
AFRL-SN-RS-TR-2001-40
Final Technical Report
March 2001

APPLICATION-DRIVEN RELIABILITY MEASURES
AND EVALUATION TOOL FOR FAULT-
TOLERANT REAL-TIME SYSTEMS

University of Massachusetts

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. E349

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20010607 009
AIR FORCE RESEARCH LABORATORY

SENSORS DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-SN-RS-TR-2001-40 has been reviewed and is approved for publication.

APPROVED: "p/y^
RALPH KÖHLER
Project Engineer

FOR THE DIRECTOR: (f^yfa^^ tf^

ROBERT G. POLCE, Chief
Rome Operations Office
Sensors Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/SNRT, 26 Electronic Pky, Rome, NY 13441-
4514. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

APPLICATION-DRIVEN RELIABILITY MEASURES AND EVALUATION TOOL
FOR FAULT-TOLERANT REAL-TIME SYSTEMS

C. M. Krishna
and I. Koren

Contractor: University of Massachusetts
Contract Number: F30602-96-1-0341
Effective Date of Contract: 23 August 1996
Contract Expiration Date: 22 August 2000
Short Title of Work: Application-Driven Reliability

Measures and Evaluation Tool
For Fault-Tolerant Real-Time
Systems

Period of Work Covered: Aug 96 - Aug 00

Principal Investigator: C. M. Krishna
Phone: (413)545-0766

AFRL Project Engineer: Ralph Köhler
Phone: (315)330-2016

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Ralph Kohler, AFRL/SNRT, 26 Electronic Pky, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public report™ burden (or this collection of information is estimated to average I tour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regerding this burden estimate or an» other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information
Operations and Reports 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

MARCH 2001

3. REPORT TYPE AND DATES COVERED

Final Oct 96 - Aug 00
4. TITLE AND SUBTITLE

APPLICATION-DRIVEN RELIABILITY MEASURES AND EVALUATION TOOL
FOR FAULT-TOLERANT REAL-TIME SYSTEMS

6. AUTHOR(S)

CM. Krishna and I. Koren

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Massachusetts
Department of Electrical and Computer Engineering
Amherst MA 01003

9. SPONSORING/MONITORING AGENCY NAMEIS1 AND ADDRESS(ES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/SNRT
3701 North Fairfax Drive 26 Electronic Pky
Arlington VA 22203 Rome NY 13441-4514

5. FUNDING NUMBERS

C - F30602-96-1-0341
PE- 62301E
PR- D985
TA- 00
WU-P1

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

AFRL-SN-RS-TR-2001-40

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Ralph Kohler/SNRT/(315) 330-2016

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words)
The goals of this project were the development of performance measures suitable for use in real-time embedded systems.
Developed a network measure to guide the designer in choosing an appropriate network topology. The measure combines
graphic-theoretic concepts in evaluating the underlying reliability of the network and other means to evaluate the ability of
the network to support interprocessor traffic. A second measure, called the computer measure, is meant to evaluated the
computer system in terms that are of importance for real-time applications. A simulator testbed called TRIDENT was built
to evaluate the network and surge measures. Much of the technology developed under this project is being transferred to the
Jet Propulsion Laboratory (JPL).

14. SUBJECT TERMS
Performance Measures, Computer Measure, Application-Level Fault-Tolerance Interconnection

Networks

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

220
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Reu. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro. WHS/DIOR, Oct 94

Table of Contents

1. Project Goals 1

2. Project Accomplishments
2.1 Measures
2.2 Simulator
2.3 Application-Level Fault-Tolerance (ALFT)
2.4 Synthesis of Interconnection Networks

1
1
2
3
3

3. Technology Transfer 4

4. Educational Contributions 4

Enclosures 4

References 4

Appendix 1 Measuring the Vulnerability of Interconnection Networks in
Embedded Systems 6

Appendix 2 Development of Application-Level Fault Tolerance in a Real-
Time Benchmark 12

Appendix 3 Application-Level Fault Tolerance as a Complement to System-
Level Fault Tolerance 14

Appendix 4 Surge Handling as a Measure of Real-Time System Dependability 30

Appendix 5 Synthesis of Interconnection Networks: A Novel Approach 39

Appendix 6 Application-Level Fault Tolerance 48

Appendix 7 Evaluating the Reliability of Distributed Real-Time Systems 120

1. Project Goals

The goals of this project were the development of performance measures suitable for
use in real-time embedded systems. In particular, we set out to develop a network measure
to guide the designer in choosing an appropriate network topology. This measure was
meant to combine graph-theoretic concepts in evaluating the underlying reliability of the
network, and other means to evaluate the ability of the network to support interprocessor

traffic.

The second measure, called the computer measure, is meant to evaluate the computer
system, in terms that are of importance for real-time applications. It measures the prob-
ability of the system being able to deliver, in a timely fashion, a certain amount of critical
workload over a given period of operation.

It is possible to integrate both computer and network measures together to form an
integrated measure of the combined processor and network ability to function appropri-

ately.

2. Project Accomplishments

Our results over this project are summarized below. We intend this write-up to be
a brief overview, suitable for quick reading. Fuller details of our work can be found
in the papers that are included as an appendix to this report, and in our web page:
http://www.ecs.umass.edu/ece/realtime.

2.1 Measures

The computer measure that we discovered to be the most useful was the surge-handling
ability of processors. Surges can be caused by two types of events: internal and external.
Internally, surges can be created as a result of processor failure. When this happens, the
critical workload assigned to that processor needs to be distributed among the functioning
processors in the system, and arrives as a surge to them. Externally, surges are caused
by some unplanned event in the environment, which causes some tasks to be invoked in
response.

The key measures of surge-handling ability are:

1. s(w), the deadline by which a processor is able to process a surge of quantum w
while still meeting all the deadlines of its own preassigned workload.

2. t(w), the time by which the impact on the processor's schedule of a surge of quantum
w decays to zero. Beyond this point, the schedule will be exactly as if the surge had
never happened.

We have studied the impact of preemption cost on the surge-handling measure for both
the most popular real-time scheduling algorithms: Rate Monotonie and Earliest Deadline

First [9]. We also developed a sentimental scheduling algorithm which is useful in lowering
preemption costs. This algorithm prevents a higher-priority task from preempting a lower-
priority task when the latter is within a short time of finishing (if this can be done without
any deadlines being missed). This tends to reduce the number of preemptions, which has
an impact on the overhead as well as on the amount of energy consumed.

Several network measures were studied. Among the most useful were the following.

1. Diameter stability. This measure evaluates the expected diameter of a topology,
given the probability of failure of the nodes and/or the links. The more stable the
diameter, the more impervious the communication costs can be expected to be to
component failure.

2. Average distance between node pairs. This measures how badly a given node and
link failure probability affects the distance between node pairs. It is a measure of
how interprocessor communication costs can be expected to rise as a function of
component failure.

3. Largest component size upon disconnection. When enough nodes or links fail that
the topology is no longer a connected graph, we are left with a number of dis-
connected sub-systems. Clearly, it is more convenient for a system, following such
disconnection, to have one large (connected) component and several very small ones
than to have a large number of very small components. This measure evaluates the
expected size of the largest connected component of the network topology, given the
probability of node and link failures.

We evaluated, by experiment, the above measures in a variety of network topologies,
such as the mesh, toroidal mesh, Mobius graph, chordal ring, and hypercube. Correlated
failures were also modeled and the reliability of network topologies in the face of correlated
failures were obtained [10].

2.2 Simulator

We built a simulator testbed called TRIDENT to evaluate the network and surge mea-
sures. This testbed has a user-friendly Graphical User Interface (GUI) which allows the
user to draw the system topology and enter relevant parameters (such as the node and
link failure probabilities, recovery time from failure, interprocessor communication load-
s, task-to-processor allocation scheme, surge-to-processor allocation rules, etc.). It then
computes the network and computer measures.

We have also continued work on the RAPIDS simulator, which is meant to evaluate the
deadline-meeting performance of real-time workloads under a variety of failure-recovery
strategies. RAPIDS has been enhanced to provide the capability of execution-driven sim-
ulation [8, 4, 1]. We have also studied the use of importance sampling to speed up the

Simulation of rare events. Importance sampling has been studied for some time by the
performance-evaluation community, but is generally regarded as a temperamental ap-
proach to accelerate rare-event simulations: sometimes, it gives quite inaccurate results.
We have demonstrated, by using case studies, ranges of reliability values for which im-
portance sampling provides high accuracy while greatly reducing simulation time. This
study provides useful guidance to those seeking to use this scheme [2].

2.3 Application-Level Fault-Tolerance (ALFT)

Application-level fault tolerance (ALFT) is a mechanism by which to reduce the size
of the surge that results when a processor suffers transient failure. The idea is to use
semantic information from the application to selectively execute only the most important
portion, providing somewhat degraded but still acceptable output.

Our work has shown that application-level information can be exploited to greatly
reduce the amount of redundancy required to deal with transient failures, which are by
far the most common type of failure. For example, in a radar target-tracking application,
our approach, required only 15% redundancy to provide complete fault-tolerance against
transient faults. Another use of ALFT is in providing a temporary patch in the event
of a permanent processor failure, allowing the system more time to execute a recovery
algorithm.

ALFT is orthogonal to other approaches to fault-tolerance, so that it can be used
either by itself or in combination with them. For example, a designer might use ALFT
to guard against transients, and make a small amount of hardware redundancy available,
in the form of line-replaceable spares, to deal with permanent failures.

In our work we have established that ALFT has considerable potential to provide
relatively inexpensive and effective fault-tolerance. Our results with several data-parallel
applications are very promising, achieving in some cases 100% fault tolerance at a cost of
30% or less redundancy [7, 3].

2.4 Synthesis of Interconnection Networks

Our work on developing suitable measures to evaluate interconnection networks led
to considering techniques by which to synthesize interconnection networks having de-
sired properties. We implemented a new procedure for automatically synthesizing such
networks, which has been surprisingly effective. The technique consists of randomly gen-
erating graphs of the desired size and degree (i.e., number of links per node) and then
passing them through a set of threshold filters. Each filter removes graphs which fall
below a certain threshold with respect to a network measure specified by the user. For
example, the user may specify diameter stability, embeddability, scalability, etc. We have
shown that such networks are superior to most of the popular networks in use today (e.g.,
hypercube, mesh, and chordal ring) [5, 6].

3. Technology Transfer

Much of the technology developed in this project is being transferred to the Jet Propul-
sion Laboratory (JPL). Indeed, JPL has awarded us contracts to modify the RAPIDS

testbed to the needs of their REE program, and to evaluate the usefulness of ALFT in
their space applications.

4. Educational Contributions

Several graduate students gained exposure to distributed embedded systems as a result
of working on this project. Two students completed their MS degrees, with two PhD and
one MS student still in process. The graduated students are now working in Lucent Bell
Laboratories and Lincoln Laboratory, respectively.

Enclosures

The following are attached as appendices to this report.

1. Papers connected with this research.

2. Master's theses of students supported by this project: Joshua Haines and Gopinath
Durairaj.

References

[1] M. Allalouf, J. Chang, G. Durairaj, J. Haines, V.R. Lakamraju, K. Toutireddy, O.S.
Unsal, K. Yu, I. Koren and CM. Krishna, "The RAPIDS Simulator: A Testbed
for Evaluating Scheduling. Allocation, and Fault-Recovery in Distributed Real-Time
Systems," Dependable Network Computing, D. Avresky (Editor), pp. 413-431, Kluwer
Academic Publishers, MA, 2000.

[2] G. Durairaj, I. Koren and CM. Krishna, "Importance Sampling to Evaluate Real-
Time System Reliability: A Case Study," to appear, Simulation, 2001.

[3] J. Haines, V.R. Lakamraju, I. Koren and CM. Krishna, "Application-Level Fault
Tolerance as a Complement to System-Level Fault Tolerance," The Journal of Su-
percomputing, Special Issue on "Embedded Fault-Tolerant Computing Systems," Vol.
16, pp. 53-68, Kluwer Academic Publishers, MA, 2000.

[4] K. Yu, K. Toutireddy, I. Koren and CM. Krishna, "Introduction to a Fault-Tolerant
Distributed Real-Time System Simulator," Intern. Journal of Modeling and Simula-
tion, Vol. 19, No. 1, pp. 7-10, 1999.

[5] V. Lakamraju, I. Koren and CM. Krishna, "Synthesis of Interconnection Network-
s: A Novel Approach," Proc. of the 2000 International Conference on Dependable
Systems and Networks, pp. 501-509, June 2000.

[6] V.R. Lakamraju, I. Koren and CM. Krishna, "A Randomized Approach to the Syn-
thesis of Interconnection Networks," Proc. of HPEC'99, Annual Workshop on High
Performance Embedded Computing, Lincoln Lab, pp. 43-44, Sept. 1999.

[7] J. Haines, V.R. Lakamraju, I. Koren and CM. Krishna, "Development of
Application-Level Fault Tolerance in a Real-Time Benchmark," Proc. of EFTS'98,
IEEE Workshop On Embedded Fault-Tolerant Systems, Boston, May 1998.

[8] M. Allalouf, J. Chang, G. Durairaj, V.R. Lakamraju, O.S. Unsal, I. Koren and CM.
Krishna, "RAPIDS: A Simulator Testbed for Fault- Tolerant Real-Time Systems,"
Proc. of HPC'98, Grand Challenges in Computer Simulation, pp. 191-196, Boston,
April 1998.

[9] Z. Koren, I. Koren and CM. Krishna, "Surge Handling as a Measure of Real-Time
System Dependability," Proc. of the IPPS/SPDP'98 workshop, on Parallel and Dis-
tributed Real-Time Systems, J. Rolim (Ed.), Lecture Notes in Computer Science 1388,
Springer 1998, pp. 1106-1116.

[10] V. Lakamraju, Z. Koren, I. Koren and CM. Krishna, "Measuring the Vulnerability
of Interconnection Networks in Embedded Systems," Proc. of the IPPS/SPDP'98
workshop, on Embedded HPC Systems and Applications, J. Rolim (Ed.), Lecture
Notes in Computer Science 1388, Springer 1998, pp. 919-924.

Appendix 1
Measuring the Vulnerability of Interconnection

Networks in Embedded Systems

V. Lakamraju, Z. Koren, I. Koren, and C. M. Krishna

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

Abstract. Studies of the fault-tolerance of graphs have tended to largely concentrate
on classical graph connectivity. This measure is very basic, and conveys very little in-
formation for designers to use in selecting a suitable topology for the interconnection
network in embedded systems. In this paper, we study the vulnerability of interconnec-
tion networks to the failure of individual links, using a set of four measures which, taken
together, provide a much fuller characterization of the network. Moreover, while tradi-
tional studies typically limit themselves to uncorrelated link failures, our model deals
with both uncorrelated and correlated failure modes. This is of practical significance,
since quite often, failures in networks are correlated due to physical considerations.

1 Introduction

The interconnection network is an integral part of most embedded systems. It has
often as considerable an impact on the system's performance as the nodes themselves.
The choice of an appropriate interconnection network is therefore key to determining
the performance of the embedded system. Performance measures for interconnection
networks are essential to guide the designer in choosing an appropriate topology. In
large systems - especially those which must operate for long durations without any
possibility of repair - the probability is significant that one or more nodes and/or links
are down at any time and this can affect the performance of the system considerably.

Studies of the fault-tolerance of networks have tended to largely concentrate on measures
such as classical node (link) connectivity. They measure the extent to which the network
can withstand the failure of individual links and nodes while still remaining functional.
Such measures are very basic and limited in what they can express of reliability (see [4]
for a survey of measures of network vulnerability). They are worst-case measures and
convey very little information for designers to use in selecting a suitable topology for
the interconnection network in embedded systems.

In this paper we study the vulnerability of an interconnection network to the failure
of individual links, using a set of four measures which, taken together, provide a much
fuller characterization of the network. Moreover, while traditional studies typically limit
themselves to independent link failures, our studies deal with correlated failure modes,
as well.

We start in Section 2 by defining four measures of network vulnerability. We follow this
in Section 3 with some numerical results. A brief discussion in Section 4 concludes the
paper.

2 The Performance Measures

The four performance metrics used to assess network vulnerability can be grouped into
two pairs. The first pair assesses the tendency of the topology under study to become
disconnected due to link failures. The two measures under this category are:
- 1. The probability that the network becomes disconnected, 7rd.
- 2. The size of the biggest connected component, Xmoi-

The probability that the network becomes disconnected gives us guidance as to the
chance that all the processors remain usable (assuming the processors themselves do
not fail) by being reachable from every other processor. If the network does get discon-
nected, we are interested in what happens to the splinters that are left. In particular, we
are concerned with whether the graph breaks up into a large number of small compo-
nents, or whether there is one large component which contains most of the nodes. The
latter is obviously preferable. All other things being equal, therefore, we would prefer
a network which would disconnect in such a way that the biggest component left after
disconnection contains a large fraction of the nodes.
The second pair of measures focuses on node-pair distances. They are:
- 3. The diameter of the network, A. _
- 4. The average distance between node pairs, D.

Node pair distances play a role in determining the time it takes for messages to be
sent from one node to another. A graph whose diameter is relatively stable is obviously
superior to another whose diameter exhibits rapid variations upon link failure.
The notion of diameter stability is not new: the previously-defined measure of edge
persistence [3] is the minimum number of edges that must be removed to increase the
graph diameter. Persistence, however, being a worst-case measure, conveys much less
information about graph vulnerability than does the diameter, as a function of the
component failure probability.
Inter-node distances play a large role in determining the communication delays between
nodes. Algorithms that assign tasks to nodes (processors) have to account for inter-node
communication delays when dealing with tasks which communicate with one another.
The smaller the delays between the nodes, the greater are the options available to the
task assignment algorithm. This is especially true when the original task assignment
(on a computer without any failures) is sought to be done in such a way that any task
reassignment required upon failure is reduced. For hard real-time systems, it becomes
important that the system state on the failed node be transferred to another node with
very little delay. This parameter gives a good estimate of the amount of delay that would
be involved in the movement of data that would be required to re-establish the state.
A close estimation of such delays can help in the efficient calculation of fault-recovery
policies[2]. It also gives an indication of how closely the nodes are connected to each
other and this can help in the scheduling of tasks.

3 Simulation Models and Results

We consider two link failure models: uniform and clustered. In the uniform model, link
failures follow an IID (independent and identically distributed) stochastic process. Each
link fails with probability p/, and link failures are independent of one another. In the
clustered model, a probability of either p - 6 or p + 6 (for some given p, <5) is randomly
selected for each node. Each link incident on a node fails with the failure probability
drawn for that node. This failure mechanism results in adjacent links being correlated

with regard to faults, and consequently, in bigger clusters of faulty links and of fault-free
links than those generated by the IID link failures. S is the clustering parameter. The
greater the value of 5, the more clustered the failing links will be. Note that since the
failure probability is applied twice to the same link, the actual probability of a random
link failure in the correlated model is p/ = 1 - (1 -p)2.
Three different classes of topologies have been used for the simulation runs, namely,
the mesh, the hypercube and the generalization of a chordal ring proposed by Arden
and Lee[l]. This is a chordal ring in which extra links are added (apart from the 2 links
connected to each of its neighbors) among the nodes in some regular fashion. The exact
placement of these extra links has an impact on both the traditional measures as well
as the ones proposed here.
All the simulation runs were on networks of 64 nodes. Some of the networks had degree
4 and the rest degree 6. A simple rectangular mesh as well as its counterpart, the
mesh torus (a mesh with an end-around connection) and both 2-D and 3-D meshes
were tested. Simulation runs were performed to measure the effect of the link failure
probability, p/, as well as the the effect of the clustering parameter, 6, on the different
performance measures, for the mentioned graph families. A number of interesting results
can be concluded from the plots.
Figures 1, 2, 3 and 4 depict the dependence on the link failure probability p/ (in the IID
link failure model) of the probability of network disconnection n<i, the maximum com-
ponent size Xmax, the diameter A, and the average node-pair distance D, respectively,
for the different topologies.
The conclusions we can derive from these figures are as follows. Though the rectangular
mesh is the topology of choice when scalability is concerned, it is certainly not the best
topology when considering resistance to link failures. The probability that the network
becomes disconnected increases rapidly as the probability of link failure increases. The
other topologies in its class do better in all the other parameters as well. Similarly,
among the degree-6 networks, the 3-D mesh performs very badly compared to the other
topologies in its class.
The chordal ring of degree 4 has better diameter stability compared to the mesh torus.
One word of caution though: The diameter of the chordal ring depends on the placement
of the extra links (i.e. not those connected to immediate neighbors). For the simulations,
an extensive search was performed to find a placement of links which would result in
the minimum diameter.
The chordal ring of degree 6 performs only marginally better than the hypercube and
the 3-D mesh torus in the diameter and average distance measures.
Figures 5 and 6 show the dependence of the probability of network disconnection, nd,
and that of the maximum component size, Xmax, respectively, on the fault clustering
parameter, <5, for several graph topologies. The incidence of disconnected graphs in-
creases with the failure clustering (even though the link failure probability remains the
same). Again, the meshes without the end-around connection perform badly compared
to the other networks. Each family of graphs has a distinctive sensitivity to the level of
failure clustering.
The size of the largest connected component decreases as the degree of clustering in-
creases. Also, the maximum component size is dependent on the clustering of links in
the topology. This is illustrated in Figure 6 with the two types of the chordal ring.
The good placement refers to an optimal placement of the links whereas bad placement
refers to a sub-optimal placement. The dependence of the extra link placement on the
component size becomes negligible as the degree of the network increases.
Our experiments also showed that the two other measures, namely, the diameter and the

average node-pair distance (in graphs that remain connected) are not very sensitive to
the failure clustering, with the diameter being slightly more sensitive than the average
distance. This result holds across graph families.

4 Discussion

In this paper, we have studied the vulnerability of various topologies to link failure.
These results - and others like them - can be used by designers in choosing the appro-
priate topology. We have confined ourselves to a set of symmetric networks: we plan to
extend our studies to irregular topologies.
There is also room for modeling correlated failures in other ways. One of them would
be to use a "wave-propagation" model, in which the effect of the correlated failure at a
node ripples through the network so that all the links which are at the same distance
from the failed node has the same probability of failure and this probability decreases
as the distance increases. It would also be interesting to look at the combined effect of
both node and link failures.

Acknowledgment
This effort was supported in part by the Defense Advanced Research Projects Agency
and the Air Force Research Laboratory, Air Force Materiel Command, USAF, un-
der agreement number F30602-96-1-0341, order E349. The government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, or the Defense Advanced Projects Agency, Air Force Research
Laboratory, or the U. S. Government.

References

1. B.W.Arden and H.Lee. "Analysis of Chordal Ring Networks", IEEE Transactions
on Computers C-30, 1981.

2. M.Berg and I. Koren, "On Switching Policies for Modular Fault-Tolerant Comput-
ing Systems", IEEE Transactions on Computers Vol. C-36, 1987.

3. F. T. Boesch, F. Harary, J. A. Kabell, "Graphs as Models of Communication Net-
work Vulnerability: Connectivity and Persistence," Networks, Vol. 11, 1981.

4. M.Choi and C.M.Krishna, "On Measures of Vulnerability of Interconnection Net-
works", Microelectronics and Reliability Vol 29, No. 6, 1989.

5. T.Cormen, C. Leiserson and R.Rivest, Introduction to Algorithms, Cambridge: MIT
Press, 1990.

6. C. M. Krishna and K. G. Shin, Real-Time Systems, New York: McGraw-Hill, 1997.

This article was processed using the KTßX macro package with LLNCS style

o 0.45
o

0.4
c=
o
on 0.35

-T3

*u£ 0.3
O
£
o 0.25 c

l«~. o 0.2
r^
.0 0.15 ra
.£3

£ 0.1

i 0.05
K

8x8 rectangular mesh ~°—
8x8 rectangular mesh torus • +• • ■

64/node chordal' ring of degree 4 -Q -
.»' 3d mesh • x '
/ 3d mesh torus -^ —

Jg4-node hypercube • *
64-node chqrdal ring of degree 6 -*■

/

/

Wr'~~*.
0.05 0.1 0.15 0.2 0.25 0.3 0.35

■ Probability of link failure
0.4 0.45

Fig. 1. Network disconnection probability versus pj

£

5

0.05 0.2 0.25 0.3 0.35
Probability of link failure

0.45

Fig. 2. Maximum component size versus p/
15

14 t

13

12

11

10

9 *- x

8 •-•

7

6

5 *

8x8 rectangular mesh -*-
8x8 rectangular mesh torus '+ •

64-node chordal ring of degree 4 -Q '
3d mesh •x

3d mesh torus -^ ■
64-node hypercube m

64-node chordal ring of degree 6 -0-

,B':
El

■ X

,B'
-B'

IK4--.fi- -*- -*_—•*

0.05 0.1 0.15 0.2 0.25 0.3
p ~ Probability of link failure

Fig. 3. Diameter versus pj

0.35 0.4 0.45

10

Cu

•g

>
<

6.5 "

6 -

5.5

5

4.5

4

8x8 rectangular mesh
,j_^^ rectangular mesh torus

node chordal ring of degree 4
3d mesh

3d mesh torus
64-node hypercube

64-node chordal ring of^Iegree 6

X

3.5 <£--"

3

2.5

2

-Q

X
■ -Q

--B

0.05 0.1 0.15 0.2 0.25 0.3
p — Probability of link failure
f

Fig. 4. Average node-pair distance verus p/

0.35 0.4

o

CL.

I

0.5

0.45

0.4

0.35 -

0.3

0.25

0.2

0.15

0.1

0.05

8x8 rectangular mesh ~°~
8x8 rectangular meshtorus +

64-node chordal ring of degree 4 -°

-9
..^'-ö-'

.-&--

0.02

e
E

3
E

Fig.
64

63.9 **"

63.8

63.7

63.6

63.5

63.4

63.3

63.2

63.1

63

0.04 0.06 0.08 0.1
5 _ clustering parameter

5. Network disconnection probability versus 5; p/ = 0.1

0.12

■■■&,

—x .
*P

8x8 rectangular mesh ~*~
8x8 rectangular mesh torus +_

64-node chordal ring; degree 4; good link placement ■**'
64-node chordal ring; degree 4; bad link placement -**

0.02 0.04 0.06 0.08
5 _ clustering parameter

Fig. 6. Maximum component size versus 5; p/ = 0.1

0.12

11

• A technique such as this is applicable in a wide variety of distributed real-time
applications particularly those exhibiting data parallelism. Examples of these
include target tracking applications and compilation of data for automated
navigation.

• The extent to which the secondary part mimics the primary depends on the
contribution of application-level fault tolerance required to achieve the re-
quired amount of reliability.

• Incorporating both the primary and secondary parts within each task of an
application, rather than running two, independent copies of the application,
allows for many more options for fault tolerance, while simultaneously reducing
the amount of system resources required to achieve a given level of reliability.

An existing real-time system simulator, the RAPIDS simulator provides the re-
searcher with a test bed, with which to develop and test a wide variety of system-level
fault tolerance techniques. Incorporated with this system simulator is a benchmark
application. Thus the system designer is able to experiment with both system and
application-level fault detection and fault recovery techniques. The application con-
sidered is the Honeywell Real-Time Multi-Hypothesis Tracking (RTHT) Benchmark,
and is a general purpose, parallel, target tracking benchmark. With these tools, it
is shown that the techniques discussed yield a considerable improvement over the
benchmark as it was originally written. This improvement is measured by com-
paring the total percentage of targets which are tracked as well as with a broader
measure involving the total of the likelihoods of all hypotheses in the system, for
both the original and the fault tolerant versions. Data has been collected from runs
of the benchmark both in conjunction with the simulator and in a stand-alone form.
The full paper will contain plots that reflect the dependency of:

• The redundancy and the amount of fault tolerance

• The system resource requirements and the redundancy

References

A.L. Liestman and R. H. Campbell. A Fault-Tolerant Scheduling Problem, IEEE
Transactions on Soßware Engineering, November 1986.

B. VanVoorst; R. Jha; L. Pires; M. Muhammad. Implementation and Results of
Hypothesis Testing from the C3I Parallel Benchmark Suite, Proceedings of the 11th
International Parallel Processing Symposium, 1997

M. Allalouf; J. Chang; G. Durairaj, V.R. Lakamraju; O.S. Unsal; I. Koren; CM.
Krishna. RAPIDS: A Simulator Testbed for Distributed Real-Time Systems, ASTC
1998.

13

. , 1-16 ()
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Appendix 3

Application-Level Fault Tolerance as a
Complement to System-Level Fault Tolerance

JOSHUA HAINES jhaines@ecs.umass.edu

VIJAY LAKAMRAJU vlakamra@ecs.umass.edu

ISRAEL KOREN koren@ecs.umass.edu

C. MANI KRISHNA krishna@ecs.umass.edu
Electrical and Computer Engineering Dept., University oj Massachusetts, Amtierst, MA 01003

Abstract. As multiprocessor systems become more complex, their reliability will need to
increase as well. In this paper we propose a novel technique which is applicable to a wide variety
of distributed real-time systems, especially those exhibiting data parallelism. System-level fault
tolerance involves reliability techniques incorporated within the system hardware and software
whereas application-level fault tolerance involves reliability techniques incorporated within the
application software. We assert that, for high reliability, a combination of system-level fault
tolerance and application-level fault tolerance works best. In many systems, application-level
fault tolerance can be used to bridge the gap when system-level fault tolerance alone does not
provide the required reliability. We exemplify this with the RTHT target tracking benchmark and
the ABF beamforming benchmark.

Keywords: distributed real-time systems, fault tolerance, checkpointing, imprecise computation,
target tracking, beam forming.

1. Introduction

In a large distributed real-time system, there is a high likelihood that at any given
time, some part of the system will exhibit faulty behavior. The ability to tolerate
this behavior must be an integral part of a real-time system. Associated with every
real-time application task is a deadline by which all calculations must be completed.
In order to ensure that deadlines are met, even in the presence of failures, fault
tolerance must be employed. In this paper we consider fault tolerance at two
separate levels, system-level and application-level.

System-Level Fault Tolerance encompasses redundancy and recovery actions within
the system hardware and software. While system hardware includes the computing
elements and I/O (network) sub-system, the system software includes the operating
system and components such as the scheduling and allocation algorithms, check-
pointing, fault detection and recovery algorithms. For example, in the event of a
failed processing unit, the component of the system responsible for fault tolerance
would take care of rescheduling the task(s) which had been executing on the faulty
node, and restarting them on a good node from the previous checkpoint.

Application-Level Fault Tolerance encompasses redundancy and recovery actions
within the application software. Here various tasks of the application may com-
municate in order to learn of faults and then provide recovery services, making use
of some data-redundancy. In certain situations, we find that fault tolerance at the

14

Appendix 2

Development of Application-Level Fault Tolerance in a
Real-Time Benchmark

J. Haines, V. Lakamraju, I. Koren and C. M. Krishna
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA 01003

Paper Abstract

Multiprocessor systems are in real need of fault tolerance features if dependable
service is to be expected. As these systems become more complex, reliability will
need to increase as well. System-level fault tolerance alone does not always suffice
to give the required amount of reliability in distributed real-time systems. In this
paper, we assert that for high reliability and accuracy of results, a combination
of system-level fault tolerance and application-level fault tolerance works best. In
most systems, fault tolerance is achieved through the process of fault detection
and location, fault containment and fault recovery. The process of fault recovery
can take a relatively long time when done totally at the system-level which might
not be acceptable in real-time systems. In order to ensure that deadlines are met,
application-level fault tolerance can be employed in many real-time applications.

Some important points which we stress regarding the integration of application
and system-level fault tolerance:

• A combination of system-level fault tolerance and application-level fault tol-
erance can yield much higher reliability, than either one alone.

• A general, system-level fault tolerance method may involve actions such as the
moving of checkpoints, reconfiguration and restarting of tasks on non-faulty
nodes. These actions may take a non-negligible amount of time to complete,
from the point of view of the application. We believe that application-level
fault tolerance provides a method by which the application can fill the gap
between when a fault occurs and when the system-level recovery is complete,
in order to best meet its deadlines. This can substantially decrease the overall
fault recovery time, thereby decreasing overall system vulnerability. Decreas-
ing the stress on the speed of a system-level recovery technique might also allow
the system more recovery options to choose from for a given circumstance.

• In the technique which we discuss, application-level redundancy takes the form
of a primary part and a lower priority secondary part within each application
task. The primary part is responsible for the computation that is required
of it as part of the original application and the secondary part provides the
necessary fault tolerance by running part of its neighbor's primary work. This
allows tasks to make better use of processor time and system resources which
might have gone unused, due to the periodic nature of real-time task sets.

12

application-level can greatly augment the overall fault-tolerance of the system. For
example, if a task's checkpoint is very large, application-level fault tolerance can
help mask a fault while the system is moving the large checkpoint and restarting
the task on another node.

N-Modular Redundancy is a well-known fault tolerance technique. A number of
identical copies of the software are run on separate machines, the output from all of
them is compared, and the majority decision is used [1]. This technique however,
involves a large amount of redundancy and is thus costly.

The recovery block approach combines elements of checkpointing and backup
alternatives to provide recovery from hard failures [2]. All tasks are replicated but
only a single copy of each task is active at any time. If a computer hosting an
active copy of a task fails, the backup is executed. The task may be completely
restarted (which increases the chances of a deadline miss) or else executed from
its most recent checkpoint [4]. The later option requires that the active copy of
the task periodically copy (checkpoint) its state to its backups. This can entail a
large amount of overhead, especially when the state information to be transferred
is large. Such is the case with the applications that we are dealing with.

Another common technique is the use of less precise (i.e., approximate) results
[3], obtained by operating on a much smaller data set, using the same algorithm. A
data set can be chosen such that a sufficiently accurate result can be obtained with a
greatly reduced execution time. A smaller data set is chosen either by prioritizing
the data set or by reducing the granularity. Examples of such applications are
target tracking and image processing, where it is better to have less precise results
on time, rather than precise results too late or not at all. Our recovery technique
caters to applications that exhibit data- parallelism, involves a large data set and
can make do with a less precise result for a short period of time.

Our approach makes use of facets of the recovery block technique and employs
reduced precision state information and results in order to tolerate faults. We
employ a certain degree of redundancy within each of the parallel processes. The
application as a whole is able to make use of that redundancy in the event of a
fault to ensure that the required level of reliability is achieved. We consider only
failures that render a process' results erroneous or inaccessible. In the case of such
a fault, the redundant element's less precise results are used instead of those from
the failed process. In this way, our technique can provide a high degree of reliability
with only a small computational overhead in certain applications.

Section 2 introduces the RTHT and ABF benchmarks that will be used to demon-
strate our technique. In Section 3 we describe in detail our application-level fault
tolerance technique. Section 4 analyzes the effectiveness of this technique when used
in conjunction with each of the benchmarks, and Section 5 concludes the paper.

2. The Benchmarks

Each of the benchmarks has the form shown in Figure 1. There are multiple, parallel
application processes, which are fed with input data from a source - in this case, a
source process which simulates a radar system or an array of sonar sensors. When

15

the parallel computations are complete, the results are output to a sink process,
simulating system display or actuators. Our technique is concerned with the ability
to withstand faults at the parallel processes.

Source generates
input data consisting
of real points and
random noise.

Process 1

Process 2

Process 3

Process 4

Application processes perform
computations in order
to track the targets, or form beams.

Sink collects the
results.

Figure 1. Software architecture of both the RTHT and ABF benchmarks.

2.1. The RTHT Target Tracking Benchmark

The Honeywell Real-Time Multi-Hypothesis Tracking (RTHT) Benchmark [6, 7],
is a general-purpose, parallel, target-tracking benchmark. The purpose of this
benchmark is to track a number of objects moving about in a two-dimensional
coordinate plane, using data from a radar system. The data is noisy, consisting of
false targets and clutter, along with the real targets. The original, non-fault-tolerant
application consists of two or more processes running in parallel, each working on
a distinct subset of the data from the radar. Periodically, frames of data arrive
from the radar, or source process in this case, and are split among the processes for
computation of hypotheses. Each possible track has an associated hypothesis which
includes a figure of likelihood, representing how likely it is to be a real track. A
history of the data points and a covariance matrix are used in generating up-to-date
likelihood values.

For every frame of radar data, each parallel process performs the following steps:
1) Creation of new hypotheses for each new data point it receives, 2) Extension of
existing hypotheses, making use of the new radar data and the existing covariance
matrix, 3) Participation in system-wide compilation or ranking of hypotheses, led
by a Root application process, and 4) Merging of its own list of hypotheses with

16

the system-wide list that resulted from the compilation step. The deadline of one
frame's calculations is the arrival of the next frame.

By evaluating the performance of the original, non-fault-tolerant, benchmark
when run in conjunction with our RAPIDS real-time system simulator [9], it be-
came apparent that despite the inherent system-level fault tolerance in the simu-
lated system, the benchmark still saw a drastic degradation of tracking accuracy as
the result of even a single faulty node. Even if the benchmark task was successfully
reassigned to a good node after the fault, the chances that it had already missed
a deadline were high. This was in part due to the overheads associated both with
moving the large process checkpoint over the network and with restarting such a
large process. Once the process had missed the deadline, it was unable to take part
in the compilation phase and had to start all over again and begin building its hy-
potheses anew. This took time, and caused a temporary loss of tracking reliability
of up to five frames. Although better than a non-fault-tolerant system, in which
that process would simply have been lost, it was still not as reliable as desired.

We decided to address two points, in order to improve the performance of the
benchmark in the presence of faults: 1) The overhead involved with moving such a
large checkpoint and 2) A source of hypotheses for the process to start with after
restart.

Our measure of reliability is the number of real targets successfully tracked by
the application (within a sufficient degree of accuracy) as a fraction of the exact
number of real targets that should have been tracked. To simplify this calculation,
the number of targets is kept constant and no targets enter or leave the system
during the simulation.

2.2. The ABF Beam Forming Benchmark

The Adaptive Beam Forming (ABF) Benchmark [8] is a simulation of the real-time
process by which a submarine sonar system interprets the periodic data received
from a linear array of sensors. In particular, the goal is to distinguish signals from
noise and to precisely identify the direction from which a signal is arriving, across
a specified range of frequencies. In this implementation, the application receives
periodic samples of data as if from the linear sensor array. The data is generated
so that it contains four reference beams, or signals, arriving from distinct locations
in a 180-degree field of view, along with random noise.

The application itself consists of several application processes, each attempting to
locate beams at a distinct subset of the specified frequency range. Frames of data
for each frequency are "scattered" periodically from the source process. Output,
in the form of one beam pattern per frequency, is "gathered" by the sink process.
Figure 2 depicts a typical beam pattern output, shown here at frame 18, frequency
250Hz, with reference beams at -20, -60, 20 and 60 degrees.

Each application process performs calculations according to the following loop of
pseudo-code, for each frame of input.

for_each (frequency) {

17

Update dynamic weights.
for_each (direction of arrival) {
Search for signal, blocking out interference
from other directions and frequencies.

}

X3

<D

O)
as

-60 -40 -20 0 20 40 60
Direction of Arrival (Angle) - degrees

80 100

Figure 2. Typical beam pattern output.

For each frequency, the process first updates a set of weights that are dynamically
modified from frame to frame. Applying these weights to the input samples has the
effect of forming a beam which emphasizes the sound arriving from each direction.
The process searches in each possible direction (-90 to 90 degrees) for incoming
signals. The granularity of this direction is directly related to the number of sensors.

In addition, at the start of a run, there is an initialization period in which the
weights are set to some initial values, and then 15 to 20 frames are necessary to
"learn" precisely where the beams are.

It is evident that this sort of application faces reliability problems similar to
those of the RTHT benchmark. If a processing element fails, all output for those
frequencies is lost during the down time, and when the lost task is finally replaced
by the system, it has to go through a startup period all over again. Here, too,
the data sets of these processes are very large, creating a considerable overhead if
checkpointing is employed. To avoid the delay associated with this overhead, be
able to maintain full output during the fault, and provide quick restart after the
fault, application-level fault tolerance must be employed.

18

We evaluate the quality of the ABF output with two tests applied to the resultant
beam pattern. In the Placement Test we check whether the direction of arrival of
the beam has been detected within a certain tolerance. In the Width Test the aim
is to determine how accurately the beam has been detected by measuring the width
of the beam, in degrees, at 3db down from the peak. A beam that passes both tests
is considered to be correctly detected.

3. Implementation of Application-Level Fault Tolerance

Our technique uses redundancy in the form of extra work done by each process of
the application. Each process takes, in addition to its own distinct workload, some
portion of its neighbor's workload, as shown in Figure 3. The process then tracks
beams or targets for both its own work and overlaps part of its neighbor's, but
makes use of the redundant information only in case this neighbor becomes faulty.
We now explain briefly how the data set is divided, how the application might learn
of faults, and how it would recover from them.

Process 1

Process 2

Process 3

Process 4

Frame of data arrives
here, at each node.

Time

Figure 3. Architecture of both benchmarks with application-level fault tolerance.

3.1. Division of Load

The extent of duplication between two neighboring nodes will greatly affect the level
of reliability which can be achieved. Duplication arises from the way we divide the

19

data set among the parallel processing nodes. First, each frame of data is divided
as evenly as possible among the nodes. The section of the process that takes on
this set of data is the primary task section, Pt. Then we assign each node, m,
some additional work: part of its neighbor, n^'s, primary task. The section of
the process that takes on this set of data is the secondary task section, Si. In other
words,

• The primary task section, Pit refers to the calculations which node n, carries as
part of the original application.

• The secondary task section, Si, refers to the calculations which node n{ carries
out as a backup for its neighbor, n*_i. Node m hosts the secondary corre-
sponding to the primary running on the highest numbered node. The secondary
section, S*, will be kept in synchronization with the primary Pj_i.

3.2. Detection of Faults

There are two ways in which fault detection information can reach the various
application processes. In the first, the system informs the application of a faulty
node, and the second is through specific timeouts at the phase of the application
where communication is expected. The former would typically incur the cost of
periodic polling, while the latter could result in late detection of the fault. Although
the exact integration of application-level fault tolerance would vary depending on
the fault detection technique chosen, the effectiveness of our technique should not.

3.3. Fault Recovery

If, at a deadline prior to that of the frame, node nt is discovered to be faulty and
is unable to output any results, then node ni+1 which is serving as its backup will
send as output Si+i's data in place of the data that rii is unable to supply. In
the meantime, the system will be working on replacing or restarting the process
that was interrupted by the fault. In fact, the system's job here is made easier by
the fact that if the process has to be restarted on another node, the process data
segment no longer needs to be moved. When the process is rescheduled, it will
make use of the information maintained by its secondary on its behalf in order to
pick up where it left off before the fault. This way, the application fault tolerance
is able to work in conjunction with the system fault tolerance. This will help even
in the case of transient faults, in that the application-level fault tolerance allows
more leeway to postpone the restarting of the process on another node, in the hope
that the fault will soon disappear.

3.4- Extension to a higher level of redundancy

Our technique guarantees the required reliability in the presence of one fault but
could also withstand two or more simultaneous failures depending on which nodes

20

are hit by the faults. For example, in a six-node system if the nodes running
processes 1, 3, and 5 fail, the technique would still be able to achieve the required
reliability. Of course, this is contingent on the assumption that the processes on
the faulty nodes are transferred to a safe node and restarted by the beginning of
the next frame.

3.5. Benchmark Integration Specifics

We next discuss specific details regarding the application of our technique to each
of the benchmarks.

3.5.1. RTHT benchmark In the RTHT Benchmark, the "unit of redundancy"
is the hypothesis. That is, each secondary task section creates and extends some
fraction of the total number of hypotheses created and extended by the process
for which it is secondary. The amount of secondary redundancy is expressed as a
percentage of the number of hypotheses extended by the primary.

Redundancy is implemented in the following way: At the beginning of each frame,
the source process broadcasts the input radar data, and hypotheses are created and
extended as before, with the exception that additionally the secondary extends a
percentage of those extended by the corresponding primary. The secondary section
St is kept in synchronization with primary Pj_i via the compilation process, which
in this case is again a process-level broadcast communication, so that no extra
communication is necessary. If node rij is discovered to be faulty and is unable to
participate in the compilation of that frame, then node ni+\ which is serving as its
backup will make use of Si+i 's data in the compilation process in place of the data
that Hi is unable to supply.

When the process is rescheduled, it will make use of the hypotheses extended by
the secondary on its behalf so as to pick up where it left off. This information is
obtained from the secondary process by way of compilation - the newly rescheduled
process merely listens in on the compilation process and copies those hypotheses
which have been extended by its secondary.

3.5.2. A BF benchmark There are two ways in which we have integrated application-
level fault tolerance with the ABF Benchmark. They differ in the manner in which
the secondary abbreviates the calculations of the primary so as to obtain a full set
of results. The methods are:

• The Limited Field of View (Limited FOV) Method in which the secondary
looks for beams at every frequency as in the primary, however it searches only
a subsection of the primary's field of view (divided into one or more segments).
Ideally the secondary will place these "windows" at directions in which beams
are known to be arriving. We impose a minimum width of these windows, due
to the fact that if an individual window is too narrow, the output could always
(perhaps erroneously) pass the width-based quality test, described in section 2.

21

The amount of redundancy is expressed as the percentage of the field of view
searched by the secondary.

• The Reduced Directional Granularity Method in which the secondary looks for
beams at every frequency and in every direction, but with a reduced granularity
of direction. The amount of redundancy is expressed as a percentage of the
original granularity computed by the primary.

Both techniques serve to reduce the computational time of the secondary task set,
while maintaining useful system output. In addition, the two techniques may be
employed concurrently in order to further reduce the computational time required
by the secondary task.

To implement either variation of the technique, the input frame of data is scat-
tered a second time from the source to the application processes. This is time -
rotated, so that each process receives the input data of the process for which it is
a secondary. Each process first carries out its primary computational tasks, and
then carries out its secondary task. At the frame's deadline, if a process is detected
to be down, the sink will gather output from the non-faulty processes, including
the backup results from the process that is secondary to the one that is faulty. In
the event of an application process being restarted after a fault, it will receive the
current set of weights from its secondary in order to jump-start its calculations.

Some synchronization between primary and secondary is required in the Limited
FOV Method. It is a small, periodic communication in which either the sink process
or the primary itself tells the secondary at what frequencies and directions it is
detecting beams. Such synchronization is not necessary for the Reduced Granularity
Method.

4. Results

4-1. The RTHT Benchmark

When applied to the RTHT benchmark, we found that only a small amount of
redundancy between the primary and secondary sections is necessary in order to
provide a considerable amount of fault tolerance. Furthermore, the increase in
system resource requirements, even after including overheads of the technique's
implementation, is minimal compared to that of other techniques, in achieving the
same amount of reliability. These points are demonstrated in Figures 4, 5, and
6. Each run contains 30 targets which remain in the system until the end of the
simulation (the 30th frame), as well as some number of false alarms. The case when
only system-level fault tolerance exists corresponds to the case when the secondary
extends 0% of the primary hypotheses.

In Figure 4 we see the number of targets which are successfully tracked, when we
have just two application processes and a fault occurs at frame 15. (In this case
there were roughly 80 false alarms per frame of data.) In this run, 15% redundancy
allows us to track all of the real targets, despite the fault. We can attribute the fact
that a small amount of redundancy can have a great effect on the tracking stability,

22

34
32
30

-o 28
05 26

8 24
h- ?? V)
a> ?0
rr>
co 18
h- 16
o 14
03
XI 1?
3 10
Z 8

6
4
2
0

Secondary extends 15% of primary hyps

Secondary extends 10% of primary hyps

Secondary extends 5% of primary hyps -B-

Secondary extends 0% of primary hyps -*-

10 15 20
Frame Number

25 30

Figure 4. TYacking accuracy, in number of real targets tracked for a given percentage of redun-
dancy.

to the fact that the hypotheses which are being extended by the secondary are the
ones most likely to be real targets. At the beginning of the compilation phase,
each application process sorts its hypotheses, placing the most likely at the head of
the list for compilation. Thus, at the beginning of the next frame, each application
process and its secondary begin extending those hypotheses with the highest chance
of being real targets.

To refine this point, Figure 5 shows the average percentage of redundancy required
for a given number of application processors and a single fault, as before. The
amount required shows a gradual decrease as we add more processors. We can
attribute this to the fact that the chance of a single process containing a high
percentage of the real targets decreases as processors are added.

In addition, a proportionately small load is imposed on the processor by the
computation of the secondary task set, as seen in Figure 6. This can be attributed
to the fact that a hypothesis whose position and velocity are known precisely, does
not take as much time to extend compared to those hypotheses which are less well-
known. And since the most likely hypotheses are generally the most well-known
and are the hypotheses which the secondary extends, the amount of processor time
taken to execute the secondary task is proportionally much smaller.

23

4 5 6
Number of Application Processors

Figure 5. Average minimum percentage of secondary overlap required to miss no targets despite
one node being faulty.

4.2. ABF Benchmark Results

When we integrate application-level fault tolerance with the ABF benchmark, we
find that only a small amount of redundancy is necessary to ensure complete mask-
ing of single frame faults. With either variation (reduced granularity or limited
FOV method) we see that a secondary redundancy of 33% is adequate to provide
complete and accurate results in the faulty frame and the following frames (after
the faulty process is restarted). If we combine the two techniques, we see an even
further reduction in the computational effort imposed by the secondary in order
to mask the fault. We have not taken additional network overhead and/or latency
into account in figures of overhead - they refer solely to computational overhead.
Network overhead will depend greatly on the medium used. In particular, a shared
medium would allow the secondary to "snoop" on the primary's input and output,
eliminating the need for additional communication.

All results were obtained by running simulations with 75 sensors and four reference
input beams for 50 frames. There are two application processors, and a fault
occurs in one of them at frame 30. Results are presented and discussed for three
redundancy methods: the Limited FOV method, the Reduced Granularity method
and a Combined method (a combination of the first two). The quality of the results
is assessed by totalling the number of beams that were tracked successfully. Here,
there are four input beams at each frequency and 32 frequencies - making 128

24

10 20 30 40 50 60 70 80 90 100
Percentage of Secondary Overlap

Figure 6. Ratio of time taken to compute the secondary hypothesis to the time to compute the
primary hypothesis versus the percentage of secondary overlap.

beams in all. As an example, Figure 7 presents the results for several runs of the
ABF benchmark while utilizing the Limited FOV redundancy method alone, with
a single processor fault occurring at frame 30 and lasting one frame. We see that a
30% overlap is adequate to preserve all beam information within the system despite
the loss of one processor in frame 30. We have tabulated the results for all three
methods in Table 1.

4.2.1. ABF Results: Limited FOV Alone As we see in Table 1, roughly 30% sec-
ondary overlap is adequate to provide full masking of the fault. The computational
overhead imposed by the secondary is about 30%. In addition, Figure 8 shows the
rather linear increase in overhead as we increase the fraction of overlap.

Table 1. Amount of secondary overhead imposed by various redundancy methods, each
of which is capable of fully masking a single fault.

Redundancy Technique Secondary Overlap Computational Overhead

Reduced Granularity 33%
Limited FOV 30%
Combined - 30%FOV,50%Granularity 15%

35%
30%
17%

25

■o
CD

CD
•o
<n
E
to
CD

J3

CD
XI
E
C

iS
.O

160

140

120

100

80

60

40 -

30% secondary
20% secondary
10% secondary
0% secondary

20 30
Time (Frames)

40 50

Figure 7. The number of beams correctly tracked in each frame, for the given levels of redundancy,
for the Limited Field of View Method. A single process experiences a fault of duration one frame,
at frame 30.

Associated with this technique however, is a potential dependence on the number
of beams detected in the system, as described earlier. In order to ensure that the
width test applied to the output can fail, we impose a minimum window-width. This
minimum width dictates that for a given amount of overlap, there is a maximum
number of windows in which the secondary may search for beams. If there are
more beams than the maximum number of windows then some may be missed by
the secondary search, depending on the direction of arrival. However, the system
designer can lessen the likelihood of this occurring by carefully choosing the amount
of overlap allotted, and tuning the criteria with which areas will be searched by the
secondary.

4-2.2. ABF Results: Reduced Granularity Alone Here, too, we see that, accord-
ing to Table 1, operating the secondary at 33% of the granularity of the primary
results in complete masking of the fault, and that this imposes a 35% overhead to
the processing node. Figure 8 again shows a linear relationship between the compu-
tational overhead and the overlap, and indicates that the overhead of the method
itself is a bit higher than that of the Limited F0V method. When considering
the Reduced Granularity method, we see no dependence on the number of beams
detected, although beams could be missed if their peaks were within a few degrees
of each other, and the granularity were very coarse.

26

re
£
Q.
O

a>
E
c g
o
<u
x
0]
£>
cd
x> c o
Ü
CD

o
o

■Jo
tr

10 20 30 40
Percentage of Secondary Field of View Overlap

Figure 8. The ratio of secondary to primary execution time for the variations of application-level
fault tolerance integrated with the ABF Benchmark versus the percentage of secondary field of
view overlap.

4.2.3. ABF Results: Combined methods When we combine these two techniques,
we see the greatest reduction in computational overhead of the secondary task. As
shown in Table 1, a 30% field of view combined with a 50% granularity maintains
the tracking ability similar to that of either one alone, yet cuts the computational
overhead nearly in half. This reduction is illustrated in Figure 8, in the lower two
curves, representing the overhead imposed as we vary the field of view and make
use of 50% and 33% granularity respectively.

5. Conclusions

A high degree of fault tolerance may be obtained with a minimal investment of
system resources in applications exhibiting data parallelism, such as the ABF and
RTHT Benchmarks. It is achieved through a combination of application-level and
system-level fault tolerance. A prioritized ordering within the data set, as in the
RTHT benchmark, or a reduced granularity, as in the ABF benchmark, is made
use of, to decrease the computational overhead of our technique.

The processes in these benchmarks are very large, so that moving a checkpoint
and restarting the task may take a significant amount of time. The application-level
fault tolerance is able to ensure that, despite the temporary loss of the task, the
required reliability is maintained.

27

Since the primary and secondary task sets are incorporated within a single appli-
cation process, the primary is always executed first and the secondary next. Once
the primary has completed, it may alert the scheduler, indicating that the secondary
need not be executed. It is useful, but not necessary, for the secondary to still be
executed, as this allows it to be better synchronized with its primary counterpart.
If a fault is detected, the priority of the secondary could be raised, to ensure that
it will complete without missing its deadline, and provide the necessary data for
compilation.

This technique is a substantial improvement over complete system duplication, in
that it does not require 100% system redundancy, but merely adds a small amount
of load to the existing system in achieving the same amount of fault tolerance. It
differs from the recovery block approach in that the secondary does not have to be
cold-started, but is ready for execution when a failure of the primary is detected. In
addition, the level of reliability may be varied by varying the amount of redundancy.

In order to integrate such application-level fault tolerance, the designer will need
to first determine how to prioritize the data set and/or reduce the granularity in
order to define the secondary's dataset. Second, the designer should choose mecha-
nisms by which the secondary gets the input data it needs, is able to output results
when necessary, and is able to communicate with the primary for synchronization
purposes. Naturally, some sort of fault detection will have to used as well. The
designer must carefully weigh the overheads imposed by various methods to achieve
fault tolerance and the quality of results that may be obtained from each.

In conclusion, we believe that steps to integrate this technique into the application
should be taken right from the early stages of the design in order for this approach
to be most effective.

Acknowledgments

This effort was supported in part by the Defense Advanced Research Projects
Agency and the Air Force Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-96-1-0341, order E349. The government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.

The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced Research Projects Agency,
Air Force Research Laboratory, or the U. S. Government.

References

1. D.P. Siewiorek and R.S. Swarz Reliable Computer Systems Design and Evaluation, 2nd ed.
Digital Press, Burlington, MA, 1992.

2. B. Randell. System Structure for Software Fault Tolerance. IEEE Transactions on Software
Engineering, vol. SE-1, pp. 220-232, 1975.

3. J.W.S. Liu, W. Shih, K. Lin, R. Bettati, and J. Chung. Imprecise Computations. Proceedings
of the IEEE, vol. 82, No. 1, pp. 83-93, Jan. 1994.

28

4. N.A. Speirs and P.A. Barrett. Using Passive replicates in Delta-4 to Provide Dependable
Distributed Computing. Proceedings of the Nineteenth International Symposium on Fault-
Tolerant Computing, 1989, pp. 184-190.

5. A.L. Liestman and R.H. Campbell. A Fault-Tolerant Scheduling Problem. IEEE Transac-
tions on Software Engineering, vol. SE-12, pp. 1089-1095, Nov. 1986.

6. B. Van Voorst, R. Jha, L. Pires, M. Muhammad. Implementation and Results of Hypothesis
Testing from the C3I Parallel Benchmark Suite. Proceedings of the 11th International Parallel
Processing Symposium, 1997.

7. D.A. Castanon and R. Jha. Multi-Hypothesis Tracking (Draft). DARPA Real-Time Bench-
marks, Technical Information Report (A006), 1997.

8. R. Hamza, Honeywell Technology Center. Sonar Adaptive Beamformer (Draft). DARPA
Real-Time Benchmarks, Primary Technical Information Report, 1998.

9. M. Allalouf, J. Chang, G. Durairaj, V.R. Lakamraju, O.S. Unsal, I. Koren, CM. Krishna.
RAPIDS: A Simulator Testbed for Distributed Real-Time Systems. Advanced Simulation
and Technology Conference, 1998, pp. 191-196.

10. CM. Krishna and K.G. Shin Real-Time Systems, McGraw Hill, New York, NY, 1997.

29

Appendix 4
Surge Handling as a Measure of Real-Time System

Dependability *

Zahava Koren, Israel Koren and C. M. Krishna

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

Abstract. Traditional reliability measures for computer systems can be classified into
Computer-Centric or Application-Centric categories. The former concentrate on the
hardware resources while ignoring the application's needs. The latter focus on the re-
quirements of a specific application which is being executed, thus requiring the knowl-
edge of all the details of the application; information which may not always be readily
available. Also, the narrow view on the system's reliability through a single application
is too restrictive and provides very limited information regarding the way the system
will handle other applications.
In this paper we present new measures for real-time system reliability. These measures
are application-sensj'tj'ue rather than application-centric, and are especially suitable for
systems executing various applications with different attributes, some of which may not
be known in advance.
Our proposed measures capture the capability of a real-time system to respond suc-
cessfully to unexpected surges in the workload. These surges may result from a phase
change in the system's mission, an application-related emergency situation or the failure
of some system resources. The ability of the system to handle such surges determines,
to a large extent, its chances of survival and meeting its applications' deadlines.

1 Introduction

In this paper, we discuss the merits of using the surge-handling capability of a real-
time embedded system as a measure of its reliability. Such systems are increasingly
used to control life-critical processes such as fly-by-wire aircraft, nuclear reactors, etc.
Reliability in a real-time system is determined by the ability of the system to meet such
task deadlines as is necessary for the correct functioning of the controlled process.
The problem with conventional approaches to evaluating reliability is that they treat
reliability as a static, not a dynamic, quantity. Conventional approaches assume that
failure is caused exclusively by the failure of individual hardware or software compo-
nents. This approach to reliability ignores the dynamic component; namely, that the
computer system is only reliable if it does not cause failure for the application (irre-
spective of the actual number of processors which are still operational).
Central to any reliability evaluation is the definition of an appropriate set of reliability
measures. Measures are yardsticks by which reliability is expressed. In other words,
reliability measures act as filters, imposing a scale of values that determines which
factors are important for "reliability" and which are not.

* This work was supported in part by DARPA, under contract F30602-96-1-0341, order E349.

30

Currently-used reliability measures for fault-tolerant systems fall in one of two cate-
gories.
- Computer- Centric: All traditional reliability measures are computer-centric. They

focus on the computer in isolation to anything else. The system is denned as being
in one of several states, and Markov models are usually used to model the tran-
sitions from one state to another. A subset of the states is defined as the failed
states, and unreliability is the probability that the system, over a given period of
operation, enters one of these states. In traditional models, failed states are entered
either after a large number of hardware failures have occurred, leaving the system
with insufficient computational capacity, or when there is "coverage failure," i.e., a
failure that goes uncaught and uncorrected, and which causes the overall failure of
the system. Examples include traditional reliability, availability, and throughput,
together with variations such as performance-related reliability measures [1].

- Application- Centric: An application-centric measure starts with the premise that
performance and reliability can only be meaningfully defined within the context of
the application. An application-centric measure would start by considering what
the computer needs to do in order to meet the needs of the application. The ability
of the computer to meet the application's needs is the application-centric measure
of the computer. We will provide some examples in the next section.

Performance measures are used in two related ways. One is to allow a comparison of
multiple designs or systems for a given application. The second is to provide an interface
by which the designer of the controlled process in which the computer is to be embedded
(e.g., aircraft, spacecraft, etc.) can communicate to the computer designer the needs of
the application in a form that is intelligible to the latter.
The first use of performance measures is fairly obvious, and is indeed the standard one;
the second needs some elaboration. Computer engineers are not trained in control sys-
tem terminology, and require the needs of the application to be translated to them in
terms that they can understand. A good measure of real-time performance or depend-
ability should express the control-theoretic needs of the application in a way that is
meaningful to the computer designer. As an example, imagine that there is some cost
function by which the impact on the application of a given computer response time (for

each task) can be quantified. We shall see an example of this in Section 2. In defining
the cost function associated with each control task, the control engineer quantifies the
relationship between the response time for each task and the consequent performance of
the controlled process, The computer engineer, upon receipt of this information, does
not have to be concerned about the control-theoretic foundations of the connection
between the controlled process and the embedded computer; the cost functions (and
associated hard deadlines) of the various tasks are all that are required.
While application-centric measures have obvious advantages, they have two related dis-
advantages. The first is that one requires very specific information about the application
in order to compute these measures. At an early stage of design, this information may
not be available. The second disadvantage is that, by their very nature, application-
centric measures are very application-specific. They express the capabilities of the com-
puter entirely with respect to a given application. One cannot directly infer from this
the generic ability of a computer to perform in other real-time applications.
The need therefore exists for real-time measures that straddle the middle ground be-
tween the computer-centric and the application-centric measures. Such measures should
be gracefully degrading with respect to information. That is, as more information is

31

made available about the application, they should become more application-specific. In
the absence of any information about the application, they should express the attributes
of the computer that render it capable of running real-time applications. As the amount
of information increases, they should become increasingly focused on expressing how
the capabilities of the computer meet the particular needs of that application.
In this paper we suggest such a measure, namely, the ability of a computer to handle
load surges. We claim that this ability can be used as an indicator of the quality of the
following:
- Task assignment and scheduling algorithms.
- Ability of the system to handle a load surge following either an emergency condition

or a phase change in the application's mission.
- Procedure followed for the reconfiguration of the hardware upon a failure occur-

rence.

- Procedure for reassigning and rescheduling tasks upon the failure of one or more
processors.

This paper is organized as follows. In Section 2, we provide a brief literature survey of
application-centric performance measures. This is followed in Section 3 by a description
of the proposed surge-handling measures. Illustrative examples are provided in Section
4, and Section 5 contains some discussion and conclusions regarding the new measures.

2 Prior Work

Not much work has been reported on measures specifically meant for real-time systems.
For a survey, see [3, 4]. We describe here two efforts in that direction.

2.1 Performability

This measure was introduced by Meyer [7, 8]. The application is defined as having a set
of accomplishment levels, which are levels of performance which can be distinguished
from one another by the user. We list what the computer must do in order to allow the
application to meet each of these accomplishment levels, Ai,A3,---,A„. The computer
can then be modeled to find the probability Pi that it can perform at a level that
allows the application to deliver accomplishment level A;. The vector of probabilities,
P\,P%,---, Pn, is the performability of the computer. See [8] for a detailed example.

2.2 Cost Functions and Probability of Dynamic Failure

This measure was introduced by Krishna and Shin [2, 9, 10, 11], and was designed ex-
plicitly for use in embedded systems which handle industrial or other control processes.
In such systems, the computer is in the feedback loop of the controlled process, and the
computer response time is a component of the feedback loop delay. From elementary
control theory, we know that such delays in the feedback loop have a detrimental effect
on the quality of the control provided. This can be quantified and used to measure the
level of performance provided by the computer. More precisely, we can identify hard
deadlines for the tasks by calculating the response time delays that lead to a loss of
stability of the controlled process. Even if deadlines are not missed, the cost of hav-
ing a certain response time can be computed by quantifying the extent to which the
performance of the controlled process has degraded. See [4] for further details.

32

3 The Measures - Definitions

We claim that the survival of a real-time system depends, to a large extent, on its ability
to successfully handle unexpected surges in the workload. Such a surge can arise from
any of the following causes:
- A change in mission phase, where one set of tasks is replaced by another set. During

the period of transition, there can be a surge in the workload, with new tasks having
to be run before all of the old tasks have been completed.

- An emergency situation that requires additional tasks to be run. For example, one
may have the onset of instability being detected in some vehicle, following which
certain additional work may have to be executed in order to restore stability.

- Failure of one or more processors. This affects the system in two ways: first, the
workload which was previously run on the failed processor has now to be remapped
onto functional processors. This remapping (which includes deciding which tasks
to move to which processors, moving the tasks appropriately, and aligning the
memories) imposes a transient load on the system. Secondly, the first iteration of
such tasks following a move can have significantly reduced laxity, which appears to
the surviving processors as a surge in the workload.

We introduce in this paper two new measures which express the ability of the system
to respond to such a surge in the workload. For the purposes of this paper, a surge is
defined as an additional workload that is suddenly imposed on the system. A surge may
consist of one or more tasks, each with its own deadline. Individual tasks cannot be
spread out among multiple processors. The size of the tasks determines the granularity
of the surge, and the variation of the deadlines determines its homogeneity.
Our surge measures are the following.
- Minimum Deadline Measure: Consider a surge of a given magnitude 5, consisting

of one or more tasks, all with the same deadline. The Minimum Deadline Measure,
MD(S), expresses the minimum deadline necessary for the surge so that the system
can handle it without missing any deadlines. The smaller the value of the mini-
mum deadline measure for a given surge, the better the system's surge-handling
capability.

- Recovery Time Measure: This measure, denoted by RT(S), expresses how quickly
the effect of a surge of magnitude S on the system fades away. It measures how
much time elapses between the arrival of the surge and the point in time when the
task schedule is back to what it would have been if no surge had occurred, and no
longer has any memory of the surge.

Note that both our measures are curves, functions of the surge size S, rather than single
numbers. MD(S), which measures the ability of the system to handle a surge within some
deadline given a certain underlying ambient workload, represents the reserve capacity
the system has. RT(S), the Recovery Time measure, determines how soon the system
recovers and is no longer vulnerable should a second surge follow the first one.
The surge-handling capacity of a system depends primarily on the task assignment
and scheduling algorithms as well as on the system architecture. Task assignment and
scheduling algorithms determine how effectively the available processing capacity can be
harnessed by the workload. The task assignment algorithm can determine how the load
is spread out among the processors. For example, some assignment algorithms attempt
to balance the load. This can pose difficulties for surges of large granularity, since if the
surge consists of a single indivisible task, no one processor may be available which can

33

execute it on time. Other assignment algorithms attempt to utilize as few processors as
possible, thus leaving other processors free to handle even large surges. The latter type
of assignment algorithm must be used with caution, however, since it leaves little room
for handling variations in execution time demands of the ambient (non-surge) workload.
An example comparing such two task assignment algorithms is presented in the next
section.
The uniprocessor scheduling algorithm used to determine when to run tasks assigned
to individual processors has a similarly large impact on the surge-handling capability.
Such algorithms differ in their ability to effectively utilize available processing capacity,
and thus differ in their ability to handle surges. In the next section, we will see examples
comparing the Earliest Deadline and Rate Monotonie scheduling algorithms.
The system architecture is another important factor in determining surge-handling ca-
pacity. To begin with, the architecture governs the raw underlying computational ca-
pacity of the system. Also, the interconnection network topology and communication
protocol determine the speed - and overhead - with which tasks can be moved from a
failed processor to a new one, thus affecting the size of the surge.
The distinction between performability and cost functions on the one hand, and the
newly introduced surge-handling measures on the other, should now be fairly obvi-
ous. The former are application-centric measures which require detailed - and precise
- information about the application before they can be formulated. It would be very
difficult to compute these measures either for a generic case, where the focus is not so
much on a single application but on a set of possible applications, or when information
about the application is incomplete. The new surge-handling measures are not so much
application- centric as they are application-serwittue, in that while their interpretation
can be from the point of view of the application (i.e., how much surge handling ca-
pability is required by a specific application), they can be computed without detailed
information about the dynamics of the controlled process. Further discussion regarding
tfeis distinction appears in the final section of this paper.

4 The Measures - Illustrations

To illustrate the use of the two surge-handling measures defined in the previous section
for assessing some system attributes, we selected a real-time embedded system com-
prised of n processors connected through some interconnection network. The ambient •
workload consists of m periodic tasks, where task k has a period of Pk, an execution
time of Eh, a deadline Dk = Pk, and an arrival time (of the first iteration of task

k) equal to 7*. The load imposed on the system by task it is measured by Uk = €*•

(fc=l,...,m).

Scheduling of tasks to processors can be done either by using bin-packing, i.e., balancing
the load of the n processors, or by the "first-fit" method, which fills each processor up to
capacity before moving to the next one. After allocating the m tasks to the n processors,

processor i has m(,) tasks, with execution times £J^ and periods i*[° (Jfc = l,...,m(i),
t' = l,...,n).

At time T,, the system experiences a surge of size 5, with a deadline of D,. Such a
surge may arise either from the arrival of aperiodic tasks or from tasks that have been
displaced because their processor has failed, and which must therefore be moved to

34

other, functional, processors. The surge is divided among the n processors by equalizing

the loads of the processors as much as possible. S is divided into S^, S^2\ • • •, S*n)

where S^ is assigned to processor i and 53"=1 &'' = S.

The order of execution of tasks within a processor is either Rate Monotonie (RM),
or follows the Earlier Deadline First (EDF) rule [4, 6] Jn the RM algorithm, periodic
tasks are assigned a static priority, which is proportional to the inverse of their periods.
The EDF algorithm, as its name implies, executes the pending task with the earliest
deadline. Both algorithms are preemptive.
Surge handling is successful if neither the surge, nor any ambient task, miss their dead-
lines. We will assume the worst case scenario, i.e., T\ = Ti = • • • = Tm = T« = 0. We
will also assume, without loss of generality, that Pi < Pi < • • • < Pm-

4.1 The Minimum Deadline Measure

The minimum deadline for a given surge clearly depends on the specific uniprocessor
scheduling algorithm employed by each of the processors. We will demonstrate its cal-
culation for the two-JSfill-known task gchedgingjlgorithms,:. the Rate Monotonie (RM)
and the Earliest Deadline First (EDF) scheduling protocols.
To calculate the Minimum Deadline measure for a given processor »', following the EDF
scheduling protocol, define:

•FM-W where |xj the largest integer smaller than or equal to i.

a^\r) is the number of iterations of task k whose deadline occurs prior to or at time

T. Denote by Ml/i,EDF^(S^^) the minimum deadline necessary for a surge of size S(,)

arriving at processor t at time t = 0, then

MEf^DF)^i)) = Min)t

„<•>

S«i°(*)4°+s(0=' ™*

Y^ a(
fc°(r)4° +5(0 < T, T = jP^for any integers j, I

k=l

where t < jP}{) < JJ P<°
fc=i

The minimum deadline for the whole system of n processors, for a surge of size S and
following the EDF scheduling protocol, is

M&SDF){S)= M<ax Mi^-EDF)(S(i))

To calculate MD for the RM scheduling protocol, define for a given processor t,

ß['\r) = -£y where \x] is the smallest integer greater than or equal to x.

ß\?{r) is the number of iterations of task k which arrived at processor i prior to (but

not at) time r.

35

In addition, denote: A^(r) = max j Jfc | P<° < r \ (A(0(r) = 0 if r < P,(,)).

hSl'(r) is the index of the last task in processor i whose period is not greater than
then,

MD^'RM\s<-^) = Mini

E rt\t)W+S<»=t and

»Off/'))

E i8* Vj^+S*0 < r, r = jP^for any integers j, I

where t < jP,(i) < JJ i^

and

MtfRM\S)= Max M&i>RM'>(Sf-i'>)

We performed some numerical calculations to demonstrate the use of the MD measure
for comparing different system attributes. In all our numerical calculations, unless stated
otherwise, we used the randomly selected set of values shown in Table 1. The number
of processors is n = 8 and the number of tasks is m = 24. The arrival times are
Tt =T, = 0.

Task No. 123456789 10 11 12
Period
Execution Time
Load

10 12 12 13 14 15 16 16 17 17 18 18
342441531144

.30 .33 .17 .31 .29 .07 .31 .19 .06 .06 .22 .22

Task No. 13 14 15 16 17 18 19 20 21 22 23 24
Period
Execution Time
Load

18 19 19 19 20 20 20 20 20 20 21 24
355463255678

.17 .26 .26 .21 .30 .15 .10 .25 .25 .30 .33 .33

Table 1. The periods, execution times and loads of the 24 tasks.

Figure 1 depicts the Minimum Deadline for a given surge for the RM and the EDF
task scheduling algorithms. We clearly see that EDF is superior, allowing the system
to successfully handle surges with smaller deadlines.
In Figure 2 we illustrate the effect of increasing the number of processors in the system.
The same 24 periodic tasks as in Figure 1 are assumed here and the EDF scheduling
algorithm is employed. Clearly, the larger the number of processors the faster the surge
handling, but the marginal advantage of increasing the number of processors decreases.
In the previous two figures we have assumed that the surge appears in the worst possible
time instant when all 24 tasks are waiting to be executed, i.e., at t=0. In Figure 3
we examine the dependence of our measure on the exact time instant when the surge

36

occurs. The same 24 periodic tasks are assumed here and the EDF scheduling algorithm
is employed.
Figure 4 depicts the combined effect of varying both the scheduling algorithm and the
number of processors on the surge handling capability of the system.

4.2 The Recovery Time Measure

RT(S), the recovery time for a given surge S, does not depend on the scheduling al-
gorithm within the processor, as long as the procedure is "work conserving", i.e., the
processor is never idle when there are tasks to be executed. RT(S) can be calculated as

follows.

As before, define for a given processor i: ß(
k''(T) = —py .

The recovery time from a surge of size 5^"' for processor i is

R'I<i\S<-i)) = min{ t
»<•>

53^)(t)40 + s(,")

and the recovery time for the n processor system is

RT(S)= Max ÄTW(5(i))

Figure 5 depicts the Recovery Time as a function of the surge for an eight processor
system with the same 24 periodic tasks as before. The scheduling algorithm employed
is EDF and the surge is assumed to occur at t=0. We compare two task allocation
algorithms, namely the first-fit and the bin-packing algorithms. We also consider two
values of surge granularity, where the surge is divided into either three or five indivisible
tasks. We can see that for the higher surge granularity (surge is divided into three tasks)
bin-packing is preferred, while for the lower granularity first-fit is better.
Another important use for the Recovery Time measure is for comparing different fault-
recovery procedures. The overhead involved in recovering from a fault can be considered
a surge, and the better the recovery procedure, the shorter the surge recovery time.
In this case, the RT measure can be used for comparing the different attributes of
the recovery procedure. In Figure 6, the effects of the checkpointing interval and the
checkpointing overhead are investigated. An intermittent fault is assumed to occur
at processor 2 at time 0. Figure 6 depicts the Recovery Time as a function of the
checkpointing interval for two values of the checkpointing overhead, namely 1 and 2
time units. Clearly, there is an optimal value of the checkpointing interval, and it is
larger for the larger value of the overhead.

5 Discussion and Conclusions

Traditional performance measures have tended to be either totally computer-centric or
totally application-centric. The problem with the former is that they do not take the
needs of the application into account. While the latter type of measure is ideal when
perfect information is available about the application, it is useless when the application

37

is still under development, and full information about it is not available. By contrast,
the surge-handling measures introduced here can be computed for a system using the
current state of knowledge about the ambient workload. Another case when application-
centric measures are useless is when we want to characterize the computer, not in the
context of a specific application, but with respect to its general suitability for real-
time applications. On the other hand, it is possible to characterize the surge-handling
capability of the system for any ambient workload and any architecture. Recently, efforts
have been made by several research teams to build standard real-time benchmarks,
most notably by Mitre and Honeywell corporations. These benchmarks can be used
to define the ambient workloads in terms of which the surge-handling measures can
be evaluated. The surge-handling measures can also be used to evaluate the quality of
real-time operating systems, especially their task assignment and scheduling algorithms.
Other features that can be evaluated using these measures are the interconnection
topology and the communication protocols (since they determine the costs associated

with moving tasks) as well as the failure recovery procedures, including the checkpoint

placement strategy [5].

References

1. M. D. Beaudry, "Performance-Related Reliability Measures for Computing Sys-
tems," IEEE Trans. Computers, Vol. C-29, 1978.

2. C. M. Krishna and K. G. Shin, 'Performance Measures for Multiprocessor Con-
trollers," in A.K. Agrawala and S.K. Tripathi, eds., Performance '83, 1983.

3. C. M. Krishna and K. G. Shin, "Performance Measures for Control Computers,"
IEEE Trans Automatic Control, Vol. AC-32, 1987.

4. C. M. Krishna and K. G. Shin, Real-Time Systems, New York: McGraw-Hill, 1997.
5. C. M. Krishna, K. G. Shin, and Y.-H. Lee, "Optimization Criteria for Checkpoint-

ing," Communications of the ACM, Vol. 27, No. 10, 1984.
6. C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in a

Hard Real-time Environment," Journal of the ACM, Vol. 20, 1973, pp. 46-61.
7. J. F. Meyer, "On Evaluating the Performability of Degradable Computing Sys-

tems," IEEE Trans. Computers, Vol. C-29, 1980.
8. J. F. Meyer, D. G. Furchtgott, and L. T. Wu, "Performability Evaluation of the

SIFT Computer," IEEE Trans. Computers, Vol. C-29, 1980.
9. K. G. Shin and C. M. Krishna, "Characterization of Real-Time Computers," NASA

Contractor Report 3807, August 1984.
10. K. G. Shin and C. M. Krishna, "New Performance Measures for Design and Anal-

ysis of Real-Time Multiprocessors," Journal of Computer Science and Engineering
Systems, Vol. 1, pp. 179-192, October 1986.

11. K. G. Shin, C. M. Krishna, and Y.-H. Lee, 'A Unified Method for Characteriz-
ing Real-Time Computer Controller and its Application," IEEE Transactions on
Automatic Control, Vol. AC-30, No.4, April 1985, pp. 357-366.

12. K. Yu and I. Koren, "Reliability Enhancement of Real-Time Multiprocessor Sys-
tems through Dynamic Reconfiguration," Fault-Tolerant Parallel and Distributed
Systems, D. Pradhan and D. Avresky (Editors), pp. 161-168, IEEE Computer So-
ciety Press, Los Alamitos, CA, 1995.

This article was processed using the KTgX macro package with LLNCS style

38

Appendix 5
Synthesis of Interconnection Networks:

A Novel Approach

Vijay Lakamraju, Israel Koren and CM. Krishna

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst 01003

E-mail: {vlakamra,koren,krishna}Qecs.umass. edu

Abstract

The interconnection network is a crucial element in
parallel and distributed systems. Synthesizing networks
that satisfy a set of desired properties, such as high re-
liability, low diameter and good scalability is a difficult
problem to which there has been no completely satisfac-
tory solution.

In this paper, we present a new approach to net-
work synthesis. We start by generating a large number
of random regular networks. These networks are then
passed through filters, which filter out networks that do
not satisfy specified network design requirements. By
applying multiple filters in tandem, it is possible to
synthesize networks which satisfy a multitude of prop-
erties. The filtered output thus constitutes a short-list
of "good" networks that the designer can choose from.
The use of random regular networks was motivated by
their surprisingly good performance with regard to al-
most all properties that characterize a good intercon-
nection network.

Experimental results have shown that this approach
is practical and powerful. In this paper we focus on the
generation of networks which have low diameter, good
scalability and high fault tolerance. These generated
networks are shown to compare favorably with several
well-known networks.

'This research was supported in part by DARPA and the Air
Force Research Laboratory under Grant F30602-96-1-0341. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
the Defense Advanced Projects Agency, the Air Force Research
Laboratory, or the US Government.

1. Introduction

Interconnection networks (ICNs) axe as much a de-
terminant of performance and dependability in a paral-
lel or distributed system as the processors themselves.
The network impacts the cost of the architecture and
the cost of communicating between processors, as well
as system reliability and the extent to which the system
can degrade gracefully under processor or link failures.

This paper describes a new approach to the syn-
thesis of interconnection networks for parallel and dis-
tributed systems. The distinguishing features of our
technique are that it can be tailored to the specific
performance and fault-tolerance measures of interest
to the designer, and that it can be used even by those
who are not experts in interconnection networks. It
is especially useful when seeking to synthesize a net-
work that performs well with respect to multiple per-
formance measures. For example, a designer may place
a high premium on both scalability and network re-
silience, while simultaneously needing to constrain the
degree of the network. It can also be used to study
tradeoffs among several performance or dependability
parameters.

A vast literature on interconnection networks ex-
ists. Networks such as the hypercube, shuffle-exchange,
Banyan, bus, chordal ring, tree and others, have been
extensively studied [8, 9]. However, much less has been
reported on the problem of synthesizing a network to
meet specific performance and reliability criteria.

In our approach, the designer specifies the perfor-
mance measures of interest. These may be common-
place measures such as bandwidth, diameter, connec-
tivity, or more exotic measures like diameter stability
in the face of failure, the extent to which the network
splinters as node and link failures accumulate, or scal-
ability. A large number of random regular networks of
the desired size are then generated and passed through
a bank of filters. Each filter is associated with a per-

39

formance requirement. The filters identify a subset of
networks which have the desired performance with re-
spect to the specified measures. This subset consti-
tutes a short-list of networks from which the designer
can choose.

The usefulness of this approach rests on its effi-
ciency. That is, the number of random networks one
has to generate before obtaining a useful short-list of
"good" networks. This problem does not readily yield
to theoretical analysis, and must be studied by simu-
lation experiments. We have found, through extensive
experimental work, that our technique is surprisingly
efficient.

The rest of the paper is organized as follows. In the
next section, we briefly review various desirable prop-
erties of ICNs. In Section 3, we describe our random
network generation algorithm and the filtering process.
Section 4 provides extensive experimental evidence to
the good performance of random regular networks. It
also shows the effectiveness of the filtering approach
through examples. Section 5 summarizes our findings
and discusses future work.

2. Preliminaries

A good interconnection network is characterized by
a number of desirable properties. Some of these are
listed below:

• Small internodal distances. One factor in the com-
munication delay is the node-pair distances. The
greater the average node-pair distance, the greater
the time a message will spend in the network, the
greater the energy consumed in delivering it, and
the greater the chances of network congestion.

• Small, fixed degree. Each physical connection costs
money and a small degree corresponds to reduced
wiring and fewer I/O interfaces. Furthermore, if
the degree is constant over all nodes, then only one
basic node design may be necessary.

• Good fault tolerance. Many parallel or distributed
systems are used in applications requiring levels of
reliability that can only be achieved by making the
system fault-tolerant. There are many measures of
fault-tolerance: we list below a partial list of the
more useful network measures.

- Probability of network disconnection.

- Diameter stability, i.e., how the network di-
ameter is expected to increase as nodes or
links fail.

— Stability of the average node-pair distance as
nodes or links fail.

- How the network splinters after it gets dis-
connected: is it more likely to splinter into
one large component which is still useful, and
several small and useless components, or will
all the components be too small to be useful?

• Easy construction and good scalability. It should
be possible to construct a network of any desired
size. Further, adding a few nodes to the network
should not cause drastic changes in such proper-
ties as diameter or average node-pair distance. A
scalable ICN should be able to accommodate small
increases in size rather than only large increases.

• Embeddability. Some algorithms are designed to
run well on certain topologies, i.e., those that map
well to the communication pattern of the appli-
cation. A good network should be able to embed
a wide range of topologies with low dilation, thus
ensuring that a large number of algorithms will
run efficiently on the selected ICN.

• Easy routing algorithms. It is advantageous to
have a simple routing algorithm, for example, one
that requires only the knowledge of the destination
address. Routing algorithms can have a big impact
on congestion and power requirements. Networks
that facilitate the use of such simple algorithms
are preferable.

These measures will vary in importance from one ap-
plication to another. For example, space applications
may require massive levels of fault-tolerance and low
power consumption, while not placing a large premium
on scalability.

Interconnection networks can be represented as
graphs in which the vertices correspond to processors
and the edges to communication links. In this paper
we use the terms networks and graphs interchangeably.
We consider only undirected graphs and the size of a
network refers to the number of vertices in the graph.
In this paper, we mainly concentrate on networks of de-
gree 3 and 4, though our approach is not restricted to
these degrees. For comparing the performance of dif-
ferent measures among degree-3 networks, we use the
following topologies: shuffle exchange networks [16],
cube connected cycles(CCC) [14], chordal rings of de-
gree 3 [1], Moebius trivalent graphs [12] and multi tree
structures(MTS) of degree 3 [2]. In the degree-4 cate-
gory, we use meshes, torii, chordal rings of degree 4
[7] and the wrapped butterfly networks. In the next
section, we describe our approach to synthesizing net-
works which meet the designer's requirements.

40

3. Approach

Our approach to network synthesis consists of a two-
step process: first, the generation of a large set of ran-
dom regular networks and second, the isolation of just
the right ones through a process of filtering.

3.1. Generating Random Regular Networks

We use the following definition of random regular
graphs:

Definition 3.1 A random regular connected graph of
size n and degree d is a d-regular connected graph in
which node pairs connected by an edge are selected at
random.

Random regular graphs of n nodes and degree d are
generated as follows. We start with a set of n isolated
nodes. Edges are placed between node pairs selected
at random. This process continues until all the nodes
in the network satisfy the following two requirements:
(i) the degree of all the nodes is the same and equal
to the specified value, d and (ii) no pair of nodes is
joined by more than one edge, and no self-loops exist.
Finally, the generated network is tested for connect-
edness. Algorithm 1 contains the pseudocode used to
generate random regular networks.

Algorithm 1
generate_regular_random_network(size,degree,seed)

i: A<^ {1,... ,n}
2: repeat
3: Randomly pick two nodes, u and v, from set A
4: if ((u ^ v) and edge(u,i;) not already present)

then
5: Add edge(u, v) to the adjacency matrix
6-. update A by removing nodes whose degree has

been satisfied
7: else if (size(A) = 1) or

(nodes in A form a fully connected subgraph)
then

8: discard and start all over again
9: end if

10: until size(A) — 0
ii: check for connectedness
12: if graph not connected then
13: discard and start all over again
14: else
15: return adjacency matrix
16: end if

.4 is the set of all nodes whose degree has not been
satisfied and is initialized on line 1 to the set of all n

labelled nodes. Lines 4-6 ensure that the two condi-
tions stated above are met and lines 7-8 ensure that the
algorithm does not loop infinitely. If, during construc-
tion, the nodes in A form a fully connected subgraph,
then no matter which two nodes are picked, the con-
necting edge will always be superfluous. No attempt
is made to backtrack from this situation, and so the
current adjacency matrix is discarded and a new one
generated.

The above algorithm generates a random regular
network each time it is called with a different seed
value. Note that under some conditions, such as those
on lines 7 and 12, the network that is being generated
needs to be discarded and the generation restarted.
To estimate the runtime required to generate a valid
graph, we generated a large number of random graphs
for various network sizes and calculated the average
runtime for each network size and for different degree
networks. Results shown in Figure 1 were obtained on
a 500MHz Pentium having 256MB of memory. It was
observed that networks of even 2048 nodes could be
generated in less than a second using this algorithm.
This shows that the generation algorithm can output
a random regular graph in reasonable time. It was
also observed that the check for graph connectedness
(line 12 of the algorithm) was almost always satisfied.
It is also important that the generated networks are
non-isomorphic to each other; otherwise the filtering
process will not make sense. To find out how many of
the generated networks are non-isomorphic, we checked
the isomorphism between all pairs of networks and ob-
served that more than 99% of the networks were non-
isomorphic to each other. All these results show that
the generation algorithm provides a cheap and versa-
tile method for producing the "raw" material for the
filtration process. To get a better idea of the number
of distinctive networks that can be generated with size
n and degree d, see [15].

3.2. The Filtering Process

The raw material for the filtering process is the set of
random graphs generated. Filtering consists of identi-
fying those networks which have the properties desired
by the designer.

We use one filter for each requirement to be satisfied.
Typically each requirement is associated with a single
performance measure or a set of measures. A filter con-
sists of two parts: the evaluation part calculates the
value of the measure associated with the requirement,
and the checking part compares the value of the mea-
sure with a threshold specified by the requirement. For
example, if the requirement was a diameter no greater

41

0.040

0.035
O
U
VI

0.030

E 0.025

c 0.020

o
M

0.015

0.010
<

0.005

degree 8

..."' degree6

.-•" degree 4

degree 3

100 150 200 250 300

Number of nodes

Figure 1. Average runtime of the generation al-
gorithm

Filter 1

Filter 2

Filter 3

E2

C2

EJ

C3

5

(c=qnqnCj)

E -°- Evaluation part

C -°- Checking part

Figure 2. Sequential and Parallel Filtering

than k, then the evaluation part computes the diameter
of the network and the checking part checks whether
this requirement has been met. Each filter takes as in-
put a set of random networks and outputs only those
that pass the checking part. The output of one filter
is used as input to the next. The filters are arranged
sequentially one after the other in decreasing priority
order of the measures they represent. The output at
the end of the entire filtering process depends on the
threshold values that have been set for each filter. If
the filtering process produces no output, the designer
will have to refine the threshold values. The threshold
of a higher-priority filter should not be relaxed before
that of every lower-priority filter has been relaxed to
the maximum allowed extent. The key feature of this
filtering approach is its versatility, as the set of selected
filters and their order is determined by the specific ap-
plication requirements.

The evaluation part is typically much more time-
consuming than the checking part. In order to speed
up the filtering process, the evaluation corresponding
to each of the filters can be carried out in parallel and
a single checking part that combines the checking parts
in all filters used to sift out networks that comply with
all the requirements. This approach is called parallel
filtering, compared to the sequential filtering that we
described earlier (Figure 2). Note that the time taken
in the case of parallel filtering is bounded by the maxi-
mum evaluation time among the filters, and evaluation
is carried out for all the input networks. In sequential
filtering, the threshold determines the number of net-
works that pass through at each stage. If a stringent
threshold is used, a smaller number of networks pass

through and this greatly impacts the time spent in the
remaining filters. Thus, the time taken in the case of
sequential filtering is dependent on the threshold set in
each filter.

Some implementation details are worth mentioning.
One need not store the adjacency matrices of all the
input networks because they can be regenerated easily
and quickly using the seed value. So, only the seed
values used to generate the random networks need to
be stored. Also, thresholds can be specified in relative
terms rather than using an absolute threshold value
(for example, take the best 5% of the input networks),
although this requires sorting the input networks ac-
cording to the value obtained from the evaluation part.

4. Experimental Results

In this section, we demonstrate the efficiency of our
filtering approach by considering the synthesis of ICNs
with required diameter, scalability and fault-tolerance
characteristics.

4.1. The Diameter Filter

The diameter, A, which is the maximum of the
node-pair distances, provides an upper-bound on the
inter-task communication time, in terms of hops, and
can be a decisive factor in application runtime. The
problem of constructing a network of a given size and
degree with the smallest possible diameter has been
the focus of much research [4, 13]. While the diameter
of random graphs has also been studied, the published
results tend to be of an asymptotic nature, valid as

42

the size of the graph approaches oo. These asymptotic
results provide little guidance for graph sizes that are
of practical interest. In order to evaluate the diameter
of random regular networks, we generated random net-
works sized between 8 and 256 nodes and with degrees
ranging from 3 to 6 and calculated their diameters.
For each size and degree, 1000 random networks were
generated and the ones with the least diameter were
selected. Figure 3 shows how the diameter slowly in-
creases with size and how it reduces as the degree is
increased. These results provide a lower bound to the
threshold that can be set for the diameter filter. Fig-
ure 4 shows the comparison of the diameter of random
networks of degree 3 with other networks of the same
degree. The diameters of the networks plotted are the
ones with the least diameter as specified in their re-
spective references.

10

9

E

5

 1 1 — I- 1 1 1
degree 3 N.

r degree 4 \

,' degree 5

- r^ r
 ■ degree 6 -

fJJ
i ..J 1

50 100 150 200

Number of nodes

250 300

Figure 3. Diameter of random regular networks

From Figure 4 it is clear that random networks per-
form better than such common ICNs as the mesh and
the hypercube, but have greater diameter than some
well-crafted ICNs such as the MTS network for some
network sizes. However, graphs such as MTS are not as
flexible. The MTS network is defined only for certain
sizes given by m * (d - l)t_1 where m and t are integer
parameters1. Among networks of degree 4 that we have
considered, random regular networks performed the
best. It is worthwhile to find out the number of graphs
that pass through when the threshold of the diame-
ter filter is set to different values. Figure 5 shows the
frequencies of networks of degree 3 that pass through
diameter filters whose thresholds have been set at the
minimum diameter (as shown in Figure 3).

10

6 -

5 4

1 1

Min. Diameter N

1 "■I l

,\ /
1 Min. Diameter count

1

V , K X

1 \i V , Sv, i p\

0.8 3

0.6

00

).4 5

a
oo

0.2 I

20 40 60 80
Number of nodes

100 120 140

Figure 5. Frequency of minimum diameter ran-
dom networks of degree 3

60 80 100
Number of Nodes

Figure 4. Diameters of different networks of de-
gree 3

Figure 4 is very interesting because it shows that
if we generate a sizeable number of random networks
and then select the one with the smallest diameter,
we will (with a high probability) get a network that
is diameter-competitive with most of the interconnec-
tion networks described in the literature. It should
be pointed out, however, that the size of the ran-
dom graphs of a given degree and diameter tend to
be greater than theoretical bounds, such as the Moore
bound[3] or the bound obtained from theoretical stud-
ies of random graphs[5, 6].

Further comparisons can be carried out with the en-
tries in the (d, A) table2. Table 1 shows some of the

'Diameters of incomplete MTS networks have not been ana-
lyzed as yet.

2The (d, A) table gives the state of the art with respect to a
largest known graphs with degree d and diameter A [10].

43

results. The diameter of the random graphs was at
most larger by 1 than the corresponding best known
diameters. It is worth pointing out that these known
networks are constructed by different methods for dif-
ferent degrees and diameters whereas the random net-
works follow the same simple construction algorithm.

Size of Network Degree Diameter
Best Known Random

10 3 2 2
15 4 2 3
20 3 3 4
70 3 5 6

364 4 5 6
532 5 5 6
740 4 6 7

Table 1. Comparison of diameter between best
known networks and the best of the random net-
works generated in our experiments

4.2. The Scalability Filter

Some applications and situations require networks
to be scalable. A network is said to have good scala-
bility if the size of the network can be increased with
minimum disruption and this does not cause a drastic
change in its properties. For reasons of cost, it is better
to have the option of small increments since this allows
the network to be upgraded to the required size within
a particular budget. The hypercube, for example, has
poor scalability, in that its size cannot be increased by
small increments while still maintaining its structural
properties. Random graphs, on the other hand, have
good scalability. They can be constructed for all sizes
and degrees (as long as n*d is even) and Figure 3 shows
that the diameter remains constant for a considerable
range of network sizes.

If regularity of the graph must be maintained even
after scaling, some edges must be removed and some
added to accomodate the new node. The minimum
number of edges that must be removed to scale an even
degree network by one node is d/2 whereas that re-
quired to scale an odd degree network by two nodes is
d- 1. Typically, one does not possess the flexibility of
adding new nodes anywhere in the network. It may be
required to attach the new node adjacent to a given set
of nodes. This is typically the case in a fault-tolerant
design when a spare processor must serve as a backup
for a given set of processors. We define a measure for
scalability in this context by the average increase in

diameter caused by connecting a new node to all possi-
ble designated sets of d nodes. The network is said to
have good scalability if its diameter does not increase
considerably on average.

Not all randomly generated graphs scale well. To
evaluate the performance of random graphs with re-
gard to scalability, we generated 100 random graphs of
size 64 and degree 4 and diameter 5. Note that 5 is
the minimum diameter obtained for graphs of size 64
and degree 4 as shown in Figure 3. For each network,
we then evaluated scalability by selecting sets of four
nodes at random and adding a new node adjacent to
the designated nodes. If the designated nodes are con-
nected by an edge, then this edge is removed, otherwise
edges incident on the designated nodes are selected at
random and removed to create connections to the new
nodes as shown in Figure 6.

Before Scaling After Scaling

New Node

Designated node

Edge removed

Edge added

Figure 6. Example of edges that can be removed
to accomodate a new node

The diameter is calculated for each set of four nodes
and the increase in diameter is averaged over a large
number of such runs. Figure 7 shows the cumulative
distribution of the increase in diameter for the input
graphs. It gives an idea of the threshold that can be
set for a scalability filter, e.g., if the best 10% of the
graphs are selected then we can expect that the average
increase in diameter will be no more than 0.05.

4.3. The Fault-Tolerance Filter

Reliability is an important criterion in the selection
of an interconnection network. Measures are required
to adequately capture network qualities such as grace-
ful degradation and robustness. Traditional measures,
such as connectivity, are worst-case measures and have
limited expressiveness. In this paper, we look at the
following more expressive measures: the diameter sta-
bility^ A(pf), the average node-pair distance stabil-
ity, D(pf), the probability of disconnection, Trd{pf),
and the size of the maximum connected component,

44

-B
-A

■■■"[<• *
M- .-

..;: A' .■*

A'' '•*'
*

64-node shuffle
64-nodeCCC

64-node chordal ring of degree 3
Moebius graph of order 6

64-node random network of degree 3
64-node MTS graph of degree 3

--B--
X

-A--

0.2 0.3
Diameter increase

Figure 7. Cumulative frequency of the increase
in diameter for random networks of size 64 and
degree 3

XmaxiPf), all in the presence of link failures occur-
ing independently with probability p/. These measures
were introduced in [11] and some research has already
been done in characterizing various networks with re-
spect to these measures. We performed experiments to
evaluate the vulnerability of regular random networks
with respect to these four measures. We used random
networks of size 64 and degree 3 and 4 and compared
their performance with other networks of similar size
and degree. The network used was chosen at random
from the set of minimum diameter networks obtained
at the output of the diameter filter.

Figure 8 shows the comparison of diameter stability
among degree 3 and degree 4 networks. The random
regular networks of degree 4 outperform all the net-
works in its category whereas in the degree 3 category,
it is second-best. Though Figures 9 and 11 show av-
erage node-pair distance stability and probability of
disconnection for degree 3 networks only, the perfor-
mance of random networks in the degree 4 category
was observed to be the same as in the case of diameter
stability. All these results show that random networks
perform better than most of their counterparts with
respect to fault tolerance as well. Careful examination
of the results reveals that networks that are not reg-
ular are more vulnerable compared to those that are
regular, as can be seen in the case of shuffle exchange
networks and meshes.

The fault-tolerance filter that we use is a combi-
nation of four filters: one for each of the four mea-
sures. Thresholds are typically specified as a scalar

0.15
Probability of link failure

0.20 0.25

(a) Comparison among degree 3 networks

7
6
54

+ .-«"""^-'10x4 mesh torus
a...-j3;',.A-- 8x8meshtorus

'.&■- w-node chordal ring of degree 4
4-D wrapped butterfly

64-node random network of degree 4

-e-
+

-B-
X

■ -A--

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Probability of link failure

(b) Comparison among degree 4 networks

Figure 8. Diameter vs. probability of link failure

value and since each of the fault tolerant measures is
given by a vector of values (corresponding to different
link(node) failure probabilities), some transformation
must be used to convert the vector of values to a sin-
gle value. If the designer knows the exact value of
the link failure probability, then the value of the mea-
sure corresponding to that failure probability can be
used to do the comparison. However, it may be dif-
ficult for the designer to decide on the exact value of
the failure probability. One transformation that can
be applied would be to use the area under the curve
obtained when plotting the values. This transforma-
tion assumes that each failure probability in the range

45

3.5

64-node shuffle
64-node CCC

64-node chordal ring of degree 3
Moebius graph of order 6

64-node random network of degree 3
64-node MTS graph of degree 3

0.05 0.10 0.15

Probability of link failure

0.25

*

c
V c o a
E
o

64

63.5

63

62.5

62

61.5

61

60.5

60

64-node shuffle
64-node CCC

64-node chordal ring of degree 3
Moebius graph of order 6

64-node random network of degree 3
64-node MTS network of degree 3
 i i i

 +■•■
■-B-

X
~A-

-*■

0 0.05 0.1 0.15

Probability of link failure

0.2 0.25

Figure 9. Average node-pair distance vs. proba-
bility of link failure

Figure 11. Maximum component size vs. proba-
bility of link failure

o

0.7

0.6

0.5

0.4

0.3

64-node MTS graph of degree 3
64-node random network of degree 3

Moebius graph of order 6
64-node chordal ring of degree 3

64-node CCC
64-node shuffle

0.10 0.15
Probability of link failure

0.20 0.25

Figure 10. Probability of disconnection vs. prob-
ability of link failure

of interest is equally likely. Since this may not be the
case in most situations, a more appropriate transfor-
mation would be to associate weights with each of the
failure probabilities and use a weighted sum of the val-
ues corresponding to different failure probabilities.

The output at the end of the set of filters depends on
the threshold values that have been set for each filter.
A stringent threshold value passes a smaller number of
networks through it. If the filter produces no output,
the designer would have to refine the threshold values
or increase the number of input graphs generated.

Experiments were performed to evaluate the ef-

ficiency of the approach by passing random graphs
through a multitude of filters. Graphs of size 64 and
degree 4 were generated and first passed through a di-
ameter filter and then through a fault tolerance filter.
The threshold of the diameter filter was set at 7. The
networks obtained at the output of the diameter fil-
ter were tested for their fault tolerant characteristics
by using two filters, the A(p/) filter and the D(pj)
filter. The range of link failure probabilities of inter-
est to us in this example was [0.0,0.2]. Our initial set
consisted of 1000 randomly-generated networks. After
passing through the diameter filter, we were left with
33%(=330) of the networks. These networks were then
evaluated for the two fault tolerance measures and then
ranked according to their performance. The thresholds
of the filters were set such that only those input net-
works that lie among the best 5% pass through it. The
number of graphs obtained at the end of the filtering
process was a respectable 1.5%(=15). It is important
to note this "short-list" contains graphs that are better
than most graphs published in the literature with re-
gard to diameter and the two fault tolerance measures.

5. Conclusions and Future Work

Synthesizing networks that satisfy a certain set of
performance or fault-tolerance requirements is difficult.
In our approach, we generate a large number of ran-
dom regular networks and filter out those that do not
comply with the requirements. The choice of random
regular networks was motivated by their ease and flexi-
bility of construction and their surprisingly good prop-

46

erties. The filtering process consists of niters arranged
in tandem, one for each requirement to be satisfied.
Each filter removes networks that do not comply with
the requirement associated with it. The strength of
this approach lies in the versatility and extendability
of the filtering step, in that a different set of filters
can be used for a different set of requirements and new
filters can be added as and when newer measures are
developed. We demonstrated the effectiveness of this
approach by synthesizing fault-tolerant networks with
a small diameter.

Extensions to the current work are ongoing in sev-
eral directions. Other filters are currently being stud-
ied, among them are the filter for embeddability and
routability. Other network-generation algorithms are
being developed and assessed. A graphical tool to fa-
cilitate synthesis of interconnection networks through
our approach is also on the anvil.

Acknowledgement
The authors wish to thank Zahava Koren for stimulat-
ing discussions and suggestions.

[12] W. Leland and M. Solomon. Dense trivalent graphs for
processor interconnection. IEEE Trans. Computers,
vol 0-31:219-222, March 1982.

[13] J. Opatrny, D. Sotteau, N. Sitaraman and K. Thulasir-
aman. DCC linear congruential graphs: A new class
of interconnection networks. IEEE Trans. Computers,
0-45:156-164, Feb 1996.

[14] F. Preparata and J. Vuillemin. The cube connected
cycles: A versatile network for parallel computation.
Communications of the ACM, pages 300-309, May
1981.

[15] R. Read. The enumeration of locally restricted graphs.
J. London Math Soc, pages 417-436, 1959.

[16] H. Stone. Parallel processing with the perfect shuffle.
IEEE Trans. Computers, 0-20:153-161, Feb 1971.

References

[1] B. Arden and H. Lee. Analysis of chordal ring net-
works. IEEE Trans. Computers, 0-30:291-295, Apr
1981.

[2] B. Arden and H. Lee. A regular network for multicom-
puter systems. IEEE Trans. Computers, 0-31:60-69,
Jan 1982.

[3] E. Bannai and T. Ito. On finite moore graphs. J. Fac.
Sei., Tokyo Univ., pages 191-208, 1973.

[4] J. Bermond and B.Bollobas. The diameter of graphs
- a survey. Proc. Congressus Numerantium, 32:3-27,
1981.

[5] B. Bollobas. Random graphs. Combinatorics Led.
Note Series London Mathematic Soc, pages 80-102,
1980.

[6] B. Bollobas and W. L. Vega. The diameter of random
regular graphs. Combinatorial, 2:125-134, Feb 1982.

[7] K. Doty. New designs for dense processor intercon-
nection networks. IEEE Trans. Computers, 0-33:447-
450, May 1984.

[8] T. Feng. Editorial Introduction, Tutorial Intercon-
nection networks for Parallel and Distributed Systems.
IEEE Press, Piscataway, NJ, 1984.

[9] R. Finkel and M. Solomon. Processor interconnection
strategies. IEEE Trans. Computers, 29:360-370, May
1980.

[10] http://maite71.upc.es/grup-de-grafs/table_g.html. d-
k table.

[11] V. Lakamraju, Z. Koren, I. Koren and C. M. Krishna.
Measuring the vulnerability of interconnection net-
works in embedded systems. Proc. First Merged Sym-
posium IPPS/SPDP, EHPC Workshop, pages 919-
924, April 1998.

47

Appendix 6
APPLICATION-LEVEL FAULT TOLERANCE

A Thesis Presented

by

JOSHUA WILLS HAINES

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

May 1999

Department of Electrical and Computer Engineering

48/49

ABSTRACT

APPLICATION-LEVEL FAULT TOLERANCE

MAY 1999

JOSHUA WILLS HAINES

B.S.E.E., UNION COLLEGE, SCHENECTADY NY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Israel Koren

As multiprocessor systems become more complex, their reliability will need to

increase as well. In this thesis we propose a novel technique which is applica-

ble to a wide variety of distributed real-time systems, especially those exhibiting

data parallelism. We assert that for high reliability, a combination of system-level

fault tolerance and application-level fault tolerance works best. In many systems,

application-level fault tolerance can be used to bridge the gap when system-level

fault tolerance alone does not provide the required reliability. We exemplify this

with the RTHT target tracking benchmark and with the ABF beamforming bench-

mark, and discuss integration with two additional parallel applications.

50/51

TABLE OF CONTENTS

ACKNOWLEDGMENTS

ABSTRACT

LIST OF TABLES

LIST OF FIGURES

CHAPTER

1. INTRODUCTION

1.1 System Reliability
1.2 Fault Tolerance
1.3 Levels of Fault Tolerance

2. APPLICATION-LEVEL FAULT TOLERANCE

2.1 Division of Load
2.2 Detection of Faults
2.3 Fault Recovery
2.4 Extension to a higher level of redundancy . . .

3. RELATED WORK

3.1 Algorithm-Based Fault Tolerance

3.1.1 An Introduction

52

3.1.2 Continued Work
3.1.3 How ALFT Compares

3.2 Recovery Block Approach
3.3 N-Modular Redundancy

4. INTEGRATION WITH TWO APPLICATIONS

4.1 The Benchmarks

4.1.1 The RTHT Target Tracking Benchmark
4.1.2 The ABF Beam Forming Benchmark

4.2 Benchmark Integration Specifics

4.2.1 Integration in the RTHT benchmark
4.2.2 Integration in the ABF benchmark

4.3 Complete Results from RTHT and ABF Benchmarks . . .

4.3.1 The RTHT Benchmark
4.3.2 ABF Benchmark Results

5. ALFT EXTENDED

5.1 What Makes an Application Suitable for ALFT?
5.2 Effectiveness and Overhead
5.3 Inter-Process Data Dependency Models
5.4 Techniques to Reduce Secondary Runtime
5.5 Independent Processes: RTHT and ABF Benchmarks . .
5.6 Periodic Data Dependency: The Particle-In-Cell Problem
5.7 Continuous Dependency: 3d Image Rendering

6. FUTURE WORK

7. CONCLUSION

53

BIBLIOGRAPHY

54

LIST OF TABLES

Table

1. Amount of secondary overhead imposed by various redundancy methods,
each of which is capable of fully masking a single fault

2. Implementing ALFT with the RTHT Benchmark

3. Implementing ALFT with the ABF Benchmark

4. Implementing ALFT with the Particle-In-Cell application

5. Implementing ALFT with a 3-d Image Rendering application

55

LIST OF FIGURES

Figure

1. Architecture of a data-parallel application with application-level fault toler-
ance

2. Software architecture of both the RTHT and ABF benchmarks

3. Typical beam pattern output

4. Tracking accuracy, in number of real targets tracked for a given percentage
of redundancy

5. Average minimum percentage of secondary overlap required to miss no targets
despite a fault at one node

6. Ratio of time taken to compute the secondary hypothesis to the time to com-
pute the primary hypothesis versus the percentage of secondary overlap. .

7. The number of beams correctly tracked in each frame, for the given levels
of redundancy, for the Limited Field of View Method. A single process
experiences a fault of duration one frame, at frame 30.

8. The ratio of secondary to primary execution time for the variations of
application-level fault tolerance integrated with the ABF Benchmark ver-
sus the percentage of secondary field of view overlap

9. Independent Parallel Process Application with ALFT.

10. Interleaving of Primary and Secondary in Application with distinct phases of
computation and process inter-dependency

11. Primary and Secondary task sections tightly integrated in an Application with
continuous inter-process dependency

12. ALFT integrated with one process of the Particle-In-Cell application

13. Path of packets as they travel around the fault tolerant system in either the
radiosity or ray-tracing phase

56

14. The test scene, rendered with a ray-depth of one

15. The test scene, rendered with a ray-depth of two

16. The test scene, rendered with a ray-depth of five

17. Ratio of secondary to primary execution time for our simulation of the 3d
parallel rendering application

57

CHAP TER l

INTRODUCTION

Every computer system in operation today is certain to experience faults dur-

ing its operable lifespan. Faults may be thought to arrive at a system from many

sources, including environmental factors, interaction with other systems, interac-

tions with human users, or hardware and software design flaws accidentally built

into the system. A system that is able to function reasonably well despite the

manifestation of faults such as these is thought to be highly reliable.

1.1 System Reliability

Reliability is one of the most desirable traits of any computer system today,

be it a desktop workstation, used for multimedia applications, or a mission-critical

server in some capacity. The reliability of a system is linked directly to its ability to

either avoid faults or its ability to operate correctly despite the presence of faults

[2]. Fault avoidance includes any technique designed to decrease the likelihood

of a fault occurring anywhere in the system, while fault tolerance includes any

technique to minimize the effects of a fault upon system operation. Most modern

computer systems make use of both techniques to some degree.

58

1.2 Fault Tolerance

In order to better understand the following taxonomy, it should be understood

that an error is the manifestation of a fault. The process of tolerating a fault might

include detecting the presence of the fault, or an error generated out of the fault,

and reacting to that fault or error to hopefully combat its effects. Faults may

be detected in many ways. In general, a system could look for either the fault

itself, or attempt to detect the error(s) generated from the fault. Timeout schemes

could be employed: if a particular component does not respond to a query within

certain time, it could be assumed faulty. Data could be checked for accuracy or

correctness: input or output data could be compared with data from redundant

source or could be checked against known ranges within which results should be.

How a system actually deals with a fault is a broad subject, however most

solutions make use of some form of redundancy: hardware, information, time, or

software. [1]

Passive hardware redundancy implies that a system is able to mask a fault

without reconfiguration, redundant hardware operates in parallel performing the

same task, and a voter decides which output to take. A Triple-Modular Redun-

dancy (TMR) system is a passive hardware redundancy implementation. Active

hardware redundancy necessitates that the system must be able to detect the pres-

ence of a fault and dynamically reconfigure in order to take advantage of redundant

components. An example is a system where checkpoints are taken periodically and

tasks running a particular node may be relocated and restarted on another (spare)

node if the original node becomes faulty.

59

Information redundancy most often refers to the use of data-level codes. Here a

unit of data is encoded, generally in such a way as to compress it, and the encoded

information may be used to check or even correct the integrity of the original data

at a later time. Parity bits, m-out-of-n codes, and checksums are examples of codes

that allow error detection, while Hamming and other codes may be used to both

detect and correct errors.

Time redundancy makes use of a backup, or recovery, plan that is put into

effect upon detection of a fault in the primary. That is, a backup, sometimes

called ghost, process could be started if the primary task were detected to have

failed.

Software redundancy refers to techniques such as n-version programming, or

the recovery block approach. Here two or more, perhaps different, versions of a

piece of software are provided so that if one fails due to one fault, another version

will hopefully be unaffected by that same fault. The recovery block approach is an

example of both time and software redundancy - the recovery block is a program

that may take less time to execute, perhaps using a different algorithm, than the

primary, and is not scheduled unless the primary will miss its deadline.

1.3 Levels of Fault Tolerance

Thus we can have redundancy at different levels of a system. However, in this

paper we apply an additional classification of fault tolerant techniques: we deal

with fault tolerance at two levels, system-level and application-level.

60

• System-Level Fault Tolerance: This encompasses redundant system compo-

nents and recovery actions taken by the system. The components involved

might include operating systems, scheduling/allocation algorithms, redun-

dant hardware/network configurations, and recovery algorithms. For exam-

ple, in the event of a failed processing unit, the component of the system

responsible for fault tolerance would take care of rescheduling the task(s)

which had been executing on the faulty node, and restarting them on a good

node from the previous checkpoint.

• Application-Level Fault Tolerance: Application-level fault tolerance encom-

passes redundancy and recovery actions within the application software. Here

various tasks of the application may communicate in order to learn of faults

and then provide recovery services, making use of some redundancy.

It should be noted that these classes of fault tolerance may each be implemented

using any of the four types of redundancy. The classification we propose here is

independent of the redundancy techniques used at each level.

If we consider system-level fault tolerance alone, we have found that in certain

situations it alone does not suffice to prevent a deadline miss upon the failure of a

node. Our application-level solution involves a degree of redundancy within each of

the parallel application processes, and the application as a whole is able to make

use of that redundancy in the event of a fault to ensure that the required level

of reliability is achieved. We consider parallel, real-time systems, and how fault

tolerance may be imparted to such applications through Application-Level Fault

Tolerance.

61

Chapter 2 introduces our technique, then in Chapter 3 we present other work

that is closely related, and compare our technique to others that have been studied.

In Chapter 4 we present the benchmark applications that we have integrated our

technique with thus far, and present our results. Chapter 5 analyzes Application-

Level Fault Tolerance and classifies applications for which ALFT is useful and

describes how ALFT can be implemented with these applications. Chapter 6

described future research directions which could be embarked upon to further

ALFT research, and Chapter 7 concludes the thesis.

62

CHAPTER 2

APPLICATION-LEVEL FAULT TOLERANCE

Application-Level fault tolerance is a straight-forward technique that may be

applied to many data parallel applications. That is, applications where there are

multiple processes, each carrying out similar computations, but on different sets of

data, or on unique parts of the same dataset. The technique uses redundancy in the

form of extra work done by each parallel process of the application. Each process

takes, in addition to its own distinct work load, some portion of its neighbor's

work load, as depicted in Figure 3. Each process then carries out both its own,

original, work and overlaps part of its neighbor's, but makes use of the redundant

information only in case this neighbor becomes faulty. Thus if one of the processes

is found to be faulty, the results that its neighbor has computed may be used in

final output in place of those from the faulty node/process. In addition, when

the faulty process is replaced or restarted it can inherit an up-to-date copy of any

necessary state information from its neighbor. We now provide a more thorough

description of the technique, including the division of load and how faults are

masked.

63

Process 1

Process 2

Process 3

Process 4

l_ Frame of data arrives
here, at each node.

Time

Figure 1: Architecture of a data-parallel application with application-level fault
tolerance.

2.1 Division of Load

The extent of duplication between two neighboring nodes will greatly affect

the level of reliability which can be achieved. Duplication arises from the way we

divide the data set among the parallel processing nodes. First, each frame of data

is divided as evenly as possible among the nodes. The section of the process that

takes on this set of data is the primary task section, Pj. Then we assign each node,

rii, some additional work: part of its neighbor, TIKI'S, primary task. The section

of the process that takes on this set of data is the secondary task section, Sx. In

other words,

64

The primary task section, Pi, refers to the calculations which node n* carries

as part of the original application.

The secondary task section, Si, refers to the calculations which node nf carries

out as a backup for its neighbor, n^i. Node nx is the backup for the highest

numbered node. The secondary section S{ will be kept in synchronization

with the primary Pi-i-

2.2 Detection of Faults

There are two ways in which fault detection information can reach the various

application processes. In the first, the system informs the application of a faulty

node, and the second is through specific timeouts at the phase of the application

where communication is expected. The former would typically incur the cost of pe-

riodic polling, while the latter could result in late detection of the fault. Although

the exact integration of application-level fault tolerance would vary depending on

the fault detection technique chosen, the effectiveness of our technique should not.

2.3 Fault Recovery

If, at a deadline prior to that of the frame, node n* is discovered to be faulty

and is unable to output any results, then node ni+x which is serving as its backup

will send as output Sj+i's data in place of the data that n; is unable to supply. In

the meantime, the system will be working on replacing or restarting the process

65

that was interrupted by the fault. In fact, the system's job here is made easier by

the fact that if the process has to be restarted on another node, the process data

segment no longer needs to be moved. When the process is rescheduled, it will

make use of the information maintained by its secondary on its behalf in order to

pick up where it left off before the fault. This way, the application fault tolerance

is able to work in conjunction with the system fault tolerance. This will help even

in the case of transient faults, in that the application-level fault tolerance allows

more leeway to postpone the restarting of the process on another node, in the hope

that the fault will disappear.

2.4 Extension to a higher level of redundancy

Our technique guarantees the required reliability in the presence of one fault

but could also withstand two or more simultaneous failures depending on which

nodes are hit by the faults. For example, if the nodes running processes 1, 3, and 5

fail, on a six-node system, the technique would still be able to achieve the required

reliability. Of course, this is contingent on the assumption that the processes on

the faulty nodes are transferred to a safe node and restarted by the beginning of

the next frame.

66

CHAP TER 3

RELATED WORK

From the description above, it is obvious that our technique shares some similar-

ities with the recovery block approach, and n-modular redundancy, and Algorithm-

Based Fault Tolerance. The following sub-sections introduce the reader to the

latter brand of application fault tolerance, and then we compare and contrast our

technique with each of the three.

3.1 Algorithm-Based Fault Tolerance

3.1.1 An Introduction

Algorithm-Based Fault Tolerance is a technique developed by J. A. Abraham

and K. Huang in 1984 [3]. The technique focuses on matrix operations, and how

matrices and matrix operations may be made more fault tolerant by use of infor-

mation redundancy. First the information contained in a matrix is encoded and

incorporated into a new matrix. Then the matrix operations are redesigned so as

to be able to operate on the matrix containing both encoded and unencoded data.

Further, the output of these operations is a matrix that is encoded in the same

manner as the inputs. The integrity of the resulting data may then be checked for

67

errors, and errors could be corrected depending on the encoding used. Much math-

ematical and theoretical work has been carried out in regard to algorithm-based

fault tolerance. We will next further introduce the technique and summarize this

work.

A basic, and often used example of Algorithm-Based Fault Tolerance is this:

Suppose we have a general matrix multiplication operation, A x B = C, and

want to introduce fault tolerance into the operation itself. First take the input

matrices and perform checksums across the rows of one (AT), and checksums down

the columns of the other (Bc). Next notice that without altering the original

matrix multiplication routine: Ar x Bc = Crc. That is, when we multiply a

row checksummed matrix by a column checksummed matrix, the resultant matrix

contains row and column checksums that are correct for the resulting data. The

resulting checksums may then be used to test the integrity of the data within the

matrix Crc, allowing a certain number of errors to be detected. (Naturally not

more than one error per row/column.)

As presented, this technique increases the size of matrices in the system by 1 in

each dimension, thus necessitating use of more processors to handle the checksum

elements. In addition, the system designer might want the checking data stored in

and operated upon in hardware elements that are distinct from the ones containing

the original data, so that a fault in one won't affect both the original and checking

data.

68

3.1.2 Continued Work

From its conception in 1984 to the present time, there has been a slow, but

steady stream of work on the topic. Key areas of work have involved searching for

bounds on the computational overhead required by the technique, and on the use

of new and different error correcting or detecting codes in conjunction with matrix

operations.

Abraham continued development of the technique, defining bounds on the time

and processing overhead required for the technique [4]. F. Luk, and others, at

Cornell, carried out further mathematical analysis of the technique during the late

80's [5]. D. Rosencrantz and S. Ravi continued in the early 90's, searching for

improved bounds on various overheads associated with the technique, and found

ways to measure the performance of the algorithm-based technique [6] [7].

More recently, Tao, Hartmann, and Han [8] have published what they term

"partial checksum" techniques. These include a Lengthened Hamming Code (LHC)

method, and a Single Error Correcting/Double Error Detecting (SEC/DED) code.

In addition, Yajnik and Jha [9] describe a system that goes a bit beyond the

traditional Algorithm-Based fault tolerance. They attempt to solve the problem

of what to do once an error is detected and corrected. Detection of an error can

give the system some information as to which part of the system might contain

the fault. With this information, the system can be designed so that workload

can be shifted from the faulty node to another node if available. Their technique

naturally strives to make this configuration change as gracefully as possible in

order to disrupt the system as little as possible.

69

3.1.3 How ALFT Compares

Algorithm-Based Fault Tolerance is a technique whose primary function is to

both detect and correct errors at the word or data-structure level. Specifically,

algorithm-based techniques have been geared toward providing fault tolerance in

matrix operations in multiprocessor systems. Although there are many systems

(scientific, navigational, or other) which consist of a large proportion of matrix

operations, there are many other similar applications that have been developed

which either contain fewer matrix operations (and more scalar operations) or con-

sist of literally smaller matrices. To the end of creating a fault tolerant system, if

an application has a good proportion of scalar operations, traditional Algorithm-

Based Fault Tolerance might not be the answer. In addition there is a case to be

made against using the traditional technique if matrices are smaller in size, 3x3

or 4 x 4 for example.

In the case of smaller matrices, the traditional Algorithm-based fault tolerance

will require a substantial proportion of either redundant hardware or computa-

tional overhead. If one takes a 3 x 3 matrix, and adds to it a row and column

check sum the number of matrix elements that must be operated upon increases

from 9 to 16. These additional elements could mean nearly 50% more work for the

system!

Our technique is better suited to provide fault tolerance for parallel distributed

systems for which traditional Algorithm-Based Fault Tolerance is inappropriate.

That is, applications which are parallel, perhaps real-time, and either don't con-

tains significant proportion of matrix operations or where smaller matrices are more

70

common. We have located two such applications and describe them in greater de-

tail in the next section.

3.2 Recovery Block Approach

The recovery block approach combines elements of checkpointing and backup

alternatives to provide recovery from hard failures [10]. All tasks are replicated

but only a single copy of each task is active at any time. If the active copy of

a task fails, the backup is executed. Generally backup copies make use of an

algorithm fundamentally different from that of the primary so as to both allow

for a quick, imprecise result to be output and to guard against common-mode

failures. The backup task may be started from the beginning of the computation

(which increases the chances of a deadline miss) or else executed from the most

recent checkpoint [?]. The later option requires that the active copy of the task

periodically copy (checkpoint) its state to its backups. This can entail a large

amount of overhead, especially when the state information to be transferred is

large. Such is the case with the applications that we are dealing with. In addition,

the process of recovering from the fault is entirely in the hands of the system when

using the recovery block approach.

In addition, when using the recovery block approach, the system would have

to be more intricately aware of the needs of the application in order to be able

to start the appropriate ghost-copy of the task that has failed (in whatever way).

Application-Level Fault Tolerance on the other hand imposes only very limited

71

additional load or complexity upon the system or its scheduler, even in the face

of a fault. Our technique requires that the system knows very little about the

specifics of the application. This helps define a boundary between the system-level

recovery techniques and application-level recovery techniques, and simplifies the

design of both.

3.3 N-Modular Redundancy

N-Modular Redundancy is a well-known fault tolerance technique. A number

of identical copies of the application are run on separate machines, the output

from all of them is compared, and the majority decision is used [2]. This technique

however, involves a large amount of redundancy and is thus costly.

Our technique does in fact provide fault tolerance similar to that which two

complete physical systems would, in the presence of one faulty node. That is, both

techniques guarantee the they will remain operational in the face of a single fault.

Our technique, however, achieves this with much less hardware, but does require

fault detection and location information and a small amount of computational

redundancy on the existing hardware.

72

CH AP TER 4

INTEGRATION WITH TWO APPLICATIONS

We have integrated and thoroughly tested our technique with two parallel,

real-time benchmark applications. Each of the benchmarks has the form shown

in Figure 2. They consist of multiple, parallel application processes, which are fed

with input data from a source - in this case, a source process which simulates a

radar system or an array of sonar sensors. When the parallel computations are

complete, the results are output to a sink process, simulating system display or

actuators. The fault-tolerance technique is concerned with the ability to withstand

faults at the parallel processes/nodes. We will discuss both benchmark applications

briefly.

4.1 The Benchmarks

4.1.1 The RTHT Target Tracking Benchmark

The Honeywell Real-Time Multi-Hypothesis Tracking (RTHT) Benchmark [11,

12], is a general-purpose, parallel, target-tracking benchmark. The purpose of

this benchmark is to track a number of objects moving about in a 2-dimensional

coordinate plane, using data from a radar system. The data is noisy, consisting

73

Process 1

Process 2

Process 3

Process 4

Source generates Application processes perform
input data consisting computations in order
of real points and t0 track the targetS) or form beams
random noise.

Sink collects the
results.

Figure 2: Software architecture of both the RTHT and ABF benchmarks

of false targets and clutter, along with the real targets. The original, non-fault-

tolerant application consists of two or more processes running in parallel, each

working on a distinct subset of the data from the radar. Periodically, frames of

data arrive from the radar, or source process in this case, and are split between the

processes for computation of hypotheses. Each possible track has an associated

hypothesis which includes a figure of likelihood, representing how likely it is to

be a real track. A history of the data points and a covariance matrix are used in

generating up-to-date likelihood values.

For every frame of radar data, each parallel process performs the following steps:

1) Creation of new hypotheses for each new data point it receives, 2) Extension of

existing hypotheses, making use of the new radar data and the existing covariance

matrix, 3) Participation in system-wide compilation or ranking of hypotheses, led

by a Root application process, and 4) Merging of its own list of hypotheses with

74

the system-wide list that resulted from the compilation step. The deadline of one

frame's calculations is the arrival of the next frame.

By evaluating the performance of the original, non-fault-tolerant, benchmark

when run in conjunction with our RAPIDS real-time system simulator [14], it

became apparent that despite the inherent system-level fault tolerance in the sim-

ulated system, the benchmark still saw a drastic degradation of tracking accuracy

as the result of even a single faulty node. Even if the benchmark task were suc-

cessfully reassigned to a good node after the fault, the chances that it had already

missed a deadline were high. This was in part due to the overheads associated

both with moving the large process checkpoint over the network and with restart-

ing such a large process. Once the process had missed the deadline, it was unable

to take part in the compilation phase and was forced to start all over again and be-

gin building its hypotheses anew. This took time, and caused a temporary loss of

tracking reliability of up to five frames. Although better than a non-fault-tolerant

system, in which that process would simply have been lost, it was not as reliable

as desired.

Two points need to be addressed, in order to improve the performance of this

benchmark in the presence of faults: 1) The overhead involved with moving such a

large checkpoint and 2) A source of hypotheses for the process to start with after

the task's restart.

Our measure of reliability with respect to this application is the number of

real targets successfully tracked by the application (within a sufficient degree of

accuracy) as a fraction of the exact number of real targets that should have been

75

tracked. To simplify this calculation, the number of targets is kept constant and

no targets enter or leave the system during the simulation.

4.1.2 The ABF Beam Forming Benchmark

The Adaptive Beam Forming (ABF) Benchmark [13] is a simulation of the

real-time process by which a submarine sonar system interprets the periodic data

received from a linear array of sensors. Similarly, it has been developed at Hon-

eywell. The goal is to distinguish signals from noise and to precisely identify the

direction from which a signal is arriving, across a specified range of frequencies. In

this implementation, the application receives periodic samples of data as if from

the linear sensor array. The data is generated so that it contains four reference

beams, or signals, arriving from distinct locations in a 180-degree field of view,

along with random noise.

The application itself consists of several application processes, each attempting

to locate beams at a distinct subset of the specified frequency range. Frames

of data for each frequency are "scattered" periodically from the source process.

Output, in the form of one beam pattern per frequency, is "gathered" by the sink

process. Figure 2 depicts a typical beam pattern output, shown here at frame 18,

frequency 250Hz, with reference beams at -20, -60, 20 and 60 degrees.

In order to detect and locate beams, each application process performs calcu-

lations according to the following loop of pseudo-code, for each frame of input.

for.each (frequency) {
Update dynamic weights.
for_each (direction of arrival) {

Search for signal, blocking out interference

76

from other directions and frequencies.

XI

a>
-a

"E
CO

-100 -80 -60 -40 -20 0 20 40 60 80 100
Direction of Arrival (Angle) - degrees

Figure 3: Typical beam pattern output.

That is, for each frequency, the process first updates a set of weights that are

dynamically modified from frame to frame. Applying these weights to the input

samples has the effect of forming a beam which emphasizes the sound arriving from

each direction. The process searches in each possible direction (-90 to 90 degrees)

for incoming signals. The granularity of this direction is directly related to the

number of sensors.

In addition, at the start of a run, there is an initialization period in which the

weights are set to some initial values, and then 15 to 20 frames are necessary to

"learn" precisely where the beams are.

77

It is evident that this sort of application faces reliability problems similar to

those of the RTHT benchmark. If a processing element fails, all output for those

frequencies is lost during the down time, and when the lost task is finally replaced

by the system, it will have to go through a startup period all over again. Here

too, the data segments of these processes are very large, creating a considerable

overhead if checkpointing is employed. To avoid the delay associated with this

overhead and be able to maintain full output during the fault and quick restart

after the fault, application-level fault tolerance must be employed.

The quality of the ABF output is measured with two tests applied to the

resultant beam pattern. In the Placement Test we check whether the direction

of arrival of the beam has been detected to within a certain tolerance. In the

Width Test the aim is to determine how accurately the beam has been detected

by measuring the width of the beam, in degrees, at 3db down from the peak. A

beam that passes both tests is considered to be correctly detected.

4.2 Benchmark Integration Specifics

Here we discuss specific details regarding the integration of our technique with

each of the benchmarks.

4.2.1 Integration in the RTHT benchmark

In the RTHT Benchmark, the data element that is operated on in parallel is

the hypothesis. That is, each secondary task section creates and extends some

fraction of the total number of hypotheses created and extended by the process

78

for which it is secondary. The amount of secondary redundancy is expressed as a

percentage of the number of hypotheses extended by the primary.

Redundancy is implemented in the following way: At the beginning of each

frame, the source process broadcasts the input radar data, and hypotheses are

created and extended as before, except that additionally the secondary extends a

percentage of those extended by the corresponding primary. The secondary section

Si is kept in synchronization with the primary Pj_i via the compilation process,

which in this case is again a process-level broadcast communication, so that no

extra communication is necessary. If, at compilation time, node n{ is discovered

to be faulty and is unable to participate in that frame's compilation, then node

ni+i which is serving as its backup will make use of Si+i's data in the compilation

process in place of the data that n* is unable to supply.

When the process is rescheduled, it will make use of the hypotheses extended

by its secondary on its behalf in order to pick up where it left off before the fault.

This information is obtained from the secondary process by way of the compilation

process - the newly rescheduled process merely listens in on the compilation process

and copies those hypotheses which have been extended by its secondary.

4.2.2 Integration in the ABF benchmark

There are two ways in which we have integrated application-level fault tolerance

with the ABF Benchmark. They differ in the manner in which the secondary

abbreviates the calculations of the primary so as to obtain a full set of results.

The methods are:

79

• The Limited Field of View (Limited FOV) Method in which the secondary

looks for beams at every frequency as in the primary, however it searches

only a subsection of the primary's field of view (divided into one or more

segments). Ideally the secondary will place these "windows" at directions

in which beams are known to be arriving. We impose a minimum width of

these windows, due to the fact that if an individual window is too narrow,

the output could always (perhaps erroneously) pass the width-based quality

test, described above (at the end of section 2). The amount of redundancy

is expressed as the percentage of the field of view searched by the secondary.

• The Reduced Directional Granularity Method in which the secondary looks

for beams at every frequency and in every direction, but with a reduced gran-

ularity of direction. The amount of redundancy is expressed as a percentage

of the original granularity computed by the primary.

Both techniques serve to reduce the computational time of the secondary task set,

while maintaining useful system output. In addition, the two techniques may be

employed concurrently in order to further reduce the computational time required

by the secondary task.

To implement either variation of the technique, the input frame of data is

scattered a second time from the source to the application processes. This is time

rotated, so that each process receives the input data of the process for which it is

a secondary. Each process first carries out its primary computational tasks, and

then carries out its secondary task. At the frame's deadline, if a process is detected

80

to be down, the sink will "gather" output from the non-faulty processes, including

the backup results from the process

that is secondary for the one that is faulty. In the event of an application

process being restarted after a fault, it will receive the current set of weights from

its secondary in order to jump-start its calculations.

Some synchronization between primary and secondary is required in the Lim-

ited FOV Method. It is a small, periodic communication in which either the sink

process or the primary itself tells the secondary at what frequencies and direc-

tions it is detecting beams. Such synchronization is not necessary for the Reduced

Granularity Method.

4.3 Complete Results from RTHT and ABF Benchmarks

4.3.1 The RTHT Benchmark

When applied to the RTHT benchmark, we found that only a small amount

of redundancy between the primary and secondary sections is necessary in order

to provide a considerable amount of fault tolerance. Furthermore, the increase in

system resource requirements, even after including overheads of the technique's

implementation, is minimal compared to that of other techniques, in achieving the

same amount of reliability. These points are demonstrated in Figures 4, 5, and

6. Each run contains 30 targets which remain in the system until the end of the

simulation (the 30th frame), as well as some number of false alarms. The case

81

when only system-level fault tolerance exists corresponds to the case when the

secondary extends 0% of the primary hypotheses.

34
32
30

T3 28
26 <> re 24
22

a> 20
O)
re 1b

H- 16
o

14
x> 1?
b
3 10
2 8

6
4
2
0

V

Secondary extends 15% of primary hyps

Secondary extends 10% of primary hyps

Secondary extends 5% of primary hyps -s-

Secondary extends 0% of primary hyps -*-

0 10 15 20 25
Frame Number

30

Figure 4: Tracking accuracy, in number of real targets tracked for a given per-
centage of redundancy.

In Figure 4 we see the number of targets which are successfully tracked, when

we have just two application processes and a fault occurs at frame 15. (In this case

there were roughly 80 false alarms per frame of data.) In this run, 15% redundancy

allows us to track all of the real targets, despite the fault. We can attribute the

fact that a small amount of redundancy can have a great effect on the tracking

stability, to the fact that the hypotheses which are being extended by the secondary

are the ones most likely to be real targets. At the beginning of the compilation

phase, each application process sorts its hypotheses, placing the most likely at the

head of the list for compilation. Thus, at the beginning of the next frame, each

82

■D g)
"5
or
£
Q.

fe 14 CD >
O

to
■o
tz o o
03
CO

"5
CD
CO «
C
CD
Ü
CD

4 5 6
Number of Application Processors

Figure 5: Average minimum percentage of secondary overlap required to miss no
targets despite a fault at one node.

10 20 30 40 50 60 70 80
Percentage of Secondary Overlap

100

Figure 6: Ratio of time taken to compute the secondary hypothesis to the time
to compute the primary hypothesis versus the percentage of secondary
overlap.

83

application process and its secondary begin extending those hypotheses with the

highest chance of being real targets.

To refine this point, Figure 5 shows the average percentage of redundancy

required for a given number of application processors and a single fault, as before.

The amount required shows a gradual decrease as we add more processors. We

can attribute this to the fact that the chances of a single process containing a high

percentage of the real targets decreases as processors are added.

In addition, a proportionately small load is imposed on the processor by the

computation of the secondary task set, as seen in Figure 6. This can be attributed

to the fact that the extension of a hypothesis whose position and velocity are

known precisely, does not take as much time as extending to those hypotheses

which are less well-known. And since the most likely hypotheses are generally

the most well-known and are the hypotheses which the secondary extends, the

amount of processor time taken to execute the secondary task is proportionally

much smaller.

4.3.2 ABF Benchmark Results

When we integrate application-level fault tolerance with the ABF benchmark,

we find that only a small amount of redundancy is necessary to ensure complete

masking of single frame faults. With either variation (reduced granularity or lim-

ited FOV method) we see that a secondary redundancy of 33% is adequate to pro-

vide complete and accurate results in the faulty frame, and the following frames

(after the faulty process is restarted). If we combine the two techniques, we see

84

an even further reduction in the computational effort imposed by the secondary in

order to mask the fault. We have not taken additional network overhead and/or

latency into account in figures of overhead - they refer solely to computational

overhead. Network overhead will depend greatly on the medium used. In particu-

lar, a shared medium would allow the secondary to "snoop" on the primary's input

and output, eliminating the need for additional communication.

All results were obtained by running simulations with 75 sensors and four ref-

erence input beams for 50 frames. There are two application processes, and a

fault occurs in one of them at frame 30. Results are presented and discussed for

three redundancy methods: the Limited FOV method, the Reduced Granularity

method and a Combined method (a combination of the first two). The quality of

results is assessed by totalling the number of beams that were tracked successfully

(or by totalling the number of beams not tracked correctly). Here, there are four

input beams at each frequency, and 32 frequencies - making 128 beams in all. As

an example, Figure 7 presents the results for several runs of the ABF benchmark

while utilizing the Limited FOV redundancy method alone, with a single processor

fault occurs at frame 30, lasting one frame. We see that a 30% overlap is adequate

to preserve all beam information within the system despite the loss of one process

in frame 30. We have tabulated the results for all three methods in Table 1.

ABF Results: Limited FOV alone

As we see in Table 1, roughly 30% secondary overlap is adequate to provide

full masking of the fault. The computational overhead imposed by the secondary

85

T3
Q>

O

■o
eo
E
co

E
c

75

30% secondary
20% secondary
10% secondary
0% secondary

! I
! I

10 20 30
Time (Frames)

40 50

Figure 7: The number of beams correctly tracked in each frame, for the given
levels of redundancy, for the Limited Field of View Method. A single
process experiences a fault of duration one frame, at frame 30.

is about 30%. In addition, Figure 8 shows the rather linear increase in overhead

as we increase the fraction of overlap.

Associated with this technique however, is a potential dependence on the num-

ber of beams detected in the system, as described earlier. In order to ensure that

the width test, applied to the output, can fail, we impose a minimum window-

width. This minimum width dictates that for a given amount of overlap, there is

Redundancy Technique Secondary
Overlap

Computational
Overhead

Reduced Granularity
Limited FOV
Combined - 30%FOV,50%Granularity

33%
30%
15%

35%
30%
17%

Table 1: Amount of secondary overhead imposed by various redundancy methods,
each of which is capable of fully masking a single fault.

86

CO
■o c o
Ü
CD

CO
O

a>
E
c o *-*
Ü
<D
X

LU

£^ co
E

o
g

5 10 15 20 25 30 35 40 45 50
Percentage of Secondary Overlap

Figure 8: The ratio of secondary to primary execution time for the variations of
application-level fault tolerance integrated with the ABF Benchmark
versus the percentage of secondary field of view overlap.

a maximum number of windows in which the secondary may search for beams. If

there are more beams than the maximum number of windows then some may be

missed by the secondary search, depending on the direction of arrival. Here, the

system or application will need to decide, based on either dynamic feedback or on

some static rules, which beams are most important for the secondary to track.

ABF Results: Reduced Granularity alone

Here, too, we see that, according to Table 1, operating the secondary at 33%

of the granularity of the primary results in complete masking of the fault, and

that this imposes a 35% overhead to the processing node. Figure 8 again shows a

linear relationship between the computational overhead and overlap, and indicates

that the overhead of the method itself is a bit higher than that of the Limited

87

FOV method. When considering the Reduced Granularity method, we see no

dependence on the number of beams detected, although beams could be missed if

their peaks were within a few degrees of each other, and the granularity were very

coarse. This was not a factor here, as our four reference beams were evenly placed

across the 180 degree field of view.

ABF Results: Combined methods

When we combine these two techniques, we see the greatest reduction in com-

putational overhead of the secondary task. As shown in Table 1, a 30% field of view

combined with a 50% granularity maintains the tracking ability similar to that of

either one alone, yet cuts the computational overhead nearly in half. This reduc-

tion is illustrated in Figure 8, in the lower two curves, representing the overhead

imposed as we vary the field of view and make use of 50% and 33% granularity

respectively. Thus we see that both techniques may be employed in parallel in

order to see the greatest reduction in secondary computational overhead while still

being able to meet the goals of Application-Level Fault Tolerance.

CH AP TER 5

ALFT EXTENDED

There is a need to quantify our technique at a general level, so that the appli-

cation designer will easily know if an application is well suited for our technique

or not. We need to stress that our technique is not a single, fixed set of steps

to be followed to achieve fault tolerance in all applications, but a technique to

be integrated at the application level where the exact implementation will depend

upon the application itself. Using Application-Level Fault Tolerance, the system

designer can provide fault tolerance in the way that best suit the application.

In this chapter we will discuss general characteristics that are assumed prior to

applying our technique and then indicate how the designer should approach imple-

menting our technique. Discussion of the potential overheads follows is included,

along with example applications in order to illustrate the ideas presented.

5.1 What Makes an Application Suitable for ALFT?

We have thus far only considered applying our technique to applications which

display certain general characteristics. This is not to say that the ideas we present

89

are applicable nowhere else, but that we will focus on systems with these charac-

teristics.

We believe that our technique will be most beneficial to applications that are

periodic and data-parallel, where parallel task sections are scheduled concurrently,

on distinct processors. Often these same applications will be computationally

intensive and large, memory wise.

Our fault tolerance is able to take advantage of the parallelism by integrating,

on each processor, a small part of a neighboring processor's work. Thus if the

neighbor is struck by a fault, some results may be output on its behalf. There must

exist some un-utilized time in the period of the application, or there must be some

laxity to extend the period of the application, in order to allow the secondary task

time in which to execute. In addition, reduced precision results must be acceptable

in the short term (i.e., during the duration of, and recovery from, a fault). If full

precision is required in each and every frame, then it is obvious that our technique

will require close to 100% duplication of the tasks.

5.2 Effectiveness and Overhead

The question may be asked, how should one determine if a particular ALFT

implementation is effective? There are many factors that will determine how effec-

tive Application-Level Fault Tolerance will be, however the basic question is: How

much (or little) work need be done by the secondary in order to provide useful

results when the primary is down and help jump-start the primary upon restart.

90

The answer to this question will certainly vary with application, type of computa-

tion done, algorithm used, and requirements of the end-user. Hence we will leave

the precise definition of effective to the application designer, as that person will

have to weigh the cost with the level of fault tolerance required.

In analyzing cost, one needs to consider what percentage of the primary's origi-

nal dataset is in fact necessary in order to provide a useful short-term result. Then

one needs to study how easy or difficult it will be to partition the original data set,

such that the best subset of data is operated on by the secondary. Partitioning will

involve ordering the data set and/or reducing its granularity in some fashion. The

goal of the designer is to find the partitioning method that results in the minimum

overhead incurred while providing maximum quality of secondary results.

Overhead will be determined by the sum of computational, communicational,

and memory requirements introduced into the application. One must consider

overheads such as:

• Computation: Creation of the partitioned dataset, allowing the secondary

resources to complete execution, fault detection, and deciding when to use

the secondary or primary results.

• Communication: Transfer of the partitioned dataset to the node where the

secondary will run, dissemination of fault information, transfer of secondary

results for output when necessary, and transfer of synchronization informa-

tion periodically between primary and secondary or when the primary is

restarted.

91

• Memory: Storage of the secondary's dataset and storage of the secondary's

results.

This appears to be a long list; however we have shown that Application-Level

Fault Tolerance has proven effective in the RTHT and ABF benchmarks. If the

designer is careful to consider all of the above, we feel that fault tolerance solutions

involving ALFT can be very effective.

One might think of limiting the cost of ALFT by only allowing the secondary

task to execute if the primary is faulty. This might be useful in the case where

state information or results are globally known by the parallel processes, so that

the state of the neighboring primary is known and updated in each frame locally.

However if this is not the case, the designer must weight the cost of executing the

secondary normally versus the cost of updating the secondary periodically with

the primary's results and/or state information. This is not to say that we assume

that the secondary, operating on a reduced task set, will be able to stay in perfect

synchronization, but that by running the secondary in each iteration it may not

need to be synchronized with the primary as often. Running the secondary despite

success of the primary can thus help maintain synchronization, without explicit

communication.

Additionally, the coverage of the technique could be increased by forcing the

secondary to be computed in each period. The designer will need to consider

how likely there is to be a fault between the time at which each primary finishes

execution and the time at which results are output. We will see in the next section

that some applications exhibit an ongoing dependency between parallel processes.

92

Here, one phase of execution relies on a full set of results from the previous phase.

Thus if the secondary were not automatically executed in the preceding phase, an

untimely fault could hold up execution of the following phase. The same holds for

any application where the output (or updated state information) of one iteration

is required prior to the start of the next iteration.

5.3 Inter-Process Data Dependency Models

We have established that we consider parallel, periodic applications with our

technique, and that the application designer must take into consideration all sorts

of potential overheads when using our technique. In the next two sections we will

discuss ways the task of implementing our fault tolerance can be broken down and

classified. Here we will consider how varying degrees of inter-parallel-process data

dependency will affect our technique.

Beyond simply finding a way to ensure that the secondary will not impose undue

load on the system, it is necessary for the designer to study how the secondary

task should be integrated with the primary task in order to be able to share the

resources of a single computational node. It is most useful to consider what type

of data dependency, and thus what communication, exists between the parallel

processes of the application. We have identified three categories:

• No Data Dependency - Communication only at the end of each iteration for

the purposes of outputting results.

93

• Periodic Data Dependency - Over one iteration, communication at the end

of a phase exists in order to disseminate results calculated in that phase, as

necessary.

• Continuous Data Dependency - Inter-process communication potentially at

any time during the task period.

Figure 9: Independent Parallel Process Application with ALFT.

Both the RTHT and ABF Benchmarks fit very nicely into the first category.

That is, with both applications, each parallel process carries out its own computa-

tion independently of the computations or data of any neighboring processes. In

the ABF there is no inter-process communication during computation - results of

each process are sent independently to the sink. In the RTHT, there is inter-process

communication only after computation has completed, but this communication is

for the purposes of organizing the output set of data and does not represent a data

dependency between neighboring processes. To implement Application-Level Fault

Tolerance in applications of this type, the Primary and Secondary task sections are

94

distinct. The Secondary task section is computed after the primary, as in Figure

9, and then results are output, with the secondary data made use of in case of a

fault.

Phase 1 Phase 2 Phase 3

Figure 10: Interleaving of Primary and Secondary in Application with distinct
phases of computation and process inter-dependency.

The second type of dependency we see is one in which the system's periodic

computation is carried out in distinct phases, with dependency as we will describe.

Figure 10 shows an example with three phases; in general there could be any num-

ber. In phase two (and perhaps three), each of the parallel processes relies on the

set of phase one results. That is, each instance of phase two computation relies

on results of one or more other processes' phase one computation as well as its

own. A similar dependency might exist between phase two and three. Thus, we

see inter-process process communication before or during phase two in order to

disseminate phase one results to all processes. In this situation, it would not make

sense to block all secondary computation at the end of one period - the secondary

computation must be split into phases, just as with the primary computation.

95

Figure 10 illustrates how the secondary task section is integrated with the original

primary task section. The secondary task set is broken into three parts and is

interleaved with the primary task sections regarding CPU scheduling. This inter-

leaving is necessary so that, for example, if a node fails between phases one and

two, its secondary will be able to take over, and provide phase one results on its

behalf during phases two and three. The Particle-In-Cell application, introduced

in Section 5.6, is an example of such an application.

P/S

P/S

P/S

v I v I i I v

P/S

Figure 11: Primary and Secondary task sections tightly integrated in an Applica-
tion with continuous inter-process dependency.

The third inter-process dependency model is continuous data-dependency. That

is, at any time during computation, one process can and will depend on any other

process for some information or computation. Thus, many messages may be sent

sporadically from process to process during execution. Here it is not feasible to

run the secondary task section as a distinct block, even split into phases: At any

time, the secondary might be required to output results when the primary is down.

Thus, each process must be able to perform primary computations and secondary

96

computations side-by-side. This tight integration of Primary and Secondary Task

sections is illustrated in Figure 11. We provide a 3-d Parallel Image Rendering

Application as an example of this type.

5.4 Techniques to Reduce Secondary Runtime

As we have stressed, our technique involves replicating the computations of each

parallel process in some reduced form and running this new (secondary) task on a

neighboring node. Our technique does not alter the fundamental algorithm of the

parallel process. This minimizes changes to the application and algorithm, thereby

allowing the primary and secondary to reside within the same processor, making

use of the same functions and routines. Thus one of the most important issues to

address in order to effectively implement our technique is to minimize the overhead

imposed by the secondary task section. We reduce the computational time required

by the secondary task, exclusively by reducing the number of elements operated

on by the secondary. There are two ways by which we can achieve this:

• Find a way to prioritize these elements and have the secondary only operate

on those that are most important.

• Reduce the Granularity of the dataset - if the secondary process is performing

computations at discrete data points across a continuous space, then we could

reduce the granularity by having the secondary operate, for example, on every

other element.

97

Naturally, the determination of which technique, or combination of the two,

is best will depend on the feasibility of implementation and the quality of results

that may be achieved. As both are strongly linked to the application itself, we

provide a series of questions to help the system designer choose the best technique.

We are concerned mainly with how to design the secondary task set such that

the computational overhead is minimized and the quality of results is maximized.

The first question discusses in what way the application is parallel, the next two

determine if it is useful or feasible to reduce the number of elements operated on

by the secondary.

1. What dataset(s) are split across parallel computational nodes?

2. Can we reduce the granularity of these dataset(s)?

3. Can we prioritize the elements of the dataset(s) and limit the number of

elements operated upon?

If there are multiple parallel data types in the dataset, questions 2 and 3 are asked

with regard to each data type.

In the next section, the RTHT and ABF benchmark applications are used to

illustrate this question and answer technique, as they have been discussed in detail

in Chapter 4. In the last two sections of this chapter we introduce the Particle-

In-Cell Simulation and a Parallel 3-d Rendering Application in order to show how

our technique can benefit those applications as well.

98

5.5 Independent Processes: RTHT and ABF Benchmarks

Here we present the RTHT and ABF Benchmark applications in light of the

analysis presented in Sections 5.2, 5.3, and 5.4.

1) What data set is parallelized across
the nodes?
2) Can we intelligently prioritize the
Hypotheses?
3) Can we reduce the granularity with
which the secondary operates on the set
of hypotheses? ___

Hypotheses, representing tracks.

Yes - Secondary only operates on those
most likely to be real targets.
No - Hypotheses are independent of one
other.

Table 2: Implementing ALFT with the RTHT Benchmark.

Table 2 shows how we were able to reduce the computational overhead of the

secondary task section in the RTHT benchmark. The set of hypotheses is the most

obvious dataset that is parallelized across the system, and is conveniently the best

opportunity to limit the overhead imposed by the secondary while maintaining

very useful results. This is detailed in Chapter 4. We also observe that the RTHT

fits into the "No Data Dependency" communication model. Thus, we chose to

integrate the secondary task as a single, distinct section to be executed after the

primary is completed.

Table 3 shows how we have generalized the ABF benchmark in the same fashion.

Here, there are several facets which are parallelized across the nodes. In our ALFT

implementation we have considered only reducing the granularity and number of

Field of View quantizations, however one could consider limiting the number of

frequencies operated upon by the secondary as well. The ABF is another "No Data

99

1) What data set is parallelized across
the nodes?

Frequencies and Field of View

2a) Can we prioritize the frequencies? Yes - if we are more interested in one
frequency range than another (in the
short term).

2b) Can we prioritize the Field of
View?

Yes - if we are more interested in one
direction than another, (in the short
term).

3a) Can we reduce the granularity
across the frequency range?

Maybe - if the signals in existence at
one frequency are related to or affected
by those found at nearby frequencies.

3b) Can we reduce the Field of View
granularity?

Yes - a lower quality image will result
but might be acceptable in the short-
term.

Table 3: Implementing ALFT with the ABF Benchmark.

Dependency" application, so we have integrated the secondary task section as a

distinct part of the original primary section, to be executed later in the period.

5.6 Periodic Data Dependency: The Particle-In-Cell Problem

The Particle-In-Cell (PIC) simulation is a simulation of the motion of charged

particles within a plasma field. The goal of the application is to predict how the

particles move around the area due to electromagnetic forces. The area in question

is broken up into a grid of cells, where each cell can contain some number of parti-

cles (or none at all) and has some electromagnetic field across it. The application

operates on two basic data structures: an array representing the particles in the

model (called the Particle Array) and an array of electromagnetic field values at

each cell (called the Mesh Grid Array). Each array is updated in each iteration,

100

representing a time step, 5t. Each iteration is composed of four computational

steps, as laid out in [15]:

• 1) Scatter Phase - For each particle, calculate the effect of the particle towards

net electromagnetic fields at the corner of the cell where it resides.

• 2) Field Solve Phase - Solve Maxwell's equations across the Grid - find the

electromagnetic field at each cell taking into account the effects of neighboring

cell fields.

• 3) Gather Phase - Use resulting field values to calculate the field at each

particle.

• 4) Push Phase - Once we know the field at each particle we determine the

net force on the particle and determine its position for the next iteration.

Table 4 discusses how overhead could be minimized when ALFT is implemented

with the Particle-In-Cell application.

In order to reduce the computation time of the secondary task, we suggest that

during the Scatter Phase, the secondary could operate on a reduced number of

particles (Table 4, 2a.), and that during the Field Solve Phase it could operate at

a reduced granularity (Table 4, 3b.). In case a processor is detected to be faulty,

its secondary can assist the system by both updating the Mesh Grid array, and

updating the position of all particles assigned to the faulty processor. When the

fault disappears, the secondary could communicate the resulting approximated

current state of each particle to the primary in order to partially restore the state

of the primary.

101

1) What data set(s) are parallelized
across the nodes?
2a) Can we prioritize the elements in
the particle array?

2b) Can we prioritize the elements in
the mesh array?

3a) Can we reduce the granularity with
which the secondary operates on the
particle-array?

Elements of both Particle Array and
Mesh Grid Array.
Yes - when updating the Mesh Grid
Array, the secondary could ignore the
weaker particles and only account for
the stronger ones.
Maybe - if we were more interested in
one area of the physical space than an-
other area.
No - a particle is completely indepen-
dent of its neighbors, and should be up-
dated in each frame.

3b) Can we reduce the granularity with
which the secondary operates on the
mesh-array?

Yes - In updating the Mesh-array, the
secondary could perform calculations
across several mesh-cells at once, and
copying the resulting field values to
each of the aggregated cells.

Table 4: Implementing ALFT with the Particle-In-Cell application.

Further, we see that the PIC computation fits the dependency model in which

there are distinct phases of dependency during a period. Thus the secondary

computation is interleaved, in distinct blocks, with the primary, as in Figure 10.

For example, in order to start the Field Solve phase, each processor relies on

Scatter Phase results of other processors. There are two reasons for this: first,

knowledge of neighboring field intensities is required to solve for the field across

the entire region in the Field Solve Phase, and second, in the Gather Phase, if a

processor's subset of the Mesh and Particle Array are not 100% overlapping then

that processor will require data from other processors in order to determine the

field at each of its particles. (This latter scenario is likely to occur, as most load

balancing schemes for such applications don't enforce such overlap, as in [15].)

102

One method for storing data across the system, presented in [16], involves repli-

cating the Mesh grid array information on each processor. This not only simplifies

communication when the Mesh and Particle arrays are not fully overlapped but

also simplifies communication if a secondary's results need to be used.

Phase 1 Phase 2 Phase 3

Noden i

Time

Figure 12: ALFT integrated with one process of the Particle-In-Cell application.

Making use of this inherent data replication, one possible implementation of

ALFT might operate as in Figure 12. In phase one, the primary of node rii first

calculates the effect of each of its particles upon the mesh grid cell it occupies, then

the secondary does the same computation, but only for those particles that are the

most charged (and most likely to affect the overall e-field). Between Phases one and

two the parallel tasks communicate in order to make sure they all have the most

up to date Mesh field values. Here, if a processor is down, its secondary will fill

in for it. In phase two, each primary solves Maxwell's equations for its Mesh grid

cells, and then the secondaries do the same, except with reduced granularity, say at

every third cell, and copying the computed values to the cells in between. Another

similar communication then takes place, to disseminate the updated Mesh Field

values. In phase three, each primary computes the Field at each of its particles

calculates where the particle will move to in the next iteration. Then the secondary

103

performs the same computation, on every particle it is (secondarily) responsible

for. It is important that the secondary update (even if approximately) the position

of each particle so that if a processor fails and is then replaced it can quickly be

updated with respect to all particles.

5.7 Continuous Dependency: 3d Image Rendering

The Multi-Pass, Parallel rendering method, presented in [17], is a combination

of the Ray-Tracing and Radiosity approaches to image generation. Given a de-

scription of the 3d space (and included objects) which is to be displayed, there are

two phases to rendering the scene:

• First, a view-independent computation which computes the effects of diffuse

light on the scene, using Radiosity techniques.

• Second, a view-dependent computation to compute the effects of specular

light at each pixel, making use of ray-tracing techniques.

The object space is divided into small subspaces and these are allocated to the

processors. The computing system is a one, two or three dimensional array of

processors, each of which are pipelined units, with local memory, specialized for

ray processing. Algorithmically, the parallelization of both phases above is very

similar. In extremely general terms, both phases consist of packets of data, repre-

senting light, that are sent from one part of the scene to another, from processor to

processor, just as rays would bounce around a real scene. At each stop, the effect of

that surface on the intensity of light at that pixel or surface is computed and added
104

to the appropriate local memory location (if in the radiosity phase) or the frame

buffer (if ray-tracing). Additionally, the object subspaces are allocated to proces-

sors such that neighboring subspaces reside on neighboring processors. A single

processor thus contains many distinct subspaces, each evenly spaced throughout

the scene.

It is fairly obvious from the algorithm used by both phases that there is a

continuous data dependency between parallel processes. At any time, a packet

could be refracted/reflected from one part of the 3-d scene to any other part of

the scene. At that time, there must be a process read and able to handle that

packet, be it the process primarily responsible for that part of the scene or the one

secondarily responsible (if the primary is down). The secondary computation is

tightly integrated with the original primary, in that, when a packet bound for the

secondary part of the task arrives at a process, it should be handled immediately.

Figure 11. illustrates the tight integration.

Table 5 describes how the Application-Level Fault Tolerance design process

might proceed, focusing on reducing the overhead incurred.

As we have seen, data is partitioned across the parallel processes in a number

of ways: spatial sub-sections, radiosity "packets", and ray-tracing "packets". Thus

there are a number of possible ways to reduce overhead.

One is to reduce the number of subspaces for which the secondary will perform

computation. That is, we might be able to prioritize the subspaces such that only

the most important subspaces (only those containing important objects) will be

taken into account. This however is a relatively crude method.

105

1) What data set(s) are parallelized
across the nodes?

a) Sub-Sections of the Objects space,
b) Set of Radiosity Packets, c) Set of
Ray-Tracing Packets.

2a) Can we prioritize the subsections of
object space?

Perhaps, but seems crude - only oper-
ate in places where there are objects of
particular interest.

2b) Can we prioritize the ordering of
Radiosity Packets?

Yes - Radiosity is calculated with a pro-
gressive refinement algorithm, might
only send a packet to the secondary if
it is within the first few iterations.

2c) Can we prioritize the Ray-tracing
Packets?

Yes, a ray-tracing packet might only be
forwarded to a secondary task section if
it is within the first few computational
iterations.

3a) Can we reduce the granularity of
Set of Sub-Spaces

No - subspaces are split across proces-
sors, can't take two neighboring sub-
spaces and combine them into one.

3b) Can we reduce the granularity of
Radiosity Dataset?

Maybe, but reducing the number by
prioritized ordering (as above) is prob-
ably a better method.

3c) Can we reduce the granularity of
Ray-Tracing Dataset?

Maybe, but reducing the number by
prioritized ordering (as above) is prob-
ably a better method.

Table 5: Implementing ALFT with a 3-d Image Rendering application.

A better way is found by looking at the algorithm followed by both the radiosity

and the ray-tracing computations. As radiosity and ray packets are initiated and

bounce around the system, the value of light at the particular surface (radiosity)

or pixel (ray-tracing) is iteratively updated and refined. In both cases we can make

a general assumption that the earliest iterations (or even the first iteration!) will

have the greatest effect upon the value at each pixel. In this way, a prioritized

ordering exists in both phases. We can specify that a secondary task should not

refine the information at a pixel or surface when beyond a specified iteration. Such

106

a technique could easily be implemented by adding a counter to each ray-tracing

or radiosity packet, and incrementing that counter with each hop.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Packet is Initiated

/ \ f \

p

f \

P

()

\ V
\ /
\ /
\ /
\ /
\ /

r

()

V
/

/
/

i
I

() ()
Node n_i Node Node Node

r \ / \
/ \

/ \
• '

/ r

1
1

1

r \ ' \

\ >

/ \
/ \

/ \ >

1
1

1) •.

(s£) (s)
1

1 (s) (s }
Node n_(i+l) Node Node Node

Figure 13: Path of packets as they travel around the fault tolerant system in either
the radiosity or ray-tracing phase.

One such scheme follows. In both phases of the fault tolerant application, if

a packet is below some specified iteration index, it is duplicated and sent to both

the primary and secondary processors, otherwise it is just sent to the primary. In

Figure 13, node n; is primarily responsible for some part of the 3d object space,

and node ni+i is secondarily responsible for that part. In both phases, if the

primary is active and receives a packet, computation is carried out as normal, and

the packet is forwarded (if appropriate) to the subsequent primary-secondary pair.

Packets are not sent to a secondary when beyond the first or second iteration.

Further, packets will never be sent out by a secondary if its corresponding primary

is operational. Beyond this, the operation of the secondary varies depending on

whether we are in the radiosity phase or the ray-tracing phase.

107

In the Radiosity Phase, the secondary does in fact carry out computation on all

of the packets it receives - the state information (regarding diffuse light values at

each patch in its own sub-space) must be kept up to date with that of the primary.

In the Ray-Tracing phase on the other hand, the secondary need only carry out

computation when it knows that its corresponding primary is faulty and will not

be able to update the light value at the pixel represented by the ray.

For recovery, if a primary is restarted, its state (the state of diffuse light in its

sub-space) can be updated by the secondary serving as its backup.

Thus, each processor only need know the condition of the node for which it is

backup. Global information regarding the condition of each node is not required.

This more localized information could be obtained via "I'm alive" messages or

perhaps through local or remote check routines to ensure (correct) operation.

We have thus far assumed that the first iteration is the one most likely to make

a big visual impact on the quality of the scene image [18], and is therefore the

most important. We show this to be the case with example images, rendered with

varying ray-depths. In the test scene there are two tables, two windows, a mirror

on the far wall, a chess board and pieces on the near table, and a glass sphere (to

illustrate refraction) on the chess board. Both images were created and rendered

using the Povray Ray-Tracing Software, however Figure 14 was rendered with ray-

depth limited to one iteration, while Figure 15 was rendered with ray-depth limited

to two iterations. Figure 16 was rendered with a depth of five iterations, which is

the default maximum depth for Povray. As can be seen, the first two figures are of

very similar quality as the most fully rendered image. Figure 14 lacks information

108

concerning the reflection in the mirror and the refraction visible within the glass

sphere. While in Figure 15, a depth of two iterations, we see the reflection in the

mirror and a bit more of the refraction within the sphere. Given this, we see that

if a primary process is down, and the secondary is only allowed to provide results

for rays within their first iteration, we see that we do not lose a great deal of image

quality.

Figure 14: The test scene, rendered Figure 15: The test scene, rendered
with a ray-depth of one. with a ray-depth of two.

We now consider the computational overhead it imposes. We have analyzed this

in a simple simulation of the application. The simulation entailed "shooting" rays

through a 64 x 64 array of pixels, and giving each ray a 35% chance of intersecting

with an object in each sub-space it traveled through. Within that, there was a

35% chance of intersection with a object causing reflection and refraction (two

rays result) and a 45% chance of reflection only (one ray results), and a 20% of

termination (due to landing in a shadow or some other reason). Computation time

for ray-packets under each of the above circumstances comes from [19].

109

Figure 16: The test scene, rendered with a ray-depth of five.

Further, we assumed that the secondary not only receives the packet (incurring

some overhead), but also always performs computation. Naturally, this will not

generally be the case, as the primary will hopefully not (always) be down. The

simulation conveys an idea of the worst case load, imposed when the corresponding

primary is faulty.

Figure 17 demonstrates that our technique will impose only a light computa-

tional load on the system. If the secondary only carries out computation for the

first 20% of the iterations (only 1 out of a possible 5 iterations for example), we

see that the computational load imposed is less than 20%. The slight non-linearity

of this relationship is due to the fact that there is a high probability of each subse-

quent iteration involving more and more packets as secondary rays are created due

to reflection and refraction. This is encouraging for our technique because those

first two iterations are likely to have a relatively large impact on the quality of the

resulting image.

110

Q.
O

20 40 60 80
Percentage of Secondary Overlap in Iterations (or Ray Depth)

100

Figure 17: Ratio of secondary to primary execution time for our simulation of
the 3d parallel rendering application.

We feel that a relatively similar result will hold for the radiosity phase as well,

as a progressive refinement algorithm [20], similar to the ray-tracing computation,

is employed there as well.

In analysis of the memory overhead imposed by our technique, we see that we

are, unfortunately, assuming up to a 100% duplication, so that each processor can

maintain information about both the sub-space that it is primarily responsible for,

and that for which it is secondarily responsible. In terms of communication, we see

that in those iterations where the secondary might be required to do some work a

duplicate packet is sent to that secondary. The overhead here will vary depending

on the number of iterations for which the secondary will overlap.

Ill

CHAP TER 6

FUTURE WORK

There are many ways in which we can further develop application-level fault

tolerance that would be quite helpful to the engineering community. Two main

areas are: 1) Further analysis of the costs of Application-Level Fault Tolerance,

and 2) Extension of ALFT towards Algorithm-Based Fault Tolerance.

Toward the first goal one would want to conduct a thorough survey of the

amount of memory and communicational overhead imposed by the secondary task

set with a variety of applications. Here we have only considered the computational

overhead. Memory overhead adds to the cost of ALFT in that each processing node

might require some extra memory in order to be able to run both the secondary

and primary tasks. Extra communication adds both to the load on the network

and to the time required to complete one period or iteration of the Primary and

Secondary task sections.

Regarding bridging ALFT and Algorithm-Based Fault Tolerance, ALFT is best

in situations when faults can be dealt with on a process-by-process or node-by-

node basis, but that Algorithm-Based Fault Tolerance is best when faults/errors

should be dealt with on a bit-by-bit or primitive element basis. It might be useful

to be able to add some of the capability of ABFT to ALFT (or vice-versa) such

112

that when a fault or error is detected, the application can decide to either attempt

to correct the error using ABFT-like techniques, or to make use of ALFT-like

techniques to use a secondary set of results. In order to do so, it would be necessary

to provide fault/error detection schemes such that the distinction could be made

between when an error can be corrected and when an error is uncorrectable and

the secondary should be used.

113

CHA P T E R 7

CONCLUSION

A high degree of fault tolerance may be obtained with a small investment

of system resources in applications exhibiting data parallelism between two or

more parallel processes. It is achieved through a combination of application-level

and system-level fault tolerance. Application-Level Fault Tolerance consists of

duplicating some portion of each parallel node's work on a neighboring node. These

additional duties are known as the secondary task set.

The computational overhead of the secondary can be reduced by prioritizing

data set elements and/or reducing the granularity of the dataset so that the sec-

ondary operates upon fewer elements. The secondary is not meant to completely

replace the primary (original) process, but is a short-term substitute for times

when the primary is down. The primary might return when the fault disappears

or if the system restarts the process on another good node.

The type of inter-process data dependency will affect how the secondary task

section is integrated with the original application. If there is no dependency, then

the secondary would be executed only after the primary. However, if there exist

phases, where output of one phase is required by other nodes, then a node's primary

and secondary duties might be interleaved. A continuous dependency will require

114

that the secondary and primary be able to execute on demand. The secondary

task section need not always be executed. If a fault is detected, the priority of

the secondary could be raised, to ensure that it will complete without missing its

deadline, and provide the necessary data for output.

We stress that Application-Level Fault Tolerance is not a single fixed set of

steps, but a technique whose implementation will vary from application to ap-

plication. The most effective ALFT implementation will be the one that is best

tailored to the application in question.

Our technique is a substantial improvement over complete system duplication,

in that it does not require 100% system redundancy, but merely adds a small

amount of load to the existing system in achieving the same amount of fault tol-

erance. It differs from the recovery block approach in that the secondary does not

have to be cold-started, but is ready for execution when a failure of the primary is

detected. In addition, the level of reliability may be varied by varying the amount

of redundancy. Regarding Algorithm-Based Fault Tolerance, our technique ad-

dresses the situation when faults occur that render a node or process completely

useless (for example, a complete disconnection). While Algorithm-Based Fault

Tolerance is equipped to handle the situation when errors in data are detected but

are correctable.

In order to integrate such Application-Level Fault Tolerance into a particular

application, the designer will need to first decide how best to reduce the computa-

tional overhead of the secondary. Then, the designer should choose mechanisms by

which the secondary gets the input data it needs, is able to compute and output

115

results when necessary, and is able to communicate with the primary for synchro-

nization purposes. Naturally, some sort of fault detection will have to be used. We

believe that steps to integrate this technique into the application should be taken

right from the early stages of design in order for this approach to be most effective.

116

BIBLIOGRAPHY

[1] Pradhan, D.K. Fault-Tolerant Computer System Design. Upper Saddle River,
New Jersey: Prentice Hall PTR, 1996.

[2] Siewiorek, D. and Swarz, R.
Reliable Computer Systems Design and Evaluation. 2nd ed. Burlington, MA:
Digital Press, 1992. _

[3] Huang, K. and Abraham, J.A., "Algorithm-Based Fault Tolerance for Matrix
Operations," IEEE Transactions on Computers, vol. C-33, pp. 518-528, Jun.
1984.

[4] Banerjee, P. and Abraham, J.A., "Bounds on Algorithm-Based Fault toler-
ance in Multiple Processor Systems, " IEEE Transactions on Computers, vol.
C-35, No. 4, pp. 296-306, April 1986.

[5] Luk, F.T. and Park, H., "An Analysis of Algorithm-Based Fault Tolerance
Techniques," Journal of Parallel and Distributed Computing, vol. 5, pp. 172-
184, 1988.

[6] Rozenkrantz, D.J. and Ravi, S.S., "Improved Bounds for Algorithm-Based
Fault Tolerance," IEEE Transactions on Computers

[7] Gu, D., Rozenkrantz, D.J., and Ravi, S.S., "Determining Performance Mea-
sures of Algorithm-Based Fault Tolerant Systems," Journal of Parallel and
Distributed Computing, vol. 18, pp. 56-70, 1993.

[8] Tao, D.L., Hartmann, C.R.P., and Han, Y.S., "New Encoding/Decoding
Methods for Designing Fault-Tolerant Matrix Operations," IEEE Transac-
tions on Parallel and Distributed Systems, vol. 7, pp. 931-838, Sept. 1996.

117

[9] Yajnik, S. and Jha, N.K., "Graceful Degradation in Algorithm-Based Fault
Tolerance Multiprocessor Systems," IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 8, pp. 137-153, Feb. 1997.

[10] Randell, B., System Structure for Software Fault Tolerance. IEEE Transac-
tions on Soßware Engineering, vol. SE-1, pp. 220-232, 1975.

[11] VanVoorst, B., Jha, R., Pires, L., Muhammad, M., "Implementation and
Results of Hypothesis Testing from the C3I Parallel Benchmark Suite," in
Proceedings of the 11th International Parallel Processing Symposium, 1997.

[12] Castanon, D.A., and Jha, R., "Multi-Hypothesis Tracking (Draft)", DARPA
Real-Time Benchmarks, Technical Information Report (A006), 1997.

[13] Hamza, R., Honeywell Technology Center, "Sonar Adaptive Beamformer (Draft)",
DARPA Real-Time Benchmarks, Primary Technical Information Report, 1998.

[14] Allalouf, M., Chang, J., Durairaj, G., Lakamraju, V.R., Unsal, O.S., Koren,
I., Krishna, CM., "RAPIDS: A Simulator Testbed for Distributed Real-Time
Systems," Advanced Simulation and Technology Conference, 1998, pp. 191-
196.

[15] Liao, W., Ou, C, and Ranka, S., "Dynamic Alignment and Distribution of
Irregularly Coupled Data Arrays for Scalable Parallelization of Particle-In-
Cell Problems," in Proceedings of the 11th International Parallel Processing
Symposium, 1996, pp. 57-61.

[16] Lübeck, M. and Färber, V., "Modeling the performance of hypercubes: A
case study using the particle-in-cell application," Parallel Computing Vol. 9,
1988/89, pp. 37-52.

[17] Kobayashi, H., Yamauchi, H., Toh, Y., and Nakamura, T., "A Heirarchical
Parallel Processing System for the Multipass-Rendering Method," in Proceed-
ings of the 11th International Parallel Processing Symposium, 1996, pp. 62-67.

1

118

[18] Whitted, T., "An Improved Illumination Model for Shaded Display," in Com-
munications of the ACM, Vol. 23, Number 6, June, 1980, pp. 343-349.

[19] Kobayashi, H., Nishimura, S., Kubota, H., Nakamura, T., and Y. Shigei,
"Load Balancing Strategies for a Paralle Ray-Tracing System Based on Con-
stant Subdivision," in The Visual Computer, 1988, pp. 197-209.

[20] Cohen, M.F., Chen, S.E., Wallace, J.R., and Greenberg D.R, "A Progres-
sive Refinement Approach to Fast Radiosity Image Generation," in Computer
Graphics, Vol. 22, Number 4, Aug. 1988, pp. 75-84.

119

Appendix 7 Appendix /
EVALUATING THE RELIABILITY OF DISTRIBUTED REAL-TIME

SYSTEMS

A Thesis Presented

by

GOPINATH DURAIRAJ

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 1999

Department of Electrical and Computer Engineering.

120/121

ABSTRACT

EVALUATING THE RELIABILITY OF DISTRIBUTED REAL-TIME SYSTEMS

FEBRUARY 1999

GOPINATH DURAIRAJ, B.E, R.E.C. TIRUCHIRAPALLI, INDIA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor C. M. Krishna

Computers are increasingly being used in life-critical applications and their need

to be reliable also increases dramatically. A distributed system architecture is a very

attractive proposition to meet these reliability and fault tolerance requirements. Such

a system is very complicated and needs to be validated before building and deploying

it.

A simulator test bed is built at UMass to model a variety of such systems quickly

from a few basic building blocks. Since these systems are very complex, many inde-

pendent simulation runs are needed to estimate their reliability to a reasonable level

of confidence.

Importance sampling is a technique commonly used to speed up such rare event

simulations. In this technique, the probabilistic dynamics of the system are altered

so that the rare events (such as the system failure) occur much more frequently. The

sample outputs then need to be adjusted to compensate for the bias introduced.

This thesis talks about building the simulator test bed and concentrates on incor-

porating and validating importance sampling to speed up the reliability estimations.

122/123

Two importance sampling heuristics called 'forcing' and 'failure biasing' are incor-

porated in the test bed. The implementation is validated by comparing the reliability

estimates with that of the normal simulation. The effect of the failure bias on the

dynamics of the scheme are also investigated to provide some guidance on choosing

the failure bias.

The tool is applied to see how the reliability estimates of a system changes with the

change in failure rate. Finally the tool is used to demonstrate that using an optimal

failure recovery algorithm can significantly improve the reliability of a distributed

real-time system.

124

TABLE OF CONTENTS

ACKNOWLEDGMENTS

ABSTRACT

LIST OF TABLES ,.

LIST OF FIGURES

CHAPTER

1. INTRODUCTION

1.1 Thesis goal

1.2 Thesis Outline . .

2. IMPORTANCE SAMPLING

2.1 Introduction

2.2 Basic Idea

2.3 Choosing an Optimal Sampling Density

2.4 Likelihood Ratio

2.5 Failure Biasing

2.5.1 Simple Failure Biasing

125

2.5.2 Balanced Failure Biasing

2.6 Forcing

2.7 Other Importance Sampling Results

2.8 A Sample Application

2.9 Other Variance Reduction Techniques

3. IMPLEMENTATION OF THE TEST BED . .

3.1 Simulation Model

3.1.1 Computing Nodes

3.1.2 Tasks and Messages

3.1.3 Scheduling and Allocation Algorithms

3.1.4 Network

3.1.5 Fault Injection

3.2 Distributed Simulation Issues

3.3 RAMP Algorithm

3.4 Simulator Implementation

3.4.1 Platform

3.4.2 Implementation Model

3.4.3 Other Simulator Entities

126

3.4.4 Fault Injection

3.4.5 Fault Detection and Recovery

4. SIMULATION ANALYSIS

4.1 Reliability

4.2 Normal Simulation for Estimating Reliability .

5. IMPLEMENTING IMPORTANCE SAMPLING

5.1 Outline

5.2 Implementation

5.2.1 Forced transitions

5.2.2 Failure biasing .

5.2.3 Analysis

5.3 Expected Behaviour of Importance Sampling .

5.4 Validation of the Model

5.5 Selecting the Bias Parameter

5.6 Some Typical Usages

5.6.1 Varying the Transient Failure Rates . .

5.6.2 Comparing the Recovery Policies

6. CONCLUSIONS

127

BIBLIOGRAPHY

128

LIST OF TABLES

1. Normal Simulation

2. Importance Sampling with Bias 0.3

3. Acceleration Factor

4. Sample variance for different failure bias values

5. Effect of the Transient Failure Rates on the Unreliability

6. Comparison of the Recovery Policies

129

LIST OF FIGURES

1. A typical distributed real-time system

2. The Implementation Model

3. The Implementation Model

4. RE of Normal Simulation and Importance Sampling

130

CHAPTER l

INTRODUCTION

Computers are wonderful machines. They are increasingly being used in ways

never imagined possible before. From their traditional uses in number crunching and

huge databases they have evolved rapidly and are now used to control everything

from cars to factories and fiy-by-wire aircraft.

As computers begin to be used in these life-critical applications, their need to be

reliable increases dramatically. These computers are expected to perform their tasks

in a time-bounded fashion. It is not enough if these machines deliver outputs that are

logically correct they should also be timely. Catastrophic results can occur if these

task deadlines are not met (Imagine an aircraft not putting out its wheels when it

is fast approaching the runway). These computers are also increasingly expected to

perform their best even in the presence of faults. They should be able to tolerate

faults in hardware, software or anywhere!

A distributed system architecture is a very attractive proposition to meet these

reliability and fault tolerance requirements. It has multiple, independent computing

entities, which provide scalable computing power. Since they are independent, there

is a high chance that the faults will be isolated and localized to a subset of nodes.

When a fault is detected in a node, the tasks from that node can be moved to other

131

active nodes that can handle the additional load. Such an architecture can also exploit

the potential parallelism that might exist among the various units. Does it look like

we have solved all the tough problems? Alas, there is no such thing as a free lunch!

The distributed system architecture is very complex and there are quite a few issues

to be solved.

• We need good task admission, allocation/scheduling algorithms to make sure

that the accepted tasks meet their deadlines.

• We need a good resource management algorithm to efficiently manage the avail-

able redundancy. When a node fails, there are a few possible recovery actions.

An optimal failure recovery action must be chosen so that the possibility of a

task missing its deadline is minimized.

• We need a good network architecture to interconnect the distributed nodes and

to provide high connectivity and performance even in the presence of faults.

This network should also provide for predictable delays as the tasks might be

exchanging messages that are time constrained. As the number of computing

nodes are increased, the network should also be able to scale well.

Each of the above problems constitute a major research area in itself and a lot

of work has gone into solving them. At UMass an optimal resource management

algorithm [30] has been developed to suggest the failure recovery action that will

minimize the probability of a critical task missing its deadline.

Once we have some solutions for each of the problems, we would like to put

together a complete system and find out the reliability of the system to validate the

132

design. Such a system is very complex and the algorithms/policies might interact in

ways that may not be obvious. The reliability evaluation is usually carried out by

analytical techniques or simulation. Analytical modeling is very tough in all but the

simplest of cases and simulation is the preferred way to evaluate complex models.

1.1 Thesis goal

We have endeavored to create a simulator test bed that will facilitate building such

a complex system and to evaluate its reliability. The simulator test bed will enable the

user to model a variety of systems quickly using a few basic building blocks. Adding

new building blocks as plug-ins should also be easy. Examples of such building blocks

include scheduling algorithms, allocation algorithms, failure recovery policies, new

network types etc.

Once we have created the system under evaluation, we need efficient techniques

to evaluate its reliability. Means should be found to integrate such techniques with

the simulator test bed. This will enable the user to configure a system of choice and

find out its reliability quickly.

Since the modeled systems are very complex and their reliability is quite high,

many independent simulation runs will be needed to estimate their reliability to a

reasonable level of confidence. Importance sampling is a technique commonly used to

speed up such rare event simulations. In this technique, the probabilistic dynamics of

the system are altered so that the rare events of interest occur much more frequently.

The sample outputs then need to be adjusted to compensate for the bias introduced.

133

This thesis talks about building such a simulator test bed and concen-

trates on incorporating importance sampling in the test bed to speed up

the reliability estimations.

1.2 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 talks about efficient

simulation techniques for reducing the sample variance. Chapter 3 talks about the

simulation model and some of the interesting issues involved in the design and imple-

mentation of such a simulator.

Chapter 4 clarifies some issues regarding reliability evaluation and gives an overview

of the simulation analysis that will be used. Chapter 5 talks in detail about the imple-

mentation of importance sampling, its validation and the effect of the bias parameter.

134

CH A P TER 2

IMPORTANCE SAMPLING

Different measures are used to evaluate the modeled systems depending upon

whether they are mission oriented systems or continuously operating systems. Some of

the dependability measures that are very commonly used are steady-state availability,

reliability, mean time to failure (MTTF), expected interval availability etc.

We will discuss a technique called Importance Sampling which is widely employed

to speed up rare-event simulations in queueing and reliability models. A variety of

heuristics have been proposed to implement importance sampling to estimate the

different measures mentioned above. Depending upon the measure that we are in-

terested in estimating, we could choose to implement some of them. Since we are

primarily interested in measuring the reliability of the system, we will look closely at

those heuristics that are applicable.

2.1 Introduction

To analyze the given system for reliability, we need to model the system in a

way that closely mirrors reality and which makes the analysis simple. The system is

considered to be a collection of components which can fail and possibly get repaired.

135

It is considered operational if at any given moment the operational components satisfy

some minimum system operational requirements. The failure times and the repair

times of the components are assumed to be exponentially distributed so that the

system may be modeled as a continuous time Markov chain (CTMC).

Typically numerical methods are used to solve Markov chains. Although many

modeling packages have been built (eg [10]), the size of the system modeled is typi-

cally small because the number of states in the system increases exponentially with

the number of components. Techniques such as state lumping and unlumping and

state aggregation and bounding can reduce the size of the state space substantially.

However large systems with a large number of redundant components are still out of

the range of the solution capabilities of current numerical methods primarily due to

storage or computational limitations.

An alternative approach for the solution of large models is Monte Carlo simu-

lation. By nature this approach has the immediate advantage of having relatively

small storage requirements. In addition it might be easier to model very complex

systems using simulation. On the other hand, since the failure events are very rare,

it is apparent that the analysis by simulation of large models with a high degree of

redundancy will require many long independent replications in order to attain reason-

able confidence intervals. Our goal is to investigate the variance reduction methods

that might be easily implemented in the current model.

In importance sampling, we change the probabilistic dynamics of the system for

simulation purposes. The new probability measure introduces system failures to occur

more frequently. We then make adjustments to the sample outputs to unbias the

136

estimator before computing it. A good reference for the mechanics of this technique

is Hammersley and Handscomb [13]. Generalizations to stochastic systems are given

in Glynn and Iglehart [9]. The heuristic of failure biasing was first proposed in Lewis

and Böhm [18] in the context of reliability estimation of nuclear reactors. In Goyal,

Heidelberger and Shahabuddin [11] it was adapted to the estimation of unavailability

for highly reliable Markovian systems. In Shahabuddin et al. [23], it was used for

the estimation of the MTTF using a regenerative method. Generalizations of these

heuristics along with new ones have been investigated in the unifying paper Goyal et

al [12].

2.2 Basic Idea

Let X be the random variable that has the probability density function p(x). We

are interested in estimating the probability 6 that X is in some set A (the failed state)

r+oo /-too
l{x&A}P{x)dx = Ep[l{xeA}\

-oo

where the subscript p denotes sampling from the density p and lxeA is the indicator

of the set A. i.e.,

_ j 1 if x £ A and
Mze/t} - | 0 otherwise

Consider estimating 9 by simulation. The standard approach would be to draw n

samples Xi,...,Xn from the density p, set U = lxteA and form the estimate

1 n

"■ i=i

137

If E(X2) < oo then using the central limit theorem, we can construct the stan-

dard confidence interval on the estimator. This confidence interval is given by [X —

HW, X + HW] where HW is called the half width and is given by Za^S/^/n (the

quantity za/2 is the 100(1 — a/2) percentile point of the standard normal distribution

and S is the standard deviation of the estimator). The relative error (RE) is

defined to be HW/0.

Multiplying and dividing the integrand by another density function p'(x), we

obtain

9 = h^A^)pl{x)dx

= Epi
1 P(X)
1{X*A}PVT)

Ep'[l{xeA}L(X)}

(2.1)

where L(x) — p(x)/p'(x) is called the likelihood ratio and the subscript p' denotes

sampling from the density p'. The above equation is valid for any density p' provided

that p'(x) > 0 for all x 6 A such that p(x) > 0. i.e., a non-zero feasible sample under

density p must also be non-zero feasible sample under p'.

The above equation is the key for importance sampling. Draw n samples Xi,..., Xn

using the density P' and define Si = L(Xi)Ii. Then by equation 2.1 üyßn] = 0- Thus

an unbiased estimate of 9 is given by

71 2=1 U 1=1

138

i.e., 0 can be estimated by simulating a random variable with a different density and

then unbiasing the output (/<) by multiplying by the likelihood ratio. Sampling with

a different density is sometimes called a "change of measure" and the density p' is

called the importance sampling density.

2.3 Choosing an Optimal Sampling Density

Since essentially any density p' can be used for sampling, what is the optimal

density i.e., what is the density that minimizes the variance of X(p')? Selecting

p'(x) = p*(x) as follows

*t \ _ / P(x)/Q for x E A and
V (.x) - < 0 Otherwise

has the property of making 5* = IiP{Xi)/P*(Xi) = 9 with probability one. Since

the variance of a constant is zero, p*{x) is the optimal change of measure. However,

there are several practical problems with trying to sample from this optimal density

p*. First, it explicitly depends upon 6, the unknown quantity that we are trying to

estimate. If in fact 6 were known, there would be no need to run the simulation

experiment at all. Second, even if 9 were known, it might be impractical to sample

efficiently from p*.

Since the optimal change of measure is not feasible, how should one go about

choosing a good importance sampling change of measure? Since Ep> [<5j] = 9 for any

density p', reducing the variance of the estimator corresponds to selecting a density

139

p' that reduces the second moment of 5i

= I lxeA-f7-zp{x)dx
J p'(x)

= Ep[hL{Xi)}

Thus to reduce the variance, we want to make the likelihood ratio p(x)/p'(x) small

on the set A. Since A is a rare event, roughly speaking, p(x) is small on A. Thus to

make the likelihood ratio small on A, we should pick p' so that p'(x) is large on A. i.e.,

the change of measure should be chosen to make the event A more likely to occur.

Importance sampling does not always lead to a reduction in variance and can

produce arbitrarily bad results if not applied carefully. Essentially all work on using

importance sampling in practical applications deals with choosing an importance

sampling distribution that leads to actual variance reduction.

2.4 Likelihood Ratio

In order to apply importance sampling, it must be possible to compute the rel-

evant likelihood ratio. Essentially, each time a change of measure is performed, the

likelihood ratio for that variable is computed (using the original and new densities)

and incorporated into a running product.

140

In the case of sampling from a single probability density function as described

above, the likelihood ratio L(X) = P(X)/P'(X) This equation is also valid if X is

drawn from a discrete distribution, i.e., if

P(X = ai) = P(di) i = l,...,n and

P'(X = ai) = P'(ai)i = l,...,n

We require that P'(fli) > 0 if P(OJ) > 0 but note that we can have P'{ai) > 0 even

if P(di) = 0 since the likelihood ratio is zero in this case, i.e., no weight is given to

an impossible (under p) sample path. Suppose X = (Xi,..., Xn) is a random vector

where X{ is drawn from density Pi{x) and Xt is independent of Xj(j ^ i). If under

importance sampling, X{ is drawn from density P[(x) and again Xi is independent of

Xj(j ^ i), then

Lm4M
Suppose {Xi, i > 0} is a discrete time Markov chain (DTMC) on the state space

of non-negative integers where XQ has the (initial) distribution P0(i) and the step

transition probabilities are given by P(i,j) — P{Xm = j\Xm-i = i). Let Xm =

(X0,.. •, Xm). If, under importance sampling, X0 is drawn from P^i) and the process

is generated with the one-step transition probabilities P'{i,j) then

T(Y \ Po(Xo)frP(X^,Xt)
[m) p'0(X0)l\P'(Xl^Xl)

141

2.5 Failure Biasing

In the last few sections, we have seen the theoretical foundations of importance

sampling. There are quite a few heuristics for the implementation of this technique,

applicable for estimating different dependability measures. Failure biasing is an im-

portant heuristic used heavily in the estimation of transient measures such as relia-

bility, mean time to failure etc.

For estimating the transient measures, we would like to apply importance sampling

so as to sample most often from the most likely paths to failure. However, in complex

systems, it may not be easy to identify these most likely paths. Thus we need to

develop heuristics that are simple to implement and search many different paths to

failure. It should sample often enough from the most likely failure paths so as to

obtain variance reduction. Failure biasing is designed to do this.

The objective of the biasing is to derive results with reduced variance. This can be

accomplished by causing more trials to contribute to the result than in the binomial

case. As this happens, there will be fewer zero weight trials, but those that do

contribute will have weights much smaller than one.

Failure biasing has a few variants that work well for certain types of systems. We

will now look at a few important ones.

2.5.1 Simple Failure Biasing

Simple failure biasing was introduced in Lewis and Böhm [18]. At each transition

of the system state, it biases the system towards more faults so as to drive the system

142

to the failure state. Whenever such a bias is made, the corresponding likelihood ratio

is calculated and updated into a running product.

Let the failure and repair rates of a component i be exponentially distributed

with rates A, and fa respectively. The total failure rate out of a particular state is

the sum of the failure rates of the currently active components. Let us assume this

is A. Similarly the total repair rate out of the state is the sum of the repair rates of

the components that are suffering a temporary fault. Let us call this quantity /i. 7 is

the total transition rate out of the current state and is equal to the sum of A and //.

In this technique, the probability of an additional failure is set to be a fixed

probability 4>. Typically (j) is chosen to be in the range 0.20 < (j) < 0.80. Note that

in the original system the probability of this event is A/7. Since the repair rates are

usually orders of magnitude greater than the failure rates, this ratio is very small.

Thus the probabilistic dynamics of the system are altered with a heavy bias towards

more failures.

When a failure transition is selected, the component getting the failure j is selected

proportional to the original transition rates, i.e., with probability Aj/A. If a repair

transition is selected, with probability (1-0), then the component getting repaired

j is selected with probability ßj/ß.

2.5.2 Balanced Failure Biasing

The above mentioned technique of simple failure biasing works very well for bal-

anced systems. While the simple failure biasing takes the system to the set of failure

143

states with reasonable probability, it does not push the system along the more com-

mon failure paths often enough.

Consider a system with two types of components. There is one component of type

1 that has failure rate e2 and three components of type 2 that each have failure rate e.

The system is considered operational if at least one component of each type is opera-

tional. Under simple failure biasing, it is a type 1 failure with probability e2/(N2e+e2)

where N2 is the number of operational type 2 components; this probability is of order

e. Similarly, the probability of a type 2 failure is (1 — 0(e)).

Thus, under simple failure biasing, when the system ends up in a failure state,

most of the time it gets there by having three type 2 failures. It only rarely ends up

in a state in which component 1 is failed. However, the path with a single component

1 failure is the most likely path to system failure; its probability is of order e, whereas

any other system failure path has a much smaller probability of the order e2. Thus,

while simple failure biasing takes the system to the set of failure states with reasonable

probability, it does not push the system along the right failure path often enough.

The result of this is that simple failure biasing applied to unbalanced systems may

result in estimates having unbounded relative error.

To overcome this, another variant of failure biasing called "balanced failure bias-

ing" was introduced [24] and was shown to result in bounded relative error.

In balanced failure biasing, a failure transition is again chosen with a probability

4>. Now however, given that a failure event has occurred, the probabilities of all failure

transitions are equalized, i.e., a failure transition from i to j is conditionally selected

with probability 1/F(i) where F(i) is the number of failure transitions possible out

144

of state i. The selection of the repair transition is similar to the case of simple failure

biasing.

Under balanced failure biasing, many unlikely paths to system failure may be

generated, but enough of the most likely such paths are generated so as to guarantee

good estimates. Further analysis that characterizes when these and more general

failure biasing schemes are efficient is given in Nakayama [19].

2.6 Forcing

At each transition step of the simulation, we essentially need to make two decisions.

• When to have the next transition?

• What should be the next state?

The technique of failure biasing influences the second decision, i.e., we force the

system towards additional faults. The technique of "forcing" [18] influences the first

decision. It increases the probability of the system having another transition before

the end of the mission time.

This technique is widely used to estimate transient measures such as unreliability,

mean time to failure etc. Note that this heuristic is essentially independent of failure

biasing and each of them can be applied in isolation. The likelihood ratios due to

of them are calculated separately and multiplied together to give the cumulative

likelihood ratio.

This technique is applied only when the mission time is sufficiently small that

the probability of another transition occurring before the end of the mission time is

145

very small. When failed components are present, the total transition rate is usually

sufficiently large that this heuristic need not be applied.

2.7 Other Importance Sampling Results

The above mentioned techniques of failure biasing and forcing are the most widely

used importance sampling heuristics. These are also important to us as they are

heavily used in estimating the reliability of systems. There are a few other results

related to importance sampling and we will look at some of them here.

Regenerative Simulation

Some times, we are interested in the steady state performance measures such as

the steady-state unavailability, i.e., the long run fraction of the time that the system

is in a failure state. If the system is regenerative then the regenerative method can

be used to estimate steady state performance measures.

Let Xs be the process at time s. We assume there is a particular state, call it 0,

such that the process returns to state 0 infinitely often and that, upon hitting state

0, the stochastic evolution of the system is independent of the past and has the same

distribution as if the process were started in state 0.

Let ßi denote the time of the z-th regeneration (ß0 = 0) and XQ = 0. Let o^ =

ßi — ßi-i denote the length of the i-th regenerative cycle. If E[ui] < oo then under

certain regularity conditions, Xs => X as s —> oo (where => denotes convergence in

distribution and X has the steady state distribution). Let h be a function on the

146

State space and define Yt = J^ h(Xs)ds Then (Yhai),i> 1 are i.i.d. and

E[Yi\
E[h(X)}

E[ai]

The above equation forms the basis of the regenerative method; simulate N cycles

and estimate E[h(X)] by YN/aN where YN and aN are the averages of the Yi-s and

oti-s respectively.

For Large Time Horizons

When the mission time is fixed, balanced failure biasing and forcing produce

bounded relative error estimates of the unreliability U(t). For very large time hori-

zons, the empirical effectiveness of forcing decreases and a somewhat different ap-

proach has to be taken.

This problem is analyzed in Shahabuddin [26] and the regenerative structure of

the system is exploited to estimate tight upper and lower bounds on U(t). A different

approach to estimating U(t) is presented in Carrasco [5]. Instead of estimating U(t),

its Laplace transform Ü(s) is estimated at a number of values of s. The regenerative

structure is again exploited by deriving a renewal equation for U(s) in terms of quan-

tities defined over a single cycle that can easily be estimated. Numerical inversion of

the estimated Laplace transform is then used to recover estimates of U(t).

Failure Distance Biasing

Carrasco [4] considers another failure biasing approach, termed "failure distance

biasing" which attempts to improve on the efficiency of balanced failure biasing by

147

giving more weight to sample paths that are closer to the set of system failure states

F.

In this approach, failure transitions are grouped into classes based on their esti-

mated distance to F and more weight is given to the classes corresponding to shorter

distances. Once a class is chosen, the individual transitions can be chosen either pro-

portional to their original rates (unbounded relative error may occur in unbalanced

systems) or they can be equalized (as in balanced failure biasing, then the resulting

estimate has bounded relative error).

In practice, the success of this approach depends on the ability to correctly and

efficiently assign the distances. The class of systems for which this can be done is

unclear. In some cases, significant improvements over balanced failure biasing have

been obtained for systems with a large number of component types.

2.8 A Sample Application

We will now look at a practical application of the importance sampling for evaluat-

ing the reliability of a complex system. Boyd and Bavuso [3] talk about the modeling

of a highly reliable fault-tolerant guidance, navigation and control system for long

duration spacecraft. It is of considerable interest to us, as it is the type of system

that we aim to model using the simulator.

System Model

The system consists of a 3-dimensional hypercube configured as two fault-tolerant

2-dimensional modules, each with a spare processing node. This spare could be a

148

hot or cold spare. Each processing node communicates with the other processing

nodes in the system through four ports. For the system to be operational all eight

processing nodes must be operational and must all be able to communicate with each

other. Therefore, the system will be considered failed if any processing node fails and

a spare node is unable to take over or if any two nodes in the hypercube are unable

to communicate with each other.

The mission time of the system was assumed to be 10 years. It was clear from

preliminary studies that the system with a traditional constant failure rate model

will not meet the high reliability requirements. More recently acquired empirical

data provided evidence that decreasing fault rates are common in spacecraft appli-

cations. Hence, they were interested in the effect of assuming that the components

having a Weibull decreasing fault rate instead of the usual constant failure rate that

is characteristic of the time-homogeneous Markov models. They were also interested

in assessing the improvement in system reliability, if any, that can be achieved by

using a cold spare processor in the processing nodes instead of a hot spare.

Simulation

The inclusion of decreasing failure rates with cold spares requires the use of a

non-Markovian reliability model which is substantially more difficult to solve than the

Markovian model that assumes a constant failure rate. Since the analytical solution

of the system was extremely tough it was planned to use simulation.

Since the system failure events are extremely rare, a large number of trials will

be needed to evaluate the reliability. To speed up the reliability evaluation, impor-

149

tance sampling techniques such as forced transitions and simple failure biasing were

implemented.

Results

Results using constant failure rates indicated that the proposed architecture would

be inadequate, with the probability of system failure exceeding 60%. Initial attempts

to evaluate the model with HARP [6] (which uses analytical solution techniques) were

not successful due to the large size of the model.

The simulator was able to handle the system model well. The effect of assuming

Weibull decreasing fault rate clearly resulted in decreasing system unreliability. There

was a difference of about three orders of magnitude in the system unreliability from

0.631 ± 0.013 when all the components have constant fault rate to about 0.777 x

10~3 ± 0.41 x 10-3 when all the components have Weibull distribution.

From their experience in implementing the importance sampling for a complex

model they have the following recommendations: Simulation techniques such as im-

portance sampling are able to evaluate models that are beyond the reach of analytical

techniques both in terms of memory and execution time. If only ballpark estimates

are desired, simulation may be able to produce the required results relatively quick.

However, if the accuracy of the evaluation is important, the execution time required

by the simulation increases rapidly. Therefore, they advocate using the analytical

methods if this is feasible and use simulation to evaluate the more complex cases.

150

2.9 Other Variance Reduction Techniques

Importance sampling is not the only variance reduction method used in simulation.

There are quite a few other techniques that could be used for variance reduction. We

will here try to present a sampling of such schemes. For an excellent discussion of

the topic see [7] and [22].

Common Random Numbers

Common random numbers method is normally used when estimating the difference

between the expected performance measures of two or more systems. It is perhaps

the most widely used variance reduction method in practice. Suppose we want to

estimate rji - T]2, where 771 and 772 are two unknown quantities, estimated by Xx and

X2 respectively. Let Z = Xx - X2 and suppose that E[Z] = 771-772- The variance of

Z is then

Var[Z] = VarlXi] + Var[X2] - 2Cov[XuX2]

If Xi and X2 are generated independently, the covariance term disappears. But if we

manage to introduce a positive covariance between X\ and X2 without changing their

individual distributions, then the variance of Z will be reduced. The standard way

of inducing such a covariance is to use the same underlying random numbers to drive

the simulation for both Xx and X2 and to make sure that these random numbers are

used at exactly the same place for both systems

151

Antithetic Variates

The idea of antithetic variates resembles that of the common random numbers

mentioned above. Now, we want to estimate a single mathematical expectation 77,

using a pair of unbiased estimators (Xi, X2). The unbiased estimator of 77 will be the

average X = (Xi + X2)/2. Whose variance is given by

1/ rvi yar[X,\-VVar[X2] , Cov[XuX2]
Var[X\ = +

If the Cov[Xi,X2] < 0, then X has a smaller variance. A standard way of inducing the

negative correlation is to use a sequence of underlying iid uniforms u = {Uk,k > 1}

to drive the simulation for computing X\ and use the antithetic sequence 1 — to =

{1 — Uk,k > 1} to drive the simulation when computing X2. The rationale is that

disastrous events in the first simulation should be compensated by the "antithetic"

lucky events in the second one, thus reducing the variance of the average.

Conditional Monte Carlo

The general idea of Conditional Monte Carlo (CMC) is to replace the estimator

X = h(uj) by its conditional expectation given another random variable Z. Roughly,

if Z contains much less information than X, then the CMC estimator Xcm = E[X\Z]

should have much less variability than X. More specifically, one has E[Xcm\ = E[X]

and Kar[Xcm] = KarfX] — £'[Var[A'|.Z']], so the variance can only decrease.

152

Indirect Estimation

Suppose that the mean // of interest can be expressed as a known function of some

other quantity 77, say \x = f(rj). Then it may be more efficient to estimate 77 instead

of /i, then apply / to the estimator of r). This is called indirect estimation.

Assuming that we want to estimate the steady-state average queue length Lq.

For the standard estimator, we simulate the system for a long time horizon and take

the sample time-average. An alternative indirect estimator is based on Little's law

L0 = Xw0 where A is the arrival rate and wQ is the average waiting time in the queue.

153

CHA P TER 3

IMPLEMENTATION OF THE TEST BED

As mentioned earlier, we want to build a simulator test bed where the user can

configure a system of his/her choice and find out its reliability. This simulator should

be modular so that it will be easy in future to modify or add new building blocks of the

system. In this chapter we will take a close look at the simulation model, the overall

design of the simulator and some interesting issues in building such a distributed test

bed.

3.1 Simulation Model

Before we set out to design and build the simulator, we need to look at the system

model that we are trying to simulate. A distributed real-time system can often be

structured as a collection of computing nodes that are connected by a communication

network. This can be modeled as illustrated in Figure 1.

From this model, we can identify some of the key elements of the system. They

are

• The computing nodes

154

External devices

Computing Node Computing Node

Computing Node Computing Node

Sensors

Computing Node

Computing Node

Figure 1: A typical distributed real-time system

• The tasks that run on the nodes

• The algorithms to be used for allocation/scheduling

• The messages that are exchanged by the nodes as part of execution or mainte-

nance

• The network interconnect

We will take a look at each of these entities and see how they can be effectively

modeled.

155

3.1.1 Computing Nodes

Each of the computing nodes in the system can be modeled as a single entity that

is self sufficient in itself. It has private memory, it's own scheduling algorithm, check-

pointing scheme, etc. Each of these can be individually changed without affecting the

others. Once we have such a collection of nodes, we need to have some mechanism by

which they work together. One of the most common solutions is to have a master-slave

relationship among the nodes.

There is a single master node in the system whose only responsibility is to make

sure that the rest of the nodes work together to execute the tasks even in the presence

of faults. The responsibilities of the master can be enumerated as follows

• Task allocation. The jobs arrive from the outside world at the master which

has to send it out to the appropriate node for execution.

• Fault Recovery. When there is a fault on one of the nodes, the recovery policy

has to be consulted to choose the recovery action. The master then has to

implement this action to the best of its ability.

To make this scheme work, the slave nodes have to periodically record their state in

a checkpoint and send out 'alive' messages that the master can monitor. They also

have to monitor the working of the master. In case the master malfunctions, a new

master node has to be elected from the currently active slaves. Of course, this means

that any slave node will have to be able to take on the master functionality smoothly.

156

3.1.2 Tasks and Messages

Many real-time applications and systems are highly structured, much more so

than the general purpose systems. The set of tasks and their properties are generally

known beforehand at least approximately. These tasks can be classified by nature of

their recurrence. They are

• Periodic Tasks: Many tasks in real-time systems are executed periodically. For

example, most of the monitoring tasks are periodic and these are executed at

regular intervals. The periodicity of these tasks are known to the designer and

so can be prescheduled.

• Aperiodic Tasks: These are tasks that occur only occasionally. The arrival

pattern cannot be predicted.

• Sporadic Tasks: Aperiodic tasks with a bounded inter arrival time are called as

sporadic tasks.

In a typical real-time system, there will be a mixture of these task types, the majority

of them being periodic. In the current version of the simulator, we have allowed

periodic tasks which can be described by attributes such as period, deadline, phase,

redundancy, priority, messages to be sent and received during its execution etc. User

could also insert a task during the simulation run.

The computing nodes exchange messages among themselves either as a result of

the tasks that they are executing or as a part of the maintenance functions. Depending

upon the functionality, they can be classified as data messages (which are sent as part

157

of the processing for the tasks) and control messages (which are used to monitor the

state of the system etc).

3.1.3 Scheduling and Allocation Algorithms

Given a list of tasks that are defined as mentioned above, it is the task of the

allocation/scheduling algorithms to make sure that the task deadlines are met. These

algorithms can be characterized by the following parameters.

• Hard real-time (needs tough performance guarantees) versus soft real-time (can

live with a best efforts approach)

• Preemptive (allows tasks to be suspended temporarily when a higher priority

task arrives) versus non-preemptive scheduling (runs each task to completion)

• Dynamic (scheduling decisions are made during execution) versus static (schedul-

ing decisions are made in advance)

• Centralized (one node collecting information and making the decisions) versus

decentralized

Given a set of tasks, task precedence constraints, resource requirements, task

characteristics and deadlines, the real-time computer has to come up with a feasible

allocation/schedule. A task assignment/schedule is said to be feasible if all the tasks

start after their release times and complete before their deadlines.

158

Allocation Algorithms

On systems with more than two processors, the task assignment/scheduling prob-

lem is NP-complete [16]. So, we use the following heuristic : First the master assigns

the tasks to the processors and then runs the uniprocessor scheduling algorithm for

each of the slave nodes to see if the allocation was feasible. If one or more of the

schedules are infeasible, we must either return to the allocation step and change the

allocation or declare that a schedule cannot be found.

Different allocation algorithms are used. They vary from a pure round-robin allo-

cation to schemes which aim to keep the utilization of the individual processors below

a limit. This limit depends on the characteristics of the tasks and the uniprocessor

scheduling algorithm being run on the individual processors.

Uniprocessor Scheduling Algorithms

These algorithms typically assign priorities to the tasks and execute the task with

the highest priority. The relative priorities of the tasks are a function of the nature of

the tasks themselves and the current state of the system. The following two algorithms

are implemented in the simulator.

Rate-Monotonic is an optimal and popular static-priority algorithm. It is used

to schedule periodic, preemptible tasks whose deadlines equal the task period. The

basic idea of the rate monotonic algorithm is to assign different and fixed priorities

to tasks with different execution rates, highest priority being assigned to the highest

frequency tasks. At any time, the low-level scheduler simply chooses to execute the

159

highest priority task. A task set of n tasks is schedulable under RM if its total

processor utilization is no greater than n(2x/n - 1).

EDF is an optimal dynamic-priority scheduling algorithm. It is used to schedule

preemptible tasks. The task with the earliest deadline has the highest priority. If a

task set is not schedulable on a single processor by EDF, there is no other unipro-

cessor scheduling algorithm that can successfully schedule that task. If all the tasks

are periodic and have relative deadlines equal to their periods, the test for task-set

schedulability is simple: If the total utilization of the task set is no greater than 1,

the task set can be feasibly scheduled on a single processor by the EDF algorithm.

3.1.4 Network

Communication in real-time distributed systems is different from communication

in other distributed systems. While high performance is always welcome, predictabil-

ity and determinism are the real keys to success.

Achieving predictability in a distributed system means that communications be-

tween processors must also be predictable. LAN protocols that are inherently stochas-

tic, such as Ethernet are unacceptable because they do not provide a known upper

bound on transmission time. As a contrast, consider a token ring LAN. Whenever

a processor has a packet to send, it waits for the circulating token to pass by, then

it captures the token and sends its packet. Assuming that each of the k machines

on the ring is allowed to send at most one n byte packet per token capture, it can

be guaranteed that an urgent packet arriving anywhere in the system can always be

1$0

transmitted within kn byte time plus overhead. This is the kind of upper bound that

a real-time distributed system needs.

A faithful simulation of the interconnect network is crucial in getting a realistic

cost of the message passing, task migration etc. It affects the estimation of over-

heads involved in doing the recovery and reconfiguration actions and consequently,

the performance of the complete system.

The total delay D experienced by a packet (i.e., the time interval between the

packet arrival at the network and its delivery to the destination) is given by D =

W + S + T where

W is the time spent waiting in the queue before starting transmission. The factors

affecting it are the medium access control protocol used and the length of the

queue ahead of the current packet.

S is the service time - the time taken to transmit all the bits in the packet (propor-

tional to the size of the packet). It depends on the data rate of the channel.

T is the propagation delay - the time taken for a single bit to travel to the destination.

It is a characteristic of the channel used and is proportional to the distance

between the source and the destination.

As we can see here, simulation of different topologies, channels and the medium access

control protocols give rise to the different delays experienced by a packet.

In our simulator, the computing nodes send their messages out to a network which

then inserts a certain delay (characteristic of the network type) and then forwards

the message to the destination.

161

3.1.5 Fault Injection

In the current model, only the computing nodes can get the faults. The user can

specify the faults in a variety of ways including: the Poisson rates for the fault arrival

and repair, a table of fault arrival events and repair etc. It can be extended to include

other possibilities.

There is a fault generator (we will see later on its implementation) which computes

the fault arrival/repair events and send them out to the computing nodes.

When the fault arrival event comes up, the nodes simulate the fault by stopping

the current task and also clearing further events from the event queue. Until the

fault is cleared and some recovery action has been performed on the node, it will not

respond further.

3.2 Distributed Simulation Issues

The test bed is a event-driven simulator and hence the simulation proceeds by

executing events from an event queue ordered by the time of their occurrence. During

the execution of an event, the state of the system changes and new events might also

be created. These events are then inserted into the event queue to be executed

later. In a distributed simulation, there are multiple such event queues in the system.

The key to success is to let the simulation proceed as efficiently as possible without

violating the causality constraints [28].

Each of the nodes/network have a separate event queue. We now have to decide on

how to let the simulation clock proceed. One possibility (and which we have followed

162

in our simulator) is to have a central clock that collects the next event time from

all the event queues, computes the next event time for the entire system and then

broadcasts this time to all. This ensures correctness so that the events proceed in

an orderly fashion. The nodes execute the events that are supposed to occur at that

instant. As part of this process, more events get generated and get inserted into the

respective event queues. The clock collects the next event times from all the nodes

and the process repeats.

Other possibilities include some kind of optimistic execution in which the simula-

tion time proceeds in parallel until there is a interaction between nodes that might

violate causality. It is more complex to implement but definitely improves the per-

formance of the system as a whole.

3.3 RAMP Algorithm

When a fault has been detected on a slave node, there are a few possible recovery

actions that can be done. Some of the most commonly used ones are

Retry Restart execution on the same node from a consistent state as recorded in the

latest checkpoint.

Replace Use the latest checkpoint from the faulty node to start executing tasks on

a spare node.

Disconnect Use the latest checkpoint from the faulty node to distribute the tasks

running on that node to the other non-faulty nodes in the system.

163

Each of these actions can have different overheads in terms of the time needed to

complete them. Their success also depends on the current state of the system, the

workload, fault characteristics etc. Given all this information, the master node has

to decide which action to take. The policy that the master uses could vary from a

fixed action or something that gives certain weightage for all these parameters and

then decides on a action.

RAMP is an example of a resource management algorithm that can be used.

It is intended to suggest the most suitable recovery action that will minimize the

probability of the system losing a critical deadline over the remaining mission time.

For this, it takes into consideration the fault characteristics, workload, check-pointing

interval etc.

To make the computation time of the algorithm feasible, a method called the

Reduced State Space Markov Decision Process (RAMP) [31] was developed. This

method reduces the system state space to a manageable level without significantly

compromising precision. A dynamic programming technique [20] is then used to

compute the optimal recovery action. This computation is done a priori, before the

simulation is started. Given the reduced system space, the computation is done for

all possible system configurations for the system mission time. The output of the

algorithm consists of the set of actions to take for all possible system configurations

and workload characteristics at a given point of time (with a desired resolution) in

the mission.

Whenever a fault is detected and a recovery action needs to be chosen, the RAMP

algorithm is consulted. Complete information on the current system state such as the

164

number of nodes that are alive and faulty, the remaining mission time etc are passed

to the algorithm. The RAMP algorithm then suggests an appropriate recovery action

after looking at these values and the precomputed alternatives.

3.4 Simulator Implementation

The design of the simulator is closely tied to the kind of systems that are to be

modeled. We have seen earlier about the simulation model. The simulator models this

system by having a set of processes that communicate with each other by means of a

portable message passing library. There is a process to model each of the computing

nodes, the network interconnect, central clock and the console. We will now take a

look at each of these.

3.4.1 Platform

The simulator is intended to be run on multiple machines in a transparent man-

ner. That way, we could add more machines for the simulation when we need more

computational capacity. For this reason, PVM is chosen as platform on which to

build the simulator.

PVM [8] is a portable message passing library that can run on multiple physical

machines in a manner that is transparent to the applications. It uses the native

message passing mechanism of the underlying machines (example UNIX sockets) to

provide an abstract view of a single virtual machine.

Machines can be added to the PVM at will, thereby making it easy to increase the

computing capacity. The processes that run on top of PVM can exchange messages

165

through well defined mechanisms and semantics. PVM is available on a wide variety

of systems and the virtual machines can be made of multiple, heterogeneous machines.

The simulator code is developed in C++.

This chosen platform has the following advantages

• Using a network of workstations for the simulator makes available a scalable

computing platform. This will be helpful as the simulated system becomes

more complicated and requires more computing power.

• Implementing the various components using the PVM processes facilitates dis-

tributing the load across machines evenly.

• PVM, implemented on a flavor of UNIX provides a portable message passing

interface. So the simulator can easily be adapted to a wide variety of machines.

• C++ is a powerful object-oriented language which can be easily used to model

the complex systems that are being simulated.

• Since C++ is a popular language, it will be easy for users to develop their own

algorithms and integrate them with the simulator.

3.4.2 Implementation Model

There are two parts to the simulator implementation. How the actual system is

simulated and how it is controlled from the users perspective. This can be modeled

as shown in Figure 2.

The console acts as the controlling interface to the rest of the simulator. We can

enumerate its functionality as follows

166

Console
Simulated System

Figure 2: The Implementation Model

Provides the GUI to help the user specify the system

Provides the controls for the simulator

Collects information about the task description, fault arrival patterns etc.

Generates the fault arrival/repair events and send them out to the nodes

• Spawns the required processes

Collects the information about the current state of the system

Provides the status to the user via the GUI.

167

3.4.3 Other Simulator Entities

Virtual Nodes

Each virtual node represents a computing element in which the tasks run and

exchange messages. The nodes run in a master-slave configuration. One of the nodes

acts as the Master and does the control tasks such as task allocation, fault detection,

fault recovery etc. Usually, the node with the highest id acts as the Master. If this

node goes faulty, then some other node takes over. The slave nodes schedule and

execute tasks which are allocated by the master.

Facilities are provided for plugging in the various algorithms that the nodes use

such as the task allocation, scheduling etc. In the current version of the simulator,

some of these algorithms are already in place and the future ones can be incorporated

with minimum effort.

Virtual Network

The nodes can be connected via broadcast or point-to-point links. A variety of

protocols such as FDDI and IEEE 802.5 Token Ring can be used on the broadcast

links. In the case of point-to-point links, the nodes maintain routing tables to forward

messages to the appropriate destination. A single process simulates the network

connect in the system. It inserts the appropriate delay into the message passing

depending on the protocol that is simulated in the network. We will now take a look

at some special considerations for the simulation of individual networks.

168

Token Ring

Efficiency is an important issue in simulating the network protocols. In a token

passing protocol, the token keeps on circulating even where is no message in the

network. Each of these token passing events have to be simulated and hence it slows

down the system considerably. The alternative is to stop the token passing when

there are no messages in the system and restart it only when a new message comes

into the system. To implement this, we record the position and the time when the

token was last seen and regenerate the token at the appropriate place when a new

message arrives.

The parameters of the network such as the operating speed, the number of nodes,

token length, node latency, the token holding time etc, can be varied to reflect the

network under consideration.

FDDI

FDDI medium access control [15] is similar to the token Ring in that it also depends

on token passing in a ring. However it follows a timed token protocol which allows

each node to reserve a portion of the available bandwidth to send Synchronous data

(which is the real-time traffic) at periodic intervals. Each node can calculate the

minimum amount of data that it needs to put out every Px time units and send this

information to the network. The network can calculate the fraction of the bandwidth

needed for each node and assigns them to the nodes. This amount of bandwidth is

guaranteed for each node over the requested period. Any unused bandwidth can be

used by Asynchronous data which is the non-real time traffic.

169

For a more detailed discussion on the mechanism of bandwidth allocation, and the

cycle time properties of the FDDI algorithm, see [16]. The efficiency considerations

that occurred for the token ring also applies in this case and we follow the same

approach.

Central Clock

The virtual nodes and network have their own local version of virtual time and

run independently of others except when there is a need for interaction. They must

satisfy causality constraints [17] to ensure correctness of the simulation.

The RAPIDS simulator uses a variation of the Breathing Time Buckets technique

[28]. Each process in the simulator has a notion of the Local Event Horizon, which is

the time it can proceed to, without violating causality. The central clock maintains

the Global Event Horizon which is always the minimum of the Local Event Horizons,

and broadcasts this as the current time of the entire system.

3.4.4 Fault Injection

As we have seen earlier in the implementation model, the console has an event

generator which is in charge of generating the fault arrival and repair events. The

fault injector reads the fault generation information in one of two possible formats.

• Poisson fault arrival, repair rates

• Table of fault arrival times and repair times

Looking at this information for each of the computing nodes, it generates the two

types of events (fault arrival and repair). By not sending out the fault repair event

170

for a node, the permanent faults can be simulated. A predefined number of these

events are generated and sent out to the concerned nodes. These nodes insert the

events into their respective event queues and simulate the events at the appropriate

time.

These events are periodically replenished whenever the number of events falls be-

low a low-water mark. Since the nodes send their event information back to the

console, a precise estimate can be made about the number of events still to be exe-

cuted.

3.4.5 Fault Detection and Recovery

Fault on the Slave Nodes

The master node is responsible for detecting the failure of a slave, and invoking

the appropriate recovery actions. Each fault-free slave node periodically records its

state in a checkpoint. It also periodically sends an "I am alive" message to the master.

The master node periodically examines these slave messages to decide if any of them

are faulty. The period of the alive messages and the master invoking the maintenance

functions are design parameters that can be specified.

The master node maintains the following information about the system to help in

allocation and reassignment of tasks etc: The utilization of each node, whether the

node is currently alive, whether the node is a spare, whether the node has sent an

Alive message recently, the recommended recovery action for the node.

On detecting a fault, the master invokes a recovery algorithm to decide on the

appropriate recovery action.

171

The three recovery actions have different penalties in terms of the time taken to

perform them. The user can specify these values before the start of the simulation.

User can also specify the algorithm to be used to generate the recovery actions during

the mission time. This can be one of the following: a fixed action, a heuristic or an

optimal recovery policy algorithm similar to the RAMP algorithm.

Interfacing with the RAMP algorithm

The RAMP algorithm precomputes and outputs the set of actions to take for all

possible system configurations and workload characteristics at a given point of time

(with a desired resolution) in the mission. The selection of a particular action de-

pends on the fault characteristics (transient and permanent fault rates, transient fault

duration), the given workload, the checkpointing interval and the remaining system

mission time.

Some of the parameters for the RAMP algorithm are needed at the beginning,

to generate the tables. These are either taken from the user, or estimated by doing

a pre-simulation on the user inputs. Others are run-time parameters indicating the

current time in the mission, number of nodes that are currently up, the utilization of

these nodes etc. These are calculated at runtime and passed onto the algorithm. The

algorithm uses this information to select the appropriate recovery action and gives

this information to the simulator to implement.

172

Fault on the Master Node

The master node also sends an "I am alive" message to the slaves and the slaves

monitor this message. The non-receipt of this message indicates that the master has

gone faulty, and a new master has to be elected.

The slaves follow a 'Bully' algorithm for the election in which the slave with

the highest id becomes the new master. As soon as the failure is detected by a

node, it sends an election message to the other nodes that have a higher id. The

nodes getting the election message respond with an acknowledgement whereupon the

original node(s) gives up and waits. If no node sends back an acknowledgement, then

the node that initiated the election wins and becomes the new master. The node that

sends out the acknowledgement has the responsibility of finding the new master and

so it initiates another election (if it hasn't done so yet). Ultimately, the node with

the highest id (that is currently alive) is found and becomes the new master.

173

CHAP TER 4

SIMULATION ANALYSIS

Real-time systems have to be carefully validated before they are put into operation.

Specifically, we need to know the probability that the system will not fail over the

mission time. Here we also need to be specific about what we mean by "failure of

the system". This chapter looks closely at this and tries to arrive at a framework to

estimate it.

4.1 Reliability

When we have a mission-oriented system, we would like to know whether it will

fail over its mission time. Reliability is the probability that the system will not fail

over its mission time. Unreliability is the complementary probability (the probability

that the system will fail over its mission time). To find this, we need to define what

exactly we mean by 'failure' in our context. We will now try to define this in the

context of a hard real-time system that we intend to model.

In a hard real time system we can have critical and non-critical tasks. Critical

tasks need to be executed before their deadlines and if these deadlines are not met,

catastrophes can occur. Non-critical tasks are not critical to the application. However,

174

they do deal with time-varying data and hence are useless if not completed within

their deadline. The objective of a hard real time system is to meet all the critical

deadlines and if possible, the non-critical deadlines too.

The Critical tasks are often executed at a higher frequency than is absolutely

necessary. This constitutes time redundancy and ensures that one successful com-

putation every n iterations of the critical task is sufficient to keep the system alive.

The actual value of n will depend on the application, the nature of the task and it's

frequency.

We define the system failure state as the state where it failed to meet the required

number of iterations out of the n iterations. Even if a single critical task does not

meet its deadline, then it is deemed a failure of the system itself. For each critical

task, we can have a moving window and check whether the system is able to meet

the specified number of deadlines among the iterations.

In order to measure the unreliability, we can run the system for its mission time

and see whether it fails. This experiment is repeated many times and the percentage

of times the system failed gives the estimate of the unreliability of the system.

4.2 Normal Simulation for Estimating Reliability

A simulation study is usually undertaken to determine the reliability of the sys-

tem. In cases where the value of the reliability is very close to 1, it is usually better

to estimate the unreliability of the system which is 1 — reliability. Lets call the unre-

liability of the system as 0 which is the parameter to be estimated from a simulation

175

study. The system is simulated for the mission time to see if it fails. The output

value Xi is a 1 or 0 depending on whether the system failed or not. The simulation

is repeated to get more such data points. The mean of these data points X provides

an estimation of 9.

By the central limit theorem, a 100(1 — a)% confidence interval for 6 is approxi-

mately X ± zajiSjfy/n where S is the observed standard deviation and za/2 is defined

by the equation

a/2 = P(JV(0,1) > za/2)

N(0,1) denotes a normally distributed random variable with mean 0 and variance 1.

By definition,

„ _ f 1 with probability 6, and
' ~~ \ 0 with probability 1 - 9

and hence the variance of X{ is given by

VariXi) = 0(1 - 9)

Suppose we wish to estimate 9 to within ±10% (about two significant digits of accu-

racy), i.e, we want the relative half-width of say, a 90% confidence interval for 6 to

be less than 0.1, that implies :

1.282^/0(1 - 9)/n/X < 0.1

n^ 1.2822* 100* (1 -B)/6

From this, we can see that the required sample size is proportional to 1/9. The

smaller 6 is, the larger the sample size must be. For example, if 9 is of the order of

10"6, a sample size of the order of 108 will be needed.

176

For the kind of systems that we are considering, the probability of failure is very

low for the individual components and the unreliability of the complete system is very

low. Therefore a very large number of samples is required to estimate this parameter

to a reasonable level of accuracy.

177

CHAP TER 5

IMPLEMENTING IMPORTANCE SAMPLING

In the earlier chapters we have discussed the basics of importance sampling, how

the simulator test bed is implemented and how the simulation outputs can be analyzed

to estimate the reliability of the system.

This chapter talks about how all these are put together to actually implement the

desired solution and how exactly we validate the implementation. It also takes a look

at the parameters that affect the simulation output and provides some guidelines on

how to choose them.

5.1 Outline

The implementation model of the system is as shown in Figure 3. To implement

importance sampling in this model, we should not alter the simulated system, we

only need to modify the generation of the fault arrival/repair events and the way

the reports are analyzed.. We intend to measure the unreliability of the system by

repeating the simulations to get individual samples. The algorithm to be followed

can be summarized as

• Initialize the weight of the simulation output to 1.

178

Console
Simulated System

Figure 3: The Implementation Model

Use the heuristics of "forcing" and "failure biasing" to generate the fault ar-

rival/repair events.

Send these events to the individual components and replenish them periodically.

Monitor the reports from the simulated system.

Update the simulation weight whenever a "change of measure" is performed.

Output either the simulation weight, when the system fails before the end of

the mission or zero, when the mission ends with the system still functioning.

This forms a single sample of the simulation run.

179

The logical place to implement importance sampling is in the console. To be more

precise, we can implement this in the event generator and the analyzer. The event

generator has the following responsibilities

• Decide the time of the next system state transition. Implement "forcing" to

accelerate the state changes.

• Decide whether the next transition is a fault arrival or repair. Implement "fail-

ure biasing" to push the system towards more component faults.

• Calculate the likelihood ratios associated with each "change of measure" and

store this value along with the time it is supposed to happen.

The analyzer has the following responsibilities

• Receive the reports from the simulated system.

• If it corresponds to one of the above mentioned "change of measure", update

the current simulation weight.

• If the system fails within the mission time, set the simulation output to the

current value of the likelihood ratio else set the simulation output to zero.

We will see later how each of these functions are implemented in the modules.

Theoretical Formulations

The equations governing system failure are constructed from two probability den-

sity functions [18]. Let

f(t\t',k') = Probability density that, the system will make a state transition at

180

t given that it is at state k! at time t'(t' < t) and

q(k\k') = Probability that the system will enter state k, following a transition

out of state k!.

Now, let ip%(t) be the probability density that the system arrives in state k at

time * after the nth transition. Then, the probability density for arrival in state k is:

oo

ifc(t) = £>*(*)•
n=0

A recursive relation for the states for which n > 0 follows immediately from the

definitions of the probability densities:

ui "'0

Suppose we consider a modified or "biased" random walk where the probabil-

ity density f{t\t',k') and the discrete probabilities q(k\k'), both defined above, are

replaced respectively by the modified distributions f(t\t',k') and q(k\k').

Similarly we can define fy(t) as the modified density that the system arrives at

state k at time t after the nth transition. We now require a relation between the

earlier density and the new density function. To do this, we define a weight w%(t)

such that

This weight w%(t) is the likelihood ratio associated with the current state. Substitut-

ing this in the earlier equations and simplifying we can get the recursive relation

k[> q(k\k>)f(t\t',k>) k

181

The above is the key equation that we will need for the implementation. We

can associate a weight with each random walk, which is initialized to one and then

adjusted to correct for the bias at each sampling. The incremental likelihood ratio

for each "change of measure" is given by

q(k\k')f(t\t',k')

q(k\k')f(t\t',k')

This has two parts, q(k\k')/q(k\k') and f(t\t',k')/f(t\t',k') each corresponding to the

likelihood ratio due to the two heuristics of failure biasing and forcing respectively.

Since these are independent, we can calculate the ratios due to each of them separately

and then multiply them to give the likelihood ratio for the state transition.

The cumulative weight when the system enters a failed state is the sample value(Xj)

for the run. If the system doesn't fail over the entire mission, the resultant sample

value is 0.

5.2 Implementation

The major chunk of the work is implemented by the event (fault) generator. It

generates the list of the fault arrival/repair events for all the computing nodes in the

system. To do this, it maintains a set of variables for each node i in the system. The

fault arrival rate is given by A; and the repair rate is given by ßt.

A is the total failure rate out of the current state and is equal to the sum of

the failure rates of active nodes. \x is the total repair rate out of the current state

and is equal to the sum of the repair rates of all the currently faulty nodes (but not

182

permanently faulty). Finally 7 is the total transition rate out of the current state

and is equal to the sum of A and //. As a node goes faulty or gets repaired the system

state changes and these variables are updated.

5.2.1 Forced transitions

The fault generator module uses a random number generator to generate random

numbers uniformly distributed between 0 and 1. To sample time intervals At between

transitions, we can use the following equation

■ ■ ,-7t'At
rl ill

/ dtf(t\t', k1) = e~^u

Jt'

A random number e is sampled from a uniform distribution 0 < e < 1, and set equal

to the cumulative distribution on the left. Inverting the equation then yields

At — Ine
Ik'

where we have utilized the fact that e and 1 - e have the same probability densities.

This value At is added to the present time t' to give the next transition time t.

Usually the failure rate of the nodes is very small when compared to the repair rate

(for transient faults). Therefore 7 is small when no failed components are present. In

such a case, the transition rate is boosted by taking

f(t\t',k') = x
f}f£]tl) for <<t<T,

= 0 otherwise

where T is the mission time of the system.

183

This heuristic is applied only when 7 is small, j(T - £') <§C 1 and there is only a

small chance that an additional transition will take place before the end of mission

time T.

We then have to multiply the trial weight by

/(*F>fc') _]_ _ -*y(T-t')

f(t\t>,k>)

This value is the partial likelihood ratio and is stored in a variable for use later.

5.2.2 Failure biasing

Once the next transition time is decided, we have to see whether it is going to be

an additional node failure or a repair. Obviously if there are no failed nodes present,

there cannot be a repair and hence the only possibility is a node failure. Similarly

if all the nodes are faulty, repair is the only way to go. Barring these two extreme

cases, we have to make some decision on the type of transition.

We would like to bias the transitions in such a way as to cause more failures and

thus push the system towards system failure quicker than in the normal case. To

recapitulate, system failure is defined as the state where the system is not able to

meet all its critical task deadlines.

As more and more nodes go faulty, the load gets redistributed among the working

nodes thereby increasing their loads. As the loads keep building there comes a point

when the scheduler cannot meet all the task deadlines and hence the system will

start missing some of the deadlines. If this condition persists (i.e., the faulty nodes

remain down long enough) critical task deadlines will be missed and the system will

184

fail. Also, when the tasks are being moved around, there is an overhead involved in

terms of time and deadlines could be missed even though enough computing capacity

is available somewhere in the system.

Suppose for a particular system state k' we divide all possible transitions k' -> k

into two classes, the transition k e F corresponds to an additional component failure ,

while k e R corresponds to an additional component repair. Hence for non absorbing

states

E Q(k\k>) + £ q(k\k') = 1
fceF fcefi

We choose a fraction called the failure bias which indicates the percentage of the

transitions that result in an additional fault (This affects the dynamics of the sample

output and we will look at it in more detail later). Let us assume that we choose a

value (p, then,

E <?W) = *

and hence,

E q(kW) = 1-4
keR

We generate a random number e' and compare it with <f>. If it is smaller, then the

next transition will be an additional fault. Otherwise, it will be the repair.

We choose to implement one of the variants of the failure biasing called "balanced

failure biasing" as we have seen earlier. To decide on the exact node getting the

fault, we maintain an ordered list of all the eligible nodes (lets say n) and generate a

random number i uniformly distributed between 0 and n - 1. This i is the index of

185

the node getting the fault. The unbiasing fraction is then given by

q(k\k') _ n\i
q(k\k') </yy

If it is a repair, we decide the repaired node by looking at the repair rate of the

individual faulty nodes (excluding those permanently faulty). For this we order the

eligible nodes and determine the particular node i by using the following formula

The unbiasing fraction is then given by

q(kW) ,, _th\-\(±
q(k\k') { 9) 7

5.2.3 Analysis

As we have seen in the last two subsections, we can implement the two techniques

of forcing and failure biasing. In each case we calculate the unbiasing fraction also.

The product of these two gives the likelihood ratio for that transition.

This value is associated with the transition event and is stored in a list. The overall

likelihood ratio for the simulation run is initialized to one. As the event actually

happens in the system, the fractional value is taken out of the list and multiplied

with the running product to give the current value of the likelihood ratio.

The nodes report all the events happening in the system to the console. If the

system is not able to meet its critical task deadlines, this constitutes system failure

186

and the current value of the likelihood ratio is the sample output. If the system does

not fail over the mission time, then the sample value is a zero.

The simulator maintains a file to hold the sample outputs and another to store the

seed for the random generator. Since the random generator is a crucial component of

the simulator, its seed has to be maintained over the sample runs to make sure the

numbers are uniformly distributed and also the simulation can restart from the last

paused point.

5.3 Expected Behaviour of Importance Sampling

Before we carry out the validation of the implementation, it is imperative for us

to understand the expected behaviour of the importance sampling scheme.

Importance Sampling is a heuristic, designed to speed up the occurence of rare

events. We wonder whether it can perform uniformly well in all regions of unreliability

values. Intuitively we know that there should be some range of the unreliability values

beyond which the usage of the normal simulation will be better than the importance

sampling.

We will use the 'Relative Error' (RE) defined as follows, as the performance mea-

sure of the estimation scheme (normal simulation and importance sampling).

RE - Za/2S

sße

187

Normal Simulation

Sample Mean

; Importance Sampling performs poorer

Importance Sampling performs better

Figure 4: RE of Normal Simulation and Importance Sampling

For the case of the normal simulation, this becomes

RE =
_ za/2yj6{l-e)

^e

for a fixed number of samples, as the failure event becomes rarer (i.e., 6 -» 0) the

RE « za/2/Vn6 becomes unbounded. Therefore, to obtain precise estimates, we need

very large n.

For importance sampling, Shahabuddin [25] notes that the elements of the mod-

ified transition matrix should be independent of the 'rarity' (a parameter that he

defines to reflect the highly reliable nature of the components) of the components.

This is sort of an 'ideal' importance sampling scheme which will always lead to the

188

bounded RE property. He also proves in this case, the RE will have a form

RE - Za/2 ^°2 + °(1)

y/n {a0 + o(l))

where a2 and a0 are positive constants depending on the implementation.

For a fixed number of samples, we can represent the behaviour of RE as shown in

Figure 4, for the cases of normal simulation and importance sampling. This 'ideal'

importance sampling scheme will be able to estimate the sample mean with a small,

fixed number of samples. We also observe that there is a certain region of reliabil-

ity values beyond which the normal simulation will be better than the importance

sampling.

In practice, techniques such as 'Balanced Failure Biasing' approximate the beviour

of this 'ideal' case. They achieve variance reduction (and hence the RE) by pushing

the system towards more faults and hence reducing the reliability of the underlying

system. They then unbias the sample output to get the correct value of the sample

mean.

The RE offered by such heuristics may not exactly be a constant but could be a

complicated function of the bias value and the type of the system under consideration.

However as the reliability of the system keeps on decreasing, the bias value has to be

kept arbitrarily low in order to maintain the RE close to that of the normal simulation.

Hence beyond a point, the importance sampling is not very useful. It is important

for us to experimentally determine this range of values so that the user can switch to

the normal simulation instead of the importance sampling scheme.

189

Recapitulating the basic idea of the importance sampling scheme, the estimate of

the sample mean is given by Ep<[l{X£A}L(X)). Note that since we want to make the

sample variance very low, we need to satisfy two things:

• More number of samples have to contribute to the result (this is achieved by

pushing the system towards more faults and thereby increasing the chance of it

failing and contributing a non-zero sample).

• The 'most likely' paths to failure have to be favored more since the likelihood

ratio has to be well behaved (the proportion of the failure paths has to be

proportional to the relative importance of these failure paths in the system

under consideration)

In the case of the failure biasing heuristic, there is only one parameter with which to

control both of these. If we increase the failure bias, more number of sample runs will

result in system failure and hence it is good as far as the first condition is concerned.

However failure bias also affects path that a sample run might take.

In the systems that we are interested in simulating, the most obvious failure path is

the one where the system is unable to meet its critical task deadlines. This obviously

depends on a variety of factors such as the number of computing nodes available,

average task load on the computing nodes, the recovery overheads etc. Consider a

rather crude example: let a system be composed of x computing nodes and to meet

its critical task deadlines it needs atleast y of them. Increasing the failure bias has

the effect of pushing the system towards complete breakdown (in other words, more

of the nodes are pushed towards failure). In many cases this will be an overkill and

190

the likelihood ratio associated with these sample runs will be very low. Thus most of

the sample runs will have a likelihood ratio that is very less and a few of them will

have very large values. This effect causes the RE to blow up in cases where the bias

value is very high.

Because of these conflicting effects associated with the bias value, each system

might have a optimal bias value that pushes the system towards the failure path

most of the time and still does not make it an overkill. Since it is not practical for

us to locate this optimal value for each configuration, it is enough if we are able to

guess a bias value that gives 'good' results over a range of systems.

5.4 Validation of the Model

To validate our implementation of importance sampling, we need to compare the

reliability estimates with the ones generated using normal simulation (without any

bias).

Choosing the Configurations

As we have seen earlier, normal simulation of the complex reliability models take

a long time and need extremely large number of sample points to get reasonable

confidence intervals. This is exacerbated by the fact that each of these simulation

samples take a long time.

The simulator is primarily intended to model very complex system models and

algorithms and hence the number of events to be simulated is very large. Because

of this (and other factors such as the efficiency of the distributed simulation) each

191

Simulation run takes on the order of minutes for mission times on the order of a couple

of thousand units.

Because of these reasons, we need to be very careful in choosing the configurations

that we use to validate the implementation. Some of the important considerations

are

• We need to verify that the implementation works for a variety of configurations

that can be modeled using the simulator

• We need to make sure that the accuracy of the results holds for configurations

with various ranges of reliability values

Since we only aim to get ballpark estimates for comparing with the importance sam-

pling scheme, we propose to repeat the simulations until we get the half width of the

90% confidence intervals to be around 30% of the sample mean.

We choose 4 different system configurations (with increasing reliability values)

and estimate their unreliability without applying any bias. These configurations are

as follows:

Confl: Number of Nodes: 6

Network interconnect: Token Ring (4 Mbps)

Transient failure rates: 1.38 x 10_3(5//ir)

Permanent failure rates: 2.77 x 10~5(l//ir)

Mission time: 1000 units

Average load on the nodes: 0.4

192

Conf2: Number of Nodes: 7

Network interconnect: Fddi

Transient failure rates: 5.55 x 10~4(2//ir)

Permanent failure rates: 5.55 x 10_5(0.2//ir)

Mission time: 1500 units

Average load on the nodes: 0.3

Conf3: Number of Nodes: 8

Network interconnect: Rectangular mesh

Transient failure rates: 2.77 x 10"4(l//ir)

Permanent failure rates: 2.77 x 10~5(0.1//ir)

Mission time: 2000 units

Average load on the nodes: 0.25

Conf4: Number of Nodes: 8

Network interconnect: 3D hypercube

Transient failure rates: Half of the nodes had 1.38 x 10_4(0.5//ir)

Other half had 2.77 x 10~4(l//ir)

Permanent failure rates: 2.77 x 10_5(0.1//ir)

Mission time: 2000 units

Average load on the nodes: 0.25

The repair rate for all of the configurations was 0.277 or (1000 /hr). This is to

make sure that the nodes come out of the transient faults quickly. The sample output

values are binary: If the system failed before the end of the mission time, the sample

193

Table 1: Normal Simulation

Configuration Sample Mean Sample Variance Number of Samples Conf. Interval
Confl 0.0424 0.04062 2500 12.2%
Conf2 0.0032 0.0031904 5000 32%
Conf3 0.0007 0.000699 20000 34.25%
Conf4 0.0003 0.000299 40000 37%

Table 2: Importance Sampling with Bias 0.3

Configuration Sample Mean Sample Variance Number of Samples Conf. Interval
Confl 0.0236 0.052 2600 24.29%
Conf2 0.00342 9.9 x 10~4 1400 31.6%
Conf3 0.0006462 5.65 x 10~5 1938 33.88%
Conf4 0.0002977 1.74 x 10~5 2430 36.44%

value is 1. If the system did not fail before the end of the mission time, the sample

value 0. This is repeated n times and the sample mean, variance and the confidence

intervals are calculated as discussed in the last chapter.

Results

We run the simulations for the above mentioned configurations and the results

are tabulated as in Table 1.

We then repeat the experiments with the importance sampling and a nominal bias

of 30% (or 0.3). The results are as tabulated in Table 2. Comparing this with Table

1, we can observe the following.

For configuration 1, where the unreliability is quite high, the importance sam-

pling did not provide any improvement. In fact, the importance sampling estimates

194

performed poorly. It shows clearly that importance sampling is not meant for such

systems with a high unreliability. We might be able to reduce the bias value and see

whether it performs better. But this may not offer much variance reduction over the

normal simulation. This is the kind of limit that we disucussed in the last section.

So when the unreliability is on the order of 10~2 or better, it is better to go with the

normal simulation itself.

For the rest of the configurations, the importance sampling estimates agree quite

closely to that of the normal simulations. In fact, the number of samples taken is

much less when compared to the normal simulation. This is the kind of systems for

which the importance sampling heuristic was designed.

Acceleration Factor

In order to see how well the importance sampling schemes have performed, we de-

fine a factor called 'Acceleration Factor' (AF). It is defined as the ratio of the number

of samples of the normal simulation {Numnorm) to that of the importance sampling

scheme (Numimp) required to achieve the same amount of confidence intervals.

i v umnorm AF = —

For the above mentioned configurations, the acceleration factors are as shown in

Table 3. As we can see, the acceleration is much better as the system reliability

increases.

195

Table 3: Acceleration Factor

Configuration Acceleration Factor (AF)
Confl undefined
Conf2 3.57
Conf3 10.32
Conf4 16.46

Comparison of the Time Taken

It is also important to compare the actual time taken (for the normal simulation

and for the importance sampling) to get the desired results.

We will use Conf2 (where we only got a nominal value for the acceleration factor)

as an example to look at the savings in time that is possible.

Normal simulation method took an average of around 8 mins (rounded off to the

nearest minute) for each of the sample points. The importance sampling scheme took

an average of 6 mins for each of its sample points. Hence the ratios of the total time

taken can be calculated (similar to that of the acceleration factor)

Ratio of the time taken =
Timer,
Time imp

8 x 5000
6 x 1400

= 4.76

As we can see here, the actual gain in the time saved is higher than that indicated

by the Acceleration Factor. This gets better with configurations having long mission

times.

196

When using Importance sampling, the events are forced to occur more rapidly and

the system is forced to go into the failure mode faster. Because of this, the actual time

taken for the simulation run gets shorter when compared to the normal simulation

where most of the simulation runs take the entire mission time.

Hence we gain both in terms of the reduction in the number of samples required

and also the time taken for each of these sample points.

5.5 Selecting the Bias Parameter

As we have seen earlier, failure bias is an important parameter that alters the

dynamics of the sample output. If it is too high or too low, the variance of the

sample output will be high. There is usually some optimal value associated with each

system.

Since the simulator has to work with a large variety of systems with varying

unreliabilities, we have to identify a nominal value of failure bias that will work

well with most system configurations. Intuitively, if the sample variance is low, the

estimates converge faster and we need fewer samples to get the desired confidence

intervals.

For each of the above mentioned configurations we vary the failure bias from 0.2

to 0.6 in steps of 0.1 and observe how the variance of the sample outputs change

accordingly. The results of this are tabulated in Table 4.

From the above table we observe that the optimal bias value (the one that produces

the least sample variance) is different for each configuration and in general, the higher

197

Table 4: Sample variance for different failure bias values

Config (mean) Bias = 0.2 Bias = 0.3 Bias = 0.4 Bias = 0.5 Bias = 0.6
ConÜ (0.0424) 0.048 0.052 0.055 0.0586 -
Conf2 (0.0032) 9.4 x 10~4 9.9 x 10~4 1.02 x 10~3 1.37 x 10-3 -
Conf3 (0.0007) 6.04 x 10~5 5.65 x 10-5 6.21 x 10~5 6.27 x 10~5 7.83 x 10~5

Conf4 (0.0003) 3.2 x 10~5 1.74 x 10~5 1.69 x 10~5 1.83 x 10-5 2.92 x 10~5

Conf5 (2.1 x 10-5) 4.7 x 10~7 2.3 x 10-7 1.9 x 10-7 1.976 x 10-7 2.53 x 10~7

Conf6 (5.02 x 10~7) - 3.07 x 10~9 2.93 x 10~9 2.64 x 10-9 2.86 x 10~9

the unreliability of the system, the higher the value of this optimal bias. This is in

accordance with expected behaviour as mentioned in the last section.

For Confl, the normal simulation seems to be the best choice. For all the failure

bias values, the sample variance goes much above those for the normal simulation.

Conf2 seems to have an optimal value around 0.2, Conf3 around 0.3, both Conf4 and

Conf5 have an optimal value around 0.4 and Conf6 around 0.5. It seems to stabilize

around 0.5 for configurations with higher reliabilities.

We can use these experiments to choose a failure bias when we want to estimate

the reliability of a particular system. The optimal value of the bias will vary across

different configurations.

A bias value of around 0.4 seems to work well for most of the configurations. If

the 'guessed' unreliability of the system is quite high (on order of 10-3), we are better

off by choosing a bias of around 0.2 — 0.3.

The simulator is intended to be used to systems whose unreliability values are

quite low. So in most of the cases we can pick a bias value of around 0.4 — 0.5 which

works reasonably well over a range of values.

198

Table 5: Effect of the Transient Failure Rates on the Unreliability

Transient Failure Rates /hr Unreliability
1 6.4 x 10~4

0.8 4.8 x 10~4

0.5 1.5 x 10~4

0.2 _^ 9.7 x 10_ö

0.1 5.3 x 10"0

5.6 Some Typical Usages

Once we have validated the implementation and understand how to choose the

failure bias, we are ready to use this simulator tool.

5.6.1 Varying the Transient Failure Rates

We will now use the simulator to check how the reliability of a system varies with

the change in the failure rates of the individual components. For this purpose, we

can take one of the configurations and alter the transient failure rates to observe the

corresponding change in the reliability of the system.

We take the Conf3 and estimate its unreliability for various values of the transient

failure rates. A failure bias of 0.3 was employed throughout the experiment. The

results are tabulated in Table 5.

Here we observe that the unreliability of the system decreases gradually as the

failure rates of the individual nodes decrease.

199

Table 6: Comparison of the Recovery Policies

Configuration Fixed Recovery Action RAMP Algorithm
Conf2 0.00342 0.00336
Conf3 0.0006462 0.0002841
Conf4 0.0002977 0.0001736
Conf5 2.1 x 10~5 1.3 x 10-5

5.6.2 Comparing the Recovery Policies

As we have seen earlier, the RAMP algorithm [30] suggests the optimal recovery

action to be used whenever there is a fault in the system and a decision has to be

made (regarding the choice of the recovery actions). Even though it is theoretically

proved to work well, it will definitely help to know how well it performs for a typical

system of our choice.

Since the simulator provides a control on choosing the recovery policy to be used

for the system, we can proceed by running two experiments. We can do one set of

simulation runs with a fixed recovery action and another with the RAMP algorithm

and compare the results.

A Fixed Recovery Action

The three basic recovery actions are Retry, Replace and Disconnect. They had

the overheads of 1, 2, and 3 units of time respectively. Based on these numbers an

intuitive fixed recovery action can be formulated such as the following:

• When the node fails, try a Retry first.

• If the Retry failed, then try to Replace the faulty node by a spare node.

200

• If a spare does not exist, then as a final resort, Disconnect the faulty node and

distribute its load to the other active nodes.

We used such a fixed recovery action in the configurations Conf2, Conf3, Conf4 and

Conf5 mentioned earlier. The unreliability estimates of these configurations are shown

in the Table 4. The failure bias used was 0.3

Comparison with RAMP Algorithm

Next, we run the same configuration, replacing only the fixed recovery policy

with the RAMP algorithm to estimate the new unreliability. This experiment can be

repeated for other configurations and the results are compared in Table 6.

From this we can see clearly that the RAMP algorithm performs better than the

intuitive fixed recovery action for all of the considered configurations.

201

CHAP TER 6

CONCLUSIONS

This thesis work consisted of the implementation of an efficient variance reduction

technique called importance sampling in a simulator testbed.

• The implementation of this technique is validated by running a series of sim-

ulations for different configurations and comparing the results with that of a

normal simulation.

• The effect of the failure bias on the sample variance has been investigated to

provide some guidelines in choosing a good failure bias probability for a given

system.

• The tool is used to

— Observe the change in the unreliability of the system with the change in

the transient fault rates

- Demonstrate that using an optimal failure recovery algorithm such as

RAMP can significantly improve the reliability of a real-time system.

A couple of improvements can be done to the implementation to improve the

usability of the tool.

202

• The efficiency of the simulation. Since the simulator was designed to model

very complex interactions between the hardware and the algorithms, the number

of events to be simulated is very large. A pessimistic algorithm is used to

coordinate the different clocks in the nodes. Because of these reasons, each

simulation run takes a very long time. It might be very beneficial if the events

are studied closely to discover the potential bottlenecks.

• Choice of the failure bias. In the present model, it is left to the user to make

a good guess of the failure bias. It might be possible to make the simulator learn

from the past history and adapt the value of the failure bias.

203

Bibliography

[1] S. Andradottir, D. Heyman and T. Ott, "On the Choice of Alternative Measures
in Importance Sampling with Markov Chains," Operations Research vol.43, no.3,
pp.509-519 1995.

[2] M. Berg and I. Koren, "On Switching Policies for Modular Fault-Tolerant Com-
puting Systems," IEEE Trans. Computers, Vol. C-36, pp. 1052-1062, Sept.
1987.

[3] M.Boyd and S.Bavuso, "Simulation Modeling for Long Duration Spacecraft Con-
trol Systems," 1993 Proc. Annual Reliability and Maintainability Symposium,"
pp 106-113 1993.

[4] J.Carrasco, "Failure distance based simulation of repairable fault-tolerant sys-
tems," Proc. of 5th International Conf. on Modeling Techniques and Tools for
Computer Performance Evaluation, 1991, pp 337-351.

[5] J.Carrasco, "Efficient Transient Simulation of Failure/Repair Markovian Mod-
els," Proc. of 10th Symposium on Reliable and Distributed Computing, IEEE
Computer Society Press, 1991, pp 152-161.

[6] J.Dugan, K.Trivedi, M.Smotherman, R.Geist, "The Hybrid Automated Reliabil-
ity Predictor," AIAA Journal of Guidance, Control, and Dynamics, 1986, vol. 9.

[7] P.L'Ecuyer, "Efficiency Improvement and Variance Reduction," Proc. of the
1994 Winter Simulation Conf. pp. 122-132 1994.

[8] Al Geist, A. Beguelin, J. Dongarra, W. Jiang, R.Manchek, V.Sunderam, PVM:
Parallel Virtual Machine, MIT Press, 1994.

204

[9] P.Glynn and D.Iglehart, "Importance Sampling for Stochastic Simulations," Man-
agement Science, vol. 35, no. 11, pp. 1367-1393, 1989.

[10] A.Goyal and S.S.Lavenberg, "Modeling and analysis of computer system avail-
ability," IBM J. Res. Develop., vol.31 pp.651-664, 1987.

[11] A.Goyal, P.Heidelberger, P.Shahabuddin, "Measure Specific Dynamic Impor-
tance Sampling for Availability Simulations," 1987 Winter Simulation Confer-
ence Proceedings, IEEE Press 1987.

[12] A.Goyal, P.Shahabuddin, P.Heidelberger, V.F.Nicola and P.W.Glynn, "A Uni-
fied Framework for Simulating Markovian Models of Highly Dependable Sys-
tems," IEEE Transactions on Computers, vol.41 no.l pp. 36-51, 1992.

[13] J.M.Hammersley and D.C.Handscomb, Monte Carlo Methods, Meuthen, Lon-
don, 1964.

[14] P. Heidelberger, "Fast Simulation of Rare Events in Queueing and Reliability
Models," A CM Transactions on Modeling and Computer Simulation Vol. 5, No.
1, 1995.

[15] R. Jain, FDDI Handbook, Addison-Wesley, 1994 .

[16] C. M. Krishna and K. G. Shin, Real-Time Systems, McGraw-Hill, 1997 .

[17] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem," Communications of the ACM, Volume 21, 7, 1978.

[18] E. E. Lewis and F. Böhm, "Monte Carlo simulation of Markov unreliability mod-
els," Nuclear Engineering and Design, Vol. 77, 1984.

[19] M.Nakayama, "A Characterization of the simple failure biasing method for sim-
ulations of highly reliable Markovian Systems," ACM Trans. Model. Comput.
Simul. vol. 4, no. 1, pp 52-88, 1994.

205

[20] M. L. Puterman, Markov Decision Processes, John Wiley & Sons Inc., 1994.

[21] S. M. Ross, Applied Probability Models with Optimization Applications, San Fran-
sisco: Holden-Day, 1970.

[22] S. M. Ross, Simulation, Academic Press, 1997.

[23] P.Shahabuddin, V.Nicola, P.Heidelberger, A.Goyal and P.Glynn, "Variance Re-
duction in Mean Time to Failure Simulations," 1988 Winter Simulation Confer-
ence Proceedings, IEEE Press, 1988.

[24] P.Shahabuddin, "Simulation and Analysis of Highly Reliable Systems," Ph.D.
Thesis, Department of Operations Research, Stanford University, Palo Alto, Cal-
ifornia.

[25] P.Shahabuddin, "Simulation of Highly Reliable Markovian Systems," Manage-
ment Science, vol. 40, pp 333-352, 1994.

[26] P.Shahabuddin and M.Nakayama "Estimation of reliability and its derivatives
for large time horizons in Markovian systems", 1993 Winter Simulation Confer-
ence Proceedings, IEEE Press, pp 491-499.

[27] W. Stallings, Handbook of Computer-Communications Standards, Howard W.
Sams & Co., 1988.

[28] J.S. Steinman, "Breathing Time Warp," Proceedings of the 1993 Workshop on
Parallel and Distributed Simulation, 1993.

[29] K. K. Toutireddy, "A Testbed for Pjoslt Tolerant Real-Time Systems," M.S. The-
sis, Univ. of Mass. Amherst, 1996.

[30] K. Yu, "RAMP and the Dynamic Recovery and Reconfiguration of a Distributed
Real-Time System," Ph.D. Thesis, Univ. of Mass. Amherst, 1996.

206

[31] K. Yu and I. Koren, "Reliability Enhancement of Real-Time Multiprocessor Sys-
tems through Dynamic Reconfiguration," Fault-Tolerant Parallel and Distributed
Systems, D. Pradhan and D. Avresky (Editors), pp. 161-168, IEEE Computer
Society Press, Los Alamitos, CA, 1995.

»U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055-10071

207

DISTRIBUTION LIST

a 4 dresses number
of copies

RALPH KOHLE«
AFRL/SNRT
26 ELECTRONIC PKY
ROHE NY 13441-4514

DEPT OF ELECTRICAL AND COMPUTER
ENGINEERING

UNIVERSITY OF MASSACHUSETTS
AHH6R5T nk 01003

AF 3L/I FOIL
TECHNICAL LIBRARY
?6 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER

KINSMAN ROAD, STJ
VA 22060-6218

8725 JOHN J.
FT. OELVOIRr

094A

DEFENSE ADVANCED RESEARCH
PROJECTS ASENCY
3701 r*ORTH FAIRFAX DRItfE
ARLINGTON VA 22203-1714

AFRL/SNQR
ATTH: FRAN SMITH
26 ELECTRONIC PKY
ROME kV 13441-4514

OL-1

