
AFRL-IF-RS-TR-2001-47
Final Technical Report
April 2001

HOL2GDT A FORMAL VERIFICATION-BASED
DESIGN METHODOLOGY

Syracuse University

Anand Chavan, Byoung Woo Min, and Shiu-Kai Chin

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20010607 003
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-47 has been reviewed and is approved for publication.

APPROVED: n A ■'), <-

NANCY A. ROBERTS
Project Engineer

FOR THE DIRECTOR:

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour par response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of informetion. SBnd comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-01881, Washington, DC 20503.

1. AGENCY USE ONLY {Leave blank) 2. REPORT DATE

APRIL 2001
3. REPORT TYPE AND DATES COVERED

 Final Sep 97 - Mar 99
4. TITLE AND SUBTITLE

HOL2GDT A FORMAL VERIFICATION-BASED DESIGN METHODOLOGY

6. AUTHOR(S)

Anand Chavan, Byoung Woo Min, and Shiu-Kai Chin

5. FUNDING NUMBERS

C - F30602-97-C-0310
PE- 62702F
PR- 5581
TA- 27
WU-PT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Syracuse University
Case Center
Syracuse NY 13244

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

Air Force Research Laboratory/IFTD
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-47

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Nancy Roberts/IFTD/(315) 330-3566

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
HOL2GDT is a VLSI design methodology. It starts with a design implementation description that is formally verified using
the Higher Order Logic (HOL) theorem prover. This implementation description is translated into a hardware description
language model by using a HOL2GDT compiler, and with this model a physical design layout is generated by using IC
design placement and routing tools in Mentor Graphic's Generator Design Technology (GDT) package. Thus, the final IC
layout is generated from a formally verified description. This document illustrates the design methodology in detail to serve
as a manual for the HOL2GDT system. It covers (1) how to define formal implementation descriptions of the hardware
design, (2) how to translate implementation descriptions into L language schematic generator models, and (3) how to get
physical IC layouts from schematic models. A complete example of an n-bit Serial Multiplier design is used to illustrate the
HOL2GDT design methodology.

14. SUBJECT TERMS

Verified Design, Higher Order Logic (HOL), VLSI design, Hardware Modeling
15. NUMBER OF PAGES

126
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed usmg Perform Pro, WHS/DIOR, Oct 34

Abstract

H0L2GDT is a VLSI design methodology. It starts with a design imple-
mentation description that is formally verified using the Higher Order Logic
(HOL) theorem prover. This implementation description is translated into a
hardware description language model by using a HOL2GDT compiler, and with
this model a physical design layout is generated by using IC design placement
and routing tools in Mentor Graphic's Generator Design Technology (GDT)
package. Thus the final IC layout is generated from a formally verified de-
scription. This document illustrates the design methodology in detail to serve
as a manual for the HOL2GDT system. It covers: (1) how to define formal
implementation descriptions of the hardware design, (2) how to translate im-
plementation descriptions into L language schematic generator models, and (3)
how to get physical IC layouts from schematic models. A complete example
of an n-bit Serial Multiplier design is used to illustrate the HOL2GDT design
methodology.

Contents

1 Introduction to HOL2GDT 1

2 Hardware Description in HOL 3
2.1 Relational Description 3
2.2 Recursion 5
2.3 Port Hiding 11
2.4 Input/Output Port Definition in HOL 13

3 The GDT System 14
3.1 Design Entry 14
3.2 A GDT System Overview 14
3.3 GDT Human Interfaces 15

3.3.1 The L Language 16
3.3.2 The L Compiler 16
3.3.3 The L Graphics Editor (Led) 16

3.4 The L Database 17
3.4.1 Technology Information 17
3.4.2 Geometric Orientation Information 17
3.4.3 Netlist Information 18

3.5 L Tools 18
3.5.1 Cell Placement and Routing Tools 18
3.5.2 Design Rule Checker Tools 18
3.5.3 Lsim, Mixed-Signal, Multi-level Simulator 18

4 Schematic Description in the L language 19
4.1 Key Concepts 19
4.2 L Files 20

4.2.1 L file structure 20
4.3 L language Conventions 21
4.4 L language Keywords 21
4.5 Names of Objects in L 22

4.5.1 Declaring an Object Name 22
4.5.2 Scope of Names 23

4.6 Numerical Variables 24
4.7 String Variables and Expressions 25

li

4.8 String Functions 25
4.9 Logical Expressions 26
4.10 Conditional Control Statements 26

5 Using the L language 28
5.1 Schematic Cell Declaration 28
5.2 Input/Output Port Declaration 28
5.3 Instance Declaration 29
5.4 Net Declaration 29
5.5 Full Adder Example 29
5.6 Conditional Control Statements 31

6 HOL to L Translation 32
6.1 Defining INPUT/OUTPUT ports in HOL 32
6.2 Translating Relational Definitions 33
6.3 Translating Recursive HOL Descriptions 38

7 n-Bit Serial Pipelined Multiplier Example 48
7.1 Design Procedure of n-bit Serial Multiplier 49
7.2 HOL Implementation Description 51

7.2.1 Basic Gates Definition 51
7.2.2 Defining Noniterative Structure Components 53
7.2.3 Defining Iterative Structure Components 55
7.2.4 Adding Input/Output Port Definition 56

7.3 Translating to the L program 59
7.3.1 Standard Cell Generator Definitions 60
7.3.2 Macro Cell Definitions 62

7.4 Generating the Actual Layout Using CAD Tools 63
7.4.1 Building Standard Cells 64
7.4.2 Generating a Routing File 65
7.4.3 Layout by Placement and Routing 66
7.4.4 Converting the Layout into a CIF File in Led 66

8 L2MCIF — XY Mask Translation Compiler 68

m

9 Functional Testing via Multi-Level Simulation 72
9.1 Mentor Graphics Lsim Simulator 73
9.2 IRSIM Simulation 75

9.2.1 Syntax of the IRSIM 76
9.2.2 Analysis of the IRSIM Simulation 77

9.3 SPICE Simulation 78
9.3.1 History of Using the SPICE Program 78
9.3.2 The Simulation Procedures and the Results 80

10 Testing of the Actual Chip 83

11 Conclusions 84
References 85

A Basic Gates Definition File 86

B Macro Cell Definition File: pdm.macro 91

C Printed Theory File for Pipelined Multiplier 96

D Translated L program of Pipelined Multiplier 98

E IRSIM Test Command File 106

F SPICE MOS Model Parameters 109

G SPICE Simulation Input file to Detect Clock Skew Between FF3 and
FF4 HO

IV

List of Figures

1 H0L2GDT Linking System 2
2 Diagram of Full Adder 4
3 Diagram of an n-bit Rippler Adder 5
4 Diagram of n-Bit Serial/Parallel Multiplier 7
5 Diagram of the Modified Multiplier . 8
6 Diagram of Serial Multiplier with Two Hidden Ports 12
7 GDT System Environment 15
8 Diagram of Full Adder 30
9 Diagram of One-Bit Serial Adder . 35
10 Diagram of an n-Bit Ripper Adder 39
11 HOL2GDT Compiler Translation Mechanism 45
12 Flow Graph of HOL2GDT System 48
13 Block Diagram of a Full Adder with Reset 50
14 Block Diagram of a Serial Adder 51
15 Block Diagram of a One-Bit Multiplier Cell 52
16 Block Diagram of Five-Stage Pipelined Serial Multiplier 53
17 Procedure of Generating the Actual Layout 63
18 GDT Layout of the Multiplier 67
19 MAGIC Layout of the Multiplier 72
20 MAGIC Layout after Pad Frame Assembly 73
21 The Result of Lsim Simulation 75
22 The Result of IRSIM Simulation 77
23 Simplified Multiplier Circuit for SPICE Simulation 79
24 Modeled Clock Net 80
25 Delay between FF3 and FF4 Clock Signals 82
26 The Multiplier Chip 83
27 Hewlett Packard Logic Analysis System 16500A 83

List of Tables

1 CIF mask layer mapping between GDT and MAGIC 70
2 Length x Width Summary for Contacts 71

1 Introduction to HOL2GDT

H0L2GDT methodology uses the language of higher-order logic supported by the
HOL, which is used to obtain an implementation description of a system as well as
to verify the design. The HOL implementation description is then compiled into an
L language [7] schematic generator model by the HOL2GDT compiler. The Mentor
Graphics GDT tool suite is used for the placement and routing of the generator
models to create a physical design layout. Next, the GDT layout is extracted into a
Caltech Intemediate Format (CIF) netlist [6]. The CIF netlist is ported to a VLSI
layout editor, MAGIC, to perform full chip integration and assembly. The CIF netlist
translation from GDT to MAGIC is performed by the L2MCIF compiler.

HOL2GDT methodology provides a front-end/back-end design framework by de-
veloping strategic compilers to integrate the HOL formal verification environment
with the Mentor Graphics placement and routing tools and the MAGIC chip as-
sembly layout editor. The HOL2GDT methodology has been successfully used to
fabricate an 8-bit serial pipelined multiplier chip.

HOL is a theorem prover that is used for formal verification. It provides a language
syntax and semantics with which to embed the design specification and implementa-
tion description into the HOL environment. Using HOL, a correctness theorem which
asserts that the implementation description of the system implies or is equivalent to
the specification description of the system is established and proved.

Mentor Graphics GDT is a sophisticated IC design tool suite that provides schematic
module generation, placement-and-routing tools, and a multi-level mixed mode func-
tional simulator. GDT's module generator supports parameterized and hierarchical
design descriptions, and HOL also supports these two characteristics. For example,
the hierarchical module generator corresponds to the hierarchical implementation de-
scription in HOL, allowing the verification of a system to be done in hierarchical
order. GDT's parameterized module generator has the ability to simplify the design
of regular hardware structures; however, regular structures can be defined in HOL
and it is usually easy to describe hardware circuits using HOL. The merit of the hard-
ware implementation described by HOL is that it can be used in varifying correctness
of the design. Figure 1 illustrates the organization of HOL2GDT methodology.

The outline of the rest of this paper is as follows. In Section 2 the HOL implemeta-
tion description mechanism is reviewed. In Section 3 the GDT system is described.
Since a HOL implementation description is to be translated into an L language model,
Section 4 is dedicated to describing the L language. Section 5 explains how to build an
actual L language code, and Section 6 explains the translation mechanism from HOL

1

H0L2GDT compiler

GDT
f

sc build
\

'
Lc

)
'

scjpar

'
Led

V J

MAGIC
c

MOSIS
Padframe

\

\
Attachment

/

IRSIM
N

\

/
drc

V J

MAGIC CIF file

12mcif

Figure 1: HOL2GDT Linking System

to the L language. Section 7 provides a complete example of an n-bit serial pipelined
multiplier. Section 8 is concerned with the L2MCIF compiler, which converts a GDT
CIF format into MAGIC CIF format for pad frame embedding. In Section 9, three
simulators involved in this methodology are explained. The last section shows the
final chip appearance with testing results. The appendix contains the actual sml code
for the basic gates definition, the macro file needed in the GDT system, and the n-bit
multiplier definition described in Section 7.

2 Hardware Description in HOL

This section explains how hardware components are represented by HOL notation.
According to Tom Melham [1], most digital hardware components can be described
using predicates, universal and existential quantifiers, conjunction, and recursion.

2.1 Relational Description

A digital hardware block is viewed as the input/output ports of the block that are
seen from the outside and the combination of the basic logic gates such as AND, OR,
XOR, and NOT. Mathematically, a predicate describes objects and the relationships
between them. Thus, an n-ary predicate can specify a hardware block having n
external ports by matching the predicate name with the block name and using the
external port names as its parameters. With the help of quantifiers ("!" represents the
universal quantifier, and "?" the existential quantifier in HOL), the properties of the
input parameters of the predicates can be described. That is, universally quantified
variables (parameters) are used to specify the external (input/output) signals to the
block, and the existentially quantified variables are used to specify the internal signals
(hidden lines used to interconnect subcomponents within the block).

The connections among the components in a hardware block are implemented
by using conjunctions ("A" in HOL notation). If two subcomponents are combined
by conjunction and there are common parameters that are existentially quantified,
then the components are connected through the line with the common variable name.
Example 1 will clarify this concept.

Example 1. Relational Description of a Full Adder

Figure 2 shows the block diagram of a full adder, which consists of two XOR gates,
two AND gates, and one OR gate. The symbols a, b, and ein are the input ports,
and sum and cout are the output ports. There are three internal lines, wl, w2, and
w3, for the interconnection between the subcomponents.

With FADDER as the predicate name for the full adder, and using the ordinary
gate names predefined in HOL, a full adder can be described as follows:

*- cout

Figure 2: Diagram of Full Adder

! a b ein sum cout. FADDER (a, b, ein, sum, cout) =
? wl w2 w3. xor(a, b, wl) /\

and(a, b, w2) /\
xor(wl, ein, sum) A
and(wl, ein, w3) A
or (w2, w3, cout)

Here, "!" is the universal quantifier, and "?" represents the existential quantifier.
The parameters a, b, ein, sum, and cout are matched with external port names, and
wl, w2, and wS with the interconnecting lines hidden to the outside. The universal
quantifier is used to specify the external signals, and the existential quantifier is
used to specify the interconnecting lines in the HOL definition. The location of the
parameters in the HOL definition conveys significant information. For example, in
the XOR gate definition the first parameter represents the first input signal to the
XOR gate, the second parameter represents the second input signal, and the last
parameter represents the output signal. Thus, from the above full adder definition
we can infer the fact that the output of the first XOR gate is connected to the first
input of the second XOR gate. Finally, the subcomponents are conjoined each other
by using the conjunction symbol, A.

2.2 Recursion
Recursion refers to a mathematical procedure of calling itself inside its definition.
This recursion can be used in describing a circuit that may be constructed by inter-
connecting indentical components. A typical definition of a recursion consists of a
base case and a recursive (or inductive) case definition. The base case specifies the
primitive building block of a circuit and the recursive case defines how the primitive
building block is added to increase the size of the circuit by one.

An n-bit ripple adder can be defined using recursion, and Example 2 illustrates

this idea.

Example 2. An n-bit Ripple Adder

An n-bit ripple adder consists of n of FADDER as defined in Example 1. The
block diagram of n-bit ripple adder is shown in Figure 3.

a(0) b(0)

cout cm RADDERN n a b ein sum cout

V

sum

a(n+l) b(n+l)

wl
FADD1 cout

sum(n+l)

RADDERN 0 a b ein sum cout RADDERN (n+1) a b ein sum cout

Figure 3: Diagram of an n-bit Rippler Adder

Below is a HOL description of the n-bit ripple adder where the predicate name is
RADDERN.

RADDERN

! a b ein sum cout. RADDERN 0 a b ein sum cout =
FADDER (a 0, b 0, ein, sum 0 cout) A

! n a b ein sum cout. RADDERN (n+1) a b ein sum cout :

(? wl. RADDERN n a b ein sum wl A

FADDER (a(n+l), b(n+l), wl, sum(n+1), cout))

The base case is simply the definition of a one-bit full adder. That is, if n is
equal to zero, then the ripple adder becomes a one-bit full adder. The recursive case
contains RADDERN itself and the additional one-bit full adder, FADDER. There is
only one interconnecting line, wl, to connect cout terminal of the previous stage to
ein terminal of the next stage.

Here, the recursive definition of an n bit ripple adder is a simple recursion, that
is, the recursive case uses a primary building block, FADDER, which is not defined
recursively. Sometimes circuit designs may involve definitions in which the base defi-
nition consists of several definitions and is defined recursively. This is called a nested
recursion and is illustrated in Example 3.

Example 3. A Nested Recursive Description for an n-Bit S/P Multiplier

The block diagram for the n-bit serial/parallel multiplier is shown in Figure 4.
The HOL definition of the multiplier is shown below:

SADDERN

I- (! elk a b co sum reset. SADDERN 0 elk a b co sum reset =
SADDERKclk, a 0, b 0, co, sum, reset)) A

(! n elk a b co sum reset. SADDERN(n+l) elk a b co sum reset
(? w. SADDERN n elk a b co w reset A

SADDERKclk, a(n+l), b(n+l), w, sum, reset)))

WPROD

|- (! me m mout prod load reset elk.

WPROD 0 mc m mout prod load reset elk =

m s

mc
\ i \ i

r-> WPRODO SADDl iRNO -* cu

' < \ i ' i

mout prod sout

SMULT 0 mc m mout s sout prod co reset load elk

m s

mc -

i ' \ i

■—* Wi-KU u n+i OAUUCKiN n+i -*■ CO

' \ < \
1

mout prod sout

SMULT n+1 mc m mout s sout prod co reset load elk

Figui re 4: Diag ram of n-\ Bit Serial/Parallel Multiplier

WPRODKmc 0, m, mout, prod 0, load, reset, elk)) A

(! n mc m mout prod load reset elk.
WPROD (n+1) mc m mout prod load reset elk =

(? w. WPROD n mc m w prod load reset elk A
WPR0Dl(m(n+l), w, mout, prod(n+1), load, reset, elk)))

SMULTN
|- (! mc m mout s prod co reset load elk.

SMULTN 0 mc m mout s sout prod co reset load elk =
WPROD 0 mc m mout prod load reset elk A

SADDERN 0 elk prod s co sout reset) A
(! n mc m mout s sout prod co reset load elk.

SMULT (n+1) mc m mout s sout prod co reset load elk =

WPROD (n+1) mc m mout prod load reset elk A

SADDERN (n+1) elk prod s co sout reset)

The definition of SMULTN not only contains two building blocks, WPROD and
SADDERN, but also is defined recursively. That is, WPROD is defined using basic
building cells WPROD1 and SADDERN. Thus SMULTN is defined as being nested
recursion. The current version of the HOL2GDT compilier cannot automatically
generate layouts for descriptions with nested recursions. For these kinds of hardware
descriptions, the compiler generates schematic netlists in which none of the nested
recursion blocks are instantiated. In these cases, additional GDT instruction must be
issued to instantiate recursively defined cells. However, it is possible to convert the
recursion to one-level recursion that is functionally equivalent (illustrated in Example
4).

Example 4. One-Level Recursive Definition of an n Bit S/P Multiplier

A block diagram of the modified multiplier is shown in Figure 5.

' '
SMULTl : >

' ' i ' ' '
mout sout prod

SMULT_MODI 0

mc(n+l)

V V

SMULT MODI n

' ' ■

SMULTl
c

ll 1 } \ 1

prod

co(n+l)

prod(n+l)

SMULT_MODI n+1

Figure 5: Diagram of the Modified Multiplier

SMULT-MODI is defined as functionally equivalent to SMULTN and uses only
one level of recursion, thus it can be used to generate the layout automatically. The
implementation description of SMULT MODI in HOL is shown below:

SMULT1
|- ! mc m mout s sout prod co reset load elk.

SMULT1(mc,m,mout,s,sout,prod,co,reset,load,elk) =
WPR0D1(mc,m,cout,prod,load,reset,elk) A

SADDER1(elk,prod,s,co,smout.reset)

SMULT_MQDI
|- (! mc m mout s sout prod co reset load elk.

SMULT.MODI 0 mc m mout s sout prod co reset load elk =
SMULTKmc 0,m,mout,s,sout,prod 0,co 0,reset,load,elk)) A

(! n mc m mout s sout prod co reset load elk.
SMULT_MODI (n+1) mc m mout s sout prod co reset load elk =

(? wl w2.
SMULT_MODI n mc m wl w2 prod co reset load elk A
SMULTKmc (n+1) ,wl,w2,sout ,prod(n+l) ,co(n+l)reset, load, elk)))

The basic building block SMULT1 does not include any recursive definition. It
is only the combination of two basic building modules WPROD1 and SADDER1,
which are a one-bit partial product generator and a one-bit serial adder, respectively.
Because the definition does not have any nested recursion, the layout can be generated
automatically.

There is another type of recursive definition that should be avoided in the current
HOL2GDT compiler, and this is illustrated in Example 5.

Example 5. Internal Lines in the Base Case Definition

Below is a HOL implementation description of an n-bit ALU.

nALU
|- (!H L ctl ein x y cout out.

nALU 0 H L ctl ein x y cout out
(?yinv wl w2 w3.

inv (ctl,y 0,yinv 0) /\
FA (x 0, yinv 0, ein, cout, wl 0) /\
and2 (x 0, yinv 0, w2 0) A
or2 (x 0,yinv 0, w3 0) A
mux4 (H, L, wl 0, w2 0, w3 0, yinv 0, out 0))) A

(!n H L ctl ein x y cout out.
nALU (SUC n) H L ctl ein x y cout out =
(?yinv wl w2 w3 en.

nALU n H L ctl ein x y en out A
inv (ctl.y (SUC n), yinv (SUC n)) A
FA (x (SUC n), yinv (SUC n), en, cout, wl (SUC n)) A
and2(x (SUC n), yinv (SUC n), w2 (SUC n)) A
or2 (x (SUC n), yinv (SUC n), w3 (SUC n)) /\
mux4(H, L, wl (SUC n), w2 (SUC n), w3 (SUC n),

yinv (SUC n), out (SUC n))))

In the above case, the building block of the n-bit ALU consists of one inverter,
a one-bit full adder, a two-input AND gate, a two-input OR gate, and one 4x1
multiplexer. The problem in this type of definition is that internal lines are used, and
also indexed, in the base case definition. Unfortunately, this kind of definition cannot
be handled by the HOL2GDT compiler and should be modified to include no internal
lines in the base case definition. This modification can be accomplished by defining
a one-bit ALU and using it as the base case definition. The corrected definition for
the n-bit ALU is shown below.

ALU1
|- (!H L ctl ein x y cout out.

ALU1(H, L, ctl, ein, x, y, cout, out) =
(?yinv wl w2 w3.

inv (ctl, y 0, yinv 0) A
FA (x 0, yinv 0, ein, cout, wl 0) A
and2 (x 0, yinv 0, w2 0) A
or2 (x 0, yinv 0, w3 0) A
mux4 (H, L, wl 0, w2 0, w3 0, yinv 0, out 0)))

10

nALU
|- (!H L ctl ein x y cout out.

nALU 0 H L ctl ein x y cout out =
ALUKH, L, ctl, ein, x 0, y 0, cout, out 0)) A

(!n H L ctl ein x y cout out.
nALU (SUC n) H L ctl ein x y cout out =
(? w.

nALU n H L ctl ein x y w out A
ALUKH, L, ctl, w, x (SUC n), y (SUC n), cout, out (SUC n))))

In the modified definition of the n-bit ALU, many details are hidden in the nALU
definition, including all the internal lines from the base case definition as well as
subcomponents in the base case and inductive case definitions.

2.3 Port Hiding
As mentioned briefly in Section 2.1, existentially quantified signals represent the in-
ternal connections between subcomponents, and these connections are usually invis-
ible from outside the module. Another use of the existential quantifier is to hide
some external ports to make the design simpler. For example, the block diagram
of SMULT-MODI contains two ports that are not used outside the SMULT.MODI
block, namely, the partial product prod and carry bits co. In case of multiplication,
these signals are just for intermediate calculation, and there is no need to access the
ports from outside the module. By using an existential quantifier, these two signals

can be hidden.

Figure 6 shows the block diagram in which two external signals are hidden.

Comparing Figure 5 with Figure 6 reveals that the circuit becomes much simpler
by hiding two unnecessary external signals. The HOL definition of SMULTNis shown

below:

11

m s

V V
mc ;

WPR0D1 SADDER1 —i-
i prod

' ' "

mout sout

CO

mc(n+l)

m s

U V

SMULTN

wl y w2 i '

SMULT

V \ \

mout sout

SMULT mc m mout s sout reset load elk SMULT_MODI n+1

Figure 6: Diagram of Serial Multiplier with Two Hidden Ports

SMULT

|- ! mc m mout s sout reset load elk.

SMULT(mc,m,mout,s,sout,reset,load,elk)=

(? prod co. SMULTl(mc,m,mout,s,sout,prod,co,reset,load,elk))

SMULTN

|- (! mc m mout s sout reset load elk.
SMULTN 0 mc m mout s sout reset load elk =

SMULT(mc 0,m,mout,s,sout.reset,load,elk)) A
(! n mc m mout s sout reset load elk.

SMULTN(n+1) mc m s sout reset load elk =
(? wl w2.

SMULTN n mc m wl s w2 reset load elk A
SMULT (mc(n+l),wl,mout,w2,sout.reset,load,elk)))

The definitions for SMULT.MODI and SMULTN have the same internal structures
but different external structures in terms of input/output ports.

12

2.4 Input/Output Port Definition in HOL

One significant difference between HOL and the L language description is that there
is no distinction made between input and output ports in HOL. However, in the L
language description, every port must be designated as input, output, or both. Thus
to translate the HOL definition to the L language program, this input/output port
information must be provided in the HOL definition by the user.

Four HOL types are defined for this purpose: variable, port.width, port, and mod-
ule-port. The syntax for the types is shown below.

variable : string
port_width = pin I bus num
port = in_port variable port_width I

out_port variable port_width I
inout_port variable port_width

module_port = module_name # (port)list

The port definition should be presented before the implementation description,
and the variable names and their positions should be matched with those in the
implementation description. Otherwise, the compiler will issue error messages. The
port definition for the last serial multiplier description is shown below.

|- cell_port_def =
['SMULT1',
[in_port 'mc' pin; in_port 'm' pin; out.port 'mout' pin;
in_port 's' pin; out_port 'sout' pin; inout.port 'prod' pin;
out_port 'co' pin; in.port 'reset' pin; in_port 'load' pin;
in_port 'elk' pin];

'SMULT',
[in_port 'mc' pin; in_port 'm' pin; out_port 'mout' pin;
in.port 's' pin; out_port 'sout' pin; in_port 'reset' pin;
in_port 'load' pin; in.port 'elk' pin];

'SMULTN',
[in.port 'mc' (bus 1); in_port 'm' pin; out_port 'mout' pin;
in_port 's' pin; out_port 'sout' pin; in_port 'reset' pin;
in_port 'load' pin; in_port 'elk' pin]]

13

3 The GDT System

The GDT (Generator Design Technology) system is a commercial VLSI design envi-
ronment for multiple levels of abstraction. That is, it can handle from the highest
level (system) to the lowest level of abstraction (layout, mask) by integrating many
different IC design tools such as integrated database, graphic editor, simulator, router,
and design rule checkers, etc. Thus the GDT system provides an integrated environ-
ment for the design of cell-based ICs, as well as fully customized ICs. Since GDT is
a large system a brief introduction will be helpful in understanding the HOL2GDT
system.

3.1 Design Entry

The most important procedure in IC design is constructing a model for the design,
followed by a simulation to verify its behavior. A higher level of modeling can be
implemented with a box containing electrical terminals for the inputs and output
signals. The behavioral model can be specified by programming languages. Complex,
low-level models are realized by connecting functional logic components from com-
ponent libraries. As the design steps progress, details are added to the model until
enough information to specify the layout (mask) is gathered.

A fully customized or cell-based IC design should pass through many different
design tools with different interfaces and operating styles, as well as independent
databases. The translation between different databases wastes time and can introduce
unexpected side effects. Errors also can be introduced each time a design is transferred
between specialized tools. For example, a specific GDT layout cannot be translated
into exactly the same layout in MAGIC because of the design rule difference between
the two systems. Thus in conventional design tools, as a model passes through design
procedures the productivity and the quality of the design deteriorate.

However, since GDT is a totally integrated system with all the required design
tools and database included in the system, the possibility of the above problems can
be minimized.

3.2 A GDT System Overview

The GDT system consists of six basic tools: the L language, L database, Lsim simu-
lator, Led graphic editor, M language, and cell library components. A block diagram
of the GDT environment is shown in Figure 7.

14

M Program

M Compiler

L program

Cell Library
Components

A

L Compiler

^

r]
Block Diagram

♦
Schematic

♦
r >

Layout
I)

Led
\ ■ ■■' \

A

V t
L Database

I
Lsim AutoCells place and route program

Figure 7: GDT System Environment

The design entry process progresses with the construction and validation of the
design model through the automated tools provided in the GDT design environment.

3.3 GDT Human Interfaces

There are four user interfaces in GDT: the L compiler Lc and L language, L graphic
editor Led, L database interface routines Ldbi and C function interface Lx, and the
GENIE procedural Language. These interfaces enable users to access the L database
and other L tools. With these interfaces the development and validation of the con-
tents of the database can be achieved throughout the design process. However, the
HOL2GDT system uses only Lc and Led, thus Ldbi and Lx will be not be discussed
in this paper.

15

3.3.1 The L Language

A structural and functional description specifies how a circuit is formed in terms of the
connectivity of its building blocks and what the circuit does. Silicon compilation is
a translational process that generates a mask layout from the structural description,
and this is sometimes called module generation. The L language is a procedural
circuit layout language used to describe circuits by means of L programs. L programs,
the source codes written in the L language, are called module generators. These L
programs are compiled by the L compiler and beome part of the L database. More
details and some actual L language examples will be covered in Section 4.

3.3.2 The L Compiler

The L compiler compiles L programs into design data procedures with geometric and
electrical descriptions of a design. These design data procedures are stored in the L
database. During the compilation of L programs, the L compiler can access to the L
database to retrieve and update the information needed by L programs. It also has
access to the utility programs, the so-called L tools that perform specialized functions
such as routing, layout compaction, and placement. The L compiler consists of the
following programs:

• Technology management program and instructions for adapting the L programs
to new technology

• Symbolic icon generator for schematic capture of system-level architecture

• Behavioral model that simulates the icons used in schematic capture

• Layout generator that creates physical mask layout

• Test vector generator to provide Lsim simulator with a set of input signal se-
quences (vectors)

3.3.3 The L Graphics Editor (Led)

The Led graphics editor is an object-oriented graphical editor used to create icons,
schematics, and actual layouts. It interacts directly with the L database. A schematic
diagram of a design can be edited on the screen with the new graphic interpretation
of the database displayed at the same time. In this way Led synchronizes the L

16

database and the graphical schematic view. As the L database supports three different
views of a design (i.e., icon, schematic, and layout), Led can be used as an icon
editor, schematic editor, and layout editor. It also creates simulation netlists for three
different models. Finally, it handles standard cells and block routing. In summary,
the Led offers the following facilities:

• Draw/edit hierachical schematics and layouts for any mask-defined technology

• Manipulate circuit objects

• Combine schematics and layouts

• Write out Lsim, AutoCells, AutoRoute, and SPICE netlists

• Verify a layout using the interactive rule checker

• Debug generator programs written in the L language

3.4 The L Database

The L database plays an essential role in the GDT design system. It captures the de-
sign and technology information required for developing and validating a design. The
L database contains three types of information: technology, geometric orientation,
and netlist.

3.4.1 Technology Information

The technology information database contains the information obtained from a tech-
nology file. This technology file defines all the primitive objects available within
a technology and the design rule information that is specific to the manufacturing
process being used.

3.4.2 Geometric Orientation Information

In a cell design, transistors, wires, and contacts are stored in the L database as
primitive circuit elements. For each primitive the geometric information is stored in
the L database for the purpose of physical construction, orientation of an object, and
design-rule checking, compaction, and graphical editing.

17

3.4.3 Netlist Information

The L database contains netlist information of a cell—that is, information about
the electrical connectivity of the cell. In addition, it contains information about
simplifying the extraction of netlists and netlist-driven design-rule checking.

3.5 L Tools

The GDT system provides L tools for designing and validating full-customized IC and
ASICs. L tools support complete placement, channel routing, compaction, design
validation, and the creation of Lsim, SPICE and AutoCells netlists. In this paper the
tools for placement and routing, design-rule checking, and creating an Lsim netlist
are described.

3.5.1 Cell Placement and Routing Tools

GDT provides three kinds of place and routing tools. Lroute is a collection of auto-
matic layout routing tools that perform block routing between instances and external
terminals in order to build major blocks. The blocks and pads can be routed to per-
form chip assembly. Lroute also allows procedural routing within a specified section
of a layout cell. Explorer AutoCells is an automatic placement and routing tool for
laying out circuits using standard cells. Finally, AutoRoute performs block routing
between instances and terminals.

3.5.2 Design Rule Checker Tools

Lrc is an object-oriented, hierarchical L language design rule checker. It performs
design rule checking on L cells and provides interactive feedback about geometric and
electric design rule violations. There are two modes in Lrc: batch rule checking is
used for small designs and selective rule checking for large designs.

3.5.3 Lsim, Mixed-Signal, Multi-level Simulator

The Lsim simulator provides a general solution to design simulation. The system
level, functional level, gate level, and switch level simulation modes can be mixed
and simulated simultaneously. Lsim provides an infrastructure for many simulation
algorithms. It also performs multi-level concurrent simulation on behavioral and
structural models.

18

4 Schematic Description in the L language

In this section the L language, which is mentioned in Section 3.3.1, is decribed in
detail due to its importance in understanding and using HOL2GDT methodology.
This section is the summary of the GDT manual from Mentor Graphics. For more
information or help, please refer to the Mentor Graphics L Language User Guide [7].

The L language is a procedural circuit-layout language that is used to describe
circuits by means of programs called generators. It supports not only geometric
primitives such as rectangles, polygons, and text, but also electrical circuit primitives
such as transistors, wires, cantacts, cells with their geometries. It also supports the
relative placement of all objects and contains routing statements for automatic wiring
objects. In addition, it provides general-purpose programming language facilities
sucsh as variables and control statements.

Writing a generator in the L language includes:

• Computation and flow control

• Transistors and wires that describe function and logic

• Geometry that describes physical layout

• Data that produce fabrication masks

• Hierarchy to manage the complexity of the design

The actual output from the L language is a description about how a chip is put
together.

4.1 Key Concepts

There are several key concepts in the L language, as seen below:

• L files, the L language conventions, L keywords

• Names of objects in L

• Numerical variables and expressions

19

• Floating point numbers

• String variables and expression, string function

• Logical expressions

• Conditional statements

4.2 L Files

The basic unit in designing a module generator with the L language is a cell. An L
program consists of one or more cells that are stored in one or more ordinary files.

The related syntax using L files is shown below.

<Ltool> [<options>] <L_filel, L_file2, ...>

where
<Ltool>

Lc : The L language compiler
Lrc : The L language design rule checker
Led : L graphic editor
AutoCells : place and route program

4.2.1 L file structure

A typical L file structure is shown below.

L::TECH techjname

Global variable declarations;
Arithmetic and string expressions;
Include other L files;
Generator calls;

20

CELL a()

{
local & exported variable declarations;

generator calls;

other : statements;

}

CELL b()

-C

The first line, L::, specifies that this is an L file and prevents non-L files from
being compiled. The second part, techjname, specifies the technical file that contains
all information for fabricating the actual chips. If the techmame is not specified, it
is assumed that any technology file may be used.

4.3 L language Conventions

There are several conventions concerning terminators, keywords, and comments for
the L language. First, each statement should end with a statement terminator ";" as
in the C programming language. There are two exceptions where the terminator is
not needed: a starting line beginning with "L::", and such group statements as CELL,
WHILE, and IF-ELSE that are enclosed with curly brackets. Keywords designated
in the L language are all uppercase characters. Comment lines are denoted by pound
symbols {£) and should end with a carriage return.

4.4 L language Keywords

There are two types of L keywords: technology-independent and technology-specific.

21

- Tech_independent keywords

IF, ELSE, WHILE
GLOB

CALL

CELL

INST

WIRE

FOPENR

LEFT

UP

control statements

global variable declaration

read an L file that contains a generator
cell declaration

instance declaration

wiring command for metal and poly lines
open file for reading

position an object to the left of another

direction for wire path

Tech.specific keywords : defined in a technology file

. Layers

MET, POLY, NDIFF, PDIFF, MET2, NWELL, PWELL, TN, TP, TD

. Contacts

MPOLY, MNDIFF, MPDIFF, MMSUB, MPSUB, M1M2

. Terminals

VDD, GND, IN, OUT, INOUT

4.5 Names of Objects in L

Except for polygons and rectangles, all objects in the L language have names.

4.5.1 Declaring an Object Name

Example:

TP ptran W = expression

22

The above statement means that a p-channel transistor is declared in a cell with
a name ptran and channel width W. There are name buffers that can hold up to 128
characters, and user-defined names use lowercase characters. The names can start
with $, _ . The brackets [] denote an index that can be attached only at the end
of a name. However, the brackets cannot be used to index an array name. A grave
accent (") is used to construct names of objects with variable numerical indices.
For example, the codes below generate 10 transistors with the names tranO, tranl,...,
tran9.

NUM i = 0;
WHILE (i < 10) {

TN tran'(i) AT (0, i*7);
i++;

}

A period character (.) joins the name of an object with the name of one of its
components. For example, when a cell has several terminals, one of the cell terminals
can be accessed as shown below:

<cell_instance_name>.<terminal_name>

4.5.2 Scope of Names

Names are listed in three categories according to their visibility. Global names can
be seen from anywhere in the L program. Technical data, numerical variables, string
variables, and cells can be in the global name space. Local names are visible only
within the cell where the names are declared. NUM, INT, string variables, transis-
tor, contacts, terminals, instances of other cells, wires, and arrays of other cells can
be in the local name space. A local name can be the same as a global name, and the
local name supercedes the global name in a cell. Objects in the L database can be
erased by the DELETE statement. Exported names are used to make local variables
in a cell visible from other cells that are called from the cell containing the variables.
An example of how a variable is exported using EXPORT function is shown below:

23

CELL abc{

EXPORT NUM index = 55;

NUM i = 0;

EXPORT i;

CELL xyz() {

NUM i;

}

There are two ways to declare exported variables. One way is to declare an
exported variable using EXPORT and a type declaring keyword in one line. The
other way is to declare a variable, and export the variable later using EXPORT.
Whenever the values of i and index in the cell xyzQ change, the cell abc() will receive
new values. However, the changes of the exported variables occurring in the cell abc()
do not affect the variables i and index in the cell xyz().

4.6 Numerical Variables

In the L language, the method of storing the values of variables in memory is some-
what different from that of other programming languages. That is, the integer and
real numbers are stored in the L database in the same way, thus the keyword NUM
is used to declare both real number variables and integer variables. To declare a vari-
able as an integer, the keyword INT is used. The initialization is optional, however,
as the default value is not defined and a variable must be assigned a value before
being used. There is a scale factor that can determine the precision of the real num-
bers. A floating point number is multiplied by the scale, rounded to an integer, and
then stored. For example, if a real variable s is declared and initiated using NUM s
= 48.35;, then the internal data representation of the variable s in the L database
becomes 4835.

24

4.7 String Variables and Expressions

String variables in the L language have the syntax seen below:

STR <string_name> [= <string_expr>];

For example,

STR isname = "This is an initial string";

is a typical string variable declaration.

4.8 String Functions

The L language offers various string functions as shown below:

- STRCAT(strl, str2)

- FGETS(file_name)

- GETS

- NTOA(expr)

- STREQCstrl, str2)

- CELLNAME

- GETDIR
- GETFNAME

- GETLIB

- GETNEWFNAME

- GETNAME
- GETTECH

concatenates two strings
read a file into buffer. The file

must be opened before.
obtain a string from the standard

input (keyboard)

converts a numerical expression into

an ASCII string
if two strings are equal, gives 1,

else 0
returns the current cell name

returns the current directory name
returns the L file name being parsed

returns the name of library directory

returns a new file name which is unique
and writable for temporary data file

gives a unique name for an object

returns the technology name

25

e.g.

STR string;

SPRINT(string, GETLIB," /", GETTECH, ".dir/icon");

In case the technology file name being used is "scmos", and the file is located at
scs/ind/tech, the string value stored in the string variable will be

scs/ind/tech/scmos. dir/icon.

4.9 Logical Expressions

The L language supports almost the same logical expression as the C language. All
logical expressions yield 1 or 0 according to the result of the expressions, in which
1 means the evaluation result of the expression is true, and 0 means the result is
false. These logical expressions are used in conditional IF statements and WHILE
statements.

4.10 Conditional Control Statements

In the L language, there are two kinds of conditional control statements: ij'statements,
and while-statements. The ablilities of decision and iteration come from these condi-
tional statements so that the module generators can be built.

The syntax for the IF statement is shown below:

IF (bool_expr) {statements}

or

IF (bool_expr) {
statements!.;

}
ELSE {

statements2;
}

26

For the first case, if the boolean expression evaluates to true, then the statements
in the curly braces will be executed. If there is only one statement in statementsl,
the curly braces are not needed. For the second case, statementl will be executed if
the boolean expression evaluates to true; otherwise, statements2 will be executed.

To repeat a group of statements, the L language offers the WHILE statement,
which can be used for the implementation of the recursive definitions. The syntax for
the WHILE statement is show below:

WHILE (bool.expr) {statementsl}

The booLexpr is evaluated first. If it evaluates to true, then statementsl will
be executed, else it skips statementsl and exits the WHILE loop. After executing
statementsl, it again evaluates the booLexpr. Thus the statements will be executed as
long as booLexpr evaluates to true. Therefore, statementsl must include a statement
that allows exiting the loop; otherwise, the WHILE loop will never terminate. For
example, consider the statement below.

NUM i = 1;
WHILE (i <= 10) {

TN trans'(i);
i++;

}

The above statements will generate ten of n_channel transistors named transfl]
to transflOj. However, without the fourth statement, i++, the WHILE loop will
generate trans[1] forever.

27

5 Using the L language

L programming is just a process of denning a cell. In the HOL2GDT system, a HOL
description is converted to a schematic cell description in the L language. A schematic
cell is represented in terms of the connectivity of the building blocks, and the building
block is an instance of an existing cell. In this chapter the declarations of a schematic
cell, input/output ports, an instance, and a net are explained in detail.

5.1 Schematic Cell Declaration

A schematic cell can be declared by using the format below:

SCHEMATIC cell.name ([parameter lists])
{

<group_of_statements>;
}

The keyword SCHEMATICS used to declare a schematic cell, and group-ofstatements
can include one or more terminal, variable, cellJnstance, net declarations, and con-
ditional statements.

5.2 Input/Output Port Declaration

To communicate between cells, a schematic cell may have input/output ports. The
I/O port is declared as a terminal and there are three types of terminal: IN, OUT,
and INOUT. The syntax for terminal declaration is shown below:

terminal_type name;

Here, the name can be an identifier or identifier with bracket.

28

5.3 Instance Declaration

An instance is an instantiation of a cell and it can be included as a component of cell
definition. Before a cell is instantiated, it must be defined previously and if the cell
definition is modified, then all the instances referring to it inherit the change. The
syntax of instantiation is shown below.

INST predefined_cell_name inst.name;

The instjtiame is the same name used in terminal declaration.

5.4 Net Declaration

A net describes how the components in a cell are connected to each other. The
connections can be achieved only between legal L objects: terminals and instance
terminals. There are two types of net in the L language: WIRE and SIG. WIRE
is used to connect two terminals of blocks, and SIG is used to attach a signal to a
terminal. That is, WIRE is used to connect IN/OUT ports to the component block
terminals and SIG is used to connect block terminals. The syntax of net declaration
is shown below.

WIRE object TO object;
SIG object "signal_name";

The object is a terminal or instance_terminal name. Here the instance_terminal is
a concatenation of an instance_name and a terminal-name.

5.5 Full Adder Example

An example of a full adder will clarify the mechanism of the cell definition. A full
adder might be implemented by two half adders and one OR gate. The block diagram
for a full adder is shown in Figure 8.

29

a sum

HADD1[0]

cout

wl a sum

HADD1[1]

b cout w3

w2 ^> ■*■ cout

Figure 8: Diagram of Full Adder

It is assumed that the schematic cells for the half adder and the OR gate are
already defined. The schematic cell definition of the full adder is shown below:

SCHEMATIC FADDIO {

IN a;
IN b;
IN ein;
OUT sum;
OUT cout;

INST HADD1 HADD1[0];
INST HADD1 HADD1[1];
INST or or[0];

WIRE a TO HADDl[0].a;
WIRE b TO HADDl[0].b;
WIRE ein TO HADDl[l].a;
WIRE sum TO HADD1[1].sum;
WIRE cout TO or[0].out;

SIG HADDl[0].sum "wl";
SIG HADDl[0].a "wl";
SIG HADDl[0].cout "w2";

30

SIG or[0].in[l] "w2"
SIG HADD1E1].cout "w3"
SIG or[0].in[0] "w3"

}

At first the cell name of the full adder is defined as FADDlQ, using the keyword
SCHEMATIC. The a, b, ein, sum and cout are the I/O terminals of the FADD1() cell
and are declared by using IN and OUT terminal types. Next, two half adders and
one OR gate for the FADD1 cell are instantiated with a one-bit half adder HADD1
and or cells that are defined previously. Next, the IN/OUT ports of the cell are
connected to the terminals of cell component blocks, which can be done by using
WIRE keywords. There are five IN/OUT terminals in a FADDlQ cell, therefore the
WIRE command needs to be used five times for the connections of all terminals. The
terminal connections inside the FADDlQ blocks are accomplished by the internal lines
wl, w2, and w3. The L language uses SIG to declare the connection between a block
terminal and a connection line. The terminals that have the same line name in a SIG
declaration are to be connected each other. That is, the terminals HADDl[0].sum
and HADDlflJ.a are connected by the line labeled wl.

5.6 Conditional Control Statements

In the L language, the conditional control statements, ifstatement, and whilestatement,
allow us to build module generators. That is, in case of a HOL recursive definition,
the HOL2GDT compiler uses these conditional control statements to convert the re-
cursive definitions into an L module generator. The syntax for the conditional control
statements are covered in Section 4.10, and a detailed example is presented in the
next chapter.

31

6 HOL to L Translation

This section covers the translation mechanism of the HOL2GDT system. This trans-
lation is accomplished by the structural mapping from HOL to L descriptions. First,
cell port definition is covered and the transition mechanisms for HOL relational and
recursive description will be explained later in detail.

6.1 Defining INPUT/OUTPUT ports in HOL

As mentioned earlier, no distinction is made for input and output ports in the HOL
description. On the other hand, the direction of a port (input, output, or inout)
must be specified explicitly in an L module description. This is the major difference
between HOL and L schematic descriptions, and for the automation of the translation
the directions (types) of the ports must be specified manually in the HOL description.
Thus four HOL types: variable, porLwidth, port, and modulejport are introduced for
this purpose and shown below.

variable : string
port_width = pin I bus num
port = in_port variable port_width

I out_port variable port_width
I inout_port variable port.width

module_port = module_name#(port)list

The variable is used to name the port. The port-width has two options: one is
a pin, which is for a single line, and the other is a bus for multiple lines. There are
three types of port directions: injport, out.port, and inoutjport. The modulejport is
used to represent the ports of a module and begins with celLport-def. For example,
the port definition and the relational definition of a full adder are shown below.

|- cell_port_def
['FADD1',

[in_port 'a' pin; in_port 'b' pin; in_port 'ein' pin;

out.port 'sum' pin; out.port 'cout' pin]]

32

|- ! a b ein sum cout.
FADDKa, b, ein, sum, cout) =

(? wl w2 w3.
HADDKa, b, wl, w2) /\
HADDKwl, ein, sum, w3) /\
or(w3, w2, cout)

In the above definition the module name for the full adder is FADD1, and in the
following port list there are three input ports, a, b, and ein, and two output ports,
sum, and cout, all of which are pin types. The most important thing to remember
is that the sequence of ports in the port definition must coincide with that in the
relational definition.

6.2 Translating Relational Definitions

A typical relational definition in HOL can have the form below.

! in1..innOi..om.P(in1,..,inn,o1,..,om) =
?wi..Wk.Pi(parJisti) A

Pz(par Jist2) A
A

Pp(parJistp)

P is the predicate being defined and PI, P2,... are the component blocks that
are the instances of previously defined predicates. The input/output singal names
are universally quantified before the predicate P, and P has these signals as its pa-
rameters. The predicate being defined must appear on the left side of the relational
equation. On the right side of the equation the internal signals used to interconnect
the subcomponents are existentially quantified. The instances of previously defined
predicates (subcomponents of the predicate P) are conjoined with their parameter
lists, parJistl, parJist2, and so on. The parameter lists of the instances can contain
the universally quantified variables and the existentially quantified variables together.

33

The universally quantified variables are the external port names of the module P, and
the existentially quantified variables are the line names used to interconnect the sub-
components. The existentially quantified variables are hidden from the outside of
module P. The relational definitions, coupled with the celLport definitions, are trans-
lated into the L program in the sequences below.

1) The universally quantified variables of the predicate P (the
predicate being defined) are declared as Input/Output terminals
with terminal types IN, OUT, and INOUT by referring the cell port
definition.

2) The first predicate PI on the right hand side of a relation is
renamed as a distinct instance of an existing cell definition.
The distinct instance is generated by attching [num] to the end
of each cell name where num is an integer.

3) The existentially quantified variables are declared as signals,
and the variable names are enclosed with double quotation marks.
However, this does not generate any L language code yet.

4) If a variable of the component PI is universally quantified, then
the corresponding instance terminal is connected to the
corresponding I/O terminal by using the L constructor WIRE.

5) If a variable of the component PI is existentially quantified,
that is, if the variable has been declared as a signal, then the
instance terminal of PI is linked to the signal by using the L
construct SIG. The instance terminal uses the port name defined
in the cell_port definition for PI.

6) Repeat step 2) to step 5) for the remaining predicates, P2 .. Pp.

For example, consider a one-bit serial adder. A diagram of a one-bit serial adder
is shown in Figure 9.

The one-bit serial adder is composed of one d-register and one full adder. The
cout of the full adder is connected to the input port in of d-register. The cell port
definition and the relational definition of the one-bit serial adder, SADDER1, are
shown below:

34

reset

elk elk

d_reg cout ein FADD1

cout -*■ cout

Figure 9: Diagram of One-Bit Serial Adder

|- cell_port_def =

['d_reg\
[in_port 'in' pin; in_port 'elk' pin; in_port 'reset' pin;

out_port 'cout' pin];

'FADD1',
[in.port 'a' pin; in.port 'b' pin; in_port 'ein' pin;

out.port 'sum' pin; out_port 'cout' pin];

'SADDER1',
[in.port 'elk' pin; in.port 'a' pin; in.port 'b' pin;

in_port 'reset' pin; out.port 'cout' pin;

out_port 'sum' pin]]

SADDER1
|- ! elk a b reset cout sum. SADDER1 (elk, a, b, reset, cout, sum)

(? w. d_reg (cout, elk, reset, w) /\
FADD1 (a, b, w, sum, cout))

The FADD1 is defined in Section 6.1. The djreg cell is a built-in macro-cell of
GDT. It uses the basic GDT cell generator msff. The L language code of d-reg is
shown below.

35

SCHEMATIC d_reg() {

IN in;
IN elk;
IN reset;
OUT out;

INST msff msff;
WIRE msff.elk TO elk;
WIRE msff.reset[0] TO reset;

WIRE msff.reset[1] TO reset;
WIRE msff.in To in;
WIRE msff.out To out;

The msff is a standard cell of GDT. The corresponding L file of the SADDER1 is
shown below.

SCHEMATIC SADDERIO

i
IN elk;
IN a;
IN b;
IN reset;
OUT cout;
OUT sum;

INST d_reg d_reg[0];
WIRE d_reg[0].in TO cout;
WIRE d_reg[0].elk TO elk;
WIRE d_reg[0].reset TO reset;
SIG d_reg[0] .out V;

INST FADD1 FADD1[0];

36

WIRE FADDUO], a TO a;
WIRE FADDl[0].b TO b;
SIG FADD1[0] .ein V;
WIRE FADD1[0].sura TO sum;
WIRE FADD1L0].cout TO cout;

The translation mechanism is as follows: The input to the HOL2GDT com-
piler consists of the celLport definition and the definition of SADDER1. The L
schematic description is generated by scanning the definition of SADDER1 from left
to right. The HOL2GDT compiler finds the predicate name and produces the first
line. SCHEMATIC is a reserved word in the L language, and every L program must
start with this line except the comment lines. Then the compiler reads the external
signals that are universally quantified. According to the information in the celLport
definition, HOL2GDT declares the variables. For instance, the first port in celLport
definition is elk, and it is defined as an input port. Therefore, the HOL2GDT compiler
generates a code IN elk; and goes to the next parameter.

After the period mark the cell name with its parameter list follows. One thing
to remember is that the cell name, the parameter names, and their positions in
the definition should be matched with those defined in the celLport definition. The
HOL2GDT compiler checks this out and looks for the parameters which are exis-
tentially quantified. It marks these parameters as internal signals and remembers
them.

Next, when the HOL2GDT compiler runs into a subcell name it instantiates it.
For example, when it encounters the subcell name d.reg, it instantiates it using the
INST construct. Thus an INST d_reg d_reg[0] line is added to the L schematic

file.
After instantiating the subcell d.reg, the HOL2GDT compiler handles the param-

eters of djreg: cout, elk, reset, and w. The first three parameters are universally
quantified, thus they are to be connected with the external ports of the SADDER1
cell. The HOL2GDT compiler generates three lines of net. For the terminal names of
an instantiated cell, it uses the port names defined in the celLport definition. Thus
the first terminal name of the d_reg[0] is in, and it is connected to the first parameter
of the subcell d_reg, cout.

The second port defined in djreg celLport definition is elk. Thus the instantiated
terminal d-reg[0].clk is wired to the second parameter in d_reg subcell elk. The last

37

parameter w is somewhat different. It is existantially quantified and so it was stored as
a signal previously. For a signal, HOL2GDT issues a SIG construct. Thus it generates
a SIG d_reg[0].out "w"; line, and this line indicates that the instantiated cell
terminal d.reg[0j.out is connected to another instantiated terminal using the internal
line w. Next, the FADD1 cell is instantiated and its parameters are processed. At the
point of the third parameter w, the HOL2GDT compiler finds that it is a signal, thus
it must issue the SIG instead of the WIRE construct. The third port of FADD1 is
ein, thus the instantiated FADD1 cell terminal FADDl[0].cin is netted to the signal
w. For a signal it generates two SIG lines in L description, and the instantiated
cell terminals having the same signal names are to be connected to each other. For
example, the d-reg[0].out terminal and the FADDl[0].cin terminal are connected with
the line w.

6.3 Translating Recursive HOL Descriptions

This section explains how a recursive HOL description is translated to an iterative
L program, that is, a parameterized module generator. A module generator is a cell
description that accepts parameters as inputs, thus it generates cells that differ in
size or in other characteristics according to the input parameter. Once a module
generator is prepared, cells can be generated just by calling the module name with
input paramters. This is convenient when there is a need to build arrays of identical
cells.

Recursive definitions in the natural number domain consist of two predicates: one
for the base case and the other for the recursive case. The predicate for the base case
describes the primitive building block of a module. The predicate for the recursive
case describes how this primitive building block should be connected to increase the
size of the module by one. For example, an n-bit adder can be built out of n one-bit
adders. The base case defines the one-bit adder itself, and the recursive case describes
how a one-bit adder should be connected to build an n-bit adder.

The general recursive definition in HOL has the syntax below:

(\a1..ai.P0ai..ai = Q(au .., Oj))A
(\nai..ai.Pn+1al..ai =

?li...lj.Pnpariisti/ Q(par[ist2))

Here, n is the size of the cell to be built, and the variables ai..a{ represent the input

38

parameter list for predicates P and Q in the base case definition. The existentially
quantified variables l\...lj represent the signal lines for interconnection between sub-
components; parJisti and parJist2 are the parameter lists for cells Pn and B in the
recursive case definition. They are equal to the input parameter list ii...ik except that
some of the parameters are replaced by the existentially quantified parameters l\..lj.
The positions of li..lj in parJistx and parJist2 determine how the basic building
block is netted together. With the parameter lists and information on the position
of the parameters, a recursive definition can be translated into a parameterized L
module generator.

Since the translation mechanism for the recursive definition is somewhat intricate,
the transition process is illustrated using a simple example of an n-bit ripple adder
described in Section 2.2. For convenience, the block diagram of the n-bit ripple adder
is shown again in Figure 10.

a(0) b(0) a(n+l) b(n+l)

an
FADD1

■ cout cm ;
RADDERN n a b ein sum cout

sum(O)

wl
FADD1

--AJT--

sum

tout

 v
sum(n+l)

RADDERN 0 a b ein sum cout RADDERN (n+1) a b ein sum cout

Figure 10: Diagram of an n-Bit Ripper Adder

The port definition of a one-bit full adder and n-bit ripple adder, along with the
definition of the ripple adder, is shown below:

|- cell_port_def =
['FADD1',

[in_port 'a' pin; in_port 'b' pin; in_port
out_port 'sum' pin; out_port 'cout' pin];

pin;

39

'RADDERN',
[in.port 'a' (bus 1); in.port 'b' (bus 1); in.port 'ein' pin;
out.port 'sum' (bus 1); out_port 'cout' pin]]

|- (! ab ein sum cout.
RADDERN 0 a b ein sum cout = FADDKa 0, b 0, ein, sum 0, cout))

A
(! n a b ein sum cout.

RADDERN (n+1) a b ein sum cout =

(? w. RADDERN n a b ein sum w A

FADDl(a(n+l), b(n+l), w, sum(n+1), cout)))

In the base case of the RADDERN definition, zero is assigned to the cell size
parameter. However, this does not mean that there is no instantiation of the base
cell, but simply the instantiated cell number will start from 0. Therefore, if the cell
size is n, there will be cell instances from 0 to n - 1 in the translated L program.

The recursive part indicates that a ripple adder of size n + 1 can be built with
a ripple adder of size n and another one-bit full adder. That is, the recursive part
defines the n + 1 bit ripple adder with an n-bit ripple adder and a one-bit full adder.

The parameter lists and the position of the existentially quantified variables decide
the interconnection mechanism. In the n-bit ripple adder case there is only one
existentially quantified variable w, and it replaces two parameters: one for the output
parameter of RADDERN cout, and the other for the input parameter of FADD1 ein.
This indicates that the output port of RADDERN cout is to be connected to the
input port of FADD1 ein using the internal line w.

In summary, the generation of the corresponding L module generator from a HOL
recursive definition is based on the interpretation of the context in which a variable
appears. The context is determined by two factors: how the variable is quantified
and where it locates. Besides, a cell instance terminal name must be found according
to the position of a variable in the predicate. To get this information, two abstract
functions have been defined: pos(), and portQ. With a predicate name P and its
parameter a, the function application pos(a,P) returns the position of the parameter
in the parameter list of predicate P. On the other hand, the function application of
port(n,P) returns the n'th variable in the parameter list of predicate P.

The transition mechanism of a HOL recursive definition of an n-bit ripple adder
to the L program is as follows:

40

The name of the predicate is RADDERN, and since it is defined recursively, the
H0L2GDT compiler produces the first line.

SCHEMATIC RADDERN (INT hol_l_s=l)

SCHEMATIC is a keyword in the L language that specifies this is a schematic file.
The name of the cell becomes RADDERN with default value for the cell size 1. This
cell size can be set to a specific value after the HOL definition is translated into an L
program. This will be covered in a later section. The HOL2GDT compiler uses the
variable hoLLs for the iteration limit parameter, which is declared to be an integer
and initialized to 1.

Next, it refers to the cell port definition part of RADDERN and scans the port
list from left to right. If the port has a type of pin, then it is declared to be a port
variable by keyword IN, OUT, or INOUT according to its port type. Otherwise, if
the port is not a pin type, then the HOL2GDT compiler remembers the port name
and goes to the next port. For example, only ein and cout are of the pin type, and
are defined as injport and ouLport, respectively. The compiler generates the two lines
shown below:

IN ein;
OUT cout;

The declaration for the rest of the parameters (which have the bus type) will be
done during the iteration part, because every time a basic cell is instantiated it needs
terminals for the interconnection between subcomponents or between the instance
terminals and the external terminals.

Next, the compiler prepares for the iteration, but before the actual iteration it
declares an iteration variable hoLLi as an integer and initializes it to zero as seen
below.

INT hol_l_i;
hol_l_i =0;

41

Then the iteration part follows as the HOL2GDT compiler produces the line below:

WHILE (hol_l_i < hol_l_s) {

The limit for the iteration is given in the cell name definition as hoLLs that is
initialized to 1 by the compiler. Thus by default there will be one cycle of iteration,
which means the size of the cell will be one.

The WHILE statement executes whatever statements in the loop as long as the
boolean expression is evaluated to true. Since the variable hoLLi is initialized as zero,
the boolean expression results in true, and it performs the statements in the curly
brackets.

In the iteration, the parameters with a bus type are declared first. Since there
are three parameters having a bus type in the ripple adder example, the compiler
generates the lines below:

IN a[hol_l_i];
IN b[hol_l_i];
OUT sum[hol_l_i];

The compiler uses the iteration control variable, hoLLi, to declare the parameter
of the bus type and the parameters are indexed by this control variable.

After declaring all parameters of the bus type, the basic cell FADD1 is instantiated
and if it is the first cell instantiated (it checks the value of the variable hoLLi to see
if it is zero), then it searches the input variables defined outside the iternation and
connects them to the corresponding terminals. In this case there is only one input
variable defined ein, thus the compiler generates the lines below:

INST FADD1 FADD1[hol_l_i];
IF (hol_l_i == 0) {

WIRE FADD1E0].ein TO ein;
}

42

The above lines mean that the external input port ein of RADDERN is con-
nected to the input port ein of the first instantiated full adder FADD1[0]. Here the
HOL2GDT compiler uses two abstraction functions pos(), and portQ to find the in-
stance terminal name corresponding to empört of RADDERN. The process of finding
the instantiated terminal name for ein is as follows.

The input parameter ein indicates the outermost port, thus the predicate in the
base case RADDERN is used to find the position of ein in FADD1. The function
application pos(cin, FADDERN) gives the value of 3. To find the third port name in
FADD1, the compiler uses another function application port(3, FADD1), which gives
the third port name in the FADD1 cell definition, ein.

The next step is to assign the port names for the instance terminals of bus type
parameters. That is, the instance terminal for FADDlfhoLLiJ. a is assigned to a port
name apioLLi], and so on. In this case there are three parameters that have the bus
type a, b, and sum. Thus the compiler produces the following three lines:

WIRE FADDl[hol_l_i].a TO a[hol_l_i];
WIRE FADDl[hol_l_i].b TO b[hol_l_i];
WIRE FADD1[hol_l_i].sum TO sum[hol_l_i];

After netting the buses the compiler handles the existentially quantified parameter
w. The compiler produces a line that asks whether the value of the iteration variable
is not equal to zero. In case of zero (which means it is the beginning of the iteration,
thus there is no other cell to be connected yet), the compiler skips this connecting
procedure. If the value is not zero, then the compiler looks for predicates in which
the existentially quantified parameter w appears. At first, the variable w appears
in the RADDERN and is located in the fifth place. It can be found using pos(w,
RADDERN). The corresponding port name in the RADDERN port definition is cout.
Again, the variable w appears in the predicate FADD1. The position value is 3, and
the port name is ein. Thus the compiler knows that the instance terminal port of
RADDERN cout is to be connected to the instance terminal port of FADD1 ein. One
thing to remember is that the base building cell FADD1 is added to build RADDERN,
thus the outermost port of RADDERN is that of the previously instantiated FADD1
cell. The code generated is:

43

IF (hol_l_i != 0) i

WIRE FADD1[hol_l_i - 1].cout TO FADD1[hol_l_i].ein;
}

Next, the compiler generates a code that checks whether the value of the iteration
variable hoLLi is the same as that of the iteration limit variable hoLLs minus one,
which means that it asks if it is the last iteration procedure. If it is, the compiler
generates a code that connects the last instantiated terminal to the external output
port. In the above case, cout is the only output port that is pin type. The generated
line is seen below.

IF (hol_l_i == hol_l_s - 1) {

WIRE FADDl[hol_l_i].cout TO cout

The final L program translated for the n-bit ripple adder is shown below.

SCHEMATIC RADDERN (INT hol_l_s=l)
{

IN ein;
OUT cout;
INT hol_l_i;
hol.l.i = 0;

WHILE (hol_l_i < hol_l_s) {
IN a[hol_l_i];

IN b[hol_l_i];
OUT sum[hol_l_i];
INST FADD1 FADD1[hol_l_i];
IF(hol_l_i == 0) -C

WIRE FADD1[0].cout TO ein;
}
WIRE FADDl[hol_l_i].a to a[hol.l.i];
WIRE FADD1[hol.l.i].b to b[hol.l.i];
WIRE FADD1[hol.l.i].sum to sum[hol.l.i];

44

IF(hol_l_i == 0) {
WIRE FADDl[hol_l_i].cout TO FADDl[hol_l_i].ein

}
IF(hol_l_i == hol.l.s -1) {

WIRE FADD1[hol_l_i].cout TO cout;

}
hol_l_i++;

Actually, the wiring mechanism in the HOL2GDT compiler follows the rules sum-
marized in Figure 11.

V Var Occurence
iteration Interconnection

Bo Pn Pn

easel U O O i = 0

WIREB[0].t' TOx

where pos(x, Pn) = k

port(k, Po)=t

pos(t,Bo) = k'

port(k',B) = t'

case2 U O 0 0 0<i<m

WIREB[i].t' TOxorx[i]

where pos(x, Bo) = k

pos(x, Bn)=k

port(k, B) = t

case3 U 0 O i = m

WIRE B[m].t TO x
where pos(x, Bo) = k

pos(x, Bn) = k

port(k, B) = t

case4 E O O Uo

WIREB[i-l].t' TO B[i].tt

where pos(x, Pn) = k

port(k, Po)=t

pos(t,Bo) = k'

port(k\ B)=t'

pos(x,Bn) = kk

port(kk, B)=tt

Figure 11: HOL2GDT Compiler Translation Mechanism

45

Interestingly, all variables fall into the four cases and by matching the conditions
of the variable the HOL2GDT compiler can issue the correct WIRE and SIG com-
mands. Hence, the translation mechanism can be explained using the above rules.
For convenience, some conventions are required, that is, P0 is the predicate in the
definition of the base case, and B0 is the predicate for the building block in the base
case. Pn is the predicate in the definition of the recursive case, and Bn+1 is the build-
ing block in the recursive case. In the ripple adder case, B0 corresponds to FADD10,
Pn corresponds to RADDERNn, and Bn to FADDln+1.

During the scanning procedure of each variable the compiler checks how the vari-
able is quantified, in what predicate(s) it appears and, finally, the condition of the
iteration. With this information, it finds out which case should apply. For example,
the variable ein falls into case 1. The HOL2GDT compiler knows that it should con-
nect the input port variable ein somewhere. The variable ein is universally quantified,
thus it is a primary input or output. By using the pos() and port() functions, the
compiler can find that ein is an input port. Also, ein appears at the first iteration,
that is, when i = 0. Therefore, the HOL2GDT compiler uses the first-case rule to
find the instance terminal name to which ein should be connected by using the pos()
and portQ functions. The procedure of seeking the instance terminal is as follows. It
first looks for the position of ein in the predicate RADDERNn by using the function
application posfcin, RADDERNn) and gives the value 3. Next, it uses the function
application port(3, RADDERN), which returns ein. With this variable ein, it finds
the position of ein in FADD10, and this gives the value 3. Finally, the compiler uses
the function application port(3, FADD1) to find the final instance terminal name,
that is, ein. Thus the compiler issues WIRE FADDl[0].cin TO ein.

For the next three variables a, b, and sum, which are indexed by the recursion
variable n, the compiler applies the second case. They appear in the base and recursive
case definitions. Since they are universally quantified, they are primary inputs and
outputs of the module. The compiler also uses the functions pos() and port() to
trace the instance terminal names to be wired. Since these indexed variables appear
in every iteration, they always occur in the same port locations. For example, the
variable a appears in the first port of RADDERNn. Looking up the name of the
first port of FADD1 by using the function application of port(l, FADD1), which is a,
the compiler can issue the WIRE command with the correct instance terminal name.
This accounts for WIRE FADDl[hol_l_i].a TO a[hol_U].

The variable cout falls into the third case. Since it is universally quantified, it is
a primary input or output port. By checking the port definition of RADDERN, the
compiler finds that ein is a primary output port, thus it must be used in the last

46

iteration to connect the output port from the instance terminal. The compiler checks
the position of cout in FADDln+i, which is 5. With this value it looks for the fifth
variable name in FADD1, which is also cout. Thus the compiler can issue the line
WIRE FADDl[hol_L_i].cout TO cout.

For the existentially quantified variables the compiler applies the last case. Since
the internal connections are not seen by the user, and they are not needed in the
base building block cell, they will not occur as the parameters of RADDERNn+\
or FADD1. The internal variables will occur only in RADDERNn and FADDln+i.
The compiler finds the instance terminal name to which the internal variable should
be wired as follows. First, it uses the function application pos(w, RADDERNn),
which returns 5. The fifth port in RADDERN is cout. Next, the compiler looks for
the position of cout in FADD10, which is 5. Then it finds the fifth port variable of
FADD1, which is cout. The internal variable w appears in FADDln+i. The position
value of w in FADDln+i is 3, and the third port variable in FADD1 is ein. Thus the
compiler knows that the cout port of the previous stage should be connected to the
ein port of the currently instantiated FADD1 cell, and issues the line below :

WIRE FADDl[hol_U - l].cout TO FADDl[hoUJ].cin.

In summary, to create an L module generator program from a recursive HOL
description and a cell port definition list, the universally quantified parameters are
declared as input or output ports, then the definition is scanned from left to right.
The instance terminal names are determined and wired together using the rules in
Figure 11. Notice that if the variable is a type of bus, it is indexed to be instantiated
for every iteration.

47

7 n-Bit Serial Pipelined Multiplier Example

In this chapter a complete example of H0L2GDT methodology for designing a five-
stage pipelined bit serial multiplier is covered. It is implemented using the
HOL90.7 and GDT version 5.2JL The entire procedures of the HOL2GDT system
can be described with the design flow graph shown in Figure 12. The developing
procedures of the multiplier are explained by following the sequences in Figure 12.

1 HOL
Formal

Specification

3 HOL

Structural

Definition

* Formal Definition

Serial
Multiplier

Spec

HOL

Printed Theory

Multiplier Chip

.12..

7 L Schematic

Description

MOSIS Fab. GDT AutoCells

9 ■■

IRSIM
SPICE

Magic CIF
11:

2 HOL
Standard cell

Definitions

[6 HQL2GDT COMPILER)

GDT
standard

cells

Standard Cell Layout
10

LSIM

Design

Validation

Figure 12: Flow Graph of HOL2GDT System

The multiplier design starts with a general multiplier specification (0). This spec-
ification is formalized using HOL notations (1). For the formalization of hardware
systems, we have pre-defined standard cell definitions (2). With these definitions the
structural (implementation) description of the multiplier is formalized (3). With both
specification and implementation descriptions, we can perform a formal verification
(4) using the HOL. After we get the correctness theorem of the multiplier design, we
use the implementation description to get a HOL printed theory file (5). The hol2gdt

48

compiler (6) uses the printed theory to translates it into an L schematic description
(7). Then the GDT auto-cell generator, sc.build, uses the schematic description to
generate standard cells (8). With this standard cells, the L compiler generates a
routing file (9). This routing file is used for the design validation through the LSIM
simulator (10). The routing file is translated into a MAGIC CIF file for the embed-
ding of pad frames (11). The MAGIC layout is tested using IRSIM or SPICE and
sent to the MOSIS for the chip fabrication (12). Then we finally get a multiplier chip
that is generated using formally verified definition. The contents of this chapter are
as follows: In Section 7.1, the designing procedure of the multiplier building blocks
is discussed in detail. In Section 7.2, we describe how building blocks can be defined
using HOL notation. The detailed procedures of designing and verifying will be omit-
ted because that is beyond the scope of this paper. Section 7.3 covers the translation
procedure from the HOL to the L language. In Section 7.4, the layout generation
procedures from the translated L schematic file to the final GDT circuit layout us-
ing GDT tools is explained, and the next chapter covers the testing and simulation
procedures for the multiplier layout. The HOL implementation description and the
translated L file for the multiplier are listed in the appendix.

7.1 Design Procedure of n-bit Serial Multiplier

The first chip fabricated using the HOL2GDT Linking System was the pipelined
serial multiplier. In this section the design procedures of the multiplier from the
basic component to the top level unit are described. However the main goal of this
paper is not to describe the designing procedure of the multiplier itself, but to describe
the design with HOL notation. Thus this section is just a preparation for the next
section. The basic component of the multiplier is a full adder with reset input, far.
The far acts like a full adder when the input to the reset port is False. With the
reset input True, far still produces the sum result, but it makes the cout value False,
regardless of the input values.

The far unit is implemented using basic gates such as two-input nand gates, in-
verters, three-input nand gates, two-input nor gates, and three-input nor gates. The
block diagram of the far is shown in Figure 13.

The next step is to build a serial adder sa by combining a far and d-type register,
d-regjnr, which does not have the reset input. The serial adder sa keeps cout, the
carry-out signal from the far, and uses it as the carry-input ein signal to itself for
the next clock cycle. Therefore, there are no external ein and cout ports in the serial
adder. The block diagram of the serial adder is shown in Figure 14.

49

far

** sum

Figure 13: Block Diagram of a Full Adder with Reset

Now a component that can perform one-bit multiplication is required. Since mul-
tiplication is implemented by addition, the serial adder sa is used as a sub-component
of the multiplier. In addition to the serial adder, three kinds of registers are needed:
djreg-nr, d-reg^wqb, and wff. The d.reg.wqb component has two output ports that
always produce complementary outputs. It accepts the reset signal and delivers it to
the output only when the clock signals change from high level to low level (trailing
edge of clock signal). Otherwise, the output does not change at all. These registers
are already pre-defined in the standard cells library of the GDT system. The wff
component is just a d-type register with additional input signal drivers. The block
diagram of wff is omitted here; however, the HOL definition of the wff is included in
the appendix.

By using the components mentioned above, a one-bit multiplier cell, cell, can be
built. The block diagram of the cell is shown in Figure 15.

There are six input and three output external ports in the cell. The input signals
can be categorized into two parts: control signals and data input signals. The elk
signal triggers the operation of the registers, and the reset signal clears the output of

50

x y reset

Figure 14: Block Diagram of a Serial Adder

the registers and initializes the carry input to the serial adder to zero. The x and y
are data input ports.

For the output, xout is used to propagate the x input to the next stage. The rout
port is also used to deliver the reset signal to the next stage. The out port is used to
carry the result of the multiplication that is to be passed to the next stage.

The top level unit of the five-stage serial multiplier requires five one-bit multi-
plication units cell and four register djregjnr pairs between two adjacent cells. The
block diagram of the five-stage serial multiplier is shown in Figure 16.

The block bps is just a serial connection of two inverters. The y signal is connected
to the d-register through bps. A single cell and a bps block compose a bcell. A d-
register pair is used to inter-connect two adjacent bcells and one bcell and d-register
pair compose an icell. Thus to construct a five-stage, pipelined, bit-serial multiplier,
four icells and one bcell are needed.

The next section explains how these building blocks can be defined with HOL
notation.

7.2 HOL Implementation Description

In this section the procedure of describing the building blocks using HOL notation is
explained.

7.2.1 Basic Gates Definition

In the previous section the basic gates such as and, nor, and even inverter gates are
not designed, but taken for granted. However, there is no inherent library or built-
in theory for the basic gates in HOL. Thus the basic gates must be defined before
being used. To avoid building definitions of the basic gates in every implementation
description, and also to conform to the terminology of the basic gates, the gates.sml

51

cell elk elk

wff
d_reg_nr -*• xout

\l u

" H V

elk reset

d_reg_wqb

rout

outb

-*- out

Figure 15: Block Diagram of a One-Bit Multiplier Cell

file that includes all the definitions of basic gates is provided. The gate names in the
definition file are intended to be matched with the standard cell names of the GDT
system. However, it is not always possible to do that for some gates. For example,
the two input AND gate is named and2, because the word and is a reserved word
in HOL90.7. The contents of the gates.sml file is listed in the appendix. To use the
basic gates defined in the gates.sml file, the file must be loaded in a HOL session by
executing the following procedures.

1. Copy the "gates.sml" file listed in the appendix to the working
directory.

2. Execute below command.

52

pdm

yout

xout

Figure 16: Block Diagram of Five-Stage Pipelined Serial Multiplier

°/,hol90 < gates. sml (* °/o is a prompt *)

In the HOL implementation description file, include two commands
after new_theory command line.

new_theory "pdm"; (* pdm is the theory name *)

new_parent "gates";
add_theory_to_sml "gates";

The second step generates the theorem file for the gates.sml definition file. The
theorem file is needed to execute the commands in step 3.

7.2.2 Defining Noniterative Structure Components

This section describes how the noniterative structured components are defined using
HOL notation. First, the far component in Figure 13 consists of two inverters, five
two-input nand gates, one two-input nor gate, and one three-input nor gate. All
of these gates are defined in the gates.sml file. It does not include any iterative
structures (repetition of the same components), so it should be represented with
relational description (refer to Section 2.1). The HOL definition of the far component
is shown below:

53

val far = new_definition

("far",

(—'! x y ein reset sum cout. far (x, y, ein, reset, sum, cout) =
? wl w2 w3 w4 w5 w6 w7 w8 cab.

nand(x, y, wl) A

nand(x, ein, w2) /\

nand(y, ein, w3) /\

nand3(wl, w2, w3, w4) /\

inv(w4, cab) A

nor(cab, reset, cout) A

nor3(x, y, ein, w5) A

inv(w5, w6) /\

nand(cab, w6, w7) /\

nand3(x, y, ein, w8) /\

nand(w7, w8, sum)'—));

There are six external ports in the far block. These external ports must be uni-
versally quantified by the ! symbol. Keep in mind that there are no commas between
the external port names. After the period mark, the cell name (here, far) is fol-
lowed. Then all of the external signals should be included in the parentheses as the
parameters of the predicate far. Here, commas are needed between parameters.

Next, the internal signals that act as connection lines between components should
be existentially quantified. Then the subcomponents of far are listed with their
parameters. Between the subcomponents a conjunction mark A is placed. The sub-
components that have a common internal signal name in their parameter lists are to
be connected. For example, the output port of the first nand gate is to be connected
to one of the input ports of the first nandS gate by the line labeled wl. If there is no
error in the definition (usually typographical errors or using a definition name that
has been used previously), HOL produces the following theorem.

val far =

|- !x y ein reset sum cout.

far (x, y, ein, reset, sum, cout)
(?wl w2 w3 w4 w5 w6 w7 w8 cab.
nand (x, y, wl) A

54

nand (x, ein, w2) /\
nand (y, ein, w3) /\
nand3 (wl, w2, w3, w4) A
inv (w4, cab) /\
nor (cab, reset, cout) /\
nor3 (x, y, ein, w5) A
inv (w5, w6) /\
nand (cab, w6, w7) /\
nand3 (x, y, ein, w8) A
nand (w7, w8, sum)) : thm

Using the above method, other basic components that do not have iterative struc-
tures sa, wff, cell, bcell, and icell can be defined.

7.2.3 Defining Iterative Structure Components

This section describes how the iterative structure is defined with HOL notation. The
top level description of the five-stage pipelined serial multiplier pdm consists of two
parts: the first four stages, ipdm, and the last stage, bcell of the multiplier (refer to
Figure 16). Since no registers for the pipelining are needed in the final stage, bcell is
used instead of icell.

The ipdm is built by cascading (iterating) four icells, thus it can be defined in a
recursive way (refer to Section 2.2). The HOL definition for the ipdm (for general n
stages) is shown below.

55

val ipdm = new_definition

("ipdm",

(—'(! x y inl reset elk yout xout z rout.

ipdm 0 x y inl reset elk yout xout z rout =

icell (x, y, inl, reset, elk, yout, xout, z, rout)) A

(!n x y inl reset elk yout xout z rout.

ipdm (SUC n) x y inl reset elk yout xout z rout =
(? xi yi zi ri.

ipdm n x y inl reset elk yi xi zi ri A
icell (xi, yi, zi, ri, elk, yout, xout, z, rout)))'--));

The recursive definition of ipdm consists of two parts: the base case definition and
the inductive case definition. The base case describes the primary building block of
the ipdm, and the inductive case describes how the additional building block should
be connected to increase the size of the ipdm. The base case definition indicates that
the primary component of the ipdm is icell, and the inductive case definition reveals
the output ports of the ipdm: yout, xout, z, and rout should be connected to the input
ports of the attaching icell; and x, y, z, and in through the internal lines yi, xi, zi, and
ri, respectively. Finally, the top-level definition pdm is acquired just by combining
the ipdm and bcell.

7.2.4 Adding Input/Output Port Definition

As mentioned in Section 2.4, one more piece of information, the input/output port
definition, is needed to translate the HOL definitions into the L language program. In
HOL implementation description there is no distinction for the input and the output
ports. However, the ports must be declared as input, output, or for both in the L
program. This information should be supplied by attaching the cell port definition
to the block definition in the HOL description. For example, the cell port definitions
for the first component far and top level component pdm are shown below:

56

var cell_port_def1 = new_definition

("cell_port_defl",
(—'cell_port_def1 =

["far",

[in_port "x" pin;
in_port "y" pin;

in_port "ein" pin;
in.port "reset" pin;
out_port "sum" pin;
out_port "cout" pin]]'-));

var cell_port_def8 = new_definition

("cell_port_def8"

(—'cell_port_def8 =
["pdm",

[cell_sixe "n";

in_port "x" pin;
in_port "y" pin;
in_port "inl" pin;

in_port "reset" pin;
in_port "elk" pin;
out_port "yout" pin;
out_port "xout" pin;
out_port "z" pin;
out_port "rout" pin]]'—));

After adding the cell port definitions, the file should be closed using the two lines
below:

close_theory();
export_theory();

Executing the closeJheory() finishes a session in draft mode and switches the
system to proof mode. The changes made to the current theory segments are writ-

57

ten to the theory file associated with it. If the HOL session ends without invoking
close-theory(), the modifications made to the session do not persist to future HOL
sessions. After the theory is closed, the theory segment may be extended by using
the extendJheoryO command.

Executing the export Jheory() exports the theory to the disk, thus generating a
theorem file, pdm.thms, in the directory where HOL is invoked.

From now on, this implementation description of the multiplier can be used for
the formal verification. The correctness theorem that shows the implementation de-
scription of the multiplier implies or is equal to the specification description of the
multiplier. Since the formal verification procedure usually requires quite a long time,
it may be postponed. However, the verification must be done before the layout is
sent to the MOSIS for fabrication.

In the sml file, comments may be included to help the interpretation of user.
However, these are not needed in the HOL2GDT compiler, because they may add
complexity to programming the HOL2GDT compiler. Thus instead of the sml file,
the printed theory file is used for the input to the HOL2GDT compiler. The printed
theory file can be generated by the following steps.

At first, execute command below in HOL session.

print.theory "pdm";

The string, pdm is the theory name that was declared by the newJheory command
at the beginning of the theory file. The printJheory command prints the theory name,
parents, type constants, term constants, axioms, definitions, and theorems defined in
the pdm theory. To save the printed theory into a new file, the new file should be
opened with the name pdm.print and then the printed theory should be copied by
clipping and pasting. However, the printed theory file may not yet be used as the
input to the HOL2GDT compiler, because some changes must be made to the printed
theory file. These may include collecting all cell port definitions and combining them
into one definition and placing it at the beginning of the file to make the programming
of the compiler easier. The ipmap program was developed to implement this.

The syntax for the ipmap is below:

58

ipmap <input file> <output file>

Here the input file name can be pdm.print and the output file name can be pdm.
There is one constraint in designating the output file name. That is, it may not
include any dot(.) extension name. The reason for this constraint is explained in the
next section. The final form of the HOL implementation description that is ready to
be used as an input to the HOL2GDT compiler is shown in the appendix.

7.3 Translating to the L program

In this section the procedure for translating the HOL implementation file into an L
language program is explained. The output from the ipmap program is used for the
input to the HOL2GDT compiler. As mentioned in the previous section, the input
file name to the HOL2GDT compiler may not have a dot extension. This constraint
comes from the syntax of GDT commands that are to be used from now on. The
syntax of the HOL2GDT compiler is below:

H0L2GDT -o <output_file.S> <input_file>

Attaching the suffix, .S, to the output file name is mandatory. In later procedures,
a file name with the .S suffix is required. The actual command for translating the
pdm file to an L program file is as shown below:

H0L2GDT -o pdm.S pdm

The compiler generates an L schematic file pdm.S and also two additional files,
pdm.def and pdm.macro. These two files include the parameter values for the pa-
rameterized GDT standard cell generators and the L language definition of macro
cells supported by the H0L2GDT compiler. GDT's placement and routing tools will
utilize these standard cell parameters to create necessary standard cells, and these
standard cells and macro cells are then used in building the multiplier layout.

59

7.3.1 Standard Cell Generator Definitions

The GDT tool suite provides a set of parameterized standard cell generator functions.
These generators are supplied with a set of input values that denote the parameters to
the generator function. For example, let nand be a standard cell generator function.
The function is instantiated by an L language command, CALL. Then, the nand
generator function is used to create a two-input nand gate. Each function has to
be given a name label, such as nand2. Each function being instantiated must be
supplied with a set of input parameter values. Thus to create a 2-input nand gate
called nand2, the L language command line will be as below.

CALL nand CELL nand2 (2,1,1,0);

where nand - standard cell generator function being called.
nand2 - instance name of the standard cell.
2 - number of inputs.
1 - number of outputs.
1 - number of input drivers.
0 - number of output drivers.

A more detailed description of input parameter syntax and semantics can be found
in the standard cell manual [4]. The HOL2GDT compiler currently uses 11 standard
cell generator functions to create and support a library of 27 standard cells. A typical
pdm.def file is shown below:

L:: TECH ANY
{
And gate
CALL sc.and CELL and (2,1,1,2,1,1,0); # 2-input
CALL sc.and CELL and3 (3,1,1,2,1,1,0); # 3-input
CALL sc.and CELL and4 (4,1,1,2,1,1,0); # 4-input
CALL sc.and CELL and5 (5,1,1,2,1,1,0); # 5-input
Or gate
CALL sc_or CELL or (2,1,1,1,1,1,0); # 2-input

CALL sc_or CELL or3 (3,1,1,1,1,1,0); # 3-input

CALL sc_or CELL or4 (4,1,1,1,1,1,0); # 4-input

60

CALL sc_or CELL or5 (5,1,1,1,1,1,0); # 5-input
Nand gate

CALL sc.nand CELL nand (2,1,1,0); # 2-input

CALL sc.nand CELL nand3 (3,1,1,0); # 3-input
CALL sc_nand CELL nand4 (4,1,1,0); # 4-input

CALL sc.nand CELL nand5 (5,1,1,0); # 5-input

Nor gate

CALL sc.nor CELL nor (2,1,1,0); # 2-input

CALL sc.nor CELL nor3 (3,1,1,0); # 3-input

CALL sc.nor CELL nor4 (4,1,1,0); # 4-input

CALL sc.nor CELL nor5 (5,1,1,0,0); # 5-input
Xor gate

CALL sc_xor CELL xor (1,1,0);
Xnor gate

CALL sc.xnor CELL xnor (1,1,0);

Inverter gate

CALL sc.inv CELL inv (1,1,1,0);

Master-slave flip flop

CALL sc_msff CELL msff_wrqb (1,1,1,0); # with reset and Qb output
CALL sc_msff CELL msff.nr (0,1,1,0); # no reset

CALL sc.msff CELL msff (3,1,1,0); # vanilla master-slave
Static latch

CALL sc.latchs CELL lsl.wr (1,1,1,1,1,0); # with reset
CALL sc.latchs CELL lsl_nr (0,1,1,1,1,0); # no reset
CALL sc.latchs CELL latchs (1,1,1,1,1,0); # vanilla latch
CALL sc.latchdd CELL latchdd (1,1,1,1,1,0); # dynamic latch
Inverted Tristate buffer
CALL sc.tbfi CELL tbfi (0,1,1,0);
}

The standard cell library supported by HOL2GDT is open-ended and can be fur-
ther extended to enhance the design capabilities as required. The standard cell library
has one-to-one correspondence to the components in the gates.sml file described ear-
lier in Section 7.2.1. The gates.sml file describes behavioral definitions of the standard
cells in HOL. The HOL2GDT compiler uses these definitions in gates, sml to create a
pdm.def file that contains the standard cell generator function calls and appropriate
input parameter values for the generator functions.

61

7.3.2 Macro Cell Definitions

Macro cells are commonly used in any standard cell-based design methodology. Macro
cells are constructed using one or more existing standard cells to achieve a frequently
used functionality in hardware. The HOL2GDT compiler has a macro cell library
that currently consists of 12 macro cells as listed below.

D_REG - D register using master-slave flip flop
D_REG_NR - D register with no reset
D_REG_WQB - D register with inverted Q output
D_REG_WRQB - D register with reset and inverted Q output
BUFFER - Buffer using dynamic latch
BUFFER.S - Buffer using static latch
VDD - VDD power connection, used for tied high ports,
GND - Ground connection, used for tied low ports.
BY_PASS - Wire pass through using two cascaded inverters.
PASS - Pass transistor.
BUS2WIRE - Split a bus into wires.
WIRE2BUS - Group wires to form a bus.

The macro cells are described using an L language program. The HOL2GDT
macro cell library maintains a list of macro cells currently supported by the compiler.
The compiler reads this list at run time from the library and writes the L language
programs for each supported macro cell to the pdm.macro file. A typical macro
definition file is listed in Appendix B.

A design is fully described by means of three design files, pdm.S, pdm.def, and
pdm.macro. Once the pdm.S file is generated there is one thing to do with the pdm.S
file manually. That is, if the HOL definition file includes one or more recursive defini-
tions, then the values for the iteration variables in the translated L schematic program
must be assigned (please refer to Section 6.3). By default the HOL2GDT compiler
assigns 1 for each parameter n in the recursive definition. Thus if no adjustment is
made in the pdm.S file, then a one-stage multiplier will be generated. To get the
desired size of multiplier, the value of the hoLLs parameter in the pdm.S file should
be changed. For the five-stage, pipelined, serial multiplier, five icells and four pipeline
stages are needed. This can be implemented by assigning the value 4 to the hoLLs
parameter in the ipdm cell generator.

62

7.4 Generating the Actual Layout Using CAD Tools

From now on all the procedures are implemented in VLSI CAD tool environments.
The flow of the procedures is shown in Figure 17.

MAGIC
f

IRSIM
\

\)
A

c
drc

N

)
A

/
MOSIS

Padframe

\

V
Attachment

)

MAGIC CIF file

Figure 17: Procedure of Generating the Actual Layout

The above figure shows the procedures to get a MAGIC layout from an L schematic
description. HOL2GDT uses two VLSI tools, GDT and MAGIC. The L schematic
description is input into the GDT system and the system builds standard cells, does
placement-and-routing, and converts the layout into CIF format. Since the CIF
format supported by the GDT system differs from that of MAGIC, the GDT CIF file
is translated into MAGIC CIF format using the I2mcif program. With the MAGIC
CIF file, the MAGIC layout is retreived, pad frames are embedded into the design,
and the design is tested using the design rule checker drc and the switching level
simulator IRSIM. Details for the above procedures are covered in following sections.

63

7.4.1 Building Standard Cells

The first thing to do in the GDT system is to generate standard cells required for
building the multiplier circuit layout. The scJ)uild is one of the supporting programs
in the GDT system that refers to the standard cell library. It is used to build a set
of standard cells. The syntax to build a set of standard cells is:

sc.build -t <tech> <options>

The options are

-1 lib

-L lcell.lib

-T lcell.tech
-V view
-x

-o output_file

-e error_file

-g cell_control_

cell_definition.

Specifies the technology library.

Specifies the Lcompilers library.

Specifies the Lcompilers technology category.
Specifies the VIEW of the cells to be created.
Specifies that the output file should be in
binary format. The default format is ASCII.
Specifies the name of the Lc output file. The

default output name is stdout.
Specifies the name of the Lc error file. The
default file name is Lerror.

file Specifies the name of the standard cell

control file. The default name is sc_ctl.

If the file sc_ctl is not found in the current

directory, default values will be used,
file Specifies the name of the standard cell

definition file. The default name is sc_def.
If the file is not found in the current

directory, a default cell definition file will
be used.

Thus the actual Unix shell command line to generate the standard cells for the
multipilier is as shown below.

64

sc.build -x -t scmos -V SCHEMATIC -g gdt.ctl -o pdm.X pdm.def

The above command means that the output file is in binary format, the technology
file to be used is scmos, the SCHEMATIC view will be generated, the cell control
file name is gdt.ctl, the output file name is pdm.X, and the cell definition file name
is pdm.def. The cell control file gdt.ctl must be in the working directory. For more
detailed information, please refer to the L compiler user guide [7].

7.4.2 Generating a Routing File

The next procedure is to generate the routing file using the L language compiler Lc,
which is a utility program for translating L programs into other netlist and geometric
formats. The command we used for generating the routing file is shown below:

Lc -t scmos -inc pdm.X -inc pdm.macro -o pdm.R -AutoCells pdm.S

The above command means the technology file is scmos, which checks whether
the pdm.X and pdm.macro files are included. The output file name is pdm.R. For the
netlist information it uses the pdm.S file. The output file is pdm.R and some controls
can be applied manually on this file by using TERMPLACE commands at the end of
the IF (-LPAR-NET) clause.

TERMPLACE elk "WEIGHT 9";
TERMPLACE elk "CLOCK LEFT clk.l RIGHT clk_r";
TERMPLACE x "TOP";
TERMPLACE y "TOP";
TERMPLACE in "TOP";
TERMPLACE reset "TOP";
TERMPLACE yout "BOT";
TERMPLACE xout "BOT";
TERMPLACE z "BOT"
TERMPLACE rout "BOT";

65

The above control lines mean that the highest priority is assigned to the elk signal
in the routing process and an additional channel is allocated for the elk signal. The
input port terminals x, y, in, and reset are to be placed on the top side of the layout,
and the output port terminals yout, xout, z, and rout are to be located at the bottom
of the layout.

7.4.3 Layout by Placement and Routing

Complete standard cell layouts are acquired by using the cell script scJpar, which re-
quires all the files generated so far. The script includes sc-build, AutoCells placement
and routing, and he programs. It creates a set of standard cell layout or bounding
boxes. The AutoCells placement and routing program is used to create an L pro-
gram for the final layout. Lc is used to compile that program into a simple L file (in
ASCII or binary format). The shell command of scJpar that is used to generate the
multiplier is shown below.

sc.lpar -t scmos -x -g gdt.ctl -ROW 9 pdm.R

where
-t scmos
-x
-g gdt.ctl
-ROW 9

Technology file is the scmos
Produces binary format output file
The standard cell control file is gdt.ctl
The number of rows in the top level layout
is 9

-pdm.R : The routing file name is pdm.R

The above cell command produces the default output file pdm-route.X, which can
be used in the GDT graphic editor Led to simulate and convert into the CIF file
format.

7.4.4 Converting the Layout into a CIF File in Led

The shell command invoking Led with the final layout for the multiplier is shown
below:

66

Led -t scmos pdm_route.X &

The Led screen consists of two windows. The layout appears in window 2 and
shows just the first level of the layout, that is, the terminals and outlines of the rows.
To see the entire levels, press the "p" key and modify the plot depth to 3, then hit the
return key. After that, the tab key should be pressed to redraw the layout. Figure 18
shows the Led screen snapshot of the layout.

5 , ,.... .,:...,..a,_D .,..□.. ■:□ .,..,. ..„.,..■.,.:,..,..,. .:::„..,■■,:.„.. ■ .„: :■■■■,....:,.:-.■■ :■,....-. ■■l0
a öl •*■(•• • ■« wnnjO'Mag? ÖL« :\
Mit»* ilium" iim»»»«*•»'

»CD**» »•«•• » »n n'jnj»»*««"■« *.. *» DV!**DD"J* •*«■• * »D ' fen*■*>«"•■««»«,..» «** !:*CD"ODS

CT!s3iiiiiI)]J3^E»i4l3Ste5 DlD'SaSfflmj
am .K ! E..." . •*□ »ana^jni' *>'*• *-«•» • *D \ D3an <J*«»»« * ,*□ ;«□ DKcm * *» ",*»" * *a OB

Sa»■ö3i*j«. . <ä säin"-. ö .»J«. . .IHU-H ffl,.j.. . *;■'."•>-□ öD«K4.. . ^a-.-.-coiiiiSöiOTSad0,

^"^^SiiiiiiTTii^^^^jiiirJftWsSS} ^^SiiiiiiTiiTniTiTi •>if^""*f"i*''V**r'"**^'*^* t - * T" * W?1?""*^?™'.^'. '*,P*?"*H^"'"*r*.,$ft* 3****^"'™«^""*'''**'^?"* ^nV* ^.| .^j ^£ ^«J
QtD ^ * •",-" ■ * - -D ** O * *D^ *■" * "J..I; .-|" «i »:i."»^..* ::.*D " '* "* I-.*«»? * «r " "*•*;*:* ;n!*;n^..;.-.Q;DlB

Br Qj.rf«:.. ■*i— Öi ..*+". . «--^m. IM!«; .. «!•"•■:£&.*J». . ■,-— Di i«l<V;:» «'•'•* öi^wfA, • «iß

»y^KW1 Ui^äi«.^11 vs^&tes«1111 »n^i^W111 w~apa2jfcuIIN »^i^sÄsS1

ti ■riTiTjTiTnM.*ä:^'^iiiiii^i"iT'fiiT)-tii^TiiTi'nTii'fiTin,iii"Jis^Ä*3i
»D* < «pram1up»*• »"•» » *p:;r#p3pg]* 03«fn:aa];DH«'n*i''<:'^ni« «gaugi- »■*»*««« «:»«

JM^.MHKNK-WM^» Hfcl.«w^«J*{« M.K».a|HJ«^«>fra2i£» v*td.*&jk'*aU£ilB ^f^McT^MUMB nui,M
Ett'i«'...* *••* * ;:'*U '*' ^D*'•''"•^.:,*.!':!!*ip :'.*'.:^*:'f:.*?*f. t; ' "*D *'*ö%*„*^ • * . *D:-* *P"..;**." * ytO .»'*i*.'*««« ;» *oH

Böiäbiöi] m,»4.^, . «Dcäüj-dii &*.J.. , <<«•äiüiDÖinÄnDäöioön^imäDib^ *"x!S

-=f-a □ an

Figure 18: GDT Layout of the Multiplier

There are two kinds of menus, foreground and background, in the Led graphic
editor. The background menu is used to exit Led, change screen color and cursor
type, and so on. For the other facilities, the foreground menu is used. To invoke the

67

background menu, place the cursor on the gray part that does not belong to the two
windows, and press the right mouse button. A detailed description of Led is beyond
the scope of this paper. For further information, please refer to the Led Graphics
Editor User Guide [10].

To convert the layout into a CIF file, invoke the foreground menu by pressing the
right mouse button on the window area and selecting the Utility item. Then choose
CIF submenu (or press 6), and change the mode to WRITE by clicking the READ
icon, and give the file name. To exit Led, go to the background menu and select
EXIT, or press the Ctrl+D keys.

8 L2MCIF — XY Mask Translation Compiler

This section describes the functionality of the L2MCIF compiler. This compiler is the
critical link between the physical layout and IC fabrication. The physical standard cell
layout is created by the GDT layout compiler tool suite using SCMOS technology. The
layout should be prepared for mask fabrication at the MOSIS IC fabrication facility.
MOSIS supports the SCMOS process technology and also provides compatible I/O
pads and pre-laid out pad frames to perform the final chip assembly. These I/O
pads and pad frames are readable and can be edited using the MAGIC tool. The
HOL2GDT methodology supports and integrates MAGIC as the final chip assembly
tool that assembles the standard cell physical layout from GDT to the I/O pad frames
supplied by MOSIS. Global routing among the layout, pad cells, and power rails is
also performed in MAGIC. To accomplish this, another compiler is needed to transfer
the GDT layout to the MAGIC layout.

The L2MCIF compiles the XY layout layer mask from GDT to the mask that
is readable and reproducable in MAGIC. The layout mask is extracted from GDT
in the Caltech Intermediate Form (CIF). CIF is an industry-wide standard layout
description language used to transfer mask-level layouts between design tools. An
alternative layout mask format is GDS II. The basic difference between GDS II and
CIF is that GDS II is a binary-compiled format, and CIF is an ASCII format. The
ASCII format provides easy readability and editability to mask compilers such as the
L2MCIF.

A CIF XY layout mask consists of specific code-words for different layers (metall,
metal2, N-diffusion, etc). Each section in the mask specifies the code word for a
particular mask layer, followed by X-axis and Y-axis co-ordinates that depict the
area over which the layer is laid out. Below is an example of an XY mask for the

68

polysilicon layer (L POLY). Each line specifies a rectangular box (B), followed by
length (L) and width (W) dimensions of the box and the XY coordinates for the
center location of the box. For more details on CIF language syntax and semantics,
please refer to the GDT Standard Cell Library [4].

Definition Start 1 100 l;
L POLY;

B L 3 W 3 Center 60, 6;
B L 3 W 19 Center 60 -l;
B L 3 W 3 Center 24, 6;
B L 3 W 19 Center 24 -l;
B L 3 W 3 Center 12, 6;
B L 3 W 19 Center 12 -l;

Definition Finish;

The need for a mask compiler like the L2MCIF becomes necessary, because the
CIF mask extracted from GDT layout tools has different mask-layer code words and
syntax to specify XY coordinates than those supported by the MAGIC tool. The
primary function of the L2MCIF is to compile the CIF mask of the GDT into a
CIF mask of MAGIC so that we can utilize the ready-made pad design available in
MAGIC. This can be done by mapping the layout layer code-words and appropriate
language syntax between the two CIFs.

The L2MCIF compiler performs a dual-pass operation on the CIF mask generated
by GDT tools. On the first pass, the L2MCIF does mask-layer codeword mapping
between GDT and MAGIC. The second pass performs three functions: (1) maps the
different contact types in GDT CIF mask to the appropriate combination of MAGIC
CIF mask layers, (2) sets the minimum feature size for the contact dimensions and
spacing between layer, (c) rewrites the mask data using the CIF syntax acceptable
to MAGIC.

The design rules for the contact dimensions and minimum spacing between layers
are different from each other and this causes design rule errors when mask layout
is ported from GDT to MAGIC. The L2MCIF compiler attempts to minimize and
correct some of these design rule errors during the compilation process. Since the
compiler is not intended to be a design rule checker, design rule errors occur in
complicated layouts, which can be corrected by using the MAGIC design rule checker
after the mask layout is ported from GDT and recreated in MAGIC.

69

Table 1: CIF mask layer mapping between GDT and MAGIC

GDT CIF levels SCMOS levels Magic CIF Level
NSUB N well substrate layer OWN
PSUB P well substrate layer CWP
NPLUS N plus implant mask CSN
PPLUS P plus implant mask CSP
NDIFF (type I) ACTIVE mask layer CAA + CSN for contacts

and transistors
NDIFF (type II) CAA for other cases
NDIFF1 (type I) ACTIVE mask layer CAA + CSN for contacts

and transistors
NDIFF1 (type II) CAA for other cases
PDIFF ACTIVE mask layer CAA
PDIFF1 ACTIVE mask layer CAA
POLY POLYSILICON layer CPG
MET1 METALI layer CMF
MET2 METAL2 layer CMS
CUTMD METALI to ACTIVE layer contact CCA
CUTMP METALI TO POLYSILICON layer contact CCP
CUTMM VIA METALI TO METAL2 layer CVA
GATE NO EQUIVALENT NO EQUIVALENT
LEV NO EQUIVALENT NO EQUIVALENT
MARKER NO EQUIVALENT NO EQUIVALENT
ICONLEV NO EQUIVALENT NO EQUIVALENT
NO EQUIVALENT OVERGLASS COG

An illustration of mask-layer mapping is shown in Table 1. Both GDT and MAGIC
use the SCMOS (Scalable CMOS) technology. The only difference is that different
layout mask-layers are denoted by unique keywords in each tool. The left column
shows all the layer keywords supported and generated by the GDT tools. The center
column displays the equivalent keywords used by the SCMOS technology. Finally,
the right column shows the equivalent keywords supported by the MAGIC tool.

A unique case is the NDIFF and NDIFF1 GDT mask layer, which is mapped
as an ACTIVE diffusion layer in SCMOS technology. These layers have two distinct
mappings based on the place to which the GDT cell is to be mapped. If the cell
being mapped is a contact or transistor, then the NDIFF layers are mapped as
a combination of two mask-layers, CAA and CSN, in MAGIC. The CAA is the
active mask-layer and CSN is the N PLUS SELECT N-plus implant mask-layer
for the SCMOS technology. The N-plus implant mask-layer, along with the active
mask-layer, creates the required N-diffusion layer. If the cell is mapped to anything
other than a contact or transistor, then the NDIFF layers are mapped as a single
mask layer CAA in MAGIC. The GDT tools have two types of P-diffusion (PDIFF,
PDIFF1) and N-diffusion layers (NDIFF, NDIFF1) to provide more controllability
during CIF mask creation. The L2MCIF compiler maps the PDIFF and PDIFF1
layers to the single MAGIC mask layer, CAA, and both NDIFF and NDIFF1
layers are mapped to the same combination of CAA and CSN mask layers.

70

Table 2: Length x Width Summary for Contacts

GDT contact name GDT Mask Layers MAGIC contact type MAGIC contact size
M1M2 - Metall Metal2 Contact MET1, MET2, CUTMM m2c 4x4
MPOLY - Metall Poly Contact MET1, POLY, CUTMP pc 4x4
MPDIFF - Metall P-Diffusion Cont. MET1, NSUB, PPLUS, PDIFF, CUTMD pdc 4x4
MNDIFF - Metall N-Diffusion Cont MET1, NDIFF, CUTMD ndc 4x4
MNSUB - Metall N-Substrate Cont. MET1, NSUB, NDIFF1, CUTMD nsc 4x4
MPSUB - Metall P-Substrate Cont. MET1, PPLUS, PDIFF1, CUTMD psc 4x4

Certain mask layers {GATE, LEV, MARKER, ICONLEV) supported by GDT
have no equivalent layers in MAGIC. Any specification for these layers in the GDT
CIF mask is scrubbed out by the L2MCIF compiler. On the other hand, the MAGIC
mask layer COG has no equivalent layer in GDT.

During the second pass of the L2MCIF compiler, the GDT CIF specifications
for different contact types are mapped to a combination of multiple MAGIC CIF
mask layers. The mapping for the contacts is illustrated in Table 2. The GDT CIF
specifications for the contacts have different minimum dimensions that might cause
design rule errors when they are mapped to MAGIC CIF mask. These design rule
errors can be avoided by the L2MCIF compiler by mapping the GDT CIF specification
for the contacts to the MAGIC CIF contact specification, as shown in Table 2.

The syntax of the L2MCIF compiler is as shown below.

12mcif <input file: gdt cif> <output file: magic cif>

The output of L2MCIF is a MAGIC readable CIF file. This CIF file can be read
by invoking an empty MAGIC window with a new name and specifying the CIF read
command within the MAGIC shell as shown below.

cif read <magic cif file>

The cif read command recreates the layout in the MAGIC layout editor window.
To save all subcomponents in the hierarchy, the MAGIC command write all should
be executed. For more details about MAGIC commands, please refer to the MAGIC
manual [8]. The MAGIC layout retrieved from CIF file with all errors corrected is
shown in Figure 19.

Once the layout in MAGIC is edited to resolve design rule errors, the final chip
assembly of the layout and I/O pad frame is performed. First, the global routing

71

ÜÜI

■■
ill •üä Kg

jui:tät ^feäm Hu Itala H»lt«Bay*fl*,i4a&;^J HsM*f**g^bäIJ»M*» I»1M1MM klii«l»k»lwihUil«)
H—P^rr-" } —' Tp^* p i ~ '

]L
. . n .n—

fff]
^—, rr1—1 '1,

XüüCi»fci^i*K^^

Figure 19: MAGIC Layout of the Multiplier

of the primary input and output ports of the layout to the respective input and
output pad cells is performed. Then, global power rail routing is performed. The
final assembled layout for the multiplier is shown in Figure 20.

9 Functional Testing via Multi-Level Simulation

The HOL2GDT and L2MCIF compilers facilitate functional simulation and testing
of the design using multiple simulators. In current methodology three simulators are
involved:

• Mentor Graphics Lsim mixed-level simulator

• MAGIC supported IRSIM simulator

• SPICE3 simulator

72

f
1
I
'S
'I
I I

S!ps!Ü «Altai

t'Tf =■*■■■::■ tv!*-.*1'*

';>-* 3^:=;-;:üis^v:?;r-^ *•??-.-

Ü w^
O •■:• :" tüi o

Figure 20: MAGIC Layout after Pad Frame Assembly

9.1 Mentor Graphics Lsim Simulator

The Lsim simulator is a mixed-level simulator that supports functional, gate, and
switch level simulations. The Lsim simulator is an integral component of the Mentor
Graphics GDT design system. It requires two input files, the extracted layout netlist
file and the vector stimulus file. The Led layout editor provides a menu-driven utility
that extracts the design netlist from the standard cell layout and translates it into a
format supported by Lsim. The utility prompts for an output filename to write out
the netlist. The netlist file has an .N suffix. The vector stimulus file has to be built
and supplied by the user. The vector file is also known as the initialization file, as it
initializes the inputs of the circuit before the simulator starts. The vector file has a
specific format that consists of three sections.

The first section starts with the Lsim command order. This section lists the order
of the primary input and output ports of the design. The simulator graphic interface

73

displays the result of the simulation as waveforms of the I/O ports and lists them in
the order provided by the order command. An example of an order command for the
serial multiplier design is shown below:

order elk reset y x in yout xout z rout

The second section of the vector file is an initialization section. The primary input
signals like clock and reset are initialized at the start of the simulator. An example
of signal intialization is shown below:

pwl elk 0,1 5,t 10,t repeat 0
s 20
h reset
s 20

The above example shows how a clock signal called elk is initialized for 10 ns clock
period. Here, pwl and repeat are Lsim simulator commands. The pwl command is
an acronym for piecewise linear. The first line of the initialization section defines a
piecewise linear clock signal named elk that is low (logic 0) at 0 ns, toggled to high
at time 5 ns, and toggled to low at 10 ns. This waveform is repeated from the time
0 ns. The next line in the initialization section is s 20, where s is an acronym for the
step command. This command line lets the simulator advance 20 ns. The next line
sets the reset signal to high (logic 1), which would reset the circuit under simulation.
Finally, the last line performs a step command to advance 20 ns. The user can also
initialize any tied-low or tied-high signals in this section.

The third section is a vectors section, in which a vector stimulus (low, high or
don't-care) is applied to input signals, followed by a step command. Below is an
example of a vector section:

1 reset y
h x in
s 10

X reset y x in
s 10

74

The first vector sets the reset and y signals to low and the x and in signals to high.
The input signals can also be set to don't-care value (logic X).

Note that if the vector file is not available or not supplied to the simulator, then
the Lsim is invoked in the interactive mode. In this mode the signals are initialized
interactively. The vector file is required only if the simulator is to be run in batch
or regression-testing mode. The vector file usually has an A suffix. Once the vector
stimulus file is completed, the Lsim simulator is invoked with the following command
line syntax:

Lsim -i pdm_vect.i pdm.N

The -i parameter indicates that Lsim will get the simulator startup commands
from the pdm^vectA file and pdm.N is the extracted netlist file from the Led layout
editor.

The result of the Lsim simulation is shown in Figure 21.

Probe Display Mindoui 1: timescale = 26.00nS
Time = 1232.BBnS JlJ|[__JlL^I^lUl

[
I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I
0 140 280 420 5B0 700 Ö40 930 1120 1260

c Ik
reset
5/
x
i n
yout
xout

Figure 21: The Result of Lsim Simulation

9.2 IRSIM Simulation

IRSIM is an event-driven, logic-level simulator for MOS (both N and P) transistor
circuits. This simulator is used to simulate the functionality of the circuit after
the layout is converted from the GDT format into MAGIC format. There are two
simulation models in the IRSIM, the switch model and the linear model, which
are determined by the method of modeling the transistors in the circuit. In the
switch model, each transistor is modeled as a voltage-controlled switch. It is useful
for initializing or determining the functionality of the network. In the linear model,

75

each transistor is modeled as a resistor in a series with a voltage-controlled switch a
capacitance. Node values and transition times can be computed from the RC network.

9.2.1 Syntax of the IRSIM

The synopsis of the IRSIM is as below:

irsim [-s] prm.file sim.file [+hist_file] [-cmd.file]

If the -s switch is specified, two or more transistors of the same type are to be
connected in series, and no other connections to their common source/drain will be
stacked into a compound transistor with multiple gates.

The prmJile is the electrical parameters file that configures the devices to be
simulated. It defines the capacitance of various layers, transistor resistances, and
threshold voltages. The parameter file usually has a suffix of .prm. The sim_file
is a file to be simulated that contains three types of information: environmental
information (scaling, timestamps, etc.), the extracted circuit corresponding to the
mask geometry of cells in the circuit, and the connections between this mask geometry
and the subcells of the circuit. The simüle is a hierarchical netlist of the circuit and is
obtained by using MAGIC's extractor EXT. The MAGIC command ext will generate
the netlist, and by default the output file name has .ext suffix. The extracted circuit
is converted to a fiat sim file by the EXT2SIM program. This flattened extract netlist
file can be used by many simulation tools such as Crystal, sim2spice, and IRSIM. The
basic syntax of the EXT2SIM is shown below:

ext2sim [-0 simfile] root-file

This program runs just with the root-file name that has an .ext suffix. Since it
is the root of the tree to be extracted, all files it references are recursively flattened.
The flat representation of the circuit is written in the file root. sim. In addition, two
additional files, root.al and root.nodes, are generated by default for the node aliases
and the locations of all node names in CIF format, respectively.

For the IRSIM syntax again, the file names prefaced with a hyphen are assumed
to be the command files that contain command lines to be processed in the normal

76

fashion. These files are processed line by line, and if the last command of the file is
not an exit, IRSIM will accept further commands from the user.

The actual command line used to simulate the multiplier is shown below:

irsim s.prm pdm.sim -pdmtest

The s.prm is the parameter file, pdm.sim is the output from the ext2sim program,
and pdmtest is the command file. The s.prm and pdmtest files are listed in the
appendix.

The IRSIM commands used to test the multiplier are h, 1, x, s, and ana. The
commands h and 1 make nodes logic high (1) and logic low (0), respectively. The
command x removes nodes from the display list, and the command s n simulates for
nns, in which n is a step size. Finally, the command ana displays all nodes in the
analyzer window.

9.2.2 Analysis of the IRSIM Simulation

The simulation result of the IRSIM is shown in Figure 22.

Ü despad zoom base uindou print 53

EMllft'inillulS^fiWlSTfiTl

Figure 22: The Result of IRSIM Simulation

The elk, reset, y, x, and in are the input signals, and yout, xout, z, and rout are
the output signals. The x signal is the multiplicand, and y is the multicator. The
multiplier in the simulation is five-stage, thus the multiplicator is a five-digit binary
number. In this simulation, the least significant bit enters first, hence the value of

77

the multiplicand x becomes 11011112 and the y value becomes IOOOI2. The result
of the multiplication is represented by the signal z, which has a value of 1110112.
The z value is extracted only during the period when rout value is at low state. The
first 0 value of z is ignored. In the decimal system, the multiplicand x is 111 and
multiplicator y is 17. The correct output value will be 111 * 17 = 1887. The z value
59 represents the closest value for the division of the x * y by 25.

9.3 SPICE Simulation

SPICE is a general-purpose circuit simulation program for nonlinear DC, nonlinear
transient, and linear AC analyses. Circuits may contain resistors, capacitors, induc-
tors, mutual inductors, independent voltage and current sources, four types of de-
pendent sources, lossless and lossy transmission lines, switches, uniformly distributed
RC lines, and the five most common semiconductor devices: diodes, BJTs, JFETs,
MESFETs, and MOSFETs. In HOL2GDT methodology, the SPICE version 3f4 was
used.

9.3.1 History of Using the SPICE Program

The first multiplier chip we built did not work properly. That is, the rout signal's 0
value duration was one clock cycle shorter than expected as shown in Figure 22. After
investigating the multiplier layout, we suspected that there might be a clock skew
between the third and fourth FFs, and if the skew is greater than 6 ns, that could
explain the malfunction of the multiplier chip. Hence we decided to verify the clock
skew problem by using the SPICE3 simulator. However, the SPICE3 simulator was
not powerful enough to simulate the entire multiplier circuit. For example, a transient
analysis for a single FF would take 10 to 15 minutes. The multipler contains 36 FFs
as well as many other components. It would take unreasonably long time to simulate
the multiplier. Since the main purpose of the simulation was to calculate the time
gap between the clock inputs to FF3 and FF4, we cut down the layout (Figure 23).
That is, we removed other lines and components except for the clock net and FFs,
and even the FFs were shrunken as inverters.

Another problem was waiting for us. Because SPICE3 considered all nodes that
were connected with metal or poly lines to be the same node, we could not get any
delay difference at all among all clock input nodes of the FFs. We suspected that
there would be a clock signal delay between the FF3 and the FF4 because the path
length from root clock signal to the FF4 was much longer than the length from the

78

Figure 23: Simplified Multiplier Circuit for SPICE Simulation

root to the FF3. However, if simulator3 considered those two input nodes to be the
same one, there was no way to get the signal delay. We next modeled the clock net by
manually replacing all the poly feed lines with resistors so that the simulator could
recognize the FF3 and FF4 clock signal input nodes as being different. In modeling
the circuit we made use of all the information from the ext and ext2spice program.
That is, the resistance value for the poly feed line was extracted from the spice file that
the ext2spice program produced. However, the capacitance values of the poly feed
lines were ignored because their values were ignorably small. For the MOS model, the
process parameters for actual manufacturing were used. (The MOS transistor model
is attached in the appendix). The modeled circuit is shown in Figure 24.

79

Figure 24: Modeled Clock Net

9.3.2 The Simulation Procedures and the Results

To get the SPICE3 input file, two programs should be executed. First, the MAGIC's
extraction program EXT is used to get the hierarchical netlist, which is then used as
the input to the ext2spice program to get the spice input file. The basic syntax of the
ext2spice program is shown below.

ext2spice [-0 outfile] [-Cxxx] [-R] root_file

The rootüle is the output of the MAGIC ext command that has the .ext suffix.
Without the [-0 outfile] option, the spice file will generate the file name, root-file

80

.ext. The [-Cxxx] option will supress all the node capacitance values below xxx and
the [-R] option will supress all the internode resistances. The [-Cxxx] option does
not make any noticeable difference to the result, because the capacitance values are
insignificantly small. However, [-R] option makes severe difference to the result. The
actual command used to get the spice input file is shown below.

ext2spice -R modeled.ext

This command produces the modeled, spice file, which is to be modified to include
MOS model parameters, a DC power source, and the clock input signal. The final
spice input file is listed in the appendix.

Finally, the SPICE3 program is invoked by command below:

spice3 modeled.spice

If there is no error in the model.spice file, the SPICE3 program gives a prompt.
The first step is to run the file by issuing a run command. The second step is to do
a transient analysis by issuing a tran command. The syntax of the tran command is
like below:

tran tstep tstop [tstart [tmax]]

Tstep is the printing or plotting increment for the output. If the tstep value is
too small, then the simulation will take a long time to get the result. On the other
hand, if the tstep value is too large, some details of the simulation will be lost. Tstop
is the final time, and tstart is the initial time. If tstart is omitted, it is assumed to be
zero. The transient analysis always begins at time zero. Tmax is the maximum step
size that SPICE3 uses. For the default, the program chooses either tstep or (tstop
- start)/50.0, whichever is smaller. Tmax is useful when one wishes to guarantee a
computing interval that is smaller than the printer increment, tstep.

The actual tran command we used is shown below:

tran 2ns 800 ns

81

The next command involved is plot. It is used to display the simulation result in
graphic mode on the screen. The actual plot command being used is:

plot v(301) v(329)

The above command opens a window that shows the transient voltage values of
the nodes numbered 301 and 329 in graphic mode. Node 301 corresponds to FF3,
whose input is supplied through the resistor Rl, and the node 329 corresponds to
FF4 whose input is supplied through the resistors Rl, R2, R9, RIO, Rll, and R13.
The simulation result is shown in Figure 25.

B spiceS

Clock iijn»l to FF3 Clock »ifnal to FF4

r "i ._

0.0 100.0 200.0 300.0 400.0
tine

600.0 700.0

I \ T\

v. ^-4 1

365.0 370.0 375.0 360.0 395.0 400.0

Figure 25: Delay between FF3 and FF4 Clock Signals

The simulator result reveals that there exists a time gap between the clock inputs
of the FF3 and FF4 (the lower window shows that the time gap is around 7ns).
With the SPICE3 simulation the clock skewing problem can be determined, and this
skewing is solved by adding additional metal clock net in each row.

82

10 Testing of the Actual Chip

Figure 26 shows the actual fabricated chip.

Figure 26: The Multiplier Chip

For the final test to check whether the chip functions correctly, a Hewlett Packard
Logic Analysis System model 16500A (shown in Figure 27) is used. The screen of the
analyzer show the testing result.

^ESSM^*'-*^:^ *\'i • £7' Uft*«f^V^'i *;\, v.

WS^v^-^r-^^' .-'■ ■''

Figure 27: Hewlett Packard Logic Analysis System 16500A

83

11 Conclusions

In this report we explained the HOL2GDT methodology by describing how to define
formal implementation descriptions of the hardware design, how to translate imple-
mentation descriptions into L language schematic generator models, and how to get
physical IC layouts from schematic models. A complete example of an n-bit serial
multiplier design was used to illustrate the HOL2GDT design methodology. Since
the implementation description of the multiplier is formally verified and the layout is
generated from the verified description, we believe in the correctness of the multiplier
chip. The multiplier example is a detailed illustration of the HOL2GDT methodol-
ogy. Currently we are working on the implementation of the Data Encrytion Standard
(DES) algorithm on Xilinx's FPGA using the HOL2GDT methodology.

84

References

[1] Tom Melham, Higher Order Logic and Hardware Verification, Cambridge Tract
in Theoretical Computer Science 31.

[2] Juin-Yeu Lu, Shiu-Kai Chin, Linking HOL to a VLSI CAD System, CASE Center
Report No. 9308, May 1993.

[3] Shiu-Kai Chin and Juin-Yen Lu, The Mechanical Verification and Synthesis of
Parameterized Serial/Parallel Multiplier, CASE Center Tech. Report No. 9140,
Syracuse University, March 1991.

[4] Mentor Graphics, Inc., GDT Standard Cell Library User Guide version 5. May,
1991.

[5] R. Kumar, K. Schneider, T. Kropf, Structuring and Automating Hardware Proofs
in a Higher-Order Theorem-Proving Environment, Formal Methods in System
Design, 2, pp. 165-223, 1993.

[6] C. Mead and L. Conway, Introduction to VLSI systems, Addison-Wesley, 1980.

[7] Mentor Graphics, Inc., L Compiler User Guide version 5, May 1991

[8] Gordon Hamachi, Robert Mayo, Magic Manual version 6.3, Western Research
Laboratory, September 1990.

[9] University of Berkeley, SPICE3 Users Manual, version 3f4, August 1995.

[10] Mentor Graphics, Inc., Led Graphics Editor Users Guide version 5, May 1991

85

Appendix

A Basic Gates Definition File

(* Behavioral definitions of the primitive gates for H0L2L compiler *)
(* Updated 2/20/95; types ":sig" and ":toggle" are removed. *)
(* Updated 4/21/95; definitions of master-slave FFs *)
(* Updated 11/7/96; transferred to H0L90.7 *)

load_theory "string";
new_theory "gates";

val port_width = define_type
■[fixities = [Prefix, Prefix] ,
name = "port_width",
type_spec = 'port_width = pin I bus of num'};

val port = define_type
{fixities = [Prefix, Prefix, Prefix, Prefix],
name = "port",
type_spec = 'port = in_port of string => port_width

I out_port of string => port_width
I inout_port of string => port_width
I cell_size of string'};

val inv = new_definition
("inv",
(—' inv(a:num->bool, b) =

!t. b t = "(a t)'—));

val or = new_definition
("or",
(—'or(x:num->bool, y, out) =

!t. out t = x t \/ y t'~));

val or3 = new_definition
("or3",
(—'or3(x:num->bool,y,z,out) =

!t:num. out t=xt\/yt\/z t'—));

val or4 = new_definition

86

("or4",
(— 'or4(w, x, y, z, out) =

!t:num. out t = w t \/ x t \/ y t \/ z t '-));

val or5 = new_definition
("or5",
(—'orSCxinum-^ool.y.z.w^.out) =

!t. out t = x t \/ y t \/ z t \/w t \/q t'-));

val and2 = new_definition
("and2",
(—'and2(x:num->bool, y,

!t. out t = x t A y
out) =
t'—));

val and3 = new_definition
("and3",
(—'and3 (x:num->bool,y,

! t.out t = x t A y
z,out) =
t /\ z t<--));

val and4 = new_definition
("and4",
(—'and4 (x:num->bool,y, z,w,out) =

! t.out t = x t A y t /\ z t A w t '));

val and5 = new_definition
("and5",
(—'and5 (x:num->bool,y, z,w,q,out) =

! t.out t = x t A y t A z t A w t A qt'-));

val xor = new_definition
("xor",
(—'xor(x:num->bool, y, out) =

!t. out t = (~x t A y t) \/ (x t A ~y t)'--));

val nand = new_definition
("nand",
(—'nand(x:num->bool, y,

!t. out t = ~(x t A
out) =
y t)'-));

val nand3
new_definition
("nand3",
(—'nand3(in0, inl, in2, out) =

87

!t:num. out t = "(inO t A inl t /\ in2 t)'--));

val nand4 = new_definition
("nand4",
(—'nand4(in0, inl, in2, in3, out) =

!t:num. out t =
~(inO t A inl t A in2 t /\ in3 t)'--));

val nand5 = new_definition
("nand5",
(—'nandBCxinum-^ool.y.z.w.q, out) =

!t. out t =

"(x t A y t A z t Aw t Aq t)<--));

val nor = new_definition
("nor",
(—'nor(x:num->bool, y, out) =

!t. out t = ~(x t \/ y t)'—));

val nor3 = new_definition
("nor3",
(—cnor3(in0, inl, in2, out) =

!t:num. out t = "(inO t \/ inl t \/ in2 t)'—));

val nor4 = new_definition ("nor4",
(—'nor4(in0, inl, in2, in3, out) =

!t:num. out t =
"(inO t \/ inl t \/ in2 t \/ in3 t)'~));

val nor5 = new_definition
("nor5",
(—'nor5(x:num->bool,y,z,w,q,out) =

!t. out t =
~(x t \/ y t \/.z t \/ v t V q t)'—));

val d_reg = new_definition
("d_reg",
(—'d_reg(din:num->bool, elk, reset, q) =

!t. (reset t ==> ~q t) /\
("reset(SUC t) A clk(SUC t) ==>

(q (SUC t) = q t)) A
("reset(SUC t) A "elk t A ~clk(SUC t) ==>

(q (SUC t) = q t)) A
("reset t A ~reset(SUC t) A elk t A ~clk(SUC t)

88

==> (q(SUC t) = din t)) /\
("din t /\ elk t A ~clk(SUC t) ==> ~q(SUC t))'--));

val d_reg_nr = new_definition
("d_reg_nr",
(—'d_reg_nr(din:num->bool, elk, q) =

!t. (clk(SUC t) ==> (q (SUC t) = q t)) /\
("elk t A ~clk(SUC t) ==> (q (SUC t) = q t)) A
(elk t A ~clk(SUC t) ==> (q(SUC t) = din t))'—));

val d_reg_wqb = new_definition
("d_reg_wqb",
(—'d_reg_wqb(din:num->bool, elk, q, qb) =

!t.(qb t = ~q t) /\
(elk(SUC t) ==> (q (SUC t) = q t)) A
("elk t A ~clk(SUC t) ==> (q (SUC t) =qt)) A
(elk t A ~clk(SUC t) ==> (q (SUC t) = din t))'--));

val d_reg_wrqb = new_definition
("d_reg_wrqb",
(—'d_reg_wrqb(din:num->bool, elk, reset, q, qb) =

!t. (qb t = "q t) A
(reset t ==> ~q t) A
("reset(SUC t) A clk(SUC t) ==> (q (SUC t) = q t)) A
(~reset(SUC t) A "elk t A ~clk(SUC t) ==> (q (SUC t) = q t)) A
("reset t A ~reset(SUC t) A elk t A ~clk(SUC t)

==> (q(SUC t) = din t)) A
("din t A elk t A ~clk(SUC t) ==> "q(SUC t) A qb(SUC t))'—));

val lsl_wr = new_definition
("lsl_wr",
(—'lsl_wr(din:num->bool, phi, phib, reset, q, qb) =

!t.(qb t = ~q t) /\
(reset t ==> ~q t) A
("reset t A phi t A "phib t ==> (q t = din t)) A (* Flush *)
(~reset(SUC t) A "phi t A "phi(SUC t) A phib t A phib(SUC t)

==> (q(SUC t) = q t)) A (* Hold *)
("reset t A "reset(SUC t) A phi t A "phi(SUC t) A
"phib t A phib(SUC t) A (din(SUC t) = din t)

==> (q(SUC t) = din t)) A (* Sample *)
("din t A ~din(SUC t) A "reset(SUC t) A phi t A
~phi(SUC t) A "phib t A phib(SUC t) ==> ~q(SUC t))'--));

(* Zero *)
val lslnr = new_definition

89

("lsl.nr",
(—'lsl_nr(din:num->bool, phi, phib, q, qb) =

!t.(qb t = ~q t) A
(phi t A "phib t ==> (q t = din t)) A
("phi t A "phi(SUC t) A
phib t A phib(SUC t) ==> (q(SUC t) = q t)) A

(phi t A ~phi(SUC t) A
~phib t A phib(SUC t) A (din(SUC t) = din t)
==> (q(SUC t) = din t))'—));

val pass = new_definition
("pass",
(—'pass (dl:num->bool,d2, g, gb) =

!t. g t A "gb t ==> (dl t = d2 t)<—));

val by_pass = new_definition
("by_pass",
(—'by_pass (inl:num->bool, out) =

!t:num. inl t = out t'—));

val bus2wire = new_definition
("bus2wire",
(—'bus2wire (abus:num->num->bool) (n:num) (abit:num->bool) =

!t:num. abus n t = abit t'—));

val wire2bus = new_definition
("wire2bus",
(—'wire2bus (abit:num->bool) (abus:num->num->bool) (n:num) =

!t:num. abit t = abus n t'—));

val tbfi = new_definition
("tbfi",
(—'tbfi (a:num->bool,out, g, gb) =

!t. ((a t A g t) \/ (~a t /\ "gb t))
==> (out t = "at)'—));

val buffer = new.definition
("buffer",
(—'buffer(inl:num->bool,load,out) =

! t. out t = (load t => inl (t) | out(t - 1))'—));

val buffer_s = new_definition
("buffer.s",
(—'buffer_s(inl:num->bool,load,out) =

(* Flush *)

(* Hold *)

(* Sample *)

90

! t. out t = (load t => inl(t) | out(t - 1))'--));

val vdd = new_definition
("vdd",
(—'vdd(out) = !t:num. out t'—));

val gnd = new_definition
("gnd",
(—'gnd (out) = !t:num. "out t'—));

export_theory();
close_theory();

B Macro Cell Definition File: pdm.macro
L:: TECH ANY
SCHEMATIC d_reg()
{

IN in;
IN elk;
IN reset;
OUT out;

INST msff msff;

WIRE msff.elk TO elk;
WIRE msff.reset[0] TO reset;
WIRE msff.reset[1] TO reset;
WIRE msff.in TO in;
WIRE msff.out TO out;

>

SCHEMATIC d_reg_nr()
{

IN in;
IN elk;
OUT out;

INST msff.nr msff.nr;

91

WIRE msff_nr.clk TO elk;
WIRE msff.nr.in TO in;
WIRE msff_nr.out TO out;

}

SCHEMATIC d_reg_wqb()
{

IN in;
IN elk;
OUT out;
OUT out_b;

INST msff_nr msff;

WIRE msff.elk TO elk;
WIRE msff.in TO in;
WIRE msff.out TO out;
WIRE msff.out_b TO out_b;

}

SCHEMATIC d_reg_wrqb()
i

IN in;
IN elk;
IN reset;
OUT out;
OUT out_b;

INST msff_wrqb msff_wrqb;

WIRE msff_wrqb.dk TO elk;
WIRE msff_wrqb.reset[0] TO reset;
WIRE msff_wrqb.reset[1] TO reset;
WIRE msff_wrqb.in TO in;
WIRE msff_wrqb.out TO out;
WIRE msff_wrqb.out_b TO out_b;

SCHEMATIC buffer ()
{
3 terminals
set load begin High to load the data from in

92

IN in ;
IN load ;

OUT out ;

INST latchdd latchdd ;

INST inv inv ;

WIRE in TO latchdd.in ;

WIRE out TO latchdd.out ;

WIRE inv.out TO latchdd.clk_b ;

WIRE inv.in TO latchdd.elk ;

WIRE load TO inv.in ;

SCHEMATIC buffer.s ()

■C
made by A. Chavan May 14 96

3 terminals

set load begin High to load the data from in

IN in ;

IN load ;

OUT out ;

INST inv inv ;

WIRE inv.in TO load ;

SIG inv.out "11";

INST lsl_nr lsl.nr ;

WIRE lsl_nr.in TO in;

WIRE lsl_nr.dk TO load;
SIG lsl_nr.clk_b "11" ;

WIRE lsl_nr.out TO out ;

}

SCHEMATIC vdd()

■C

OUT out;

93

VDD vl;

INST inv invO;
WIRE invO.in TO vl;
SIG invO.out "11";

INST inv invl;
SIG invl.in "11";
WIRE invl.out TO out;

}
SCHEMATIC gnd()

{
OUT out;
VDD vl;

INST inv inv;
WIRE inv.in TO vl;
WIRE inv.out TO out;

}

SCHEMATIC by.pass()
{

IN in;
OUT out;

INST inv inv[0];
WIRE inv[0].in TO in;
SIG inv[0].out "11";

INST inv inv[l];
SIG inv[l].in "11";
WIRE inv[1].out TO out;

SCHEMATIC pass()

■c
INOUT in;
INOUT out;
IN g;
IN gb;

TN tnO;
TP tpO;

94

CON c_in;
CON c_out;
CON c_g;
CON c_gb;

WIRE c_in TO in;
WIRE c_in TO tnO.d;
WIRE c_in TO tpO.d;
WIRE c_out TO out;
WIRE tnO.s TO c_out;
WIRE tpO.s TO c_out;
WIRE c_g TO g;
WIRE tnO.gl TO c_g;
WIRE c_gb TO gb;
WIRE tpO.gl TO c_gb;

SCHEMATIC bus2wire()
{

IN in;
OUT out;

INST inv inv[0];
WIRE inv[0].in TO in;
SIG inv[0].out "11";

INST inv invCl];
SIG inv[l] .in "11";
WIRE inv[1].out TO out;

}

SCHEMATIC wire2bus()
{

IN in;
OUT out;

INST inv inv[0];
WIRE inv[0].in TO in;
SIG inv[0].out "11";

95

INST inv inv[l];

SIG inv[l].in "11";

WIRE inv[1].out TO out;

C Printed Theory File for Pipelined Multiplier

|- cell_port_def =

['far',

[in_port 'x' pin;in_port 'y' pin;in_port 'ein' pin;

in_port 'reset' pin;out_port 'sum' pin;out_port 'cout' pin];

'sa',

[in_port 'x' pin;in_port 'y' pin;out_port 'sum' pin;

in_port 'elk' pin;in_port 'reset' pin];

'wff,

[in_port 'in' pin;in_port 'w' pin;out_port 'out' pin;
in_port 'elk' pin];

'cell',

[in_port 'x' pin;in_port 'y' pin;in_port 'in' pin;
in_port 'reset' pin;in_port 'elk' pin;out_port 'xout' pin;
out_port 'out' pin;out_port 'rout' pin];

'bps',[in_port 'in' pin;out_port 'out' pin];
'beeil',

[in_port 'x' pin;in_port 'y' pin;in_port 'in' pin;

in_port 'reset' pin;in_port 'elk' pin;out_port 'yout' pin;

out_port 'xout' pin;out_port 'z' pin;out_port 'rout' pin];
'icell',

[in_port 'xi' pin;in_port 'yi' pin;in_port 'zi' pin;

in_port 'ri' pin;in_port 'elk' pin;out_port 'yout' pin;

out.port 'xout' pin;out_port 'z' pin;out_port 'rout' pin];
'ipdm',

[in_port 'x' pin;in_port 'y' pin;in_port 'in' pin;
in_port 'reset' pin;in_port 'elk' pin;out_port 'yout' pin;

out_port 'xout' pin;out_port 'z' pin;out_port 'rout' pin];
'pdm',

[cell_size 'n';in_port 'x' pin;in_port 'y' pin;in_port 'in' pin;
in_port 'reset' pin;in_port 'elk' pin;out_port 'yout' pin;
out_port 'xout' pin;out_port 'z' pin;out_port 'rout' pin]]

far

|- !x y ein reset sum cout.

96

far(x,y,ein,reset,sum,cout) =
(?wl w2 w3 w4 cab w5 w6 w7 w8.
nand(x,y,wl) /\
nand(x,ein,w2) /\
nand(y,cin,w3) /\
nand3(wl,w2,w3,w4) /\
inv(w4,cab) A
nor(cab,reset,cout) A
nor3(x,y,cin,w5) /\
inv(w5,w6) /\
nand(cab,w6,w7) /\
nand3(x,y,cin,w8) A
nand(w7,w8,sum))

sa
|- !x y sum elk reset.

sa(x,y,sum,elk,reset) =
(?cout ein.
d_reg_nr(cout,elk,ein) A far(x,y,ein,reset,sum,cout))

wff
I - ! in w out elk.

wff(in,w,out,elk) =
(?wb wl w2 w3.
inv(w,wb) A
nand(out,wb,wl) /\
nand(in,w,w2) /\
nand(wl,w2,w3) /\
d_reg_nr(w3,elk,out))

cell
|- !x y in reset elk xout out rout.

cell(x,y,in,reset,elk,xout,out,rout) =
(?yi ab a b c outb.
wff(y,reset,yi,elk) A
d_reg_nr(x,elk,xout) A
nand(x,yi,ab) A
inv(ab,a) A
sa(a,in,b,elk,reset) A
d_reg_wqb(reset,elk,rout,c) A
nand(b,c,outb) A
inv(outb,out))

bps |- !in out. bps(in.out) = (?w. inv(in.w) A inv(w.out))

bcell
|- !x y in reset elk yout xout z rout.

97

beeil(x,y,in,reset,elk,yout,xout,z,rout) =
bps(y,yout) /\ cell(x,y,in,reset,clk,xout,z,rout)

icell
|- !xi yi zi ri clk yout xout z rout.

icell(xi,yi,zi,ri,clk,yout,xout,z,rout) =
(?yd xd zd rd.
beeil(xi,yi,zi,ri,elk,yd,xd,zd,rd) A
d_reg_nr(yd,elk,yout) A
d_reg_nr(xd,elk,xout) A
d_reg_nr(zd,clk,z) A
d_reg_nr(rd,clk,rout))

ipdm

I - (!x y in reset clk yout xout z rout.
ipdm 0 x y in reset clk yout xout z rout =
icell(x,y,in,reset,clk,yout,xout,z,rout)) A

(!n x y in reset clk yout xout z rout.
ipdm(SUC n)x y in reset clk yout xout z rout =
(?xi yi zi ri.
ipdm n x y in reset clk yi xi zi ri A
icell(xi,yi,zi,ri,clk,yout,xout,z,rout)))

pdm
|- (!n x y in reset clk yout xout z rout.

pdm n x y in reset clk yout xout z rout =
(?xi yi zi ri.
ipdm n x y in reset clk yi xi zi ri A
beeil(xi,yi,zi,ri,clk,yout,xout,z,rout)))

D Translated L program of Pipelined Multiplier

L:: TECH scmos
hol2gdt: V.12.0 Built Dec 95, Anand V. Chavan

SCHEMATIC far ()
{

IN inl ;
IN in2 ;
IN ein ;
IN reset ;
OUT sum :

98

OUT cout ;

INST nand nand[0];
WIRE nand[0].in[0] TO inl;
WIRE nand[0].in[1] TO in2;
SIG nand[0].out "wl";

INST nand nand[l];
WIRE nand[1].in[0] TO inl;
WIRE nand[1].in[1] TO ein;
SIG nand[1].out "w2";

INST nand nand[2];
WIRE nand[2].in[0] TO in2;
WIRE nand[2].in[1] TO ein;
SIG nand[2].out "w3";

INST nand3 nand3[0];
SIG nand3[0].in[0] "wl";
SIG nand3[0].in[l] "w2";
SIG nand3[0].in[2] "w3";
SIG nand3[0].out "w4";

INST inv inv[0];
SIG inv[0].in "w4";
SIG inv[0].out "cab";

INST nor nor[0];
SIG nor[0].in[0] "cab";
WIRE nor[0].in[l] TO reset;
WIRE nor[0].out TO cout;

INST nor3 nor3 [0];
WIRE nor3[0].in[0] TO inl;
WIRE nor3[0].in[l] TO in2;
WIRE nor3[0].in[2] TO ein;
SIG nor3[0].out "w5";

INST inv inv[l];
SIG inv[l].in "w5";
SIG inv[1].out "w6";

INST nand nand[3];
SIG nand[3].in[0] "cab";

99

SIG nand[3].in[l] "w6";
SIG nand[3].out "w7";

INST nand3 nand3[l];
WIRE nand3[l].in[0] TO inl;
WIRE nand3[l].in[l] TO in2;
WIRE nand3[l].in[2] TO ein;
SIG nand3[l].out "w8";

INST nand nand[4];
SIG nand[4].in[0] "w7";
SIG nand[4].in[l] "w8";
WIRE nand[4].out TO sum;

SCHEMATIC sa ()

{
IN x ;
IN y ;
OUT z ;
IN elk ;
IN reset ;

INST d_reg_nr d_reg_nr[0];
SIG d_reg_nr[0].in "co";
WIRE d_reg_nr[0].elk TO elk;
SIG d_reg_nr[0].out "ci";

INST far far[0];
WIRE far[0].inl TO x;
WIRE far[0].in2 TO y;
SIG far[0].cin "ci";
WIRE far[0].reset TO reset;
WIRE far[0].sum TO z;
SIG far[0].cout "co";

SCHEMATIC wff ()
■C

IN in ;
IN w ;
OUT out ;
IN elk ;

100

}

INST inv inv[0];
WIRE inv[0].in TO w;
SIG inv[0].out "wb";

INST nand nand[0];
WIRE nand[0].in[0] TO out;
SIG nand[0].in[1] "wb";
SIG nand[0].out "wl";

INST nand nand[l];
WIRE nand[1].in[0] TO in;
WIRE nand[1].in[1] TO w;
SIG nand[1].out "w2";

INST nand nand[2];
SIG nand[2].in[0] "wl";
SIG nand[2].in[1] "w2";
SIG nand[2].out "w3";

INST d_reg_nr d_reg_nr[0];
SIG d_reg_nr[0].in "w3";
WIRE d_reg_nr[0].elk TO elk;
WIRE d_reg_nr[0].out TO out;

SCHEMATIC cell
{

IN x ;
IN y ;
IN in ;
IN reset ;
IN elk ;
OUT xout ;
OUT out ;
OUT rout ;

INST wff wff[0];
WIRE wff[0].in TO y;
WIRE wff[0].w TO reset;
SIG wff[0].out "yi";
WIRE wff[0].elk TO elk;

INST d_reg_nr d_reg_nr[0];
WIRE d_reg_nr[0].in TO x;

101

WIRE d_reg_nr[0].clk TO elk;
WIRE d_reg_nr[0].out TO xout;

INST nand nand[0];
WIRE nand[0].in[0] TO x;
SIG nand[0].in[1] "yi";
SIG nand[0].out "ab";

INST inv inv CO] ;
SIG invCO].in "ab";
SIG invCO].out "a";

INST sa saCO];
SIG sa[0].x "a";
WIRE sa[0].y TO in;
SIG sa[0].z "b";
WIRE sa[0].clk TO elk;
WIRE saCO].reset TO reset;

INST d_reg_wqb d_reg_wqb CO];
WIRE d_reg_wqb CO].in TO reset;
WIRE d_reg_wqbC0].elk TO elk;
WIRE d_reg_wqb CO].out TO rout;
SIG d_reg_wqbCO].out_b "c'

INST nand nandCl];
SIG nandCl].in CO] "b";
SIG nandCl]-inCl] "c";
SIG nandCl].out "outb";

INST inv invCl];
SIG invCl].in "outb"; .
WIRE invCl].out TO out;

}

-II .

SCHEMATIC bps ()
{

IN in ;
OUT out ;

INST inv inv CO];
WIRE invCO].in TO in;
SIG invCO].out "w";

102

INST inv inv[l];
SIG inv[l].in "w";
WIRE inv[l].out TO out;

}

SCHEMATIC beeil ()

{
IN x ;
IN y ;
IN in ;
IN reset ;
IN elk ;
OUT yout ;
OUT xout ;
OUT z ;
OUT rout ;

INST bps bps [0];
WIRE bps[0].in TO y;
WIRE bps[0].out TO yout;

INST cell cell[0];
WIRE cell[0].x TO x;
WIRE cell[0].y TO y;
WIRE cell[0].in TO in;
WIRE cell[0].reset TO reset;
WIRE cell[0].elk TO elk;
WIRE cell[0].xout TO xout;
WIRE cell[0].out TO z;
WIRE cell[0].rout TO rout;

}

SCHEMATIC icell ()
{

IN xi ;
IN yi ;
IN zi ;
IN ri ;
IN elk ;
OUT yout ;
OUT xout ;
OUT z ;
OUT rout ;

103

INST beeil beeil [0];
WIRE beeil[0].x TO xi;
WIRE beeil[0].y TO yi;
WIRE beeil[0].in TO zi;
WIRE beeil[0].reset TO ri;
WIRE beeil[0].elk TO elk;
SIG beeil[0].yout "yd";
SIG beeil [0].xout "xd";
SIG bcell[0].z "zd";
SIG beeil[0].rout "rd";

INST d_reg_nr d_reg_nr [0];
SIG d_reg_nr[0].in "yd";
WIRE d_reg_nr[0].clk TO elk;
WIRE d_reg_nr[0].out TO yout;

INST d_reg_nr d_reg_nr[l];
SIG d_reg_nr[l].in "xd";
WIRE d_reg_nr[l].clk TO elk;
WIRE d_reg_nr[l].out TO xout;

INST d_reg_nr d_reg_nr[2];
SIG d_reg_nr[2].in "zd";
WIRE d_reg_nr[2].elk TO elk;
WIRE d_reg_nr[2].out TO z;

INST d_reg_nr d_reg_nr[3];

SIG d_reg_nr[3].in "rd";

WIRE d_reg_nr[3].elk TO elk;

WIRE d_reg_nr[3].out TO rout;

}
SCHEMATIC ipdm (INT hol_l_n = 4)

{
IN x;
IN y;
IN in;
IN reset;

IN elk;

OUT yout;

OUT xout;

OUT z;
OUT rout;

INT hol_l_i;

104

hol_l_i =0;
WHILE(hol_l_i < hol_l_n) {

INST icell icell[hol_l_i];

IF(hol_l_i == 0) {
WIRE icell[0].xi TO x;
WIRE icell[0].yi TO y;
WIRE icell[0].zi TO in;
WIRE icell[0].ri TO reset;

}

WIRE icell[hol_l_i].elk TO elk;

IF(hol_l_i != 0) {
WIRE icell[hol_l_i-l].xout TO icell[hol_l_i].xi;
WIRE icell[hol_l_i-l].yout TO icell[hol_l_i].yi;

WIRE icell[hol_l_i-l].z TO icell[hol_l_i].zi;

WIRE icell[hol_l_i-l].rout TO icell[hol_l_i].ri;
}

IF(hol_l_i == hol_l_n - 1) {

WIRE icell[hol_l_i].yout TO yout;

WIRE icell[hol_l_i].xout TO xout;
WIRE icell[hol_l_i].z TO z;

WIRE icell[hol_l_i].rout TO rout;
}

IF(hol_l_i != = 0) {
}
hol_l_i++;

}
}

SCHEMATIC pdm (INT hoi. .l_n

{
INT

STR

STR

IN
IN

IN

IN

IN

OUT

hol_l_i;

hol_l_strl;

hol_l_str2;

x ;

y ;
in ;

reset ;

elk ;

yout ;

1)

105

OUT xout ;
OUT z ;
OUT rout ;

INST bcell bcell[0];
SIG bcell[0].x "xi";
SIG bcell[0].y "yi";
SIG bcell[0].in "zi";
SIG bcell[0].reset "ri";
WIRE bcell[0].elk TO elk;
WIRE bcell[0].yout TO yout;
WIRE bcell[0].xout TO xout;
WIRE bcell[0].z TO z;
WIRE bcell[0].rout TO rout;

INST ipdm ipdm[0];
WIRE ipdm[0].x TO x;
WIRE ipdm[0].y TO y;
WIRE ipdm[0].in TO in;
WIRE ipdm[0].reset TO reset;
WIRE ipdm[0].elk TO elk;
SIG ipdm[0].yout "yi";
SIG ipdm[0].xout "xi";
SIG ipdm[0].z "zi";
SIG ipdm[0].rout "ri";

E IRSIM Test Command File

h y reset
1 elk
s 40
b. elk
s 20
1 elk
s 2

1 reset y
h x in
s 40
h elk

106

s 20
1 elk
s 2

1 in
s 40
h elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk
s 2

h y
s 40
h elk
s 20
1 elk
s 2

X y
1 X
s 40
h elk
s 20
1 elk
s 2

h X
s 40
h elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk
s 2

107

1 X
h reset
s 40
h. elk
s 20
1 elk
s 2

x reset y x in
s 40
h elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk

108

s 2

s 40
h elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk
s 2

s 40
li elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk
s 2

s 40
h elk
s 20
1 elk
s 2

ana elk reset y x in yout xout z rout

F SPICE MOS Model Parameters

** Technology: scmos
**

.MODEL nfet NM0S (LEVEL=2.0 PHI=0.700000 T0X=3.9800E-08
+ XJ=0.200000U TPG=1

109

+ VTO0.7794 DELTA=3.1470E+00 LD=1.8408E-07 KP=5.9259E-05

+ U0=683.0 UEXP=9.8530E-02 UCRIT=8.4200E+03 RSH=9.5900E+00

+ GAMMA=0.6033 NSUB=8.2550E+15 NFS=9.1000E+10 VMAX=5.1700E+04

+ LAMBDA=3.4430E-02 CGD0=2.405E-10 CGSO=2.4051E-10

+ CGB0=3.4582E-10 CJ=1.24E-04 MJ=0.828 CJSW=5.68E-10
+ MJSW=0.324 PB=0.66)

* Weff = Wdrawn - Delta_W

* The suggested Delta.W is 2.0000E-09

.MODEL pfet PMOS (LEVEL=2 PHI=0.700000 TOX=3.9800E-08

+ XJ=0.200000U TPG=-1

+ VT0=-0.9373 DELTA=2.9690E+00 LD=1.5620E-07 KP=1.7153E-05

+ UCM197.7 UEXP=2.5700E-01 UCRIT=1.0910E+05 RSH=9.8190E-02

+ GAMMA=0.6667 NSUB=1.0080E+16 NFS=1.1000E+11 VMAX=9.9990E+05

+ LAMBDA=4.2200E-02 CGD0=2.0328E-10 CGSO=2.0328E-10

+ CGB0=4.1603E-10 CJ=3.38E-04 MJ=0.575 CJSW=2.48E-10

+ MJSW=0.289 PB=0.90)

* Weff = Wdrawn - Delta.W

* The suggested Delta_W is 2.0000E-09

G SPICE Simulation Input file to Detect Clock
Skew Between FF3 and FF4

** NODE: 0 = GND
** NODE: 1 = Vdd

** NODE: 2 = Error

VDD 10 DC 5V

Vclk 102 0 DC PULSE (0V 5V 50ns 0 0 80ns 160ns)

Rl 102 201 1380

M101 1 201 301 1 pfet L=4.5U W=18.0U
M102 0 201 301 0 nf et L=4.5U W=15.0U
M103 1 201 302 1 pfet L=4.5U W=18.0U
M104 0 201 302 0 nf et L=4.5U W=15.0U
M105 1 201 303 1 pfet L=4.5U W=18.0U
M106 0 201 303 0 nf et L=4.5U W=15.0U
M107 1 201 304 1 pfet L=4.5U W=18.0U
M108 0 201 304 0 nfet L=4.5U W=15.0U
M109 1 201 305 1 pfet L=4.5U W=18.0U

110

MHO 0 201 305 0 nfet

R2 201 202 1380

Mill 1 202 306 1 pfet
M112 0 202 306 0 nfet

M113 1 202 307 1 pfet

M114 0 202 307 0 nfet
M115 1 202 308 1 pfet

M116 0 202 308 0 nfet

M117 1 202 309 1 pfet

M118 0 202 309 0 nfet

R3 202 211 1380

M119 1 211 310 1 pfet

M120 0 211 310 0 nfet

R4 202 204 1380
M121 1 204 311 1 pfet

M122 0 204 311 0 nfet

R5 202 205 1380

M123 1 205 312 1 pfet
M124 0 205 312 0 nfet

R6 205 206 1380

R7 206 207 2760
M125 1 207 313 1 pfet
M126 0 207 313 0 nfet
M127 1 207 314 1 pfet

M128 0 207 314 0 nfet

R8 207 208 1380
M129 1 208 315 1 pfet
M130 0 208 315 0 nfet
M131 1 208 316 1 pfet
M132 0 208 316 0 nfet
M133 1 208 317 1 pfet
M134 0 208 317 0 nfet
M135 1 208 318 1 pfet
M136 0 208 318 0 nfet

R18 208 209 1380
M137 1 209 319 1 pfet

L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U

111

M138 0 209 319 0 nf et

R16 208 210 1380

M139 1 210 320 1 pfet
M140 0 210 320 0 nf et

R19 201 203 1380

M141 1 203 321 1 pfet

M142 0 203 321 0 nf et

M143 1 203 322 1 pfet

M144 0 203 322 0 nfet

R9 202 212 1380

M145 1 212 323 1 pfet

M146 0 212 323 0 nfet

RIO 212 213 1380

M147 1 213 324 1 pfet
M148 0 213 324 0 nfet
M149 1 213 325 1 pfet

Rll 213 214 1380
M151 1 214 326 1 pfet
M152 0 214 326 0 nfet

R12 214 215 1380
M153 1 215 327 1 pfet
M154 0 215 327 0 nfet
M155 1 215 328 1 pfet
M156 0 215 328 0 nfet

R13 215 216 1380
M157 1 216 329 1 pfet
M158 0 216 329 0 nfet
M159 1 216 330 1 pfet
M160 0 216 330 0 nfet

R14 216 217 13,80
M161 1 217 331 1 pfet
M162 0 217 331 0 nfet
M163 1 217 332 1 pfet
M164 0 217 332 0 nfet
M165 1 217 333 1 pfet

L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U

L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U
L=4.5U W=18.0U

112

M166 0 217 333 0 nfet
M167 1 217 334 1 pfet
M168 0 217 334 0 nfet

R15 217 218 1380
M169 1 218 335 1 pfet
M170 0 218 335 0 nfet

R17 217 219 1380
M171 1 219 336 1 pfet
M172 0 219 336 0 nfet

.END

L=4.5U W=15.0U
L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U

L=4.5U W=18.0U
L=4.5U W=15.0U

113

«U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055-10078

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

