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ABSTRACT 

Anticipatory Planning with Agents Using Genetic Algorithms and Simulation. 

(May 2001) 

John Mitchell Duval Hill, B.S., United States Military Academy; 

M.A., The University of Texas at Austin 

Chair of Advisory Committee: Dr. Udo W. Pooch 

The traditional Military Decision Making Process (MDMP) focuses on 

developing a few friendly Courses of Action (COAs) against the "most-likely and most- 

dangerous" enemy COAs. There is a well-known axiom that "No plan survives the first 

shot." This indicates that a branch has occurred during execution that was not included 

in the plan, forcing the human planners into reactive mode. 

The military is capable of producing unprecedented amounts of battlefield 

information that could be used to better anticipate the flow of the battle. Military 

planners need a way to incorporate this continuous feed of battle information into the 

planning process so that they achieve and maintain "option dominance". A new 

approach to military operations, called Anticipatory Planning and Adaptive Execution, 

treats planning and execution as a tightly coupled, single process, and replaces reaction 

to events with anticipation of events. 

This research develops the methodology for automating the Anticipatory 

Planning process. A prototype Anticipatory Planning Support System (APSS) has been 

designed and implemented to provide human planners with an interactive visual 
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development system using simulations to build Plan Descriptions. Nodes represent 

option points in the plan and Branches represent the transitions between them. As 

execution progresses the plan is continuously updated based on actual events. Execution 

Monitors are attached to Nodes, use forward simulation from the Actual State to derive 

Anticipated States, and compare them with the Planned State at the Nodes. The 

Execution Monitors recommend re-planning to the Planning Executive, which prioritizes 

planning to maintain a balance between anticipating as many future branches to the plan 

as possible and constraining the planning effort. The Planning Executive launches 

Planners that use a genetic algorithm and inference mechanisms to postulate and 

consider possible friendly and enemy actions, then produce significant, representative, 

Branches. For testing or training purposes, an external Stimulator uses a controlled Plan 

Description and a simulation to produce Actual States for use by the APSS. The primary 

goals of this implementation are to provide a common representation of the plan, 

facilitate the planning process, anticipate the flow of the battle, and provide a means for 

stimulating planning systems. 
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CHAPTER I 

INTRODUCTION 

In preparing for battle I have always found that 
plans are useless, but planning is indispensable. 

- Dwight D. Eisenhower 

A. Motivation 

General (ret.) Wass de Czege has proposed a radically new approach to military 

planning and execution, which he calls Anticipatory Planning [1]. There are two main 

thrusts of the General's proposal. The first is that planning and execution should be 

treated as a tightly coupled, single process, rather than as distinct events. The second is 

that Anticipatory Planning is necessary in a dynamic and information-rich battlefield 

environment of the future. 

In the traditional Military Decision Making Process (MDMP) the intelligence 

officers posit various enemy courses of action (COAs), and the operations and planning 

officers propose various friendly COAs to counter them [2]. Each of these friendly 

COAs are war-gamed in order to determine their viability. A COA is viable if it is 

suitable, feasible, and acceptable. Suitable means the COA accomplishes the mission 

and complies with the commander's guidance. Feasible means that constraints of 

available time, space, and resources are met.   Acceptable means that the tactical or 

This dissertation follows the style and format of IEEE Automatic Control Systems. 



operational advantage gained justifies the cost in resources, especially casualties. 

Commanders often describe viability concerns in terms of desired end-state conditions at 

the conclusion of execution. The result of this analysis is a single, chosen COA for use 

in execution. 

There is a well-known axiom that the plan never survives the first shot, which is 

another way of saying that a branch that was not considered in planning has occurred in 

execution. Consequently, the commander and staff are forced into a reactive planning 

mode. Rather than a long detailed plan relating stemming from comparisons of 

complete friendly and enemy COAs, the planners need a methodology that merges 

planning and execution. Such a methodology would develop and consider as many 

reasonable branches in the plan as possible in the initial planning process, and 

continuously update the plan as execution progresses. This coupling of planning and 

execution requires a new process. 

The ability to develop and consider many branches in a plan necessitates an 

Anticipatory Planning process. Rather than choosing a single course of action and 

following it to conclusion, Anticipatory Planning involves maintaining as many possible 

friendly actions against as many enemy actions as possible. The plan is then considered 

to be a tree. The nodes of the tree represent states (i.e., snapshots of actual or predicted 

dispositions of forces on the battlefield) and are option points in the plan. The branches 

represent the transition to a node based on a particular enemy and friendly actions. 

As new branches are developed, the Anticipatory Planning process continues 

planning ahead of the most likely branches.   In this way, Anticipatory Planning for a 



branch can be done well in advance and many options are kept open as long as possible, 

rather than reactive planning once the branch occurs. Anticipatory Planning will 

increase the importance of the information collection plan to quickly confirm or deny the 

viability of branches. One of the primary goals of the Anticipatory Planning process is 

to restrict the planning effort within system resources along these more likely paths. 

New concepts coming out of the Information Technology Operations Center 

(ITOC) at West Point, NY, indicate that information operations (IO) stand on three legs, 

not two: Offensive IO, defensive IO, and Information Efficacy [3]. This research is 

designed to address the third. That is, how military planners can make the best use of 

the information that is available. 

B. Research Objectives 

The purpose of this research is to develop a methodology to support anticipatory 

planning during execution of military operations. To accomplish this, the following 

objectives must be met: 

• Development of a Plan Description mechanism that facilitates control of 

the system by a Planning Executive, rapid simulation of entity 

interactions, and inspection and modification by Planning Agents. 

• Development of Agents to Perform the required functions of Anticipatory 

Planning: Execution Monitor Agents, Planning Agents, Planning 

Executive Agent 



• Development of the Anticipatory Planning Support System (APSS) 

methodology. 

• Development of a prototype system that validates the Plan Description 

mechanism and the Planning Agents and demonstrates the feasibility of 

the APSS methodology. 

C. Overview 

A literature review of the relevant domains is presented in Chapter II. Some of 

the topics covered include military operations, simulation, artificial intelligence 

techniques including genetic algorithms, artificial intelligence planning, planning under 

uncertainty, and military modeling, simulation, and planning. Chapter HI contains 

detailed descriptions of the anticipatory planning methodology and the design of the 

prototype system. This is followed in Chapter IV with details of the implementation. 

The experimental design, the tests used to verify and validate the methodology, and the 

results and analysis appear in Chapter V. To tie it all together, Chapter VI provides a 

summary of the research and conclusions drawn from the experiments. 



CHAPTER II 

LITERATURE REVIEW 

A. Introduction 

The major purpose of pursuing research into "A Methodology to Support 

Anticipatory Planning" is to provide a useful mechanism to aid in the planning, 

execution, rehearsal, and assessment of military operations. Military planning occurs in 

an uncertain environment, where an adversary is actively trying to defeat the plan. It is 

worthwhile to review several different areas of computer science that might contribute to 

the problem. 

Initially, the military planning process is described. This provides the framework 

for discussion. 

One key component of the Anticipatory Planning Support System will be the 

simulation used to predict anticipated states. Development of the simulation will also 

drive the test environment that will be used in the proof of concept. A review of 

simulation is included to examine some of the tools and techniques available. 

It is worthwhile to consider a few artificial intelligence (AI) techniques, 

including adversarial search, and how AI has been applied to planning in general, 

planning under uncertainty, and finally in adversarial and military planning. This 

chapter provides a review of the literature and previous work in all of the above areas. 

The Adversarial Search section covers many of the methods developed to 

determine optimal or acceptable game strategies.  Although these strategies apply more 



directly to two-player, turn-taking, games, they provide some interesting insights that 

may be very useful in adversarial and military planning. 

The Artificial Intelligence Planning section covers some of the fundamental 

principles used in planning, and discuss the contributions made by several 

implementations. This information provides a useful frame of reference for the 

following sections. 

The Planning Under Uncertainty sections cover several of the techniques used to 

deal with planning where actions can yield unexpected results in the environment, or the 

environment can change dynamically. 

The Adversarial and Military Planning section describes previous work in 

planning in adversarial domains and in the specific domain of military planning. 

This chapter concludes with a review of Military Modeling, Simulation, and 

Planning to provide more context for this research effort 

B. Military Operations 

The Army operations spectrum begins with planning, which is encoded in the 

Military Decision Making Process. When time permits, contingency plans are produced 

to account for possible branches in the main plan. Rehearsals are a mechanism for 

making sure subordinate units understands the plan. Execution of the operation may or 

may not follow the plan or the contingency plans. Hopefully, participants can 

understand and react appropriately to deviations from the plan. As soon as possible after 

execution, the unit employs an assessment process using after-action reviews (AARs) to 



determine how well it performed and how to train in the future.   This assessment 

includes an analysis of what the plan was, how conditions and enemy actions agreed or 

diverged from the plan, and how the unit reacted. 

1.   Planning 

The United States Army uses the Military Decision Making Process (MDMP) to 

create an Operation Order (OPORD) that synchronizes the efforts of subordinate units to 

accomplish a given mission [2]. The MDMP has the following phases: Mission 

Analysis, Course of Action (COA) Development, COA Analysis, COA Comparison, COA 

Approval, and Orders Production. The purpose of this lock-step approach to decision 

making is two-fold. First, when followed correctly, it enables staffs to produce 

acceptable plans. Second, it ensures that every staff member follows the same process, 

even if they are inexperienced individually or as a staff team. This discussion will not 

attempt to teach the entire MDMP. Rather, it will focus on the steps of the process that 

are relevant to this project. Italics indicate words or phrases that are common military 

terminology. 

a.   Mission Analysis 

The staff analyzes the higher OPORD to extract specified tasks and implied tasks 

(tasks that are not explicitly stated but are required to be performed nonetheless). From 

these, the staff identifies the essential tasks for successful mission accomplishment. 

With all of these tasks in mind, they determine the precise mission statement to use 

within their own order.  This restated mission identifies the task the unit is to perform, 



the purpose for accomplishing the task, the initiation or completion time and the location 

where the task will be accomplished. 

Sometimes, having the right information at the right time is critically important 

to the commander. Commander's Critical Information Requirements (CCIR) help the 

commander visualize the flow of the battle and make timely decisions. They also help 

the staff filter the enormous amount of information that is developed during execution. 

The CCIR are broken down into three areas. 

Priority Intelligence Requirements (PIR) identify information the commander 

needs to know about the enemy. PIR often help determine which COA the enemy has 

chosen or to ensure that the enemy is at the right place and time for a planned event, 

such as a counter-attack. 

Essential Elements of Friendly Information (EEFI) identify information about 

friendly forces that the commander wants to deny to the enemy (they are sometimes 

referred to as "enemy PER"). EEFI allow friendly units to place a priority on protecting 

or hiding specific information from the enemy. 

Friendly Forces Information Requirements (FFTR) identify information about the 

status of friendly forces that the commander needs to know. For example, one element 

of the FFBR may be whether the status of the designated reserve force falls below 

seventy percent strength, which might preclude it from being committed. The staff 

selects an initial set of CCIR in the mission analysis phase. 

The staff intelligence officer prepares an Intelligence Preparation of the 

Battlefield (B?B) that identifies and prioritizes possible enemy COAs.   The staff will 



typically focus on the enemy COAs that the intelligence officer has identified as most 

likely and most dangerous. 

The task list, restated mission, CCER, and probable enemy COAs are some of the 

inputs into the COA Development phase. 

b.  Course of Action Development 

A critical part of the MDMP process is the Course of Action Development phase. 

During this phase the staff develops several candidate COAs based on the mission, the 

suspected enemy COAs, and the commander's guidance. The commander focuses the 

staff's efforts to produce several good COAs in the available time. 

The candidate COAs must satisfy several criteria to be considered valid. Among 

these criteria are Suitability, Feasibility, and Acceptability. A course of action is suitable 

if it accomplishes the mission and complies with the commander's guidance. It is 

feasible if it accomplishes the mission within the constraints of available time, space, 

and resources. It is acceptable if the tactical or operational advantage gained justifies the 

cost in resources, especially casualties. Commanders often describe acceptability in 

terms of desired end-state conditions at the conclusion of execution. 

The staff analyzes relative combat power to identify enemy vulnerabilities and 

determine where friendly capabilities can be applied against them. From this they 

develop a number of possible operations for the friendly and enemy forces. The staff 

usually considers force ratios, wherein friendly and enemy strengths are manipulated in a 

historically based mathematical model. 
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The staff considers the enemy COAs from most likely to least likely, or in an 

order specified by the commander. They use a brainstorming process to prepare friendly 

COAs that are capable of defeating each enemy COA. The commander and every 

member of the staff must ensure that they retain a common picture of the COA, and that 

the synchronization of effects is apparent to everyone. The staff members remain 

receptive to all ideas and counter-arguments to ensure valid COAs rise to the surface and 

invalid COAs are quickly discarded. 

Within each COA, the critical events that ensure accomplishment of the mission 

are identified. Similarly, decision points where tactical decisions are required are noted. 

Decision points are linked to Named Areas of Interest (NAIs) that focus assets on 

gathering information necessary in order to make the decision. 

For each COA, the staff designates a main effort and supporting efforts. They 

also organize the subordinate forces and assign tactical tasks for them to perform. The 

staff considers subordinate elements two levels below (e.g., a battalion staff considers 

the employment of platoons), arrays them to accomplish the tasks of the main and 

supporting efforts, and ensures each task has the right amount and mix of capabilities to 

succeed. As the staff refines the array of forces, they determine the concept of the 

operation. They incorporate and synchronize elements from all of the battlefield 

functions (maneuver, fire support, mobility / counter-mobility / survivability, etc.). They 

also add control measures, such as phase lines, where necessary to constrain the flow of 

the operation. The staff then assigns headquarters to be responsible for each of the tasks. 

The normal span of control for each headquarters is two to five subordinate elements. 
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COA development concludes with the preparation of COA statements and 

sketches. The COA statement describes the scheme of maneuver and states the 

subordinate tasks. The COA sketch depicts the maneuver and the control measures. 

c. Course of Action Analysis (War-gaming) 

In this phase the candidate courses of action are analyzed through a "war- 

gaming" process to determine if they are valid. As the war-game progresses, 

representatives from each of the battlefield functions (maneuver, fire support, etc) 

provide input about the expected results as the friendly courses of action are played out 

against the enemy courses of action. The staff employs an action - reaction - counter- 

action drill to describe the flow of the enemy and friendly CO As against each other. 

This phase ensures that everyone has the same understanding of the COA, that all 

resource requirements are identified, that all CCIR have been identified, and that all 

subordinate units and combat effects are synchronized. The results from each valid 

course of action will be used later in the Course of Action Comparison phase. 

d. Course of Action Comparison 

If the commander decides to war-game only one COA, or if he chooses one 

during the war game, no course of action comparison is needed. If multiple CO As have 

been war-gamed and the commander has not made a decision, the staff must conduct a 

COA comparison to aid the commander in choosing the "best" COA. All staff member 

state their findings so that they can be considered by everyone. The staff then uses a set 

of criteria appropriate to the mission, which may include weights, to compare the valid 

courses of action that survived the war-gaming. 
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e. Course of Action Approval 

After reviewing the COAs and receiving the recommendations of the staff, the 

decides which COA to implement, along with any final refinement. He may also reject 

them and give the staff new guidance. He may even give the staff a completely different 

COA, possibly including components from several of the COAs the staff developed. In 

the latter two cases, the MDMP must be reiterated to ensure validity of the COA and 

synchronization. Once the commander makes his decision the staff issues a warning 

order so that subordinate elements can improve their planning. 

f. Orders Production. 

The staff takes the COA statement and sketch, and the results of the war-game 

for that COA, and refines them into a full-fledged operations order (OPORD). The 

OPORD give the subordinate units all the information the need for planning and 

execution. Before the staff issues the order, the commander reviews it and approves it 

one last time. 

2.   Rehearsal 

Army units use rehearsals to help subordinate leaders visualize the flow of the 

operation and how it is synchronized. Depending on the amount of time available to the 

unit, rehearsals may be done over the radio, on a map, on a terrain model, even with the 

actual vehicles and personnel. Typically, the intermediate type of rehearsal on a terrain 

model is used. The staff and the subordinate leaders focus on the critical events and on 

the synchronization to ensure everybody understands how their unit fits into the plan. 
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3. Execution 

During the execution of the operation the staff monitors the progress of the 

battle, directs activities to support the units, and works to keep everything synchronized. 

They look closely at information that indicates divergence from the plan, analyze it, and 

make recommendations to the commander. If all goes well, the staff and the subordinate 

units will keep the plan on track. Often, however, the actual battle diverges too far from 

the plan, and requires rapid analysis and decision-making to ensure a favorable outcome 

under the new conditions. 

4. Assessment 

The Army uses a well-defined After-Action Review (AAR) process to help units 

identify their strengths and focus their training to address deficiencies [4]. AARs are 

conducted during or immediately after the event to ensure everything is fresh in the 

participants' minds. They focus on the training objectives on performance against those 

objectives. Where possible, they include all available information about what the 

opposing forces were trying to accomplish. Key issues are discussed, and the relevant 

doctrine and tactics are reviewed. This self-assessment process is even more effective 

when some level of "playback" is available, such as video and audio of the event, or 

visualization. 

C. Simulation 

Simulation, like any other field of endeavor, has very specific terms associated 

with it. One of the key processes in using simulations is the building of models. There 
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are many advantages to using simulation.  There are also some disadvantages.  Finally, 

some techniques used in simulation, particularly "online simulation," are discussed. 

1.   Simulation Terminology 

For clarity, the simulation terminology is broken into the following sections: 

characteristics of the model, environment, system, and the simulation. This 

organizational structure is suggested by Pooch [5]. 

a. Characteristic of the Model 

An entity is "a real-world object" [5] or "an object of interest in the system" [6]. 

An attribute is a characteristic or property of an entity [5]. 

An event is an "instantaneous occurrence that may change the state of the 

system" [6]. Another way to look at it is that if the state of the system has not changed, 

no event has occurred [5]. 

An activity is defined as "any process that causes changes in a system" [5]. The 

distinction between an event an activity is that "an activity is like an event, but it occurs 

over some length of time, rather than at an instant in time" [7]. 

A simple definition of the state of a system is "a description of all the entities, 

attributes, and activities, as they exist at some point in time" [5]. A more precise 

definition is that a state is the "minimal collection of information with which the future 

state can be uniquely predicted in the absence of chance events" [5]. 

b. Characteristics of the Environment 

They system environment is defined as "the objects and processes (entities and 

activities) surrounding the system" [5]. 
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Endogenous activities are "activities that occur within the system" [5]. 

Exogenous Activities are "activities in the environment that affect the system" [5]. "The 

classification of all activities as either endogenous or exogenous establishes the system 

boundary" [5]. 

"A system with no exogenous activities is called a closed system; otherwise the 

system is open" [5]. In an open system, the state of the system changes in response to 

both endogenous and exogenous activities [7]. In a closed system, all state changes are 

driven by endogenous activities. 

c.   Characteristics of the System 

Law and Kelton asserted, "Few systems in practice are wholly discrete or 

continuous, but since one type of change predominates for most systems, it will usually 

be possible to classify a system as being either discrete or continuous" [8]. 

"Continuous systems include variables that can assume any real value in a 

prescribed set of intervals" [5]. Continuous simulations are those in which parameters 

can be described by a series of differential equations [9]. 

"Discrete systems include variables that can assume only particular values from 

among a finite set of alternatives; these systems are characterized by discontinuous 

changes in the system state" [5] A discrete simulation is one in which the state variables 

change instantaneously only at discrete sets of points in time [6]. An example of such a 

system is Automated Teller Machine, in which a transaction happens instantaneously 

[7]. 



16 

A deterministic system is one in which the next state of the system is completely 

determined by the current state and some event or activity. An example of this is a finite 

state machine [10]. 

In a stochastic system, there is some degree of randomness in the system. In a 

stochastic simulation, given the current state and some activity, the next state will be one 

of many possible states. Known families of probability distributions usually characterize 

the randomness in the system, but in some cases it may be possible to assign exact 

probabilities to each state transition [7]. 

A static system is one in which the state of the system is independent of time. A 

dynamic simulation is one in which the state of the system changes over time. Examples 

of dynamic simulations are those that describe movement of parts through a 

manufacturing facility, flow of electrons from a nuclear explosion, or attrition of combat 

forces during a battle [7]. 

Table 1: Validation Techniques 
Validation Techniques from Law and Kelton 

Technique 1 Develop a model with high face validity 

Technique 2 Test the assumptions of the model 
empirically 

Technique 3 Determine how representative the 
simulation output data are 
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d.  Characteristics of the Simulation 

Validation "refers to the proof that the model is a correct representation of the 

real system" [5]. Law and Kelton provide a three-step approach (extending earlier work 

by Naylor and Finger [11]) for developing valid models [8]. The steps are shown in 

Table 1. 

Verification "refers to the proof that the simulation program is a faithful 

representation of the system model" [5]. Law and Kelton describe several techniques for 

verifying that the simulation system, or the entire system, performs as designed [8]. The 

verification techniques are listed in Table 2. 

Table 2: Verification Techniques 
Verification Techniques from Law and Kelton 

Technique 1     Write and debug the program in modules or subprograms 

Technique 2 

Technique 3 

Technique 4 

Technique 5 

Technique 6 

Technique 7 

Technique 8 

Have multiple people review the programming 

Run the simulation under a variety of settings of the input 
parameters and see if the output is reasonable 
Print out traces or use an interactive debugger to ensure 
each step in the system is performed correctly 
Run the model under simplifying assumptions 

Observe an animation of the simulation output 

Compare distributions produced by the random elements of 
the system with the desired distributions 
Use a simulation package to reduce the programming 
effort, but be mindful of built-in errors and inefficiencies 
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Banks, et al., provide a substantially similar list [12]. However, they recommend 

graphical interfaces for accomplishing verification and validation, citing its usefulness as 

a form of self-documentation (due to Bortscheller and Saulnier [13]). 

Experimental Design "refers to a sequence of simulation runs in which 

parameters are varied, with both economy and sound statistical methodology considered 

in achieving some specified goal" [5]. 

A terminating simulation is one for which "there is a 'natural' event E that 

specifies the length of each run (replication)" [8]. A system could be set to terminate at 

a specified (simulation) time. In simulations of adversarial situations, termination may 

occur when one side wins. In a terminating simulation, "since the initial conditions... 

generally affect the desired measures of performance, these conditions should be 

representative of those for the actual system" [8]. 

A non-terminating simulation is one in which there is no natural event E at which 

time the simulation run should stop [8]. The output of such a simulation is the steady- 

state value of some output parameter. 

The warm-up period refers to the period when the system is affected by the 

initial conditions before reaching a steady state [5]. 

A steady state is reached when "successive system performance measurements 

are statistically indistinguishable" [5]. 

2.   Building Models 

One of the most important processes in building a simulation system is to 

correctly model the system being investigated. A system model is a representation of the 
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real system using specific information gathered for the purpose of studying the system. 

Pooch describes several different types of models: descriptive, physical, mathematical, 

flowcharts, schematics, and computer programs [5]. 

Abstraction is an important concept in modeling [14]. Zeigler notes that 

abstraction is "the process underlying model construction whereby a relatively sparse set 

of entities is extracted from a complex reality" [15]. In other words, abstraction helps 

the analyst focus on the desired level of detail of the system being modeled. Sisti says 

abstraction is "the intelligent capture of the essence of the behavior of a model without 

all the details (and therefore runtime complexities) of how that behavior is implemented" 

[16]. 

3.   Advantages of Using Simulation 

There are many advantages to using simulation. Adkins and Pooch identify the 

following advantages: controlled experimentation, time compression, sensitivity 

analysis by manipulation of input variables, no disturbance of the real system, and it is 

an effective training tool [5, 17]. Banks adds several other advantages, including 

helping people to make correct choices, diagnose problems, identify constraints, and 

specify requirements [18]. Some of these advantages are examined below. 

One really good reason for using simulation is that it might be impractical or 

impossible to experiment with the real-world system. It is often preferable to conduct 

simulation experiments beforehand to determine behaviors, requirements, expected 

throughput, or other characteristics of a system.. This is particularly important when a 

system is under design.   Carson and Banks define a simulation as the "imitation of the 
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Operation of a real-world process or system over time," and this imitation provides a 

mean for experimentation [6]. 

It is particularly impractical to experiment with military operations. For an 

extreme example, it is "impractical to obliterate much of the surface of the Earth in order 

to explore the effects of nuclear war" [7]. This is why simulation has become so 

important to the military for training.. 

One of the key advantages of using simulation is that it helps people understand 

complex systems. Hoeber states that models should always "shed light," since the 

process of constructing the model should increase the understanding of the system by 

both the model builder and the client [19]. The purpose of simulation is to provide a tool 

with which to experiment to "gain some understanding of how a real system behaves" 

[8]. Simulation is often used to evaluate a model numerically, gather data, and estimate 

the true characteristics of the model [8]. 

Simulation also helps decision makers in choosing correctly.  Hoeber asserts that 

modeling can aid in making choices since the decision maker will have a better idea of 

the possible outcomes [19].  Pooch notes that simulation allows an analyst to compare 

strategies for future operation of the system [5]. 

4.   Disadvantages of Using Simulation 

There are also some disadvantages to using simulation. Adkins and Pooch note 

that creating a simulation model can be expensive in terms of manpower and computer 

time, extensive development time may be encountered, hidden critical assumptions may 

cause the model to diverge from reality, and model parameters may be difficult to 
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initialize [5, 17]. Banks adds the following disadvantages: model building requires 

special training, simulation results may be difficult to interpret (or to explain), and 

simulations may be used inappropriately [18]. Some of these disadvantages are explored 

below. Clearly, cost-benefit analyses and tradeoff considerations must occur before 

analysts choose a simulation approach. 

One of the major disadvantages to using simulation is that it may be used 

inappropriately. For instance, there are many situations where an analytical solution is 

more appropriate [18]. Another occurs when a single simulation run (experiment) is 

used to make decisions [7]. In stochastic simulations, many experiments must be 

performed in order to gather statistically valid data on which to base decisions. 

Law and Kelton asserted that in many cases ten to fifteen experiments for a given 

set of parameters and initial conditions is sufficient [8]. While this number seems small, 

the reason is the high degree of uncertainty in the creation of the model. Given any 

large, complex simulation, the probability distributions used to estimate various 

parameters have some degree of error associated with them [7]. Running hundreds of 

simulation experiments will decrease the size of the confidence interval around output 

parameters, but Law and Kelton asserted that this gives a false sense of precision [8]. 

5.   Discrete Event Simulation 

Discrete event simulation is a technique used when system events occur at 

specific times and there is no concern for the interim periods between events. Or, as 

Law and Kelton describe it, discrete event simulation "concerns the modeling of a 

system as it evolves over time by a representation in which the state variables change 
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instantaneously at separate points in time" [8]. Events are stored in an event queue and 

are executed in order. As each event executes it may produce more events for the future. 

These events are placed in the correct order in the event queue for execution at the 

appropriate time. 

In a discrete event simulation, time is normally moved forward as each event is 

removed from the ordered event queue. Another method, appropriate when the 

simulation is used to represent the actual time progress of a system, is to advance the 

clock by uniform steps, executing the events when their time arrives. The time-step 

method is simple, but trying to determine the correct size of the time step can cause 

problems, both in designing the simulation and producing the desired outputs [9]. 

Another consideration in discrete event simulations that must be addressed is 

how the simulation will be driven. One way to do this is to feed in historical data from 

the actual system.   This serves only to validate the simulation.   In order to perform 

analysis, the inputs must be modeled and must be configurable [20, 21]. 

6.   On-Line Simulation 

As computing and simulation technology have advanced, the ability to perform 

simulation on-line has been improved. The idea is to have a simulation of the system 

"thinking ahead" of the actual system. The discussion in this section is due to Surdu [7]. 

Davis discusses the difficulties in using offline simulations for performance 

improvement and proposes "on-line" simulation as a method for the improving the 

performance of real-time systems [21-23]. In addition to Davis' work, Andersson and 

Olsson proposed using simulation in a customer-order-driven assembly line [24]. In the 
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military arena, Ferren discusses how the warfighter can use simulations as a predictive 

tool embedded in all manner of military systems [25]. 

There are two significant concepts that come out of this work in on-line 

simulation [21]. First, the control policy provides a means of directing changes to input 

parameters in response to conditions within the system that will move the system 

towards improved performance. The second concept is autovalidation, where the results 

of the on-line simulation are compared periodically to the operation of the actual 

simulation, enabling modification to bring the simulation closer to the actual system. 

Surdu implemented an autovalidation mechanism in the OpSim project [7]. 

7.   Simulation in Java 

McNab and Howell built a discrete event simulation library in Java, based on an 

earlier SJM++ library for C++ [26]. Their main purpose in doing so was to enable easy 

building and display of simulations through the World Wide Web. In the process of 

building simulations based on the library they quantified some of the implementation 

and performance implications of using Java. 

D. Artificial Intelligence Techniques 

There are three areas in Artificial Intelligence that seem like they will be 

particularly applicable to this research project. Since the project will include the 

examination of a large search space to determine the most-fit solutions, a review of 

genetic algorithms is appropriate. There are also situations where given particular 

conditions an exact outcome is desired. Crisp inference systems provide that capability, 
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and are examined.    Although the adversarial environment being examined in this 

research is not the same as AI adversarial search, an examination of those techniques 

reveals some insights into the work for this project. 

1.   Genetic Algorithms 

Genetic Algorithms (GAs) draw on the adaptive "survival of the fittest" 

capabilities inherent in Darwinian evolution. One fundamental aspect of a GA is an 

encoding that allows the description of every possible state of a system, but which is also 

amenable to rapid calculation. This encoding is typically referred to as the 

"chromosome," although the term "genome" may be appropriate if the encoding 

contains distinguishable sub-sections. Another fundamental piece is a "fitness function" 

which is used to decide how good the outcome of the system is when a particular 

chromosome is used. The algorithm creates an initial population of the chromosomes, 

possibly using heuristics to ensure a pretty good set. The fitness function is applied to 

each chromosome, allowing them to be ranked. As the algorithm produces each new 

generation, the more fit member of the previous generation have a higher probability of 

reproducing. Children for the new generation are produced by pairing two parents, and 

with some probability crossing their genes. Also, with a small probability, the children 

may experience a mutation in the elements of the chromosome. A seminal discussion of 

genetic algorithms appears in DeJong's dissertation [27]. Goldberg provides a thorough 

presentation of GAs in his book [28]. 
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2. Crisp Inference 

Rule-based systems allow knowledge to be represented as actions to be taken 

when certain conditions are matched. These heuristics, or "rules of thumb," are normally 

chosen by a domain expert and encoded by the developer. These rules allow abstract, 

symbolic approaches to be used in specifying knowledge based on human logic. CLIPS 

is a forward chaining LISP-like rule-based language that has inferencing and 

representation capabilities and is used to build rule-based expert systems [29]. CLIPS 

processes the rules by using RETE, an algorithm that solves the difficult many-to-many 

matching problem encountered when matching rules with facts [30]. 

3. Adversarial Search 

This section will examine two-player games where both players know everything 

about the game (Two-Player Perfect Information Zero-Sum Games). Further, the players 

will take alternating turns, allowing the game to be represented as an AND/OR. The 

root node of the tree is the initial situation. The edges in the tree represent legal moves. 

Each level in the tree represents the possible moves for a player, and the next level is the 

moves for the opponent, alternating until conclusion. The idea is for the player to pick 

the sequence of moves that will move the game through the tree to a leaf node that 

concludes the game with a win [31-33]. 

a.   MiniMax Algorithm 

The minimax algorithm is a depth-first search algorithm that selects the best 

possible move for a player at each turn. Basically, minimax builds a tree representing 

the search space and assigns a score to the root node.   This score is based on the 
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assumption that at each level of the tree the player will take the move that maximizes the 

score and the opponent will take the move that minimizes the score. For complex games 

that would result in very large game trees, the minimax algorithm may be given a depth 

bound. The final result may be sub-optimal in this case, but each individual move will 

be optimal with respect to the allowed depth [31, 33]. 

b. The Horizon Effect 

The reason placing a depth limit on minimax makes it potentially sub-optimal is 

that a good sequence of moves may be masked from the player. This is known as the 

horizon effect. There are two proposed solutions to this problem, neither very 

satisfactory [32]. 

Secondary Search: The algorithm chooses the best move and violates the depth 

limit to look a few moves further down. The idea is ensure there is no sudden drop-off 

on the other side of the horizon if the best move is taken. [32] 

The Killer Heuristic: This heuristic focuses on the opponent's possible moves 

and examines the possible sequences following a particularly good move. This helps the 

player determine whether to let the game proceed to a state where the opponent can 

select that move [32]. 

c. Solve 

The Solve algorithm is an extension of the minimax algorithm that reduces the 

number of nodes expanded by ignoring nodes beneath a known winning node or beneath 

a known losing node. This is a pretty obvious heuristic that can significantly reduce the 

search space [33]. 
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d.  Alpha-Beta Pruning 

Alpha-Beta pruning is based on the minimax algorithm, but keeps track of the 

value of each path generated so far. Two variables are kept during the search. The alpha 

value represents an upper bound for the outcome of the path and a beta value represents 

a lower bound for the path. At maximizing levels (when the player moves), only beta is 

used to cut off the search. At minimizing levels (when the opponent moves) only alpha 

is considered [32]. 

As each path is examined the outcome value is determined. This is compared to 

the alpha and beta values of the other paths. If the outcome value of the current path is 

lower than the alpha value, then the current path can be removed from consideration, 

since it will never be taken. If it is higher, the path represented by the alpha value can be 

discarded, and the alpha value adjusted to the value of the current path. Conversely, for 

opponent moves, if the outcome value of the current path is higher than the beta value of 

any other path, the current path can be removed. The alpha value and beta value are 

updated as higher and lower values, respectively, are discovered [31-33]. 

Russell and Norvig describe the development of alpha-beta search and several 

implementations [31]. 

a   John McCarthy conceived the idea of alpha-beta search in 1956, although 

he did not publish it. 

Q   Newell developed NSS in 1958.  It was the first chess program to use a 

simplified version of alpha-beta [34] 
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Q   Arthur Samuel's checkers program also used alpha-beta, according to 

Nilsson [35], although Samuel did not mention it in the published reports 

on the system. [36, 37] 

a   Hart, et al., described a Tree Pruning (TP) algorithm in 1961 [38].  The 

title was updated to "Alpha-Beta Pruning" in a 1963 revision.   Brudno 

examined bounds and variations in alpha-beta pruning [39] 

□   Slagle examined game trees and reported on m & n minimaxing [40]. 

Slagle also implemented an alpha-beta based system to play kalah (a two- 

player game involving allocation of beads between several bowls) [41]. 

a   Kotok used alpha-beta in the "Kotok-McCarthy" chess program [42]. 

a   Greenblatt used alpha-beta in the MacHack 6 chess program, which was 

the first chess program to successfully compete with humans [43]. 

a   Knuth and Moore reviewed the history of alpha-beta and provided a proof 

of its correctness and a time complexity analysis [44]. 

a   Pearl conducted further analysis of the effective branching factor and 

time   complexity   of   alpha-beta   and   showed   that   alpha-beta   is 

asymptotically optimal among all game-searching algorithms [45]. 

e.   B* Algorithm 

Berliner describes the B* method, which can prove that a branch from the root of 

a search tree is better than all the others [46]. It uses a best-first strategy to determine 

the order of node expansion, and assigns optimistic and pessimistic bounds to each node. 

These bounds tend to converge, leading to a termination of the search at that point.  In 
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this way, greater responsibility is given to the evaluation functions, which may be used 

against any property or set of properties of domain. Berliner provided experimental and 

analytic evidence that B* is a very effective method of searching adversary trees. 

Palay has shown that representing the range of a node as a probability 

distribution considerably improves B*'s performance [47]. A distribution provides a 

more accurate assessment of what is in a sub tree than a range does. It also allows 

termination of a search based upon probabilistic criteria. 

f. SSS* Algorithm 

Stockman developed the SSS* algorithm inl979 [48]. This new approach traded 

storage space for the ability to keep track of several alternate search paths 

simultaneously. SSS* is a best-first search procedure that keeps upper bounds on the 

values of partially developed candidate strategies. The best candidate strategy is chosen 

for further exploration. When this process is complete one of the strategies has been 

fully developed and must be the optimal strategy [32]. 

g. SCOUT Algorithm 

The SCOUT algorithm uses a test function to evaluate a node by computing the 

minimax value v of its first successor. It then "scouts" the remaining successors to see if 

any of them are better. It is faster to perform this test than to determine the minimax 

value of all the successors. Once the best successor has been determined in this fashion 

the value is passed back up in the algorithm [32]. 
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h.  Performance of Game Searching Algorithms 

Doyle presents the argument that shows that every search strategy that evaluates 

a game tree must examine at least twice the square root of the number of nodes in the 

tree [32]. 

E. Artificial Intelligence Planning 

This section is included to provide the foundation for the discussions of 

adversarial planning and planning under uncertainty to follow.   As such, it covers the 

terms appropriate for AI planning and reviews some of the planning systems that form 

the foundation for AI planning 

1.  Terms 

In any academic discussion, it is important to have a common vocabulary to 

ensure precise understanding of ideas when they are communicated. In the area of 

Artificial Intelligence Planning, the literature demonstrates a consensus among 

researchers as to the meanings of several commonly used terms. This section provides 

the common vocabulary appropriate to this paper. Many of the definitions are due to 

Doyle [49]. 

a.   Linear versus Non-Linear Planning 

In planning, the term "linear" means that the operators are independent of each 

other and can occur in any order. However, they must be executed one after the other. 

The plan can be represented as a single line from a node representing each action to the 

next action. 
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Non-linear planning allows actions to occur simultaneously. The plan can be 

represented as a directed graph or a network 

b. Hierarchical versus Non-Hierarchical Planning 

In planning, a hierarchical planner uses a hierarchy of abstractions to solve the 

plan. At the higher levels, tasks are more abstract; at the lower level they are more 

concrete. The purpose behind this system is to simplify planning by focusing on the 

more abstract levels to find workable plans, then working out the details. 

A non-hierarchical planner uses tasks that are all at the same level. In non- 

hierarchical planning, the planner does not distinguish between more important goals 

and less critical ones, and can potentially waste a lot of effort on unimportant steps. 

c. Backtracking 

When an action threatens a pre-condition of another action and the threat cannot 

be resolved, the planner must backtrack to a state before one of the actions was decided 

on and attempt to find a different plan. 

d. Early Commitment versus Least Commitment 

In early commitment, the planner commits to an operation that satisfies a 

precondition as soon as it can be done. In a least commitment strategy, the planner 

delays committing to any particular operation until it has to. The idea is to prevent 

interference with past or future decisions, and to reduce the amount of backtracking 

required. 
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e. Planning under Uncertainty 

Uncertainty occurs when there is no guarantee that an action will produce the 

post-conditions it is supposed to. From one perspective, this occurs when post- 

conditions have a probability of occurrence rather than a certainty. From a different 

perspective, planning can be uncertain if the environment can change even without 

actions taken by the planner. When planning under uncertainty, it is usually necessary to 

monitor the execution of the actions and to sense the state. 

f. Execution Monitoring 

Observing an action to determine if it produces the post-conditions it was 

supposed to. 

g. Sensing 

Sensing is deliberate gathering of information from the environment. 

h.  Adversarial Planning 

Adversarial planning occurs when there is another player or agent that is actively 

trying to defeat the plan. This is an example of planning under uncertainty, since 

changes in state may occur based on the adversary's actions. 

i.   Military Planning 

Military planning is by its very nature uncertain and adversarial. It is also very 

dynamic and includes considerations not present in most classical AI planning 

environments. One of these factors is the highly stochastic nature of the outcome of 

actions during execution.   Another factor is the fact that the actors themselves can be 
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consumed.   Actual military planning performed by humans is an art, supported by the 

science of procedures of logistics. 

2.   Artificial Intelligence Planning Systems 

The application of Artificial Intelligence (AI) techniques to planning has been 

underway for quite some time. This section covers some of the fundamental principles 

used in planning and discusses the contributions made by several implementations. The 

identification of the systems is mostly due to Doyle [49]. Many of the systems and 

approaches are related to each other (a good diagram of the relationships appears in 

[50]). In some cases, approaches from the different systems have been integrated. 

Rather than try to follow all of the interconnections, the systems and approaches are 

present in chronological order of appearance in the literature. 

a. GPS 

Newell and Simon developed the General Problem Solver (GPS) as a research 

tool for examining human and artificial thought processes [51]. This system, presented 

in 1961, is an example of a hierarchical linear planner. GPS was intended to model 

human thought in solving search problems, and under specific assumptions, can be used 

to produce plans of action [52]. GPS uses means-end analysis in which the system uses 

operators to reduce the differences between the present state and the goal state. 

b. STRIPS 

The STRIPS planner developed by Fikes, et al., represented states as a world 

model and a set of goals to be achieved on a stack [53, 54]. This system was developed 

in 1971 and is an example of a non-hierarchical linear planner. Operators in the STRIPS 
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system have preconditions that must be met before execution. If an operator is used 

because its result satisfies a goal on the goal stack, then its preconditions became new 

goals on the stack. When all pre-conditions of an operator are satisfied, the operator can 

be executed, producing a new state. This new state is determined by executing the "add- 

list" and the "delete-list" (which originated with STRIPS) associated with the operator 

[52]. 

c. ABSTRIPS 

Sacerdoti's ABSTRIPS planner extends STRIPS to consider levels of abstraction 

in which some operators are more critical than others [55]. ABSTRIPS, presented in 

1974, is a hierarchical linear planner. Sacerdoti commented on the inability of the 

heuristics-based approach of STRIPS or GPS to solve reasonably complex problems, 

and proposed a means for determining between important information and mere details. 

Through the use of an abstraction hierarchy, problems can be solved at high-level of 

abstraction, and then the lower-level details can be worked out. If for some reason the 

details cannot be arranged correctly, re-planning can be performed at the higher levels. 

One advantage to this approach is that dead ends can be determined early and removed 

from consideration. Knobloch would later show in an analysis of ABSTRIPS that in 

cases where the independence assumption on preconditions did not hold, ABSTRIPS 

would actually degrade performance [56]. 

d. NOAH 

Sacerdoti's Nets of Action Hierarchies (NOAH) system used a partial order to 

represent the structure of a plan and implemented a more elaborate set of ordering 
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constraints that could resolve different classes of conflicts [57]. NOAH, presented in 

1975, is a hierarchical non-linear planner. NOAH uses a least-commitment strategy 

based on a hierarchy of abstract to concrete operators. This hierarchy is formed into 

what Sacerdoti calls "procedural nets." NOAH also has "critics" that examine the plan 

to resolve conflicts, eliminate redundant preconditions, and deal with unbound variables. 

NOAH suffers from the problem that it may commit to one of several constraints and is 

unable to backtrack to repair a failed plan. 

e. NONLIN 

Tate's non-linear planner (NONLIN) system, a hierarchical non-linear planner 

presented in 1977, fixed one of the problems with NOAH by providing facilities for 

backtracking [58]. NONLIN keeps a list of all decisions made and has plan- 

modification operators so that faulty plans can be repaired. If a prior decision blocks a 

necessary action later in the plan, the decision point is known and the system can 

backtrack to that point. Also, the alternative decision possibilities are known and a new 

one can be selected. NONLIN was later improved to use dependency directed 

backtracking [49]. 

f. MOLGEN 

Stefik's molecular genetics (MOLGEN) system used a technique he called 

"constraint posting" to consider the interaction of sub-problems [59]. Introduced in 

1981, MOLGEN is a hierarchical non-linear planner that imposes additional constraints 

on variable bindings to help resolve conflicts. MOLGEN does this by providing three 

layers of abstraction.  Goal relations are handled in the strategy layer.  The specifics of 
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the plan are handled in the planning layer. Constraints are dealt with in the design layer. 

Stefik refers to this layered control structure as meta-planning. 

g.   SIPE 

Wilkins' System for Interactive Planning and Execution Monitoring (SIPE) 

system incorporated the ability to construct partial descriptions of planning variables that 

have not been instantiated [60, 61]. SIPE, presented in 1984, generates hierarchical, 

partially ordered plans. This partial description ability imposes additional constraints on 

variable bindings, helping to resolve conflicts. Put simply, when an operator requires a 

particular precondition it sets a flag on that precondition. If two operators that are not 

already ordered try to affect that precondition one or the other is promoted, removing the 

conflict. [49] 

h.  TWEAK 

Chapman's TWEAK system introduced an additional type of constraint on 

variable bindings that forces two variables to instantiate to different objects [62]. 

Introduced in 1984, TWEAK is a non-hierarchical non-linear planner designed to 

address the "scruffy" nature of previous planners. The TWEAK system attempts to 

minimize backtracking by incrementally specifying constraints. The system only has to 

backtrack when a set of constraints becomes inconsistent. Chapman also provided a 

formal language for expressing plans. The TWEAK planner, within its design 

constraints, is provably correct and complete. This correctness relies on the idea of the 

"modal truth" criterion, where a step C that clobbers a proposition P can be followed by 

a step W which re-asserts P before it is required in later steps [49]. 
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i.   WATPLAN 

Yang presented a theory for resolving conflicts after constraint-based plans have 

been generated [63]. His WATPLAN system, introduced in 1992, is an example of a 

hierarchical non-linear planner. Fundamentally, Yang's theory maintains a global 

perspective on conflicts requiring resolution, rather than resolving each conflict 

incrementally. By careful selection of which conflicts are resolved first, and by early 

detection of dead-end plans, less computation is required. The WATPLAN system 

implements this theory by representing conflicts as constrained variables and attempting 

to force a solution to the set of constraints, i.e., making it a formal constraint satisfaction 

problem (CSP). 

F. Planning Under Uncertainty 

Although there are many ways to view planning under uncertainty, there is an 

overview of approaches due to Olawski that is quite appropriate for this research project 

[64]. The following sections provide a review of some of the more notable ideas and 

systems developed for planning under uncertainty. The identification of some of the 

systems is due to Pryor [64] and to Russell [31]. Once again, a chronological 

presentation should suffice to demonstrate the important concepts and advances. 

1.   Overview 

Most of the early planning systems operate in environments where the only 

changes occur in response to actions taken during execution of the plan. This allows the 

planner to develop a plan that will work in predictable ways when executed.  In some 
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domains, however, there are external agents operating on the environment,. In addition, 

the outcomes of actions taken may be probabilistic. Generally, there are four approaches 

to solving the problem of planning under uncertainty [64]. 

In contingency planning, classical planning is extended to develop a single plan 

that will succeed in all circumstances. Of course, this can result in very large storage 

requirements, since every contingency must be accounted for. 

In probabilistic or decision-theoretic planning, where the outcomes of actions are 

stochastic, the planner tries to construct a plan that has a high probability of succeeding. 

This reduces the storage requirement, since not all contingencies are considered, but is 

susceptible to failure since there is no guarantee that particular outcomes will occur. 

Another approach is to interleave planning and execution. In this method, the 

plan is not developed fully in advance. Rather, the plan is developed based on what 

happens during execution. There are different strategies for merging planning and 

execution, but they all have some drawbacks. Execution monitoring and sensing are 

usually very important in these approaches. 

Finally, in reactive planning, the behavior of the planner is controlled by a set of 

reaction rules. Rather than attempt to account for each contingency or try to develop a 

probably successful plan, this method develops a set of rules to guide selection of the 

actions to be taken. This approach is useful in some cases, but often suffers from 

insufficiently specified rules. Execution monitoring and sensing is important in this 

approach as well. 
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2.   Planning Under Uncertainty - The 1970s 

a. PLANEX 

Fikes, et al., presented the planning and executing system PLANEX in 1972 [54]. 

This system worked with the STRIPS planner to control the actions of the Shakey robot, 

and was the first major treatment of execution monitoring. PLANEX used triangle 

tables to allow recovery from partial execution failure without having to completely re- 

plan [31]. 

b. Hacker 

Sussman developed a system called Hacker in 1973 that applied ordering 

constraints called "hacks" on the operators of a plan [65]. This is also a non-hierarchical 

linear planner. The basic idea is to create a plan and then repair it. After a plan is 

generated it is examined for known conflicts. If a known conflict is found it is resolved 

by an associated hack. If a previously unknown conflict is discovered, a new hack is 

created. The addition of new hacks is how the Hacker system acquires new planning 

skills. 

c. WARPLAN 

Warren developed an early contingency planner called, simply, WARPLAN, in 

1974 [66, 67]. WARPLAN-C, a variant presented in 1976, was a small case-based 

reasoning system that used promotion and backtracking to prevent problems like the 

Sussman Anomaly [49]. This planner was based on predicate calculus rather than a 

STRIPS-style action representation and was limited in the number of possible outcomes 
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[64].  Each conditional could only have two outcomes, true or false.  If the first led to 

failure, the second outcome was chosen [68]. 

d. NASL 

McDermott presented the NASL planner in 1978 with the idea of embedding 

problem solving in the theory of action, making a "problem" just an action that cannot 

currently be accomplished [69]. In this way, planning and execution were completely 

unified [31]. Although not provably complete, the NASL implementation did make 

progress towards McDermott's goals of "analytical and heuristic adequacy." 

3.  Planning Under Uncertainty - the 1980s 

a. DEVISER 

Vere added the ability to consider operators and goals that have time windows 

associated with them in the DEVISER system [70]. Introduced in 1983, DEVISER is a 

hierarchical non-linear planner. By using time windows, parallel tasks that have "no 

earlier than" and "no later than" considerations can be handled. DEVISER also handles 

resource consumption during execution of the plan. 

b. PRS 

Goergeff and Lansky developed the Procedural Reasoning System (PRS) in 1986 

to incorporate belief, desire, and intention in the planner [71]. Actions are taken based 

on current desires or goals, beliefs about the environment, and current intentions. This 

avoids overly strong expectations about the environment, overly constrained plans of 

action, and other forms of over-commitment.  One significant effect of this approach is 
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that a current plan can be interrupted to handle a higher priority problem, or the current 

plan can be completely abandoned when beliefs, desires, or intentions change. 

c. PENGI 

Chapman and Agre presented the PENGI game-playing system in 1987 [72, 73]. 

Chapman reported the theoretical difficulties with planning and the inadequacies of the 

symbolic AI model. Agre observed that most activity is 'routine' and requires little new 

abstract reasoning. He proposed the idea that most routine decisions can be encoded into 

a low-level structure that only needs periodic updating. This approach was implemented 

in the PENGI system [74]. 

d. Universal Plans 

In 1987, Schoppers presented the Universal Plans approach to reactive planning 

[75]. Schoppers notes that PRS deals with the means to achieve goals, but does not 

examine situation-dependent adoption and abandonment of goals. His idea is to build a 

goal-directed "universal plan" that can produce appropriate behavior in unpredictable 

environments. This universality is gained by producing a number of reaction rules that 

describe what to do if a particular condition occurs. Russell notes that this approach is 

really just a rediscovery of the idea of policies in Markov decision processes [31] 

e. IPEM 

Ambros-Ingerson and Steel developed the integrated planning, execution, and 

monitoring (IPEM) system in 1988 [76]. This was the first system to smoothly integrate 

partial-order planning and planning execution [31]. IPEM operates on the principle that 

steps are only executed when no further planning is possible.   If execution of a step 
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enables further planning, the new planning will be exhausted before the next step is 

taken. Two later planners, XII [77] in 1994 and Sage [78] in 1995, will use the same 

operating principle [64]. 

f. ADL Representation 

Pednault described the Action Description Language (ADL) in 1989 [79]. ADL 

is syntactically similar to STRIPS, but allows for a more powerful specification of 

preconditions and effects. One advantage of this representation is that it is domain- 

independent and allows the knowledge base to be built dynamically from the domain, 

rather than having the knowledge hard-coded as actions [80]. As such, it is well suited 

as a foundation for planners that operate under uncertainty. 

g. Situated Control Rules 

Drummond presented a two-stage analysis in 1989 that synthesized situated 

control rules (SCRs) [81]. Drawing on Schopper's universal rules, SCRs characterize the 

performance of possible actions by an agent based on its current environment. The idea 

is that both an executor, which runs the plan, and a projector, which analyzes the plan, 

accepts a plan net. The projector produces the SCRs based on predicted situations, and 

the executor checks to see if any SCRs have been developed for the current situation. 

h.  BUMP 

Olawsky and Gini investigated the effects of different plan and execution 

interleaving strategies in designing their basic University of Minnesota Planner (BUMP) 

system in 1989 [82]. The authors examine three approaches for incorporating sensing 

into planning.    One approach is to plan for all contingencies, that is determine all 
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possible sensing results and plan for that eventuality. This is very expensive in terms of 

storage of the plan space and processing time. Another approach is to form a complete 

plan based on an assumed value of the sensor reading. This strategy is less expensive, 

but if any of the assumed sensor readings are incorrect, the plan will most likely be 

invalid and require re-planning. The third approach is to defer planning decisions that 

require sensor information until the information is available. This approach avoids some 

planning that would end up discarded, but may require some actions that were already 

executed to be undone. If those actions are not reversible, the plan may be invalid. 

The BUMP system focuses on the third approach, and the authors develop two 

strategies for deferred planning. In the Continue Elsewhere strategy as much 

preplanning as possible was performed. In the Stop and Execute strategy, goals defined 

in terms of sensor readings were executed as soon as they were encountered. Neither 

strategy was shown to be better than the other, since both strategies sometimes produced 

invalid plans. [64] 

i.   O-PLAN 

Täte introduced the open planning (O-PLAN) architecture in 1989 [83], and 

Currie and Täte described it in great detail in 1991 [84]. The O-PLAN architecture 

started out as a derivative of NONLIN used to support research and development into 

planning systems, with a focus on coordinating planning and execution effort. It uses a 

mixture of artificial intelligence techniques and numerical techniques from operations 

research. O-PLAN uses a task formalism (TF) to describe the domains in which it is 

asked to operate. The main contributions of this architecture lie in the control of search. 
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The O-PLAN architecture has been applied in many domains and remains an active 

research platform at the University of Edinburgh Artificial Intelligence Applications 

Institute and has generated many papers [85]. 

4.   Planning Under Uncertainty - the 1990s 

a. SNLP 

Systematic non-linear planners (SNLP) appeared in 1991 [86, 87]. SNLP is, by 

definition, non-linear, and uses lifting (allowing actions with variable expressions) as 

part of a least commitment strategy. An SNLP planner is also systematic, meaning that 

no plan or partial plan is ever examined more than once. 

b. Pedestal 

McDermott presented the PEDESTAL system in 1991, also [88]. Pedestal was 

the first (partial) implementation of ADL [31]. 

c. UCPOP 

Penberthy and Weld developed a "Partial Order Planner whose step descriptions 

include Conditional effects and Universal quantification" in 1992 [89]. UCPOP (the 

name is an anagram of the capital letters in the name) operates with actions that have 

conditional effects, universally quantified preconditions and effects, and universally 

quantified goals. The planner uses "threats" to preconditions to trigger a resolution, 

either by reordering steps in the plan, posting additional sub goals, or adding new 

constraints. UCPOP uses the ADL representation. The authors can develop a 

completeness theorem for the planner. They prove that UCPOP is sound and complete 

and give several examples of how it solves problems described in earlier literature. 
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d. SENSp 

Etzioni, et al., developed the SENSp planning algorithm in 1992 [90]. This 

algorithm is based on the UCPOP system and extends the work done on the SNLP 

planner to allow generation of correct plans in the presence of incomplete information. 

The SENSp planner operates on UWL, an extension to the STRIPS language designed to 

facilitate planning with incomplete information. The UWL extensions include 

annotations to preconditions and post conditions, the use of run-time variables, and 

extended truth values. The result is a provably correct algorithm for planning without 

complete information. 

e. CNLP 

Peot and Smith presented the Conditional Nonlinear Planning (CNLP) approach 

in 1992 [68]. CNLP extends the SNLP approach to allow for conditional planning. 

STRIPS operators are used, but extended to become conditional actions that may have 

several different mutually exclusive sets of outcomes. Although an interesting approach, 

CNLP suffers from a rapid expansion of complexity as more actions are added. 

f. PRODIGY 

Carbonell, et al., worked on the PRODIGY system, first reported in 1992 [91, 

92]. PRODIGY explored two advantages of interleaving execution with planning: 

reducing overall planning and execution time and incorporating information from the 

environment into the planner's knowledge of the world. Stone and Veloso extended the 

PRODIGY algorithm to include prompts from the user and information that results from 

the execution of the user's direction [93]. 
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g.   RESUN 

Carver and Lesser used partial hierarchical planning in the RESUN system, 

presented in 1993 [94]. RESUN interleaves planning and execution, and uses scripts and 

dynamic information gathering to refocus the problem-solver. Plan refinements are 

controlled by plan-specific heuristics, and the system can dynamically shift the focus of 

its attention. 

h.  Cost-Effective Sensing 

Hansen presented an approach in 1994 that includes the cost of sensing into the 

determination of which actions to take in the plan [95]. He acknowledges that sensing 

after every action is acceptable so long as there is no cost associated with the sensing. If 

there is a cost associated with sensing it is reasonable to assume that sensing at intervals 

would be more cost-effective. A simple approach is to sense at constant intervals. 

Hansen notes that in many realistic environments some actions have different associated 

risks and/or error prone-ness associated with them. In such environments a variable- 

interval may be more appropriate. He presents "a generalization of Markov decision 

theory and dynamic programming in which sensing costs can be included in order to 

plan cost-effective strategies for sensing during plan execution." Although not directly 

applicable to military planning in a complex, adversarial, real-time environment, this 

work does suggest the utility of including an intelligent sensing strategy into a combined 

execution/planning system. 
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i.   ZENO 

Penberthy and Weld presented the ZENO planner in 1994 to handle actions that 

occur over long periods of time [96]. Deadlines for action commencement or conclusion 

are accounted for, and simultaneous actions that don't interfere with each other are 

allowed. ZENO is able to handle situations involving continuous change. 

j.   XII 

Golden, et al., reported on the XII planner in 1994 [77]. This planner is based on 

the UCPOP algorithm, but interleaves planning and execution in the same fashion as 

IPEM. XII does not rely on the closed world assumption. Rather, it introduces the local 

closed world information (LCW) concept, which allows the planner to solve universally 

quantified goals in the presence of incomplete information. To do this, an assumption 

must be made that information that is available is correct. The action language is 

strongly related to ADL and to UWL 

k. DRIPS 

Haddawy and Suwandi implemented the decision-theoretic refinement planning 

system (DRIPS) in 1994 to reason with a probabilistic temporal world model [97]. 

DRIPS tries to maximize expected utility in terms of deadline and maintenance goals 

and the consumption of resources. Basically, the idea is to develop abstract plans, 

determine their associated utility, and prune away the known sub-optimal plans. This 

has the effect of focusing the planning effort onto plans that have a higher expectation of 

success. 
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1.   Interval Reduction Strategy 

Cohen, et al., discuss a technique for determining an efficient monitoring interval 

they call the Interval Reduction Strategy [98]. They present data on how well a 

monitoring policy based on this strategy performed in monitoring "Cupcake Problems." 

The Cupcake problem, due to a child development study by Ceci and Bronfenbrenner 

[99], involves a deadline or goal that must be met and determination of when the agent 

(software, human, bumblebee, etc.) should monitor the state to come as close to the 

deadline or goal as possible without overstepping it. The Interval Reduction Strategy 

can help determine an efficient monitoring schedule (in one- and two-dimensional 

Cupcake Problems) but relies on the agent being able to sense the entire state at each 

monitoring attempt and makes no allowance for the cost of monitoring. 

m. BURIDAN 

Kushmerick, et al., developed the BURIDAN probabilistic planner in 1994 [100]. 

Jean Buridan was a French philosopher credited with originating probability theory. 

This system uses a probability distribution over possible world states to model imperfect 

information. Actions are also modeled with probability distributions over changes to the 

world. Rather than attempt to arrive at a provably correct solution, BURIDAN builds a 

plan that is sufficiently likely to succeed, based on a user-specified threshold. The 

authors discuss a search control mechanism involving monitoring of the plan execution 

that can identify the point at which a probability of success drops too low. They state 

that the planner could use this information for more refinement of the plan. The authors 

also note that more work needs to be done in this area. 
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C-BURIDAN is a contingency planning version of BURIDAN developed by 

Draper, et al., in 1994 [101, 102]. The planning representation and algorithm are 

extended to include information-producing actions and the ability to exploit this new 

information. C-BURIDAN combines the new ability to model imperfect sensors with a 

framework for contingent action based on the CNLP algorithm. One interesting 

mechanism in the system is the idea of "branches" that connect information-producing 

actions to subsequent actions that require that information. The resulting system can 

build plans in which different actions are executed depending on the outcome of 

previous actions. 

n.  PLINTH 

Goldman and Boddy presented the PLINTH conditional linear planner in 1994 

[103, 104]. This system is based on McDermott's PEDESTAL system and treats 

contingency plans much the same way that CNLP does. [64]. PLINTH accommodates 

conditional actions, whose effects cannot be predicted with certainty. Noting that 

conditional linear planning is simpler than conditional non-linear planning, the authors 

applied PLINTH to planning image processing actions for NASA's Earth Observing 

System. 

o.   Dynamic Programming Envelopes 

St. Amant, et al., describe the idea of "envelopes" in dynamic programming to 

monitor the progress of an agent in accomplishing its goal [105]. Essentially, the 

envelope represents the portion of the state space in which the goal can still be reached. 

When the agent moves across the boundary of the envelope it is certain to fail in 
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achieving its goal. The important idea here is that the agent ought to be aware of the 

envelope and avoid the boundaries. This approach assumes that the agent is monitoring 

its own progress towards accomplishing the goal and constructs its own plans. The idea 

of watching progress, being concerned with how close the actual state is to known 

failure states, and initiating re-planning is central to the Execution Monitor and Planner 

used in this research. 

p.  COLLAGE 

Lansky examined an approach to domain representation and planning based 

strictly on actions and their interrelationships, rather than on state-based goals and 

preconditions [106]. This "action-based planning" approach was implemented in the 

COLLAGE system. COLLAGE is essentially a constraint-satisfaction planner, but the 

constraints are on actions that can be taken. 

q.  Active Decision Postponement 

Joslin and Pollack examined the effects of considering postponed decisions in 

current decisions in 1995 [107]. They note that planning systems that postpone 

decisions and don't consider them in current planning (which they call passive 

postponement) often make incorrect decisions causing simple tasks to become 

intractable. They propose active postponement, a technique that includes constraints 

from postponed decisions in current reasoning about the plan. This technique can break 

the problem into sub-problems that are easily solvable by standard constraint satisfaction 

methods. They caution, however, that there are many problems where an early- 

commitment strategy yields a more efficient solution. 
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r.   Sage 

Knoblock developed the Sage system in 1995 to address several problems arising 

in gathering information from large networks of distributed information [78]. These 

problems include replicated information, parallel execution of actions, failure of actions 

due to problems with remote resources, and the need to interleave sensing with 

execution. The Sage planner builds extends the UCPOP algorithm to support 

simultaneous action execution and to integrate planning and execution. When an action 

fails, Sage re-plans to remove the failed portion of the plan and work around it. 

s.   <I-N-OVA> 

Täte presents the Issues - Nodes - Orderings/Variables/Auxiliary (<I-N-OVA>) 

approach to representing and manipulating plans[108]. This approach was intended to 

assist in connecting different work on formal planning theories, practical planning 

systems, and process management methodologies, and is based on representing plans as 

a set of constraints. The constraints are of three general types: issues, nodes, and 

detailed constraints. The detailed constraints are ordering constraints (temporal or 

metric), variable constraints, or auxiliary constraints (point in the plan, or range across 

the plan). 

t.   Cassandra 

Pryor and Collins presented details on the Cassandra contingency planning 

system in 1996 [64, 109]. Cassandra is a SNLP partial-order planner able to develop 

plans that allow for uncertainty. Modified STRIPS operators represent actions, and each 

possible effect has  an  associated set of secondary preconditions  that define the 
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conditions that will cause that particular operator to be selected. Cassandra makes a 

distinction between decision steps and information gathering steps, and distinguishes 

between the possibility of performing and action and the necessity of performing it. 

Cassandra exhibits the same problems of exhaustive search and requires effective search 

heuristics to keep even simple problems from becoming impractical to solve. 

G. Military Modeling, Simulation, and Planning 

Planning under uncertainty becomes even more complex when there is an 

adversary actively trying to defeat the plan. The complexity increases even more in the 

military planning domain, where the outcomes of actions are very probabilistic. Some 

approaches to dealing with this complexity have been proposed and some systems have 

been developed to deal with portions of the problem. Artificial Intelligence techniques 

and simulation are being exploited to tackle these sub-problems. This section provides a 

review of the approaches and the systems, again in roughly chronological order. 

1.   Automation of Command and Control Processes 

Partridge stated the need for automated support throughout the spectrum of 

military operations, and proposed four distinct modules to help the human decision- 

makers [110]. These modules are a Mission, Enemy, Terrain, Time, and Troops 

(METT-T) evaluator, a course of action optimizer, a rehearsal support tool, and a rapid 

decision-maker. The decision-maker would use the course of action produced by the 

war-gaming process as a baseline, accept situation updates as the battle progresses, and 

use a genetic algorithm optimizer to recommend decisions. 
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Kelly, et al., describe a prototype that implements a Command and Control 

Decision-Support Architecture developed in a layered distributed object-based 

environment [111]. The lowest layer is the Data Model that maintains the objects 

representing the course of action planning information. The next layer up is the 

Controllers layer that handles object creation and the command and control war-gaming 

engine. At the top is the Applications layer that provides the user interface into the 

system. The architecture uses a publish-and-subscribe methodology to ensure any 

modules that require information from the system can get it as needed. Kelly also 

describes how their prototype demonstrates support for four decision support concepts: 

COA Development, COA Analysis, Execution Monitoring, and COA visualization. 

Seligman, et al., discuss an example of execution monitoring applied to solving 

the dilemma between overloading users with information and excluding too much 

information [112]. They describe a decision-centric information monitoring (DCEVI) 

approach that identifies information that is critical to known decisions, places a higher 

priority on that information, and filters the available information to ensure these "critical 

information needs" rise to the top [113]. Their prototype system, called LOOKOUT, 

applied the DCIM model to the logistics domain and demonstrated performance gains in 

extraction of useful and timely information. 

Wynn, et al., present a mechanism for supporting the COA visualization concept 

by simultaneously producing a three-dimensional and two-dimensional visualization of a 

course of action under development for consideration by the staff [114]. Such 

visualization allows all of the planners to retain a common understanding of the COA. 
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The Army Modeling and Simulation Office (AMSO) has identified technology 

voids in the areas of automated decision aids, COA tools, and tactical information aids 

[115]. This project could support all three of the areas mentioned. 

The Army Research Laboratory (ARL) is generally focusing on developing the 

infrastructure to support command and control decision-making (visualization, software 

agents, collaboration tools, multi-modal interaction, etc.) [116]. ARL is also funding a 

research program in Intelligent Information Processing for Visualization [117]. 

Kirzl examines how the rapid acceleration of information exchange on the 

battlefield will impact command and control processes and increase the speed and 

quality of decision making [118]. He identifies "adaptive decision making" based on 

information systems automating simple and compound/contingency decisions, leaving 

the decision maker and staff to focus on complex decisions. He also envisions 

information systems facilitating "merged planning and execution processes." He extends 

his analysis to include "measures of merit" for the assessment of future command and 

control. One of these measures of merit is "more explicit uncertainty management," in 

which information is flagged as incomplete or is provided with a confidence tag related 

to the ground truth. Several of the measures of merit relate to adaptive decision making, 

and include the capability of decision support tools to generate and assess alternative 

futures and courses of action, a rapid plan/re-plan capability, and contingency rich 

course of action analyses and plans. 

Tolk identifies the requirements for simulation systems used as part of a decision 

support system [119].   Among these requirements are that all command and control 
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processes must be adequately modeled, command agents and computer generated forces 

have to be used, the initial state of the simulation must be generated from actual data 

from the command and control system, and adequate and validated data must be 

available for the simulation system. 

The Defense Modeling and Simulation Office describes its vision for using 

modeling and simulation in support of planning in the Defense Modeling and Simulation 

Master Plan [120]. It states that "M&S will be used to assist in the development and 

evaluation of operational plans at all levels. Significantly, "decision-makers will be able 

to simulate and evaluate the consequences of alternative courses of action during 

deliberate and crisis action planning." 

The Defense Advanced Research Projects Agency completed a proof of principle 

pilot test on a Course of Action Analysis (COAA) system [121]. This system examines 

one of the initial steps in provided integrated support for continuous planning and 

execution of military operations. The focus of the COAA project is studying techniques 

for improving the COA analysis step and on aiding the decision-makers in understanding 

of alternative COAs. The current scope of the project ends with COA comparison, but 

future work in plan generation and monitoring could extend the scope to the entire 

spectrum of military operations. One of the lessons learned in the COAA project was 

that COAA tools must be tightly integrated with the planning process rather than being 

stand-alone tools. Another lesson learned was that a common plan representation is 

critical to integrate automated planners and decision support tools. Also, the COAA 

project highlighted how efficient analysis tools can fundamentally change the planning 
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process.   One of the open research issues identified by this project is the addition of a 

full set of doctrinally correct military tasks to make the system more robust. 

Alberts discusses the future of Command and Control in an environment where 

U. S. forces have "Dominant Battlespace Knowledge" (DBK) [122]. He points out that 

DBK can yield "option dominance" in which friendly forces can generate options and 

respond faster than the enemy forces. Alberts identifies some of the prerequisites for 

option dominance as understanding the current situation, the generation of options to be 

considered, analysis of those options, and a command decision to select an option. Of 

course, the key point is that U. S. forces must be able to accomplish all of these 

prerequisites faster than the enemy can react. He also notes the requirement for "a more 

streamlined process ... to satisfy the time-critical nature of this task." One particularly 

insightful point is that if U. S. forces can demonstrate option dominance to potential 

adversaries it may be possible to preempt enemy actions and prevent combat. 

Brandt explores some of the issues involved in linking modeling and simulation 

with command and control systems [123].   He notes how establishing well-designed 

links between the two can enhance course of action development, analysis, and selection, 

as well as support the rehearsal process. 

2.  Military Simulation 

Kang provides a good review of military simulation [124], the details of which 

will not be pursued here. However, it is appropriate to consider several issues in military 

simulation. Simulations in the U. S. military can be used for analyzing strategy, 

operations, and tactics, but are primarily used for training.   For example, the Theater- 
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Level Campaign Modeler [9] and the Institute for Defense Analysis Tactical Warfighter 

(IDA TACWAR) [19] are strategic level simulations. The MODSAF system is an 

example of a tactical level simulation [125]. 

Training simulations are used to train the gamut of individual level skills through 

unit level activities. For example, individual skill trainers include devices used to train 

individual marksmanship before using live ammuniction. Others are used to train crews, 

such as helicopter simulators and Unit-Conduct of Fire Trainers (U-COFTs). At the unit 

level, Janus (individual vehicle level through company or battalion) [126], BBS 

(Brigade-level and below), and CBS (Corps-level simulation) are used to aid in training. 

However, in a classic example of the inappropriate use of simulations mentioned earlier, 

the military is applying these last three systems as training aids when they were really 

designed for analysis. Several new initiatives, such as WARSEVI, are underway [127]. 

One of the significant problems the military faces is that training simulations 

require large facilities and a great number of personnel (contractors and soldiers) to run 

them. Another problems is that so many simulation systems have been developed for (or 

applied to) training and they are all proprietary. The military is addressing this problem 

by using a Distributed Interactive Simulation (DIS) protocol to allow these different 

systems to work together [128], but this is a "patch" not a solution. 

Since the military is such a large organization, simulations must be targeted at 

the appropriate level. For example, it would be inappropriate to produce thousands of 

Janus systems and link them together to form a Corps level simulation.   It is more 
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appropriate to aggregate lower levels.     Hoeber presents  a hierarchy of military 

simulations based on the level of aggregation [19]. 

Identifying the problems with current military simulation is simple, particularly 

when none of them fit neatly into the support of ongoing operations. Surdu identifies the 

desired capabilities for a military on-line simulation [129], most of which were 

supported by the Blais' work on the MEWS system [130]: 

□ The simulation must be executable from a single workstation by a single 

user. 

□ The simulation must be executable on low-cost, open-system, multi- 

platform environments. 

a   The simulation must be capable of running in multiples of wall-clock 

time (i.e., real time and much faster than real time). 

Q   The simulation must be able to receive and answer queries from external 

agents, 

a   If needed, multiple simulations should be capable of operating together. 

a   The simulation should be based on an aggregate-level model. 

Q   The simulation should interface directly with military command and 

control systems [7] 

3.   Simulation Support for Military Planning 

Lee and Fishwick proposed integrating simulation into the planning process as a 

new way to perform intelligent reactive planning [131]. A common sequence is 

apparent in many strategies for handling the complexity of reasoning in reactive 
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planning. First, candidate plans are generated, and second, they are evaluated. In 

'Simulation-Based Planning' simulations are used instead of rules to evaluate generated 

plans. Simulation-based planning has application in the military planning arena because 

it lends itself to adversarial and multi-agent planning. 

Lee's dissertation describes how Simulation-Based Planning extends planning 

[132]. Simulations, rather than analytical solutions, are used to handle probabilistic 

uncertainty. The simulations necessarily enable a higher level of detail, resulting in 

plans that are much more closely related to the actual execution. Lee and Fishwick 

further describe the embedding of simulation to resolve the actions of the entities before 

committing to a plan [133]. Entities are individually simulated so that all of their 

possible responses to the proposed plan can be considered. 

Anderson segregates simulation from the planner as an approach to dealing with 

real-time planning situations [134]. He developed the Multiple Event Stream Simulator 

(MESS) to provide a domain-independent simulation system that could be queried by a 

separate planner. Although the focus of MESS is on the simulation piece, Anderson 

identifies how useful it is to have the planner act as a separate agent that can monitor the 

execution of the plan, scrap failed portions of the plan, and use simulation to conduct re- 

planning. 

Surdu, Haines, and Pooch describe the requirements for operationally focused 

simulations [129]. The simulation must be able to run on a single workstation with a 

single operator. It must run on low-cost, open systems, multi-platform environments. It 
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must be capable of running in multiples of wall-clock time. Finally, it must be able to 

receive and answer queries from external agents. 

The benefits that can be gained from using simulation to support planning have 

been identified by Fishwick, Kim, and Lee., [135]. They describe the goal of allowing 

simulation to be used in real-time, where the simulation is embedded within the 

decision-making system. The primary advantages of such a system are the ability to run 

in much faster than real-time, a general utility for obtaining answers to "what if" 

scenarios, and the ability to tailor the detail and execution. 

Blais and Garrabrants describe the Marine Air-Ground Task Force Tactical 

Warfare Simulation (MTWS) and demonstrate how it fits the commander's need for a 

planning and rehearsal system to support operational planning [130]. 

Barone and Roberts discuss potential uses for simulation in military planning 

[136]. Their SimLink project connected the Battlefield Planning and Visualization 

(BPV) concept demonstrator with the Eagle combat simulation system. One of their 

suggestions is that a simulation could be run in parallel with the actual operation to 

provide an automated execution monitoring system that would identify divergence from 

the plan and initiate re-planning. A key contribution of this paper is their discussion of a 

"C2 Schema" which forms a master representation of the plan that can be translated into 

plan representations for both the BPV demonstrator and the Eagle Simulator. 

Sheehan, et al., describe the Order of Battle (OB) Data Interchange Format (DIF) 

that the Defense Modeling and Simulation Office (DMSO) has proposed to provide a 
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consistent and easily replicated representation of forces between simulations [137]. OB 

data will be one of several components in the Plan Description. 

The director of the Army Modeling and Simulation Office (AMSO) described the 

difference between using simulations to examine COAs after they were manually 

produced and a large-scale simulation capable of developing its own courses of action 

[138]. There are difficulties related to the size of the solution space, and using 

simulations as a "solution solver" to determine effective COAs remains a major 

technological challenge. Although small-scale efforts have been produced, there is no 

major system under development. He identifies a twenty-year gap before such major 

systems are in place. 

4.   Software Agents in Adversarial and Military Planning 

Software agents are notoriously difficult to define, since the title can be applied 

in many ways. Russell and Norvig define an agent as "anything that can be viewed as 

perceiving its environment through sensors and acting upon that environment through 

effectors" [31]. Franklin and Graesser provide a taxonomy of agent types, of which 

software agents are one branch, and a description of agent properties. Among these 

properties are reactivity, autonomy, goal-orientation and temporal continuity [139]. 

Lejter and Dean identify several agent control strategies [140]. Among these is 

the "request-response" strategy in which the agents are organized into a hierarchy. The 

higher up agents handle the most complex tasks, and break them up into subtasks for 

execution by agents in the next level down. 
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Spector and Hendler describe the supervenient Agent Hierarchy for integrating 

planning and reaction in complex, dynamic environments [141]. In summary, 

supervenience transmits goals down the agent hierarchy and requires lower-level agents 

to report sensor acquisitions and other information up the hierarchy. 

Bouche, et al., describe the use of a "command agent" to simulate the decision- 

making processes at various command levels in an operational simulation [142].  The 

agents, which represent commanders at different echelons, develop Courses of Action 

(COAs) that are then run through a simulation. The results are used to refine the COAs. 

5.   Adversarial / Military Planning Systems 

a. PHOENIX 

Cohen, et al., presented the PHOENIX system in 1989 [143], and later expanded 

it into an adaptable planner for a complex, real-time environment. PHOENIX uses a 

least-commitment strategy they call "lazy skeletal refinement" and a combination of 

reactive and deliberative planning components. Another key piece is a monitoring 

construct that gives advance warning when a plan is failing [144]. This advance notice 

is useful in adapting the plan as it executes [145] 

b. Applegate's Architecture 

Applegate, et al., examined the additional complexity that AI planning 

techniques face in adversarial situations [146]. Among these problems are that the 

environment is unpredictable and dynamic, that the plan must be adjusted dynamically 

during execution of the plan, and that the presence of an adversary must be considered 

during plan development. This means that the AI planner must make assumptions about 
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the outcome of events, and re-plan as necessary. These assumptions can then be 

monitored during the execution of the plan. 

Applegate also discusses an approach to Plan Representation that places "less 

significance on states of the world than on the derivation and persistence of desired 

conditions in the world. Leaves in the plan representation represent orders to units rather 

than discrete executable actions, but still require many of the aspects of traditional AI 

planners (list of actions, temporal constraints, variable bindings, and preconditions). 

Applegate's approach assumes agents that represent units, which is different than the 

approach taken by this research, but many of her points are still relevant. For instance, 

intelligence gathering gains added importance, since knowledge of the actual situation 

will trigger re-planning. 

Applegate's scheme handles simultaneous execution of actions by maintaining a 

"play-list" in which all simultaneous activities are concurrently considered. Active plays 

are those with a start time prior than the current time and an end time later than the 

current time. These plays are associated with the actions that will be taken by the unit 

agents, and planned plays are kept in the play list until they are invalidated. 

c.   CYPRESS 

Wilkins and Myers in 1994 describe the CYPRESS system that provides the 

framework for the creation and control of taskable, reactive agents [147, 148]. Taskable, 

reactive agents have two main components: an executor and a planner. The executor 

constantly monitors the world state for situations requiring it to take action. The planner 

synthesizes sequences of actions that serve as a template for later refinement by the 
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executor.   Communication and coordination between the executor and the planner are 

accomplished through the ACT formalism [148] 

d. Trajectory Management 

Gilmer and Sullivan, beginning in 1996, discuss their work on management of 

multiple outcomes resulting from an event in a stochastic simulation [149]. Rather than 

allowing trajectories along every possible outcome, they restrict the possible outcomes 

to a set of representative outcomes with associated probabilities. Their more recent 

work includes assessment of different implementations, including a discrete event 

simulation approach, a tail-recursive approach, and a state duplication approach [150]. 

They have reported positive results in converging towards the set of representative 

outcomes, but caution that there are still some limitations to the approach [151]. Al- 

Hassan has investigated the use of measures of effectiveness to prevent the problem of 

discarding interesting outcomes that have low probabilities [152]. The modified system 

is designed to be sensitive to loss ratios while determining representative outcomes. 

Their most recent work has focused on recursive simulations, wherein the simulation 

entities themselves invoke instances of the simulation to explore the outcome of 

decisions [153]. 

e. Adversarial Planner 

In 1997, Elsaesser described an Adversarial Planner (AP) which addresses the 

complexity of battle planning by limited the problem space through determination of the 

adversary's counterplans, monitoring of execution, and replanning when the original plan 

is in jeopardy of failure [154, 155].  AP uses task decomposition planning to develop a 
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complete plan in layers, and defers expansion of the plan until it is required. Counter- 

planning is used to represent possible adversary plans and determine ways to defeat 

them. 

f. FOX-GA 

FOX-GA, developed by Hayes and Schlabach in 1998, is a tool that uses course- 

grained representations in order to provide timely COA generation and assessment 

[156]. Its relation to this work lies in its use of a genetic algorithm for allocation of 

assets, but at the higher brigade COA level [157]. FOX-GA will be transitioned to the 

Communications-Electronics Command (CECOM) to be part of the Command Post XXI 

Advanced Technology Demonstration [158, 159]. 

g. FGDO 

Army Major Robert H. Kewley, Jr., combines fuzzy inference systems with 

genetic algorithms in 1999 to form a fuzzy-genetic decision optimization (FGDO) 

system that he applied to the battalion-level tactical course of action (COA) development 

problem [160]. In his system a fairly sophisticated tactical simulation module is used to 

evaluate the outcome of proposed COAs. The performance of each COA is fed into a 

fuzzy preference module. From this module an overall fitness for the COA is fed back 

into a genetic algorithm module that continues to produce modified COAs. Kewley's 

approach differs from this project in that he focuses at the higher (battalion) level course 

of action and uses a sophisticated simulation. Naturally, it takes much longer to solve 

such a complex problem. This project, although it could be used at battalion level, is 

focused more at the individual tank or platoon level and uses a simple combat results 
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mechanism. The similarity between the two projects lies in their use of genetic 

algorithms to determine better outcomes. Also, Kewley's project recommends future 

work on biasing the initial selections, which is a fundamental part of this project. 

h.  GRASP 

Atkin, et al., starting in 1998, describe the use of a multi-goal partial hierarchical 

planning approach to planning in continuous, uncertain, adversarial real-time domains 

[161]. They developed the General Reasoning using Abstract Physics (GRASP) planner 

to address four problems encountered by planners in such domains: resource allocation 

among multiple goals, determining plan operator effects, reacting to and exploiting 

unforeseen events, and generating workable plans quickly. 

The GRASP planner uses a combination of several techniques to address these 

problems. First, plans are not generated from atomic planning operators at run-time. 

Rather, a general solution is developed and expanded. Second, a simulator is used to 

establish the world state after a plan has executed. Third, state boundaries are created 

dynamically as plans are executed using critical points to mark the boundaries. These 

critical points are generated by simulating forward to determine the post-conditions of 

execution of the plan to that point. Fourth, the planner operates at a fairly high level and 

relies on plan operators to be competent and cope with unforeseen events. 

Atkins's GRASP planner extends the partial hierarchical planning framework by 

explicitly representing multiple goals and integrating the planner into an action 

hierarchy, Hierarchical Agent Control (HAC), that handles resource arbitration and 

failure recovery [162, 163]. HAC provides a general skeleton for controlling agents and 
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for management of sensing information, scheduling of actions, and message passing. 

The action taken at each level, following Spector's supervenient concept, is that 

messages from lower-level actions are processed, the state is updated, new lower-level 

actions are scheduled, and any required messages are sent up to the parent. HAC 

manages resources by leaving the allocation of sources between lower-level actions up 

to the higher-level action. In HAC, a forward simulation process evaluates plans that 

denote an action that satisfies a goal. In this way, the planner determines what would 

happen if the plan were executed. Atkin, et al., have implemented their approach in the 

Capture the Flag development domain [164] 

i.   MEWS 

The modified version of ModSAF (called MEWS) presented by Porto, et al., in 

1999 focuses on platoon-level course of action generation in an environment where two 

competing platoons must encounter each other on the way to their objectives [165]. 

Different goal parameters can be set, such as the importance of timely arrival at the 

objective, the importance of survival, or the importance of eliminating enemy tanks. An 

adaptive algorithm drives the behavior of one or both sides in the conflict, and the 

evolutionary algorithm compares possible tactics based on the success parameters. 

j.   OpSim 

Surdu, Haines, and Pooch [129, 166] developed a system called OpSim in 1999 

designed to monitor the current operation. The result of that research verified the 

feasibility of their implementation of Execution Monitors that use simulation to 

determine the significance of differences between the execution of the operation and the 
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plan. OpSim uses a dynamic hierarchy of rational agents, called Operations Monitors to 

compare the current situation with the plan. The top-level Operations Monitor informs 

the decision maker when the success of the plan is at risk. 

k. SIPE-2 

Wilkins and Desimone applied the SIPE-2 planner to the military domain by 

building the System for Operations Crisis Action Planning (SOCAP) [167]. Within the 

sub-domain of military transportation, this system successfully generated employment 

and deployment plans for getting combat and support forces to the desired locations at 

the right time. 

1.   Tactical Event Resolution 

Hill and Miller successfully combined software agents, crisp reasoning, and a 

genetic algorithm to resolve tactical events [168]. This 1999 work verified the 

applicability of genetic algorithms to generation of options in a course of action with a 

niching strategy based on battlefield function biases as a heuristic to restrict the initial 

populations to those with a reasonable expectation of success. 

m. DARPA SUO/SAS 

Täte, et al., reported on their application of the O-PLAN architecture to Army 

small unit operations in 2000 [169]. The system they developed is called the Defense 

Advance Research Projects Agency (DARPA) Small Unit Operations (SUO) Situation 

Awareness System (SAS). SUO/SAS demonstrates how artificial intelligence planning 

techniques can be useful in building a planning and decision aid for small units operating 

in urban terrain. 
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CHAPTER III 

DESIGN 

A. Methodology 

In this chapter the methodology for an Anticipatory Planning Support System 

(APSS) is presented and the design of the system described. See Figure 1 for a depiction 

of the methodology. The methodology has been implemented in an APSS prototype to 

enable evaluation of the methodology and its subordinate processes. For clarity, 

components of the methodology are capitalized and italicized. 

Data from the 
current, real 

operation 
(e.g., ABCS, GCCS, etc.) 

Real information 
plus "dead reckoned" 

information 

Plan Information 

Control Information 

Figure 1: Anticipatory Planning Support System Methodology 
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Information collected during a military operation is processed through a World 

Integrator to generate a World View that provides the Actual State of execution. A 

Planning Executive controls the anticipatory planning process and the use of system 

resources. A Plan Description represents the plan tree and manages modifications to it. 

Execution Monitors compare the Anticipated State of the plan at a particular Node with 

the Actual State of the execution and notify the Planning Executive if there is a potential 

problem. 

The Planning Executive launches Planners to generate and evaluate new 

Branches. A Branch Generator uses a genetic algorithm combined with inference 

mechanisms to produce new Branches. A Branch Evaluator examines a Branch to 

provide Planners and the Planning Executive with viability measures and outcome 

confidences. The Execution Monitors and Branch Evaluators use simulations to 

perform their evaluations. 

The human planners will not accept or rely on the system unless they understand 

the system's "logic." If the recommendations of the system "make sense" to the human 

planners, or if the system provides a reasonable explanation capability, then it is more 

likely to be accepted and used. Regardless of how flexible and sophisticated the 

simulation and analysis system is, it still may not provide results that the planner will 

accept. Accordingly, the system provides the means for the human planner to override 

the results with an outcome that makes more sense. This postpones the need to re-code 

the event resolution mechanism or the simulation. 
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B. Capturing and Representing the Actual Situation 

The methodology requires a representation of the Actual State of the operation. 

Surdu and Pooch describe the use of a World Integrator and World View system to 

provide the Actual State [166, 170-172]. The World Integrator and World View involve 

issues in sensor, data, and information fusion. The World Integrator must determine 

when an entity has been unconfirmed long enough that its actions must be dead 

reckoned. When some sensor reports a similar unit, the World Integrator must 

determine whether this is merely the lost unit reappearing or a different unit. These and 

other issues regarding sensor, data, and information fusion are open research issues, and 

are not implemented in this prototype. Rather, a synchronized simulation is used to 

provide specific Actual States to the Anticipatory Planning Support System, stimulating 

the prototype for evaluation purposes. 

1.   World Integrator 

The World Integrator has the onerous task of monitoring the real operation, 

processing that information, and passing it to World View. In some systems, such as the 

Global Command and Control System (GCCS), this may involve querying a database 

[173]. In other systems, this may require "eavesdropping" on the network. The reason 

for this intermediate step is that in real operations, reports on some entities may be 

intermittent. It is the job of the World Integrator to "dead reckon" these intermittent 

reports and pass them into World View. 
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2. World View 

The World View module is a representation of the real operation. In order to 

make the job of the Execution Monitors easier, the representation of the real operation 

and the Plan Description should be as similar as possible. World View receives 

information about the state of the real operation through a series of APIs. It then 

transforms this information into a form that the Execution Monitors can easily interpret. 

Clearly, when an entity has been "dead reckoned," this must be reflected in the 

information that World View presents as the Actual State. 

3. Actual State 

In a real military operation, the Actual State of the operation would be provided 

by real command and control assets, such as the Maneuver Control System (MCS) [174] 

funneling information through the World Integrator into the World View. For the 

purposes of this research, the Actual State is produced by an external mechanism that 

represents the activities of the World Integrator and World View components. A 

separate Plan Description with controlled differences from the Plan Description built by 

the human planner is processed by the external mechanism using a discrete event 

simulation to produce the Actual State. The Plan Description and the simulation in the 

external mechanism must remain synchronized with the Plan Description and 

simulations used by the prototype APSS. 
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C. Representing Entities 

When modeling the domain in which planning occurs, two fundamental things 

must be determined. First, the modeler must identify and define all of the participating 

entities. Second, the modeler must determine all possible interactions between the 

entities and the effect of those interactions on the state of the system. Although the 

anticipatory planning process should be applicable in any planning domain, the focus of 

this research has been limited to the military planning domain. Accordingly, the entities 

of interest are tactical entities and the terrain upon which they operate. 

1.   Tactical Entities 

Tactical entities can be defined in many ways, including their affiliation (enemy, 

friendly, etc.) and their category (unit, obstacle, artillery burst, etc.). Within their 

category, they have several other distinctions. For instance, units have roles (armor, 

mechanized infantry, etc.) and levels (platoon, company, etc.), while obstacles have 

types (area, linear). 

Tactical entities also have different capabilities. Units can move or remain idle, 

and participate in an engagement. Obstacles don't move, but do have build-up times 

before they are effective, and have varying effects on other entities. Artillery bursts and 

obstacles have a limited effective range, whereas units have much larger effective 

ranges. 

Tactical entities also have many attributes that can vary during the course of an 

operation, and therefore can vary in the plan.  Among these are the strength of the unit 
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and the amount of resources on hand.   For the prototype system, only a limited set of 

these attributes, such as strength, fuel, and ammo, is tracked. 

For the APSS prototype several types of units, one type of obstacle, and one type 

of artillery burst are implemented. Although the prototype implements tactical entities 

ranging from individuals through brigades, in practice only company, platoon, and 

section sized units are used. This is necessary to enable the system to have enough 

flexibility to develop realistic, descriptive, plans. 

2.   Terrain 

In military operations the terrain plays a significant role in how units move and 

interact. Terrain has many attributes, including trafficability of the surface, amount of 

vegetation, and how built-up it is with buildings. Also, hydrology (rivers, lakes, streams, 

etc.) is a consideration. Also, elevation is a factor in whether units have line of sight on 

other entities. Sometimes, the effects of the terrain can be mitigated by road systems. 

Although terrain is quite variable in all of its attributes, it is sufficient for 

modeling purposes to define a small region of the terrain and assume that the attributes 

are consistent or representative within that region. The size of the region is dependent 

on the resolution required by the modeler. 

For the APSS prototype a region size of approximately one square kilometer is 

used. This is appropriate when the largest unit being used is a company. On the terrain, 

a company typically occupies an area of about one square kilometer. The selection of 

kilometer-square regions also provides another benefit in that it allows for discrete 

changes in the locations of units. 
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Although unit movement in the military domain is continuous, it is sufficient for 

the prototype to merely track changes in location of one kilometer or greater.   The 

discrete movement of units is particularly useful since the prototype employs discrete 

event simulations. 

3.   Interactions 

The interaction of the entities with each other is what causes changes in the state 

of the system. The primary interaction between tactical entities and other tactical 

entities is engagements. During engagements, which occur over a period of time, the 

opponents can lose strength (weapon systems) and consume resources (ammo). The 

primary interaction between tactical entities and terrain is movement. The attributes of 

each region of terrain have effects on tactical entities, primarily in terms of how much 

time it takes to traverse the region and how much fuel is consumed. There is no 

interaction between terrain entities, although border conditions must agree where terrain 

entities are adjacent. 

D. Representing the Plan 

The Plan Description is a representation of the possible ways the operation can 

proceed (see Figure 2 for a depiction). The Plan Description is a directed tree with the 

possible states of the plan held by Nodes. The Branches of the tree represent the 

changes between states caused by the sequence of actions of the friendly and enemy 

participants. 
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Note that the Plan Description is not a game tree for resolution of a minimax 

problem, in which each level represents a turn by the adversaries. Russell and Norvig 

describe the use of such a game tree and the minimax algorithm [31]. Instead, each 

Branch is the collection of multiple and concurrent actions of the participants. After the 

actions have been performed and the interactions resolved, the Node at the end of the 

Branch contains the resulting Planned State. 

Nodes represent either 
friendly or enemy 
decision points 

EM may determine 
that the two remaining 
branches are sufficient, 

The PE may 
launch a Planner 
at Node E 
to recommend 
more branches 

Current state of the 
Operation 

Branches eliminated 
B) ■""     Branch eliminated  By EM at Node E 

by EM at Node A 

Plan Description 
(and its relationship 

to the APSS) Sc~ Sc 

Planning frontier 

Figure 2: Depiction of a Plan Description 
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1. States 

In most Simulation systems, a state is the "minimal collection of information with 

which the system's future state can be uniquely predicted in the absence of chance 

events." [5] Although the simulations used in the APSS do concern themselves with 

every transition in system states, the Anticipatory Planning process does not attempt to 

track every specific state of the operation. Rather, it mimics the approach human 

planners use when they think about constructing a plan. That is, certain "critical states" 

are considered, either because they represent a significant conclusion of activities, or 

because they represent a place/time where the plan can diverge. 

There are three kinds of states maintained in this system: the Actual State, the 

Planned State, and the Anticipated State. The Actual State comes from the World View. 

A Planned State is generated when a Planner initially creates a Branch in the plan, and 

is held in a newly-created Node in the Plan Description. If an Execution Monitor is 

observing a Node, it periodically creates an Anticipated State by using simulations to 

project the Actual State forward to the time of the Node. 

2. Nodes 

Each Node holds a Planned State that includes the state (location, strength, etc.) 

for each tactical entity. The Nodes connect to any Branches that have been produced by 

Planners. As the plan is constructed, particularly if valid changes are made early in the 

plan, the Nodes are responsible for propagating the changes to all following Nodes. The 

relative time stamp associated with each Node is dependent on the relative time stamp of 

the previous Node and the actions taken by the entities within the intervening Branch. 



78 

Thus, it represents the earliest time that the Planned State held by the Node can be 

achieved. The Nodes also provide an important function in communicating the 

viability measure associated with Branches. The viability of the Node at the end of a 

newly planned Branch is a weighted function, over all of the entities, of the ratio of their 

actual strength against the desired end strength and their distance from the objective. 

Measures of viability are computed for Branches after planning or re-planning and are 

propagated towards the trunk of the tree by the Nodes. Similarly, the Nodes propagate 

tactical entity state changes by adding or subtracting an offset amount for a particular 

attribute (fuel, ammo, strength, etc.). 

3.  Branches 

A Branch represents action taken by the friendly and enemy forces that result in 

a new Planned State. The actions have associated preconditions, viability measures, and 

a confidence measure. This is similar to the action-based approach to planning Lansky 

presented in the COLLAGE system [106]. The difference lies in the way that 

COLLAGE uses unsatisfied constraints to direct the execution of the system, whereas 

APSS incorporates a priority scheme that the Planning Executive uses to control when 

and how much planning is done. 

Within the constraints placed on the Planner by the Planning Executive, the best 

series of action choices that become Branches in the Plan Description. The Planner 

determines which candidate Branches are the best' by applying a fitness function that 

weights the friendly and enemy viability measures and then choosing the Branches with 

the best fitness. 
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The commander may desire to add a new Branch to the plan manually, typically 

at a place/time that the commander will cause the plan to diverge based on a decision 

point. The new divergence in the plan is represented in the Plan Description as a new 

Branch from whichever Node contains the Planned State where/when the divergence 

must occur. Then the commander can manually construct the Branch, or a Planner can 

be used to complete the Branch. Also, a Branch Evaluator can be used to assess the 

viability of the Branch for the commander. 

E. Determining Outcomes with Simulations 

A variety of simulations could be used to support the APSS prototype, ranging 

from high to low resolution. For instance, the level of resolution required for the 

Planner might be less than the level required for the Execution Monitors. Time or 

system resource constraints may dictate that Planners and Execution Monitors be able to 

select the simulation with the appropriate resolution to provide "good enough" answers 

"fast enough." 

Surdu, Haines, and Pooch describe the requirements for such operationally 

focused simulations [129, 166, 170, 171]. They include the ability to run on a single 

workstation, on low-cost open systems, and in multiples of wall-clock time. Also, the 

simulation should be able to answer queries from other agents. Other requirements are 

that the simulation should be capable of working in cooperation with other simulations, 

and it should be based on an aggregate-level model. The simulations used in the APSS 

prototype satisfy all of these requirements. 
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Fishwick, et al., [135], reiterated by Blais and Garrabrants [130], have identified 

the benefits that can be gained from using simulation to support planning. Foremost 

among these is the support for the conduct of "what-if" analyses in much faster than real 

time. This is possible because modern simulation systems can represent a large number 

of effects and entities and run scenarios very quickly. The ultimate benefit, of course, is 

that commanders will be able to make better decisions sooner than possible without such 

simulation support. 

1.   Types and Capabilities of Simulations 

This methodology does not rely on any particular simulations. Any simulation 

used to support the Anticipatory Planning process must be able to accept a state (Actual 

State from the World View, Planned State from the Plan Description, or Anticipated 

State developed by an Execution Monitor), treat it as a Node, and execute the path of 

Branches following that Node. The simulation must be able to either produce a new 

state from the execution of the Branch path, or decide that the Branch is impossible to 

perform. 

All but the simplest simulations used by the APSS should consider terrain effects. 

Terrain representation is necessary for event resolution, route and travel time 

determination, and fuel or other resource consumption determination. A minimal 

representation would include elevation and GO / SLOW-GO / NO-GO [4] depiction of 

the terrain. The terrain fidelity can be as high as permissible for efficiency and 

timeliness. 
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A more sophisticated and flexible simulation would be able to handle 

decomposable events. Multiple levels of resolution will allow the APSS to adapt to time 

and system resource constraints. For instance, the Planner might ask the simulation to 

resolve a company breach operation. If the Planner requires more detail, the system 

should be able to individually resolve the support force engagement, the breach force 

execution, and the assault force. Similarly, the system should be able to resolve a 

battalion versus company event as four companies versus one company, four companies 

versus three platoons, or twelve platoons versus three platoons. 

2. Discrete Event Simulation 

The APSS prototype developed for this research uses discrete event simulation 

(DES) mechanisms in many ways. A DES is used as the user constructs plans to 

determine the results of entity interaction and ensure the constructed plan is valid. 

Similarly, a DES is used when Branches are created by the Branches Generator to 

determine a new Planned State at the conclusion of the Branch. A DES is also used in a 

playback' mode to determine and display the actions taken within Branches by building 

an event list for the display and executing it in accordance with a user-selected time 

scale. An external DES is used to stimulate the APSS by providing an Actual State of 

the military operation. Finally, the Execution Monitors use a DES to produce 

Anticipated States for comparison with Planned States. 

3. Synchronized Simulations 

One of the key issues in testing the APSS prototype is to ensure that it is correctly 

stimulated.   For testing purposes, the Actual State of the operation is produced by an 
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external discrete event simulation representing the World View. Regardless of the time 

scale used by the APSS prototype (1:1 for actual operations, much faster for playback or 

review) the external simulation must remain synchronized. For instance, if the APSS is 

operating more slowly than the external simulation, it could be generating new Branches 

for Nodes that have already been passed in "the real world." To keep the APSS and the 

World View synchronized, a Test Executive controls both. The Test Executive provides 

the interface for the human tester to load the appropriate Plan Description into the APSS 

and the modified Plan Description into the World View. Also, the Test Executive is 

where the tester establishes the time scale for operation of both systems, and where the 

tester can start and stop operation. Behind the scenes, the Test Executive sends control 

messages and receives notifications from the two systems, allowing it to keep them 

synchronized. 

F. Monitoring the Situation and Re-planning with Agents 

One of the primary purposes of the Anticipatory Planning process is to restrict 

the size of the planning space. Rather than consider every possibility in the plan, the 

process favors planning in front of more likely paths through the plan tree, and allows 

unlikely or impossible paths to be pruned away. The Planning Executive is responsible 

for restricting the consideration of alternatives and the creation of new Branches, and for 

identifying and pruning useless Branches. To accomplish this, the Planning Executive 

uses Execution Monitors to compare the Actual State to various Planned States, and 

Planners to produce new Branches as appropriate. 
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1.  Planning Executive 

The mission of the Planning Executive is to control the overall operation of the 

APSS. The Planning Executive creates and dispatches Execution Monitors and Planners. 

The Planning Executive controls how many Execution Monitors and how many Planners 

are operating at any time, sets the maximum branching factor at any Node, and tracks the 

state of the (computer) system on which the APSS is running. 

When an Execution Monitor determines that re-planning should be conducted at 

a given Node, the Execution Monitor gives the Planning Executive a handle to the Node 

in question and a certainty associated with its recommendation. The list of Nodes for 

which re-planning is required as well as those Nodes at which re-planning is currently 

being conducted is called the Planning Frontier (see Figure 2). Nodes to the right of the 

frontier in the figure have been nominated for re-planning by an Execution Monitor, and 

Nodes to the left of the frontier have not been nominated. 

The Planning Executive uses the confidence measures provided by Execution 

Monitors to determine which Nodes along the frontier will get Planners allocated to 

them and in what order they will be allocated. If the Planning Executive decides that 

further planning is required for a Node, a Planner is launched and given the state 

(Planned State or Anticipated State) of the Node. The Planner examines the outcomes 

of different possible actions. If the system is very busy, the Planning Executive may 

determine that it can only afford a small number of running Planners and so Planners 

will have to be allocated to Nodes sequentially based on the criticality of creating new 
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Branches from the Node. If, however, the system is not busy, the Planning Executive 

may determine that it can afford to allocate a Planner to each Node along the frontier. 

Similarly the Planning Executive determines how many Execution Monitors are 

running at any given time. Again, if the system resources are not heavily used, the 

Planning Executive might put separate Execution Monitors on many Nodes. On the 

other hand, in a resource-constrained situation, the Planning Executive might have only 

a few Execution Monitors that hop from Node to Node under the control of the Planning 

Executive. 

The Planning Executive also receives inputs from the interface with the user. 

Through the interface, the Planning Executive allows the user to manually insert 

Branches or to override work being done by Execution Monitors or Planners. For 

instance, the commander might have some alternative action in mind and want to do a 

"what-if" analysis on it. Through the interface and Planning Executive, this new Branch 

could be added to a Node and a Planner launched. The Planner will complete the 

planning and determine that Branch's viability. The commander might also want to 

manually delete a Branch, for whatever reason, and this is also done through the 

Planning Executive. 

Finally, in a resource-constrained or very dynamic environment, it is possible 

that the creation of many Branches will exhaust available memory. In this case, the 

Planning Executive can set the maximum branching factor at Nodes to some small 

number (e.g., five). Thus, only the five most-viable Branches would be retained; other, 

less-viable Branches would be pruned. 



85 

The level of autonomy of the Planning Executive is a tunable parameter. It is 

likely that the intuition of some commanders might be a better predictor of a Branch's 

viability than the decision of a Branch Evaluator. The user, therefore, might want to 

confirm the removal of all Branches. 

By performing the actions described, the Planning Executive helps limit the 

scope of responsibility of the Execution Monitors and Planners. The Execution 

Monitors and Planners do not need visibility of the global state of the plan or the 

planning frontier. They merely need to know how to conduct their analysis or planning, 

respectively. This makes the job of designing and implementing Execution Monitors 

and Planners much more tractable. When a Planner is dispatched, it must be provided a 

handle to the Node in question and the mission/objective of the operation. An Execution 

Monitor only needs to know the Node - and its associated state - that it is supposed to 

monitor. 

2.   Execution Monitors 

The purpose of the Execution Monitor is to detect divergence of the operation 

from the Planned States that make up the Plan Description. Execution Monitors have 

access to the Plan Description as well as the Actual State of the operation. The Planning 

Executive can re-assign an Execution Monitor to monitor another Node, but the 

Execution Monitor is only concerned with one Node at any given time. 

When the Planner builds the various Branches from a Node, it also creates an 

initial Planned State of the operation at that Node. The function of the Execution 

Monitor is to periodically produce an Anticipated State by forward simulation from the 
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Actual State of the operation to the Planned State held by a Node. An Execution 

Monitor must infer when the Anticipated State of the operation differs "significantly" 

from the Planned State. When significant differences occur the Execution Monitor 

performs several important tasks. 

First, it conducts a breadth-first traversal of the Plan Description. At each Node 

in the Plan Description, the Execution Monitor determines whether the change in state 

invalidates any Branches leaving the Node. Recall that in the Plan Description 

preconditions are associated with each outgoing Branch from a Node. When the 

differences between the Anticipated State and the Planned State indicate that conditions 

associated with a Node cannot be met, that Branch (and all following Nodes and 

Branches) may be pruned. 

Second, after the identification of prunable Branches has been completed, the 

Execution Monitor must determine whether there are "enough" viable Branches from the 

state. A Planner has previously determined the viability of the Branches. While the 

exact computation will be determined as part of this research, the Execution Monitor will 

use the number of Branches as well as each Branch's viability to determine whether it 

thinks a Planner is needed to generate more options for the human user. If the Execution 

Monitor thinks that there are insufficient Branches from a Node, the Execution Monitor 

makes a recommendation to the Planning Executive with some measure of confidence. 

It is then up to the Planning Executive to allocate a Planner to the Node (as discussed 

previously). 
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In addition to comparing the Anticipated State to the Planned State, the 

Execution Monitor also looks at all conditions associated with the Node's Branches. The 

Execution Monitor periodically checks each Branch's conditions and looks at the Actual 

State of the operation. If something necessary to fulfill a condition is eliminated (e.g., a 

mine-clearing device has been destroyed or an infantry company has been wiped out) the 

Execution Monitor must notify the Planning Executive that the Branch should be 

considered for pruning. 

Although it would be tempting for the Planning Executive to eliminate Branches 

that cannot be reached, this must be done with care. It may be possible that some event 

in a Node closer to the trunk of the tree will allow the condition to later be met. On the 

other hand, the Planning Executive should automatically prune Branches associated with 

conditions that can never be met, such as the destruction of a bridge or dam. Branches 

associated with conditions that might conceivably be met in the future should be 

retained. For instance, a battalion might receive another mine clearing device, 

replacement unit, sortie of close air support, or other assets from a higher headquarters. 

When a "recoverable" condition cannot be met, the Execution Monitor should notify the 

Planning Executive, so that the Planning Executive can notify the user. If the Execution 

Monitor is monitoring a Node sufficiently far into the future, it might be possible for the 

user to take an action that will allow the condition to be met. 

Surdu, Haines, and Pooch [7, 14] developed a system called OpSim, designed to 

monitor the current operation. The result of that research verified the feasibility of 

Execution Monitors as described here.   OpSim uses a dynamic hierarchy of rational 
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agents, called Operations Monitors to compare the current situation with the plan. The 

top-level Operations Monitor informs the decision maker when the success of the plan is 

at risk. OpSim, or a system like it, could be adapted for use as an Execution Monitor. 

When OpSim was developed, the Plan Description described in this research did not 

exist. OpSim could be modified to access and understand the Plan Description. Then in 

addition to the inferences it makes based on state information, it could also look at 

whether conditions associated with Nodes can be fulfilled. 

3.   Planners 

The Planner receives a state {Planned State, Anticipated State, or Actual State) 

and a mission/objective from the Planning Executive. The Planner invokes a Branches 

Generator and passes it the state and mission/objective. The Branches Generator 

returns some number of Branches to the plan, along with their associated preconditions 

and confidence measures. At the end of each Branch is a new Node and the Planned 

State that the Planner predicts will exist after that Branch is followed. In an 

unconstrained environment, the Planner continues to execute a Branches Generator at 

each newly created Node until either the desired end state is reached or the Branches 

Generator determines that the desired end state cannot be reached. The Planning 

Executive can place constrains on the Planner that limits the planning in terms of time, 

depth, system resources, etc.. A Branch Evaluator evaluates each Branch and returns a 

viability measure. 

If the Planner is operating on a Node with existing Branches (i.e., the Node has 

already been run through a Planner, but has been identified by an Execution Monitor as 
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needing further planning), the Planner compares the newly generated Branches to the 

existing Branches. If a new Branch is the same as an old Branch, the old Branch can be 

considered revalidated. If an old Branch is not revalidated based on the Anticipated 

State, the Planner notifies the Planning Executive that the Branch may be considered for 

pruning. 

After the Planner is finished, the new Nodes at the end of the Branches may or 

may not be explored further.   It is up to the Planning Executive to decide whether to 

place Execution Monitors on those Nodes and whether to act on any recommendations 

from the Execution Monitors for further planning. 

4.  Branches Generator 

The Branches Generator receives and examines a state and a mission/objective, 

then uses inference systems to generate different options. Prototype systems such as 

Fox-GA [157], Tactical Event Resolution [168], and the modified version of ModSAF 

used by Porto, et al. [165] have demonstrated the feasibility of automatic generation of 

courses of action in the military domain. The output of the Branches Generator is some 

number of distinct Branches, the Planned State that will hold after the action, and the 

associated confidence measures. The new Planned State will contain differences in the 

conditions of the entities (battle damage, destruction) and in resource consumption 

(ammunition, fuel, time). 

To create new Branches the Branches Generator uses a genetic algorithm that 

starts with a user-definable number of initial random Branches. The algorithm uses a 

niching strategy in which the Branches of the first generation are created by heuristics 
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that tend to lead friendly forces to the desired friendly end-state and enemy forces to the 

desired enemy end-state. The initial generation is then run through a cycle of fitness 

testing and production of the next generation with a higher probability of reproduction 

for the Branches that have a higher fitness. Crossover is achieved by replacing the task- 

list for a specific entity in one Branch with the task list from the other Branch. Mutation 

is accomplished by creating a new heuristically-guided random task list for a particular 

tactical entity in the Branch. 

5.   Branch Evaluator 

The Branch Evaluator is given a Branch to evaluate and the desired friendly and 

enemy end-states. The Branch Evaluator compares the Planned State at the end of the 

Branch with the desired end states of the operation, then uses an inference mechanism to 

determine the feasibility, acceptability, and suitability of the that Node (i.e., its viability). 

If the plan is in danger of failure (from the friendly perspective) at the new state, the 

Branch is assigned a low viability measure. If there is little danger of failure, the Branch 

is assigned a high viability measure. These viability measures are first generated at the 

leaves and propagated back up the tree. Execution Monitors use this viability measure 

when they analyze Nodes. 
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CHAPTER IV 

IMPLEMENTATION 

A. Introduction 

In order to confirm that the Anticipatory Planning concept can be successfully 

supported by automated systems, an Anticipatory Planning Support System (APSS) 

prototype has been implemented. A testing suite has also been implemented, and is 

described in Chapter V. 

From the outset, the implementation has been designed to provide the maximum 

visual interaction between the user and the system. However, since the underlying data 

structures are intended for use in later systems it is important to separate the information 

contained in the system from the visual handling of that information. Consequently, the 

system is composed of data elements and visual components that incorporate those data 

elements. 

Although the environment being modeled (battlefield operations) is continuous, 

the implementation relies on discrete changes in state. The use of discrete 

representations simplifies some of the more complex problems, particularly those that 

are not important in the evaluation of the methodology. For example, the discrete 

hexagonal representation of terrain simplifies the placement and movement of tactical 

entities, and the interactions between them. 

The Java programming language was used to implement the APSS and the testing 

suite. The system has been purposefully implemented to isolate and encapsulate the data 
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and functionality that belong together into the smallest possible objects. This enhances 

reusability of the objects, which makes it possible to combine them in many different 

ways for different purposes with little additional coding. A particular advantage to using 

Java (and other object-oriented languages) is that objects can be extended to add new 

functionality without having to modify the utility of the underlying class. 

This chapter discusses issues in verification and validation, then describes the 

entities involved in planning, how plans are represented, displayed and built, how agents 

are used to monitor the plan and control planning, how attrition is modeled, and how 

discrete event simulations are used to determine the results of entity interactions. 

B. Verification and Validation 

The literature review in Chapter II revealed three techniques for validating 

models and eight techniques for verifying systems, in particular those due to Law and 

Kelton [8]. Refer back to Table 1 for a list of the validation techniques, and to Table 2 

for a list of the verification techniques. Where appropriate, specific details of 

verification and validation are mentioned in the sections below. In general terms, 

several of the techniques have been enforced by the nature of the prototype system. 

Verification technique number one requires the use of modular programming to 

narrow the scope of responsibility and difficulty into small, easily verifiable pieces. 

Every set of data and actions that can be logically combined into a Java object has been. 

This approach greatly eased the process of verification (and by extension, debugging) 

since the responsibility of each object is so well and narrowly defined. 
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Verification technique number six encourages the use of animations to make it 

simpler to identify failures in a system. From the outset of development the prototype 

has been heavily oriented on providing a graphical user interface for every step of entity 

building, plan building and display, and test operations. This has the intended effect of 

making the inner workings of the prototype system completely visible to the user. 

Consequently, verification of the system operation was made much simpler. 

Verification technique number eight suggests the use of pre-existing simulation 

systems or packages to reduce development time and prevent reinvention of common 

algorithms and approaches. While generally promising, this technique runs the risk of 

using systems with embedded errors or inefficiencies that cannot be accounted for in the 

prototype system. To ensure that all anomalies can be properly attributed and corrected, 

the prototype system and its discrete event simulation systems have been implemented 

completely in Java, rather than using pre-existing simulations. 

Validation of the system relies on three major techniques. First, face validity is 

obtained by placing experts in the military planning domain in front of the system and 

gathering their assessments of how well the system models that domain. Second, 

empirical testing of the assumptions used by the system has been performed around each 

module that relies on those assumptions. The third validation technique involves 

determining how representative the output data of the system are. Since there is no 

existing anticipatory planning system in which branches in a plan are produced and 

pruned under the control of cooperating agents, it is impossible to validate the APSS 

prototype against other planning systems. Rather, the approach from the first technique 
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used to determine face validity is also used to determine whether the outcome of the 

system (focused planning effort) is valuable to military planners. 

C. Entities 

There are two fundamental types of entities used in the APSS. The first is tactical 

entities representing military units, obstacles, and the effects of indirect fire. The second 

fundamental type is terrain, which affects the movement, target acquisition, and other 

activities of the tactical entities. 

1.   Tactical Entities 

Tactical entities are represented in the system as instances of the TacEntity class. 

Multiple TacEntities can be organized into a force, and are held in a 

TacEntityTreeModel that identifies the subordination relationships between the tactical 

entities. As the plan is built, specific values of TacEntity attributes at critical plan states, 

called Nodes, are stored in the TacEntityState class. Specific transitions or activities of 

the TacEntities between the Nodes are stored in TacEntityTasks. As TacEntityTasks are 

performed, changes in the status of the TacEntities are stored in 

TacEntityStatusChanges. Finally, there are a number of visual components that allow 

for interactive manipulation of the tactical entities. 

a.   TacEntity (Class) 

Every TacEntity has a globally unique, persistent identifier. This is used rather 

than  pointers  to  objects  to  allow  for persistent  plans.     It  also  enables  future 
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implementations of the system with a supporting database. The TacEntities also have a 

name for more intuitive identification by the user. 

TacEntities fall into three basic categories: units, obstacles, or effects. They are 

affiliated with the enemy force, the friendly force. They may also be neutral, or have 

unknown affiliation. 

Units have a level that identifies how big they are, ranging from individuals 

through division-size units. They also have a role that indicates their capabilities (armor, 

mechanized infantry, engineer, etc.). If the TacEntity is an obstacle, it can be one of two 

types: linear or area. Also, if it is linear, it has a direction associated with it. 

TacEntities have several attributes used for initialization: beginning strength, 

maximum fuel, maximum ammo, etc. They also have variable attributes that make up 

their state at any given time, including location, current strength, current fuel, etc. 

b.  TacEntityTreeModel (Class) 

The TacEntityTreeModel is used to manage the tactical entities that will be used 

by the APSS system. It serves as the central repository for holding the TacEntities. It 

also maintains the subordination relationship information. There is only one instance of 

the TacEntityTreeModel when the system is running. This means that there is only one 

copy of each TacEntity. This ensures consistency whenever an update is made to the 

TacEntity, and it enables future database implementation of the system. All of the 

TacEntities that may participate in a planning session must be in the 

TacEntityTreeModel at the beginning of plan development. 
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c. TacEntityState (Class) 

The TacEntityState holds the relationship between a TacEntity and values 

assigned to its attributes, such as its location and its strength at a particular time in the 

plan. It is important to note that the TacEntityState does not itself know the plan time it 

is associated with. The TacEntityState for all of the TacEntities are held in a plan node 

(described later), and it is this node that keeps track of their temporal location. 

d. TacEntityTask (Class) 

Actions taken by the TacEntities are described in the system by instances of the 

TacEntityTask. There are several types of TacEntityTask, including idle tasks, 

movement tasks, activation tasks (for artillery bursts) and buildup tasks (for obstacles). 

The TacEntityTask defines the current and next location of its associated TacEntity to 

enable the system to ensure consistency from task to task. It also retains the duration of 

the task, allowing the system to place future tasks at the correct time. 

e. TacEntityStatusChange (Class) 

As the tactical entities perform tasks, the interaction between entities produces 

changes in their status. Note that the word status is deliberately used instead of state. In 

this system, important states are held by the plan nodes. The changes in attributes 

between the states are tracked separately as status changes. A TacEntityStatus change 

includes information as to the type of change (strength, fuel, ammo) and the change 

factor, a variable from 0.0 to 1.0 indicating the amount left out of what was available 

before the change. 
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f. TacEntityComponent (Visual Component) (Drag and Drop) 

For visualization purposes and to ensure separation between the data and the 

interfaces of the system, TacEntities are wrapped in a TacEntityComponent that handles 

all of the drawing functions, handling of mouse click events, and drag-and-drop 

operations. The TacEntityComponent also handles the visual interactions with the visual 

terrain components. See Figure 3 for examples of a TacEntityComponent held by a 

TacEntityDragPanel, and the TacEntityCompnent class drawing icons for the labels of 

the TacEntityTree. Also, see Figure 7 for examples of TacEntityComponents displayed 

on a HexGridPlanPanel. 

g. TacEntityDragPanel (Visual Component) (Drag and Drop) 

The TacEntityDragPanel displays a TacEntityComponent. Any changes made to 

the underlying TacEntity are instantly visible in the TacEntityComponent. The purpose 

of the TacEntityDragPanel is to allow the user to click on the TacEntityComponent and 

drag it to any visual component that accepts TacEntity drops. See Figure 3, where a 

TacEntityDragPanel appears in the upper-left corner. 

h.  TacEntityConfigPanel (Visual Component) 

The TacEntityConfigPanel holds a TacEntityDragPanel and several combo boxes 

enabling modification of the TacEntity's attributes, such as category, affiliation, role, 

level, etc. Changes in the selections in the combo boxes are instantly applied to the 

TacEntityDragPanel. See Figure 3, where a TacEntityConfigPanel occupies the left- 

center portion of the TacEntityBuilder. 
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Figure 3: TacEntity Builder application showing several visual components 

i.   TacEntityTransferable (Drag and Drop) 

In drag-and-drop operations the TacEntityTransferable represents the TacEntity 

while it is in the process of being dragged. When a drop is attempted, the 

TacEntityTransferable is passed to the visual component that is the target of the drop. 

The TacEntityTransferable contains information that allows the drop target to determine 

if it will accept the drop, and if so passes it the necessary information. Note that this is a 

very important reason to have TacEntities identified by a globally unique identifier. 

When the drop operation completes, a new copy (effectively a clone) of the dragged 
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object is instantiated. Any objects that point to the original TacEntity do not point to the 

new instance. However, the new instance does include the unique identifier. So long as 

all references to the specific TacEntity are made through this identifier, there is no 

confusion. 

j.   TacEntityTree (Visual Component) (Drag and Drop) 

The TacEntityTree takes the information from the TacEntityTreeModel and 

visually displays the TacEntities and their subordination relationships. It also allows for 

visual drag-and-drop changes of those relationships. The TacEntityTree can accept 

drops of TacEntities, either from TacEntityDragPanels or from other TacEntityTrees. 

See Figure 3, where a TacEntityTree occupies the right half of the TacEntityBuilder. 

Although not important in this implementation, units of different roles (specifically, 

armor and infantry) that are combined under a headquarters cause that headquarters to 

display a "task-organized" indicator. 

k.  TacEntityBuilder (Application) 

The TacEntityBuilder application allows for the interactive construction of 

individual TacEntities and for their hierarchical arrangement. See Figure 3 for a screen 

capture of the TacEntityBuilder in the process of building the TacEntityTreeModel to be 

used in a planning session. A TacEntity is built by selecting its attributes, causing the 

icon representation to change appropriately. Once the TacEntity is complete it can be 

dragged and dropped onto the hierarchical TacEntityTree. Note that when the 

TacEntities are dropped on the TacEntityTree is when the persistent, globally unique 

identifier is assigned. If that TacEntity is subsequently removed from the TacEntityTree 
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(really, from the underlying TacEntityTreeModel) its identifier is discarded and never 

used again. The TacEntities can be moved around within the TacEntityTree so long as 

the new ordering is consistent with certain rules. For example, friendly units must 

belong to a friendly headquarters and smaller units must be underneath larger 

headquarters. 

2.   Terrain 

For this implementation of the APSS prototype, terrain is represented by 

hexagonal cells (HexCells) arranged in a rectangular grid (HexGrid). The use of cells 

allows for discrete changes of location, and localizes information about terrain into 

defined regions. HexCellComponents are used to display the data held by the HexCells, 

and serve as a base class for handling mouse events and drag-and-drop operations. 

There are several varieties of panels used for displaying and manipulating HexGrids. A 

HexGrid Builder has been implemented to simplify the construction and specification of 

HexGrids. 

a.   HexCell (Class) 

Attributes of the terrain are held in various 'styles' within the HexCell. For 

instance, trafficability is represented by the goStyle and is implemented in integer steps. 

A HexCell that gives no hindrance to travel is described as "Fast-Go", while "No-Go" 

terrain seriously hinders travel. Similarly, the amount of vegetation in the cell is 

represented by a scale from "No-Veg" through "Heavy-Veg." The amount of buildings 

and other man-made structures is indicated by the builtupStyle, ranging from "No- 

Builtup" through "Heavy-Builtup."    The effect of the terrain on the TacEntities is 
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calculated using the value of each of these styles. For instance, the goStyle is used in an 

exponential function, causing increasing movement delays for increasing difficulty in 

trafficability. 

The edges of HexCells have attributes as well. Edges are used to represent 

streams or rivers ("Water-Edge"), or to show changes in elevation ("Contour-Edge"). 

When traversing the cell, either from the center to an edge, or vice-versa, the presence of 

a road is indicated by a roadStyle ranging from "No-Road" through "Heavy-Road." 

Each HexCell holds pointers to its six neighboring cells. This allows for rapid 

selection of nearby cells without having to go through the HexGrid array. Also, 

HexCells are identified by an instance of the Location class. Locations have an X and Y 

coordinate, and a number of utility functions, such as finding the distance between two 

Locations. 

b. HexGrid (Class) 

The HexGrid class holds an arrary of HexCells, which allows for rapid retrieval 

of the HexCells by just knowing their Location. A movement task contains an identifier 

for the TacEntity making the move and the Locations of the current HexCell and the 

next HexCell. The HexGrid is the only object that can retrieve the actual HexCells 

referred to by the Locations. As such, the HexGrid is the object that calculates duration 

of movements. 

c. HexCell Components (Visual Components) 

The HexCellComponent base class provides the means of visualizing and 

interfacing with HexCells.   See Figure 4 for an example of HexCellComponents on a 
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HexGrid Panel. The class has a number of constants representing the colors to be used 

for various attributes of the terrain, such as the shade of green to use for vegetation. The 

Hexagon class is used to define the outline of the HexCellComponent when it is visible. 

The HexCellComponent knows how to add itself to and remove itself from a HexGrid 

Panel (see below). It also knows how to hold and display a TacEntityComponent that 

has been placed on it. Finally, it knows when the user has clicked the mouse on it, and it 

can determine which edge the mouse-click is closest to. This is important in editing the 

HexCell. 

The DropTacEntityHCC is a sub-class of HexCellComponent that knows how to 

accept TacEntityComponents that have been drag-and-dropped onto it. This class is 

only used in the HexGridPlanPanel to enable visual construction of plans. 

d.  HexGrid Panels (Visual Components) 

The HexGridDisplayPanel is the super-class for all panels that display HexGrids. 

It holds the fundamental data, such as an array of HexCellComponents that is 

isomorphic to the HexCell array in the HexGrid. It also handles all the routine 

operations of opening, loading, and saving HexGrids. 

The HexGridEditPanel extends the HexGridDisplay panel to allow visual 

interaction for modification of HexCells in the HexGrid. See Figure 4 for an example of 

a HexGridEditPanel and a HexGrid under construction. This class handles the 

monitoring of mouse clicks and the modification of HexCell attributes. . 
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Figure 4: HexGrid Builder showing HexGridEditPanel and HexCellComponents 

The SnapshotPanel, a separate sub-class of the HexGridDisplayPanel, is designed 

to display particular moments, or shapshots, in a plan. It keeps a HashMap of 

TaqEntityComponents that are currently displayed on the panel. If a 

TacEntityComponent is to be added, moved, or removed from the display, this makes it 

much easier and faster, since only the affected TacEntityComponents and 

HexCellComponents need to be redrawn. The SnapshotPanel can receive a Node, or a 

Branch with a specified current time, and display the state of the operation at that time. 

The HexGridPlanPanel extends the SnapshotPanel for planning purposes. It 

allows the interactive placement and manipulation of TacEntities, and is discussed in 

section D.3 of this chapter. 
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e.   HexGridBuilder (Application) 

The HexGridBuilder was implemented to allow for rapid and interactive creation, 

editing, and storage of HexGrids. See Figure 4 for a screen capture. It combines a 

HexGridEditPanel and a HexGridConfigPanel (on the left side of Figure 4) and provides 

the necessary control functions. 

D. Representing, Displaying, and Building the Plan 

The basic idea for representing a plan is to think in terms of situations and 

transitions between those situations. Some of the situations are option points, where the 

human planner might think, "From here, we can do this, or we can do that." A 

PlanDescription composed of Nodes (option points) and Branches (transitions) is used to 

represent a plan. 

All of the visual components in the system are designed for ease of reuse. 

Components are configured in different ways, depending on the desired process. An 

Executive handles the interactions between components. All of the components send 

messages to their Executive. Different Executives have been built to handle different 

configurations. Depending on their function, these Executives handle or ignore 

messages from the components. 

To display a plan and allow for visual interaction, several visual components 

have been developed. Nodes and Branches have been wrapped in visual components. A 

PlanDescription Display Panel handles visualization of the plan and interaction with the 



105 

user.  Internal plan information, such as the states within the Nodes and the transitions 

within the Branches, is displayed with different visualization mechanisms. 

To allow the user to build a plan, several classes have been developed.   A 

PlanBuilderPanel brings together panels for handling TacEntities, creating new Branches 

in the PlanDescription, creating states states, and assignment of tasks in Branches.   A 

PlanBuilderExecutive controls the interface with the user and the plan building process. 

1.   Representing a Plan 

The Anticipatory Planning Support System relies heavily on a common 

description of a plan. To represent a plan, a PlanDescription is dynamically built to 

manage the many tree-like branches that occur in planning and execution of an 

operation. 

The word "common" is used to indicate that every major sub-system in the APSS 

makes use of the same PlanDescription. The human planner uses the GUI to modify a 

plan. Execution of the actual operation is itself represented by a PlanDescription, and is 

compared to the PlanDescription used within the APSS. The genetic algorithm operates 

on segments of the PlanDescription during re-planning. The simulations process 

segments of the PlanDescription to determine outcomes and provide evaluations. 

The PlanDescription is composed of Nodes that hold information about the state 

for each situation, and Branches that hold the transition information between the states. 

Each Node may have zero or more Branches leaving from it. Thus, the PlanDescription 

is like a tree. 
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One advantage to the tree-like representation of a plan is that the transitions held 

by the Branches can be in relative terms. A change in the transitions of a Branch results 

in a new state in the Node at the end of the Branch. Following Nodes can be updated 

based on that change without having to modify the intervening Branches in any way. 

This makes for very rapid updates when a plan is modified. 

a. PlanDescription (Class) 

The PlanDescription class holds the HexGrid representing the terrain a plan is 

built on, and a TacEntityTreeModel that manages the TacEntities used in a plan. The 

PlanDescription only keeps track of three things: the root Node, the node that is 

currently in focus, and the currently selected Branch, if any. It's only other function is to 

open and save PlanDescription files. 

b. Node (Class) 

The Node class holds information about the state of a plan at a particular 

moment. It keeps a time stamp to identify that moment and a HashMap of 

TacEntityStates, that taken together make up the Planned State. If it is not the root 

Node, it keeps track of its previous branch. Since (so far) there has been no ordering or 

sorting requirement for the following Branches, they are held in a Vector. 

The Node recurses through previous and following Nodes to retrieve timing 

information, such as the time stamp of the earliest or latest Node at a particular depth. 

The Node has the responsibility and capability for creation of new Branches. It also 

serves a very important function in updating the plan information. It can adjust its own 

time stamp, and cascade that change as an offset through all of its following Nodes. It 
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also serves as the focal point for propagating changes in the TacEntityStates held in the 

Nodes, also performed as updates or offsets. 

c. Branch (Class) 

Branches use HashMap of TacEntityTaskLists to manage the tasks assigned to 

the TacEntities that are present at that point in a plan. All of the TacEntityTaskLists 

taken together capture the transition from one option point in a plan to the next option 

point. They also contain a HashMap of TacEntityStatusLists developed by simulation of 

the interactions of the TacEntities. Branches keep track of their start Node and their end 

Node to serve as the connection between Nodes for information passing. 

The Branch keeps track of the minimum duration of the combined 

TacEntityTaskLists. Whenever new tasks are added, or old tasks are modified or 

deleted, two things happen. First, all but the longest TacEntityTaskList is padded with a 

new IdleTask. This ensures that they are properly accounted for in TacEntity 

interactions. Second, a simulation is invoked to determine the interactions and build 

TacEntityStatusLists. Finally, the minimum duration is updated, if necessary, and the 

time change is propagated through all following Nodes. 

d. TacEntityStatusList (Class) 

The TacEntityStatusList class is a LinkedList of the TacEntityStatusChanges for 

a specific TacEntity. A LinkedList is used because the order of the status changes 

matters, rapid insertions and deletions are desired, and because rapid scanning of 

portions of the list is important. The list can be queried for a particular attribute of the 
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TacEntity at a given time since the previous Node.  This information is used to update 

the situation on the SnapshotPanel and when simulations or playbacks are desired. 

e.   TacEntityTaskList (Class) 

The TacEntityTaskList class is a LinkedList of TacEntityTasks for a specific 

TacEntity. A LinkedList is used because the order of tasks matters, rapid insertion and 

deletion are desired, and rapid scanning of portions of the list are important. This list 

can also be queried to gather specific information at a given time. The 

TacEntityTaskList remembers its own minimum duration, and transmits that information 

to its owning Branch. When changes occur to the list, it notifies its Branch so that 

appropriate action can be taken. The TacEntityTaskList performs all of the processing 

for insertion, modification, or deletion of a TacEntityTask. 

2.  Executives 

The large variety of visual components developed for the APSS have been 

specifically designed to encapsulate their data and methods in a logical way. In this 

way, they can be combined to accomplish different purposes. When they are combined 

they must communicate with each other and their actions must be coordinated. To 

accomplish this coordination a number of Executives have been developed. 

a.   Executive (Class) 

The Executive class serves as the super-class for handling all messages. It has 

empty methods that must be overridden by sub-classes when particular activities are 

desired. These activities include plan building, plan display, and simulation execution. 
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b. BranchScanExecutive (Class) 

The BranchScanExecutive class is exclusively used to run rapid simulations of 

portions of a plan. Unlike the PlayerExecutive there is no requirement for time scaling. 

The BranchScanExecutive merely processes the simulation event queue as rapidly as 

possible to determine and handle all of the interactions between the entities. 

The TacEntityTaskLists of the Branch are processed and events are loaded into 

the simulation. The events are processed without respect to a time scale, but in time 

stamp order. As each event is processed any existing interactions between TacEntities is 

resolved. The situation is then examined to either add new interactions, or to remove 

completed interactions. 

For example, engagements between TacEntities are held in two HashMaps - one 

hashed by TacEntity ID for all of that TacEntity's targets, the other hashed by TacEntity 

ID for all of the other TacEntities that are shooting at that TacEntity. So long as neither 

target or shooter moves out of the shooter's range the engagement continues. Once they 

are out of the shooter's range the appropriate entries are deleted from the two HashMaps 

and the engagement is concluded. 

Each time the engagement is resolved, a strength change is entered in the 

TacEntityStatusList for the appropriate TacEntity. Once the simulation has completed, 

the changes in end states for the TacEntities are propagated through the PlanDescription. 

c. PlayerExecutive (Class) 

The PlayerExecutive class is used when visualization of the flow of a plan is 

desired.     Given  a time scale,  the PlayerExecutive  sends  control messages to a 
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SnapshotPanel telling it to display a succession of states in a plan. This has the effect of 

providing a playback' mechanism to the user. It is also used to provide an Actual State 

to stimulate the APSS during testing. The PlayerExecutive operates much the same way 

the BranchScanExecutive does. The distinction is that the PlayerExecutive uses the 

TacEntityStatusLists produced by the BranchScanExecutive and it operates in scaled 

'real' time to provide realistic playback. 

d.  PlanBuilderExecutive (Class) 

The PlanBuilderExecutive is a much more sophisticated sub-class of the 

Executive. It is discussed in more detail in the section on Building a Plan. It includes 

the capability of the PlayerExecutive and adds the ability to process user input for 

building a plan. 
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Figure 5: PDDisplayPanel showing BranchComponents and NodeComponenfcs 
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3.   Displaying the Plan 

Nodes and Branches are not visible components; rather, they serve to hold the 

important data, make connections, and pass information. For visual display of a plan 

Nodes are represented by NodeComponents and Branches are represented by 

BranchComponents. These two components handle all of the interaction with the user 

(primarily mouse-driven). They send messages to the PDDisplayPanel that arranges the 

NodeComponenents and BranchComponents with respect to time. See Figure 5 for a 

Screenshot of a PDDisplayPanel displaying NodeComponents and BranchComponents. 

a.   NodeComponent (Visual Component) 

In the PDDisplayPanel, NodeComponents are shown as circles to indicate that 

they are expanded, showing their succeeding Branches. Alternatively, they are shown as 

triangles to represent the entire sub-tree from that Node and beyond. The 

NodeComponents can be selected with a left mouse-click, and a popup-menu can be 

invoked by a right mouse-click. The popup menu allows the user to modify a plan, such 

as creating a new Branch. 

The NodeComponent knows how to display itself in the PDDisplayPanel. The 

NodeComponent is assigned a share of the y-dimension based on the number of children 

its parent has and its place out of the total number of its parent's children. It determines 

its X-position based on the proportion of its time stamp to the entire displayed time. 

Once it has displayed itself, it divides up its y-dimension display space among its 

children, then forwards the display information to all of its following NodeComponents 

so that they can display themselves. 
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b. BranchComponent (Visual Component) 

The BranchComponent represents a Branch by drawing a line on the 

PDDisplayPanel between its start NodeComponent and its end NodeComponent. It 

listens for left mouse-click events indicating that the user has selected that Branch. It is 

colored red when it is the currently selected Branch. 

c. PDDisplayPanel (Visual Component) 

The PDDisplayPanel process a PlanDescription, produces NodeComponents and 

BranchComponents, and initiates the process of making the components draw 

themselves. If the PDDisplayPanel is resized, causing the drawing space to change, the 

image is refreshed so that it scales to the new drawing space. The PDDisplayPanel 

receives messages from the components indicating the user has taken some action, such 

as selecting a Node or Branch. It performs some internal processing, and then forwards 

the message to whichever Executive it is assigned to. To help the user focus on sub- 

trees in a plan, the depth (of the plan tree) can be controlled. 

4.  Displaying Branch and Node Information 

In order to construct a plan and to visualize what is happening, the user needs a 

means of seeing the plan information; that is, the task lists held by the Branches and the 

states held by the Nodes. TaskDisplayLabels provide a visualization of individual tasks, 

and the TaskListDisplayPanel displays all of the task lists in a Branch. To display the 

state in a Node, the HexGridPlanPanel (descended from the SnapshotPanel) is used. 
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Table 3: TaskDisplayLabel Color Codes 
Color Text        Color Meaning 

Yellow Idle Task 
Green Move Task 
Red Active Task 

Orange 
Blue 

Buildup Task 
Filler Task 

a.   TaskDisplavLabel (Visual Component) 

The TaskDisplavLabel class extends normal labels to provide visual indications 

of the attributes of its associated TacEntityTask. The label is color coded (see Table 3 

for a description of the meaning of each color). The width of the label indicates the 

duration of the task, and is scaled to the minimum duration of the Branch (that is, the 

total displayed time). See Figure 6 for an example of the TaskDisplayLabels organized 

into a TaskListDisplayPanel. 
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Figure 6: TaskListDisplayPanel showing TaskDisplayLabels 

The TaskDisplayLabel listens for left mouse-clicks and left mouse-drags. This 

allows the user to reposition the task in time. So long as certain constraints are met, the 

user is allowed to move the TaskDisplayLabel earlier or later.   It first checks its own 
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task, which can only be moved if it is not an idle or filler task. It then checks its 

neighbor tasks. If they are not idle tasks or filler tasks, then the TaskDisplayLabel 

cannot move in that direction. If it can move in one direction, it checks the task on the 

other side. If it is an idle or filler task, its start time and duration are adjusted as the 

TaskDisplayLabel moves. Otherwise, a new idle or filler task is created and inserted. It 

is then adjusted as previously described. Each TaskDisplayLabel listens for right 

mouse-clicks so that it can provide a popup menu. From this menu the user can remove 

the task or change its duration. 

b.  TaskListDisplayPanel (Visual Component) 

The TaskListDisplayPanel organizes and displays the TaskDisplayLabels so that 

the user can view the internal workings of a Branch. See Figure 6 for a Screenshot. On 

the left side is a panel displaying the names of the TacEntities involved in the Branch. 

At the bottom is a slider that allows the user to pick a particular time in the Branch and 

displays the minimum duration of the Branch. The main panel displays the internal 

information. If a Node has been selected, the main panel is blank. If a Branch has been 

selected, the task list for each TacEntity is presented as a sequence of 

TaskDisplayLabels. If the user attempts to make any modifications to the Branch, the 

TaskListDisplayPanel sends the appropriate notification or request message to the 

PlanBuilderExecutive. If the user resizes the panel, the entire TaskListDisplayPanel is 

adjusted to the new dimensions. 
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c. TacEntityDropHCC (Drag and Drop) 

The TacEntityDropHCC is an extension of a normal HexCellComponent that 

handles attempts to drop TacEntityComponents. This extension is necessary for 

building plans with the HexGridPlanPanel. The TacEntityDropHCC doesn't actually 

accept the drop. Rather, it sends a message notifying the HexGridPlanPanel that the user 

has attempted a drop. If the PlanBuilderExecutive ultimately accepts the drop, the 

displays (including the HexGridPlanPanel) will be updated, otherwise no update occurs. 

d. HexGridPlanPanel (Visual Component) 

While building a plan it is important for the user to be able to see the state held 

within a Node or a particular time within a Branch. The user must also be able to enter 

changes to the plan. The HexGridPlanPanel is an extension of the SnapshotPanel with 

two modifications that are necessary for building plans. See Figure 7 for a screen 

capture of a HexGridPlanPanel displaying TacEntities. 

Figure 7: HexGridPlanPanel displaying TacEntityComponents 
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The first modification is that DropTacEntityHCCs rather than normal 

HexCellComponents represent the HexCells. The DropTacEntityHCCs intercepts 

attempts to drop TacEntityComponents and sends a request for permission from the 

HexGridPlanPanel to accept the drop. 

The second modification is the addition of a method to receive the request 

message from the DropTacEntityHCC. The panel checks to see if that 

TacEntityComponent is already displayed, meaning that this drop is really an attempt to 

move that TacEntityComponent. If so, the panel sends a request to the 

PlanBuilderExecutive for permission to make the move. If not, it sends a request to add 

the TacEntityComponent. The PlanBuilderExecutive examines the current situation, 

attempts to create and insert the appropriate task(s), and replies with a Boolean granting 

or denying permission. If permission is denied, there is no change in the situation. If 

permission is granted, the situation displayed on the HexGridPlanPanel (and all other 

displays) is updated. 

5.   Building a Plan 

The system allows the user to build a plan by providing all of the necessary 

interfaces, then managing their interactions with the user and with each other. The 

PlanBuilderPanel contains the user interfaces, and a PlanBuilderExecutive monitors the 

interactions, controls the displays, and decides which actions are allowed. 

a.   PlanBuilderPanel (Visual Component) 

The PlanBuilderPanel provides all of the interfaces required by the user for 

building a plan.    A TacEntityTree (see Figure 3) allows the user to drag-and-drop 
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TacEntities onto a HexGridPlanPanel. The HexGridPlanPanel (see Figure 7) displays 

the current state of a plan. A PDDisplayPanel (see Figure 5) lets the user navigate 

through a plan and modify it. A TaskListDisplayPanel (see Figure 6) shows the internal 

workings of the selected Branch. Finally, a DESimControlPanel provides an interface to 

a simulation for playback' purposes. All of the components send their request and 

notification messages to the PlanBuilderExecutive. 

b.  PlanBuilderExecutive (Class) 

The PlanBuilderExecutive controls the execution of the plan building process. It 

starts by establishing contact with all of the subordinate display components of the 

PlanBuilderPanel and telling them where to send their messages. It then waits for the 

messages to arrive. If a 'node selected' or 'branch selected' message arrives, it sends 

control messages to all of the displays requiring them to update. If requests to add, 

modify, or delete tasks are received, it instructs the PlanDescription to make the attempt. 

Depending on the outcome, different control messages are sent out. If the user wants to 

run a 'playback' it loads the simulation and hands control to the DESimControlPanel, 

which merely forwards any instructions it receives from the user to the 

PlanBuilderExecutive. 

E. Agents used in Monitoring a Plan and Controlling Planning 

There are three types of agents used to monitor the execution of a plan, conduct 

re-planning, and control the process. The execution monitoring agents have the 

responsibility  of monitoring  Nodes,  analyzing  an  ActualState,  and  assessing the 
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likelihood of their Node's occurrence. The re-planning agents examine the Planned 

State held within their Node and use the desired friendly and enemy end-states to 

produce new Branches. The PlanningExecutive agent receives timing and ActualState 

updates, assigns ExecutionMonitors to Nodes, and assigns Planners to future Nodes that 

are most likely to occur. The monitoring and re-planning process, and its associated 

time concerns, is represented in Figure 8. 
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Figure 8: APSS Monitoring and Re-planning Process 
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1.   The Execution Monitoring Agents 

To detect deviations of the actual operation from a plan, instances of the 

ExecutionMonitor class are assigned to Nodes. These ExecutionMonitors periodically 

compare the ActualState to the state held by the Node and assign a likelihood measure to 

that Node. The likelihood measure is a function of the distances of all the TacEntities 

from their goal Location and the differences in their strengths, and is determined by a 

StateDifferenceAnalyzer. The ExecutionMonitor reports this difference to the 

PlanningExecutive. In Figure 8 an ExecutionMonitor has been attached to a Node, and 

the time window labeled © represents the time used by the ExecutionMonitor to make 

its recommendation. Ideally, the ExecutionMonitors will complete their analyses and 

decide what recommendation to make before the next ActualState is available. 

Depending on the time scale in use, this is not always achievable. Currently, the 

ExecutionMonitors ignore any new ActualStates that arrive while they are processing. 

This information is not lost, however, since the WorldView keeps a copy of every 

published ActualState. If there is sufficient time, the ExecutionMonitors can try to catch 

up. Future implementations may reduce the fidelity and resolution of the underlying 

simulation in an attempt to complete the processing in time. 

a.   ExecutionMonitor (Class) 

The ExecutionMonitor is a software agent that makes recommendations to the 

PlanningExecutive agent as to the likelihood of occurrence of a particular Node in the 

PlanDescription. It persists from the time of its creation by the PlanningExecutive until 

the Node it is observing has been bypassed in time. It can be reassigned to a new Node 
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if system constraints are such that object creation time is an issue. Typically, though, a 

new ExecutionMonitor is created and placed on newly monitored Nodes 

The ExecutionMonitor really only has one important method, that of receiving a 

new ActualState and processing it along with its monitored Node through a 

StateDifferenceAnalyzer. Once the analyzer has been launched, the ExecutionMonitor 

stands by for the next ActualState. 

b. StateDifferenceAnalyzer (Class) 

The StateDifferenceAnalyzer runs as a thread so that all of the 

ExecutionMonitors can simultaneously run their own instance of it. Each 

StateDifferenceAnalyzer is given two states to consider. The first comes from the 

ActualState, the second from the Node being observed by the ExecutionMonitor. It is 

also given a RecommendationList into which it will post its recommendation. For every 

TacEntity, the differences in the two states of their Locations and their strengths are 

recorded. These are used in a weighted function to assess a likelihood measure (ranging 

from 0.0 to 1.0). This measure indicates how likely the Planned State held by the Node 

is to occur, given the current ActualState. Once the measure has been determined, it is 

sent to the RecommendationList. 

c. RecommendationList (Class) 

The RecommendationList is an extension of the LinkedList class that holds 

Node/likelihood pairs. The PlanningExecutive creates an instance of the 

RecommendationList whenever a new ActualState is received. It is given the number of 

ExecutionMonitors it should expect to get recommendations from, and then waits for 
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those   recommendations.       It   has   synchronized   access   methods   so   that   the 

StateDifferenceAnalyzers can post their recommendations without causing consistency 

problems. When the last recommendation is received, it notifies the PlanningExecutive. 

2.   The Planning/Replanning Agent 

To conduct re-planning, the re-planning agents are implemented as instances of 

the Planner class to generate and evaluate new Branches. A BranchesGenerator uses a 

genetic algorithm guided by the desired friendly and enemy end-states and inference 

mechanisms. The Planner uses a BranchesGenerator to consider possible friendly or 

enemy actions and produces significant, representative, Branches. The Planner invokes 

a BranchEvaluator to examine a Branch using simulation and inference mechanisms, and 

then determines a viability measure for the end Node of the new Branch. The viability 

measure indicates how well the state held in the end Node accomplishes the desired 

friendly end state. 

In terms of timing, the Planner has at most until the ActualState reaches the Node 

to produce the new Branches. In Figure 8 time window ® represents this maximum re- 

planning time. More often, however, a new ActualState arrives between the time of the 

ActualState and the time of the node being re-planned. The PlanningExecutive currently 

stops any Planners that are still working, on the assumption that the new ActualState will 

change the priority of re-planning. 

a.   Planner (Class) 

The Planner class is responsible for the creation of new, representative, and 

significant Branches at a Node that has been designated for re-planning. It accomplishes 
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this by invoking a BranchesGenerator. When the BranchesGenerator has completed its 

execution of the Genetic Algorithm, the number of Branches specified by the user are 

pulled from the final generation and become the new Branches for the Node being re- 

planned. The end state of each new Branch is compared to the desired friendly end state 

with a StateDifferenceAnalyzer and given a viability measure. This viability measure is 

an estimate of how well the state at that Branch agrees with the desired end-state. The 

lower each of the three metrics (Location, strength, timestamp) is in relation to its 

equivalent in the desired end-state, the lower the viability measure. 

b.  BranchesGenerator (Class) 

The BranchesGenerator class is a thread that handles the instantiation and 

operation of a Genetic Algorithm (GA) that does the work of producing new Branches. 

The GA has several parameters that govern its operation. The number of generations 

can be controlled, as well as the number of genomes in a generation. In this 

implementation, a genome is a Branch. The probability of crossover between mating 

genomes can be set, as can the probability of a mutation. Crossover is accomplished by 

swapping the paths taken by the same TacEntity in the two parent genomes. Mutation is 

accomplished by creating a new random path for the TacEntity. 

The Genetic Algorithm uses a niching strategy based on the desired friendly and 

enemy end-states to create the first generation. The importance of the objective 

Location, desired end-strength, and desired end-time can be modified by adjustable 

weights.   Also, the maximum time duration of the Branch can be set.   Once each new 
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genome (Branch) has been created a BranchEvaluator is invoked to determine the state 

at the end Node. 

c.   BranchEvaluator (Class) 

The BranchEvaluator is a simple class that is given a Branch and asked to 

determine the outcome. It uses a BranchScanExecutive to evaluate the interaction of the 

entities and the resulting state changes. This yields the new end state. 

3.   The Planning Executive Agent 

The mechanism for controlling the planning and monitoring processes is 

embodied in the PlanningExecutive class. There is only one instance of the 

PlanningExecutive. It receives all information from outside the APSS, controls the 

assignment of ExecutionMonitors to Nodes, and controls the re-planning performed by 

the Planners. As each new ActualState is received, the PlanningExecutive adjusts the 

location of the ExeuctionMonitors, examines the recommendations from all of the 

ExecutionMonitors, determines the re-planning priority of the Nodes, and allocates 

Planners to the Nodes with the highest priorities. In Figure 8 the time window labeled © 

represents the processing time between the PlanningExecutive receiving the 

recommendation from the ExecutionMonitors and allocating the Planners. 

a.   PlanningExecutive (Class) 

The PlanningExecutive is initialized with a handle to the WorldView, from 

which it can draw information about the TacEntities and the HexGrid, and the 

PlanDescription. It immediately places ExecutionMonitors on all the child Nodes of the 

root Node in the PlanDescription, and stores the root Node as the lastActualStateNode. 
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It then waits for ActualState updates from outside the APSS (for testing, the ActualStates 

come from the TestExecutive). 

When a new ActualState is received a new Node is created in the 

PlanDescription for that state, and the lastActualStateNode is updated to point to this 

Node. Also, an ExecutionMonitor is assigned to the new node. If any Planners are still 

running they are stopped, on the assumption that the new ActualState will cause 

different re-planning priorities. The time stamp of the ActualState is used to determine 

which Nodes in the PlanDescription have been bypassed. ExecutionMonitors are 

removed from bypassed Nodes and new ExecutionMonitors are placed on the nearest 

descendants of that Node that have not been bypassed. Finally, the new ActualState is 

sent to all the ExecutionMonitors for processing, and the PlanningExecutive stands by 

for the results. 

When the RecommendationsList notifies the PlanningExecutive that all of the 

recommendations have been received, the PlanningExecutive examines the list and posts 

the new likelihood measures to the Nodes. It then requires all of the Nodes beyond the 

monitored Nodes to determine their re-planning priority. Each Node uses a weighted 

function of its likelihood, its time difference from the actual state, and the number of 

child Branches it has to determine its re-planning priority. It then adds itself to the 

planningPriorityList, which keeps the Nodes sorted from highest priority to lowest 

priority. Once all of the priority updates are posted the PlanningExecutive starts placing 

Planners on the Nodes in priority order.    The Planners are allowed to run until 
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completion of BranchesGeneration, unless a new ActualState arrives, which cause the 

PlanningExecutive to terminate all of the still-running Planners. 

F.  Discrete Event Simulation 

Discrete event simulation is used in several ways in the APSS. First, as the plan 

is being built the insertion, modification, or deletion of tasks can change the interactions 

within a Branch. Therefore, with every task change a simulation is run to determine the 

effects of the change. If the user desires a playback of a plan, a simulation is loaded 

with the task and state changes, then run at a user-selected time scale. When the 

ExecutionMonitors need to produce an Anticipated State they use a simulation. Finally, 

the Planners use simulations after a Branch is generated to determine the interactions and 

provide a Planned State for the end Node. 

1.   Simulation Mechanism 

All of the simulations rely on a common discrete event simulation mechanism. 

This mechanism is composed of two major components. A DESimExec handles the 

execution of the simulation. A DESimEventQueue maintains the simulation events in 

time stamp order. 

a.   DESimExec (Class) 

The DESimExec manages the various types of clocks involved in the simulation 

and processes the DESimEventQueue. There are two ways for this processing to occur: 

processing based on display time, and processing unrestricted by time concerns. 
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In the display time based processing, a tick clock is based on the system timer. 

The tick clock can be set to "go off" every 10, 100, or 1000 milliseconds. As each tick 

occurs, the DESimExec determines its relation to 'display time' (remember that the 

display may be playing back faster than real time). It then removes, in order, the events 

from the DESimEventQueue that have occurred since the last display time. Each of the 

events is executed, meaning that the appropriate Executive is notified that the event has 

occurred and what kind of event it is. The DESimExec then waits for the next tick to 

begin processing again. 

The alternative means of processing is to step through the DESimEventQueue 

without respect to display time. This is appropriate when no playback is being provided 

to the user and only the fact that the events occurred at stated times is important. It is 

this processing means that makes it possible to detect and record engagements and other 

interactions in the BranchScanExecutive. 

b.  DESimEventQueue (Class) 

The DESimEventQueue is precisely what it says it is: a queue of the simulation 

events. The time stamp of the events establishes their order in the queue. The 

DESimEventQueue provides the methods for inserting an event into the queue and 

popping the top event (lowest time stamp) off the queue. A LinkedList is used to 

implement the queue for several reasons. First, random insertions are not 

computationally expensive (linear, worst case is all the events must be considered). 

Second, it is possible for more than one event to have the same time stamp, which 

eliminates Sets or TreeSets as possibilities. 
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2. Simulation Events 

There are several different types of simulation events. The base class for all 

events is the DESimEvent, which holds the time stamp of the event and an abstract 

Execute() method. All of the sub-class events must implement an Execute() method 

specific to themselves. For instance, the MoveEvent class sends a message to the 

appropriate Executive requesting that the TacEntity in question be moved to a new 

Location, while a StatusChangeEvent sends a request to modify one of the TacEntities 

attributes (strength, etc.) at the given time stamp. A DESimStoppedEvent is always the 

last event on the queue, and it notifies the executive that no more messages will be 

coming from the simulation, and it provides the Executive with the time stamp at which 

the simulation ended. 

3. Controlling the Simulation 

Control of the simulation is accomplished by using a common paradigm, that of 

starting, pausing, stopping, and rewinding a video stream. A TimeDisplayLabel shows 

the current display time of the simulation and the DESimControlPanel provides the 

buttons to accomplish each of the control steps. 

a.   TimeDisplayLabel (Visual Component) 

The TimeDisplayLabel appears underneath the DESimControlPanel and shows 

the user the current display time within the simulation run. Before the simulation is 

started, it is passed a handle to this label. As the simulation processes its internal clock it 

updates the TimeDisplayLabel with the current display time. 
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b.  DESimControlPanel (Visual Component) 

The DESimControlPanel presents the user with several timing options for 

running the simulation. See Table 4 for a list of those options. This allows the user to 

run the simulation at anywhere from real time (1 sec = 1 sec) to a very fast time scale of 

one second equals one hour. 

Table 4: Simulation Timing Options 
Real Time = = Plan Time 

"lsec = = 1 sec", 
"lsec = 30 sec", 
"1 sec = 1 min", 
"lsec = 2 min", 
"lsec = 3 min", 
"lsec = 5 min", 
"lsec = 10 min", 
"lsec = 1 hour" 

There are four states for the DESimControlPanel, which correspond to the states 

of the simulation. See Figure 9 for the appearance of the control panel in each state. 

The simulation is in the 'ready' state when it is not currently processing a Branch. Once 

the user clicks on the Run'button, the simulation and the control panel transition into the 

'running' mode, during which the only available option is to pause. The user may want 

to temporarily halt the simulation, so a click on the Pause' button puts the simulation 

into 'paused' mode, halting the processing of the event queue and displaying the state at 

that time. From the 'paused' state, the user can click the Run' button to resume 

processing, or the Rewind' button to return to the 'ready' state. If processing is resumed, 
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the system returns to the 'running' state. Once the event queue has been completely 

processed, the simulation enters the 'Stopped' state. This allows the user to see the 

situation at the end of the simulation run. From here, the user's only option is to press 

the Rewind' button to return to the Ready' state. 
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N • |4| Rewind |4f Rewind 
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Paused 
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Figure 9: Simulation Control States 

G. Attrition Modeling 

The APSS uses a very simple attrition model based on relative strengths and time 

of engagement. See Figure 10 for a graph of the lossFactor applied after an engagement 

duration for odds ranging from 1:6 through 6:1. Clearly, future implementations of 

APSS will require more sophisticated attrition models. 

As a Branch is scanned engagements are begun and terminated. Upon 

termination, the target is assessed a lossFactor representing the amount of their start 

strength that still remains. For instance, if the target starts at a strength of 1.2 and is 

being shot at 1:1 odds for three minutes, the lossFactor would be approximately 0.8. 
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This would reduce the target's strength to 1.2*0.8 = 0.96. Note that the target may also 

be simultaneously engaging the shooter; that engagement is resolved separately. 
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Figure 10: Attrition lossFactor as a function of duration and odds 

The advantage to using lossFactors in this manner is that they are cumulative and 

translate well into status changes. In this way, sequence of status changes can be 

sequentially processed and the sequence of strengths easily determined and displayed. 

This is quite useful for interaction determination by a BranchScanExecutive and 

playback by a PlayerExecutive. 
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CHAPTER V 

RESULTS AND ANALYSIS 

A. Overview 

This chapter contains the results and analysis of several tests that were conducted 

to verify the operation of the Anticipatory Planning Support System and to validate the 

underlying methodology. A comparison of the APSS to existing systems and research 

provides some context. The design of the system used to conduct experiments is 

described, and the parameters that can be varied for testing are identified. Three major 

tests are described, and the results analyzed. 

B. Experimental Design 

In a real military operation, automated command and control assets would 

provide the Actual State of the operation. For the purposes of testing, an external 

Stimulator that represents the activities of the World Integrator and World View 

components produces the Actual State. See Figure 11 for a depiction of the test setup. 

The Test Executive provides the interface for the human tester to load the appropriate 

Plan Description into the APSS and the modified Plan Description into the Stimulator. 

Also, the Test Executive allows the tester to establish the time scale for the operation, to 

start, pause, and stop the operation, and to post Actual State updates to the APSS. 

The Stimulator operates on a test Plan Description that contains controlled 

differences from the Plan Description in the APSS.   The Stimulator processes the test 
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Plan Description through a simulation to periodically produce Actual States. 

Meanwhile, the APSS is processing the Actual States on its own schedule. This can 

cause some timing concerns. For example, if the APSS is operating more slowly than the 

Stimulator, it could be generating new Branches for Nodes that have already been passed 

in "the real world." 
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Figure 11: Testing System 

The Test Executive keeps the APSS and the Stimulator synchronized by sending 

control messages and receiving notifications from the two systems. The Test Executive 
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maintains the master clock and the time scale. The Stimulator notifies the Test Executive 

when each new Actual State, containing a time stamp, is ready. At the appropriate time, 

the Test Executive sends a message to the Stimulator allowing it to post the new Actual 

State. The Stimulator replies with a confirmation of the posting, and then the Test 

Executive notifies the Planning Executive that a new Actual State is available. 

C. Comparison to Existing Systems 

There are no existing military planning systems that are structured or operate like 

the Anticipatory Planning Support System. See Chapter II for discussions of planning 

and CO A production systems. There has been some work done on using a genetic 

algorithm to create courses of action (COAs). For example, the FOX-GA system [157] 

and the MEWS system [165] produce reasonable COA possibilities. The genetic 

algorithm used in APSS compares favorably to those systems since it produces 

reasonable COAs based on friendly and enemy strategies. None of the COA generation 

systems rely on monitoring of the situation to plan ahead of the flow of battle. Another 

fundamental difference is in the way that the APSS uses heuristics based on desired end- 

states to guide the creation of genomes in the genetic algorithm. 

Several planning systems use hierarchies of software agents to perform particular 

functions tailored to the purposes of that system. For example AFS/HAC coordinates 

the activities of multiple agents through a supervenient architecture in which the higher 

levels provide goals to be executed by the lower levels, and knowledge about outcomes 

is passed upwards [161].  By comparison, the agents in the APSS system are tailored to 



134 

particular functions (execution monitoring, re-planning) and are centrally controlled by a 

single master agent (planning executive). 

So far, there has only been one system built to apply simulations to the mission 

operational environment. The OpSim system validated the utility of simulations in 

determining the significance of differences between the observed state of execution and 

the plan [14]. One of the major requirements identified in the OpSim research was that 

the planning support system should be extended to not only find the significant 

differences between the execution and the plan, but also take action to 'fix'the plan. The 

APSS system has been specifically designed to meet that requirement. 

D. Variable Parameters 

Many of the activities performed in the Anticipatory Planning Support System 

can be modified or 'tuned' by changing parameters. To simplify the experimental 

process the APSS prototype includes dialogs that allow interactive changes of the 

parameters. This allows the tester to vary as few or as many parameters as desired and 

observe the effects within the system. The following sections describe the variable 

parameters for the entities in the system and the system components themselves. 

1.   Entity Parameters 

As was previously discussed, TacEntities have many attributes. Among these are 

movement rates, effective ranges, and maximum strength values. If desired, these 

variables can be changed by the tester. The attrition model uses an exponential function 

to determine losses over time.    The parameters used in the attrition model can be 
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modified through a dialog box.. The HexCells also have attributes, such as the go' 

ability, the amount of buildup, the amount of vegetation, etc. The effect of the different 

terrain modifies on movement can be adjusted. 

2. StateDifferenceAnalyzer Parameters 

The StateDifferenceAnalyzer determines the likelihood that a Planned State can 

be reached from the Actual State. There are two adjustable parameters used by this 

analyzer. They are the importance (or weight) given to the distance between the two 

states of each TacEntity, and the importance given to the disparity in strengths of each 

TacEntity. The system includes the ability to select from three different kinds of 

difference functions. 

3. Re-planning Priority Parameters 

The re-planning priority is a function of three factors: the likelihood that the 

node will occur, the temporal proximity of the Node to the Actual State, and the number 

of Branches already planned from that Node. Each of these has a weight parameter 

associated with them, and the weights are adjustable through a dialog. Several different 

re-planning priority functions were used in the experiments. 

4. End-States and Viability 

When building the plan, the user determines the desired end-state for the friendly 

and enemy forces. A desired end-state is composed of six components. The first is that 

force's objective, and is measured by the distance of its TacEntities from that objective. 

The second is its strength, which the force wants to maximize. The third is the no-later- 

than completion time, which should not be passed.   The fourth is the opposing force's 
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objective, which their TacEntities should be kept away from. The fifth is the opposing 

force's strength, which should be minimized. The sixth and final component is the 

opposing force's no-later-than time, by which its objective should not be met. Both the 

friendly and the enemy force have a desired end-state. 

These components taken together, and given the appropriate weights, allow the 

planner to specify overall goals. For instance, a heavily weighted friendly objective and 

a lightly weighted friendly end strength represents a "get to the objective at all costs" 

strategy. Normally, however, the objective and end-strength are more nearly balanced in 

importance. A higher weight on a short no-later-than time represents a strategy of 

getting to the objective in a hurry, with less consideration for end-strength, or a 'terrain- 

oriented' strategy. If higher weights are given to the enemy not accomplishing its 

objective, end-strength, or time, then this represents a 'force-oriented' strategy. 

Given the desired end-states, the viability of a Node for both the friendly and 

enemy forces can be determined. For example, a Node whose state indicates that the 

friendly force won't get to the objective on time, or won't have much strength left when 

the objective is reached will reduce the viability. Of course, this assumes that the end- 

state is weighted towards getting friendly forces on the objective in time. Note that it is 

possible for a Node to simultaneously have high or low viability for both forces. 

5.   Genetic Algorithm Parameters 

The genetic algorithm used by the BranchesGenerator has a number of 

parameters. The number of generations can be adjusted, as can the number of genomes 

to be produced in each generation.   The probability that chromosomes (paths for a 
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specific TacEntity) will cross over from one new child to the other can be changed. 

Similarly, the probability that a new child will contain a mutation (a random path for a 

specific TacEntity) is adjustable. 

The fitness function used by the genetic algorithm is adjustable through two 

parameters. The fitness function uses the friendly and enemy viabilities of each newly 

generated genome to determine its fitness. The two viabilities can be assigned a weight 

ranging from -1.0 to 1.0, and the fitness function attempts to maximize the sum of the 

two weighted viabilities. To get an idea of how this works, consider some of the 

extreme cases. 

If the friendly viability has a weight of 1.0 and the enemy viability a weight of - 

1.0 the genomes with the highest probability of reproduction are those where the friendly 

force is accomplishing its mission and the enemy force is not. Swapping the two values 

results in the opposite situation. If both viabilities have a weight of 1.0, then the most-fit 

genomes are those where both the friendly and enemy force are achieving their goals. 

E. Test Situations 

The fundamental idea behind the Anticipatory Planning process is to expend 

more planning effort ahead of the most likely paths of the actual operation, and less 

ahead of the least likely paths. For the methodology employed in the Anticipatory 

Planning Support System to be considered successful, there are three situations that it 

must properly handle. First, if the actual path of the operation is already represented in 

the PlanDescription, then planning should occur primarily ahead of that path. Second, if 
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the actual path of the operation deviates from a path within the PlanDescription, but then 

returns to a path in the PlanDescription, the planning should stay ahead of the deviation, 

then focus ahead of the re-converged path. Third, if the actual path is not represented in 

the PlanDescription, then planning should stay primarily in front of the actual path. The 

tests for each situation are described below, along with analysis of the results of the tests. 

For each test, a simple, medium, and complex scenario is used. 
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Figure 12: Simple Scenario 

F.  Test Scenarios 

In the simple scenario a single friendly TacEntity and a single enemy TacEntity 

are placed on opposite ends of the HexGrid. Each has an objective on the other side of 
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the HexGrid from their start point. The Branches in the PlanDescription bring the 

opponents into contact in the middle, and allow them to bypass each other in several 

ways. See Figure 12 for the start state of the simple scenario. 

In the medium scenario a battalion of four friendly companies starts on the west 

end of the HexGrid, with an objective on the east end. A battalion of three enemy 

companies starts on the east end, with an objective on the west. The Branches keep the 

enemy companies together as they advance. The friendly companies start out together, 

but are allowed to disperse in some branches. See Figure 13 for the start state of the 

medium scenario. 

.* / • •• 

tfjjjfl \ 

/ 

X. 

i 1 

o xaa   "       \ JET JSm 3km 

'•Vli" 

M       HI W " f^rW« 

Figure 13: Medium Scenario 
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In the complex scenario, the friendly and enemy forces start with two battalions. 

Again, their objectives are on the other side of the HexGrid. Several Branches bring the 

opponents into direct contact. Several others allow them to maneuver around each other. 

See Figure 14 for the start state of the complex scenario. 
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Figure 14: Complex Scenario 

G. Test Conditions 

The three situations described above were tested using the simple, medium, and 

complex scenario. The results and analysis of the nine combinations are described 

below. For clarity, a path through the plan, or the operation, consisting of a sequence of 
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Branches will be referred to as a 'plan path.' The path taken by a TacEntity across the 

HexGrid will be referred to as a 'ground path.' 

In all of these tests constraints have been placed on the system to maintain clarity 

in the depiction of the plan description. The PlanningExecutive has been limited to 

placing Planners on no more than five Nodes. This allows its priority mechanism to be 

observed. Each of the Planners is limited to creating three new Branches. One Branch 

runs the BranchesGenerator with a fitness function that favors friendly viability of the 

end Node. The second Branch is the result of a fitness function that favors enemy 

viability. The third Branch comes from a fitness function that favors the maximization 

of both friendly and enemy viabilities. This is similar to the often used "best-case, 

worst-case, medium-case" approach to testing. 

Note that the term 'favors' does not imply that one side is using a good strategy 

and the other a bad strategy. The genetic algorithm is always following the strategies 

indicated in the desired end states for both opponents in creating new generations. After 

the candidate branches have been created in each generation, the fitness function causes 

the 'favored' ones to be more likely to reproduce in the next generation. 

Table 5: Color Representations in Plan Description 
Color Text     Meaning     Color       Greyscale 
Black Very Low Black 
Red Low Dark Grey 
Yellow Medium Light Grey 
Green High Medium Grey 
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H. Explanation of Figures 

Several figures showing PlanDescriptions are used throughout this chapter to 

depict the function of the APSS. For discussion purposes, the start Node of the Plan 

Description is at level one, and the levels increase from left to right. Also, time 

advances from left to right, and the placement of the Nodes in the X-axis are 

proportional to their time stamp against the maximum time represented. 

There are four colors used to represent likelihood and viability. See Table 5 for 

the description and meanings of the colors. Branches are colored to represent the 

likelihood that the end state of each Branch will be achieved. Nodes are colored to 

indicate the viability of that state from the friendly perspective. The colors are still 

distinguishable in greyscale images. 

The Test Executive provides periodic Actual State updates. Normally, the 

system always plans ahead of the Actual State updates by placing one Planner on the 

Node holding the update. This makes sense, since the Actual State update Node has the 

highest likelihood. For testing purposes, planning ahead of the Actual State updates has 

been inhibited for clarity. 

When Nodes in the PlanDescription have been bypassed in time, their likelihood 

is set to zero, making them turn black. This not only represents the inability to achieve 

that Node anymore, it helps depict the progress of time through the PlanDescription. 

The Branches may change colors several times as the likelihood of their end Nodes 

changes, but once their end Node is passed, the Branches retain the color representing 

the last likelihood of that Node.   This has the beneficial effect of leaving the most 
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closely followed plan paths composed of green Branches, making it easy to determine if 

the APSS is correctly assessing their likelihoods. 

Somewhere in the PlanDescription there is always a Node with a small purple dot 

in it, or a Branch with a purple outline. This merely indicates the currently selected 

Node or Branch. The full APSS screen has a preview panel that displays the state at a 

selected Node, or the state at a given time in a selected Branch. 

When ExecutionMonitors have been assigned to a Node, the Node is outlined in 

blue. Planners assigned to a Node cause it to be outlined in purple. In those instances 

where a Node is simultaneously hosting an ExecutionMonitor and a Planner, the Node is 

outlined in orange. When the Node is not hosting any agents, it is outlined in black. In 

greyscale images it is difficult to distinguish the black outlines from the blue (black and 

very dark grey), and the orange outlines from the purple (both light grey). However, 

most of the discussion will center on where the Planners are, and the light grey outlines 

always indicate Planners. 

I.   Analysis of Test Situations 

This section contains descriptions and depictions of the actual tests run to 

confirm that the APSS properly handles the three test situations. 

1.   Actual Path is Already Represented 

When the actual plan path of the operation is already represented in the 

PlanDescription, the majority of the re-planning effort should stay ahead of that plan 

path.  The likelihood of each Node on the plan path should remain high throughout the 
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operation.   The likelihood of the remaining Nodes should diminish as the operation 

progresses. 

The screen capture in Figure 15 shows the state of the APSS at seventeen minutes 

into the operation. The Test Executive is providing Actual State updates along the plan 

path represented by the first (top) Branch out of each Node. The four Nodes in the 

lower-left corner represent the four Actual State updates received by the system. In this 

case, planning ahead of the Actual State updates has been suppressed. 
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Figure 15: Simple Scenario - 17 Minutes 

At this point all but two of the level three nodes have had their likelihood rated as 

yellow or red. The two green plan paths are the actual plan path and a plan path that the 

Planner created after a previous update. The previous efforts of the Planners along the 

less promising paths is discernable. Notice the Nodes at level three that have exactly 

three children. Now that the actual state update is approaching the actual plan path Node 
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at level three, the PlanningExecutive has shifted all of the Planners to paths in front of 

that Node, where the higher priorities for planning occur. 

By the time the Test Executive has posted an actual state update at the twenty- 

five minute mark (see Figure 16), the APSS has marked only the actual plan path as very 

likely, one path as medium, and all the others as unlikely. All of the Planners are now 

working on Nodes in advance of the actual plan path. No new plan paths have been 

generated on the less likely Nodes. The APSS correctly follows the actual plan path to 

the conclusion of the operation. 
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Figure 16: Simple Scenario - 25 Minutes 

In the simple scenario, the re-planning effort remains in front of the actual plan 

path through the PlanDescription. Although the system hedged its bets' and planned 

ahead of several initially likely paths, by seventeen minutes into the operation it had 
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clearly isolated the actual plan path. An examination of the likelihoods associated with 

each Node reveals that the differences in the planned states and the Actual States are 

very sharp. This makes sense in light of the small number of TacEntities involved and 

the very different initial plan paths. 

The APSS performed substantially the same when processing the medium 

scenario. It did take a little bit longer to focus on the given path, but did prioritize 

planning ahead of the actual plan path throughout the operation. This makes sense 

because with more TacEntities in play the differences between planned and actual states 

is not quite as clear cut. For example, one of the Nodes had a high likelihood overall, 

even though in the actual state one of the TacEntities was nowhere near its planned 

position. 

In processing the medium scenario, the PlanningExecutive tended to place the 

Planners that were not ahead of the actual plan path on Nodes ahead of likely paths that 

had been created by previous planners. This also makes sense when you consider the 

original plan paths are deliberately designed to be distinct from each other. As the 

Planners create new plan paths they are effectively 'filling in the gap' between the 

original plan paths. 

The APSS performed substantially the same way when processing the complex 

scenario. Note that the complexity of the scenario is not related to the complexity of the 

plan. The plans for all three of the scenarios had roughly the same depth and branching 

factor. The slight delay in isolating the actual plan path was evident here, just as in the 

medium scenario.   However, the system tended to place even more planning priority 
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along the actual plan path when the actual state was very close in time to a planned Node 

in the actual plan path. This suggests that having plan paths composed of many shorter 

Branches is better for operation of the APSS than plan paths composed of fewer long 

Branches. 

2.   Actual Path Diverges and Converges 

This section describes the test of the situation where the actual plan path diverges 

from a planned path, then converges back onto it. Each of the three scenarios was 

copied and an additional path added. This new path included the major deviation, and 

concluded in a state as similar to an existing planned state as possible. For these 

scenarios, planning ahead of the Actual State updates was turned back on. 

For the simple scenario, the APSS performed as expected. The more Actual State 

updates that were received indicating the operation was on a completely different path, 

the less planning occurred ahead of the original plan path in the PlanDescription. Also, 

more planning occurred ahead of the Actual State updates. Once the Actual State 

updates approached the planned state in the existing Node, more planning occurred 

ahead of the original plan path. 

It is important to note what happens with the planning effort when the deviation 

converges back to the original plan path. At this point, both the Node representing the 

Actual State and the original Node are assigned almost equal likelihood measures by the 

ExecutionMonitors. Also, the following planned Nodes and any new Nodes created 

ahead of the Actual State updates will have very high likelihood measures. The result is 

that planning effort is divided between the two paths.   Although this might seem a 
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duplication of effort, functionally this is no different than if the two plan paths actually 

merged. The PlanDescription is being modified to allow the substantially equivalent 

existing Node to replace the Actual State update Node. This will make the plan 

description look more like a directed acyclic graph than a tree. 

u oS 

Figure 17: Medium Scenario -12 Minutes 

For the medium scenario, more planning occurred ahead of the deviation as it 

progressed. The screen capture in Figure 17 shows the APSS display at twelve minutes 

into the operation. The first Actual State update occurred at about seven minutes. It is 

apparent that at this point the divergence was not too significant, since four of the five 

Planners were assigned ahead of the existing path (in the top half of the display). The 

remaining planner worked on the Node holding the Actual State. The second update, at 

twelve minutes, clearly shows that the divergence has been detected. Only one Planner 
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is working ahead of the existing plan path.   The other four are planning ahead of the 

Actual State. 

From the twelve minute update all the way through the twenty-seven minute 

update (when the Actual State is very close to converging on the existing plan path) all 

five Planners stay ahead of the Actual State. At the twenty-seven minute update, two of 

the five Planners once again start planning ahead of the existing plan path. See Figure 

18 for the screen capture of the twenty-seven minute update. 
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Figure 18: Medium Scenario - 27 Minutes 

From this point on the duplicated effort discovered in the simple scenario is 

apparent. Throughout the remainder of the operation, the Planning Executive divides the 

planning effort between the existing plan path that accurately tracks the operation, and 

the Actual State updates.   The duplicated effort is identifiable in Figure 19, a screen 
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capture at fifty-six minutes into the operation. The most likely paths are the existing 

plan path that best represents the actual operation (towards the top) and the plan path of 

the Actual State Updates. The planning effort along these two plan paths is clearly 

discernable from the number of planned Nodes along those paths. 

Figure 19: Medium Scenario - 56 Minutes 

The complex scenario provided substantially similar results. The planning effort 

followed the divergence and then returned to the existing plan path that best represented 

the actual operation. In both the medium and complex scenario, the PlanningExecutive 

did not return the planning effort to the existing plan path until the Actual State update 

was within three or four minutes of the Node representing the convergence point. 

Although this would seem to suggest that the system is not identifying the convergence 

fast enough, it is important to remember the planning that has been performed ahead of 
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the Actual State updates. As those updates converge on the existing Node, that planning 

effort is producing new Nodes that are just as likely as the Nodes ahead of the 

convergence Node. Although the shift of planning effort does not occur until slightly 

before the convergence Node, plenty of useful planning has been performed before the 

convergence occurs. However, this highlights the need to treat the PlanDescription as a 

directed graph and allow the representation of the plan to actually converge. 

3.   Actual Path Completely Diverges 

The final series of experiments examines the conduct of re-planning when the 

actual state updates from the operation completely diverge from any of the existing plan 

paths. For this series, planning ahead of Actual State updates has been turned on. The 

first experiment in this series used the complex scenario with a very straight-forward 

PlanDescription containing only a few plan paths. These plan paths deliberately made 

all activities occur in the north (top) of the HexGrid. The control PlanDescription used 

by the simulator contained an additional plan path that took the activity to the south. 

Similar experiments were run on the simple and medium scenarios with completely 

similar results. The complex scenario will serve to illustrate the experimental series. 

The first Actual State update occurred at approximately five minutes into the 

operation and caused four of the five planners to plan ahead of the existing plan path. 

The remaining planner created three new Branches from the Node of the Actual State 

update. This was expected, since the difference in positions and enemy strength was not 

too great. In other words, although the enemy forces had started to move south, they 

could still quite easily move back to the north, restoring the existing plan path. 
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The second Actual State update occurred at about nine minutes, and the 

Execution Monitors detected significant differences. This time, the Planning Executive 

assigned four of the Planners ahead of the Actual State, and only one Planner along the 

existing plan path. 
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Figure 20: Complex Scenario -14 Minutes 

With the arrival of the third Actual State update at fourteen minutes into the 

operation the Execution Monitors rated all Branches along the existing plan path as less 

likely' and the Planning Executive assigned all five Planners on the newly created plan 

paths ahead of the Actual State Node (see Figure 20 for the screen capture). This is 

exactly the desired behavior of the system.   That is, when the situation has altered 
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drastically from any of the existing plan paths, the Planning Executive must focus the 

planning effort on developing new plan paths ahead of the Actual State of the operation. 

Figure 21: Complex Scenario - 48 Minutes 

For the next thirty-four minutes the additional Actual State updates only serve to 

confirm that the operation remains diverged from the existing plan paths. Throughout 

this period almost all of the existing plan paths remain 'unlikely' and none of them 

receive any planning effort. The screen capture at Figure 21 shows all of those plan 

paths colored red (dark gray, in grayscale). It also shows the large cluster of newly 

created plan paths on the bottom of the screen, ahead of the Actual State update Nodes. 

For clarity, that portion of the PlanDescription has been expanded in Figure 22 

to show what is happening to nodes at the tenth level and beyond.  The screen capture 
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shows one Planner at work ahead of the most recent update Node, three ahead of the 

immediately previous update Node, and one Planner working on a Node created only 

two iterations prior. 
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Figure 22: Complex Scenario - 48 Minutes (expanded) 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

A. Summary 

The purpose of the Anticipatory Planning methodology is to develop, monitor, 

and create as many viable options for the commander as possible, and to constrain the 

planning effort along the most fruitful plan paths. A great deal of work has been done in 

the fields of planning under uncertainty, artificial intelligence, and simulation (Chapter II 

describes this previous work). Only recently have these tools been focused on helping 

human military planners manage and take advantage of the vast amount of battlefield 

information. Modern computing technologies such as software agents, genetic 

algorithms, and operationally-focused simulation can be applied to provide the necessary 

capabilities for implementing the methodology. Chapter in describes the design that 

integrates these technologies into a system that enables the Anticipatory Planning 

Methodology to be realized. The implementation of that design, discussed in Chapter 

IV, has produced a prototype Anticipatory Planning Support System. This prototype was 

used to conduct a series of experiments, described in Chapter V, to determine the 

validity of the methodology. The conclusions drawn from those experiments are 

presented in the next section. 

This research is not intended to produce a fully autonomous planning system. 

Human military planners do not really want a system to do all of the planning for them. 

They want a system that supports their planning by taking over the mundane tasks, 
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manage information, keeping track of possibilities, and helping them determine whether 

a plan is viable and when it is in danger of failure. The Anticipatory Planning Support 

System promises to provide those desired capabilities, and is designed to help 

commanders and their staffs see the possible flows of the battle so they can take actions 

early enough to influence the outcome. 

B. Conclusions 

The overview at the end of Chapter I provides a list of the objectives of this 

research. All of those research objectives have been met. A common Plan Description 

has been created that works correctly in all parts of the system. The three software 

agents that detect plan deviations, prioritize re-planning, and produce new plan paths 

have been developed. The Anticipatory Planning methodology has been implemented in 

a prototype system that enables useful experimentation. An unexpected but very useful 

additional contribution was discovered in the ability to use the APSS as a means of 

stimulating planning systems. 

1.   PlanDescription 

The common Plan Description works effectively in every part of the system: 

plan building and task assignment, plan visualization, simulation to determine 

interactions, and testing. The experiments identified the need to convert the tree-like 

Plan Description into a directed graph allowing convergence of plan paths to eliminate 

duplication of effort.   The Plan Description is being modified to allow replacement of 
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the Actual State Node with the substantially similar existing Node. This is a connection 

issue; the internal workings of the Nodes and Branches will not require modification. 

2. Agents 

The three agents that do all the work inside the APSS performed as expected. 

The Execution Monitors successfully determined differences between an Actual State 

and a planned state, and their use of the State Difference Analyzer created correct 

estimates of likelihood. The Planners used a genetic algorithm to rapidly produce a 

number of new possibilities from a given node. These new Branches were created with 

an awareness of the desired end-states of the opponents. The Planning Executive 

successfully processed recommendations from Execution Monitors and assigned 

Planners to Nodes in accordance with a priority scheme that ensured the planning effort 

occurred along the most fruitful plan paths. 

3. Anticipatory Planning Methodology 

The methodology performs the required actions as designed. The system 

successfully followed actual planning paths. It also noted and planned ahead of 

divergences from existing plan paths. If the actual plan path representing the operation 

re-converged on an existing planned path, planning effort also returned to the existing 

plan path. There was some duplication of effort in this case. The cause and the 

proposed solution have already been noted. 

4. Prototype System 

The APSS prototype facilitates the planning process. The human planner can 

task units, observe interactions, build plans, and consider "what-if scenarios."   At any 
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time, even when the system is active, the commander or staff select Branches, see a 

preview, and run a simulation to observe the interaction of the entities.  They can also 

continue to create new Branches and plan paths. 

5.   Means of Stimulating Planning Systems 

Finally, the APSS is able to serve as a Stimulator of planning systems. Although 

this was not an objective of this research, it proved to be a valuable tool in testing the 

prototype and the methodology. Since the Stimulator produces Actual States of the 

operation at a given time stamp it should prove able to stimulate other planning and 

simulation systems. The only requirement would be a conversion of the Actual State 

into whatever representation is used in the target system. 

C. Future Work 

Now that the prototype system has been developed and the initial proof of 

concept completed there are many directions this research can take. Although not 

exhaustive, the following sections describe additional work that can be performed 

starting from this foundation. 

1.   Eliminate duplicate TacEntity Paths 

One of the goals of this research was efficient implementation of its constituent 

parts. The PlanDescription could benefit from a modification that eliminates duplicate 

plan paths by the same TacEntity. For example, if a Tank Company takes exactly the 

same actions in two different Branches, then there are two exact copies of the 

TacEntityTaskList   for  that   company.      Some  creative   mapping   of  Branches   to 
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TacEntityTaskLists would eliminate this duplication. If a new Branch was created that 

desired a modification to that common TacEntityTaskList, then a new copy of the list 

could be made and modified, leaving the original list unchanged in all of the existing 

Branches that rely on it. 

2. End-States in a Course of Action Analysis Tool 

There is an interesting way to use the desired end-states that bears investigation. 

It may well be possible for a new agent (call it an analyzer) to change the desired end- 

states, then run simulations to determine the outcomes. The analyzer could compare the 

outcomes to the Actual State updates and determine which strategy the enemy is using. 

It may also be useful to expand how the end states are designed to allow a more flexible 

representation of different strategies. 

3. Converge Actual-Plan Path with Existing Plan Paths 

The biggest issue identified in the experiments was the duplication of effort that 

occurred when the Actual State updates were already represented in existing plan paths. 

The solution, re-implementation of the PlanDescription as a directed graph, has already 

been discussed. 

4. Connect APSS to Existing Military Systems 

Ultimately, a more robust version of APSS would have to receive its Actual State 

from the Common Operational Picture produced by battlefield information systems. 

Also, integration of the APSS with existing military simulations, such as OneSAF, would 

be useful. 
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APPENDIX A 

SOURCE CODE 

All of the source code for the Anticipatory Planning Support System is provided 

on the accompanying compact disc (CD). The CD was written as a standard computer 

data disc, so it should be readable on any computer. All of the code was written in 

standard Java, compliant with version 2.0 of that language (Java Developers Kit 1.2). 

The code was produced using the Borland JBuilder 3.0 development environment, but is 

readable in any text editor or Java development environment. 



177 

VITA 

John Mitchell Duval Hill was born in Fort Rucker, Alabama, the second son of 

an Army couple. He grew up on several Army posts, until his family settled in Austin, 

Texas, after his father retired from the Army. He attended Andrews Elementary School, 

Pierce Junior High School, and Anderson High School, graduating as a National Merit 

Scholar. In 1982, he graduated 24th in his class from the United States Military 

Academy at West Point, New York, with a bachelor's degree concentrating in Computer 

Science. He served as a Tank Platoon Leader, Company Executive Officer, and assistant 

Division Training Officer at Fort Hood, Texas, from 1983-1986. In his next assignment, 

to Garlstedt, Federal Republic of Germany, from 1986-1990, he served as a Battalion 

Adjutant, Battalion Maintenance Officer, and Tank Company Commander. From 

1990-1992 he earned a master's degree in Computer Science from the University of 

Texas at Austin. His follow-on assignment from 1992-1995 was teaching at West Point, 

where he served as an Instructor and then Assistant Professor, and performed duties as 

the Executive Officer for the Department of Electrical Engineering and Computer 

Science. He graduated in 1996 from the Command and General Staff College at Fort 

Leavenworth, Kansas, and then moved to Fort Riley, Kansas, where he served as a Tank 

Battalion Executive Officer and G-3 Operations Officer. From 1998 to 2001 he attended 

Texas A&M University, receiving a Ph.D. in Computer Science in May, 2001. 

John can most easily be reached through his parents-in-law, 7607 Mesa Drive, 

Austin, Texas 77831. 


