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Abstract 

H0L2GDT is a VLSI design methodology. It starts with a design imple- 
mentation description that is formally verified using the Higher Order Logic 
(HOL) theorem prover. This implementation description is translated into a 
hardware description language model by using a HOL2GDT compiler, and with 
this model a physical design layout is generated by using IC design placement 
and routing tools in Mentor Graphic's Generator Design Technology (GDT) 
package. Thus the final IC layout is generated from a formally verified de- 
scription. This document illustrates the design methodology in detail to serve 
as a manual for the HOL2GDT system. It covers: (1) how to define formal 
implementation descriptions of the hardware design, (2) how to translate im- 
plementation descriptions into L language schematic generator models, and (3) 
how to get physical IC layouts from schematic models. A complete example 
of an n-bit Serial Multiplier design is used to illustrate the HOL2GDT design 
methodology. 



Contents 

1 Introduction to HOL2GDT 1 

2 Hardware Description in HOL 3 
2.1 Relational Description  3 
2.2 Recursion  5 
2.3 Port Hiding  11 
2.4 Input/Output Port Definition in HOL      13 

3 The GDT System 14 
3.1 Design Entry     14 
3.2 A GDT System Overview     14 
3.3 GDT Human Interfaces  15 

3.3.1 The L Language      16 
3.3.2 The L Compiler  16 
3.3.3 The L Graphics Editor (Led)      16 

3.4 The L Database  17 
3.4.1 Technology Information      17 
3.4.2 Geometric Orientation Information  17 
3.4.3 Netlist Information  18 

3.5 L Tools      18 
3.5.1 Cell Placement and Routing Tools  18 
3.5.2 Design Rule Checker Tools  18 
3.5.3 Lsim, Mixed-Signal, Multi-level Simulator     18 

4 Schematic Description in the L language 19 
4.1 Key Concepts  19 
4.2 L Files  20 

4.2.1    L file structure     20 
4.3 L language Conventions      21 
4.4 L language Keywords  21 
4.5 Names of Objects in L  22 

4.5.1 Declaring an Object Name  22 
4.5.2 Scope of Names  23 

4.6 Numerical Variables  24 
4.7 String Variables and Expressions      25 

li 



4.8 String Functions      25 
4.9 Logical Expressions  26 
4.10 Conditional Control Statements  26 

5 Using the L language 28 
5.1 Schematic Cell Declaration  28 
5.2 Input/Output Port Declaration  28 
5.3 Instance Declaration  29 
5.4 Net Declaration  29 
5.5 Full Adder Example      29 
5.6 Conditional Control Statements  31 

6 HOL to L Translation 32 
6.1 Defining INPUT/OUTPUT ports in HOL  32 
6.2 Translating Relational Definitions  33 
6.3 Translating Recursive HOL Descriptions  38 

7 n-Bit Serial Pipelined Multiplier Example 48 
7.1 Design Procedure of n-bit Serial Multiplier  49 
7.2 HOL Implementation Description  51 

7.2.1 Basic Gates Definition  51 
7.2.2 Defining Noniterative Structure Components  53 
7.2.3 Defining Iterative Structure Components  55 
7.2.4 Adding Input/Output Port Definition  56 

7.3 Translating to the L program     59 
7.3.1 Standard Cell Generator Definitions  60 
7.3.2 Macro Cell Definitions  62 

7.4 Generating the Actual Layout Using CAD Tools  63 
7.4.1 Building Standard Cells  64 
7.4.2 Generating a Routing File  65 
7.4.3 Layout by Placement and Routing      66 
7.4.4 Converting the Layout into a CIF File in Led  66 

8 L2MCIF — XY Mask Translation Compiler 68 

m 



9 Functional Testing via Multi-Level Simulation 72 
9.1 Mentor Graphics Lsim Simulator  73 
9.2 IRSIM Simulation  75 

9.2.1 Syntax of the IRSIM  76 
9.2.2 Analysis of the IRSIM Simulation  77 

9.3 SPICE Simulation      78 
9.3.1 History of Using the SPICE Program  78 
9.3.2 The Simulation Procedures and the Results      80 

10 Testing of the Actual Chip 83 

11 Conclusions 84 
References 85 

A Basic Gates Definition File 86 

B  Macro Cell Definition File: pdm.macro 91 

C  Printed Theory File for Pipelined Multiplier 96 

D  Translated L program of Pipelined Multiplier 98 

E   IRSIM Test Command File 106 

F   SPICE MOS Model Parameters 109 

G SPICE Simulation Input file to Detect Clock Skew Between FF3 and 
FF4 HO 

IV 



List of Figures 

1 H0L2GDT Linking System     2 
2 Diagram of Full Adder  4 
3 Diagram of an n-bit Rippler Adder  5 
4 Diagram of n-Bit Serial/Parallel Multiplier  7 
5 Diagram of the Modified Multiplier  .  8 
6 Diagram of Serial Multiplier with Two Hidden Ports      12 
7 GDT System Environment  15 
8 Diagram of Full Adder  30 
9 Diagram of One-Bit Serial Adder  . 35 
10 Diagram of an n-Bit Ripper Adder     39 
11 HOL2GDT Compiler Translation Mechanism  45 
12 Flow Graph of HOL2GDT System  48 
13 Block Diagram of a Full Adder with Reset  50 
14 Block Diagram of a Serial Adder  51 
15 Block Diagram of a One-Bit Multiplier Cell      52 
16 Block Diagram of Five-Stage Pipelined Serial Multiplier  53 
17 Procedure of Generating the Actual Layout      63 
18 GDT Layout of the Multiplier  67 
19 MAGIC Layout of the Multiplier  72 
20 MAGIC Layout after Pad Frame Assembly  73 
21 The Result of Lsim Simulation  75 
22 The Result of IRSIM Simulation  77 
23 Simplified Multiplier Circuit for SPICE Simulation     79 
24 Modeled Clock Net  80 
25 Delay between FF3 and FF4 Clock Signals  82 
26 The Multiplier Chip      83 
27 Hewlett Packard Logic Analysis System 16500A  83 

List of Tables 

1 CIF mask layer mapping between GDT and MAGIC      70 
2 Length x Width Summary for Contacts  71 



1    Introduction to HOL2GDT 

H0L2GDT methodology uses the language of higher-order logic supported by the 
HOL, which is used to obtain an implementation description of a system as well as 
to verify the design. The HOL implementation description is then compiled into an 
L language [7] schematic generator model by the HOL2GDT compiler. The Mentor 
Graphics GDT tool suite is used for the placement and routing of the generator 
models to create a physical design layout. Next, the GDT layout is extracted into a 
Caltech Intemediate Format (CIF) netlist [6]. The CIF netlist is ported to a VLSI 
layout editor, MAGIC, to perform full chip integration and assembly. The CIF netlist 
translation from GDT to MAGIC is performed by the L2MCIF compiler. 

HOL2GDT methodology provides a front-end/back-end design framework by de- 
veloping strategic compilers to integrate the HOL formal verification environment 
with the Mentor Graphics placement and routing tools and the MAGIC chip as- 
sembly layout editor. The HOL2GDT methodology has been successfully used to 
fabricate an 8-bit serial pipelined multiplier chip. 

HOL is a theorem prover that is used for formal verification. It provides a language 
syntax and semantics with which to embed the design specification and implementa- 
tion description into the HOL environment. Using HOL, a correctness theorem which 
asserts that the implementation description of the system implies or is equivalent to 
the specification description of the system is established and proved. 

Mentor Graphics GDT is a sophisticated IC design tool suite that provides schematic 
module generation, placement-and-routing tools, and a multi-level mixed mode func- 
tional simulator. GDT's module generator supports parameterized and hierarchical 
design descriptions, and HOL also supports these two characteristics. For example, 
the hierarchical module generator corresponds to the hierarchical implementation de- 
scription in HOL, allowing the verification of a system to be done in hierarchical 
order. GDT's parameterized module generator has the ability to simplify the design 
of regular hardware structures; however, regular structures can be defined in HOL 
and it is usually easy to describe hardware circuits using HOL. The merit of the hard- 
ware implementation described by HOL is that it can be used in varifying correctness 
of the design. Figure 1 illustrates the organization of HOL2GDT methodology. 

The outline of the rest of this paper is as follows. In Section 2 the HOL implemeta- 
tion description mechanism is reviewed. In Section 3 the GDT system is described. 
Since a HOL implementation description is to be translated into an L language model, 
Section 4 is dedicated to describing the L language. Section 5 explains how to build an 
actual L language code, and Section 6 explains the translation mechanism from HOL 
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Figure 1: HOL2GDT Linking System 

to the L language. Section 7 provides a complete example of an n-bit serial pipelined 
multiplier. Section 8 is concerned with the L2MCIF compiler, which converts a GDT 
CIF format into MAGIC CIF format for pad frame embedding. In Section 9, three 
simulators involved in this methodology are explained. The last section shows the 
final chip appearance with testing results. The appendix contains the actual sml code 
for the basic gates definition, the macro file needed in the GDT system, and the n-bit 
multiplier definition described in Section 7. 



2    Hardware Description in HOL 

This section explains how hardware components are represented by HOL notation. 
According to Tom Melham [1], most digital hardware components can be described 
using predicates, universal and existential quantifiers, conjunction, and recursion. 

2.1    Relational Description 

A digital hardware block is viewed as the input/output ports of the block that are 
seen from the outside and the combination of the basic logic gates such as AND, OR, 
XOR, and NOT. Mathematically, a predicate describes objects and the relationships 
between them. Thus, an n-ary predicate can specify a hardware block having n 
external ports by matching the predicate name with the block name and using the 
external port names as its parameters. With the help of quantifiers ("!" represents the 
universal quantifier, and "?" the existential quantifier in HOL), the properties of the 
input parameters of the predicates can be described. That is, universally quantified 
variables (parameters) are used to specify the external (input/output) signals to the 
block, and the existentially quantified variables are used to specify the internal signals 
(hidden lines used to interconnect subcomponents within the block). 

The connections among the components in a hardware block are implemented 
by using conjunctions ("A" in HOL notation). If two subcomponents are combined 
by conjunction and there are common parameters that are existentially quantified, 
then the components are connected through the line with the common variable name. 
Example 1 will clarify this concept. 

Example 1. Relational Description of a Full Adder 

Figure 2 shows the block diagram of a full adder, which consists of two XOR gates, 
two AND gates, and one OR gate. The symbols a, b, and ein are the input ports, 
and sum and cout are the output ports. There are three internal lines, wl, w2, and 
w3, for the interconnection between the subcomponents. 

With FADDER as the predicate name for the full adder, and using the ordinary 
gate names predefined in HOL, a full adder can be described as follows: 



*-     cout 

Figure 2: Diagram of Full Adder 

!   a b ein sum cout.   FADDER  (a,  b,   ein,  sum,   cout)  = 
? wl w2 w3.  xor(a,  b,  wl)   /\ 

and(a,  b,  w2)   /\ 
xor(wl,   ein,   sum)   A 
and(wl,   ein,   w3)     A 
or  (w2,  w3,   cout) 

Here, "!" is the universal quantifier, and "?" represents the existential quantifier. 
The parameters a, b, ein, sum, and cout are matched with external port names, and 
wl, w2, and wS with the interconnecting lines hidden to the outside. The universal 
quantifier is used to specify the external signals, and the existential quantifier is 
used to specify the interconnecting lines in the HOL definition. The location of the 
parameters in the HOL definition conveys significant information. For example, in 
the XOR gate definition the first parameter represents the first input signal to the 
XOR gate, the second parameter represents the second input signal, and the last 
parameter represents the output signal. Thus, from the above full adder definition 
we can infer the fact that the output of the first XOR gate is connected to the first 
input of the second XOR gate. Finally, the subcomponents are conjoined each other 
by using the conjunction symbol, A. 



2.2    Recursion 
Recursion refers to a mathematical procedure of calling itself inside its definition. 
This recursion can be used in describing a circuit that may be constructed by inter- 
connecting indentical components. A typical definition of a recursion consists of a 
base case and a recursive (or inductive) case definition. The base case specifies the 
primitive building block of a circuit and the recursive case defines how the primitive 
building block is added to increase the size of the circuit by one. 

An n-bit ripple adder can be defined using recursion, and Example 2 illustrates 

this idea. 

Example 2. An n-bit Ripple Adder 

An n-bit ripple adder consists of n of FADDER as defined in Example 1.  The 
block diagram of n-bit ripple adder is shown in Figure 3. 

a(0)        b(0) 

cout  cm RADDERN n a b ein sum cout 

V 

sum 

a(n+l)    b(n+l) 

wl 
FADD1 cout 

sum(n+l) 

RADDERN 0 a b ein sum cout RADDERN (n+1) a b ein sum cout 

Figure 3: Diagram of an n-bit Rippler Adder 

Below is a HOL description of the n-bit ripple adder where the predicate name is 
RADDERN. 



RADDERN 

! a b ein sum cout. RADDERN 0 a b ein sum cout = 
FADDER ( a 0, b 0, ein, sum 0 cout)  A 

! n a b ein sum cout. RADDERN (n+1) a b ein sum cout : 

(? wl. RADDERN n a b ein sum wl A 

FADDER (a(n+l), b(n+l), wl, sum(n+1), cout)) 

The base case is simply the definition of a one-bit full adder. That is, if n is 
equal to zero, then the ripple adder becomes a one-bit full adder. The recursive case 
contains RADDERN itself and the additional one-bit full adder, FADDER. There is 
only one interconnecting line, wl, to connect cout terminal of the previous stage to 
ein terminal of the next stage. 

Here, the recursive definition of an n bit ripple adder is a simple recursion, that 
is, the recursive case uses a primary building block, FADDER, which is not defined 
recursively. Sometimes circuit designs may involve definitions in which the base defi- 
nition consists of several definitions and is defined recursively. This is called a nested 
recursion and is illustrated in Example 3. 

Example 3. A Nested Recursive Description for an n-Bit S/P Multiplier 

The block diagram for the n-bit serial/parallel multiplier is shown in Figure 4. 
The HOL definition of the multiplier is shown below: 

SADDERN 

I- (! elk a b co sum reset. SADDERN 0 elk a b co sum reset = 
SADDERKclk, a 0, b 0, co, sum, reset)) A 

(! n elk a b co sum reset. SADDERN(n+l) elk a b co sum reset 
(? w. SADDERN n elk a b co w reset A 

SADDERKclk, a(n+l), b(n+l), w, sum, reset))) 

WPROD 

|- (! me m mout prod load reset elk. 

WPROD 0 mc m mout prod load reset elk = 



m                                           s 

mc 
\ i \ i 

r-> WPRODO SADDl iRNO -* cu 
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SMULT n+1 mc m mout s sout prod co reset load elk 

Figui re 4: Diag ram of n-\ Bit Serial/Parallel Multiplier 

WPRODKmc 0, m, mout, prod 0, load, reset, elk)) A 

(! n mc m mout prod load reset elk. 
WPROD (n+1) mc m mout prod load reset elk = 

(? w. WPROD n mc m w prod load reset elk A 
WPR0Dl(m(n+l), w, mout, prod(n+1), load, reset, elk))) 

SMULTN 
|- (! mc m mout s prod co reset load elk. 

SMULTN 0 mc m mout s sout prod co reset load elk = 
WPROD 0 mc m mout prod load reset elk A 

SADDERN 0 elk prod s co sout reset) A 
(! n mc m mout s sout prod co reset load elk. 

SMULT (n+1) mc m mout s sout prod co reset load elk = 

WPROD (n+1) mc m mout prod load reset elk A 

SADDERN (n+1) elk prod s co sout reset) 



The definition of SMULTN not only contains two building blocks, WPROD and 
SADDERN, but also is defined recursively. That is, WPROD is defined using basic 
building cells WPROD1 and SADDERN. Thus SMULTN is defined as being nested 
recursion. The current version of the HOL2GDT compilier cannot automatically 
generate layouts for descriptions with nested recursions. For these kinds of hardware 
descriptions, the compiler generates schematic netlists in which none of the nested 
recursion blocks are instantiated. In these cases, additional GDT instruction must be 
issued to instantiate recursively defined cells. However, it is possible to convert the 
recursion to one-level recursion that is functionally equivalent (illustrated in Example 
4). 

Example 4. One-Level Recursive Definition of an n Bit S/P Multiplier 

A block diagram of the modified multiplier is shown in Figure 5. 

' ' 
SMULTl :  > 

' ' i ' ' ' 
mout       sout       prod 

SMULT_MODI 0 

mc(n+l) 

V                            V 

SMULT MODI n 

' ' ■ 

SMULTl 
c 

ll 1                } \ 1 

prod 

co(n+l) 

prod(n+l) 

SMULT_MODI n+1 

Figure 5: Diagram of the Modified Multiplier 

SMULT-MODI is defined as functionally equivalent to SMULTN and uses only 
one level of recursion, thus it can be used to generate the layout automatically. The 
implementation description of SMULT MODI in HOL is shown below: 



SMULT1 
|- ! mc m mout s sout prod co reset load elk. 

SMULT1(mc,m,mout,s,sout,prod,co,reset,load,elk) = 
WPR0D1(mc,m,cout,prod,load,reset,elk) A 

SADDER1(elk,prod,s,co,smout.reset) 

SMULT_MQDI 
|-  (! mc m mout s sout prod co reset load elk. 

SMULT.MODI 0 mc m mout s  sout prod co reset load elk = 
SMULTKmc 0,m,mout,s,sout,prod 0,co 0,reset,load,elk))   A 

(!  n mc m mout s sout prod co reset load elk. 
SMULT_MODI   (n+1)  mc m mout s  sout prod co reset  load elk = 

(? wl w2. 
SMULT_MODI n mc m wl w2 prod co reset load elk A 
SMULTKmc (n+1) ,wl,w2,sout ,prod(n+l) ,co(n+l)reset, load, elk))) 

The basic building block SMULT1 does not include any recursive definition. It 
is only the combination of two basic building modules WPROD1 and SADDER1, 
which are a one-bit partial product generator and a one-bit serial adder, respectively. 
Because the definition does not have any nested recursion, the layout can be generated 
automatically. 

There is another type of recursive definition that should be avoided in the current 
HOL2GDT compiler, and this is illustrated in Example 5. 

Example 5. Internal Lines in the Base Case Definition 

Below is a HOL implementation description of an n-bit ALU. 

nALU 
|-  (!H L ctl ein x y cout out. 

nALU 0 H L ctl ein x y cout out 
(?yinv wl w2 w3. 



inv    (ctl,y 0,yinv 0)   /\ 
FA      (x 0,  yinv 0,   ein,   cout,  wl 0)  /\ 
and2  (x 0,  yinv 0,  w2 0)   A 
or2    (x 0,yinv 0,  w3 0)   A 
mux4  (H,  L,  wl 0,  w2 0,  w3 0,  yinv 0,   out 0)))   A 

(!n H L ctl ein x y cout out. 
nALU  (SUC n)  H L ctl ein x y cout out = 
(?yinv wl w2 w3 en. 

nALU n H L ctl ein x y en out A 
inv  (ctl.y  (SUC n),  yinv  (SUC n))   A 
FA    (x  (SUC n),  yinv (SUC n),  en,  cout,  wl  (SUC n))  A 
and2(x  (SUC n),  yinv  (SUC n), w2  (SUC n))  A 
or2  (x  (SUC n),  yinv  (SUC n), w3  (SUC n))  /\ 
mux4(H,  L,  wl  (SUC n), w2  (SUC n),  w3  (SUC n), 

yinv  (SUC n),    out  (SUC n)))) 

In the above case, the building block of the n-bit ALU consists of one inverter, 
a one-bit full adder, a two-input AND gate, a two-input OR gate, and one 4x1 
multiplexer. The problem in this type of definition is that internal lines are used, and 
also indexed, in the base case definition. Unfortunately, this kind of definition cannot 
be handled by the HOL2GDT compiler and should be modified to include no internal 
lines in the base case definition. This modification can be accomplished by defining 
a one-bit ALU and using it as the base case definition. The corrected definition for 
the n-bit ALU is shown below. 

ALU1 
|-  (!H L ctl ein x y cout out. 

ALU1(H,  L,   ctl,   ein,  x,  y,   cout,   out)  = 
(?yinv wl w2 w3. 

inv    (ctl,  y 0,  yinv 0)   A 
FA      (x 0,  yinv 0,  ein,   cout,  wl 0)   A 
and2   (x 0,  yinv 0,  w2 0)  A 
or2     (x 0,  yinv 0,  w3 0)   A 
mux4  (H,  L,  wl 0,  w2 0,  w3 0,  yinv 0,   out 0))) 
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nALU 
|-   (!H L ctl ein x y cout out. 

nALU 0 H L ctl ein x y cout out = 
ALUKH,  L,   ctl,  ein,  x 0,  y 0,   cout,   out 0))   A 

(!n H L ctl ein x y cout out. 
nALU  (SUC n)  H L ctl ein x y cout out = 
(? w. 

nALU n H L ctl ein x y w out A 
ALUKH,  L,   ctl,  w,  x  (SUC n),  y  (SUC n),   cout,   out  (SUC n)))) 

In the modified definition of the n-bit ALU, many details are hidden in the nALU 
definition, including all the internal lines from the base case definition as well as 
subcomponents in the base case and inductive case definitions. 

2.3    Port Hiding 
As mentioned briefly in Section 2.1, existentially quantified signals represent the in- 
ternal connections between subcomponents, and these connections are usually invis- 
ible from outside the module. Another use of the existential quantifier is to hide 
some external ports to make the design simpler. For example, the block diagram 
of SMULT-MODI contains two ports that are not used outside the SMULT.MODI 
block, namely, the partial product prod and carry bits co. In case of multiplication, 
these signals are just for intermediate calculation, and there is no need to access the 
ports from outside the module. By using an existential quantifier, these two signals 

can be hidden. 

Figure 6 shows the block diagram in which two external signals are hidden. 

Comparing Figure 5 with Figure 6 reveals that the circuit becomes much simpler 
by hiding two unnecessary external signals. The HOL definition of SMULTNis shown 

below: 
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SMULT 

|- ! mc m mout s sout reset load elk. 

SMULT(mc,m,mout,s,sout,reset,load,elk)= 

(? prod co. SMULTl(mc,m,mout,s,sout,prod,co,reset,load,elk)) 

SMULTN 

|-  (!  mc m mout s sout reset load elk. 
SMULTN 0 mc m mout s sout reset load elk = 

SMULT(mc 0,m,mout,s,sout.reset,load,elk))   A 
(!  n mc m mout s sout reset load elk. 

SMULTN(n+1)  mc m s sout reset load elk = 
(? wl w2. 

SMULTN n mc m wl s w2 reset load elk A 
SMULT  (mc(n+l),wl,mout,w2,sout.reset,load,elk))) 

The definitions for SMULT.MODI and SMULTN have the same internal structures 
but different external structures in terms of input/output ports. 
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2.4    Input/Output Port Definition in HOL 

One significant difference between HOL and the L language description is that there 
is no distinction made between input and output ports in HOL. However, in the L 
language description, every port must be designated as input, output, or both. Thus 
to translate the HOL definition to the L language program, this input/output port 
information must be provided in the HOL definition by the user. 

Four HOL types are defined for this purpose: variable, port.width, port, and mod- 
ule-port. The syntax for the types is shown below. 

variable   :  string 
port_width = pin  I  bus num 
port = in_port variable port_width   I 

out_port variable port_width   I 
inout_port variable port_width 

module_port = module_name #  (port)list 

The port definition should be presented before the implementation description, 
and the variable names and their positions should be matched with those in the 
implementation description. Otherwise, the compiler will issue error messages. The 
port definition for the last serial multiplier description is shown below. 

|- cell_port_def = 
['SMULT1', 
[in_port   'mc'  pin;   in_port   'm'  pin;   out.port   'mout'  pin; 
in_port   's'    pin;   out_port   'sout'  pin;   inout.port   'prod'  pin; 
out_port   'co' pin;  in.port  'reset'  pin;   in_port   'load' pin; 
in_port   'elk'  pin]; 

'SMULT', 
[in_port   'mc'  pin;   in_port   'm'  pin;   out_port   'mout'  pin; 
in.port   's'  pin;     out_port   'sout'  pin;   in_port   'reset'  pin; 
in_port   'load'  pin;   in.port   'elk'  pin]; 

'SMULTN', 
[in.port   'mc'   (bus  1);   in_port   'm'  pin;  out_port   'mout'  pin; 
in_port   's'  pin;   out_port   'sout'  pin;   in_port   'reset'  pin; 
in_port   'load'  pin;   in_port   'elk'  pin]] 
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3    The GDT System 

The GDT (Generator Design Technology) system is a commercial VLSI design envi- 
ronment for multiple levels of abstraction. That is, it can handle from the highest 
level (system) to the lowest level of abstraction (layout, mask) by integrating many 
different IC design tools such as integrated database, graphic editor, simulator, router, 
and design rule checkers, etc. Thus the GDT system provides an integrated environ- 
ment for the design of cell-based ICs, as well as fully customized ICs. Since GDT is 
a large system a brief introduction will be helpful in understanding the HOL2GDT 
system. 

3.1 Design Entry 

The most important procedure in IC design is constructing a model for the design, 
followed by a simulation to verify its behavior. A higher level of modeling can be 
implemented with a box containing electrical terminals for the inputs and output 
signals. The behavioral model can be specified by programming languages. Complex, 
low-level models are realized by connecting functional logic components from com- 
ponent libraries. As the design steps progress, details are added to the model until 
enough information to specify the layout (mask) is gathered. 

A fully customized or cell-based IC design should pass through many different 
design tools with different interfaces and operating styles, as well as independent 
databases. The translation between different databases wastes time and can introduce 
unexpected side effects. Errors also can be introduced each time a design is transferred 
between specialized tools. For example, a specific GDT layout cannot be translated 
into exactly the same layout in MAGIC because of the design rule difference between 
the two systems. Thus in conventional design tools, as a model passes through design 
procedures the productivity and the quality of the design deteriorate. 

However, since GDT is a totally integrated system with all the required design 
tools and database included in the system, the possibility of the above problems can 
be minimized. 

3.2 A GDT System Overview 

The GDT system consists of six basic tools: the L language, L database, Lsim simu- 
lator, Led graphic editor, M language, and cell library components. A block diagram 
of the GDT environment is shown in Figure 7. 
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Figure 7: GDT System Environment 

The design entry process progresses with the construction and validation of the 
design model through the automated tools provided in the GDT design environment. 

3.3    GDT Human Interfaces 

There are four user interfaces in GDT: the L compiler Lc and L language, L graphic 
editor Led, L database interface routines Ldbi and C function interface Lx, and the 
GENIE procedural Language. These interfaces enable users to access the L database 
and other L tools. With these interfaces the development and validation of the con- 
tents of the database can be achieved throughout the design process. However, the 
HOL2GDT system uses only Lc and Led, thus Ldbi and Lx will be not be discussed 
in this paper. 
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3.3.1 The L Language 

A structural and functional description specifies how a circuit is formed in terms of the 
connectivity of its building blocks and what the circuit does. Silicon compilation is 
a translational process that generates a mask layout from the structural description, 
and this is sometimes called module generation. The L language is a procedural 
circuit layout language used to describe circuits by means of L programs. L programs, 
the source codes written in the L language, are called module generators. These L 
programs are compiled by the L compiler and beome part of the L database. More 
details and some actual L language examples will be covered in Section 4. 

3.3.2 The L Compiler 

The L compiler compiles L programs into design data procedures with geometric and 
electrical descriptions of a design. These design data procedures are stored in the L 
database. During the compilation of L programs, the L compiler can access to the L 
database to retrieve and update the information needed by L programs. It also has 
access to the utility programs, the so-called L tools that perform specialized functions 
such as routing, layout compaction, and placement. The L compiler consists of the 
following programs: 

• Technology management program and instructions for adapting the L programs 
to new technology 

• Symbolic icon generator for schematic capture of system-level architecture 

• Behavioral model that simulates the icons used in schematic capture 

• Layout generator that creates physical mask layout 

• Test vector generator to provide Lsim simulator with a set of input signal se- 
quences (vectors) 

3.3.3 The L Graphics Editor (Led) 

The Led graphics editor is an object-oriented graphical editor used to create icons, 
schematics, and actual layouts. It interacts directly with the L database. A schematic 
diagram of a design can be edited on the screen with the new graphic interpretation 
of the database displayed at the same time.   In this way Led synchronizes the L 
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database and the graphical schematic view. As the L database supports three different 
views of a design (i.e., icon, schematic, and layout), Led can be used as an icon 
editor, schematic editor, and layout editor. It also creates simulation netlists for three 
different models. Finally, it handles standard cells and block routing. In summary, 
the Led offers the following facilities: 

• Draw/edit hierachical schematics and layouts for any mask-defined technology 

• Manipulate circuit objects 

• Combine schematics and layouts 

• Write out Lsim, AutoCells, AutoRoute, and SPICE netlists 

• Verify a layout using the interactive rule checker 

• Debug generator programs written in the L language 

3.4    The L Database 

The L database plays an essential role in the GDT design system. It captures the de- 
sign and technology information required for developing and validating a design. The 
L database contains three types of information: technology, geometric orientation, 
and netlist. 

3.4.1 Technology Information 

The technology information database contains the information obtained from a tech- 
nology file. This technology file defines all the primitive objects available within 
a technology and the design rule information that is specific to the manufacturing 
process being used. 

3.4.2 Geometric Orientation Information 

In a cell design, transistors, wires, and contacts are stored in the L database as 
primitive circuit elements. For each primitive the geometric information is stored in 
the L database for the purpose of physical construction, orientation of an object, and 
design-rule checking, compaction, and graphical editing. 
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3.4.3    Netlist Information 

The L database contains netlist information of a cell—that is, information about 
the electrical connectivity of the cell. In addition, it contains information about 
simplifying the extraction of netlists and netlist-driven design-rule checking. 

3.5    L Tools 

The GDT system provides L tools for designing and validating full-customized IC and 
ASICs. L tools support complete placement, channel routing, compaction, design 
validation, and the creation of Lsim, SPICE and AutoCells netlists. In this paper the 
tools for placement and routing, design-rule checking, and creating an Lsim netlist 
are described. 

3.5.1 Cell Placement and Routing Tools 

GDT provides three kinds of place and routing tools. Lroute is a collection of auto- 
matic layout routing tools that perform block routing between instances and external 
terminals in order to build major blocks. The blocks and pads can be routed to per- 
form chip assembly. Lroute also allows procedural routing within a specified section 
of a layout cell. Explorer AutoCells is an automatic placement and routing tool for 
laying out circuits using standard cells. Finally, AutoRoute performs block routing 
between instances and terminals. 

3.5.2 Design Rule Checker Tools 

Lrc is an object-oriented, hierarchical L language design rule checker. It performs 
design rule checking on L cells and provides interactive feedback about geometric and 
electric design rule violations. There are two modes in Lrc: batch rule checking is 
used for small designs and selective rule checking for large designs. 

3.5.3 Lsim, Mixed-Signal, Multi-level Simulator 

The Lsim simulator provides a general solution to design simulation. The system 
level, functional level, gate level, and switch level simulation modes can be mixed 
and simulated simultaneously. Lsim provides an infrastructure for many simulation 
algorithms. It also performs multi-level concurrent simulation on behavioral and 
structural models. 
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4    Schematic Description in the L language 

In this section the L language, which is mentioned in Section 3.3.1, is decribed in 
detail due to its importance in understanding and using HOL2GDT methodology. 
This section is the summary of the GDT manual from Mentor Graphics. For more 
information or help, please refer to the Mentor Graphics L Language User Guide [7]. 

The L language is a procedural circuit-layout language that is used to describe 
circuits by means of programs called generators. It supports not only geometric 
primitives such as rectangles, polygons, and text, but also electrical circuit primitives 
such as transistors, wires, cantacts, cells with their geometries. It also supports the 
relative placement of all objects and contains routing statements for automatic wiring 
objects. In addition, it provides general-purpose programming language facilities 
sucsh as variables and control statements. 

Writing a generator in the L language includes: 

• Computation and flow control 

• Transistors and wires that describe function and logic 

• Geometry that describes physical layout 

• Data that produce fabrication masks 

• Hierarchy to manage the complexity of the design 

The actual output from the L language is a description about how a chip is put 
together. 

4.1    Key Concepts 

There are several key concepts in the L language, as seen below: 

• L files, the L language conventions, L keywords 

• Names of objects in L 

• Numerical variables and expressions 
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• Floating point numbers 

• String variables and expression, string function 

• Logical expressions 

• Conditional statements 

4.2    L Files 

The basic unit in designing a module generator with the L language is a cell. An L 
program consists of one or more cells that are stored in one or more ordinary files. 

The related syntax using L files is shown below. 

<Ltool>  [<options>]  <L_filel,  L_file2,   ...> 

where 
<Ltool> 

Lc :  The L language compiler 
Lrc :  The L language design rule checker 
Led :  L graphic editor 
AutoCells :  place and route program 

4.2.1    L file structure 

A typical L file structure is shown below. 

L::TECH techjname 

Global variable declarations; 
Arithmetic and string expressions; 
Include other L files; 
Generator calls; 
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CELL a() 

{ 
local & exported variable declarations; 

generator calls; 

other : statements; 

} 

CELL b() 

-C 

The first line, L::, specifies that this is an L file and prevents non-L files from 
being compiled. The second part, techjname, specifies the technical file that contains 
all information for fabricating the actual chips. If the techmame is not specified, it 
is assumed that any technology file may be used. 

4.3 L language Conventions 

There are several conventions concerning terminators, keywords, and comments for 
the L language. First, each statement should end with a statement terminator ";" as 
in the C programming language. There are two exceptions where the terminator is 
not needed: a starting line beginning with "L::", and such group statements as CELL, 
WHILE, and IF-ELSE that are enclosed with curly brackets. Keywords designated 
in the L language are all uppercase characters. Comment lines are denoted by pound 
symbols {£) and should end with a carriage return. 

4.4 L language Keywords 

There are two types of L keywords: technology-independent and technology-specific. 
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- Tech_independent keywords 

IF, ELSE, WHILE 
GLOB 

CALL 

CELL 

INST 

WIRE 

FOPENR 

LEFT 

UP 

control statements 

global variable declaration 

read an L file that contains a generator 
cell declaration 

instance declaration 

wiring command for metal and poly lines 
open file for reading 

position an object to the left of another 

direction for wire path 

Tech.specific keywords : defined in a technology file 

. Layers 

MET, POLY, NDIFF, PDIFF, MET2, NWELL, PWELL, TN, TP, TD 

. Contacts 

MPOLY, MNDIFF, MPDIFF, MMSUB, MPSUB, M1M2 

. Terminals 

VDD, GND, IN, OUT, INOUT 

4.5    Names of Objects in L 

Except for polygons and rectangles, all objects in the L language have names. 

4.5.1    Declaring an Object Name 

Example: 

TP      ptran      W = expression 
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The above statement means that a p-channel transistor is declared in a cell with 
a name ptran and channel width W. There are name buffers that can hold up to 128 
characters, and user-defined names use lowercase characters. The names can start 
with $, _ . The brackets [ ] denote an index that can be attached only at the end 
of a name. However, the brackets cannot be used to index an array name. A grave 
accent (" ) is used to construct names of objects with variable numerical indices. 
For example, the codes below generate 10 transistors with the names tranO, tranl,..., 
tran9. 

NUM    i = 0; 
WHILE  (i <  10)     { 

TN    tran'(i)     AT  (0,   i*7); 
i++; 

} 

A period character (.) joins the name of an object with the name of one of its 
components. For example, when a cell has several terminals, one of the cell terminals 
can be accessed as shown below: 

<cell_instance_name>.<terminal_name> 

4.5.2    Scope of Names 

Names are listed in three categories according to their visibility. Global names can 
be seen from anywhere in the L program. Technical data, numerical variables, string 
variables, and cells can be in the global name space. Local names are visible only 
within the cell where the names are declared. NUM, INT, string variables, transis- 
tor, contacts, terminals, instances of other cells, wires, and arrays of other cells can 
be in the local name space. A local name can be the same as a global name, and the 
local name supercedes the global name in a cell. Objects in the L database can be 
erased by the DELETE statement. Exported names are used to make local variables 
in a cell visible from other cells that are called from the cell containing the variables. 
An example of how a variable is exported using EXPORT function is shown below: 
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CELL abc{ 

EXPORT NUM index = 55; 

NUM i = 0; 

EXPORT i; 

CELL xyz()  { 

NUM i; 

} 

There are two ways to declare exported variables. One way is to declare an 
exported variable using EXPORT and a type declaring keyword in one line. The 
other way is to declare a variable, and export the variable later using EXPORT. 
Whenever the values of i and index in the cell xyzQ change, the cell abc() will receive 
new values. However, the changes of the exported variables occurring in the cell abc() 
do not affect the variables i and index in the cell xyz(). 

4.6    Numerical Variables 

In the L language, the method of storing the values of variables in memory is some- 
what different from that of other programming languages. That is, the integer and 
real numbers are stored in the L database in the same way, thus the keyword NUM 
is used to declare both real number variables and integer variables. To declare a vari- 
able as an integer, the keyword INT is used. The initialization is optional, however, 
as the default value is not defined and a variable must be assigned a value before 
being used. There is a scale factor that can determine the precision of the real num- 
bers. A floating point number is multiplied by the scale, rounded to an integer, and 
then stored. For example, if a real variable s is declared and initiated using NUM s 
= 48.35;, then the internal data representation of the variable s in the L database 
becomes 4835. 
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4.7 String Variables and Expressions 

String variables in the L language have the syntax seen below: 

STR <string_name>   [= <string_expr>]; 

For example, 

STR isname = "This is an initial string"; 

is a typical string variable declaration. 

4.8 String Functions 

The L language offers various string functions as shown below: 

- STRCAT(strl, str2) 

- FGETS(file_name) 

- GETS 

- NTOA(expr) 

- STREQCstrl, str2) 

- CELLNAME 

- GETDIR 
- GETFNAME 

- GETLIB 

- GETNEWFNAME 

- GETNAME 
- GETTECH 

concatenates two strings 
read a file into buffer. The file 

must be opened before. 
obtain a string from the standard 

input (keyboard) 

converts a numerical expression into 

an ASCII string 
if two strings are equal, gives 1, 

else 0 
returns the current cell name 

returns the current directory name 
returns the L file name being parsed 

returns the name of library directory 

returns a new file name which is unique 
and writable for temporary data file 

gives a unique name for an object 

returns the technology name 
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e.g. 

STR    string; 

SPRINT(string,   GETLIB,"  /",  GETTECH,   ".dir/icon"); 

In case the technology file name being used is "scmos", and the file is located at 
scs/ind/tech, the string value stored in the string variable will be 

scs/ind/tech/scmos. dir/icon. 

4.9 Logical Expressions 

The L language supports almost the same logical expression as the C language. All 
logical expressions yield 1 or 0 according to the result of the expressions, in which 
1 means the evaluation result of the expression is true, and 0 means the result is 
false. These logical expressions are used in conditional IF statements and WHILE 
statements. 

4.10 Conditional Control Statements 

In the L language, there are two kinds of conditional control statements: ij'statements, 
and while-statements. The ablilities of decision and iteration come from these condi- 
tional statements so that the module generators can be built. 

The syntax for the IF statement is shown below: 

IF  (bool_expr)    {statements} 

or 

IF  (bool_expr)     { 
statements!.; 

} 
ELSE { 

statements2; 
} 
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For the first case, if the boolean expression evaluates to true, then the statements 
in the curly braces will be executed. If there is only one statement in statementsl, 
the curly braces are not needed. For the second case, statementl will be executed if 
the boolean expression evaluates to true; otherwise, statements2 will be executed. 

To repeat a group of statements, the L language offers the WHILE statement, 
which can be used for the implementation of the recursive definitions. The syntax for 
the WHILE statement is show below: 

WHILE  (bool.expr)    {statementsl} 

The booLexpr is evaluated first. If it evaluates to true, then statementsl will 
be executed, else it skips statementsl and exits the WHILE loop. After executing 
statementsl, it again evaluates the booLexpr. Thus the statements will be executed as 
long as booLexpr evaluates to true. Therefore, statementsl must include a statement 
that allows exiting the loop; otherwise, the WHILE loop will never terminate. For 
example, consider the statement below. 

NUM i = 1; 
WHILE (i <= 10) { 

TN trans'(i); 
i++; 

} 

The above statements will generate ten of n_channel transistors named transfl] 
to transflOj. However, without the fourth statement, i++, the WHILE loop will 
generate trans[1] forever. 
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5    Using the L language 

L programming is just a process of denning a cell. In the HOL2GDT system, a HOL 
description is converted to a schematic cell description in the L language. A schematic 
cell is represented in terms of the connectivity of the building blocks, and the building 
block is an instance of an existing cell. In this chapter the declarations of a schematic 
cell, input/output ports, an instance, and a net are explained in detail. 

5.1    Schematic Cell Declaration 

A schematic cell can be declared by using the format below: 

SCHEMATIC    cell.name  ([parameter lists]) 
{ 

<group_of_statements>; 
} 

The keyword SCHEMATICS used to declare a schematic cell, and group-ofstatements 
can include one or more terminal, variable, cellJnstance, net declarations, and con- 
ditional statements. 

5.2    Input/Output Port Declaration 

To communicate between cells, a schematic cell may have input/output ports. The 
I/O port is declared as a terminal and there are three types of terminal: IN, OUT, 
and INOUT. The syntax for terminal declaration is shown below: 

terminal_type    name; 

Here, the name can be an identifier or identifier with bracket. 
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5.3    Instance Declaration 

An instance is an instantiation of a cell and it can be included as a component of cell 
definition. Before a cell is instantiated, it must be defined previously and if the cell 
definition is modified, then all the instances referring to it inherit the change. The 
syntax of instantiation is shown below. 

INST    predefined_cell_name      inst.name; 

The instjtiame is the same name used in terminal declaration. 

5.4    Net Declaration 

A net describes how the components in a cell are connected to each other. The 
connections can be achieved only between legal L objects: terminals and instance 
terminals. There are two types of net in the L language: WIRE and SIG. WIRE 
is used to connect two terminals of blocks, and SIG is used to attach a signal to a 
terminal. That is, WIRE is used to connect IN/OUT ports to the component block 
terminals and SIG is used to connect block terminals. The syntax of net declaration 
is shown below. 

WIRE    object    TO    object; 
SIG      object    "signal_name"; 

The object is a terminal or instance_terminal name. Here the instance_terminal is 
a concatenation of an instance_name and a terminal-name. 

5.5    Full Adder Example 

An example of a full adder will clarify the mechanism of the cell definition. A full 
adder might be implemented by two half adders and one OR gate. The block diagram 
for a full adder is shown in Figure 8. 
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Figure 8: Diagram of Full Adder 

It is assumed that the schematic cells for the half adder and the OR gate are 
already defined. The schematic cell definition of the full adder is shown below: 

SCHEMATIC FADDIO   { 

IN    a; 
IN    b; 
IN    ein; 
OUT sum; 
OUT cout; 

INST HADD1 HADD1[0]; 
INST HADD1 HADD1[1]; 
INST    or or[0]; 

WIRE a        TO HADDl[0].a; 
WIRE b        TO HADDl[0].b; 
WIRE ein    TO HADDl[l].a; 
WIRE sum    TO HADD1[1].sum; 
WIRE cout TO or[0].out; 

SIG HADDl[0].sum "wl"; 
SIG HADDl[0].a "wl"; 
SIG    HADDl[0].cout   "w2"; 
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SIG or[0].in[l]       "w2" 
SIG HADD1E1].cout   "w3" 
SIG or[0].in[0]       "w3" 

} 

At first the cell name of the full adder is defined as FADDlQ, using the keyword 
SCHEMATIC. The a, b, ein, sum and cout are the I/O terminals of the FADD1() cell 
and are declared by using IN and OUT terminal types. Next, two half adders and 
one OR gate for the FADD1 cell are instantiated with a one-bit half adder HADD1 
and or cells that are defined previously. Next, the IN/OUT ports of the cell are 
connected to the terminals of cell component blocks, which can be done by using 
WIRE keywords. There are five IN/OUT terminals in a FADDlQ cell, therefore the 
WIRE command needs to be used five times for the connections of all terminals. The 
terminal connections inside the FADDlQ blocks are accomplished by the internal lines 
wl, w2, and w3. The L language uses SIG to declare the connection between a block 
terminal and a connection line. The terminals that have the same line name in a SIG 
declaration are to be connected each other. That is, the terminals HADDl[0].sum 
and HADDlflJ.a are connected by the line labeled wl. 

5.6    Conditional Control Statements 

In the L language, the conditional control statements, ifstatement, and whilestatement, 
allow us to build module generators. That is, in case of a HOL recursive definition, 
the HOL2GDT compiler uses these conditional control statements to convert the re- 
cursive definitions into an L module generator. The syntax for the conditional control 
statements are covered in Section 4.10, and a detailed example is presented in the 
next chapter. 
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6    HOL to L Translation 

This section covers the translation mechanism of the HOL2GDT system. This trans- 
lation is accomplished by the structural mapping from HOL to L descriptions. First, 
cell port definition is covered and the transition mechanisms for HOL relational and 
recursive description will be explained later in detail. 

6.1      Defining INPUT/OUTPUT ports in HOL 

As mentioned earlier, no distinction is made for input and output ports in the HOL 
description. On the other hand, the direction of a port (input, output, or inout) 
must be specified explicitly in an L module description. This is the major difference 
between HOL and L schematic descriptions, and for the automation of the translation 
the directions (types) of the ports must be specified manually in the HOL description. 
Thus four HOL types: variable, porLwidth, port, and modulejport are introduced for 
this purpose and shown below. 

variable   :   string 
port_width = pin   I  bus num 
port =      in_port variable port_width 

I   out_port variable port_width 
I   inout_port variable port.width 

module_port  = module_name#(port)list 

The variable is used to name the port. The port-width has two options: one is 
a pin, which is for a single line, and the other is a bus for multiple lines. There are 
three types of port directions: injport, out.port, and inoutjport. The modulejport is 
used to represent the ports of a module and begins with celLport-def. For example, 
the port definition and the relational definition of a full adder are shown below. 

|- cell_port_def 
['FADD1', 

[in_port 'a' pin; in_port 'b' pin; in_port 'ein' pin; 

out.port 'sum' pin; out.port 'cout' pin]] 
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|-   !   a b ein sum cout. 
FADDKa,  b,   ein,  sum,   cout)  = 

(? wl w2 w3. 
HADDKa,  b,  wl,  w2)   /\ 
HADDKwl,   ein,  sum,  w3)  /\ 
or(w3,  w2,  cout) 

In the above definition the module name for the full adder is FADD1, and in the 
following port list there are three input ports, a, b, and ein, and two output ports, 
sum, and cout, all of which are pin types. The most important thing to remember 
is that the sequence of ports in the port definition must coincide with that in the 
relational definition. 

6.2    Translating Relational Definitions 

A typical relational definition in HOL can have the form below. 

! in1..innOi..om.P(in1,..,inn,o1,..,om) = 
?wi..Wk.Pi(parJisti)     A 

Pz(par Jist2)     A 
A 

Pp(parJistp) 

P is the predicate being defined and PI, P2,... are the component blocks that 
are the instances of previously defined predicates. The input/output singal names 
are universally quantified before the predicate P, and P has these signals as its pa- 
rameters. The predicate being defined must appear on the left side of the relational 
equation. On the right side of the equation the internal signals used to interconnect 
the subcomponents are existentially quantified. The instances of previously defined 
predicates (subcomponents of the predicate P) are conjoined with their parameter 
lists, parJistl, parJist2, and so on. The parameter lists of the instances can contain 
the universally quantified variables and the existentially quantified variables together. 
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The universally quantified variables are the external port names of the module P, and 
the existentially quantified variables are the line names used to interconnect the sub- 
components. The existentially quantified variables are hidden from the outside of 
module P. The relational definitions, coupled with the celLport definitions, are trans- 
lated into the L program in the sequences below. 

1) The universally quantified variables of the predicate P  (the 
predicate being defined)  are declared as Input/Output terminals 
with terminal types IN,  OUT,  and INOUT by referring the cell port 
definition. 

2) The first predicate PI on the right hand side of a relation is 
renamed as a distinct instance of an existing cell definition. 
The distinct instance is generated by attching  [num]  to the end 
of each cell name where num is an integer. 

3) The existentially quantified variables are declared as signals, 
and the variable names are enclosed with double quotation marks. 
However,  this does not generate any L language code yet. 

4) If a variable of the component PI  is universally quantified,  then 
the corresponding instance terminal is connected to the 
corresponding I/O terminal by using the L constructor WIRE. 

5) If a variable of the component PI  is existentially quantified, 
that is,  if the variable has been declared as a signal,  then the 
instance terminal  of PI  is linked to the signal by using the L 
construct SIG.    The instance terminal uses the port name defined 
in the cell_port definition for PI. 

6) Repeat step 2)  to step 5)  for the remaining predicates,  P2  ..  Pp. 

For example, consider a one-bit serial adder. A diagram of a one-bit serial adder 
is shown in Figure 9. 

The one-bit serial adder is composed of one d-register and one full adder. The 
cout of the full adder is connected to the input port in of d-register. The cell port 
definition and the relational definition of the one-bit serial adder, SADDER1, are 
shown below: 
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elk elk 

d_reg   cout ein    FADD1 

cout -*■   cout 

Figure 9: Diagram of One-Bit Serial Adder 

|- cell_port_def = 

['d_reg\ 
[in_port 'in' pin; in_port 'elk' pin; in_port 'reset' pin; 

out_port 'cout' pin]; 

'FADD1', 
[in.port 'a' pin; in.port 'b' pin; in_port 'ein' pin; 

out.port 'sum' pin; out_port 'cout' pin]; 

'SADDER1', 
[in.port 'elk' pin; in.port 'a' pin; in.port 'b' pin; 

in_port 'reset' pin; out.port 'cout' pin; 

out_port 'sum' pin]] 

SADDER1 
|-   !   elk a b reset  cout sum.   SADDER1   (elk,  a,  b,  reset,   cout,   sum) 

(? w.  d_reg  (cout,   elk,  reset,  w)  /\ 
FADD1   (a,  b,  w,  sum,   cout)) 

The FADD1 is defined in Section 6.1. The djreg cell is a built-in macro-cell of 
GDT. It uses the basic GDT cell generator msff. The L language code of d-reg is 
shown below. 
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SCHEMATIC d_reg()   { 

IN    in; 
IN    elk; 
IN    reset; 
OUT out; 

INST msff msff; 
WIRE msff.elk TO elk; 
WIRE msff.reset[0]  TO reset; 

WIRE msff.reset[1]  TO reset; 
WIRE msff.in    To in; 
WIRE msff.out To out; 

The msff is a standard cell of GDT. The corresponding L file of the SADDER1 is 
shown below. 

SCHEMATIC    SADDERIO 

i 
IN    elk; 
IN    a; 
IN    b; 
IN    reset; 
OUT cout; 
OUT sum; 

INST d_reg    d_reg[0]; 
WIRE d_reg[0].in    TO    cout; 
WIRE d_reg[0].elk TO    elk; 
WIRE d_reg[0].reset TO reset; 
SIG d_reg[0] .out     V; 

INST    FADD1    FADD1[0]; 
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WIRE FADDUO], a    TO    a; 
WIRE FADDl[0].b    TO    b; 
SIG FADD1[0] .ein    V; 
WIRE FADD1[0].sura    TO sum; 
WIRE FADD1L0].cout TO cout; 

The translation mechanism is as follows: The input to the HOL2GDT com- 
piler consists of the celLport definition and the definition of SADDER1. The L 
schematic description is generated by scanning the definition of SADDER1 from left 
to right. The HOL2GDT compiler finds the predicate name and produces the first 
line. SCHEMATIC is a reserved word in the L language, and every L program must 
start with this line except the comment lines. Then the compiler reads the external 
signals that are universally quantified. According to the information in the celLport 
definition, HOL2GDT declares the variables. For instance, the first port in celLport 
definition is elk, and it is defined as an input port. Therefore, the HOL2GDT compiler 
generates a code IN elk; and goes to the next parameter. 

After the period mark the cell name with its parameter list follows. One thing 
to remember is that the cell name, the parameter names, and their positions in 
the definition should be matched with those defined in the celLport definition. The 
HOL2GDT compiler checks this out and looks for the parameters which are exis- 
tentially quantified.   It marks these parameters as internal signals and remembers 
them. 

Next, when the HOL2GDT compiler runs into a subcell name it instantiates it. 
For example, when it encounters the subcell name d.reg, it instantiates it using the 
INST construct. Thus an INST d_reg d_reg[0] line is added to the L schematic 

file. 
After instantiating the subcell d.reg, the HOL2GDT compiler handles the param- 

eters of djreg: cout, elk, reset, and w. The first three parameters are universally 
quantified, thus they are to be connected with the external ports of the SADDER1 
cell. The HOL2GDT compiler generates three lines of net. For the terminal names of 
an instantiated cell, it uses the port names defined in the celLport definition. Thus 
the first terminal name of the d_reg[0] is in, and it is connected to the first parameter 
of the subcell d_reg, cout. 

The second port defined in djreg celLport definition is elk. Thus the instantiated 
terminal d-reg[0].clk is wired to the second parameter in d_reg subcell elk. The last 
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parameter w is somewhat different. It is existantially quantified and so it was stored as 
a signal previously. For a signal, HOL2GDT issues a SIG construct. Thus it generates 
a SIG d_reg[0].out "w"; line, and this line indicates that the instantiated cell 
terminal d.reg[0j.out is connected to another instantiated terminal using the internal 
line w. Next, the FADD1 cell is instantiated and its parameters are processed. At the 
point of the third parameter w, the HOL2GDT compiler finds that it is a signal, thus 
it must issue the SIG instead of the WIRE construct. The third port of FADD1 is 
ein, thus the instantiated FADD1 cell terminal FADDl[0].cin is netted to the signal 
w. For a signal it generates two SIG lines in L description, and the instantiated 
cell terminals having the same signal names are to be connected to each other. For 
example, the d-reg[0].out terminal and the FADDl[0].cin terminal are connected with 
the line w. 

6.3    Translating Recursive HOL Descriptions 

This section explains how a recursive HOL description is translated to an iterative 
L program, that is, a parameterized module generator. A module generator is a cell 
description that accepts parameters as inputs, thus it generates cells that differ in 
size or in other characteristics according to the input parameter. Once a module 
generator is prepared, cells can be generated just by calling the module name with 
input paramters. This is convenient when there is a need to build arrays of identical 
cells. 

Recursive definitions in the natural number domain consist of two predicates: one 
for the base case and the other for the recursive case. The predicate for the base case 
describes the primitive building block of a module. The predicate for the recursive 
case describes how this primitive building block should be connected to increase the 
size of the module by one. For example, an n-bit adder can be built out of n one-bit 
adders. The base case defines the one-bit adder itself, and the recursive case describes 
how a one-bit adder should be connected to build an n-bit adder. 

The general recursive definition in HOL has the syntax below: 

(\a1..ai.P0ai..ai = Q(au .., Oj))A 
(\nai..ai.Pn+1al..ai = 

?li...lj.Pnpariisti/ Q(par[ist2)) 

Here, n is the size of the cell to be built, and the variables ai..a{ represent the input 
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parameter list for predicates P and Q in the base case definition. The existentially 
quantified variables l\...lj represent the signal lines for interconnection between sub- 
components; parJisti and parJist2 are the parameter lists for cells Pn and B in the 
recursive case definition. They are equal to the input parameter list ii...ik except that 
some of the parameters are replaced by the existentially quantified parameters l\..lj. 
The positions of li..lj in parJistx and parJist2 determine how the basic building 
block is netted together. With the parameter lists and information on the position 
of the parameters, a recursive definition can be translated into a parameterized L 
module generator. 

Since the translation mechanism for the recursive definition is somewhat intricate, 
the transition process is illustrated using a simple example of an n-bit ripple adder 
described in Section 2.2. For convenience, the block diagram of the n-bit ripple adder 
is shown again in Figure 10. 

a(0)       b(0) a(n+l)     b(n+l) 

an 
FADD1 

■ cout cm ; 
RADDERN n a b ein sum cout 

sum(O) 

wl 
FADD1 

--AJT-- 

sum 

tout 

 v  
sum(n+l) 

RADDERN 0 a b ein sum cout RADDERN (n+1) a b ein sum cout 

Figure 10: Diagram of an n-Bit Ripper Adder 

The port definition of a one-bit full adder and n-bit ripple adder, along with the 
definition of the ripple adder, is shown below: 

|- cell_port_def = 
['FADD1', 

[in_port 'a' pin; in_port 'b' pin; in_port 
out_port 'sum' pin;  out_port 'cout' pin]; 

pin; 
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'RADDERN', 
[in.port   'a'   (bus  1);   in.port   'b'   (bus  1);   in.port   'ein'  pin; 
out.port   'sum'   (bus  1);   out_port   'cout'  pin]] 

|-  (!   ab ein sum cout. 
RADDERN 0 a b ein sum cout = FADDKa 0, b 0, ein, sum 0, cout)) 

A 
(! n a b ein sum cout. 

RADDERN (n+1) a b ein sum cout = 

(? w. RADDERN n a b ein sum w A 

FADDl(a(n+l), b(n+l), w, sum(n+1), cout))) 

In the base case of the RADDERN definition, zero is assigned to the cell size 
parameter. However, this does not mean that there is no instantiation of the base 
cell, but simply the instantiated cell number will start from 0. Therefore, if the cell 
size is n, there will be cell instances from 0 to n - 1 in the translated L program. 

The recursive part indicates that a ripple adder of size n + 1 can be built with 
a ripple adder of size n and another one-bit full adder. That is, the recursive part 
defines the n + 1 bit ripple adder with an n-bit ripple adder and a one-bit full adder. 

The parameter lists and the position of the existentially quantified variables decide 
the interconnection mechanism. In the n-bit ripple adder case there is only one 
existentially quantified variable w, and it replaces two parameters: one for the output 
parameter of RADDERN cout, and the other for the input parameter of FADD1 ein. 
This indicates that the output port of RADDERN cout is to be connected to the 
input port of FADD1 ein using the internal line w. 

In summary, the generation of the corresponding L module generator from a HOL 
recursive definition is based on the interpretation of the context in which a variable 
appears. The context is determined by two factors: how the variable is quantified 
and where it locates. Besides, a cell instance terminal name must be found according 
to the position of a variable in the predicate. To get this information, two abstract 
functions have been defined: pos(), and portQ. With a predicate name P and its 
parameter a, the function application pos(a,P) returns the position of the parameter 
in the parameter list of predicate P. On the other hand, the function application of 
port(n,P) returns the n'th variable in the parameter list of predicate P. 

The transition mechanism of a HOL recursive definition of an n-bit ripple adder 
to the L program is as follows: 

40 



The name of the predicate is RADDERN, and since it is defined recursively, the 
H0L2GDT compiler produces the first line. 

SCHEMATIC RADDERN  (INT hol_l_s=l) 

SCHEMATIC is a keyword in the L language that specifies this is a schematic file. 
The name of the cell becomes RADDERN with default value for the cell size 1. This 
cell size can be set to a specific value after the HOL definition is translated into an L 
program. This will be covered in a later section. The HOL2GDT compiler uses the 
variable hoLLs for the iteration limit parameter, which is declared to be an integer 
and initialized to 1. 

Next, it refers to the cell port definition part of RADDERN and scans the port 
list from left to right. If the port has a type of pin, then it is declared to be a port 
variable by keyword IN, OUT, or INOUT according to its port type. Otherwise, if 
the port is not a pin type, then the HOL2GDT compiler remembers the port name 
and goes to the next port. For example, only ein and cout are of the pin type, and 
are defined as injport and ouLport, respectively. The compiler generates the two lines 
shown below: 

IN    ein; 
OUT cout; 

The declaration for the rest of the parameters (which have the bus type) will be 
done during the iteration part, because every time a basic cell is instantiated it needs 
terminals for the interconnection between subcomponents or between the instance 
terminals and the external terminals. 

Next, the compiler prepares for the iteration, but before the actual iteration it 
declares an iteration variable hoLLi as an integer and initializes it to zero as seen 
below. 

INT    hol_l_i; 
hol_l_i =0; 

41 



Then the iteration part follows as the HOL2GDT compiler produces the line below: 

WHILE  (hol_l_i < hol_l_s)     { 

The limit for the iteration is given in the cell name definition as hoLLs that is 
initialized to 1 by the compiler. Thus by default there will be one cycle of iteration, 
which means the size of the cell will be one. 

The WHILE statement executes whatever statements in the loop as long as the 
boolean expression is evaluated to true. Since the variable hoLLi is initialized as zero, 
the boolean expression results in true, and it performs the statements in the curly 
brackets. 

In the iteration, the parameters with a bus type are declared first. Since there 
are three parameters having a bus type in the ripple adder example, the compiler 
generates the lines below: 

IN a[hol_l_i]; 
IN b[hol_l_i]; 
OUT    sum[hol_l_i]; 

The compiler uses the iteration control variable, hoLLi, to declare the parameter 
of the bus type and the parameters are indexed by this control variable. 

After declaring all parameters of the bus type, the basic cell FADD1 is instantiated 
and if it is the first cell instantiated (it checks the value of the variable hoLLi to see 
if it is zero), then it searches the input variables defined outside the iternation and 
connects them to the corresponding terminals. In this case there is only one input 
variable defined ein, thus the compiler generates the lines below: 

INST FADD1 FADD1[hol_l_i]; 
IF (hol_l_i == 0) { 

WIRE FADD1E0].ein TO ein; 
} 
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The above lines mean that the external input port ein of RADDERN is con- 
nected to the input port ein of the first instantiated full adder FADD1[0]. Here the 
HOL2GDT compiler uses two abstraction functions pos(), and portQ to find the in- 
stance terminal name corresponding to empört of RADDERN. The process of finding 
the instantiated terminal name for ein is as follows. 

The input parameter ein indicates the outermost port, thus the predicate in the 
base case RADDERN is used to find the position of ein in FADD1. The function 
application pos(cin, FADDERN) gives the value of 3. To find the third port name in 
FADD1, the compiler uses another function application port(3, FADD1), which gives 
the third port name in the FADD1 cell definition, ein. 

The next step is to assign the port names for the instance terminals of bus type 
parameters. That is, the instance terminal for FADDlfhoLLiJ. a is assigned to a port 
name apioLLi], and so on. In this case there are three parameters that have the bus 
type a, b, and sum. Thus the compiler produces the following three lines: 

WIRE FADDl[hol_l_i].a TO a[hol_l_i]; 
WIRE FADDl[hol_l_i].b TO b[hol_l_i]; 
WIRE FADD1[hol_l_i].sum TO    sum[hol_l_i]; 

After netting the buses the compiler handles the existentially quantified parameter 
w. The compiler produces a line that asks whether the value of the iteration variable 
is not equal to zero. In case of zero (which means it is the beginning of the iteration, 
thus there is no other cell to be connected yet), the compiler skips this connecting 
procedure. If the value is not zero, then the compiler looks for predicates in which 
the existentially quantified parameter w appears. At first, the variable w appears 
in the RADDERN and is located in the fifth place. It can be found using pos(w, 
RADDERN). The corresponding port name in the RADDERN port definition is cout. 
Again, the variable w appears in the predicate FADD1. The position value is 3, and 
the port name is ein. Thus the compiler knows that the instance terminal port of 
RADDERN cout is to be connected to the instance terminal port of FADD1 ein. One 
thing to remember is that the base building cell FADD1 is added to build RADDERN, 
thus the outermost port of RADDERN is that of the previously instantiated FADD1 
cell. The code generated is: 
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IF  (hol_l_i   != 0)     i 

WIRE    FADD1[hol_l_i  -  1].cout    TO    FADD1[hol_l_i].ein; 
} 

Next, the compiler generates a code that checks whether the value of the iteration 
variable hoLLi is the same as that of the iteration limit variable hoLLs minus one, 
which means that it asks if it is the last iteration procedure. If it is, the compiler 
generates a code that connects the last instantiated terminal to the external output 
port. In the above case, cout is the only output port that is pin type. The generated 
line is seen below. 

IF  (hol_l_i == hol_l_s - 1)  { 

WIRE FADDl[hol_l_i].cout    TO    cout 

The final L program translated for the n-bit ripple adder is shown below. 

SCHEMATIC  RADDERN   (INT hol_l_s=l) 
{ 

IN      ein; 
OUT    cout; 
INT    hol_l_i; 
hol.l.i = 0; 

WHILE  (hol_l_i < hol_l_s)  { 
IN    a[hol_l_i]; 

IN   b[hol_l_i]; 
OUT sum[hol_l_i]; 
INST FADD1  FADD1[hol_l_i]; 
IF(hol_l_i == 0)   -C 

WIRE FADD1[0].cout TO ein; 
} 
WIRE FADDl[hol_l_i].a to a[hol.l.i]; 
WIRE FADD1[hol.l.i].b to b[hol.l.i]; 
WIRE FADD1[hol.l.i].sum to sum[hol.l.i]; 
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IF(hol_l_i == 0)  { 
WIRE FADDl[hol_l_i].cout TO FADDl[hol_l_i].ein 

} 
IF(hol_l_i == hol.l.s -1)  { 

WIRE FADD1[hol_l_i].cout TO cout; 

} 
hol_l_i++; 

Actually, the wiring mechanism in the HOL2GDT compiler follows the rules sum- 
marized in Figure 11. 

V Var Occurence 
iteration Interconnection 

Bo Pn Pn 

easel U O O i = 0 

WIREB[0].t' TOx 

where pos(x, Pn) = k 

port(k, Po)=t 

pos(t,Bo) = k' 

port(k',B) = t' 

case2 U O 0 0 0<i<m 

WIREB[i].t' TOxorx[i] 

where pos(x, Bo) = k 

pos(x, Bn )=k 

port(k, B) = t 

case3 U 0 O i = m 

WIRE B[m].t TO x 
where pos(x, Bo) = k 

pos(x, Bn ) = k 

port(k, B) = t 

case4 E O O Uo 

WIREB[i-l].t' TO B[i].tt 

where pos(x, Pn) = k 

port(k, Po)=t 

pos(t,Bo) = k' 

port(k\ B)=t' 

pos(x,Bn ) = kk 

port(kk, B)=tt 

Figure 11: HOL2GDT Compiler Translation Mechanism 
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Interestingly, all variables fall into the four cases and by matching the conditions 
of the variable the HOL2GDT compiler can issue the correct WIRE and SIG com- 
mands. Hence, the translation mechanism can be explained using the above rules. 
For convenience, some conventions are required, that is, P0 is the predicate in the 
definition of the base case, and B0 is the predicate for the building block in the base 
case. Pn is the predicate in the definition of the recursive case, and Bn+1 is the build- 
ing block in the recursive case. In the ripple adder case, B0 corresponds to FADD10, 
Pn corresponds to RADDERNn, and Bn to FADDln+1. 

During the scanning procedure of each variable the compiler checks how the vari- 
able is quantified, in what predicate(s) it appears and, finally, the condition of the 
iteration. With this information, it finds out which case should apply. For example, 
the variable ein falls into case 1. The HOL2GDT compiler knows that it should con- 
nect the input port variable ein somewhere. The variable ein is universally quantified, 
thus it is a primary input or output. By using the pos() and port() functions, the 
compiler can find that ein is an input port. Also, ein appears at the first iteration, 
that is, when i = 0. Therefore, the HOL2GDT compiler uses the first-case rule to 
find the instance terminal name to which ein should be connected by using the pos() 
and portQ functions. The procedure of seeking the instance terminal is as follows. It 
first looks for the position of ein in the predicate RADDERNn by using the function 
application posfcin, RADDERNn) and gives the value 3. Next, it uses the function 
application port(3, RADDERN), which returns ein. With this variable ein, it finds 
the position of ein in FADD10, and this gives the value 3. Finally, the compiler uses 
the function application port(3, FADD1) to find the final instance terminal name, 
that is, ein. Thus the compiler issues WIRE FADDl[0].cin TO ein. 

For the next three variables a, b, and sum, which are indexed by the recursion 
variable n, the compiler applies the second case. They appear in the base and recursive 
case definitions. Since they are universally quantified, they are primary inputs and 
outputs of the module. The compiler also uses the functions pos() and port() to 
trace the instance terminal names to be wired. Since these indexed variables appear 
in every iteration, they always occur in the same port locations. For example, the 
variable a appears in the first port of RADDERNn. Looking up the name of the 
first port of FADD1 by using the function application of port(l, FADD1), which is a, 
the compiler can issue the WIRE command with the correct instance terminal name. 
This accounts for WIRE FADDl[hol_l_i].a TO a[hol_U]. 

The variable cout falls into the third case. Since it is universally quantified, it is 
a primary input or output port. By checking the port definition of RADDERN, the 
compiler finds that ein is a primary output port, thus it must be used in the last 
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iteration to connect the output port from the instance terminal. The compiler checks 
the position of cout in FADDln+i, which is 5. With this value it looks for the fifth 
variable name in FADD1, which is also cout. Thus the compiler can issue the line 
WIRE FADDl[hol_L_i].cout TO cout. 

For the existentially quantified variables the compiler applies the last case. Since 
the internal connections are not seen by the user, and they are not needed in the 
base building block cell, they will not occur as the parameters of RADDERNn+\ 
or FADD1. The internal variables will occur only in RADDERNn and FADDln+i. 
The compiler finds the instance terminal name to which the internal variable should 
be wired as follows. First, it uses the function application pos(w, RADDERNn), 
which returns 5. The fifth port in RADDERN is cout. Next, the compiler looks for 
the position of cout in FADD10, which is 5. Then it finds the fifth port variable of 
FADD1, which is cout. The internal variable w appears in FADDln+i. The position 
value of w in FADDln+i is 3, and the third port variable in FADD1 is ein. Thus the 
compiler knows that the cout port of the previous stage should be connected to the 
ein port of the currently instantiated FADD1 cell, and issues the line below : 

WIRE FADDl[hol_U - l].cout TO FADDl[hoUJ].cin. 

In summary, to create an L module generator program from a recursive HOL 
description and a cell port definition list, the universally quantified parameters are 
declared as input or output ports, then the definition is scanned from left to right. 
The instance terminal names are determined and wired together using the rules in 
Figure 11. Notice that if the variable is a type of bus, it is indexed to be instantiated 
for every iteration. 
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7    n-Bit Serial Pipelined Multiplier Example 

In this chapter a complete example of H0L2GDT methodology for designing a five- 
stage pipelined bit serial multiplier is covered. It is implemented using the 
HOL90.7 and GDT version 5.2JL The entire procedures of the HOL2GDT system 
can be described with the design flow graph shown in Figure 12. The developing 
procedures of the multiplier are explained by following the sequences in Figure 12. 

1       HOL 
Formal 

Specification 

3      HOL 

Structural 

Definition 

* Formal Definition 

Serial 
Multiplier 

Spec 

HOL 

Printed Theory 

Multiplier Chip 

.12.. 

7 L Schematic 

Description 

MOSIS Fab. GDT AutoCells 

9 ■■ 

IRSIM 
SPICE 

Magic CIF 
11: 

2      HOL 
Standard cell 

Definitions 

[6   HQL2GDT COMPILER ) 

GDT 
standard 

cells 

Standard Cell Layout 
10 

LSIM 

Design 

Validation 

Figure 12: Flow Graph of HOL2GDT System 

The multiplier design starts with a general multiplier specification (0). This spec- 
ification is formalized using HOL notations (1). For the formalization of hardware 
systems, we have pre-defined standard cell definitions (2). With these definitions the 
structural (implementation) description of the multiplier is formalized (3). With both 
specification and implementation descriptions, we can perform a formal verification 
(4) using the HOL. After we get the correctness theorem of the multiplier design, we 
use the implementation description to get a HOL printed theory file (5). The hol2gdt 
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compiler (6) uses the printed theory to translates it into an L schematic description 
(7). Then the GDT auto-cell generator, sc.build, uses the schematic description to 
generate standard cells (8). With this standard cells, the L compiler generates a 
routing file (9). This routing file is used for the design validation through the LSIM 
simulator (10). The routing file is translated into a MAGIC CIF file for the embed- 
ding of pad frames (11). The MAGIC layout is tested using IRSIM or SPICE and 
sent to the MOSIS for the chip fabrication (12). Then we finally get a multiplier chip 
that is generated using formally verified definition. The contents of this chapter are 
as follows: In Section 7.1, the designing procedure of the multiplier building blocks 
is discussed in detail. In Section 7.2, we describe how building blocks can be defined 
using HOL notation. The detailed procedures of designing and verifying will be omit- 
ted because that is beyond the scope of this paper. Section 7.3 covers the translation 
procedure from the HOL to the L language. In Section 7.4, the layout generation 
procedures from the translated L schematic file to the final GDT circuit layout us- 
ing GDT tools is explained, and the next chapter covers the testing and simulation 
procedures for the multiplier layout. The HOL implementation description and the 
translated L file for the multiplier are listed in the appendix. 

7.1    Design Procedure of n-bit Serial Multiplier 

The first chip fabricated using the HOL2GDT Linking System was the pipelined 
serial multiplier. In this section the design procedures of the multiplier from the 
basic component to the top level unit are described. However the main goal of this 
paper is not to describe the designing procedure of the multiplier itself, but to describe 
the design with HOL notation. Thus this section is just a preparation for the next 
section. The basic component of the multiplier is a full adder with reset input, far. 
The far acts like a full adder when the input to the reset port is False. With the 
reset input True, far still produces the sum result, but it makes the cout value False, 
regardless of the input values. 

The far unit is implemented using basic gates such as two-input nand gates, in- 
verters, three-input nand gates, two-input nor gates, and three-input nor gates. The 
block diagram of the far is shown in Figure 13. 

The next step is to build a serial adder sa by combining a far and d-type register, 
d-regjnr, which does not have the reset input. The serial adder sa keeps cout, the 
carry-out signal from the far, and uses it as the carry-input ein signal to itself for 
the next clock cycle. Therefore, there are no external ein and cout ports in the serial 
adder. The block diagram of the serial adder is shown in Figure 14. 
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far 

**   sum 

Figure 13: Block Diagram of a Full Adder with Reset 

Now a component that can perform one-bit multiplication is required. Since mul- 
tiplication is implemented by addition, the serial adder sa is used as a sub-component 
of the multiplier. In addition to the serial adder, three kinds of registers are needed: 
djreg-nr, d-reg^wqb, and wff. The d.reg.wqb component has two output ports that 
always produce complementary outputs. It accepts the reset signal and delivers it to 
the output only when the clock signals change from high level to low level (trailing 
edge of clock signal). Otherwise, the output does not change at all. These registers 
are already pre-defined in the standard cells library of the GDT system. The wff 
component is just a d-type register with additional input signal drivers. The block 
diagram of wff is omitted here; however, the HOL definition of the wff is included in 
the appendix. 

By using the components mentioned above, a one-bit multiplier cell, cell, can be 
built. The block diagram of the cell is shown in Figure 15. 

There are six input and three output external ports in the cell. The input signals 
can be categorized into two parts: control signals and data input signals. The elk 
signal triggers the operation of the registers, and the reset signal clears the output of 
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x       y  reset 

Figure 14: Block Diagram of a Serial Adder 

the registers and initializes the carry input to the serial adder to zero. The x and y 
are data input ports. 

For the output, xout is used to propagate the x input to the next stage. The rout 
port is also used to deliver the reset signal to the next stage. The out port is used to 
carry the result of the multiplication that is to be passed to the next stage. 

The top level unit of the five-stage serial multiplier requires five one-bit multi- 
plication units cell and four register djregjnr pairs between two adjacent cells. The 
block diagram of the five-stage serial multiplier is shown in Figure 16. 

The block bps is just a serial connection of two inverters. The y signal is connected 
to the d-register through bps. A single cell and a bps block compose a bcell. A d- 
register pair is used to inter-connect two adjacent bcells and one bcell and d-register 
pair compose an icell. Thus to construct a five-stage, pipelined, bit-serial multiplier, 
four icells and one bcell are needed. 

The next section explains how these building blocks can be defined with HOL 
notation. 

7.2    HOL Implementation Description 

In this section the procedure of describing the building blocks using HOL notation is 
explained. 

7.2.1    Basic Gates Definition 

In the previous section the basic gates such as and, nor, and even inverter gates are 
not designed, but taken for granted. However, there is no inherent library or built- 
in theory for the basic gates in HOL. Thus the basic gates must be defined before 
being used. To avoid building definitions of the basic gates in every implementation 
description, and also to conform to the terminology of the basic gates, the gates.sml 
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Figure 15: Block Diagram of a One-Bit Multiplier Cell 

file that includes all the definitions of basic gates is provided. The gate names in the 
definition file are intended to be matched with the standard cell names of the GDT 
system. However, it is not always possible to do that for some gates. For example, 
the two input AND gate is named and2, because the word and is a reserved word 
in HOL90.7. The contents of the gates.sml file is listed in the appendix. To use the 
basic gates defined in the gates.sml file, the file must be loaded in a HOL session by 
executing the following procedures. 

1. Copy the  "gates.sml"  file listed in the appendix to the working 
directory. 

2. Execute below command. 
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pdm 

yout 

xout 

Figure 16: Block Diagram of Five-Stage Pipelined Serial Multiplier 

°/,hol90 < gates. sml (* °/o is a prompt *) 

In the HOL implementation description file, include two commands 
after new_theory command line. 

new_theory "pdm";  (* pdm is the theory name *) 

new_parent "gates"; 
add_theory_to_sml "gates"; 

The second step generates the theorem file for the gates.sml definition file. The 
theorem file is needed to execute the commands in step 3. 

7.2.2    Defining Noniterative Structure Components 

This section describes how the noniterative structured components are defined using 
HOL notation. First, the far component in Figure 13 consists of two inverters, five 
two-input nand gates, one two-input nor gate, and one three-input nor gate. All 
of these gates are defined in the gates.sml file. It does not include any iterative 
structures (repetition of the same components), so it should be represented with 
relational description (refer to Section 2.1). The HOL definition of the far component 
is shown below: 
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val far = new_definition 

("far", 

(—'! x y ein reset sum cout. far (x, y, ein, reset, sum, cout) = 
? wl w2 w3 w4 w5 w6 w7 w8 cab. 

nand(x, y, wl) A 

nand(x, ein, w2) /\ 

nand(y, ein, w3) /\ 

nand3(wl, w2, w3, w4) /\ 

inv(w4, cab) A 

nor(cab, reset, cout) A 

nor3(x, y, ein, w5) A 

inv(w5, w6) /\ 

nand(cab, w6, w7) /\ 

nand3(x, y, ein, w8) /\ 

nand(w7, w8, sum)'—)); 

There are six external ports in the far block. These external ports must be uni- 
versally quantified by the ! symbol. Keep in mind that there are no commas between 
the external port names. After the period mark, the cell name (here, far) is fol- 
lowed. Then all of the external signals should be included in the parentheses as the 
parameters of the predicate far. Here, commas are needed between parameters. 

Next, the internal signals that act as connection lines between components should 
be existentially quantified. Then the subcomponents of far are listed with their 
parameters. Between the subcomponents a conjunction mark A is placed. The sub- 
components that have a common internal signal name in their parameter lists are to 
be connected. For example, the output port of the first nand gate is to be connected 
to one of the input ports of the first nandS gate by the line labeled wl. If there is no 
error in the definition (usually typographical errors or using a definition name that 
has been used previously), HOL produces the following theorem. 

val far = 

|- !x y ein reset sum cout. 

far (x, y, ein, reset, sum, cout) 
(?wl w2 w3 w4 w5 w6 w7 w8 cab. 
nand (x, y, wl) A 
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nand  (x,   ein,  w2)  /\ 
nand  (y,   ein,  w3)  /\ 
nand3  (wl,  w2,  w3,  w4)   A 
inv  (w4,   cab)   /\ 
nor  (cab,  reset,  cout)  /\ 
nor3  (x,  y,   ein,  w5)   A 
inv  (w5,  w6)  /\ 
nand  (cab,  w6,  w7)  /\ 
nand3  (x,  y,   ein,  w8)   A 
nand  (w7,  w8,   sum))   :  thm 

Using the above method, other basic components that do not have iterative struc- 
tures sa, wff, cell, bcell, and icell can be defined. 

7.2.3    Defining Iterative Structure Components 

This section describes how the iterative structure is defined with HOL notation. The 
top level description of the five-stage pipelined serial multiplier pdm consists of two 
parts: the first four stages, ipdm, and the last stage, bcell of the multiplier (refer to 
Figure 16). Since no registers for the pipelining are needed in the final stage, bcell is 
used instead of icell. 

The ipdm is built by cascading (iterating) four icells, thus it can be defined in a 
recursive way (refer to Section 2.2). The HOL definition for the ipdm (for general n 
stages) is shown below. 
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val ipdm = new_definition 

("ipdm", 

(—'(! x y inl reset elk yout xout z rout. 

ipdm 0 x y inl reset elk yout xout z rout = 

icell (x, y, inl, reset, elk, yout, xout, z, rout)) A 

(!n x y inl reset elk yout xout z rout. 

ipdm (SUC n) x y inl reset elk yout xout z rout = 
(? xi yi zi ri. 

ipdm n x y inl reset elk yi xi zi ri    A 
icell  (xi,  yi,  zi,  ri,  elk,  yout, xout,  z,  rout)))'--)); 

The recursive definition of ipdm consists of two parts: the base case definition and 
the inductive case definition. The base case describes the primary building block of 
the ipdm, and the inductive case describes how the additional building block should 
be connected to increase the size of the ipdm. The base case definition indicates that 
the primary component of the ipdm is icell, and the inductive case definition reveals 
the output ports of the ipdm: yout, xout, z, and rout should be connected to the input 
ports of the attaching icell; and x, y, z, and in through the internal lines yi, xi, zi, and 
ri, respectively. Finally, the top-level definition pdm is acquired just by combining 
the ipdm and bcell. 

7.2.4    Adding Input/Output Port Definition 

As mentioned in Section 2.4, one more piece of information, the input/output port 
definition, is needed to translate the HOL definitions into the L language program. In 
HOL implementation description there is no distinction for the input and the output 
ports. However, the ports must be declared as input, output, or for both in the L 
program. This information should be supplied by attaching the cell port definition 
to the block definition in the HOL description. For example, the cell port definitions 
for the first component far and top level component pdm are shown below: 
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var cell_port_def1 = new_definition 

("cell_port_defl", 
(—'cell_port_def1 = 

["far", 

[in_port  "x" pin; 
in_port  "y" pin; 

in_port  "ein" pin; 
in.port  "reset" pin; 
out_port "sum" pin; 
out_port "cout" pin]]'-)); 

var cell_port_def8 = new_definition 

("cell_port_def8" 

(—'cell_port_def8 = 
["pdm", 

[cell_sixe "n"; 

in_port "x" pin; 
in_port "y" pin; 
in_port "inl" pin; 

in_port    "reset" pin; 
in_port    "elk" pin; 
out_port  "yout" pin; 
out_port  "xout" pin; 
out_port  "z" pin; 
out_port  "rout" pin]]'—)); 

After adding the cell port definitions, the file should be closed using the two lines 
below: 

close_theory(); 
export_theory(); 

Executing the closeJheory() finishes a session in draft mode and switches the 
system to proof mode. The changes made to the current theory segments are writ- 
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ten to the theory file associated with it. If the HOL session ends without invoking 
close-theory(), the modifications made to the session do not persist to future HOL 
sessions. After the theory is closed, the theory segment may be extended by using 
the extendJheoryO command. 

Executing the export Jheory() exports the theory to the disk, thus generating a 
theorem file, pdm.thms, in the directory where HOL is invoked. 

From now on, this implementation description of the multiplier can be used for 
the formal verification. The correctness theorem that shows the implementation de- 
scription of the multiplier implies or is equal to the specification description of the 
multiplier. Since the formal verification procedure usually requires quite a long time, 
it may be postponed. However, the verification must be done before the layout is 
sent to the MOSIS for fabrication. 

In the sml file, comments may be included to help the interpretation of user. 
However, these are not needed in the HOL2GDT compiler, because they may add 
complexity to programming the HOL2GDT compiler. Thus instead of the sml file, 
the printed theory file is used for the input to the HOL2GDT compiler. The printed 
theory file can be generated by the following steps. 

At first, execute command below in HOL session. 

print.theory "pdm"; 

The string, pdm is the theory name that was declared by the newJheory command 
at the beginning of the theory file. The printJheory command prints the theory name, 
parents, type constants, term constants, axioms, definitions, and theorems defined in 
the pdm theory. To save the printed theory into a new file, the new file should be 
opened with the name pdm.print and then the printed theory should be copied by 
clipping and pasting. However, the printed theory file may not yet be used as the 
input to the HOL2GDT compiler, because some changes must be made to the printed 
theory file. These may include collecting all cell port definitions and combining them 
into one definition and placing it at the beginning of the file to make the programming 
of the compiler easier. The ipmap program was developed to implement this. 

The syntax for the ipmap is below: 
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ipmap <input file> <output file> 

Here the input file name can be pdm.print and the output file name can be pdm. 
There is one constraint in designating the output file name. That is, it may not 
include any dot(.) extension name. The reason for this constraint is explained in the 
next section. The final form of the HOL implementation description that is ready to 
be used as an input to the HOL2GDT compiler is shown in the appendix. 

7.3    Translating to the L program 

In this section the procedure for translating the HOL implementation file into an L 
language program is explained. The output from the ipmap program is used for the 
input to the HOL2GDT compiler. As mentioned in the previous section, the input 
file name to the HOL2GDT compiler may not have a dot extension. This constraint 
comes from the syntax of GDT commands that are to be used from now on. The 
syntax of the HOL2GDT compiler is below: 

H0L2GDT    -o <output_file.S>    <input_file> 

Attaching the suffix, .S, to the output file name is mandatory. In later procedures, 
a file name with the .S suffix is required. The actual command for translating the 
pdm file to an L program file is as shown below: 

H0L2GDT    -o pdm.S    pdm 

The compiler generates an L schematic file pdm.S and also two additional files, 
pdm.def and pdm.macro. These two files include the parameter values for the pa- 
rameterized GDT standard cell generators and the L language definition of macro 
cells supported by the H0L2GDT compiler. GDT's placement and routing tools will 
utilize these standard cell parameters to create necessary standard cells, and these 
standard cells and macro cells are then used in building the multiplier layout. 
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7.3.1    Standard Cell Generator Definitions 

The GDT tool suite provides a set of parameterized standard cell generator functions. 
These generators are supplied with a set of input values that denote the parameters to 
the generator function. For example, let nand be a standard cell generator function. 
The function is instantiated by an L language command, CALL. Then, the nand 
generator function is used to create a two-input nand gate. Each function has to 
be given a name label, such as nand2. Each function being instantiated must be 
supplied with a set of input parameter values. Thus to create a 2-input nand gate 
called nand2, the L language command line will be as below. 

CALL nand CELL nand2  (2,1,1,0); 

where nand - standard cell generator function being called. 
nand2 - instance name of the standard cell. 
2 - number of inputs. 
1 - number of outputs. 
1 - number of input drivers. 
0 - number of output drivers. 

A more detailed description of input parameter syntax and semantics can be found 
in the standard cell manual [4]. The HOL2GDT compiler currently uses 11 standard 
cell generator functions to create and support a library of 27 standard cells. A typical 
pdm.def file is shown below: 

L::   TECH ANY 
{ 
# And gate 
CALL sc.and CELL and  (2,1,1,2,1,1,0); # 2-input 
CALL sc.and CELL and3   (3,1,1,2,1,1,0); # 3-input 
CALL sc.and CELL and4  (4,1,1,2,1,1,0); # 4-input 
CALL sc.and CELL and5   (5,1,1,2,1,1,0); # 5-input 
# Or gate 
CALL sc_or CELL or (2,1,1,1,1,1,0); # 2-input 

CALL sc_or CELL or3 (3,1,1,1,1,1,0); # 3-input 

CALL sc_or CELL or4 (4,1,1,1,1,1,0); # 4-input 
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CALL sc_or CELL or5 (5,1,1,1,1,1,0); # 5-input 
# Nand gate 

CALL sc.nand CELL nand (2,1,1,0); # 2-input 

CALL sc.nand CELL nand3 (3,1,1,0); # 3-input 
CALL sc_nand CELL nand4 (4,1,1,0); # 4-input 

CALL sc.nand CELL nand5 (5,1,1,0); # 5-input 

# Nor gate 

CALL sc.nor CELL nor (2,1,1,0); # 2-input 

CALL sc.nor CELL nor3 (3,1,1,0); # 3-input 

CALL sc.nor CELL nor4 (4,1,1,0); # 4-input 

CALL sc.nor CELL nor5 (5,1,1,0,0); # 5-input 
# Xor gate 

CALL sc_xor CELL xor (1,1,0); 
# Xnor gate 

CALL sc.xnor CELL xnor (1,1,0); 

# Inverter gate 

CALL sc.inv CELL inv (1,1,1,0); 

# Master-slave flip flop 

CALL sc_msff CELL msff_wrqb (1,1,1,0); # with reset and Qb output 
CALL sc_msff CELL msff.nr (0,1,1,0); # no reset 

CALL sc.msff CELL msff (3,1,1,0); # vanilla master-slave 
# Static latch 

CALL sc.latchs  CELL lsl.wr  (1,1,1,1,1,0);   # with reset 
CALL sc.latchs CELL lsl_nr  (0,1,1,1,1,0);   # no reset 
CALL sc.latchs CELL latchs   (1,1,1,1,1,0);   # vanilla latch 
CALL sc.latchdd CELL latchdd  (1,1,1,1,1,0);   # dynamic latch 
# Inverted Tristate buffer 
CALL sc.tbfi CELL tbfi  (0,1,1,0); 
} 

The standard cell library supported by HOL2GDT is open-ended and can be fur- 
ther extended to enhance the design capabilities as required. The standard cell library 
has one-to-one correspondence to the components in the gates.sml file described ear- 
lier in Section 7.2.1. The gates.sml file describes behavioral definitions of the standard 
cells in HOL. The HOL2GDT compiler uses these definitions in gates, sml to create a 
pdm.def file that contains the standard cell generator function calls and appropriate 
input parameter values for the generator functions. 
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7.3.2    Macro Cell Definitions 

Macro cells are commonly used in any standard cell-based design methodology. Macro 
cells are constructed using one or more existing standard cells to achieve a frequently 
used functionality in hardware. The HOL2GDT compiler has a macro cell library 
that currently consists of 12 macro cells as listed below. 

D_REG - D register using master-slave flip flop 
D_REG_NR - D register with no reset 
D_REG_WQB - D register with inverted Q output 
D_REG_WRQB - D register with reset and inverted Q output 
BUFFER - Buffer using dynamic latch 
BUFFER.S - Buffer using static latch 
VDD - VDD power connection,  used for tied high ports, 
GND - Ground connection,  used for tied low ports. 
BY_PASS - Wire pass through using two cascaded inverters. 
PASS - Pass transistor. 
BUS2WIRE - Split a bus into wires. 
WIRE2BUS - Group wires to form a bus. 

The macro cells are described using an L language program. The HOL2GDT 
macro cell library maintains a list of macro cells currently supported by the compiler. 
The compiler reads this list at run time from the library and writes the L language 
programs for each supported macro cell to the pdm.macro file. A typical macro 
definition file is listed in Appendix B. 

A design is fully described by means of three design files, pdm.S, pdm.def, and 
pdm.macro. Once the pdm.S file is generated there is one thing to do with the pdm.S 
file manually. That is, if the HOL definition file includes one or more recursive defini- 
tions, then the values for the iteration variables in the translated L schematic program 
must be assigned (please refer to Section 6.3). By default the HOL2GDT compiler 
assigns 1 for each parameter n in the recursive definition. Thus if no adjustment is 
made in the pdm.S file, then a one-stage multiplier will be generated. To get the 
desired size of multiplier, the value of the hoLLs parameter in the pdm.S file should 
be changed. For the five-stage, pipelined, serial multiplier, five icells and four pipeline 
stages are needed. This can be implemented by assigning the value 4 to the hoLLs 
parameter in the ipdm cell generator. 
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7.4    Generating the Actual Layout Using CAD Tools 

From now on all the procedures are implemented in VLSI CAD tool environments. 
The flow of the procedures is shown in Figure 17. 
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Figure 17: Procedure of Generating the Actual Layout 

The above figure shows the procedures to get a MAGIC layout from an L schematic 
description. HOL2GDT uses two VLSI tools, GDT and MAGIC. The L schematic 
description is input into the GDT system and the system builds standard cells, does 
placement-and-routing, and converts the layout into CIF format. Since the CIF 
format supported by the GDT system differs from that of MAGIC, the GDT CIF file 
is translated into MAGIC CIF format using the I2mcif program. With the MAGIC 
CIF file, the MAGIC layout is retreived, pad frames are embedded into the design, 
and the design is tested using the design rule checker drc and the switching level 
simulator IRSIM. Details for the above procedures are covered in following sections. 
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7.4.1    Building Standard Cells 

The first thing to do in the GDT system is to generate standard cells required for 
building the multiplier circuit layout. The scJ)uild is one of the supporting programs 
in the GDT system that refers to the standard cell library. It is used to build a set 
of standard cells. The syntax to build a set of standard cells is: 

sc.build -t <tech> <options> 

The options are 

-1 lib 

-L lcell.lib 

-T lcell.tech 
-V view 
-x 

-o output_file 

-e error_file 

-g cell_control_ 

cell_definition. 

Specifies the technology library. 

Specifies the Lcompilers library. 

Specifies the Lcompilers technology category. 
Specifies the VIEW of the cells to be created. 
Specifies that the output file should be in 
binary format. The default format is ASCII. 
Specifies the name of the Lc output file. The 

default output name is stdout. 
Specifies the name of the Lc error file. The 
default file name is Lerror. 

file Specifies the name of the standard cell 

control file. The default name is sc_ctl. 

If the file sc_ctl is not found in the current 

directory, default values will be used, 
file Specifies the name of the standard cell 

definition file. The default name is sc_def. 
If the file is not found in the current 

directory, a default cell definition file will 
be used. 

Thus the actual Unix shell command line to generate the standard cells for the 
multipilier is as shown below. 

64 



sc.build    -x -t scmos    -V SCHEMATIC -g gdt.ctl -o pdm.X    pdm.def 

The above command means that the output file is in binary format, the technology 
file to be used is scmos, the SCHEMATIC view will be generated, the cell control 
file name is gdt.ctl, the output file name is pdm.X, and the cell definition file name 
is pdm.def. The cell control file gdt.ctl must be in the working directory. For more 
detailed information, please refer to the L compiler user guide [7]. 

7.4.2    Generating a Routing File 

The next procedure is to generate the routing file using the L language compiler Lc, 
which is a utility program for translating L programs into other netlist and geometric 
formats. The command we used for generating the routing file is shown below: 

Lc -t scmos -inc pdm.X    -inc pdm.macro    -o pdm.R    -AutoCells pdm.S 

The above command means the technology file is scmos, which checks whether 
the pdm.X and pdm.macro files are included. The output file name is pdm.R. For the 
netlist information it uses the pdm.S file. The output file is pdm.R and some controls 
can be applied manually on this file by using TERMPLACE commands at the end of 
the IF (-LPAR-NET) clause. 

TERMPLACE elk    "WEIGHT 9"; 
TERMPLACE elk    "CLOCK LEFT clk.l RIGHT clk_r"; 
TERMPLACE x  "TOP"; 
TERMPLACE y "TOP"; 
TERMPLACE in "TOP"; 
TERMPLACE reset  "TOP"; 
TERMPLACE yout  "BOT"; 
TERMPLACE xout  "BOT"; 
TERMPLACE z  "BOT" 
TERMPLACE rout  "BOT"; 
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The above control lines mean that the highest priority is assigned to the elk signal 
in the routing process and an additional channel is allocated for the elk signal. The 
input port terminals x, y, in, and reset are to be placed on the top side of the layout, 
and the output port terminals yout, xout, z, and rout are to be located at the bottom 
of the layout. 

7.4.3    Layout by Placement and Routing 

Complete standard cell layouts are acquired by using the cell script scJpar, which re- 
quires all the files generated so far. The script includes sc-build, AutoCells placement 
and routing, and he programs. It creates a set of standard cell layout or bounding 
boxes. The AutoCells placement and routing program is used to create an L pro- 
gram for the final layout. Lc is used to compile that program into a simple L file (in 
ASCII or binary format). The shell command of scJpar that is used to generate the 
multiplier is shown below. 

sc.lpar -t scmos -x -g gdt.ctl -ROW 9 pdm.R 

where 
-t scmos 
-x 
-g gdt.ctl 
-ROW 9 

Technology file is the scmos 
Produces binary format output file 
The standard cell control file is gdt.ctl 
The number of rows in the top level layout 
is 9 

-pdm.R :  The routing file name  is pdm.R 

The above cell command produces the default output file pdm-route.X, which can 
be used in the GDT graphic editor Led to simulate and convert into the CIF file 
format. 

7.4.4    Converting the Layout into a CIF File in Led 

The shell command invoking Led with the final layout for the multiplier is shown 
below: 

66 



Led -t scmos pdm_route.X & 

The Led screen consists of two windows. The layout appears in window 2 and 
shows just the first level of the layout, that is, the terminals and outlines of the rows. 
To see the entire levels, press the "p" key and modify the plot depth to 3, then hit the 
return key. After that, the tab key should be pressed to redraw the layout. Figure 18 
shows the Led screen snapshot of the layout. 
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Figure 18: GDT Layout of the Multiplier 

There are two kinds of menus, foreground and background, in the Led graphic 
editor. The background menu is used to exit Led, change screen color and cursor 
type, and so on. For the other facilities, the foreground menu is used. To invoke the 
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background menu, place the cursor on the gray part that does not belong to the two 
windows, and press the right mouse button. A detailed description of Led is beyond 
the scope of this paper. For further information, please refer to the Led Graphics 
Editor User Guide [10]. 

To convert the layout into a CIF file, invoke the foreground menu by pressing the 
right mouse button on the window area and selecting the Utility item. Then choose 
CIF submenu (or press 6), and change the mode to WRITE by clicking the READ 
icon, and give the file name. To exit Led, go to the background menu and select 
EXIT, or press the Ctrl+D keys. 

8    L2MCIF — XY Mask Translation Compiler 

This section describes the functionality of the L2MCIF compiler. This compiler is the 
critical link between the physical layout and IC fabrication. The physical standard cell 
layout is created by the GDT layout compiler tool suite using SCMOS technology. The 
layout should be prepared for mask fabrication at the MOSIS IC fabrication facility. 
MOSIS supports the SCMOS process technology and also provides compatible I/O 
pads and pre-laid out pad frames to perform the final chip assembly. These I/O 
pads and pad frames are readable and can be edited using the MAGIC tool. The 
HOL2GDT methodology supports and integrates MAGIC as the final chip assembly 
tool that assembles the standard cell physical layout from GDT to the I/O pad frames 
supplied by MOSIS. Global routing among the layout, pad cells, and power rails is 
also performed in MAGIC. To accomplish this, another compiler is needed to transfer 
the GDT layout to the MAGIC layout. 

The L2MCIF compiles the XY layout layer mask from GDT to the mask that 
is readable and reproducable in MAGIC. The layout mask is extracted from GDT 
in the Caltech Intermediate Form (CIF). CIF is an industry-wide standard layout 
description language used to transfer mask-level layouts between design tools. An 
alternative layout mask format is GDS II. The basic difference between GDS II and 
CIF is that GDS II is a binary-compiled format, and CIF is an ASCII format. The 
ASCII format provides easy readability and editability to mask compilers such as the 
L2MCIF. 

A CIF XY layout mask consists of specific code-words for different layers (metall, 
metal2, N-diffusion, etc). Each section in the mask specifies the code word for a 
particular mask layer, followed by X-axis and Y-axis co-ordinates that depict the 
area over which the layer is laid out.  Below is an example of an XY mask for the 
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polysilicon layer (L POLY). Each line specifies a rectangular box (B), followed by 
length (L) and width (W) dimensions of the box and the XY coordinates for the 
center location of the box. For more details on CIF language syntax and semantics, 
please refer to the GDT Standard Cell Library [4]. 

Definition Start 1 100 l; 
L POLY; 

B L 3 W 3 Center 60, 6; 
B L 3 W 19 Center 60 -l; 
B L 3 W 3 Center 24, 6; 
B L 3 W 19 Center 24 -l; 
B L 3 W 3 Center 12, 6; 
B L 3 W 19 Center 12 -l; 

Definition Finish; 

The need for a mask compiler like the L2MCIF becomes necessary, because the 
CIF mask extracted from GDT layout tools has different mask-layer code words and 
syntax to specify XY coordinates than those supported by the MAGIC tool. The 
primary function of the L2MCIF is to compile the CIF mask of the GDT into a 
CIF mask of MAGIC so that we can utilize the ready-made pad design available in 
MAGIC. This can be done by mapping the layout layer code-words and appropriate 
language syntax between the two CIFs. 

The L2MCIF compiler performs a dual-pass operation on the CIF mask generated 
by GDT tools. On the first pass, the L2MCIF does mask-layer codeword mapping 
between GDT and MAGIC. The second pass performs three functions: (1) maps the 
different contact types in GDT CIF mask to the appropriate combination of MAGIC 
CIF mask layers, (2) sets the minimum feature size for the contact dimensions and 
spacing between layer, (c) rewrites the mask data using the CIF syntax acceptable 
to MAGIC. 

The design rules for the contact dimensions and minimum spacing between layers 
are different from each other and this causes design rule errors when mask layout 
is ported from GDT to MAGIC. The L2MCIF compiler attempts to minimize and 
correct some of these design rule errors during the compilation process. Since the 
compiler is not intended to be a design rule checker, design rule errors occur in 
complicated layouts, which can be corrected by using the MAGIC design rule checker 
after the mask layout is ported from GDT and recreated in MAGIC. 
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Table 1: CIF mask layer mapping between GDT and MAGIC 

GDT CIF levels SCMOS levels Magic CIF Level 
NSUB N well substrate layer OWN 
PSUB P well substrate layer CWP 
NPLUS N plus implant mask CSN 
PPLUS P plus implant mask CSP 
NDIFF (type I) ACTIVE mask layer CAA + CSN for contacts 

and transistors 
NDIFF (type II) CAA for other cases 
NDIFF1 (type I) ACTIVE mask layer CAA + CSN for contacts 

and transistors 
NDIFF1 (type II) CAA for other cases 
PDIFF ACTIVE mask layer CAA 
PDIFF1 ACTIVE mask layer CAA 
POLY POLYSILICON layer CPG 
MET1 METALI layer CMF 
MET2 METAL2 layer CMS 
CUTMD METALI to ACTIVE layer contact CCA 
CUTMP METALI TO POLYSILICON layer contact CCP 
CUTMM VIA METALI TO METAL2 layer CVA 
GATE NO EQUIVALENT NO EQUIVALENT 
LEV NO EQUIVALENT NO EQUIVALENT 
MARKER NO EQUIVALENT NO EQUIVALENT 
ICONLEV NO EQUIVALENT NO EQUIVALENT 
NO EQUIVALENT OVERGLASS COG 

An illustration of mask-layer mapping is shown in Table 1. Both GDT and MAGIC 
use the SCMOS (Scalable CMOS) technology. The only difference is that different 
layout mask-layers are denoted by unique keywords in each tool. The left column 
shows all the layer keywords supported and generated by the GDT tools. The center 
column displays the equivalent keywords used by the SCMOS technology. Finally, 
the right column shows the equivalent keywords supported by the MAGIC tool. 

A unique case is the NDIFF and NDIFF1 GDT mask layer, which is mapped 
as an ACTIVE diffusion layer in SCMOS technology. These layers have two distinct 
mappings based on the place to which the GDT cell is to be mapped. If the cell 
being mapped is a contact or transistor, then the NDIFF layers are mapped as 
a combination of two mask-layers, CAA and CSN, in MAGIC. The CAA is the 
active mask-layer and CSN is the N PLUS SELECT N-plus implant mask-layer 
for the SCMOS technology. The N-plus implant mask-layer, along with the active 
mask-layer, creates the required N-diffusion layer. If the cell is mapped to anything 
other than a contact or transistor, then the NDIFF layers are mapped as a single 
mask layer CAA in MAGIC. The GDT tools have two types of P-diffusion (PDIFF, 
PDIFF1) and N-diffusion layers (NDIFF, NDIFF1) to provide more controllability 
during CIF mask creation. The L2MCIF compiler maps the PDIFF and PDIFF1 
layers to the single MAGIC mask layer, CAA, and both NDIFF and NDIFF1 
layers are mapped to the same combination of CAA and CSN mask layers. 
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Table 2: Length x Width Summary for Contacts 

GDT contact name GDT Mask Layers MAGIC contact type MAGIC contact size 
M1M2 - Metall Metal2 Contact MET1, MET2, CUTMM m2c 4x4 
MPOLY - Metall Poly Contact MET1, POLY, CUTMP pc 4x4 
MPDIFF - Metall P-Diffusion Cont. MET1, NSUB, PPLUS, PDIFF, CUTMD pdc 4x4 
MNDIFF - Metall N-Diffusion Cont MET1, NDIFF, CUTMD ndc 4x4 
MNSUB - Metall N-Substrate Cont. MET1, NSUB, NDIFF1, CUTMD nsc 4x4 
MPSUB - Metall P-Substrate Cont. MET1, PPLUS, PDIFF1, CUTMD psc 4x4 

Certain mask layers {GATE, LEV, MARKER, ICONLEV) supported by GDT 
have no equivalent layers in MAGIC. Any specification for these layers in the GDT 
CIF mask is scrubbed out by the L2MCIF compiler. On the other hand, the MAGIC 
mask layer COG has no equivalent layer in GDT. 

During the second pass of the L2MCIF compiler, the GDT CIF specifications 
for different contact types are mapped to a combination of multiple MAGIC CIF 
mask layers. The mapping for the contacts is illustrated in Table 2. The GDT CIF 
specifications for the contacts have different minimum dimensions that might cause 
design rule errors when they are mapped to MAGIC CIF mask. These design rule 
errors can be avoided by the L2MCIF compiler by mapping the GDT CIF specification 
for the contacts to the MAGIC CIF contact specification, as shown in Table 2. 

The syntax of the L2MCIF compiler is as shown below. 

12mcif <input file:  gdt cif> <output file:  magic cif> 

The output of L2MCIF is a MAGIC readable CIF file. This CIF file can be read 
by invoking an empty MAGIC window with a new name and specifying the CIF read 
command within the MAGIC shell as shown below. 

cif read <magic cif file> 

The cif read command recreates the layout in the MAGIC layout editor window. 
To save all subcomponents in the hierarchy, the MAGIC command write all should 
be executed. For more details about MAGIC commands, please refer to the MAGIC 
manual [8]. The MAGIC layout retrieved from CIF file with all errors corrected is 
shown in Figure 19. 

Once the layout in MAGIC is edited to resolve design rule errors, the final chip 
assembly of the layout and I/O pad frame is performed.   First, the global routing 
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Figure 19: MAGIC Layout of the Multiplier 

of the primary input and output ports of the layout to the respective input and 
output pad cells is performed. Then, global power rail routing is performed. The 
final assembled layout for the multiplier is shown in Figure 20. 

9    Functional Testing via Multi-Level Simulation 

The HOL2GDT and L2MCIF compilers facilitate functional simulation and testing 
of the design using multiple simulators. In current methodology three simulators are 
involved: 

• Mentor Graphics Lsim mixed-level simulator 

• MAGIC supported IRSIM simulator 

• SPICE3 simulator 
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Figure 20: MAGIC Layout after Pad Frame Assembly 

9.1    Mentor Graphics Lsim Simulator 

The Lsim simulator is a mixed-level simulator that supports functional, gate, and 
switch level simulations. The Lsim simulator is an integral component of the Mentor 
Graphics GDT design system. It requires two input files, the extracted layout netlist 
file and the vector stimulus file. The Led layout editor provides a menu-driven utility 
that extracts the design netlist from the standard cell layout and translates it into a 
format supported by Lsim. The utility prompts for an output filename to write out 
the netlist. The netlist file has an .N suffix. The vector stimulus file has to be built 
and supplied by the user. The vector file is also known as the initialization file, as it 
initializes the inputs of the circuit before the simulator starts. The vector file has a 
specific format that consists of three sections. 

The first section starts with the Lsim command order. This section lists the order 
of the primary input and output ports of the design. The simulator graphic interface 
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displays the result of the simulation as waveforms of the I/O ports and lists them in 
the order provided by the order command. An example of an order command for the 
serial multiplier design is shown below: 

order elk reset y x in yout xout z rout 

The second section of the vector file is an initialization section. The primary input 
signals like clock and reset are initialized at the start of the simulator. An example 
of signal intialization is shown below: 

pwl elk 0,1    5,t    10,t    repeat 0 
s 20 
h reset 
s 20 

The above example shows how a clock signal called elk is initialized for 10 ns clock 
period. Here, pwl and repeat are Lsim simulator commands. The pwl command is 
an acronym for piecewise linear. The first line of the initialization section defines a 
piecewise linear clock signal named elk that is low (logic 0) at 0 ns, toggled to high 
at time 5 ns, and toggled to low at 10 ns. This waveform is repeated from the time 
0 ns. The next line in the initialization section is s 20, where s is an acronym for the 
step command. This command line lets the simulator advance 20 ns. The next line 
sets the reset signal to high (logic 1), which would reset the circuit under simulation. 
Finally, the last line performs a step command to advance 20 ns. The user can also 
initialize any tied-low or tied-high signals in this section. 

The third section is a vectors section, in which a vector stimulus (low, high or 
don't-care) is applied to input signals, followed by a step command. Below is an 
example of a vector section: 

1 reset y 
h x in 
s 10 

X reset y x in 
s 10 
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The first vector sets the reset and y signals to low and the x and in signals to high. 
The input signals can also be set to don't-care value (logic X). 

Note that if the vector file is not available or not supplied to the simulator, then 
the Lsim is invoked in the interactive mode. In this mode the signals are initialized 
interactively. The vector file is required only if the simulator is to be run in batch 
or regression-testing mode. The vector file usually has an A suffix. Once the vector 
stimulus file is completed, the Lsim simulator is invoked with the following command 
line syntax: 

Lsim -i pdm_vect.i pdm.N 

The -i parameter indicates that Lsim will get the simulator startup commands 
from the pdm^vectA file and pdm.N is the extracted netlist file from the Led layout 
editor. 

The result of the Lsim simulation is shown in Figure 21. 
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Figure 21: The Result of Lsim Simulation 

9.2    IRSIM Simulation 

IRSIM is an event-driven, logic-level simulator for MOS (both N and P) transistor 
circuits. This simulator is used to simulate the functionality of the circuit after 
the layout is converted from the GDT format into MAGIC format. There are two 
simulation models in the IRSIM, the switch model and the linear model, which 
are determined by the method of modeling the transistors in the circuit. In the 
switch model, each transistor is modeled as a voltage-controlled switch. It is useful 
for initializing or determining the functionality of the network. In the linear model, 
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each transistor is modeled as a resistor in a series with a voltage-controlled switch a 
capacitance. Node values and transition times can be computed from the RC network. 

9.2.1    Syntax of the IRSIM 

The synopsis of the IRSIM is as below: 

irsim  [-s]  prm.file    sim.file     [+hist_file]     [-cmd.file] 

If the -s switch is specified, two or more transistors of the same type are to be 
connected in series, and no other connections to their common source/drain will be 
stacked into a compound transistor with multiple gates. 

The prmJile is the electrical parameters file that configures the devices to be 
simulated. It defines the capacitance of various layers, transistor resistances, and 
threshold voltages. The parameter file usually has a suffix of .prm. The sim_file 
is a file to be simulated that contains three types of information: environmental 
information (scaling, timestamps, etc.), the extracted circuit corresponding to the 
mask geometry of cells in the circuit, and the connections between this mask geometry 
and the subcells of the circuit. The simüle is a hierarchical netlist of the circuit and is 
obtained by using MAGIC's extractor EXT. The MAGIC command ext will generate 
the netlist, and by default the output file name has .ext suffix. The extracted circuit 
is converted to a fiat sim file by the EXT2SIM program. This flattened extract netlist 
file can be used by many simulation tools such as Crystal, sim2spice, and IRSIM. The 
basic syntax of the EXT2SIM is shown below: 

ext2sim  [-0 simfile]  root-file 

This program runs just with the root-file name that has an .ext suffix. Since it 
is the root of the tree to be extracted, all files it references are recursively flattened. 
The flat representation of the circuit is written in the file root. sim. In addition, two 
additional files, root.al and root.nodes, are generated by default for the node aliases 
and the locations of all node names in CIF format, respectively. 

For the IRSIM syntax again, the file names prefaced with a hyphen are assumed 
to be the command files that contain command lines to be processed in the normal 
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fashion. These files are processed line by line, and if the last command of the file is 
not an exit, IRSIM will accept further commands from the user. 

The actual command line used to simulate the multiplier is shown below: 

irsim    s.prm    pdm.sim -pdmtest 

The s.prm is the parameter file, pdm.sim is the output from the ext2sim program, 
and pdmtest is the command file. The s.prm and pdmtest files are listed in the 
appendix. 

The IRSIM commands used to test the multiplier are h, 1, x, s, and ana. The 
commands h and 1 make nodes logic high (1) and logic low (0), respectively. The 
command x removes nodes from the display list, and the command s n simulates for 
nns, in which n is a step size. Finally, the command ana displays all nodes in the 
analyzer window. 

9.2.2    Analysis of the IRSIM Simulation 

The simulation result of the IRSIM is shown in Figure 22. 

Ü despad zoom base uindou print 53 
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Figure 22: The Result of IRSIM Simulation 

The elk, reset, y, x, and in are the input signals, and yout, xout, z, and rout are 
the output signals. The x signal is the multiplicand, and y is the multicator. The 
multiplier in the simulation is five-stage, thus the multiplicator is a five-digit binary 
number.  In this simulation, the least significant bit enters first, hence the value of 
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the multiplicand x becomes 11011112 and the y value becomes IOOOI2. The result 
of the multiplication is represented by the signal z, which has a value of 1110112. 
The z value is extracted only during the period when rout value is at low state. The 
first 0 value of z is ignored. In the decimal system, the multiplicand x is 111 and 
multiplicator y is 17. The correct output value will be 111 * 17 = 1887. The z value 
59 represents the closest value for the division of the x * y by 25. 

9.3    SPICE Simulation 

SPICE is a general-purpose circuit simulation program for nonlinear DC, nonlinear 
transient, and linear AC analyses. Circuits may contain resistors, capacitors, induc- 
tors, mutual inductors, independent voltage and current sources, four types of de- 
pendent sources, lossless and lossy transmission lines, switches, uniformly distributed 
RC lines, and the five most common semiconductor devices: diodes, BJTs, JFETs, 
MESFETs, and MOSFETs. In HOL2GDT methodology, the SPICE version 3f4 was 
used. 

9.3.1    History of Using the SPICE Program 

The first multiplier chip we built did not work properly. That is, the rout signal's 0 
value duration was one clock cycle shorter than expected as shown in Figure 22. After 
investigating the multiplier layout, we suspected that there might be a clock skew 
between the third and fourth FFs, and if the skew is greater than 6 ns, that could 
explain the malfunction of the multiplier chip. Hence we decided to verify the clock 
skew problem by using the SPICE3 simulator. However, the SPICE3 simulator was 
not powerful enough to simulate the entire multiplier circuit. For example, a transient 
analysis for a single FF would take 10 to 15 minutes. The multipler contains 36 FFs 
as well as many other components. It would take unreasonably long time to simulate 
the multiplier. Since the main purpose of the simulation was to calculate the time 
gap between the clock inputs to FF3 and FF4, we cut down the layout (Figure 23). 
That is, we removed other lines and components except for the clock net and FFs, 
and even the FFs were shrunken as inverters. 

Another problem was waiting for us. Because SPICE3 considered all nodes that 
were connected with metal or poly lines to be the same node, we could not get any 
delay difference at all among all clock input nodes of the FFs. We suspected that 
there would be a clock signal delay between the FF3 and the FF4 because the path 
length from root clock signal to the FF4 was much longer than the length from the 
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Figure 23: Simplified Multiplier Circuit for SPICE Simulation 

root to the FF3. However, if simulator3 considered those two input nodes to be the 
same one, there was no way to get the signal delay. We next modeled the clock net by 
manually replacing all the poly feed lines with resistors so that the simulator could 
recognize the FF3 and FF4 clock signal input nodes as being different. In modeling 
the circuit we made use of all the information from the ext and ext2spice program. 
That is, the resistance value for the poly feed line was extracted from the spice file that 
the ext2spice program produced. However, the capacitance values of the poly feed 
lines were ignored because their values were ignorably small. For the MOS model, the 
process parameters for actual manufacturing were used. (The MOS transistor model 
is attached in the appendix). The modeled circuit is shown in Figure 24. 
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Figure 24: Modeled Clock Net 

9.3.2    The Simulation Procedures and the Results 

To get the SPICE3 input file, two programs should be executed. First, the MAGIC's 
extraction program EXT is used to get the hierarchical netlist, which is then used as 
the input to the ext2spice program to get the spice input file. The basic syntax of the 
ext2spice program is shown below. 

ext2spice   [-0 outfile]   [-Cxxx]   [-R]   root_file 

The rootüle is the output of the MAGIC ext command that has the .ext suffix. 
Without the [-0 outfile] option, the spice file will generate the file name, root-file 
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.ext. The [-Cxxx] option will supress all the node capacitance values below xxx and 
the [-R] option will supress all the internode resistances. The [-Cxxx] option does 
not make any noticeable difference to the result, because the capacitance values are 
insignificantly small. However, [-R] option makes severe difference to the result. The 
actual command used to get the spice input file is shown below. 

ext2spice -R modeled.ext 

This command produces the modeled, spice file, which is to be modified to include 
MOS model parameters, a DC power source, and the clock input signal. The final 
spice input file is listed in the appendix. 

Finally, the SPICE3 program is invoked by command below: 

spice3 modeled.spice 

If there is no error in the model.spice file, the SPICE3 program gives a prompt. 
The first step is to run the file by issuing a run command. The second step is to do 
a transient analysis by issuing a tran command. The syntax of the tran command is 
like below: 

tran tstep tstop  [tstart   [tmax]] 

Tstep is the printing or plotting increment for the output. If the tstep value is 
too small, then the simulation will take a long time to get the result. On the other 
hand, if the tstep value is too large, some details of the simulation will be lost. Tstop 
is the final time, and tstart is the initial time. If tstart is omitted, it is assumed to be 
zero. The transient analysis always begins at time zero. Tmax is the maximum step 
size that SPICE3 uses. For the default, the program chooses either tstep or (tstop 
- start)/50.0, whichever is smaller. Tmax is useful when one wishes to guarantee a 
computing interval that is smaller than the printer increment, tstep. 

The actual tran command we used is shown below: 

tran 2ns 800 ns 
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The next command involved is plot. It is used to display the simulation result in 
graphic mode on the screen. The actual plot command being used is: 

plot v(301)  v(329) 

The above command opens a window that shows the transient voltage values of 
the nodes numbered 301 and 329 in graphic mode. Node 301 corresponds to FF3, 
whose input is supplied through the resistor Rl, and the node 329 corresponds to 
FF4 whose input is supplied through the resistors Rl, R2, R9, RIO, Rll, and R13. 
The simulation result is shown in Figure 25. 
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Figure 25: Delay between FF3 and FF4 Clock Signals 

The simulator result reveals that there exists a time gap between the clock inputs 
of the FF3 and FF4 (the lower window shows that the time gap is around 7ns). 
With the SPICE3 simulation the clock skewing problem can be determined, and this 
skewing is solved by adding additional metal clock net in each row. 
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10    Testing of the Actual Chip 

Figure 26 shows the actual fabricated chip. 

Figure 26: The Multiplier Chip 

For the final test to check whether the chip functions correctly, a Hewlett Packard 
Logic Analysis System model 16500A (shown in Figure 27) is used. The screen of the 
analyzer show the testing result. 

^ESSM^*'-*^:^ *\'i • £7' Uft*«f^V^'i *;\, v. 
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Figure 27: Hewlett Packard Logic Analysis System 16500A 
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11    Conclusions 

In this report we explained the HOL2GDT methodology by describing how to define 
formal implementation descriptions of the hardware design, how to translate imple- 
mentation descriptions into L language schematic generator models, and how to get 
physical IC layouts from schematic models. A complete example of an n-bit serial 
multiplier design was used to illustrate the HOL2GDT design methodology. Since 
the implementation description of the multiplier is formally verified and the layout is 
generated from the verified description, we believe in the correctness of the multiplier 
chip. The multiplier example is a detailed illustration of the HOL2GDT methodol- 
ogy. Currently we are working on the implementation of the Data Encrytion Standard 
(DES) algorithm on Xilinx's FPGA using the HOL2GDT methodology. 
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Appendix 

A    Basic Gates Definition File 

(* Behavioral definitions of the primitive gates for H0L2L compiler *) 
(* Updated 2/20/95; types ":sig" and ":toggle" are removed. *) 
(* Updated 4/21/95; definitions of master-slave FFs *) 
(* Updated 11/7/96; transferred to H0L90.7 *) 

load_theory "string"; 
new_theory "gates"; 

val port_width = define_type 
■[fixities = [Prefix, Prefix] , 
name = "port_width", 
type_spec = 'port_width = pin I bus of num'}; 

val port = define_type 
{fixities = [Prefix, Prefix, Prefix, Prefix], 
name = "port", 
type_spec = 'port = in_port of string => port_width 

I out_port of string => port_width 
I inout_port of string => port_width 
I cell_size of string'}; 

val inv = new_definition 
("inv", 
(—' inv(a:num->bool, b) = 

!t. b t = "(a t)'—)); 

val or = new_definition 
("or", 
(—'or(x:num->bool, y, out) = 

!t. out t = x t \/ y t'~)); 

val or3 = new_definition 
("or3", 
(—'or3(x:num->bool,y,z,out) = 

!t:num.  out t=xt\/yt\/z t'—)); 

val or4 = new_definition 
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("or4", 
(— 'or4(w, x, y, z, out) = 

!t:num. out t = w t \/ x t \/ y t \/ z t '-)); 

val or5 = new_definition 
("or5", 
(—'orSCxinum-^ool.y.z.w^.out) = 

!t. out t = x t \/ y t \/ z t \/w t \/q t'-)); 

val and2 = new_definition 
("and2", 
(—'and2(x:num->bool, y, 

!t. out t = x t A y 
out) = 
t'—)); 

val and3 = new_definition 
("and3", 
(—'and3 (x:num->bool,y, 

! t.out t = x t A y 
z,out) = 
t /\ z t<--)); 

val and4 = new_definition 
("and4", 
(—'and4 (x:num->bool,y, z,w,out) = 

! t.out t = x t A y t /\ z t A w t  ' )); 

val and5 = new_definition 
("and5", 
(—'and5 (x:num->bool,y, z,w,q,out) = 

! t.out t = x t A y t A z t A w t A qt'-)); 

val xor = new_definition 
("xor", 
(—'xor(x:num->bool, y, out) = 

!t. out t = (~x t A y t) \/ (x t A ~y t)'--)); 

val nand = new_definition 
("nand", 
(—'nand(x:num->bool, y, 

!t. out t = ~(x t A 
out) = 
y t)'-)); 

val nand3 
new_definition 
("nand3", 
(—'nand3(in0, inl, in2, out) = 
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!t:num. out t = "(inO t A inl t /\ in2 t)'--)); 

val nand4 = new_definition 
("nand4", 
(—'nand4(in0, inl, in2, in3, out) = 

!t:num. out t = 
~(inO t A inl t A in2 t /\ in3 t)'--)); 

val nand5 = new_definition 
("nand5", 
(—'nandBCxinum-^ool.y.z.w.q, out) = 

!t. out t = 

"(x t A y t A z t Aw t Aq t)<--)); 

val nor = new_definition 
("nor", 
(—'nor(x:num->bool, y, out) = 

!t. out t = ~(x t \/ y t)'—)); 

val nor3 = new_definition 
("nor3", 
(—cnor3(in0, inl, in2, out) = 

!t:num. out t = "(inO t \/ inl t \/ in2 t)'—)); 

val nor4 = new_definition ("nor4", 
(—'nor4(in0, inl, in2, in3, out) = 

!t:num. out t = 
"(inO t \/ inl t \/ in2 t \/ in3 t)'~)); 

val nor5 = new_definition 
("nor5", 
(—'nor5(x:num->bool,y,z,w,q,out) = 

!t. out t = 
~(x t \/ y t \/.z t \/ v t V q t)'—)); 

val d_reg = new_definition 
("d_reg", 
(—'d_reg(din:num->bool, elk, reset, q) = 

!t. (reset t ==> ~q t) /\ 
("reset(SUC t) A clk(SUC t) ==> 

(q (SUC t) = q t)) A 
("reset(SUC t) A "elk t A ~clk(SUC t) ==> 

(q (SUC t) = q t)) A 
("reset t A ~reset(SUC t) A elk t A ~clk(SUC t) 
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==> (q(SUC t) = din t)) /\ 
("din t /\ elk t A ~clk(SUC t) ==> ~q(SUC t))'--)); 

val d_reg_nr = new_definition 
("d_reg_nr", 
(—'d_reg_nr(din:num->bool, elk, q) = 

!t. (clk(SUC t) ==> (q (SUC t) = q t)) /\ 
("elk t A ~clk(SUC t) ==> (q (SUC t) = q t)) A 
(elk t A ~clk(SUC t) ==> (q(SUC t) = din t))'—)); 

val d_reg_wqb = new_definition 
("d_reg_wqb", 
(—'d_reg_wqb(din:num->bool, elk, q, qb) = 

!t.(qb t = ~q t) /\ 
(elk(SUC t) ==> (q (SUC t) = q t)) A 
("elk t A ~clk(SUC t) ==> (q (SUC t) =qt)) A 
(elk t A ~clk(SUC t) ==>  (q (SUC t) = din t))'--)); 

val d_reg_wrqb = new_definition 
("d_reg_wrqb", 
(—'d_reg_wrqb(din:num->bool, elk, reset, q, qb) = 

!t. (qb t = "q t) A 
(reset t ==> ~q t) A 
("reset(SUC t) A clk(SUC t) ==> (q (SUC t) = q t)) A 
(~reset(SUC t) A "elk t A ~clk(SUC t) ==> (q (SUC t) = q t)) A 
("reset t A ~reset(SUC t) A elk t A ~clk(SUC t) 

==> (q(SUC t) = din t)) A 
("din t A elk t A ~clk(SUC t) ==> "q(SUC t) A qb(SUC t))'—)); 

val lsl_wr = new_definition 
("lsl_wr", 
(—'lsl_wr(din:num->bool, phi, phib, reset, q, qb) = 

!t.(qb t = ~q t) /\ 
(reset t ==> ~q t) A 
("reset t A phi t A "phib t ==> (q t = din t)) A    (* Flush *) 
(~reset(SUC t) A "phi t A "phi(SUC t) A phib t A phib(SUC t) 

==> (q(SUC t) = q t)) A (* Hold *) 
("reset t A "reset(SUC t) A phi t A "phi(SUC t) A 
"phib t A phib(SUC t) A (din(SUC t) = din t) 

==> (q(SUC t) = din t)) A (* Sample *) 
("din t A ~din(SUC t) A "reset(SUC t) A phi t A 
~phi(SUC t) A "phib t A phib(SUC t) ==> ~q(SUC t))'--)); 

(* Zero *) 
val lslnr = new_definition 
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("lsl.nr", 
(—'lsl_nr(din:num->bool, phi, phib, q, qb) = 

!t.( qb t = ~q t) A 
( phi t A "phib t ==> (q t = din t)) A 
("phi t A "phi(SUC t) A 
phib t A phib(SUC t) ==> (q(SUC t) = q t)) A 

( phi t A ~phi(SUC t) A 
~phib t A phib(SUC t) A (din(SUC t) = din t) 
==> (q(SUC t) = din t))'—)); 

val pass = new_definition 
("pass", 
(—'pass (dl:num->bool,d2, g, gb) = 

!t. g t A "gb t ==> (dl t = d2 t)<—)); 

val by_pass = new_definition 
("by_pass", 
(—'by_pass (inl:num->bool, out) = 

!t:num. inl t = out t'—)); 

val bus2wire = new_definition 
("bus2wire", 
(—'bus2wire (abus:num->num->bool) (n:num) (abit:num->bool) = 

!t:num. abus n t = abit t'—)); 

val wire2bus = new_definition 
("wire2bus", 
(—'wire2bus (abit:num->bool) (abus:num->num->bool) (n:num) = 

!t:num. abit t = abus n t'—)); 

val tbfi = new_definition 
("tbfi", 
(—'tbfi (a:num->bool,out, g, gb) = 

!t. ((a t A g t) \/ (~a t /\ "gb t)) 
==> (out t = "at)'—)); 

val buffer = new.definition 
("buffer", 
(—'buffer(inl:num->bool,load,out) = 

! t. out t = (load t => inl (t) | out(t - 1))'—)); 

val buffer_s = new_definition 
("buffer.s", 
(—'buffer_s(inl:num->bool,load,out) = 

(* Flush *) 

(* Hold *) 

(* Sample *) 
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! t. out t = (load t => inl(t) | out(t - 1))'--)); 

val vdd = new_definition 
("vdd", 
(—'vdd(out) = !t:num. out t'—)); 

val gnd = new_definition 
("gnd", 
(—'gnd (out) = !t:num. "out t'—)); 

export_theory(); 
close_theory(); 

B    Macro Cell Definition File: pdm.macro 
L:: TECH ANY 
SCHEMATIC d_reg() 
{ 

IN in; 
IN elk; 
IN reset; 
OUT out; 

INST msff msff; 

WIRE msff.elk TO elk; 
WIRE msff.reset[0] TO reset; 
WIRE msff.reset[1] TO reset; 
WIRE msff.in TO in; 
WIRE msff.out TO out; 

> 

SCHEMATIC d_reg_nr() 
{ 

IN in; 
IN elk; 
OUT out; 

INST msff.nr msff.nr; 
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WIRE msff_nr.clk TO elk; 
WIRE msff.nr.in TO in; 
WIRE msff_nr.out TO out; 

} 

SCHEMATIC d_reg_wqb() 
{ 

IN in; 
IN elk; 
OUT out; 
OUT out_b; 

INST msff_nr msff; 

WIRE msff.elk TO elk; 
WIRE msff.in TO in; 
WIRE msff.out TO out; 
WIRE msff.out_b TO out_b; 

} 

SCHEMATIC d_reg_wrqb() 
i 

IN in; 
IN elk; 
IN reset; 
OUT out; 
OUT out_b; 

INST msff_wrqb msff_wrqb; 

WIRE msff_wrqb.dk TO elk; 
WIRE msff_wrqb.reset[0] TO reset; 
WIRE msff_wrqb.reset[1] TO reset; 
WIRE msff_wrqb.in TO in; 
WIRE msff_wrqb.out TO out; 
WIRE msff_wrqb.out_b TO out_b; 

SCHEMATIC buffer  (    ) 
{ 
# 3 terminals 
# set load begin High to load the data from in 
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IN in ; 
IN load ; 

OUT out ; 

INST latchdd latchdd ; 

INST inv inv ; 

WIRE in TO latchdd.in ; 

WIRE out TO latchdd.out ; 

WIRE inv.out TO latchdd.clk_b ; 

WIRE inv.in TO latchdd.elk ; 

WIRE load TO inv.in ; 

SCHEMATIC buffer.s () 

■C 
# made by A. Chavan May 14 96 

# 3 terminals 

# set load begin High to load the data from in 

IN in ; 

IN load ; 

OUT out ; 

INST inv inv ; 

WIRE inv.in TO load ; 

SIG inv.out "11"; 

INST lsl_nr lsl.nr ; 

WIRE lsl_nr.in TO in; 

WIRE lsl_nr.dk TO load; 
SIG lsl_nr.clk_b "11" ; 

WIRE lsl_nr.out TO out ; 

} 

SCHEMATIC vdd() 

■C 

OUT out; 
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VDD vl; 

INST inv invO; 
WIRE invO.in TO vl; 
SIG invO.out "11"; 

INST inv invl; 
SIG invl.in "11"; 
WIRE invl.out TO out; 

} 
SCHEMATIC gnd() 

{ 
OUT out; 
VDD vl; 

INST inv inv; 
WIRE inv.in TO vl; 
WIRE inv.out TO out; 

} 

SCHEMATIC by.pass() 
{ 

IN in; 
OUT out; 

INST inv inv[0]; 
WIRE inv[0].in TO in; 
SIG inv[0].out "11"; 

INST inv inv[l]; 
SIG inv[l].in "11"; 
WIRE inv[1].out TO out; 

SCHEMATIC pass() 

■c 
INOUT in; 
INOUT out; 
IN g; 
IN gb; 

TN tnO; 
TP tpO; 
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CON c_in; 
CON c_out; 
CON c_g; 
CON c_gb; 

WIRE c_in TO in; 
WIRE c_in TO tnO.d; 
WIRE c_in TO tpO.d; 
WIRE c_out TO out; 
WIRE tnO.s TO c_out; 
WIRE tpO.s TO c_out; 
WIRE c_g TO g; 
WIRE tnO.gl TO c_g; 
WIRE c_gb TO gb; 
WIRE tpO.gl TO c_gb; 

SCHEMATIC bus2wire() 
{ 

IN in; 
OUT out; 

INST inv inv[0]; 
WIRE inv[0].in TO in; 
SIG inv[0].out "11"; 

INST inv invCl]; 
SIG inv[l] .in "11"; 
WIRE inv[1].out TO out; 

} 

SCHEMATIC wire2bus() 
{ 

IN in; 
OUT out; 

INST inv inv[0]; 
WIRE inv[0].in TO in; 
SIG inv[0].out "11"; 
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INST inv inv[l]; 

SIG inv[l].in "11"; 

WIRE inv[1].out TO out; 

C    Printed Theory File for Pipelined Multiplier 

|- cell_port_def = 

['far', 

[in_port 'x' pin;in_port 'y' pin;in_port 'ein' pin; 

in_port 'reset' pin;out_port 'sum' pin;out_port 'cout' pin]; 

'sa', 

[in_port 'x' pin;in_port 'y' pin;out_port 'sum' pin; 

in_port 'elk' pin;in_port 'reset' pin]; 

'wff, 

[in_port 'in' pin;in_port 'w' pin;out_port 'out' pin; 
in_port 'elk' pin]; 

'cell', 

[in_port 'x' pin;in_port 'y' pin;in_port 'in' pin; 
in_port 'reset' pin;in_port 'elk' pin;out_port 'xout' pin; 
out_port 'out' pin;out_port 'rout' pin]; 

'bps',[in_port 'in' pin;out_port 'out' pin]; 
'beeil', 

[in_port 'x' pin;in_port 'y' pin;in_port 'in' pin; 

in_port 'reset' pin;in_port 'elk' pin;out_port 'yout' pin; 

out_port 'xout' pin;out_port 'z' pin;out_port 'rout' pin]; 
'icell', 

[in_port 'xi' pin;in_port 'yi' pin;in_port 'zi' pin; 

in_port 'ri' pin;in_port 'elk' pin;out_port 'yout' pin; 

out.port 'xout' pin;out_port 'z' pin;out_port 'rout' pin]; 
'ipdm', 

[in_port 'x' pin;in_port 'y' pin;in_port 'in' pin; 
in_port 'reset' pin;in_port 'elk' pin;out_port 'yout' pin; 

out_port 'xout' pin;out_port 'z' pin;out_port 'rout' pin]; 
'pdm', 

[cell_size 'n';in_port 'x' pin;in_port 'y' pin;in_port 'in' pin; 
in_port 'reset' pin;in_port 'elk' pin;out_port 'yout' pin; 
out_port 'xout' pin;out_port 'z' pin;out_port 'rout' pin]] 

far 

|- !x y ein reset sum cout. 
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far(x,y,ein,reset,sum,cout) = 
(?wl w2 w3 w4 cab w5 w6 w7 w8. 
nand(x,y,wl) /\ 
nand(x,ein,w2) /\ 
nand(y,cin,w3) /\ 
nand3(wl,w2,w3,w4) /\ 
inv(w4,cab) A 
nor(cab,reset,cout) A 
nor3(x,y,cin,w5) /\ 
inv(w5,w6) /\ 
nand(cab,w6,w7) /\ 
nand3(x,y,cin,w8) A 
nand(w7,w8,sum)) 

sa 
|- !x y sum elk reset. 

sa(x,y,sum,elk,reset) = 
(?cout ein. 
d_reg_nr(cout,elk,ein) A far(x,y,ein,reset,sum,cout)) 

wff 
I - ! in w out elk. 

wff(in,w,out,elk) = 
(?wb wl w2 w3. 
inv(w,wb) A 
nand(out,wb,wl) /\ 
nand(in,w,w2) /\ 
nand(wl,w2,w3) /\ 
d_reg_nr(w3,elk,out)) 

cell 
|- !x y in reset elk xout out rout. 

cell(x,y,in,reset,elk,xout,out,rout) = 
(?yi ab a b c outb. 
wff(y,reset,yi,elk) A 
d_reg_nr(x,elk,xout) A 
nand(x,yi,ab) A 
inv(ab,a) A 
sa(a,in,b,elk,reset) A 
d_reg_wqb(reset,elk,rout,c) A 
nand(b,c,outb) A 
inv(outb,out)) 

bps  |- !in out. bps(in.out) = (?w. inv(in.w) A inv(w.out)) 

bcell 
|- !x y in reset elk yout xout z rout. 
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beeil(x,y,in,reset,elk,yout,xout,z,rout) = 
bps(y,yout) /\ cell(x,y,in,reset,clk,xout,z,rout) 

icell 
|- !xi yi zi ri clk yout xout z rout. 

icell(xi,yi,zi,ri,clk,yout,xout,z,rout) = 
(?yd xd zd rd. 
beeil(xi,yi,zi,ri,elk,yd,xd,zd,rd) A 
d_reg_nr(yd,elk,yout) A 
d_reg_nr(xd,elk,xout) A 
d_reg_nr(zd,clk,z) A 
d_reg_nr(rd,clk,rout)) 

ipdm 

I - (!x y in reset clk yout xout z rout. 
ipdm 0 x y in reset clk yout xout z rout = 
icell(x,y,in,reset,clk,yout,xout,z,rout)) A 

(!n x y in reset clk yout xout z rout. 
ipdm(SUC n)x y in reset clk yout xout z rout = 
(?xi yi zi ri. 
ipdm n x y in reset clk yi xi zi ri A 
icell(xi,yi,zi,ri,clk,yout,xout,z,rout))) 

pdm 
|- (!n x y in reset clk yout xout z rout. 

pdm n x y in reset clk yout xout z rout = 
(?xi yi zi ri. 
ipdm n x y in reset clk yi xi zi ri A 
beeil(xi,yi,zi,ri,clk,yout,xout,z,rout))) 

D    Translated L program of Pipelined Multiplier 

L:: TECH scmos 
# hol2gdt: V.12.0 Built Dec 95, Anand V. Chavan 

SCHEMATIC far () 
{ 

IN inl ; 
IN in2 ; 
IN ein ; 
IN reset ; 
OUT sum : 
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OUT      cout   ; 

INST nand nand[0]; 
WIRE nand[0].in[0]  TO inl; 
WIRE nand[0].in[1]  TO  in2; 
SIG nand[0].out  "wl"; 

INST nand nand[l]; 
WIRE nand[1].in[0]  TO  inl; 
WIRE nand[1].in[1]  TO ein; 
SIG nand[1].out "w2"; 

INST nand nand[2]; 
WIRE nand[2].in[0]  TO in2; 
WIRE nand[2].in[1]  TO ein; 
SIG nand[2].out "w3"; 

INST nand3 nand3[0]; 
SIG nand3[0].in[0]   "wl"; 
SIG nand3[0].in[l]   "w2"; 
SIG nand3[0].in[2]  "w3"; 
SIG nand3[0].out "w4"; 

INST inv inv[0]; 
SIG inv[0].in "w4"; 
SIG inv[0].out  "cab"; 

INST nor nor[0]; 
SIG nor[0].in[0]   "cab"; 
WIRE nor[0].in[l]  TO reset; 
WIRE nor[0].out TO cout; 

INST nor3 nor3 [0]; 
WIRE nor3[0].in[0]  TO inl; 
WIRE nor3[0].in[l]  TO in2; 
WIRE nor3[0].in[2]  TO ein; 
SIG nor3[0].out "w5"; 

INST inv inv[l]; 
SIG inv[l].in "w5"; 
SIG inv[1].out "w6"; 

INST nand nand[3]; 
SIG nand[3].in[0]   "cab"; 
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SIG nand[3].in[l]   "w6"; 
SIG nand[3].out  "w7"; 

INST nand3 nand3[l]; 
WIRE nand3[l].in[0]  TO  inl; 
WIRE nand3[l].in[l]  TO  in2; 
WIRE nand3[l].in[2]  TO  ein; 
SIG nand3[l].out  "w8"; 

INST nand nand[4]; 
SIG nand[4].in[0]  "w7"; 
SIG nand[4].in[l]  "w8"; 
WIRE nand[4].out TO sum; 

SCHEMATIC sa  () 

{ 
IN x   ; 
IN y  ; 
OUT z   ; 
IN elk  ; 
IN reset   ; 

INST d_reg_nr d_reg_nr[0]; 
SIG d_reg_nr[0].in "co"; 
WIRE d_reg_nr[0].elk TO elk; 
SIG d_reg_nr[0].out "ci"; 

INST far far[0]; 
WIRE far[0].inl TO x; 
WIRE far[0].in2 TO y; 
SIG far[0].cin "ci"; 
WIRE far[0].reset TO reset; 
WIRE far[0].sum TO z; 
SIG far[0].cout "co"; 

SCHEMATIC wff   () 
■C 

IN      in  ; 
IN      w   ; 
OUT       out   ; 
IN      elk  ; 
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} 

INST inv inv[0]; 
WIRE inv[0].in TO w; 
SIG inv[0].out "wb"; 

INST nand nand[0]; 
WIRE nand[0].in[0]  TO out; 
SIG nand[0].in[1]   "wb"; 
SIG nand[0].out "wl"; 

INST nand nand[l]; 
WIRE nand[1].in[0] TO in; 
WIRE nand[1].in[1]  TO w; 
SIG nand[1].out  "w2"; 

INST nand nand[2]; 
SIG nand[2].in[0]  "wl"; 
SIG nand[2].in[1]   "w2"; 
SIG nand[2].out "w3"; 

INST d_reg_nr d_reg_nr[0]; 
SIG d_reg_nr[0].in "w3"; 
WIRE d_reg_nr[0].elk TO elk; 
WIRE d_reg_nr[0].out TO out; 

SCHEMATIC cell 
{ 

IN x ; 
IN y ; 
IN in ; 
IN reset ; 
IN elk ; 
OUT xout ; 
OUT out ; 
OUT rout ; 

INST wff wff[0]; 
WIRE wff[0].in TO y; 
WIRE wff[0].w TO reset; 
SIG wff[0].out "yi"; 
WIRE wff[0].elk TO elk; 

INST d_reg_nr d_reg_nr[0]; 
WIRE d_reg_nr[0].in TO x; 
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WIRE d_reg_nr[0].clk TO elk; 
WIRE d_reg_nr[0].out TO xout; 

INST nand nand[0]; 
WIRE nand[0].in[0]  TO x; 
SIG nand[0].in[1]   "yi"; 
SIG nand[0].out "ab"; 

INST inv inv CO] ; 
SIG invCO].in "ab"; 
SIG invCO].out "a"; 

INST sa saCO]; 
SIG sa[0].x "a"; 
WIRE sa[0].y TO in; 
SIG sa[0].z "b"; 
WIRE sa[0].clk TO elk; 
WIRE saCO].reset TO reset; 

INST d_reg_wqb d_reg_wqb CO]; 
WIRE d_reg_wqb CO].in TO reset; 
WIRE d_reg_wqbC0].elk TO elk; 
WIRE d_reg_wqb CO].out TO rout; 
SIG d_reg_wqbCO].out_b "c' 

INST nand nandCl]; 
SIG nandCl].in CO]   "b"; 
SIG nandCl]-inCl]   "c"; 
SIG nandCl].out "outb"; 

INST inv invCl]; 
SIG invCl].in "outb"; . 
WIRE invCl].out TO out; 

} 

-II  . 

SCHEMATIC bps   () 
{ 

IN      in  ; 
OUT      out   ; 

INST inv inv CO]; 
WIRE invCO].in TO in; 
SIG invCO].out "w"; 
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INST inv inv[l]; 
SIG inv[l].in "w"; 
WIRE inv[l].out TO out; 

} 

SCHEMATIC beeil () 

{ 
IN x ; 
IN y ; 
IN in ; 
IN reset ; 
IN elk ; 
OUT yout ; 
OUT xout ; 
OUT z ; 
OUT rout ; 

INST bps bps [0]; 
WIRE bps[0].in TO y; 
WIRE bps[0].out TO yout; 

INST cell cell[0]; 
WIRE cell[0].x TO x; 
WIRE cell[0].y TO y; 
WIRE cell[0].in TO in; 
WIRE cell[0].reset TO reset; 
WIRE cell[0].elk TO elk; 
WIRE cell[0].xout TO xout; 
WIRE cell[0].out TO z; 
WIRE cell[0].rout TO rout; 

} 

SCHEMATIC icell () 
{ 

IN xi ; 
IN yi ; 
IN zi ; 
IN ri ; 
IN elk ; 
OUT yout ; 
OUT xout ; 
OUT z ; 
OUT rout ; 
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INST beeil beeil [0]; 
WIRE beeil[0].x TO xi; 
WIRE beeil[0].y TO yi; 
WIRE beeil[0].in TO zi; 
WIRE beeil[0].reset TO ri; 
WIRE beeil[0].elk TO elk; 
SIG beeil[0].yout "yd"; 
SIG beeil [0].xout "xd"; 
SIG bcell[0].z "zd"; 
SIG beeil[0].rout "rd"; 

INST d_reg_nr d_reg_nr [0]; 
SIG d_reg_nr[0].in "yd"; 
WIRE d_reg_nr[0].clk TO elk; 
WIRE d_reg_nr[0].out TO yout; 

INST d_reg_nr d_reg_nr[l]; 
SIG d_reg_nr[l].in "xd"; 
WIRE d_reg_nr[l].clk TO elk; 
WIRE d_reg_nr[l].out TO xout; 

INST d_reg_nr d_reg_nr[2]; 
SIG d_reg_nr[2].in "zd"; 
WIRE d_reg_nr[2].elk TO elk; 
WIRE d_reg_nr[2].out TO z; 

INST d_reg_nr d_reg_nr[3]; 

SIG d_reg_nr[3].in "rd"; 

WIRE d_reg_nr[3].elk TO elk; 

WIRE d_reg_nr[3].out TO rout; 

} 
SCHEMATIC ipdm (INT hol_l_n = 4) 

{ 
IN x; 
IN y; 
IN in; 
IN reset; 

IN elk; 

OUT yout; 

OUT xout; 

OUT z; 
OUT rout; 

INT hol_l_i; 
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hol_l_i =0; 
WHILE(hol_l_i < hol_l_n)  { 

INST icell icell[hol_l_i]; 

IF(hol_l_i == 0)   { 
WIRE icell[0].xi TO x; 
WIRE icell[0].yi TO y; 
WIRE icell[0].zi TO in; 
WIRE icell[0].ri TO reset; 

} 

WIRE icell[hol_l_i].elk TO elk; 

IF(hol_l_i   != 0)  { 
WIRE icell[hol_l_i-l].xout TO icell[hol_l_i].xi; 
WIRE icell[hol_l_i-l].yout TO icell[hol_l_i].yi; 

WIRE icell[hol_l_i-l].z TO icell[hol_l_i].zi; 

WIRE icell[hol_l_i-l].rout TO icell[hol_l_i].ri; 
} 

IF(hol_l_i == hol_l_n - 1) { 

WIRE icell[hol_l_i].yout TO yout; 

WIRE icell[hol_l_i].xout TO xout; 
WIRE icell[hol_l_i].z TO z; 

WIRE icell[hol_l_i].rout TO rout; 
} 

IF(hol_l_i != = 0) { 
} 
hol_l_i++; 

} 
} 

SCHEMATIC pdm (INT hoi. .l_n 

{ 
INT 

STR 

STR 

IN 
IN 

IN 

IN 

IN 

OUT 

hol_l_i; 

hol_l_strl; 

hol_l_str2; 

x ; 

y ; 
in ; 

reset ; 

elk ; 

yout ; 

1) 
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OUT      xout   ; 
OUT      z   ; 
OUT      rout  ; 

INST bcell bcell[0]; 
SIG bcell[0].x "xi"; 
SIG bcell[0].y "yi"; 
SIG bcell[0].in "zi"; 
SIG bcell[0].reset "ri"; 
WIRE bcell[0].elk TO elk; 
WIRE bcell[0].yout TO yout; 
WIRE bcell[0].xout TO xout; 
WIRE bcell[0].z TO z; 
WIRE bcell[0].rout TO rout; 

INST ipdm ipdm[0]; 
WIRE ipdm[0].x TO x; 
WIRE ipdm[0].y TO y; 
WIRE ipdm[0].in TO in; 
WIRE ipdm[0].reset TO reset; 
WIRE ipdm[0].elk TO elk; 
SIG ipdm[0].yout "yi"; 
SIG ipdm[0].xout "xi"; 
SIG ipdm[0].z "zi"; 
SIG ipdm[0].rout "ri"; 

E    IRSIM Test Command File 

h y reset 
1 elk 
s 40 
b. elk 
s 20 
1 elk 
s 2 

1 reset y 
h x in 
s 40 
h elk 
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s 20 
1 elk 
s 2 

1 in 
s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 

h y 
s 40 
h elk 
s 20 
1 elk 
s 2 

X y 
1 X 
s 40 
h elk 
s 20 
1 elk 
s 2 

h X 
s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 
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1 X 
h reset 
s 40 
h. elk 
s 20 
1 elk 
s 2 

x reset y x in 
s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
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s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
li elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 

s 40 
h elk 
s 20 
1 elk 
s 2 

ana    elk reset y x in yout xout z rout 

F    SPICE MOS Model Parameters 

**  Technology: scmos 
** 

.MODEL nfet NM0S (LEVEL=2.0 PHI=0.700000 T0X=3.9800E-08 
+ XJ=0.200000U TPG=1 
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+ VTO0.7794 DELTA=3.1470E+00 LD=1.8408E-07 KP=5.9259E-05 

+ U0=683.0 UEXP=9.8530E-02 UCRIT=8.4200E+03 RSH=9.5900E+00 

+ GAMMA=0.6033 NSUB=8.2550E+15 NFS=9.1000E+10 VMAX=5.1700E+04 

+ LAMBDA=3.4430E-02 CGD0=2.405E-10 CGSO=2.4051E-10 

+ CGB0=3.4582E-10 CJ=1.24E-04 MJ=0.828 CJSW=5.68E-10 
+ MJSW=0.324 PB=0.66) 

* Weff = Wdrawn - Delta_W 

* The suggested Delta.W is 2.0000E-09 

.MODEL pfet PMOS (LEVEL=2 PHI=0.700000 TOX=3.9800E-08 

+ XJ=0.200000U TPG=-1 

+ VT0=-0.9373 DELTA=2.9690E+00 LD=1.5620E-07 KP=1.7153E-05 

+ UCM197.7 UEXP=2.5700E-01 UCRIT=1.0910E+05 RSH=9.8190E-02 

+ GAMMA=0.6667 NSUB=1.0080E+16 NFS=1.1000E+11 VMAX=9.9990E+05 

+ LAMBDA=4.2200E-02 CGD0=2.0328E-10 CGSO=2.0328E-10 

+ CGB0=4.1603E-10 CJ=3.38E-04 MJ=0.575 CJSW=2.48E-10 

+ MJSW=0.289 PB=0.90) 

* Weff = Wdrawn - Delta.W 

* The suggested Delta_W is 2.0000E-09 

G    SPICE Simulation Input file to Detect Clock 
Skew Between FF3 and FF4 

** NODE: 0 = GND 
** NODE: 1 = Vdd 

** NODE: 2 = Error 

VDD 10  DC  5V 

Vclk 102 0  DC PULSE (0V  5V  50ns  0 0 80ns 160ns) 

Rl   102  201  1380 

M101 1 201 301 1 pfet L=4.5U W=18.0U 
M102 0 201 301 0 nf et L=4.5U W=15.0U 
M103 1 201 302 1 pfet L=4.5U W=18.0U 
M104 0 201 302 0 nf et L=4.5U W=15.0U 
M105 1 201 303 1 pfet L=4.5U W=18.0U 
M106 0 201 303 0 nf et L=4.5U W=15.0U 
M107 1 201 304 1 pfet L=4.5U W=18.0U 
M108 0 201 304 0 nfet L=4.5U W=15.0U 
M109 1 201 305 1 pfet L=4.5U W=18.0U 
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MHO 0 201 305 0 nfet 

R2 201 202 1380 

Mill 1 202 306 1 pfet 
M112 0 202 306 0 nfet 

M113 1 202 307 1 pfet 

M114 0 202 307 0 nfet 
M115 1 202 308 1 pfet 

M116 0 202 308 0 nfet 

M117 1 202 309 1 pfet 

M118 0 202 309 0 nfet 

R3 202 211 1380 

M119 1 211 310 1 pfet 

M120 0 211 310 0 nfet 

R4 202 204 1380 
M121 1 204 311 1 pfet 

M122 0 204 311 0 nfet 

R5 202 205 1380 

M123 1 205 312 1 pfet 
M124 0 205 312 0 nfet 

R6 205 206 1380 

R7 206 207 2760 
M125 1 207 313 1 pfet 
M126 0 207 313 0 nfet 
M127 1 207 314 1 pfet 

M128 0 207 314 0 nfet 

R8 207 208 1380 
M129 1 208 315 1 pfet 
M130 0 208 315 0 nfet 
M131 1 208 316 1 pfet 
M132 0 208 316 0 nfet 
M133 1 208 317 1 pfet 
M134 0 208 317 0 nfet 
M135 1 208 318 1 pfet 
M136 0 208 318 0 nfet 

R18 208 209 1380 
M137 1 209 319 1 pfet 

L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
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M138 0 209 319 0 nf et 

R16 208 210 1380 

M139 1 210 320 1 pfet 
M140 0 210 320 0 nf et 

R19 201 203 1380 

M141 1 203 321 1 pfet 

M142 0 203 321 0 nf et 

M143 1 203 322 1 pfet 

M144 0 203 322 0 nfet 

R9 202 212 1380 

M145 1 212 323 1 pfet 

M146 0 212 323 0 nfet 

RIO 212 213 1380 

M147 1 213 324 1 pfet 
M148 0 213 324 0 nfet 
M149 1 213 325 1 pfet 

Rll 213 214 1380 
M151 1 214 326 1 pfet 
M152 0 214 326 0 nfet 

R12 214 215 1380 
M153 1 215 327 1 pfet 
M154 0 215 327 0 nfet 
M155 1 215 328 1 pfet 
M156 0 215 328 0 nfet 

R13 215 216 1380 
M157 1 216 329 1 pfet 
M158 0 216 329 0 nfet 
M159 1 216 330 1 pfet 
M160 0 216 330 0 nfet 

R14 216 217 13,80 
M161 1 217 331 1 pfet 
M162 0 217 331 0 nfet 
M163 1 217 332 1 pfet 
M164 0 217 332 0 nfet 
M165 1 217 333 1 pfet 

L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 
L=4.5U W=18.0U 
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M166 0 217 333 0 nfet 
M167 1 217 334 1 pfet 
M168 0 217 334 0 nfet 

R15 217 218 1380 
M169 1 218 335 1 pfet 
M170 0 218 335 0 nfet 

R17 217 219 1380 
M171 1 219 336 1 pfet 
M172 0 219 336 0 nfet 

.END 

L=4.5U W=15.0U 
L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 

L=4.5U W=18.0U 
L=4.5U W=15.0U 
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