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FINAL TECHNICAL REPORT 

Long-term Research Objective: 

The physical basis for biological complexity is context-dependent expression of the organism's 
genome. The context is provided by the life cycle of the organism; the molecular mechanisms of 
gene regulation interpret that context. We seek to develop a theoretical framework for 
quantitatively relating the integrated behavior of gene circuits to their underlying molecular 
determinants, and, by applying this theory to specific classes of gene circuits, we hope to 
discover the basic principles that govern their design by natural selection. 

S & T Objectives: 

To the best of our knowledge, there has been no concerted effort to understand the role of gene 
circuitry as a robust computational device. Under what conditions will gene control elements 
and their circuitry be maintained in the face of mutational entropy? What is the computational 
potential of such robust circuits, and can one design selection strategies to direct their evolution? 
These related questions represent the principal objectives of this work. 

Approach: 

We will first analyze known molecular modes of gene control and the spectrum of computations 
that they are capable of performing. Second, we will determine the selective pressures that in the 
presence of mutation lead to the emergence and maintenance of particular computational circuits 
involving these elements. Finally, we will use all this information in an attempt to design 
specific computational solutions through a process of directed evolution. 

S & T Completed: 

Analysis of Alternative Molecular Modes of Gene Control And of The Selective Pressures 
That Lead to The Emergence And Maintenance of Particular Computational Circuits 

We have refined our development of the quantitative implications of demand theory. A 
summary of the preliminary results that were obtained in the first year of the grant appeared as a 
book chapter [1]. The detailed development of the theory and applications with refined 
parameter estimates were presented in two Genetics papers. In the first paper [2], a theory is 
developed that ties together a number of important variables, including growth rates, mutation 
rates, minimum and maximum demands for gene expression, and minimum and maximum 
durations for the life cycle of the organism. Applications of the theory are provided in the 
second paper [3], where regulation of the lactose and maltose operons of Escherichia coli is 
analyzed and the results are compared with independent experimental data. 

The quantitative development of demand theory not only confirms and quantifies the previous 
qualitative predictions, but it also identifies critical factors and reveals new relationships [2]. 
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The recursive equations that characterize the population dynamics of mutant and wild-type 
organisms allow one to predict the time course for selection. The form of these equations also 
allows one to predict that the response time for selection is independent of the ON/OFF cycle 
time for the gene C, whereas it is strongly dependent upon the demand for gene expression D. 
The steady-state solution of the recursive equations provides estimates for the extent of selection. 
A threshold for selection is determined by the relationship between cycle time C and demand D 
that results when the extent of selection is set equal to the criterion for selection. 

The thresholds for selection in the C vs. D plot define regions within which selection of the 
positive or negative mode of regulation is realizable. Their intersection defines a maximum 
value for the cycle time Cmax, and their asymptotes define minimum Dmin and maximum 
Dmax values of the demand for gene expression. These regions also exhibit an inherent 
asymmetry that favors selection of the positive mode. 

In summary, the quantitative development of demand theory reveals unexpected relationships 
between the demand for gene expression D and the average ON/OFF cycle time for the gene C, 
which is a manifestation of the organism's life cycle. The demand theory of gene regulation can 
be extended within the framework presented here to include organisms with life cycles that are 
more complex than the two phases illustrated in this paper and regulatory systems that are more 
complex than a single mechanism of gene control. 

The application of demand theory to the lactose and maltose operons of E. coli provides an 
opportunity to test a number of the theory's quantitative implications [3]. 

With the parameter values that represent the lactose and maltose operons, the time required to 
reach full selection is independent of cycle time but decreases until a minimum is reached with 
increasing demand (negative mode) or decreasing demand (positive mode). On the other hand, 
the extent of selection is dependent on the value of C and increases, reaches a maximum, and 
then declines as demand increases. The combination of these results suggests that the optimum 
extent and rate of selection occurs at around D=0.001 for the negative mode and i-D=0.01 for 
the positive mode. In the case of the positive mode this represents a choice of 1-D that yields a 
rate of selection that is nearly equivalent to the optimum for the negative mode. 

The allowed regions for selection permit one for the first time to specify precisely what is meant 
by high and low demand. With the nominal values for the parameters of the lactose and maltose 
operons in E. coli, selection of the negative mode of control requires a demand between 
0.000005 and 0.1, whereas selection of the positive mode requires a demand between 0.2 and 
0.999985. Furthermore, these regions exhibit the predicted asymmetry with the positive mode 
having the larger region within which selection is realizable. 

The quantitative theory reveals a number of new relationships involving cycle time that can be 
tested against experimental data in the case of the lactose and maltose operons of E. coli. The 
first such relationship provides an estimate for the minimum value of the cycle time Cmin- We 
obtained values of 26 hours and 10 hours, which is on the same order of magnitude as the 40 
hours required on average for transit through the entire intestinal tract. Under these 



circumstances, E. coli is simply passing through the intestinal tract without colonizing the colon. 
Clearly, the cycle time can be no shorter than this period. 

The second relationship provides an estimate for the maximum value of the cycle time Cmax- 
We have estimated this value to be approximately 580,000 hours (-66 years) in the case of the 
lactose operon and 502,000 hours (~ 57 years) in the case of the maltose operon. These values 
for Cmax are on the same order of magnitude as the 120-year maximum for the life span of 
humans. Clearly, the cycle time for E. coli can be no longer than the life-time of the host 
because the bacteria will die with the host if they do not colonize a new host. 

The final relationship provides an estimate for the optimal value of the cycle time C0p- The 
optimal extent and rate of selection determined for the lactose operon suggest a demand in the 
neighborhood of D0p = 0.001. This value of D, taken together with the measured three-hour 
exposure time to lactose in humans (D=3/Q, predicts an optimal cycle time of C0p = 3000 
hours (~ 4 months). The corresponding estimate based on the maltose operon is C0p = 800 
hours (~ 33 days). These predicted values for the cycle time of E. coli are comparable with the 
cycle times (recolonization rates) of months to years that have been observed in humans for 
resident strains of E. coli. 

In summary, the quantitative development of demand theory presented in the first paper and 
applied in the second provides the first estimates for the high and low values of demand that are 
required for selection of the positive and negative modes of gene control. The specific 
application to the maltose and lactose operons of E. coli suggests that the positive and negative 
modes of control for these genes are subject to selection throughout the full range of cycle times 
that are possible for this microbe. Moreover, the cycle times predicted on the basis of the 
optimal extent and rate of selection are in agreement with the typical cycle times that have been 
observed experimentally. 

The quantitative version of demand theory integrates information at the level of DNA (mutation 
rate, effective target sizes for mutation of regulatory proteins, promoter sites, and modulator 
sites), physiology (selection coefficients for superfluous expression of an unneeded function and 
for lack of expression of an essential function), and ecology (environmental context and life 
cycle) and makes rather surprising predictions connected to the intestinal physiology and life 
span of the host and to the rate for recolonizing the host. Two additional approaches have 
yielded results that provide new insight into the normal physiological operation of this gene 
circuit in the organism's natural environment. 

First, we have extended our initial analysis to include the AND logic by which expression of the 
lactose operon is determined by the absence of the lactose-specific repressor and the presence of 
the global CAP activator [4]. When the logic of combined control by CAP-cAMP activator and 
Lac repressor was analyzed, we found an optimum set of values not only for the exposure to 
lactose, but also for the exposure to glucose and for the relative phasing between the periods of 
exposure. 



Second, we also have analyzed the alternative types of switching behavior that can be exhibited 
by the lactose operon in Escherichia coli [5]. The analysis showed that slight changes in the 
connectivity of the circuit (made possible by the used of metabolic analogues) can alter the 
switching behavior from a continuous graded response to a discontinuous all-or-none expression 
of the lac operon. 

Distinguish Design Features That Occur as the Result of Natural Selection from Those That 
Occur With High Probability by Chance 

We have been comparing alternative designs for achieving the same function in an effort to 
identify those designs that would arise frequently by chance and that would be robust in the face 
of mutational entropy. Any method to identify the critical differences between alternative 
designs for gene circuitry must be able to distinguish those design features that are the result of 
natural selection from those that occur with high probability by chance. The principal method 
we have used for most of our studies is the method of mathematically controlled comparisons. 

The method involves the following steps. (1) The alternatives being compared are restricted to 
having differences in a single specific process that remains embedded within its natural milieu. 
(2) The values of the parameters that characterize the unaltered processes of one system are 
assumed to be strictly identical with those of the corresponding parameters of the alternative 
system. This equivalence of parameter values within the systems is called internal equivalence. 
It provides a means of nullifying or diminishing the influence of the background, which in 
complex systems is largely unknown. (3) Parameters associated with the changed process are 
initially free to assume any value. This allows the creation of new degrees of freedom. (4) The 
extra degrees of freedom are then systematically reduced by imposing constraints on the external 
behavior of the systems. In this way, the two systems are made as nearly equivalent as possible 
in their interactions with the outside environment. This is called external equivalence. (5) The 
constraints imposed by external equivalence fix the values of the altered parameters in such a 
way that arbitrary differences in systemic behavior are eliminated. Functional differences that 
remain between alternative systems with maximum internal and external equivalence constitute 
irreducible differences. (6) When all degrees of freedom have been eliminated, and the 
alternatives are as identical as they can be, then comparisons are made by rigorous mathematical 
and computer analyses of the alternatives. 

In some cases, the results obtained using this technique are general and independent of parameter 
values and the answers are clear-cut. In others, the result might be general, but the 
demonstration is difficult and numerical results with specific parameter values can help to clarify 
the situation. In either situation, numerical results with specific parameter values also can 
provide an answer to the question of how much better one of the alternatives might be. In 
contrast, a more ambiguous result is obtained when either of the alternatives can have the larger 
value for a given systemic property, depending on the specific values of the parameters. In any 
case, introduction of specific values for the parameters reduces the generality of the results. A 
numerical approach to this problem has been developed that combines the method of 
mathematically controlled comparison with statistical techniques to yield numerical results that 
are general in a statistical sense. These developments have been reported in a series of five 
papers [6-10]. 



The first task in developing a statistical version of mathematically controlled comparisons was to 
expand the usual methodology of making statistical comparisons. When dealing with questions 
that concern a general class of models for biological networks, large numbers of distinct models 
within the class can be grouped into an ensemble that gives a statistical view of the properties for 
the general class. However, comparing properties of different ensembles through the use of the 
usual point measures (e.g. medians, standard deviations, correlation coefficients) can mask 
inhomogeneities in the correlations between properties. We were therefore motivated to develop 
strategies that allow these inhomogeneities to be more easily detected [6]. First, we take 
advantage of the regular systematic structure of the power-law formalism to construct ensembles 
of parameter sets for both the reference model and the alternative model in question. Second, 
these realizations of the two alternative model designs are analyzed to characterize their systemic 
behaviors. Third, these are then compared by means of a novel "Density of Ratios Plot". 
Techniques involving moving quantiles are introduced to generate secondary plots in which 
correlations and inhomogeneities in correlations are more easily detected. Finally, we provided 
several examples to illustrate the advantages of these techniques. 

The first uses of the graphical and statistical methods presented in the previous paper were to 
examine how the different systemic properties of a biochemical network are correlated with one 
another and how the specification of particular systemic properties biases the distribution of the 
underlying parameter values [7]. To keep the application as transparent as possible we examined 
a simple unbranched biosynthetic pathways subject to control by feedback inhibition. After 
constructing a large ensemble of randomly generated sets of parameter values, the structural and 
behavioral properties of the model with these parameter sets were examined statistically and 
classified. The results of our analysis demonstrated that certain properties of these systems are 
strongly correlated, thereby revealing aspects of organization that are highly probable 
independent of selection. This is an aspect of the usual approach whereby parameter values are 
examined to determine their influence on systemic behavior. We have also taken the opposite 
view to learn how selection for particular systemic behaviors influences the frequency 
distribution of parameter values. Information on the distribution of parameter values is of 
interest in the design of experiments to measure the parameters in actual systems. By knowing 
the most probable values of a parameter, one can design experiments to target that range. The 
results would allow us to make predictions about the range of values most likely to generate 
systems with the known behavior. 

Having developed the statistical methods and examined the correlations among the properties of 
a system, we used these methods for the specific purpose of extending the method of 
Mathematically Controlled Comparison [8]. This method has been used for some time to 
determine which of two alternative regulatory designs is better according to specific quantitative 
criteria for functional effectiveness. We were motivated to develop and apply statistical methods 
that would permit the use of numerical values for the parameters and yet retain some of the 
generality that makes Mathematically Controlled Comparison so attractive. We illustrated this 
new numerical method in a step-by-step application using a very simple didactic example. We 
also validated the results by comparison with the corresponding results obtained using the 
previously developed analytical method. The numerical method confirmed the qualitative 
differences between the systemic behavior of alternative designs obtained from the analytical 



method. In addition, the numerical method allowed for quantification of the differences and it 
provided results that are general in a statistical sense. 

The statistical strategy for making mathematically controlled comparisons, after having been 
developed and validated, was used to address two long-standing biological question: (1) Why is 
the pattern of overall feedback inhibition a nearly universal design feature of unbranched 
biosynthetic pathways? (2) Why do most unbranched biosynthetic pathways have irreversible 
reactions near their beginning, many times at the first step? 

We approached the first of these questions by examining pathways with an arbitrary pattern of 
feedback interactions and an otherwise equivalent pathway without the overall feedback 
interaction [9]. Our statistical method allowed the rigorous determination of the changes in 
systemic properties that can be exclusively attributed to overall feedback inhibition. Analytical 
results show that the unbranched pathway can achieve the same steady-state flux, concentrations 
and logarithmic gains with respect to changes in substrate, with or without overall feedback 
inhibition. The analytical approach also shows that overall feedback inhibition amplifies the 
regulation of flux by the demand for end product while attenuating the sensitivity of the 
concentrations to the same demand. This approach does not provide a clear answer regarding the 
effect of overall feedback inhibition on the robustness, stability and transient time of the 
pathway. However, the generalized numerical method we used does clarify the answers to these 
questions. On average, an unbranched pathway with overall feedback inhibition is less sensitive 
to perturbations in the values of the parameters that define the system. On average, overall 
feedback inhibition decreases the stability margins by a minimal amount (typically less than 
5%). Finally, and again on average, stable systems with overall feedback inhibition respond 
faster to fluctuations in the metabolite concentrations. Taken together these results show that 
overall feedback inhibition confers several functional advantages upon unbranched pathways. 
These advantages provide a rationale for the prevalence of this mechanism in unbranched 
metabolic pathways in vivo. 

We approached the second of these questions by systematically varying the position of the 
irreversible reaction in model pathways and comparing the systemic behavior according to 
several criteria for functional effectiveness using the method of mathematically controlled 
comparisons [10]. This technique minimizes extraneous differences in systemic behavior and 
identifies those that are fundamental. Our results show that a pathway with an irreversible 
reaction located at the first step, and all other reactions reversible, is on average better than an 
otherwise equivalent pathway with all reactions reversible, which in turn is on average better 
than an otherwise equivalent pathway with an irreversible reaction located at any step other than 
the first. Pathways with an irreversible first reaction and low concentrations of intermediates 
(one of the primary criteria for functional effectiveness) exhibit the following profile when 
compared to fully reversible pathways: changes in the concentration of intermediates in 
response to changes in the level of initial substrate are equally low, the robustness of the 
intermediate concentrations and of the flux is similar, the margins of stability are similar, flux is 
more responsive to changes in demand for end product, intermediate concentrations are less 
responsive to changes in demand for end product, and transient times are shorter. These results 
provide a functional rationale for the positioning of irreversible reactions at the beginning of 
unbranched biosynthetic pathways. 



Significance / Impact / Navy Relevance: 

While it is obvious that gene circuits are capable of performing various computational tasks, it is 
not clear why particular circuitry has evolved to perform these tasks. If we can develop a deeper 
understanding of the basic design principles, significant biological consequences would follow. 
Moreover, we might be able to supply an appropriate context for the directed evolution of robust 
circuits with desirable computational properties, which could also have important technological 
ramifications. 

Several elements of design, each exhibiting a variety of realizations, have been identified among 
elementary gene circuits in prokaryotic organisms. Design principles that appear to govern the 
realization for some of these elements have been identified by the use of well-controlled 
mathematical comparisons. Work on this grant has contributed to the identification of four such 
principles. These make specific predictions regarding (1) two alternative modes of gene control, 
(2) three patterns of coupling gene expression in elementary circuits, (3) two types of switches in 
inducible gene circuits, and (4) the readability of alternative gene circuits and their response to 
phased environmental cues. In each case, the predictions are supported by experimental 
evidence. These results are important for understanding the normal function of gene circuits; 
they also are potentially important for developing judicious methods to redirect normal 
expression for biotechnological purposes or to correct pathological expression for therapeutic 
purposes. 

In this third phase of our work we have begun to address the task of using directed evolution to 
design circuits that perform specific functions. The statistical methods we developed have 
helped us identify designs that meet specific performance criteria by starting with random 
assignment of parameter values and applying selection. The resulting designs that occur with 
high probability are likely to be robust. If this approach proves successful for a wide variety of 
circuits performing diverse functions, then it would provide the basis for experimental 
approaches aimed at a biological realization of these circuits. 

A review covering all of the work undertaken during the period of this grant has recently been 
published [11]. This work has motivated us to continue our investigation of randomly-generated 
gene circuits and to focus our attention on the role of alternative forms of connectivity. The first 
paper representing this new work in progress is currently under revision [12]. 
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RULES   FOR THE EVOLUTION  OF GENE CIRCUITRY 

M.A. SAVAGEAU 
Department of Microbiology & Immunology, The University of Michigan Medical 

School, Ann Arbor, Michigan   48109-0629 USA 

Cells possess the genes required for growth and function in a variety of contexts. In any 
given context there is a corresponding pattern of gene expression in which some genes are 
OFF and others ON. The ability of cells to switch genes ON and OFF in a coordinate fashion 
to produce the required patterns of expression is the fundamental basis for complex 
processes like normal development and pathogenesis. The molecular study of gene 
regulation has revealed a plethora of mechanisms and circuitry that have evolved to perform 
what appears to be the same switching function. To some this implies the absence of rules. 
However, simple rules capable of relating molecular design to the natural environment have 
begun to emerge through the analysis of elementary gene circuits. Two of these rules are 
reviewed in this paper. These simple rules have the ability to unify understanding across 
several different levels of biological organization -- molecular, physiological, 
developmental, ecological. 

1.     Introduction 

Regulation of gene expression and its systemic manifestations are subjects of 
intense study. As a result of this effort we shall soon have identified all of the 
genes and proteins for a number of simpler organisms. Despite this enormous 
progress we are still at a loss to understand the integrated behavior of the organism. 
Our understanding is still fragmentary and descriptive. We are unable to predict 
changes in the organism's behavior when it is placed in a novel environment or 
when a change is made in one of its genes. Little is known about the forces that 
lead to the selection or maintenance of a specific mechanism for the regulation of a 
given set of genes in a particular organism. Is this process random, or is it 
governed by rules? The answer to this question is important. It will help us to 
understand the evolution of gene regulation; it also will help us to develop judicious 
methods of redirecting normal expression for biotechnological purposes or of 
correcting pathological expression for therapeutic purposes. 

Our goal is to understand the integrated structure and function of 
organizationally complex systems in relation to their underlying molecular 
determinants. Moreover, we are particularly interested in identifying the rule-like 
properties of these systems that would allow for some algorithmic compression in 
their representation, and not simply a compilation of all the molecular details. 

In pursuit of this goal we have developed a canonical nonlinear formalism that 
has desirable properties for the representation and analysis of organizationally 
complex systems (1).   This formalism has been used to characterize alternative 
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modes of gene control and various forms of coupling among elementary gene 
circuits. The results allow us to identify a set of rules, or design principles, that 
govern the natural selection of gene circuits. Here we shall review the relevant 
biological background and then present results from our analysis of gene circuitry. 

2.     Biological Background 

The common metaphor of the genome as a blueprint for construction of the 
organism masks the difficult task of relating structure and function of the intact 
organism to its underlying genetic determinants (2). The behavior of an intact 
biological system can seldom be related directly to its underlying molecular 
determinants. There are several different levels of hierarchical organization that are 
relevant. For our present purposes it will be sufficient to consider four different 
levels — genome sequence, transcriptional unit, elementary gene circuit, 
environmental context. 

2.1. The DNA sequence constitutes the genome 

The recent sequencing of the complete genome for a number of simpler organisms, 
and the projected completion of the sequence for the human genome by the year 
2005, illustrate the power of modern molecular biology to resolve complex systems 
into their simplest elements. The four bases — A, T, G, and C - are strung 
together in sequences that are mind-numbing in their simplicity; yet, these 
sequences provide the potential for incredible complexity. Whether it be the 
versatile metabolism of free-living microbes that can adapt to nearly any 
environment, or the sophisticated structures of multicellular organisms that can be 
seen in near endless variety, the physical basis for this complexity is the context- 
dependent expression of the organism's genome. 

2.2. Information is encoded in transcriptional units 

The mapping from DNA level to organismal level requires a deeper understanding of 
how information is encoded in the genome. DNA sequences are organized into 
functional units that consist of structural genes flanked by a start sequence at which 
transcription begins and a termination sequence at which it ends. In addition, there 
are a number of regulatory sites capable of binding specific transcription factors that 
interact with the transcription machinery to modulate the rate of transcription 
initiation or termination (Fig. 1). 
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Figure 1. Unit of transcription. Structural genes (Gi and G2) are bounded by a 
promoter sequence (P) and a terminator sequence (T), and preceded by upstream 
modulator sites (Mj and M2) that bind regulators (Ri and R2) capable of altering 
transcription initiation. The solid arrow represents the mRNA transcript and the 
scalloped lines indicate the protein products encoded by genes Gi and G2. 

2.3. Expression is organized into elementary gene circuits 

Transcription of DNA is but one step in a cascade of information flow that 
constitutes the expression of a gene (Fig. 2). Each stage of such a cascade is a 
potential site at which expression can be regulated in a context-dependent fashion. 
The context is provided by the life cycle of the organism, and the interlocking 
mechanisms of gene regulation interpret that context. 

mRNA-R -— »- mRNA-E -*- 

Regulator -»- -»- Enzyme -*- 

Metabolite -*- 

Figure 2. Cascade of information flow from DNA to RNA to protein to metabolite. 
The processes of synthesis and degradation are represented by horizontal arrows, 
whereas the catalytic and regulatory influences are represented by vertical arrows. 
An effector circuit is shown on right and a regulator circuit is shown on the left. 

2.4. Physiology and ecology are reflected in the organism's life cycle 

The life cycle of some organisms is largely programmed development from egg to 
embryo to mature adult and back to the egg (3). In other organisms it is dominated 
by random events involving a pathogen's ability to encounter one host, to exploit or 
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colonize that host for a period of time, to escape into a secondary environment, and 
to survive there until an encounter with a subsequent host (4). In each case, specific 
genes function in some phases of the organism's life cycle but not in others. 
Differential patterns of expression are exhibited as the context changes from one 
phase to the next and one set of genes is switched OFF while another set is switched 
ON in a combinatorial fashion. 

Gene regulation ~ the ability to switch gene expression ON and OFF in 
appropriate temporal and spatial patterns — is central to modern biology. The 
inability to express a gene when it should be ON, or the inappropriate expression of 
a gene when it should be OFF, is usually dysfunctional and often lethal. The 
determination of what constitutes appropriate expression requires knowledge of the 
molecular mechanism, the physiological function it realizes, and the environmental 
demand for that function. 

Organisms regulate expression of their genome by means of a diverse repertoire 
of molecular mechanisms. Most of the well-characterized examples have come from 
the study of prokaryotes. Although the situation is typically more complex in 
eukaryotes and there are undoubtedly some aspects of regulation unique to higher 
organisms, the general themes are much the same in both and most mechanisms 
that were originally thought to be unique to eukaryotes have subsequently been 
observed within the prokaryotic realm. For our analysis, we have abstracted the 
generic features of gene regulation that are thought to be common to both, but for 
testing our predictions we have turned to the more numerous and well-characterized 
prokaryotes systems. The extent to which the results might differ for eukaryotes 
remains to be determined. 

3.    Rules for the Molecular Mode of Gene Control 

One of the first variations in design to be well documented is that involving 
positive vs. negative modes of gene control (Fig. 3). For example, the lactose (lac) 
catabolic system in Escherichia coli is governed by a classical repressor protein (5), 
the negative mode of control. Induction of gene expression in this system is 
achieved by the addition of an inducer that removes the repressor protein to allow 
transcription. The maltose (mal) system in E. coli, by contrast, is governed by an 
activator protein (6), the positive mode of control. Induction in this case is achieved 
by the addition of an inducer that converts the activator protein into its functional 
form that facilitates transcription. What is the significance of this variation in 
design? 

This difference in design was originally believed to have no functional 
significance. Subsequent analysis showed that mode of control is related to the of 
control showed that in most respects their behavior can be identical.   However, 
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Figure 3. Alternative molecular modes of controlling gene expression. 

demand for expression of the regulated gene in the organism's natural environment 
(7). The analysis of mathematical models with either the positive or negative mode 
they behave in diametrically opposed ways to mutations in the components of the 
regulatory mechanism itself. Mutants altered in the positive mechanism are unable 
to express the corresponding gene product despite the presence of inducer, whereas 
mutants altered in the negative mechanism express the corresponding gene product 
even in the absence of inducer. The relative growth of mutant and wild-type 
organisms was examined in high- and low-demand environments. The high-demand 
environment, in which high-level expression is frequently required for the 
organism's survival, leads to selection of the positive mode of gene control; the 
low-demand environment leads to selection of the negative mode. Thus, molecular 
mode of control is correlated with level of demand for expression of the regulated 
gene product in the organism's natural environment (Table 1). These qualitative 
predictions are well supported by experimental evidence (8). 

Table 1. Predicted correlation between demand for expression and mode of control 

Demand for expression 

High 

Mode of regulation 

Positive Negative 

Regulation 
selected 

Regulation 
lost 

Low Regulation 
lost 

Regulation 
selected 



59 

In recent analysis we have examined the quantitative implications of this 
demand theory (in preparation). First, we define two key parameters: the cycle time 
C, which is the average time for a gene to cycle through the OFF state, the ON 
state, and back to the OFF state; and demand D, which is the fraction of the cycle 
time that the gene is ON. Second, a quantitative analysis involving mutation rates 
and growth rates reveals non-overlapping regions in the C vs. D space for which 
selection of wild-type regulatory mechanisms with the negative or the positive mode 
is realizable (Fig. 4). 

The quantitative theory specifies more precisely what we mean by high and low 
demand. As can be seen in Figure 4, with the nominal values for the parameters of 
the lactose and maltose operons in E. coli, selection of the negative mode of control 
requires a demand less than 0.04, whereas selection of the positive mode requires a 
demand greater than 0.32. 

Although these limits on demand are influenced by a number of parameters, by 
far the most influential parameter is the reduction in growth rate when there is 
excess expression of a gene whose function is not required.   The nominal value for 

1E+6 

Figure 4. Thresholds for discriminate selection of wild-type regulatory mechanisms 
with negative or positive modes. There is maximum value of demand for selection 
of the negative mode and a minimum value of demand for selection of the positive 
mode. The values of cycle time C and demand D are based on parameter values 
for the lac and mal systems in E. coli. 
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this parameter was set at 5%, based on data for the lactose operon that suggest this 
value as a maximum for the reduction in growth rate of operator-constitutive 
mutants in a low-demand environment. In the case of the positive mode, the same 
value was used to characterize the reduction in growth rate of an up-promoter mutant 
in a low-demand environment. A 10% variation in this parameter yields a two-fold 
change in the limits of D for both the negative and positive mode. The remaining 
parameters have much less influence on the limits of D; approximately half 
exhibit a nearly linear influence, whereas the other half have a negligible influence. 

4.     Rules for the  Coupling of Elementary Gene  Circuits 

A second variation in design is that involving the coupling of elementary gene 
circuits for regulator and effector genes. Early experimental studies (9) suggested 
that expression of regulator genes is invariant in some cases (classical regulation), 
such as in the lac system in E. coli, and coordinate with the regulated effector genes 
in other cases (autogenous regulation), such as in the histidine utilization (hut) 
system in Salmonella typhimurium. Our earlier work focused on the functional 
implications of these alternatives, which we now refer to as the completely 
uncoupled and perfectly coupled patterns of regulator and effector gene expression 
(10). However, inducible systems with other patterns of gene expression were 
subsequently reported, and these have become the stimulus to extend our earlier 
work. 

Logically, there are three qualitatively distinct patterns of regulator and effector 
gene expression that can be exhibited by an inducible system (Fig. 5). These are the 
directly coupled, uncoupled, and inversely coupled patterns in which regulator gene 
expression increases, remains the same, and decreases with an increase in effector 
gene expression. Well-studied examples of direct coupling, uncoupling, and inverse 
coupling are provided by the D-serine deaminase (11), arabinose (6), and methionine 
(12) systems in E. coli. 

The functional implications of direct coupling, uncoupling, and inverse 
coupling have been determined from an analysis of a generalized model capable of 
representing these different forms of coupling (Fig. 6). The fundamental equations 
that characterize this model are mass-balance equations that take the general form 

dXi/dt = V+i(X\ Xi) - V.i(Xi, ... , X%)        i = 1 5 (1) 

The rate laws V+i and V.{ describe mass fluxes due to synthetic and degradative 
processes. These rate laws can be represented as products of power-law functions 
according to the results of theoretical analyses (1) and empirical case studies (13). 
Thus, we can rewrite Eq. 1 to obtain the following system of equations: 
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Figure 5. Expression characteristics for (a) effector and (b) regulator gene 
expression. Three distinct patterns of coupling are illustrated. Effector gene 
expression increases while regulator gene expression (D) increases (directly coupled), 
(U) remains unchanged (uncoupled), or (I) decreases (inversely coupled). 
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Figure 6. Coupled circuits for the expression of regulator and effector genes. Mass 
fluxes that characterize the state of the system are represented by horizontal arrows, 
whereas catalytic and regulatory influences are represented by vertical arrows. The 
influences of the regulator (closed arrowheads) are described by the kinetic orders 
£15 and #45; the influences of the inducer (open arrowheads) are described by the 
kinetic orders #13 and #43 (see Eqs. 2-6). 
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dXtfdt = V+i - V., = ai Xf16 X3™ Xf15 - /JiV11 

dX2/dt = V+2 - V.2 = a2X7
827Xi821 - ß2X2

22 

dXVdt = V+3 - V.3 = a3X^X2^
2 - ß3X2

h*2X3
h* 

dXt/dt = V+4 - V.4 = «4 V46^43^*45 - ß4XAh44 

dXs/dt = V+5 - V.S = asX^X*85* - ß5X5
h55 

(2) 

(3) 

(4) 

(5) 

(6) 

These equations are used to analyze systems with the positive or negative mode 
of control for each circuit. The effects of physicochemical limitations, which arise 
from the subunit structure of regulator proteins and place bounds on kinetic orders in 
this model (10), are also considered. The functional effectiveness of these various 
circuits has been compared on the basis of several properties (decisiveness, 
efficiency, selectivity, robustness, stability, and responsiveness) that represent 
possible criteria for natural selection. Of these, responsiveness has proved the most 
sensitive to variations in circuit design (14). 

The results allow us to predict a correlation between the form of coupling and 
the capacity for induction (ratio of maximal to minimal level of effector gene 
expression). Negatively controlled systems with low, intermediate, and high 
capacities for gene expression are predicted to have direct coupling, uncoupling, and 
inverse coupling, respectively. Positively controlled systems, in contrast, are 
predicted to have inverse coupling, uncoupling, and direct coupling (Table 2). 

These predictions are compared with data available in the literature for systems 
in which the pattern of regulator and effector gene expression is known (Fig. 7). 
They are found to be in reasonable agreement, given measurement error. 

Table 2. Predicted correlation between circuitry and capacity for regulation 

Demand Mode Capacity Circuit 

High Positive Low Inversely coupled 
High Positive Intermediate Uncoupled 
High Positive High Direct coupled 
Low Negative Low Directly coupled 
Low Negative Intermediate Uncoupled 
Low Negative High Inversely coupled 
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Figure 7. Patterns of regulator and effector gene expression in inducible systems of 
bacteria. Expression of each gene is measured in the presence of excess inducer and 
normalized with respect to its basal level in the absence of inducer. For the effector 
gene this is equivalent to its capacity; for the directly coupled regulator gene this 
also is equivalent to its capacity, but for the inversely coupled regulator gene this is 
equivalent to the inverse of its capacity. Estimates of capacity are based on 
published reports. Directly coupled (D), uncoupled (U), and inversely coupled (I) 
systems are represented above, on, and below the dashed line, respectively. 
Negatively regulated systems are shown as open circles; positively regulated 
systems are shown as closed circles. 

5.     Discussion 

The genome of an organism evolves to realize a developmental program with 
specific gene circuitry that can be viewed as computing the solution to the 
environmental problem faced by the organism. This is a suggestive metaphor, but 
at present we have little understanding of the circuits and the computations they 
might perform. The large number of genes encoded in the DNA of even the 
simplest of organisms suggests that this circuitry might be very complex and 
exhibit a high degree of connectivity. If this were the case, then the task of 
elucidating the circuitry would be daunting. 

However, a number of different lines of evidence suggest that although there 
may be a large number of gene circuits, they may have a minimal degree of 
connectivity. First, molecular analysis of gene regulation in bacteria has shown 
that most gene circuits are governed by a small number of regulators, usually one to 
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three. In eukaryotes the numbers are larger in some cases, but seldom more than a 
dozen regulators influence a given gene circuit. Second, the enumeration of 
regulators and their targets, based on sequence homologies, has shown the same 
results for bacteria; namely, one or two regulators affecting a given circuit (15,16). 
Third, computer simulations of large, randomly-connected circuits have been used to 
explore the question of connectivity. The most biologically-suggestive behaviors 
were found when each circuit was subject to two or three regulatory interactions, and 
less relevant behaviors were found with higher or lower degrees of connectivity (17). 

Low degrees of connectivity suggest that a 'bottom-up' strategy of 
characterizing genome circuitry in terms of rules for elemental gene circuits is likely 
to prove fruitful. Indeed, this seems to be the case with our initial experience 
attempting to generalize on the basis of the few rules that we have uncovered to 
date. To give one example, consider the carbon regulation system in E. coli. 

Carbon regulation in E. coli is manifested in large part through the action of 
the cyclic AMP receptor protein (CRP)-cyclic AMP (cAMP) system (18), which 
was among the first global regulators to be characterized. This system coordinates 
the utilization of diverse sources of carbon whose levels vary in both time and 
space. An application of demand theory indicates that all of the regulators in this 
system fit a self-consistent pattern. Because the CRP-cAMP regulator is an 
activator of transcription for the inducible catabolic systems, one can predict that at 
least some of these systems are in high demand in the organism's natural 
environment. Indeed, a number of the inducible systems for non-PTS substrates are 
controlled by specific activators (8). Conversely, one can predict that the PTS 
substrates, which repress the levels of CRP-cAMP, are seldom present in high 
concentrations in the natural environment. Indeed, all of the inducible systems for 
PTS substrates that have been examined involve control by a specific repressor (8), 
which again is what one would predict according to demand theory. Thus, at least 
the modality of all the regulators in this system seem to be self-consistent. 

In conclusion, regulation of gene expression is clearly one of the most 
fundamental processes in the living world. Knowledge of gene regulation is a 
prerequisite for understanding function, adaptation and evolution, and such 
understanding will in turn be essential for the design and implementation of novel 
metabolic pathways by means of genetic engineering. The results of our studies 
suggest that although there is an enormous diversity of mechanisms, there also are 
well-established patterns that can be understood in terms of simple rules. 
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ABSTRACT 
The study of gene regulation has shown that a variety of molecular mechanisms are capable of performing 

this essential function. The physiological implications of these various designs and the conditions that 
might favor their natural selection are far from clear in most instances. Perhaps the most fundamental 
alternative is that involving negative or positive modes of control. Induction of gene expression can be 
accomplished either by removing a restraining element, which permits expression from a high-level 
promoter, or by providing a stimulatory element, which facilitates expression from a low-level promoter. 
This particular design feature is one of the few that is well understood. According to the demand theory 
of gene regulation, the negative mode will be selected for the control of a gene whose function is in low 
demand in the organism's natural environment, whereas the positive mode will be selected for the con- 
trol of a gene whose function is in high demand. These qualitative predictions are well supported by 
experimental evidence. Here we develop the quantitative implications of this demand theory. We define 
two key parameters: the cycle time C, which is the average time for a gene to complete an ON/OFF cycle, 
and demand D, which is the fraction of the cycle time that the gene is ON. Mathematical analysis involving 
mutation rates and growth rates in different environments yields equations that characterize the extent 
and rate of selection. Further analysis of these equations reveals two thresholds in the C vs. D plot that 
create a well-defined region within which selection of wild-type regulatory mechanisms is realizable. The 
theory also predicts minimum and maximum values for the demand D, a maximum value for the cycle 
time C, as well as an inherent asymmetry between the regions for selection of the positive and negative 
modes of control. 

DIFFERENTIAL regulation of gene expression is 
central to much of modern biology. Animal devel- 

opment can be thought of in terms of an early phase, 
which begins with an egg and ends with an embryo, and 
a late phase, which begins with an embryo and ends 
with the mature organism (SLACK 1992). Some genes 
function only in the early phase while others only in 
the late phase. The inability to express a gene when it 
should be ON or the excess expression of a gene when 
it should be OFF is usually dysfunctional and often le- 
thal. For any given gene, expression can be considered 
a roughly periodic function, which in the simplest case 
is OFF for a period and ON for another period with 
the total duration being the lifetime of the organism. 
The differential regulation of many such genes in time 
and space determines the pattern of cell-specific expres- 
sion that underlies development of the organism. 

The life cycle of a bacterial association with a host or- 
ganism also can be thought of in terms of an early phase, 
which begins with entry into a host organism and ends 
with successful colonization, and a late phase, which 
begins with colonization and ends, after a period of 
stable association, with the entry of another host (SAL- 
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YERS 1994). Some bacterial genes function only in the 
early phase of initial colonization while others only in 
the late phase of stable association. Again, the inability 
to express a gene when it should be ON or the excess 
expression of a gene when it should be OFF is dysfunc- 
tional and in some cases lethal. Expression of any given 
gene is OFF for a period and ON for another period 
with the total duration in this case being the time for 
the bacteria to cycle from one host to another. Although 
the organisms in these two examples are quite different, 
in each case appropriate differential regulation of gene 
expression is clearly key to their survival. 

A great deal is known about the molecular details of 
many gene systems, particularly in well-studied prokary- 
otic organisms. The wealth of studies in this area has 
revealed a variety of designs for the regulation of gene 
expression. However, we are just beginning to under- 
stand the functional implications of these various de- 
signs and to grasp the factors that have influenced their 

evolution. 
One of the first variations in molecular design to be 

addressed was negative vs. positive modes for control- 
ling gene expression. For example, the lactose (lac) 
operon in Escherichia coli is an inducible system with a 
negative mode of control by a repressor protein, the 
ladgene product (MILLER and REZNIKOFF 1980). In an 
appropriate environment, induction occurs in response 
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to addition of the specific inducer, which results in 
removal of repressor and initiation of transcription. In 
contrast, the maltose (mal) operon is an inducible sys- 
tem with a positive mode of control by an activator 
protein, the malTgene product (SCHWARTZ 1987). In- 
duction in this case involves the specific inducer binding 
to the activator protein, which is then able to interact 
with RNA polymerase and facilitate initiation of tran- 
scription. The same physiological function, induction, 
is being realized in each of these cases, but by alternative 
molecular mechanisms. Are these alternative designs 
historical accidents that are functionally equivalent, or 
have they been selected in nature because they exhibit 

functional differences? 
An answer to this question was provided by demand 

theory (SAVAGEAU 1974, 1977, 1983a, 1989), which is 
based on selectionist arguments. In its simplest form, 
the theory can be understood in familiar qualitative 
terms and leads to the following predictions: a negative 
mode of control will be selected when there is a low 
demand for expression of the effector genes in the 
organism's natural environment; a positive mode will 
be selected when there is a high demand for their ex- 
pression. These predictions, and a number of others 
that follow as natural extensions, have been tested in 
over 100 cases and there has been excellent agreement 

(SAVAGEAU 1979, 1983b, 1985). 
Here I develop the quantitative implications of de- 

mand theory. Models that include consideration of the 
organism's life cycle, molecular mechanisms of gene 
control, and population dynamics are used to describe 
mutant and wild-type populations in two environments 
with different demands for expression of the genes in 
question. These models are analyzed mathematically to 
identify conditions that lead to either selection or loss 
of a given mode of control. It will be shown that this 
theory ties together a number of important variables, 
including growth rates, mutation rates, minimum and 
maximum demands for gene expression, and minimum 
and maximum durations for the life cycle of the organism. 
An application of the theory is provided in the accompa- 
nying article (SAVAGEAU 1998), where regulation of the 
lac and mal operons of E. colt is analyzed and the results 
are compared with independent experimental data. 

MODELS 

Life cycle: We shall consider a given effector gene in 
an organism that cycles between two alternative environ- 
ments, a high-demand environment H, and a low-demand 
environment L, as shown in Figure 1. The average cycle 
time required for one complete passage through both 
H and L environments is denoted by C. The average 
fraction of time spent in the high-demand environment 
is denoted by D. Note that D also signifies demand for 
expression of the regulated effector gene. If D = 0, de- 

H 

B 

H H 

Time (hrs) —»- 

FIGURE 1.—The life cycle of an organism alternating be- 
tween two different environments. (A) Expression of the genes 
that are specifically required for growth in the environment 
labeled H is in high demand, whereas in the alternative envi- 
ronment labeled L their expression is in low demand. (B) 
The average time required for the organism to complete its 
life cycle is denoted by C. The fraction of its cycle time spent 
in environment H is denoted by D, which also represents 
demand for expression of the H-specific genes. 

mand is minimal because the organism is always in the 
low-demand environment; if D = 1, demand is maximal 
because the organism is always in the high-demand envi- 

ronment. 
Gene expression: The models of gene expression and 

mutation that will be treated are shown schematically 
in Figures 2 and 3. The effector genes in each case 
are normally expressed in environment H but not in 
environment L. To simplify the diagrams and the discus- 
sion, we shall consider mutations in the regulatory 
mechanism to be an alteration in the modulator site. 
Mutations in the structural gene for the regulator pro- 
tein also can disrupt the normal interaction between 
the regulatory protein and the modulator site to which 
it binds, and these will be suitably accounted for even 
though they will not be represented diagrammatically 
or discussed in detail. Other types of mutations will be 
considered briefly in the DISCUSSION section. 

In the negative mode of control (Figure 2), environ- 
ment H involves expression of the effector gene in the 
wild-type organism. It also involves expression in the 
mutants with a defect in the modulator site to which 
the negative regulator binds. Normal expression is pre- 
vented in the mutants with a defect in the promoter 
site. Environment L involves the absence of expression 
of the effector gene in the wild-type organism and in 
the mutants with a defect in the promoter site. There 
is inappropriate expression in the mutant with a defect 
in the modulator site. The mutation rates between the 

different populations are as indicated. 
In the positive mode of control (Figure 3), environ- 
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FIGURE 2.—Expression of genes governed by the negative 
mode of control in the high-demand (H) and low-demand 
(L) environments. The symbols are as follows: structural gene 
for the regulator protein, R, structural gene for the effector 
protein, E; nucleotide sequence for the promoter site, P; and 
nucleotide sequence for the modulator site, M. The wild-type 
promoter in the negative mode must be a high-level promoter 
to achieve full expression upon removal of repressor, and a 
functional modulator site (operator) is necessary for expres- 
sion to be turned off in the presence of repressor. The heavy 
arrows indicate transcription of the effector gene. The four 
diagrams in A and B represent the genotypes of the wild-type 
(w), promoter mutant (p), modulator mutant (m), and double 
mutant (d). The mutation rates between the populations of 
organisms that harbor each of these genotypes are as indicated 
with the appropriate subscripts and superscripts; e.g., wfi,, rep- 
resents the mutation rate in the high-demand environment 
for production of double mutants (d) from modulator mu- 
tants (m). 
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FIGURE 3.—Expression of genes governed by the positive 
mode of control in the high-demand (H) and low-demand 
(L) environments. The symbols are as follows: structural gene 
for the regulator protein, R; structural gene for the effector 
protein, E; nucleotide sequence for the promoter site, P; and 
nucleotide sequence for the modulator site, M. The wild-type 
promoter in the positive mode must be a low-level promoter 
for expression to be turned off upon removal of activator, 
and a functional modulator site (initiator) is necessary to 
achieve full expression in the presence of activator. The heavy 
arrows indicate transcription of the effector gene. The four 
diagrams in A and B represent the genotypes of the wild-type 
(w), promoter mutant (p), modulator mutant (m), and double 
mutant (d). The mutation rates between the populations of 
organisms that harbor each of these genotypes are as indi- 
cated with the appropriate subscripts and superscripts; e.g., 
rri^ represents the mutation rate in the low-demand environ- 
ment for production of promoter mutants (p) from wild-type 
organisms (w). 

ment H involves expression of the effector gene in the 
wild-type organism. It also involves expression in the 
mutants with a mutationally enhanced promoter site. 
Normal expression is prevented in the mutants with a 
defect in the modulator site. Environment L involves 
the absence of expression of the effector gene in the 
wild-type organism and in the mutants with a defect in 
the modulator site. There is inappropriate expression 
in the mutants with a mutationally enhanced promoter 
site. The mutation rates between the different popula- 

tions are as indicated, but it should be noted that the 
values for these parameters need not be the same for 

the two modes of control. 
Populations: All of the relevant populations and con- 

ditions can be represented in a common abstract dia- 
gram in which the growth rates of the individual popula- 
tions and the mutation rates between populations are 
explicitly depicted (Figure 4). There will be four sets 
of parameter values associated with this diagram, one 
each for the negative mode in high demand, the nega- 



M. A. Savageau 

9P 

FIGURE 4.—Schematic diagram representing the popula- 
tions of wild-type and mutant organisms. The symbols are 
as follows: number of wild-type organisms, Xw; number of 
promoter mutants, Xp; number of modulator mutants, XM; and 
number of double mutants, XD. The growth rates of each 
population are indicated by the symbol g-with the relevant 
subscripts, and the mutation rates between populations are 
indicated by m with the appropriate subscripts. See text for 
further discussion. 

tive mode in low demand, the positive mode in high 
demand, and the positive mode in low demand. 

Assumptions: These models are based on a number 
of assumptions. First, the organisms harboring these 
gene systems are assumed to be otherwise isogenic. Sec- 
ond, because we are interested in the conditions for 
selection of the wild-type regulatory mechanism, we 
shall assume that the ratio of wild-type to mutant organ- 
isms is initially 1/10 its steady-state value and then exam- 
ine the conditions that lead to enrichment of the wild 
type. Third, sites in the DNA consist of a number of 
critical bases, and mutation in any one of these leads 
to a loss of function in the modulator sites. The same 
is true of the high-level promoter in the negative mode. 
The low-level promoter in the positive mode consists of 
a smaller number of critical bases, and mutation in any 
of these leads to a mutationally enhanced promoter 
level. Fourth, the regulator gene consists of a number 
of critical bases, and mutation in any one of these leads 
to a loss of the regulator function. Fifth, we will be 
concerned only with the forward mutational events as 
indicated in Figures 2-4. The back mutational events 
can be neglected because the mutant populations will 
be small, according to our criterion for selection, and 
the probability of back mutation is lower than that in 
the forward direction. Sixth, although our models will 
account for the dynamics of the doubly mutant popu- 
lation, we will neglect this aspect because the singly 
mutant populations will be small and the probability of 
a second mutation will make the production rate of the 
doubly mutant population that much smaller. Finally, 

we shall assume that expression is fully ON or fully OFF 
and that both the positive and negative modes of control 
have the same capacity for gene regulation (SAVAGEAU 

1989), which we take to be 100 for the ratio of full ex- 
pression to basal expression. 

PARAMETERS 

The macroscopic parameters in our theory can be 
decomposed into constituent parameters that are de- 
fined in terms of reference values and relative values 
for mutation rates and growth rates. 

Mutation rates: The reference mutation rate u, is given 
by the spontaneous mutation rate per base per DNA 
replication. The spontaneous mutation rate for various 
structures in our model can be determined from esti- 
mates of the spontaneous mutation rate per base and 
the relative mutation rate given by the number of critical 
bases that define the DNA targets for these structures. 
We will consider the following relative mutation rates 
in our model: TT for loss of a high-level promoter site, 
v for gain of a high-level promoter site, T for loss of a 
regulator's functional target site, and p for loss of a 
functional regulator protein. We can also define a rela- 
tive mutation rate e and explore the effects of gene 
expression on mutation rate (DATTA and JINKS-ROBERT- 

SON 1995; FRANCINO et al. 1996). 
Growth rates: The reference growth rate 7 is defined 

as the growth rate of the wild-type organism in the nutri- 
tionally richer of the two environments. Its value is not 
critical because one can simply rescale time accordingly 
and none of our results would change. The growth rates 
in other circumstances can be expressed as the product 
of the reference growth rate and the appropriate relative 
growth rate. We will consider the following relative 
growth rates in our model: \ for mutants that have lost 
normal expression of the effector gene, a for mutants 
that exhibit superfluous expression of the effector gene, 
and 8 for the more nutritionally deficient of the two 
environments. 

Criterion for selection: Our criterion for selection is 
that each mutant population shall be reduced to no 
more than 9 of the wild-type population. A typical value 
for 6 is 0.05% (LECLERC et al. 1996). 

These relationships are summarized in Table 1. Nu- 
merical estimates for these parameters are given in the 
accompanying article (SAVAGEAU 1998), which provides 
a specific application of the theory. 

QUANTITATIVE DEVELOPMENT OF THE THEORY 

The mathematical analysis needed for this develop- 
ment can be significantly reduced by taking advantage 
of two fundamental symmetries in our model. First, there 
is a symmetry between the promoter-mutant and modu- 
lator-mutant populations that is evident in Figure 4. If 
the subscripts p and m are simply interchanged the 
model remains unchanged. This means that we need 
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Mode of control 

Negative Positive 

Parameter" High demand Low demand High demand Low demand 

&i 7 78 78 ■y 

S> y\ -yS 78 7CT 

&> y 78er 78X 7 

& y\ 78 78 7CT 

»v (iire (XT7 |xue (XV 

»J|mv (jt (T + p)e M- (T + p) M- (T + p) e p. (T + p) 

Wrip (JL (T + p) p, (T + p) M- (T + p) e (A (T + p) e 

"1dm p,ire lATre (XXI pA) 

See Figures 2-4 for definition of parameters. 
" The parameters for growth rates and mutation rates in turn determine the parameters for the rate constants 

in the dynamic Equations 1-4: a,„ = [1 - (Wp„ + m^Ug., a^ = m^g,, app = (1 - wtyjg,, aml). = m^g», amm = 
(1    -   »«dm)gm  «dm   =   "Mmgn.  «dp   =   ™dpgp,  <*dd   =   gd- 

only carry out the analysis for the promoter-mutant pop- 
ulation; the corresponding results for the modulator- 
mutant population can then be obtained simply by inter- 
changing the subscripts p and m. Second, there is a 
symmetry between the first and second phases of the 
cycle depicted in Figure 1. If the H and L phases are 
interchanged along with the symbols D and (1 - D) the 
temporal pattern remains unchanged. This means that 
we need only carry out the analysis from the beginning 
of the H phase; the corresponding results from the 
beginning of the L phase can then be obtained by inter- 
changing the superscripts H and L and the symbols D 

and (1 - D). 
Dynamics: The equations describing the dynamic be- 

havior of the model in Figure 4 are 

dX,/dt = a^X, (1) 

dXp/dt = apwX + appJ¥p (2) 

dX,„/dt = amw X* + amm Xn (3) 

dXi/dt = adm Xn + 0LdpXv + aM X, (4) 

where the numbers for each population as a function 
of time are given by the symbol X with appropriate 
subscripts and the first-order rate constants are given 
by the symbol a, again with appropriate subscripts. The 
rate constants are in turn related to the various mutation 
rates and growth rates, represented by the symbols m 
and g with suitable subscripts: a^, —  [1  -   (»ipW + 

»OJgw.   apw   =   Wp„.g,.,   app   =    (1   -   WJdp)g„  Otrnw   =   OTmwgw, 

amm = (1 - m,lm)gm, adm = Wdmg„, adp = w*dPg>, add = ga- 
Equations 1-4 are linear and easily solved to obtain 

numbers for the wild-type and mutant populations as a 
function of time. The numbers for the wild-type and 
promoter-mutant populations at the end of a full period 
in environment H are given in terms of the initial values 

at an arbitrary time t: 

X(t + DQ = X,(t) exp[o&Dq (5) 

X?(t+ DQ = [a«,/(o5L - <)]*,(0 exp[aiU>q 

+ (Ap(0 - [a»,/(al - cL»p)]X,(t)} 

X exptap'pDC]. (6) 

These numbers then become the initial values for the 
solution in environment L, and the numbers at the end 
of the period in environment L are then 

X,(l + Q = X,(t) exp[a!U>q exp[aL(l - D)Q (7) 

Xpil + Q = K,(t) |[a^./(aL - app)] exp[aJU>q 

X (expKw(l - D)Q - explain - D)Q\ 

+ [<./(<*! - a»p)] exp[app(l - D)Q 

X {exp[aiU>q - exp[apVDC]l) 

+ Xp(/) expKpßq exp[app(l - D)Q.       (8) 

Thus, the temporal behavior is determined by four ex- 
ponential functions with time constants that are inde- 
pendent of C. 

The ratio of the promoter-mutant to the wild-type 
numbers, which is plotted in Figure 5, yields 

Xp(l + Q/X,.(t + Q = ([</(«!. - ttp-p)] 

X |1 -exp[(c4-<0(l - D)Q) 

+ [</(«! - ct»p)] 

X (1 - exp[(aP'p- o&)DQ) 

X exp[(app-aL) (1 - D)Q) 

+ {expt« - al)DC] 

X exp[«-ai„)(l - DQ) 

X Xf(t)/XU) 
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FIGURE 5.—Recursive relationship for the ratio of popula- 
tion sizes for promoter-mutant and wild-type organisms. The 
horizontal axis gives the value of the ratio at an arbitrary time 
I; the vertical axis gives the value at the subsequent time / + 
C, which is one complete cycle later. Selection for the wild- 
type organism is indicated when the recursive relationship, 
which is the straight line given by Equation 9, has a slope 
between 0 and 1 and an intercept between 0 and 0.0005. The 
intersection of this line with the 45° line determines a value 
for the ratio that represents a stable steady state. 

Xp(< + Q/X„(t + Q = (intercept) 
+ (slope) ^(0/X.(0- 

(9) 

Note that the intercept and slope in this expression are 
both positive quantities. A slope greater than 1 implies 
that the ratio tends to infinity with time and thus that 
the wild-type promoter is lost. A slope between 0 and 1 
implies that the ratio tends to a fixed value (given by 
the intersection with the 45° line) with time and, if this 
value is less than 0 (the criterion for selection), that 
the wild-type promoter will be preserved. An intercept 
greater than 9 implies loss of the wild-type promoter 
no matter what the value of the slope. 

Starting with any set of values for the wild-type and 
promoter-mutant populations, Equations 7-9 can be 
applied recursively to calculate the subsequent popula- 
tion sizes and ratios as a function of time. From these 
results one can determine the rate of selection of the 
wild-type regulatory mechanism. 

Steady-state pattern: The ratio of promoter-mutant 
and wild-type populations increases in one environment 
and decreases in the other to produce a sawtooth pat- 
tern. Once the initial transients have died away, a re- 
peating pattern with two steady-state values is estab- 
lished. The first value of the ratio in steady state, when 
it exists, is calculated by equating the ratios on the two 

sides of Equation 9 and solving to obtain the following 
expression: 

Xp/X, = {[a^/(ai„ - o^p)] 

X (1 -expUctpp-aLXl - D)C]} 

+ K„/(aI - ajp)] 

X {1 - exp[(aP
1
p - o&,)DC]} exp[(a^p - O 

X (1 - D)Q}/{\ - exp[(a»p - o&)DC 

+ K„-<i)(l -D)Q). (10) 

If, instead of starting the analysis at the beginning of 
the period in environment H, we were to start it at the 
beginning of the period in environment L, then the 
results would be equivalent to those in Equations 5-10 
except for an exchange of the superscripts H and L and 
the symbols D and (1 - D). The second value of the 
ratio in steady state, when it exists, is thus 

VX= |[agL/(c& - a»)](l - expt« - c&)DQ) 

+ [apV,/(aL - ap-p)]|l - exp[(a^p - aL) 

X (1 - D)Q) 

X expKo^p - al)Z>q)/|l ~ exp[(app - al
m) 

X (1 -D)C+ (a»- o&)DQ\. (11) 

Equations 10 and 11 represent different aspects of the 
same steady-state pattern. One of the two steady-state 
solutions for this ratio gives the maximum value whereas 
the other gives the minimum value. These values can 
be used to define the extent of selection. We shall always 
be interested in the maximum value of the ratio; if 
this is less than the criterion for selection, then the 
minimum value will certainly be less as well. 

Definition of the threshold for selection: The thresh- 
old for selection of the wild-type promoter is obtained 
from the solution of Equation 10 or 11, whichever gives 
the maximum value for the ratio. The values for the 
growth rates and mutation rates in the high- and low- 
demand environments (for either the positive or the 
negative mode of control in Table 1) determine the 
values for the rate-constant parameters that appear in 
Equations 10 and 11. The ratio Xp/Xy,. is then fixed with 
a value equal to 6, which is the criterion for selection. 
The result of these parameter assignments is a nonlinear 
equation involving the cycle time Cand the demand for 
gene expression D that defines the threshold for selection. 

There is no explicit solution for C as a function of D. 
However, the threshold for selection of the wild-type 
promoter can be obtained by bisection (PRESS el al. 

1988) when numerical values are assumed for the pa- 
rameters in Equation 10 or 11. 

As noted at the beginning of this section, the corre- 
sponding results for the modulator-mutant population 
can be obtained from Equations 5-11 simply by inter- 
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changing the subscripts p and m. We will make use of 
these expressions below. 

Although there is no analytical solution that gives the 
thresholds for selection, their asymptotic behavior can 
be determined analytically. As will be seen in the follow- 
ing sections, the analytical expressions allow one to draw 
general conclusions that are independent of particular 
numerical values for the parameters. 

Threshold for selection of a promoter with the nega- 
tive mode: The ratio of promoter-mutant and wild-type 
populations is decreasing in environment H and in- 
creasing in environment L. Thus, the maximum value 
in steady state is determined from the analysis that starts 
in H. The asymptotic character of the threshold for 
selection of the promoter can be determined from 
Equation 10. First, it should be noted from Table 1 that 
(app - al

m) > 0 and a^w/(aL - c£p) = -1. Second, for 
typical values of the parameters, (otpp - a.%,) < 0. 

When C> 1, and D > (app - «D / [ (app - <0 - 
(a£p - aJJ,)], Equation 10 can be approximated as 

e = exp[(aJp-cO(l - D)Q 

+ [o#,/(atL - dpp] exp[(a] 

1 

aL)(l - D)Q , 

(12) 

where 9 is the criterion for selection of the promoter. 
Solving for C as a function of D yields 

r     log[l + 9] - log[l + agL/CaSL - oQ]      1 
1 - D 

(13) 
(ap-p - aj^.) 

The arguments of the logarithms are nearly unity, so 

that 

9 - </(al - a»)      1 

\*^pp Q-vrw) 1 - D 
(14) 

o 

Modulator 

Promoter er, 

Log [Dl 

FIGURE 6.—Schematic representation of the thresholds for 
selection of the wild-type regulatory mechanism as functions 
of the cycle time and the demand for gene expression. The 
threshold for selection against the promoter mutants is ob- 
tained for a given set of parameter values by setting the ratio 
of Xp/A^• = 0.0005 in Equation 10 or 11 and then solving for the 
cycle time Cas a function of the demand for gene expression D. 
The threshold for selection against the modulator mutants is 
obtained in a similar fashion (see text for discussion). In each 
case, selection is indicated by values for C and D that lie below 
the calculated threshold. Selection for the wild-type regulatory 
mechanism occurs for those values of C and D that lie below 
both threshold simultaneously. These thresholds define mini- 
mum and maximum values for demand. 

("PP <*L)(1 + 8) 

K - *pp o4)(l + 6) -a» - (a"-aL)8 
(16) 

or 

9 - |xire/[l - \(1 - u-T - n-p) - u,e(ir + T + p)] 
0.1778 

X 
1 - D 

9 1 

111178 1 — D (15) 

Thus, the high-C asymptote in a log C vs. log D plot is 
given by a line that is nearly horizontal for values of 
D <£ 1 and that approaches infinity as D goes to unity. 

When C < 1, the exponential functions in Equation 
10 can be approximated by the first three terms of their 
Taylor series and the resulting equation can be solved 
for C as a function of D. The value of D = Dmin that 

makes C = 0 is given by 

Dmi„ = JJLIT8(1 + 8)/(u.7rS(l + 8) 

+   [l   - X(l   -  JIT -   U.p) 

- |xe(ir + T + p)]8 - p/ire) 

= u/ir8/9(l - X). (17) 

Thus, the low-C asymptote is given by a vertical line 
located at D = Dmin in a log C vs. log D plot. 

The threshold for selection of the promoter is charac- 
terized by the combination of these high- and low-C 
asymptotes as shown schematically in Figure 6. 

Threshold for selection of a modulator (regulator) 
with the negative mode: The ratio of modulator-mutant 
and wild-type populations is decreasing in environment 
L and increasing in environment H. Thus, the maxi- 
mum value in steady state is determined from the analy- 
sis that starts in L. The asymptotic character of the 
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threshold for selection of the modulator (regulator) 
can be determined from Equation 11 after interchang- 
ing the subscripts p and m. In this case, (a"m — au,.) > 
0, a"w/(aJJL. - a"m) = ~1 and, for typical values of the 
parameters, (al

mm - a
l
m) < 0. 

When C S> 1, and D < (c*L - <0/[(aL - aL) - 
(a"m - a^,) ], Equation 11 can be approximated as 

6 = exp[(aL - c&)DQ - 1 

+ [aL/(«L - «L)] exp[(aL - a&)DQ,     (18) 

where 0 is the criterion for selection of the modulator. 
Solving for C as a function of D yields 

c= 1OR[1 + 6] - log[l + aL/(«L ~ aL)] 1 
\™mm "wttv D 

(19) 

The arguments of the logarithms are nearly unity, so 
that 

C = 
6 - c*L/(aL - oiJ 1 

(a H      _   „H a") D 
(20) 

or 

C = 
-   ^,(T  +  p)/[l   - g(l   -  |JLTT£)   ~  p.(TT  + T  +  p)]   1 

|X(T +  p)£7 

e 1 
|X(T + p)£7 D 

D 

(21) 

Thus, the high-C asymptote is given by a straight line 
with slope equal to -1 in a log C vs. log D plot. 

When C < 1, the exponential functions in the steady- 
state ratio can be approximated by the first three terms 
of their Taylor series and the resulting equation can be 
solved for C as a function of D. The value of 
D - Z>max that makes C = 0 is given by 

or 

[-9(aL   - <0 - aL] 
[-6(aL, - cO - «U + (aL - 0(1 + 6) 

(22) 

Anax =  8|9[1   - <T(1   -   M-TTE)   ~   (X(T7 +  T  +  p)] 

- (X(T +  p))/8|8[l   - ff(l   -  U^E) 

- p,(lT  +  T  +  p)] 

- M-(T  +  P)) 

+  p,(T + p)£(l  + 6) 

» 1/{1 + jt(T + p)e/[89(l - a)]}. (23) 

Thus, the low-C asymptote is given by a vertical line 
located at D = Dmax in a log C vs. log D plot. 

The threshold for selection of the modulator (regu- 
lator) is characterized by the combination of these 
high- and low-C asymptotes as shown schematically in 
Figure 6. 

Region in which selection for the negative mode of 

control is realizable: Selection for both wild-type pro- 
moter and wild-type modulator (regulator) requires val- 
ues of C and D that lie in the shaded region below the 
two thresholds shown schematically in Figure 6. The 
low-C asymptotes of these thresholds (Equations 17 and 
23) define the minimum Dmin and maximum D,nax values 
of the demand for gene expression. The intersection 
of the two thresholds yields a prediction for maximum 
cycle time Qnia. As shown elsewhere, with numerical 
estimates for the various parameters, the theory predicts 
other more relevant values not only for maximum cycle 
time, but also for minimum cycle time and optimal cycle 
time (SAVAGEAU 1998). Thus, the thresholds define a 
region of the C vs. D plot within which selection for the 
wild-type regulatory mechanism is realizable and outside 
of which it is not. 

Existence of a region of realizable selection for the 
negative mode: Clearly, Z)max > Dmm is required for a 
region of realizable selection to exist. These boundaries 
for selection are strongly influenced by the selection 
coefficients (1 — X and 1 — o), which are related to 
the differences in growth rates for wild-type and mutant 
organisms. This is seen most clearly for the simplified 
case in which all relative mutation rates are equal to 
unity and all mutants have the same reduction in growth 
rate. The inequality involving Equations 17 and 23 yields 
a critical value for the selection coefficients; selection 
of the wild-type regulatory mechanism is possible only 
when the selection coefficients exceed this critical value: 

(1 X)   =   (1   - <T) 

M-U + 8) > 
20 

1 + ./ 1 + 
4(1 ~ S) 
(1 + 8)2 

(24) 

This can be seen graphically in Figure 7 where the 
thresholds for selection are plotted for different values 
of the selection coefficients. 

Discriminate selection for the negative mode of con- 
trol: When the reduction in growth rate for the mutants 
is sufficiently small (<M).0005% in this illustration) 
there is no overlap beneath the thresholds. No selection 
for the wild-type regulatory mechanism is possible when 
the selection pressure is too weak. When the reduction 
in growth rate has an intermediate value (between 
0.0005 and 0.01% in this illustration) there is a signifi- 
cant and well-delineated overlap beneath the thresh- 
olds. Discriminate selection for the wild-type regulatory 
mechanism occurs within a range of relatively low values 
for demand, but not outside it. When the reduction 
in growth rate is sufficiently large (>~0.01% in this 
illustration) the overlap is so large that it encompasses 
almost the entire range of values for demand. Indiscrim- 
inate selection for the wild-type regulatory mechanism 
occurs under these conditions. 

Threshold for selection of a promoter with the posi- 
tive mode: The ratio of promoter-mutant and wild-type 
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FIGURE 7.—Discriminate selection for wild-type regulatory 
mechanisms with alternative modes of control requires inter- 
mediate values for the selection coefficients. Results (A-F) 
are shown for the negative mode in a simplified case (see 
text for discussion). When selection coefficients are too low 
(<0.0005%), there is no selection for the wild type. At interme- 
diate values (0.0005-0.01%), discriminate selection for the 
wild type occurs at relatively low values of demand. When sel- 
ection coefficients are too high (>0.01%), selection for the 
wild-type regulatory mechanism occurs indiscriminately at 
nearly all values of demand. The results for the positive mode 
are similar, except that discriminate selection occurs at rela- 
tively high values of demand. 

populations is decreasing in environment L and increas- 
ing in environment H. Thus, the maximum value in 
steady state is determined from the analysis that starts 
in L. The asymptotic character of the threshold for 
selection of the promoter can be determined from 
Equation 11. In this case, it can be seen from Table 1 

that « - c&) > 0, otJJ,/(o5» - <) = -1 and, for 
typical values of the parameters, (ct£p - aL) < 0. 

When O 1 and (1 - D) > (o£p - al)/[(a^p - 
al) - (app - aL)], Equation 11 can be approximated 

as 

9 = exp[« - c&)Z)q - 1 

+ [<./((*! 

Solving for C as a function of 1 — D yields 

log[l + 6] - log[l + aW(<*™ ~ «pp)] 
(ctH - aH ) 

X 
1 - (1 - £>) 

(26) 

or 

6 - u.v/[l - a(l - U.(T + p)E) - \x.(v + T + p)] 

l 
1 - - (1 - D) 

e 1 
jueyS 1 - (1 - D) 

(27) 

Thus, the high-C asymptote in a log C vs. log(l - D) 
plot is given by a line that is nearly horizontal for values 
of (1 - D) < 1 and that approaches infinity as (1 — D) 

goes to unity. 
When C<\, the exponential functions in Equation 

11 can be approximated by the first three terms of their 
Taylor series and the resulting equation can be solved 
for C as a function of 1 — D. The value of 1 — D — 1 — 
Z)max that makes C = 0 is given by 

K - *-pp o&)(l + 6) 

(«r - *PP o&Kl +9) - a1   - « 

(28) 
or 

1 - Z»max= (xue8(l + 9)/|u.ve5(l + 9) 

+ [1 - <x(l - |X(T + p)e) 

- \L(V + T + p)]9 - \XM) 

= UA«S/9(1 - o-) . (29) 

L   - <)] exp[« - OSJDQ. (25) 

Thus, the low-C asymptote is given by a vertical line 
located at 1 - D - 1 - Draax in a log C vs. log(l - D) 

plot. 
The threshold for selection of the promoter in this 

case is characterized by high- and low-C asymptotes that 
are similar to those for the negative mode shown sche- 
matically in Figure 6, except that the horizontal axis is 
given by log( 1 — D) rather than log D (data not shown). 

Threshold for selection of a modulator (regulator) 
with the positive mode: The ratio of modulator-mutant 
and wild-type populations is decreasing in environment 
H and increasing in environment L. Thus, the maxi- 
mum value in steady state is determined from the analy- 
sis that starts in H. The asymptotic character of this 
threshold can be determined from Equation 10 after 
interchanging the subscripts p and m. In this case, 
(«L, - aL) > 0, aL/(«L - aL) = ~1 and, for typical 
values of the parameters, (ctmm - a"w) < 0. 

When C> 1, and (1 - D) < (aJL - o&VKaJL - 
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a"v) — (aL — a»„-)]> Equation 10 can be approximated 
as 

e = exp[(aL-aiw)(l - D)C\ - 1 

+ [al/(a!Jv - aL)] exp[(aL - «L)(l - D)Q . 
(30) 

Solving for C as a function of 1 — D yields 

„ _ log[l + 6] - log[l + aE»/(c& - ap]      1 
(aL    - aL 1 1 -D 

(31) 

or 

C = 
- \X(J + p)e/[l - \(1 - JLV) - p,e(u + T + p)] 

(X(T + p)7 

1 - D 
(32) 

1 
(JL(T + p)7 1 — D 

Thus, the high-C asymptote is given by a straight line 
with slope equal to —1 in a log C vs. log(l — D) plot. 

When C<§ 1, the exponential functions in the steady- 
state ratio can be approximated by the first three terms 
of their Taylor series and the resulting equation can be 
solved for C as a function of 1 — D. The value of 1 — 
D — 1 — Dmm that makes C = 0 is given by 

_«,H     _ 

1 - Dmin = 

or 

1 -A, 

(a" o&)e 

«,n - o&.)6 + (aL - aL)(l + 6) 

(33) 

8{6[1 - X(l - P-D) - |xe(i) + T + p)] - p.(T + p)e} 

8{e[l-\(l-|xi))-p,e(u+T+p)]-p,(T+p)e)+p.(T+p)(l+e) 

1 
1 + |4(T + p)/[86(l - X)] 

(34) 

Thus, the low-C asymptote is given by a vertical line 
located at 1 — D — 1 — Z)raax in a log C ws. log(l — D) 
plot. 

The threshold for selection of the modulator (regula- 
tor) in this case is characterized by high- and low-C 
asymptotes that are similar to those for the negative 
mode shown schematically in Figure 6, except that the 
horizontal axis is given by log(l — D) rather than log 
D (data not shown). 

Discriminate selection for the positive mode of con- 
trol: The results for the positive mode of control are 
completely symmetrical to those obtained for the nega- 
tive mode of control under the simplifying conditions 
in Figure 7; one need only replace D by (1 — D). When 
the percentage reduction in growth rate for the mutants 
is small, no selection for the wild-type regulatory mecha- 
nism is possible. At intermediate percentages, discrimi- 

nate selection for the positive mode of control occurs 
within a well-delineated range of relatively high values 
for demand, but not outside this range. At large percent- 
ages, selection occurs indiscriminately at nearly all val- 
ues for demand, and, given the above results for the 
negative mode, one would expect positive and negative    , 
modes of control to arise at random with nearly equal 
probability. Such indiscriminate selection is inconsistent 
with the experimental evidence, which suggests discrimi-    , 
nate selection of negative and positive modes of control    * 
based on demand for gene expression (SAVAGEAU 1989). 

Asymmetric regions in which selection for the alterna- 
tive modes is realizable: The simplified case examined .. 
in Figure 7 suggests completely symmetric regions in 
which selection for the alternative modes occurs. Alter- 
natively, the region for the positive mode with 1 — D 
as the horizontal axis is identical to that for the negative 
mode with D as the horizontal axis. This implies that 
the value of Z)max (Equation 23) for the negative mode 
is equal to the value of 1 - Dmin (Equation 34) for 
the positive mode. This would be true if the following 
conditions were satisfied: 8N = 6P, JJLN = (JLP, TN = TP, pN = 
pP, eN = £p = 1, CTN = XP, TTN = -Up. While it is reasonable 
to assume that the first four conditions are satisfied 
(criterion for selection 9, mutation rate u., size of the 
modulator target T, and size of the regulator p are the 
same for both the negative N and positive P mode), it 
is very unlikely that the last three would ever be satisfied. 
There is evidence that gene expression has an influence 
on mutation rate (e * 1), that the reduction in growth 
rate due to superfluous gene expression is less than that 
due to the loss of normal gene expression (CTN < X.P), and 
that down-promoter mutations in the negative mode 
are more frequent than up-promoter mutations in the 
positive mode (irN > v?). From these considerations we 
can predict asymmetric regions in which selection for 
the alternative modes is realizable. Furthermore, be- 
cause loss of normal expression typically causes a more 
significant reduction in growth rate than superfluous 
expression, we can predict that the realizable region for 
selection of the positive mode is greater than that for 
the negative mode. 

Time course of selection: If we start with each mutant 
ratio (Xp/Xx and A^/A^.) at some value larger than its 
steady-state value, then these mutant ratios will mono- 
tonically decrease with time, as can be seen from Figure * 
5. Alternatively, the wild-type regulatory mechanism is 
enriched with time, since the ratio of wild-type to mutant 
organisms Av/Ä + Ap) is equal to the reciprocal of .- 
the mutant fraction, which we define as^,. The temporal 
behavior of the populations is a function of the demand 
for gene expression D. However, the behavior is inde- 
pendent of the cycle time C in the following sense. The 
time scale is actually discrete, given by values of nC, 
where n is the number of cycles. Thus, within a fixed 
time period, the same degree of enrichment can be 



Demand Theory of Gene Regulation, I 1675 

achieved with either a large value for C and a small 
number n or a small value for C and a larger number n. 

Extent of selection: While there is selection for the 
wild-type regulatory mechanism throughout the region 
of overlap beneath the thresholds (e.g., Figure 6), the 
extent of the selection varies as a function of cycle time 
C and demand D. We define the extent of selection as the 
steady-state value of X/Ä + ^.)» which is the inverse 
of the mutant fraction in the population (l/fm). For a 
given value of C< CL*> one mutant population increases 
as the corresponding threshold is approached; it domi- 
nates the mutant fraction and the extent of selection 
reaches its minimum (1/9). Similarly, the second mu- 
tant population increases as the other threshold is ap- 
proached; it dominates the mutant fraction and the 
extent of selection again reaches its minimum. Thus, 
the extent of selection reaches its maximum at a value 
of D that is intermediate between its threshold values. 

Rate of selection: Equations 7-9 can be applied recur- 
sively to calculate population sizes and ratios as a func- 
tion of time. The rate at which selection occurs is inde- 
pendent of cycle time, as noted above. We define response 
time as the time required for the ratio X/Ä + -Xp) to 
reach 99% of its steady-state value starting from an initial 
state in which the numbers of the two types of mutants 
are equal and the ratio is equal to 1/10 of its steady- 
state value. Recall that the time points are given in units 
of nC, where C is the cycle time and n is the number 
of cycles. The same temporal behavior is obtained re- 
gardless of whether C is large (n small) or small (n 
large). However, the resolution is poorer for large values 
of C because the minimum value of n is 1. There is no 
analytical expression for response time, but it is readily 
determined by numerical means in specific cases, as can 
be seen in the following application (SAVAGEAU 1998). 

DISCUSSION 

Demand theory of gene regulation predicts that the 
molecular mode of control is correlated with the de- 
mand for gene expression in the organism's natural 
environment (SAVAGEAU 1989). The quantitative devel- 
opment presented in this article not only confirms and 
quantifies the previous qualitative predictions, but it also 
identifies critical factors and reveals new relationships. 

The recursive equations that characterize the popula- 
tion dynamics of mutant and wild-type organisms (Equa- 
tions 7-9) allow one to predict the time course for 
selection. The form of these equations also allows one 
to predict that the response time for selection is inde- 
pendent of the cycle time C, whereas it is strongly depen- 
dent upon the demand for gene expression D. The 
steady-state solution of the recursive equations provides 
estimates for the extent of selection (Equations 10 and 
11). A threshold for selection is determined by the rela- 
tionship between cycle time Cand demand D that results 

when the extent of selection is set equal to the criterion 
for selection. 

The thresholds for selection in the C vs. D plot define 
regions within which selection of the positive or negative 
mode of regulation is realizable (Figure 6). Their inter- 
section defines a maximum value for the cycle time 
C^ax, and their asymptotes define minimum Z)min and 
maximum Dmax values of the demand for gene expres- 
sion. These regions also exhibit an inherent asymmetry 
that favors selection of the positive mode. 

As can be seen from the asymptotic expressions for 
Dmi„ and Dmax (Equations 17, 23, 29, and 34), the ratio 
of mutation rate to selection coefficient is the most 
relevant determinant of the allowed region for selec- 
tion. Indeed, if the target sizes for the various types of 
mutations and the selection coefficients are increased 
by the same order of magnitude, then the results are 
essentially unchanged. 

These predictions, and others that are made pos- 
sible by the assignment of specific values for the parame- 
ters, are examined further in the accompanying article 
(SAVAGEAU 1998), where we apply this theory to the 
regulation of the lactose and maltose operons of Esche- 
richia coli. 

The quantitative version of demand theory presented 
in this study provides a framework for further develop- 
ment. Other types of mutations can be incorporated 
in a relatively straightforward manner. Mutations that 
result in a phenotype similar to that of an existing muta- 
tion can be included by simply adding their target size, 
as was done here for mutations in the regulator gene 
and in the modulator site to which the regulator binds 
(T + p). Mutations in the structural gene for the effector 
protein could be included by adding the appropriate 
target size to the target size of the promoter (ir), in the 
case of the negative mode, or the modulator/regulator 
(T + p), in the case of the positive mode. Similarly, in 
this study we have emphasized the predominant types 
of mutations that disrupt normal function. Those that 
might augment normal function can be considered by 
again adding their target size to the target size of an- 
other mutation that results in a similar phenotype. For 
example, a mutation in an operator site might result in 
tighter binding of the cognate repressor and failure to 
allow induction of gene expression in the high-demand 
environment. Such a mutant would exhibit the same 
phenotype as the promoter mutants we have considered. 
The target size for mutations that augment binding, 
which is presumably smaller than the target size for muta- 
tions that disrupt the normal operator, can be added to 
the target size for mutations in the promoter (IT). 

Mutants that result in phenotypes different from 
those considered here also can be added in a straightfor- 
ward manner. In these cases, one first calculates the 
individual threshold for each class of mutation; this may 
involve entirely different sets of parameters and not just 
a different target size for mutation. Then one adds these 
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thresholds to obtain the region of allowable selection 
for the wild-type regulatory system. For the cases de- 
scribed in the previous paragraph, this method and the 
method of simply adding the appropriate target sizes 
produce the same results (data not shown). 

In summary, the quantitative development of demand 
theory reveals unexpected relationships between the 
demand for gene expression D and the average ON/ 
OFF cycle time for the gene C, which is a manifestation 
of the organism's life cycle. The theory provides equa- 
tions for the rate and extent of selection, and these 
reveal well-defined regions of the C vs. D plot within 
which selection is realizable. The realizable regions for 
the positive and negative mode exhibit an inherent 
asymmetry with characteristic values for Dmin, Z)max, and 
C|„ax. The demand theory of gene regulation can be 
extended within the framework presented here to in- 
clude organisms with life cycles that are more complex 
than the two phases illustrated in this article and regula- 
tory systems that are more complex than a single mecha- 
nism of gene control. 
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ABSTRACT 
Induction of gene expression can be accomplished either by removing a restraining element (negative 

mode of control) or by providing a stimulatory element (positive mode of control). According to the 
demand theory of gene regulation, which was first presented in qualitative form in the 1970s, the negative 
mode will be selected for the control of a gene whose function is in low demand in the organism's natural 
environment, whereas the positive mode will be selected for the control of a gene whose function is in 
high demand. This theory has now been further developed in a quantitative form that reveals the importance 
of two key parameters: cycle time C, which is the average time for a gene to complete an ON/OFF cycle, 
and demand D, which is the fraction of the cycle time that the gene is ON. Here we estimate nominal 
values for the relevant mutation rates and growth rates and apply the quantitative demand theory to the 
lactose and maltose operons of Escherichia coli. The results define regions of the C vs. D plot within which 
selection for the wild-type regulatory mechanisms is realizable, and these in turn provide the first estimates 
for the minimum and maximum values of demand that are required for selection of the positive and 
negative modes of gene control found in these systems. The ratio of mutation rate to selection coefficient 
is the most relevant determinant of the realizable region for selection, and the most influential parameter 
is the selection coefficient that reflects the reduction in growth rate when there is superfluous expression 
of a gene. The quantitative theory predicts the rate and extent of selection for each mode of control. It 
also predicts three critical values for the cycle time. The predicted maximum value for the cycle time C 
is consistent with the lifetime of the host. The predicted minimum value for C is consistent with the time 
for transit through the intestinal tract without colonization. Finally, the theory predicts an optimum value 
of C that is in agreement with the observed frequency for E. coli colonizing the human intestinal tract. 

T1 "'HE life cycle of a microbe, in the simplest case, 
X consists of alternative phases. The demand for ex- 

pression of some effector genes will be high in one 
phase and low in the other, and adapting the level of 
expression to this varying demand requires a functional 
regulatory mechanism. It has long been known that the 
same regulatory function, for example, induction of 
gene expression, can be accomplished in one of two 
different modes: the negative mode involves the re- 
moval of a restraining element, which permits expres- 
sion from a high-level promoter, whereas the positive 
mode involves the provision of a stimulatory element, 
which facilitates expression from a low-level promoter. 
The demand theory of gene regulation provides a selec- 
tionist explanation for this fundamental duality (e.g., 
see SAVAGEAU 1977, 1989). 

The components of a minimal regulatory mechanism 
consist of a promoter site, a modulator site, and a regula- 
tor gene encoding the protein that binds the modulator 
site in response to environmental cues. Each of these 
components is subject to a rate of mutation that is deter- 
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of Microbiology and Immunology, The University of Michigan Medi- 
cal School, Ann Arbor, MI 48109-0620. 
E-mail: savageau@umich.edu 

mined by the number of critical bases in its nucleotide 
sequence and the mutation rate per base per round 
of DNA replication. A mutant altered in one of these 
components may exhibit two different phenotypes de- 
pending upon the phase of the life cycle in which it is 
expressed. The growth rate of the organism serves as 
the relevant phenotype, and selection is based upon 
differences in growth rate among wild-type and mutant 

organisms. 
The quantitative development of demand theory 

(SAVAGEAU 1998) combines these elements of life cycle, 
ecology, physiology, and molecular genetics to predict 
regions of the C vs. D plot within which selection for 
the wild-type regulatory mechanisms is realizable. These 
regions define minimum and maximum values for de- 
mand. This theory ties together a number of important 
variables, including growth rates, mutation rates, and 
minimum and maximum demands for gene expression. 
We apply demand theory here to the lactose (lac) and 
maltose (mal) catabolic systems of Escherichia coli, and 
we show that this theory also yields predictions for the 
rate and extent of selection and for minimum, maxi- 
mum, and optimal cycle times of E. coli that are in 
reasonable agreement with independent experimental 

data. 
Life cycle of E. coli: The normal life cycle of an organ- 

Genetics 149: 1677-1691 (August 1998). 
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Maltase 

FIGURE 1.—The life cycle of Eschenchia coli alternates be- 
tween two different environments, the proximal portions of 
the digestive tract (A), where lactose levels are relatively high 
and maltose levels relatively low, and the distal portions (B), 
where lactose levels are relatively low and maltose levels rela- 
tively high. In the environment labeled A, there is a high 
demand for expression of the A-specific lac genes and a low 
demand for expression of the B-specific mal genes, whereas 
in the alternative environment labeled B the demand for these 
same genes is reversed. As described in the text, the average 
time required for the organism to complete its life cycle is 
denoted by C, which also represents the average time for the 
A-specific (or B-specific) genes to complete their ON/OFF 
cycle. The fraction of this cycle time spent in environment A 
(or B), which also represents the demand for expression of 
the A-specific (or B-specific) genes, is denoted by D. 

ism defines the demand for expression of its effector 
genes. The life cycle of E. coli as it passes from one 
host to another will be considered here in terms of 
two different environments (Figure 1). The first will be 
identified with the proximal portions of the digestive 
tract for a lactose-tolerant host that ingests both lactose 
and starch (which consists largely of maltose). This is 
the environment in which rapid growth occurs during 
the transition between stable association with one host 
and then another. The second environment will be iden- 
tified with the distal end of the small intestine and the 
colon of the host in which colonization and slow growth 
take place. Also included in the second environment 
will be the host's surroundings through which the bacte- 
ria pass to enter a subsequent host. This is admittedly 
a simplification of a more complex ecology (COOKE 

1974; FRETER 1976; SAVAGEAU 1983), but nevertheless 
it captures the essential features for our purposes here. 
Additional environments and more complex linkages 
among them in principle can be handled by the same 
methods. 

Ecology and gene expression: We shall consider the 
lac operon as representative of a low-demand function 
governed by the negative mode of control (MILLER and 
REZNIKOFF 1980) and the mal operon as representative 

of a high-demand function governed by the positive 
mode of control (SCHWARTZ 1987). These systems are 
well studied at the molecular level, and the evidence 
regarding their mode of control is clear. 

Evidence regarding demand for expression of the lac 
andmal operons of E. coli comes from studies of intes- 
tinal ecology. Lactose is a relatively rare sugar in nature •'* 
(SHALLENBERGER 1974). The host's lactase enzymes, 
which hydrolyze this disaccharide and thereby permit 
its utilization by the host, are located in the proximal 
small intestine and are subject to developmental regula- 
tion (DAHLQVIST 1961; KOLDOVSKY and CHYTIL 1965; 
WALKER 1968). In contrast, maltose, the breakdown 
product of all dietary starch, is among the most abun- 
dant sugars (WIDDAS 1971). The host's maltase enzymes, 
which hydrolyze this disaccharide and thereby permit 
its utilization by the host, are located at the distal end 

of the small intestine and in the colon (DAHLQVIST 

1961; ROSENSWEIG and HERMAN 1968). This informa- 
tion suggests that the lac operon of E. coli is likely to be 
expressed at high levels in the first environment and at 
low levels in the second, whereas the mal operon is likely 
to be expressed at high levels in the second environment 
and at low levels in the first. 

The time required for E. coli to pass through the high- 
demand environment for lactose utilization is about 
3 hr. This is one-half the average time required to reach 
the colon (MADSEN 1992); the 3-hr figure is also based 
on measured patterns of lactose utilization (BOND and 
LEVITT 1976; MALAGELADA et al. 1984). Much of the 
ingested lactose is hydrolyzed to constituent sugars that 
are absorbed by the host in the proximal small intestine; 
the remainder is catabolized by the bacteria so that very 
little lactose normally reaches the colon (BOND and 
LEVITT 1976). From this 3-hr figure for time in the high- 
demand environment, one can predict that the cycle 
time of E. coli will be inversely related to the demand 
for expression of its lactose operon C = 5/D. 

We estimate the time for passage through the low- 
demand environment for maltose utilization to be ^6 
hr. This is the average time required for a bolus of 
ingested food to reach the distal portions of the small 
intestine and colon (MADSEN 1992). We assume that 
free maltose is sparse in the proximal portions of the 
small intestine and that it becomes abundant only in 
the distal portion of the intestinal tract where the host's 
maltase enzymes are localized (DAHLQVIST 1961; 
ROSENSWEIG and HERMAN 1968). From this 6-hr figure 
for time in the low-demand environment, one can pre- 
dict that the cycle time of E. coli will be inversely related 
to 1 minus the demand for expression of its maltose 
operon C= 6/(1 - D). 

ESTIMATION OF PARAMETER VALUES 

The demand theory of gene regulation involves three 
levels of parameters (SAVAGEAU 1998): constituent pa- 



TABLE 1 

Definitions and nominal values for the constituent parameters that determine the growth rates and 
mutation rates for organisms with positive and negative modes of control 

in high- and low-demand environments 

Symbol Definition 

Reference mutation rate 

Mutation rate, relative to u., for loss of a 
promotor with negative control 

Mutation rate, relative to u-, for gain of an 
up-promoter with positive control 

Mutation rate, relative to u., for loss of a 
regulator's functional target site 

Mutation rate, relative to |x, for loss of a 
functional regulator protein 

Mutation rate, relative to p., when 
expression is increased 100-fold 

Reference growth rate in the nutritionally 
richer of the two environments 

Growth rate, relative to 7, when in the more 
nutritionally deficient environment 

Growth rate, relative to 7, when there is a 
loss of expression with negative control 

Growth rate, relative to 87, when there is 
loss of expression with positive control 

Growth rate, relative to 87, when there is 
superfluous expression with negative control 

Growth rate, relative to 7, when there is 
superfluous expression with positive control 

Nominal value" 

Negative control Positive control 

6E-10 6E-10 
base-1 generation"' 

10 
base generation"' 

— 1 

20 20 

60 60 

1 1 

1.0 generation 
hour-' 

0.0125 

1.0 generation 
hour"' 

0.0125 

0.97 

0.999 

0.97 

0.999 

° See text for estimation of parameter values. 

rameters, individual growth rates and mutation rates, 
and macroscopic rate constants. Estimates for the values 
of the constituent parameters in our model are given 
below. In a subsequent section we will determine the 
consequences of these choices by examining other val- 
ues for each of the parameters. As we shall see, the exact 
values are not critical for about half of the parameters, 
whereas the values for two of them are extremely influ- 

ential. 
Reference mutation rate, u.: For E. coli, the spontane- 

ous mutation rate is estimated to have a nominal value 
of (x0 = 6E-10 per base per DNA replication (DRAKE 

1991). The spontaneous mutation rate for loss of func- 
tion in the modulator or promoter sites of our model 
can be determined from estimates of the spontaneous 
mutation rate per base and the number of critical bases 

that define these sites. 
Relative mutation rate for loss of a high-level pro- 

moter site, ir: Promoters encompass a region of ~75 
nucleotides upstream of the RNA start site (HARLEY and 
REYNOLDS 1987; LISSER and MARGALIT 1993). Although 
most of the information in promoter sequences is local- 
ized within two 6-base blocks with variable spacing be- 
tween them (the "consensus" elements at positions -10 
and -35 relative to the start site), there is only limited 

base conservation at most positions. If we assume that 
each of 10 nucleotides is critical for the definition of a 
high-level promoter (SCHNEIDER et cd. 1986), then the 
relative mutation rate is ir0 = 10. 

Relative mutation rate for gain of a high-level pro- 
moter site, v: Spontaneous up-promoter mutations with 
the positive mode occur at about one-tenth the fre- 
quency of spontaneous down-promoter mutations with 
the negative mode (G. GUSSIN, personal communica- 
tion). If we assume that a low-level promoter can be 
converted to a high-level promoter by a single mutation 
in a critical base, then the relative mutation rate for this 
gain of a high-level promoter site is v0 = 1. 

Relative mutation rate for loss of a regulator's func- 
tional target site, T: Targets for the binding of regulator 
proteins are the modulator sites—operator sites in the 
case of the negative mode and initiator sites in the case 
of the positive mode. Operator sites span a region of 
~100 nucleotides upstream of the RNA start site 
(REALLA and COLLADO-VIDES 1996). If we assume that 
each of 20 nucleotides is critical for the definition of 
the operator (SCHNEIDER et al. 1986), then the relative 
mutation rate in this case is T0 = 20. Although the sizes 
of initiator sites are about one-half those of operator 
sites, 50 nucleotides upstream of the RNA start site 
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FIGURE 2.—Thresholds for selection of a wild-type regula- 
tory mechanism with a negative mode. (A) The demand is 
represented with a logarithmic scale, and one sees that 
Dmin = 4.8E-6 and Dmax = 0.1. (B) The demand is represented 
with a linear scale. Results are shown for the nominal values 
of the parameters in Table 1. See text for discussion. 
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FIGURE 3.—Thresholds for selection of a wild-type regula- 
tory mechanism with a positive mode. (A) The demand is 
represented with a logarithmic scale, and one sees that 
Dmin = 1-0.8 and £>max = 1-1.5E-5. (B) The demand is repre- 
sented with a linear scale. Results are shown for the nominal 
values of the parameters in Table 1. See text for discussion. 

(REALLA and COLLADO-VIDES 1996), the information 
needed to locate these sites within the genome is similar 
to that for operators (SCHNEIDER et al. 1986). If we 
assume that each of 20 nucleotides also is critical for 
the definition of the initiator, then the relative mutation 

rate in this case is T0 = 20. 
Relative mutation rate for loss of a functional regula- 

tor protein, p: We shall assume that a typical regulator 
protein has 30 amino acid residues that are critical for 

binding to its modulator site (operator in the case of 
the negative mode or initiator in the case of the positive 
mode) and for properly affecting transcription initia- 
tion. This implies that the regulator gene has ~60 bases 
that are critical because the identity of the base in the 
third codon position is largely irrelevant. Thus, we ob- 
tain a relative mutation rate of p0 = 60 for loss of a 
functional regulator protein. 

Relative mutation rate as a function of gene expres- 
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1E+8 

FIGURE 4.—Thresholds for discriminate selection of wild- 
type regulatory mechanisms with negative or positive modes. 
The results in Figures 2B and 3B are shown here on the same 
axes, where it is clear that the Dmm for selection of the negative 
mode is less than the Dmin for selection of the positive mode. 

sion, £: There is evidence to suggest that the rate of 
spontaneous mutation increases with the rate at which 
the DNA is being transcribed (DATTA and JINKS-ROB- 

ERTSON 1995). There also is evidence to suggest that 
the rate of spontaneous mutation decreases because of 
transcription-coupled repair mechanisms (FRANCINO et 
al. 1996). This is one of the questions we wish to examine 
further in our quantitative analysis. We initially assume 
that there is no significant effect on the mutation rate 
either way; therefore, we assign a value of £o = 1 for 
this relative mutation rate. If one were to assume a 
change in mutation rate that is proportional (or in- 
versely proportional) to the rate of transcription, then 
the mutation rate relative to the reference would be 
given by £ = k X 100 (or V100), where k is the propor- 
tionality constant. (Recall that the capacity for regula- 
tion is assumed to be 100 and that expression is assumed 
to be fully ON or fully OFF.) 

Reference growth rate, y: We shall assume that E. coli 
grows with a doubling time of 1 hr in the nutritionally 
richer of the two environments; thus, the nominal value 
for the reference growth rate is 70 = 1.0. This is not an 
unreasonable value because it is known that bacteria 
like E. coli can double in a period as short as 20 min 
(MAAL0E and KJELDGAARD 1965). In any case, the sim- 
ple value of unity provides a convenient reference; 
should the actual value be different, one can simply 
rescale the time accordingly, and none of our results 
would change. 

Relative growth rate with loss of normal expression, 
A.: Because expression is either fully ON or fully OFF 

and the capacity for regulation is 100, which supports 
the nominal growth rate, a failure of expression is as- 
sumed to result in a basal level of expression, which 
would support only a 100-fold reduction in growth rate if 
there were no other carbon source in the environment. 
However, in the complex environment of the intestinal 
tract there are multiple carbon sources, and the reduc- 
tion in growth rate will therefore be less. We shall as- 
sume a 3% reduction in growth rate. Thus, the nominal 
value for this parameter is set at A0 = 0.97. 

Relative growth rate with superfluous expression, a: 
When the demand is such that a function is normally 
turned OFF and a regulatory mutation causes the func- 
tion to be fully expressed under inappropriate circum- 
stances, the cell unnecessarily expends resources for 
material and energy. Experimental evidence in the case 
of ß-galactosidase expression in E. coli (NOVICK and 
WEINER 1957; KOCH 1983) suggests that such inappro- 
priate expression decreases the growth rate by <1%; 
we shall assume a 0.1% reduction. The growth rate, 
relative to the reference growth rate, is thus assigned a 
nominal value of o0 = 0.999. 

Relative growth rate in the more nutritionally defi- 
cient of the two environments, 8: From measurements 
of the mean transit time through the human intestinal 
tract (CUMMINGS and WIGGINS 1976; GEAR et al. 1980), 
and the assumption that it is a well-stirred chemostat, 
one can calculate that the average doubling time for 
net growth of E. coli in the intestinal tract is about 40 
hr (SAVAGEAU 1983). Because the intestinal tract is not a 
well-stirred chemostat, but rather a very heterogeneous 
environment in which the growth is undoubtedly faster 
in the proximal regions and slower in the distal, the 
doubling time of E. coli in the more deficient distal 
environment will be longer than the average. There are 
no good measurements to go by, so we will arbitrarily 
set the doubling time for growth in the more deficient 
environment to be two times the average value given 
above. Thus, the growth rate in the more deficient envi- 
ronment, relative to the reference growth rate in the 
richer environment, is given by a nominal value of 
80 = 0.0125. 

Criterion for selection, 6: Our criterion for selection 
is that each mutant population shall be reduced to no 
more than 0.05% of the wild-type population or, alterna- 
tively, that the sum of the two mutant populations shall 
be reduced to no more than 0.1% of the wild-type popu- 
lation. This is similar to values that are found in the 
literature (LECLERC et al. 1996). Thus, the criterion for 
selection is assigned a nominal value of 90 = 0.0005. 

Estimation of macroscopic parameters: The values of 
the macroscopic parameters in each environment and 
for each mode of control are determined as follows. 
First, the constituent parameters given above are com- 
bined to represent the relevant growth rates (gw, gp, g^, 
gi). The growth rate of the wild-type organism gw in the 
first environment is 7 (the reference), and in the second 
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FIGURE 5.—Influence of 
the constituent parameters 
on the values for Z)min and 
Dmas. Each parameter is var- 
ied about its nominal value, 
and the resulting values for- 
Dmi„ and Z)maK are calculated. 
Results for the parameter 7 
are not shown because it ex- 
hibits no influence in all 
cases. (A) Dmax for the neg- 
ative mode of control. (B) 
Dmm for the negative mode 
of control. (C) Dmi„ for the 
positive mode of control. 
(D) A™ for the positive 
mode of control. The local 
parameter sensitivities are 
summarized in Table 2. 

<5/S„ 0/0, 

it is 7 multiplied by 8, the relative growth rate in the 
nutritionally deficient environment. The growth rates 
of the promoter mutants gp, modulator mutants gm, and 
promoter/modulator (double) mutants & in the two 
environments are the same as those of the wild type, 
but multiplied when appropriate by relative growth rates 
that reflect either loss of expression that is normally 
ON (X) or superfluous expression that is normally OFF 
(CT) . For example, the growth rate of a lac modulator 
mutant (gj is 7 in the first environment, where its 
pattern of gene expression mimics that of the wild type, 
and 78er in the second, where expression of the lac 
operon is superfluous. The growth rate of a mal modula- 
tor mutant is 7 in the first environment, where its pat- 
tern of gene expression mimics the wild type, and 78k 

in the second, where there is a failure to express the 
mal operon. 

Second, the constituent parameters are combined 
to represent the mutation rates between populations 
(Wpw, "in,., w*dP> >"dm)- Each mutation rate is given by the 
product of the number of critical bases that define the 
structure in question (TT, V, T, or p), the spontaneous 
mutation rate per base per DNA replication (p.), and a 
factor reflecting transcription-related mutation or re- 
pair (e) when appropriate. For example, the rate of 
production of lac promoter mutants from wild-type or- 
ganisms (flip«) is Tru£ in the first environment, where 
the lac operon is being actively transcribed, and iru. in 
the second, where it is not. The rate of production of 
mal promoter mutants from wild-type organisms is up. 
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in the first environment, where the mal operon is not 
being transcribed, and V|JL£ in the second, where it is. 

Finally, the growth rates and mutation rates are com- 
bined to represent the macroscopic rate-constant pa- 
rameters that characterize the population dynamics 
(am„ app, apw, amm, ami„ add, adp, adm). For example, the 
rate constant for net growth of the promoter mutant 
xpp 

is given by its intrinsic growth rate gp minus the rate 
oFloss due to the production of double mutants, which 
is given by the mutation rate per DNA replication mA? 

times the intrinsic growth rate of the promoter mutant 
g,. The rate constant for production of promoter mu- 
tants from the wild-type population otpw is given by the 
mutation rate per DNA replication m^ times the intrin- 
sic growth rate of the wild-type organism gv. The other 
rate-constant parameters are determined in a similar 

fashion. Thus,  aw,  =   [1 
(1   -  W2dp)gp, <V =mV«g«' "mm =   (1 

odd   =  gd, «dp   =   Wfcpgp. «dm  =   Wdmg, 

(?WpW  +   »!„,„) ]g„, app  - 
-mdm)gm a„ "*mwgw> 

SELECTION OF WILD-TYPE REGULATORY 
MECHANISMS 

Determination of the thresholds for selection: The 
threshold for selection of a wild-type promoter or modu- 
lator is determined as follows. As described above, the 
constituent parameters are combined to represent the 
relevant growth rates and mutation rates that enter into 
the macroscopic parameters that characterize the popu- 
lation dynamics of mutant and wild-type organisms. The 
population dynamic equations are solved in the two 
environments to yield an equation for the ratio of mu- 
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tant to wild-type population numbers. This ratio is set 
equal to 6, the criterion for selection, and the resulting 
equation expresses the relationship between cycle time 
C and the demand for gene expression D that consti- 
tutes the threshold for selection. 

The threshold for selection of a wild-type promoter 
or modulator (regulator) can be obtained by solving 
the threshold equation for C as a function D using the 
method of bisection (PRESS et al. 1988). These numeri- 
cally calculated thresholds and the analytically deter- 
mined asymptotes (SAVAGEAU 1998) are nearly indistin- 
guishable, except in the region of transition between 
low- and high-C asymptotes. Only those values of C and 
D that lie in-lhe region of overlap below both the pro- 
moter and modulator thresholds will allow selection of 
the wild-type regulatory mechanism. 

Regions in which selection for negative and positive 
modes is realizable: When nominal values are assumed 
for the parameters of the model (see Table 1), one finds 
the thresholds plotted in Figures 2 and 3. The thresholds 
shown in Figure 2 for the negative mode of control (3% 
selection coefficient against the promoter mutant and 
0.1% against the modulator mutant) exhibit a narrow 
region of overlap. In contrast, the thresholds shown in 
Figure 3 for the positive mode of control (0.1 % selection 
coefficient against the promoter mutant and 3% against 
the modulator mutant) exhibit a wide region of overlap. 
As predicted (SAVAGEAU 1998), the positive and nega- 
tive modes are associated with asymmetric regions of 
the C vs. D plot in which selection is realizable. Note 
that the horizontal axis in the case of the positive mode 
is plotted as values of 1 - D, instead of Z>, this allows 
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us to distinguish more clearly the threshold values near 
unity when plotting demand in logarithmic coordinates. 
The extent of the asymmetry is perhaps more evident 
when the thresholds for selection against the modulator 
mutants are plotted on the same scale for both the 
negative and positive modes (Figure 4). The regions for 
which selection is realizable are nonoverlapping, which 
indicates discriminate selection for the positive and neg- 
ative modes. 

Influence of parameters on minimum and maximum 
values for demand: Selection requires the demand for 
gene expression to be greater than the asymptote for 
the minimum threshold and less than the asymptote 
for the maximum threshold, that is, Dmm < D < Dmax. 
The parameters in our model influence these asymp- 
totic values to various degrees. It is important to exam- 

ine a range of values for each of the parameters because 
there is some uncertainty in the nominal values for many 
of them. We have systematically varied each parameter 
about its nominal value given in Table 1 and observed 
the resulting changes in the minimum and maximum 
values for demand. The results are shown in Figure 5. 

Five classes of influence can be discerned in Figures 
5A-5D. First, in many cases there is no discernible in- 
fluence [Figure 5A (ir and X), Figure 5B (p, T, e, and 
a), Figure 5C (i>, T, £, and a), and Figure 5D (p, T, and 
X)]. Second, in several cases there is a nearly linear 
variation with the change in parameter value [Figure 
5A (p., p, e, 8, and 9), Figure 5B (u,, IT, 8, and 6), and 
Figure 5D (|x, v, e, 8, and 9)]. Third, in five cases there 
is a nearly cube-root influence [Figure 5A (T) and Figure 
5C ((x, p, 8, and 9)]. Fourth, in two cases there is a 
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TABLE 2 

Influence of the constituent parameters on the values 
of Dmi. and Dm:a 

C=3000 B C=300 

Parameter sensitivities (3 log • /3 log p)a 

Negative mode Positive mode 

Parameter, p 

■n 

v 
T 

P 
e 

7 
X' 
o* 
8 

1.00 
1.00 

0.000 
0.000 
0.000 
0.000 

32.3 
0.000 
1.00 

-1.00 

-0.990 
0.000 

-0.327 
-0.769 
-0.895 

0.000 
0.000 

-989 
0.895 
0.989 

-0.205 

0.000 
-0.0513 
-0.154 
0.000 
0.000 

-6.63 
0.000 
0.208 
0.205 

1.00 

1.00 
0.000 
0.000 
1.00 
0.000 
0.000 

1000 
1.00 

-1.00 

" Sensitivities are calculated with D for the negative mode 
and with 1 — D for the positive mode (see text for discussion). 

4 Dmm is determined by the threshold for selection of the 
wild-type promoter. 

' Am* is determined by the threshold for selection of the 
wild-type modulator-repressor interaction. 

d Dmin is determined by the threshold for selection of the 
wild-type modulator-activator interaction. 

'Z)max is determined by the threshold for selection of the 
wild-type promoter. 

^For the negative mode, X represents the growth rate of the 
promoter mutant relative to the wild type; for the positive 
mode, X represents the growth rate of the modulator mutant 
relative to the wild type. 

gFoT the negative mode, CT represents the growth rate of 
the modulator mutant relative to the wild type; for the positive 
mode, cr represents the growth rate of the promoter mutant 
relative to the wild type. 

moderate (order of magnitude) amplification of the 
response to a change in parameter value [Figure 5B (X) 
and Figure 5C (X)]. Finally, in two cases there is an 
extreme (1000-fold) amplification of the response to a 
change [Figure 5A (a) and Figure 5D (a) ]. The results 
obtained for the negative and positive modes exhibit 
different patterns. The influences in the local region 
about the nominal values can be summarized numeri- 
cally by the parameter sensitivities (SHIRAISHI and SAV- 

AGEAU 1992), as shown in Table 2. 
From these results one can see that the most influen- 

tial parameter is the selection coefficient that reflects 
the diminished growth rate of the organism when there 
is superfluous gene expression. For the negative mode 
of gene control, this corresponds to the diminished 
growth rate of the modulator (regulator) mutants that 
express the effector function constitutively when it 
should be OFF. For the positive mode, this corresponds 
to the diminished growth rate of the promoter mutants 
that express the effector function at a high level when 
it should be OFF. 
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FIGURE 6.—Enrichment of the wild-type regulatory mecha- 
nism with time. The numbers of wild-type, modulator-mutant, 
and promoter-mutant organisms are represented by the vari- 
ables X,-,X,„, and A^. Initially, the ratio ^/(X,„ + Xp), which 
is the reciprocal of the mutant fraction fm, is one-tenth of its 
steady-state (ss) value, and the two types of mutants are equally 
abundant. The ratio is normalized and plotted as a function 
of time in units of nC (see text for discussion). The normalized 
ratio is given by 10 X [XVÄ + Xp)]/[XK/(Xm + A^)]" or 
10fm/fm so that its values vary between 0 and 1 on a logarithmic 
scale. Time courses are shown for various values of demand 
D. (A) The negative mode of gene control with a cycle time 
of C = 3000 hr. (B) The positive mode of gene control with 
a cycle time of C = 300 hr. 

Time course of selection: The numbers of wild-type, 
modulator-mutant, and promoter-mutant organisms are 
represented by the variables X»., Xm, and Xp. The ratio 
Xw/(Xm + Xp) is equal to the reciprocal of the mutant 
fraction, which we define as fm. If we start with equal 
numbers for the two types of mutants and a ratio XJ 
Ä + Ap) that is one-tenth of its steady-state value, then 
the enrichment of the wild-type regulatory mechanism 
with time is obtained from the solution of the popula- 
tion dynamic equations (Equation 9 in SAVAGEAU 1998). 
Given the nominal values for the parameters in Table 
1, the time course of selection for various values of 
demand D is as shown in Figure 6. The temporal behav- 
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FIGURE 7.—The extent of 
selection as a function of de- 
mand for gene expression D 
and cycle time C. The extent 
of selection is given by the 
steady-state value of the ra- 
tio JC/iXn + XJ or 1//S. 
The parameters have the 
nominal values given in Ta- 
ble 1. (A) Negative mode of 
gene control. (B) Positive 
mode of gene control. See 
text for discussion. 

ior of the populations is independent of the cycle time 
C. The time scale is actually discrete, given by values of 
nC, where n is the number of cycles. Thus, within a 
fixed time period, the same degree of enrichment can 
be achieved with either a large value for C and a small 
number n, or a small value for C and a larger number 
n. Note that the negative mode of gene control emerges 
more rapidly as demand for gene expression increases, 
whereas the positive mode of gene control emerges 
more rapidly as demand for gene expression decreases 
(Figure 6). The extent and rate of selection are exam- 
ined in greater detail below. 

Extent of selection: We define the extent of selection as 
the steady-state value of the ratio X,v/(X,n + Xp), which 
is the inverse of the mutant fraction in the population 
(l/fm) . Although there is selection for the wild-type reg- 
ulatory mechanism throughout the region of overlap 
beneath the thresholds (e.g., Figures 2A and 3A), the 
extent of the selection varies as a function of cycle time 
C and demand D. For a given value of C, the extent of 
selection reaches its maximum at a value of D that is 
roughly the geometric mean of its threshold values. 
With the nominal values for the parameters (Table 1), 
the results for the negative mode of gene control are 
as shown in Figure 7A; the results for the positive mode 
are similar to those for the negative mode, except that 
the allowable values for demand now occur in the high- 
demand region of the plot (Figure 7B). The maximum 
extent of selection for the positive mode of gene control 
is ~10-fold greater than that for the negative mode. 

Rate of selection: The rate at which selection occurs 
is independent of cycle time. We define response time as 
the time required for the ratio X/iXn + Xp) to reach 
99% of its steady-state value, starting from an initial state 
in which the numbers of the two types of mutants are 
equal and the ratio is equal to one-tenth of its steady- 

state value. Recall that the time points are given in units 
of nC, where C is the cycle time and n is the number 
of cycles. The same temporal behavior is obtained re- 
gardless of whether C is large (n small) or small (n 
large). However, the resolution is poorer for large values 
of C because the minimum value of n is one. 

Like the extent of selection, the rate of selection is 
strongly dependent on the demand for gene expression. 
Although selection in the case of the negative mode 
can occur near the lower limit of allowable values for 
D, the response time is very long. Response time de- 
creases in an inverse fashion as D increases, until a lower 
plateau is reached (Figure 8A). The break in the curve 
occurs at approximately the value of D that yields the 
maximum extent of selection (see Figure 7A). The mini- 
mum response time with the nominal values for the 
parameters is ^294,000 hr (^36 yr). 

Similar results are found with the positive mode of 
gene control (Figure 8B), except that the long response 
times occur near the upper limit of allowable values for 
D. The response time decreases as D decreases until a 
minimum is reached, and then it increases. For the 
same extent of selection as the negative mode (18,400), 
the positive mode exhibits a faster response time 
(~ 17,000 vs. 294,000 hr); alternatively, for the same 
response time as the negative mode (294,000 hr), the 
positive mode exhibits a greater extent of selection 
(^214,000 vs. 18,400). Thus, it appears that the positive 
mode of gene control is capable of achieving greater 
extents of selection with faster response times than is 
the case for the negative mode of control. 

Minimum cycle time: Estimates for the minimum cy- 
cle time of E. coli passing from one host to another can 
be obtained by combining the information in Figure 
2A with the inverse relationship between C and D for 
the lactose operon of E. coli. (Recall from the ECOLOGY 
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FIGURE 8.—The rate of 
selection as a function of de- 
mand for gene expression 
D. Response time is mea- 
sured as the time required 
to achieve 99% of the 
steady-state value for the ra- 
tio X„/{X„, + -Xp) starting 
from an initial state in 
which this ratio is initially 
one-tenth of the steady-state 
value and the mutants are 
equally abundant. The pa- 
rameters have the nominal 
values given in Table 1. (A) 
Negative mode of gene con- 
trol. (B) Positive mode of 
gene control. See text for 
discussion. 
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AND GENE EXPRESSION section that C = 3/D.) The inter- 
section of this inverse relationship with the threshold for 
selection of the wild-type modulator (regulator) gives a 
value of Q„;„ = 26 hr (Figure 9A). Another estimate of 
minimum cycle time can be obtained by combining the 
information in Figure 3A with the inverse relationship 
between C and (1 — D) for the maltose operon of E. 

coll [Recall from the ECOLOGY AND GENE EXPRESSION 

section that C = 6/(1 — D).] The intersection of this 
inverse relationship with the threshold for selection of 
the wild-type modulator (regulator) gives a value of 
Cmin = 10 hr (Figure 9B). 

Maximum cycle time: Estimates for the maximum 
cycle time of E. coli passing from one host to another 
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FIGURE 9.—Predicted val- 
ues for cycle times Q„m,Qmx, 
and Q,p based on the transit 
time through the proximal 
portions of the intestinal 
tract in humans. (A) Locus 
of C values for the negative 
mode of control is given by 
the \/D relationship based 
on the period available for 
bacterial utilization of lac- 
tose (~3 hr). (B) Locus of C 
values for the positive mode 
of control is given by the 
\/D relationship based on 
the period not available for 
utilization of maltose (~6 
hr). The locus in each case 
intersects the threshold for 
selection of the wild-type 
modulator (regulator) at 
the value for Qni„ and the 
threshold for selection of 
the wild-type promoter at 
the value for QmK. The value 

!£! UJ of Qp is found on the locus 
at a value of fl„p, which cor- 
responds to the value of D 
that yields the optimum ex- 
tent (Figure 7) and rate 
(Figure 8) of selection. See 
text for discussion. 
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also can be obtained by combining the information in 
Figure 2A with the inverse relationship between C and 
D for the lactose operon of E. coli. The intersection of 
the inverse relationship C = 3/£>with the threshold for 
selection of the wild-type promoter (Figure 9A) gives a 
value of Qiax = 580,000 hr (~66 yr). Again, the data for 
the maltose operon in Figure 3A provide an alternative 
estimate. The intersection of the inverse relationship 
C = 6/(1 - D) with the threshold for selection of the 
wild-type promoter (Figure 9B) gives a value of C^ax = 
502,000 hr (^57 yr). 

Optimal cycle time: Although the estimates for mini- 
mum and maximum cycle time in the preceding sections 
are of some interest, perhaps the more relevant issue 
is the nominal value of the cycle time for E. coli in its 
natural environment. We argue that the most probable 
values for the cycle time will be those corresponding to 
the values for demand that lead to the optimal extent 
and rate of selection. For the negative mode, the opti- 
mum extent and rate of selection occur with a value of 
demand Dop = 0.001 (Figures 7A and 8A). Combining 
this optimum value for D with the inverse relationship 
C = 2>/D in Figure 9A for the lactose operon yields an 
estimate for the nominal value of the cycle time, namely, 
q,p = 3000 hr (~4 mon). For the positive mode, the 
optimum extent and rate of selection occur with a value 
of demand 1 - Z>„P = 0.01 (Figures 7B and 8B). Combin- 
ing this optimum value for 1 - D with the inverse rela- 
tionship C = 6/(1 - D) in Figure 9B for the maltose 
operon yields an estimate of Cop = 800 hr (^33 days). 

DISCUSSION 

The application of demand theory presented in this 
article provides an opportunity to test a number of the 
theory's quantitative implications. The results in SAV- 

AGEAU (1998) led to the prediction of well-defined re- 
gions within the C vs. D plot where selection for the 
positive and negative modes of gene control is realiz- 
able. These regions allow one for the first time to specify 
precisely what is meant by high and low demand. With 
the nominal values for the parameters of the lactose 
and maltose operons in E. coli, selection of the negative 
mode of control requires a demand between 0.000005 
and 0.1 (Figure 2A), whereas selection of the positive 
mode requires a demand between 0.2 and 0.999985 
(Figure 3A). Furthermore, these regions were predicted 
to exhibit an inherent asymmetry with the positive mode 
having the larger region within which selection is realiz- 
able. This is clearly seen in the case of the lactose and 
maltose examples analyzed here (Figure 4). 

Although the minimum and maximum values of de- 
mand are influenced by a number of parameters, by far 
the most influential parameter is u, which reflects the 
reduction in growth rate when there is superfluous ex- 
pression of a gene (Figure 5A and 5D). The nominal 
value for this parameter was set at 0.1%, on the basis 

of data for the lactose operon that suggest a value <1% 
for the reduction in growth rate of operator-constitutive 
mutants in a low-demand environment. In the case of 
the positive mode, the same value was used to character- 
ize the reduction in growth rate of an up-promoter 
mutant in a low-demand environment. A 0.1% variation 
in a yields a twofold change in the value of Dmax for 
both the negative and positive mode (Table 2). The 
remaining parameters have much less influence on the 
limits of D; approximately one-half exhibit a nearly lin- 
ear influence, whereas the other half have a negligible 
influence. 

The ratio of mutation rate to selection coefficient is 
the most relevant determinant of the realizable region 
for selection. Indeed, if the target sizes for the various 
types of mutations are increased by an order of magni- 
tude (e.g., to match the footprint for binding a regulator 
protein to its modulator site on the DNA) at the same 
time the selection coefficients are increased by an order 
of magnitude, then the results are essentially unchanged 
(data not shown). 

The results in Figure 5 suggest that the effect of tran- 
scription on mutation rate may be significant only if 
it reduces the mutation rate. The parameter 8, which 
represents this effect, has no influence on the selection 
of the wild-type promoter when there is a negative mode 
of control (Figure 5B). This is counter to the intuitive 
expectation that suggests a lower mutation rate would 
aid the selection of the wild-type promoter when it is 
not in use. The results in Figure 5A show that the param- 
eter e can represent an increased selection for the wild- 
type repressor-modulator interaction (increased Draax) 
if there is an increase in transcription-coupled repair 
(decrease in e). In the case of the positive mode, e has 
negligible influence on the selection of the wild-type 
activator-modulator interaction (Figure 5C), and its in- 
fluence on the selection of the wild-type promoter (Fig- 
ure 5D) would appear to be of little consequence be- 
cause the threshold value of Z)max in this case is already 
so high. Given the nominal values we have used for the 
parameters, £ does not seem to be highly significant, 
and similar effects can be achieved by varying other 
parameters; nevertheless, £ might still be important for 
selection under other conditions. 

The equations that characterize the population dy- 
namics of mutant and wild-type organisms (Equations 
7-11 in SAVAGEAU 1998) led to the prediction that the 
extent of selection is a function of cycle time C and 
maximal at intermediate values of demand D, whereas 
the rate of selection is independent of cycle time C. 
Indeed, with the parameter values in Table 1, the extent 
of selection increases, reaches a maximum, and then 
declines as demand increases (Figure 7). As seen in 
Figure 8, the time required to reach full selection de- 
creases until a minimum is reached with increasing de- 
mand (negative mode) or decreasing demand (positive 
mode). The combination of these results suggests that 
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the optimum extent and rate of selection occurs at 
around D = 0.001 for the negative mode and 1 - D = 
0.01 for the positive mode. In the case of the positive 
mode, this represents a choice of 1 — D that yields a 
rate of selection that is nearly equivalent to the optimum 
for the negative mode. 

The quantitative theory reveals a number of new rela- 
tionships involving cycle time that can be tested against 
experimental data in the case of the lactose and maltose 
operons of E. coli. The first such relationship provides 
an estimate for the minimum value of the cycle time 
C^in. We obtained values of 26 hr (Figure 9A) and 10 
hr (Figure 9B), which is on the same order of magnitude 
as the 40 hr required on average for transit through 
the entire intestinal tract (CUMMINGS and WIGGINS 

1976; GEAR et al. 1980; SAVAGEAU 1983). Under these 
circumstances, E. coli is simply passing through the in- 
testinal tract without colonizing the colon. Clearly, the 
cycle time can be no shorter than this period. 

The second relationship provides an estimate for the 
maximum value of the cycle time C^ax. We have esti- 
mated this value to be ^580,000 hr (~66 yr) in the case 
of the lactose operon (Figure 9A) and 502,000 hr (~57 
yr) in the case of the maltose operon (Figure 9B). These 
values for Q^ are on the same order of magnitude 
as the 120-yr maximum for the life span of humans 
(HAYFLICK 1977). Clearly, the cycle time for£. coli can 
be no longer than the life time of the host because the 
bacteria will die with the host if they do not colonize a 
new host. 

The final relationship provides an estimate for the 
optimum value of the cycle time Q,p. The optimum ex- 
tent and rate of selection determined for the lactose 
operon suggest a demand in the neighborhood of Dop = 
0.001. This value of A taken together with the relation- 
ship D = 3/ C, predicts an optimum cycle time of Cop = 
3000 hr (~4 mon). The corresponding estimate based 
on the maltose operon is Cop = 800 hr (^33 days). 
These predicted values for the cycle time of E. coli are 
comparable with the cycle times (recolonization rates) 
of months to years that have been observed in humans 
for resident strains of E. coli (SEARS et al. 1950; SEARS 

and BROWNLEE 1952; CAUGANT et al. 1981). 
In summary, the quantitative development of demand 

theory presented in SAVAGEAU (1998) and applied here 
provides the first estimates for the minimum and maxi- 
mum values of demand that are required for selection 
of the positive and negative modes of gene control. The 
specific application to the maltose and lactose operons 
of E. coli suggests that the positive and negative modes 
of control for these genes are subject to selection 
throughout the full range of cycle times that are possible 
for this microbe. Moreover, the cycle times predicted 
on the basis of the optimal extent and rate of selection 
are in agreement with the typical cycle times that have 
been observed experimentally. 

I thank Drs. S. COOPER, R. G. FRETER, D. E. KIRSCHNER, J. V. NEEL, 

and M. S. SWANSON for critically reading the manuscript and two 
anonymous reviewers who made valuable suggestions for improving 
the parameter estimates. This work was supported in part by U.S. 
Public Health Service grant RO1-GM30054 from the National Insti- 
tutes of Health and U.S. Department of Defense grant N00014-97-1- 
0364 from the Office of Naval Research. 

LITERATURE CITED 

BOND, J. H., and M. D. LEVITT, 1976    Quantitative measurement of 
lactose absorption. Gastroenterology 70: 1058-1062. 

CAUGANT, D. A., B. R., LEVIN and R. K. SELANDER, 1981    Genetic 
diversity and temporal variation in the E. coli population of a 
human host. Genetics 98: 467-490. 

COOKE, E. M., 1974   Escherichia coli and Man. Churchill Livingstone, 
London. 

CUMMINGS, J. H., and H. S. WIGGINS, 1976   Transit through the gut 
measured by analysis of a single stool. Gut 17: 219-223. 

DAHI.QVIST, A., 1961    The location of carbohydrases in the digestive 
tract of the pig. Biochem. J. 78: 282-288. 

DATTA, A., and S. JINKS-ROBERTSON, 1995   Association of increased 
spontaneous mutation rates with high levels of transcription in 
yeast. Science 268: 1616-1619. 

DRAKE,J.W., 1991    A constant rate of spontaneous mutation in DNA- 
based microbes. Proc. Natl. Acad. Sei. USA 88: 7160-7164. 

FRANCINO, M. P., L. CHAO and M. A. RILEY, 1996   Asymmetries gener- 
ated by transcription-coupled repair in enterobacterial genes. 
Science 272: 107-109. 

FRETER, R., 1976    Factors controlling the composition of the intesti- 
nal micro-flora, pp. 109-120 in Proceedings of the Microbial Aspects 
of Dental Caries, special supplement, Microbiology Abstracts, Vol. 1, 
edited by H. M. STILES, W. J. LOESCHE and T. C. O'BRIEN. Ameri- 
can Society for Microbiology, Washington, DC. 

GEARJ.S. S..A.J. M. BRODRIBB, A. WARE and J.T.MANN, 1980    Fiber 
and bowel transit times. Br. J. Nutr. 45: 77-82. 

HARLEY, C. B., and R. P. REYNOLDS, 1987   Analysis of E. coli promoter 
sequences. Nucleic Acids Res. 15: 2343-2361. 

HAYFLICK, L, 1977   The cellular basis for biological aging, pp. 159- 
186 in Handbook of the Biology of Aging, edited by C. E. FINCH and 
L. HAYFLICK. Van Nostrand Reinhold, New York. 

KOCH, A. L., 1983    The protein burden of lac operon products. J. 
Mol. Evol. 19: 455-462. 

KOLDOVSKY, O., and F. CHYTIL, 1965    Postnatal development of 
ß-galactosidase activity in the small intestine of the rat: effect of 
adrenalectomy and diet. Biochem. J. 94: 266-270. 

LECLERC, J. E., B. LI, W. L. PAYNE and T. A. CEBULA, 1996    High 
mutation frequencies among Escherichia coli andSalmonella patho- 
gens. Science 274: 1208-1211. 

LISSER, S., and H. MARGALIT, 1993    Compilation of E. coli mRNA 
promoter sequences. Nucleic Acids Res. 21: 1507-1516. 

MAAL0E, O., and N. O. KJEI.DGAARD, 1965    Control of Macromolecular 
Synthesis. Benjamin, New York. 

MADSEN,J. L., 1992    Effects of gender, age, and body mass index on 
gastrointestinal transit times. Digest. Dis. Sei. 37: 1548-1553. 

MALAGEI.ADA,J.-R.,J. S. ROBERTSON, M. L. BROWN, M. REMINGTON, 

J. A. DUENES et al, 1984    Intestinal transit of solid and liquid 
components of a meal in health. Gastroenterology 87:1255-1263. 

MILLER, J. H., and W. S. REZNIKOFF, 1980    The Operon. Cold Spring 
Harbor Laboratory Press, Cold Spring Harbor, NY. 

NOVICK, A., and M. WEINER, 1957    Enzyme induction as an all-or- 
none phenomenon. Proc. Natl. Acad. Sei. USA 43: 553-566. 

PRESS, W. H., B. P. FLANNERY, S. A. TEUKOLSKY and W. T. VETTERI.ING, 

1988    Numerical Recipes in C. Cambridge University Press, New 
York. 

REALLA, J. D., andj. COLLADO VIDES, 1996    Organization and func- 
tion of transcription regulatory elements, pp. 1232-1245 in Esche- 
richia coli and Salmonella, Vol. I, Ed. 2, edited by F. C. NEIDHARDT. 
ASM Press, Washington, DC. 

ROSENSWEIG, N. S., and R. H. HERMAN, 1968    Control of jejunal 
sucrase and maltase activity by dietary sucrose or fructose in man: 
a model for the study of enzyme regulation in man. J. Clin. Invest. 
47: 2253-2262. 



SAVAGEAU, M. A., 1977 Design of molecular control mechanisms 
and the demand for gene expression. Proc. Natl. Acad. Sei. USA 

74: 5647-5651. 
SAVAGEAU, M. A., 1983 Escherichia coli habitats, cell types, and molec- 

ular mechanisms of gene control. Am. Naturalist 122: 732-744. 
SAVAGEAU, M. A, 1989 Are there rules governing patterns of gene 

regulation? pp. 42-66 in Theoretical Biology—Epigenetic and Evolu- 

tionary Order, edited by B. C. GOODWIN and P. T. SAUNDERS. 

Edinburgh University Press, Edinburgh. 
SAVAGEAU, M. A., 1998 Demand theory of gene regulation. I. quanti- 

tative development of the theory. Genetics 149: 1665-1676. 
SCHNEIDER, T. D., G. D. STORMO, L. GOLD and A. EHRENFEUCHT, 1986 

Information content of binding sites on nucleotide sequences. J. 

Mol. Biol. 188: 415-431. 
SCHWARTZ, M., 1987 The maltose regulon, pp. 1482-1502 in Esche- 

richia coli and Salmonella typhimurium: Cellular and Molecular Biology, 
edited by F. C. NEIDHARDT. American Society for Microbiology, 

Washington, DC. 
SEARS, H. I., and I. BROWNLEE, 1952    Further observations on the 

persistence of individual strains of Escherichia coli'm the intestinal 
tract of man. J. Bacteriol. 63: 47-57. 

SEARS, H. I., I. BROWNLEE and J. K. UCHIYAMA, 1950 Persistence of 
individual strains of E. coli in the intestinal tract of man. J. Bacte- 

riol. 59: 293-301. 
SHALLENBERGER, R. S., 1974 Occurrence of various sugars in foods, 

pp. 67-80 in Sugars in Nutrition, edited by H. L. SIPPLE and K. W. 
McNuTT. Academic Press, New York. 

SHIRAISHI, F., and M. A. SAVAGEAU, 1992 The tricarboxylic acid 
cycle in Dictyostelium discoideumll. Evaluation of model consistency 
and robustness. J. Biol. Chem. 267: 22919-22925. 

WALKER, D. G., 1968 Developmental aspects of carbohydrate metab- 
olism, pp. 465-496 in Carbohydrate Metabolism, Vol. 1, edited by 
F. DICKENS, P. J. RäNDLE and W. J. WHELAN. Academic Press, 

New York. 
WIDDAS, W. F., 1971 The role of the intestine in sucrose absorption, 

pp. 155-171 in Sugar, edited byj. YUDKIN, J. EDELMAN and L. 
HOUGH. Butterworths, Woburn, MA. 

Communicating editor: R. H. DAVIS 



Biochemical Society Transactions 

7 Reitzer. L. J. (1996) in Escherichia coli and 
Salmonella. Cellular and Molecular Biology 
(Neidhardt, F. C, Curtiss, III, R., Ingraham, J. L., 
Lin, E. C. C, Low, K. B., Magasanik, B., 
Reznikoff. W. S., Riley, M., Schaechter, M. and 
Umbarger, H. E., eds.), pp. 391-407, .American 
Society for Microbiology, Washington, DC 

8 van Heeswijk, W. C, Stegeman, B., Hoving, S., 
Molenaar, D., Kahn, D. and Westerhoff, H. V. 
(1995) FEMS Microbiol. Lett. 132, 153-157 

9 van Heeswijk, W. C, Hoving, S., Molenaar, D., 
Stegeman, B., Kahn, D. and Westerhoff, H. V. 
(1996) Mol. Microbiol. 21, 133-146 

10 van Heeswijk, W. C. (1998) Ph.D. Thesis, 
University of Amsterdam, The Netherlands 

11 Kacser, H. and Burns, J. A. (1983) Biochem. Soc. 
Trans. 7, 1149-1150 

Received 8 September 1998 

Design of gene circuitry by natural selection: analysis of the lactose catabolic system 
in Escherichia coli 

M. A. Savageau 
Deoartment of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, 

Ml 48109-0620, U.S.A. 

Introduction 
The need for a systems perspective in biology- 
has never been more apparent than it is today. 
The accumulation of data concerning the basic 
determinants of biological systems was greatly 
accelerated when genetics, biochemistry and 
microbiology were fused to form molecular 
biology in the 1950s. However, this information 
has remained largely incomplete and fragmented. 
The new technologies that have grown out of the 
Human Genome Project have introduced a radi- 
cally different approach, based on global 
measurements of the organism's phenotype. 
These global expression systems are producing a 
flood of data that must be related to the under- 
lying molecular determinants. Without a quanti- 
tative systems theory with which to relate the 
information at these different levels of organiza- 
tion, our understanding will remain descriptive 
and lack predictive value. 

Biochemical Systems Theory [1] is con- 
cerned with understanding integrated (systems 
level) behaviour in terms of the underlying 
(molecular level) determinants. This theory is 
based upon the power-law formalism [2], which 
provides a flexible, accurate and tractable mathe- 
matical representation for characterizing system 
components and their interactions. Biochemical 
Systems Theory provides methods of analysis 
that are capable of extracting information that is 
latent within the mathematical representation of 
the integrated system. Most importantly, Bio- 
chemical Systems Theory gives us a strategy for 
making well controlled comparisons that are at 
the heart of biological understanding in an evolu- 

tionary context. The primary aim of Biochemical 
Systems Theory is to elucidate the design prin- 
ciples that characterize intact biological systems. 

Biochemical Systems Theory has been 
applied to several generic classes of metabolic 
pathways and gene circuits. Here I will examine 
three elements of design for a generic class of 
inducible gene circuits: threshold generation, 
gene coupling and mode of control. The prin- 
ciples that have been discovered in each case will 
be discussed in the context of the lactose (lac) 
system of Escherichia coli. I will finish with a few 
general conclusions that can be drawn from 
these examples. 

Threshold generation 
A sharp threshold for induction of a catabolic 
system will prevent premature induction of the 
catabolic machinery when there is an inadequate 
(subthreshold) supply of substrate in the organ- 
ism's environment. Conversely, a sharp threshold 
will produce a highly responsive induction when   . 
the substrate supply is suprathreshold and suffi- ^ 
cient not only to recoup the cost of synthesizing 
the catabolic machinery but also to provide the    . 
organism with excess carbon and energy for eel-   ; 
lular growth and function  [3]. Two alternative -_£ 
means for the generation of a sharp threshold are ^ 
static and dynamic switches. '    *i. 

An example of a static switch is provided by r 

an inducible catabolic system in which the sub- 
strate is the inducer that interacts with the regu- - 
lator protein to produce a sigmoidal influence OI»ä 

the rate of mRNA transcription; all other steps JO ^ 
the system are operating in a first-order fashion, g- 
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If one increases the concentration of substrate 
(inducer) slowly from a low to a high value, gene 
expression will exhibit a low value that changes 
slowly, then accelerates through the mid-range 
values,  and finally achieves  a  high value  that 
again changes only slowly. If one decreases the 
concentration of substrate slowly from high to 
low values, the same values for gene expression 
will be retraced, but in the opposite order. Thus 
the  process  is  completely reversible, with  no 
memory for the past history of substrate concen- 
tration. The greater the degree of sigmoidicity 
(the larger the Hill number), the sharper the 
switch from low to high values for gene expres- 
sion. (In the mathematical limit of an infinite 
Hill    number,    the     sigmoidal    characteristic 
approaches a step function with ony two values: a 
low value for expression when substrate concen- 
trations are subthreshold, and a high value when 
they are suprathreshold.) This substrate induc- 
tion model describes the lac system in a strain of 
E. colt that is freely permeable to the gratuitous 
inducer isopropyl /?-D-thiogalactoside [4]. 

An example of a dynamic switch is provided 
by an inducible catabolic system that is similar to 
that described above,  except  that  the  product 
rather than the substrate of the induced enzymes 
is the inducer of gene expression. The properties 
of such a switch are quite different from those of 
the static switch. If one increases the concentra- 
tion of substrate slowly from a low to a high 
value, the rate of mRNA synthesis will exhibit a 
low value that changes slowly, then jumps dis- 
continuously to a higher value once a threshold 
concentration   has   been   crossed,   and   finally 
remains at a high value that again changes only 
slowly. If one now decreases the concentration of 
substrate from high to low values, the rate of 
mRNA synthesis will exhibit a high value that 
changes slowly, then jumps discontinuously to a 
lower value once a second (lower) threshold con- 
centration has been crossed, and finally remains 
at a low value that again changes only slowly. For 
substrate    concentrations    above    the    higher 
threshold and below the  lower threshold,  the 
system exhibits a single steady state. For sub- 
strate concentrations between these two thresh- 
old values,  the system  can be in one of two 
afferent  stable  steady states,  depending upon 
which threshold was the last to be crossed. In 
tn«s sense,  the process  is irreversible, with a 
Memory of its past. 

Induction of the lac system exhibits a dynamic 
switch when wild-type E. coli is exposed to lac- 

tose [5]. The conventional explanation suggests 
that transport of lactose into the cell is 'autocata- 
lytic'  in the following sense. The intracellular 
product of transport is the inducer, which causes 
further induction of the transport system, which 
in turn leads to a further increase in the concen- 
tration of inducer. Indeed, a dynamic switch can 
be   realized   by   a   product-inducible   catabolic 
system, as described in the previous paragraph. 
However, the natural inducer of the lac operon is 
not a product of the system, but allolactose, an 
intermediate whose  synthesis  and  degradation 
are   both   induced.  When   the  position  of  the 
natural inducer is shifted from product to inter- 
mediate of the catabolic pathway, the same model 
that produced a dynamic switch now produces a 
static switch. Thus a dynamic switch is difficult 
to reconcile with the current model of the lac 
system, i.e. an unbranched pathway consisting of 
lactose   transport   (LacY)    [6]   and   catabolism 
(LacZ)  [7] that is subject to co-ordinate induc- 
tion   by  an  intermediate  that  has  a  sigmoidal 
influence on the control of transcription. 

One way to rectify this inconsistency is to 
postulate a non-inducible alternative fate for the 
intermediate. If the alternative fate represents a 
minor contribution to the total  degradation of 
intermediate    (Figure    1A),    then    the    system 
behaves essentially like an intermediate-induced 
system. As the concentration of substrate (extra- 
cellular lactose) is slowly increased, gene expres- 
sion follows the static switch associated with the 
sigmoidal  control  of transcription   (Figures   IB 
and   1C).   If  the   alternative   fate   represents   a 
major  contribution  to the  total  degradation  of 
intermediate    (Figure   ID),   then   the   system 
behaves    essentially    like    a    product-induced 
system. Gene expression will then exhibit the 
following pattern as the concentration  of sub- 
strate  (extracellular lactose) is slowly increased 
(Figures   IE  and   IF):   (1)   expression   at  first 
shows little change along the lower portion of the 
sigmoidal characteristic; (2) it jumps discontinu- 
ously to the upper portion as the upper threshold 
of substrate concentration is crossed (Figure IE, 
curve a); and (3) it changes little thereafter along 
the upper portion of the sigmoidal characteristic. 
Gene expression follows a different pattern as 
the concentration of substrate (extracellular lac- 
tose) is slowly decreased: (1) expression at first 
shows little change along the upper portion of 
the  sigmoidal characteristic;   (2)   it jumps dis- 
continuously to the lower portion as the lower 
threshold of substrate concentration is crossed 
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(Figure IE, curve b); and (3) it changes little 
thereafter along the lower portion of the sigmoi- 
dal characteristic. The system can remain in 
either the uppe*r or the lower stable state when 
substrate concentrations have values between the 
lower and upper thresholds (Figure IE, curve c). 
The net effect of substrate concentration on 
mRNA levels is shown in Figures 1(C) and 1(F). 

The design principles for the generation of 
thresholds in these instances are revealed at the 
level of the integrated gene circuitry. Although an 
essential feature of both types of switches, i.e. 
the sigmoidal rate of mRNA synthesis, can be 
elucidated by studies of transcription initiation 
with isolated molecular components in vitro, this 

information alone is insufficient to distinguish 
between the two types. The effects of induction 
on the synthesis and degradation of inducer also 
play a critical role. This shows clearly the induc- 
tion characteristics are a property of the intact 

system. 

Coupling of elementary circuits 
Genes interact to produce complex patterns of 
expression that define the phenotype of the 
organism. The best studied examples of gene 
interaction and the patterns of coupled expres- 
sion that result are provided by elementary gene 
circuits in bacteria (Figure 2A). The expression 
of an effector gene and its cognate regulator gene 

--"•■—---• Figure I 

Thresholds for induction of gene expression 

When the effect of ,nduct,on on the synthesis of an inducer is less than or equal to mat on 
degradation (A), gene express.on exhibits a static sw.tch (B. C). whereas when the eneö on 
the synthesis of an inducer is greater than that on degradation (D). gene expression exnibits 
a dynamic switch (E. F). At any fixed concentrate of substrate, the steady-state levels of 
mRNA and inducer are given by the intersect«», of the s.gmadal curve the effect o. inducer 
on mRNA levels) and the appropriate broken curve (the effect of mRNA on inducer ,eveb) 
(B. E). The net effect of substrate concentration on mRNA levels is shown in (C) and (h). 
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Coupling of expression in elementary gene circuits 

■ Linked circuits for regulator and effector genes. (B) Regulator expression can be directly 
joied. uncoupled or inversely coupled with (C) effector expression. Abbreviations: NA, 
oeic acids; AA. amino acids. 
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exhibits one of three distinct patterns of coup- 
ling.    Induction    of   effector   gene   expression 
(Figure 2C)  is accompanied by an increase, a 
decrease or no change in regulator gene expres- 
sion (Figure 2B). Each of these three forms of 
coupling has been  documented experimentally. 
However, until recently it was unclear whether 
the form of coupling follows  some  underlying 
rule or is the result of a frozen accident in the 
evolution of a given system.  (For simplicity, in 
what follows, I shall ignore the inversely coupled 
patterns, since the decrease in regulator expres- 
sion is small and in many cases difficult to dis- 
tinguish from the case of uncoupled expression.) 

There is now evidence to suggest that the 
pattern of coupling in these elementary gene cir- 
cuits is governed by a simple design principle, 
which  was  discovered  as  follows.   Biochemical 
Systems Theory was used to model a genetic 
system of elementary gene  circuits capable of 
representing each of the distinct forms of coup- 
ling. The equations describing the system were 
solved both analytically and numerically over a 
wide range of parameter values. The resulting 
behaviour of the system with different parameter 
settings could then be classified on the basis of 
several    criteria    for    functional    effectiveness, 
deluding sharp   threshold  for  induction,  large 

logarithmic gain in product formation, robust- 
ness of the system in the face of parameter varia- 
tion, regulator selectivity, system stability and 
temporal responsiveness. Finally, a strategy for 
making well-controlled comparisons among the 
results was followed, and a simple rule emerged. 
For systems that were well designed according to 
these a priori criteria, we discovered that if the 
regulator protein exerts negative control over 
effector gene expression, then expression of the 
regulator and effector genes is uncoupled when 
the capacity for induction is large and strongly 
coupled when the capacity for induction is small. 
Conversely, if the regulator protein exerts posi- 
tive control over effector gene expression, then 
expression of the regulator and effector genes is 
uncoupled when the capacity for induction is 
small and strongly coupled when the capacity for 
induction is large [8,9]. 

The lac system, with negative control and a 
high capacity for induction, presents a superb 
example of this rule. Specific control of the lac 
system involves a negative regulator, the classical 
lac repressor. The capacity for /?-galactosidase 
induction is large (approx. 1000-fold), whereas 
the capacity for lac repressor induction is essen- 
tially zero [10]. Thus expression of the regulator 
and    effector   erenes    in    the    lac    svstem    is 
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uncoupled, as expected for a system with a nega- 
tive regulator and a large capacity for induction. 

These predictions were tested against avail- 
able experimental data for an additional 30 
systems in which expression of both the regu- 
lator and effector genes had been measured, and 
agreement was found between the experimental 
measurements and the predicted pattern of 
coupling of gene expression [9]. This is an 
example of a design principle that is manifested 
at the level of integrated gene circuits. It could 
not have been discovered through the separate 
analysis of the individual circuits in isolation. 

Molecular mode of control 
The molecular mode of gene control exhibits a 
fundamental duality common to most, if not all, 
control systems. Control can be achieved either 
by removing a restraining element (the negative 
mode of control) or by providing a stimulatory 
element (the positive mode of control). Numer- 
ous examples of each mode have been docu- 
mented in the literature. Although it was initially 
unclear whether rule or accident dictated the use 
of the positive or the negative mode in any par- 
ticular system, Biochemical Systems Theory has 
led to the discovery of a surprisingly simple 
design principle that predicts the use of positive 
or negative control. 

Biochemical Systems Theory was used to 
model systems exhibiting each of the alternative 
modes. An exhaustive analysis showed that, in 
most respects, the alternative systems behaved in 
an identical fashion. That is, systems with either 
the positive or the negative mode were function- 
ally equivalent and could control gene expression 
equally well. However, their behaviour differed in 
diametrically opposed ways in response to 
genetic mutations that alter the components of 
the control system itself [3]. In response to 
damaging mutations, systems with the negative 
mode of control exhibited superfluous expression 
of the effector gene when it should be turned 
OFF, whereas systems with the positive mode of 
control failed to express the effector gene when 
it should be turned ON. A selectionist argument 
based on the population dynamics of mutant and 
wild-type organisms in different environments 
leads to the following principle: the positive 
mode of control will prevail when there is a high 
demand for effector gene expression in the 
organism's natural environment, whereas the 
negative mode will prevail when there is a low 
demand for expression [11,12]. 

This demand theory of gene regulation has 
now been developed in a more quantitative 
fashion [13], with key roles being played by two 
parameters. One is the average cycle time, C, 
taken for a gene to go from the OFF state to the 
ON state and back to the OFF state (Figure 3B). 
The other is the demand for expression, D, 
which is the fraction of the cycle time during 
which a gene is turned ON (Figure 3C). The 
solution of the population dynamic equations for 
mutant and wild-type organisms in alternative 
environments reveals a threshold for selection in 
the C against D plot. Selection of the wild-type 
control system can be realized only when values 
of C and D lie below the threshold (Figure 3D). 

The regions of the C against D plot within 
which selection is possible differ for the alterna- 
tive modes of control. The realizable region 
occurs at low values of D for the negative mode 
and at high values of D for the positive mode, 
and these regions exhibit an inherent asymmetry, 
with the realizable region for the positive mode 
being larger. 

Application of this theory to the specific case 
of the lactose operon in E. coli cycling through 
the human intestinal tract (Figure 3A) yields 
several interesting predictions that relate to the 
host [14]. When the extremes of the realizable 
region intersect the inverse relationship between 
C and D, which is due to the fixed 3-h period of 
exposure to lactose during transit through the 
upper portion of the intestinal tract [15,16], one 
obtains predictions for the minimum and maxi- 
mum cycle time (Figure 3D). The minimum 
value for the cycle time is approx. 26 h, which is 
roughly the time required for transit through the 
entire intestinal tract [17-19]. Under these con- 
ditions, E. coli passes through one intestinal tract 
after another as fast as possible without coloniz- 
ing a single colon. The maximum value for the 
cycle time is approx. 580000 h (~66 years), 
which is roughly equivalent to the life span of 
humans [20]. A longer cycle time would be 
impossible, because the colonizing bacteria 
would die with the host before recolonizing a 
new host. 

This demand theory also makes predictions 
regarding the rate (Figure 3E) and extent 
(Figure 3F) of selection of the wild-type control 
system, and these exhibit optima that can be 
used to predict the nominal value for demand, 
which in turn leads to a prediction for the nomi- 
nal cycle time (Figure 3D). The optimal extent 
and rate of selection determined for the lactose; 
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operon suggest a demand (D) in the neighbour- 
hood of 0.001. This value of D, taken together 
with the inverse relationship D = 3/C, predicts an 
optimal cycle time of 3000 h (~4 months), which 
is comparable with the cycle times (recoloni- 
zation rates) that have been observed in humans 
for resident strains of E coli [21-23]. 

Demand theory provides an example of a 
biological design principle that only becomes 
manifest at the population level in the context of 
natural selection. Again, the demand principle 
could not have been discovered by examining 
molecular structures and interactions alone, nor 
could it have been discovered at the level of inte- 
grated gene circuits alone. The demand principle 
requires consideration of mutants and the 
environment external to the system. 

Discussion 
The details of Biochemical Systems Theory that 
are involved in the applications presented here 
are beyond the scope of this paper. However, a 
few general comments are in order. 

Biochemical Systems Theory has several 
general goals, including answers to the questions 
What, How and Why. What are the relevant com- 
ponents of the system under study? How do 
these components interact so as to produce the 
behaviour that is observed in the real svstem? 
Why is the system designed in this particular way 
and not some other? These and other goals are 
not unrelated, since the pursuit of one goal will 
often provide information that is needed in the 
pursuit of another. However, the primary goal of 
this theory is to discover the biological design 
principles that emerge at each level of organiza- 
tion in various generic classes of svstems. 

What is common to these successful expla- 
nations of design, and can this success be 
extended to more complex gene circuitrv [24] ? 
There are two aspects of these examples that 
seem most important. First, in each case one is 
able to identify a limited number of possible vari- 
ations on a theme: static versus dvnamic 
switches; coupled versus uncoupled circuits; 
positive versus negative modes of control. Even 

Figure 3 '■ 

Selection for the negative mode of control 

A) Two regions of the human intestinal tract. (B) Cycling between the regions of high (H) 
and low (L) demand for lactose expression in £. coli. (C) Definition of average cycle time (C) 
and average demand (D) for gene expression. (D) Cycle time for selection. (E) rate of 
selection and (F) extent of selection, as a function of demand. See the text for discussion. IE 
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though these variations were not understood 
initially, there was the prospect that a simple 
rule could be found, if indeed there was one, 
because of the limited number of variations in 
design that had to be analysed. Secondly, by an 
appropriate choice of organizational level and 
type of representation, one could obtain simple 
equations whose structure was amenable to 
qualitative analysis (and to exhaustive numerical 
analysis when necessary), and this leads to 
general results that are independent of specific 
values for the parameters. This is important, 
because many of the parameter values for any 
system will always be unknown. The success of 
Biochemical Systems Theory in elucidating 
general rules that are consistent with patterns 
found in nature is indicative of the power of this 
approach. 

It is clear that the elucidation of design 
principles and the compilation of molecular 
detail lead to very different kinds of understand- 
ing. This is seen in the examples considered in 
the previous sections. Numerous experimental 
studies of gene circuitry over the past 30 years 
have produced an abundance of molecular 
descriptions and have documented the existence 
of each of the design features considered here. 
However, these experimental results provided no 
insight into the underlying principles that govern 
these designs. A focus on the kind of under- 
standing that emerges from knowledge of the 
underlying design principles will become 
increasingly important in biochemistry, not only 
for advancing our research programmes, but also, 
and perhaps more importantly, for instructing 
the next generation of students. The current 
approach is overwhelming students with enor- 
mous amounts of information to memorize and 
providing less and less motivation for them to do 
so. A focus on design principles would provide 
deeper understanding, diminish the burden of 
memorization, and integrate their understanding 
into a broader and more meaningful context. 
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Abstract 
The physical basis for biological complexity is context-dependent expression of the or- 

ganism's genome. The context is provided by the life cycle of the organism; the molecular 
mechanisms of gene regulation interpret that context. The relationship between these two 
different hierarchical levels of organization - genotype and phenotype - has traditionally 
been approached from the bottom-up perspective. Regulation of many gene systems has 
been studied in detail, and the results have revealed an enormous diversity of molecular 
elements and circuits. We are just beginning to understand the functional implications of 
such variations in design and to grasp the factors that have influenced their evolution. The 
relationship between genotype and phenotype can now be approached from the top-down 
perspective as well. The new technologies that have grown out of the Human Genome 
Project have introduced a radically different approach based on global measurements- of 
the organism's phenotype. However, there are theoretical limits regarding the extent to 
which knowledge of the underlying mechanisms can be determined solely on the basis of 
systemic measurements. Success in relating genotype to phenotype will ultimately require 
a combination of both the top-down and bottom-up approaches. It also will require an 
appropriate systems theory for relating the information at these two levels of organization. 
Without a quantitative systems theory to relate the information at these different levels 
of organization our understanding will remain descriptive and lack predictive value. I will 
describe recent work on a quantitative theory that relates molecular mechanisms of gene 
control to the organism's physiological behavior in its natural environment. When applied 
to the lactose operon of Escherichia coli in the human intestine, the theory predicts selec- 
tion for the correct mode of gene control. It also makes surprising predictions concerning 
the organism's phenotype and habitat. 

Introduction 

What is the function of regulatory gene circuitry? The superficial answer is fairly obvi- 
ous. The genotype is determined by the information encoded in the DNA sequence, the 
phenotype is determined by the context-dependent expression of the genome, and the reg- 
ulatory circuitry interprets the context and orchestrates the expression. However, a deeper 
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look reveals a hierarchy of mechanisms linking the genotype to the phenotype. At each 
level of this hierarchy there are various designs that are poorly understood. While some 
of the differences may be attributed to historical accidents with no attendant functional 
implications, others are governed by rules that result from natural selection [1]. 

The current goal of functional genomics is identifying the function of a gene product 
that is encoded in a particular string of nucleotides. Given a sequence can one predict that 
it codes for a dehydrogenase? Prom the particular combination of domains can one further 
deduce that it is in fact an homoserine dehydrogenase? These goals for relating genotype 
to phenotype, though still fairly modest, have yet to be fully realized. Nevertheless, it 
is instructive to look beyond the current status and examine the prospects of achieving 
the ultimate goal of functional genomics, which is to relate the nucleotide sequence of the 
genome to the expression of function in time and space given an appropriate context. 

In this paper I will briefly review various hierarchical levels of organization from DNA 
sequence to environmental context, summarize results from three different analyses that 
connect the several levels of organization, and then show how these results provide a self- 
consistent relationship between genotype and phenotype of the organism in its natural 
environment in the case of a simple well-studied system, the lactose operon of Eschenchia 
coli. The results in this case suggest that reaching the ultimate goal of functional ge- 
nomics will involve more than recognizing complex patterns in the DNA sequence. It will 
require methods to elucidate and to quantify the complex web of interactions that link the 
numerous hierarchical levels of organization from DNA sequence to integrated behavior 
of the intact organism in its environment. Understanding the evolution and regulation of 
gene circuitry is at the heart of the matter. 

Hierarchies from Genotype to Phenotype 

The behavior of an intact biological system can seldom be related directly to its underlying 
molecular determinants. There are several different levels of hierarchical organization 
that intervene - genome sequence, transcriptional unit, mode of control, logic of control, 
expression cascade, connectivity, and environmental context. 

The genome sequence consists of the four bases - A, T, G, and C - strung together in 
seemingly endless variation. However, genetic analysis has shown that a basic grammar 
defines how this alphabet is organized into meaningful units of transcription. These units 
consist of structural genes bounded by initiation and termination sites with a number of 
adjacent regulatory sites capable of binding specific transcription factors that modulate 
the rate of transcription initiation or termination. 

The molecular mode of control by which individual regulator proteins affect the tran- 
scriptional process can be either positive or negative. For example, induction of gene 
expression can be achieved either by supplying the activator of a quiescent process or by 
removing the repressor of a constitutively active process. A particular set of such regula- 
tors, each with their own mode of action, can act in a combinatorial fashion on a single 
transcriptional unit to achieve control according to a specific logical function. 

The transcription of a gene is only the first of many steps in a cascade of information 
flow from DNA to RNA to protein to metabolite that constitutes expression of a gene. 
These expression cascades are interconnected because the products of one cascade act as 
regulators of other cascades. If fact, it is the topological connectivity of the elementary 
expression cascades that constitutes the regulatory gene circuitry of the cell. 

The environment provides the context that must be interpreted by the circuitry in 
order to produce a pattern of gene expression conducive to the organism's survival. These 
several levels of organization have been abstracted from what is known of gene expression 
in both prokaryotes and eukaryotes, but for testing our predictions we shall henceforth 
focus our attention on the lac operon of E. coli. 
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Lac Expression and Underlying Circuitry 

It has long been known that expression of the lac operon can be induced by growth on 
lactose as a carbon and energy source [2]. However, the elucidation of the underlying 
circuitry involved the experimental exploitation of mutants and gratuitous inducers that 
allowed specific aspects of the regulatory mechanisms to be identified and characterized 
[3]. For example, the first evidence of cooperativity in the action of lac repressor was 
uncovered through the use of a non-metabolizable inducer and a transport mutant that 
together allowed the intracellular concentration of inducer to be specified experimentally 
via the extracellular environment [4]. 

Induction of the wild-type operon by gratuitous inducers provided evidence for a dy- 
namic switch that exhibits hysteresis as shown in Figure IB. When there is a low level 
of expression, substrate concentration must be increased above level a before there is an 
abrupt switch to a high level of expression; when there is a high level of expression, sub- 
strate concentration must be decreased below level b before there is an abrupt switch to a 
low level of expression. Thus, at intermediate concentrations of substrate, such as level c, 
the level of expression can be either high or low, depending upon the past history of the 
substrate concentration. The original explanation for this behavior focused on the positive 
feedback resulting from induction of the lac-encoded transport system [5]. This continued 
to be the accepted explanation even as the details of lac circuitry were characterized and 
a kinetic model developed. 
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Figure 1: Alternative to the current kinetic model of the lac operon. (A) Schematic 
diagram showing the extra fate for the inducer allolactose. (B) Steady-state induction 
characteristic of the model in panel A exhibits hysteresis. 

Recent analysis has demonstrated that the current kinetic model of the wild-type 
operon is capable of the dynamic switch that generates hysteresis in response to gratu- 
itous inducers but not in response to the natural substrate lactose [6]. It is experimentally 
more difficult to obtain the steady-state induction characteristic with the natural sub- 
strate, so it is perhaps not surprising that such experiments are difficult to find in the 
literature. Special care must be taken to design experiments that are sufficiently long- 
term to insure a steady state and with sufficiently low cell densities to ensure negligible 
consumption of substrate. Carefully executed experiments of this kind have demonstrated 
an hysteretic response to lactose [7]. These two facts - experimental demonstration of 
hysteresis and mathematical demonstration that the current model is incapable of such 
behavior - indicates that the current model of the lac operon is inadequate. 

We have proposed an alternative model (Figure 1A) in which the inducer has an 
additional fate, not inducible by allolactose, that accounts for the dynamic switch in 
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expression [6] when the additional flux is greater than a well-defined minimum [8]. We 
also have found independent experimental evidence in the literature that lends support to 
this model. The meaning of these results will become clear later in the context of results 
from other analyses. 

Molecular Mode of Control and Demand for Lac Gene Ex- 
pression 
The conclusions from the analysis described in the previous section link knowledge of the 
organism's physiology to knowledge of the underling gene circuitry. The analysis in this 
section will link knowledge of the organism's genome and molecular mode of control to 
knowledge of the demand for gene expression during the organism's life cycle. 

The life cycle of E. coli involves sequential colonization of new host organisms [9], 
which means repeated cycling between two different environments (Figure 2A and 2B). 
In one, the upper portion of the host's intestinal track, the microbe is exposed to the 
substrate lactose and there is a high demand for expression of the lac operon, and in the 
other, the lower portion of the intestinal track and the environment external to the host, 
the microbe is not exposed to lactose and there is a low demand for lac expression. The 
average time to complete a cycle through these two environments is defined as the cycle 
time, C, and the average fraction of the cycle time spent in the high-demand environment 
is defined as the demand for gene expression, D (Figure 2C). 

The implications for gene expression of mutant and wild-type operons in the high- 
and low-demand environments are as follows. The wild-type functions by turning on 
expression in the high-demand environment and turning off expression in the low demand 
environment. The mutant with a defective promoter is unable to turn on expression in 
either environment. The mutant with a defective modulator (which can also stand in for a 
mutant with a defective regulator protein) is unable to turn off expression regardless of the 
environment. The double mutant with defects in both promoter and modulator behaves 
like the promoter mutant and is unable to turn on expression in either environment. 

The mutation rates between these populations depend on the mutation rate per base 
and on the size of the relevant target sequence. The population sizes also are dependent 
upon selection. 

There is selection against mutants of the modulator type in the low-demand environ- 
ment because there is superfluous expression of an unneeded function. There is selection 
against mutants of the promoter type in the high-demand environment because expression 
of a needed function is lacking. 

Solution of the dynamic equations for each of the populations cycling through the two 
environments yields equations in C and D for the threshold, extent, and rate of selection 
for the wild-type control mechanism [10]. The threshold for selection is shown by the 
shaded region in Figure 2D; only systems with values of C and D that fall within this 
region are capable of being selected. The rate and extent of selection shown in Figure 2E 
and 2F exhibit optimum values for a specific value of D. 

Application of this theory to the lac operon of E. coli yields several new and provocative 
predictions that relate genotype to phenotype [11]. 

The straight line in Figure 2D represents the inverse relationship C=3D3/D that results 
from fixing the time of exposure to lactose at 3 hours, which is the clinically determined 
value for humans [12,13]. The intersections of this line with the two thresholds for selection 
provide lower and upper bounds on the cycle time. The lower bound is approximately 24 
hours, which is about as fast as the microbe can cycle through the intestinal track without 
colonization [14,15,16]. The upper bound is approximately 70 years, which is the longest 
period of colonization without cycling and corresponds favorably with the maximum life 
span of the host [17]. The optimum value for the cycle time, corresponding to the optimum 
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Figure 2: Life cycle and demand for gene expression. (A) Schematic diagram of the 
upper (high demand) and lower (low demand) portions of the human intestinal track. (B) 
Life cycle consists of repeated cycling between high- and low-demand environments. (C) 
Definition of cycle time C and demand for gene expression D. (D) Region in the C vs. 
D plot for which selection of the wild-type control mechanism is possible. (E) Rate of 
selection as a function of demand. (F) Extent of selection as a function of demand. See 
text for discussion. 
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value for demand (from Figures 2E and 2F), is approximately four months; this value is 
comparable with the average rate of recolonization measured in humans [18, 19, 20]. 

Logic and Phasing of Lac Control 
The analysis in the previous section assumed that when E. coli was growing on lactose 
there was no other more preferred carbon source present. Thus, the positive CAP-cAMP 
regulator [21] was always present, and we could then concentrate on the conditions for 
selection of the specific control by Lac repressor. This was a simplifying assumption; in 
the general situation, both the specific control by Lac repressor and the global control 
by CAP-cAMP activator must be taken into consideration. The analysis becomes more 
complex, but it follows closely the outline of the simpler case in the previous section. 

By extension of the definition for demand D, given in the pervious section, one can 
define a period of demand for the absence of repressor G, a period of demand for the 
presence of activator E, and a phase relationship between these two periods of demand F. 
By extension of the analysis in the previous section, solution of the dynamic equations for 
the wild-type and each of the mutant populations cycling through the two environments 
yields equations in C, G, E, and F for the threshold, extent, and rate of selection for the 
wild-type control mechanism [22]. _ 

The threshold for selection is now an envelope surrounding a "mound in four- di- 
mensional space with cycle time C as a function of the three parameters G, E, and F; 
only systems with values that fall within this envelope are capable of being selected. The 
rate and extent of selection exhibit optimum values as before, but these now occur with a 
specific combination of values for G, E, and F. The values of G, E, and F that yield the 
optima represent a small period when repressor is absent, an even smaller period when 
activator is present, and a large phase period between them. The period when repres- 
sor is absent corresponds to the period of exposure to lactose. Within this penod there 
is a shorter period when activator is absent; this corresponds to the presence of a more 
preferred carbon source that lowers the level of cAMP. 

These relationships can be interpreted in terms of exposure to lactose, exposure to 
glucose, and expression of the lac operon as shown in Figure 3. The initial exposure to 
lactose leads to an accumulation of the natural inducer allolactose and hence to induced 
expression of /3-galactosidase. The result is a greatly increased synthesis of the products 
allolactose, glucose and galactose. These products are preferentially excreted back into the 
extracellular environment, in agreement with our proposed model for hysteretic expres- 
sion of the lac operon. The extracellular glucose causes catabolite repression and lactose 
exclusion, thereby initiating a period of growth on glucose. During this period the activa- 
tor CAP-cAMP is absent, transcription of the lac operon ceases and the concentration of 
tf-galactosidase is diluted by growth, and lactose is spared. Eventually, glucose becomes 
depleted, the residual lactose causes a diminished secondary induction of /?-galactosidase, 
and the microbe enters the low-demand environment as the lactose is exhausted. 

Discussion 
The results of the three different analyses described in the preceding sections are remark- 
ably self-consistent and supported by a diverse set of independent experimental observa- 

First, the analysis of lac circuitry showed that the conventional kinetic model is inad- 
equate in that it is incapable of producing all-or-none expression of the lac operon. The 
new model we have proposed includes a non-inducible pathway for removal of inducer. 
There is indeed independent experimental evidence to support this model [23]. The nat- 
ural inducer allolactose as well as the products of its hydrolysis are rapidly excreted from 
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the cell. Moreover, studies using mutants have shown that internally generated glucose 
is incapable of being used efficiently by the cell, whereas the excreted glucose, which is 
phosphorylated as it is transported back into the cell, is used with high efficiency. Prom 
these results one can see that the pathway for utilization of lactose involves induction of 
transport and catabolism of lactose, efflux of the glucose and galactose produced, trans- 
port of the external glucose and galactose back into the cell, and finally entry into the 
pathways of intermediary metabolism. The catabolite repression caused by glucose acts 
as a negative feedback mechanism to moderate the overall rate of lactose utilization. 

Second, the quantitative version of demand theory integrates information at the level 
of DNA (mutation rate, effective target sizes for mutation of regulatory proteins, promoter 
sites, and modulator sites), physiology (selection coefficients for superfluous expression of 
an unneeded function and for lack of expression of an essential function), and ecology 
(environmental context and life cycle) and makes rather surprising predictions connected 
to the intestinal physiology and life span of the host and to the rate for recolonizing the 
host. There is independent experimental data to support each of these predictions. 

Finally, when the logic of combined control by CAP-cAMP activator and Lac repressor 
was analyzed, we found an optimum set of values not only for the exposure to lactose, 
but also for the exposure to glucose and for the relative phasing between the periods of 
exposure. The phasing predicted is consistent with a self-generated glucose effect produced 
by catabolism of lactose and excretion of glucose. These results are supported by the 
same experimental data noted above in connection with the hysteretic expression of the 
lac operon. 

The results from all three analyses fit together nicely. In the end, we are able to relate 
information in the nucleotide sequence of the lac operon to its specific pattern of expression 
in time and space. In the process we have made use of information at several other levels 
of organization, including important information about the host that provides the ecolog- 
ical niche for the microbe. While much of the necessary information could in principle 
be deduced from the underlying sequence, some would still require a systemic integration 
at the level of the intact organism and its environment. From this perspective it is clear 
that a completely reductionist deduction of function solely from information in the DNA 
sequence will be unattainable in most cases. Aside from those few organisms that have 
a relatively self-contained developmental program, functional genomics will ultimately be 
concerned with the genomes of multiple organisms undergoing mutual interaction and co- 
evolution. 
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Figure 3:  Schematic interpretation of optimal phasing of /J-galactosidase expression in 
terms of exposure to lactose and glucose. See text for discussion. 
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Abstract 
Motivation: When dealing with questions that concern 
a general class of models for biological networks, 
large numbers of distinct models within the class can 
be grouped into an ensemble that gives a statistical 
view of the properties for the general class. Comparing 
properties of different ensembles through the use of point 
measures (e.g. medians, standard deviations, correlation 
coefficients) can mask inhomogeneities in the correlations 
between properties. We are therefore motivated to develop 
strategies that allow these inhomogeneities to be more 
easily detected 
Results: Methods are described for constructing ensem- 
bles of models within the context of a Mathematically Con- 
trolled Comparison. A Density of Ratios Plot for a given 
systemic property is then defined as follows: the y axis rep- 
resents the value of the systemic property in a reference 
model divided by the value in the alternative model, and 
the x axis represents the value of the systemic property in 
the reference model. Techniques involving moving quan- 
tiles are introduced to generate secondary plots in which 
correlations and inhomogeneities in correlations are more 
easily detected Several examples that illustrate the advan- 
tages of these techniques are presented and discussed 
Contact: Savageau@umich.edu 

Introduction 
The only rigorous way to characterize and compare 
alternative biological designs for a particular class of 
systems is through the use of mathematical models and 
quantitative methods of analysis. In pursuing these goals 
we must address three critical issues. First, biologically 
meaningful behaviors must be identifed (or, as is more 

*To whom correspondence should be addressed. 

commonly the case, hypothesized) and characterized by 
quantitative measures. Second, a representation of the 
alternatives must be capable of describing the phenomena 
of interest in quantitative terms. Third, comparisons will 
require analyses that explore a range of parameter values 
and use statistical methods to evaluate the results. 

The first issue is obviously critical if the results are to be 
biologically significant; however, there is no prescription 
for discovering those biological behaviors that are based 
on natural selection or those that occur at random with 
high probability. The behaviors that are important charac- 
teristics of a given biological system can only be discov- 
ered by experimental means. Hypotheses must be gener- 
ated and tested in each case, and this process will vary 
considerably according to the systems being studied. The 
behavioral repertoire of nonlinear systems can be quite di- 
verse including saturation, thresholds, memory, time de- 
lays, synchrony, stable limit cycles and strange attractors. 

The second issue is critical to any quantitative compari- 
son of alternative systems. We require a mathematical lan- 
guage (or formalism) that is sufficiently flexible to repre- 
sent the diverse behaviors that are likely to be encountered 
in the quantitative description of a nonlinear biological 
system. The power-law formalism (Savageau, 1996) is a 
most likely candidate for this language. It can be viewed as 
a canonical nonlinear representation from three different 
perspectives. From a fundamental perspective, it provides 
a generalization of mass-action kinetics, which is the most 
widely used representation of biological systems at the 
molecular level. From a recasting perspective, it provides 
a globally accurate representation that can be made mathe- 
matically equivalent to any sufficiently differentiable non- 
linear system. From a local perspective, it provides a gen- 
eral representation that is guaranteed to be accurate over a 
range of variation about a nominal operating point. 
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The third issue is critical because values for many of 
the parameters in any given complex system will not have 
been measured, and for those that have the estimates will 
often be poor. Moreover, even if we had a complete set 
of accurate parameter values with which to study the 
behavior of a system, the results would only apply to that 
particular system. In any case, we would have to vary the 
parameters over a range of values and statistically analyze 
the results to determine the properties of the general class 
of systems to which the particular system belongs. 

Our purpose in this and the following paper is to present 
a methodology for dealing with this third issue and to il- 
lustrate its use in the simplest setting where the essentials 
of the methodology can be made most transparent. Hence, 
we shall focus on a class of systems for which the biolog- 
ically relevant behavior is relatively simple and well de- 
fined (namely, unbranched amino-acid biosynthetic path- 
ways with a single homeostatic steady state) and for which 
the local nonlinear representation, which is the simplest of 
the representations within the power-law formalism, is ap- 
propriate. At the end of the second paper we will return 
to these issues and indicate how the methods presented 
here might be applied to systems with more complex be- 
haviors requiring more general representations within the 
power-law formalism. The methods themselves provide an 
extension of a previously developed approach for making 
well-controlled comparisons. 

In the study of complex biological networks, models 
with alternative designs or structure are often compared 
to determine which of them provides the better repre- 
sentation for some observed phenomenon (e.g. Ni and 
Savageau, 1996). When comparing structurally different 
models for the same phenomenon, it is difficult to know 
whether the differences observed are accidental or in- 
herent differences that can be attributed specifically to 
the alternative designs. The method of Mathematically 
Controlled Comparison (Savageau, 1972; for a review see 
Irvine, 1991) was proposed to address this issue. 

In brief, the steps involved in this method are as follows. 
First, mathematical models are formulated for the alterna- 
tive designs being compared. For example, a biosynthetic 
pathway with end-product inhibition and an identical one 
without it. One model, generally the more complex, is des- 
ignated the reference; the other is designated the alterna- 
tive. Second, the parameters of the alternative model are 
fixed relative to those of the reference model. Each pro- 
cess in the alternative model that is identical to one in the 
reference model is assigned a set of parameter values that 
is identical to the corresponding set in the reference model. 
This is referred to as internal equivalence. Each process in 
the alternative model that is different from the correspond- 
ing process in the reference model will have a set of pa- 
rameter values that is unique to the alternative model, and 
these parameters represent degrees of freedom that must 

be constrained in an effort to reduce the accidental differ- 
ences between the models. Each constraint is established 
by equating the expressions for a systemic property com- 
mon to the two models. The set of constraint equations is 
then solved to determine values for the unique parameters 
of the alternative model in terms of values for the parame- 
ters of the reference model. This is referred to as external 
equivalence. Finally, having eliminated all the degrees of 
freedom, the two models are analyzed to determine the 
differences that remain. 

The critical step in this method is the solution of 
the constraint equations. The models are described by 
nonlinear equations that in general have no analytical 
solution. However, the discovery of a canonical nonlinear 
representation that is locally valid and amenable to 
analytical solution (Savageau, 1969a, 1969b; for a review 
see Savageau, 1996) removes the difficulty associated with 
this critical step in many cases (Savageau, 1972, 1976). 
This canonical nonlinear representation within the power- 
law formalism is referred to as an S-system and it has the 
following systematic structure: 

dX,- 
~d7 = <xif[x?-ßif[xh;> ' = 1,2, 

y=i ;=i 

For each dependent concentration Xi in a biochemical 
model there exists an aggregate production function 
and an aggregate consumption function. These aggregate 
functions are approximated by a first-order Taylor series 
in a logarithmic space, which in Cartesian space leads 
to the product of power-law functions. An exponent of 
zero for any Xj means that that variable has no direct 
influence on the rate of the corresponding aggregate 
process, a positive exponent means that the variable and 
the rate of the aggregate process are positively correlated, 
and a negative exponent means that they are negatively 
correlated. In a steady state, (1) becomes a linear equation 
in logarithmic space and can be solved analytically. 
Likewise, various systemic properties can be calculated 
analytically and used to form constraints by equating 
the analytical expressions for corresponding systemic 
properties in the two models. These constraint equations 
can then be solved to determine values for the unique 
parameters of the alternative model in terms of values for 
the parameters of the reference model. 

Once internal and external equivalence between the 
models is established in this manner, we can proceed to 
analyze the models and compare their systemic behaviors 
by taking ratios of their corresponding properties. The 
steady-state properties that are typically analyzed in 
Mathematically Controlled Comparisons include concen- 
trations, fluxes, logarithmic gains, parameter sensitivities, 
and stability margins. For the purposes of this paper, these 
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systemic properties will be represented by M. The ratio 
of M in the reference model to M in the alternative model 
exhibits one of three possible properties. 

1. The analytical ratio of M values is always equal to 1, 
independent of parameter values. This means that 
the property being analyzed is always the same in 
the two models. 

2. The analytical ratio of M values is always larger 
(smaller) than 1, independent of parameter values. 
This means that the property being analyzed is 
always larger (smaller) in the reference model than 
in the alternative model. However, if the numerical 
values for the parameters are not known we can not 
say how much larger (smaller) the property is. 

3. The analytical ratio of M values is larger or smaller 
than 1, depending on the parameter values. In this 
case it is difficult to say anything about the property 
by simple examination of the analytical ratio. 

The uncertainties associated with properties 2 and 3 will 
be addressed by the numerical methods being proposed in 
this paper. Moreover, these methods will allow us to draw 
statistical conclusions about the relative merits of various 
biological designs. 

Methods 
If we knew the numerical values for all the parameters of 
the reference model, then we could calculate the numerical 
values for all the parameters of the alternative model that is 
internally and externally equivalent. However, knowledge 
of all the parameter values is rarely available for any 
model. Furthermore, using just one set of parameter 
values restricts the interpretation to the specific pair 
of models being compared. These limitations can be 
overcome by creating a large ensemble of reference 
models with randomly generated sets of parameter values 
that adequately sample the parameter space. For each of 
these one can then construct the alternative model that is 
internally and externally equivalent. 

There are two types of parameters that appear in 
the S-system representation (equation (1)): exponential 
parameters (kinetic orders) and multiplicative parameters 
(rate constants). The exponential parameters, which are 
weighted averages of more elementary kinetic orders, 
typically have values less than 4 in magnitude (Voit and 
Savageau, 1987). The multiplicative parameters, which 
reflect the different time scales present within the model, 
for most cases of interest are within 4 orders of magnitude 
of each other (i.e. within 4 log10 units). The results given 
in the following section are not critically dependent upon 
this particular choice of limits for the parameter space that 
needs to be sampled. 

By using randomly generated numbers we can sample 
the relevant parameter space, apply selection and create a 
large ensemble of biologically relevant numerical models 
for both the reference and alternative designs, and make 
an ensemble of numerical comparisons. The amount of 
data generated by this approach can be overwhelming. 
The following subsections describe several ways to treat 
and interpret these data. In a following paper (Alves 
and Savageau, 2000) these methods are applied to a 
specific class of biochemical control mechanisms in a 
context different from that of mathematically controlled 
comparisons. Subsequent papers will provide examples of 
specific applications within the mathematically controlled 
comparison framework. 

Basic treatment and analysis of the comparisons 
The first problem in analyzing a large number of compar- 
isons is deciding how to represent the data. Since we are 
comparing the value of a given property M between the 
reference model and its alternative, one obvious way to 
represent the data is by taking the ratio of M in the refer- 
ence model to M in the alternative model. 

R — A*reference/"'a]ternative- (2) 

When dealing with an ensemble of comparisons we must 
calculate the ratio, R, of M values for each reference 
model and its alternative model that is internally and 
externally equivalent. These data then can be treated by 
calculating some quantile of interest for the ensemble of 
ratios, thus determining whether M is statistically larger in 
the reference models or their alternatives. This, however, 
will not give us much information, even if we included 
calculations for the dispersion of the results. 

Density plots 
More information can be obtained from density plots of 
R versus M, where M is a property measured in the 
reference model; e.g. the sensitivity, 5(X,-, a\), of a given 
intermediate, X,, to fluctuations in the rate constant, a\, 
for the first reaction of the pathway. Some density plots 
where the ratio is typically smaller than 1 are presented in 
Figures 1-3. Note that in Figure 1A we have a situation 
in which the ratio of 5(X,, a\) is uniformly scattered 
throughout the entire region bounded by R = 1 and 
R = 0. Figures 2A and 3A show different non-traditional 
distributions. Figure 3A shows a case in which M can take 
only discrete values. 

Density plots can be used to determine rank correla- 
tions between M and R. Traditionally we calculate non- 
parametric rank correlations by using point measures such 
as the Spearman or Kendal rank correlation coefficients 
(e.g. Wherry, 1984; Krauth, 1988). These methods find 
linear and non-linear rank correlations between variables; 
however, it is not always easy to find such correlations in 
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Fig. 3. Correlated Discrete Density of Ratios Plots. A: Density Plot 
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for the data in panel A and a window size of IV = 50. C: Moving 
median plot of (R) versus {M> for the data in panel A and a window 
size of W = 500. See text for discussion. 

density plots that are as scattered as the ones presented in 
Figures lAor2A. 

The analysis of these density plots using point measures 
can be almost as cumbersome to interpret as the results 
from purely symbolic analysis. Furthermore, the point 
measures will almost certainly hide information that 
would be available from a less coarse analysis. The 
frequency of different values in a density plot is typically 
analyzed using two- and three-dimensional histograms. 
However, this approach may or may not lead to the 
determination of standard statistical distributions that fit 
the pattern of the data. 

Quantile analysis of density plots 
Moving quantile techniques allow us to interpret density 
plots using either parametric or non-parametric statistics. 
However, we shall refer only to the non-parametric case in 
the remainder of this paper. Let us assume that we want 
to know whether the M values of the reference model are 
larger than those of the alternative model (i.e. R > 1) more 
often than not. This can be determined from the median of 
the ratios, i.e. Quantile 0.5 (ßo.s). which will be denoted 
(R). If for some reason we want to know whether R is 
greater than 1 in more than 80% of the cases, then we 
would be dealing with go.8- For the rest of this paper we 
will consider only plots of (R) for reasons of simplicity. 
The correlation between magnitude M and ratio R can be 
obtained from the moving quantile technique instead of 
from the point measures technique mentioned above. 

The density plot can be viewed as a list of N paired 
values. Initially we order the pairs with respect to the 
reference magnitude to form a list L\ in which the first 
pair has the lowest measured value for M in the reference 
model, the second has the second lowest and so on. Next 
we build a secondary plot as follows. 

Pick a window size W smaller (usually much smaller) 
than the sample size N, collect the first W ratios from 
the list L\, calculate the ßo.5, and pair this number (R) 
with the median value of the corresponding M values of 
the reference model, which will be denoted (A/). Advance 
the window by one position, collect ratios 2 to W + 1, 
calculate (/?), and pair it with the corresponding (M) 
value. Continue this procedure until the last ratio from 
the list L\ is used for the first time. We now have a new 
list, Z,2, of size N — W + \ that is ordered from the 
smallest to largest values for (M) of the reference model. 
A moving median exhibits the following general statistical 
properties. For an infinite ordered population, the moving 
median tends to the mean of the population as the window 
size W increases without limit. For a finite ordered sample 
of size A^, the moving median tends to the median of the 
sample as W approaches N. 

The plot of list L2 exhibits a moving median (R) on the 
y axis that corresponds to the equivalent moving median 
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(M) on the x axis. These moving quantile plots allow us 
to determine the percentage of comparisons in which (R) 
is larger than 1 and, at the same time, whether or not there 
is any correlation between {R) and (M) of the reference 
model. A slope of zero or infinity in the moving quantile 
plot of Z-2 shows there is no correlation between (R) 
and (M) of the reference model. Applications of moving 
average techniques that are of a more classical nature can 
be found in Hamilton (1994) and Huang and Dunsmuir 
(1998). 

Examples and discussion 
Moving median plots of L2 lists can be used to compare 
the relative effectiveness of two different classes of models 
on the basis of some criterion. For example, assume that 
M measures the sensitivity of a model to fluctuations 
in a given parameter and that this parameter sensitivity 
should be as low as possible according to the criterion 
of model robustness. The ratio R of M values in the 
reference model to M values in the alternative model, 
which is otherwise internally and externally equivalent to 
the reference model, is plotted and from this density plot 
one forms the moving median plot of (R) versus (M). 
Examples of such plots that exhibit various patterns are 
presented and their interpretation discussed below. 

Figure 1A shows a plot of R versus M with N = 10000 
and a uniform scatter in both the R and M values. Since 
the scatter is uniform, we would expect to find that (/?) is 
independent of (M). In this example M values are in the 
interval [0,10] and R values are in the interval [0,1]. As 
the window size grows, the resulting moving median (Ä) 
approaches 0.5 with progressively smaller bounds because 
0.5 is the median of the sample. Figures IB and C show 
plots of {/?) versus (A/) for window sizes of 50 and 500, 
which can be thought of as the relevant sample size in 
this context. Figures IB and C also show that there is no 
correlation between (/?) and (A/); i.e. the values for the 
moving median (R) are independent of the values for (M) 
of the reference model. 

It is important to emphasize that different density 
plots can have similar moving quantile plots, due to the 
statistical nature of quantiles. For example, if R and M 
were both normally distributed and uncorrelated, then the 
moving median plots of (/?) versus (M) would be similar 
to those in Figures IB and C for the same sample and 
window sizes. 

Figure 2A shows a plot in which R is sometimes larger 
than 1. However, the moving quantile plot for go.5 in 
Figures 2B and C show that in most cases the value for 
M of the reference model is smaller than that of the 
alternative model ((/?) less than 1). Also, there is a clear 
correlation between the value for (R) and the value for 
(M) of the reference model, which is unlike the case in 

Figures IB and C. The value for (/?) is a function of {M) 
with a minimum around (A/) «a 1. With (A/) « 1, the 
value for M of the reference model is much less than that 
of the alternative model. With values for (M) that are 
increasing or decreasing away from 1, the value for M 
of the reference model approaches that of the alternative 
model. 

The selection of an appropriate window size is critical. 
If W is too small (e.g. 5), the go.5 plot will not differ 
significantly from the raw density plot. If W is too large, 
the correlation between {R) and {M) will be lost, or at 
least attenuated. This can be seen by comparing the curves 
for the two different window sizes in Figures 2B and C. As 
the window size increases from 50 to 500, the slope of the 
branch for (A/) less than 1 decreases (if the window size 
is increased further, the slope eventually becomes 0). This 
happens because the early samples of R are contaminated 
with latter samples and the correlation with the lower 
values of M is lost. With larger window sizes the slope 
of the branch for (A/) greater than 1 also decreases. As 
W approaches N, the slope of the curve on either side of 
(M) *» 1 tends toward 0 and the go.5 plot provides no 
more information than calculating the median of the entire 
sample. Thus, the advantages of a go.5 plot only become 
apparent at intermediate window sizes. There is, to our 
knowledge, no good way of deciding the optimal size for 
the window W; this depends on the sample size N and on 
the nature of the sample itself and must be determined by 
trial and error. 

Figure 3 A illustrates a case in which the values of M can 
only assume a finite number of discrete values. Figures 3B 
and C show the corresponding plots for (R) versus (Af) 
of the reference model. A correlation between (R) and 
(A/) is evident at low values of (M) but disappears as 
(M) increases. In addition, the go.5 plot in Figures 3B 
and C shows the dispersion in the moving median at each 
value of (M), unlike the go.5 plots in Figures IB and C 
and in Figures 2B and C. This dispersion occurs because 
there are several pairs in the list L\ that have the same 
discrete value for M but different discrete values for R. 
As the window W moves through a series of identical M 
values, the median value for M will remain unchanged 
whereas the median value for R will change. One can 
construct discrete density plots for any of the previous 
examples by designating classes for the values of M and 
by representing each class by the median of the class 
interval. Thus, the plot of (R) versus (A/) in cases such as 
these can give us information not only about frequencies 
and correlations but also about dispersion of the results. 
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Abstract 
Motivation: Mathematical models are the only realistic 
method for representing the integrated dynamic behavior 
of complex biochemical networks. However, it is difficult 
to obtain a consistent set of values for the parameters that 
characterize such a model. Even when a set of parameter 
values exists, the accuracy of the individual values is 
questionable. Therefore, we were motivated to explore 
statistical techniques for analyzing the properties of a 
given model when knowledge of the actual parameter 
values is lacking. 
Results: The graphical and statistical methods presented 
in the previous paper are applied here to simple un- 
branched biosynthetic pathways subject to control by 
feedback inhibition. We represent these pathways within 
a canonical nonlinear formalism that provides a regular 
structure that is convenient for randomly sampling the 
parameter space. After constructing a large ensemble 
of randomly generated sets of parameter values, the 
structural and behavioral properties of the model with 
these parameter sets are examined statistically and 
classified. The results of our analysis demonstrate that 
certain properties of these systems are strongly correlated, 
thereby revealing aspects of organization that are highly 
probable independent of selection. Finally, we show how 
specification of a given behavior affects the distribution 
of acceptable parameter values. 
Contact: Savageau@umich.edu 

Introduction 

The characterization of large and complex biochemical 
networks cannot be achieved with the direct intuitive ap- 
proaches that have been successful for simpler model sys- 

*To whom correspondence should be addressed. 

tems. The more systematic tools provided by mathemati- 
cal modeling and computer analysis have become essen- 
tial because they are especially well suited for organizing 
large amounts of data and representing nonlinear and par- 
allel processes. 

The most common method of constructing an appropri- 
ate model for a biochemical system has been the reduc- 
tionist or bottom-up approach. The component parts are 
isolated and characterized, and then the resulting submod- 
els are assembled into a model of the integrated system. 
For example, in the study of metabolic pathways, individ- 
ual enzymes were isolated and kinetically characterized in 
vitro; pathway models were then constructed by assembly 
of the individual rate laws. The fundamental problems in- 
herent in this approach are three (Ni and Savageau, 1996): 

1. failure to identify all the relevant components 

2. failure to identify all the relevant interactions 

3. failure to  determine  accurately  all the relevant 
parameter values. 

The associated practical problems are the enormous 
numbers of components and interactions that need to be 
identified and the difficulty of reproducing the conditions 
experienced by the components in their natural setting so 
that their parameter values can be accurately determined 
in vitro (e.g. Clegg, 1984; Moore et al, 1984; Ovadi 
and Srere, 1996; Savageau, 1992; Sorribas et al, 1993). 
These problems have limited the success of the bottom- 
up approach (e.g. Albe and Wright, 1992; Antunes et al, 
1996; Curto etal, 1998; Ni and Savageau, 1996; Shiraishi 
and Savageau, 1993) 

An alternative method of constructing an appropriate 
model is often termed the reverse-engineering or top- 
down approach. Many of the variables are measured in 
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the intact system, and then one attempts to reconstruct 
the underlying model that produced these data. The 
fundamental problems in this case are: 

1. selecting a mathematical representation that is suffi- 
ciently general so that one can be assured that it will 
encompass the system to be characterized 

2. the theoretical limits on what can be identified 
(problem of identifiability: e.g. Chappell and 
Godfrey, 1992; Feng and DiStefano, 1991; Ginn 
and Cushman, 1992) when one can only measure 
a subset of the variables (problem of observability: 
e.g. Moheimani etal, 1996; Xu etal, 1996). 

The practical problems are associated with the limits 
of the technologies currently available for measuring all 
the relevant variables. Although the top-down approach 
has long been applied in simple cases that illustrate 
the method (e.g. Brown et al, 1990; Diamond, 1975; 
Domnitz, 1976; Kargi and Shuler, 1979; Quant, 1993; 
Voit and Savageau, 1982), its use in biology is currently 
being driven by the new techniques coming out of the 
Human Genome Project that generate massive data sets 
(e.g. Brown and Botstein, 1999; Chu et al, 1998; DeRisi 
et al, 1997; Eisen et al, 1998; Somogyi et al, 1997; 
Törönen et al, 1999). Although the top-down approach 
shows considerable promise, it is unlikely that this method 
alone will provide a satisfactory solution to the problem of 
modeling large and complex biochemical systems. 

If one is interested in modeling a specific system 
(e.g. tryptophane biosynthetic pathway of Escherichia 
coli), the best way to proceed is to measure all the 
necessary parameters of the system in the organism of 
interest and build the model based on those values. 
One could productively combine the bottom-up and top- 
down approaches described above (Bliss et al, 1982; 
Yanofsky and Horn, 1994). On the other hand, if one is 
interested in a generic class of systems (e.g. amino acid 
biosynthetic pathways in general) or if the measurements 
are impossible to perform with accuracy and precision, 
even a combination of the two approaches may not be 
adequate. 

In this paper we propose a statistical approach 
for dealing with generic classes of biochemical sys- 
tems. We apply this approach to a general three-step 
unbranched biosynthetic pathway with inhibitory 
feedback. This pathway is an abstraction from 
the collection of unbranched pathways responsible 
for the biosynthesis of amino acids (e.g. see http: 
//www.genome.ad.jp/kegg/dblinks/map/mapOl 150.html). 
The results of our analysis demonstrate that certain prop- 
erties of these systems are strongly correlated, thereby 
revealing aspects of organization that are highly probable 
independent of selection. 

Xn .    Y 

  
    

' 
1 

'     "    -     v               "      -     V 
■    Al -    ,i2 

Fig. 1. Three-step unbranched biosynthetic pathway with inhibitory 
feedback. The metabolites are represented by X with an appropriate 
subscript. The horizontal arrows represent chemical conversion, 
whereas the vertical arrows represent modifier influences either 
positive or negative. This pathway can be viewed as an abstraction 
of the biosynthetic pathways for amino acids. 

Methods 
Amino acid biosynthetic pathways and their regulation 
have been studied intensively for more than 40 years. 
There is widespread acceptance among cell physiologists 
that the principal role of these systems is to provide a 
homeostatically regulated supply of amino acid for protein 
synthesis. This role has been characterized in terms of 
several behaviors that can be described by quantitative 
criteria (Savageau, 1976) that will be elaborated upon in 
this paper. 

Systemic description and analysis 

An unbranched three-step pathway with feedback inhibi- 
tion is depicted in Figure 1. The independent variable X4 
represents the cell demand for the end product X3. If the 
cell requires large amounts of Z3, then the value of X4 
will be high; if small amounts of Z3 are required, then the 
value of X4 will be low. The dynamic behavior of such 
a model can be described by a set of ordinary differential 
equations, one equation per intermediate. This set of equa- 
tions can be approximated to the first order in logarithmic 
space, yielding another set of ordinary differential equa- 
tions with the canonical form of an S-system (Savageau, 
1969): 

dXi 82j 

= atf\xf<-a,f\X?< 
7=1 7=2 

7=2 

dX2 

df 

dX3 

dt 
g44 

(1) 

The multiplicative parameters, a, can be interpreted as 
rate constants that are always positive. The exponential 
parameters, g, can be interpreted as kinetic orders that 
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represent the direct influence of each species on each 
rate law. If X,- is directly involved in the reactions of the 
aggregate rate law Vj, as either a substrate or a modulator, 
and if an increase in X,- causes an increase in the rate 
Vj, then the kinetic order will be positive. If an increase 
in Xf causes a decrease in Vj, then the kinetic order 
will be negative. If X,- is not directly involved in Vj, 
then the kinetic order will be zero. The kinetic orders 
gi+l,i(0 < i < 3) in (1) are positive because these are 
the kinetic orders for substrates of reactions. The kinetic 
order #44 will be set arbitrarily equal to 1 for the remainder 
of this paper in order to simplify subsequent calculations. 
This will not affect our results in any significant way 
since #44 is simply a scale factor in logarithmic space. 
The remaining kinetic orders, which represent negative 
feedback interactions, are negative. 

At a steady state, the rate of production and the rate of 
consumption will be equal for each intermediate, and (1) 
reduces to the following matrix equation (Savageau, 
1969): 

(2) 

where bt = In (or;+i/aO, a{j = g(j - gi+1J and Yt = 
ln(X,). This linear equation is easily solved, e.g. using 
Cramer's rule, to provide a steady-state expression in 
symbolic form for each 7,-. 

Other steady-state magnitudes of interest can be calcu- 
lated in a similar way. Logarithmic gains quantify the in- 
fluence of each independent variable on each dependent 
variable; e.g. the logarithmic gain 

b\ -gio^o" 'an    an   an" rrii 
b2 = Ö21     <222     Ö23 Y2 

h + YA   J .«31     «32     ß33. LY3j 

L(Xi,X0) 
dlnQY,-) 
dln(Xo) 

d^ 

dFo 

gives the percentage change in an intermediate X,- caused 
by a percentage change in X0. These logarithmic gains are 
calculated analytically at the steady state (Savageau, 1971) 
by differentiating each 7/ with respect to Fo- 

Parameter sensitivities quantify the influence of each 
parameter on each dependent variable of the system; e.g. 
the sensitivity 

S(Xi,Pj) = 
dln(X,) 

Pi\ 
dYi 

dln(py)     rjdPj 

gives the percentage change in the concentration X,- 
caused by a percentage change in the parameter pj. 
These parameter sensitivities and those of the steady-state 
flux are also calculated analytically at the steady state. 
The parameter sensitivities give important information 
about the sensitivity of the system to perturbations in its 
structure. 

The steady state for an unbranched biosynthetic path- 
way should be locally stable; i.e. the system should return 
to its original steady state after a small perturbation in the 
variables (as opposed to the parameters) of the system. If 
this does not occur, the system is dysfunctional. The sta- 
bility can be determined by using the well-known Routh 
criteria (Savageau, 1976). 

Any of these systemic properties can be analytically 
determined in the steady state by using the S-systems local 
representation. However, having an analytical expression 
for these systemic properties is just the first step in the 
analysis of a system. Interpretation of these analytical 
expressions can be problematic because they depend 
on many parameters and their behavior is too complex 
for easy visualization. Even when a general qualitative 
interpretation can be obtained just by looking at the 
closed-form expressions [e.g. L(X3,X0) < L(Xi,Xo)], 
the results are difficult to quantify [e.g. how much larger 
isL(X!,X0)?]. 

Also, there are no general closed-form solutions for 
the dynamic properties of the system. To analyze these 
properties one must specify numerical values for the 
parameters and solve the differential equations (1) using 
numerical techniques. An example of such a property is 
the settling time of a system, which is defined as the time 
required for a system to return to its steady state after a 
perturbation in the levels of its metabolites. The settling 
time also gives us an indication of the average transit 
time for material passing through the system. Short transit 
times allow a system to respond rapidly to changes in its 
environment (Savageau, 1972). 

Defining classes of systems for statistical comparison 

If one wishes to understand the general properties of 
pathways such as the one depicted in Figure 1, then one 
faces the following dilemma. General results that follow 
from the closed-form analytical expressions may be too 
complex to interpret and quantify, and quantitative results 
for particular values of the parameters do not yield general 
insights. One way of resolving this dilemma is to study the 
statistical properties for a class of systems generated by an 
ensemble of sets of parameter values. We shall consider 
two different methods for defining the class of interest. 

Structural classes. Systems that have the same network 
topology (i.e. have the same pattern of interactions among 
their elements and the same signs for the interactions) will 
be defined as members of the same structural class. As 
a case study for this paper we have chosen the system 
in Figure 1 and described its local behavior by the S- 
system representation within the power-law formalism. By 
so doing we have defined a specific class of systems that 
share the same network topology. By focusing on such a 
topology we have limited the study to systems belonging 
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to the same structural class. Individual members of this 
structural class can be generated by sampling the space of 
parameters that define the class and their characteristics 
can be obtained from the corresponding solutions of (1). 

Behavioral classes. Systems that exhibit a specific type 
of systemic behavior will be defined as members of the 
same behavioral class. For example, those systems belong- 
ing to the structural class in Figure 1 that have a single lo- 
cally stable steady state can be defined as members of a 
behavioral class. Individual members of such a behavioral 
class cannot be generated directly by sampling at random 
the space of parameters because some of the parameter 
sets will produce unstable systems. Instead, they must be 
generated indirectly, e.g. by sampling at random the space 
of parameters, testing the sample for the desired behavior, 
and then retaining only the relevant samples. 

In the example above the behavioral class is a subclass 
within the structural class, but this need not be so. If 
our only knowledge of the system was that it had three 
metabolites, we could study an ensemble of models in 
which each kinetic order might have positive or negative 
values, which generates models belonging to different 
structural classes. One could then choose models for study 
based simply on their behavior, disregarding the signs of 
the kinetic orders. 

Several (elementary) behavioral classes can be com- 
bined to define a composite behavioral class whose 
members are systems that exhibit all of the individual 
systemic behaviors. 

Sampling the parameter space 
The regular structure of the local S-system representation 
facilitates building the ensemble of sets of parameter 
values. The positive kinetic orders gt+u refer to enzymes 
binding their substrates. The maximum value for these 
kinetic orders is given by the number of substrate binding 
sites on the enzyme.f In the majority of cases there are 
less than four such sites (Hlavacek and Savageau, 1995; 
Voit and Savageau, 1987). Thus we will assume that these 
kinetic orders have values between 0 and 5. The negative 
kinetic orders (gu, gn, gzi and g33) refer to enzymes 
binding inhibitors. In most cases there are again fewer than 
four such binding sites per enzyme, and we will assume 
that these kinetic orders have values between -5 and 0. 
One can always normalize the time scale with respect to 
one of the rate constants. The others will be assumed to 
have normalized values within 5 orders of magnitude of 1. 
Thus, the logarithm of each normalized rate constant will 

f This is not always true of reversible reactions operating close to equilib- 
rium. The usual strategy for aggregating fluxes can lead to kinetic orders 
with extremely large absolute values. This problem can be solved by using 
an alternative strategy for aggregating fluxes (Sorribas and Savageau, 1989). 
However, we will not deal with these cases here. 

have values between —5 and 5. 
In building an appropriate ensemble of sets of parame- 

ter values one needs to use a representative sample of the 
allowable parameter space. Since the statistical distribu- 
tion of parameter values in real-life systems is unknown, 
the most appropriate approach is to sample the space uni- 
formly. There are several strategies for accomplishing this. 

First, one can impose a regular grid on the multidimen- 
sional parameter space and use the vertices of that grid 
to define the set of parameter values. In general, a sys- 
tem with n unknown parameters and the same grid size, 
co, will require of samples. This exponential increase in 
number of required samples makes it difficult to maintain 
a dense grid as the number of parameters increases. Also, 
maintaining a rigid grid complicates matters when one is 
studying ensembles of parameter sets that give rise to cer- 
tain types of systemic behavior. Second, pseudo-random 
number generators can be used to generate the largest pos- 
sible sample size without having a rigid grid to sample 
from. This method facilitates the study of ensembles of 
parameter sets that give rise to certain types of systemic 
behavior. Third, strategies based on number theory can be 
used to generate what are known as quasi-random num- 
bers that are uniformly distributed. Examples include Hal- 
ton and Solov sequences [for a review see Bratley and 
Fox (1988)]. Finally, another technique devised for deal- 
ing with large parameter spaces is the Latin Hyper cube. 
The Latin Hyper-cube ensures that each parameter will be 
sampled in every one of its sub-ranges. It has no advan- 
tage over the other methods mentioned above if there are 
important interactions between parameters [for a discus- 
sion see Dunn and Clark (1974)]. For the results reported 
below we have used the pseudo-random number generator. 

Specifying behavioral classes 
Since the system in Figure 1 is an abstraction of an un- 
branched biosynthetic pathway, the literature was searched 
and a basic number of desirable characteristics have been 
found for such systems. The group of all these character- 
istics was used to define a composite behavioral class. If 
the model generated by a given set of parameter values did 
not belong to this class, then the set was discarded and a 
new random set was tested. In this way we generated en- 
sembles of 5000 for our studies. 

The composite behavioral class studied is defined by a 
collection of six elementary behavioral classes with the 
following characteristics: 

B1. The steady-state concentration of pathway interme- 
diates should be low when compared with the con- 
centration of the final product. The major function 
of unbranched biosynthetic pathways is production 
of their end product (e.g. Z3 in the example of Fig- 
ure 1). High concentrations of intermediates per se 
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are unnecessary; they would tax the solvent capac- 
ity of the cell and potentially interfere in a nonspe- 
cific way with otherwise unrelated reactions (e.g. 
Atkinson, 1969; Savageau, 1972; Srere, 1987 and 
Levine and Ginsburg, 1985, for a general discus- 
sion of the subject from different perspectives). For 
the results presented in the next section, a param- 
eter set was accepted only if the steady-state ratio 
(Xi + X2)/XT, < 0.1. This value for the ratio was 
chosen arbitrarily because there are no reliable mea- 
surements on which to base a more accurate esti- 
mate. 

B2. Changes in the concentration of intermediates 
caused by changes in demand for the end product 
should be small. The previous condition ensures 
that the concentration of intermediates will not 
saturate the solvent capacity of a cell in a given 
steady state. However, if the metabolic conditions 
change and the demand for the end product of the 
pathway changes, this will cause the concentration 
of each intermediate to change, which may lead 
to saturation of the solvent capacity in the new 
steady state (e.g. Savageau, 1972). This could be 
prevented in our model if the absolute values of the 
logarithmic gains for intermediates, |L(Z,,Z4)|, 
are smaller than a predetermined value arbitrarily 
set at 0.5. 

B3. Changes in the concentration of intermediates 
caused by changes in the initial substrate should 
be small. This will buffer the intermediate con- 
centrations against changes in metabolism that 
are reflected in alterations in the level of initial 
substrate. This could be ensured if the absolute 
values of the logarithmic gains for intermediates, 
|L(X,-,Xo)|, are smaller than a predetermined 
value, e.g. |L(X,-,X0)| < 0.5 (i = 1,2,3). This 
value is chosen arbitrarily because there are no 
reliable measurements on which to base a more 
accurate estimate. 

B4. Systems should be robust, i.e. insensitive to spurious 
fluctuations in the parameters that define their 
structure (Savageau, 1972). We require that each 
intermediate have an aggregate sensitivity, defined 

as SQRTI J2J S(X(, Pj)2\, less than a predetermine 
value arbitrarily set equal to 5. 

B5. Each system should have a locally stable steady 
state. Systems without such stable steady states are 
dysfunctional because they are unable to maintain 
their homeostatic behavior in the face of spurious 
perturbations. The two margins of stability can be 
specified in terms of the last two Routh criteria (e.g. 
Savageau, 1976). 

B6. Systems should have a rapid response time. This is 
related to the inverse of the turnover number (Dixon, 
1958; Savageau, 1975), which should therefore 
be high. We require the turnover number for the 
pathway, defined as the pathway flux divided by 
the sum of the intermediate pools (V/ £. X,), to 
be larger than a predetermined value arbitrarily set 
equal to 1. 

Results 
Bias in the frequency distribution of parameter values 

The values for each parameter were originally sampled 
with a uniform distribution. However, those parameter sets 
that define systems excluded from the composite behav- 
ioral class are rejected, and the frequency distribution of 
the accepted parameter values is therefore biased. The na- 
ture of the bias for each of the parameters can be deter- 
mined from the histograms presented in Figure 2. We ob- 
serve that the composite behavioral class has ai biased 
towards small values whereas «2, a^, and 0:4 are biased to- 
wards large values. The kinetic order for the substrate of 
the pathway, gio, is biased towards small values. Its fre- 
quency increases from gi0 = 0 to gio = 0.3 and then 
decreases exponentially until gio = 5. A similar pattern 
is observed for #32, although the frequency increases from 
0 to 1.8, and then decrease but not exponentially. The ki- 
netic order #21 is biased towards large values, and #43 is 
nearly uniform over its range. The inhibitory kinetic order 
for overall feedback, #13, has a distribution with a cen- 
tral tendency, whereas the other inhibitory kinetic orders 
are almost uniformly distributed throughout their range of 
possible values. 

We also determined the parameter distributions for 
each of the elementary behavioral classes (B1-B6 defined 
above) to see which, if any, might qualitatively reproduce 
the deviations from a uniform distribution that were 
observed for the composite behavioral class (Figure 2). 
Table 1 shows which elementary class is mainly respon- 
sible for the shape of each distribution in the composite 
behavioral class. In some cases, the distribution for 
the composite behavioral class can be attributed to the 
dominant influence of a particular elementary class (e.g. 
B3 in the case of gio). In other cases, the distributions 
for the composite behavioral class can be attributed to 
the influence of several elementary classes acting in 
combination, which implies a synergistic influence (e.g. 
B1-B6 in the case 03). 

Frequency distribution for systemic properties of the 
ensemble 

The frequency distributions for all steady-state properties 
of our model have long tails. These tails make it difficult 
to present informative histograms for each of the systemic 
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Fig. 2. Distribution of parameter values in ensembles of systems selected on the basis of various behavioral classes. Selection involved 
each of the six elementary behavioral classes (B1-B6) considered separately and the composite class consisting of all six elementary classes 
considered together. The solid line in each panel is the distribution for the composite behavioral class. Three different patterns are represented. 
In most cases the distribution for the composite class is closely represented by the distribution for one of the elementary classes (c*i, 02, «4, 
S10> £22> S33>- The distributions for the other elementary classes have very different shapes and are not shown. In four cases the distribution 
for the composite class is closely resembled by two or more of the distributions for the elementary classes (#21. £43> §13. 823)- Distributions 
for only two of the elementary classes are shown. In two cases none of the distributions for the elementary classes is a close match to 
the distribution for the composite class (a3, #32). In these cases we show only the distribution for the elementary class that most closely 
resembles the distribution for the composite class. 

properties. We chose to cut off the tails and add their 
frequency to the more extreme classes presented in the 
histograms. The results in this section are shown as 
histograms in Figure 3. We did not include histograms for 
the elementary behavioral classes because, in most cases, 
they have extremely long tails. 

Steady-state concentrations and flux. All steady-state 
concentrations have frequency distributions that decrease 

as the concentration increases. At low concentrations the 
frequency decreases very sharply as the concentrations 
increase, but then the decrease becomes very small and 
there is a long tail in the distribution. The modal class 
for all of the frequency distributions is small. For X\ 
and X2 the modal class is in the interval [0,0.2334] with 
90% and 75% of all systems in this interval, respectively. 
The modal class for X3 has a larger value, in the interval 
[0.234,0.468]. Also, only 10% of all systems fall within 
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Fig. 5. Examples of graphs showing the statistical synergism 
between two different parameters. Each statistical synergism is 
determined by a plot of the moving median for the sensitivity with 
respect to parameter pt versus the moving median for parameter pj 
constructed from an ensemble of systems selected on the basis of the 
composite behavioral class. Note the asymmetry in the synergisms. 
See text for discussion. 

Discussion 

The study of generic biochemical systems requires a 
mathematical formalism that is systematically structured 
and capable of representing rather arbitrary nonlinear 
phenomena. The power-law formalism provides such a 
canonical nonlinear representation (Savageau, 1996), and 
for the work presented in this paper we have focused on 
the local S-system representation within this formalism. 
This representation, although nonlinear, has closed-form 
solutions for the steady state, and these can be used to 
study systemic properties analytically. However, more 
often than not, the complexity of the solutions for the 
properties of interest makes it difficult to analyze systemic 
behavior without assigning specific values to the parame- 
ters. In most cases these values are unknown; when they 
are known, they limit the interpretation of the results to 
a specific system and thus prevent generalization of the 
results. To overcome these limitations statistical studies 
involving large ensembles of random systems have been 
performed in a variety of contexts (see, e.g. Bhattacharjya 
and Liang, 1996; Glass, 1975; Kauffman, 1969a,b, 1993, 
and references therein). However, to our knowledge this 
approach has not been applied to continuous models for 
specific classes of biochemical systems with the objective 

of providing an exhaustive statistical characterization of 
their systemic properties. 

In this work we have created large ensembles of ran- 
domly generated parameter values for a given structural 
class of biochemical systems and imposed selection on the 
basis of particular systemic properties. We then examined 
the resulting systems for bias in parameter values, bias in 
unselected systemic properties, and correlations among all 
their systemic properties. 

Selection can be expected to influence the range of 
parameter values in the resulting systems. Although 
specific systemic properties have been used for some time 
as criteria to evolve networks towards optimality (e.g. 
James et al, 1999), few, if any, attempts have been made 
to characterize the bias in parameter values that results 
from such a selection procedure. In fact, the usual view 
on the subject is that parameter values determine systemic 
behavior. We have had to take the opposite view to learn 
how selection for particular systemic behaviors influences 
the frequency distribution of parameter values. As seen 
in Figure 2, there are regular patterns of deviation from 
what was a uniform distribution before imposing selection 
based on the composite behavioral class. By using each 
of the elementary behavioral classes as an independent 
selection criterion we were able to determine whether any 
given elementary class made a major contribution to the 
observed bias in the distribution of any given parameter 
value. In some cases this is true (B3 in the case of gio), 
whereas in others the distribution of parameter values 
for the composite class is the result of interplay among 
different elementary classes (B1-B6 in the case a3). 

Information on the distribution of parameter values is of 
interest in the design of experiments to measure the pa- 
rameters in actual systems. By knowing the most probable 
values of a parameter, one can design experiments to target 
that range. Also, the use of behavioral classes to study spe- 
cific kinds of systems provides an effective way to identify 
the relative importance of various regions in the parameter 
space of fit systems. 

Selection for a particular systemic property may also 
influence other unselected systemic properties. As seen 
in Figure 3, selection on the basis of the composite 
behavioral class produces a frequency distribution for the 
values of the different systemic properties that is skewed 
in nearly every case, with a peak at low values and a 
long tail that decreases in frequency almost exponen- 
tially. (This is true of the distributions for the aggregate 
sensitivities, although it is not evident from the curves 
for X\ and X2 because their tails are off the scale.) The 
exceptions to this general pattern are the distributions 
for the logarithmic gain L{X\,XQ), which is nearly 
uniform over the range [0,5], and the logarithmic gains 
L(XUX4), L(X2,X4), and L(V,X4), which exhibit a 
symmetric central tendency. We have also determined the 
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influence of the elementary behavioral classes on these 
distributions, but the results are less straightforward to 
interpret. In many cases the distribution for the composite 
class is quite different from the distribution for any of 
the elementary classes (data not shown). This indicates 
a strong synergism between different constraints that 
determine the distribution of values for the systemic 
properties. 

Selection also can be expected to influence the correla- 
tions among the various systemic properties in the result- 
ing systems. We have used a moving median technique 
(Alves and Savageau, 2000) to determine average corre- 
lations between different systemic properties. We found 
that these correlations exist and are, at least in some cases, 
dependent on the behavior of the system (Table 2). For 
example, most aggregate sensitivities are correlated with 
the concentrations by a symmetric curve of type C8 if no 
restrictions are imposed on the values of the concentra- 
tions in the system (data not shown). However, when we 
imposed the condition that intermediate concentrations be 
small (Bl), this kind of symmetry breaks down (curves of 
type C8 and C9 become C3 and C4), because the systems 
being studied include only those with concentrations that 
have low values. It is important to note that, as a concen- 
tration tends to unity, the sensitivities to the kinetic orders 
associated with that concentration will tend to zero (due 
to the properties of the power law in the S-system formal- 
ism). This will tend to diminish the aggregate sensitivities 
that include these kinetic-order sensitivities. Table 2 also 
shows that in the composite class, robustness of intermedi- 
ates and stability margins are inversely correlated; systems 
that have large stability margins have, on average, interme- 
diates with high aggregate sensitivities and are thus less 
robust. 

Finally, the same technique used to determine the 
correlations between different systemic properties also 
was used to determine the statistical synergisms between 
different parameters. The system in Figure 1 has small 
synergisms for the end product and flux (Table 3), because 
in many cases (54 out of 120) the sensitivities are not 
correlated with any parameter (statistical synergism is 
zero). Thus, the end product and the steady-state flux of 
the system are, on average, well buffered against second- 
order perturbations. 

The approach illustrated in this paper provides statistical 
insights. It might be argued that biological systems 
are optimized and atypical, and thus not compatible 
with the application of statistical techniques. However, 
this objection is avoided in our approach. By defining 
behavioral classes for optimized systems, we are able to 
study the average behavior of optimized systems and not 
just the average behavior of random systems. 

The methods we have described can in principle be 
applied to systems with more complex behaviors. For 

example, suppose we wish to consider biochemical sys- 
tems that are capable of exhibiting either a single locally 
stable steady state (nongrowing cells that are viable 
but quiescent) or a single stable limit cycle (growing 
cells with a well-defined cycle time), depending only 
upon the value of an environmental cue. The behavioral 
classes that we would define for such systems would 
now include the combined properties of these two dif- 
ferent modalities as well as the properties that might 
be applied to each of the separate modalities. The more 
complex behavioral class would include a number of 
dynamic properties (e.g. the period, amplitude, phase, 
and robustness of the oscillation, and the bifurcation 
value of the environmental cue for switching between 
modalities), and the analysis necessary to identify and 
characterize these behavioral classes would accordingly 
become more complex. The local S-system representation 
is capable of describing each of the separate modalities 
(Lewis, 1991), but not the two of them together with a 
given set of parameter values. For this purpose we would 
need the generalized-mass-action representation within 
the power-law formalism. This representation does not 
have analytical solutions for the steady state, and so the 
analysis and comparison of these properties would have 
to be done by numerical methods. Randomly generated 
sets of parameter values (which would now include 
values for a parameter representing the environmental 
cue) could be generated as before. However, we would 
now select only those sets of parameter values that 
satisfy the more complex behavioral class that includes 
both modalities and the appropriate switching between 
them in response to the environmental cue. Those sets 
of parameter values that only yield one of the two 
modalities would be excluded from consideration. This 
would ensure that any averaging procedure that is subse- 
quently applied to systems with the randomly generated 
parameter sets would range over a homogeneous class of 
systems. 

The approach proposed in this work also may be 
useful in providing information about systems that are 
poorly characterized. For example, suppose we know 
the structure of a system, but we are able to determine 
experimentally only some of the characteristic behaviors 
of the system. To be more specific, suppose we know 
that the concentrations of the system are within a given 
range, that increasing the value of a given independent 
variable will always cause a decrease in the values 
for some dependent variables, and that we are able to 
measure the range of values for the turnover times of the 
concentrations. With this information, we could generate 
ensembles of systems with the described characteristics 
and study them statistically. The results would allow us 
to make predictions about other systemic properties that 
might be measured and, for the unknown parameters, 
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about the range of values most likely to generate systems 
with the known behavior. 

A combination of approaches will surely be needed to 
advance our understanding of large and complex systems 
in biology. We need to take advantage of the broad-scale 
capabilities of the top-down genomic technologies and 
the structural constraints provided by the more traditional 
bottom-up methodologies of molecular biology. We also 
need to identify the systemic regularities that exist even in 
randomly constructed networks. The approach presented 
in this paper appears well suited for the determination of 
such regularities in continuous models. It may facilitate 
the design of experiments to measure parameters by 
the bottom-up approach as well as provide a suitable 
framework to determine classes of models that give a good 
fit to data obtained by the top-down approach. 
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Abstract 
Motivation: The method of mathematically controlled 
comparison has been used for some time to determine 
which of two alternative regulatory designs is better 
according to specific quantitative criteria for functional 
effectiveness. In some cases, the results obtained using 
this technique are general and independent of parameter 
values and the answers are clear-cut. In others, the result 
might be general, but the demonstration is difficult and 
numerical results with specific parameter values can help 
to clarify the situation. In either case, numerical results 
with specific parameter values can also provide an answer 
to the question of how much larger the values might be. 
In contrast, a more ambiguous result is obtained when 
either of the alternatives can have the larger value for a 
given systemic property, depending on the specific values 
of the parameters. In any case, introduction of specific 
values for the parameters reduces the generality of the 
results. Therefore, we have been motivated to develop and 
apply statistical methods that would permit the use of 
numerical values for the parameters and yet retain some 
of the generality that makes mathematically controlled 
comparison so attractive. 
Results: We illustrate this new numerical method in a step- 
by-step application using a very simple didactic example. 
We also validate the results by comparison with the cor- 
responding results obtained using the previously devel- 
oped analytical method. The analytical approach is briefly 
present for reference purposes, since some of the same key 
concepts are needed to understand the numerical method 
and the results are needed for comparison. The numer- 
ical method confirms the qualitative differences between 
the systemic behavior of alternative designs obtained from 

*To whom correspondence should be addressed. 

the analytical method. In addition, the numerical method 
allows for quantification of the differences and it provides 
results that are general in a statistical sense. For exam- 
ple, the older analytical method showed that overall feed- 
back inhibition in an unbranched pathway makes the sys- 
tem more robust whereas it decreases the stability mar- 
gin of the steady state. The numerical method shows that 
the magnitudes of these differences are not comparable. 
The differences in stability margins (1-2% on average) are 
small when compared to the differences in robustness (50- 
100% on average). Furthermore, the numerical method 
shows that the system with overall feedback responds more 
quickly to change than the otherwise equivalent system 
without overall feedback. These results suggest reasons 
why overall feedback inhibition is such a prevalent reg- 
ulatory pattern in unbranched biosynthetic pathways. 
Contact: savageau@umich.edu 

Introduction 

The experimental investigation of biological regulatory 
mechanisms has revealed an enormous variety of al- 
ternative molecular designs and raised questions about 
their function, design and evolution. Mathematically 
controlled comparison is a technique that was specifically 
developed to study such alternative regulatory designs 
(Savageau, 1972). By using the mathematical analog of 
a well-controlled experiment, this technique analytically 
determines the irreducible qualitative differences in 
the systemic behavior of the alternative designs. This 
technique has been used to study alternative regulatory 
designs in metabolic pathways (e.g. Savageau, 1974; 
Hunding, 1974; Savageau and Jacknow, 1979), in gene 
circuits (e.g.  Hlavacek and Savageau, 1996), in immune 
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networks (e.g. Irvine and Savageau, 1985; De Boer and 
Hogeweg, 1989a,b), and in the host-pathogen response 
to HIV infection (De Boer and Perelson, 1998). The 
introduction of numerical values for the parameters 
provides quantification of these differences in specific 
cases but eliminates the generality of the results. In this 
paper we introduce a numerical approach to mathemati- 
cally controlled comparisons that allows the introduction 
of specific numerical values for the parameters in the 
analysis while still retaining the generality of the results 
in a statistical sense. 

The most common use of mathematically controlled 
comparison requires the existence of closed-form solu- 
tions for the steady state. Such solutions can be obtained 
by using the local S-system representation to characterize 
the pathway of interest. Important functional constraints 
are introduced by equating relevant steady-state proper- 
ties of the alternative systems being compared. Further 
analysis (dynamic as well as steady state) is performed 
and a profile of ratios for corresponding results from the 
alternative systems is constructed. In some cases, a ratio 
can be determined analytically to be less than, equal to, or 
greater than unity. For example, if the ratio of values for 
property P in a reference system to the same property in 
an alternate system is larger than unity, then the reference 
system can always be made to have a larger value for 
P no matter how large the value for P in the alternate 
system. 

However, if one wishes to know how much greater 
than unity a given ratio is, then one needs to examine 
actual values for the parameters. These parameter values 
are not always available or, if available, are not always 
accurate. Moreover, there are cases in which the ratio 
can be less than or greater than unity depending upon 
the specific values for the parameters. In any case, the 
results of such a numerical comparison are no longer 
general. In this work we propose a novel approach to 
this problem that combines the method of mathematically 
controlled comparison with statistical techniques (Alves 
and Savageau, 2000a,b) to yield numerical results that are 
general in a statistical sense. 

Although we could describe the numerical method 
in general terms, this approach would be too abstract 
and difficult to understand. Instead, we will illustrate 
this new numerical method by means of a step-by-step 
application using a very simple didactic example. We also 
validate the results by comparison with the corresponding 
results obtained using the previously developed analytical 
method. The analytical approach is briefly presented 
for reference purposes, because some of the same key 
concepts are needed to understand the numerical method 
and because the results are needed for comparison. 

*0 

B 

x0 

X2  *—-  X3 —r 

X4 

X2 X3 

X4 

Fig. 1. Three-step unbranched biosynthetic pathways with in- 
hibitory feedback. The metabolites in the pathways are represented 
by X\ to X3, and their concentrations are dependent variables. The 
initial substrate is represented by XQ and the modifier of the demand 
for end product is represented by X4; the concentrations of these lat- 
ter metabolites are considered independent variables. The horizon- 
tal arrows represent chemical conversion, whereas the vertical ar- 
rows represent regulatory influences. This pathway can be viewed as 
an abstraction of biosynthetic pathways for amino acids. (A) Path- 
way with overall feedback inhibition (reference model). (B) Path- 
way without overall feedback inhibition (alternative model). 

Methods 
Alternative models 
The didactic example that we use to illustrate our numeri- 
cal method is an unbranched three-step pathway as shown 
schematically in Figure 1. This is an abstraction from 
actual three-step biosynthetic pathways such as those 
involved in the biosynthesis of amino acids (e.g. http: 
//www.genome.ad.jp/kegg/dblinks/map/mapOl 150.html). 
The independent variable X4 represents the cell's demand 
for the end product X3. If the cell requires large amounts 
of X3, then the value of X4 will be high; if small amounts 
of X-i are required, then the value of X4 will be low. 
These models show the pathway with and without end- 
product inhibition (Umbarger, 1956; Yates and Pardee, 
1956; Monod et al., 1963), a common feature of such 
pathways. We have observed (by consulting the database 
at http://wit.mcs.anl.g0v//EMP/) that there is usually no 
other feedback to the first step of the pathway. However, 
feedback to intermediate reactions may exist and for this 
reason we consider models with all possible intermediary 
feedback interactions. 

Differential equations 
The dynamic behavior of each model can be described by 
a set of ordinary differential equations, one equation per 
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intermediate. This set of equations can be approximated to 
the first order in logarithmic space, yielding the canonical 
form for the local S-system representation (Savageau, 
1969, 1996). For the model in Figure la this equation set 
becomes: 

dXx/dt = aiX™X*13 - a2 [I XT 
7=1 

3 3 

dX2/dt = a2 Yl Xfj - «3 [I XT W 
7=1 7=2 

dX3/d* = a3 PI Xf ~ «4XfX|44 

7=2 

For the model in Figure lb the equation set becomes: 

dXl/dt = a[X8
0
l0-a2Y\xfi 

7=1 

3 3 

dX2/dt = a2 Y\ Xf - a3 PI Xf (2) 
7=1 7=2 

3 

dx3/dt=a3 n xfj - «4xf43x^ 
7=2 

The multiplicative parameters (rate constants), a, influ- 
ence the time scales of the reactions and are always pos- 
itive. The exponential parameters (kinetic orders), g, rep- 
resent the influence of each metabolite on each aggregate 
rate law. If X,- influences the aggregate rate law V), ei- 
ther as a substrate or a modulator, and if an increase in 
the concentration of X, causes an increase in the rate V), 
then the kinetic order will be positive. If an increase in 
the concentration of X; causes a decrease in the rate V), 
then the kinetic order will be negative. If an increase in 
the concentration of X, causes neither an increase nor a 
decrease in the rate V), then the kinetic order will be zero. 
Thus, the positive kinetic orders in Equation (1) are g,+i,,- 
(0 < i < 3), which are the kinetic orders for substrates 
of reactions, and #44, which is a scale factor arbitrarily set 
equal to 1.0. The remaining kinetic orders are negative, 
since these represent negative feedback interactions. 

The temporal responsiveness of each model can be 
determined by perturbing the system variables, solving 
the corresponding dynamic equations, and calculating the 
time for the dependent variables to settle within 1% of 
their final steady-state values. 

Steady-state solution and key systemic properties 

At the steady state, which can be analytically determined, 
both the production and consumption terms have identical 

values. One can write the following matrix equation 
(Savageau, 1969): 

b\ - gio^o an   a\2   an Yi 
b2 = a2\   a22   an Y2 

h + Y4 «31     Ö32    «33 Y3 

B = AY (3) 

where bt = ln(a!+i/a,), ay = g{j - gi+hj and 
Yi — ln(X,). Equation (3) is linear and therefore easily 
solved to obtain the steady-state values for each F,-; the 
corresponding values for each X;- are then obtained by 
simple exponentiation. 

Two types of coefficients, logarithmic gains and parame- 
ter sensitivities, can be used to characterize the steady state 
of such models (Savageau, 1971). Logarithmic gains mea- 
sure the relative influence of each independent variable on 
each dependent variable of the model. For example, 

L(X,-,Xo) = 
dLog(X,) _ dYj 

dLog(Xo)      dFo 
(4) 

measures the percent change in the concentration of inter- 
mediate Xi caused by a percentage change in the concen- 
tration of the initial substrate Xo. Logarithmic gains pro- 
vide important information concerning the amplification 
or attenuation of signals as they are propagated through 
the system. 

Parameter sensitivities measure the relative influence of 
each parameter on each dependent variable of the model. 
For example, 

S(Xi,Pj) 
dLog(X,) 
dLog(^)      'Jdpj 

dYt 
PJ7Z- (5) 

measures the percent change in the concentration of 
intermediate X,- caused by a percentage change in the 
value of the parameter pj. Parameter sensitivities provide 
important information about system robustness, i.e. how 
sensitive the system is to perturbations in the parameters 
that define the structure of the system. 

Since steady-state solutions exist in closed form we can 
calculate each of the two types of coefficients simply by 
taking the appropriate derivatives. Although the mathe- 
matical operations involved are the same in each case, it is 
important to keep in mind that the biological significance 
of the two types of coefficients is very different. 

The local stability of the steady state can be determined 
by applying the Routh criteria (Dorf, 1992). The magni- 
tude of the two critical Routh conditions can be used to 
quantify the margin of stability (Hlavacek and Savageau, 
1996). 
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Responsiveness 
Systems should respond quickly to changes in their envi- 
ronment. To evaluate temporal responsiveness, perturba- 
tions of 20% were made in the steady-state values of the 
intermediate concentrations and the time required for them 
to settle within 1% of their final steady-state values was 
then calculated. This also gives an indication of the tran- 
sit time for metabolites in the system. These transit times 
should be low. There is no exact way to determine the tran- 
sient time analytically. Thus, this part of the analysis will 
be dealt with only in the numerical section of the results. 

Generation of random ensembles 
The analytical results give qualitative information that 
characterizes the role of overall feedback in the system of 
Figure 1A. To obtain quantitative information, one must 
introduce specific values for the parameters and compare 
systems. For this purpose we have randomly generated 
a large ensemble of parameter sets and selected 5000 
of these sets that define systems consistent with various 
physical and biochemical constraints. These constraints 
include mass balance, low concentrations of intermediates 
and small changes in their value to minimize the utilization 
of the solvent capacity in the cell, small values for 
parameter sensitivities so as to desensitize the system to 
spurious fluctuations affecting its structure, and stability 
margins large enough to ensure local stability of the 
systems. A detailed description of these methods can be 
found in Alves and Savageau (2000b). Mathematica™ 
(Wolfram, 1997) was used for all numerical procedures. 

Density of ratios plot 
To interpret the ratios that result from our analysis we use 
Density of Ratios plots as defined in Alves and Savageau 
(2000a). The primary density plots from the raw data have 
the magnitude for some property of the reference model 
on the x-axis and the corresponding ratio of magnitudes 
(reference model to alternative model) on the v-axis. The 
primary plot can be viewed as a list of 5000 paired 
values that can be ordered with respect to the reference 
magnitude to form a list L\ in which the first pair has 
the lowest measured value for property P in the reference 
model, the second has the second lowest, and so on. 
Secondary density plots are constructed from the primary 
plots by the use of moving quantile techniques with a 
window size of 500. The procedure is as follows. One 
collects the first 500 ratios from the list L\, calculates the 
quantile of interest for this sample, and pairs this number 
(/?), with the median value of the corresponding P values 
of the reference model denoted (P). One advances the 
window by one position, collects ratios 2 to 501, calculates 
(R), and pairs it with the corresponding (P) value and 
continues in this manner until the last ratio from the list 
L\ was used for the first time (for further explanation 

of moving median techniques see, e.g. Hamilton, 1994). 
The slope in the secondary plot measures the degree of 
correlation between the quantities plotted on the x- and y- 
axes. This technique is also used to examine correlations 
between ratios of interest and other magnitudes shared 
by the two systems, e.g. the correlation between the ratio 
of stability margins and the magnitude of a rate constant 
common to the two systems (for traditional applications of 
correlation analysis see Wherry, 1984). 

Analytical comparison 
Firstly, we shall exemplify the analytical aspects of a 
mathematically controlled comparison aimed at discov- 
ering the advantages, if any, brought about by overall 
feedback inhibition. This will serve to introduce key 
concepts that will be needed for the numerical aspects in 
the following section. Also, the results will be used for 
later comparison to validate the results obtained with the 
new numerical method. 

We compare the systemic behavior of the model in 
Figure 1A (reference model) with that in Figure IB 
(alternative model). To ensure that the results are due 
solely to the differences in design and not reversible by 
a mere change in parameter value, we shall insist on the 
following mathematical controls. 

Internal and external equivalence 
Only the first step in the pathway is allowed to differ 
between the reference model and the alternative. There- 
fore, to establish an internal equivalence (Savageau, 1972, 
1976; Irvine, 1991) between the two designs, we require 
the values for the corresponding parameters of all other 
steps in the two models to be the same. 

The first step of the pathway differs between the 
reference model and the alternative. If we reason that 
loss or gain of an inhibitory site on the first enzyme 
comes about by mutation, and that this mutation can 
cause changes in all the parameters of the process, then 
(taking the model in Figure 1A as reference) a mutation 
causing loss of overall feedback inhibition would change 
the parameters gio, gi3 and a\ in Equation (1) to g'10, 
g[3 = 0 and a\ in Equation (2). Since we wish to 
determine the effects that are due solely to changes in the 
structure of the system, we shall specify new values for 
g'lQ and a[ that minimize all other effects. This can be 
accomplished by deriving the mathematical expression for 
a given steady-state property in each of the two models, 
equating these expressions, and then solving the constraint 
equation for the value of a primed parameter. For example, 
if we derive expressions for the logarithmic gains and 
require that L{Xt, X0)A = L{%i, XO)B, then this equation 
can be solved to determine the following value for g[0. 

789 



R.AIves and M.A.Savageau 

/ 510543 
5l0 = 

543 - 513 
(6) 

Table 1. Analytical expressions for the ratios of corresponding systemic 
properties of the reference system and the alternative system 

Similarly, we can derive expressions for the steady-state 
concentrations and require that [XJ]A = [XJ]B, then this 
equation can be solved to determine the following value 
for a j. 

Logfaj] 
g43 Log[ai] + gi3 Logffo] 

543 - 513 
(7) 

These particular values for the primed parameters make 
the steady-state flux, each of the corresponding steady- 
state concentrations, and the logarithmic gains in each 
of these quantities the same in both models. The process 
we have just described determines the maximal degree of 
external equivalence between the two models. There are 
no more 'free' parameters that can be used to reduce the 
differences and all remaining differences can be attributed 
to the change in system structure, i.e. to overall feedback 
inhibition. The external equivalency conditions we require 
insure that both the reference and the alternative models 
have the same steady-state concentrations and rates. This 
implies that the steady-state thermodynamic potential 
across each corresponding reaction is the same in the 
reference and the alternative models. Having established 
the conditions for maximal equivalence, we can now 
analyze the two models and determine their remaining 
differences. 

Pathway gain 

The logarithmic gains in concentrations and fluxes with 
respect to changes in the initial substrate XQ determine 
whether the pathway is amplifying or homeostatic. When 
comparing pathways designed to amplify biochemical sig- 
nals it is important that the alternatives provide the same 
high logarithmic gain. Conversely, when comparing path- 
ways designed to attenuate biochemical signals it is im- 
portant that the alternatives have the same low logarithmic 
gain. The method of mathematically controlled compar- 
ison insures that both the compared models will have the 
same logarithmic gains and thus have the same amplifying 
or homeostatic characteristics. 

The logarithmic gains in concentration with respect 
to changes in demand (represented here by changes in 
the modulator X4) are smaller in the reference system, 
whereas the logarithmic gain in flux with respect to 
changes in X4 is larger in the reference system. In this 
aspect, the reference system is more efficient because 
it can produce greater increases in flux with smaller 
increases in concentration. When the logarithmic gain in 
flux with respect to changes in demand is zero (as is the 
case in the alternative model), changes in demand have no 
influence over the flux. Thus, overall feedback inhibition 
makes the system better equipped to deal with changes in 
the demand for X3. These results are shown in Table 1. 

Systemic Dependent variable of the system 
property Xi X2 *3 V 

£(■. Xo) 1 1 1 1 
L(; X4) Ba c A 1/0* 
S(-.«i) A A A A 
S(;cc2) 1 1 1 1 
S(;a3) 1 1 1 1 
5(-,a4) B C A 1/0 
s(-.gio) 1 1 1 1 

SI; 813) -- -- -- -- 
SI: 821) 1 1 1 1 
S(; 822) 1 1 1 1 
S(; 823) 1 1 1 1 
S(;832) 1 1 1 1 
S(;833) 1 1 1 1 

S(;843) B c A 1/0 

0 The three critical ratios are given by the following analytical 
expressions: 

A = l + - £13 < 1 
843 ~ 813 

B _ l      gl3tg22(g33 ~ 843) + 832(843 ~ g23)l       , 

(gl3 - £43)(g23g32 - g22g33> 
c _ j      g!3(g43 -g33) < j 

g33(gl3 -g43> 
* The ratio 1 /0 represents the division of any non-zero number by 

Robustness 

The system should be robust, i.e. insensitive to fluctuations 
in the parameter values (Shiraishi and Savageau, 1992). 
This means that the sensitivity profile should, in general, 
be as low as possible. Whenever the sensitivity of a 
concentration to a parameter is different in the two 
models, it is smaller in the reference model, i.e. the 
ratio S(Xi, PJ)A/S(XJ, PJ)B is always less than or equal 
to unity. Thus, overall feedback inhibition makes each 
intermediate concentration less sensitive (i.e. more robust) 
with respect to fluctuations in parameter values. 

Most of the corresponding flux sensitivities are equal 
in the reference and alternative models. The sensitivity 
S(V, cci) is smaller in the reference model, which makes 
this model less sensitive to changes in the molecular 
activity of the first enzyme, whereas the sensitivities 
S(V, #43) and S(V, «4) are larger in the reference system 
because they also can reflect changes in demand. These 
results are shown in Table 1. 

Stability 

The steady state of the system should be stable, i.e. the 
system should return to its original steady state after a 
small perturbation. If this does not occur, the system 
is dysfunctional. The margins of stability for a system 
can be measured using the Routh criteria (Hlavacek and 

790 



Numerical controlled comparisons 

Savageau, 1996). The larger these margins, the further 
from the boundaries of instability the system will be. The 
results of the analysis are as follows: 

Criterion#lA _ Criterion#2Jt 
Criterion#lß ~~ Criterion#2ß 

= 1 
Criterion#3,4 
Criterion#3# 

D< 1 

(8) 

where 

D = \ + 
FiF2F3g 13 g2\g32 

F\F282lS32 - FiF%g2\g22g32 

-F\F2F3g2\g23g32 + F%F3g22g23g32 
•2 „..„2     r2p. „2 

+ ^1^2*21*32 - F2F^23g32 

-F\F%glxg33 + 2FiF2F3g2\g22g33 

-F^F3gj2g33 - 2FiF2F3g2\g32g33 

+ F^F3g22g32g33 + F2F$g23g32g33 

+ FlF^g2lgl3-F2F^g22g33 

+ F^F3glxgA3 -2FiF2F3g2lg22g43 

+F%F3gl2g43 + 2FiF2F3g2\g32g43 

-2F%F3g22g32g43 ~ F2F%g23g32g43 

+F2
2F3g32g43 ~ 2FiF$g2\g33g43 

+2F2F%g22g33g43 ~ F2F$g32g33g43 

+FlF*g2lgj3 

\ +F2F*g32gl3 

F2Flg22g\3 

) 

with Ft being the turn-over number of the pool X{. 
Note that the negative signs in this expression always 
precede parameters that represent negative feedback and 
consequently all terms have positive values. Thus, the 
reference and the alternative models differ in only one 
of the three Routh criteria applicable for a three variable 
system, and the alternative system has the larger margin of 

stability. 

Summary 

The analytical comparison gives qualitative results that 
characterize the role of overall feedback inhibition in the 
model of Figure 1A. This analysis demonstrates that the 
model with overall feedback inhibition is more robust and 
that its flux is more responsive to changes in demand 
for the end product, although this model has a smaller 
margin of stability. However, this analysis does not tell 
us how much more robust or how much more responsive 
to demand the reference model is, nor does it tell us how 
much smaller its margin of stability is. For answers to 
these questions we must consider specific values for the 
parameters and employ statistical techniques if we are to 
uncover general tendencies. 

Numerical comparison 
The techniques described in Alves and Savageau (2000b) 
have been used to generate an ensemble of 5000 parameter 
sets that characterize and reference the alternative systems 
with stable steady states. Each of these parameter sets was 
then inserted into the appropriate equations to determine 
the magnitude of the quantitative differences between 
reference and alternative systems. 

Ratios of systemic properties 

Figure 2A shows a typical Density of Ratios plot for an 
individual parameter sensitivity. One can clearly see that 
S(Xit Pj)A/S(Xi, pj)B < 1. Figure 2C shows a typical 
example of a Density of Ratios plot for the aggregate 
parameter sensitivities of a concentration variable. The 
aggregate parameter sensitivity of Xt, 5(X,), is defined 
as the Euclidean norm of the vector whose coordinates are 
the sensitivities with respect to the individual parameters. 
[The numerical method makes it possible to use different 
functions of the parameter sensitivities to define an 
aggregate sensitivity, e.g. a weighted average of the 
sensitivities could be used when one knows the relative 
importance of the individual parameters in the model.] 
The ratio is defined as the aggregate parameter sensitivity 
in the reference model divided by the corresponding 
aggregate in the alternative model. Again, we see that the 
reference model has smaller sensitivities. 

A comparison of the models on the basis of the 3rd 
Routh criterion for stability (Figure 2E) shows that the 
margin of stability is smaller for the reference model; 
however, the magnitude of the difference is very small 
with ratios always greater than 0.81. The modal class 
of this ratio is the one closest to 1 (defined has 0.995 
< ratio <1), with more than 35% of the models. Thus, 
models with or without overall feedback inhibition have 
very similar stability boundaries. This indicates that 
local stability is probably not an important criterion in 
comparing the models, since they are very similar in 
this aspect. Figure 2G shows that the model with overall 
feedback inhibition is typically more responsive than the 
alternative model lacking this inhibition, although there 
are a few exceptions. 

Statistical analysis of ratios 

Figures 2B, D, F and 2H show the moving median plots 
(Alves and Savageau, 2000a) corresponding to the raw 
Density of Ratios plots in Figures 2A, C, E and 2G. As 
was mentioned previously, robust systems function more 
reproducibly. Figure 2B shows an example of a moving 
median plot for an individual parameter sensitivity. There 
are two regions in which there is no correlation between 
the sensitivity in the reference model and the ratio of 
sensitivities in the reference and alternative models. These 
two regions are separated by a region with a sharp change 
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Fig. 2. Density of ratios plots for different systemic properties of the reference system vs the ratio of their values in the reference system to 
the corresponding value in the alternative system. Density of ratios plots for the primary data are shown in the left-hand panels (A, C, E and 
G) the corresponding moving median plots are shown in the right-hand panels (B, D, F and H). (A) and (B) a typical individual sensitivity, 
(C) and (D) a typical aggregate sensitivity (The aggregate sensitivity of any given metabolite is defined in this case as the Euclidean norm of 
a vector whose components are given by the sensitivity of the relevant metabolite to each of the parameters), (E) and (F) the Routh condition 
that differs between the reference and the alternative system, (G) and (H) the transient time. 

in the average value of the ratio. For most other parameter 
sensitivities, the ratio changes less abruptly. The moving 
median plot for the aggregate parameter sensitivities 

(Figure 2D) shows that as the sensitivity increases (i.e. the 
robustness decreases) the ratio also tends to increase, until 
it reaches a limit median value. For highly robust models, 
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Fig. 3. Histograms comparing properties that differ between the reference system and the alternative system in Figure 1. In the left-hand 
panels (A, C, E, G and I) the histogram of the relevant property for the reference system is represented by a thick line whereas the same 
histogram for the alternative system is represented by a thin line. In the right-hand panels (B, D, F, H and J) the histogram for the ratio 
is represented with a thick line. (A) and (B) aggregate sensitivity of Xi, (C) and (D) aggregate sensitivity of X2, (E) and (F) aggregate 
sensitivity of X3, (G) and (H) 3rd Routh condition, (I) and (J) transient time. 
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the difference in robustness between the reference and the 
alternative model tends to be bigger. Thus, for models 
that are optimized with regard to robustness, on average, 
the reference model will be much more robust than the 
alternative model. 

Figure 2F shows that the stability margin of the alter- 
native model is always greater than that of the reference 
model, although on average the differences are insignifi- 
cant. Hence, the stability margins are essentially the same. 

As for the transient behavior of the models (Figure 2H), 
we can see that the responsiveness of the reference model 
is almost always better than or equal to that of the 
alternative model (more than 98% of all cases). Overall 
feedback inhibition has an important effect in making the 
model respond more quickly to perturbations in its state. 
Since there is no analytical expression for the transient 
behavior, the only way to obtain these comparative results 
is through the use of numerical methods. 

A different way to observe that the parameter sensitivi- 
ties are indeed larger in the alternative model, is by com- 
paring histograms of corresponding sensitivities that dif- 
fer between the reference and the alternative model and 
by plotting the histograms of the ratios directly (Figure 3). 
The alternative model clearly has more parameter sensi- 
tivities in the higher range of values. This approach also 
shows that the transient times are longer for the alternative 
model, whereas the difference in distributions for the sta- 
bility margin is less notable. In each case, the histogram 
of ratios shows that the magnitudes are larger in the alter- 
native model. 

Correlations 

The previous paper (Alves and Savageau, 2000b) has 
shown how different properties of the model represented 
in Figure 1A are correlated. Here we use the same 
technique to show how the differences between reference 
(Figure 1A) and alternative (Figure IB) models are corre- 
lated with various steady-state properties. The differences 
we shall examine are the four analytical determined ratios 
shown in Table l(A-D) plus the ratio of transient times 
that we determine numerically (E). For each of the five 
ratios we plot {R)Q1 as a function of (P), where (R)Qt is 
the fth moving quantile of ratio R and {P} is the moving 
median of the steady-state property of interest. We present 
results for / = 0.05, i = 0.5 and / = 0.95. The moving 
window size used in the calculations is 500. The generic 
shapes of the correlation curves are shown in Figure 4, 
and the results of the correlation analysis are summarized 
with reference to these shapes in Table 2. 

Each moving quantile curve for the same R, (R)QJ, 
represents a contour that shows how a given quantile of 
R is correlated with a particular magnitude of interest. By 
building a contour plot with several different quantiles, 
we can empirically evaluate the quality of the predicted 

Fig. 4. Qualitatively different shapes for the correlation curves 
between different systemic properties. The correlation is determined 
by a plot of the moving median for one property versus the moving 
median for another constructed from an ensemble of systems 
selected on the basis of various behavioral classes (see Alves and 
Savageau, 2000b). The nine shapes (Cl through C9) include all the 
tabulated shapes found by examination of the actual graphs. These 
shapes are referenced in Table 2. 

correlation, as well as obtain non-parametric confidence 
interval curves for the moving median. 

An example of such a contour plot is presented in 
Figure 5 for the correlation between the different moving 
quantiles of the ratio B (from Table 1) and the 2nd Routh 
condition for local stability. The plot gives information 
about the dispersion of B as a function of the 2nd Routh 
criterion. This dispersion decreases as the value of the 
Routh criterion increases. At low values of the Routh 
criterion the 5% quantile of B is very close to —1 and 
the 95% quantile is very close to 1, whereas for high 
values of the stability margin the 5% quantile is about 
-0.6 and the 95% quantile is about 0.7. In plots involving 
other quantities, the dispersion may increase or remain 
unchanged as the quantity on the *-axis increases. 

The second type of information one can extract from 
Figure 5 regards the quality of the predicted correlation 
between B and the 2nd Routh criterion. From the moving 
quantile plot involving ß0.5 we determine that, on aver- 
age, there is no correlation between B and the value for 
the 2nd Routh criterion. The other moving quantile curves 
show that, for high values of the stability margin, this ab- 
sence of correlation is maintained for all moving quan- 
tiles. However, in the region of low values for the stability 
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Table 2. Correlation between the five critical ratios and various systemic properties 

Systemic Critical ratios" 

property A B C D E 

00.05 Ö0.5 00.95 00.05 Qo.5 00.95 00.05 Qo.5 00.95 00.05 Q0.5 ßo.95 00.05 Q0.5 00.95 

*1 C7* C7 C7 C8 Cl C9 C9 C7 C7 C4 C4 C4 C7 C7 C7 

*2 C7 Cl C7 C2 C2 C2 C2 C7 C7 C4 C4 C4 C7 C7 C7 

X3 C8 C8 C8 C9 Cl C2 C9 C2 C2 C4 C4 C4 C7 C7 C7 

V C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 

L(Xi,X0) C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 

L(X2,X0) C7 C7 C7 C7 C7 C7 Cl C7 C7 C7 C7 C2 C7 C7 C7 

L(X3,X0) C9 C9 C9 C7 C7 C7 C7 C7 C7 C2 C2 C2 C7 C7 C7 

L(V, XQ) C3 C3 C3 C2 C7 Cl C2 C7 Cl C7 C7 C7 C3 C3 C3 

L(XI,X4) C2 C2 C2 C9 C2 C4 C9 C2 C4 C2 C2 C2 C2 C2 C2 

L{X2, X4) C4 C4 C4 C9 C2 C4 C9 C2 C4 C4 C4 C4 C2 C2 C2 

L(X3,X4) C8 C7 C9 C9 C9 C9 C9 C9 C9 C9 C2 C2 C5 C7 C6 

L(V, X4) C4 C2 C9 C3 C4 C4 C3 C4 C4 C4 C4 C2 C2 C2 C2 

S(Xi) C2 C2 C2 C3 Cl Cl C3 Cl Cl C3 Cl Cl Cl C7 C7 

S(X2) C7 C7 C7 Cl Cl C7 C3 Cl Cl Cl Cl Cl Cl Cl Cl 

S(X3) C2 C7 Cl Cl Cl Cl Cl Cl Cl C7 C7 C7 C2 Cl Cl 

S(V) Cl C7 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C3 C3 C3 

2nd Routh C2 C2 C2 C3 C7 C4 C3 C7 C4 C3 C3 C3 C3 C7 C7 

3rd Routh C2 C2 C2 C3 C7 C4 C3 C7 C4 C3 C3 C3 C3 C3 C7 

Transient time C3 C3 C3 C2 C7 Cl C2 C7 Cl C3 C3 C3 C2 C7 C7 

" The expressions for the critical ratios A, B, and C are given in the footnote of Table 1. The expression for ratio D is given following Equation (8) in the 
text. Ratio E is the ratio of transient times, which are determined numerically. 
b The C values refer to the shape of the curves in Figure 5. We present the shape of the curves with a 90% confidence interval. For example, the correlation of 
ratio B with L(X\, X4) has a shape C2 but its 90% boundaries show that this form can change (smoothly) between C9 and C4. 

margin, a positive correlation between the stability mar- 
gin and B starts to develop as the quantile of B decreases 
from Ö0.5 to 00.05- Symmetrically, a negative correlation 
develops as the quantile of B increases from go.5 to ßo.95- 
As Qi tends to go.o or t0 ßi.o these correlations tend to be 
more pronounced. One interpretation is that, for low val- 
ues of the stability margins, there is a larger uncertainty 
about the correlation between B and the stability margins. 

Correlations among the four analytical determined ratios 
(A-C in Table 1 and D in equation (8)) plus the ratio 
of transient times that we determine numerically (E) are 
shown in Figure 6. It can be seen that the ratios A, D and 
E are directly correlated. This means that systems with 
high values (i.e. close to 1) for A will also, on average, 
have high values for D and E (i.e. close to 1). Similarly, 
the ratios B and C are directly correlated. On the other 
hand, the values of ratios B and C change from negatively 
to positively correlated with the other three ratios as the 
values of these other three ratios increases. 

Summary 
The numerical method reproduces the qualitative results 
that are obtained analytically as should be expected. Fur- 
thermore, the numerical comparison extends the analytical 
results by providing quantitative results. For example, 
overall feedback inhibition decreases the stability margins 

of the steady state, which was shown quantitatively to be 
on average a minimal effect, and increases the robustness 
of the system, which was shown quantitatively to be a 
highly significant effect. The numerical approach also 
provides a way to compare the temporal responsiveness 
of the alternative models following perturbations in 
the steady-state concentrations. For our model systems 
we found that overall feedback inhibition significantly 
decreases the response time of the reference system (with 
overall feedback), compared to that of the alternative 
system (without overall feedback). Finally, we determined 
how the different ratios are correlated with systemic prop- 
erties and with parameters of interest, and we presented 
a way to determine the confidence one should place on 
these correlations. Thus, the numerical approach has 
significantly extended the scope of application beyond 
that of the analytical approach. 

Discussion 
The method of mathematically controlled comparison 
has been used since the early 1970s as a powerful tool 
to characterize alternative designs for several classes 
of biological systems. In each case, this comparative 
technique has provided insight into the natural selection 
of the various designs. The results obtained in some cases 
are independent of specific parameter values. 
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Fig. 5. Example of the use of moving quantiles to establish the level of confidence in the correlation between magnitudes of interest. The plot 
represents the correlation of different moving quantiles of the critical ratio B (defined in Table 1) as a function of the 2nd Routh condition. 
The thickest line represents the moving median of B. The first lines above and below the moving median represent quantiles 0.65 and 0.35 
respectively. The progression of lines above and below represent quantiles that decrease and increase, respectively, by intervals of 0.10. 

In many other cases, the results of the analysis will de-] 
pend on the numerical values of the parameters. HoweverJ 
if the range of values for the parameters is known and 
their influence does not change abruptly over the range 
of interest, then random sampling can be used effectively 
to make numerical comparisons without exact knowledge 
of the parameter values. If one knows the distribution of 
values for each parameter, then one can generate random 
numbers with the appropriate distributions in order to ob- 
tain a large set of parameters and statistically study the 
differences between various designs. More often than not 
these distributions are unknown, because there are enor- 
mous numbers of components and interactions that need to 
be identified. In the absence of a priori knowledge about 
the distributions for the parameter values, we have gener- 
ated random numbers with a uniform distribution and then 
refined the distributions by accepting vectors of parame- 
ter values only if they create a model that has the behav- 
ioral characteristics of interest e.g. in this paper, models 
with stable steady states; (see Alves and Savageau (2000b) 
for an analysis of models belonging to different behavioral 
classes). 

Analytical comparisons in this paper demonstrate that 
the reference model is more robust and has smaller 
stability margins than the alternative model. They also 
show that the flux and concentrations in the reference 
model are less sensitive to changes in demand for end 
product. However, analytical comparison can not give us 
any qualitative information about the relative transient 
times of the two models, nor can it tell us anything 
quantitative about the magnitude of the differences in 
transient times between the two models. 

The method of numerical comparison provides infor- 
mation about the alternative designs that could not have 
been obtained by exclusive use of analytical comparisons. 
It shows that the relative differences in parameter sensi- 
tivities and transient times between the reference and the 
alternative models are, on average, much larger than those 
between stability margins. This implies that differences 
in stability margins are not very relevant for the selection 
of overall feedback inhibition. Moreover, this approach 
shows that more than 99% of all reference models have 
faster transient responses than the corresponding alterna- 
tive models. This reinforces the idea that overall feedback 
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Fig. 6. Moving median plots that reveal the correlations among the five critical ratios (A-E) obtained while comparing the systems in 

Figure 1. 

inhibition improves the function of these biosynthetic 
pathways. 

With the method of numerical comparison we also show 
that, among the five critical ratios that characterize the 
alternative designs in Figure 1, there are two groups within 
which the ratios are directly correlated with each other. 
One group includes the ratios A, D and E; the other 
includes the ratios B and C. Members of the second group 
are negatively correlated with members of the first group 
at low values and positively correlated at high values. 

The introduction of contour density of ratios plots (i.e. 
plots having different moving quantiles for the y-axis) 
provides a measure for the uncertainty in the correlations 
between ratios and systemic properties of interest. In most 
of the cases analyzed in this paper the correlation holds 
with a 90% confidence interval (i.e. the correlation is 
always positive, negative or null no matter what quantile is 
used, as can be seen in Table 2). However, in some cases, 
such as that in Figure 5, there is more uncertainty about 
the correlations. Although the nature of the correlations 
will be model and behavioral-class dependent, there are 

some properties of these contour plots that are general (see 
Appendix). 

Thus, the method of numerical comparison presented in 
this paper allows one to quantify, and in some cases to 
eliminate, the uncertainties associated with the analytical 
approach to mathematically controlled comparison. This 
generalization allows one to obtain more information from 
the comparison. It also allows one to focus the comparison 
on systems that are considered most appropriate for each 
design, simply by selecting from randomly generated 
parameter values ensembles of parameter sets that give 
rise to systems that are considered appropriate with respect 
to properties of interest. This provides a means to make the 
comparison more significant. 
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Appendix 
Consider a contour density of ratios plot of property Pi 
versus property P2, such as the one presented in Figure 5. 
If (PI)QIC represents the Qk moving quantile curve for 
property P\, {P\)Qm represents the Qm moving quantile 
curve for the same property, k < m, and the same 
window size is used to calculated the two curves, then 
contour density of ratios plots have the following generic 
properties: 

(1) For any given value of (P2) on the x-axis, the curve 
(Pl)Qk < (Pl)ßm- 

(2) The shape of the curve for (Pi)gr, with k < r < m, 
can only change progressively between the format 
of the curve {PI)QI< and the format of the curve 
(P\)Qm- 

The proof for the first property comes from the fact 
that, for the same value of {P2), {P\)QIC and (Pi)gm are 
different quantiles of the same sample. Thus, if k < m 
then Qk<Qm- 

The proof of the second property is also very simple. 
From Property 1 we know that {PI)QU < (Pi)gm. Thus, 
{Pi)<2k < (Pi)Qr < (Pi)ßm-At each value of (P2), the 
maximum number of different quantiles is W, which is the 
window size associated with the total sample of size S. Let 
Qi/w represent the quantile i/W, where i can vary from 1 
to W. As 1/ W ->■ 0, such that the ratio W/S -> constant, 
{Pi)Qi/w ->• {Pi)Q(i+i)/w- Thus, since (Pi)e(i-i)/w < 
{Pi)Qi/w < (Pi)ßo+i)/w, the shape of the curves will 
change progressively from (PI)QO.O to (PI)QI.O. 
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The control of gene expression involves complex circuits that exhibit enormous variation in design. 
For years the most convenient explanation for these variations was historical accident. According to 
this view, evolution is a haphazard process in which many different designs are generated by 
chance; there are many ways to accomplish the same thing, and so no further meaning can be 
attached to such different but equivalent designs. In recent years a more satisfying explanation based 
on design principles has been found for at least certain aspects of gene circuitry. By design principle 
we mean a rule that characterizes some biological feature exhibited by a class of systems such that 
discovery of the rule allows one not only to understand known instances but also to predict new 
instances within the class. The central importance of gene regulation in modern molecular biology 
provides strong motivation to search for more of these underlying design principles. The search is 
in its infancy and there are undoubtedly many design principles that remain to be discovered. The 
focus of this three-part review will be the class of elementary gene circuits in bacteria. The first part 
reviews several elements of design that enter into the characterization of elementary gene circuits in 
prokaryotic organisms. Each of these elements exhibits a variety of realizations whose meaning is 
generally unclear. The second part reviews mathematical methods used to represent, analyze, and 
compare alternative designs. Emphasis is placed on particular methods that have been used 
successfully to identify design principles for elementary gene circuits. The third part reviews four 
design principles that make specific predictions regarding (1) two alternative modes of gene control, 
(2) three patterns of coupling gene expression in elementary circuits, (3) two types of switches in 
inducible gene circuits, and (4) the realizability of alternative gene circuits and their response to 
phased environmental cues. In each case, the predictions are supported by experimental evidence. 
These results are important for understanding the function, design, and evolution of elementary gene 
circuits    © 2001 American Institute of Physics.   [DOI: 10.1063/1.1349892] 

Gene circuits sense their environmental context and or- 
chestrate the expression of a set of genes to produce ap- 
propriate patterns of cellular response. The importance 
of this role has made the experimental study of gene 
regulation central to nearly all areas of modern molecu- 
lar biology. The fruits of several decades of intensive in- 
vestigation have been the discovery of a plethora of both 
molecular mechanisms and circuitry by which these are 
interconnected. Despite this impressive progress we are 
at a loss to understand the integrated behavior of most 
gene circuits. Our understanding is still fragmentary and 
descriptive; we know little of the underlying design prin- 
ciples. Several elements of design, each exhibiting a vari- 
ety of realizations, have been identified among elemen- 
tary gene circuits in prokaryotic organisms. The use of 
well-controlled mathematical comparisons has revealed 
design principles that appear to govern the realization of 
these elements. These design principles, which make spe- 
cific predictions supported by experimental data, are im- 
portant for understanding the normal function of gene 
circuits; they also are potentially important for develop- 
ing judicious methods to redirect normal expression for 

biotechnological purposes or to correct pathological ex- 
pression for therapeutic purposes. 

"'Electronic mail: savageau@umich.edu 
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I. INTRODUCTION 

The gene circuitry of an organism connects its gene set 
(genome) to its patterns of phenotypic expression. The geno- 
type is determined by the information encoded in the DNA 
sequence, the phenotype is determined by the context- 
dependent expression of the genome, and the circuitry inter- 
prets the context and orchestrates the patterns of expression. 
From this perspective it is clear that gene circuitry is at the 
heart of modern molecular biology. However, the situation is 
considerably more complex than this simple overview would 
suggest. Experimental studies of specific gene systems by 
molecular biologists have revealed an immense variety of 
molecular mechanisms that are combined into complex gene 
circuits, and the patterns of gene expression observed in re- 
sponse to environmental and developmental signals are 
equally diverse. 

The enormous variety of mechanisms and circuitry 
raises questions about the bases for this diversity. Are these 
variations in design the result of historical accident or have 
they been selected for specific functional reasons? Are there 
design principles that can be discovered? By design principle 
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FIG. 1. Schematic diagram of a bacterial transcription unit. The structure of 
the unit consists of two genes (G, and G2), bounded by a promoter sequence 
(P) and a terminator sequence (T), and preceded by upstream modulator 
sites (M| and M2) that bind regulators capable of altering transcription ini- 
tiation. The solid arrow represents the mRNA transcript. 

we mean a rule that characterizes some biological feature 
exhibited by a class of systems such that discovery of the 
rule allows one not only to understand known instances but 
also to predict new instances within the class. For many 
years, most molecular biologists assumed that accident 
played the dominant role, and the search for rules received 
little attention. More recently, simple rules have been iden- 
tified for a few variations in design. Accident and rule both 
have a role in evolution and their interplay has become 
clearer in these well-studied cases. This area of investigation 
is in its infancy and many such questions remain unan- 
swered. 

This review article addresses the search for design prin- 
ciples among elementary gene circuits. It reviews first sev- 
eral elements of design for gene circuits, then mathematical 
methods used to study variations in design, and finally ex- 
amples of design principles that have been discovered for 
elementary gene circuits in prokaryotes. 

II. ELEMENTS OF DESIGN AND THE NEED FOR 
DESIGN PRINCIPLES 

The behavior of an intact biological system can seldom 
be related directly to its underlying genome. There are sev- 
eral different levels of hierarchical organization that inter- 
vene between the genotype and the phenotype. These levels 
are linked by gene circuits that can be characterized in terms 
of the following elements of design: transcription unit, input 
signaling, mode of control, logic unit, expression cascade, 
and connectivity. Each of these elements exhibits a variety of 
realizations whose basis is poorly understood. 

A. Transcription unit 

A landmark in our understanding of gene circuitry was 
the discovery by Jacob and Monod of the operon,1 the sim- 
plest of transcription units. This unit of sequence organiza- 
tion consists of a set of coordinately regulated structural 
genes (e.g., G| and G2 in Fig. 1) that encode proteins, an 
up-stream promoter site (P) at which transcription of the 
genes is initiated, and a down-stream terminator site (T) at 
which transcription ceases. Modulator sites (e.g., Mj and M2 

in Fig. 1) associated with the promoter bind regulatory pro- 
teins that influence the rate of transcription initiation (opera- 
tor sites bind regressors that down-regulate high-level pro- 
moters, or initiator sites bind activators that up-regulate low- 
level promoters). 

Transcription units are the principal feature around 
which gene circuits are organized. On the input side, signals 
in the extracellular (or intracellular) environment are de- 

Reg     Reg"- 

rr 

Reg     Reg--, 

LE 

FIG. 2. Input signals for transcription units can arise either from the extra- 
cellular environment or from within the cell. S is a stimulus, Rec and Rec* 
are the inactive and active forms of the receptor, and Reg and Reg* are the 
inactive and active forms of the regulator, (a) Signal transduction from the 
extracellular environment to an intracellular transcription unit via a two- 
component system. (B) The extracellular signal molecule is transported into 
the cell where it interacts directly with the regulator of a transcription unit, 
(c) The signal molecule is transported into the cell where it is transformed 
via a metabolic pathway to produce a product that interacts with the regu- 
lator of a transcription unit, (d) The output signal from one transcription unit 
is the input signal to another transcription unit within the cell. 

tected by binding to specific receptor molecules, which 
propagate the signal to specific regulatory molecules in a 
process called transduction, although in many cases the regu- 
lator molecules are also the receptor molecules. Regulator 
molecules in turn bind to the modulator sites of transcription 
units in one of two alternative modes, and the signals are 
combined in a logic unit to determine the rate of transcrip- 
tion. On the output side, transcription initiates an expression 
cascade that yields one or many mRNA products, one or 
many protein products, and possibly one or many products of 
enzymatic activity. Thus, the transcription unit emits a fan- 
out of signals, which are then connected in a diverse fashion 
to the receptors of other transcription units to complete the 
interlocking gene circuitry. 

B. Input signaling 

The input signals for transcription units can arise either 
from the external environment or from within the cell. When 
signals originate in the extracellular environment, they often 
involve binding of signal molecules to specific receptors in 
the cellular membrane [Fig. 2(a)]. In bacteria, alterations in 
the membrane-bound receptor are communicated directly to 
regulator proteins via short signal transduction pathways 
called "two-component systems."2 In other cases, signal 
molecules in the environment are transported across the 
membrane [Fig. 2(b)], and in some cases are subsequently 
modified metabolically [Fig. 2(c)], to become signal mol- 
ecules that bind directly to regulator proteins (in these cases 
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FIG. 3. Alternative modes of gene control. The top panels illustrate the 
negative mode of control in which the bias for expression is ON in the 
absence of the regulator, and regulation is achieved by modulating the ef- 
fectiveness of a negative element The bottom panels illustrate the positive 
mode of control in which the bias for expression is OFF in the absence of 
the regulator, and regulation is achieved by modulating the effectiveness of 
a positive element The solid arrow represents the mRNA transcript In each 
case, induction by the addition of a specific inducer causes the state of the 
system to shift from the left to the right, whereas repression by the addition 
of a specific co-repressor causes the state of the system to shift from right to 

left. 

the receptor and regulator are one and the same molecule). 
When signals arise from other transcription units within the 
cell, the regulator can be the direct output signal from such a 
transcription unit [Fig. 2(d)]. It can also be the terminus of a 
signal transduction pathway in which the upstream signal is 
the output from such a transcription unit. Thus, the input 
signals for transcription units are ultimately the regulators, 
whether signals are received from the extracellular or intra- 
cellular environment. The regulators in most cases are pro- 
tein molecules, although this function can be preformed in 
some cases by other types of molecules such as anti-sense 
RNA. 

C. Mode of control 

Regulators exert their control over gene expression by 
acting in one of two different modes (Fig. 3).3 In the positive 
mode, they stimulate expression of an otherwise quiescent 
gene, and induction of gene expression is achieved by sup- 
plying the functional form of the regulator. In the negative 
mode, regulators block expression of an otherwise active 
gene, and induction of gene expression is achieved by re- 
moving the functional form of the regulator. Each of these 
two designs (positive or negative) requires the transcription 
unit to have the appropriate modulator site (initiator type or 
operator type) and promoter function (low level or high 
level). 

Variations in the level of the functional form of the regu- 
lator can be achieved in different ways. Regulator molecules 
can have a constant or constitutive level of expression. In 
this case, the functional form of the regulator is created or 
destroyed by molecular alterations associated with the bind- 
ing of specific ligands (inducers or co-regressors). In other 

M. 

Mode Presence Expression 

R1         R2 R1         R2 AND        OR 

+ Yes 

Yes 

No 

No 

Yes 

No 

Yes 

No 

OFF ON 

ON ON 

OFF 

OFF 

OFF 

ON 

FIG. 4. Logic unit with two inputs. The transcription unit is described in 
Fig. 1, the regulator R, interacts with the modulator site M, via the positive 
mode, the regulator R2 interacts with the modulator sites M2 via the negative 
mode, and the signals are combined by a simple logical function. The logic 
table is provided for the logical AND and logical OR functions. 

cases, the regulator is always in the functional form, and its 
level of expression varies as the result of changes in its rate 
of synthesis or degradation. These different ways of realizing 
variations in the functional form of the regulator are found 
for both positive and negative modes of control. 

D. Logic unit 

The control regions associated with transcription units 
may be considered the logic unit where input signals from 
various regulators are integrated to govern the rate of tran- 
scription initiation. There are two lines of evidence suggest- 
ing that most transcription units in bacteria have only a few 
regulatory inputs. First, the early computational studies of 
Stuart Kauffman using abstract random Boolean networks 
suggested that two or three inputs per transcription unit were 
optimal.4 If the number of inputs was fewer on average, the 
behavior of the network was too fixed; whereas if the num- 
ber was greater on average, the behavior was too chaotic. 
The optimal behavior associated with a few inputs often is 
described as "operating at the edge of chaos."5 Second, 
with the arrival of the genomic era and the sequencing of the 
complete genome for a number of bacteria, there is now 
experimental evidence regarding the distribution of inputs 
per transcription unit. The sequence for Escherichia coh has 
shown that the number of modulator sites located near the 
promoters of transcription units is on average approximately 
two to three.7 The large majority have two and a few have as 
many as five. 

A simple logic unit is illustrated in Fig. 4 for the case 
with two inputs. This example includes the classical lactose 
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(lac) operon of E. coli, which has a positive and a negative 
regulator; the AND function is the logical operator by which 
these signals are combined.8 The logic units of eukaryotes 
can be considerably more complex.9 

E. Expression cascades 

Expression cascades produce the output signals from 
transcription units. They typically reflect the flow of infor- 
mation from DNA to RNA to protein to metabolites, which 
has been called the "Central Dogma" of molecular biology. 
The initial output of a transcription unit is an mRNA mol- 
ecule that has a sequence complementary to the transcribed 
DNA strand. The mRNA in turn is translated to produce the 
encoded protein product. The protein product in many in- 
stances is an enzyme, which in turn catalyzes a specific re- 
action to produce a particular metabolic product. This in 
skeletal form is the expression cascade that is initiated by 
signals affecting a transcription unit (Fig. 5). 

There are many variations on this theme. There can be 
additional stages in such cascades and each of the stages is a 
potential target for regulation. For example, the cascade 
might include posttranscriptional or posttranslational stages 
in which products are processed before the next stage in the 
cascade. The cascade can also include a stage in which a 
RNA template is used to transcribe a complementary DNA 
copy, as is the case with retroviruses and retrotransposons. 

There can be multiple products produced at each stage of 
such cascades. For example, several different mRNA mol- 
ecules can arise from the same transcription unit by regula- 
tion of transcription termination. Several different proteins 
can be synthesized from the same mRNA and this is often 
the case in bacteria. Several metabolic products can be pro- 
duced by a given multifunctional enzyme, depending upon 
its modular composition. Thus, transcription units can be 
considered to emit a fan of output signals. 

F. Connectivity 

The connectivity of gene circuits, defined as the manner 
in which the outputs of transcription units are connected to 
the inputs of other transcription units, varies enormously. 
The evidence for E. coli suggests a fairly narrow distribution 
of input connections with a mean of two to three, whereas 
the distribution of output connections has a wider distribu- 
tion with some transcription units having as many as 50 out- 
put connections. A large number of the connections involve 

- Gene • 

■ Messenger - 

■ Protein - 

—; ' "- Metabolite —fc- 

FIG. 5. Expression cascade that propagates signals in three stages from 
DNA to mRNA to enzymes to small molecular weight signaling molecules. 
Additional stages are possible, and each stage can give rise to multiple 
output signals. 

u     0« 

X7, AA   ' »X5, Regulator - 

043 

Xg, NA   * t» X4, mRNA 

0IS        013 

X6, NA -1-V *i. mRNA ->■ 

Xy.AA 

Xg. Stimulus 

Xg, Enzyme -»- 
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FIG. 6. Connectivity by which expression cascades become coupled. El- 
ementary circuit consisting of a regulator cascade on the left and an effector 
cascade on the right. The protein product that is the output of the left cas- 
cade is a regulator of both transcription units, and the metabolic intermedi- 
ate that is an output of the right cascade is an inducer that modulates the 
effectiveness of the regulator at each transcription unit. 

regulator proteins modulating expression of the transcription 
unit in which they are encoded, a form of regulation termed 
autogenous.10 Another common form of connection involves 
the coupling of expression cascades for an effector function 
and for its associated regulator." Such couplings are called 
elementary gene circuits and an example is represented sche- 
matically in Fig. 6. 

Connectivity provides a way of coordinating the expres- 
sion of related functions in the cell.12 The operon, a tran- 
scription unit consisting of several structural genes that are 
transcribed as a single polycistronic mRNA, provides one 
way of coordinating the expression of several genes. Another 
way is to have each gene in a separate transcription unit and 
have all the transcription units connected to the same regu- 
latory input signal. Such a set of coordinately regulated tran- 
scription units is known as a regulon. Other, and more flex- 
ible, ways also exist. For example, when signals from several 
regulators are assembled in a combinatorial fashion to gov- 
ern a collection of transcription units, each with its own logic 
unit, diverse patterns of gene expression can be orchestrated 
in response to a variety of environmental contexts. 

III.  METHODS  FOR  COMPARING  DESIGNS TO 
REVEAL DESIGN PRINCIPLES 

Several different approaches have been used to analyze 
and compare gene circuits, and each has contributed in dif- 
ferent ways to our understanding. Here I need only mention 
three of the approaches that have been dealt with in greater 
detail elsewhere. 

A. Types of models 

Simplified models based on random Boolean networks 
have been used to explore properties that are likely to be 
present with high probability regardless of mechanistic de- 
tails or evolutionary history. These tend to be discrete/ 
deterministic models that permit efficient computational ex- 
ploration of large populations of networks, which then 
permit statistical conclusions to be drawn. The work of 
Kauffman provides an example of this approach.4 The ele- 
ments of design emphasized in this approach are the input 
logic units and the connectivity, and properties of the net- 
work are examined as a function of network size. 

Detailed mechanistic models have been used to test our 
understanding of particular gene circuits. The goal is to rep- 
resent the detailed behavior as faithfully as possible. A mix- 
ture of discrete/continuous/deterministic/stochastic model el- 
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ements might be used, depending upon the particular circuit. 
These are computationally intensive and require numerical 
values for the parameters, and detailed quantitative compari- 
sons with experimental data are important means of valida- 
tion. The work of Arkin and colleagues illustrates this 
approach.13 The elements of design emphasized in this ap- 
proach are all those that manifest themselves in the particular 
circuit being modeled. 

Generic models for specific classes of circuits have been 
used to identify design principles for each class. The aim of 
these models is to capture qualitative features of behavior 
that hold regardless of the specific values for the parameters 
and hence that are applicable to the entire class being char- 
acterized. These tend to be continuous/deterministic models 
with a regular formal structure that facilitates analytical and 
numerical comparisons. Examples of this approach will be 
reviewed below in Sec. IV. The elements of design that tend 
to be emphasized in this approach are expression cascades, 
modes of control, input logic units, and connectivity. 

B. A comparative approach to the study of design 

The elucidation of design principles for a class of cir- 
cuits requires a formalism to represent alternative designs, 
methods of analysis capable of predicting behavior, and 
methods for making well-controlled comparisons. 

1. Canonical nonlinear representation 

The power-law formalism combines nonlinear elements 
having a very specific structure (products of power laws) 
with a linear operator (differentiation) to form a set of ordi- 
nary differential equations, which are capable of representing 
any suitably differentiable nonlinear function. This makes it 
an appropriate formalism for representing alternative de- 
signs. 

The elements of the power-law formalism are nonlinear 
functions consisting of simple products of power-law func- 
tions of the state variables14 

*=1 )=1      ' k=\ j=\      ' 

(2) 

ui(.X) = aiXl'»Xz"*X3'»-~X„*i'. (1) 

The two types of parameters in this formalism are referred to 
as multiplicative parameters (a,) and exponential param- 
eters (g,,). They also are referred to as rate-constant param- 
eters and kinetic-order parameters, since these are accepted 
terms in the context of chemical and biochemical kinetics. 
The multiplicative parameters are non-negative real, the ex- 
ponential parameters are real, and the state variables are 
positive real. 

Although the nonlinear behavior exhibited by these non- 
linear elements is fairly impressive, it does not represent the 
full spectrum of nonlinear behavior that is characteristic of 
the power-law formalism. When these nonlinear elements are 
combined with the differential operator to form a set of or- 
dinary differential equations they are capable of representing 
any suitably differentiable nonlinear function. The two most 
common representations within the power-law formalism are 
generalized-mass-action (GMA) systems 

(3) 

and synergistic (S) systems 
n + m n + m 

dXi/dt=aiU Xf-/3/II X-'7.    i=h-.,n. 

The derivatives of the state variables with respect to time t 
are given by dXt/dt. The a and g parameters are defined as 
in Eq. (1) and are used to characterize the positive terms in 
Eqs. (2) and (3), whereas the ß and h parameters are simi- 
larly defined and are used to characterize the negative terms. 
There are in general n dependent variables, m independent 
variables, and a maximum of r terms of a given sign. The 
resulting power-law formalism can be considered a canonical 
nonlinear representation from at least three different perspec- 
tives: fundamental, recast, and local.15 

As the natural representation of the elements postulated 
to be fundamental in a variety of fields, the power-law for- 
malism can be considered a canonical nonlinear representa- 
tion. There are a number of representations that are consid- 
ered fundamental descriptions of the basic entities in various 
fields. Four such representations that are extensively used in 
chemistry, population biology, and physiology are mass- 
action, Volterra-Lotka, Michaelis-Menten, and linear repre- 
sentations. These are, in fact, special cases of the GMA- 
system representation,15 which, as noted earlier, is one of the 
two most common representations within the general frame- 
work of the power-law formalism. Although, the power-law 
formalism can be considered a fundamental representation of 
chemical kinetic events, this is not the most useful level of 
representation for comparing gene circuits because it is much 
too detailed and values for many of the elementary param- 
eters will not be available. Nor does the structure of the 
GMA equations lend itself to general symbolic analysis. 

As a recast description, the power-law formalism can be 
considered a canonical nonlinear representation in nearly ev- 
ery case of physical interest. This is because any nonlinear 
function or set of differential equations that is a composite of 
elementary functions can be transformed exactly into the 
power-law formalism through a procedure called recasting}6 

This is a well-defined procedure for generating a globally 
accurate representation that is functionally equivalent to the 
original representation. In this procedure one trades fewer 
equations with more complex and varied forms of nonlinear- 
ity for more equations with simpler and more regular nonlin- 
ear forms. Although the power-law formalism in the context 
of recasting has important uses and allows for efficient nu- 
merical solution of differential equations, this again is not 
the most useful level of representation for comparing alter- 
native designs for gene circuits because it does not lend itself 
to general systematic analysis. 

As a local description, the power-law formalism can be 
considered a canonical nonlinear representation that is typi- 
cally accurate over a wider range of variation than the cor- 
responding linear representation. The state variables of a sys- 
tem can nearly always be defined as positive quantities. 
Therefore, functions of the state variables can be represented 
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equivalently in a logarithmic space—i.e., a space in which 
the logarithm of the function is a function of the logarithms 
of the state variables. This means that a Taylor series in 
logarithmic space can also be used as a canonical represen- 
tation of the function. If the variables make only small ex- 
cursions about their nominal operating values, then this se- 
ries can be truncated at the linear terms, transformed back 
into Cartesian coordinates, and expressed in the power-law 
formalism. Thus, Taylor's theorem gives a rigorous justifi- 
cation for the local power-law formalism and specific error 
bounds within which it will provide an accurate representa- 
tion. 

A rigorous and systematic analysis of the second-order 
contributions to the local power-law representation has been 
developed by Salvador.17-18 This analysis provides a valuable 
approach for making rational choices concerning model re- 
duction. By determining the second-order terms in the 
power-law approximation of a more complex model one can 
determine those parts of the model that are accurately repre- 
sented by the first-order terms. These parts of the model can 
be safely represented by the local representation; those parts 
that would not be represented with sufficient accuracy can 
then be dealt with in a variety of ways, including a more 
fundamental model or a recast model, either of which would 
leave the resulting model within the power-law representa- 
tion. 

The local S-system representation within the power-law 
formalism has proved to be more fruitful than the local 
GMA-system representation because of its accuracy and 
structure. It is typically more accurate because it allows for 
cancellation of systematic errors.19,20 It has a more desirable 
structure from the standpoint of general symbolic analysis: 
there is an analytical condition for the existence of a steady 
state, an analytical solution for the steady state, and an ana- 
lytical condition that is necessary for the local stability of the 
steady state. The regular structure and tractability of the 
S-system representation is an advantage in systematic ap- 
proaches for inferring the structure of gene networks from 
global expression data.21 

The S-system representation, like the linear and 
Volterra-Lotka representations, exhibits the same structure 
at different hierarchical levels of organization.22 We call this 
the telescopic property of the formalism. Only a few formal- 
isms are known to exhibit this property. A canonical formal- 
ism that provides a consistent representation across various 
levels of hierarchical organization in space and time has a 
number of advantages. For example, consider a system de- 
scribed by a set of S-system equations with n dependent 
variables. Now suppose that the variables of the system form 
a temporal hierarchy such that k of them determine the tem- 
poral behavior of the system. The n — k "fast" variables are 
further assumed to approach a quasi-steady state in which 
they are now related to the k temporally dominant variables 
by power-law equations. When these relationships are sub- 
stituted into the differential equations for the temporally 
dominant variables, a new set of differential equations with k 
dependent variables is the result. This reduced set is also an 
S-system; that is, the temporally dominant subsystem is rep- 
resented within the same power-law formalism. Thus, the 

same methods of analysis can be applied at each hierarchical 
level. 

Power-law expressions are found at all hierarchical lev- 
els of organization from the molecular level of elementary 
chemical reactions to the organismal level of growth and 
allometric morphogenesis.15 This recurrence of the power 
law at different levels of organization is reminiscent of frac- 
tal phenomena, which exhibit the same behavior regardless 
of scale.23 In the case of fractal phenomena, it has been 
shown that this self-similar property is intimately associated 
with the power-law expression.24 Hence, it is not surprising 
that the power-law formalism should provide a canonical 
representation with telescopic properties appropriate for the 
characterization of complex nonlinear systems. 

Finally, piecewise power-law representations provide a 
logical extension of the local power-law representation. The 
piecewise linear representation has long been used in the 
temporal analysis of electronic circuits.25 It simplifies the 
analysis, converting an intractable nonlinear system of equa- 
tions into a series of simple linear systems of equations 
whose behavior, when pieced together, is capable of closely 
approximating that of the original system. A different use of 
an analogous piecewise representation was developed by 
Bode to simplify the interpretation of complex rational func- 
tions that characterize the frequency response of electronic 
circuits.26 This type of Bode analysis was adapted for inter- 
pretation of the rational functions traditionally used to repre- 
sent biochemical rate laws27 and then developed more fully 
into a systematic power-law formalism for the local repre- 
sentation of biochemical systems consisting of many enzy- 
matic reactions.15 In analogy with traditional piecewise lin- 
ear analysis, a piecewise power-law representation has been 
developed and used to analyze models of gene circuitry (see 
Sec. IV C). This form of representation greatly simplifies the 
analysis; it also captures the essential nonlinear behavior 
more directly and with fewer segments than would a piece- 
wise linear representation. 

2. Methods of analysis 

The regular, systematic structure of the power-law for- 
malism implies that methods developed to solve efficiently 
equations having this form will be applicable to a wide class 
of phenomena. This provides a powerful stimulus to search 
for such methods. The potential of the power-law formalism 
in this regard has yet to be fully exploited. The following are 
some examples of generic methods that have been developed 
for analysis within the framework of the power-law formal- 
ism. 

The simplicity of the local S-system representation has 
led to the most extensive development of theory, methodol- 
ogy, and applications within the power-law formalism.28 In- 
deed, as discussed in Sec. IIIB 1, the local S-system repre- 
sentation allows the derivation of important systemic 
properties that would be difficult, if not impossible, to de- 
duce by other means. These advances have occurred because 
it was recognized from the beginning that the steady-state 
analysis of S-systems reduces to conventional linear analysis 
in a logarithmic space. Hence, one was able to exploit the 
powerful methods already developed for linear systems. For 
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example, S-systems have an explicit analytical solution for 
the steady state.14'27 The condition for the existence of such a 
steady state reduces to the evaluation of a simple determinant 
involving the exponential parameters of the S-system. Local 
stability is determined by two critical conditions, one involv- 
ing only the exponential parameters and the other involving 
these as well as the multiplicative parameters. Steady-state 
(logarithmic) gain matrices provide a complete network 
analysis of the signals that propagate through the system. 
Similarly, steady-state sensitivity matrices provide a com- 
plete sensitivity analysis of the parameters that define the 
system and its robustness. The linear structure also permits 
the use of well-developed optimization theory such as the 
simplex method.29 

Analytical solutions for the local dynamic behavior are 
available, including eigenvalue analysis for characterization 
of the relaxation times.30 The regular structure also allows 
the conditions for Hopf bifurcation to be expressed as a 
simple formula involving the exponential parameters.31 

However, S-systems are ultimately nonlinear systems and so 
there is no analytical solution for dynamic behavior outside 
the range of accurate linear representation, which is more 
restrictive than the range of accurate power-law representa- 
tion. Determination of the local dynamic behavior within this 
larger range, and the determination of global dynamic behav- 
ior, requires numerical methods. 

An example of what can be done along these lines is the 
efficient algorithm developed for solving differentia] equa- 
tions represented in the canonical power-law formalism. 
This algorithm, when combined with recasting,16 can be used 
to obtain solutions for rather arbitrary nonlinear differential 
equations. More significantly, this canonical approach has 
been shown to yield solutions in shorter time and with 
greater accuracy, reliability, and predictability than is typi- 
cally possible with other methods. This algorithm can be 
applied to other canonical formalisms as well as to all rep- 
resentations within the power-law formalism. This algorithm 
has been implemented in a user-friendly program call PLAS 
(Power-Law Analysis and Simulation), which is available on 
the web (http://correio.cc.fc.ul.pt/~aenf/plas.html). 

Another example is an algorithm based on the S-system 
representation that finds multiple roots of nonlinear algebraic 
equations.33-34 Recasting allows one to express rather general 
nonlinear equations in the GMA-system representation 
within power-law formalism. The steady states of the GMA- 
system, which correspond to the roots of the original alge- 
braic equation, cannot be obtained analytically. However, 
these power-law equations can be solved iteratively using a 
local S-system representation, which amounts to a Newton 
method in logarithmic space. Each step makes use of the 
analytical solution that is available with the S-system repre- 
sentation (see earlier in this work). The method is robust and 
converges rapidly.33 Choosing initial conditions to be the 
solution for an S-system with terms selected in a combina- 
torial manner from among the terms of the larger GMA- 
system has been shown to find many, and in some cases all, 
of the roots for the original equations.34 

3. Mathematically controlled comparison of 
alternatives 

The existence of an explicit solution allows for the ana- 
lytical specification of systemic constraints or invariants that 
provide the basis for the method of mathematically con- 
trolled comparisons.10'11>27-30'35'36 The method involves the 
following steps. (1) The alternatives being compared are re- 
stricted to having differences in a single specific process that 
remains embedded within its natural milieu. (2) The values 
of the parameters that characterize the unaltered processes of 
one system are assumed to be strictly identical with those of 
the corresponding parameters of the alternative system. This 
equivalence of parameter values within the systems is called 
internal equivalence. It provides a means of nullifying or 
diminishing the influence of the background, which in com- 
plex systems is largely unknown. (3) Parameters associated 
with the changed process are initially free to assume any 
value. This allows the creation of new degrees of freedom. 
(4) The extra degrees of freedom are then systematically re- 
duced by imposing constraints on the external behavior of 
the systems, e.g., by insisting that signals transmitted from 
input (independent variables) to output (dependent variables) 
be amplified by the same factor in the alternative systems. In 
this way the two systems are made as nearly equivalent as 
possible in their interactions with the outside environment. 
This is called external equivalence. (5) The constraints im- 
posed by external equivalence fix the values of the altered 
parameters in such a way that arbitrary differences in sys- 
temic behavior are eliminated. Functional differences that 
remain between alternative systems with maximum internal 
and external equivalence constitute irreducible differences. 
(6) When all degrees of freedom have been eliminated, and 
the alternatives are as close to equivalent as they can be, then 
comparisons are made by rigorous mathematical and com- 
puter analyses of the alternatives. 

Two key features of this method should be noted. First, 
because much of the analysis can be carried out symboli- 
cally, the results are often independent of the numerical val- 
ues for particular parameters. This is a marked advantage 
because one does not know, and in many cases it would be 
impractical to obtain, all the parameter values of a complex 
system. Second, the method allows one to determine the rela- 
tive optima of alternative designs without actually having to 
carry out an optimization (i.e., without having to determine 
explicit values for the parameters that optimize the perfor- 
mance of a given design). If one can show that a given de- 
sign with an arbitrary set of parameter values is always su- 
perior to the alternative design that has been made internally 
and externally equivalent, whether or not the set of param- 
eter values represents an optimum for either design, then one 
has proved that the given design will be superior to the al- 
ternative even if the alternative were assigned a parameter 
set that optimized its performance. This feature is a decided 
advantage because one can avoid the difficult procedure of 
optimizing complex nonlinear systems. 

The method of mathematically controlled comparison 
has been used for some time to determine which of two 
alternative regulatory designs is better according to specific 
quantitative criteria for functional effectiveness. In some 
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cases, as noted above, the results obtained using this tech- 
nique are general and qualitatively clear cut, i.e., one design 
is always better than another, independent of parameter val- 
ues. For example, consider some systemic property, say a 
particular parameter sensitivity, whose magnitude should be 
as small as possible. In many cases, the ratio of this property 
in the alternative design relative to that in the reference de- 
sign has the form R-A/(A+B) where A and B are positive 
quantities with a distinct composition involving many indi- 
vidual parameters. Such a ratio is always less than one, 
which indicates that the alternative design is superior to the 
reference design with regard to this desirable property. In 
other cases, the results might be general but difficult to dem- 
onstrate because the ratio has a more complex form, and 
comparisons made with specific values for the parameters 
can help to clarify the situation. In either of these cases, 
comparisons made with specific values for the parameters 
also can provide a quantitative answer to the question of how 
much better one of the alternatives might be. 

In contrast to the cases discussed previously, in which a 
clear-cut qualitative difference exists, a more ambiguous re- 
sult is obtained when either of the alternatives can be better, 
depending on the specific values of the parameters. For ex- 
ample, the ratio of some desirable systemic property in the 
alternative design relative to that in the reference design has 
the form R = (A + C)I(A +B), where A, B, and C are posi- 
tive quantities with a distinct composition involving many 
individual parameters. For some values of the individual pa- 
rameters OS and for other values C<B, so there is no 
clear-cut qualitative result. A numerical approach to this 
problem has recently been developed that combines the 
method of mathematically controlled comparison with statis- 
tical techniques to yield numerical results that are general in 
a statistical sense.37 This approach retains some of the gen- 
erality that makes mathematically controlled comparison so 
attractive, and at the same time provides quantitative results 
that are lacking in the qualitative approach. 

IV. EXAMPLES OF DESIGN PRINCIPLES FOR 
ELEMENTARY GENE CIRCUITS 

Each design feature of gene circuits allows for several 
differences in design. Our goal is to discover the design prin- 
ciples, if such exist, that would allow one to make predic- 
tions concerning which of the different designs would be 
selected under various conditions. For most features, the de- 
sign principles are unknown, and we are currently unable to 
predict which design among a variety of well-characterized 
designs might be selected in a given context. In a few cases, 
as reviewed later, principles have been uncovered. There are 
simple rules that predict whether the mode of control will be 
positive or negative, whether elementary circuits will be di- 
rectly coupled, inversely coupled, or uncoupled, and whether 
gene expression will switch in a static or dynamic fashion. 
More subtle conditions relate the logic of gene expression to 
the context provided by the life cycle of the organism. 

A. Molecular mode of control 

A simple demand theory based on selection allows one 
to predict the molecular mode of gene control. This theory 

TABLE I. Predicted correlation between molecular mode of control and the 
demand for gene expression in the natural environment. 

Mode of control 

Demand for expression Positive                   Negative 

High 
Low 

Selected                   Lost 
Lost                        Selected 

states that the mode of control is correlated with the demand 
for gene expression in the organism's natural environment: 
positive when demand is high and negative when demand is 
low. Development of this theory involved elucidating func- 
tional differences, determining the consequences of muta- 
tional entropy (the tendency for random mutations to de- 
grade highly ordered structures rather than contribute to their 
formation), and examining selection in alternative environ- 
ments. 

Detailed analysis involving mathematically controlled 
comparisons demonstrates that model gene circuits with the 
alternative modes of control behave identically in most re- 
spects. However, they respond in diametrically opposed 
ways to mutations in the control elements themselves.27 Mu- 
tational entropy leads to loss of control in each case. How- 
ever, this is manifested as super-repressed expression in cir- 
cuits with the positive mode of control, and constitutive 
expression in circuits with the negative mode. The dynamics 
of mixed populations of organisms that harbor either the mu- 
tant or the wild-type control mechanism depend on whether 
the demand for gene expression in the environment is high or 
low.38 The results are summarized in Table I. The basis for 
these results can be understood in terms of the following 
qualitative argument involving extreme environments. 

A gene with a positive mode of control and a high de- 
mand for its expression will be induced normally if the con- 
trol mechanism is wild type. It will be uninduced if the con- 
trol mechanism is mutant, and, since expression cannot meet 
the demand in this case, the organism harboring the mutant 
mechanism will be selected against. In other words, the func- 
tional positive mode of control will be selected when mutant 
and wild-type organisms grow in a mixed population. On the 
other hand, in an environment with a low demand for expres- 
sion, the gene will be uninduced in both wild-type and mu- 
tant organisms and there will be no selection. Instead, the 
mutants will accumulate with time because of mutational 
entropy, and the wild-type organisms with the functional 
positive mode of control will be lost. 

The results for the negative mode of control are just the 
reverse. A gene with a negative mode of control and a low 
demand for its expression will be uninduced normally if the 
control mechanism is wild type. It will be constitutively in- 
duced if the control mechanism is mutant, and, since inap- 
propriate expression in time or space tends to be dysfunc- 
tional, the organism harboring the mutant mechanism will be 
selected against. In other words, the functional negative 
mode of control will be selected when mutant and wild-type 
organisms grow in a mixed population. On the other hand, in 
an environment with a high demand for expression, the gene 
will be induced in both wild-type and mutant organisms and 
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TABLE II. General predictions regarding the mode of control for regulation 
of cell-specific functions in differentiated cell types." 

Cell-specific functions 

Cell type A                                        B 

A 
B 

Positive                              Negative 
Negative                             Positive 

'See Fig. 7 and discussion in the text for a specific example. 

Lytic functions 

P tL1 nutL N oL pL cl oR3 pRM oR2   pR oR1 CRO nutR tRI^ 

' + 

Lytic functions 

Lytic Growth 

there will be no selection. Instead, the mutants will accumu- 
late with time because of mutational entropy, and the wild- 
type organisms with the functional negative mode of control 
will be lost. 

The predictions of demand theory are in agreement with 
nearly all individual examples for which both the mode of 
control and the demand for expression are 
well-documented.39 On the basis of this strong correlation, 
one can make predictions concerning the mode of control 
when the natural demand for expression is known, or vice 
versa. Moreover, when knowledge of cellular physiology 
dictates that pairs of regulated genes should be subject to the 
same demand regime, even if it is unknown whether the 
demand in the natural environment is high or low, then de- 
mand theory allows one to predict that the mode of control 
will be of the same type for both genes. Conversely, when 
such genes should be subject to opposite demand regimes, 
and again even if it is unknown whether the demand in the 
natural environment is high or low, then demand theory al- 
lows one to predict that the mode of control will be of the 
opposite type for these genes. The value of such predictions 
is that once the mode of control is determined experimentally 
for one of the two genes, one can immediately predict the 
mode of control for the other. 

Straightforward application of demand theory to the con- 
trol of cell-specific functions in differentiated cell types not 
only makes predictions about the mode of control for these 
functions in each of the cell types, but also makes the sur- 
prising prediction that the mode of control itself ought to 
undergo switching during differentiation from one cell type 
to another.40 Table II summarizes the general predictions, 
and Fig. 7 provides a specific example of a simple model 
system, cells of Escherichia coli infected with the temperate 
bacteriophage X, that fulfills these predictions. During lytic 
growth (cell type A in Table II), the lytic functions (A- 
specific functions) are in high demand and are predicted to 
involve the positive mode of control. Indeed, they are con- 
trolled by the N gene product, which is an anti-terminator 
exercising a positive mode of control. At the same time, the 
lysogenic functions (B-specific functions) are in low demand 
and are predicted to involve the negative mode of control. In 
this case, they are controlled by the CRO gene product, 
which is a repressor exercising a negative mode of control. 
Conversely, during lysogenic growth (cell type B in Table 
II), the lytic functions (A-specific functions) are in low de- 
mand and are predicted to involve the negative mode of con- 
trol. Indeed, they are controlled by the CI gene product, 
which is a repressor exercising a negative mode of control. 
At the same time, the lysogenic functions (B-specific func- 

Lysogenic functions 

m 

P tL1 nutL N oL pL cl oR3 pRM oR2   pR oRI CRO nutR tR1^ 

o 
Lysogenic Growth 

FIG. 7. Switching the mode of control for regulated cell-specific functions 
during differentiation. The temperate bacteriophage \ can be considered a 
simple model system that exhibits two differentiated forms: (Top panel) The 
lytic form in which the phage infects a cell, multiplies to produce multiple 
phage copies, lysis the cell, and the released progeny begin another cycle of 
lytic growth. (Bottom panel) The lysogenic form in which the phage ge- 
nome is stably incorporated into the host cell DNA and is replicated pas- 
sively once each time the host genome is duplicated. During differentiation, 
when the lysogenic phage is induced to become a lytic phage or the lytic 
phage becomes a lysogenic phage upon infection of a bacterial cell, the 
mode of control switches from positive to negative or vice versa because of 
the interlocking gene circuitry of phage \. See text for further discussion. 

tions) are in high demand and are predicted to involve the 
positive mode of control. In this case, they are controlled by 
the CI gene product, which is also an activator exercising a 
positive mode of control. The mode in each individual case 
is predicted correctly, and the switching of modes during 
"differentiation" (from lysogenic to lytic growth or vice 
versa) is brought about by the interlocking circuitry of 
phage X. 

B. Coupling of elementary gene circuits 

There are logically just three patterns of coupling be- 
tween the expression cascades for regulator and effector pro- 
teins in elementary gene circuits. These are the directly 
coupled, uncoupled, and inversely coupled patterns in which 
regulator gene expression increases, remains unchanged, or 
decreases with an increase in effector gene expression (Fig. 
8). Elementary gene circuits in bacteria have long been stud- 
ied and there are well-characterized examples that exhibit 
each of these patterns. 

A design principle governing the pattern of coupling in 
such circuits has been identified by mathematically con- 
trolled comparison of various designs." The principle is ex- 
pressed in terms on two properties: the mode of control 
(positive or negative) and the capacity for regulated expres- 
sion (large or small ratio of maximal to basal level of expres- 
sion). According to this principle, one predicts that elemen- 
tary gene circuits with the negative mode and small, 
intermediate, and large capacities for gene regulation will 
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TABLE III. Predicted patterns of coupling for regulator and effector cas- 
cades in elementary gene circuits. 

Log (Stimulus) Log (Stimulus) 

FIG. 8. Coupling of expression in elementary gene circuits. The panel on 
the right shows the steady-state expression characteristic for the effector 
cascade in Fig. 6. The panel on the left shows the steady-state expression 
characteristic for the regulator cascade. Induction of effector expression oc- 
curs while regulator expression increases (directly coupled expression), re- 
mains unchanged (uncoupled expression), or decreases (inversely coupled 
expression). 

exhibit direct coupling, uncoupling, and inverse coupling, 
respectively. Circuits with the positive mode, in contrast, are 
predicted to have inverse coupling, uncoupling, and direct 
coupling. 

The approach used to identify this design principle in- 
volves (1) formulating kinetic models that are sufficiently 
generic to include all of the logical possibilities for coupling 
of expression in elementary gene circuits, (2) making these 
models equivalent in all respects other than their regulatory 
parameters, (3) identifying a set of a priori criteria for func- 
tional effectiveness of such circuits, (4) analyzing the steady- 
state and dynamic behavior of the various designs, and (5) 
comparing the results to determine which designs are better 
according to the criteria. These steps are outlined next. 

The kinetic models are all special cases of the generic 
model that is graphically depicted in Fig. 6. This model, 
which captures the essential features of many actual circuits, 
includes two transcription units: one for a regulator gene and 
another for a set of effector genes. The regulator gene en- 
codes a protein that acts at the level of transcription to bring 
about induction, and the effector genes encode the enzymes 
that catalyzes a pathway of reactions in which the inducer is 
an intermediate. The regulator can negatively or positively 
influence transcription at the promoter of each transcription 
unit, and these influences, whether negative or positive, can 
be facilitated or antagonized by the inducer. A local power- 
law representation that describes the regulatable region (i.e., 
the inclined portion) of the steady-state expression character- 
istics in Fig. 8 is the following: 

/W". (4) dXl/dt = alX:i
s'iX5

g,sX6
gu'-ßiXl    , 

dX2ldt= a2Xl
gvX7

S21-ß2X2
hl\ 

dX3 Idt = a3X2
gi2X/™- ßiX^X**, 

dX4 Idt = a4A-3*43X/45X/46- ßAX4''
u, 

dX5/dt=a5X/»X7
s"-ß5X5

h*. 

(5) 

(6) 

(7) 

(8) 

There are four parameters that characterize the pattern of 
regulatory interactions: gI3 and g43 quantify influences of 
inducer X3 on the rate of synthesis of effector mRNA Xt and 
regulator mRNA X4, whereas gis and g45 quantify influ- 
ences of regulator X5 on these same processes. 

Mode of control       Capacity for regulation" Pattern of coupling 

Positive 
Positive 
Positive 
Negative 
Negative 
Negative 

Large 
Intermediate 
Small 
Large 
Intermediate 
Small 

Directly coupled 
Uncoupled 
Inversely coupled 
Inversely coupled 
Uncoupled 
Directly coupled 

"Capacity for regulation is denned as the ratio of maximal to basal level of 
expression. 

In the various models, the values for all corresponding 
parameters other than the four regulatory parameters are 
made equal (internal equivalence). The four regulatory pa- 
rameters have their values constrained so as to produce the 
same steady-state expression characteristics (external equiva- 
lence). Models exhibiting each of the three patterns of cou- 
pling are represented within the space of the constrained 
regulatory parameters. 

Six quantitative, a priori criteria for functional effective- 
ness are used as a basis for comparing the behavior of the 
various models. These are decisiveness, efficiency, selectiv- 
ity, stability, robustness, and responsiveness. A decisive sys- 
tem has a sharp threshold for response to substrate. An effi- 
cient system makes a large amount of product from a given 
supra-threshold increment in substrate. A selective system 
governs the amount of regulator so as to ensure specific con- 
trol of effector gene expression. A locally stable system re- 
turns to its original state following a small perturbation. A 
robust system tends to maintain its state despite changes in 
parameter values that determine its structure. A responsive 
system quickly adjusts to changes. (Further discussion of 
these criteria and the means by which they are quantified can 
be found elsewhere.11) 

The steady-state and dynamic behavior of the various 
models is analyzed by standard algebraic and numerical 
methods, and the results are quantified according to the 
above criteria. Temporal responsiveness is a distinguishing 
criterion for effectiveness of these circuits. A comparison of 
results for models with the various patterns of coupling leads 
to the predicted correlations summarized in Table III. 

To test these predicted correlations we identified 32 el- 
ementary gene circuits for which the mode of control was 
known and for which quantitative data regarding the capaci- 
ties for regulator and effector gene expression were available 
in the literature. A plot of these data in Fig. 9 shows reason- 
able agreement with the predicted positive slope for the 
points representing circuits with a positive mode and the 
predicted negative slope for the points representing circuits 
with a negative mode. Global experiments that utilize mi- 
croarray technology could provide more numerous and po- 
tentially more accurate tests of these predictions. 

C. Connectivity and switching 

Gene expression can be switched ON (and OFF) in ei- 
ther a discontinuous dynamic fashion or a continuously vari- 
able static fashion in response to developmental or environ- 

Downloaded 20 Mar 2001 to 141.214.51.241. Redistribution subject to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp 



152 Chaos, Vol. 11, No. 1,2001 Michael A. Savageau 

~   3 

O)     1 

0-- 

O dsdC- 
hutlGC- O dsdAl 

%-metB-        amBAD 

Tiere- T 
0 12 3 4 5 

Log (Effector gene expression) 

FIG. 9. Experimental data for the coupling of expression in elementary gene 
circuits. The capacity for induction of the effector cascade is plotted on the 
horizontal axis as positive values. The capacity for expression of the regu- 
lator cascade is plotted on the vertical axis as positive values (induction), 
negative values (repression), or zero (no change in expression). Effector 
cascades having a positive mode of control are represented as data points 
with filled symbols and those having a negative mode with open symbols. 
Data show reasonably good agreement with the predictions in Table III. 

mental cues. These alternative switch behaviors are clearly 
manifested in the steady-state expression characteristic of the 
gene. In some cases, the elements of the circuitry appear to 
be the same, and yet the alternative behaviors can be gener- 

ated by the way in which the elements are interconnected. 
This design feature has been examined in simple model cir- 
cuits. The results have led to specific conditions that allow 
one to distinguish between these alternatives, and these con- 
ditions can be used to interpret the results of experiments 
with the lac operon of E. coli. 

A design principle that distinguishes between discon- 
tinuous and continuous switches in a model for inducible 
catabolic pathways (Fig. 10) is the following. If the natural 
inducer is the initial substrate of the inducible pathway, or if 
it is an intermediate in the inducible pathway, then the switch 
will be continuous; if the inducer is the final product of the 
inducible pathway, then the switch can be discontinuous or 
continuous, depending on an algebraic condition that in- 
volves four kinetic orders for reactions in the circuit. (A 
more general statement of the principle can be given in terms 
of the algebraic condition, as will be shown below.) 

A simplified set of equations that captures the essential 
features of the model in Fig. 10 is the following: 

dXxldt = aXB-ß\Xx,    X3<X 3Z-> 

dX,/dt=alX3
s,3-ßlX1,    X3L<X3<X3H, 

dX\ldt=aiM-ß\Xi,    X3H<X3, 

(9a) 

(9b) 

(9c) 
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FIG. 10. Simplified model of an inducible catabolic pathway exhibits two types of switch behavior depending upon the position of the inducer in the inducible 
pathway, (a) The inducer is the final product of the inducible pathway, (b) The S-shaped curve is the steady-state solution for Eqs. (9) and (10). The lines (a, 
b, and c) axe the steady-state solutions for Eq. (11) with different fixed concentrations of the stimulus Xt. The steady-state solutions for the system are given 
by the intersections of the S-shaped curve and the straight lines. There is only one intersection (maximal expression) when In XA>a; there is only one 
intersection (basal expression) when InXt<b. There are three intersections when b<\aXt =c<a, but the middle one is unstable. The necessary and sufficient 
condition for the bistable behavior in this context is that the slope of the straight line be less than the slope of the S-shaped curve at intermediate concentrations 
of the inducer X3, which is the condition expressed in Eq. (12). (c) The steady-state induction characteristic exhibits discontinuous dynamic switches and a 
well-defined hysteresis loop. Thus, at intermediate concentrations of the stimulus X4, expression will be at either the maximal or the basal level depending 
upon the past history of induction, (d) The inducer is an intermediate in the inducible pathway, (e) The steady-state solutions for the system are given by the 
intersections of the S-shaped curve and vertical lines. There is only one intersection possible for any given concentration of stimulus, (f) The steady-state 
induction characteristic exhibits a continuously changing static switch, (g) The inducer is the initial substrate of the inducible pathway, (h) The steady-state 
solutions for the system are given by the intersections of the S-shaped curve and the lines of negative slope. There is only one intersection possible for any 
given concentration of stimulus, (i) The steady-state induction characteristic exhibits a continuously changing static switch. 
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TABLE IV. Summary of predictions relating type of switch behavior to the connectivity in the model inducible 
circuit of Fig. 10. 

Figure        Stimulus 

10(d) IPTG 
10(a) IPTG 
10(d) Lactose 
10(g) Allolactose 

Inducer 

IPTG 
IPTG 
Allolactose 
Allolactose 

Transport 

Constitutive 
Inducible 
Inducible 
Constitutive 

Connection from 
inducible pathway 

None 
Product 
Intermediate 
Substrate 

Switch 

Static 
Dynamic 
Static 
Static 

dX2/dt=a2Xl-ß2X2, 

dX3 ldt = a3X
g*Xs™-ß3X

h*x"*. 

(10) 

01) 
The variables Xu X2, X3, and X4 represent the concentra- 
tions of polycistronic mRNA, a coordinately regulated set of 
proteins, inducer, and stimulus, respectively. This is a piece- 
wise power-law representation (see Appendix of Ref. 27) 
that emphasizes distinct regions of operation. There is a con- 
stant basal level of expression when inducer concentration 
X3 is lower than a value X3L; there is a constant maximal 
level of expression when inducer concentration is higher 
than a value X3H; there is a regulated level of expression 
(with cooperativity indicated by a value of the parameter 
g,3>l) when inducer concentration is between the values 
X3L and X3H. All parameters in this model have positive 
values. 

The position of the natural inducer in an inducible path- 
way has long been known to have a profound effect on the 
local stability of the steady state when the system is operat- 
ing on the inclined portion (i.e., the regulatable region) of the 
steady-state expression characteristic (Fig. 8, right panel).27 

As the position of the natural inducer is changed from the 
initial substrate [Fig. 10(g)], to an intermediate [Fig. 10(d)] 
to the final product [Fig. 10(a)] of the inducible pathway (all 
other parameters having fixed values), the margin of stability 
decreases. In this progression the single stable steady state 
[Fig. 10(h)] can undergo a bifurcation to an unstable steady 
state flanked by two stable steady states [Fig. 10(b)], which 
is the well-known cusp catastrophe characteristic of a dy- 
namic ON-OFF switch.41 

The critical conditions for the existence of multiple 
steady states and a dynamic switch are given by 

gi3>h33/(g32-h32)    and    g32>h32. (12) 

In general, the inducible proteins must have a greater influ- 
ence on the synthesis (g32) than on the degradation (h32) of 
the inducer. These conditions can be interpreted, according 
to conventional assumptions, in terms of inducer position in 
the pathway. If the position of the true inducer is functionally 
equivalent to that of the substrate for the inducible pathway, 
then #32=0 and the conditions in Eq. (12) cannot be satis- 
fied. If the position is functionally equivalent to that of the 
intermediate in the inducible pathway, the kinetic orders for 
the rates of synthesis and degradation of the intermediate are 
the same with respect to the enzymes for synthesis and deg- 
radation, and these enzymes are coordinately induced, then 
g32=h32 and again the conditions in Eq. (12) cannot be sat- 
isfied. However, if the position is functionally equivalent to 

that of the product for the inducible pathway, then h32=0 
and the conditions in Eq. (12) can be satisfied provided gu 
>h33>g32- 

The values of the parameters in this model have been 
estimated from experimental data for the lac operon of E. 
coli.10 These results, together with these data, can be used to 
interpret four experiments involving the circuitry of the lac 
operon (see Table IV and the following discussion). 

First, if the lac operon is induced with the nonmetabo- 
lizable (gratuitous) inducer isopropyl-/?, D-thiogalactoside 
(IPTG) in a cell with the inducible Lac permease protein, 
then the model is as shown in Fig. 10(a). In this case, Xt is 
the concentration of polycistronic lac mRNA, X2 is the con- 
centration of the Lac permease protein alone (X2 has no 
influence on the degradation of the inducer X3), X3 is the 
intracellular concentration of IPTG, and X4 is the extracellu- 
lar concentration of IPTG. With the parameter values from 
the lac operon, the conditions in Eq. (12) are satisfied be- 
cause h33= 1 (aggregate loss by all causes in exponentially 
growing cells is first order), g32= 1 (enzymatic rate is first 
order with respect to the concentration of total enzyme), and 
gi3=2 (the Hill coefficient of lac transcription with respect 
to the concentration of inducer is second order). 

Second, if the lac operon is induced with the gratuitous 
inducer IPTG in a cell without the Lac permease protein, 
then the inducer IPTG is not acted upon by any of the protein 
products of the operon. In this case, Xx is the concentration 
of polycistronic lac mRNA, X2 is the concentration of 
/?-galactosidase protein alone {X2 has no influence on either 
the synthesis or the degradation of the inducer X3), X3 is the 
intracellular concentration of IPTG, and X4 is the extracellu- 
lar concentration of IPTG. The conditions in Eq. (12) now 
cannot be satisfied because g23=h23=0 and all other param- 
eters are positive. This is an open-loop situation in which 
expression of the operon is simply proportional to the rate of 
transcription as determined by the steady-state concentration 
of intracellular IPTG, which is proportional to the concentra- 
tion of extracellular IPTG. 

Thus, the kinetic model accounts for two important ob- 
servations from previous experiments. It accounts for the 
classic experimental results of Novick and Weiner42 in which 
they observed a discontinuous dynamic switch with hyster- 
esis. They induced the lac operon with a gratuitous inducer 
that was transported into the cell by the inducible Lac per- 
mease, was diluted by cellular growth, but was not acted 
upon by the remainder of the inducible pathway. Hence, the 
gratuitous inducer occupied the position of final product for 
the inducible pathway (in this case simply the Lac permease 
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step), and the model predicts dynamic bistable switch behav- 
ior similar to that depicted in Figs. 10(b) and 10(c). The 
kinetic model also accounts for the classic experimental re- 
sults of Sadler and Novick43 in which they observed a con- 
tinuous static switch without hysteresis. In their experiments 
they used a mutant strain of E. coli in which the lac per- 
mease was inactivated and they induced the lac operon with 
a gratuitous inducer. In this system, the inducer is not acted 
upon by any part of the inducible pathway, the extracellular 
and intracellular concentrations of inducer are proportional, 
and the model predicts a continuous static switch similar to 
that depicted in Figs. 10(e) and 10(f). The model in Fig. 10 
also makes two other predictions related to the position of 
the natural inducer in the inducible pathway. 

First, if the lac operon is induced with lactose in a cell 
with all the inducible Lac proteins intact, then the model is 
as shown in Fig. 10(d). In this case, Xx is the concentration 
of polycistronic lac mRNA, X2 is the concentration of the 
Lac permease protein as well as the concentration of the 
yS-galactosidase protein (which catalyzes both the conversion 
of lactose to allolactose and the conversion of allolactose to 
galactose and glucose), X3 is the intracellular concentration 
of allolactose, and X4 is the extracellular concentration of 
lactose. In steady state, the sequential conversion of extracel- 
lular lactose to intracellular lactose (by Lac permease) and 
intracellular lactose to allolactose (by /3-galactosidase) can 
be represented without loss of generality as a single process 
because these two proteins are coordinately expressed. 
Again, the conditions in Eq, (12) cannot be satisfied. In this 
case, #23='!23= 1 anc' aN otner parameters are positive finite, 
and the model predicts a continuous static switch similar to 
that depicted in Figs. 10(e) and 10(f). 

Second,, if the lac operon is induced with allolactose, the 
natural inducer, in a cell without the Lac permease protein, 
then the model is as shown in Fig. 10(g). In this case, Xf is 
the concentration of polycistronic lac mRNA, X2 is the con- 
centration of the /3-galactosidase protein alone (which cata- 
lyzes the conversion of allolactose to galactose and glucose), 
X3 is the intracellular concentration of allolactose, and X4 is 
the extracellular concentration of allolactose. The conditions 
in Eq. (12) cannot be satisfied. In this case, g23=0 ar)d a'l 
other parameters are positive, and the model predicts a con- 
tinuous static switch similar to that represented in Figs. 10(h) 
and 10(i). 

The fact that the kinetic model of the lac operon predicts 
a continuous static switch in response to extracellular lactose 
led us to search the literature for the relevant experimental 
data. We were unable to find any experimental evidence for 
either a continuous static switch or a discontinuous dynamic 
switch in response to lactose, which comes as a surprise. 
Despite the long history of study involving the lac operon, 
such experiments apparently have not been reported. Experi- 
ments to test this prediction specifically are currently being 
designed and carried out (Atkinson and Ninfa, unpublished 
results). 

D. Context and logic 

In the qualitative version of demand theory (Sec. IV A) it 
was assumed for simplicity that there was a constant demand 

regime for the effector gene in question and that its expres- 
sion was controlled by a single regulator. Here I review the 
quantitative version of demand theory and include consider- 
ation of genes exposed to more than one demand regime and 
controlled by more than one regulator. 

1. Life cycle provides the context for gene control 

Models that include consideration of the organism's life 
cycle, molecular mode of gene control, and population dy- 
namics are used to describe mutant and wild-type popula- 
tions in two environments with different demands for expres- 
sion of the genes in question. These models are analyzed 
mathematically in order to identify conditions that lead to 
either selection or loss of a given mode of control. It will be 
shown that this theory ties together a number of important 
variables, including growth rates, mutation rates, minimum 
and maximum demands for gene expression, and minimum 
and maximum durations for the life cycle of the organism. A 
test of the theory is provided by the lac operon of E. coli. 

The life cycle of E. coli involves sequential colonization 
of new host organisms,44 which means repeated cycling be- 
tween two different environments [Figs. 11(a) and 11(b)]. In 
one, the upper portion of the host's intestinal track, the mi- 
crobe is exposed to the substrate lactose and there is a high 
demand for expression of the lac operon, and in the other, 
the lower portion of the intestinal track and the environment 
external to the host, the microbe is not exposed to lactose 
and there is a low demand for lac expression. The average 
time to complete a cycle through these two environments is 
defined as the cycle time, C, and the average fraction of the 
cycle time spent in the high-demand environment is defined 
as the demand for gene expression, D [Fig. 11(c)]. 

The implications for gene expression of mutant and 
wild-type operons in the high- and low-demand environ- 
ments are as follows. The wild-type functions by turning on 
expression in the high-demand environment and turning off 
expression in the low-demand environment. The mutant with 
a defective promoter is unable to turn on expression in either 
environment. The mutant with a defective modulator (or de- 
fective regulator protein) is unable to tum off expression 
regardless of the environment. The double mutant with de- 
fects in both promoter and modulator/regulator behaves like 
the promoter mutant and is unable to turn on expression in 
either environment. 

The sizes of the populations are affected by the transfer 
rate between populations, which is the result of mutation, 
and by the growth rate, which is the result of overall fitness. 
The transfer rates depend on the mutation rate per base and 
on the size of the relevant target sequence. The growth rate 
for the wild type is greater than that for mutants of the modu- 
lator type in the low-demand environment; these mutants are 
selected against because of their superfluous expression of an 
unneeded function. The growth rate for the wild type is 
greater than that for mutants of the promoter type in the 
high-demand environment; these mutants are selected 
against because of their inability to express the needed func- 
tion. 

Solution of the dynamic equations for the populations 
cycling through the two environments yields expressions in 
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TABLE V. Summary of experimental data and model predictions based on 
conditions for selection of the lac operon in Escherichia coli. 

Characteristic Experimental data       Model predictions 

FIG. 11. Life cycle of Escherichia coli and the demand for expression of its 
lac operon. (a) Schematic diagram of the upper (high demand) and lower 
(low demand) portions of the human intestinal track, (b) Life cycle consists 
of repeated passage between environments with high- and low-demand for 
lac gene expression, (c) Definition of cycle time C and demand for gene 
expression D. (d) Region in the C vs D plot for which selection of the 
wild-type control mechanism is possible, (e) Rate of selection as a function 
of demand, (f) Extent of selection as a function of demand. See text for 
discussion. 

C and D for the threshold, extent, and rate of selection that 
apply to the wild-type control mechanism.45 The threshold 
for selection is given by the boundary of the shaded region in 
Fig. 11(d); only systems with values of C and D that fall 
within this region are capable of being selected. The rate and 
extent of selection shown in Figs. 11(e) and 11(f) exhibit 
optimum values for a specific value of D. 

Application of this quantitative demand theory to the lac 
operon of E. coli yields several new and provocative predic- 
tions that relate genotype to phenotype.46 The straight line in 
Fig. 11(d) represents the inverse relationship C=3/D that 
results from fixing the time of exposure to lactose at 3 h, 
which is the clinically determined value for humans.47,48 The 
intersections of this line with the two thresholds for selection 
provide lower and upper bounds on the cycle time. The 
lower bound is approximately 24 h, which is about as fast as 
the microbe can cycle through the intestinal track without 
colonization.49"" The upper bound is approximately 70 
years, which is the longest period of colonization without 
cycling and corresponds favorably with the maximum life 
span of the host.52 The optimum value for the cycle time, as 
determined by the optimum value for demand [from Figs. 
11(e) and 11(f)], is approximately four months, which is 
comparable to the average rate of recolonization measured in 
humans.53-55 A summary of these results is given in Table V. 

2. Logic unit and phasing of lac control 

The analysis in Sec. IV D 1 assumed that when K coli 
was growing on lactose there was no other more preferred 
carbon source present. Thus, the positive CAP-cAMP 
regulator56 was always present, and we could then concen- 

Intestinal transit time 
Lifetime of the host 
Re-colonization rate 

12-48 h 
120 years 
2-18 months 

26 h 
66 years 
4 months 

träte on the conditions for selection of the specific control by 
Lac repressor. This was a simplifying assumption; in the 
more general situation, both the specific control by Lac re- 
pressor and the global control by CAP-cAMP activator must 
be taken into consideration. The analysis becomes more 
complex, but it follows closely the outline of the simpler 
case in Sec. IV D 1. 

By extension of the definition for demand D, given in 
Sec. IV D 1, one can define a period of demand for the ab- 
sence of repressor G, a period of demand for the presence of 
activator E, and a phase relationship between these two pe- 
riods of demand F. By extension of the analysis in Sec. 
IV D 1, solution of the dynamic equations for wild-type and 
mutant populations cycling through the two environments 
yields expressions in C, G, E, and F for the threshold, extent, 
and rate of selection that apply to the wild-type control 
mechanism. 

The threshold for selection is now an envelope surround- 
ing a "mound" in four-dimensional space with cycle time C 
as a function of the three parameters G, E, and F; only sys- 
tems with values that fall within this envelope are capable of 
being selected. The rate and extent of selection exhibit opti- 
mum values as before, but these now occur with a specific 
combination of values for G, E, and F. The values of G, E, 
and F that yield the optima represent a small period when 
repressor is absent, an even smaller period when activator is 
absent, and a large phase period between them. The period 
when repressor is absent corresponds to the period of expo- 
sure to lactose (—0.36% of the cycle time). Within this pe- 
riod (but shifted by —0.20% of the cycle time) there is a 
shorter period when activator is absent (—0.14% of the cycle 
time); this corresponds to the presence of a more preferred 
carbon source that lowers the level of cAMP. 

These relationships can be interpreted in terms of expo- 
sure to lactose, exposure to glucose, and expression of the 
lac operon as shown in Fig. 12. As E. coli enters a new host, 
passes through the early part of the intestinal track, and is 
exposed to lactose, the lac operon is induced and the bacteria 
are able to utilize lactose as a carbon source. During this 
period the operator site of the lac operon is free of the Lac 
repressor. At the point in the small intestine where the host's 
lactase enzymes are localized, lactose is actively split into its 
constituent sugars, glucose and galactose. This creates a 
rapid elevation in the concentration of these sugars in the 
environment of E. coli. A period of growth on glucose is 
initiated, and this is accompanied by catabolite repression 
and lactose exclusion from the bacteria. During this period 
the initiator site of the lac operon is free of the CAP-cAMP 
activator, transcription of the lac operon ceases, and the con- 
centration of /?-galactosidase is diluted by growth. During 
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FIG. 12. Optimal duration and phasing of the action by the positive (CAP- 
cAMP) and negative (Lad) regulators of /S-galactosidase expression. The 
signal on the top line represents the absence of repressor binding to the lac 
operator site, the signal on the second line represents activator binding to the 
lac initiator site. The cycle time C is the period between the vertical lines, 
and the relative phasing is shown as F. An expanded view of the critical 
region gives an interpretation in terms of exposure to lactose and glucose as 
bacteria pass the site of the lactase enzymes in the small intestine. See text 
for discussion. 

this period the glucose in the intestine is also rapidly ab- 
sorbed by the host. Eventually, the glucose is exhausted, the 
CAP-cAMP activator again binds the initiator site of the lac 
operon, and the residual lactose that escaped hydrolysis by 
the host's lactase enzymes causes a diminished secondary 
induction of the bacterial lac operon. Finally, the lactose is 
exhausted, the Lac repressor again binds the operator site of 
the lac operon, and the microbe enters the low-demand en- 
vironment and colonizes the host. 

The quantitative version of demand theory integrates in- 
formation at the level of DNA (mutation rate, effective target 
sizes for mutation of regulatory proteins, promoter sites, and 
modulator sites), physiology (selection coefficients for super- 
fluous expression of an unneeded function and for lack of 
expression of an essential function), and ecology (environ- 
mental context and life cycle) and makes rather surprising 
predictions connected to the intestinal physiology, life span, 
and recolonization rate of the host. There is independent ex- 
perimental data to support each of these predictions. 

Finally, when the logic of combined control by CAP- 
cAMP activator and Lac repressor was analyzed, we found 
an optimum set of values not only for the exposure to lac- 
tose, but also for the exposure to glucose and for the relative 
phasing between these periods of exposure. The phasing pre- 
dicted is consistent with the spatial and temporal environ- 
ment created by the patterns of disaccharide hydrolysis and 
monosaccharide absorption along the intestinal tract of the 
host. 

V. DISCUSSION 

Although biological principles that govern some varia- 
tions in design have been identified (e.g., positive vs nega- 
tive modes of control), there are other well-documented (and 

many not so well-documented) variations in design that still 
are not understood. For example, why is the positive mode of 
control in some cases realized with an activator protein that 
facilitates transcription of genes downstream of a promoter, 
and in other cases with an antiterminator protein that facili- 
tates transcription of genes downstream of a terminator? 
There are many examples of each, but no convincing expla- 
nation for the difference. Thus, the elements of design and 
the variations I have reviewed in Sec. II provide only a start; 
there is much to be done in this area. 

For the comparative analysis of alternative designs we 
require a formalism capable of representing diverse designs, 
tractable methods of analysis for characterizing designs, and 
a strategy for making well-controlled comparisons that re- 
veal essential differences while minimizing extraneous dif- 
ferences. As reviewed in Sec. Ill, there are several arguments 
that favor the power-law formalism for representing a wide 
spectrum of nonlinear systems. In particular, the local 
S-system representation within this formalism not only pro- 
vides reasonably accurate descriptions but also possesses a 
tractable structure, which allows explicit solutions for the 
steady state and efficient numerical solutions for the dynam- 
ics. Explicit steady-state solutions are used to make math- 
ematically controlled comparisons. Constraining these solu- 
tions provides invariants that eliminate extra degrees of 
freedom, which otherwise would introduce extraneous differ- 
ences into the comparison of alternatives. The ability to pro- 
vide such invariants is one of the principle advantages of 
using the local S-system representation. Two other formal- 
isms with this property are the linear representation and the 
Volterra-Lotka representation, which is equivalent to the 
linear representation for the steady state. However, these rep- 
resentations yield linear relations between variables in steady 
state, which is less appropriate for biological systems in 
which these relationships are typically nonlinear. 

The utility of these methods for studying alternative de- 
signs ultimately will be determined by the degree to which 
their predictions are supported by experimental evidence. 
For this reason it is important that the methods consider an 
entire class of systems without specifying numerical values 
for the parameters, which often are unknown in any case. 
Predictions achieved with this approach then can be tested 
against numerous examples provided by members of the 
class. If the methods were to focus upon a single system with 
specific values for its parameters, then there would be only 
the one example to test any hypothesis that might be con- 
ceived. The symbolic approach also allows one to compare 
efficiently many alternatives including ones that no longer 
exist (and so values of their parameters will never be 
known), which often is the case in trying to account for the 
evolution of a given design, or that hypothetically might be 
brought into existence through genetic engineering. The four 
design principles reviewed in Sec. IV illustrate the types of 
results that have been obtained when the methods in Sec. HI 
are applied to some of the elements of design described in 
Sec. II. 

First, we examined the two modes of control in elemen- 
tary gene circuits (Sec. IV A). Qualitative arguments and ex- 
amples were used to demonstrate the validity of demand 
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theory for the regulator-modulator component of control 
mechanisms. The same approach also can be used to account 
for the alternative forms of the promoter component. In ei- 
ther case, the qualitative arguments are based on extreme 
cases where the demand is clearly high or low. One would 
like to quantify what is meant by demand, to know how high 
it must be to select for the positive mode of control or a 
low-level promoter, and to know how low it must be to se- 
lect for the negative mode of control or a high-level pro- 
moter. The quantitative version of demand theory reviewed 
in Sec. IV D specifically addresses these issues. 

Second, we examined the three patterns of coupling in 
elementary gene circuits (Sec. IV B). It was their dynamic 
properties that proved to be distinctive. Establishing the dy- 
namic differences required efficient numerical solutions of 
the differential equations and a means to reduce the dimen- 
sion of the search in order to explore fully the parameter 
space. The results in Sec. IV B illuminate an area of experi- 
mental work that needs greater attention. For example, the 
data in Fig. 9 were obtained from individual gene circuits as 
a result of labor-intensive studies designed for purposes 
other than quantitative characterization of the steady-state 
induction characteristics for effector and regulator cascades. 
The data often are sketchy and subject to large errors, par- 
ticularly in the case of regulator proteins, which generally are 
expressed at very low levels. Genomic and proteomic ap- 
proaches to the measurement of expression should provide 
data for a much larger number of elementary gene circuits. 
However, these approaches also have difficulty measuring 
low levels of expression, and so technical improvements will 
be needed before they will be able to quantify expression of 
regulator genes. 

Third, we examined various forms of connectivity that 
link the inducer to the transcription unit for an inducible 
catabolic pathway and showed that two different types of 
switching behavior result (Sec. IV C). The analysis of lac 
circuitry in this regard focused attention on a long-standing 
misconception in the literature, namely, that lac operon ex- 
pression normally is an all-or-none phenomenon. While con- 
tinuously variable induction of the lactose operon might be 
appropriate for a catabolic pathway whose expression can 
provide benefits to the cell even when partially induced, a 
discontinuous induction with hysteresis might be more ap- 
propriate for major differentiation events that require a defi- 
nite commitment at some point. The wider the hysteretic 
loop the greater the degree of commitment. The width of the 
loop tends to increase with a large capacity for induction 
(ratio of maximum to basal level of expression), high loga- 
rithmic gain in the regulatable region (high degree of coop- 
erativity), and substrates for the enzymes in the pathway op- 
erating as near saturation as compatible with switching. 

Fourth, we examined the context of gene expression and 
developed a quantitative version of demand theory (Sec. 
IV D). In addition to providing a quantitative measure of 
demand, the results define what high and low mean in terms 
of the level of demand required to select for the positive or 
the negative mode of control and for low- or high-level pro- 
moters. This analysis also predicted new and unexpected 
kinds of information, such as intestinal transit time, host life- 

time, and recolonization rate. When the logic unit involving 
the two relevant regulators was included in the analysis it 
also yielded predictions for the relative phasing of the envi- 
ronmental cues involved in lac operon induction. 

Is there anything common to these successful explana- 
tions of design that might be useful as a guide in exploring 
other variations in design? Two such features come to mind. 
First, each of the examples involved a limited number of 
possible variations on a theme: two modes of control, three 
patterns of coupling, two types of switches. This meant that 
only a small number of cases had to be analyzed and com- 
pared, which is a manageable task. If there had been many 
variations in each case, then one would have no hope of 
finding a simple underlying rule that could account for all the 
variations, and one might never have considered analyzing 
and comparing all of the possibilities. Second, each case 
could be represented by a set of simple equations whose 
structure allowed symbolic analysis (and exhaustive numeri- 
cal analysis when necessary). This permitted the use of con- 
trolled mathematical comparisons, which led to the identifi- 
cation of clear qualitative differences in the behavior of the 
alternatives. Thus, it might prove fruitful in the future to look 
for instances where these features present themselves. 

In this context, we must acknowledge the fundamental 
role of accident in generating the diversity that is the sub- 
strate for natural selection. Thus, there undoubtedly will be 
examples of recently generated variations in design for 
which there will be no rational explanation. Only in time will 
natural selection tend to produce designs that are shaped for 
specific functions and hence understandable in principle. 

Finally, will the understanding of large gene networks 
require additional tools beyond those needed for elementary 
gene circuits? Although we have no general answer to this 
question, there are three points having to do with network 
connectivity, catalytic versus stoichiometric linkages, and 
time-scale separation that are worthy of comment. 

First, the evidence suggests, at least for bacteria, that 
there are relatively few connections between elementary 
gene circuits (see Sec. IID). This probably explains the ex- 
perimental success that has been obtained by studying the 
regulation of isolated gene systems. Had there been rich in- 
teractions among these gene systems, such studies might 
have been less fruitful. Low connectivity also suggests that 
the understanding of elementary circuits may largely carry 
over to their role in larger networks and that the same tools 
might be used to study larger networks. 

Second, catalytic linkages between circuits are less prob- 
lematic then stoichiometric linkages, at least for the analysis 
of steady-state behavior. Elementary circuits can be linked 
catalytically without their individual properties changing ap- 
preciably, because the molecules in one circuit acting cata- 
lytically on another circuit are not consumed in the process 
of interaction. Such a circuit can have a unilateral effect on a 
second circuit, without having its own behavior affected in 
the process. This permits a modular block-diagram treat- 
ment, which makes use of the results obtained for the indi- 
vidual circuits in isolation, to characterize the larger net- 
work. (This is analogous to the well-known strategy used by 
electronic engineers, who design operational amplifiers with 
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high impedance to insulate the properties of the modules 
being coupled.) On the other hand, elementary circuits that 
are linked stoichiometrically may not be treatable in this 
fashion, because the molecules in one circuit are consumed 
in the process of interacting with a second circuit. This is a 
much more intimate linkage that may require the two circuits 
to be studied as a whole. In either case, the dynamic proper- 
ties are not easily combined in general because the circuits 
are nonlinear. 

Third, the separation of time scales allows some elemen- 
tary circuits to be represented by transfer functions consist- 
ing of a simple power-law function. (Allometric relation- 
ships are an example of this.) This is related to the telescopic 
property of the S-system representation that was mentioned 
in Sec. HI B 1. This property allows a simple block-diagram 
treatment of the elementary circuits that operate on a fast 
time scale. 
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ABSTRACT We have determined the effects of control by overall feedback inhibition on the systemic behavior of un- 
branched metabolic pathways with an arbitrary pattern of other feedback inhibitions by using a recently developed numerical 
generalization of Mathematically Controlled Comparisons, a method for comparing the function of alternative molecular 
designs. This method allows the rigorous determination of the changes in systemic properties that can be exclusively 
attributed to overall feedback inhibition. Analytical results show that the unbranched pathway can achieve the same 
steady-state flux, concentrations, and logarithmic gains with respect to changes in substrate, with or without overall feedback 
inhibition. The analytical approach also shows that control by overall feedback inhibition amplifies the regulation of flux by the 
demand for end product while attenuating the sensitivity of the concentrations to the same demand. This approach does not 
provide a clear answer regarding the effect of overall feedback inhibition on the robustness, stability, and transient time of the 
pathway. However, the generalized numerical method we have used does clarify the answers to these questions. On average, 
an unbranched pathway with control by overall feedback inhibition is less sensitive to perturbations in the values of the 
parameters that define the system. The difference in robustness can range from a few percent to fifty percent or more, 
depending on the length of the pathway and on the metabolite one considers. On average, overall feedback inhibition 
decreases the stability margins by a minimal amount (typically less than 5%). Finally, and again on average, stable systems 
with overall feedback inhibition respond faster to fluctuations in the metabolite concentrations. Taken together, these results 
show that control by overall feedback inhibition confers several functional advantages upon unbranched pathways. These 
advantages provide a rationale for the prevalence of this control mechanism in unbranched metabolic pathways in vivo. 

INTRODUCTION 

Biochemical control systems have been studied for more 
than 45 years. The discovery of control by molecular feed- 
back inhibition in biochemical pathways was initially made 
in unbranched biosynthetic pathways (Umbarger, 1956; 
Yates and Pardee, 1956). In these pathways, the most com- 
mon pattern of control is inhibition of the initial reaction by 
the final product of the pathway (end-product inhibition or 
overall feedback inhibition). 

There are several criteria for the functional effectiveness 
of control in such pathways that can be used to evaluate the 
biological significance of the overall feedback inhibition 
mechanism. A biochemical pathway should be robust, i.e., it 
should function reproducibly despite perturbations in the 
values of the parameters that define the structure of the 
system. The operating point (state) of the system should be 
stable so that the system returns to the steady state following 
small random fluctuations in the values of the dependent 
variables; if not, the system tends to be dysfunctional be- 
cause spurious environmental fluctuations will lead to loss 
of the steady state. The flux through the pathway should be 
responsive to changes in the demand for the final product. 
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This ensures that the amount of material flowing through 
the pathway is intimately coupled to the metabolic needs of 
the cell. Finally, the system should be temporally responsive 
to changes, because, otherwise, the system is unlikely to be 
competitive in rapidly changing environments. [A more 
extensive discussion of these criteria and their quantifica- 
tion can be found in Savageau (1976) and Hlavacek and 
Savageau (1997).] 

There have been several studies focused on the effect of 
control by overall feedback inhibition on the stability of 
unbranched pathways. In general, the First enzyme of the 
pathway is considered to be allosteric, whereas the others 
are considered to be Michaelian (e.g., Goodwin, 1963; 
Morales and McKay, 1967; Walter, 1969a,b, 1970; 
Viniegra-Gonzalez, 1973; Hunding, 1974; Rapp, 1976; Di- 
brov et al., 1981). The stability of an unbranched pathway 
with overall feedback inhibition and enzymes confined to 
one of two spatial compartments with diffusion between 
compartments has been studied by Costalat and Burger 
(1996). They found that stability can be increased by this 
type of compartmentation. These studies considered path- 
ways with no internal feedback inhibitions. 

Several other patterns involving control by inhibitory 
feedback can, in principle, perform the same qualitative 
functions as overall feedback inhibition. One such pattern 
is, for example, a sequence of feedback inhibitions in which 
each intermediate inhibits the reaction that immediately 
precedes it (Koch, 1967). Other patterns of internal feed- 
back inhibition can be found by searching either the litera- 
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ture or some of the databases for metabolism that are 
burgeoning on the world wide web (e.g., KEEG: http://www. 
genome.ad.jp/kegg/; ECOCYC: http://ecocyc.PangeaSystems. 
com/ecocyc/server.html; PUMA: http://www.unix.mcs.anl. 
gov/compbio/PUMA/Production/puma_graphics.html; EMP: 
http://wit.mcs.anl.gov/ZEMP/). However, even when inter- 
mediate feedback inhibition patterns exist, control by over- 
all feedback inhibition remains a prevalent theme in bio- 
synthetic pathways. 

Savageau (1972, 1974, 1975, 1976) studied the function 
of various patterns of feedback inhibition and explained the 
prevalence of control by overall feedback inhibition by 
using arguments based on selection. He assumed that the 
design of a pathway is selected to optimize certain systemic 
characteristics, and then compared those systemic charac- 
teristics in unbranched pathways with overall feedback in- 
hibition to the same characteristics in pathways with alter- 
native inhibitory feedback designs. He showed that the 
pathway with control by overall feedback inhibition is more 
robust, i.e., less sensitive to perturbations in parameter 
values than the pathway with many alternative designs 
(Savageau, 1974). 

The stability of cases with control by internal feedback 
inhibitions has also been examined (e.g., Savageau, 1976; 
Thron, 1991a,b; Demin and Kholodenko, 1993). These au- 
thors found that systems with internal feedback inhibitions 
have larger stability margins than systems without these 
interactions. They also determined that, for systems without 
internal feedback inhibition, control by overall feedback 
inhibition decreases the stability margins of the pathway. 

In this paper, we consider unbranched pathways with all 
possible patterns of internal feedback inhibitions (the "fully- 
wired" case) and use all of the criteria mentioned above to 
determine the biological significance of control by overall 
feedback inhibition in such pathways. We use a technique 
called Mathematically Controlled Comparison that was 
originally developed to determine irreducible qualitative 
differences in systemic behavior of models with alternative 
regulatory designs for the same network of reactions (Sav- 
ageau, 1972, 1976; Irvine and Savageau, 1985). This qual- 
itative technique requires the existence of closed-form so- 
lutions for the steady state. Such solutions can be obtained 
by using the local S-system representation to characterize 
the pathway of interest. Important functional constraints are 
introduced by equating relevant steady-state properties of 
the alternative systems being compared. The limitations of 
this technique have been overcome by a recently developed 
generalization that uses numerical methods to obtain results 
that are general in a statistical sense (Alves and Savageau, 
2000a). 

METHODS 

Alternative models and key systemic properties 

Consider the unbranched pathways depicted in Fig. 1. The independent 
variable Xn+] represents the cell's demand for the end product X„. If the 
cell requires large amounts of X„, then the value of X„+l will be high; if 
small amounts of X„ are required, then the value of Xn+1 will be low. The 
dynamic behavior of such systems can be described in principle by a set of 
ordinary differential equations. There is no generic representation of these 
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FIGURE 1 (A) Model of an unbranched pathway with all possible inhibitory feedback interactions (reference model). (S) Model of an unbranched 
pathway with all possible inhibitory feedback interactions except overall feedback inhibition (alternative model). The horizontal arrows represent 
biochemical reactions, whereas the vertical arrows represent inhibitory feedback interactions. 
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equations that can provide a globally accurate description of the behavior 
[see Appendix]. However, the set of equations can be approximated to the 
first order in logarithmic space (Savageau, 1969), yielding ordinary differ- 
ential equations with the canonical form of an S-system (Savageau, 1996). 
This representation has a solid theoretical foundation based on Taylor's 
theorem. Thus, the validity of the results is guaranteed within some 
neighborhood of the nominal steady-state operating point. The size of this 
neighborhood cannot be specified in general, because it depends on the 
characteristics of each individual system. 

For pathways with n intermediates, the general case in which all 
possible feedback inhibitions exist (Fig. 1 A) can be described in the local 
S-system representation as 

dX", 
= a1nx?,i-«2nxf- 

j=o j=i 

dX, 

~d7 

dX 

j=i-l j=i 

^=«„ n xr-an+.nxr- 

a) 

(2) 

(3) 
j=n-l 

The corresponding case without overall feedback inhibition (Fig. 1 B) can 
be described by the same set of equations, except that Eq. 1 is replaced by 

dX, 

~d7 
= a\Y\)q<>-a2Ylx?K (4) 

j=0 j=l 

The rate law for each reaction is represented by a simple product of 
power-law functions. The values for the parameters in this representation 
can be determined directly from conventional experimental measurements 
of initial rate as a function of reactant and modifier concentrations (Sav- 
ageau, 1976). The range of values for the concentrations is chosen to 
sample the region about the nominal steady state of interest. 

The parameters are defined according to Taylor's theorem as 

Sü dlogXj0     \dxj0\vi0 

«i = vi0 n V- 

(5) 

(6) 

where the additional subscript zero signifies that the variables and their 
derivatives are evaluated at the steady-state operating point. The definition 
of these parameters allows them to be directly related to the parameters in 
other representations such as the traditional Michaelis-Menten represen- 
tation. In the simplest case of the Hill rate law, 

Kli+X" 
(7) 

[and the irreversible Michaelis-Menten rate law (n = 1)], these relation- 
ships are well known (Savageau, 1971a), 

g = n 
^M 

VoV. 

(8) 

(9) 

The multiplicative parameters, a, can be interpreted as rate constants 
that are always positive. The exponential parameters, g, can be interpreted 
as kinetic orders that represent the direct influence of each intermediate on 
each rate law. If X-, is directly involved in the rate law Vj, either as a 
substrate or a modulator, and if an increase in Xt causes an increase in the 
rate Vj, then the kinetic order will be positive. If an increase in X-, causes 
a decrease in Vy then the kinetic order will be negative. If X, is not directly 
involved in Vj, then the kinetic order will be zero. The positive kinetic 
orders in Eqs. 1-4 are g1+ij (0 £ i s n) and g'l0, because these are the 
kinetic orders for substrates of reactions, and g„+i,„+i, which, together 
with X„+1, represents the demand for the end product X„. The remaining 
kinetic orders, which represent feedback inhibitions, are negative. 

At a steady state, the rate of production and the rate of consumption will 
be equal for each intermediate, and Eqs. 1-3 reduce to the following matrix 
equation (Savageau, 1969), which can be solved analytically. 

(10) 

where t, = log(o2/a,), bt = log(a,+l/a,), atj = gv - gl+u, and Y, - 
log(Xi). Eq. 10 is linear and therefore easily solved to obtain the steady- 
state value for each /",, and then the corresponding value for each X, is 
obtained by simple exponentiation. Eqs. 2-4 reduce to an identical matrix 
equation, except that the parameters of the first row are primed and 
*!» = o. 

Two types of systemic coefficients, logarithmic gains and parameter 
sensitivities, can be used to characterize the steady state of such models 
(Shiraishi and Savageau, 1992). Logarithmic gains measure the relative 
influence of each independent variable on each dependent variable of the 
integrated model. For example, 

bi ~ gioYo All • •      <3ln Y> 
b2 a21 •■      fl2n Y? 

Ci an-u • * an-l,n Yn- 
"n "*" Sn+l,n+l'n+l_ . «nl ' '      änn . l Yn 

UXi,)Q-- 
dlogQQ 

dlog(X0) 

dy, 

dy0 
(11) 

measures the percent change in the concentration of intermediate Xt caused 
by a percentage change in the concentration of the initial substrate X0. 
Logarithmic gains provide important information concerning the amplifi- 
cation or attenuation of signals as they are propagated through the system. 
The experimental measurement of a logarithmic gain involves the deter- 
mination of steady-states fluxes and concentrations at different values for 
a given independent variable (Savageau, 1971a). 

Parameter sensitivities measure the relative influence of each parameter 
on each dependent variable of the model. For example, 

5(Y.,PJ) 
d logPQ _    W 
d log(pj)    Pi dPj 

(12) 

measures the percent change in the concentration of intermediate X-, caused 
by a percentage change in the value of the parameter py Parameter 
sensitivities provide important information about system robustness, i.e., 
how sensitive the system is to perturbations in the parameters that define 
the structure of the system. Because enzymes usually have a first-order 
influence on the process they catalyze, the logarithmic gain in flux and in 
each concentration with respect to change in the concentration of each 
enzyme is the same as the sensitivity in flux and in each concentration with 
respect to change in the rate constant of the corresponding enzyme. The 
experimental measurement of a parameter sensitivity involves the deter- 
mination of steady-state fluxes and concentrations before and after chang- 
ing the value of a parameter by mutation or other means (Savageau, 
1971b). 

Because we can calculate closed-form steady-state solutions for Eqs. 
1-3 and 2-4, we can also calculate each of the two types of coefficients 
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simply by taking the appropriate derivatives of those solutions. Although 
the mathematical operations involved are the same in each case, it is 
important to keep in mind that the biological significance of the two types 
of coefficients is very different 

The local stability of the steady state can be determined by applying the 
Routh criteria (Dorf, 1992). The magnitude of the two critical Routh 
conditions can be used to quantify the margin of stability (e.g., Savageau, 
1976). 

The use of the S-System formalism allows for an analytical study of the 
dynamical systems at steady state. Comparisons of systems with only one 
feedback inhibition to systems without feedback regulation can be done 
and interpreted in a fully symbolic way. However, for comparisons involv- 
ing many feedback inhibitions, numerical values must be introduced for the 
parameters to make the comparisons interpretable. The steady-state behav- 
ior of the alternative models is compared with respect to their flux, 
intermediate concentrations, logarithmic gains with respect to changes in 
initial substrate and demand for end product, robustness, and stability 
margins. The differential equations also are solved numerically to charac- 
terize the temporal responsiveness of the alternative designs. To evaluate 
this, we increase the steady-state concentration of each X-, by 20% and 
measure the time the system takes to relax back to within 1% of its original 
steady state. 

Calculating constraints for the mathematically 
controlled comparison 

Only the first step in the pathway is allowed to differ between the reference 
model (Fig. 1 A) and the alternative model (Fig. 1 B). Therefore, to estab- 
lish "internal equivalence" (Savageau, 1972, 1976; Irvine, 1991) between 
the two designs, we require the values for the corresponding parameters of 
all other steps in the two models to be the same. 

The first step of the pathway differs between the reference model and 
the alternative model, and the degrees of freedom associated with this 
difference must be eliminated to the extent possible. If we reason that loss 
or gain of an inhibitory site on the first enzyme comes about by mutation, 
and that this mutation can cause changes in all the parameters of the first 
reaction, then a mutation causing loss of overall feedback inhibition would 
change the parameters a, and g10 through g,„ in Eq. 1 to the corresponding 
primed parameters in Eq. 4. Clearly, the value of the parameter g'ln, which 
equals zero, differs from that of g,„, which is nonzero. The remaining 
primed parameters also will have values that, in general, are not equal to 
the values of the corresponding parameters in the reference model. Because 
we wish to determine those effects that are due solely to changes in the 
structure of the system and not simply to arbitrary changes in the values of 
parameters, we shall specify values for the primed parameters that mini- 
mize all other effects. This can be accomplished by deriving the mathe- 
matical expression for a given steady-state property in each of the two 
models, equating these expressions, and then solving the constraint equa- 
tion for the value of a primed parameter. This process establishes an 
"external equivalence" between the two designs (Savageau, 1972, 1976; 
Irvine, 1991). After values for all the primed parameters have been spec- 
ified in terms of the known values for the reference system, the extra 
degrees of freedom have been eliminated, and we can proceed with the 
comparison. 

Three classes of constraint equations are used to fix the values for the 
k + 2 primed parameters when there are * interactions that feed back to the 
first step of the alternative pathway. These are obtained by equating 
steady-state logarithmic gains, concentrations, and parameter sensitivities 
as described below. 

First, equating the logarithmic gains for any one of the metabolites with 
respect to change in the initial substrate, 

L(X„ X0)A = L(Xj, X0)B     J = 1,2,. (13) 

which causes each of the other corresponding intermediates to have the 
same logarithmic gain, specifies the value of the kinetic order g'w in terms 

of known values for the reference system. This condition also makes the 
corresponding logarithmic gain in flux the same for the two designs. 

Second, equating the concentrations for any one of the metabolites in 
the pathway, 

Y,A - YJB    i = 1,2,... , n, (14) 

which causes each of the corresponding intermediates to have the same 
concentration, specifies the value of the rate constant a\. This condition 
also makes the flux the same for the two designs. 

Finally, the remaining k — 1 primed parameters are fixed by equating 
the rate-constant parameter sensitivities, 

S(X{, aj)A = S(X„ aj)B    i=l,2 n   7= 1,2 n, 
(15) 

for any Xx and * - 1 different rate constants ay Different results will be 
obtained, depending upon which of the parameter sensitivities are not used 
in this procedure. 

For example, consider the case in which all n - 1 intermediates feed 
back on the first step in the pathway. If the unconstrained sensitivity in Eq. 
15 is S(X„, an), then the values of the primed parameters are given by 

log(ai) = log(a,) + 
Sit. 

log(an+1/an), 
on+l,n       Sn\ 

g!p = giP    0<p<n-l, 

fl.n-1  — gl,n-l  + 
gin 
  0     gn.n—!• 

gni 

(16) 

(17) 

(18) 

If the unconstrained sensitivity in Eq. 15 is S(X„ a,), then the values of the 
primed parameters are 

log(aj) 
gn+l.n .     . gin 

log(a,) - —- log(a„+l), 
gn+l,n        gin gn+l,n        gin 

glp: 
g2n 

g2n - gin 
glp     0<p: 1. 

(19) 

(20) 

If the unconstrained sensitivity in Eq. 15 is S(,X„ as) where 1 <j < n, then 
the values of the primed parameters are 

log(a[) = Iog(a,) 
gin 

gin = gip' 

öjn        S}+l,n 

glp = gip    0 < p <y - 1 

gin 

gj+l.n 

log(an+1/aj+1), (21) 

(22) 

y   j-Kp. (23) 

Because the objective of a controlled comparison is to minimize the 
differences between the systems being compared, we chose the uncon- 
strained sensitivity that leads to the smallest number of systemic properties 
with values that differ between the reference system and the alternative 
system. The systemic differences are minimized when the unconstrained 
sensitivity is S(Xt, a„+1); any other choice leads to at least one additional 
systemic property that differs between the two systems. 

If only a subset of the intermediates feed back on the first step of the 
pathway, and if we use the constraint set that causes the smallest number 
of properties to be different between systems A and B, then each kinetic 
order representing a feedback inhibition has the same value in both models, 
except for the kinetic order representing the last intermediate to feed back 
on the first step of the pathway. In general, 
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Sin 
Sik = glk + T- 11 Sp+l,P> (24) 

'p=k 

where Xk is the last intermediate to feed back on the first step of the 
pathway, and A„k is a positive subdeterminant of [A] that depends on the 
actual Xk and on the length n of the pathway. The kinetic orders glp with 
p < k are the same for both systems. As for the rate constant a\, its general 
form is 

log(ai) = log(a,) +S^ log(an+1/ap+1),      (25) 
P=k U"P 

where xkp is either a function of the kinetic orders or zero. 
For the special case in which the final product is the only metabolite to 

feed back on the initial step, the primed parameters are given by 

Secondary density plots are constructed from the primary plots by the 
use of moving quantile techniques with a window size of 500. The 
procedure is as follows. One collects the first 500 ratios from the list L„ 
calculates the quantile of interest for this sample, and pairs this number (R) 
with the median value of the corresponding P values for the reference 
model, denoted (P). One advances the window by one position, collects 
ratios 2-501, calculates (Ä), and pairs it with the corresponding (P) value 
and continues in this manner until the last ratio from the list L, was used 
for the first time (for further explanation of moving median techniques see, 
e.g., Hamilton, 1994). 

The slope in the secondary plot measures the degree of correlation 
between the quantities plotted on the x- and y-axes. This technique also is 
used to examine correlations between ratios of interest and other magni- 
tudes shared by the two systems, e.g., the correlation between the ratio of 
stability margins and the magnitude of a rate constant common to the two 
systems (for traditional applications of correlation analysis, see Wherry, 
1984). 

Iog(a0 = log(a,) 
£n+l,n 

£n+l,n       6In 

£n+l,n 

log(a„+i) 
gin 

£n+l,n       Sin 

glO '■ 
gin 

SlO- 

(26) 

(27) 

This means that g',0 is always smaller than g10. (To contrast these results 
with the analogous results expressed within the Michaelis-Menten formal- 
ism, see the Appendix.) 

Numerical comparison 

It is straightforward to compare analytically corresponding magnitudes 
from each of the two designs. For two- and three-step pathways, the 
comparisons are clearly interpretable for most systemic properties. The 
analytical results give qualitative information that characterizes the role of 
overall feedback inhibition for the system in Fig. 1 A. As the length of the 
pathway increases, the analytical interpretation becomes problematic. To 
determine if a given magnitude is larger in the reference system or the 
alternative system requires knowledge of actual parameter values in these 
cases and a method, such as that found in Alves and Savageau (2000a), 
for making the numerical equivalent of a mathematically controlled 
comparison. 

To obtain numerical information, one must introduce specific values for 
the parameters and compare systems. For this purpose, we have randomly 
generated a large ensemble of parameter sets and selected 5000 of these 
sets that define systems consistent with various physical and biochemical 
constraints. These constraints include mass balance, low concentrations of 
intermediates and small changes in their values to minimize utilization of 
the limited solvent capacity in the cell, small values for parameter sensi- 
tivities so as to desensitize the system to spurious fluctuations affecting its 
structure, and stability margins large enough to ensure local stability of the 
systems. A detailed description of these methods can be found in Alves and 
Savageau (2000c). Mathematica (Wolfram, 1997) was used for all the 
numerical procedures. Pathways of up to seven steps were studied using 
this numerical methodology. 

To interpret the ratios that result from our analysis, we use density of 
ratios plots as defined in Alves and Savageau (2000b). The primary density 
plots of the raw data have the magnitude of some property for the reference 
system on the jr-axis and the corresponding ratio of magnitudes (alternative 
system to reference system) on the y-axis. The primary plot can be viewed 
as a list of 5000 paired values that can be ordered with respect to the 
reference magnitude, thereby forming a list L, in which the first pair has 
the lowest measured value for property P in the reference model, the 
second has the second lowest, and so on. 

RESULTS 

Mathematically controlled comparison 

Response to availability of substrate and demand for 
end product 

The responsiveness of each system to changes in the inde- 
pendent concentration variables XQ, which represents the 
availability of initial substrate, and Xn+1, which represents 
the demand for end product, is characterized by a set of 
logarithmic gains that provides a quantitative measure of 
signal propagation through the system. 

The logarithmic gains of the two systems in response to 
changes in the initial substrate are identical at each step in 
the pathway [i.e., L(V;, X0)A = uy{, X0)B and UX„ X0)A = 
L(X,, X0)B for 1 < i < n] because of the constraints for 
external equivalence described in the Methods section. 
Hence, the responsiveness of the two systems to changes in 
the availability of initial substrate is identical. 

In contrast, the responsiveness of the two systems to 
changes in the demand for their end product is different. The 
ratio of the logarithmic gains in flux is given by 

L(V,X0+1)A 

L(V,XR+I)B 

1 +-yn&+ij >1, (28) 

where £ is always a negative sum of products of the kinetic 
orders, g,n < 0, and gj+1-j > 0 fory = 1,2,...,«- 1. 
These results demonstrate that the flux in the reference 
system is more responsive than that in the alternative system 
to changes in demand for end product. 

The ratio of the logarithmic gains in concentration is 
given by 

L(Xj, An+1); 

L(Xi, X„+I)B 
1 + -y El gj+u 

fe j=i 

1,2,...,«, 

(29) 
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where £ is a sum of products of the kinetic orders that 
depends on i and the length of the pathway, gln < 0, and 
gj+1j > 0 for; = 1,2,...,«- 1. When i = 1 or i = n, 
I is always positive and, thus, the reference model is always 
less sensitive to demand. When 1 < i < n, £ is positive in 
most cases. This shows that the concentrations are usually 
less sensitive to demand in the system with overall feedback 
inhibition. 

Robustness of flux 

The robustness of any systemic property with respect to 
perturbations in the values of the parameters that define the 
system is characterized by a set of parameter sensitivities. 
The steady-state flux of reference and alternative systems 
has different sensitivities with respect to the parameters an, 
«n+i. Si.n-i. Sn+i,n> £nn> and gnn_, that are common to the 
two systems. The sensitivities are the same with respect to 
all other parameters common to the two systems. 

The sensitivities of the steady-state flux with respect to 
the parameters an, gnn, and gnn-i exhibit a common pattern. 
If we take the ratio of a sensitivity in the reference system 
to the corresponding sensitivity in the alternative system, 
we find that the ratio of the sensitivities is always less than 
1. That is, 

S(V,ph 

S(V,p)B 

n-l 

1 +-fT\gj+u 
'   j = l 

<1, (30) 

where y is a positive sum of products of the kinetic orders, 
gin < 0, gj+!,j > 0 for; = 1,2,...,«- 1, and 

.gin 
i^n«tg<o. y 

(3D 
j=i 

Thus, the flux in the reference system is less sensitive to 
parameter variations, i.e., is more robust than that in the 
alternative system. 

The sensitivities of the steady-state flux with respect to 
the parameter gln_! exhibit a similar pattern. The ratio of 
the sensitivities in this case is given by 

S(V,p), 
S(V,p)t 

8\t\8n,n-\ 

£ln£n,n-l       £l,n-l\£nn       8n + ],n) 
<i. 

(32) 

Although the function of the kinetic orders is different from 
that in Eq. 30, the flux in the reference system is again less 
sensitive to parameter variations, i.e., is more robust than 
that in the alternative system. 

In contrast, the ratio of the sensitivities with respect to the 
parameters an+1 and gn+1?n exhibits a different pattern, 

S(V,p), 
S(V,p)B b j=l 

> 1, (33) 

where £ is a negative sum of products of the kinetic orders. 
These parameter sensitivities are related to the last enzyme 
and reflect the design for responsiveness to changes in 
demand for end product. 

As the position of the last intermediate that provides 
feedback inhibition to the first reaction approaches the 
beginning of the pathway, the number of sensitivities that 
differ between reference and alternative systems increases. 
This is so because the number of primed parameters de- 
creases and a smaller number of conditions for external 
equivalence are needed to eliminated the extra degrees of 
freedom. In general, if the last intermediate that provides an 
inhibitory feedback to the first reaction is Xk for k< n - 1, 
then the sensitivities of the flux to the rate constants ak to 
an+1 and those to the kinetic orders gy (&</<« and i" ^ 
j s n) will differ between the reference and the alternative 
systems. In most cases, the sensitivities will be less in the 
reference system. There are exceptions to this, depending on 
the length of the pathway and on the last intermediate that 
provides feedback inhibition to the first step, and, in the 
case of an+) and gn+hn, the sensitivities of the reference 
system will always be greater, for the reasons we have 
already mentioned. 

Robustness of concentrations 

The steady-state concentrations of reference and alternative 
systems have different sensitivities with respect to many 
parameters that define the systems. In some cases, the ratio 
of the corresponding sensitivities is always < 1 or always 
> 1, but, in others, the ratio is < 1 for some values of the 
parameters and > 1 for other values. In the latter cases, an 
examination of actual numerical values for the parameters is 
critical. 

The ratio of sensitivities for the concentration of each 
intermediate in the pathway with respect to changes in the 
kinetic order ghn-} is identical to that given in Eq. 32. 
Similarly, the ratio of sensitivities for X„ with respect to 
changes in the rate constants an or an+, is always of the 
form 

S(X„, a )A 

S(X„, a„)B 
< 1    p = n, n + 1, 

(34) 

where fp is a different positive sum of products of kinetic 
orders for each ap, p — n,n + 1, and 

-ls7£rift+ij<0   p = n,n+l. (35) 
4

P j-i 

Thus, the reference system is  always less sensitive to 
changes in these parameters. 

Biophysical Journal 79(5) 2290-2304 



2296 Alves and Savageau 

In contrast, the ratio of sensitivities for Xn with respect to 
changes in the kinetic orders gn+i,„, gn-n-i> or £nn is always 
of the form 

S(X„, gp^A 

S(X„, gpqh 1 + J1 El ft+ij (36) 

where £_, is a different positive sum of products of the 
kinetic orders for each gm. In this case, the ratio can be > 1 
or <1. This means that the sensitivity of the reference 
system will be greater than the sensitivity of the alternative 
system for some values of the parameters and less for 
others. Similarly, the ratio of sensitivities for each interme- 
diate X; with respect to changes in each parameter can be 
%1, depending on values of the parameters. 

Again, as the position of the last intermediate that pro- 
vides feedback inhibition to the first reaction approaches the 
beginning of the pathway, the number of sensitivities that 
differ between reference and alternative systems increases. 
In general, if the last intermediate that provides an inhibi- 
tory feedback to the first reaction is Xk, then the ratio of 
sensitivities for each metabolite with respect to changes in 
the kinetic order glk is given by 

S(Xt, gii^A 

S(X„ glk)B £lk.=1 

<1    * = 1,2,. 

(37) 

In this equation, £lk is a positive subdeterminant of the [A] 
matrix. The ratio of sensitivities for the end product with 
respect to changes in each of the parameters common to the 
two systems also is always si. Similarly, the ratio of 
sensitivities for the last intermediate that feeds back to the 
first reaction, Xk, with respect to the parameters ak or gkj 

(k < j s n) is always <1. Thus, the reference system is 
always more robust than the alternative system in these 
cases. As for the remaining cases, the sensitivities of the 
reference system will be greater than the sensitivities of the 
alternative system for some values of the parameters and 
less for others. 

Stability 

The characteristic equation for Eqs. 1-3 operating near the 
steady state can be written as 

F,au - A      r,u,2 
Fiflii      Fiti-,2 ~ A 

0 F,an 

0 
0 

F ,a,n 

F2a2„ 

fn-lQn-lji-:     ^n-lfln-lji-l — A     F„-,ü„-],„ 

0 FXn-1 /VJ„„ - A 

= 0, 

(38) 

where F{ = Vi0/Xi0 and ^ = gi} - gi+u. Eq. 38 can be 
expanded into polynomial form and the Routh conditions 
for local stability determined. The last two Routh conditions 

are critical for stability (Frazer and Duncan, 1929). The last 
condition is equivalent to the condition (-l)ndet(A) > 0, 
which is always true for the systems we are considering 
(Savageau, 1976, Appendix B). 

The two critical Routh conditions for a two-step pathway 
are 

#i = F,(gu - gn) + Kigji ~ gn) < 0 

and 

#2 = FiF2{gu{g22 ~ gn) + guign ~ gn)] > 0. 

(39) 

(40) 

Both these conditions are always satisfied for both system A 
(g,2 < 0) and system B (g'u = 0 and g'n = g„ + 
8n82Äg32 ~ 822) <8ii< 0), so these systems are always 
stable. The ratio of the last Routh condition for the two 
systems is equal to unity, whereas that for the penultimate 
condition is given by 

^?1A 
1 

F\8iig2i 

(Figl2g2l ~ Flg\lg22 + ^Ig2lg22 ~ ^22 

+ ^l£ll£32 - Flg2lg32 + 2F2g22£32 - ^SM) 

<1. (41) 

Thus, the stability margin is larger for the alternative sys- 
tem B. 

The two critical Routh conditions for a three-step path- 
way are already considerably more complex. Whereas the 
last condition is always positive, the most critical condition 
is the penultimate one that can be positive or negative, 
depending upon the particular values for the parameters. 
The ratio of the last condition for the two systems is equal 
to 1; the ratio of the penultimate condition can be > 1 or < 1, 
depending on the values for the parameters. These same 
conclusions are obtained for pathways of length four or 
greater: the ratios cannot be determined analytically to be 
> 1 or < 1, and we must resort to numerical methods. 

Transient time 

There is no analytical way to accurately calculate the tran- 
sient times of the pathway. This must be done numerically. 

Numerical comparisons 

Unlike the symbolic analysis performed in the previous 
section, using actual numbers for the values of the param- 
eters limits the absolute generality of the results. However, 
it does allow us to obtain general conclusions in a statistical 
sense. The results described below have been obtained for 
pathways of up to seven intermediates. The trends in these 
results remain constant throughout all the tested lengths 
(i.e., pathways from 2 to 7 intermediates), which suggests 
that they will remain so for longer pathways. The use of 
these numerical methods allows us not only to study the 
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effects of overall feedback inhibition, but also to study 
correlations that exist between systemic properties and the 
different parameters of the system. 

Response to availability of substrate and demand for 
end product 

The logarithmic gains in concentrations of the two systems 
in response to changes in the initial substrate X0 are iden- 
tical at each step in the pathway because of the constraints 
for external equivalence described in the Methods section. 
The same is true for the logarithmic gains in flux. Hence, 
the responsiveness of concentrations and fluxes in the two 
systems to changes in the availability of initial substrate is 
identical numerically as well as analytically. 

The logarithmic gain in flux for system A in response to 
changes in the demand for end product was shown analyt- 
ically to be greater than that for system B. The graph of 
UV,Xn+l)A/UV,Xn+i)B versus L(V,Xn+I)A (Fig. 2/1), 
which is the moving median density of ratios plot intro- 
duced in Alves and Savageau (2000c), shows how much 
greater, on average, the response is for system A. It also 
shows a negative correlation between the ratio of responses 
and the response of the reference system. This means that, 
as L(V, Xn+1)A increases, the ratio L(V, X„+l)A/L(V, Xn+))B 

tends to decrease. 
The logarithmic gain in end-product concentration for 

system A in response to changes in the demand for end 
product also was shown analytically to be smaller than that 
for system B. The graph of L(XWXn+1)A/L(Xn,Xn+l)B ver- 
sus UXn, Xn+])A (Fig. 2ß) shows how much smaller, on 
average, the response is for system A. It also shows a 
positive correlation between the ratio of responses and the 
response of the reference system. 

Robustness 

Figure 2 shows typical moving median density of ratios 
plots for the aggregate parameter sensitivities of flux and 
concentrations. The aggregate parameter sensitivity of the 
flux V is smaller, on average, for system A (Fig. 2 Q. 
Assume that Xk is the last intermediate to feed back on the 
first reaction of the pathway. The aggregate parameter sen- 
sitivity of Xk is smaller, on average, for system B (Fig. 2 D). 
The average difference in aggregate sensitivities for this 
metabolite is never larger than a few percent. With regard to 
the remaining intermediates, the graphs forX( (Fig. 2 E) and 
Xj (Fig. 2 F) represent typical plots of aggregate parameter 
sensitivities. In these cases, we find that random reference 
systems are less sensitive than the equivalent alternative 
systems. The average differences can range from a few 
percent to fifty or more percent. The individual parameter 
sensitivities of X„ were analytically determined to be 
smaller in system A. In the example presented here, the 
difference is, on average, just a few percent (Fig. 2 G); 

however, depending on the length of the pathway, this 
difference can increase to more significant values. 

The flux (Fig. 2 Q and concentrations Xiy i < n, (Fig. 2, 
D, E, and F) show a positive correlation between the ratio of 
their aggregate sensitivities in the two systems and the 
aggregate sensitivity in the reference system when its value 
is low. For systems with low sensitivities, system A is, on 
average, much less sensitive than system B. For higher 
values of the aggregate sensitivities in the reference system, 
there is no correlation. In the case of Xk, the ratio is fairly 
independent of the values of the aggregate sensitivity in the 
reference system. 

Stability 

The last critical Routh criterion is always the same in the 
reference and alternative systems, as has been shown ana- 
lytically. For a two-step pathway, the margin of stability 
determined by the penultimate criterion is always larger in 
system B. For longer pathways, the margin of stability can 
be larger in either the reference or the alternative system, 
depending on the numerical values of the parameters. The 
differences between the two systems with respect to this 
penultimate criterion are small (on average less than 2%, 
Fig. 2 H), which implies that systems with and without overall 
feedback inhibition will have comparable stability margins. 

Transient time 

Fig. 2 / shows a typical moving median density of ratio plot 
for transient time. This plot shows that the reference system 
usually responds to perturbations in the steady state more 
quickly than the alternative system. For reference systems 
with a fast response to changes, the transient times can be, 
on average, half that of the corresponding alternative sys- 
tems. For reference systems that are sluggish, the difference 
is, on average, smaller, though it still exists. 

Effects of parameter values on 
systemic properties 

Rate-constant effects on aggregate sensitivities 

Assume that Xk is the last intermediate to feed back on the 
first reaction. Plotting the aggregate sensitivities as a func- 
tion of Oj, n £ j, shows that there is a correlation between 
each rate constant a, and each of the aggregate sensitivities 
(Fig. 3 A). For small af, the correlation is either nonexistent 
or slightly negative, whereas, for large values, this correla- 
tion is positive. As for the other rate constants, with j < n, 
there are no obvious correlations that are general for all the 
pathway lengths studied, although, for some lengths, spe- 
cific correlations are observed. 

Kinetic-order effects on aggregate sensitivities 

For Xn, the aggregate sensitivity is correlated with several 
parameters. There is a positive correlation between this 
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FIGURE 2 Typical moving median density of ratios plots for different magnitudes. The values on the X-axis represent the moving median of the relevant 
magnitude in the reference system. The values on the X-axis represent the moving median of the ratio of that magnitude in the reference system to the 
corresponding magnitude in the alternative system. (A) Logarithmic gain in flux in response to changes in demand for the end product, UV,X„+,)- (B) 
Logarithmic gain in end-product concentration in response to changes in demand for the end product, UX„, X„+,). (C) Aggregate sensitivity of the pathway 
flux, 5(V). (O) Aggregate sensitivity of the concentration of the last intermediate to feed back on the first reaction, S(Xk). (£) Aggregate sensitivity of the 
concentration of any intermediate in the pathway before Xk, S(X,). (F) Aggregate sensitivity of the concentration of any intermediate in the pathway after 
Xk, S(X). (G) Aggregate sensitivity of the concentration of the end-product, S(X„). (H) The penultimate (i.e., n - 1st) Routh criterion; this represents the 
margin'of stability. (/) Transient time, T in normalized units, is the time the pathway takes to return within 1% of its steady state following a 15% 
perturbation in the steady-state values. Each of these plots is for a specific pathway length; only the parameter values are changed randomly. However, 
because the trends observed for different pathway lengths are the same, we have only shown a representative case. 

sensitivity and gln. Because gin is always negative, this 
means that the aggregate sensitivity of X„, S(Xn), is usually 
smaller for high values of overall feedback inhibition. The 
same is true for the correlation between S(X„) and gm when 
i < n (Fig. 3 B). If i = n, there is a negative correlation 

between this aggregate sensitivity and gln. The correlation 
of the aggregate sensitivities of the other intermediates with 
gln is usually small or nonexistent. There is a negative 
correlation between the aggregate sensitivity of Xj and gi+i,i 
or £„,„_] (Fig. 3 Q and a positive correlation between that 
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FIGURE 3 Typical moving median correlation plots between different systemic properties and different kinetic parameters of the reference system. The 
values on the X-axis represent the moving median of the relevant kinetic parameter. The values on the K-axis represent the moving median of the relevant 
systemic property. (A) Aggregate sensitivity of the concentration of any pathway intermediate X-, versus the rate-constant parameters a„ or a„+1. (B) 
Aggregate sensitivity of the concentration of the end product X„ versus the kinetic-order parameters gln or gl+,„. (Q Aggregate sensitivity of the 
concentration of any pathway intermediate Xt versus the kinetic-order parameters g1 + u or £„,„_,. (D) Aggregate sensitivity of the concentration of any 
pathway intermediate X-, versus the kinetic-order parameter git. (£) Aggregate sensitivity of the concentration of the end product X„ versus the kinetic-order 
parameter g„+ ,„. (F) Aggregate sensitivity of the pathway flux V versus the kinetic-order parameter gn+, „. (C) Aggregate sensitivity of the pathway flux 
V versus the kinetic-order parameter &,,„_,. (H) Transient time T versus the kinetic-order parameter gu. (/) Transient time T versus the kinetic-order 
parameter gl+u. Each of these plots is for a specific pathway length; only the parameter values are changed randomly. However, because the trends 
observed for different pathway lengths are the same, we have only shown a representative case. 

of X; and gxi (Fig. 3 D). Also, the aggregate sensitivity of 
each Xis negatively correlated with gn+Un (Fig. 3 E). These 
are the correlations that are generally observed for the 
aggregate sensitivities of concentrations, although other in- 

dividual correlations can be found for specific intermediates 
and specific pathway lengths. 

The correlations between aggregate sensitivities of flux 
and the various kinetic-order parameters are less clear. The 
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correlation with gn+1,n is positive for low values of gn+1,n, 
but it disappears as the value of gn+i,n increases (Fig. 3 F). 
The only other general correlation observed is that between 
the aggregate sensitivity of the flux and the kinetic order 
£nn-i- This is a negative correlation that also vanishes as 
the value of gn-n_i increases. This can be seen in Fig. 3 G. 

Rate-constant and kinetic-order effects on 
margin of stability 

The correlations between a given Routh criterion and the 
various parameters depends on which criterion is consid- 
ered. The results are pathway length-specific, and no gen- 
eral trend can be found. 

Rate-constant and kinetic-order effects on transient time 

There is no clear correlation between transient time and the 
various rate constants. There are, however, positive corre- 
lations between transient time and the kinetic orders gn, for 
i s 1 (Fig. 3 H). There also are negative correlations be- 
tween transient time and the kinetic orders gi+1 ;i for i > 1 
(Fig. 3 /). These were the only observed correlations with 
transient time. 

Effects of enzyme levels on systemic variables 

We have determined the logarithmic gains in flux and 
concentrations in response to changes in the level of indi- 
vidual enzymes. When comparing logarithmic gains in flux 
and concentrations in the reference and alternative systems, 
the equivalence conditions will make all corresponding 
coefficients identical except the last two. We also have 
examined the correlations among the logarithmic gains. 

The last two logarithmic gains in concentrations are, on 
average, lower in the system controlled by overall feedback 
inhibition (see also Eq. 34). However, there is no general 
pattern of correlation among the logarithmic gains in 
concentrations. 

The penultimate logarithmic gain in flux is always larger 
in the alternative system (Fig. 4 Q. The last logarithmic 
gains in flux, which is a measure of coupling between flux 
and the demand for final product, is always larger in the 
reference system (Fig. 4 D). The logarithmic gains in flux 
with respect to changes in each individual enzyme except 
the last are directly correlated (Fig. 4 A, B, and Q. The last 
logarithmic gain in flux is inversely correlated with all the 
others (Fig. 4 D). This is a well-known effect of feedback 
inhibition, i.e., it decreases the sensitivity of the flux 
through the system to parameters (in this case enzyme 
levels) inside the feedback loop while increasing the sensi- 
tivity to parameters outside the loop. 

DISCUSSION 

In this paper, we are addressing a generic property charac- 
teristic of an entire class of biochemical systems: Why is the 
pattern of overall feedback inhibition in unbranched biosyn- 
thetic pathways so prevalent? Because there are innumera- 
ble specific cases that could be examined, most of which 
have never arisen or may no longer exist because of natural 
selection, one could never hope to answer this type of 
question with an experimental approach. However, on a 
more fundamental level (beyond the sheer number of pos- 
sibilities that would have to be constructed and examined), 
one must face the difficulty of performing even a single 
experimental comparison under well-controlled conditions 
so that the results will not be confused by extraneous 
differences. 

The method of mathematically controlled comparison 
was developed specifically to address these issues. It allows 
one to examine enormous numbers of alternatives in paral- 
lel, more than would ever be possible by experimental 
means; it also allows essentially ideal controlled compari- 
sons, comparisons that could only be done with an enor- 
mous experimental effort. In short, this is the type of ques- 
tion that is more appropriately answered by means of a 
theoretical analysis than by the accumulation of experimen- 
tal evidence for one specific system after another. 

The experimental difficulty in doing the equivalent of a 
mathematically controlled comparison can be seen from the 
expressions in the Appendix. One would first have to gen- 
erate a large number of feedback-resistant mutants. Each 
independent mutant would, in general, have different values 
for the resulting K'M and V'm parameters. One would have to 
measure the K'M for each of the mutants until one was found 
that had the appropriate value, as determined by the con- 
straints for external equivalence in Eqs. A4-A8. If one was 
lucky enough to find that this mutant also had the correct 
value for V'm, as determined by the constraints for external 
equivalence in Eqs. A4-A8, then one could measure the 
systemic differences between the wild-type and mutant to 
experimentally verify the theoretical results. If the V'm value 
was not appropriate, one might construct a mutant strain 
with the structural gene for the first enzyme under the 
control of a promoter whose activity can be independently 
varied. In such a construct, one might be able to adjust the 
promoter activity to provide the appropriate value for V„- 
Again, one could measure the systemic differences between 
the wild-type and mutant to experimentally verify the the- 
oretical results. As can be seen from this discussion of what 
it would take to do the experiments properly, it is unlikely 
that anyone would undertake the task. This is especially so 
when the result will only be valid for one special system, 
and will not contribute significantly to the validation of the 
general principle. 

This discussion is in no way a criticism of the experi- 
mental approach. It simply acknowledges the fact that only 
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FIGURE 4 Typical moving median correlation plots between different logarithmic gains in flux with respect to changes in individual enzyme levels. The 
values on the X-axis represent the moving median of the logarithmic gain with respect to the first enzyme of a pathway. The values on the /-axis represent 
the moving median of the logarithmic gains with respect to subsequent enzymes in the pathway. Full lines indicate curves for the reference system, and 
dashed lines indicate curves for the alternative system. (A) Logarithmic gain in flux with respect to the second enzyme of the pathway versus logarithmic 
gain in flux with respect to the first enzyme of the pathway. (B) Logarithmic gain in flux with respect to the ith enzyme of the pathway (i * 1, 2, n, n + 
1) versus logarithmic gain in flux with respect to the first enzyme of the pathway. (C) Logarithmic gain in flux with respect to the penultimate enzyme 
of the pathway versus logarithmic gain in flux with respect to the first enzyme of the pathway. (D) Logarithmic gain in flux with respect to the last enzyme 
of the pathway versus logarithmic gain in flux with respect to the first enzyme of the pathway. Each of these plots is for a specific pathway length; only 
the parameter values are changed randomly. However, because the trends observed for different pathway lengths are the same, we have only shown a 
representative case. 

specific theoretical predictions are amenable to direct ex- 
perimental test. More general theoretical predictions that 
apply to an entire class of systems require experimental 
information for many members of the class. The experimen- 
tal validation of the theory presented here is the fact that it 
can account for the prevalence of overall feedback inhibi- 
tion in biosynthetic pathways. 

In this work, we have used a numerical generalization of 
the method of mathematical controlled comparison to ex- 
amine systemic properties of models with and without over- 
all feedback inhibition in unbranched pathways that other- 
wise have an arbitrary pattern of feedback inhibitions. In 

summarizing our findings, we shall interlace the results of 
the older analytical approach with those of the more re- 
cently developed numerical approach. This has the advan- 
tage of showing how the numerical approach goes beyond 
the analytical approach to broaden the scope of mathemat- 
ical controlled comparison. 

By using mathematically controlled comparisons, we 
have ensured that the systems achieve the same steady-state 
flux, metabolite concentrations, and logarithmic gains with 
respect to changes in the concentration of initial substrate, 
whether overall feedback inhibition is present or not. How- 
ever, the alternative designs exhibit differences for many 
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other systemic properties. In the following seven types of 
results, the analytical approach yields unambiguous quali- 
tative differences. 

1. The logarithmic gain in flux resulting from an increase in 
demand for end product is always greater in the system 
with overall feedback inhibition. This ensures a tighter 
control of the material flowing through the pathway by 
the demand for such material. 

2. The logarithmic gain in the concentration of the first and 
last metabolite resulting from an increase in demand for 
end product is always less in the system with overall 
feedback inhibition. This shows that these concentrations 
tend to be buffered against changes in demand for end 
product. 

3. The sensitivities of the flux to changes in the parameters 
of the intermediate reactions for the system with overall 
feedback inhibition are less than or equal to those of the 
otherwise equivalent system without this inhibition. This 
shows that overall feedback inhibition increases the ro- 
bustness of the flux. 

4. The sensitivities of the flux to changes in the parameters 
of the last reaction for the system with overall feedback 
inhibition are greater than or equal to those of the oth- 
erwise equivalent system without this inhibition. This is 
related to the first point above. 

5. The sensitivity of the end-product concentration to each 
rate-constant parameter of the system with overall feed- 
back inhibition is always less than or equal to that of the 
otherwise equivalent system without this mechanism. 
This was shown to be analytically true independent of 
pathway length. The reference system is thus more ef- 
fective in buffering the final product of the pathway 
against parameter fluctuations. 

6. The sensitivity of each concentration to the parameter 
representing the last intermediate to feed back on the first 
reaction is always less in the system with overall feed- 
back inhibition. Again, the reference system is better 
protected against fluctuations of this parameter. 

7. For the special case of pathways with two intermediates, 
the alternative system has larger stability margins than 
the reference system with overall feedback inhibition. 
The more general case is discussed below. 

From the above results, we conclude that pathway flux is 
more responsive to change in demand for the end product 
when overall feedback inhibition is present and that the 
concentration of final product, and the magnitude of path- 
way flux, is less sensitive to changes in the parameters of 
the system with overall feedback inhibition. 

In each of the above results, the numerical method not 
only confirmed the qualitative differences, but also showed 
how large the differences were on average. In the following 
four types of results the analytical approach yields either no 
results or ambiguous qualitative differences, whereas the 

numerical approach gives statistical regularities in either 
situation. 

1. The logarithmic gain in the concentration of intermedi- 
ates X2 to Xn_! resulting from an increase in demand for 
end product may be either larger or smaller in the refer- 
ence system depending on the intermediate, the pathway 
length, or the values of the parameters. The numerical 
results show that, on average, these logarithmic gains are 
smaller in the reference system. 

2. For all concentrations, there are some sensitivities that 
may be either larger or smaller in the reference system. 
The numerical approach shows that, on average, these 
concentrations have smaller aggregate sensitivities in the 
reference system. The differences between the reference 
system and the alternative system can range anywhere 
between a few percent to fifty percent or more, depend- 
ing on the length of the pathway and the concentration of 
interest. 

3. The stability margins for pathways longer than two re- 
actions can be larger in either the reference system or the 
alternative system, depending on the values of the pa- 
rameters. Use of the statistical methodology shows that, 
on average, overall feedback inhibition decreases the 
margin of stability. However, the differences between 
systems with and without overall feedback inhibition are, 
on average, less than 3% and typically less than 5%. 

4. The transient time of the pathways cannot be determined 
analytically. Numerical results show that transient times 
tend to be smaller in pathways with overall feedback 
inhibition. Although a small percentage of systems with 
overall feedback inhibition have higher transient times, 
on average, overall feedback inhibition decreases tran- 
sient times in stable systems. Systems with overall feed- 
back inhibition can be, on average, a few percent faster 
to twice as fast as systems without overall feedback 
inhibition, depending on the length of the pathway. 

In addition to resolving ambiguities in the analytical 
comparisons, the numerical methods allowed us to identify 
some general effects of parameter values on systemic prop- 
erties. We found that there is a correlation between the 
values of aj (/ = ". " + ') and the values of the aggregate 
sensitivities for each metabolite as well as the flux. For very 
low values of Oj, the aggregate sensitivities will not be 
strongly affected by a change in those parameters. As these 
parameters becomes larger than 1, a correlation develops. 
As the value of otj increases, so does the aggregate sensi- 
tivity on average. The rate constant an+, is a parameter that 
can be interpreted as the demand for Xn. This means that, as 
the demand increases, so do the aggregated sensitivities. 
Why this happens is not clear. 

General correlations between systemic properties and ki- 
netic-order parameters also were identified. For example, 
we found that the transient times of the pathway are in- 
versely correlated with the kinetic orders gi+i,r This means 
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that, on average, a system will respond faster to perturba- 
tions if the kinetic orders for the substrates of the reactions 
are higher. The perturbations that were given to the systems 
were always positive, i.e., the substrates were increased 
above their nominal steady-state values. Higher kinetic or- 
ders with respect to substrate mean that the rate will have a 
sharper response to an increase in the substrate, thus causing 
it to return to the steady-state value faster. In addition to 
this, there is a positive correlation between transient times 
and feedback parameters. Lower magnitudes for the kinetic 
orders representing inhibitory feedback make the rate less 
sensitive to increases in the concentrations of its inhibitors. 
Thus, after an increase in inhibitor concentrations, systems 
with lower magnitudes for the feedback interaction will 
have faster rates than systems with high magnitudes. It is 
not clear why these correlations exist only with respect to 
the parameters representing feedback to the first reaction of 
the pathway. 

In conclusion, it is important to note that the results 
presented here are also valid for simpler patterns of feed- 
back inhibition, i.e., those that are not "fully-wired." If a 
pathway with a smaller number of internal feedback inter- 
actions is considered, the qualitative results remain the 
same. To be more specific, the number of sensitivities that 
are different between pathways with and without overall 
feedback inhibition may be smaller for pathways with less 
internal wiring, but the ones that are different remain larger 
or smaller in the same model as in the fully-wired compar- 
ison. This demonstrates the generality of the fully-wired 
case and the results provide a rationale for the widespread 
occurrence of overall feedback inhibition in nature. 

and that a mutation-eliminating inhibition by the end product results in the 
following rate law for the alternative system: 

v'X 
Xl + Ki I 2 ■ 

M 
(A3) 

In general, the KM and Vm values will be different in Eqs. A2 and A3, 
hence primes are used to indicate that the values will be different in the two 
systems. 

If one now generates the conditions for external equivalence, one 
obtains the following constraint relationships after some differentiation and 
algebraic manipulation: 

KM — K\ 
i + CM) 

1 +2- 
"^nO ^M/^Mn + -^n 

^1    ^0 \        ^Mn 

(A4) 

and 

V = V r m 'IT 

x0 + 
A* u + CM)) 
^   no KMfKMn + Xn0\ 

^1   ^0\       ^Mn       /J 
_ X% + A* (1 + X2JK\)         J 

(A5) 

Note that X„n in these expressions has a single positive real solution given 
by 

Xn„ = A + B, (A6) 

where 

A = 
VrnXoK^Kj 

2Vmn^M 

Ä^Mn^I       f^[Vm„KM + (V, vM '213' 

4^X 27«, 
(A7) 

APPENDIX 

One could address the generic questions in this paper because the power- 
law formalism is systematically structured and is thereby able to represent 
systems with essentially any type of mechanism, i.e., the representation is 
mechanism independent. This is in contrast to the Michaelis-Menten 
formalism, which does not have a well-defined structure [see Savageau 
(1996)]. One cannot address the generic questions examined in this paper 
if one insists on using the Michaelis-Menten formalism. The following is 
an example illustrating why this is the case. 

Consider a special case in which one happens to know the specific 
mechanisms for each reaction in the pathway. For example, assume that all 
the reactions in common are governed by simple irreversible Michaelis- 
Menten kinetics, in particular, that the rate law for the degradation of the 
end product X„ is given by 

Au,, + X„ 
(Al) 

and 

B = 
'm^O^Mn^I 

T^O^Mn^l        -Kll^mn^M + (Vm vjxlf 
4VLX 27VLKJ, 

(A8) 

If this solution is inserted into the constraint expressions for K^, and Vm, 
one sees that they become even more complex. 

These are among the simplest of assumptions regarding the Michaelis- 
Menten formalism, and one can see how much more complicated this 
approach is compared to the approach in the power-law formalism [con- 
trast Eqs. A4-A8 with Eqs. 26 and 27 in the text). The above expressions 
would be different for different mechanisms, and, when the mechanisms 
are more complex, the process would become quite impractical. Yet, one 
obtains the same results for the local behavior. 

Further assume that the first enzyme has a specific cooperative mechanism 
with the rate law. 

Vi 
vX 

' X? + *J,(1 + («))■ (A2) 
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ABSTRACT It has been observed experimentally that most unbranched biosynthetic pathways have irreversible reactions 
near their beginning, many times at the first step. If there were no functional reasons for this fact, then one would expect 
irreversible reactions to be equally distributed among all positions in such pathways. Since this is not the case, we have 
attempted to identify functional consequences of having an irreversible reaction early in the pathway. We systematically 
varied the position of the irreversible reaction in model pathways and compared the resulting systemic behavior according 
to several criteria for functional effectiveness, using the method of mathematically controlled comparisons. This technique 
minimizes extraneous differences in systemic behavior and identifies those that are fundamental. Our results show that a 
pathway with an irreversible reaction located at the first step, and with all other reactions reversible, is on average better than 
an otherwise equivalent pathway with all reactions reversible, which in turn is on average better than an otherwise equivalent 
pathway with an irreversible reaction located at any step other than the first. Pathways with an irreversible first reaction and 
low concentrations of intermediates (one of the primary criteria for functional effectiveness) exhibit the following profile when 
compared to fully reversible pathways: changes in the concentration of intermediates in response to changes in the level of 
initial substrate are equally low, the robustness of the intermediate concentrations and of the flux is similar, the margins of 
stability are similar, flux is more responsive to changes in demand for end product, intermediate concentrations are less 
responsive to changes in demand for end product, and transient times are shorter. These results provide a functional rationale 
for the positioning of irreversible reactions at the beginning of unbranched biosynthetic pathways. 

INTRODUCTION 

Several types of theoretical studies have reported properties 
of enzymes that could account for their selection during the 
evolution of metabolic pathways. The simplest type in- 
volves determining the distribution of parameter values that 
produces the maximal catalytic efficiency of an isolated 
enzyme (Fersht, 1974; Crowley, 1975; Albery and 
Knowles, 1976; Cornish-Bowden, 1976; Mavrovouniotis et 
al., 1990; Heinrich and Hoffman, 1991; Peterson, 1992; 
1996; Wilhelm etal., 1994; Bish and Mavrovouniotis, 1998; 
Heinrich and Schuster, 1998). Waley (1964) considered a 
three-step pathway with reactions described by Michaelis- 
Menten rate laws and determined the distribution of enzyme 
concentrations that maximizes flux through the pathway. 
Similar studies were performed for «-step pathways (Schus- 
ter and Heinrich, 1987; Klipp and Heinrich, 1994; Heinrich 
and Klipp, 1996). Other theoretical studies have dealt with the 
design of regulatory patterns that, according to multiple crite- 
ria, optimize the local behavior of unbranched biosynthetic 
pathways with n steps and arbitrary mechanisms (Savageau, 
1972, 1974, 1975, 1976; Savageau and Jacknow, 1979). 
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An aspect that has been less thoroughly studied is the 
distribution of irreversible reactions in unbranched biosyn- 
thetic pathways and how this distribution might be related to 
the optimization of various systemic properties. Although 
each reaction is in principle reversible, in practice some 
reactions in a pathway operate far from thermodynamic 
equilibrium and are effectively irreversible. It has been 
observed experimentally that, in most cases, unbranched 
biosynthetic pathways have irreversible reactions near the 
beginning, many times at the first step, of the pathway (see, 
e.g., EMP:http://wit.mcs.anl.gov//EMP/). 

If there were no functional reasons for irreversible reac- 
tions to be at the beginning of a pathway, then one would 
expect irreversible reactions to be equally distributed among 
all positions in the pathway. Since this is not the case, we 
have attempted to identify the functional consequences of 
having an irreversible reaction early in the pathway. We 
systematically varied the position of the irreversible reac- 
tion in model pathways and compared the resulting systemic 
behavior according to several criteria for functional effec- 
tiveness. The model pathways were represented by a power- 
law formalism that faithfully captures their nonlinear be- 
havior, independent of mechanistic detail, within a local 
neighborhood of an arbitrary steady-state operating point. 
We used the method of mathematically controlled compar- 
ison to minimize extraneous differences and to identify 
fundamental differences. With this approach, we have been 
able to find a rationale for irreversible reactions at the 
beginning of unbranched biosynthetic pathways. 
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METHODS 

Alternative models and their systemic description 

Consider the unbranched biosynthetic pathways depicted in Fig. 1. The 
initial substrate X,, is an independent variable with fixed value. The 
independent variable Xn+, represents the cell's demand for the end product 
Xn. If the cell requires large amounts of X„, then the value of Xn+, will be 
high; if small amounts of X„ are required, then the value of X„+, will be low. 
The end product inhibits the first reaction, as has been experimentally observed 
(Umbarger, 1956; Yates and Pardee, 1956; Monod et al., 1963) and theoreti- 
cally rationalized (Alves and Savageau, 2000d). The dynamic behavior of such 
systems can be described by a set of ordinary differential equations. 

Assume that the net flux through the pathway is positive (i.e., material 
is coming into the system from XQ, which is held constant, and exiting the 
system through X„). The net positive flux through the reaction immediately 
before the intermediate X, (considered the net influx to the pool of X,) can 

be accounted for by a single aggregate rate law, representing either the 

difference between the rate laws for the constituent forward and reverse 

reactions when the overall reaction is reversible or the rate law for the 

forward reaction alone when the overall reaction is irreversible. Similarly, 

the net positive flux through the reaction immediately after the intermedi- 

ate X| (considered the net efflux from the pool of X,) can be represented by 
a single aggregate rate law. 

The dynamical behavior of the models in Fig. 1 can be accurately 
described in a region about their nominal steady state by using a local 
S-system representation within the power-law formalism (Savageau, 1969, 
1971a, 1976, 1996). For details about different ways to aggregate rate laws 
and approximate them as S-systems, see Sorribas and Savageau (1989). 
The resulting equations are the following: 

dX, 
-^-=a,^Xf"^'"-a,Xf-'Xf- 

dX, 
-£ = otffc'xr - ai+lxt*"x?!:r    o<i<n   a> 

dX, ' 

dt "nAn-l An «n+lAn      An+1 

The aggregate rate law V, for the influx of Xt is characterized by a 
multiplicative parameter (rate constant), a{, which influences the time scale 
of the reaction and is always positive, and a set of exponential parameters 
(kinetic orders), gy, which represents the influence of metabolite X, on 
aggregate rate law V,. If X-t influences the aggregate rate law V„ either as 

a reactant or a modulator, and if an increase in the concentration of X, 

causes an increase in the rate V„ then the kinetic order will be positive. If 

an increase in the concentration of Xi causes a decrease in the rate V,, then 

the kinetic order will be negative. If an increase in the concentration of Jtj 

causes neither an increase nor a decrease in the rate V„ then the kinetic 

order will be zero. Thus, the positive kinetic orders in Eq. 1 are &,_, (I < 

i s n + 1), since these are the kinetic orders for substrates of reactions. All 
other exponents are negative or zero, depending on whether X, is the 
product of a reversible (gH < 0) or an irreversible (g„ = 0) reaction. The 
fact that gs is negative if the reaction is reversible is evident from ther- 
modynamic considerations. If the concentration of the product is increased, 
the thermodynamic potential across the reversible reaction is reduced and 
the net flux must decrease. Hence, the kinetic order gtj must be negative to 
represent this decrease. 

^X; 

Vl+1 

FIGURE 1 Schematic representation of an un- 
branched biosynthetic pathway subject to control by 
end-product inhibition. The concentration of the initial 
substrate X0 is an independent variable with fixed 
value; the demand for the end product X„ is repre- 
sented by X„+1, which also is an independent variable. 
The reference System 0 has n fully reversible reac- 
tions. The alternative systems have one irreversible 
reaction and the other reactions are identical to the 
corresponding reactions in the reference system; Sys- 
tem 1 has an irreversible reaction at the first position; 
System ;' has an irreversible reaction at the z'th position; 
System n has an irreversible reaction at the ;ith 
position. 

X0—I _ XT — 

M^: 

^n+1 

"Ti+1 

^x1^: 

\I+1 
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Steady-state solution and key 
systemic properties 

The S-systems describing the dynamic behavior of the models in Fig. 1 can 
be solved analytically for the steady state (Savageau, 1969, 1971a), where 
the rates of production and consumption for each metabolite are the same. 
By equating these rates and taking logarithms of both sides of the resulting 
equations, one can write the following matrix equation: 

b2 

bn + £n+l,n+Hn+l. önl 

(2) 

log(ai + ,/ai), and ay = g,. ■ gn ; for 1 where Y, = logC*",), ft, 
(I.J) s n. 

Two types of coefficients, logarithmic gains and parameter sensitivities, 
can be used to characterize the steady state of such models. Logarithmic 
gains measure the relative influence of each independent variable on each 
dependent variable of the model (Savageau, 1971a; Shiraishi and Sav- 
ageau, 1992). For example, 

L(X„X0) = 
d log(Xi) _ dY-, 

dlog(X0)~dY0 
(3) 

measures the percent change in the concentration of intermediate X, caused 
by a percentage change in the concentration of the initial substrate X0. 
Logarithmic gains provide important information concerning the amplifi- 
cation or attenuation of signals as they are propagated through the system. 
Parameter sensitivities measure the relative influence of each parameter on 
each dependent variable of the model (Savageau, 1971b; Shiraishi and 
Savageau, 1992). For example. 

djogVQ=    dYi 
5<X»/V- dlogip)    PidPj 

(4) 

measures the percentage change in the concentration of intermediate X-, 
caused by a percentage change in the value of the parameter py Parameter 
sensitivities provide important information about system robustness, i.e., 
how sensitive the system is to perturbations in the structural determinants 
of the system. Because steady-state solutions exist in closed form, we can 
calculate each of the two types of coefficients simply by taking the 
appropriate derivatives. Although the mathematical operations involved 
are the same in each case, it is important to keep in mind that the biological 
significance of the two types of coefficients is very different. 

The local stability of the steady state can be determined by applying the 
Routh criteria (Dorf, 1992). The magnitude of the two critical Routh 
conditions can be used to quantify the margin of stability (Savageau, 1976). 

Systems should respond quickly to changes in their environment (Sav- 
ageau, 1975). Thus, another key property of the systems is their temporal 
response, which was determined as follows. At time zero, each interme- 
diate concentration was set to a value 20% less than its steady-state value. 
The dynamics were then followed from this initial condition, and the time 
for all the concentrations to settle to within 1% of their final steady-state 
value was calculated. 

Mathematically controlled comparison 

The method of Mathematically Controlled Comparison was specifically 
developed to make rigorous comparisons of alternative regulatory designs 
(Savageau, 1972, 1996; Irvine and Savageau, 1985; Alves and Savageau, 
2000c, d). This method compares alternative designs for a system that 
performs a given function and, by using mathematical equivalence con- 

straints to reduce their extraneous differences, determines the irreducible 
differences between their systemic behaviors. This method requires closed- 
form solutions for the steady state, which, as noted above, can be obtained 
with the local S-system representation. Important functional constraints are 
introduced by equating relevant steady-state properties of the alternative 
systems being compared. Further analysis (dynamic as well as steady-state) 
is performed and a profile of ratios is constructed for corresponding results 
from the alternative systems. In some cases, a ratio can be determined 
analytically to be less than, equal to, or greater than unity. For example, if 
the ratio of values for some property P in a reference system to the same 
property in an alternative system is larger than unity, then the reference 
system can always be made to have a larger value for P, no matter how 
large the value for P in the alternative system. 

However, if one wishes to know how much greater than unity a given 
ratio is, then one needs to know actual parameter values. These parameter 
values are not always available; if they are available, they are not always 
accurate. Moreover, there are cases in which the ratio can be less than or 
greater than unity, depending on the specific values for the parameters, so 
Mathematically Controlled Comparisons that use actual parameter values 
may lack analytical generality. 

In this work we use our method (Alves and Savageau, 2000c), which is 
a generalization of the original analytical method for making mathemati- 
cally controlled comparisons; it includes numerical comparisons in which 
statistical techniques (Alves and Savageau, 2000a) yield results that are 
general in a statistical sense. We compare the systemic performance of a 
fully reversible pathway (Fig. 1, System 0) with that of pathways in which 
only one of the reactions is irreversible (Fig. 1, System 1—System n). We 
consider all possible positions for the irreversible reaction in pathways with 
2 to 7 reactions. The system in which each reaction of the pathway is 
reversible will be referred to as the reference system or System 0, and the 
otherwise equivalent system in which the ith reaction of the pathway is 
irreversible will be referred to as an alternative system or System i. This 
method also allows direct comparison of System i and System j, each of 
which has an irreversible reaction but in different positions. 

Internal and external equivalence 

We are concerned with the irreducible differences in systemic behavior 
between two pathways of reversible reactions that differ only by the 
existence of one irreversible reaction in a pathway where the other has a 
reversible reaction. By irreducible differences we mean differences that 
persist no matter what the values are for the parameters that define the 
systems. It is therefore important to ensure that all other changes in 
systemic behavior are eliminated to the extent possible. To achieve this 
aim, we shall require that the reference and alternative systems be equiv- 
alent from both an internal and external perspective (Savageau, 1972, 
1976; Irvine and Savageau, 1985). 

By internal equivalence we mean that the values of the corresponding 
parameters for all the unchanged reactions are the same in both the 
reference and alternative systems. By external equivalence we mean that 
systemic behaviors of the reference and alternative systems are made 
identical, which leads to constraints upon the values for the parameters of 
the changed reaction. For example, consider the reference system (Fig. 1, 
System 0) and an alternative system in which the first reaction is irrevers- 
ible (Fig. 1, System 1). The parameters that characterize the first reaction 
of the pathway will differ in general between these two systems. The 
parameters a,, gl0, g,,, and g,„ of System 0 become the parameters a',, g',0, 
g'n = 0, and g\„ of System 1. Since we wish to determine the necessary 
systemic effects that are due to the change from reversibility to irrevers- 
ibility, we shall specify values for the parameters or',, g'w< and g'ln that 
eliminate as many extraneous systemic effects as possible. This is accom- 
plished by deriving mathematical expressions for a given steady-state 
property in each of the two models, equating these expressions to produce 
a constraint equation, and then solving the constraint equation for one of 
the primed parameters in terms of the unprimed parameters. When all 
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primed parameters have been specified in this fashion, there will be no 
more degrees of freedom with which to make systemic properties equiv- 
alent between the two models, and the two systems will be maximally 
equivalent from an external perspective. 

Calculating the constraints for external equivalence 

We require the reference and alternative systems in Fig. 1 to have the same 
steady-state logarithmic gains with respect to the initial substrate of the 
pathway and the same concentrations (and thus flux). These two types of 
constraints are sufficient to fix the two primed parameters of the irrevers- 
ible reaction when its position is beyond the first step. 

When the position of the irreversible reaction is at the first step, there 
are three primed parameters that need to be fixed (see previous section). 
For the third constraint we require the reference and alternative systems in 
Fig. 1 to have the same sensitivity of the concentrations with respect to 
changes in the parameter a,. This constraint is preferred over other pos- 
sibilities because the reference system and alternative system will then 
exhibit the smallest number of systemic differences, which is the objective 
in a mathematically controlled comparison. One could choose a different 
systemic property to form the third constraint. However, the reference 
system and alternative system would then exhibit a larger number of 
systemic differences, some of which could be eliminated by the choice of 
the preferred constraint. 

Thus, the following system of algebraic equations is solved to obtain the 
analytic constraints for the primed parameters of the irreversible reaction at 
the ith step: 

L(Aj, .Ao)Reference — L\X-„ AQ)Alternative      ' — ' : 

S(Xj, «^Reference = o(Aj, CViJAlicrnative      ' =  1 

(5a) 

logfA-jR loglXiL 1 < i < n (5c) 

By constraining one of the logarithmic gains (Eq. 5a), all of them are 
constrained. This allows us to fix the kinetic order §,',_,. When the 
irreversible reaction occurs at the first step, the additional constraint (Eq. 
5b) allows us to fix the kinetic order g'ln. By constraining one of the 
concentrations (Eq. 5c), all of them, as well as the steady-state flux, are 
constrained. This allows us to fix the rate constant a{. 

The parametric constraints obtained by solving Eq. 5 have the following 
form: 

Si'i-l = c?i.i-l/i(g. «) 

gh> = 8\n+fn(g,n) 

Jogfa-) =/„(«, g, n) 

(6) 

where the parameters a and g in the functions/are intended to represent 
a set of rate constants and kinetic orders that depend both on the length of 
the pathway and on the systems being considered. The specific forms of 
these constraints are presented in the Appendix for ;i = 2 to n — 7. 

Numerical analysis 

The analytical results give qualitative information that characterizes the 
effect of irreversibility in the systems of Fig. 1. To obtain quantitative 
information, one must introduce specific values for the parameters and 
compare systems. For this purpose we have randomly generated a large 
ensemble of parameter sets and selected 5000 of these sets that define 
systems consistent with various physical and biochemical constraints. 
These constraints include mass balance, low concentrations of intermedi- 
ates and small changes in their values to minimize utilization of the solvent 
capacity in the cell, small values for parameter sensitivities so as to 

desensitize the system to spurious fluctuations affecting its structure, and 
stability margins large enough to ensure local stability of the systems. A 
detailed description of these methods can be found in Alves and Savageau 
(2000b). Mathematica (Wolfram, 1997) was used for all the numerical 
procedures. 

Density of ratios plot 

To interpret the ratios that result from our analysis, we use Density of 
Ratios plots as defined in Alves and Savageau (2000a). The primary 
density plots from the raw data have the magnitude for some property of 
the reference system on the *-axis and the corresponding ratio of magni- 
tudes (reference system to alternative system) on the y-axis. The primary 
plot can be viewed as a list of 5000 paired values that can be ordered with 
respect to the reference magnitude to form a list L, in which the first pair 
has the lowest measured value for property P in the reference model, the 
second has the second lowest, and so on. Secondary density plots are 
constructed from the primary plots by the use of moving quantile tech- 
niques with a window size of 500. The procedure is as follows. One 
collects the first 500 ratios from the list Z.,, calculates the quantile of 
interest for this sample, and pairs this number <R) with the median value of 
the corresponding P values of the reference model, denoted (P). One 
advances the window by one position, collects ratios 2 through 501, 
calculates (R), and pairs it with the corresponding (P> value and continues 
in this manner until the last ratio from the list £, is used for the first time. 
This procedure generates a second list L^ and the corresponding secondary 
plot. The slope in the secondary plot measures the degree of correlation 
between the quantities plotted on the x- and y-axes. 

(5b)      Mathematically controlled comparison 

Several criteria are considered to determine the functional effectiveness of 
unbranched biosynthetic pathways (Savageau, 1976; Alves and Savageau, 
2000d). The systems being compared will be equal on the bases of the first 
two criteria because of external equivalence constraints, whereas they will 
differ with respect to the remaining five criteria. 

1. The concentration of intermediates should be low, because otherwise it 
would tax the limited solvent capacity of the cell and potentially 
interfere in a nonspecific way with unrelated reactions (e.g., Atkinson, 
1969; Savageau, 1972; Srere, 1987; see Levine and Ginsburg, 1985, for 
a general discussion of the subject from different perspectives). Due to 
the conditions for external equivalence that we shall impose, the con- 
centrations of the corresponding intermediates will be the same for all 
comparable systems being examined. 

2. The changes in concentration of intermediates caused by changes in the 
initial substrate should be small. This also will ensure that the solvent 
capacity is not exceeded when the concentration of intermediates 
changes. Again, due to the conditions for external equivalence, the 
corresponding logarithmic gains will be the same for all the systems 
being examined. These changes are quantified by means of the loga- 
rithmic-gain factors L(X„ X0) as defined in Eq. 3. 

3. The systems should be robust, i.e., the concentrations and flux should be 
insensitive to changes in the parameters that define the structure of the 
system (Savageau, 1971b; Shiraishi and Savageau, 1992). If these 
sensitivities are high, then small fluctuations in parameter values (e.g., 
due to physical changes such as temperature or to errors in replication, 
transcription, or translation) would lead to large deviations from the 
normal behavior of the system. These changes are quantified by means 
of the parameter sensitivities S(X„ pj and 5(V, p}) as defined in Eq. 4. 
Aggregate sensitivities for intermediate concentrations and flux are 
defined as follows: S(X,) = VZßX^j1 and S(V) = V2jS(V, Pif. 

4. The systems should have a steady state that is dynamically stable 
following small perturbations in the concentration variables, otherwise 
they would be dysfunctional, i.e., unable to maintain homeostasis in the 
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face of spurious perturbations. Furthermore, the margins of stability 
should be sufficiently large that changes in parameter values will not 
produce an unstable steady state. There are n Routh conditions that 
determine whether the steady state of a system with n variables will be 
stable. The margins of stability are quantified by the size of the critical 
Routh conditions, which are the last two (Savageau, 1976; Hlavacek and 
Savageau, 1997). 

5. The flux through the pathway should be highly responsive to changes in 
the demand for end product. This ensures that the amount of material 
flowing through the pathway is tightly coupled to the needs of cellular 
metabolism. This criterion is quantified by the logarithmic gain L(V, 
X„+1), as defined in Eq. 3. 

6. The changes in concentration of the intermediates caused by changes in 
demand for the end product should be small. This ensures that the 
depletion of end product is minimized when there is an increase in 
demand. It also ensures that the solvent capacity is not exceeded by the 
intermediates when demand for the end product changes. These changes 
are quantified by means of the logarithmic-gain factors L(X„, X„+,) and 
UX„ Xn+I) as defined in Eq. 3. 

7. The systems should respond quickly to changes in their environment, 
i.e., they should have short transient times (Savageau, 1975). Organisms 
harboring systems with a sluggish response to change will be at a 
disadvantage when competing with other organisms in a rapidly chang- 
ing environment. Transient time will be measured as the time it takes 
the system to return to its steady state after a small perturbation in 
concentrations. 

RESULTS 

In all the results described below, the reference and alter- 
native systems have the same steady-state values for the 
flux through the pathway, the same concentrations of the 
corresponding metabolites, and the same logarithmic gains 
for pathway flux and for metabolite concentrations in re- 
sponse to changes in the initial substrate. These equivalent 
behaviors are a direct consequence of the constraints for 
internal and external equivalence, as described above in 
Methods. The reference and alternative systems differ on 
the basis of their robustness, margin of stability, response to 
demand for end product, and transient time. 

reaction approaches the beginning of the pathway, the num- 
ber of sensitivities that are equal in the systems being 
compared decreases. The concentration of the product of the 
irreversible reaction is always more sensitive to parameter 
changes than the product of the corresponding reversible 
reaction in the reference system. 

In general, numerical methods are needed to decide 
which systems are more robust because this cannot be done 
by examining just the symbolic sensitivities. The numerical 
results in Fig. 2 A show that the aggregate sensitivity of X( 

to parameters is on average the same in the reference and 
alternative systems if Xt is surrounded by reversible reac- 
tions. If either the reaction that produces or the reaction that 
consumes X; is irreversible, then that concentration is on 
average more robust in the reference system. Fig. 2 B shows 
that, on average, the reference System 0 has smaller aggre- 
gate sensitivities for flux than alternative Systems i. How- 
ever, these differences are only significant for alternative 
Systems 1 and n. 

Margin of stability 

Comparing System 0 with System i shows that the stability 
margins for systems with 2 reactions are always larger in a 
reference System 0. For systems with 3 to 7 reactions, these 
margins can be larger in either system. Direct comparison of 
System i with System; shows that the stability margins can 
be larger in either system, depending on the parameter 
values. 

Numerical results show that, on average, the reference 
System 0 has larger margins of stability than alternative 
Systems i (i > 1). Numerical results also show that, on 
average, the reference System 0 has larger margins of sta- 
bility than System 1, although the differences are insignif- 
icant (Fig. 2Q. 

Robustness 

We compare the robustness of the reference system having 
all reversible reactions with that of an otherwise equivalent 
alternative system having one irreversible reaction in all 
possible positions. In most cases, symbolic analysis is suf- 
ficient to determine whether the ratio of a given parameter 
sensitivity in the reference system to the corresponding 
sensitivity in the alternative system is larger or smaller than 
1; in the remaining cases, symbolic analysis is incapable of 
determining the value for the ratio because it depends on the 
specific values of the parameters. Results of the symbolic 
analysis are summarized in Table 1 for pathways of length 
2 to 7. The following patterns can be observed in the data. 

The reference system is always more robust than the 
alternative system with an irreversible synthesis of the end 
product, because the ratios of parameter sensitivities are all 
less than or equal to 1. As the position of the irreversible 

Response to demand for end product 

Symbolic comparisons with the reference system show that 
the flux through System 1 is more responsive to changes in 
the demand for end product than is the flux through System 
0. However, for i > 1, the flux through System 0 is more 
responsive to changes in the demand for end product than is 
the flux through System i. This demonstrates that, with 
respect to this systemic property, System 1 is better than 
System 0 and better than any of the other alternatives. Direct 
comparison of Systems i and j with respect to this systemic 
property reveals additional information. If i,j > 1, then the 
flux through Systems / and j is equally responsive to 
changes in the demand for end product. 

Numerical results (Fig. 2 D) show that average differ- 
ences between the reference System 0 and alternative Sys- 
tem 1 are about 120%, whereas the differences between the 
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TABLE 1    Comparison of parameter sensitivities for the reference and alternative systems as a function of pathway lenqth and 
of position for the irreversible step in the pathway 

« = 2 n = = 3 71 = 4 n = 5 n = 6 n = = 7 
>1     <1      =1 ? >1 <1 = 1 ? >1 <1 = 1 ? >1 <1 = 1 7 >1 <1 = 1 7 >1 <1 = 1 1 

1st reaction irreversible ( = D 
V        3        3        2 0 6 3 2 0 6 6 2 0 12 0 2 3 1 17 2 n n 71 2 0 
A-,       0        4        2 2 0 7 2 2 0 6 2 5 1 12 2 2 16 0 2 2 19 0 2 2 
X2       5        1        2 0 3 4 2 2 3 2 2 7 4 11 2 0 12 4 2 7. is 4 ? 2 .- 
X3     —      —      — — 8 1 2 0 11 1 2 0 8 7 2 0 9 7 2 2 12 7 7 2 - 
*4         —          —          — 8 4 2 0 11 2 2 2 7 9 2 2 10 9 7. 2 

13 2 2 0 3 13 2 2 6 13 2 2 

V 
1 17 2 0 4 15 2 2 4 

0 21 2 0 
2nd reaction irreversible ( = 2) 

V        2        1        5 0 5 1 5 0 8 1 5 0 11 1 5 0 3 12 5 n 3 15 5 0 
A-,       0       3        5 0 3 3 5 0 3 6 5 0 9 3 5 0 3 12 5 0 3 15 5 0 
A-2       0       3        5 u 0 4 5 2 0 2 5 7 0 10 5 2 13 0 5 2 16 (1 5 2 
X3     —     —     — — i 3 5 0 3 6 5 0 3 7 5 2 10 3 5 2 13 3 5 2 
X4     —      —      — 6 3 5 0 6 4 5 2 7 6 5 2 10 6 5 2 

9 3 5 0 3 10 5 2 6 10 5 2 
3 12 5 0 3 13 5 2 

3 15 5 0 
3rd reaction irreversible (i = 3) 

V      —      —      — — 2 1 8 0 5 1 8 0 8 1 8 0 3 9 8 0 7 13 8 0 
A",     -      —      — — U i 8 0 0 6 8 0 6 3 8 0 3 9 8 0 3 17 8 0 
A",      —      —      — — 0 3 8 0 0 6 8 0 6 3 8 0 3 9 8 0 3 1? 8 0 
X3      —      —      — — Ü 3 8 0 0 6 8 0 0 7 8 2 10 0 8 2 13 0 8 2 
X4     —      —      — 3 3 8 0 3 4 8 2 7 3 8 2 10 3 8 2 

6 3 8 0 4 6 8 2 7 6 8 2 
3 9 8 0 3 10 8 2 

2 13 8 0 
4th reaction irreversible (/ = = 4) 

2 1 0 5 1 0 7 2 11 0 2 10 11 0 
A",     —      —      —     - 0 3 0 4 3 0 5 4 11 0 7 5 11 0 
X2     —      —     —     ■ 0 3 0 4 3 0 4 5 11 0 6 6 11 0 
A",     —      —      —     - 0 3 0 4 3 0 6 3 11 0 9 3 11 0 
X,    —     —     —    - 0 3 0 0 4 2 7 0 11 2 10 0 11 2 

4 3 0 4 3 11 ?. 7 3 11 2 
2 7 11 n 3 7 11 2 

2 10 11 0 
5th reaction irreversible (i = 5) 

2 1 14 0 2 4 14 0 2 7 14 0 
0 3 14 0 2 4 14 0 6 1 14 2 
0 3 14 0 1 3 14 1 5 2 14 2 
0 3 14 0 1 3 14 2 5 2 14 2 
0 3 14 0 2 2 14 2 5 2 14 2 
0 3 14 0 2 2 14 2 5 2 14 2 

2 4 14 0 0 7 14 2 
2 10 14 0 

6th reaction irreversible (i = 6) 

2 1 17 0 5 1 17 0 
0 3 17 0 ?. 7 17 2 
0 3 17 0 2 ? 17 2 
0 3 17 0 3 1 17 2 * 
0 3 17 0 7 7 17 2 - 
0 3 17 0 4 0 17 2 
0 3 17 0 4 0 17 2 

5 1 17 
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TABLE 1 Continued . _ .  
7T2 n-3 n-4 »-5 «^6 n = 7  

>, <i m >i <i -i ? >' <■ =' ? >' <' =i ? >i <x =i ? >[ <l =1 ■ 
7th reaction irreversible (i = 7)                                           2 1        20     0 

V       —      —      —    —     —      -~~~"~"3__-     —      —      —    —      0 3        20      0 
Xi      —      —      ~~    ~~     —      Z—    ——      —      ———      —      ———      —      _    _      0 3        20      0 
*2 ~ — _      ~~        ~~ Z_—        — — ——— — ——— — —— ° 3 200 

*s      —       —       —    —     ~~       ~       ___       —       __—       —       ———       —       ——       ° 3        20      0 
X,      —      —      —    —     —      _      ________——     —      —      —    —      0 3        20      0 
x3    —    —    —  —    ~    Z_  ——    —    ———    —    ———    —    —  —    °      3     200 
*6      —      —      —    ~~"     —      — _____———      —      ——      0 3        20     0 
X-,      —      —      —   —     —      —      —   —     —  _ . _  

— v v.. „f ,he «eadv-state flux (V) through the pathway and of the steady-state concentrations (X,) are calculated with respect to each of the 
The ^l'^^^sfZ^ the afernative system. The ratio of a given sensitivity in the reference system relative to the correspondmg 
PanmTm^^°ZTZ^Tnrt to be greaL than one. less than one, equal to one, or indeterminate. The number of reactions .n the 
sensmv.ty .. «-     ^  '^0^ «he irreversible reaction in the pathway, i. varies from I to n. The ratios are the values of the parameter 
S ZTeftZtsyltZo^e^e for alternative Systems i (see Fig. 1). Column legend: >.. number of sensitivities that are larger ,„ sensawtues  or reference System ur ^^ ^^ ^ ^.^.^ ^ are ^ same ,„ bo(h sy „„^ 

refere"C I" Tumbt r o s^nst ^"be larger in either system, depending on parameter values. For example, the number 5 at the 3rd row 1st 
Zmnp^sltL of the f= ! "= 2 s.tion of the tab.e means that there are five different parameters in a two-step pathway for wh.ch the sens.fvmes 

of X2 are larger in System 0 than in System 1. 

reference System 0 and alternative Systems i (i > 1) are, on sensitivities approaches 1 (Fig. 2 A). The ratio for aggregate 
Te less than 2% sensitivities of flux in System 0 and System 1 also ap- 

aVThf end-product concentration in System 1 is less respon- proaches 1, whereas the same ratio in System 0 andSystems 
sive to changes in the demand for end product than is the i (i > 1) decreases away from 1 (Fig. 2 B). Thus, the 
end product in System 0. However, for / > 1, the end differences in robustness (criterion 3) in System 0 and 
product concentration in System 0 is less responsive to System 1 become less significant, whereas the differences in 
changes in the demand for end product than is the end System 0 and Systems i (< > 1) become more significant at 
product in System i. Again, System 1 is better than System iow concentrations of intermediates, which is our first cn- 
0 and better than any of the other alternatives. terion for functional effectiveness. 

Numerical results (Fig. 2 E) show that average differ- The ratios involving the critical margins of stability can 
ences between the reference System 0 and alternative Sys- be positively or negatively correlated with the concentra- 
tem 1 can be between 50 and 100%, whereas the differences tions of intermediates, depending on the particular compar- 
between the reference System 0 and alternative Systems 1 ison (pig 2 Q. There is no general pattern apparent in this 
(i > 1) are, on average, much smaller (2-8%). panel, so these correlations provide no further information 

regarding criterion 4. 
The ratios for System 0 relative to System 1 of logarithmic 

Transient time ^& ^ flux with Kspe.ct t0 changes [n the demand for end 

There is no explicit solution for the dynamic equations prorjuct are positively correlated with low concentrations of 
given in Eq. 1 that would allow one to determine symbol- intermediates, although the slope for this correlation is small, 
ically the transient responses of the various systems in Fig. 1. The same ratioSj but for System 0 relative to System 1 (i > 1), 
The numerical results in Fig. 2 F show that the transient time ^ neganveiy correlated with low concentrations of interme- 
for alternative Systems i (i < n) is, on average, smaller than ^^ although me slope for this correlation is also small (Fig. 
that for the reference System 0, whereas the transient time for 2 ^ ^^ me differences in responsiveness of flux to changes 
alternative System« is larger than that for the reference System ^ demanj for end product (criterion 5) in System 0 and 
0. A direct comparison of System i and System ; (1,;' * n) System 1( md in System 0 and System i (/' > 1), become more 
shows that the transient time can be larger in either system, significan't at low concentrations of intermediates, 
depending on the length of the pathway (data not shown). ^ ^.^ involving logarithmic gains in end product 

concentration with respect to changes in the demand for end 
Correlations between ratios and product are positively correlated with the concentrations of 
systemic properties intermediates (Fig. 2 E). Thus, the differences in depletion 

.   .•       •   c ,„,™ of end nroduct following an increase in demand for end 
Thp aaorppate sensitivities of the concentrations in System OI enu P'"uul-1 lu""     s 

•      l^^oL those in System 0 as the concentra- product (criterion 6) in System 0 a,d System 1 become less 
lions of intermediates decrease, i.e., the ratio of aggregate significant at low concentrations of intermediates. 
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FIGURE 2 Typical correlation curves between ratios of magnitudes in reference System 0 relative to those in alternative Systems i versus concentrations 
of intermediates. The data, which are generated by changing all of the parameter values randomly within the constraints described in the Methods section, 
are displayed in a density of ratios plot (Alves and Savageau, 2000a). The y-axis indicates which of two systems on average has the larger magnitude; the 
jr-axis indicates how this difference changes as a function of the concentration of intermediates (see criterion 1 in the text). The subscripts j and * refer to 
arbitrary pathway intermediates, which have different concentrations in general. We have made individual plots for each pathway length and combination 
of intermediates. However, since the trends observed for different pathway lengths and intermediates are the same, we show only representative examples. 
(A) Ratios of aggregate sensitivities of concentrations: a, aggregate sensitivities of metabolites that have both their production and consumption catalyzed 
by reversible reactions; b and c, aggregate sensitivities of metabolites that have either their production or consumption catalyzed by an irreversible reaction. 
OB) Ratios of aggregate sensitivities of flux: a, ratio for reference System 0 relative to alternative Systems i" (1 < / < n); b, ratio for reference System 0 
relative to alternative System n; c, ratio for reference System 0 relative to alternative System 1. (C) Ratios of critical criteria for local stability. (D) Ratios 
of logarithmic gains in concentration with respect to changes in demand for the end product: a, ratio for reference System 0 relative to alternative System 
1; b, ratio for reference System 0 relative to alternative System i (i > 1). (£) Ratios of logarithmic gains in flux with respect to changes in demand for the 
end product: a, ratio for reference System 0 relative to alternative Systems i (t > 1); b, ratio for reference System 0 relative to alternative System 1. (F) 
Ratios of transient times: a and b, ratio for reference System 0 relative to two different alternative Systems i (i < n); c, ratio for reference System 0 relative 
to alternative System n. 

The ratios involving transient times are inversely corre- 
lated with the concentrations of intermediates (Fig. 2 F). 
Thus, the difference in transient times (criterion 7) in Sys- 
tem 0 and Systems / (/ < n) increases as the concentration 
of intermediates decreases, whereas this difference in Sys- 
tem 0 and System n decreases. 

DISCUSSION 

We analyzed the effect of having an irreversible reaction at 
different positions in an unbranched biosynthetic pathway 
with all other reactions being reversible. We also analyzed 
the effect of having a reversible reaction at different posi- 
tions in pathways with all other reactions being irreversible 
(data not shown). The results are qualitatively similar; 
namely, the best position for the single irreversible reaction 
is at the beginning of the pathway, whereas the best position 
for the single reversible reaction is at the end of the path- 

way. The method used for our analysis, mathematically 
controlled comparisons, often allows one to obtain symbolic 
(and thus general) results when comparing systemic prop- 
erties of alternative models. When this is not possible, the 
method also can be used numerically to obtain results that are 
general in a statistical sense. Comparisons were made based on 
functional effectiveness, as judged by the seven quantitative 
criteria described in detail in the Methods section. 

In this work we have found a limited number of symbolic 
comparisons whose conclusions do not depend on the spe- 
cific values of the parameters. The reference pathway with 
all reactions fully reversible (System 0) is more robust to 
perturbations in the values of the parameters (criterion 3) 
than is an otherwise equivalent alternative pathway with an 
irreversible synthesis of end product. Also, when comparing 
reference System 0 with alternative Systems i (i ¥> 1), where 
reaction /' is irreversible, the flux through System 0 is more 
responsive to changes in the demand for end product (cri- 
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terion 5), whereas the concentrations of its intermediates are 
less responsive (criterion 6). On the other hand, the flux is 
more responsive (criterion 5) and the concentrations are less 
responsive (criterion 6) to the demand for end product in 
System 1 than in System 0. Taken together, these results 
imply that reference System 0 is superior to alternative 
System n on the bases of criteria 3, 5, and 6, superior to 
alternative Systems i (i± 1, n) on the bases of criteria 5 and 
6, but inferior to alternative System 1 on the bases of criteria 
5 and 6. Not much can be said analytically about the 
comparison of these systems based on other criteria. 

Additional conclusions that are general in a statistical 
sense can be obtained by means of numerical comparisons. 
These indicate that the reference System 0 is, on average, 
better than or similar to the alternative Systems i (i* > 1) on 
the bases of all the criteria except transient time (criterion 
7). These numerical comparisons also indicate that the al- 
ternative System 1 is, on average, better than or similar to 
the reference System 0 on the bases of all the criteria except 
some components of robustness (criterion 3). The differ- 
ences in value for those components that favor reference 

System 0 over alternative System 1 are less significant when 
the systems are optimized according to criterion 1 than 
when these systems are not so optimized. Thus, alternative 
System 1 is, on average, better than or similar to all other 
systems under the following conditions: The concentrations 
of intermediates are equally low (criterion 1). The logarith- 
mic gains in concentration with respect to change in the 
level of initial substrate also are equally low (criterion 2). 
The robustness of all the intermediates, with one exception, 
is similar. Although, as noted above, the first intermediate 
and the flux are less robust in System 1, these differences 
are less significant when criterion 1 is satisfied (criterion 3). 
The margins of stability are similar (criterion 4). Flux is 
more responsive to changes in demand for end product 
(criterion 5). Concentrations of intermediates are less re- 
sponsive to changes in demand for end product (criterion 6). 
Transient times are shorter (criterion 7). 

The combination of analytical and numerical results pre- 
sented in this paper provides a functional rationale for why 
irreversible reactions are found predominantly at the begin- 
nings of unbranched biosynthetic pathways. 

APPENDIX 
Parametric constraints for external equivalence. The number of reactions in the pathway is n, where n varies from 2 to 7. The position of the irreversible 
reaction in the pathway is i, where « varies from 1 to n. An extra constraint. g\0 = «,„, is common to all cases when the irreversible reacuon is in the first 

position, i.e., when i = 1. 

n = 2 

n = 3 

i = 1: log[a[] = log[a,] - gn log[a2/a3]/g2i;    g,'2 = gn + guign ~ £22)^21 

i = 2: log[a2] = (g32 log[a2] - g22 log[a3])/(g32 ~ S22);    g'i\ = gi\gvJ(gi2 ~ 822) 

i=\: logOI] = logta,] - gnfe- log[a2/o4] - g22 log[a:)/a4])/(g2ig32); 

g'\3 = gl3 + g\l(gl2g43 ~ g22(g43 - g33)V(S2lg32) 

■■ 2: log[a2] = (g«(g32 log[a2] ~ S22 log[a3]) + g22g33 log[a4])/(g32g43 ~ fefe» - gn)): 

821 ~ g2lgi28d(gl2g43 - S22(S43 _ £.33)) 

i = 3: log[a3] = (g43 log[a3] - g33 log[a4])/(g43 - £33);    gn = gv-gdigAi ~ £33) 

n = 4 

i= l:log[a;] = k)g[a,]-g, 
g32S43 log[a,/a5] - g22(g43 log[a3/tt5] ~ g33 log[«4/o=5]) , 

i = 2: log[a2] = 
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g2lS32#43 

g'\4 = gl4 + gllteztgxigS* - g44) + #43g54(g32 ~ g22)V(g2lg32g4i) 

gqgnigSl lOgfcJ ~ 822 l0gl>3]) + g22g33(g54 lOgfoJ ~ g44 lOgfa]) . 

g32g43g54 _ g22(g43g54 ~ g33(g54 ~ g44)) 
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«21 = g2lg)2g43g5Äg32g43gS4 ~ «22(«43«54 ~ ^33^54 ~ gu))) 

i = 3: log[a3] = fe4(g43 log[o3] - g33 log[a4]) + g33g44 log[a5])/(g43g54 - g33(g54 - g44)); 

«32 = g32«43«54/(«43«54 ~ g33^54 ~ «44)) 

( = 4: logK] = (g54 log[a4] - gM log[a5])/(g54 - gu);   g'„ = g42g54/{g54 - gu) 

n = 5 

,   .    r  n     ,    r   i          fe^MlogCas/Oö] - g22«43«54 log[a3/a6] + g22g33g54 log[a4/a6] - gjig^g^ log[a5/a6]) 
1=1: logLaJ = logLaJ-g,, • 

«21«32«43g54 

g22g33(g54g65 ~ guigiS ~ gss)) + g43gs4g6s(g32 ~ to) 
«15 = «15 + «11  

«21«32«43«54 

i = 2: log[a2] 

^ (g32«43«54«65 lOgK] ~ «22g43«54g65 lOgC^s] + «22«33«54«65 lOgKJ ~ g22«33«44«65 l0g[«5] + «22«33g44«55 lOgKl) 

g32g43g54g65 - g22(g43g54g65 ~ g33(g54«65 _ g44(g65 ~ «5s))) 

«21 = «2lg32«43«54«65/(«32«43g54g65 ~ g22(g43g54«65 ~ «33(«54g65 ~ «44(«65 ~ «5s)))) 

-   ,      r    ,,       «43«54«65 l0g[a3] - «33g54«65 l0g[a4] + «33«44(«65 l0g[a5] - g55 l0g[a6]) 
1 = 3: log|a3J = ; 

«43g54«65 _ g33(«54«65 _ «44t«65 ~ «55.» 

«32 = «32g43«54«65/(«43g54«65 _ g33(«54«65 ~ «44(«65 _ «5s))) 

1 = 4: log[aJ] = (gS4g65 Iog[a4] - gUges log[a5] - «55 log[a6]))/(g54g65 - gu(g65 - gss)); 

«43 = «43g54«65/(«54«65 - «44(g65 - g5s)) 

i = 5: log[o£| = (g65 log[a5] - g5S log[a6])/(g65 - g55);   g'54 = gS4g(,5/(g6S - g5S) 

n = 6 

( = 1: log[o[] = log[a,] - g 

«16 = «16 + «11 

/«32«43«54g65 lOgfe/«?] ~ «22«43«54«65 l0g[a3/a7] \ 

+ «22«33g54g65 10g[a4/a7] - g22g33g44«65 l0g[a5/a7] 

+ «22«33«44g55 10g[a<i/a7] 

\ g21«32«43«54«65 / ' 

«32g43g54«65 ~ «22(«43«54«65 - «33(g54g65 _ g44(«65«76 ~ «55(«76 ~ «öö)))) 

g21«32«43«54«65 

/«32«43«54«65«76 log[a2] - g22«43«54«65«76 log!>3] + g22«33«54g65«76 l0g[a4] 

.       0   ,       ,    ,,        V        ~ «22g33«44g65«76 Iogfe] + g22g33«44g55«76 lOgK] ~ «22g33«44«55g66 l0g[a7] 
1 = 2: log[a2J = 7 ; r  

/«32g43g54g65g76 _ «22«43«54«65«76 + g22g33«54«65«76 \ 

\        ~ «22«33«44«65g76 + g22g33«44«55«76 - g22«33«44g55g66/ 

, g2lg32g43g54g65g76 
«21  =' 

(«32«43«54«65«76 _ g22g43«54«65g76 + «22g33g54g65g76 ~ g22«33«44«65«76 + «22«33«44«55«76 ~ «22«33«44g55g6e) 

i = 3:log[oa 

_ (g43g54g65g76 logfcs] ~ g33g54«65g76 lOgK] + g33«44g65g76 lOgK] ~ g33«44gS5g76 lOgK] + g33«44«55g66 logt«?]) 

«43«54«65«76 ~ g33g54«65«76 + «33«44g6Sg76 _ g33g44g55g76 + «33g44g55«66 

, «32«43«54g65g76 gy, =  ————  
g43g54g65g76 ~ g33g54«65«76 + «33g44g6Sg76 _ «33«44«55g76 + «33«44gS5g66 
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,-■       g54g65gl6 lOgK] ~ g44g(i5g76 lOgK] + g44gS5g76 lOgK] ~ g44g55g66 logt«?] 

I -     .   Og|a4J - gugtsgn ~ gug65gl6 + g44gS5gn - gMgS5g(6 

, g43g54g65g76  

8^       g54g65gl6 ~ gug(,5gl6 + gugssgli ~ gug55g66 

i = 5: log[a.] = (g65g16 log[a5] - g55g16 log[a6] + _?55g66 log[a7])/(g65g76 - g55g16 + gssgmY, 

gU - gs4gtsgi(J(gt,sgi6 ~ gagib + gssga) 

i = 6: log[a_.] = (g76 log[a6] - g66 log[a7])/(g76 - gj;   g« = gesgv/ign ~ gm) 

n = l 

i= l:log[a.] = log[a,]-_-,i 

'gngug54g6sgi6 log[a,/a8] ~ giigugstgtsgii, logMas] + g22g33gs4g65g76 MWag] \ 

~ gllg33g44g6Sgl6 l0g[«5/0!8] + g22g33g44gS5g?6 lOgt^s] ~ g22g33g44g5Sg66 lOgtV»«]/ 

S2lg32,?43,?54g65g76 

(g32g43g54g65g76 ~ g22g43gs4g6Sg76 + g22g3jgS4g65gl6 ~ g22g33g44g65g76 + g22g33g44g.S5g76 ~ g22g33g44g5Sg66 

gl7 = gl7 + gll g2lg32g43g54g65g76 

/g32g43g54g65g76g87 !og[a2] ~ g22g43g54g65g76gS7 lOgOj] \ 

+ g22g33g54g65g76g87 l0g[a4] ~ g22g33g44g65g76gS7 10g[a5] 

\        + g22g33g44g55g76g87 lOgKl ~ g22g33g44g55g66g87 l0g[«7] + g22g33g44g55g66g77 lOgK]/ 

( -     .   OgLa2J - /g32g43g54g65g76g87 ~ g22g43g54g65g76g87 + g22g33g54g65g76g87 \ 

- g22g33g44g65g76g87 + g22g33g44g55g76g87 _ g22g33g44g55g66g87 I 

\        + g22g33g44g55g66g77 / 

, g2lg32g43g54g65g76g87  

82> ~  /g32g43g54g65g76g87 ~ g22g43g54g65g76gS7 + g22g33g54g65g76g87 \ 

~ g22g33g44g65g76g87 + g22g33g44g55g76g87 - g22g33g44g55g66gS7 I 

\        + g22g33g44g55g66g77 / 

/g43g54g65g76g87 l0g[tt3] - g33g54g65g76gS7 l0g[a4] \ 

~~^ + g33g44g65g76g87 l0g[a5] ~ g33g44gj5g76g87 lOgK] 

 \        + g33g44g55g66g87 logfo?] ~ g33g44g5sg66g77 lOgK]/ . 

1 = 3: l0g[a3J - (^43gs4g65g16gg7 - g33g54^65g76g87 + g33g44g65g76g87 ~ g33g44g55g76g87 + g33g44gssg66g87 ~ g33g44g55g66g77> ' 

 g32g43g54g65g76g87  

831 ~ Cg43g54g65g76g87 ~ g33g54g65g76g87 + g33g44g65g76gS7 ~ g33g44gS5g76g87 + g33g44gssg66g87 - g33g44g55g66g77) 

i = 4: log[aJ] 

(g54g65g76g87 lOgK] ~ g44g65g76g87 logfcs] + g44g55g76gS7 l0g[«a] ~ g44g5Sg66g87 lOgK] + g44gS5g66g77 lOgK]) . 

g54g65g76g87 ~ g44g65g76gS7 + g44g55g76gS7 _ g44gssg66g87 + g44g55g66g77 

g43g54g65g76g«7 

843       g54g65g76g87 ~ g44g65g76gS7 + g44g55g76g87 ~ g44gssg66g87 + g44g55g66g77 

g65g76g87 lQg[«5] ~ gS5g76g87 logK] + gS5g66g87 l0g[«7j ~ g55g66g77 lOgK] , 

I-     •   OgLa5J- g65g76g87 - g55g76g87 + g55g66g87 ~ g55g66g77 

g54 = g54g65g76g87/(g65g76g87 _ gssgligil + g55g66g87 ~ gssgtegn) 

Biophysical Journal 80(3) 1174-1185 



Irreversibility in Unbranched Pathways 1185 

/ = 6: logK] = {g16g„ log[a6] - g66g87 log[a7] + g66g77 log[a8])/(g76g87 - g^i + gbf,gn)\ 

g(,5 = 865gl6giAg76gtn ~ gibgv + gffigll) 

i = 7: log[a7] = (g87 log[a7] - gv log[a8])/(g87 - g77);    g76 = glfgvl{gn - gln) 
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