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1    Research Summary 

1.1 Project goals 

The main goals for our project have been: 

1. to develop automated information organization algorithms 

2. to integrate the information organization algorithms in a mobile agent platform 

We have fulfilled both goals successfully. The following sections detail our results. 

1.2 Background 
Information in electronic form is proliferating rapidly in a variety of forms. We now have powerful 
search engines that can return pointers to millions of documents on any subject. How can we 
tap into this fortune, while avoiding information overload? 

The productivity and success of an individual in a society innundated with electronic data 
will be largely determined by timely access to information. This is particularly challenging when 
the data is unstructured, active, and heterogeneous. It seems unlikely that we could package 
information in a standardized form for the purposes of extraction and interpretation, because 
people's information needs are varied and the production of information is easy. The production 
of information is such that "manufacturing" facilities can be moved easily at little, or no cost, 
giving rise to transient datasources. Just as the invention of the railroad (and other means 
of mass transportation) has made it possible for comsumers to obtain products quickly, our 
vision is to provide ubiquitous, customized, and organized access to all users. To this end, we 
advocate technologies for systems in which customers can express information needs in flexible 
ways, and that provide facilities for an intelligent and customized exploration of the Web and 
other information spaces. 

To build useful tools for tapping into the vast evolving net of information resources, we need 
to address two fundamental issues. 

a. Data access in modern computing environments: how do we access information in a 
computing environment defines by dynamic wireless compute platforms and transient databases? 

Computers are departing from their traditional desk-top configurations and becoming more 
portable. We now have wireless -computers and palm-top computers that can interface with 
the rest of the elctronic world independent of their physical location. In an environment with 
ubiquitous computers, we would like to provide ubiquitous access to computers and information. 
Sample applications include anywhere, anytime communication, flexible scheduling, smart rooms, 
embedded devices, support for collaborative decision making, etc. • The key research questions 
that need to be addressed to support such applications include: (1) what is the hardware infras- 
tructure best suited for this task?; (2) how can we provide active networking in a dynamic system 
of computers?; and (3) how can we locate users and forward information when the originating 
host might become disconnected? 

b. Data evolution: how do we organize an ever-changing information space? 



As information systems grow, they need to autonomously reorganize themselves to effectively 
meet requests for information. Such reorganization could involve simple processes like active 
selection and caching of information views that facilitate query processing, to more complex 
processes that generate and maintain active indexes into information. Sample applications in- 
clude automatic capture and access tasks in digital libraries. Information organization algorithm 
can be used to organize any collection of documents in a customized way. Users can organize 
their email files. Large corporations can organize their manuals, news releases, and internal 
documents. Such a system can be used to create "Web Centers" and "Yellow Pages" automat- 
ically and provide users with better interfaces. The system can alo be used as a front end to a 
search engine. The key to supporting such applications is reasearch that would lead to efficient 
algorithms for information organization that theoretically well-grounded and creating flexible, 
modular, and customizable systems that use these algorithms. 

To address these issues effectively, we need new ways of conceptualizing and communicat- 
ing information needs. We believe that a good approach is a computational paradigm relying 
on customizable mobile information agents. By agents we mean autonomous decision-making 
programs that migrate from host to host under their own control. By customizable we mean pro- 
grams that evolve automatically with changes in the information landscape, as well as programs 
that can be easily modified and assembled by users, according to their tasks. By information 
agents we mean dedicated program that can run sophisticated information capture, access, and 
organization algorithms. 

Our main objective has been to investigate and demonstrate the value of a paradigm of compu- 
tation in heterogeneous distributed systems with non-permanent network connections, in which 
mobile agents bring the computation to the data. A mobile agent is an automous program that 
can migrate from machine to machine in a heterogeneous network, at times and to places of 
its own choosing. This navigation autonomy is very powerful, and requires an agent to have 
substantial intelligence in making decisions and filtering information. 

We have built a system called D'Agents that supports mobile agents. D'Agents is especially 
suited to distributed information access experiments in a network of mobile computers, such 
as laptops, palmtops, and other wireless devices. Mobile computers do not have a permanent 
connection into the network and are often disconnected for a long period of time. We focus on 
applications that require extensive data processing over distributed and transient databases in 
wireless networks. We look for algorithms that allow agents to retrieve and organize the relevant 
data as naturally occuring hierarchies of topics and subtopics. 

Mobile agents provide a convenient, efficient, and intelligent paradigm for implementing dis- 
tributed applications, especially in the context of wireless computing. First, by migrating to the 
location of an electronic resource, an agent can access the resource locally and eliminate costly 
data transfers over congested networks. This reduces network traffic, because it is often cheaper 
to send a small agent to a data source than to send all the intermediate data to the requesting 
site. Second, the agent does not require a permanent connection to the host machine (e.g., the 
computer from where an agent is launched). This capability supports distributed information- 
processing applications on mobile computers. Third, the network-sensing capabilities enable 
agents to autonomously find the host computer, even when the host changes its geographical 
location. Fourth, the network software- and hardware-sensing capabilities permit transportable 



agents to navigate adaptively. Fifth, our transportable agents can communicate with each other 
even when they do not know their specific locations in the network. Finally, agents have auton- 
omy in decision making: by using feedback from visiting a site, they can independently modify the 
overall plan or refine ill-specified queries. When combined with communication, decision-making 
enables our agents to be negotiators. D'Agents supports negotiation through an infrastructure 
that supports transactions on electronic cash, arbitration on electronic cash transactions, and 
economic policies for resource control. 

Although this contract has not supported the entire development of the D'Agents system, it 
has supported a small portion of it. The rest of the project was supported by Darpa, AFOSR, 
and ONR. We used the D'Agents system as a lpatform in evaluating some of the applications of 
our information organization algorithms described in the next section. 

1.3    Information Organization 

For this aspect of our work, are motivated by a long-term vision in which information systems 
can help leaders make decisions by collecting, filtering, updating, and presenting information 
quickly, accurately, and effectively. Information systems will compute the underlying topic- 
subtopic structure of dynamic textual databases. As new information comes into the database, 
the system will fuse it with the existing topic structure. The system will also be able to remove 
documents from the database. 

Our work focuseson a paradigm for organizing data that can be used as a pre-processing step 
in a static information system or as a post-processing step on the specific documents retrieved by 
a query. As a pre-processor, this system assists users with deciding how to browse the corpus by 
highlighting relevant topics and irrelevant subtopics. Such clustered data is useful for narrowing 
down the corpus over which detailed queries can be formulated. As a post-processor, this system 
classifies the retrieved data into clusters that capture topic categories and subcategories. 

We have developed, implemented, and evaluated an information organization algorithm called 
the star algorithm. The star algorithm gives an organization of a collection into clusters. Each 
level in the hierarchy is determined by a threshold for the minimum similarity between pairs of 
documents within a cluster at that particular level in the hierarchy. This method conveys the 
topic-subtopic structure of the corpus according to the similarity measure used. 

The problem can be formulated by representing an information system by its similarity graph. 
A similarity graph is an undirected, weighted graph G = (V,E,w) where vertices in the graph 
correspond to documents and each weighted edge in the graph corresponds to a measure of 
similarity between two documents. We measure the similarity between two documents by using 
the cosine metric in the vector space model of the Smart information retrieval system. G is 
a complete graph with edges of varying weight. An organization of the graph that produces 
reliable clusters of similarity sigma (i.e., clusters where documents pairwise have similarities of 
at least sigma) can be obtained by performing a minimum clique cover of all edges whose weights 
are above the threshold sigma. Unfortunately, this approach is computationally intractable. For 
real corpora, these graphs can be very large. The clique cover problem is NP-complete, and it 
does not admit polynomial-time approximation algorithms. While we cannot perform a clique 
cover nor even approximate such a cover, we can instead cover our graph by dense subgraphs. 



Specifically, we use star-shaped subgraphs. A star-shaped subgraph on m+1 vertices consists of 
a single star center and m satellite vertices, where there exist edges between the star center and 
each of the satellite vertices. The star-cover algorithm is provably accurate in that it produces 
dense clusters with provable guarantees on the pairwise similarity between cluster documents, 
and it can be quickly computed. The documents in each cluster are tightly inter-related and a 
minimum similarity distance between all the document pairs in the cluster is guaranteed. This 
resulting structure reflects the underlying topic structure of the data. A topic summary for each 
cluster is provided by the center of the underlying star for the cluster. 

This approach has three nice features. First, by using star-shaped graphs to cover the similarity 
graph, we are guaranteed that all the documents in a cluster have the desired degree of similarity. 
Second, covering the edges of the graph allows vertices to belong to several clusters. Documents 
can be members of multiple clusters, which is a desirable feature when documents have multiple 
subthemes. Third, this algorithm can be iterated for a range of thresholds, effectively producing 
a hierarchical organization structure for the information system. Each level in the hierarchy 
summarizes the collection at a granularity provided by the threshold. 

We have developed a prototype system for doing this task. We have experimented with this 
system and found that the precision-recall is higher than the precision-recall of other techniques 
such as the single link method, average-link method, and the k-means method. We are currently 
working on an on-line version of this system that could organize dynamically-changing document 
collections. 

These algorithms can be used to create automatically knowledge bases. A set of raw documents 
are indexed to create information bases. By clustering an information base and summarizing the 
results of the organized collection we add a higher-level of knowledge into the database. This 
type of knowledge can be used to reduce information overload and have applications in a variety 
of tasks, such as customized filtering of information, topics detection and tracking in continuous 
information streams, collaborative decision making, etc. 

The off-line and on-line star algorithms can be optimized further for better performance. Note 
that both versions of the algorithm rely on the existence of the similarity matrix. Similarity 
matrices can get very large: for a document set with n documents the similarity matrix is 0{n2) 
space data structure. However, this operation, which takes 0(n2) time to compute, is much more 
expensive than the basic cost of the star clustering algorithm, which is approximately 0{V + E) 
time. Thus, it is clear that the similarity matrix is a bottleneck. Computing this matrix is a one- 
time pre-processing operation. However, the data structure has to be available on a permanent 
basis. For these reasons, it is important to consider methods that improve on the similarity 
matrix bottleneck. 

We have developed, implemeted, and started testing an extension that approximates the star 
algorithm by using sampling to compute the similarity matrix. The basic idea is to create a 
sample of the document collection that is much smaller than the actual collection. This sample 
can then be used to compute a complete Star Clustering, using the off-line star algorithm and 
the remaining documents can be inserted in the resulting structure. An additional optimization 
is to remove entirely the similarity matrix. The key information used by the star algorithm is 
the degree of the nodes in the thresholded similarity graph. This information can be represented 
in an array and it can be computed approximately, by sampling. 



Another bottleneck for the star algorithm comes up in Internet applications, such as organiz- 
ing data collected from various sited and databases by topic. Consider a task in which several 
databases are queried with the same question. The documents returned by these queries are to 
be fused and presented to the user in a coherent picture. One approach is to run the queries, 
download all documents, and organize the entire collection at the user site using the star algo- 
rithm. An alternative approach is to run the queries, organize the search results at the location 
of the database, and then merge these results on the user machine. This second alternative has 
several advantages: (1) the star algorithm can be run in parallel, which provides a speedup; (2) 
the document transfer operation can also be parallelized (note that if the number of documents 
is large and the network bandwidth is low, the cost of the transfer can be overwhelming); and (3) 
the local topic organizations can be viewed as a way of compressing the documents, can be used 
to generate the merged topics in the distributed collection, and can be transfered much faster 
than the actual documents to the user's machine. 

For these reasons, we developed a third approximation of the star algorithm called the dis- 
tributed star algorithm, which is useful especially when the document collection is very large. The 
distributed star algorithm provides parallelism and is based on a "divide and conquer" approach. 
The document collection is partitioned into several disjoint sets. The sets are clustered sepa- 
rately and the resulting clusters are then merged. We are currently implementing this distributed 
version of the information organization system with D'agents. We plan to use this integrated 
version of the system as an application on top of Serval, a large distributed database of 

In another project, we started to investigate a new information-theoretic model for document 
retrieval and clustering. In this model, a collection of text documents (the "corpus") is first 
analyzed to determine a probability model for the terms within the corpus. Terms that appear 
infrequently have relatively low assigned probabilities, while terms that appear frequently have 
relatively high assigned probabilities. The Shannon information is then computed for each of the 
terms in the corpus—it is simply the length of the codeword (in bits) assigned to each term in the 
optimal encoding scheme for compressing or transmitting the corpus. The Shannon information 
can be efficiently computed from the corpus probability model. 

Given a query in the form of a collection of keywords, we can perform document retrieval by 
determining the total number of bits that each document contains about the given keywords and 
returning relevant documents ranked according to this measure. For each document, this bit total 
can be calculated by summing, for each keyword, the product of its Shannon information times 
the frequency with which that keyword appears in the document (normalized in such a way that 
"short" documents and "long" documents are treated equally). Clustering can be achieved via 
an information-theoretic similarity measure which can be derived within this model. Essentially, 
the pairwise-similarity between two documents corresponds to the fraction of keyword bits that 
the two documents share in common. 

We have implemented a system employing these ideas on a large corpus containing some 
130,000 documents. So far our results are encouraging, both in terms of accuracy (the "quality" 
of retrieved documents) and efficiency (query retrieval on 100,000+ documents in a fraction of 
a second on a PC).ject, we are currently investigating a new information-theoretic model for 
document retrieval and clustering. In this model, a collection of text documents (the "corpus") 
is first analyzed to determine a probability model for the terms within the corpus. Terms that 



appear infrequently have relatively low assigned probabilities, while terms that appear frequently 
have relatively high assigned probabilities. The Shannon information is then computed for each 
of the terms in the corpus—it is simply the length of the codeword (in bits) assigned to each 
term in the optimal encoding scheme for compressing or transmitting the corpus. The Shannon 
information can be efficiently computed from the corpus probability model. 

Given a query in the form of a collection of keywords, we can perform document retrieval by 
determining the total number of bits that each document contains about the given keywords and 
returning relevant documents ranked according to this measure. For each document, this bit total 
can be calculated by summing, for each keyword, the product of its Shannon information times 
the frequency with which that keyword appears in the document (normalized in such a way that 
"short" documents and "long" documents are treated equally). Clustering can be achieved via 
an information-theoretic similarity measure which can be derived within this model. Essentially, 
the pairwise-similarity between two documents corresponds to the fraction of keyword bits that 
the two documents share in common. 

2    Lessons Learned 

This effort has uncovered some valuable lessons for the computer science community, for the 
airforce, and for the population at large. 

1. Information overload is a serious problem and efficient automatic information organization 
algorithms are useful in addressing this problem. 

2. The Star Clustering algorithm is the best performing algorithm for large-scale information 
organization. 

3. The Star clustering algorithm can be used in an on-line or off-line fashinon and has several 
scalable extensions. 

4. The Star clustering algorithm has been analyzed and our large-scale experiments match 
the theory. 

5. The Star clustering algorithm can be used for filtering applications and for persistent 
queries. 

6. By combining the Star clustering algorithm with the power of mobile agent system we in- 
crease system performance dramatically. Speciffically, we conserve bandwith by transfering 
the code to the data, performing data processing at the site of the data, and bringing back 
only the relevant results. In addition, mobile agents support multiple queries without con- 
necting the the home machine and thus contribute to the reduction of the total completion 
time of a job. Finally, mobile agents support disconnected queries, in low-latency wireless 
networks. 



3    Students 

The following students were supported on this contract: 

• Ekaterina Pelekhov, PhD student, thesis defended in May 2000; expecting the final version. 

Mark Montague, PhD student, thesis expected in May 2001. • 

• Ken Yasuhara, undergraduate student, currently a PhD student in the computer science 
department at the University of Washington. 

In addition to these students, profs. Jay Aslam, prof. David Kotz, and prof. Daniela Rus 
were also supported in part by this contract. 

4 Software 

We designed and implemented a mobile-agent system called D'Agents 
(see http://www.cs.dartmouth.edu/~agent/agenttcl.html). We have completed several releases 

of this system that has security mechanism for protecting machines from malicious agents and 
several additional capabilities for agents over the previous release. These versions support Agent 
Tel, Agent Java, and Agent Scheme as programming languages. 

We also designed and implemented a system that supports automated information organiza- 
tion in static and dynamic environments, filtering on a text stream and persistent queries. The 
system has a novel graphical user interface that projects the topic content of the corpus onto a 2- 
dimensional window, thus supporting intuitive browsing to cope with information overload. The 
information organization software is available from http://www.cs.dartmouth.edu/~rus/Softwaxe/info- 
org.tar.gz. 

5 Papers 

The following papers resulted as part of this project: 

"Automatic Information Organization" (with J. Aslam and K. Pelekhov), in Proceedings of the 
2000 SSGCC (book with CD ROM). 

"Mobile agents: motivations, state of the art, and frontiers" (with G. Cybenko, R. Gray, and D. 
Kotz), in eds. J. Bradshaw, Handbook of Agent Technologies, MIT Press, 1999 (to appear). 

"Generating, visualizing, and evaluating high-quality clusters for information organization" 
(with J. Aslam and K. Pelekhov), in Proceedings of Principles of Digital Document Pro- 
cessing eds. E. Munson, C. Nicholas, D. Wood, Lecture Notes in Computer Science 1481, 
Springer-Verlag 1998. 

"Applications of clustering to filtering and persistent queries" (with J. Aslam and K. Pelekhov), 
in Proceedings of CIKM 2000 (November 2000). 



"Scalable Information Organization" (with J. Aslam and F. Reiss), in Proceedings of RIAO 
2000 (Content-based information access) (April 2000). 

"A practical clustering algorithm for static and dynamic information organization" (with J. 
Aslam and K. Pelekhov), in the 1999 Symposium on Discrete Algorithms (SODA99), Bal- 
timore, MD (January 1999). 

"Static and Dynamic Information Organization with Star Clusters" (with J. Aslam and K. 
Pelekhov), In Proceedings of the 1998 Conference on Intelligent Knowledge Management, 
Washington, DC (November 1998). 

6 Talks 

"Mobile Information Agents", D. Rus, Caterpillar, Peoria, IL, December 1998. 

"Mobile Information Agents", D. Rus, Rome Labs, December 1998. 

"Mobile Information Agents", D. Rus, Qualcom distinguished lecture, The University of 
California at San Diego, February 1999. 

"Mobile Information Agents", panel on modern information technologies moderated by Joe 
Cavano, COMPSAC 99, October 99. 

"Scalable Extensions of the Star Algorithm", F. Reiss, RIAO 2000, April 2000. 

"Information Organization Algorithms", D. Rus, SGGRR 2000, L'Aquila Italy, July 2000. 

"Using the star clustering algorithm for filtering", J. Aslam, CIKM 2000, November 2000. 

"D'Agents: a secure mobile agent system", D. Rus, NRL, December 2000. 

7 Service to the Community 

• D. Rus, Treasurer, The 1999 International Conference on Autonomous Agents 

• D. Rus, Program Committee, The Workshop on Mobile Agents in the Context of Compe- 
tition and Cooperation, 1999 

• D. Kotz, Program Committee, The Workshop on Mobile Agents in the Context of Compe- 
tition and Cooperation, 1999 

• D. Rus, Senior Program Committee, 1999 International Joint Conference on Artificial In- 
telligence (IJCAI99) 

D. Rus, General Chair, Dartmouth Workshop on Mobile Agents, 1999, 2000 

D. Rus, Program Committee SIGIR 

D. Rus, Senior Program Committee, 2001 International Conference on Autonomous Agents 

• 

• 



8    Interactions with other Agencies 

We are working with Darpa as part of the Co-Abs project and with the Air Force as part of a 
MURI project. We have integrated the information organization system we developed as part 
of this contract in our MURI demo and hope to do some integration with the Darpa Grid and 
perhaps a Fleet Battle Experiment. We are looking for more venues to transition this work. 



Static and Dynamic Information Organization 
with Star Clusters 

Javed Aslam   Katya Pelekhov   Daniela Rus 

Department of Computer Science 
Dartmouth College 
Hanover, NH 03755 

Abstract 
In this paper we present a system for static and dy- 

namic information organization and show our evaluations 
of this system on TREC data. We introduce the off-line 
and on-line star clustering algorithms for information or- 

, ganization. Our evaluation experiments show that the off- 
line star algorithm outperforms the single link and average 
link clustering algorithms. Since the star algorithm is also 
highly efficient and simple to implement, we advocate its 
use for tasks that require clustering, such as information 
organization, browsing, filtering, routing, topic tracking, 
and new topic detection. 

1     Introduction 
Modern information systems have vast amounts of un- 

organized data that change dynamically. Consider, for ex- 
ample, the flow of information that arrives continuously 
on news wires, or is aggregated by a news organization 
such as CNN. Some stories are new while other stories are 
follow-ups on previous stories. Yet another type of sto- 
ries make previous reportings obsolete. The news focus 
changes regularly with this flow of information. In such 
dynamic systems, users need to locate information quickly 
and efficiently. 

Current information systems such as Inquery [Tur90], 
Smart [Sal91] and Alta Vista provide some simple automa- 
tion by computing ranked (sorted) lists of documents, but 
it is ineffective for users to scan a list of hundreds of docu- 
ment titles. To cull the critical information out of a large 
set of potentially useful dynamic sources, we need meth- 
ods for organizing information to highlight the topic con- 
tent of a collection and reorganize the data" to adapt to 
the incoming flow of documents. Such information organi- 
zation algorithms would support incremental information 
processing tasks such as routing, topic tracking and new 
topic detection in a stream of documents. 

In this paper, we present a system for the static and 
dynamic organization of information and we evaluate the 

system on TREC data. We introduce the off-line and on- 
line star clustering algorithms for information organiza- 
tion. We also describe a novel method for visualizing clus- 
ters, by embedding them in the plane so as to capture their 
relative difference in content. Our evaluation experiments 
show that the off-line star algorithm outperforms the sin- 
gle link and average link clustering algorithms. Since the 
star algorithm is also highly efficient and simple to imple- 
ment, we advocate its use for tasks that require clustering, 
such as information organization, routing, topic tracking, 
and new topic detection. 
1.1     Previous Work 

There has been extensive research on clustering and ap- 
plications to many domains [HS86, AB84]. For a good 
overview see [JD88]. For a good overview of using cluster- 
ing in information retrieval see [Wil88]. 

The use of clustering in information retrieval was mostly 
driven by the cluster hypothesis [Rij79] which states that 
relevant documents tend to be more closely related to each 
other than to non-relevant documents. Efforts have been 
made to determine whether the cluster hypothesis is valid. 
Voorhees [Voo85] discusses a way of evaluating whether 
the cluster hypothesis holds and shows negative results. 
Croft [Cro80] describes a method for bottom-up cluster 
search that could be shown to outperform a full rank- 
ing system for the Cranfield collection. The single link 
method [Cro77] does not provide any guarantees for the 
topic similarity within a cluster. Jardine and van Rijsber- 
gen [JR71] show some evidence that search results could 
be improved by clustering. Hearst and Pedersen [HP96] 
re-examine the cluster hypothesis by focusing on the Scat- 
ter/Gather system [CKP93] and conclude that it holds for 
browsing tasks. 

Systems like Scatter/Gather [CKP93] provide a mech- 
anism for user-driven organization of data into a fixed 
number of clusters, but user feedback is required and the 
computed clusters do not have accuracy guarantees. Scat- 
ter/Gather uses fractionation to compute nearest-neighbor 
clusters. In a recent paper, Charika et al. [CCFM97] con- 
sider a dynamic clustering algorithm to partition a col- 
lection of text documents into a fixed number of clusters. 
However, since the number of topics in a dynamic infor- 
mation systems is not generally known a priori, a fixed 
number of clusters cannot generate a natural partition of 
the information. 
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1.2    Our Work 
Our work on clustering presented in this paper and 

in [APR98] describes a simple incremental algorithm, pro- 
vides positive evidence for the cluster hypothesis, and shows 
promise for on-line tasks that require dynamically adjust- 
ing the topic content of a collection such as filtering, brows- 
ing, new topic detection and topic tracking. We propose 
an off-line algorithm for clustering static information and 
an on-line version of this algorithm for clustering dynamic 
information. These two algorithms compute clusters in- 
duced by the natural topic structure of the space. Thus, 
this work is different than [CKP93, CCFM97] in that we 
do not impose a fixed number of clusters as a constraint 
on the solution. As a result, we can guarantee a lower 
bound on the topic similarity between the documents in 
each cluster. 

To compute accurate clusters, we formalize the clus- 
tering problem as one of covering a thresholded similar- 
ity graph by cliques. Covering by cliques is NP-complete 
and thus intractable for large document collections. Re- 
cent graph-theoretic results have shown that the problem 
cannot even be approximated in polynomial time [LY94, 
Zuc93]. We instead use a cover by dense subgraphs that are 
star-shaped1, where the covering can be computed off-line 
for static data and on-line for dynamic data. We show that 
the off-line and on-line algorithms produce high-quality 
clusters very efficiently. Asymptotically, the running time 
of both algorithms is roughly linear in the size of the sim- 
ilarity graph that defines the information space. We also 
derive lower bounds on the topic similarity within clusters 
guaranteed by a star covering, thus providing theoretical 
evidence that the clusters produced by a star cover are of 
high-quality. We packaged these algorithms as a system 
that supports ad-hoc queries, static information organi- 
zation, dynamic information organization, and routing. In 
this system we contributed a novel way of visualizing topic 
clusters by using disks whose radii are proportional to the 
size of the cluster and that are embedded in the plane in a 
way that captures the topic distance between the clusters. 
Finally, we provide experimental data for off-line and on- 
line topic organization. In particular, our off-line results 
on a TREC collection indicate that star covers exhibit sig- 
nificant performance improvements over either the single 
link [Cro77] or average link [Voo85] methods (21.6% and 
16.2% improvements, respectively, with respect to a com- 
mon cluster quality measure) without sacrificing simplicity 
or efficiency. 

1.3    Utility 
Our algorithms for organizing information systems can 

be used in several ways. The off-line algorithm can be 
used as a pre-processing step in a static information sys- 
tem or as a post-processing step on the specific documents 
retrieved by a query. As a pre-processor, this system as- 
sists users with deciding how to browse a database of free 
text documents by highlighting relevant topics and irrele- 
vant subtopics. Such clustered data is useful for narrowing 
down the database over which detailed queries can be for- 
mulated. As a post-processor, this system classifies the 
retrieved data into clusters that capture topic categories 
and subcategories. The on-line algorithm can be used for 

'In [SJJ70] stars were also identified to be potentially useful for 
clustering. 

constructing self-organizing information systems, for rout- 
ing problems, for topic detection, and for topic tracking. 

2    Off-line Information Organization 
In this section, we begin by presenting an efficient al- 

gorithm for off-line organization of information. We then 
describe our system built around this algorithm, including 
user interface design and visualization techniques. Finally, 
we present a performance evaluation of our organization 
algorithm. We begin by examining the organization prob- 
lem and introducing the star algorithm. 

2.1    The Star Algorithm 
We formalize our problem by representing an informa- 

tion system by its similarity graph. A similarity graph is an 
undirected, weighted graph G — (V, E, w) where vertices 
in the graph correspond to documents and each weighted 
edge in the graph corresponds to a measure of similarity 
between two documents. We measure the similarity be- 
tween two documents by using the cosine metric in the 
vector space model of the Smart information retrieval sys- 
tem [Sal89, Sal91]. 

G is a complete graph with edges of varying weight. An 
organization of the graph that produces reliable clusters of 
similarity a (i.e., clusters where documents have pairwise 
similarities of at least <x) can be obtained by first thresh- 
olding the graph at a and then performing a minimum 
clique cover with maximal cliques on the resulting graph 
Ga. The thresholded graph Ga is an undirected graph ob- 
tained from G by eliminating every edge whose weight is 
lower that a. The minimum clique cover has two features. 
First, by using cliques to cover the similarity graph, we 
are guaranteed that all the documents in a cluster have 
the desired degree of similarity. Second, minimal clique 
covers with maximal cliques allow vertices to belong to 
several clusters. In our information retrieval application 
this is a desirable feature as documents can have multi- 
ple subthemes. However, the algorithm can also be used 
to compute non-overlapping clusters. In our experimen- 
tal evaluations (see Figure 4) we show that the difference 
in results between star with overlapping clusters and star 
without overlapping clusters is very small. 

Unfortunately, this approach is not tractable computa- 
tionally. For real corpora, similarity graphs can be very 
large. The clique cover problem is NP-complete, and it 
does not admit polynomial-time approximation algorithms 
[LY94, Zuc93], While we cannot perform a clique cover nor 
even approximate such a cover, we can instead cover our 
graph by dense subgraphs. What we lose in intra-cluster 
similarity guarantees, we gain in computational efficiency. 
In this section and the sections that follow, we describe 
off-line and on-line covering algorithms and analyze their 
performance and efficiency. 

We approximate a clique cover by covering the asso- 
ciated thresholded similarity graph with star-shaped sub- 
graphs. A star-shaped subgraph on m + 1 vertices consists 
of a single star center and m satellite vertices, where there 
exist edges between the star center and each of the satellite 
vertices. While finding cliques in the thresholded similarity 
graph Ga guarantees a pairwise similarity between docu- 
ments of at least a, it would appear at first glance that 
finding star-shaped subgraphs in Ga would provide simi- 
larity guarantees between the star center and each of the 
satellite vertices, but no such similarity guarantees between 
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For any threshold a: 

1. Let Ga = (V, Ea) where Ea = {e : w(e) > o-}. 

2. Let each vertex in Ga initially be unmarked. 

3. Calculate the degree of each vertex v € V. 

4. Let the highest degree unmarked vertex be a star 
center and construct a cluster from the star center 
and its associated satellite vertices. Mark each 
node in the newly constructed cluster. 

5. Repeat step 4 until all nodes are marked. 

6. Represent each cluster by the document corre- 
sponding to its associated star center. 

Figure 1: The star algorithm 

satellite vertices. However, by investigating the geometry 
of our problem in the vector space model, we can derive 
a lower bound on the similarity between satellite vertices 
as well as provide a formula for the expected similarity be- 
tween satellite vertices. The latter formula predicts that 
the pairwise similarity between satellite vertices in a star- 
shaped subgraph is high, and together with empirical evi- 
dence supporting this formula, we shall conclude that cov- 
ering G0 with star-shaped subgraphs is a reliable method 
for clustering a set of documents, 

The star algorithm is based on a greedy cover of the 
thresholded similarity graph by star-shaped subgraphs; the 
algorithm itself is summarized in Figure 1. The star algo- 
rithm is very efficient. In [APR98] we show that the star 
algorithm can be correctly implemented in such a way that 
given a thresholded similarity graph Go, the running time 
of the algorithm is Q(V + Ea), linear in the size of the 
input graph. 

2.2    Cluster Quality 
In this section, we argue that the clusters produced 

by a star cover have high average intra-cluster similar- 
ity weights; thus, the clusters produced are accurate and 
of high quality. Consider three documents C, Si and S2 

which are vertices in a star-shaped subgraph of Ga, where 
S\ and S2 are satellite vertices and C is the star center. By 
the definition of a star-shaped subgraph of Go, we must 
have that the similarity between C and Si is at least <x and 
that the similarity between C and S2 is also ät least a. In 
the vector space model, these similarities are obtained by 
taking the cosine of the angle between the vectors associ- 
ated with each document. Let a\ be the angle between C 
and Si, and let a? be the angle between C and S2. We 
then have that cos Qi >a and cos 02 > <r. Note that the 
angle between Si and S2 can be at most ax + a2, and 
therefore we have the following lower bound on the simi- 
larity between satellite vertices in a star-shaped subgraph 
of Go- 

Theorem 1 Let Go be a similarity graph and let Si and 
S2 be two satellites in the same star in Ga- If Qi > a and 
at2 > a are the respective similarities between Si and the 
star center and between S2 and the star center, then the 

similarity between Si and S2 must be at least 

cos(c*i + a2) = cosai cosä2 — sinai sina2. 

If a = 0.7, cosai = 0.75 and cosa2 = 0.85, for in- 
stance, we can conclude that'the similarity between the 
two satellite vertices must be at least2 

(0.75) • (0.85) - yj\ - (0.75) Vl - (0-85)2 « 0.29. 

While this may not seem very encouraging, the above anal- 
ysis is based on absolute worst-case assumptions, and in 
practice, the similarities between satellite vertices are much 
higher. We further undertook a study to determine the 
expected similarity between two satellite vertices. Under 
the assumption that "similar" documents are essentially 
"random" perturbations of one another in an appropriate 
vector space, we have proven the following [APR97]: 

medline 
mean square error 
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0.015 
0.01 -    A 
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0   k-"^^ 
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Figure 2: This figure shows the actual mean-squared pre- 
diction error for a 6,000 abstract subset of MEDLINE. 

Theorem 2 Let Go be a similarity graph and let Si and 
S2 be two satellites in the same star in Ga. If an > cr and 
OL2 > a are the respective similarities between Si and the 
star center and between S2 and the star center, then the 
expected similarity between Si and S2 is 

cosai coso!2 + 
1 + 0 

sin c*i sin 0:2. 

For the previous example, the above formula would 
predict a similarity between satellite vertices of approx- 
imately 0.78. We have tested this formula against real 
data, and the results of the test with the MEDLINE data 
set are shown in Figure 2. In this plot, the x- and y-axes 
are similarities between a cluster center and each of two 
satellite vertices, and the 2-axis is the actual mean squared 
prediction error of the above formula for the similarity be- 
tween satellite vertices. Note that the root mean square 
error (RMS) is quite small (approximately 0.13 in the worst 
case), and for reasonably high similarities, the error is neg- 
ligible. From our tests with real data, we have concluded 
that this formula is quite accurate and that star-shaped 
subgraphs are reasonably "dense" in the sense that they 
imply relatively high pairwise similarities between docu- 
ments. 

zNote that sin 6 = VI - cos2 0. 
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Figure 3: This is a screen snapshot from a clustering experiment. The top window is the query window. The middle 
window consists of a ranked list of documents that were retrieved in response to the user query. The user may select 
"get" to fetch a document or "graph" to request a graphical visualization of the clusters as in the bottom window. The 
left graph displays all the documents as dots around a circle. Clusters are separated by gaps. The edges denote pairs of 
documents whose similarity falls between the slider parameters. The right graph displays all the clusters as disks. The 
radius of a disk is proportional to the size of the cluster. The distance between the disks is proportional to the similarity 
distance between the clusters. 

2.3    The System 
We have implemented a system for organizing informa- 

tion that uses the star algorithm. This organization sys- 
tem was used for the experiments described in this paper. 
It consists of an augmented version of the Smart system 
[Sal91, AH95], a user interface we have designed, and an 
implementation of the star algorithm on top of Smart. To 
index the documents we used the Smart search engine with 

a cosine normalization weighting scheme. We enhanced 
Smart to compute a document to document similarity ma- 
trix for a set of retrieved documents or a whole collection. 
The similarity matrix is used to compute clusters and to 
visualize the clusters. The user interface is implemented 
in Tcl/Tk. 

The organization system can be run on a whole col- 
lection, on a specified subcollection, or on the collection of 
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documents retrieved in response to a user query. Users can 
input queries by typing free text. They have the choice 
of specifying several corpora. This system supports dis- 
tributed information retrieval, but in this paper we do not 
focus on distribution and we assume only one centrally lo- 
cated corpus. In response to a user query, Smart is invoked 
to produce a ranked list of the top most relevant docu- 
ments, their titles, locations and document-to-document 
similarity information. The similarity information for the 
entire collection, or for the collection computed by the 
query engine is provided as input to the star algorithm. 
This algorithm returns a list of clusters and marks their 
centers. 

2.4 Visualization 
We have developed a visualization method for organized 

data that presents users with three views of the data (see 
Figure 3): a list of text titles, a graph that shows the sim- 
ilarity relationship between the documents, and a graph 
that shows the similarity relationship between the clusters. 
These views provide users with summaries of the data at 
different levels of detail (text, document and topic) and 
facilitate browsing by topic structure. 

The connected graph view (inspired by [A1195]) has nodes 
corresponding to the retrieved documents. The nodes are 
placed in a circle, with nodes corresponding to the same 
cluster placed together. Gaps between the nodes allow us 
to identify clusters easily. Edges between nodes are color 
coded according to the similarity between the documents. 
Two slider bars allow the user to establish minimal and 
maximal weight of edges to be shown. 

Another view presents clusters as disks whose size is 
proportional to the size of the corresponding cluster. The 
distance between two clusters is denned as a distance be- 
tween the central documents and captures the topic sepa- 
ration between the clusters. Simulated annealing is used 
to find a cluster placement that minimizes the sum of rel- 
ative distance errors between clusters. We selected a cool- 
ing schedule a(t) = t/(l + ßt), where ß — 10-3, initial 
temperature is 500 and the freezing point is 10~2. This 
setting provides a good placement when the number of 
clusters returned by the algorithm is small. This algo- 
rithm is fast, and its running time does not depend on 
the number of clusters. When the number of clusters is 
large, the ellipsoid-based method for Euclidean graph em- 
beddings described in [LLR95] can be used instead. 

All three views and a title window allow the user to se- 
lect an individual document or a cluster. A selection made 
in one window is simultaneously reflected in -the others. 

2.5 Performance Comparison with 
Two Clustering Algorithms 

In order to evaluate the performance of our system, we 
tested the star algorithm against two classic clustering al- 
gorithms: the single link method [Cro77] and the average 
link method [Voo85]. We used data from the TREC-6 con- 
ference as our testing medium. The TREC collection con- 
tains a set of 130,471 documents of which 21,694 have been 
ascribed relevance data with respect to 47 topics. These 
21,694 documents were partitioned into 22 separate subcol- 
lections of approximately 1,000 documents each. Within 
a subcollection, each of the 47 topics has a corresponding 
subset of documents which is relevant to that topic. 

The goal of a clustering method is to organize the set of 
documents in such a way that the subset of documents cor- 
responding to a selected topic appears as a cluster in the 
organization. For each of the subcollections, we performed 
the following experiment. Given a selected topic, the set of 
documents was organized by a clustering method in ques- 
tion, and the "best" cluster corresponding to this topic 
was returned. Two issues immediately arise: first, how 
does one measure the "quality" of a cluster to determine 
which is "best"; and second, how does one appropriately 
generate clusters from which to choose. To measure the 
quality of a cluster, we use the common E measure [Rij79] 
as defined below 

E(p,r) = l 
1/p + 1/r 

where p and r are the standard precision and recall of the 
cluster with respect to the set of documents relevant to 
the topic. Note that E(p, r) is simply one minus the har- 
monic mean of the precision and recall; thus, E(p, r) ranges 
from 0 to 1 where E(p, r) = 0 corresponds to perfect pre- 
cision and recall and E(p, r) = 1 corresponds to zero pre- 
cision and recall. It is worthwhile to note that when view- 
ing data comparing two clustering methods, lower E(p, r) 
values correspond to better performance. In order to com- 
pare the clustering methods fairly, each of the methods 
was run in such a way so as to produce the "best" possi- 
ble cluster with respect to a given topic, as defined by the 
E(p, r) measure above. (This is in keeping with previous 
comparative analyses of clustering methods; see, for exam- 
ple, Burgin [Bur95] and Shaw [Sha93].) In the case of the 
single link and star cover algorithms, the algorithms were 
run using a range of thresholds, and the best cluster ob- 
tained over all thresholds was returned. (One can view 
the clustering obtained with respect to a given thresh- 
old as a "slice" within a hierarchical clustering over all 
thresholds; thus, in effect, the best cluster in the hierar- 
chy was returned in these experiments.) In the case of the 
average-link algorithm which naturally produces a hierar- 
chical clustering, the best cluster within the hierarchy was 
returned. 

Unlike the star algorithm, single and average link al- 
gorithms do not allow overlapping clusters. It has been 
suggested [A1198] that the differences in performance may 
be attributed to the effects of overlapping rather than to 
the actual properties of the algorithm. To investigate this 
issue we conducted the same experiments using a version 
of the star clustering algorithm that eliminates the over- 
lapping clusters. In this setting we used the star algorithm 
to find a set of star centers, then partitioned a collection 
by assigning a document to the closest star center. This 
methodology has been used before [JD88]. We note that 
the difference in results between star with overlapping clus- 
ters and star without overlapping clusters is very small. 
Both algorithms still outperform single link and average 
link (See Figure 4). 

Each subcollection of 1,000 documents corresponded to 
an individual experiment. For a given clustering method, 
the appropriate algorithm was employed to determine the 
best possible cluster (as defined by the E(p,r) measure) 
for each of the 47 topics. For each optimal cluster, the 
E(p,r), precision and recall values were calculated with 
respect to the actual set of documents relevant to the topic, 
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coll 
star (overlap) star (partition) average link single link 

P - E P - E V "" E P T 

1 0.78 0.56 0.35 0.79 0.53 0.36 0.74 0.50 0.40 0.77 0.47 0.41 

2 0.74 0.59 0.35 0.70 0.55 0.38 0.88 0.43 0.43 0.88 0.41 0.44 

3 0.78 0.53 0.37 0.79 0.48 0.41 0.84 0.44 0.43 0.83 0.43 0.43 

4 0.76 0.50 0.40 0.81 0.46 0.41 0.71 0.46 0.44 0.73 0.41 0.48 

5 0.80 0.50 0.38 0.78 0.50 0.39 0.85 
6 0.76 0.41 0.47 0.68 0.45 0.46 0.78 0.39 0.48 0.83 0.34 0.51 

7 0.76 0.62 0.32 0.79 0.61 0.31 0.81 0.52 0.36 0.78 0.50 0.39 

8 0.75 0.57 0.35 0.73 0.57 0.36 0.82 0.48 0.39 0.86 0.44 0.42 

9 0.82 0.49 0.39 0.80 0.50 0.38 0.89 0.44 0.41 0.87 0.43 0.43 

10 0.74 0.52 0.39 0.79 0.46 0.42 0.85 0.42 
11 0.82 0.55 0.34 0.86 0.48 0.38 0.83 0.45 0.42 0.85 
12 0.80 0.55 0.35 0.83 0.53 0.36 0.82 0.49 
13 0.81 0.53 0.36 0.81 0.49 0.39 0.84 0.46 0.40 0.89 0.40 0.44 

14 0.76 0.47 0.42 0.73 0.46 0.43 0.86 0.36 0.50 0.91 0.31 0.54 

15 0.75 0.54 0.37 0.79 0.48 0.40 0.83 0.35 0.50 0.87 0.33 

16 0.87 0.47 0.39 0.86 0.46 0.40 0.91 0.40 0.45 0.95 0.39 0.45 

17 0.64 0.53 0.42 0.64 0.51 0.43 0.80 
18 0.77 0.56 0.35 0.81 0.51 0.37 0.79 0.53 0.36 0.81 0.48 0.40 

19 0.73 0.54 0.38 0.74 0.50 0.40 0.83 0.42 
20 0.71 0.51 0.41 0.76 0.48 0.41 0.81 0.41 
21 0.74 0.61 0.33 0.79 0.56 0.34 0.84 0.49 0.38 0.88 0.46 0.40 

22 0.76 0.63 0.31 0.80 0.60 0.32 0.83 0.47 

1    avg 0.77 0.54 0.37 |   0.78 0.51 0.39 |    0.83 0.44 0.43 |    0.84 0.41 0.45 

Figure 4: This figure shows comparison data for the star algorithm, the partitioning star algorithm, the single link 
algorithm, and the average link algorithm for 22 subcollections of TREC documents. For each algorithm, p represents the 
average precision computed across all clusters found for the collection; r represents the average recall computed across all 
clusters found for the collection; and E{p, r) is the aggregate measure 1 - 1/p+1/r ■ 
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Figure 5: This figure shows the E(p,r) measure for the 
partitioning star clustering algorithm and for the single 
link clustering algorithm. The y axis shows the E(p,r) 
measure, while the x axis shows the cluster number. Clus- 
ters have been sorted according to the E(p, r) „values of the 
star algorithm. 

Figure 6: This figure shows the E(p,r) measure for the 
partitioning star clustering algorithm and for the average 
link clustering algorithm. The y axis shows the E(p,r) 
measure, while the x axis shows the cluster number. Clus- 
ters have been sorted according to the E(p, r) values of the 
star algorithm. 

and these values were averaged over all topics to obtain the 
three numbers reported for each experiment and clustering 
method in Figure 4. Averaging over all 22 experiments, 
we find that the mean E(p, r) values for star, partitioning 
star, average link and single link are 0.37, 0.39, 0.43 and 
0.45, respectively. Thus, the star algorithm represents a 
16.2% improvement in performance with respect to average 
link and an 21.6% improvement with respect to single link. 
The difference is only partly due to the effect of allowing 
overlapping clusters - the partitioning star algorithm still 
gives us a 10.2% and 15.4% improvement in performance 
over average link and single link respectively. 

We repeated this experiment on the same data, using 
one collection only (of 21,694 documents.) The precision, 
recall, and E values for star (overlap), star, average link, 
and single link were (.52, .36, .58), (.53, .32, .61), (.63, .25, 
.64), and (.66, .20, .70) respectively. We note that the E 
measures are worse for all four algorithms on this larger 
collection and that the star algorithm outperforms average 
link by 10.3% and single link by 20.7%. 

Figures 5 and 6 show detailed E(p, r) values for the star 
algorithm vs. the single link algorithm and for the star al- 
gorithm vs. the average link algorithm over the collection of 
experiments. Each cluster computed by the algorithm has 
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an E(p, r) value. For better readability of these graphs, we 
sorted the clusters produced by the star algorithm accord- 
ing to their E(p, r) values. We plotted the corresponding 
E(p, r) values for the single link algorithm (see the oscillat- 
ing line in Figure 5) and for the average link algorithm (see 
the oscillating line in Figure 6). We note that the E(p,r) 
values for the star clusters are almost everywhere lower 
than the corresponding values for the single link and aver- 
age link algorithms; thus, the star algorithm outperforms 
these two methods. 

These experiments show that the star algorithm out- 
performs the single link and average link methods. Since 
the star algorithm is also simple to implement and highly 
efficient, we believe that the star algorithm is very effec- 
tive for information organization and other text clustering 
applications. 

3    On-line Information Organization 

Figure 7: This figure shows the star cover change after the 
insertion of a jaew vertex. The larger-radius disks denote 
star centers, the other disks denote satellite vertices. The 
star edges are denoted by solid lines. The inter-satellite 
edges are denoted by dotted lines. The top figure shows an 
initial graph and its star cover. The middle figure shows 
the graph after the insertion of a new document. The 
bottom figure shows the star cover of the new graph. 

In this section we consider algorithms for computing 
the organization of a dynamic information system. We 
derive an on-line version of the star algorithm for informa- 
tion organization that can incrementally compute clusters 
of similar documents. We continue assuming the vector 
space model and the cosine metric to capture the pairwise 
similarity between the documents of the corpus. 

3.1    The On-line Star Algorithm 
We assume that documents are inserted or deleted from 

the collection one at a time. For simplicity, we will focus 

our discussion on adding documents to the collection. The 
delete algorithm is similar. The intuition behind the in- 
cremental computation of the star cover of a graph after 
a new vertex is inserted is depicted in Figure 7. The top 
figure denotes a thresholded similarity graph and a correct 
star cover for this graph. Suppose a new vertex is inserted 
in the graph, as in the middle figure. The original star 
cover is no longer correct for the new graph. The bottom 
figure shows the correct star cover for the new graph. How 
does the addition of this new vertex affect the correctness 
of the star cover? In general, the answer depends on the 
degree of the new vertex and on its adjacency list. If the 
adjacency list of the new vertex does not contain any star 
centers, the new vertex can be added in the star cover as 
a star center. If the adjacency list of the new vertex con- 
tains any center vertex c whose degree is higher, the new 
vertex becomes a satellite vertex of c. The difficult case 
that destroys the correctness of the star cover is when the 
new vertex is adjacent to a collection of star centers, each 
of whose degree is lower than that of the new vertex. In 
this situation, the star structure already in place has to be 
modified to assign the new vertex as a star center. The 
satellite vertices in the stars that are broken as a result 
have to be re-evaluated. 

Motivated by the intuition in the previous paragraph, 
we now describe an on-line algorithm for incrementally 
computing star covers of dynamic graphs. The algorithm 
is shown in Figure 8. This algorithm uses a special data 
structure to efficiently maintain the star cover of an undi- 
rected graph G = (V, E). For each vertex v € V, we 
maintain the following data. 

v.type satellite or center 
v.degree degree ofv 
v.adj list of adjacent vertices 
v.centers list of adjacent centers 
v.inQ flag specifying if v being processed 

Note that while v.type can be inferred from v.centers 
and v.degree can be inferred from v.adj, it will be conve- 
nient to have all five pieces of data in the algorithm. Let 
a be a vertex to be added to G, and let L be the list of 
vertices in G which are adjacent to a. The algorithm in 
Figure 8 will appropriately update the star cover of G. See 
[APR97] for a more detailed correctness argument. 
3.2    Analysis 

We have shown that the star cover produced by the on- 
line star algorithm is correct in that it is identical to the 
star cover produced by the off-line algorithm (or one of the 
correct covers, if more than one exists) [APR97]. Further- 
more, the on-line star algorithm is very efficient. In our ini- 
tial tests, we have implemented the on-line star algorithm 
using a heap for the priority queue and simple linked lists 
for the various lists required. The time required to insert 
a new vertex and associated edges into a thresholded sim- 
ilarity graph and to appropriately update the star cover is 
largely governed by the number of stars that are broken 
during the update, since breaking stars requires inserting 
new elements into the priority queue. In practice, very few 
stars are broken during any given update (see Figure 9). 
This is due partly to the fact that relatively few stars exist 
at any given time (as compared to the number of vertices 
or edges in the thresholded similarity graph) and partly to 
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the fact that the likelihood of breaking any individual star 
is also small [APR97], 

UPDATE(Q,L) 

1 a.type *— satellite 
2 a. degree*— 0 
3 a.adj*— 0 
4 a.centers <— 0 
5 forall ß in L 
6 a.degree*— a.degree-]-1 
7 ß.degree *— ß.degree+ 1 
8 lNSERT(/?, a.adj) 
9 lNSERT(ot,ß.adj) 

10 if (ß.type = center) 
11 lNSERT(/3, a.centers) 
12 else 
13 ß.inQ*— true 
14 ENQUEUE(/3, Q) 
15 endif 
16 endfor 
17 a.inQ <— true 
18 ENQUEUE(C*,Q) 

19 while (Q / 0) 
20 0«- EXTRACTMAX(Q) 
21 if [<t>.centers = 0) 
22 <£. ti/pe *— center 
23 forall /3 in ijy.adj 
24 INSERT(<£,/3. centers) 
25 endfor 
26 else 
27 if (V<5 6 0. centers, 5. degree < 4>. degree) 
28 (j>. type <— center 
29 forall ß in d>.adj 
30 lNSERX(<£, ß.centers) 
31 endfor 
32 forall S in <f>.centers 
33 S.type *— satellite 
34 forall n in <5.a<ij 
35 DELETE(<5, n. centers) 
36 if (fi.inQ = false) 
37 fi.inQ*— true 
38 ENQUEUE(/I, Q) 
39 endif 
40 endfor 
41 endfor 
42 endif 
43 endif ^ 
44 4>.inQ *— false 
45 endwhile 

Figure 8: The on-line star algorithm for clustering. 

We evaluated the on-line star cover algorithm on a 2224 
document corpus consisting of a judged subcollection of 
TREC documents augmented with our department's tech- 
nical reports. We ran 4 experiments. Each time we se- 
lected a different threshold and proceeded to insert the 
2224 documents in random order, using the on-line star 
cluster algorithm. The results of these experiments were 
averaged. The running time measurements appear to be 
linear in the number of edges of the similarity graph. Fig- 

ures 9 and 10 show the experimental data. Note that the 
number of broken stars is roughly linear in the number of 
vertices, the running time is linear in the number of edges 
in the graph, although we can see the effects of lower order 
terms. 

300 

250 

S        200 

150 

100 

800        1200       1600 
number of vertices 

Figure 9-.  The dependence of number of broken stars on 
the number of vertices for TREC data. 

1.6e+08 

1,4e+08 

o 1.2e+08 - 

1e+08 

oi   8e+07 

6e+07 

™    4e+07 

2e+07 

0.0e+00 2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06 
number of edges 

Figure 10: This figure shows the dependence of the running 
time of the on-line star algorithm on the number of edges 
in a TREC subcollection. 

4    Discussion 
We have presented, analyzed, and evaluated the star 

clustering algorithm for information organization. We de- 
scribed an off-line version of this algorithm that can be 
used to organize static information in accurate clusters ef- 
ficiently. We also described an on-line version of the al- 
gorithm that can be used to organize dynamic data for 
tasks that require incremental updates in the topic struc- 
ture of the corpus, such as the routing task, the new topic 
detection task, and the topic tracking task. 

Our implementation of this algorithm contributes a novel 
visualization method for clusters that presents users with 
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disks whose radii correspond to the cluster size and that 
are embedded in the plane so as to capture the topic dis- 
tance between the clusters. 

We evaluated the star algorithm by comparing it against 
the single link and the average link algorithms in several 
experiments with TREC data. We found that the star al- 
gorithm outperforms the single link algorithm and the av- 
erage link algorithm. Since the star algorithm is faster and 
easier to implement and than the average link algorithm, 
we advocate its use. The on-line algorithm produces the 
same clustering as the off-line algorithm. Thus, our evalu- 
ation of the off-line star algorithm also suggests using the 
on-line star algorithm for tasks that require computing the 
topic structure incrementally and adaptively. 

Our findings so far suggest using the star algorithm for a 
variety of tasks. We are currently conducting experiments 
using the on-line star algorithm for new topic detection and 
topic tracking. Because of its cluster quality, efficiency, and 
incremental properties, we believe this algorithm will lead 
to improved results in solving these tasks. 
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Abstract 

We present and analyze the off-line star algorithm for clus- 
tering static information systems and the on-line star algo- 
rithm for clustering dynamic information systems. These 
algorithms organize a document collection into a number of 
clusters that is naturally induced by the collection via a com- 
putationally efficient cover by dense subgraphs. We further 
show a lower bound on the accuracy of the clusters produced 
by these algorithms as well as demonstrate that these algo- 
rithms are efficient (running times roughly linear in the size 
of the problem). Finally, we provide data from a number of 
experiments. 

1    Introduction 

We wish to create more versatile information capture 
and access systems for digital libraries by using infor- 
mation organization: thousands of electronic documents 
will be organized automatically as a hierarchy of topics 
and subtopics, using algorithms grounded in geometry, 
probabilities, and statistics. Off-line information orga- 
nization algorithms will be useful for organizing static 
collections (for example, large-scale legacy data). In- 
cremental, on-line information organization algorithms 
will be useful to keep dynamic corpora, such as news 
feeds, organized. Current information systems such as 
Inquery [Tur90], Smart [Sal91], or Alta Vista provide 
some simple automation by computing ranked (sorted) 
lists of documents, but it is ineffective for users to scan 
a list of hundreds of document titles. To cull the rele- 
vant information out of a large set of potentially useful 
dynamic sources we need methods for organizing and 
reorganizing dynamic information as accurate clusters, 
and ways of presenting users with the topic summaries 
at various levels of detail. 

There has been extensive research on clustering and 
applications to many domains [HS86, AB84]. For a 
good overview see [JD88]. For a good overview of using 

* Research partially supported by ONR contract N00014-95- 
1-1204, Rome Labs contract F30602-98-C-0006, and Air Force 
MURI contract F49620-97-1-0382. 

tEmail: {jaa,katya,rus}8cs.dartmouth.edu 

clustering in Information Retrieval (IR) see [Wil88]. 
The use of clustering in IR was mostly driven by the 
cluster hypothesis [Rij79] which states that relevant 
documents tend to be more closely related to each 
other than to non-relevant documents. Jardine and 
van Rijsbergen [JR71] show some evidence that search 
results could be improved by clustering. Hearst and 
Pedersen [HP96] re-examine the cluster hypothesis by 
focusing on the Scatter/Gather system [CKP93] and 
conclude that it holds for browsing tasks. 

Systems like Scatter/Gather [CKP93] provide a 
mechanism for user-driven organization of data in a 
fixed number of clusters, but the users need to be 
in the loop and the computed clusters do not have 
accuracy guarantees. Scatter/Gather uses fractiona- 
tion to compute nearest-neighbor clusters. Charika, 
et al. [CCFM97] consider a dynamic clustering algo- 
rithm to partition a collection of text documents into a 
fixed number of clusters. Since in dynamic information 
systems the number of topics is not known a priori, a 
fixed number of clusters cannot generate a natural par- 
tition of the information. 

Our work on clustering presented in this paper 
and in [APR97] provides positive evidence for the 
cluster hypothesis. We propose an off-line algorithm 
for clustering static information and an on-line version 
of this algorithm for clustering dynamic information. 
These two algorithms compute clusters induced by the 
natural topic structure of the space. Thus, this work 
is different than [CKP93, CCFM97] in that we do 
not impose the constraint to use a fixed number of 
clusters. As a result, we can guarantee a lower bound 
on the topic similarity between the documents in each 
cluster. The model for topic similarity is the standard 
vector space model used in the information retrieval 
community [Sal89] which is explained in more detail in 
this paper in Section 2. 

To compute accurate clusters, we formalize cluster- 
ing as covering graphs by cliques. Covering by cliques is 
NP-complete, and thus intractable for large document 
collections. Unfortunately, it has also been shown that 
the problem cannot even be approximated in polynomial 
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time [LY94, Zuc93]. We instead use a cover by dense 
subgraphs that are star-shaped and that can be com- 
puted off-line for static data and on-line for dynamic 
data. We show that the off-line and on-line algorithms 
produce correct clusters efficiently. Asymptotically, the 
running time of both algorithms is roughly linear in the 
size of the similarity graph that defines the information 
space (explained in detail in Section 2). We also show 
lower bounds on the topic similarity within the com- 
puted clusters (a measure of the accuracy of our clus- 
tering algorithm) as well as provide experimental data. 

Finally, we compare the performance of the star 
algorithm to two widely used algorithms for clustering 
in IR and other settings: the single link method1 [Cro77] 
and the average link algorithm2 [Voo85]. Neither 
algorithm provides guarantees for the topic similarity 
within a cluster. The single link algorithm can be 
used in off-line and on-line mode, and it is faster than 
the average link algorithm, but it produces poorer 
clusters than the average link algorithm. The average 
link algorithm can only be used off-line to process 
static data. The star clustering algorithm, on the 
other hand, computes topic clusters that are naturally 
induced by the collection, provides guarantees on cluster 
quality, computes more accurate clusters than either 
the single link or average link methods, is efficient, 
admits an efficient and simple on-line version, and can 
perform hierarchical data organization. We describe 
experiments in this paper with the TREC3 database 
demonstrating these abilities. 

Our algorithms for organizing information systems 
can be used in several ways. The off-line algorithm can 
be used as a pre-processing step in a static informa- 
tion system or as a post-processing step on the specific 
documents retrieved by a query. As a pre-processor, 
this system assists users with deciding how to browse 
a database of free text documents by highlighting rel- 
evant topics and irrelevant subtopics. Such clustered 
data is useful for narrowing down the database over 
which detailed queries can be formulated. As a post- 
processor, this system classifies the retrieved data into 
clusters that capture topic categories and subcategories. 
The on-line algorithm can be used as a basis for con- 
structing self-organizing information systems. As the 
content of dynamic information systems changes, the 
on-line algorithm can efficiently automate the process 
of organization and re-organization to compute accu- 

Tnthe single link clustering algorithm a document is part of 
a cluster if it is "related" to at least one document in the cluster. 

2 In the average link clustering algorithm a document is part 
of a cluster if it is "related" to an average number of documents 
in the cluster. 

3Text Retrieval Conference 

rate topic summaries at various level of similarity. 

2    Clustering    static    data    with    star-shaped 
subgraphs 

In this section we motivate and present an off-line 
algorithm for organizing information systems. The 
algorithm is very simple and efficient, and it computes 
high-density clusters. 

We formulate our problem by representing an in- 
formation system by its similarity graph. A similarity 
graph is an undirected, weighted graph G = (V,E,w) 
where vertices in the graph correspond to documents 
and each weighted edge in the graph corresponds to a 
measure of similarity between two documents. We mea- 
sure the similarity between two documents by using the 
cosine metric in the vector space model of the Smart 
information retrieval system [Sal91, Sal89]. 

The vector space model for textual information 
aggregates statistics on the occurrence of words in 
documents. The premise of the vector space model is 
that two documents are similar if they use the same 
words. A vector space can be created for a collection 
(or corpus) of documents by associating each important 
word in the corpus with one dimension in the space. The 
result is a high dimensional vector space. Documents 
are mapped as points in this space according to their 
word frequencies. Similar documents map to nearby 
points. In the vector space model, document similarity 
is measured by the angle between the corresponding 
document vectors. The standard in the information 
retrieval community is to map the angles to the interval 
[0,1] by taking the cosine of the vector angles. 

G is a complete graph with edges of varying weight. 
An organization of the graph that produces reliable 
clusters of similarity a (i.e., clusters where documents 
have pairwise similarities of at least a) can be obtained 
by (1) thresholding the graph at a and (2) performing 
a minimum clique cover with maximal cliques on the 
resulting graph Ga. The thresholded graph Ga is an 
undirected graph obtained from G by eliminating all 
the edges whose weights are lower that a. The minimum 
clique cover has two features. First, by using cliques to 
cover the similarity graph, we are guaranteed that all 
the documents in a cluster have the desired degree of 
similarity. Second, minimal clique covers with maximal 
cliques allow vertices to belong to several clusters. In 
our information retrieval application this is a desirable 
feature as documents can have multiple subthemes. 

Unfortunately, this approach is computationally 
intractable. For real corpora, similarity graphs can be 
very large. The clique cover problem is NP-complete, 
and it does not admit polynomial-time approximation 
algorithms [LY94, Zuc93].   While we cannot perform 
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a clique cover nor even approximate such a cover, we 
can instead cover our graph by dense subgraphs. What 
we lose in intra-cluster similarity guarantees, we gain 
in computational efficiency. In the sections that follow, 
we describe off-line and on-line covering algorithms and 
analyze their performance and efficiency. 

2.1    Dense Star-Shaped Covers 
We approximate a clique cover by covering the associ- 
ated thresholded similarity graph with star-shaped sub- 
graphs. A star-shaped subgraph on m + 1 vertices con- 
sists of a single star center and m satellite vertices, 
where there exist edges between the star center and each 
of the satellite vertices. While finding cliques in the 
thresholded similarity graph Ga guarantees a pair wise 
similarity between documents of at least a, it would ap- 
pear at first glance that finding star-shaped subgraphs 
in Ga would provide similarity guarantees between the 
star center and each of the satellite vertices, but no such 
similarity guarantees between satellite vertices. How- 
ever, by investigating the geometry of our problem in 
the vector space model, we can derive a lower bound 
on the similarity between satellite vertices as well as 
provide a formula for the expected similarity between 
satellite vertices. The latter formula predicts that the 
pairwise similarity between satellite vertices in a star- 
shaped subgraph is high, and together with empirical 
evidence supporting this formula, we shall conclude that 
covering G„ with star-shaped subgraphs is an accurate 
method for clustering a set of documents. 

Consider three documents C, Si and 52 which are 
vertices in a star-shaped subgraph of Ga, where Si and 
S2 are satellite vertices and C is the star center. By 
the definition of a star-shaped subgraph of Ga, we must 
have that the similarity between C and Si is at least a 
and that the similarity between C and S2 is also at 
least a. In the vector space model, these similarities 
are obtained by taking the cosine of the angle between 
the vectors associated with each document. Let a\ be 
the angle between C and Si, and let a2 be the angle 
between C and S2. We then have that cosai > a and 
cos a2 > a. Note that the angle between Si and S2 can 
be at most at\ +Q2, and therefore we have the following 
lower bound on the similarity between satellite vertices 
in a star-shaped subgraph of Ga. 

PROPOSITION 2.1. Let G„ be a similarity graph 
and let Si and S2 be two satellites in the same star 
in Ga. Then the similarity between S\ and S2 must be 
at least 

cos(ai + Q2) = cosai cosa2 — sinoi sina2. 

If a — 0.7, cosai = 0.75 and cosa2 = 0.85, for 
instance, we can conclude that the similarity between 

the two satellite vertices must be at least4 

(0.75) • (0.85) - v^l - ,(0.75) Vl - (0-85)2 « 0.29. 

Note that while this may not seem very encouraging, 
the above analysis is based on absolute worst-case 
assumptions, and in practice, the similarities between 
satellite vertices are much higher. We further undertook 
a study to determine the expected similarity between 
two satellite vertices. 

2.2    The random graph model 
The model we use for analysis is the random graph 
model [Bol95]. A random graph G„,p is an undirected 
graph with n vertices, where each of its possible edges is 
inserted randomly and independently with probability 
p. Our problem fits the random graph model if we make 
the mathematical assumption that "similar" documents 
are essentially "random perturbations" of one another in 
the vector space model. This assumption is equivalent 
to viewing the similarity between two related documents 
as a random variable. By thresholding the edges of 
the similarity graph at a fixed value, for each edge 
of the graph there is a random chance (depending 
on whether the value of the corresponding random 
variable is above or below the threshold value) that 
the edge remains in the graph. This thresholded 
similarity graph is thus a random graph. While random 
graphs do not perfectly model the thresholded similarity 
graphs obtained from actual document corpora (the 
actual similarity graphs must satisfy various geometric 
constraints and will be aggregates of many "sets" of 
"similar" documents), random graphs are easier to 
analyze, and our experiments provide evidence that 
results obtained for random graphs closely match those 
obtained for thresholded similarity graphs obtained 
from actual document corpora. As such, we will use the 
random graph model for analysis and for experimental 
verification of the algorithms presented in this paper (in 
addition to experiments on actual corpora). 

The following upper bound on the expected simi- 
larity between two satellite vertices holds: 

PROPOSITION 2.2. The expected similarity be- 
tween two satellite vertices S\ and S2 in the same star 
in a similarity graph Ga is: 

cos ai cos a2 + 
l + o- 

sinai sina2. 

Proof. (Omitted for space considerations.) 

Note that for the previous example,  the above 
formula would predict a similarity between satellite 

4Note that sinö = Vl - cos2 0. 
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vertices of approximately 0.78. We have tested this 
formula against real data, and the results of the test 
with the MED LINE data set5 are shown in Figure 1. 
In this plot, the x- and y-axes are similarities between 
cluster centers and satellite vertices, and the z-axis 
is the actual mean squared prediction error (MSE) of 
the above formula for the similarity between satellite 
vertices. Note that the maximum root mean squared 
error (RMS) is quite small (approximately 0.13 in the 
worst case), and for reasonably high similarities, the 
error is negligible. From our tests with real data, we 
have concluded that the random graph model holds 
and that this formula is quite accurate. We can 
conclude that star-shaped subgraphs are reasonably 
"dense" in the sense that they imply relatively high 
pairwise similarities between documents. 

medline 
mean square error 

0.025 - 
0.02 

0.015 
0.01 

0.005 -      l\f_ 
0 

0 
0.2 

C >4   X. 
0.6   X 
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Figure 1: This figure shows the error for a 6000 abstract 
subset of MEDLINE. 

3    The off-line star algorithm 

Motivated by the discussion of the previous section, we 
now present the star algorithm which can be used to 
organize documents in an information system. The star 
algorithm is based on a greedy cover of the thresholded 
similarity graph by star-shaped subgraphs; the algo- 
rithm itself is summarized in Figure 2 below. 

THEOREM 3.1. The running time of the off-line 
star algorithm on a similarity graph Ga is Q(V + Ea). 

Proof. The following implementation of this algo- 
rithm has a running time linear in the size of the graph. 
Each vertex v has a data structure associate with it that 
contains v.degree, the degree of the vertex, v.adj, the 
list of adjacent vertices, v.marked, which is a bit de- 
noting whether the vertex belongs to a star or not, and 

For any threshold a: 
1. Let Ga = (V, Ec) where Ea = {e : w{e) > rj}. 

2. Let each vertex in G& initially be unmarked. 

3. Calculate the degree of each vertex v £V. 

4. Let the highest degree unmarked vertex be a 
star center, and construct a cluster from the star 
center and its associated satellite vertices. Mark 
each node in the newly constructed cluster. 

5. Repeat step 4 until all nodes are marked. 

6. Represent each cluster by the document corre- 
sponding to its associated star center. 

5 MEDLINE is a large collection of medical abstracts that is 
often used as benchmark in information retrieval experiments. 

Figure 2: The star algorithm 

v.center, which is a bit denoting whether the vertex 
is a star center. (Computing v.degree for each vertex 
can easily be performed in @(V + Ea) time.) The im- 
plementation starts by sorting the vertices in V by de- 
gree (Q(V) time since degrees are integers in the range 
{0, |V|}). The program then scans the sorted vertices 
from the highest degree to the lowest as a greedy search 
for star centers. Only vertices that do not belong to a 
star already (that is, they are unmarked) can become 
star centers. Upon selecting a new star center v, its 
v.center and v.marked bits are set and for all w £ v.adj, 
w.marked is set. Only one scan of V is needed to de- 
termine all the star centers. Upon termination, the star 
centers and only the star centers have the center field 
set. We call the set of star centers the star cover of the 
graph. Each star is fully determined by the star center, 
as the satellites are contained in the adjacency list of 
the center vertex. 

This algorithm has two features of interest. The 
first feature is that the star cover is not unique. A 
similarity graph may have several different star covers 
because when there are several vertices of the same 
highest degree, the algorithm arbitrarily chooses one 
of them as a star center (whichever shows up first 
in the sorted list of vertices). The second feature of 
this algorithm is that it provides a simple encoding 
of a star cover by assigning the types "center" and 
"satellite" (which is the same as "not center" in our 
implementation) to vertices. We define a correct star 
cover as a star cover that assigns the types "center" 
and "satellite" in such a way that (1) a star center is not 
adjacent to any other star center and (2) every satellite 
vertex is adjacent to at least one center vertex of higher 
degree. It immediately follows that: 
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THEOREM 3.2. The off-line star algorithm pro- 
duces a correct star cover. 

We will use the two features of the off-line algorithm 
mentioned above in the analysis of the on-line version 
of the star algorithm, in the next section. 

4    Clustering   dynamic    data    with   the    star 
algorithm 

In this section we consider algorithms for computing 
the organization of a dynamic information system. We 
derive an on-line version of the star algorithm for in- 
formation organization that can incrementally compute 
clusters of similar documents. We continue assuming 
the vector space model and the cosine metric to cap- 
ture the pairwise similarity between the documents of 
the corpus, and the random graph model for analyzing 
the expected behavior of the new algorithm. 

We assume that documents are inserted or deleted 
from the collection one at a time. For simplicity, 
we will focus our discussion on adding documents to 
the collection. The delete algorithm is similar. The 
intuition behind the incremental computation of the 
star cover of a graph after a new vertex is inserted is 
depicted in Figure 3. The top figure denotes a similarity 
graph and a correct star cover for this graph. Suppose 
a new vertex is inserted in the graph, as in the middle 
figure. The original star cover is no longer correct for 
the new graph. The bottom figure shows the correct 
star cover for the new graph. How does the addition of 
this new vertex affect the correctness of the star cover? 
In general, the answer depends on the degree of the new 
vertex and on its adjacency list. If the adjacency list of 
the new vertex does not contain any star centers, the 
new vertex can be added in the star cover as a star 
center. If the adjacency list of the new vertex contains 
any center vertex c whose degree is higher, the new 
vertex becomes a satellite vertex of c. The difficult 
case that destroys the correctness of the star cover is 
when the new vertex is adjacent to a collection of star 
centers, each of whose degree is lower than that of the 
new vertex. In this situation, the star structure already 
in place has to be modified to assign the new vertex as 
a star center. The satellite vertices in the stars that are 
broken as a result have to be re-evaluated. 

4.1    The on-line star algorithm 
Motivated by the intuition in the previous section, we 
now describe an on-line algorithm for incrementally 
computing star covers of dynamic graphs. The algo- 
rithm is shown in Figure 4. This algorithm uses a data 
structure to efficiently maintain the star covers of an 
undirected graph G = (V,E). For each vertex v € V, 
we maintain the following data. 

Figure 3: This figure shows the star cover change after 
the insertion of a new vertex. The larger-radius disks 
denote star centers, the other disks denote satellite 
vertices. The star edges are denoted by solid lines. The 
inter-satellite edges are denoted by dotted lines. The 
top figure shows an initial graph and its star cover. The 
middle figure shows the graph after the insertion of a 
new document. The bottom figure shows the star cover 
of the new graph. 

v.type satellite or center 
v.degree      degree of v 
v.adj list of adjacent vertices 
v.centers    list of adjacent centers 
v.inQ flag specifying if v being processed 

Note that while v.type can be inferred from v.centers 
and v.degree can be inferred from v.adj, it will be con- 
venient to have all five pieces of data in the algorithm. 
Let a be a vertex to be added to G, and let L be the 
list of vertices in G which are adjacent to a. The al- 
gorithm in Figure 4 will appropriately update the star 
cover of G. 

The algorithm maintains a priority queue Q of 
vertices not yet correctly placed in the star cover. When 
a star is broken, its center and satellites are placed in 
Q. 

The on-line star cover algorithm is more complex 
than its off-line counterpart. We devote the rest of this 
section to proving that the algorithm is correct and to 
analyzing its expected running time. 
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UPDATE (a, L) 
1 a.type 4— satellite 
2 a. degree 4- 0 
3 a.adj 4- 0 
4 a.centers 4— 0 
5 forall ß in L 
6 a.degree 4— a.degree + 1 
7 ß.degree 4- ß. degree + 1 
8 INSERT^, a. a#) 
9 lNSERT(a,/3.adj) 

10 if {ß-type = center) 
11 INSERT(/3, a. centers) 
12 else 
13 /J.inQ 4- frue 
14 ENQUEUE(/3, Q) 
15 endif 
16 endfor 
17 a.inQ 4— true 
18 ENQUEUE(a,Q) 
19 while (Q ? 0) 
20 4><r~ EXTRACTMAX(Q) 

21 if (<j>.centers = 0) 
22 4>-type 4— center 
23 forall /3 in <j).adj 
24 INSERT(0, ß.centers) 
25 endfor 
26 else 
27 if (VJ € <j>.centers, S.degree < </>.degree) 
28 <t>-type 4— center 
29 forall /? in ^.od/ 
30 INSERT(<£, /?. centers) 
31 endfor 
32 forall <5 in ^.centers 
33 <5.£ype 4- satellite 
34 forall /i in S.adj 
35 D ELETE (5, fi. centers) 
36 if {n-inQ - false) 
37 fi.inQ 4- true 
38 ENQUEUE^/, Q) ^ 
39 endif 
40 endfor 
41 endfor 
42 endif 
43 endif 
44 cj).inQ 4- false 
45 endwhile 

Figure 4: The on-line star algorithm for clustering. 

4.2    Correctness 
In this section we show that the on-line algorithm is 
correct by proving that it produces the same star cover 

as the off-line algorithm, when the off-line algorithm 
is run on the final graph considered by the on-line 
algorithm. Before we state the result, we note that the 
off-line star algorithm does not produce a unique cover. 
When there are several vertices of the same highest 
degree, the algorithm arbitrarily chooses one of them 
as the next star center. We will show that the cover 
produced by the on-line star algorithm is the same as 
one of the covers that can be produced by the off-line 
algorithm 

THEOREM 4.1. The cover generated by the on-line 
star algorithm when Ga = (V,Ea) is constructed in- 
crementally (by inserting its vertices one at a time) is 
identical to some legal cover generated by the off-line 
star algorithm on Ga. 

Proof. We can view a star cover of Ga as a correct 
assignment of types (that is, "center" or "satellite") to 
the vertices of Ga. The off-line star algorithm assigns 
correct types to the vertices of Ga. We will prove the 
correctness of the on-line star cover by induction. The 
induction invariant is that at all times, the types of 
vertices not in Q are correct, assuming that the true 
type of vertices in Q is "satellite." This would imply 
that when Q is empty, all vertices are assigned a correct 
type, and thus the star cover is correct. 

The invariant is true initially: as the type of the new 
node a is unknown and a is in Q; the type of all the 
satellite neighbors of a are unknown and these neighbors 
are in Q; and all the other vertices have correct types 
from the original cover, assuming that the nodes in 
the queue are correctly satellite. We now show that 
the induction invariant is maintained throughout the 
algorithm. Consider Figure 4. The first thing to note 
is that the type of all the vertices in Q is "satellite"; 
statements 14, 18 and 33 enqueue satellite vertices. We 
now argue that every time a vertex <f> of highest degree 
is pulled out of Q, it is assigned a correct type. When 
</> has no centers on its adjacency list, its type should 
be "center" (which is assigned correctly by statement 
22). When <f> is adjacent to star centers &i, each of 
which has a lower degree that (j>, the correct type for <j> 
is "center" (statement 28). This action has a side effect: 
all Si cease to be star centers and thus get enqueued for 
further evaluation (statements 32-39). Otherwise, the 
correct type for cj> is the default "satellite". Since <j> was 
extracted from Q and all vertices in Q are satellites, the 
type of <f> is correct in this case as well. 

To complete the argument, what remains to be 
shown is that eventually the queue Q becomes empty. 
The termination of the while loop at statement 19 in 
Figure 4 is guaranteed by ithe following result. 

LEMMA 4.1. The degree of the stars broken by the 
on-line star algorithm is strictly decreasing. 
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The lemma is equivalent to the following statement: 
node <f> in Q has the potential of becoming a star center 
and has the capability of adding new nodes 7 to Q that 
can become stars of degree strictly less than the degree 
of node (f>. 

Suppose (f> becomes a new star center. We show 
than its satellite neighbors 7 cannot become star cen- 
ters. Two cases arise. (Case 1) 7; is not a star center 
because its degree is smaller than the degree of the new 
star center that covers (f> in the new cover. (Case 2) 74 
is not a star center because it is a satellite of a much 
larger star, so its degree is larger than the degree of the 
new star that covers cj>. But this condition still holds 
after making the new star. This completes the proof 
sketch for the termination lemma and it follows that 
the types assigned by the on-line algorithm are correct; 
in other words, that there exists an off-line algorithm 
that produces the same cover. 

4.3 Running Time Analysis and Experimental 
Results 
In this section, we argue that the running time of the on- 
line star algorithm is efficient in practice, asymptotically 
matching the running time of the off-line star algorithm 
(6(V -I- E)) to within lower order factors. We first 
note, however, that there exist worst-case thresholded 
similarity graphs G„ and corresponding vertex insertion 
sequences which cause the on-line star algorithm to run 
in 0(V2) time.6 These graphs and insertion sequences 
rarely arise in practice though. An analysis more closely 
modeling practice is the random graph model in which 
Ga is a random graph and the insertion sequence is 
random. In this model, the expected running time of 
the on-line star algorithm can be determined. 

In the sections that follow, we first give intuition for 
the expected running time of the on-line star algorithm. 
In subsequent sections, we give experimental results 
showing that the on-line star algorithm is quite efficient 
with respect to both random data and a large collection 
of real documents. 

4.3.1    Intuition 
We have implemented the on-line star algorithm using 
a heap for the priority queue and simple linked lists for 
the various lists required. The time required to insert 
a new vertex and associated edges into a thresholded 
similarity graph and to appropriately update the star 
cover is largely governed by the number of stars that are 
broken during the update, since breaking stars requires 

inserting new elements into the priority queue. In 
practice, very few stars are broken during any given 
update. This is due partly tp the fact that relatively few 
stars exist at any given time (as compared to the number 
of vertices or edges in the thresholded similarity graph) 
and partly to the fact that the likelihood of breaking any 
individual star is also small. We begin with the former, 
noting that the number of stars expected to cover a 
random graph G„iP is only 0(logn). 

THEOREM 4.2. The expected size of the star cover 
forGn,pis^. 

Proof. The star cover algorithm is greedy: it iter- 
ates by selecting the highest degree vertex not yet cov- 
ered as a star center and marking this node and all its 
adjacent vertices as covered. Each iteration creates a 
new star. We will argue that the number of iterations 
*s ioE(S" )• The argument relies on the random graph 

model described in Section 2.1. 
Let G„)P correspond to a random graph on n 

vertices where each edge exists with probability p. The 
degree of each vertex of G is distributed binomially: 
Pr[deg = k] = bin(k;n - l,p) = ("-1) pk(l - 
p)n 1 k. The mean of this distribution is p — (n — 
\)p and its variance is <x .= y/(n - l)p(l -p). Note 
that while the the degrees of the vertices do exhibit 
some dependence, for practical purposes they can be 
considered independent [Bol95]. This means that on 
average, each star covers (n — l)p + 1 > np vertices.7 

Since the np vertices covered by each star are randomly 
chosen, there will be some overlap between the star 
covers. Each new star leaves uncovered a (1 — p) 
fraction of the previously uncovered vertices. In other 
words, after the first iteration, (1 —p)n vertices remain 
uncovered. After i iterations, (1 —pYn vertices remain 
uncovered. The algorithm terminates when all the 
vertices are covered, or (1 -p)*n < 1. By taking logs of 
both sides of this inequality, it follows that i > |o'°s? 

is sufficient. 

Thus, the number of stars is expected to be rela- 
tively small. Furthermore, the probability any individ- 
ual star will be broken is quite small as well. A star 
can only be broken if the star center has the same de- 
gree as one of its associated satellite vertices and if the 
vertex being added to the graph is connected to that 
satellite but not to the star center.8 In practice, the 
expected number of stars broken during an update is a 
small constant even for graphs containing thousands of 
vertices (though asymptotically it is certainly a slowly 

BAn example is a graph consisting of two connected vertices A 
and B of very high but identical degree (not both of which can be 
star centers) and an insertion sequence which causes the "local" 
center to repeatedly switch between A and B. 

7The star covers its center and (n — l)p satellites. 
8 Once a star is broken during an update, however, other stars 

can be broken in different ways via a cascading effect. 
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growing function of n). In Figure 5, we give experimen- 
tal results showing that the total number of stars broken 
during runs on two different types of data is roughly a 
linear function of the number of vertices; thus, the ex- 
pected number of stars broken during any given update 
is roughly a constant (or more likely a slowly growing 
function of n). 

_.    , . iMtom graph   •    A 
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Generating Random Data. We ran the on- 
line star cover algorithm on a random graph with 1000 
nodes. The edges in this graph were inserted randomly 
with probability p = 0.2. The on-line algorithm was 
run 30 times. Each time, the vertices of the random 
graph were inserted in random order. The results were 
averaged over the 30 experiments. Figure 6 shows the 
data from these experiments. Note that the the running 
time is roughly linear in the number of edges in the 
graph, and we can see the effects of lower order terms. 

1500 2000 2SO0 

Figure 5: (The dependence of the number of broken 
stars on the number of vertices in a random graph (left) 
and for text data (right). 

The time to break a star is roughly proportional 
to its size (the degree of its associated star center), and 
since the degrees of all vertices are expected to be similar 
in distribution (bin(k;n - l,p)), this is on the order 
of the number of edges being inserted into the graph. 
Since only a constant number of stars are expected to 
be broken, the expected time to perform an update will 
be roughly proportional to the number of edges inserted 
in the graph during the update. Thus, the total time 
to perform n updates should be roughly proportional 
to the total number of edges in the final graph. In the 
sections that follow, we give experimental results which 
confirm this fact. 

4.3.2    Experimental results 
We have experimented with the on-line clustering algo- 
rithm in two scenarios. The first type of data matches 
our random graph model and consists of random sim- 
ilarity graphs. While this type of data is useful as a 
benchmark for the running time of the algorithm, it 
does not satisfy the geometric constraints of the vec- 
tor space model. We also conducted experiments using 
real data from the TREC collection9 as a second type 
of benchmark for the algorithm. 

We now detail our data generation procedure and 
the experimental running time of the on-line star algo- 
rithm on each data type. 

9TREC is the annual text retrieval conference. TREC is 
organized as a competition. Bach participant is given on the order 
of 5 gigabytes of data and a standard set of queries on which to 
test their systems. The results and the system descriptions are 
presented as papers at the TREC conference. 
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Figure 6: This figure shows the dependence of the 
running time of the on-line star algorithm on the 
number of edges in a random graph (left) and for text 
data (right). 

Experiments with real data. We ran the on- 
line star cover algorithm on a document collection 
that consists of a slice of TREC documents augmented 
with our department's technical reports. The resulting 
collection consists of 2224 documents. We ran four 
experiments. Each time we set a different threshold 
and added the similarity graph nodes in random order. 
The results of these experiments were averaged and the 
running time measurements appear to be linear in the 
number of edges of the similarity graph. Figure 6 shows 
the data from these experiments. Note that the the 
running time is roughly linear in the number of edges 
in the graph, and we can see the effects of lower order 
terms. 

Comparion between Star, Single Link, and 
Average Link on TREC Data. We have imple- 
mented a system for organizing information that uses 
the star algorithm. Figure 7 shows the user inter- 
face to this system [APR97]. In order to evaluate 
the performance of our system, we tested the star al- 
gorithm against two widely used clustering algorithms 
in IR: the single link method [Rij79] and the average 
link method [Voo85]. We used data from the TREC-6 
conference as our testing medium. The TREC collec- 
tion contains a very large set of documents of which 
21,694 have been ascribed relevance data with respect 
to 47 topics. These 21,694 documents were partitioned 
into 22 separate subcollections of approximately 1,000 
documents each for 22 rounds of the following experi- 
ment. For each of the 47 topics the given collection of 
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documents was clustered with each of the three algo- 
rithms and the best cluster was returned. To measure 
the quality of a cluster, we use the common E mea- 
sure [Rij79] defined as: E(p,r) = 1 - 2/(l/p + 1/r), 
where p and r are the standard precision and recall of 
the cluster with respect to the set of documents rel- 
evant to the topic.10 It is worthwhile to note that 
in viewing data comparing two clustering methods, 
lower E(p, r) values correspond to better performance. 
Averaging over all 22 experiments, we find that the 
mean (p, r, E(p, r)) values for star, average-link and 
single-link are (0.77,0.54,0.36), (0.83,0.44,0.42) and 
(0.84,0.41,0.45), respectively. Thus, the star algorithm 
represents a 16.6% improvement in performance with 
respect to average-link and an 25% improvement with 
respect to single-link. 

Figure 8 shows the detailed E measures for the star 
algorithm vs. the single link algorithms and for the star 
algorithm vs. the average link algorithm. We collected 
all the topic clusters computed in this experiment. 
We sorted the clusters produced by the star algorithm 
according to their E-values. We plotted the E value for 
the coresponding cluster computed by the single link 
algorithm (see the oscillating line in Figure 8-left) and 
for the average link algorithm (see the oscillating line 
in Figure 8-right). We note that the star algorithm 
outperforms both the single link algorithm and the 
average link algorithm, because the E values for the 
star clusters are almost everywhere lower than the 
corresponding values for the other two algorithms. Note 
that not all topics are present in all 22 experiments, 
which is why we have only approximately 500 clusters 
in these graphs. 

Our experiments show that in general, the star al- 
gorithm outperforms single link by 25% and that it out- 
performs average link by 16.6%. We repeated this ex- 
periment on the same data, using one collection only 
(of 21,694 documents), and obtained similar results.11 

These improvements are significant for text applica- 
tions. Considering that the star algorithm outperforms 
the average link algorithm, it is easier to implement than 
the average link algorithm, it can be used as an on-line 
algorithm, and it runs much faster, these experiments 
provide support for using the star algorithm in cluster- 
ing and off-line information organization. 

^"Precision is the fraction of returned documents that are cor- 
rect. Recall is the fraction correct documents that are returned. 

nThe precision, recall, and E values for star, average link, and 
single link were (.53, .32, .61), (.63, .25, .64), and (.66, .20, .70), 
respectively. We note that the E measures are worse for all three 
algorithms on this larger collection and that the star algorithm 
outperforms average link by 10.3% and single link by 20.7%. 
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Figure 7: This is a screen snapshot from a clustering 
experiment. The top window is the query window. The 
middle window consists of a ranked list of documents 
that were retrieved in response to the user query. The 
user my select "get" to fetch a document or "graph" 
to request a graphical visualization of the clusters as 
in the bottom window. The left graph displays all 
the documents as dots around a circle. Clusters are 
separated by gaps. The edges denote pairs of documents 
whose similarity falls between the slider parameters. 
The right graph displays all the clusters as disks. The 
radius of a disk is proportional to the size of the cluster. 
The distance between the disks is proportional to the 
similarity distance between the clusters. 

5    Discussion 

We presented and analyzed an off-line clustering algo- 
rithm for static information organization and an on-line 
clustering algorithm for dynamic information organiza- 
tion. We discussed the random graph model for analyz- 
ing these algorithms and showed that in this model, the 
algorithms have expected running time that is roughly 
linear in the number of edges. The data we gathered 
from experimenting with these algorithms provides sup- 
port for the validity of our model and analysis. The em- 
pirical tests show that both algorithms have an asymp- 
totic linear time performance in the number of edges in 
the graph. In addition, both algorithms are simple and 
easy to implement.   We believe that the fast running 
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Figure 8: This figure shows the E measure for the 
star clustering algorithm vs. the single link clustering 
algorithm (left) and the star algorithm vs. the average 
link algorithm (right). The y axis shows the E measure. 
The x axis shows the cluster number. Clusters have 
been sorted according to the E value for the star 

algorithm. 

time and the ease of implementation make these algo- 
rithms very practical candidates for use in automatically 
organizing digital libraries. 

This work departs from previous clustering algo- 
rithms used in information retrieval that use a fixed 
number of clusters for partitioning the space. Since 
the number of clusters produced by our algorithms is 
given by the underlying topic structure in the informa- 
tion system, our clusters are dense and accurate. Our 
work extends previous results [HP96] that support using 
clustering for browsing applications and presents posi- 
tive evidence for the cluster hypothesis. In [APR97], we 
argue that by using a clustering algorithm that guaran- 
tees the cluster quality through separation of dissimilar 
documents and aggregation of similar documents, clus- 
tering is beneficial for information retrieval tasks that 
require high precision and high recall. Precision-recall 
are the standard measurements for the performance of 
an information retrieval algorithm [Sal89]. 
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Abstract 

We present three scalable extensions of the star algorithm for information organization that use 
sampling. The star algorithm organizes a document collection into clusters that are naturally induced 
by the topic structure of collection, via a computationally efficient cover by dense subgraphs. We 
also provide supporting data from extensive experiments. 

1    Introduction 

Our goal is to develop a completely automated information organization system for digital libraries, 
automated tools for librarians to classify this information, automatic tools to create reference pointers 
into such collections, and automated tools that allow users to locate information effectively. 

We focus on static and dynamic digital collections of unstructured text. We consider the problem of 
determining the topic structure of text data, without a priori knowledge of the number of topics in the 
data or any other information about their composition. We assume that the collections may be static 
(for example, digital legacy collections) or dynamic (for example, news wires). We look to discover 
hierarchies of topics and subtopics in such text collections. Thus, we develop clustering algorithms that 
can be used in off-line, on-line, and hierarchical mode. We wish for these algorithms to be fast, scalable, 
accurate, and to discover the naturally occurring topics in the collection. In our previous work (Aslam et 
al, 1998; Aslam et al, 1999), we proposed an off-line and an on-line approach based on graph theory. Our 
algorithms, called the star clustering algorithms, compute clusters induced by the natural topic structure 
of the space. Thus, this work is different than previous work in using clustering to organize information 
(Cutting et al, 1993; Charikar et al, 1997) in that we do not impose the constraint to use a fixed number 
of clusters. This previous work argues that the star algorithm is simple, efficient, can be used in off-line 
as well as on-line mode, and it outperforms existing clustering algorithms such as single link, average 
link, and k-means. In this paper we consider scalability issues in developing an information organization 
system. We present three different scalable extensions to the star algorithm and show data from extensive 
experiments. 

2   Related Work 

There has been extensive research on clustering and applications to many domains (Everitt, 1993; Mirkin 
1996; Silverstein and Pedersen 1997; Sibson, 1973; Worona, 1971). For a good overview see (Jain and 
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Dubes, 1988). For a good overview of using clustering in Information Retrieval (IR) see (Willett, 1988). 
The use of clustering in IR was mostly driven by the cluster hypothesis (Rijsbergen, 1979) which states 
that relevant documents tend to be more closely related to each other than to non-relevant documents. 
Efforts have been made to find whether the cluster hypothesis is valid. Voorhees (Voorhees, 1985) 
discusses a way of evaluating whether the cluster hypothesis holds and shows negative results. Croft 
(Croft, 1080) describes a method for bottom-up cluster search that could be shown to outperform a 
full ranking system for the Cranfield collection. In (Jardine and van Rijsbergen, 1971) Jardine and van 
Rijsbergen show some evidence that search results could be improved by clustering. Hearst and Pedersen 
(Hearst and Pedersen, 1996) re-examine the cluster hypothesis by focusing on the Scatter/Gather system 
(Cutting et al, 1993) and conclude that it holds for browsing tasks. 

Systems like Scatter/Gather (Cutting et al, 1993) provide a mechanism for user-driven organization of 
data in a fixed number of clusters, but the users need to be in the loop and the computed clusters do 
not have accuracy guarantees. Scatter/Gather uses fractionation to compute nearest-neighbor clusters. 
Charika et al. (Charikar et al, 1997) consider a dynamic clustering algorithm to partition a collection 
of text documents into & fixed number of clusters. Since in dynamic information systems the number 
of topics is not known a priori, a fixed number of clusters cannot generate a natural partition of the 
information. 

3   Background: The Star Algorithm for Information Organization 

For any threshold o~. 

1. Let Ga = (V, Ea) where Ea = {e : w(e) > a}. 

2. Let each vertex in Ga initially be unmarked. 

3. Calculate the degree of each vertex v e V. 

4. Let the highest degree unmarked vertex be a star center, and construct a cluster from the star 
center and its associated satellite vertices. Mark each node in the newly constructed cluster. 

5. Repeat step 4 until all nodes are marked. 

6. Represent each cluster by the document corresponding to its associated star center. 

Figure 1: The star algorithm 

To compute accurate topic clusters, one possibility is to formalize clustering as covering similarity graphs 
by cliques. A clique cover will guarantee that its documents are strongly related to each other. Covering 
by cliques is NP-complete, and thus intractable for large document collections. Unfortunately, it has also 
been shown that the problem cannot even be approximated in polynomial time (Zuckerman, 1993). We 
instead propose using a cover by dense subgraphs that are star-shaped and that can be computed off-line 
for static data and on-line for dynamic data. What we lose in intra-cluster similarity guarantees, we gain 
in computational efficiency. 

We represent the document collection as a complete similarity graph, where the vertices correspond to 
documents and the edges are weighted by a similarity measure. We have used two measures: the cosine 
metric and an information-theoretic metric. 

To compute accurate topic clusters, we create a thresholded similarity graph, where the thresholding 
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parameter is given by the smallest similarity we would like to have between any documents within a 
topic. We then approximate a clique cover of this graph by covering the associated thresholded similarity 
graph with star-shaped subgraphs. A star-shaped subgraph onm + 1 vertices consists of a single star 
center and m satellite vertices, where there exist edges between the star center and each of the satellite 
vertices. A greedy algorithm (see Figure 1) computes this cover for static collections. In (Aslam et 
al, 1998; Aslam et al, 1999) we show an on-line version of this algorithm that supports information 
organization in dynamic collection. 

Star-graph covers are interesting because they provide accuracy guarantees on the computed topics. By 
investigating the geometry of the problem, we can derive a lower bound on the similarity between satellite 
vertices as well as provide a formula (cos 7 > cos ai cos «2 + yf^sinaisina2, where a\ and e*2 
correspond to the similarity between the center and the two satellites and a is the similarity threshold) 
for the expected similarity between satellite vertices using the cosine metric. This formula predicts that 
the pairwise similarity between satellite vertices in a star-shaped subgraph is high, and together with 
empirical evidence supporting this formula (Aslam et al, 1998). 

4   Scalable Extensions for the Star Algorithm 

For any threshold a: 

1. Let D be a set of n documents sorted in random order in an array. 

2. Let s be the sample size. 

3. Compute a Star Cover for D[l..s] and let C be the list of star centers of this cover. 

4. For each document D[i] in D[s + l..n] 

• For each cluster C[j] in C: if similarity(D[i], C[j]) > a insert D[i] in C[j] 

• If D[i] was not inserted in any existing cluster, create a new cluster with D[i] as a center 
and add this cluster to C. 

Figure 2: The sampled star algorithm. 

In this section we present three extensions to the star algorithm that optimize its performance. The three 
algorithms compute approximations to the star cluster but optimize on the size of the similarity matrix 
used and on the time required to generate it. 

Both of the off-line and on-line versions of the star algorithm rely on the existence of the similarity 
matrix. Similarity matrices can get very large: for a document set with n documents the similarity 
matrix is 0{n2) space data structure. However, this operation, which takes 0(n2) time to compute1, is 
much more expensive than the basic cost of the star clustering algorithm, which is approximately 0(n) 
time. Thus, it is clear that the similarity matrix is a bottleneck. Computing this matrix is a one-time 
pre-processing operation. However, the data structure has to be available on a permanent basis. For these 
reasons, we now investigate several methods to improve on the similarity matrix bottleneck. 

'Note that the actual time is 0(n2) times the cost of a vector dot product; because the vectors are sparse, this translates into 
0(n2) with a high constant. 
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4.1   Sampled Stars 

The first approximation algorithm uses sampling to compute the similarity matrix and is called the sam- 
pled star algorithm (see Figure 2). The basic idea behind this algorithm is to create a sample of the 
document collection that is much smaller than the actual collection. This sample can then be used to 
compute a complete Star Clustering, using the off-line star algorithm. For this small set, the computation 
of the similarity matrix is much faster. Finally, the rest of the documents can be inserted in the result- 
ing clusters fast by comparing each document against the existing star centers only. Documents that 
are not close enough to any existing star centers (that is, all distances to existing star centers are below 
the threshold) form new clusters. Alternatively, the additional documents can be inserted in the cluster 
structure using the on-line star algorithm. 

4.2   Linear-space Stars 

For any threshold a: 

1. Let D be a set of n documents, p a desired probability, and a a threshold. 

2. Let C = 0 denote the desired clustering. 

3. Select a sample S of pairs of documents (di, d2) from D 

4. For each pair (dj, d2) in S if the dot product between (di, d2) > o increase the degrees of di 
and d2. 

5. Sort D in descending order by degree. 

6. Find and mark all the star centers by examining one-by-one the sorted D. 

7. For i = 1 to n insert di into all possible star centers. 

Figure 3: The linear space sampled star algorithm. 

The sampled star algorithm provides a more effective way to compute the overall clustering of a doc- 
ument set but even this algorithm requires the computation of a complete similarity matrix (which is 
smaller than the original matrix). An additional optimization is to remove entirely the similarity matrix. 
The key information used by the star algorithm is the degree of the nodes in the thresholded similarity 
graph. This information can be represented in an array. A trivial algorithm for generating the array is to 
compare every document against every other document and count the number of vector products about 
the threshold. Note that this method reduces significantly the space requirements but still necessitates 
0(n2) time to generate, where n is the number of documents. An alternative is to compute the vertex 
degrees approximately, using sampling. For each document, we first generate a sample of documents 
to be used for comparison. A dot product is computed between the document and each member of the 
sample set. The degree of the document vertex is given by the number of dot products that are above the 
threshold. Figure 3 summarizes this algorithm. 

4.3   Distributed Stars 

Another bottleneck for the star algorithm comes up in Internet applications, such as organizing data 
collected from various sites and databases by topic.   Consider a task in which several databases are 
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For any threshold a: 

1. Let D be a set of n documents. Divide D into k disjoint sets D\... Dk- 

2. Run the Star algorithm on k separate machines to produce the star clusterings C\... Ck- 

3. Let c\.. .Cj be the set of star centers in all the star covers. 

4. Run the Star algorithm on the set of documents C\...CJ. 

5. If two star centers are placed in the same cluster in the previous step, merge their clusters 
using a union operation. 

Figure 4: The distributed star algorithm. 

queried with the same question. The documents returned by these queries are to be fused and presented 
to the user in a coherent picture. One approach is to run the queries, download all documents, and 
organize the entire collection at the user site using the star algorithm. An alternative approach is to run 
the queries, organize the search results at the location of the database, and then merge these results on 
the user machine. This second alternative has several advantages: (1) the star algorithm can be run in 
parallel, which provides a speedup; (2) the document transfer operation can also be parallelized2; and 
(3) the local topic organizations can be viewed as a way of compressing the documents, can be used to 
generate the merged topics in the distributed collection, and can be transfered much faster than the actual 
documents to the user's machine. 

For these reasons, we describe a third approximation of the star algorithm called the distributed star 
algorithm, which is useful especially when the document collection is very large. The distributed star al- 
gorithm provides parallelism and is based on a "divide and conquer" approach. The document collection 
is partitioned into several disjoint sets. The sets are clustered separately and the resulting clusters are 
then merged. Figure 4 shows the details of this algorithm. Note that for this version of the algorithm, the 
off-line Star algorithm can be replaced with the Sampled Star algorithm or with the Linear Space Star 
algorithm. 

4.4   Experiments and Evaluations 

We devised two experiments for the purpose of testing our algorithms on real-world data. Because we 
were limited by computer memory, we focused the experiments on the Linear Space Sampled Star algo- 
rithm (see Figure 3) which was introduced to optimize both time performance and space requirements. 

In our first experiment, we ran the Linear Space Sampled Star algorithm on a 50000- document subset 
of the TREC volume 1 corpus at various sample sizes. We compared the output of the Linear Space 
Sampled Star algorithm with sampling to its output without sampling, and show these results in Figure 5. 
Note that when sampling is not used, the the Linear Space Sampled Star algorithm produces the same 
output as the Star algorithm. 

To measure the difference between the outputs of the two algorithms, we calculated an aggregate preci- 
sion and recall for each sample size as follows. For each cluster x in the output of the sampled algorithm, 
we calculated the precision and recall of the documents in x against each cluster in the output of the 
unsampled algorithm. We then determined the cluster y in the output of the unsampled algorithm that 
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Figure 5: The effects of the sample size on the quality of clusters obtained using the Linear Space 
Sampled Star algorithm. The z-axis shows the sample size. The y-axis shows the aggregate ^-measure 
computed relative to the star algorithm. The smaller the £-value is, the better the performance is. The 
experiment was done with a TREC subset of 50000 documents. 

minimizes van Rijsbergen's (Rijsbergen, 1979) evaluation measure 

2 
E(p,r)=l 

\/p + 1/r 

where p and r are the standard precision and recall of the cluster with respect to the set of documents 
relevant to the topic. Finally, we calculated a weighted average E' of the E-values calculated previously, 
weighting each E value by the number of documents in the associated cluster. Figure 1 shows the results 
of this analysis. With larger samples, the sampled algorithm generally produced the exact same results 
as the algorithm that did not use sampling. As the portion of the similarity matrix sampled decreased, 
the results of the sampled algorithm deviated increasingly from those of the unsampled algorithm. 

Our subsequent analyses sought to determine whether the divergent output of the sampled algorithm 
was inferior to the output of the unsampled algorithm. The original purpose of the Star algorithm was 
to calculate a cover of the input documents using as few star-shaped clusters as possible (Aslam et al, 
1998; Aslam et al, 1999). The Linear Space Sampled Star algorithm also generates a cover of the input 
documents with star-shaped clusters, so we compared the number of clusters in the algorithm's output at 
varying sample sizes to the number of clusters in the output of the unsampled algorithm (see Figure 6). 
Surprisingly, even with samples as small as 5%, the number of clusters output by the sampled algorithm 
was never more than five percent larger than the number of clusters that the unsampled algorithm gen- 
erated. In fact, the sampled algorithm generally covered the corpus with fewer star-shaped clusters than 
unsampled algorithm did. 

Our second experiment compared the output of the Linear Space Sampled Star algorithm against cate- 
gorization decisions made by humans. Specifically, the algorithm was run on 4925 documents from the 
FBIS corpus that had been labeled by humans with one or more of 47 different categories. We repeated 
the precision/recall analysis of the first experiment, using the 47 categories in the place of the output of 
the unsampled Star algorithm. As with the previous experiment, samples as small as 1% produced results 
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Figure 6: The effect of sampling on the number of clusters generates. The rr-axis shows the sampling 
size. The y-axis shows the ratio between the number of clusters generated by the Linear Space Sampled 
Star algorithm to the number of clusters generated by the Star algorithm. We observe that sampling does 
not affect much the number of clusters discovered in the collection. The experiment was done with a 
TREC subset of 50000 documents. 

comparable to a 100% sample (See Figure 7). 

Overall, our experiments indicated that the Linear Space Sampled Star algorithm generates output com- 
parable in quality to that of the Star algorithm, but uses considerably fewer CPU and memory resources. 
Both of our implementations of the Linear Space Star algorithm required only 81 megabytes of memory 
to process 50000 documents, 73 megabytes of which was only used to store the vector representations 
of the documents. On the other hand, an implementation of the Star algorithm that uses a sparse thresh- 
olded similarity matrix would require approximately 2.5 gigabytes of memory for 50000 documents, and 
a complete similarity matrix stored in a double-precision floating-point array would require 18.6 giga- 
bytes of memory. The gains in performance due to sampling were similarly significant. Figure 8 shows 
the amount of time that the Linear Space Sampled Star algorithm requires to process 50000 documents at 
varying sample sizes. These times were measured on a 250 MHz. MIPS R10000 and do not include the 
time required to parse the documents. We found the running time of the algorithm to be almost directly 
proportional to the size of the sample. At sample sizes of less than 5%, the Linear Space Sampled Star 
algorithm organized documents at an average rate comparable to the bandwidth of most Internet connec- 
tions (See Figure 9). Tests comparing the Star algorithm with the Linear Space Sampled Star algorithm 
on smaller data sets indicated that the overhead of sampling and reducing memory requirements result in 
an increase in running time of less than 5%. 

Finally, we have conducted a small experiment on 1000 TREC documents to study the performance of 
the Distributed Star algorithm Figure 10 shows the accuracy of the distributed star algorithm relative to 
the off-line star algorithm. We note that when the number of computers is the same as the number of 
documents, Step 4 of the Distributed Star Algorithm (Figure 4) performs a star clustering of the entire 
collection. The same is true when there is a single machine. The greatest degree of parallelism and 
distribution is achieved when the number of machines is y/m, where m is the number of machines in the 
system. For this experiment, m = 1000 and y/m is approximately 32. The experiment shows that the 
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Figure 7: The effect of sampling on the quality of the clustering for the FBIS collection. The z-axis 
show the sampling size. The y axis shows the ^-measure computed relative to the human clustering. 

E-measure for 32 machines is about 41 %. 

5   Conclusion 

We presented a scalable algorithm for information organization. Scalability is a very important property 
for information organization algorithms especially when the collections are dynamic and Web-based. 
We implemented these algorithms as a scalable system for information organization. In the near future, 
we plan to expand our experimental collection to demonstrate the performance of our algorithms when 
dealing with hundreds of thousands of documents. 
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Rate of Linear Space Sampled Star With 50000 Documents 
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Figure 9: The effect of the sample size on the rate of the Linear Space Sampled Star algorithm (plotted 
on a logarithmic scale). 
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Figure 10: This graph shows the E-measure of the distributed star algorithm relative to the off-line star 
clustering of the same document set. 
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The advancement and application of Information Systems Science 

and Technology to meet Air Force unique requirements for 

Information Dominance and its transition to aerospace systems to 

meet Air Force needs. 


