List] ,!. 

/* process_verb_group*/ 
% This routine assumes only a verb grouping in SVG, TVG 

process_verb_group(SVG, TVG, Verb, ML) :- 
delimit_list(TVG, SVG, '<', VerbTags, VerbSent),!, 
append(Tl,[X|T2],TVG), verbtag(X), length(Tl,Nl),!, 
append(SI,[Verb|S2],SVG), length(SI,Nl),!, 

parse_verb(VerbSent, VerbTags, Verb, ML),!. 

/* This routine identifies the verb, modal and any modifiers in 
a verb group. 

WRITTEN:  PROFESSOR ROWE 
*/ 
polpreparse_modverb([Adverb|S],['RB'|Tags],Modal, 

[modifier(Modal,Adverb)|ML],SB,TB) :- 
!,polpreparse_modverb(S,Tags,Modal,ML,SB,TB). 

polpreparse_modverb([Verb,Adverb|S],[Verbtag,'RB'|Tags],Modal, 
[modifier(Modal,Adverb)|ML],SB,TB) :- 

verbtag(Verbtag), \+(first(Tags,Nexttag), 
verbtag(Nexttag)) , !, 
polpreparse_modverb([Verb|S],[Verbtag|Tags],Modal,ML,SB,TB. 

polpreparse_modverb([Noun|S],[NountagjTags],Modal,[subject(Modal,Noun)| 
ML],SB,TB):- 
nountag(Nountag), !, polpreparse_modverb(S,Tags,Modal,ML,SB,TB). 

polpreparse_modverb([Beform|S],[Verbtag|Tags],Modal, 
[passive(Modal,Beform)|ML],SB,TB):- 

verbtag(Verbtag), beform(Beform), \+first(Tags,'CC'), 
member(Verbtag2,Tags), verbtag(Verbtag2), !, 
polpreparse_modverb(S,Tags,Modal,ML,SB,TB). 

polpreparse_modverb([Haveform|S],[Verbtag|Tags],Modal, 
[passive(Modal,Haveform)|ML],SB,TB):- 

verbtag(Verbtag), haveform(Beform), \+ first(Tags,'CC'), 
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member(Verbtag2,Tags), verbtag(Verbtag2), !, 
polpreparse_modverb(S,Tags,Modal,ML,SB,TB). 

polpreparse_modverb([Verbl,Conj,Verb2|S],[Verbtag,'CC',Verbtag|Tags], 
Modal,[verb(Modal,Verbl2)],S,Tags) :- 

verbtag(Verbtag), name(Verbl,AVI), name(Verb2,AV2), 
name('_and_',AVO),append(AVI,AVO,AV10), 
append(AVI0,AV2,AV12), name(Verbl2,AV12), !. 

polpreparse_modverb([Verb|S],[Verbtag|Tags],Modal,[verb(Modal,Verb)],S, 
Tags) :- 

verbtag(Verbtag), !. 
polpreparse_modverb([_|S],[PS|Tags],Modal,ML,SB,TB) :- 

polpreparse_modverb(S,Tags,Modal,ML,SB,TB). 

/*Same routine as above but no modal in verb group*/ 

parse_verb([Adverb|S],['RB'|Tags],Verb,[modifier(Verb,Adverb)|ML):-  ! 
parse_verb(S,Tags,Verb,ML). 

parse_verb([Vb,Adverb|S],[Verbtag,'RB'|Tags],Verb, 
[modifier(Verb,Adverb)|ML]) :- 

verbtag(Verbtag), \+(first(Tags,Nexttag), 
verbtag(Nexttag)) , !, 
parse_verb([Vb|S] , [Verbtag|Tags],Verb,ML) . 

parse_verb([Noun|S],[Nountag|Tags],Verb, 
[subject(Verb,Noun)|ML]):- 

nountag(Nountag), !, parse_verb(S,Tags,Verb,ML). 
parse_verb([Beform|S],[Verbtag|Tags],Verb, 

[passive(Verb,Beform)|ML]):- 
verbtag(Verbtag), beform(Beform), \+first(Tags,'CC') 

member(Verbtag2,Tags), verbtag(Verbtag2), !, 
parse_verb(S,Tags,Verb,ML). 

parse_verb([Haveform|S],[Verbtag|Tags],Verb, 
[passive(Verb,Haveform)|MLJ):- 

verbtag(Verbtag), haveform(Beform), \+ first(Tags,'CC'), 
member(Verbtag2,Tags), verbtag(Verbtag2), !, 
parse_verb(S,Tags,Verb,ML). 

parse_verb([Verbl,Conj,Verb2|S],[Verbtag,'CC,Verbtag|Tags],Verb, 
[verb(Verbl2,Verbl2)]) :- 
verbtag(Verbtag), name(Verbl,AVI), name(Verb2,AV2), 
name('_and_',AVO),append(AVI,AVO,AVI0), 
append(AVI0,AV2,AVI2), name(Verbl2,AVI2) 

parse_verb([Vb|S],[Verbtag|Tags],Verb,[verb(Verb,Vb)]) 
verbtag(Verbtag), !. 

parse_verb([_|S],[PS|Tags],Verb,ML) :- 
parse_verb(S,Tags,Verb,ML). 

i 

%FACTS 

verbtag('VB'). 
verbtag('VBD'). 
verbtag('VBG'). 
verbtag('VBN'). 
verbtag('VBP'). 
verbtag('VBZ'). 

72 



nountag( ' NN' ) . 
nountag('NNS') 
nountag('NNP') 
nountag('NNP') 
nountag('NNPS' 
nountag('PRP') 
nountag ( ' FW ) . 
nountag('WP'). 

adj tag('JJ'). 
adj tag('JJR'). 
adj tag('JJS'). 
adjtag('CD'). 
adj tag('DT') . 
adj tag('PDT') . 
adjtag('POS'). 
adjtagt'PRP$'). 
adjtag('WP$'). 
adj tag('RB') . 
adjtagt'VBG'). 

speist'WDT'). 
toclst'TO'). 
cls('IN')- 
cist'WP'). 
eist'WRB'). 
cls('WP$'). 

beformt'is'). 
beformt'are'). 
beformt'was'). 
beformt'were'). 
beformt'be'). 
beformt'being'). 
beformt'been'). 
haveform('has'). 
haveformt'have'). 
haveform('had'). 
haveformt'having'). 

clausewordt'who'). 
clauseword('that'). 
clausewordt'which'). 
clausewordt'whom'). 
clausewordt'whose'). 

coorconj('and'). 
coorconj('but'). 
coorconj('nor'). 
coorconj('or'). 
coorconj('for'). 
coorconj('yet'). 

conjadvt'also'). 
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conjadv 
conjadv 
conjadv 
conjadv 
conjadv 
conjadv 
conjadv 
conjadv 
conjadv 
conjadv 
conjadv 

'besides'). 
'consequently1) 
'furthermore') . 
'however') . 
'moreover'). 
'nevertheless') 
'otherwise') . 
'then'). 
1 therefore'). 
'thus'). 
'still' ) . 

%May be used as adj 
%parts of speech 

or pronouns, as well as other 

spPrn (a 11) - 
spPrn (another). 
spPrn (any). 
spPrn (both). 
spPrn (each). 
spPrn (either). 
spPrn (few). 
spPrn (many). 
spPrn more). 
spPrn (neither). 
spPrn (one). 
spPrn (other). 
spPrn several). 
spPrn some). 
spPrn that). 
spPrn these). 
spPrn this). 
spPrn those). 
spPrn what). 
spPrn which). 

punc ( 
punc ( 
punc ( 
punc ( 
punc ( 
punc ( 
punc ( 
punc ( < 
punc ( > 
punc(' ) ') • 
punc ( / 
punc(' II 

/* Utility functions 
Written by: Professor Rowe*/ 

%Combines list contents into one item with underscores between 
%the original items 
make_word_from_list( [S], S) : - !. 
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make_word_from_list([SI|SL],S) :- 
make_word_from_list(SL,S2), 
name(S2,AS2), name(SI, AS1), 
append(AS1,[95|AS2], AS12), 
name(S, AS12) , !. 

butlast(L,NL) :- append(NL,[_],L), !. 

first([X|_],X)- 

last([X],X) :- !. 
last([_|L],X) :-last(L,X). 

delete(X, [],[]) :- !. 
delete(X,[X|L],NL) :- !, delete(X,L,NL), !. 
delete(X,[Y|L],[Y|NL]) :- delete(X,L,NL), !. 

reversa(L,RL) :- reversa2(L,[],RL), !. 
reversa2( [],L,L). 
reversa2([X|L],L2,RL) :- reversa2(L,[X|L2],RL). 

%Written by Professor Rowe and modified by Ong 
% The following routines are used to clean up lists from 
%extract_subject_np, extract_object_np, and the equivalent 
%routines for the phrases.  They relate the modifiers to the 
%modified noun, and places the head noun at the list head 

substitute_headnoun_subject(ML,Verb,NML) :- 
member(subject(Subject),ML), 
substitute_headnoun2(ML,Subject,ML3), NML = 
[subject(Verb,Subject)|ML3], !. 

substitute_headnoun_subject(_,_,[]):-!. 

substitute_headnoun2([],_,[]). 
substitute_headnoun2([modifier(noun,M)|ML],Subject,[modifier(Subject,M) 

|NML]):- 
!, substitute_headnoun2(ML,Subject,NML). 

substitute_headnoun2([determiner(noun,M)|ML],Subject, 
[determiner(Subject,M)|NML]):- !, 

substitute_headnoun2(ML,Subject,NML). 
substitute_headnoun2([M1|ML],Subject,[Ml|NML]):- 

!, substitute_headnoun2(ML,Subject,NML). 

sub_hd_subj(ML,Verb,NML) :- 
member!subj(Subject),ML), 
sub_hd_subj2(ML,Subject,ML3), NML= [subj(Verb,Subject)|ML3] 

i 

sub_hd_subj(  []):-!. 
sub_hd_subj2([],_,[]). 
sub_hd_subj2([modifier(noun,M)|ML],Subject,[modifier(Subject,M)|NML]) 

!, sub_hd_subj2(ML,Subject,NML). 
sub_hd_subj2([determiner(noun,M)|ML],Subject, 

[determiner(Subject,M)|NML]):- 
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!, sub_hd_subj2(ML,Subject,NML). 
sub_hd_subj2([M1|ML],Subject,[Ml|NML]) 

sub_hd_subj2(ML,Subject,NML). i 

subs_headnoun_subj ect(ML1,NML) :- 
member(subject(Subject),MLl) , delete(subject(Subject),ML1,ML), 
subs_headnoun2(ML,Subject,ML3), NML = [subject(Subject)|ML3], 
i 

subs_headnoun_subject(_,_,[]):-!. 
subs_headnoun2([],_,[]). 
subs_headnoun2([modifier(noun,M)|ML],Subject,[modifier(Subject,M)|NML] 

!, subs_headnoun2(ML,Subj ect,NML). 
subs_headnoun2([determiner(noun,M)|ML]»Subject, 

[determiner(Subject,M)|NML]):- 
!, subs_headnoun2(ML,Subj ect,NML). 

subs_headnoun2([Ml|ML],Subj ect,[Ml|NML]):- 
!, subs_headnoun2(ML,Subject,NML). 

subs_headnoun_object(MLl,NML) :- 
member(object(Object),ML1) ,delete(object(Object),ML1,ML), 
subs_headnoun2(ML,Object,ML3), NML = [object(Object)|ML3] 

subs_headnoun_object(_,_,[]):-!. 

subs_headnoun2([],_,[])- 
subs_headnoun2([modifier(noun,M)|ML],Object, 

[modifier(Object,M)|NML]):- 
!, subs_headnoun2(ML,Obj ect,NML) . 

subs_headnoun2([determiner(noun,M)|ML],Object, 
[determiner(Object,M)|NML]):- 

!, subs_headnoun2(ML,Object,NML). 
subs_headnoun2([M1|ML],Object,[Ml|NML]):- !, 

subs_headnoun2(ML,Object,NML). 

substitute_headnoun_object(ML,Verb,NML) :- 
member(object(Object),ML), 
sub_obj2(ML,Object,ML3), NML= [object(Verb,Object)|ML3], ! 

substitute_headnoun_object(_,_,[]):- !- 

sub_obj2([],_,[]). 
sub_obj2([modifier(noun,M)|ML],Object,[modifier(Object,M)|NML]):- 

!, sub_obj2(ML,0bject,NML). 
sub_obj2([determiner(noun,M)|ML]»Object, 

[determiner(Object,M)|NML]):- 
!, sub_obj2(ML,Object,NML). 

sub_obj2([Ml|ML],Object,[Ml|NML]):- 
!, sub_obj2(ML,Object,NML). 

sub_hd_obj(ML,Verb,NML) :- 
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member(obj(Object),ML), 
sub2(ML,Object,ML3), NML = [obj(Verb,Object)|ML3], !. 

sub_hd_obj( []) :- ! - 
sub2([],_,[]). 
sub2([modifier(noun,M) |ML],Object, [modifier(Object,M) |NML]) 

:- !, sub2(ML,Object,NML). 
sub2([determiner(noun,M)|ML],Object,[determiner(Object,M)|NML]) 

:- !, sub2(ML,Object,NML). 
sub2([Ml|ML],Object,[Ml|NML]) 

:- !, sub2(ML,Object,NML). 
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APPENDIX B: PENN TREEBANK TAG-SET (CONDENSED) 
FROM: [LTG3] 

POS Tag Description                                i Example 
— 

CC coordinating conjunction            j and 

CD cardinal number                         | 1, third 
—— 

DT determiner                                 j the 

EX existential there there is 

FW foreign word d'hoevre 

IN 
preposition/subordinating 
conjunction 

in, of, like 

JJ adjective green 
  

JJR adjective, comparative greener 

!          JJS adjective, superlative greenest 

1           LS 
i 

list marker 1)    • 

MD modal could, will 

1           NN noun, singular or mass table 
  

|           NNS noun plural tables 

|           NNP proper noun, singular John 
  

1           NNPS proper noun, plural Vikings 

;       PDT predeterminer both the boys 

j           POS possessive ending friend's 

i           PRP personal pronoun I, he, it 

PRP$ possessive pronoun my, his 

RB adverb 
however, usually, 
naturally, here, good 

RBR adverb, comparative better 

]           RBS adverb, superlative best 

j           RP particle give up 

TO to to go, to him 

!           UH interjection uhhuhhuhh 

|           VB verb, base form take 

|           VBD verb, past tense i           took 

j           VBG verb, gerund/present participle i           taking 

j           VBN verb, past participle j           taken 
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IPOS Tag Description Example 

1           VBP verb, sing, present, non-3 d take 

j           VBZ verb, 3rd person sing, present     j takes 

|           WDT wh-determiner                           ] which 

!           WP wh-pronoun                                j who, what 

WP$ possessive wh-pronoun              j whose 

WRB 
i 

wh-abverb                                   | where, when 

80 



APPENDIX C: SAMPLE OUTPUT FROM THE EXTRACTOR 

This section provides two more examples of correct output obtained from the 

prototype extractor component that most accurately reflects the structure of the input text. 

1. Sentence with multiple subjects and objects and modal group. 

a. INPUT 

Analysis and recommendations concerning lessons learned which would reveal 
sensitive military operations, exercises or vulnerabilities. 

b. TAGGER OUTPUT 
[ Analysis_NNP ] and_CC [ recommendations_NNS ] concerning_VBG 
[ lessons_NNS ] < learned_VBD >   [ which_WDT ] 
< would_MD reveal_VB >   [ sensitive_JJ military_JJ operations_NNS ],_, 

[ exercises_NNS ] or_CC [ vulnerabilities_NNS ] ._. 

c. MEANING LIST 
[main_subject_Group([subject(analysis), conj(and), subject(recommendations), 
subj(learned,lessons), subj (lessons), verb(learned,learned), obj (learned,which), 
obj (which)]), 
main_object_Group([object(operations), modifier(operations,sensitive), 
modifier(operations,military), object(exercises), conj([or]), 
obj ect( vulnerabilities)]), 
main_verb_Group([modal(would),verb(would,reveal)])] 

d. COMMENTS 
The extractor successfully identified each subject of the main verb as well 

as each object and the appropriate modifier. The facts with predicates "subj" and 
"obj" are part of a phrase or clause. The participial term "concerning" is omitted 
however, but the main terms are identified. 

2. Sentence with modal and phrases. 
a. INPUT 

Information of questionable value to the general public must be evaluated before 
worldwide dissemination to assess the risk to the DoD. 

b. TAGGER OUTPUT 
[ Information_NN  ]   ofJN   [ questionable^ value_NN   ]   to_TO   [ the_DT 
general_JJ public_NN ]   < must_MD be_VB evaluated_VBN > before_IN 
[ worldwide_JJ dissemination_NN ]   < to_TO assess_VB > 
[ the_DT risk_NN ] to_TO [ the_DT DoD_NNP ]._. 
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c. OUTPUT 
[main_subject_Group([subject(information),relationship(of)5subj(value),modifier( 
value,questionable),relationship(to),subj(public),determiner(public,the), 
modifier(public,general)]), 
main_object_Group([relationship(before),obj(dissemination),modifier(disseminati 
on,worldwide),obj(risk),obj(to_assess),determiner(risk,the),relationship(to), 
obj (dod),determiner(dod,the)]), 
main_verb_Group([modal(must),passive(must,be),verb(must,evaluated)])] 

d. COMMENTS 
The extractor correctly identified the main subject of the statement, the 

main verb grouping, and the objects that were part of a phrase. Notice that the 
infinitive "to assess" was also identified. Phrase heads were presented as 
relationship predicate facts. Notice that the main subject is at the head of the list. 
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