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Abstract 

A novel algorithm to accurately simulate realistic plasmas with constituent species at 
multiple temperatures using an extended MHD model was developed. The algorithm was 
based on a Roe-type approximate Riemann solver. The algorithm was implemented in a code 
to model the time-dependent, three-dimensional, arbitrary-geometry MHD model which in- 
cludes viscous and resistive effects. The code was extended to include thermal diffusion for 
the constituent temperatures (neutrals, ions, and electrons). A time-dependent ionization 
model was added which self-consistently calculates the ionization fraction of the fluid. En- 
ergy loss mechanisms were added for the constituent fluid components. The algorithm was 
implemented on parallel supercomputers to allow the detailed modeling of realistic plasmas 
in complex three-dimensional geometries. 
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1 Executive Summary 

The primary objective of this project is to develop a novel algorithm to accurately simulate 
realistic plasmas with constituent species at multiple temperatures using an extended MHD 
model. A viable time-dependent, three-dimensional MHD code will provide a valuable tool 
for the design and testing of plasma related technologies that are important to the Air Force 
and industry, such as portable pulsed power, high power microwave devices, hypersonic 
drag reduction, advanced plasma thrusters for space propulsion, nuclear weapons effects 
simulations, radiation production for counter proliferation, and fusion for power generation. 
Implementing the algorithm on parallel supercomputers will allow the detailed modeling of 
realistic plasmas in complex three-dimensional geometries. 

Current MHD codes are limited to simulations of short time scale phenomena because of 
explicit time step stability limitations and equation decoupling. We propose developing an 
implicit algorithm with the capability to simulate physics of any length time scale because 
the time step is chosen by the user to match the physics of interest. This algorithm has the 
additional advantage that the equations are solved in a fully coupled manner. The plasma 
is assumed to be composed of a neutral fluid, ion fluid, and electron fluid. Each fluid has an 
associated temperature and can exchange energy to the other fluids by ionization and other 
collisional processes. The plasma is allowed to have a variable degree of ionization, from a 
fully ionized plasma to a completely neutral gas. The algorithm will be implemented using 
arbitrary finite volumes so it can model realistic three-dimensional geometries. 

To speed development of this effort an existing MHD code was used. WARP3 (Wash- 
ington Approximate Riemann Plasma code for 3-d domains) is a time-dependent, three- 
dimensional, arbitrary-geometry MHD algorithm with viscous and resistive effects. The 
code was extended to include thermal diffusion for the constituent temperatures (neutrals, 
ions, and electrons). A time-dependent ionization model was added which self-consistently 
calculates the ionization fraction of the fluid. Energy loss mechanisms were added for the 
constituent fluid components. These features were benchmarked against analytical results. 
Future plans include the addition of other energy loss mechanisms and the ability to transfer 
energy between constituent fluid components. The new physics algorithms will then be in- 
corporated into an implicit formulation and solved using a domain decomposition technique 
for parallel computation. 

The implicit formulation has been developed for the resistive and viscous MHD model. 
The culmination of this research effort produced the Ph. D. dissertation of B. Udrea.[l] 
The algorithm has been cast using finite volumes which significantly reduces transverse flux 
errors. An important result of this work is the development of a 2-level nested iteration 
technique which accurately solves the MHD equations with typical Courant numbers of 100. 
The residual of the error is driven to machine accuracy for all cases investigated. 

As a result of this project several professional collaborations now exist between the 
Department of Aeronautics and Astronautics at the University of Washington and the Air 
Force Research Laboratory, Lawrence Livermore National Laboratory, the University of 
Michigan, the University of Colorado, Stanford University, and other departments at the 
University of Washington. The work from this project has been presented at international 
conferences and published in a refereed journal. 

2 Project Description 

Plasmas are essential to many technologies that are important to the Air Force, some of 
which have dual-use potential. These applications include portable pulsed power systems, 
high power microwave devices, drag reduction for hypersonic vehicles, advanced plasma 
thrusters for space propulsion, nuclear weapons effects simulations, radiation production 
for counter proliferation, and fusion for power generation. Several of these applications are 



specifically mentioned in the New World Vistas Report from the USAF Scientific Advisory 
Board. [2] In general, plasmas fall into a density regime where they exhibit both collective 
(fluid) behavior and individual (particle) behavior. Many plasmas of interest can be modeled 
by treating the plasma like a conducting fluid and assigning macroscopic parameters that 
accurately describe its particle-like interactions. Magnetohydrodynamic models the plasma 
in this manner. 

2.1    Research Objectives 

The objectives of the project are to: 

• Develop an implicit, conservative multi-temperature algorithm for three-dimensional 
non-ideal MHD simulations for time-dependent and steady state variably ionized plas- 
mas; 

• Validate the code with analytical and experimental data; and 

• Apply the code to analyze plasma related topics at the Air Force Research Laboratories 
[the magnetic flux compression generator (MCG) experiments and the liner implosion 
system (WFX)[3] at Kirtland AFB, the plasma thruster work at Edwards AFB, and the 
hypersonic drag reduction research at Wright-Patterson AFB] and at the University of 
Washington [Z-Pinch experiment (ZaP) [4] and Helicity Injected Tokamak (HIT) [5]]. 

2.2    Technical Description 

The three-dimensional, extended MHD plasma model is a set of mixed hyperbolic and 
parabolic equations. The Navier-Stokes equations are also of this type. This project applies 
some advances that have been made in implicit algorithms for the Navier-Stokes equations 
to the MHD equations. These implicit algorithms solve the equation set in a fully cou- 
pled manner, which generates better accuracy than the current methods used for MHD 
simulations. 

When expressed in conservative, non-dimensional form, the MHD model is described by 
the following equation set. 

dt 

p 
pv 
B 
e 

+ V- 

pv 
pvv - /iBB + (p + /iB • B/2) I 
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The variables are density (p), velocity (v), magnetic induction (B), ionization fraction (/»), 
pressure (p), and energy density (e). The energy density is 

P 
7-1 

v   v     B   B 
(2) 

where 7 = cp/cv is the ratio of the specific heats. The pressure is the total material pressure, 
which is the sum of the partial pressures from the neutral, ion, and electron fluids. 

p = nnkTn + riikTi + nekTe (3) 

where k is the Boltzmann constant, nn is the neutral number density, and Tn is the neu- 
tral temperature. The remaining variables are the ion and electron number densities and 



temperatures. 

p=(nn+ ni)Mi (4) 

and 

ne = rii. (5) 

The number densities are determined from a time-dependent ionization model 

—^ = ne [<■ av >ion nn- < aV >recomb Tli] , (6) 
at 

where < av >ion is the ionization rate parameter and < av >recomb is the recombination 
rate parameter.[6] The multiple temperatures evolve independently based on the appropriate 
components of the energy equation and energy transfer between species. 

The right hand side of eqn(l) contains the non-ideal effects. These effects include vis- 
cosity, resistivity, Hall currents, diamagnetic currents, thermal conduction, and radiation 
cooling. The non-ideal terms are defined by 
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Pcond = 2P^MV ■ =k ■ (VT" + VTi + VTe) = Pcond» + Pc0ndi + Pc0nd< (13) 

Prad = -CradZeffipfifTl'2 (14) 

Mi is the ion mass, wcere is the Hall parameter, CTad is the Bremsstrahlung radiation 
constant, and Zeg is the effective ionization level due to plasma impurities. 

The non-dimensional tensors are the stress tensor (f), the electrical resistivity (fj), and 

the thermal conductivity (k), and I is the identity matrix. The non-dimensional numbers 
are defined as follows: 

Alfven Number : Al = VA/V 
Reynolds Number : Re — LV/u 
Magnetic Reynolds Number : Rm = ß0LV/ 
Peclet Number : Pe = LV/K 



The characteristic variables are length (L), velocity (V), Alfven speed (VA = B/y/p^p), 
kinematic viscosity (y), electrical resistivity (77), and thermal diffusivity (K = k/pcp). \i0 is 
the permeability of free space (47r x 10~7). 

For convenience, the MHD equation set [eqn(l)] is rewritten in the following compact 

form 

dQ 
dt 

+ V • Th = QNon-ideal (16) 

where Q is the vector of conservative variables, T n is the tensor of hyperbolic fluxes, and 
QNon-ideal contains the non-ideal (mostly parabolic) terms. The forms of these vectors and 
tensors can be seen from the previous equations. The hyperbolic fluxes are associated with 
wave-like motion, and the parabolic fluxes are associated with diffusion-like motion. 

2.3    Multiple Temperature Evolution 

The temperatures of the multiple species (neutrals, ions, electrons) evolve independently 
based on the appropriate components of the energy equation and energy transfer between 
species. The temperatures will then be consistent with energy conservation. 

The temperature rise in each specie will depend on the heating mechanism and the 
density fraction of the specie. We define the density fractions as 

h = 
Tli 

nn + rii 
(17) 

fn = 

and 

nn + rii 

fe = U- 

l-fi, (18) 

(19) 

For multiply charged species, the last definition would be modified to fe = Zfc. Viscous 
drag heats the neutral gas and the ion fluid, but does not affect the electrons. Therefore, 
the energy rise due to viscous effects is attributed to the neutral and ion temperatures. 

dpn 

dt 
= (7 - l)fnPv (20) 

dpi 
dt 

= (7 - i)fiPw 

9pe 

dt 

Resistivity directly heats only the electrons. 

= (7 - l)Pres 

Radiation is emitted by the electrons as they cool. 

= (7 - VPrad 
dPe 

dt 

(21) 

(22) 

(23) 

Each species has its own thermal conduction component as is evident from eqn(13). 

= (7 - l)Pcondn (24) 
dpn 

dt cond 



dpi 

dt = (7 - l)Pc ondi (25) 

dpe 
at 

= (7 - l)PCondc (26) 
cond 

The remaining total material pressure rise is due to adiabatic compression which affects all 
species in proportion to their densities. 

Energy may also transfer between species due to collisions. However, total energy is 
conserved and the total material pressure will not be affected. The interspecies energy 
transfer is modeled to preserve the total material pressure. 

P = Pn + Pi + Pe = Pn + Pi + Pe (27) 

2.4    Conservative Algorithm 

Because of the natural differences between hyperbolic and parabolic equations, the methods 
for solving them are very different. Since the MHD equations are of mixed type the hyper- 
bolic and parabolic terms must be handled differently. The hyperbolic fluxes are differenced 
by applying an implicit, approximate Riemann algorithm that properly accounts for their 
wave-like behavior. The parabolic terms are discretized by applying explicit central differ- 
encing. The remaining non-ideal terms which correspond to the Hall effect are solved using 
a semi-implicit method. [7] 

The design of the algorithm is driven by the conservative numerical techniques that 
must be used for the hyperbolic terms. Therefore, we begin by considering the ideal MHD 
equations, which are obtained from eqn(16) by setting all the non-ideal terms (Q N on-ideal) 
to zero. Note that ideal MHD refers to an ideal plasma — one that is inviscid and non- 
resistive and neglects thermal conduction and finite Larmor radius (FLR) effects. 

The ideal MHD equations are 

at at 

where A is the Jacobian of the hyperbolic flux tensor. 

A = 

Here, Q is the vector of conserved variables. 

dfh 

dQ 

Q=(p,pvx,pvy,pvz,Bx,By,Bz,e)   . 

(28) 

(29) 

(30) 

This is a set of hyperbolic equations and thus Ax has a complete set of real eigenvalues 
given by 

A = {vx,0,vx ± Vfast,vx ± Vsiow,vx ± VAx)   , (31) 

where Vfast and Vsiow are the fast and slow magnetosonic speeds, and VAX is the Alfven 
speed based on the x component of the magnetic field. These can be expressed as 

V2     = - 'fast n cl + Vl + ^cl + Vlf-AclV^ (32) 

V low 
[+Vl-s]{cl + Vl)2-^sVlx (33) 



VL = %-. (34) 

Here, cs is the ion sound speed, which for a perfect gas is 

2 - ^ (35) 

We make special note of the zero eigenvalue, A2 in this case. The zero eigenvalue only 
appears in multiple dimensions and is caused by the perpendicular nature of the j x B force. 
Powell et al.,[8] recently solved this zero eigenvalue problem by introducing a source term 
that is proportional the divergence of the magnetic field. The eigenvalue becomes finite, 
A2 = vx in this case. We have implemented this modification and it is discussed in a later 
section. 

For hyperbolic equations information propagates along characteristics which travel at 
wave speeds given by the eigenvalues. Most modern numerical techniques for solving hy- 
perbolic equations are based upon the idea of splitting the fluxes into components due to 
left- and right-running waves. Then each part of the flux can be differenced in an upwind 
manner, which greatly reduces numerical oscillations and stabilizes the solutions. 

It is well known that if a hyperbolic equation is solved with an explicit scheme, then the 
allowable time step to maintain numerical stability is given by the CFL (Courant-Friedrichs- 
Lewy) condition, which in the case of the ID MHD equations is 

At<,     _f*      ,■ (36) 
\vx + Vfaat\ 

For the high magnetic fields and low densities common in many plasma experiments, the 
fast magnetosonic speed is quite high, and thus the time step is prohibitively small. We are 
often interested in only modeling the physics that occurs slower than Alfven time scales. 
For example, it can be shown that resistive tearing modes, which are important in studying 
fusion plasmas, evolve on a time scale that is given by[9] 

Ttearing OC T^T^5 = (Luf/5 TA. (37) 

TA is the Alfven time, TV is the resistive diffusion time, and Lu is the Lundquist number, 
which is given by 

Lu=^- = RmAl. (38) 
TA 

If Lu is 106, which is typical for laboratory plasmas in fusion applications, the resistive 
tearing time is approximately 4000 times larger than the Alfven time. By treating the 
hyperbolic fluxes implicitly in time, the stability restriction on the time step is removed, 
and the solution can be advanced at the larger resistive tearing time step. This is our 
motivation for proposing an implicit scheme. 

2.5    Implicit Formulation 

For clarity, the algorithm for the two-dimensional ideal MHD equations is presented. The 
extension to three dimensions is straight forward. The two-dimensional equation is 

Eqn(39) was discretized using first order Euler time differencing to get 



where R is 

Rij ~ Fi+l/2,j ~ Fi-l/2,j + Gi,j + l/2 ~ Gij-1/2- (41) 

Note that in this equation and all that follow the grid metric terms (cell areas and volumes) 
were omitted for clarity. Linearizing R as follows: 

K ,71+1 DTI tin 3 + (55) J«S+1 - «&) 
where dR/dQ has been defined as the differenced flux Jacobians. 

dR 

dQ 

dF 

dQ i + l/2,j 

dF 

dQ 
+ ... 

(42) 

(43) 
»-1/2.J 

where dF/dQ is the flux Jacobians of the x flux. The flux Jacobians can be calculated 
analytically with the assumption that the solution values do not change rapidly, or the flux 
Jacobians can be calculated numerically. Analytical calculations were used previouslyjlO] 
and produced adequate results. Numerical calculation was investigated for the current 
project. Two methods for numerical calculation were investigated. First, a limit formulation 
similar to the definition of a differential was used. 

dF 

dQ 

F(Q + €)- F(Q) 
+ 0(6) (44) 

for small e which gave first order accuracy in e.   The flux Jacobians were also calculated 
using complex numbers. The flux Jacobians were expanded about Q in a Taylor series. 

F{Q + ih) = F(Q) + ih 
dF h2 d2F      h3 d3F 

'dQ      2 dQ2       6 dQ3 

The expression was rearranged to solve for the flux Jacobian. 

dF 

dQ 

F(Q + ih) 
+ 0(h2) 

(45) 

(46) 

which gave second order accuracy in h. Additionally, the complex formulation required 
only a single evaluation of the flux Jacobian (though using complex math) compared to two 
evaluations for the limit formulation. 

Substituting the expression for R"^1 back into eqn(40) and rearranging, gave 

_!_     (dR\n 

•AQS -R"j- 

Here AQ has been defined as 

AQn = Q7+1 - Q% 

(47) 

(48) 

The left hand side of the eqn(47) is an implicit operator operating on AQ. It is a large 
banded block matrix. In three dimensions, it is an (Imax x Jmax x Kmax) by (Imax x Jmax x 

Kmax) matrix, where Imax is the number of cells in the x direction, etc. It is quite costly to 
invert a matrix of this size directly. For this project a more efficient iterative method was 
chosen. When solved iteratively , eqn(47) can lose time accuracy. To recover time accuracy 
the time derivative of Q was added as a source term to the right hand side of the equation. 
The modified equation became 

dQ 

dr 

n + l 
_       pTi+1        C: n+l (49) 



where 

sF^äS^-'QS + QS-1)«!?- (50) 

The r in eqn(49) is an iteration variable,called pseudo time. At each physical time step, 
eqn(49) is solved iteratively until the left hand side vanishes. When the solution converges, 
our original equation 

TiT = -R <51> at 

is solved. This technique is known as dual time-stepping. [11] Note that in eqn(50) a more 
accurate time derivative can be used at the expense of the additional memory needed to 
store the Q vectors from previous time steps. 

One advantage of the strategy outlined above is that the implicit operator and the right 
hand side in eqn(47) are decoupled. The structure of the matrix no longer depends on the 
details of the discretization of the right hand side fluxes. The iteration equation [eqn(47)] 

31 fdRY 
+ (|§)..   A^ = -^(3Q^-4Qrj+QI}-1)-^ (52) 

3Ar + 2Ai     \dQ ) i- 

has the standard form 

Ax = b. (53) 

Previously the LU-SGS method (lower-upper symmetric Gauss-Seidel)[12] was used to 
invert the implicit operator A. [13, 10] The LU-SGS method required a modification of the 
implicit operator through an approximate factorization procedure which reduced the accu- 
racy of the operator and led to poor convergence. 

The current project used a symmetric Gauss-Seidel method which does not rely on 
approximate factorization. The SGS method was used to iteratively invert the implicit 
operator and the approximate Riemann solver that is Used to form the right hand side 
fluxes. 

The implicit operator matrix was decomposed into lower, upper, and diagonal matrices 
and written as 

A = L + U + D (54) 

Each iteration of the symmetric Gauss-Seidel method performs two sweeps of the domain 
— a forward sweep followed by a backward sweep. 

(L + D)x(2i-1> + Ux<2'-2» = b (55) 

(U + D)x<2i> + Lx^2'-1) = b (56) 

where I — 1,2,3,... is the iteration index. 
For reasonably large values of Re and Rm (easily in the range of interest for most 

applications), the parabolic terms can be differenced explicitly without constraining the 
allowable time step. The right hand side of eqn(47) was modified by adding the central 
differenced parabolic terms. 



2.6    Approximate Riemann Solver 

The fluxes on the right hand side of eqn(47) were discretized using a Roe-type approximate 
Riemann solver. [14] In this method the overall solution was built upon the solutions to the 
Riemann problem defined by the discontinuous jump in the solution between each pair of 
cells. The numerical flux for a first-order accurate (in space) Roe-type solver was written 
in symmetric form as 

fc 

where r^ is the kth right eigenvector, A*, is the absolute value of the kth eigenvalue, and Ik 
is the kth left eigenvector. The values at the cell interface (i + 1/2) were obtained by either 
a simple average or, more accurately, a Roe-average of the neighboring cells. Determining a 
Roe-average on an arbitrary computational grid involved transforming the vector quantities 
to a coordinate system that is orthogonal to the local cell interface. Then the flux calculated 
as above will be normal to the cell interface which is the desired orientation for applying 
the divergence theorem in a finite volume method. 

These first order accurate upwind fluxes are used in the vicinity of sharp discontinuities 
in order to suppress oscillations in the solution. Globally second order accurate solutions 
were achieved by using a flux limiter that modifies the first order flux so that it uses second 
order central differencing in smooth portions of the flow. The minmod limiter was used.[15] 

Once the eigenvalues and eigenvectors were obtained and properly normalized to avoid 
singularities, it was relatively straight-forward to apply this scheme to the one-dimensional 
ideal MHD equations. [16, 17] Unlike for the Euler equations, the extension to more than 
one dimension was non-trivial. In more than one dimension, the Q vector must include Bx 

in addition to the other magnetic field components. (For the one-dimensional case Bx is 
constant by virtue of V • B = 0). Since the j x B force acts perpendicularly to the directions 
of j and B, the F flux vector has a zero term corresponding to Bx. Thus, the Jacobian 
matrix of F is singular and has a zero eigenvalue. A complete set of physically meaningful 
eigenvectors no longer exists. Physically, one would expect information to travel either at 
the fluid velocity or at the fluid velocity plus or minus the wave speeds. Simply dropping 
Bx from the equation set is not a viable option, because Bx needs to change in order to 
maintain V-B — 0. Powell et al.,[8] recently solved this problem by modifying the Jacobian 
in such a way as to change the zero eigenvalue to vx (keeping the others unchanged), and 
then adding in a source term that exactly canceled out the terms introduced by the modified 
Jacobian. 

The source term is 

Sdv 

P 
B 
v 

v   B 

V-B (58) 

It is proportional to the divergence of B and thus very small. 

2.7    Finite Volume Grid and Parallel Implementation 

Since the algorithm being developed will be used for real devices, it must be capable of 
modeling arbitrary, three-dimensional geometries. Therefore, multi-block, finite volume 
grids were used. A typical cell is shown in Figure 1. The computational domain is divided 
into blocks which are then spanned by body-fitting finite volume cells. See Figure 2 for a 
possible grid. 



Figure 1: Schematic of the arbitrary shaped three-dimensional finite volume cell used by the 

algorithm. 

Spheromak grid shown    |  ^y 
"carved" for clarity 

Top view of  spheromak grid 

Figure 2:  Schematic of the arbitrary shaped three-dimensional finite volume cell used by the 

algorithm. 
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As discussed in the previous section, the formulation of the approximate Riemann solver 
which we have developed generates hyperbolic fluxes oriented normal to the grid cell in- 
terfaces. Application of the divergence theorem is then a simple operation. The parabolic 
fluxes are also calculated to be normal to the grid cell interfaces. To accomplish this ori- 
entation, a set of nested control volumes were used and the appropriate vector operations 
within these volumes were applied. 

The block structure of the grid provided a natural domain decomposition for the parallel 
implementation. The integral form of a general conservation law was expressed as 

jldVQ+IdSF(Q) = I' dV S(Q), (59) 
n s n 

where fi is the domain and E is the boundary of Cl. Q is the vector of conserved variables, 
F{Q) is the flux of the conserved variables, and S(Q) is the vector of source terms. By 
splitting the domain H into p subdomains such that 

p 

n = |Jnl, (60) 
i=l 

eqn(59) was replaced with a set of p conservation equations applied on the subdomains fij. 

8_ 
dt 

fdVQ+idSF{Q)=fdVS(Q),    i = l,2,...,p (61) 

Each of these discretized equations is solved by a single processor using the boundary values 
copied from neighboring subdomains. 

To ensure a portable code a message passing system commonly available on parallel 
supercomputers and on workstation clusters was used. This system was the Message Pass- 
ing Interface (MPI) [18], which was adopted as a standard in May 1994 by industry and 
academia. Hardware and software vendors' implementation of MPI provides parallel pro- 
gram developers with a consistent set of subroutines callable from FORTRAN90 and C. In 
this project the basic point-to-point communications subroutines and global communica- 
tions subroutines were used. The point-to-point communication subroutines were used for 
the domain decomposition and boundary exchange while the global communication sub- 
routines were used for convergence checking. All message passing systems (PVM, MPL) 
support point-to-point and global communications subroutines so that by using only the 
basic set portability to systems not supporting MPI was simplified. 

3    Project Implementation and Results 

3.1    Finite Volume Improvements 

To improve the codes ability to handle highly distorted grids, finite volume grids were 
implemented. The finite volume implementation greatly reduced the anomalous momentum 
leakage into orthogonal directions when the grid was distorted. 

Figure 3 shows a shock tube test problem. The simulation was performed in three- 
dimensions, but should remain one-dimensional. The figure shows the three gas dynamic 
waves in the density plot. The transverse velocity should be zero. A finite amount of 
momentum leakage was generated by the grid metrics in the finite difference generalized 
coordinate formulation. 

The reduction of the anomalous momentum leakage into orthogonal directions can be 
seen in Figure 4.  The simulation was identical to that shown in Figure 3 except a finite 

11 



100 

P  50 

Figure 3: A three-dimensional simulation of a one-dimensional shock tube showing the density 
and transverse velocity. The three gas dynamic waves can be seen in the density plot. The 
transverse velocity should be zero. 
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Figure 4: A three-dimensional simulation of a one-dimensional shock tube showing the density 
and transverse velocity. The three gas dynamic waves can be seen in the density plot. The 
transverse velocity should be zero. 

volume implementation was used instead of the generalized coordinate formulation. Fig- 
ure 4 shows the same three gas dynamic waves in the density plot. With the finite volume 
implementation, the transverse velocity is zero to within machine accuracy. 

3.2 Implicit Formulation and Numerical Flux Jacobian Calcula- 
tions 
The LU-SGS method (lower-upper symmetric Gauss-Seidel)[12] was used previously to in- 
vert the implicit operator of eqn(47).[13, 10] The LU-SGS method required a modification 
of the implicit operator through an approximate factorization procedure which reduced the 
accuracy of the operator and led to poor convergence. The convergence history is shown 
in Figure 5 The explanation for the poor convergence was inaccurate approximation of 
the implicit operator. The inaccuracy developed from the combination of the approximate 
factorization and the approximate analytical calculation of the flux Jacobians. 

The standard formulation of eqn(52) allowed the use of standard iterative matrix in- 
version methods. In this project the symmetric Gauss-Seidel method was used. The con- 
vergence history is shown in Figure 6. n is the number of physical time iterations, m is 
the number of pseudo time subiterations, and sgs is the number of iterations of the SGS 
method. Unlike the LU-SGS method, there is no coupling between the SGS iterations and 
the pseudo time iterations. The values of the implicit operator A and the inhomogeneity 
vector b are updated between pseudo time iterations, but not between SGS iterations. 
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Figure 5: Convergence history using the LU-SGS method to invert the implicit operator, n is the 
number of physical time iterations, and m is the number of LU-SGS pseudo time subiterations. 
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Figure 6: Convergence history using the SGS method to invert the implicit operator, n is the 
number of physical time iterations, m is the number of pseudo time subiterations, and sgs is 
the number of iterations of the SGS method. 
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rho 
0.66 

Mach 3.0, T = 220 K & T = 5000 K 

Mach 3.0, T = 5000 K 

Figure 7: Mach 3 flow impinging on a hemispherical body. The upper plot shows the density and 
streamlines. The lower plot shows the ionization state and streamlines. Notice the increased 
ionization at the stagnation point. 

The formulation of eqn(52) into a standard form required numerical calculation of the 
flux Jacobians. The limit calculation given by eqn(44) was simple to implement and gave 
accurate values of the flux Jacobian. However, it was sensitive on the value of e when e 
was increased beyond 1 x 10-12. Using the complex formulation given by eqn(46) provided 
accurate flux Jacobian calculations with much less sensitivity on h. Typical values of h were 
1 x i<r5. 

3.3    Time Dependent Ionization and Multiple Temperature Effects 

A time-dependent ionization model was added to self-consistently calculate the ionization 
fraction of the fluid. The model is described by eqn(6). The ionization rate parameter 
< av >ion and the recombination rate < av >recomb were calculated using empirical formu- 
lations given in Ref. [6]. 

The time-dependent ionization model allowed determination of the ionization fraction. 
For uniform flow properties the time dependence is exponential. The model was bench- 
marked against analytical formulations for its time-dependence. The steady-state solution 
was benchmarked against the Saha equation. 

A more interesting test was constructed to have a Mach 3 flow impinge on a hemispherical 
body. The flow was initially unionized, and ionized upon transition through the shock wave. 
The results are shown in Figure 7. 

A subset of the multi-temperature effects have been added to the code. The code was 
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Figure 8: (a) Strip decomposition and (b) patch decomposition of a 2-D domain. 

extended to include thermal diffusion for the constituent temperatures (neutrals, ions, and 
electrons). Energy loss mechanisms were added for the constituent fluid components. The 
constituent temperatures can evolve independently by diffusion as described in eqn(13). 
The heat conduction equation was used as a benchmark to validate the incorporation of the 
multi-temperature thermal diffusion model. 

A dominate energy loss mechanism for high electron temperature plasmas is radiation. 
The radiation loss term due to Bremsstrahlung has been included. The radiation was 
validated against analytical results. 

3.4    Parallel Computer Performance 

The algorithm was parallelized using the domain decomposition technique (DDT). The 
integral form of a general conservation law was given by eqn(59). Domain decomposition 
implementation requires boundary (or ghost) cells to overlap with neighboring domains or 
blocks. The domain decomposition is illustrated for two dimensions in Figure 8. 

The ghost cells are used as boundary conditions to the real cells in the block. A con- 
sequence of domain decomposition is the more blocks that are used the more ghost cells 
that are necessary. The ghost cell data lag the current computation by a single iteration. 
Therefore, an increase on ghost cells generated a slower convergence rate. Figure 9 shows 
the slightly slower convergence rate. The convergence history for 4 and 8 processors overlay. 

The parallel performance for the code is shown in Figures 10 and 11 for the code operat- 
ing in explicit and implicit mode. The grid was the three-dimensional grid shown in Figure 2 
and was parallelized using domain decomposition. The grid was scaled with the number of 
processors, so the grid size per processor was constant. As the number of processors was 
doubled, the number of grid cells was also doubled. The ideal speedup was unity. Note that 
the speedup presented is "engineering" speedup. The value includes not only the inefficien- 
cies associated with communication between the processors but also those associated with 
more iterations required to converge the solution. The "engineering" speedup is, therefore, 
the total parallel efficiency to obtain the same quality of solution oh a parallel computer. 

The high parallel efficiency was obtained by overlapping communication with compu- 
tation. The boundary information was exchanged while the core cells were computed and 
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1000 

Figure 9: Convergence history using the SGS method to invert the implicit operator on a 
parallel computer. The results from a serial computer are plotted for comparison, n is the 
number of physical time iterations, m is the number of pseudo time subiterations, and sgs is 
the number of iterations of the SGS method. 
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Figure 10: Parallel speedup for a three-dimensional grid using domain decomposition on a 
cluster of DEC Alpha workstations. The grid is scaled with the number of processors, so the 
grid size per processor is constant. The ideal speedup is unity. 

before the boundary cells are computed. The super-linear speedup for the explicit operating 
mode was generated by slow operation on a single processor. This effect has been reported 
Michl et al. [19] Figure 10 contains the performance results from a parallel workstation clus- 
ter of 16 DEC Alpha workstations. Figure 11 contains the performance results from the 
IBM SP2 at the Maui High Performance Computing Center. The results on both computing 
platforms were similar. 

4    Professional Interactions 

4.1    Project Personnel 

The personnel who have been directly involved in this project are listed below. 
Name Position 

Uri Shumlak 
D. Scott Eberhardt 
Thomas R. Jarboe 
R. Scott Raber 
Bogdan Udrea 
Ward Vuillemot 
Graham Schelle 

Assistant Professor 
Associate Professor 
Professor 
Graduate Student 
Graduate Student 
Graduate Student 
Undergraduate Student 

4.2    Collaborations 

4.2.1    Air Force Research Laboratory 

Dr. Robert Peterkin, Jr. of the Electromagnetic Sources Division of the Air Force Research 
Laboratory at Kirtland AFB on three-dimensional multigrid algorithms for MACH3, devel- 
opment of a parallel PIC (particle in cell) code for microwave simulations, and stabilization 
of the Rayleigh-Taylor instability in solid liner implosions by introducing a sheared axial 
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Figure 11: Parallel speedup for a three-dimensional grid using domain decomposition on IBM 
SP2 parallel supercomputer. The grid is scaled with the number of processors, so the grid size 
per processor is constant. The ideal speedup is unity. 

flow. A full approximation multigrid method was installed in MACH3 to calculate thermal 
diffusion and magnetic resistive diffusion. Knowledge developed in the area of relaxation 
schemes was implemented into the ICEPIC code to make a 3-D Poisson solver. The solver 
was' needed to determine electric field concentration on a high power microwave source. 
The collaboration occured in person during July and August. Several phone and.email 
discussions took place throughout the year. 

4.2.2 Sandia National Laboratories 

Dr. Norm Roderick of the Pulsed Power Sciences Center at Sandia National Laboratories 
on the uses of sheared axial flows to stabilize z-pinch implosions. This is an ongoing collab- 
oration that resulted in the publication listed in the following section. 

4.2.3 University of Washington 

Prof. Scott Eberhardt of the Aeronautics and Astronautics Department and Prof. Randy 
LeVeque of the Applied Math Department on approximate Riemann solvers and their ap- 
plications to multidimensional problems. We have regular discussions on a weekly basis. 

Prof. Tom Jarboe of the Aeronautics and Astronautics Department on the higher mode 
stability of spheromaks and on the effect of realistic three-dimensional geometries on sphero- 
mak stability. This is an ongoing collaboration that resulted in the publications listed in 
the following section. 

4.3    Publications 

A journal article describing our algorithm has been published in the Journal of Computa- 
tional Physics. The title is "An Implicit Scheme for Nonideal Magnetohydrodynamics" by 
0. S. Jones, U. Shumlak, and D. S. Eberhardt.[13] The citation is Journal of Computational 
Physics 130, 231 (1997). Another journal article which describes the use of sheared flows to 
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stabilize the Rayleigh-Taylor instability has been published in Physics of Plasmas. This is 
work that was performed with collaboration at the Air Force Research Laboratory. The title 
is "Mitigation of the Rayleigh-Taylor Instability by Sheared Axial Flows" by U. Shumlak 
and N. F. Roderick.[20] The citation is Physics of Plasmas 5, 2384 (1998). 

Two papers describing the higher mode stability in spheromak plasmas and the effect of 
realistic three-dimensional geometries on spheromak stability have also been published. [21, 
22] The citation is Physics of Plasmas 6, 4382 (1999). The second paper has been submitted 
for publication in Physics of Plasmas. 

4.4    Presentations 

A paper was presented at the Forty First Annual American Physical Society Meeting of the 
Division of Plasma Physics, Seattle, Washington, November 1999. The title was "Plasma 
Effects on Hypersonic Flows," by W. Vuillemot and U. Shumlak; 

5    Conclusions 

The successful development of the three-dimensional advanced implicit algorithm and the 
implementation of time-dependent ionization and multiple temperature effects show that 
this project is reaching its objectives. The research related to this project has been published 
in refereed journals and presented at international conferences. Valuable collaborations have 
been formed with the Air Force Research Laboratory, Sandia National Laboratory, and other 
universities. 

The continuing development of this project will include investigating more powerful im- 
plicit matrix inversion methods, the addition of other energy loss mechanisms and the ability 
to transfer energy between constituent fluid components. The new physics algorithms will 
then be incorporated into an implicit formulation and solved using a domain decomposition 
technique for parallel computation. The code will also be applied to plasma experiments 
to calibrate the code and gain physical insight into devices that are important to the Air 
Force. 
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