
AFRL-IF-RS-TR-2001-44
Final Technical Report
April 2001

MOBILE INFORMATION AGENTS

Dartmouth College

Daniela Rus

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20010607 005
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-44 has been reviewed and is approved for publication.

APPROVED- ' ^ • /} -£

RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR:

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Farm Approved

OMB No. 0704-0188

Pubbc reporting bunten for this collection of information is ostimated to average 1 hour par response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estenate or any other aspuct of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY {Leave blank} 2. REPORT DATE

APRIL 2001

3. REPORT TYPE AND DATES COVERED

Final Jan 98 - Jan 01
4. TITLE AND SUBTITLE

MOBILE INFORMATION AGENTS

6. AUTHOR(S)

Daniela Rus

7. PERFORMING ORGANIZATION NAMEISI AND ADDRESS(ES)

Department of Computer Science
Dartmouth College
Hanover NH 03755

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFTD
525 Brooks Road
Rome NY 13441-4505

5. FUNDING NUMBERS

C - F30602-98-C-0006
PE- 63728F
PR- 2532
TA- 01
WU-52

8. PERFORMING ORGANIZATION
REPORT NUMBER

. N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-44

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTD/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The main goals for this project were to develop automated information organization algorithms, and to integrate the
information organization algorithms in a mobile agent platform. The main objective was to investigate and demonstrate the
value of a paradigm of computation in heterogeneous distributed systems with non-permanent network connections, in which
mobile agents bring the computation to the data. As a result, a system called D'Agents that supports mobile agents has been
developed. D'Agents is especially suited to distributed information access experiments in a network of mobile computers,
such as laptops, palmtops, and other wireless devices. In addition, this effort has developed, implemented, and evaluated an
information organization algorithm called the star algorithm. The star algorithm gives an organization of collection into
clusters. Results for this effort include:
1. Information overload is a serious problem and efficient automatic information organization algorithms are useful in
addressing this problem.
2. The Star Clustering algorithms: a. is the best performing algorithm for large-scale information organization, b. can be
used in an on-line or off-line fashion and has several scalable extensions, c. has been analyzed and this effort's large-scale
experiments math the theory, d. can be used for filtering applications and for persistent queries.
3. By combining the Star clustering algorithm with the power of mobile agent system, we increase system performance
dramatically.
14. SUBJECT TERMS

Knowledge Base, Software, Data Base, Computers

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

144
16. PRICE CODE

20. LIMITATION OF
AFJSTF*ACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIBI0R, Oct 94

Table of Contents

1. Research Summary
1.1 Project Goals
1.2 Background
1.3 Information Organization

2. Lessons Learned

3. Students

4. Software

5. Papers

6. Talks

7. Service to the Community

8. Interactions with other Agencies

Appendix 1 Static and Dynamic Information Organization with Star Cluster
Appendix 2 A Practical Clustering Algorithm for Static and Dynamic

Information Organization
Appendix 3 Scalable Information Organization
Appendix 4 Mobile Information Agents
Appendix 5 Information Organization Algorithms and Applications
Appendix 6 Information Organization Algorithms and Applications

1
1
1
3

6

7

7

7

8

8

9

10

20
30
40
77
111

1 Research Summary

1.1 Project goals

The main goals for our project have been:

1. to develop automated information organization algorithms

2. to integrate the information organization algorithms in a mobile agent platform

We have fulfilled both goals successfully. The following sections detail our results.

1.2 Background
Information in electronic form is proliferating rapidly in a variety of forms. We now have powerful
search engines that can return pointers to millions of documents on any subject. How can we
tap into this fortune, while avoiding information overload?

The productivity and success of an individual in a society innundated with electronic data
will be largely determined by timely access to information. This is particularly challenging when
the data is unstructured, active, and heterogeneous. It seems unlikely that we could package
information in a standardized form for the purposes of extraction and interpretation, because
people's information needs are varied and the production of information is easy. The production
of information is such that "manufacturing" facilities can be moved easily at little, or no cost,
giving rise to transient datasources. Just as the invention of the railroad (and other means
of mass transportation) has made it possible for comsumers to obtain products quickly, our
vision is to provide ubiquitous, customized, and organized access to all users. To this end, we
advocate technologies for systems in which customers can express information needs in flexible
ways, and that provide facilities for an intelligent and customized exploration of the Web and
other information spaces.

To build useful tools for tapping into the vast evolving net of information resources, we need
to address two fundamental issues.

a. Data access in modern computing environments: how do we access information in a
computing environment defines by dynamic wireless compute platforms and transient databases?

Computers are departing from their traditional desk-top configurations and becoming more
portable. We now have wireless -computers and palm-top computers that can interface with
the rest of the elctronic world independent of their physical location. In an environment with
ubiquitous computers, we would like to provide ubiquitous access to computers and information.
Sample applications include anywhere, anytime communication, flexible scheduling, smart rooms,
embedded devices, support for collaborative decision making, etc. • The key research questions
that need to be addressed to support such applications include: (1) what is the hardware infras-
tructure best suited for this task?; (2) how can we provide active networking in a dynamic system
of computers?; and (3) how can we locate users and forward information when the originating
host might become disconnected?

b. Data evolution: how do we organize an ever-changing information space?

As information systems grow, they need to autonomously reorganize themselves to effectively
meet requests for information. Such reorganization could involve simple processes like active
selection and caching of information views that facilitate query processing, to more complex
processes that generate and maintain active indexes into information. Sample applications in-
clude automatic capture and access tasks in digital libraries. Information organization algorithm
can be used to organize any collection of documents in a customized way. Users can organize
their email files. Large corporations can organize their manuals, news releases, and internal
documents. Such a system can be used to create "Web Centers" and "Yellow Pages" automat-
ically and provide users with better interfaces. The system can alo be used as a front end to a
search engine. The key to supporting such applications is reasearch that would lead to efficient
algorithms for information organization that theoretically well-grounded and creating flexible,
modular, and customizable systems that use these algorithms.

To address these issues effectively, we need new ways of conceptualizing and communicat-
ing information needs. We believe that a good approach is a computational paradigm relying
on customizable mobile information agents. By agents we mean autonomous decision-making
programs that migrate from host to host under their own control. By customizable we mean pro-
grams that evolve automatically with changes in the information landscape, as well as programs
that can be easily modified and assembled by users, according to their tasks. By information
agents we mean dedicated program that can run sophisticated information capture, access, and
organization algorithms.

Our main objective has been to investigate and demonstrate the value of a paradigm of compu-
tation in heterogeneous distributed systems with non-permanent network connections, in which
mobile agents bring the computation to the data. A mobile agent is an automous program that
can migrate from machine to machine in a heterogeneous network, at times and to places of
its own choosing. This navigation autonomy is very powerful, and requires an agent to have
substantial intelligence in making decisions and filtering information.

We have built a system called D'Agents that supports mobile agents. D'Agents is especially
suited to distributed information access experiments in a network of mobile computers, such
as laptops, palmtops, and other wireless devices. Mobile computers do not have a permanent
connection into the network and are often disconnected for a long period of time. We focus on
applications that require extensive data processing over distributed and transient databases in
wireless networks. We look for algorithms that allow agents to retrieve and organize the relevant
data as naturally occuring hierarchies of topics and subtopics.

Mobile agents provide a convenient, efficient, and intelligent paradigm for implementing dis-
tributed applications, especially in the context of wireless computing. First, by migrating to the
location of an electronic resource, an agent can access the resource locally and eliminate costly
data transfers over congested networks. This reduces network traffic, because it is often cheaper
to send a small agent to a data source than to send all the intermediate data to the requesting
site. Second, the agent does not require a permanent connection to the host machine (e.g., the
computer from where an agent is launched). This capability supports distributed information-
processing applications on mobile computers. Third, the network-sensing capabilities enable
agents to autonomously find the host computer, even when the host changes its geographical
location. Fourth, the network software- and hardware-sensing capabilities permit transportable

agents to navigate adaptively. Fifth, our transportable agents can communicate with each other
even when they do not know their specific locations in the network. Finally, agents have auton-
omy in decision making: by using feedback from visiting a site, they can independently modify the
overall plan or refine ill-specified queries. When combined with communication, decision-making
enables our agents to be negotiators. D'Agents supports negotiation through an infrastructure
that supports transactions on electronic cash, arbitration on electronic cash transactions, and
economic policies for resource control.

Although this contract has not supported the entire development of the D'Agents system, it
has supported a small portion of it. The rest of the project was supported by Darpa, AFOSR,
and ONR. We used the D'Agents system as a lpatform in evaluating some of the applications of
our information organization algorithms described in the next section.

1.3 Information Organization

For this aspect of our work, are motivated by a long-term vision in which information systems
can help leaders make decisions by collecting, filtering, updating, and presenting information
quickly, accurately, and effectively. Information systems will compute the underlying topic-
subtopic structure of dynamic textual databases. As new information comes into the database,
the system will fuse it with the existing topic structure. The system will also be able to remove
documents from the database.

Our work focuseson a paradigm for organizing data that can be used as a pre-processing step
in a static information system or as a post-processing step on the specific documents retrieved by
a query. As a pre-processor, this system assists users with deciding how to browse the corpus by
highlighting relevant topics and irrelevant subtopics. Such clustered data is useful for narrowing
down the corpus over which detailed queries can be formulated. As a post-processor, this system
classifies the retrieved data into clusters that capture topic categories and subcategories.

We have developed, implemented, and evaluated an information organization algorithm called
the star algorithm. The star algorithm gives an organization of a collection into clusters. Each
level in the hierarchy is determined by a threshold for the minimum similarity between pairs of
documents within a cluster at that particular level in the hierarchy. This method conveys the
topic-subtopic structure of the corpus according to the similarity measure used.

The problem can be formulated by representing an information system by its similarity graph.
A similarity graph is an undirected, weighted graph G = (V,E,w) where vertices in the graph
correspond to documents and each weighted edge in the graph corresponds to a measure of
similarity between two documents. We measure the similarity between two documents by using
the cosine metric in the vector space model of the Smart information retrieval system. G is
a complete graph with edges of varying weight. An organization of the graph that produces
reliable clusters of similarity sigma (i.e., clusters where documents pairwise have similarities of
at least sigma) can be obtained by performing a minimum clique cover of all edges whose weights
are above the threshold sigma. Unfortunately, this approach is computationally intractable. For
real corpora, these graphs can be very large. The clique cover problem is NP-complete, and it
does not admit polynomial-time approximation algorithms. While we cannot perform a clique
cover nor even approximate such a cover, we can instead cover our graph by dense subgraphs.

Specifically, we use star-shaped subgraphs. A star-shaped subgraph on m+1 vertices consists of
a single star center and m satellite vertices, where there exist edges between the star center and
each of the satellite vertices. The star-cover algorithm is provably accurate in that it produces
dense clusters with provable guarantees on the pairwise similarity between cluster documents,
and it can be quickly computed. The documents in each cluster are tightly inter-related and a
minimum similarity distance between all the document pairs in the cluster is guaranteed. This
resulting structure reflects the underlying topic structure of the data. A topic summary for each
cluster is provided by the center of the underlying star for the cluster.

This approach has three nice features. First, by using star-shaped graphs to cover the similarity
graph, we are guaranteed that all the documents in a cluster have the desired degree of similarity.
Second, covering the edges of the graph allows vertices to belong to several clusters. Documents
can be members of multiple clusters, which is a desirable feature when documents have multiple
subthemes. Third, this algorithm can be iterated for a range of thresholds, effectively producing
a hierarchical organization structure for the information system. Each level in the hierarchy
summarizes the collection at a granularity provided by the threshold.

We have developed a prototype system for doing this task. We have experimented with this
system and found that the precision-recall is higher than the precision-recall of other techniques
such as the single link method, average-link method, and the k-means method. We are currently
working on an on-line version of this system that could organize dynamically-changing document
collections.

These algorithms can be used to create automatically knowledge bases. A set of raw documents
are indexed to create information bases. By clustering an information base and summarizing the
results of the organized collection we add a higher-level of knowledge into the database. This
type of knowledge can be used to reduce information overload and have applications in a variety
of tasks, such as customized filtering of information, topics detection and tracking in continuous
information streams, collaborative decision making, etc.

The off-line and on-line star algorithms can be optimized further for better performance. Note
that both versions of the algorithm rely on the existence of the similarity matrix. Similarity
matrices can get very large: for a document set with n documents the similarity matrix is 0{n2)
space data structure. However, this operation, which takes 0(n2) time to compute, is much more
expensive than the basic cost of the star clustering algorithm, which is approximately 0{V + E)
time. Thus, it is clear that the similarity matrix is a bottleneck. Computing this matrix is a one-
time pre-processing operation. However, the data structure has to be available on a permanent
basis. For these reasons, it is important to consider methods that improve on the similarity
matrix bottleneck.

We have developed, implemeted, and started testing an extension that approximates the star
algorithm by using sampling to compute the similarity matrix. The basic idea is to create a
sample of the document collection that is much smaller than the actual collection. This sample
can then be used to compute a complete Star Clustering, using the off-line star algorithm and
the remaining documents can be inserted in the resulting structure. An additional optimization
is to remove entirely the similarity matrix. The key information used by the star algorithm is
the degree of the nodes in the thresholded similarity graph. This information can be represented
in an array and it can be computed approximately, by sampling.

Another bottleneck for the star algorithm comes up in Internet applications, such as organiz-
ing data collected from various sited and databases by topic. Consider a task in which several
databases are queried with the same question. The documents returned by these queries are to
be fused and presented to the user in a coherent picture. One approach is to run the queries,
download all documents, and organize the entire collection at the user site using the star algo-
rithm. An alternative approach is to run the queries, organize the search results at the location
of the database, and then merge these results on the user machine. This second alternative has
several advantages: (1) the star algorithm can be run in parallel, which provides a speedup; (2)
the document transfer operation can also be parallelized (note that if the number of documents
is large and the network bandwidth is low, the cost of the transfer can be overwhelming); and (3)
the local topic organizations can be viewed as a way of compressing the documents, can be used
to generate the merged topics in the distributed collection, and can be transfered much faster
than the actual documents to the user's machine.

For these reasons, we developed a third approximation of the star algorithm called the dis-
tributed star algorithm, which is useful especially when the document collection is very large. The
distributed star algorithm provides parallelism and is based on a "divide and conquer" approach.
The document collection is partitioned into several disjoint sets. The sets are clustered sepa-
rately and the resulting clusters are then merged. We are currently implementing this distributed
version of the information organization system with D'agents. We plan to use this integrated
version of the system as an application on top of Serval, a large distributed database of

In another project, we started to investigate a new information-theoretic model for document
retrieval and clustering. In this model, a collection of text documents (the "corpus") is first
analyzed to determine a probability model for the terms within the corpus. Terms that appear
infrequently have relatively low assigned probabilities, while terms that appear frequently have
relatively high assigned probabilities. The Shannon information is then computed for each of the
terms in the corpus—it is simply the length of the codeword (in bits) assigned to each term in the
optimal encoding scheme for compressing or transmitting the corpus. The Shannon information
can be efficiently computed from the corpus probability model.

Given a query in the form of a collection of keywords, we can perform document retrieval by
determining the total number of bits that each document contains about the given keywords and
returning relevant documents ranked according to this measure. For each document, this bit total
can be calculated by summing, for each keyword, the product of its Shannon information times
the frequency with which that keyword appears in the document (normalized in such a way that
"short" documents and "long" documents are treated equally). Clustering can be achieved via
an information-theoretic similarity measure which can be derived within this model. Essentially,
the pairwise-similarity between two documents corresponds to the fraction of keyword bits that
the two documents share in common.

We have implemented a system employing these ideas on a large corpus containing some
130,000 documents. So far our results are encouraging, both in terms of accuracy (the "quality"
of retrieved documents) and efficiency (query retrieval on 100,000+ documents in a fraction of
a second on a PC).ject, we are currently investigating a new information-theoretic model for
document retrieval and clustering. In this model, a collection of text documents (the "corpus")
is first analyzed to determine a probability model for the terms within the corpus. Terms that

appear infrequently have relatively low assigned probabilities, while terms that appear frequently
have relatively high assigned probabilities. The Shannon information is then computed for each
of the terms in the corpus—it is simply the length of the codeword (in bits) assigned to each
term in the optimal encoding scheme for compressing or transmitting the corpus. The Shannon
information can be efficiently computed from the corpus probability model.

Given a query in the form of a collection of keywords, we can perform document retrieval by
determining the total number of bits that each document contains about the given keywords and
returning relevant documents ranked according to this measure. For each document, this bit total
can be calculated by summing, for each keyword, the product of its Shannon information times
the frequency with which that keyword appears in the document (normalized in such a way that
"short" documents and "long" documents are treated equally). Clustering can be achieved via
an information-theoretic similarity measure which can be derived within this model. Essentially,
the pairwise-similarity between two documents corresponds to the fraction of keyword bits that
the two documents share in common.

2 Lessons Learned

This effort has uncovered some valuable lessons for the computer science community, for the
airforce, and for the population at large.

1. Information overload is a serious problem and efficient automatic information organization
algorithms are useful in addressing this problem.

2. The Star Clustering algorithm is the best performing algorithm for large-scale information
organization.

3. The Star clustering algorithm can be used in an on-line or off-line fashinon and has several
scalable extensions.

4. The Star clustering algorithm has been analyzed and our large-scale experiments match
the theory.

5. The Star clustering algorithm can be used for filtering applications and for persistent
queries.

6. By combining the Star clustering algorithm with the power of mobile agent system we in-
crease system performance dramatically. Speciffically, we conserve bandwith by transfering
the code to the data, performing data processing at the site of the data, and bringing back
only the relevant results. In addition, mobile agents support multiple queries without con-
necting the the home machine and thus contribute to the reduction of the total completion
time of a job. Finally, mobile agents support disconnected queries, in low-latency wireless
networks.

3 Students

The following students were supported on this contract:

• Ekaterina Pelekhov, PhD student, thesis defended in May 2000; expecting the final version.

Mark Montague, PhD student, thesis expected in May 2001. •

• Ken Yasuhara, undergraduate student, currently a PhD student in the computer science
department at the University of Washington.

In addition to these students, profs. Jay Aslam, prof. David Kotz, and prof. Daniela Rus
were also supported in part by this contract.

4 Software

We designed and implemented a mobile-agent system called D'Agents
(see http://www.cs.dartmouth.edu/~agent/agenttcl.html). We have completed several releases

of this system that has security mechanism for protecting machines from malicious agents and
several additional capabilities for agents over the previous release. These versions support Agent
Tel, Agent Java, and Agent Scheme as programming languages.

We also designed and implemented a system that supports automated information organiza-
tion in static and dynamic environments, filtering on a text stream and persistent queries. The
system has a novel graphical user interface that projects the topic content of the corpus onto a 2-
dimensional window, thus supporting intuitive browsing to cope with information overload. The
information organization software is available from http://www.cs.dartmouth.edu/~rus/Softwaxe/info-
org.tar.gz.

5 Papers

The following papers resulted as part of this project:

"Automatic Information Organization" (with J. Aslam and K. Pelekhov), in Proceedings of the
2000 SSGCC (book with CD ROM).

"Mobile agents: motivations, state of the art, and frontiers" (with G. Cybenko, R. Gray, and D.
Kotz), in eds. J. Bradshaw, Handbook of Agent Technologies, MIT Press, 1999 (to appear).

"Generating, visualizing, and evaluating high-quality clusters for information organization"
(with J. Aslam and K. Pelekhov), in Proceedings of Principles of Digital Document Pro-
cessing eds. E. Munson, C. Nicholas, D. Wood, Lecture Notes in Computer Science 1481,
Springer-Verlag 1998.

"Applications of clustering to filtering and persistent queries" (with J. Aslam and K. Pelekhov),
in Proceedings of CIKM 2000 (November 2000).

"Scalable Information Organization" (with J. Aslam and F. Reiss), in Proceedings of RIAO
2000 (Content-based information access) (April 2000).

"A practical clustering algorithm for static and dynamic information organization" (with J.
Aslam and K. Pelekhov), in the 1999 Symposium on Discrete Algorithms (SODA99), Bal-
timore, MD (January 1999).

"Static and Dynamic Information Organization with Star Clusters" (with J. Aslam and K.
Pelekhov), In Proceedings of the 1998 Conference on Intelligent Knowledge Management,
Washington, DC (November 1998).

6 Talks

"Mobile Information Agents", D. Rus, Caterpillar, Peoria, IL, December 1998.

"Mobile Information Agents", D. Rus, Rome Labs, December 1998.

"Mobile Information Agents", D. Rus, Qualcom distinguished lecture, The University of
California at San Diego, February 1999.

"Mobile Information Agents", panel on modern information technologies moderated by Joe
Cavano, COMPSAC 99, October 99.

"Scalable Extensions of the Star Algorithm", F. Reiss, RIAO 2000, April 2000.

"Information Organization Algorithms", D. Rus, SGGRR 2000, L'Aquila Italy, July 2000.

"Using the star clustering algorithm for filtering", J. Aslam, CIKM 2000, November 2000.

"D'Agents: a secure mobile agent system", D. Rus, NRL, December 2000.

7 Service to the Community

• D. Rus, Treasurer, The 1999 International Conference on Autonomous Agents

• D. Rus, Program Committee, The Workshop on Mobile Agents in the Context of Compe-
tition and Cooperation, 1999

• D. Kotz, Program Committee, The Workshop on Mobile Agents in the Context of Compe-
tition and Cooperation, 1999

• D. Rus, Senior Program Committee, 1999 International Joint Conference on Artificial In-
telligence (IJCAI99)

D. Rus, General Chair, Dartmouth Workshop on Mobile Agents, 1999, 2000

D. Rus, Program Committee SIGIR

D. Rus, Senior Program Committee, 2001 International Conference on Autonomous Agents

•

•

8 Interactions with other Agencies

We are working with Darpa as part of the Co-Abs project and with the Air Force as part of a
MURI project. We have integrated the information organization system we developed as part
of this contract in our MURI demo and hope to do some integration with the Darpa Grid and
perhaps a Fleet Battle Experiment. We are looking for more venues to transition this work.

Static and Dynamic Information Organization
with Star Clusters

Javed Aslam Katya Pelekhov Daniela Rus

Department of Computer Science
Dartmouth College
Hanover, NH 03755

Abstract
In this paper we present a system for static and dy-

namic information organization and show our evaluations
of this system on TREC data. We introduce the off-line
and on-line star clustering algorithms for information or-

, ganization. Our evaluation experiments show that the off-
line star algorithm outperforms the single link and average
link clustering algorithms. Since the star algorithm is also
highly efficient and simple to implement, we advocate its
use for tasks that require clustering, such as information
organization, browsing, filtering, routing, topic tracking,
and new topic detection.

1 Introduction
Modern information systems have vast amounts of un-

organized data that change dynamically. Consider, for ex-
ample, the flow of information that arrives continuously
on news wires, or is aggregated by a news organization
such as CNN. Some stories are new while other stories are
follow-ups on previous stories. Yet another type of sto-
ries make previous reportings obsolete. The news focus
changes regularly with this flow of information. In such
dynamic systems, users need to locate information quickly
and efficiently.

Current information systems such as Inquery [Tur90],
Smart [Sal91] and Alta Vista provide some simple automa-
tion by computing ranked (sorted) lists of documents, but
it is ineffective for users to scan a list of hundreds of docu-
ment titles. To cull the critical information out of a large
set of potentially useful dynamic sources, we need meth-
ods for organizing information to highlight the topic con-
tent of a collection and reorganize the data" to adapt to
the incoming flow of documents. Such information organi-
zation algorithms would support incremental information
processing tasks such as routing, topic tracking and new
topic detection in a stream of documents.

In this paper, we present a system for the static and
dynamic organization of information and we evaluate the

system on TREC data. We introduce the off-line and on-
line star clustering algorithms for information organiza-
tion. We also describe a novel method for visualizing clus-
ters, by embedding them in the plane so as to capture their
relative difference in content. Our evaluation experiments
show that the off-line star algorithm outperforms the sin-
gle link and average link clustering algorithms. Since the
star algorithm is also highly efficient and simple to imple-
ment, we advocate its use for tasks that require clustering,
such as information organization, routing, topic tracking,
and new topic detection.
1.1 Previous Work

There has been extensive research on clustering and ap-
plications to many domains [HS86, AB84]. For a good
overview see [JD88]. For a good overview of using cluster-
ing in information retrieval see [Wil88].

The use of clustering in information retrieval was mostly
driven by the cluster hypothesis [Rij79] which states that
relevant documents tend to be more closely related to each
other than to non-relevant documents. Efforts have been
made to determine whether the cluster hypothesis is valid.
Voorhees [Voo85] discusses a way of evaluating whether
the cluster hypothesis holds and shows negative results.
Croft [Cro80] describes a method for bottom-up cluster
search that could be shown to outperform a full rank-
ing system for the Cranfield collection. The single link
method [Cro77] does not provide any guarantees for the
topic similarity within a cluster. Jardine and van Rijsber-
gen [JR71] show some evidence that search results could
be improved by clustering. Hearst and Pedersen [HP96]
re-examine the cluster hypothesis by focusing on the Scat-
ter/Gather system [CKP93] and conclude that it holds for
browsing tasks.

Systems like Scatter/Gather [CKP93] provide a mech-
anism for user-driven organization of data into a fixed
number of clusters, but user feedback is required and the
computed clusters do not have accuracy guarantees. Scat-
ter/Gather uses fractionation to compute nearest-neighbor
clusters. In a recent paper, Charika et al. [CCFM97] con-
sider a dynamic clustering algorithm to partition a col-
lection of text documents into a fixed number of clusters.
However, since the number of topics in a dynamic infor-
mation systems is not generally known a priori, a fixed
number of clusters cannot generate a natural partition of
the information.

10

1.2 Our Work
Our work on clustering presented in this paper and

in [APR98] describes a simple incremental algorithm, pro-
vides positive evidence for the cluster hypothesis, and shows
promise for on-line tasks that require dynamically adjust-
ing the topic content of a collection such as filtering, brows-
ing, new topic detection and topic tracking. We propose
an off-line algorithm for clustering static information and
an on-line version of this algorithm for clustering dynamic
information. These two algorithms compute clusters in-
duced by the natural topic structure of the space. Thus,
this work is different than [CKP93, CCFM97] in that we
do not impose a fixed number of clusters as a constraint
on the solution. As a result, we can guarantee a lower
bound on the topic similarity between the documents in
each cluster.

To compute accurate clusters, we formalize the clus-
tering problem as one of covering a thresholded similar-
ity graph by cliques. Covering by cliques is NP-complete
and thus intractable for large document collections. Re-
cent graph-theoretic results have shown that the problem
cannot even be approximated in polynomial time [LY94,
Zuc93]. We instead use a cover by dense subgraphs that are
star-shaped1, where the covering can be computed off-line
for static data and on-line for dynamic data. We show that
the off-line and on-line algorithms produce high-quality
clusters very efficiently. Asymptotically, the running time
of both algorithms is roughly linear in the size of the sim-
ilarity graph that defines the information space. We also
derive lower bounds on the topic similarity within clusters
guaranteed by a star covering, thus providing theoretical
evidence that the clusters produced by a star cover are of
high-quality. We packaged these algorithms as a system
that supports ad-hoc queries, static information organi-
zation, dynamic information organization, and routing. In
this system we contributed a novel way of visualizing topic
clusters by using disks whose radii are proportional to the
size of the cluster and that are embedded in the plane in a
way that captures the topic distance between the clusters.
Finally, we provide experimental data for off-line and on-
line topic organization. In particular, our off-line results
on a TREC collection indicate that star covers exhibit sig-
nificant performance improvements over either the single
link [Cro77] or average link [Voo85] methods (21.6% and
16.2% improvements, respectively, with respect to a com-
mon cluster quality measure) without sacrificing simplicity
or efficiency.

1.3 Utility
Our algorithms for organizing information systems can

be used in several ways. The off-line algorithm can be
used as a pre-processing step in a static information sys-
tem or as a post-processing step on the specific documents
retrieved by a query. As a pre-processor, this system as-
sists users with deciding how to browse a database of free
text documents by highlighting relevant topics and irrele-
vant subtopics. Such clustered data is useful for narrowing
down the database over which detailed queries can be for-
mulated. As a post-processor, this system classifies the
retrieved data into clusters that capture topic categories
and subcategories. The on-line algorithm can be used for

'In [SJJ70] stars were also identified to be potentially useful for
clustering.

constructing self-organizing information systems, for rout-
ing problems, for topic detection, and for topic tracking.

2 Off-line Information Organization
In this section, we begin by presenting an efficient al-

gorithm for off-line organization of information. We then
describe our system built around this algorithm, including
user interface design and visualization techniques. Finally,
we present a performance evaluation of our organization
algorithm. We begin by examining the organization prob-
lem and introducing the star algorithm.

2.1 The Star Algorithm
We formalize our problem by representing an informa-

tion system by its similarity graph. A similarity graph is an
undirected, weighted graph G — (V, E, w) where vertices
in the graph correspond to documents and each weighted
edge in the graph corresponds to a measure of similarity
between two documents. We measure the similarity be-
tween two documents by using the cosine metric in the
vector space model of the Smart information retrieval sys-
tem [Sal89, Sal91].

G is a complete graph with edges of varying weight. An
organization of the graph that produces reliable clusters of
similarity a (i.e., clusters where documents have pairwise
similarities of at least <x) can be obtained by first thresh-
olding the graph at a and then performing a minimum
clique cover with maximal cliques on the resulting graph
Ga. The thresholded graph Ga is an undirected graph ob-
tained from G by eliminating every edge whose weight is
lower that a. The minimum clique cover has two features.
First, by using cliques to cover the similarity graph, we
are guaranteed that all the documents in a cluster have
the desired degree of similarity. Second, minimal clique
covers with maximal cliques allow vertices to belong to
several clusters. In our information retrieval application
this is a desirable feature as documents can have multi-
ple subthemes. However, the algorithm can also be used
to compute non-overlapping clusters. In our experimen-
tal evaluations (see Figure 4) we show that the difference
in results between star with overlapping clusters and star
without overlapping clusters is very small.

Unfortunately, this approach is not tractable computa-
tionally. For real corpora, similarity graphs can be very
large. The clique cover problem is NP-complete, and it
does not admit polynomial-time approximation algorithms
[LY94, Zuc93], While we cannot perform a clique cover nor
even approximate such a cover, we can instead cover our
graph by dense subgraphs. What we lose in intra-cluster
similarity guarantees, we gain in computational efficiency.
In this section and the sections that follow, we describe
off-line and on-line covering algorithms and analyze their
performance and efficiency.

We approximate a clique cover by covering the asso-
ciated thresholded similarity graph with star-shaped sub-
graphs. A star-shaped subgraph on m + 1 vertices consists
of a single star center and m satellite vertices, where there
exist edges between the star center and each of the satellite
vertices. While finding cliques in the thresholded similarity
graph Ga guarantees a pairwise similarity between docu-
ments of at least a, it would appear at first glance that
finding star-shaped subgraphs in Ga would provide simi-
larity guarantees between the star center and each of the
satellite vertices, but no such similarity guarantees between

11

For any threshold a:

1. Let Ga = (V, Ea) where Ea = {e : w(e) > o-}.

2. Let each vertex in Ga initially be unmarked.

3. Calculate the degree of each vertex v € V.

4. Let the highest degree unmarked vertex be a star
center and construct a cluster from the star center
and its associated satellite vertices. Mark each
node in the newly constructed cluster.

5. Repeat step 4 until all nodes are marked.

6. Represent each cluster by the document corre-
sponding to its associated star center.

Figure 1: The star algorithm

satellite vertices. However, by investigating the geometry
of our problem in the vector space model, we can derive
a lower bound on the similarity between satellite vertices
as well as provide a formula for the expected similarity be-
tween satellite vertices. The latter formula predicts that
the pairwise similarity between satellite vertices in a star-
shaped subgraph is high, and together with empirical evi-
dence supporting this formula, we shall conclude that cov-
ering G0 with star-shaped subgraphs is a reliable method
for clustering a set of documents,

The star algorithm is based on a greedy cover of the
thresholded similarity graph by star-shaped subgraphs; the
algorithm itself is summarized in Figure 1. The star algo-
rithm is very efficient. In [APR98] we show that the star
algorithm can be correctly implemented in such a way that
given a thresholded similarity graph Go, the running time
of the algorithm is Q(V + Ea), linear in the size of the
input graph.

2.2 Cluster Quality
In this section, we argue that the clusters produced

by a star cover have high average intra-cluster similar-
ity weights; thus, the clusters produced are accurate and
of high quality. Consider three documents C, Si and S2

which are vertices in a star-shaped subgraph of Ga, where
S\ and S2 are satellite vertices and C is the star center. By
the definition of a star-shaped subgraph of Go, we must
have that the similarity between C and Si is at least <x and
that the similarity between C and S2 is also ät least a. In
the vector space model, these similarities are obtained by
taking the cosine of the angle between the vectors associ-
ated with each document. Let a\ be the angle between C
and Si, and let a? be the angle between C and S2. We
then have that cos Qi >a and cos 02 > <r. Note that the
angle between Si and S2 can be at most ax + a2, and
therefore we have the following lower bound on the simi-
larity between satellite vertices in a star-shaped subgraph
of Go-

Theorem 1 Let Go be a similarity graph and let Si and
S2 be two satellites in the same star in Ga- If Qi > a and
at2 > a are the respective similarities between Si and the
star center and between S2 and the star center, then the

similarity between Si and S2 must be at least

cos(c*i + a2) = cosai cosä2 — sinai sina2.

If a = 0.7, cosai = 0.75 and cosa2 = 0.85, for in-
stance, we can conclude that'the similarity between the
two satellite vertices must be at least2

(0.75) • (0.85) - yj\ - (0.75) Vl - (0-85)2 « 0.29.

While this may not seem very encouraging, the above anal-
ysis is based on absolute worst-case assumptions, and in
practice, the similarities between satellite vertices are much
higher. We further undertook a study to determine the
expected similarity between two satellite vertices. Under
the assumption that "similar" documents are essentially
"random" perturbations of one another in an appropriate
vector space, we have proven the following [APR97]:

medline
mean square error

0.025 -
0.02

0.015
0.01 - A

0.005 - I\\J'
0

0 k-"^^
0.2 X

0.4 X
0.6 X

0.8
0.6 0.4

Figure 2: This figure shows the actual mean-squared pre-
diction error for a 6,000 abstract subset of MEDLINE.

Theorem 2 Let Go be a similarity graph and let Si and
S2 be two satellites in the same star in Ga. If an > cr and
OL2 > a are the respective similarities between Si and the
star center and between S2 and the star center, then the
expected similarity between Si and S2 is

cosai coso!2 +
1 + 0

sin c*i sin 0:2.

For the previous example, the above formula would
predict a similarity between satellite vertices of approx-
imately 0.78. We have tested this formula against real
data, and the results of the test with the MEDLINE data
set are shown in Figure 2. In this plot, the x- and y-axes
are similarities between a cluster center and each of two
satellite vertices, and the 2-axis is the actual mean squared
prediction error of the above formula for the similarity be-
tween satellite vertices. Note that the root mean square
error (RMS) is quite small (approximately 0.13 in the worst
case), and for reasonably high similarities, the error is neg-
ligible. From our tests with real data, we have concluded
that this formula is quite accurate and that star-shaped
subgraphs are reasonably "dense" in the sense that they
imply relatively high pairwise similarities between docu-
ments.

zNote that sin 6 = VI - cos2 0.

12

File Query Topics

Collections
r Tuotomne Technical Reports

_j Tioga Technical Reports

j Muir Technical Reports
jTenaya Tech Weal Report»

Query 1: Parallel processing
distributed and parallel systems

J
Documents

40 i

Query 0: Parallel processing
distributed and parallsl systens

Got- ^Jl

Relevant documents (40 requested, 40»ound)
0 29 Multiprocessor File System Interfaces <'H1>
0.27 The Galley Parallel File System </H1>
0.21 File-Access Characteristics of Parallel Scientific Workloads .

Graph

Learn

050;rfoftnöftnpiemer^
0.20 Building Segment Trees In Parallel </H1>
0.19 Dynamic File-Access Characteristics of a Production Parallel Sc
0.13 A DAta-Parallel Programming Library for Education (DAPPLE) o'HI
0.18 A Multiprocessor Extension to the Conventional File System Inte
03* View;3: A Programming Environment lor Distributed Programming <
0.1S Low-level Interfaces for High-level Parallel I/O ■
0^7 SPEDE: A Siiiiple Progiainrhing Environment for Distributed ExecuU

»ciitlon

Figure 3: This is a screen snapshot from a clustering experiment. The top window is the query window. The middle
window consists of a ranked list of documents that were retrieved in response to the user query. The user may select
"get" to fetch a document or "graph" to request a graphical visualization of the clusters as in the bottom window. The
left graph displays all the documents as dots around a circle. Clusters are separated by gaps. The edges denote pairs of
documents whose similarity falls between the slider parameters. The right graph displays all the clusters as disks. The
radius of a disk is proportional to the size of the cluster. The distance between the disks is proportional to the similarity
distance between the clusters.

2.3 The System
We have implemented a system for organizing informa-

tion that uses the star algorithm. This organization sys-
tem was used for the experiments described in this paper.
It consists of an augmented version of the Smart system
[Sal91, AH95], a user interface we have designed, and an
implementation of the star algorithm on top of Smart. To
index the documents we used the Smart search engine with

a cosine normalization weighting scheme. We enhanced
Smart to compute a document to document similarity ma-
trix for a set of retrieved documents or a whole collection.
The similarity matrix is used to compute clusters and to
visualize the clusters. The user interface is implemented
in Tcl/Tk.

The organization system can be run on a whole col-
lection, on a specified subcollection, or on the collection of

13

documents retrieved in response to a user query. Users can
input queries by typing free text. They have the choice
of specifying several corpora. This system supports dis-
tributed information retrieval, but in this paper we do not
focus on distribution and we assume only one centrally lo-
cated corpus. In response to a user query, Smart is invoked
to produce a ranked list of the top most relevant docu-
ments, their titles, locations and document-to-document
similarity information. The similarity information for the
entire collection, or for the collection computed by the
query engine is provided as input to the star algorithm.
This algorithm returns a list of clusters and marks their
centers.

2.4 Visualization
We have developed a visualization method for organized

data that presents users with three views of the data (see
Figure 3): a list of text titles, a graph that shows the sim-
ilarity relationship between the documents, and a graph
that shows the similarity relationship between the clusters.
These views provide users with summaries of the data at
different levels of detail (text, document and topic) and
facilitate browsing by topic structure.

The connected graph view (inspired by [A1195]) has nodes
corresponding to the retrieved documents. The nodes are
placed in a circle, with nodes corresponding to the same
cluster placed together. Gaps between the nodes allow us
to identify clusters easily. Edges between nodes are color
coded according to the similarity between the documents.
Two slider bars allow the user to establish minimal and
maximal weight of edges to be shown.

Another view presents clusters as disks whose size is
proportional to the size of the corresponding cluster. The
distance between two clusters is denned as a distance be-
tween the central documents and captures the topic sepa-
ration between the clusters. Simulated annealing is used
to find a cluster placement that minimizes the sum of rel-
ative distance errors between clusters. We selected a cool-
ing schedule a(t) = t/(l + ßt), where ß — 10-3, initial
temperature is 500 and the freezing point is 10~2. This
setting provides a good placement when the number of
clusters returned by the algorithm is small. This algo-
rithm is fast, and its running time does not depend on
the number of clusters. When the number of clusters is
large, the ellipsoid-based method for Euclidean graph em-
beddings described in [LLR95] can be used instead.

All three views and a title window allow the user to se-
lect an individual document or a cluster. A selection made
in one window is simultaneously reflected in -the others.

2.5 Performance Comparison with
Two Clustering Algorithms

In order to evaluate the performance of our system, we
tested the star algorithm against two classic clustering al-
gorithms: the single link method [Cro77] and the average
link method [Voo85]. We used data from the TREC-6 con-
ference as our testing medium. The TREC collection con-
tains a set of 130,471 documents of which 21,694 have been
ascribed relevance data with respect to 47 topics. These
21,694 documents were partitioned into 22 separate subcol-
lections of approximately 1,000 documents each. Within
a subcollection, each of the 47 topics has a corresponding
subset of documents which is relevant to that topic.

The goal of a clustering method is to organize the set of
documents in such a way that the subset of documents cor-
responding to a selected topic appears as a cluster in the
organization. For each of the subcollections, we performed
the following experiment. Given a selected topic, the set of
documents was organized by a clustering method in ques-
tion, and the "best" cluster corresponding to this topic
was returned. Two issues immediately arise: first, how
does one measure the "quality" of a cluster to determine
which is "best"; and second, how does one appropriately
generate clusters from which to choose. To measure the
quality of a cluster, we use the common E measure [Rij79]
as defined below

E(p,r) = l
1/p + 1/r

where p and r are the standard precision and recall of the
cluster with respect to the set of documents relevant to
the topic. Note that E(p, r) is simply one minus the har-
monic mean of the precision and recall; thus, E(p, r) ranges
from 0 to 1 where E(p, r) = 0 corresponds to perfect pre-
cision and recall and E(p, r) = 1 corresponds to zero pre-
cision and recall. It is worthwhile to note that when view-
ing data comparing two clustering methods, lower E(p, r)
values correspond to better performance. In order to com-
pare the clustering methods fairly, each of the methods
was run in such a way so as to produce the "best" possi-
ble cluster with respect to a given topic, as defined by the
E(p, r) measure above. (This is in keeping with previous
comparative analyses of clustering methods; see, for exam-
ple, Burgin [Bur95] and Shaw [Sha93].) In the case of the
single link and star cover algorithms, the algorithms were
run using a range of thresholds, and the best cluster ob-
tained over all thresholds was returned. (One can view
the clustering obtained with respect to a given thresh-
old as a "slice" within a hierarchical clustering over all
thresholds; thus, in effect, the best cluster in the hierar-
chy was returned in these experiments.) In the case of the
average-link algorithm which naturally produces a hierar-
chical clustering, the best cluster within the hierarchy was
returned.

Unlike the star algorithm, single and average link al-
gorithms do not allow overlapping clusters. It has been
suggested [A1198] that the differences in performance may
be attributed to the effects of overlapping rather than to
the actual properties of the algorithm. To investigate this
issue we conducted the same experiments using a version
of the star clustering algorithm that eliminates the over-
lapping clusters. In this setting we used the star algorithm
to find a set of star centers, then partitioned a collection
by assigning a document to the closest star center. This
methodology has been used before [JD88]. We note that
the difference in results between star with overlapping clus-
ters and star without overlapping clusters is very small.
Both algorithms still outperform single link and average
link (See Figure 4).

Each subcollection of 1,000 documents corresponded to
an individual experiment. For a given clustering method,
the appropriate algorithm was employed to determine the
best possible cluster (as defined by the E(p,r) measure)
for each of the 47 topics. For each optimal cluster, the
E(p,r), precision and recall values were calculated with
respect to the actual set of documents relevant to the topic,

14

coll
star (overlap) star (partition) average link single link

P - E P - E V "" E P T

1 0.78 0.56 0.35 0.79 0.53 0.36 0.74 0.50 0.40 0.77 0.47 0.41

2 0.74 0.59 0.35 0.70 0.55 0.38 0.88 0.43 0.43 0.88 0.41 0.44

3 0.78 0.53 0.37 0.79 0.48 0.41 0.84 0.44 0.43 0.83 0.43 0.43

4 0.76 0.50 0.40 0.81 0.46 0.41 0.71 0.46 0.44 0.73 0.41 0.48

5 0.80 0.50 0.38 0.78 0.50 0.39 0.85
6 0.76 0.41 0.47 0.68 0.45 0.46 0.78 0.39 0.48 0.83 0.34 0.51

7 0.76 0.62 0.32 0.79 0.61 0.31 0.81 0.52 0.36 0.78 0.50 0.39

8 0.75 0.57 0.35 0.73 0.57 0.36 0.82 0.48 0.39 0.86 0.44 0.42

9 0.82 0.49 0.39 0.80 0.50 0.38 0.89 0.44 0.41 0.87 0.43 0.43

10 0.74 0.52 0.39 0.79 0.46 0.42 0.85 0.42
11 0.82 0.55 0.34 0.86 0.48 0.38 0.83 0.45 0.42 0.85
12 0.80 0.55 0.35 0.83 0.53 0.36 0.82 0.49
13 0.81 0.53 0.36 0.81 0.49 0.39 0.84 0.46 0.40 0.89 0.40 0.44

14 0.76 0.47 0.42 0.73 0.46 0.43 0.86 0.36 0.50 0.91 0.31 0.54

15 0.75 0.54 0.37 0.79 0.48 0.40 0.83 0.35 0.50 0.87 0.33

16 0.87 0.47 0.39 0.86 0.46 0.40 0.91 0.40 0.45 0.95 0.39 0.45

17 0.64 0.53 0.42 0.64 0.51 0.43 0.80
18 0.77 0.56 0.35 0.81 0.51 0.37 0.79 0.53 0.36 0.81 0.48 0.40

19 0.73 0.54 0.38 0.74 0.50 0.40 0.83 0.42
20 0.71 0.51 0.41 0.76 0.48 0.41 0.81 0.41
21 0.74 0.61 0.33 0.79 0.56 0.34 0.84 0.49 0.38 0.88 0.46 0.40

22 0.76 0.63 0.31 0.80 0.60 0.32 0.83 0.47

1 avg 0.77 0.54 0.37 | 0.78 0.51 0.39 | 0.83 0.44 0.43 | 0.84 0.41 0.45

Figure 4: This figure shows comparison data for the star algorithm, the partitioning star algorithm, the single link
algorithm, and the average link algorithm for 22 subcollections of TREC documents. For each algorithm, p represents the
average precision computed across all clusters found for the collection; r represents the average recall computed across all
clusters found for the collection; and E{p, r) is the aggregate measure 1 - 1/p+1/r ■

50 100 150 200 250 300 350 400 450 500
cluster #

0.8

0.6

0.4

0.2

star
average link

i i i i i_
0 50 100 150 200 250 300 350 400 450 500

cluster #

Figure 5: This figure shows the E(p,r) measure for the
partitioning star clustering algorithm and for the single
link clustering algorithm. The y axis shows the E(p,r)
measure, while the x axis shows the cluster number. Clus-
ters have been sorted according to the E(p, r) „values of the
star algorithm.

Figure 6: This figure shows the E(p,r) measure for the
partitioning star clustering algorithm and for the average
link clustering algorithm. The y axis shows the E(p,r)
measure, while the x axis shows the cluster number. Clus-
ters have been sorted according to the E(p, r) values of the
star algorithm.

and these values were averaged over all topics to obtain the
three numbers reported for each experiment and clustering
method in Figure 4. Averaging over all 22 experiments,
we find that the mean E(p, r) values for star, partitioning
star, average link and single link are 0.37, 0.39, 0.43 and
0.45, respectively. Thus, the star algorithm represents a
16.2% improvement in performance with respect to average
link and an 21.6% improvement with respect to single link.
The difference is only partly due to the effect of allowing
overlapping clusters - the partitioning star algorithm still
gives us a 10.2% and 15.4% improvement in performance
over average link and single link respectively.

We repeated this experiment on the same data, using
one collection only (of 21,694 documents.) The precision,
recall, and E values for star (overlap), star, average link,
and single link were (.52, .36, .58), (.53, .32, .61), (.63, .25,
.64), and (.66, .20, .70) respectively. We note that the E
measures are worse for all four algorithms on this larger
collection and that the star algorithm outperforms average
link by 10.3% and single link by 20.7%.

Figures 5 and 6 show detailed E(p, r) values for the star
algorithm vs. the single link algorithm and for the star al-
gorithm vs. the average link algorithm over the collection of
experiments. Each cluster computed by the algorithm has

15

an E(p, r) value. For better readability of these graphs, we
sorted the clusters produced by the star algorithm accord-
ing to their E(p, r) values. We plotted the corresponding
E(p, r) values for the single link algorithm (see the oscillat-
ing line in Figure 5) and for the average link algorithm (see
the oscillating line in Figure 6). We note that the E(p,r)
values for the star clusters are almost everywhere lower
than the corresponding values for the single link and aver-
age link algorithms; thus, the star algorithm outperforms
these two methods.

These experiments show that the star algorithm out-
performs the single link and average link methods. Since
the star algorithm is also simple to implement and highly
efficient, we believe that the star algorithm is very effec-
tive for information organization and other text clustering
applications.

3 On-line Information Organization

Figure 7: This figure shows the star cover change after the
insertion of a jaew vertex. The larger-radius disks denote
star centers, the other disks denote satellite vertices. The
star edges are denoted by solid lines. The inter-satellite
edges are denoted by dotted lines. The top figure shows an
initial graph and its star cover. The middle figure shows
the graph after the insertion of a new document. The
bottom figure shows the star cover of the new graph.

In this section we consider algorithms for computing
the organization of a dynamic information system. We
derive an on-line version of the star algorithm for informa-
tion organization that can incrementally compute clusters
of similar documents. We continue assuming the vector
space model and the cosine metric to capture the pairwise
similarity between the documents of the corpus.

3.1 The On-line Star Algorithm
We assume that documents are inserted or deleted from

the collection one at a time. For simplicity, we will focus

our discussion on adding documents to the collection. The
delete algorithm is similar. The intuition behind the in-
cremental computation of the star cover of a graph after
a new vertex is inserted is depicted in Figure 7. The top
figure denotes a thresholded similarity graph and a correct
star cover for this graph. Suppose a new vertex is inserted
in the graph, as in the middle figure. The original star
cover is no longer correct for the new graph. The bottom
figure shows the correct star cover for the new graph. How
does the addition of this new vertex affect the correctness
of the star cover? In general, the answer depends on the
degree of the new vertex and on its adjacency list. If the
adjacency list of the new vertex does not contain any star
centers, the new vertex can be added in the star cover as
a star center. If the adjacency list of the new vertex con-
tains any center vertex c whose degree is higher, the new
vertex becomes a satellite vertex of c. The difficult case
that destroys the correctness of the star cover is when the
new vertex is adjacent to a collection of star centers, each
of whose degree is lower than that of the new vertex. In
this situation, the star structure already in place has to be
modified to assign the new vertex as a star center. The
satellite vertices in the stars that are broken as a result
have to be re-evaluated.

Motivated by the intuition in the previous paragraph,
we now describe an on-line algorithm for incrementally
computing star covers of dynamic graphs. The algorithm
is shown in Figure 8. This algorithm uses a special data
structure to efficiently maintain the star cover of an undi-
rected graph G = (V, E). For each vertex v € V, we
maintain the following data.

v.type satellite or center
v.degree degree ofv
v.adj list of adjacent vertices
v.centers list of adjacent centers
v.inQ flag specifying if v being processed

Note that while v.type can be inferred from v.centers
and v.degree can be inferred from v.adj, it will be conve-
nient to have all five pieces of data in the algorithm. Let
a be a vertex to be added to G, and let L be the list of
vertices in G which are adjacent to a. The algorithm in
Figure 8 will appropriately update the star cover of G. See
[APR97] for a more detailed correctness argument.
3.2 Analysis

We have shown that the star cover produced by the on-
line star algorithm is correct in that it is identical to the
star cover produced by the off-line algorithm (or one of the
correct covers, if more than one exists) [APR97]. Further-
more, the on-line star algorithm is very efficient. In our ini-
tial tests, we have implemented the on-line star algorithm
using a heap for the priority queue and simple linked lists
for the various lists required. The time required to insert
a new vertex and associated edges into a thresholded sim-
ilarity graph and to appropriately update the star cover is
largely governed by the number of stars that are broken
during the update, since breaking stars requires inserting
new elements into the priority queue. In practice, very few
stars are broken during any given update (see Figure 9).
This is due partly to the fact that relatively few stars exist
at any given time (as compared to the number of vertices
or edges in the thresholded similarity graph) and partly to

16

the fact that the likelihood of breaking any individual star
is also small [APR97],

UPDATE(Q,L)

1 a.type *— satellite
2 a. degree*— 0
3 a.adj*— 0
4 a.centers <— 0
5 forall ß in L
6 a.degree*— a.degree-]-1
7 ß.degree *— ß.degree+ 1
8 lNSERT(/?, a.adj)
9 lNSERT(ot,ß.adj)

10 if (ß.type = center)
11 lNSERT(/3, a.centers)
12 else
13 ß.inQ*— true
14 ENQUEUE(/3, Q)
15 endif
16 endfor
17 a.inQ <— true
18 ENQUEUE(C*,Q)

19 while (Q / 0)
20 0«- EXTRACTMAX(Q)
21 if [<t>.centers = 0)
22 <£. ti/pe *— center
23 forall /3 in ijy.adj
24 INSERT(<£,/3. centers)
25 endfor
26 else
27 if (V<5 6 0. centers, 5. degree < 4>. degree)
28 (j>. type <— center
29 forall ß in d>.adj
30 lNSERX(<£, ß.centers)
31 endfor
32 forall S in <f>.centers
33 S.type *— satellite
34 forall n in <5.a<ij
35 DELETE(<5, n. centers)
36 if (fi.inQ = false)
37 fi.inQ*— true
38 ENQUEUE(/I, Q)
39 endif
40 endfor
41 endfor
42 endif
43 endif ^
44 4>.inQ *— false
45 endwhile

Figure 8: The on-line star algorithm for clustering.

We evaluated the on-line star cover algorithm on a 2224
document corpus consisting of a judged subcollection of
TREC documents augmented with our department's tech-
nical reports. We ran 4 experiments. Each time we se-
lected a different threshold and proceeded to insert the
2224 documents in random order, using the on-line star
cluster algorithm. The results of these experiments were
averaged. The running time measurements appear to be
linear in the number of edges of the similarity graph. Fig-

ures 9 and 10 show the experimental data. Note that the
number of broken stars is roughly linear in the number of
vertices, the running time is linear in the number of edges
in the graph, although we can see the effects of lower order
terms.

300

250

S 200

150

100

800 1200 1600
number of vertices

Figure 9-. The dependence of number of broken stars on
the number of vertices for TREC data.

1.6e+08

1,4e+08

o 1.2e+08 -

1e+08

oi 8e+07

6e+07

™ 4e+07

2e+07

0.0e+00 2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06
number of edges

Figure 10: This figure shows the dependence of the running
time of the on-line star algorithm on the number of edges
in a TREC subcollection.

4 Discussion
We have presented, analyzed, and evaluated the star

clustering algorithm for information organization. We de-
scribed an off-line version of this algorithm that can be
used to organize static information in accurate clusters ef-
ficiently. We also described an on-line version of the al-
gorithm that can be used to organize dynamic data for
tasks that require incremental updates in the topic struc-
ture of the corpus, such as the routing task, the new topic
detection task, and the topic tracking task.

Our implementation of this algorithm contributes a novel
visualization method for clusters that presents users with

17

disks whose radii correspond to the cluster size and that
are embedded in the plane so as to capture the topic dis-
tance between the clusters.

We evaluated the star algorithm by comparing it against
the single link and the average link algorithms in several
experiments with TREC data. We found that the star al-
gorithm outperforms the single link algorithm and the av-
erage link algorithm. Since the star algorithm is faster and
easier to implement and than the average link algorithm,
we advocate its use. The on-line algorithm produces the
same clustering as the off-line algorithm. Thus, our evalu-
ation of the off-line star algorithm also suggests using the
on-line star algorithm for tasks that require computing the
topic structure incrementally and adaptively.

Our findings so far suggest using the star algorithm for a
variety of tasks. We are currently conducting experiments
using the on-line star algorithm for new topic detection and
topic tracking. Because of its cluster quality, efficiency, and
incremental properties, we believe this algorithm will lead
to improved results in solving these tasks.

Acknowledgements
We thank James Allan for many useful comments and

suggestions on this research. This work is supported in
part by ONR contract N00014-95-1-1204, Rome Labs con-
tract F30602-98-C-0006, and Air Force MURI contract
F49620-97-1-0382. We are grateful for this support.

References
[AB84] M. Aldenderfer and R. Blashfield, Cluster Analy-

sis, Sage, Beverly Hills, 1984.

[A1195] J. Allan. Automatic hypertext construction. PhD
thesis. Department of Computer Science, Cornell
University, January 1995.

[A1198] J. Allan, Personal communication, March 1998.

[APR98] J. Aslam, K. Pelekhov, and D. Rus, Generat-
ing, visualizing, and evaluating high-accuracy clus-
ters for information organization, in Principles of
Digital Document Processing, eds. C. Nicholas, Lec-
ture Notes in Computer Science, Sprinter Verlag
1998 (to appear). Also available as Technical Report
PCS-TR97-319, Department of Computer Science,
Dartmouth, 1997.

[APR97] J. Aslam, K. Pelekhov, and D. Rus, Computing
Dense Clusters On-line for Information Organiza-
tion, Technical Report PCS-TR97-324,.Department
of Computer Science, Dartmouth, 1997.

[Bol95] B. Bollobas, Random Graphs, Academic Press,
London, 1995.

[Bur95] R. Bürgin, The retrieval effectiveness of five clus-
tering algorithms as a function of indexing exhaus-
tively, Journal of American Society for Information
Science 46(8:562-572, 1995.

[Can93] F. Can, Incremental clustering for dynamic infor-
mation processing, in ACM Transactions on Infor-
mation Systems, no. 11, ppl43-164, 1993.

[CCFM97] M. Charikar, C. Chekuri, T. Feder, and R.
Motwani, Incremental clustering and dynamic in-
formation retrieval, in Proceedings of the 29"1 Sym-
posium on Theory of Computing, 1997.

[Cro80] W. B. Croft. A model of cluster searching based
on classification. Information Systems, 5:189-195,
1980.

[Cro77] W. B. Croft. Clustering large files of documents
using the single-link method. Journal of the Amer-
ican Society for Information Science, ppl89-195,
November 1977.

[CKP93] D. Cutting, D. Karger, and J. Pedersen. Con-
stant interaction-time Scatter/Gather browsing of
very large document collections. In Proceedings of
the 16th SIGIR, 1993.

[FG88] T. Feder and D. Greene, Optimal algorithms for
approximate clustering, in Proceedings of the 20th

Symposium on Theory of Computing, pp 434-444,
1988.

[HP96] M. Hearst and J. Pedersen. Reexamining the clus-
ter hypothesis: Scatter/Gather on Retrieval Re-
sults. In Proceedings of the 19th SIGIR, 1996.

[HS86] D. Hochbaum and D. Shmoys, A unified approach
to approximation algorithms for bottleneck prob-
lems, Journal of the ACM, no. 33, pp533-550, 1986.

[JD88] A. Jain and R. Dubes. Algorithms for Clustering
Data, Prentice Hall 1988.

[JR71] N. Jardine and C.J. van Rijsbergen. The use of
hierarchical clustering in information retrieval, In-
formation Storage and Retrieval, 7:217-240, 1971.

[KP93] G. Kortsarz and D. Peleg. On choosing a dense
subgraph. In Proceedings of the 3J,th Annual Sympo-
sium on Foundations of Computer Science (FOCS),
1993.

[LLR95] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic ap-
plications. Combinatorica 15(2):215-245, 1995.

[LY94] C. Lund and M. Yannakakis. On the hardness of
approximating minimization problems. Journal of
the ACM 41, 960-981, 1994.

[Rij79] C.J. van Rijsbergen. Information Retrieval. But-
terworths, London, 1979.

[Sal89] G. Salton. Automatic Text Processing: the trans-
formation, analysis, and retrieval of information by
computer, Addison-Wesley, 1989.

[Sal91] G. Salton. The Smart document retrieval project.
In Proceedings of the Fourteenth Annual Interna- (

tional ACM/SIGIR Conference on Research and
Development in Information Retrieval, pp 356-358.

[Sha86] W. Shaw, On the foundation of evaluation, Jour-
nal of the American Society for Information Sci-
ence, vol 37, pp 346-348, 1986.

18

[Sha93] W. Shaw, Controlled and uncontrolled subject de-
scriptions in the CF database: a comparison of
optimal cluster-based retrieval results, Information
Processing and Management, vol. 29, pp 751-763,
1993.

[SJJ70] K. Spark Jones and D. Jackson. The use of
automatically-obtained keyword classifications for
information retrieval. Information Storage and Re-
trieval, 5:174-201, 1970.

[Tur90] H. Turtle. Inference networks for document re-
trieval. PhD thesis. University of Massachusetts,
Amherst, 1990.

[vRC75] C.J. van Rijsbergen and B. Croft, Document clus-
tering: an evaluation of some experiments with the
Cranfield 1400 collection, Information Processing
and Management, 11, 171-182.

[Voo85] E. Voorhees. The effectiveness and efficiency of ag-
glomerative hierarchical clustering in document re-
trieval, PhD Thesis, Department of Computer Sci-
ence, Cornell University 1985, available as TR 85-
705.

[Voo85] E. Voorhees. The cluster hypothesis revisited. In
Proceedings of the 8th SIGIR, pp 95-104, 1985.

[Wil88] P. Willett. Recent trends in hierarchical document
clustering: A critical review. Information Process-
ing and Management, 24:(5)-.577-597, 1988.

[Wor71] S. Worona. Query clustering in a large document
space. In Ed. G. Salton, The SMART Retrieval Sys-
tem, pp 298-310. Prentice-Hall, 1971.

[Zuc93] D. Zuckerman. NP-complete problems have a ver-
sion that's hard to approximate. In Proceedings
of the Eight Annual Structure in Complexity The-
ory Conference, IEEE Computer Society, 305-312,
1993.

19

A Practical Clustering Algorithm
for Static and Dynamic Information Organization*

Javed Aslam Katya Pelekhov Daniela Rus

Dartmouth College*

Abstract

We present and analyze the off-line star algorithm for clus-
tering static information systems and the on-line star algo-
rithm for clustering dynamic information systems. These
algorithms organize a document collection into a number of
clusters that is naturally induced by the collection via a com-
putationally efficient cover by dense subgraphs. We further
show a lower bound on the accuracy of the clusters produced
by these algorithms as well as demonstrate that these algo-
rithms are efficient (running times roughly linear in the size
of the problem). Finally, we provide data from a number of
experiments.

1 Introduction

We wish to create more versatile information capture
and access systems for digital libraries by using infor-
mation organization: thousands of electronic documents
will be organized automatically as a hierarchy of topics
and subtopics, using algorithms grounded in geometry,
probabilities, and statistics. Off-line information orga-
nization algorithms will be useful for organizing static
collections (for example, large-scale legacy data). In-
cremental, on-line information organization algorithms
will be useful to keep dynamic corpora, such as news
feeds, organized. Current information systems such as
Inquery [Tur90], Smart [Sal91], or Alta Vista provide
some simple automation by computing ranked (sorted)
lists of documents, but it is ineffective for users to scan
a list of hundreds of document titles. To cull the rele-
vant information out of a large set of potentially useful
dynamic sources we need methods for organizing and
reorganizing dynamic information as accurate clusters,
and ways of presenting users with the topic summaries
at various levels of detail.

There has been extensive research on clustering and
applications to many domains [HS86, AB84]. For a
good overview see [JD88]. For a good overview of using

* Research partially supported by ONR contract N00014-95-
1-1204, Rome Labs contract F30602-98-C-0006, and Air Force
MURI contract F49620-97-1-0382.

tEmail: {jaa,katya,rus}8cs.dartmouth.edu

clustering in Information Retrieval (IR) see [Wil88].
The use of clustering in IR was mostly driven by the
cluster hypothesis [Rij79] which states that relevant
documents tend to be more closely related to each
other than to non-relevant documents. Jardine and
van Rijsbergen [JR71] show some evidence that search
results could be improved by clustering. Hearst and
Pedersen [HP96] re-examine the cluster hypothesis by
focusing on the Scatter/Gather system [CKP93] and
conclude that it holds for browsing tasks.

Systems like Scatter/Gather [CKP93] provide a
mechanism for user-driven organization of data in a
fixed number of clusters, but the users need to be
in the loop and the computed clusters do not have
accuracy guarantees. Scatter/Gather uses fractiona-
tion to compute nearest-neighbor clusters. Charika,
et al. [CCFM97] consider a dynamic clustering algo-
rithm to partition a collection of text documents into a
fixed number of clusters. Since in dynamic information
systems the number of topics is not known a priori, a
fixed number of clusters cannot generate a natural par-
tition of the information.

Our work on clustering presented in this paper
and in [APR97] provides positive evidence for the
cluster hypothesis. We propose an off-line algorithm
for clustering static information and an on-line version
of this algorithm for clustering dynamic information.
These two algorithms compute clusters induced by the
natural topic structure of the space. Thus, this work
is different than [CKP93, CCFM97] in that we do
not impose the constraint to use a fixed number of
clusters. As a result, we can guarantee a lower bound
on the topic similarity between the documents in each
cluster. The model for topic similarity is the standard
vector space model used in the information retrieval
community [Sal89] which is explained in more detail in
this paper in Section 2.

To compute accurate clusters, we formalize cluster-
ing as covering graphs by cliques. Covering by cliques is
NP-complete, and thus intractable for large document
collections. Unfortunately, it has also been shown that
the problem cannot even be approximated in polynomial

20

time [LY94, Zuc93]. We instead use a cover by dense
subgraphs that are star-shaped and that can be com-
puted off-line for static data and on-line for dynamic
data. We show that the off-line and on-line algorithms
produce correct clusters efficiently. Asymptotically, the
running time of both algorithms is roughly linear in the
size of the similarity graph that defines the information
space (explained in detail in Section 2). We also show
lower bounds on the topic similarity within the com-
puted clusters (a measure of the accuracy of our clus-
tering algorithm) as well as provide experimental data.

Finally, we compare the performance of the star
algorithm to two widely used algorithms for clustering
in IR and other settings: the single link method1 [Cro77]
and the average link algorithm2 [Voo85]. Neither
algorithm provides guarantees for the topic similarity
within a cluster. The single link algorithm can be
used in off-line and on-line mode, and it is faster than
the average link algorithm, but it produces poorer
clusters than the average link algorithm. The average
link algorithm can only be used off-line to process
static data. The star clustering algorithm, on the
other hand, computes topic clusters that are naturally
induced by the collection, provides guarantees on cluster
quality, computes more accurate clusters than either
the single link or average link methods, is efficient,
admits an efficient and simple on-line version, and can
perform hierarchical data organization. We describe
experiments in this paper with the TREC3 database
demonstrating these abilities.

Our algorithms for organizing information systems
can be used in several ways. The off-line algorithm can
be used as a pre-processing step in a static informa-
tion system or as a post-processing step on the specific
documents retrieved by a query. As a pre-processor,
this system assists users with deciding how to browse
a database of free text documents by highlighting rel-
evant topics and irrelevant subtopics. Such clustered
data is useful for narrowing down the database over
which detailed queries can be formulated. As a post-
processor, this system classifies the retrieved data into
clusters that capture topic categories and subcategories.
The on-line algorithm can be used as a basis for con-
structing self-organizing information systems. As the
content of dynamic information systems changes, the
on-line algorithm can efficiently automate the process
of organization and re-organization to compute accu-

Tnthe single link clustering algorithm a document is part of
a cluster if it is "related" to at least one document in the cluster.

2 In the average link clustering algorithm a document is part
of a cluster if it is "related" to an average number of documents
in the cluster.

3Text Retrieval Conference

rate topic summaries at various level of similarity.

2 Clustering static data with star-shaped
subgraphs

In this section we motivate and present an off-line
algorithm for organizing information systems. The
algorithm is very simple and efficient, and it computes
high-density clusters.

We formulate our problem by representing an in-
formation system by its similarity graph. A similarity
graph is an undirected, weighted graph G = (V,E,w)
where vertices in the graph correspond to documents
and each weighted edge in the graph corresponds to a
measure of similarity between two documents. We mea-
sure the similarity between two documents by using the
cosine metric in the vector space model of the Smart
information retrieval system [Sal91, Sal89].

The vector space model for textual information
aggregates statistics on the occurrence of words in
documents. The premise of the vector space model is
that two documents are similar if they use the same
words. A vector space can be created for a collection
(or corpus) of documents by associating each important
word in the corpus with one dimension in the space. The
result is a high dimensional vector space. Documents
are mapped as points in this space according to their
word frequencies. Similar documents map to nearby
points. In the vector space model, document similarity
is measured by the angle between the corresponding
document vectors. The standard in the information
retrieval community is to map the angles to the interval
[0,1] by taking the cosine of the vector angles.

G is a complete graph with edges of varying weight.
An organization of the graph that produces reliable
clusters of similarity a (i.e., clusters where documents
have pairwise similarities of at least a) can be obtained
by (1) thresholding the graph at a and (2) performing
a minimum clique cover with maximal cliques on the
resulting graph Ga. The thresholded graph Ga is an
undirected graph obtained from G by eliminating all
the edges whose weights are lower that a. The minimum
clique cover has two features. First, by using cliques to
cover the similarity graph, we are guaranteed that all
the documents in a cluster have the desired degree of
similarity. Second, minimal clique covers with maximal
cliques allow vertices to belong to several clusters. In
our information retrieval application this is a desirable
feature as documents can have multiple subthemes.

Unfortunately, this approach is computationally
intractable. For real corpora, similarity graphs can be
very large. The clique cover problem is NP-complete,
and it does not admit polynomial-time approximation
algorithms [LY94, Zuc93]. While we cannot perform

21

a clique cover nor even approximate such a cover, we
can instead cover our graph by dense subgraphs. What
we lose in intra-cluster similarity guarantees, we gain
in computational efficiency. In the sections that follow,
we describe off-line and on-line covering algorithms and
analyze their performance and efficiency.

2.1 Dense Star-Shaped Covers
We approximate a clique cover by covering the associ-
ated thresholded similarity graph with star-shaped sub-
graphs. A star-shaped subgraph on m + 1 vertices con-
sists of a single star center and m satellite vertices,
where there exist edges between the star center and each
of the satellite vertices. While finding cliques in the
thresholded similarity graph Ga guarantees a pair wise
similarity between documents of at least a, it would ap-
pear at first glance that finding star-shaped subgraphs
in Ga would provide similarity guarantees between the
star center and each of the satellite vertices, but no such
similarity guarantees between satellite vertices. How-
ever, by investigating the geometry of our problem in
the vector space model, we can derive a lower bound
on the similarity between satellite vertices as well as
provide a formula for the expected similarity between
satellite vertices. The latter formula predicts that the
pairwise similarity between satellite vertices in a star-
shaped subgraph is high, and together with empirical
evidence supporting this formula, we shall conclude that
covering G„ with star-shaped subgraphs is an accurate
method for clustering a set of documents.

Consider three documents C, Si and 52 which are
vertices in a star-shaped subgraph of Ga, where Si and
S2 are satellite vertices and C is the star center. By
the definition of a star-shaped subgraph of Ga, we must
have that the similarity between C and Si is at least a
and that the similarity between C and S2 is also at
least a. In the vector space model, these similarities
are obtained by taking the cosine of the angle between
the vectors associated with each document. Let a\ be
the angle between C and Si, and let a2 be the angle
between C and S2. We then have that cosai > a and
cos a2 > a. Note that the angle between Si and S2 can
be at most at\ +Q2, and therefore we have the following
lower bound on the similarity between satellite vertices
in a star-shaped subgraph of Ga.

PROPOSITION 2.1. Let G„ be a similarity graph
and let Si and S2 be two satellites in the same star
in Ga. Then the similarity between S\ and S2 must be
at least

cos(ai + Q2) = cosai cosa2 — sinoi sina2.

If a — 0.7, cosai = 0.75 and cosa2 = 0.85, for
instance, we can conclude that the similarity between

the two satellite vertices must be at least4

(0.75) • (0.85) - v^l - ,(0.75) Vl - (0-85)2 « 0.29.

Note that while this may not seem very encouraging,
the above analysis is based on absolute worst-case
assumptions, and in practice, the similarities between
satellite vertices are much higher. We further undertook
a study to determine the expected similarity between
two satellite vertices.

2.2 The random graph model
The model we use for analysis is the random graph
model [Bol95]. A random graph G„,p is an undirected
graph with n vertices, where each of its possible edges is
inserted randomly and independently with probability
p. Our problem fits the random graph model if we make
the mathematical assumption that "similar" documents
are essentially "random perturbations" of one another in
the vector space model. This assumption is equivalent
to viewing the similarity between two related documents
as a random variable. By thresholding the edges of
the similarity graph at a fixed value, for each edge
of the graph there is a random chance (depending
on whether the value of the corresponding random
variable is above or below the threshold value) that
the edge remains in the graph. This thresholded
similarity graph is thus a random graph. While random
graphs do not perfectly model the thresholded similarity
graphs obtained from actual document corpora (the
actual similarity graphs must satisfy various geometric
constraints and will be aggregates of many "sets" of
"similar" documents), random graphs are easier to
analyze, and our experiments provide evidence that
results obtained for random graphs closely match those
obtained for thresholded similarity graphs obtained
from actual document corpora. As such, we will use the
random graph model for analysis and for experimental
verification of the algorithms presented in this paper (in
addition to experiments on actual corpora).

The following upper bound on the expected simi-
larity between two satellite vertices holds:

PROPOSITION 2.2. The expected similarity be-
tween two satellite vertices S\ and S2 in the same star
in a similarity graph Ga is:

cos ai cos a2 +
l + o-

sinai sina2.

Proof. (Omitted for space considerations.)

Note that for the previous example, the above
formula would predict a similarity between satellite

4Note that sinö = Vl - cos2 0.

22

vertices of approximately 0.78. We have tested this
formula against real data, and the results of the test
with the MED LINE data set5 are shown in Figure 1.
In this plot, the x- and y-axes are similarities between
cluster centers and satellite vertices, and the z-axis
is the actual mean squared prediction error (MSE) of
the above formula for the similarity between satellite
vertices. Note that the maximum root mean squared
error (RMS) is quite small (approximately 0.13 in the
worst case), and for reasonably high similarities, the
error is negligible. From our tests with real data, we
have concluded that the random graph model holds
and that this formula is quite accurate. We can
conclude that star-shaped subgraphs are reasonably
"dense" in the sense that they imply relatively high
pairwise similarities between documents.

medline
mean square error

0.025 -
0.02

0.015
0.01

0.005 - l\f_
0

0
0.2

C >4 X.
0.6 X

0.8
0.6

0.2

Figure 1: This figure shows the error for a 6000 abstract
subset of MEDLINE.

3 The off-line star algorithm

Motivated by the discussion of the previous section, we
now present the star algorithm which can be used to
organize documents in an information system. The star
algorithm is based on a greedy cover of the thresholded
similarity graph by star-shaped subgraphs; the algo-
rithm itself is summarized in Figure 2 below.

THEOREM 3.1. The running time of the off-line
star algorithm on a similarity graph Ga is Q(V + Ea).

Proof. The following implementation of this algo-
rithm has a running time linear in the size of the graph.
Each vertex v has a data structure associate with it that
contains v.degree, the degree of the vertex, v.adj, the
list of adjacent vertices, v.marked, which is a bit de-
noting whether the vertex belongs to a star or not, and

For any threshold a:
1. Let Ga = (V, Ec) where Ea = {e : w{e) > rj}.

2. Let each vertex in G& initially be unmarked.

3. Calculate the degree of each vertex v £V.

4. Let the highest degree unmarked vertex be a
star center, and construct a cluster from the star
center and its associated satellite vertices. Mark
each node in the newly constructed cluster.

5. Repeat step 4 until all nodes are marked.

6. Represent each cluster by the document corre-
sponding to its associated star center.

5 MEDLINE is a large collection of medical abstracts that is
often used as benchmark in information retrieval experiments.

Figure 2: The star algorithm

v.center, which is a bit denoting whether the vertex
is a star center. (Computing v.degree for each vertex
can easily be performed in @(V + Ea) time.) The im-
plementation starts by sorting the vertices in V by de-
gree (Q(V) time since degrees are integers in the range
{0, |V|}). The program then scans the sorted vertices
from the highest degree to the lowest as a greedy search
for star centers. Only vertices that do not belong to a
star already (that is, they are unmarked) can become
star centers. Upon selecting a new star center v, its
v.center and v.marked bits are set and for all w £ v.adj,
w.marked is set. Only one scan of V is needed to de-
termine all the star centers. Upon termination, the star
centers and only the star centers have the center field
set. We call the set of star centers the star cover of the
graph. Each star is fully determined by the star center,
as the satellites are contained in the adjacency list of
the center vertex.

This algorithm has two features of interest. The
first feature is that the star cover is not unique. A
similarity graph may have several different star covers
because when there are several vertices of the same
highest degree, the algorithm arbitrarily chooses one
of them as a star center (whichever shows up first
in the sorted list of vertices). The second feature of
this algorithm is that it provides a simple encoding
of a star cover by assigning the types "center" and
"satellite" (which is the same as "not center" in our
implementation) to vertices. We define a correct star
cover as a star cover that assigns the types "center"
and "satellite" in such a way that (1) a star center is not
adjacent to any other star center and (2) every satellite
vertex is adjacent to at least one center vertex of higher
degree. It immediately follows that:

23

THEOREM 3.2. The off-line star algorithm pro-
duces a correct star cover.

We will use the two features of the off-line algorithm
mentioned above in the analysis of the on-line version
of the star algorithm, in the next section.

4 Clustering dynamic data with the star
algorithm

In this section we consider algorithms for computing
the organization of a dynamic information system. We
derive an on-line version of the star algorithm for in-
formation organization that can incrementally compute
clusters of similar documents. We continue assuming
the vector space model and the cosine metric to cap-
ture the pairwise similarity between the documents of
the corpus, and the random graph model for analyzing
the expected behavior of the new algorithm.

We assume that documents are inserted or deleted
from the collection one at a time. For simplicity,
we will focus our discussion on adding documents to
the collection. The delete algorithm is similar. The
intuition behind the incremental computation of the
star cover of a graph after a new vertex is inserted is
depicted in Figure 3. The top figure denotes a similarity
graph and a correct star cover for this graph. Suppose
a new vertex is inserted in the graph, as in the middle
figure. The original star cover is no longer correct for
the new graph. The bottom figure shows the correct
star cover for the new graph. How does the addition of
this new vertex affect the correctness of the star cover?
In general, the answer depends on the degree of the new
vertex and on its adjacency list. If the adjacency list of
the new vertex does not contain any star centers, the
new vertex can be added in the star cover as a star
center. If the adjacency list of the new vertex contains
any center vertex c whose degree is higher, the new
vertex becomes a satellite vertex of c. The difficult
case that destroys the correctness of the star cover is
when the new vertex is adjacent to a collection of star
centers, each of whose degree is lower than that of the
new vertex. In this situation, the star structure already
in place has to be modified to assign the new vertex as
a star center. The satellite vertices in the stars that are
broken as a result have to be re-evaluated.

4.1 The on-line star algorithm
Motivated by the intuition in the previous section, we
now describe an on-line algorithm for incrementally
computing star covers of dynamic graphs. The algo-
rithm is shown in Figure 4. This algorithm uses a data
structure to efficiently maintain the star covers of an
undirected graph G = (V,E). For each vertex v € V,
we maintain the following data.

Figure 3: This figure shows the star cover change after
the insertion of a new vertex. The larger-radius disks
denote star centers, the other disks denote satellite
vertices. The star edges are denoted by solid lines. The
inter-satellite edges are denoted by dotted lines. The
top figure shows an initial graph and its star cover. The
middle figure shows the graph after the insertion of a
new document. The bottom figure shows the star cover
of the new graph.

v.type satellite or center
v.degree degree of v
v.adj list of adjacent vertices
v.centers list of adjacent centers
v.inQ flag specifying if v being processed

Note that while v.type can be inferred from v.centers
and v.degree can be inferred from v.adj, it will be con-
venient to have all five pieces of data in the algorithm.
Let a be a vertex to be added to G, and let L be the
list of vertices in G which are adjacent to a. The al-
gorithm in Figure 4 will appropriately update the star
cover of G.

The algorithm maintains a priority queue Q of
vertices not yet correctly placed in the star cover. When
a star is broken, its center and satellites are placed in
Q.

The on-line star cover algorithm is more complex
than its off-line counterpart. We devote the rest of this
section to proving that the algorithm is correct and to
analyzing its expected running time.

24

UPDATE (a, L)
1 a.type 4— satellite
2 a. degree 4- 0
3 a.adj 4- 0
4 a.centers 4— 0
5 forall ß in L
6 a.degree 4— a.degree + 1
7 ß.degree 4- ß. degree + 1
8 INSERT^, a. a#)
9 lNSERT(a,/3.adj)

10 if {ß-type = center)
11 INSERT(/3, a. centers)
12 else
13 /J.inQ 4- frue
14 ENQUEUE(/3, Q)
15 endif
16 endfor
17 a.inQ 4— true
18 ENQUEUE(a,Q)
19 while (Q ? 0)
20 4><r~ EXTRACTMAX(Q)

21 if (<j>.centers = 0)
22 4>-type 4— center
23 forall /3 in <j).adj
24 INSERT(0, ß.centers)
25 endfor
26 else
27 if (VJ € <j>.centers, S.degree < </>.degree)
28 <t>-type 4— center
29 forall /? in ^.od/
30 INSERT(<£, /?. centers)
31 endfor
32 forall <5 in ^.centers
33 <5.£ype 4- satellite
34 forall /i in S.adj
35 D ELETE (5, fi. centers)
36 if {n-inQ - false)
37 fi.inQ 4- true
38 ENQUEUE^/, Q) ^
39 endif
40 endfor
41 endfor
42 endif
43 endif
44 cj).inQ 4- false
45 endwhile

Figure 4: The on-line star algorithm for clustering.

4.2 Correctness
In this section we show that the on-line algorithm is
correct by proving that it produces the same star cover

as the off-line algorithm, when the off-line algorithm
is run on the final graph considered by the on-line
algorithm. Before we state the result, we note that the
off-line star algorithm does not produce a unique cover.
When there are several vertices of the same highest
degree, the algorithm arbitrarily chooses one of them
as the next star center. We will show that the cover
produced by the on-line star algorithm is the same as
one of the covers that can be produced by the off-line
algorithm

THEOREM 4.1. The cover generated by the on-line
star algorithm when Ga = (V,Ea) is constructed in-
crementally (by inserting its vertices one at a time) is
identical to some legal cover generated by the off-line
star algorithm on Ga.

Proof. We can view a star cover of Ga as a correct
assignment of types (that is, "center" or "satellite") to
the vertices of Ga. The off-line star algorithm assigns
correct types to the vertices of Ga. We will prove the
correctness of the on-line star cover by induction. The
induction invariant is that at all times, the types of
vertices not in Q are correct, assuming that the true
type of vertices in Q is "satellite." This would imply
that when Q is empty, all vertices are assigned a correct
type, and thus the star cover is correct.

The invariant is true initially: as the type of the new
node a is unknown and a is in Q; the type of all the
satellite neighbors of a are unknown and these neighbors
are in Q; and all the other vertices have correct types
from the original cover, assuming that the nodes in
the queue are correctly satellite. We now show that
the induction invariant is maintained throughout the
algorithm. Consider Figure 4. The first thing to note
is that the type of all the vertices in Q is "satellite";
statements 14, 18 and 33 enqueue satellite vertices. We
now argue that every time a vertex <f> of highest degree
is pulled out of Q, it is assigned a correct type. When
</> has no centers on its adjacency list, its type should
be "center" (which is assigned correctly by statement
22). When <f> is adjacent to star centers &i, each of
which has a lower degree that (j>, the correct type for <j>
is "center" (statement 28). This action has a side effect:
all Si cease to be star centers and thus get enqueued for
further evaluation (statements 32-39). Otherwise, the
correct type for cj> is the default "satellite". Since <j> was
extracted from Q and all vertices in Q are satellites, the
type of <f> is correct in this case as well.

To complete the argument, what remains to be
shown is that eventually the queue Q becomes empty.
The termination of the while loop at statement 19 in
Figure 4 is guaranteed by ithe following result.

LEMMA 4.1. The degree of the stars broken by the
on-line star algorithm is strictly decreasing.

25

The lemma is equivalent to the following statement:
node <f> in Q has the potential of becoming a star center
and has the capability of adding new nodes 7 to Q that
can become stars of degree strictly less than the degree
of node (f>.

Suppose (f> becomes a new star center. We show
than its satellite neighbors 7 cannot become star cen-
ters. Two cases arise. (Case 1) 7; is not a star center
because its degree is smaller than the degree of the new
star center that covers (f> in the new cover. (Case 2) 74
is not a star center because it is a satellite of a much
larger star, so its degree is larger than the degree of the
new star that covers cj>. But this condition still holds
after making the new star. This completes the proof
sketch for the termination lemma and it follows that
the types assigned by the on-line algorithm are correct;
in other words, that there exists an off-line algorithm
that produces the same cover.

4.3 Running Time Analysis and Experimental
Results
In this section, we argue that the running time of the on-
line star algorithm is efficient in practice, asymptotically
matching the running time of the off-line star algorithm
(6(V -I- E)) to within lower order factors. We first
note, however, that there exist worst-case thresholded
similarity graphs G„ and corresponding vertex insertion
sequences which cause the on-line star algorithm to run
in 0(V2) time.6 These graphs and insertion sequences
rarely arise in practice though. An analysis more closely
modeling practice is the random graph model in which
Ga is a random graph and the insertion sequence is
random. In this model, the expected running time of
the on-line star algorithm can be determined.

In the sections that follow, we first give intuition for
the expected running time of the on-line star algorithm.
In subsequent sections, we give experimental results
showing that the on-line star algorithm is quite efficient
with respect to both random data and a large collection
of real documents.

4.3.1 Intuition
We have implemented the on-line star algorithm using
a heap for the priority queue and simple linked lists for
the various lists required. The time required to insert
a new vertex and associated edges into a thresholded
similarity graph and to appropriately update the star
cover is largely governed by the number of stars that are
broken during the update, since breaking stars requires

inserting new elements into the priority queue. In
practice, very few stars are broken during any given
update. This is due partly tp the fact that relatively few
stars exist at any given time (as compared to the number
of vertices or edges in the thresholded similarity graph)
and partly to the fact that the likelihood of breaking any
individual star is also small. We begin with the former,
noting that the number of stars expected to cover a
random graph G„iP is only 0(logn).

THEOREM 4.2. The expected size of the star cover
forGn,pis^.

Proof. The star cover algorithm is greedy: it iter-
ates by selecting the highest degree vertex not yet cov-
ered as a star center and marking this node and all its
adjacent vertices as covered. Each iteration creates a
new star. We will argue that the number of iterations
*s ioE(S")• The argument relies on the random graph

model described in Section 2.1.
Let G„)P correspond to a random graph on n

vertices where each edge exists with probability p. The
degree of each vertex of G is distributed binomially:
Pr[deg = k] = bin(k;n - l,p) = ("-1) pk(l -
p)n 1 k. The mean of this distribution is p — (n —
\)p and its variance is <x .= y/(n - l)p(l -p). Note
that while the the degrees of the vertices do exhibit
some dependence, for practical purposes they can be
considered independent [Bol95]. This means that on
average, each star covers (n — l)p + 1 > np vertices.7

Since the np vertices covered by each star are randomly
chosen, there will be some overlap between the star
covers. Each new star leaves uncovered a (1 — p)
fraction of the previously uncovered vertices. In other
words, after the first iteration, (1 —p)n vertices remain
uncovered. After i iterations, (1 —pYn vertices remain
uncovered. The algorithm terminates when all the
vertices are covered, or (1 -p)*n < 1. By taking logs of
both sides of this inequality, it follows that i > |o'°s?

is sufficient.

Thus, the number of stars is expected to be rela-
tively small. Furthermore, the probability any individ-
ual star will be broken is quite small as well. A star
can only be broken if the star center has the same de-
gree as one of its associated satellite vertices and if the
vertex being added to the graph is connected to that
satellite but not to the star center.8 In practice, the
expected number of stars broken during an update is a
small constant even for graphs containing thousands of
vertices (though asymptotically it is certainly a slowly

BAn example is a graph consisting of two connected vertices A
and B of very high but identical degree (not both of which can be
star centers) and an insertion sequence which causes the "local"
center to repeatedly switch between A and B.

7The star covers its center and (n — l)p satellites.
8 Once a star is broken during an update, however, other stars

can be broken in different ways via a cascading effect.

26

growing function of n). In Figure 5, we give experimen-
tal results showing that the total number of stars broken
during runs on two different types of data is roughly a
linear function of the number of vertices; thus, the ex-
pected number of stars broken during any given update
is roughly a constant (or more likely a slowly growing
function of n).

_. , . iMtom graph • A

3
* 1500

i
1 1000

1 - ■ \/^ 1

Generating Random Data. We ran the on-
line star cover algorithm on a random graph with 1000
nodes. The edges in this graph were inserted randomly
with probability p = 0.2. The on-line algorithm was
run 30 times. Each time, the vertices of the random
graph were inserted in random order. The results were
averaged over the 30 experiments. Figure 6 shows the
data from these experiments. Note that the the running
time is roughly linear in the number of edges in the
graph, and we can see the effects of lower order terms.

1500 2000 2SO0

Figure 5: (The dependence of the number of broken
stars on the number of vertices in a random graph (left)
and for text data (right).

The time to break a star is roughly proportional
to its size (the degree of its associated star center), and
since the degrees of all vertices are expected to be similar
in distribution (bin(k;n - l,p)), this is on the order
of the number of edges being inserted into the graph.
Since only a constant number of stars are expected to
be broken, the expected time to perform an update will
be roughly proportional to the number of edges inserted
in the graph during the update. Thus, the total time
to perform n updates should be roughly proportional
to the total number of edges in the final graph. In the
sections that follow, we give experimental results which
confirm this fact.

4.3.2 Experimental results
We have experimented with the on-line clustering algo-
rithm in two scenarios. The first type of data matches
our random graph model and consists of random sim-
ilarity graphs. While this type of data is useful as a
benchmark for the running time of the algorithm, it
does not satisfy the geometric constraints of the vec-
tor space model. We also conducted experiments using
real data from the TREC collection9 as a second type
of benchmark for the algorithm.

We now detail our data generation procedure and
the experimental running time of the on-line star algo-
rithm on each data type.

9TREC is the annual text retrieval conference. TREC is
organized as a competition. Bach participant is given on the order
of 5 gigabytes of data and a standard set of queries on which to
test their systems. The results and the system descriptions are
presented as papers at the TREC conference.

2»t07 1 1 1 1

11.4MM
Naldat^h

W*07 ■Q

.2a*o7
a 0»*07

S S**07
J

—
t»*0C

M>0*
 } ■ ■ ■■

t*t<M s
§ 2»+07

O

—/ 2»*M
 i 1

IktOS 1.2a*M

Figure 6: This figure shows the dependence of the
running time of the on-line star algorithm on the
number of edges in a random graph (left) and for text
data (right).

Experiments with real data. We ran the on-
line star cover algorithm on a document collection
that consists of a slice of TREC documents augmented
with our department's technical reports. The resulting
collection consists of 2224 documents. We ran four
experiments. Each time we set a different threshold
and added the similarity graph nodes in random order.
The results of these experiments were averaged and the
running time measurements appear to be linear in the
number of edges of the similarity graph. Figure 6 shows
the data from these experiments. Note that the the
running time is roughly linear in the number of edges
in the graph, and we can see the effects of lower order
terms.

Comparion between Star, Single Link, and
Average Link on TREC Data. We have imple-
mented a system for organizing information that uses
the star algorithm. Figure 7 shows the user inter-
face to this system [APR97]. In order to evaluate
the performance of our system, we tested the star al-
gorithm against two widely used clustering algorithms
in IR: the single link method [Rij79] and the average
link method [Voo85]. We used data from the TREC-6
conference as our testing medium. The TREC collec-
tion contains a very large set of documents of which
21,694 have been ascribed relevance data with respect
to 47 topics. These 21,694 documents were partitioned
into 22 separate subcollections of approximately 1,000
documents each for 22 rounds of the following experi-
ment. For each of the 47 topics the given collection of

27

documents was clustered with each of the three algo-
rithms and the best cluster was returned. To measure
the quality of a cluster, we use the common E mea-
sure [Rij79] defined as: E(p,r) = 1 - 2/(l/p + 1/r),
where p and r are the standard precision and recall of
the cluster with respect to the set of documents rel-
evant to the topic.10 It is worthwhile to note that
in viewing data comparing two clustering methods,
lower E(p, r) values correspond to better performance.
Averaging over all 22 experiments, we find that the
mean (p, r, E(p, r)) values for star, average-link and
single-link are (0.77,0.54,0.36), (0.83,0.44,0.42) and
(0.84,0.41,0.45), respectively. Thus, the star algorithm
represents a 16.6% improvement in performance with
respect to average-link and an 25% improvement with
respect to single-link.

Figure 8 shows the detailed E measures for the star
algorithm vs. the single link algorithms and for the star
algorithm vs. the average link algorithm. We collected
all the topic clusters computed in this experiment.
We sorted the clusters produced by the star algorithm
according to their E-values. We plotted the E value for
the coresponding cluster computed by the single link
algorithm (see the oscillating line in Figure 8-left) and
for the average link algorithm (see the oscillating line
in Figure 8-right). We note that the star algorithm
outperforms both the single link algorithm and the
average link algorithm, because the E values for the
star clusters are almost everywhere lower than the
corresponding values for the other two algorithms. Note
that not all topics are present in all 22 experiments,
which is why we have only approximately 500 clusters
in these graphs.

Our experiments show that in general, the star al-
gorithm outperforms single link by 25% and that it out-
performs average link by 16.6%. We repeated this ex-
periment on the same data, using one collection only
(of 21,694 documents), and obtained similar results.11

These improvements are significant for text applica-
tions. Considering that the star algorithm outperforms
the average link algorithm, it is easier to implement than
the average link algorithm, it can be used as an on-line
algorithm, and it runs much faster, these experiments
provide support for using the star algorithm in cluster-
ing and off-line information organization.

^"Precision is the fraction of returned documents that are cor-
rect. Recall is the fraction correct documents that are returned.

nThe precision, recall, and E values for star, average link, and
single link were (.53, .32, .61), (.63, .25, .64), and (.66, .20, .70),
respectively. We note that the E measures are worse for all three
algorithms on this larger collection and that the star algorithm
outperforms average link by 10.3% and single link by 20.7%.

FH« <£M*y Topics

. Cotactlom ~ . jh.';. QMvyi: tulno. .
' TliolonOT« TCdirAcaiRtportsf dl»tribut*.4 and p*»ij«l «ysi«e>:

' T^Ö* Tfjchnteu Report«

•ST ".
1 ? «u

■ submit l tmr _; **** Quit \

QMwyP: PinMpncMäng
lCrll>uc«d «nd p«r»2I«l *yst««3 *

«■fwirft OewmrHivm ftoywt»«, 4> found)

«»11 °-^*'E?fc*sl'Ä|,'»»,*»"*to,EW»»^^
-■■-> j M7 WEM:a»yHPnirmtmilEnrtomontlorMm«««dtiocuHon

—-,-V..

Figure 7: This is a screen snapshot from a clustering
experiment. The top window is the query window. The
middle window consists of a ranked list of documents
that were retrieved in response to the user query. The
user my select "get" to fetch a document or "graph"
to request a graphical visualization of the clusters as
in the bottom window. The left graph displays all
the documents as dots around a circle. Clusters are
separated by gaps. The edges denote pairs of documents
whose similarity falls between the slider parameters.
The right graph displays all the clusters as disks. The
radius of a disk is proportional to the size of the cluster.
The distance between the disks is proportional to the
similarity distance between the clusters.

5 Discussion

We presented and analyzed an off-line clustering algo-
rithm for static information organization and an on-line
clustering algorithm for dynamic information organiza-
tion. We discussed the random graph model for analyz-
ing these algorithms and showed that in this model, the
algorithms have expected running time that is roughly
linear in the number of edges. The data we gathered
from experimenting with these algorithms provides sup-
port for the validity of our model and analysis. The em-
pirical tests show that both algorithms have an asymp-
totic linear time performance in the number of edges in
the graph. In addition, both algorithms are simple and
easy to implement. We believe that the fast running

28

Figure 8: This figure shows the E measure for the
star clustering algorithm vs. the single link clustering
algorithm (left) and the star algorithm vs. the average
link algorithm (right). The y axis shows the E measure.
The x axis shows the cluster number. Clusters have
been sorted according to the E value for the star

algorithm.

time and the ease of implementation make these algo-
rithms very practical candidates for use in automatically
organizing digital libraries.

This work departs from previous clustering algo-
rithms used in information retrieval that use a fixed
number of clusters for partitioning the space. Since
the number of clusters produced by our algorithms is
given by the underlying topic structure in the informa-
tion system, our clusters are dense and accurate. Our
work extends previous results [HP96] that support using
clustering for browsing applications and presents posi-
tive evidence for the cluster hypothesis. In [APR97], we
argue that by using a clustering algorithm that guaran-
tees the cluster quality through separation of dissimilar
documents and aggregation of similar documents, clus-
tering is beneficial for information retrieval tasks that
require high precision and high recall. Precision-recall
are the standard measurements for the performance of
an information retrieval algorithm [Sal89].

References

[AB84] M. Aldenderfer and R. Blashfield, Cluster Analysis,
Sage, Beverly Hills, 1984.

[APR97] J. Aslam, K. Pelekhov, and D. Rus, Generating,
visualizing, and evaluating high-accuracy clusters for
information organization, in Principles of Digital Doc-
ument Processing, eds. C. Nicholas, LNCS Springer
Verlag 1998.

[Bol95] B. Bollobas, Random Graphs, Academic Press, Lon-
don, 1995.

[Can93] F. Can, Incremental clustering for dynamic infor-
mation processing, in ACM Transactions on Informa-
tion Systems, no. 11, ppl43-164, 1993.

[CCFM97] M. Charikar, C. Chekuri, T. Feder, and R. Mot-
wani, Incremental clustering and dynamic information
retrieval, in Proceedings of the 29t/l Symposium on The-
ory of Computing, 1997.

[Cro80] W. B. Croft. A model of cluster searching based on

classification. Information Systems, 5:189-195, 1980.
[Cro77] W. B. Croft. Clustering large files of documents

using the single-link method. Journal of the American
Society for Information Science, ppl89-195, November
1977.

[CKP93] D. Cutting, D. Karger, and J. Pedersen. Constant
interaction-time scatter/gather browsing of very large
document collections. In Proceedings of the 16* SIGIR,
1993.

[FG88] T. Feder and D. Greene, Optimal algorithms for
approximate clustering, in Proceedings of the 20
Symposium on Theory of Computing, pp 434-444, 1988.

[HP96] M. Hearst and J. Pedersen. Reexamining the cluster
hypothesis: Scatter/Gather on Retrieval Results. In
Proceedings of the 19"1 SIGIR, 1996.

[HS86] D. Hochbaum and D. Shmoys, A unified approach
to approximation algorithms for bottleneck problems,
Journal of the ACM, no. 33, pp533-550, 1986.

[JD88] A. Jain and R. Dubes. Algorithms for Clustering
Data, Prentice Hall 1988.

[JR71] N. Jardine and C.J. van Rijsbergen. The use of
hierarchical clustering in information retrieval, 7:217-
240, 1971.

[KP93] G. Kortsarz and D. Peleg. On choosing a dense sub-
graph. In Proceedings of the 34th Annual Symposium
on Foundations of Computer Science (FOCS), 1993.

[LY94] C. Lund and M. Yannakakis. On the hardness of
approximating minimization problems. Journal of the
ACM41, 960-981, 1994.

[Rij79] C.J. van Rijsbergen. Information Retrieval. Butter-
worths, London, 1979.

[Sal89] G. Salton. Automatic Text Processing: the transfor-
mation, analysis, and retrieval of information by com-
puter, Addison-Wesley, 1989.

[Sal91] G. Salton. The Smart document retrieval project.
In Proceedings of the Fourteenth Annual International
ACM/SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 356-358.

[Tur90] H. Turtle. Inference networks for document re-
trieval. PhD thesis. University of Massachusetts,
Amherst, 1990.

[Voo85] E. Voorhees. The cluster hypothesis revisited. In
Proceedings of the 8th SIGIR, pp 95-104, 1985.

[Wil88] P. Willett. Recent trends in hierarchical document
clustering: A critical review. Information Processing
and Management, 24:(5):577-597, 1988.

[Wor71] S. Worona. Query clustering in a large document
space. In Ed. G. Salton, The SMART Retrieval System,
pp 298-310. Prentice-Hall, 1971.

[Zuc93] D. Zuckerman. NP-complete problems have a ver-
sion that's hard to approximate. In Proceedings of the
Eight Annual Structure in Complexity Theory Confer-
ence, IEEE Computer Society, 305-312, 1993.

29

Scalable Information Organization*

Javed Aslam, Fred Reiss, and Daniela Rus
Department of Computer Science

Dartmouth College
Hanover, NH 03755 USA

{jaa.frr, ms} @cs.dartmouth.edu

Abstract

We present three scalable extensions of the star algorithm for information organization that use
sampling. The star algorithm organizes a document collection into clusters that are naturally induced
by the topic structure of collection, via a computationally efficient cover by dense subgraphs. We
also provide supporting data from extensive experiments.

1 Introduction

Our goal is to develop a completely automated information organization system for digital libraries,
automated tools for librarians to classify this information, automatic tools to create reference pointers
into such collections, and automated tools that allow users to locate information effectively.

We focus on static and dynamic digital collections of unstructured text. We consider the problem of
determining the topic structure of text data, without a priori knowledge of the number of topics in the
data or any other information about their composition. We assume that the collections may be static
(for example, digital legacy collections) or dynamic (for example, news wires). We look to discover
hierarchies of topics and subtopics in such text collections. Thus, we develop clustering algorithms that
can be used in off-line, on-line, and hierarchical mode. We wish for these algorithms to be fast, scalable,
accurate, and to discover the naturally occurring topics in the collection. In our previous work (Aslam et
al, 1998; Aslam et al, 1999), we proposed an off-line and an on-line approach based on graph theory. Our
algorithms, called the star clustering algorithms, compute clusters induced by the natural topic structure
of the space. Thus, this work is different than previous work in using clustering to organize information
(Cutting et al, 1993; Charikar et al, 1997) in that we do not impose the constraint to use a fixed number
of clusters. This previous work argues that the star algorithm is simple, efficient, can be used in off-line
as well as on-line mode, and it outperforms existing clustering algorithms such as single link, average
link, and k-means. In this paper we consider scalability issues in developing an information organization
system. We present three different scalable extensions to the star algorithm and show data from extensive
experiments.

2 Related Work

There has been extensive research on clustering and applications to many domains (Everitt, 1993; Mirkin
1996; Silverstein and Pedersen 1997; Sibson, 1973; Worona, 1971). For a good overview see (Jain and

I
30

Dubes, 1988). For a good overview of using clustering in Information Retrieval (IR) see (Willett, 1988).
The use of clustering in IR was mostly driven by the cluster hypothesis (Rijsbergen, 1979) which states
that relevant documents tend to be more closely related to each other than to non-relevant documents.
Efforts have been made to find whether the cluster hypothesis is valid. Voorhees (Voorhees, 1985)
discusses a way of evaluating whether the cluster hypothesis holds and shows negative results. Croft
(Croft, 1080) describes a method for bottom-up cluster search that could be shown to outperform a
full ranking system for the Cranfield collection. In (Jardine and van Rijsbergen, 1971) Jardine and van
Rijsbergen show some evidence that search results could be improved by clustering. Hearst and Pedersen
(Hearst and Pedersen, 1996) re-examine the cluster hypothesis by focusing on the Scatter/Gather system
(Cutting et al, 1993) and conclude that it holds for browsing tasks.

Systems like Scatter/Gather (Cutting et al, 1993) provide a mechanism for user-driven organization of
data in a fixed number of clusters, but the users need to be in the loop and the computed clusters do
not have accuracy guarantees. Scatter/Gather uses fractionation to compute nearest-neighbor clusters.
Charika et al. (Charikar et al, 1997) consider a dynamic clustering algorithm to partition a collection
of text documents into & fixed number of clusters. Since in dynamic information systems the number
of topics is not known a priori, a fixed number of clusters cannot generate a natural partition of the
information.

3 Background: The Star Algorithm for Information Organization

For any threshold o~.

1. Let Ga = (V, Ea) where Ea = {e : w(e) > a}.

2. Let each vertex in Ga initially be unmarked.

3. Calculate the degree of each vertex v e V.

4. Let the highest degree unmarked vertex be a star center, and construct a cluster from the star
center and its associated satellite vertices. Mark each node in the newly constructed cluster.

5. Repeat step 4 until all nodes are marked.

6. Represent each cluster by the document corresponding to its associated star center.

Figure 1: The star algorithm

To compute accurate topic clusters, one possibility is to formalize clustering as covering similarity graphs
by cliques. A clique cover will guarantee that its documents are strongly related to each other. Covering
by cliques is NP-complete, and thus intractable for large document collections. Unfortunately, it has also
been shown that the problem cannot even be approximated in polynomial time (Zuckerman, 1993). We
instead propose using a cover by dense subgraphs that are star-shaped and that can be computed off-line
for static data and on-line for dynamic data. What we lose in intra-cluster similarity guarantees, we gain
in computational efficiency.

We represent the document collection as a complete similarity graph, where the vertices correspond to
documents and the edges are weighted by a similarity measure. We have used two measures: the cosine
metric and an information-theoretic metric.

To compute accurate topic clusters, we create a thresholded similarity graph, where the thresholding
31

parameter is given by the smallest similarity we would like to have between any documents within a
topic. We then approximate a clique cover of this graph by covering the associated thresholded similarity
graph with star-shaped subgraphs. A star-shaped subgraph onm + 1 vertices consists of a single star
center and m satellite vertices, where there exist edges between the star center and each of the satellite
vertices. A greedy algorithm (see Figure 1) computes this cover for static collections. In (Aslam et
al, 1998; Aslam et al, 1999) we show an on-line version of this algorithm that supports information
organization in dynamic collection.

Star-graph covers are interesting because they provide accuracy guarantees on the computed topics. By
investigating the geometry of the problem, we can derive a lower bound on the similarity between satellite
vertices as well as provide a formula (cos 7 > cos ai cos «2 + yf^sinaisina2, where a\ and e*2
correspond to the similarity between the center and the two satellites and a is the similarity threshold)
for the expected similarity between satellite vertices using the cosine metric. This formula predicts that
the pairwise similarity between satellite vertices in a star-shaped subgraph is high, and together with
empirical evidence supporting this formula (Aslam et al, 1998).

4 Scalable Extensions for the Star Algorithm

For any threshold a:

1. Let D be a set of n documents sorted in random order in an array.

2. Let s be the sample size.

3. Compute a Star Cover for D[l..s] and let C be the list of star centers of this cover.

4. For each document D[i] in D[s + l..n]

• For each cluster C[j] in C: if similarity(D[i], C[j]) > a insert D[i] in C[j]

• If D[i] was not inserted in any existing cluster, create a new cluster with D[i] as a center
and add this cluster to C.

Figure 2: The sampled star algorithm.

In this section we present three extensions to the star algorithm that optimize its performance. The three
algorithms compute approximations to the star cluster but optimize on the size of the similarity matrix
used and on the time required to generate it.

Both of the off-line and on-line versions of the star algorithm rely on the existence of the similarity
matrix. Similarity matrices can get very large: for a document set with n documents the similarity
matrix is 0{n2) space data structure. However, this operation, which takes 0(n2) time to compute1, is
much more expensive than the basic cost of the star clustering algorithm, which is approximately 0(n)
time. Thus, it is clear that the similarity matrix is a bottleneck. Computing this matrix is a one-time
pre-processing operation. However, the data structure has to be available on a permanent basis. For these
reasons, we now investigate several methods to improve on the similarity matrix bottleneck.

'Note that the actual time is 0(n2) times the cost of a vector dot product; because the vectors are sparse, this translates into
0(n2) with a high constant.

32

4.1 Sampled Stars

The first approximation algorithm uses sampling to compute the similarity matrix and is called the sam-
pled star algorithm (see Figure 2). The basic idea behind this algorithm is to create a sample of the
document collection that is much smaller than the actual collection. This sample can then be used to
compute a complete Star Clustering, using the off-line star algorithm. For this small set, the computation
of the similarity matrix is much faster. Finally, the rest of the documents can be inserted in the result-
ing clusters fast by comparing each document against the existing star centers only. Documents that
are not close enough to any existing star centers (that is, all distances to existing star centers are below
the threshold) form new clusters. Alternatively, the additional documents can be inserted in the cluster
structure using the on-line star algorithm.

4.2 Linear-space Stars

For any threshold a:

1. Let D be a set of n documents, p a desired probability, and a a threshold.

2. Let C = 0 denote the desired clustering.

3. Select a sample S of pairs of documents (di, d2) from D

4. For each pair (dj, d2) in S if the dot product between (di, d2) > o increase the degrees of di
and d2.

5. Sort D in descending order by degree.

6. Find and mark all the star centers by examining one-by-one the sorted D.

7. For i = 1 to n insert di into all possible star centers.

Figure 3: The linear space sampled star algorithm.

The sampled star algorithm provides a more effective way to compute the overall clustering of a doc-
ument set but even this algorithm requires the computation of a complete similarity matrix (which is
smaller than the original matrix). An additional optimization is to remove entirely the similarity matrix.
The key information used by the star algorithm is the degree of the nodes in the thresholded similarity
graph. This information can be represented in an array. A trivial algorithm for generating the array is to
compare every document against every other document and count the number of vector products about
the threshold. Note that this method reduces significantly the space requirements but still necessitates
0(n2) time to generate, where n is the number of documents. An alternative is to compute the vertex
degrees approximately, using sampling. For each document, we first generate a sample of documents
to be used for comparison. A dot product is computed between the document and each member of the
sample set. The degree of the document vertex is given by the number of dot products that are above the
threshold. Figure 3 summarizes this algorithm.

4.3 Distributed Stars

Another bottleneck for the star algorithm comes up in Internet applications, such as organizing data
collected from various sites and databases by topic. Consider a task in which several databases are

33

For any threshold a:

1. Let D be a set of n documents. Divide D into k disjoint sets D\... Dk-

2. Run the Star algorithm on k separate machines to produce the star clusterings C\... Ck-

3. Let c\.. .Cj be the set of star centers in all the star covers.

4. Run the Star algorithm on the set of documents C\...CJ.

5. If two star centers are placed in the same cluster in the previous step, merge their clusters
using a union operation.

Figure 4: The distributed star algorithm.

queried with the same question. The documents returned by these queries are to be fused and presented
to the user in a coherent picture. One approach is to run the queries, download all documents, and
organize the entire collection at the user site using the star algorithm. An alternative approach is to run
the queries, organize the search results at the location of the database, and then merge these results on
the user machine. This second alternative has several advantages: (1) the star algorithm can be run in
parallel, which provides a speedup; (2) the document transfer operation can also be parallelized2; and
(3) the local topic organizations can be viewed as a way of compressing the documents, can be used to
generate the merged topics in the distributed collection, and can be transfered much faster than the actual
documents to the user's machine.

For these reasons, we describe a third approximation of the star algorithm called the distributed star
algorithm, which is useful especially when the document collection is very large. The distributed star al-
gorithm provides parallelism and is based on a "divide and conquer" approach. The document collection
is partitioned into several disjoint sets. The sets are clustered separately and the resulting clusters are
then merged. Figure 4 shows the details of this algorithm. Note that for this version of the algorithm, the
off-line Star algorithm can be replaced with the Sampled Star algorithm or with the Linear Space Star
algorithm.

4.4 Experiments and Evaluations

We devised two experiments for the purpose of testing our algorithms on real-world data. Because we
were limited by computer memory, we focused the experiments on the Linear Space Sampled Star algo-
rithm (see Figure 3) which was introduced to optimize both time performance and space requirements.

In our first experiment, we ran the Linear Space Sampled Star algorithm on a 50000- document subset
of the TREC volume 1 corpus at various sample sizes. We compared the output of the Linear Space
Sampled Star algorithm with sampling to its output without sampling, and show these results in Figure 5.
Note that when sampling is not used, the the Linear Space Sampled Star algorithm produces the same
output as the Star algorithm.

To measure the difference between the outputs of the two algorithms, we calculated an aggregate preci-
sion and recall for each sample size as follows. For each cluster x in the output of the sampled algorithm,
we calculated the precision and recall of the documents in x against each cluster in the output of the
unsampled algorithm. We then determined the cluster y in the output of the unsampled algorithm that

34

E'of Linear Space Sampled Star With 50000 Documents

S 0.6
i

> 0.3 • i

^^:i^^SSi^S^8

-:: ••-. ;:jiO •■iH-V-VTJlBfisSs' |'i£:"Jf ,^ ^.Jp^ftwn».^ ^^^^^^^^H
^^I^MPä^Ä !#? HSHH'?4lf$ *'i

^S^^^S^i^^^^^
^SlPill

|P
»

"Spi

"-J1 **,
ft

..'i ^=.i-'-:^Ji^' fZ-fci'-jii:» 3« vt'T^'**
Mfe*?^ sip*? s^:

*.^?

1 J ■. £->»^b4 |8P
3^"

f^§Sllplifil£ij
'.If :■■■■:;-.-ä-^-«■■!< * IttilJ^tffllltil

^fe-^^S^«^'Ä^^^b S^r^^fss-^V iVi>

0.4 0.5 0.6

Portion of Similarity Matrix Sampled

Figure 5: The effects of the sample size on the quality of clusters obtained using the Linear Space
Sampled Star algorithm. The z-axis shows the sample size. The y-axis shows the aggregate ^-measure
computed relative to the star algorithm. The smaller the £-value is, the better the performance is. The
experiment was done with a TREC subset of 50000 documents.

minimizes van Rijsbergen's (Rijsbergen, 1979) evaluation measure

2
E(p,r)=l

\/p + 1/r

where p and r are the standard precision and recall of the cluster with respect to the set of documents
relevant to the topic. Finally, we calculated a weighted average E' of the E-values calculated previously,
weighting each E value by the number of documents in the associated cluster. Figure 1 shows the results
of this analysis. With larger samples, the sampled algorithm generally produced the exact same results
as the algorithm that did not use sampling. As the portion of the similarity matrix sampled decreased,
the results of the sampled algorithm deviated increasingly from those of the unsampled algorithm.

Our subsequent analyses sought to determine whether the divergent output of the sampled algorithm
was inferior to the output of the unsampled algorithm. The original purpose of the Star algorithm was
to calculate a cover of the input documents using as few star-shaped clusters as possible (Aslam et al,
1998; Aslam et al, 1999). The Linear Space Sampled Star algorithm also generates a cover of the input
documents with star-shaped clusters, so we compared the number of clusters in the algorithm's output at
varying sample sizes to the number of clusters in the output of the unsampled algorithm (see Figure 6).
Surprisingly, even with samples as small as 5%, the number of clusters output by the sampled algorithm
was never more than five percent larger than the number of clusters that the unsampled algorithm gen-
erated. In fact, the sampled algorithm generally covered the corpus with fewer star-shaped clusters than
unsampled algorithm did.

Our second experiment compared the output of the Linear Space Sampled Star algorithm against cate-
gorization decisions made by humans. Specifically, the algorithm was run on 4925 documents from the
FBIS corpus that had been labeled by humans with one or more of 47 different categories. We repeated
the precision/recall analysis of the first experiment, using the 47 categories in the place of the output of
the unsampled Star algorithm. As with the previous experiment, samples as small as 1% produced results

35

Number of Clusters for Linear Space Sampled Star with 50000
Documents

50

ISl-äBSs

0.2 0.4 0.5 0.6

Portion of Similarity Matrix Sampled

0.7

Figure 6: The effect of sampling on the number of clusters generates. The rr-axis shows the sampling
size. The y-axis shows the ratio between the number of clusters generated by the Linear Space Sampled
Star algorithm to the number of clusters generated by the Star algorithm. We observe that sampling does
not affect much the number of clusters discovered in the collection. The experiment was done with a
TREC subset of 50000 documents.

comparable to a 100% sample (See Figure 7).

Overall, our experiments indicated that the Linear Space Sampled Star algorithm generates output com-
parable in quality to that of the Star algorithm, but uses considerably fewer CPU and memory resources.
Both of our implementations of the Linear Space Star algorithm required only 81 megabytes of memory
to process 50000 documents, 73 megabytes of which was only used to store the vector representations
of the documents. On the other hand, an implementation of the Star algorithm that uses a sparse thresh-
olded similarity matrix would require approximately 2.5 gigabytes of memory for 50000 documents, and
a complete similarity matrix stored in a double-precision floating-point array would require 18.6 giga-
bytes of memory. The gains in performance due to sampling were similarly significant. Figure 8 shows
the amount of time that the Linear Space Sampled Star algorithm requires to process 50000 documents at
varying sample sizes. These times were measured on a 250 MHz. MIPS R10000 and do not include the
time required to parse the documents. We found the running time of the algorithm to be almost directly
proportional to the size of the sample. At sample sizes of less than 5%, the Linear Space Sampled Star
algorithm organized documents at an average rate comparable to the bandwidth of most Internet connec-
tions (See Figure 9). Tests comparing the Star algorithm with the Linear Space Sampled Star algorithm
on smaller data sets indicated that the overhead of sampling and reducing memory requirements result in
an increase in running time of less than 5%.

Finally, we have conducted a small experiment on 1000 TREC documents to study the performance of
the Distributed Star algorithm Figure 10 shows the accuracy of the distributed star algorithm relative to
the off-line star algorithm. We note that when the number of computers is the same as the number of
documents, Step 4 of the Distributed Star Algorithm (Figure 4) performs a star clustering of the entire
collection. The same is true when there is a single machine. The greatest degree of parallelism and
distribution is achieved when the number of machines is y/m, where m is the number of machines in the
system. For this experiment, m = 1000 and y/m is approximately 32. The experiment shows that the

36

E'of Linear Space Sampled Star vs. FBIS Categorizations of
4925 Documents

("üTiiai "L ■jjUUi|JJL|.»jiiB3Bfiäi!i^^

&s

m^lf C/xi:-:'7:'c ■ :-■:?;;:f W'^rW -V^r^-^ fr5i;"?" '^'i *rT-'?

SKI
0.4 0.5 0.6 0.7

Portion ol Similarity Matrl» Samplad

Figure 7: The effect of sampling on the quality of the clustering for the FBIS collection. The z-axis
show the sampling size. The y axis shows the ^-measure computed relative to the human clustering.

E-measure for 32 machines is about 41 %.

5 Conclusion

We presented a scalable algorithm for information organization. Scalability is a very important property
for information organization algorithms especially when the collections are dynamic and Web-based.
We implemented these algorithms as a scalable system for information organization. In the near future,
we plan to expand our experimental collection to demonstrate the performance of our algorithms when
dealing with hundreds of thousands of documents.

References

Aslam, J., K. Pelekhov, and D. Rus. (1998). Static and Dynamic Information Organization with
Star Clusters. In Proceedings of the 1998 Conference on Information Knowledge Management,
Baltimore, MD.

Aslam, J., K. Pelekhov, and D. Rus. (1999). A practical Clustering Algorithm for Static and Dy-
namic Information Organization. In Proceedings of the 1999 Symposium on Discrete Algo-
rithms, Baltimore, MD.

Charikar, M., C. Chekuri, T. Feder, and R. Motwani. (1997). Incremental clustering and dynamic
information retrieval, in Proceedings of the 29"1 Symposium on Theory of Computing.

Croft, W.B. A model of cluster searching based on classification. Information Systems, 5:189-195,
1980.

Cutting, D., D. Karger, and J. Pedersen. (1993). Constant interaction-time scatter/gather browsing
of very large document collections. In Proceedings of the 16"* SIGIR.

37

Running Time of Linear Space Sampled Star With 50000 Documents

Portion of Similarity Matrix Sampled

Figure 8: The running time of the Linear Sampled Star algorithm on a 50000 document subset of TREC.
The x-axis shows the sample size and the y axis shows the running time in seconds.

Everitt, B. (1993). Cluster Analysis. Arnold, London.

Hearst, M. and J. Pedersen. (1996). Reexamining the cluster hypothesis: Scatter/Gather on Retrieval
Results. In Proceedings of the Wh S1GIR.

Jain, A. and R. Dubes. (1988). Algorithms for Clustering Data, Prentice Hall.

Jardine, N. and C.J. van Rijsbergen. (1971). The use of hierarchical clustering in information re-
trieval, 7:217-240.

Mirkin, B. (1996). Mathematical classification and clustering. Kluwer Academic Publishers,
Boston.

van Rijsbergen, C.J.. (1979). Information Retrieval. Butterworths, London.

Rus, D., R. Gray, and D. Kotz. (1997). Transportable Information Agents. Journal of Intelligent
Information Systems, vol 9. pp 215-238.

Sibson, P. (1973). SLINK: an optimally efficient algorithm for the single link cluster method. Com-
puterjournal 16,pp30-34.

Silverstein, C. and J. Pedersen. (1997) Almost-Constant-Time Clustering of Arbitrary Corpus Sub-
sets. In Proceedings ofSIGIR, pp 60-66.

Voorhees, E. (1985). The cluster hypothesis revisited. In Proceedings of the 8th SIGIR, pp 95-104.

Willett, P. (1988). Recent trends in hierarchical document clustering: A critical review. Information
Processing and Management, 24:(5):577-597.

Worona, S. (1971). Query clustering in a large document space. In Ed. G. Salton, The SMART
Retrieval System, pp 298-310. Prentice-Hall.

Zuckerman, D. (1993). NP-complete problems have a version that's hard to approximate. In Pro-
ceedings of the Eight Annual Structure in Complexity Theory Conference, IEEE Computer So-
ciety, 305-312,1993.

38

Rate of Linear Space Sampled Star With 50000 Documents

1000 .*■;> «iiJW;,..,,...

0.4 0.5 0.6

Portion of Similarity Matrix Sampled

Figure 9: The effect of the sample size on the rate of the Linear Space Sampled Star algorithm (plotted
on a logarithmic scale).

Similarity otDntriautad Star Algorithm to Star Algorithm

Numbsr of Computer!

Figure 10: This graph shows the E-measure of the distributed star algorithm relative to the off-line star
clustering of the same document set.

39

-Sä ö * s s x o a
pi u a
5 rg £
a> a a>
a
03

ft

C3

Q o
a
C3 a

0\
ON
Os

03

40

s

©
e
Q

U S

*P3 ?N **
a wo P5
2 fl a sog
Ü & £

WD ö
** o

S ä

O ■*

-a .2

S
as
u
a

S-

a

s
.a
o

o u
• pN

•a
6«

WD
es
s-
03

.2 s

M § * Q Ä ^ 5
.8 o>

U <

a>

ON

p>> C3
WD -**
O

5/5
cc

o c a o
ja '— C3 p*

o «a

C8 ^g*;|
G

• PN

ae
l B

ah
l,

C
ol

R

oe
tt

er
, S

ta
n

«Of
•IP".

03

1 PN

s S
a

WD HI s ss o

o §<

41

.2

a
O

tt

«5
s
o

OX) .2

■§ i
s £
£ •-

>
U

e
SI

O

a o
C8

ft

13

CO

a o

13
u

©

a

'S a.
<

es

42

CÄ

a
S
o

s
©

WD
©
©
a

•-«>■■

I
O

"42

WD
;'ä'-
"C

-ST It's
a a

. . ■ »--'-'. :-^
ÖJD • PH

*

■„■> MW-.-.-

- PO , o
S

.. as----

o
»p-1

C3

p-

«2
s

P>

W)
a

©

S3

t/5
a

•2
CO

•P4
mm V
fj

t £
V

u GA

0) *ö
>►>

o
0)
-o -+■*

« ON a d u SP o a> o 4>
4» a a

V c > • PP >*
o s O -p* ©
s S s 0

& "a a> o o o s d

d
0)

Ml ©
C

03
O

533

o
• PP

s
•pp

a
•P* u «s 53 • pp 63 >

<

1

o
1

o
1

PQ o d
o
U

t> D D D

en
. - d d o
•f* ,:..:*p-|^ -v.. «K:/

* « P-S»"
*pp
-7lÄ' :

-b-* - £ a* *<*n P4

g Ctt
e* r©

7- ftp-t-. ipü:i

a»
'::d.'

:d-
f©

a» PN

. CU - »pp

B
'S* s

•-'d -

WDXJ • P* •; • d -

W).PP
S Ä

• a»,
PO ;'»pp-.T

id
o ;w-;-

d
^.* *(•■*.„ •, <w ^.;.Ü^ •©£•

•• "S Ä
o JM g 0) , &

'•pp
©

■.■Hh»'
©

&£ pd ' «i.
.-. -©v. ;-:yi'' d pd
■l>-pf-\

'pO1

©

d
ii*JP*. ■

d V> « ai
a> W) 4-

y^3
d

■■•■ &

u
©
PP

.■-'■■■ 'W ■■
es

•Pi HP* .
d

1> :t 1» ^t;-

44

0

<

H

H

CO
>
CO

o

PH

o> '
■ ö

0>
:- OD
o

S

S

*-< o

u
H

%

a

O CM

WD

WD
fl

93
03 a
P4 o -**
fl P"PJ

•PP • p*

o
• P*

PC

s £
en

i-
WD

d
o

•P*

PC

e
o

c
o

•P*

9
O
u

• P*

o
u

-a
• P*

o
ON

<u
e

•P*

•P*

<u
c
p.

O
5-

> **

>
a a ^

A C

>■* o
pd a £ P. *

A
ü ff -0 J C3 o

>>
PH

PM o 1-4 MO«

i i o 1 0 a. 1 1 i
PH C/5 c/3

t> 1} 1}

45

4*

WD
<

S3 «« Ö _L^
S 8 s? ■ - 'S

■«< S < P*

D". 1} D D

O
CO

46

3

P£2

s
0) «5

ftl

a
IM

47

o

es
WD

es

«

Gfti

■f©

■• !

00:

§fi

cä

©

-

■SBÄ fist-. "

Äft

"3^ ©

S?f

~£T -

C3

C3 ■'

•.■■■■'. r

Ali
=aB»t3sa

p (

s* et

o es
■.-ji|gg|:

ÖD— ö-'

B^ ■'■■:-.■ •»"■<

im

ijies»*

■•-.'■

>r £■;

48

</3 S3 '•

Q« O 0>
0> WD o es o

in
fo

rm
: eS

<<

3 ec
te

d
gr

at
e CÄ

O
O
^

0 ►n
 in

 a

V -Ö A <v O w

C
ap

tu
r

di
st

ri
bu

te

at
e

di
sc

on

es
s

an
d

im

it
or

 d
at

a
s

te
r

in
fo

rm
at

io

n
ö 0 4> 0

es
0

-fl
<*>

#o "ö>
ON
O

u
ON "3 s fi

l

4fH

15

en
ts

 t
ra

v

fl
es

fl
es

5+H
O fl

es
A
es

st
om

iz
ed

s
.0 ir

ce
s

en
ts

 c
;

en
ts

 c

ou
nt

s

en
ts

c

en
ts

 c

ftw WD 7 wo WD S WD WD B
S3 <

0
«1 «< < < <

HH

49

Xfl

0

pfi
©

s

2 ** "*;:

■** 2 ®

'S of'
« * A
•* ^ Ä £ « «

C8 'S O-

" «■■■■■ ~ -'■ * • Ä---S. °

Hgpi' ■

ZJ 5 "6 CO

50

1/3 V.
CJ o
Sfl +*

C
V)

« •Ö +*
-** fl 0
-Ö C3

-«-» o> S-
•M (9X1

«5

Or

o

o s « o

■■■■HOT

a a>
a> *a
WD ©
es w
+J 6«
S S
O pp*

j? at a>
C/2 ^

• a*
fS

Xfl

so A

51

ÖD
fi

o
PH

?;*W*K

T5

©

■^

?©■■■ W-

■£g'|£gjff*"'i :

o

©

©

.-..:

" &.<■:***■

ä^^äSJK =3)j||ljE.:<-4, • "j^^>

et
s
.©

■ii.'fjjjjSy^;",

o

-mmmm

05

,*? es

■§; «■■ri
s;^?£?:

:C3' «4^1 ®- S3
ÜT3 U -Ö U © O ^

52

©

C3

'S
«3
ÖD

o
©

C3

s

Ö

PQ 1?
l; '£>" cö.-

o Ö
'S £

:■;?'■.''"•-S:: cd

,o £
<4H
Ö

HH

(DJ)

d

C3

's i
WD tß

O cß
d ^ © 5
•ä <»
« -3

© **

5 35

0>
DJD

©
t/3

es
pfi

d
©

cd

s-

i
«5

es
HH pö

5/3 +*
d

S
d
©

53

CM

e*
0> 0) fl

Or
pfl

g >> «3 • pp
"3D ^ PP "Ö Q

s a >
©

o • • pp
PP

es

A
• PP

«5 O ^
WD
PP

T3
fl
es
a a

a o
• 1-4 fr •*•*

fl

o
1 £ —

fl
s

p"p

p*

o
09

3 'S
•pp

o
1
fl

fl
• PP

a
• PN

CM • PP
4> C3 • PP 0 O "*-

2 P- o
PP:

s fl

o
• •
pp

o
s

es
«3

WD
**

6« «1 PP

t3
• •

>
©
fl
OS n

a
• PP

S
fl o

•pp

•pp
PP-

O u
fl o

•pp
-prf

•pp

o o
fl
es n

fl o
•pp
1»

»3
• PP

PP- o
0 o PP

•PP •
'S H püp 'S

pp

H
CM 5-

PP
a»

54

©

H .."«
©

-•*■«
•S-»
C3

nP imHHk >
^

H^VJlr^i 1 0>
«l

pfi

\^r»« B O
^^:.-;

55

5*2

'S

WD
a

\ 1 M / r ;-
~; ■. 4>

o
a)

0
O

-a>- PQ
*< ;-

.;«s .JUIS ^ P^
ffl.

o
§1

V

56

u

i
PH

V

-** o

o
©
o

a

o

I *

57

WD
3
O
c
0)

v

O
fl

WD 13'

3
O

0>

e>
£

.

S
H

■■■•-.

--1

»■■■J

S8

4>

o u

W)
Ö

o

0>
Ö

o
«<

59

3

O
s
Q

^^

0)

93
Ö

GO

a o
WD

«5

.Ar'
, - -:'*.' ."-.-.-', ■ ■' '=: '■" - - , ■;;.. ;,■ :.;,.; ,"•"„

. , ^ ; ;, ■ '■■ ^<-:':^"/\'-■■;' ^-'i-^'^'^jlS-^:^

o ■. .

s ge
nt

s

S A

4>
PH

' «paj '''. Q
U
<! /■ ":-:. > '■■' , ~ ;% ■; ;. r..-:^... ' "; '■'-■! \ -'.

60

o

o

:

P^

Xfl ^

0>

IS = ^^vf T.^:i^

o

V« '-':&'.',^£%^f. '* c
•^■^

0
S3 , ■ST

-■ P*

E .«< "*<<

0> ;f^^ßW? ■:'' •

. ■ ■ O ' ;';;'i'r=-'3^'-'fS

'

ä
o

PH

U

"ft

H

BO

at
- co . ^
- S- <D -W

0> A *~
E 2
GO O ■'I-a

a .2
m so
co O

H ** ft'

CO ': P* ■:
öS S Ä 2

o 3
'S«r-:./

::«v\ 1 •

61

0
O

PH

62

WD

5-

CM

O

u
CÄ

o
S

es

3
O

63

Xfl

es

64

■Q ^> ^

-o

J3
u
S
O

+

o

Of)
VV« " ♦

© *
u •
u ■

& I

CÄ
• •

■ w «

Ü

* *
tn

■••'

n f>

65

S-
O

0
3
fe

66

Oft

u
<

o

PH

U

JA
H

'-'
' ■+■»,

■■W'--:'^:

-
- a-

5«

'..in*-;. :«»■«',*
S*r' ft»'--

3 2 3 h
O

S
a»

•** &
O

,©

SO--'/;..-

o
oa • «

WD
S a w H or»

«.fa ::©• ■08 2- TJ s "o -■■©■■■-.-jg
:..'V>' TH 1-4 ;^

•
.;'.V?'':':>V::' ?•;■'.

■■■'•'■;'-

67

s u
■■■©

1 Q

o
O

68

Ä ^
WD '-
S3 o
O
3* 1

JA o>
+* a
o V)

■+* <y>
3 a>
o Ci K :-

f>

(X)

G*

69

u
©

u
3
53
to

Ö:. o
• «■4 ,.r

' ^4"*
C8

:.--v?fcr;
'-- -5M ^

0>
«5

pO
- o •■■i.0A':'v--".;

. ■•■fl^.; -;..-

Q) £
.a s

■- 4S-. ,-,-^v
, >

i oft
> 5 ©
{« 2 oi) o 3 s

■■i: Q'■•• 1 "P © o ■'.■• : fl&

CZ5 §
■•-,-."SUP

5*5 •. •
'*■*

.- *I«P<:

Q,
1

'&''■-- "yi::.':'i.r ■:«^;:7

a
1/1 .:äg---'■■',:*■ ■■■- ■

• * +- £*
' «IN . Y. «*v ■•■.•$> ':/
** S ^ ■
C3 H es

H3 « ON

s o &

' © ö 2
s £ ^.^.stt 3: * ft © - £-

• . •
^--•^V,^

.... pV, v. -- > -,:. ■ ;..;■.. J ■

WD a
'''"•P""l .: "

'./■■''■L'«*- V ■ ,-'^ :;■;;' '■'"■■-' p-4
;.-P-I . o

/ >A I
c

P& 1 «
■':; es- y\ > ;

jmm^..

■ -.ml 1 &;\

A / 1
70

|
■'.,: . ■' "c •■•• t-

VI
& ti

■4^ O
5^ a* tC W)

£ ^5 g>
2 «S 3 *

0> fa **

• l"N ■ CM. 3 -

>► 5. "3
fa •

nt
e . o

_i
HH
• •

0>
0>
•
fa» , "■. v. "■'- '-*

Ä
•«-»

W5

P
ha

se
 1

H
e'

s
1

in
 th

e
1

lib
ra

ry
 \

o
a>

'•'ft en

aa
- fa

O

u §
| £
* 8. ; »us*..-; W T

he
 p

lo
t

B *
fa =-r -

/W
h
e
re

\
(

 is
 y

ou
r

 1

' -'"« - © ä :©*
;:.Ss:*»:; a w>
■■■Wi-'H'.'
;;,■..=»..:*.,';■#';:; I-

71

(Ä

öD Q4

o
s

'2 U c*
^ ■* ■■*•■

© 15 ^ ■*"» g. «

•8« «:
Ä ns .3

« S ' ©
8 .'s |

** .g/ö

cc -2 ^

4 'S

8 g.

'S s

<u

S3

".■*©'
es
ä

;©'
O

©
U "-5

C8

3«-:'.«■'■

ö •■■•«
©. .S

.^.«V a> 1

s *-*
£ a .-1

© W c
>- ■-(ppt. ;p*-*.. ■■

M; ■;"'* •

72

73

^iiiiiiiiiiS i
ifffiiiiiiii f f f f I f f f f tl ^

74

• . S:' 1
■s:---'-;..^©;--:----^ ^o WD

■■■■•■. 93 •
■^•■J«- :. d

■ jg'

w
or

k

ÖD■ ,3 ä 2J

• fa.-|

>

O
■Ö

•2

es
•-•'«fa .

' ^s -

■. ^

: 0>
■■' "?äß'...:..

OS

«

& 3 u ü w S
:• ■ •,© u •■'• fa' ' o *Q*

ut
u G

. -iP"PM

Q

^■■i

"d ISO

=
5S

C5

S2 3 m fl +*
fi

C
ur

re

ä 'S & & -S | .9 S «

.. .«p* "v,vflj- -■■■."■i3-'SE ■■'.-a*;-' .'■•a)-;\:..0>.^©.--.?:,:..".'■■::'';. V»v

■-■■■■* £ 5 . . ® . -a s • • • s • • J •
o . . .

CO

75

0

o

1 'O
es .
©

"V^V - ^' ' f: '•*■*■

. ■■■sal ■■
• '©

.i'PHPt i*

im
QJ -

■. ''"''■" ■>. v'.,V:.:/'...

o
>:■

Oß © '

a •
P-* © *
O .■•fH-'■'■,.,

'-v.rj.g,-: ■*-»

/;;:„'";»pi| ■;.-. ;;A»/-. '.'-.•"*' ',.: '.''."■■ --:■...;■■;'>■'■';'.'

■£■ VW ./;'U • *-*s=,, E .^0^ '..>_'

. N

s
'S

P*>.'

-S3
p*

a«

es
ff

ff

a
•PM

v.«-..-.
s -

. a- • o
■+*
es

;"'. "jj. ■

Off eh «2
>i.y:;-:'5

o

;Pe1

-S3

-. rv

ÖD

©
• ©

©

N ■' .-ft

^Pt*-:
6»

5M

ä ** ***

••per
H
••

Of)

^-

-*-» sfcflrj'^ 5Bi », ,r.« ■■ •'

O
o -

"S

: ; ÖJD:
ä.

ja-

bD'

O
e -
©

.',;«PP4 -:

s
cg

©

PN
53

-■ S3-

p©

■ S "ö na c>
-p© 'S-

es g

• •

••■'«

IX)
Ä

l*P&

PÖ

o
•

'S
P-i '

,;.ft- :

- O
■**

*

ft U fe

76

r-Jfc-'-llSSastfl ratal H

- -'«ItM Bt^BBHK 8
IBM WBt-T "1

^PBI ^^f.^^H

o *

E*5

2 o

a a

!

E

1

0>

a

Q
(/)
a>

H

Q

3

.52

•5

E

3

3
53

Si
J3

s
3^

rr

77

*<3

■8

s;

fmk
HH

a o

%

8?
s

© «a,

©
WD

WD
a
:-

u

si

© §

78

•*
&*
©

Ä £ <*> r s s o St
• P* ^K»

<M .a*
S ^
Tl ^
2 § fi 5 o :
U * T-H

O
^

• ■ i—1

s
o

&.
,©

> o
a
.2

.o

Gfi

•St

a

st

s
■8

a
es ä

G

ON
ON
C«

•8
CÄ

O

^
^

«A

st

«8 s

8
■8
St
%

&

V

CO

st
*)
si
a
<J

•§

**
.^
^2 fta

•8
a
© a

St
S •c

E
*S Q

2 •to»

St
1«*

^ Q
Ö«
>* s:
5S ^

-St 0
^2

<*> fe
*) •**
St SN

•»«» ^

St £
^

•5: St
a 03

05 -1
©

79

80

o

«0

* Si
© *>

C3 ik

61)
C

• P*

;-

3
^

8 .

^ 'S»

TTT 1

E

I

Sg

■s

C5
O u
ft a

o < •5 do
CO ^

WD fe

8

8?

s

-fit
o

81

0>

o
a

S § O »PP.

'S * £ .a
© a
S3 ON
O Ä

S «

'S»
SP
Si

■8
si a

I

•SS

3

§

St

St

a
St

c c
■ MM

<D
l_ Ui -Q
0) c (0

4-i (0 *-•
(0 JE

o

Ö) c a> T3
(0 JQ

(0
(0
O

o 0) -Q

.Q

c
o

"43
O

O
O

j2
0)
0
i_
0)
c
(A

a>
0)
3

CM

O
•PP

a
.5

<*>
at
SP "* .5 «
St

•St

St

•a

a si
St

cs

3 "C -a
^ .

ffl ^

I
St

<1
©

82

s
0)

d s 33
•a S

d
o

13

m

■us

"*M

•p-<

o
4>
**
C«
;-
d

d w

£ 1

2 4>

st

•st

C3
t
.1?

1
CO

St T*

£ •« #d «

d

O *>
3

o
C3 Jfc

^ p*

g< a *5 d

a*>
S 'S
o ^

83

2
r
st

st

d o

J« -^ ^*
d

st u
5

St

St

st

St

a

8?

d o

.a
d

d &o

o
5S

60
i-
0)

P£3
WD

•pp

a
P.
0)

xs
pp
o

ON
A ON

CO

ft
ft

Si

a
a>
u
a»

a»

«8
»a

03

St

o
o

pä

OS

u

03 a
0>

öD 2

«1
pp
a>

X!

00
ON
ON

03

a a
03

s
• PP

w
50

PP

o

"03
a
o
■

03

IS
• P*
50
5«

&T3
St

WD
a

• PP

CJ
03
PP +*

a
03

a o
•pp

o
+*
a>

*d
•pp

ON
O

WO
a

•»■*

a
•pp

H
03
-**
03

>

pp

-a

a
PQ

C«

Sj • ^ • J3
^* »a* "*^
?3 § 4>
k< O «ö

1^
ON

a
0)
WD
SN
0>

PQ

a
03

en
■**

GO
0>
a
cr
<u
P«

0)

03
GO

0)

a
03
>

"3
PP

u
03
GO

■+■»

8

s
SP ©

>5 PP
Q 03
^ !S

"5; «s

£ • s

Si
5 «S

PP

ja

BO

a
03
0>

P*

PS
a

WD
03
PP

03

I Ö
PSP a

ÖC "WD
st a

•p* «pp
Sp, GO

o

84

*>]

5
Ä
^
CO

c
.0
CO
.N t^^

c
CO
p> ^
0
c
0 ■ ^te

H*>
CO

s
^. £
c «

>
*> c •v
M

CO 5;
.50

"C a •>*»

3 0) pC •«
0)

P* 8"
^

O
WD

48 3 |

2
0 in

g

E a
CO
0) C/> Ö

Q ^2 ^

u

•J8

*

• P* ^*s

< v

Off

O a

o
©

85

0)

I
5)

QJ

3

-J

Q_ Q.Q. 0. a. QL
CM

%
fl
<3
0>

s a. CL Q. Q.
fc<

V

SM a Q. ^^^^ Q.
C3

^
TV J^S

& a a. 0.
CM

CM
^
a>

CM '-. »5 CM >>
■ :"*-* ' ■ CÜ a PC Q -+* ^^ O

S* "3 b
v^3

13 =:■«■■■

■-JBT

WD

•9 • PN
^ o ■4-» "EL A

P2 a
a

"3
■CO

a- rl
ap

CM S ^

"CM a> as a> O 73

86

Si

3 r

\

£

O)

O

IB
iff

v.

III
[III IP
"^3 ^71

"4M_

1
■4—»
■ wmmm

E
CO

0
■a

©

87

to

es
a

'-

a

3
o

u
©

Si

'S

WD §

1

IS ^
s i

° 1

a

'W
_>5

0>

o
p* "*•

S S

88

o
S

2

1
55

5-
W)

in

6k I

DJD

a o
U

e
fc a.

o

5- t

89

& u / 9L****J\

Q)
Sw \ * I

SO 2
u
QJ s«> 1 ^•V. .-)

JO
\ ^Ä* m.

i*
5 >3

C3

Ik.

^

>l
de

d
gi

m

um
 s

in

lu
st

er

«5

st

hs

co
ve

r

dj
ac

en
t v

9
XI

s
m

in
i

in
 a

 c

ib
gr

a C
&5 -s;

1
st

gr
ap

]
gr

ap
h

an
d

a

<^
<*>
st

o ra
nt

ee

um
en

t 9
en

C

a

r
su

b
se

 s
ub

ve
rt

ex

•St

1«, « ^> ^J ^ Co St ««M s
ST3 +3 .§> i

o

9

ac
cu

ra
te

 =

be
tw

ee
n

"2
•St er

 b
y o

•§
»«

S er
 b

y
st

itu
te

s st

••

•5
h, a

1 >
© 1 >Si £ st

>3 »piflna^

o

^
«Ü! *"* jj • • •

5r

i—1

90

:x

s

CZ5
fl

'-
03

pfl a
WD

03

CM

03

*d s
d

»\
CÄ

a
03
SM

WD
pfi

d
on

03

CO't CN O 00 CD ^ CN

ÖÖÖÖÖÖÖÖ
-^CMOCOCD^CNJO
T-T-T-OOOOO
ÖÖÖÖÖÖÖÖ

(d)soo

-d

t/3
en:

Bffissfejjl
Jrewsjf

T*
fl
d
o

|V-
u
&

lia £
%£lgjF o

<a
c

•H
co

Ö
a

I

CO
O

Ö
CO
O
O

<a
c

■l—i
CO

Ö
c

• 1—1
CO

b
4)

b +
d i—1

03 +
>► <a
'd CO

o O
^-* O w
tt Ö
ft CO

H O
a> '~>

91

5

o

.5

3

5

*mm

CO u WD

2 «
2 Ö
CZ>

P

92

QJ

3

J5 WD

To*
Si

•8
■s
a

^ tu

c

&*5 <N

3 8 8
$ 8

^>
<^

&

as

•S3

8

-5*5

ft«

St

93

+ +

11
1«

flit
Ay- « «

Tg

"a I'll Isll
««
^ US «s *- «t 0i 5

4«
»«-

1 ■=•

s
'„fr.

i
I t

i
i

i

I

!
}

t

t

t-s»

aasssöaassassssftsagaaffiassfe«««^««^«1

o
OJD

i-
C3

CM

CM
CS
CM
U
0)
CM

"3
CD

S
CM

0>

CM

so
to to
a
to 1 be

to
5» •§
to

•5 8<
1
>.

S N«*

■£ ■«

V. to
to
2k E

to
^3 k
■« to
53- .« •»»»

z\

w
S to
to ^
to ^5

« Ä

to a
»a K to
& 53 nb Q fc

85 1».
« ^

« Si

to
to
to

•s to £
..00 to to

to
S0

#.
Q

• •
to s *S

■00 fr S5
»5> a to
^S « to

94

s

5

1—•—!—\—\—!—!
i

1
p

1

i -. -\.

_J i LJ—> t i

<N

CO
4

O

4 o

o o o
VO <N 00

(ass) suip

0>

s

G
d c

CO $>
WD *

WD S
WD §

h3
+

CN

E

*>.

C
0

en

s-i
W

s
C

0>

a
WD
a
c
A

£

I

(N

I

00
O

tx

o

O

CN

00
o

1
<N

£
^ £ O

1
a

s- E 2 •**

^3
E a a

„a <U ^
^s *> *>
« & & « S^ & &. *J ^

tx
c4

Si

95

10

8. a.

MM

OS

8P

I
£ (DA

fl ? •5-1 <J

2 ^ _S ^

"5
C

.a

e

*>

s §

I

3
»St

•I?

3 S ^ 's
« &S & *> 73

5 „

E

8?
1

■a

s;

ST

e

2 a <u

c3
o _

o

96

llli **M

u

«*5

o. ^*
WD "*

'« so

t

en

St

E

st

8

2 «

G
O

a ö ^

3

•8

t

Si

i» i»

ft* +
<N ^H

o

^

<N

o

u

CG

I*,

^>
st
o 3
^ o.
2 ^
St
o

Si

st

8

^s
^
^

St <*>

« ts
> ^
^ SN

^ .*» &* •**

%> 5S
<

SI >w

O Ä

5 si

97

.5

3

•L^E

«0 ^

• •

•i*

•Ü •*
»*>*» si

5r ^4

8P

3

»n «3- m CN «-<
soidojjo#

c

oo \o "3-
SDidojjo#

CN

o

98

«0

0>

s ss
33 ö

St

I
fe

'S

05

St

>5 a

05

&5

35

2
I

.5*

05

s
g

1/3

0>
1/3

cd
;-

C/3

a

* f
ü SS

CM u

5 13
WD £
S 55

^ P3
O U

st

5/3 ^>

§2

&
«

ja

•S3

*st

2

St

.st

99

5

g> o
c o

« ^

^1 V^?

Ö0

co

a o ^

s §
^ 'S

■8

S 2
in ,s

o
o

100

"IM

101

s
o u

WD
a
J-
0>

fe

1

8

©
^

St
_ ^

3

c 5

PS * 5
2*

102

■a
Si

Si

c

a •§ o .5
WD 2

P 8

103

ü H •*M

^ «fii ^s

o u

i-
o
w>
'S
WO

«50
.st

St

6*5

6*5

3

-I
St

■3

•S
Si
Ik

6*!f

s
a«

I
St

6fT

t
8

^

6*5

c
©

u
a
o

t

• •

St

st

8

t
st

Ik

©
W)
'S
WO ite5 s ^
a> to

.St •£•

ON *•«< i"»i
<N *-j ON

** ^ fc,
« 5S Q
&n >5 6*3

ON <5i ^
<N ^n ON

ik

6*5

r ^
w

±2

Pi ^

&* *•
^ ^
6*5 6*5

l\ ON

* ^

^ £

104

a

i i HM"!"1

38 *+M

a
■«

&5

»a
SP
v.

■s

C

t>5

a

a

^
•j**

a
a

S «2,

53 ^

C/5

0>
CM

ÖD

u
0)

I
a

8? a

a
a
a

a a

a a

ß a

1 t
"a

s ^

st

a

fr

a
s;
a
•«

S

fr

§2

a

a

a

a

st
a

8

si

t

a

■§

si

rs Sä s a

2
si

a

si a

a

a a

8

5Ü

8
a a
a

a
a a

.a
K

a

o

105

PS **M

©

es »

t*
o« >

P—I ^

O *j

6f3

St

'S *
S ^

3 §
5 Ja

i «
.2

'S u i
QjinsuQiii j

106

t
5
O

Si MM

**T (/)
03 Q>
* 'C
Q) Q)

5> °" v* **

13
(o v:
O) a
^ Q. o «
:• O)
</> c

ca
tio

n
fi

lte
ri

■^^
^^^ a a
<0
<D
^

■ •^^
■ ^4^

o
rat jo ^s V«

0) is

a
£
s o 3

•^N •v*
J»\ 60 ts

J3 ^
^s

*|^M
S3

*S| O •
• 1

sj U • 1

107

© St wo .a>
C3 5^
ÖD ^

53

3 st
53

'«

v.

2

Q "St

2
•s

.8

5J ^J4 ^J4

a
©

• PP
+■»

'S

a
o

• pp
+■>
C3
N

•PP

a
ÖD
PP
O
fi

.2

pp

G

St

53

Si 8

53

st

St

-St
SP

•38

«

«3

St

53

'«SS

I 53 sj

_st ö

2

53

<0
St

^ a

53

.8P c

^ -St

•s s
o

108

3

£

ÜÜ r*M

v.

g

WD *
a
CM

O u

•8

1

«

«

S5

•a
CO

ÖD S
• pN »S

s *

s
Of)

u
Off

e o

N
• pM

CM

e >

o

"C

s
a
CM

• PN a o
H

109

-2

^1 M^

c
p*

00

es
DU

ÖD

■ PM

0>

St

00

•PN

P*

o
o
a>

pfl

s-
c2
p*

fi

T3 <

O

00

O
PC

s

s:

00

o
B

s
00

C
O

PC

03
5M

(DD
0>

PC

93
00
'p-

fl

o

S3

-st

I

st

+-*
00
e o

1 n

WD
e

• P"P u
+-»
00

U

00

O

st

•s

O
Or
ja
13

+*
00

•P"<

+*
C3

p>>
N
N

«3
Qi
P-

<S

00

--

• P"*

&
0>

C3

^ PC

HH -M |p^

110

> o

i s

0>

a
o

9
PÖ

4) &
PH 'S

es

5
ft

s
o u

3 ° 1

■ .~ Lit- j ^jEtlflj pi B

mi

IIBHI

i |9

1
in

5 ^
*>

?>»»
•«N»

« •\ <J
V. •** 5*5
Ö
^ *5 , ••«* « ^

■* fe * a>

ng
in

•** ÖD ■4* ^ a>
X fi Q ^ cv. e^.

a»
-ist

,3
"a ■3.3

^3

•**

o
«
^

•**

8-
^ c :5 C

112

o

O

o

rrfh1 '
^0

ÜU-i __=TTT
ITTTT Tvl
'S Mm

CT't

O sü
U *
ft ^

WD I

8

Sib

ü mM

C3
>

u

*>
^
^

Bfl

t S
Ö

a
s»

i
o
S3
O

ft
ft

a ^
S if

SI ^

o ^

** &*

8 > ^
SJ

8

ss

8?

si
•»«5.

s:

&3

*3 &5
st

«St

113

o

u
08

t/3

13
0>

O

CM

08

p* o
a
o

© <£

m St 08 ©

Sf3

S
.5

•8"

■8
<*>

st

i
•st

8

St

IS

08 s u
.©

r1-- ■iifflP JBBff^

08

4>
St

a I
*5
s;

O)
c

G)
c

■ am O
I^M O) n
Q) c rc

CO -+*
to

4- .£
o

O)

1
o

CO

CO
o

o (ft J2

.Q

Ö) D) c CD C ■ ■^

_Q "5>
C3 c
(A

OS
x:

0) o

to
*J

C
0)
0) o

o
0)

0)
c

IM

o
o

as

0)
3

•St

St

.Si

C
o
+■»
08
O

• PN

'S* a
08

• PP
P*

>> *i

£

I
st

.s?

114

s
a.

101
• PN a o +^

a>

C w
.Sä Ä

s 1
So fe

a

ä

a
O

"3
^0

a
a

a

I-

C/3

• PN u
C«

2 a

*a

C3

^^. ••tea

a a o «

C3 J5U
•> P •>^ r^3 "^»

pp &

^ <->

•2 ft
Ä O
o ^

o s
+■* ft

'S S .9 °

s

«

!k

c
o

5

PH

5

a

a a

z a

a
.**

a

a

•♦«A

.2 s
Im ^
.a «

© §

on

o
»a 52

115

4*

^m **A

/tm^
T-1
r-
ON
▼H

d
, 0>

WD • • PP • 0)

wo PO
CM

C •52s
■pp 3
u
es d
PP es

S-* p>
t/> . <mS u TS
0> a VI

A es cc
+* 4>

Xfl O d d
u • «s o cr
4> 00 •pp 4)
A ON o PP

o ON 0)
-p.»
0>

0>

s
es

• •e en 1
Ä 73 u <*> ^ 1 o> 1

■d 1 WD
• PP.

•pp
0)

PJ
e

u
©

s o pfl
-p* © 1

o
o

JA

s
es
a
o

•pp

WD
d

• mt
d

•PP

S
es

o
-*■*

d
es
>

73

VI 1
d 1
es 1

s 1 ^ 1
&5

SO
ON
ON

es
s es

TA

PP

pp d
-S i—1 PÖ »s es »^^

as «s ON ■PP "3 en 0)
*a a ON u p» s^ WD

6«
PH

pp

©
JSP
cs

4)
• pp

PP

d

S
«*a d

s
es
PP

es «
^ Ö I>5

s:
PP «

C

P-:

*-
VI
U
es

Ä
•

o
o

• mi

s d
PQ

£ O ^ PS

« PP
«i es

P^

d
•pp

o
el

1

CS

CO

•

&0
.St

—

•

•■5.

1
•PP

pp

VX

•

1/3

o

s^
r

hy
p

•

si
m

i]

Si
'S)
d

•pp

•

a 8? s s;
*

3

• •

116

IP

O

3

^JSP—^

U
CL Q.Q. 0. 0. p-

s Q. Q. Q. Q.

av
er

ag
e

lin
k Q. Q.

- -

si
ng

le

lin
k a. 0. a. Q.

si
m

pl
e

U ■■';

s
»—4

■■.«:■■■.

-S3

o.

!*■■:

■ -+* .
a

!B;::.;"
1 *>■ ov

er
la

pp
in

g
cl

us
te

rs

cl
us

te
r

hi
er

ar
ch

y

117

ST

s

r

2L

3 /~

I

O)

1

1
TTT

IB

if

V.

TO
■ mmm

£
CO

c

118

©

0>

a

"8

0
O
O

is
©

5*1 o

■8

Kfl

a
as
as

on

a

6c

Ä
«G

2 *
5*5 0>

O

5? ia»
U ^ Ä 5fJ

119

O
S

2

■2
I

ft
68
!-
WD

2
*©

;-
Ä
H

en

2 o

5-
t

II

A ^* a •**
«8
'- 5
WD

Ä
^

»c
DD ft S"

•PM ^ &.
•**

•**
0) S *>

a ^

U

120

'S*
ss

>5 P.
u
WD

on

on
fi

O
U

* 'S

§
&N

l
8

Vi

6*5 3
Vl
u

vi

u
> o
U

Si

•3

i
s:

6*5
si

C*5

I
a
5*5

8*

5*5

Si

121

^

5/3

0)
■ö 0>

•c (A

Q.
2 01)

^

^ ^^^

-Q es

3 |
</>

L. C«

JO S

S^ T3

V\ 0
.©
«**

1*5
.a
&
<s
'«
ÖD

»A
=
<Ä

L-
Ä

o

(d)SOQ

0)
5M
Ä
-*■*

Ö 1^
C/)

S>
1

CÄ «5

fl

o
pfi

5-

o

Ö
• 1—1

Ö
Ö

• 1—t a)
I

CO
O o
8
CO
o

122

s
4C

s

-2
on

Ä o
DM o>
G3 u
;. DD
ar 0»

T3
^ o *

2 0)

o ^d
a

123

flEJii*

8
■IBM

■lfffl

HJ

St

!k

■8

v.

k.

•S3

Of) So

=

<*5

5M

C
• PM

c
• PM

v.

st

i

3

<N

1 * -ist

e

st

st

ik a

st

^ u
^

•^

IP

a,

IP

124

I
I*

<rn.Fi

3
s

ira v

I 3-C-4.Q'

Us a f?gr

3

i

f I it.
«39€33«

CM

CM

CM
;-

CM
0

0>

CM

to

S^3
*>' *>

a
2
8?

^ 13
^
^ 8
■*■*

5
H **

St
v. *i

"Q v.

s
a
«.
^ *>*
Ik. ** ^ s»

•51 ^>
Ofl Ai

<3
!k
ÖIJ fr ^ a

^3 «s

s*

125

O

s
^-*

PN

O

e

I 0>

Ä

WD
C
u

78 -^ F""<

en

•5

a

s s 5 s

^> a
35*

>3

'S

=1
5S

.2 «

a

u

3
U

a

I

St

a

2 a

5$

v •$»
tf

C3
O

Ü
a

126

«

I
I
I
\ s
A

U

V*

a s

ÖD ^

ON
so

Si

3

•»* st

OJ ix ^5

i
i

* i
M
A

/ \

1
1

k,

2

Si

o

4>

o
II
u

e ö ^

5*5

t

k,

ft.

o ■

5».

+
ft,

u
_+

I*,

.5*5

St

k.

st •?*

^ «St
st ^

I. s ^ a

v.

127

s

QJ

3

00 ^

^

v> "3" f^ CN ■
SDidojjo#

CO \o "vT ™
S3ldojJ.O#

S3

O <D

128

«

o>

St

5 *a

i 2
& 8;

£ SS

st

SI

(/2

1-3

St

2

ft

c
.2 "3

>5
st

st

I

ja

C<3

0

e

•p^ *p-4

ON Ä
ft

.S3

2

WD

PS

o
on
0

St

sr "^

1 ^ ^ st

st

« I*)

129

Öl

s

■ Es

HJ

01 v3

a

es

.2 -
52 ^

E
st

•i

a> •SS

ÖD -**

;-

1/5
3

Ik

.5t

SS

s

2 S
N

'S
t/5

5j - >

1««

E

130

HIHI

a

M

*

\

c-

.s.
4
i—iram

a
•^ *J
^ •St
^ >«*

i
V ft, ^ pfi

*Ö •** or o **
«

WD

5

E
ö *» ^> a

•*■* ^ <£ ä u
u 5T "^ p> ä

&*
^ £ o ^

<*> ^ 0> s^

to
S s: pi Ö

• l!ll|||.-|'iPlli n

131

x

.8P

§2

as
ä st <->

©

WD
C

;-

CO
a

WD £

St

•st
SP

"5

a

8P

a
>^»

>«*
st

a

st
TJ ^

8

8
a,

-8

s
a

a

St

.53

St

& a

-8

St

Si

St

j3

St

•s

v^ st

u
*»

■3
Si

•3 ^ O »St

=
a

st

•8

3
CJ
O

(A
>

u -a
WD 2

^ a

.SP

a

a

Si

•st
SP

a

a
u o

(U g»
o -5
WD 2
e

132

• pN +*
U

ft
O u

©
WD

Si
-S
.Si

s:

^ jS V,

4mm -4M

WD
c

■ P«

0>

« st

§
^ s 5*5

I

^ r

S3 «

e o

o

O
JSP

WD -22
C ^

"E ^

• PN L

Si

os ^^ ^
<N <v> Os

• • •

ik fc. &N
« 5S « >* ^ >*
5r>5 V5 &5

Os ^> ^
<N| <Vi Ov

*•
_*>.

t>5 5>a

k,

a

K N. Os
<N <N oo

r ^

=5

Pi
»;
T

1.

Si

133

5*3

Si

0)
• PH

5

e
CM

PH

WD
C

•P*

P*

S3

st

8?

to e
a »fit

Si

.8?

**3
•Si

s; a

2

t

Si
a

Si

<o

'S*
Si

S

•§

si

si

e
si

»■■•»

Si

«ist

a

st

Si
Si

Si

a
Si

8?

Si

«

134

QJ

£:

*

5-
O
>

u

0

#i •*M

R

I
R

s

'S

R

R

-* 5 ^
*Q ST « R fl s^

u
QJ

=5

•St

si

o

»

* 33 *

a o

'S

R

•I

.R

ft.

O

CM
(A

CM

lO

un

OO \0 -«t CM O
ö ci ö d

135

s
?M >*
o «
op .a>

WD ^
S3 QJ

■§ 1

0>
«5

*>

Ik

2
Si

ik

Si

5ZJ a
©

a
'S
&
C3

a
.2
as
N

S3
C3
OD
5M
O
fl
o
CO'

S3

Si

"3 &5

5S

Si

ik

st

si

•5
'S .«
- '1

OS

&

!k

'S

'S

st

it*

I

U «,
Si

-Si

!k

'S,

2

si 5

I .s
'« s
2 ^
«5 •** •S» '*"*

^ sr
si &*

^

g t1

«U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055-10076

136

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

