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4    Introduction 

Breast cancer is a major cause of death among women over the age of forty [1]. Mam- 
mography is the most effective diagnostic procedure for the early detection of breast can- 
cer [2,3]. Mammography is not, however, perfect. Between 10-30% of women who have 
breast cancer and undergo mammography have negative mammograms [4-7]. Of these, ra- 
diologists have determined, retrospectively, that two-thirds of the cancers could have been 
detected [5,6,8,9]. One possible means by which to decrease this number is to have two 
radiologists read the mammograms. This method has been shown to increase sensitivity by 
as much as 15%, [10,11] but can be costly both financially and with respect to time. A 
computer-aided diagnostic scheme may act as an inexpensive second reading method. The 
final decision would be made by the radiologist. 

This research sought to answer questions that arise when using pattern classifiers in deci- 
sion making applications. Problems occur when the number of inputs to the pattern classifier 
become large. For this reason, genetic algorithms and other feature selection techniques were 
studied to alleviate this problem. The purpose of this research was to study and develop 
feature selection and pattern classification methods to improve the performance of CAD 
schemes. Specific emphasis was placed on using the developed methods in the computerized 
detection of mass lesions in mammography. 
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5    Body 

5.1 Technical Objectives 

The objectives of this project were as follows: 

• Development of a genetic algorithm for the optimization of artificial neural network 

inputs. 

• Comparison of a genetic algorithm with other selection and optimization methods 
including previously used selection methods. 

• Analysis of features selected by genetic algorithm and comparison of those features 
with visual techniques employed by radiologists. 

• Development of a parallel genetic algorithm to improve performance of the search and 
to provide an even greater performance increase to the mass detection CAD program. 

5.2 Methods 

5.3 Development of Classification Methods 

We have performed extensive analysis of two methods of pattern classification. First, we 
studied the ability of a classifier called a Bayesian ANN to approximate the ideal observer 
(the theoretically optimal classifier) given datasets of limited size. A full analysis of this is 
given in reference [12] which is attached as Appendix A. 

We also developed a novel classifier training strategy which directly optimizes the ROC 
curve of a given classifier on a given training dataset. This approach to classifier training 
was found to be useful for "simple" classifiers such as rule-based classifiers. A full analysis 
of this method is given in reference [13] which is attached as Appendix B. 

We have applied various feature selection methods to select subsets of features for both 
of these classifiers using data extracted from a database 177 screening mammography cases. 
Validation results were computed and used to compare the various classifiers and methods 
of feature selection as is discussed later. 

5.3.1    Development of Feature Selection Methods 

We have studied various feature selection methods for selecting features to be used within 
an artificial neural network (ANN) classifier and methods for selecting features for rule-based 
classifiers. A detailed summary of these methods can be found in references [14] which is 
also attached as Appendix C. 

We also endeavored to use these methods to select features for use in an actual comput- 
erized detection system. A summary of these results is shown in Appendix D which is a 
paper under review at Medical Physics. In this paper, it is shown that the Bayesian ANN 
outperforms a rule-based classifier trained using the multiobjective approach. Furthermore, 
both genetic algorithm feature selection and a forward selection method performed best for 
selecting features for Bayesian ANNs. 
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5.3.2 Analysis of Feature Selection 

During the course of our research on pattern classification and feature selection, we 
studied in more detail, some of the fundamental problems associated with feature selection 
[15]. A paper on this subject is attached as Appendix E. It was found that the ability of 
a feature selection method to select the optimal subset of features decreases as the number 
of feature from which to select increases and as the database used to select the features 
decreases in size. For a simple feature selection problem-, we derived the probability that the 
optimal subset of features will be selected. 

5.3.3 Analysis of Features 

A detailed analysis of the features selected by the various feature selection methods is 
also contained in Appendix D. The features we have found to be most useful in distinguishing 
between malignant mass lesions and false candidates in mammography were gradient-based 
features such as RGI [16] and intensity-based measures such as the contrast. The geometric 
features were found to be useful but not to the extent shown in previous studies [17]. This is 
due to a novel lesion segmentation technique that we have developed for the mass detection 
CAD system which always returns lesion-like results even in non-mass image areas [16]. 

5.3.4 Development of a Parallel Genetic Algorithm 

A group at Argonne National labs has developed a parallel genetic algorithm package 
called the PGAPack [18]. This package was found to be suitable for the implementation of 
GA feature selection. 
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6    Key Research Accomplishments 

• Development of an RGI-based lesion segmentation method which outperforms previ- 
ously studied lesion segmentation methods. 

Development of a model-based probabilistic segmentation method which outperforms 
previously studied lesion segmentation methods. 

• Analyzed the ability of Bayesian ANNs to approximate the ideal observer given simu- 
lated datasets. These results aided in the design of Bayesian ANN classifiers for CAD 

systems. 

• Development of a multiobjective classifier training methodology which directly opti- 
mized the ROC curve of a classifier. This approach has been found to be very useful 
for rule-based classifiers. 

• Analysis of the fundamentals of the feature selection problem which helps one better 
understand the difficulties associated with feature selection. 

• Development of a genetic algorithm feature selection methodology. 

• Analysis and comparisons of the various feature selection methods which will aid in 
the selection of an appropriate feature selection algorithm. 

• A study of Bayesian ANNs, the multiobjective approach, and the various feature se- 
lection methods for the computerized detection of mass lesions in mammography. 

• A mass CAD systems that has both a simpler and more understandable methodology 
and a better overall performance. 
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7    Papers and Presentations 

The following papers have been accepted or submitted to peer review journals: 

• "Automated Seeded Lesions Segmentation of Digital Mammograms." Matthew A. 
Kupinski and Maryellen L. Giger. IEEE Transactions on Medical Imaging, Vol 17, Iss. 
8, Pgs. 510-517, 1998. 

• "Feature Selection with Limited Datasets." Matthew A. Kupinski and Maryellen L. 
Giger. Medical Physics, Vol. 26, Iss. 10, Pgs. 2176-2182, 1999. [15] 

• "Multiobjective Genetic Optimization of Diagnostic Classifiers with Implications for 
Generating ROC Curves." Matthew A. Kupinski and Mark A. Anastasio. IEEE 
Transactions on Medical Imaging, Vol. 18, Iss. 8, Pgs. 675-685, 1999. [13] 

• "Optimization and FROC Analysis of Rule-Based Detection Schemes Using a Mul- 
tiobjective Approach." Mark A. Anastasio, Matthew A. Kupinski and Robert M. 
Nishikawa. IEEE Transactions on Medical Imaging, Vol. 17, Iss. 6, Pgs. 1089-1093, 
1998. [19] 

• "Ideal Observer Estimation Using Bayesian Classification Neural Networks." submit- 
ted to IEEE Transactions on Medical Imaging. 

• "Computerized Detection of Mass Lesions in Mammography Based on Radial Gradient 
Index." submitted to Medical Physics. 

• "Classification of Suspect Regions in the Computerized Detection of Mass Lesions in 
Mammography." submitted to Medical Physics. 

The following conference proceedings papers have been published: 

"Optimization of Neural Network Inputs with Genetic Algorithms." Digital Mammog- 
raphy '96, Chicago, Illinois. 1996. 

"Feature Selection and Classifiers for the Computerized Detection of Mass Lesions 
in Digital Mammography." Matthew A. Kupinski and Maryellen L. Giger. IEEE 
International Congress on Neural Networks, Houston, Texas. 1997. 

"Investigation of Regularized Neural Networks for the Computerized Detection of Mass 
Lesions in Digital Mammograms." Matthew A. Kupinski and Maryellen L. Giger. 
IEEE EMBS, Chicago, Illinois, 1997. 

"A Multiobjective Approach to Optimizing Computer-Aided Diagnosis Schemes." M. 
A. Anastasio, M. A. Kupinski, R M. Nishikawa, and M. L. Giger. IEEE MIC, Toronto, 
Canada, 1998. 

"Multiobjective Genetic Optimization of Diagnostic Classifiers Used in the Computer- 
ized Detection of Mass Lesions in Mammography." M. A. Kupinski and M. L. Giger, 
SPIE Medical Imaging Conference, San Diego, California. 2000. 

• 

• 
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• A Comparison of Bayesian ANN and Multiobjective Classifier Training Using Limited 
Datasets." CARS, San Francisco, California, 2000. 

The following presentations have been given: 

• "Feature Selection with Limited Datasets," Matthew A. Kupinski and Maryellen L. 
Giger, RSNA 1998. 

• "Multiobjective Optimization of Diagnostic Classifiers and its Relationship to ROC 
Analysis and the Ideal Observer," Mark A. Anastasio and Matthew A. Kupinski, Future 
Directions in Nuclear Medicine Physics and Engineering, Chicago, IL, 1999. 

• "Multiobjective Optimization of Diagnostic Classifiers: Pareto Optimality and the 
Ideal Observer," Mark A. Anastasio and Matthew A. Kupinski, Eighth Far West Image 
Perception Conference, Alberta, Canada. 

• "Ideal Observer Estimation With Bayesian Classification Neural Networks," Matthew 
A. Kupinski, Darrin C. Edwards, and Maryellen L. Giger, Eighth Far West Image 
Perception Conference, Alberta, Canada. 

• "Bayesian Artificial Neural Networks in the Computerized Detection of Mass Lesions," 
Matthew A. Kupinski, Darrin C. Edwards, Maryellen L, Giger, and Alexandra E. 
Baehr, American Association of Physicists in Medicine, Nashville, Tennessee, 1999. 

• "Computerized Detection of Mass Lesions in Digital Mammography Using Radial Gra- 
dient Index Filtering," Matthew A. Kupinski and Maryellen L. Giger, presented at 
RSNA 1999. 

• "Computerized Detection of Mass Lesions using Feature Filtering," Matthew A. Kupin- 
ski and Maryellen L. Giger, Presented at the AAPM World Congress 2000. 
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8    Conclusions 

We have studied some of the fundamental properties of feature selection. We have found 
that the probability of selecting an optimal subset of features rapidly decreases as the sample 
size decreases and the total number of features from which to select increases. Understanding 
the limitation of feature selection will help us select (using methods such as ID analysis and 
genetic algorithms) a useful and robust subset of features to be used in the computerized 
detection of mass lesions in mammography. 

We have also studied the use of Bayesian artificial neural networks in classification tasks. 
We have found that Bayesian ANNs produce more accurate and, yet, robust solutions to 
classification problems. Bayesian ANNs also train more rapidly than do conventional ANNs 
using round-robin methodology. This information will be used design more accurate and 
robust pattern classifiers for the computerized detection of mass lesions in mammography. 

We have developed a novel classifier training approach known as the multiobjective ap- 
proach. This method has the advantage that it directly optimizes the ROC curve of a 
classifier and, thus, returns the optimal ROC curve that can be obtained using the give 
classifier on the given training dataset. 

We have introduced a new initial filtering scheme to detect mass lesions in mammog- 
raphy. The performance of feature selection methods and of pattern classifiers is limited 
by the performance of the initial detection algorithm. We have shown that RGI filtering 
substantially outperformed the previous method of detecting mass lesions known as bilateral 
subtraction. 

Finally, we have applied all of the above techniques to the computerized detection of 
mass lesions in mammography and produced a CAD system that is both simpler and has a 
better overall performance over previous techniques. 
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Abstract 

It is well understood that the optimal classification decision variable is the likelihood ratio or any 

monotonic transformation of the likelihood ratio. An automated classifier which maps from an input 

space to one of the likelihood ratio family of decision variables is an optimal classifier or "ideal observer." 

Artificial neural networks (ANNs) are frequently used as classifiers for many problems. In the limit of large 

training sample sizes, an ANN approximates a mapping function which is a monotonic transformation 

of the likelihood ratio, i.e., it estimates an ideal observer decision variable. A principal disadvantage of 

conventional ANNs is the potential over-parameterization of the mapping function which results in a poor 

approximation of an optimal mapping function for smaller training samples. Recently, Bayesian methods 

have been applied to ANNs in order to regularize training to improve the robustness of the classifier. A 

Bayesian ANN should thus better approximate the optimal decision variable given small sample sizes. We 

have evaluated the accuracy of Bayesian ANN models of ideal observer decision variables as a function 

of the number of hidden units used, the signal-to-noise ratio of the data, and the number of features or 

dimensionality of the data. We show that when enough training data are present, excess hidden units 

do not substantially degrade the accuracy of Bayesian ANNs. However, the minimum number of hidden 

units required to best model the optimal mapping function varies with the complexity of the data. 

Keywords 

Bayesian neural networks, ideal observers, ROC analysis, computer-aided diagnosis 

I. INTRODUCTION 

In image analysis and computer-aided diagnosis, automated classifiers are often em- 

ployed to determine whether a region within an image is abnormal (with a specified 

disease) or normal (without that disease) [1-3]. Typically, features are extracted from 

a suspicious site to form a vector of input features which is projected or mapped onto a 

scalar decision variable using the parameters of the classifier. A threshold is then applied 

to this decision variable to determine whether the input features are representative of an 

abnormal or normal region. Before any classification can be performed, the parameters of 

the classifier must be determined. Classifier "training" involves using a dataset of obser- 

vations or features from both the normal class and the abnormal class to determine the 

parameters of the classifier so it will perform acceptably on future datasets of unknown 

pathology. 

It is well understood that the optimal classification decision variable is the likelihood 

ratio or any monotonic transformation of the likelihood ratio [4-6]. The ROC curve [4,7-9] 

November 18, 1999 
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produced using one of the likelihood ratio family of decision variables is the optimal ROC 

curve which best describes the limiting tradeoffs between sensitivity and specificity. Any 

system that uses the likelihood ratio or a monotonic transformation of the likelihood ratio 

to make decisions is known as an ideal observer [10]. 

A classification artificial neural network (ANN) can be viewed as a highly parameter- 

ized classifier or mapping function [11-14]. The output of an ANN in the limit of large 

sample sizes approximates a mapping function which is a monotonic transformation of 

the likelihood ratio [12,15], i.e., it approximates an ideal observer decision variable. A 

principal disadvantage of conventional ANNs is the possible over-parameterization of the 

mapping function, which results in a poor approximation of the optimal mapping func- 

tion given small training sample sizes. Recently, Bayesian methods have been applied to 

ANNs [16,17] in order to regularize training to improve the robustness of the classifier. A 

Bayesian ANN should thus better approximate the optimal decision variable given small 

sample sizes. Many researchers have analyzed the performance of classification ANNs by 

evaluating classification ability through ROC analysis on training and testing datasets 

[18.19]. Bayesian ANNs, however, are trained not only to produce an ideal observer ROC 

curve, but also to produce a particular ideal observer mapping function. Hence, an eval- 

uation of a Bayesian ANN's ability to approximate this particular mapping function is of 

fundamental importance. 

In this paper, we investigate the accuracy of Bayesian ANN models of an ideal observer 

decision variable given simulated datasets of various sizes and neural networks with a 

single hidden layer. Section II contains a brief introduction to the optimal classifier decision 

variable, Bayesian ANNs, and the connection between the two. Section III examines a one- 

dimensional example in detail to provide insights regarding Bayesian ANNs. Section IV 

describes the methods used for implementing a Bayesian ANN and evaluating its accuracy. 

In Section V, we study the effects of sample size, input dimension, number of weights, and 

signal-to-noise ratio of the data on the accuracy of Bayesian ANNs. Finally, Sections 

VI and VII provide a discussion of the results and a summary of the advantages and 

disadvantages of Bayesian ANNs for classification. 

November 18, 1999 
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II. BACKGROUND 

A. Optimal Decision Variables and ROC Analysis 

The task of an automated two-group classifier is to determine whether an observation 

comes from the abnormal class denoted by 7ra or the complementary normal class denoted 

by 7rn. The features corresponding to an observation can be expressed as a D-dimensional 

random vector x = [x1,x2,...,xD], where boldface type denotes random variables. Pro- 

jection classifiers, such as ANNs, classify by mapping an observation onto a new random 

variable y = g(x), where g{-) is the mapping function. An observation x is classified 

as abnormal if g(x) > yc where yc is the decision variable threshold. One should note 

that defining the abnormal assignment as greater than or equal to the threshold yc is an 

arbitrary convention. We could, equivalently, have defined the abnormal class as corre- 

sponding to decision variable outcomes that are strictly less than, strictly greater than, 

or less than or equal to yc but we will, without loss of generality, use the definition given 

above throughout this paper. 

The conditional density functions of data from the abnormal and normal classes are given 

by Ps{x\Tra) and pn{x\irn) respectively. Similarly, the conditional density functions of the 

decision variable are given by pv(y|7r„) for the abnormal class and py{y\Trn) for the normal 

class. We use the symbol p to denote both continuous and discrete density functions, 

with its subscripts denoting the random variables drawn from that density function. The 

true-positive fraction, or the expected fraction of abnormal cases classified correctly, is 

given by 

TPF{yc) = Jpy{yK) dy = J ■ ■ ■ J PstfK) dDx, (1) 
Vc {S:g(S)>yc} 

whereas the false-positive fraction (the expected fraction of normal cases incorrectly clas- 

sified) is 
oo 

FPF{yc) = Jpy{yK) dy = J'■■■ J Ps{xK) dDx. (2) 
Vc {x:g(x)>yc} 

By varying yc over its entire range and plotting the (FPF{yc),TPF{yc)) pairs, one obtains 

a receiver operating characteristic (ROC) curve [4,7-9], which describes the performance 

tradeoffs achievable by the classifier. 

November 18, 1999 
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It has been shown that the optimal ROC curve is obtained when the mapping function 

employed is the likelihood ratio 

or any monotonic transformation of the likelihood ratio [20]. Any classifier that does not 

use the likelihood ratio or a monotonic transformation thereof as its mapping function is 

suboptimal. 

Another commonly employed discriminant function is the posterior probability of an 

abnormal observation, pt(7ra|x), called the Bayes optimal discriminant function [5]. Here 

t is the discrete class membership random variable which takes on the values ira and 7rn. 

Bayes' rule immediately gives 

,      ._. Px{x\7Ca)pt(TTa) U) 

ytK   °'    '        Ps{x\Tra)pt(TTa) + Px{XK)Pt{^n) 

This leads to 

where A; = 44 and LR(x) is given in Eqn. 3. Because Eqn. 5 is a monotonic trans- 

formation of the likelihood ratio for positive k, we conclude that pt(na\x) is an optimal 

discriminant function. 

B. Modeling and Approximating Probability Functions with ANNs 

In statistical estimation, one often makes an assumption concerning the data distribu- 

tion. For example, the density function of a particular type of data may be modeled as 

normal with mean \i and standard deviation a, which we represent as px(x\p, a). Estima- 

tion theory can then be employed along with a sample of data to determine appropriate 

values of the parameter estimates fi and & even when the true density function of the 

data px{x) is not normal. (The circumflex here indicates an estimated quantity.) In this 

sense the estimation task is analogous to curve fitting or function approximation: the 

■ estimated parameters are chosen so that a Gaussian model for the density function "best" 

approximates the underlying density function from which the sample of data was drawn. 

There is potential for confusion in using the vertical bar to denote nonrandom parame- 

ters of a function, because this notation is identical to that for a conditional probability; 
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many authors therefore adopt a different notation for this case (a semicolon instead of 

a bar, for example). However, in estimation theory it is often useful to consider similar 

problems from very different points of view, regarding the "parameters" of a function as 

nonrandom parameters, or as estimates which are functionally dependent upon a set of 

random observational data, or even as Bayesian quantities derived from density functions 

(in a Bayesian sense) that are not necessarily dependent on the observational data. Be- 

cause we wish to emphasize the similarities between these approaches, rather than the 

subtle {albeit fundamental) differences between them, we will use the vertical bar notation 

to denote (a) dependence on nonrandom parameters of a function (such parameters will 

be clearly stated as being nonrandom); (6) conditional dependence on the particular value 

indicated of a random variable (such variables will be clearly stated as being random); (c) 

conditional dependence on the particular value of an estimate derived from random obser- 

vational data (distinguished from (6) by a circumflex indicating an estimated quantity); 

and (d) a conditional density considered as a function of the random variable (or estimate) 

upon which it is conditional (distinguished from (6) and (c), respectively, by boldface type 

indicating a random variable). 

Thus in an expression such as py(y\x,ßx,w), x represents a particular value of the 

random variable x upon which y depends conditionally (we assume that x was previously 

introduced as a random variable); fix is a particular value of the estimate [ix. upon which 

y also depends conditionally; and w is a set of other (nonrandom) parameters of the 

conditional density function of y. 

In the normal example described above, the relevant density function was modeled 

as a function dependent upon a small number of parameters (namely /z and a). One 

may also consider more complicated cases in which the underlying model for the density 

functions from which observational data are drawn does not have such a simple closed- 

form representation and may depend upon a large number of parameters w. The ANN 

function is one such example. An ANN is a set of connected nodes based loosely on the 

human neuron system that maps a generally multidimensional input vector x to a generally 

multidimensional output vector y using the parameters w [11-14,16]. In this paper we will 

be dealing with ANNs that map x to a scalar value y. The output of this ANN function 
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is given by 
y = s(^("-l).f("-l)+4"-1)) (6) 

where s is a sigmoidal activation function (e.g. tanh or the logistic cumulative distribution 

function), and where x« represents the output of the ith hidden layer of the ANN, defined 

recursively as 

x? = s(w(i-^-x{i-i)+wtim), (7) 

where x<o) = x, the input. Readers unfamiliar with ANNs may consult references [11,12]. 

Since an ANN architecture of sufficient complexity is known to be able to closely approx- 

imate any continuous function [21], it is reasonable to assume that nearly any underlying 

density function for x can be closely approximated by a function in this family of functions 

for some value of a sufficiently large set of parameters w. As explained above, we write 

such an approximation as ps{x\w) to emphasize that this is an approximation to some 

underlying function ps{x). 

C. Maximum Likelihood Estimation of ANN Weights 

Since pt(*a\x) in Eqn. 5 is an optimal discriminant function, we can treat the task of 

classification as one of modeling, or approximating, the function pt(7r„|x). As outlined 

in the previous section, we approximate the optimal discriminant function by an ANN 

function, writing it as pt{ira\x, w), the range of which is bound between 0 and 1. We then 

define pt{irn\x, w) = 1 -pW«, ™)- The practical task, given an actual ANN with a finite 

number of weights and a sample of training data, is to choose weights w such that the 

■ difference between the ANN output pt{na\x,u) and the true Bayes optimal discriminant 

function pt(na\x) is small. 

ANN training involves using a training dataset {X, T} to determine a value of w, where 

X = {Xi}?=i 
is the set of Gaining feature vectors, T = {tj^ is the set of known truth 

(7ra or 7Tn) for each feature vector, and N is the total number of samples in the training 

dataset. Assuming the data to be independently sampled, the true likelihood of the data 

is given by ö N 

Px,T(A')T) = nPt(*<lf<)Pa(£)- ^ 
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If pt(ira\x) is approximated by an ANN function pt{ira\x,w), then the likelihood of the 

data assuming the ANN model and given a particular value of the parameters w is 

N 
px,T{X,T\w) = Hpt(ti\xi,w)ps{xi). (9) 

i=i 

Maximizing the likelihood of the data, px,T(X,T\vJ), with,respect to w is equivalent to 
2.ML 

maximizing pT(T\X, w) with respect to w. The maximum likelihood estimate w is thus 

obtained by maximizing 
JV 

Pr{T\X,w) = l[pt{U\xuw) (10) 
i=l 

with respect to w. The logarithm of the above expression is known as the cross-entropy 

error function [12]. 

Ruck et al. [15] proved that an ANN trained using the sum of squares error function 

approaches the Bayes optimal discriminant function in the limit of infinite training data. 

We wish to show that maximizing the utility function in Eqn. 10 also yields a discriminant 

function that approaches the Bayes optimal discriminant function given infinite training 

data. Taking the logarithm of Eqn. 10 yields 

JV 

\n{pT{T\X,w)) = Y/HPt{ti\Zi,w)). (11) 
i=i 

Taking the limit as N approaches infinity and employing the Strong Law of Large Numbers 

[22]. we arrive at 

\n(pr(T\X, w))= [ ■■■[ [ln(pt(7r„|£, w))ps(x, na) + ln(pt(7r„|x, w))ps{x, TT„)] dDx.    (12) 

Since a sufficiently large ANN is known to be able to closely approximate any continuous 

function [21], it is reasonable to assume that pt(7ra|f,ü;) can take on any functional form 

of interest here. The task of finding the w that maximizes Eqn. 12 is replaced with the 

more tractable problem of finding the function pt{ira\x,w) that maximizes a particular 

functional, namely the integral on the right side of Eqn. 12. 

Using the calculus of variations [23], one can show that Eqn. 12 is maximized when 
JV 

Pf(7r„|f,tü) - Pt(7Ta|£). It follows that px,T(X,T\w) = U Pt{U\xi,w)pg{xi) is maximized 
"„ML . _   ~_ML 

in the limit of infinite data by the w      such that pt{-Ka\x,w     )= pt[Ka\x). 
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This result is of limited practical utility because one does not have infinite data from 

which to estimate /''. In practice, when given a sample of data {X,T} from the popu- 

lation, the ML ANN model attempts to approximate the sample Bayes optimal discrimi- 

nant function, which is one everywhere an abnormal observation is located in the training 

dataset, zero everywhere a normal observation is located in the training dataset, and ar- 

bitrary (or undefined) elsewhere. This discontinuous behavior is one of the drawbacks of 

the maximum likelihood method that the Bayesian methods attempt to address. 

D. Bayesian Estimation of ANN Weights 

We have argued that the maximum likelihood method approximates the sample Bayes 

optimal discriminant function when one has finite training data. It is necessary, how- 

ever, to approximate the population Bayes optimal discriminant function, because the 

sample Bayes optimal discriminant function is of little practical use. This is convention- 

ally performed by regularization methods such as early stopping. [11,24] and weight decay 

[13.25,26]. Recently, Bayesian methods have been used to regularize the training process 

to approximate the population Bayes optimal discriminant function rather than the sample 

discriminant function [16,17]. Training a Bayesian ANN involves choosing the maximum 
- MAP .     . 

a posteriori (MAP) weight vector w        which maximizes 

where pXJ{X,T\w) is given in Eqn. 9, and the "prior" pa{v)\ä) is the regularization term 

that employs the parameters a to incorporate our prior belief of what constitute reasonable 

values of w. It should be noted that px,T{X,T\w) in Eqn. 13 is now a true conditional 

probability in the Bayesian sense [27], whereas w was a nonrandom parameter of the 

underlying model in Eqn. 9. The term pXtT(X,T\w) also does not depend on a, because 

we specifically model this function as depending only on the weight vector w. The prior 

is often modeled as 
(   \ \ 

Pü(w\a) = Cexp f -- £ <*iW?j (14) 

where a{ is the regularization constant for the ith weight wu C is a constant ensuring that 

Pü(w\a) is a properly normalized density function, and W is the number of elements in 

the weight vector w [12,16,17]. Equation 14 attempts to limit the magnitude of the weight 
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vector w, because it has been shown that large weight values correspond to complicated 

mapping functions [16,28]. 

The denominator in Eqn. 13, referred to hereafter as the evidence, is often written as 

pX:T{X,T\a) = j px,T(X,T\w)pis(w\a)dw. (15) 

We are faced with the same problem that motivated Eqn. 13, that is, choosing appropriate 

values of a. We again adopt a Bayesian view of the relevant parameters and use Bayes' 

rule to arrive at 
/-ivn     P*,r(-y'r1g)PgW (16) 

P8{a\X,T)=       pxT{XtT)      ■ ^ 

If we assume that ps(a) is a flat prior, then maximizing ps{a\X,T) with respect to a is 

equivalent to maximizing pXj{X, T\a), or the evidence, with respect to a. In principle, one 

could use the data to first determine the paramters a using Eqn. 15, and then determine the 

parameters of the neural network w using Eqn. 13. In practice, however, it is prohibitively 

time-consuming to evaluate the integral in Eqn. 15, so approximations of the integral are 

often employed [16]. For a more detailed discussion of Bayesian ANNs and the methods 

used to determine the regularization constants 5, see references [16] and [17]. 

As previously stated, Bayesian methods are useful primarily when one has finite training 

data. It is still important, however, for the Bayesian method to arrive at the Bayes optimal 

discriminant function in the limit of infinite training data in order for the estimator to 

be consistent. We wish to show that maximizing the right side of Eqn. 13 given infinite 

data again leads to the Bayes optimal discriminant function. Note that the denominator 

of Eqn. 13 does not depend on w, whereas the numerator is the same as Eqn. 9 but with 

an extra factor p<a{w). Taking the logarithm of Eqn. 13, we arrive at 

N 

\n{pj{w\X,T,a)) = ^]n(pt{Ü\x»w)Pis{w\a)1,N)+ 
i=l 

5>(p;j(z0) - ln (/ PxAX,T\w)pj(w\a)dwwj . (17) 

Note that the maximization of Eqn. 17 with respect to w affects only the first term on the 

right side and that, with respect to x{ and tu this first term is similar in form to the right 

side of Eqn. 11. The remaining arguments from the previous section are unchanged, and 
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it can readily be shown that the same results are obtained, namely that Pis(w\X, T, a) is 
- MAP /i -   "-MAP . _. 

maximized in the limit of infinite data by the w such that pt{na\x,w J - pt[ira\x). 

As in the maximum likelihood situation, this result is of little practical importance 

because one never has infinite data. We also know that the maximum likelihood method 

performs poorly with "small" training datasets because the maximum likelihood method 

attempts to approximate the sample Bayes optimal discriminant function instead of the 

population Bayes optimal discriminant function. It is not known, however, how well 

the Bayesian method performs with limited training data. In this work we determine 

empirically the ability of Bayesian ANNs to approximate the Bayes optimal discriminant 

function when trained using finite datasets. 

III. ONE-DIMENSIONAL STUDY 

Before proceeding to the methods and results of the experiments, we will present a one- 

dimensional example of the behavior of a Bayesian ANN. This will allow us to visually 

present and explain the Bayesian ANN at a greater level of detail than possible in the 

higher dimensional experiments. Our goal in this section is to provide a framework for 

the interpretation of the methodology and results which will be presented in the next two 

sections. 

Given the ID density functions defined by 

**i-^"(-i) (18) 

with a and b > 0, we can compute the theoretical optimal mapping function pt(^a\x) using 

Eqn. 5, which results in 

fc6exp(-|((te-a)^-^)) 
V = PtK|x) = l + ^expH^-a)^))- (20) 

Using the theory of random variables [29], we can determine the conditional density func- 

tions of the new random variable y = pt(-Ka\x) using 

v(v{t)-   fefrpl*)   +...+   frW)   +..., (21) 
*(y|,~lrf(*.l*(i))l+       lrf(0*<o)l       ' l 
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where t is either ira or irn, x{l) denotes the Ith root of Eqn. 20 for a specific y, and pi(7ro|x(0) 

is the derivative of pt(7r„|x) with respect to x evaluated at x(l) [29]. For the special case 

b = 1 and a > 0, Eqn. 20 has only one root given by 

Combining Eqns. 20, 21, and 22, we obtain the 6 = 1 conditional density functions of y, 

^w = a,(i-W
exp H (:log (Ä)+ §))       <23) 

^|lJ" „d-rivgexpHV«los(Ä)"s)) ■      <24> 

for 0 < y < 1. 

The 6^1 case is more complicated because Eqn. 20 now has two roots 

ba 
*(!) = 62-i   ^(ö2-i)2   &2-i   bVfcKi-y) 

and 

2      log [ 7I7^-T ) (25) 

2      log(TT7^-T)- (26) 
6a     

x<2> = ^ri + ^ (62 _ 1)2 ~ w -11UB V**(i - y) 

Using Eqns. 25, 26 and 20 with 21 we obtain the b ^ 1 conditional density functions of y 

I   \      \- Px{X(l)\Vn) + Px(X(2)\Vn) ^7) 
Py{V\-n) - y(1 _ y)^ _ 2{h2 _ l)log(^=) 

and 
_ PX^DITT^+PXCX^ITTJ (2g) 

Py{y\*a) -  y{l _ y)^-2{V-l)\0g{m^)) 

The values of y are bound between 0 and 1 due to the form of Eqn. 3. Because the square 

root terms in Eqns. 25 and 26 must be non-negative, the value of b further restricts the 

range of possible y (or p(7ra|x)) values when b^l, i.e.,1 

6>1    -    0<y<(l-- ,\2   x        I , (29) 

'The symbol ~* is known as the "leads to" symbol. 
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and 

6<1    -        1 ,   a2    x     ,)<V<1> (M) 

6 = 1    ~>     0<y<l. (31) 

Given a sample of ID data taken from the densities shown in Eqns. 37 and 38, the 

Bayesian ANN should model the mapping function given in Eqn. 20. To show this, we 

sampled 500 normal observations and 500 abnormal observations (N = 1000) from the 

density functions shown in Fig. 1 (a = 1 and b = 0.5). We trained a Bayesian ANN 

with 10 hidden units on this data to produce pt{na\x,w ), which is shown in Fig. 

2 along with the theoretical true mapping function pt{na\x) (Eqn. 20). (The training 

method will be described in the next section.) Because the Bayesian ANN mapping 

function approximates the true mapping function pt{na\x), we conclude that the output 

y. = p^Tr^Xi, w4^)-^ = 1,.. •, N of the Bayesian ANN using the training data xt as input 

should behave as if sampled from the density functions given in Eqns. 25-28. Figure 3 shows 

both the theoretical density functions py(y\-Kn) and py{y\na) for the a = 1, b = 0.5 case, 

together with the histograms of the abnormal and normal training data output from the 

Bayesian ANN. The histograms of the Bayesian ANN decision variable closely match the 

densities of the ideal observer decision variable. Finally, one can generate the theoretical 

ROC curve using Eqns. 1 and 2 and the theoretical densities of the ideal decision variable 

py{y\ira) and py{y\nn)- This can then be compared (see Fig. 4) with the ROC curve 

generated using the Bayesian ANN output of an independently sampled testing dataset 

using the "proper" curve fitting method [6,30]. Again, the true optimal ROC curve and 

the ROC curve produced using the output of the Bayesian ANN are similar. 

IV. METHODS 

A. Bayesian ANN Implementation 

In this work, we have employed a neural network with an input layer, a single hidden 

layer, and a single output node. Our implementation of the Bayesian ANN is based on 

the work of MacKay [16]. An approximation is made in MacKay's methods that should 

be noted. In order to determine the regularization parameters a, one must evaluate the 
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integral in Eqn. 15. In MacKay's method, the integrand px/r(*,T|ü;)Ptf(«>|a) is locally 

approximated using a Taylor expansion around the most probable weight values w as 

being Gaussian. The integral in Eqn. 15 can then be evaluated explicitly. This changes the 

method of optimization, however, because the evidence now depends on this w , which 

in turn depends upon the choice of a. Hence, a dual optimization is performed in which 

one fixes the parameters a to find wMP, then uses wMP to find a new set of parameters 

a, and then repeats this process a fixed number of times. At this point, the parameters 

a are assumed to be properly determined and the wMP can be labeled the maximum a 

posteriori value of the weights wMAP. It has been determined empirically that eight such 

iterations work well for most applications. In other methods, such as those discussed by 

Neal [17], the integral in Eqn. 15 is evaluated using Monte Carlo methods. This paper 

will not evaluate the validity of the assumption made in using MacKay's methods, instead 

focusing on the accuracy of Bayesian ANNs under these assumptions. 

The optimizations were performed using variable metric (or quasi-Newton) techniques 

[31] with a tolerance of 1.0 x 10-7 and a maximum of 1000 iterations. Numerical methods 

were employed to determine the covariance matrix of the Gaussian approximation used to 

evaluate the evidence [12]. In practice, the constants a are constrained so that only three 

distinct values are used: one for the hidden layer weights, one for hidden layer biases, 

and one for output layer weights and biases. Reference [16] provides details concerning 

Bayesian ANNs and the implementation we used. 

B. ROC Analysis with Bayesian ANNs 

Given a Bayesian ANN mapping function 

y = Pt(Tra\x,w       ) (32) 

and the density functions py{y\irn) and py{y\ira), one could produce the ROC curve for this 

classifier using Eqns. 1 and 2. It is interesting to note that a Bayesian ANN approximates 

an optimal mapping function without explicitly modeling any of the density functions 

Px(^kn), Ps{xK), PyivK) or py(y\ira). We can therefore use a Bayesian ANN to model 

the optimal mapping function from feature space x to decision space y, but we cannot 

employ a Bayesian ANN to produce a continuous estimate of the optimal ROC curve. 
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Metz and Pan [6,30] developed a parametric ROC curve fitting model that assumes an 

underlying binormal model and uses likelihood ratio. The ROC curves produced here were 

generated using the maximum likelihood estimates of the distribution parameters under 

this "proper" binormal model given testing dataset outputs of the Bayesian ANN. 

C. Methods of Evaluation 

ROC analysis cannot directly assess the performance of Bayesian ANNs in the task of ap- 

proximating pt(7r0|x), because monotonic transformations of pt(ira\x) will produce identical 
^MAP 

ROC curves. Figure 5 shows two different mapping functions pt(ira\x) and Pt{na\x, w ) 

and their corresponding ROC curves. Because these two mapping functions are monotonic 

transformations of one another, the ROC curves produced by these mapping functions are 

identical. In this work, however, we take the stance that the task of a Bayesian ANN is 

not only to generate the ideal observer ROC curve, but also to approximate accurately the 

particular ideal observer decision variable pt(7r„|x). Although the ideal observer ROC will 

be obtained if a Bayesian ANN produces pt(ira\x) exactly, the primary task in training 

Bayesian ANNs is not to optimize with respect to the ROC curve but with respect to the 

underlying decision variable. We therefore believe that an analysis of the Bayesian ANN's 

ability to approximate the specific decision variable pt{na\x) is of fundamental importance. 

Other methods of training that directly acknowledge the multiobjective nature of classifier 

training can be employed to directly optimize with respect to the ROC curve and not with 

respect to an underlying decision variable [20,32]. 
UMAP 

As we have discussed, a Bayesian ANN produces an approximation pt(7ra|x, w ) oi 

Pt(ira\x). If the densities ps{x\ira) and ps(£|7rn) are known, we can compute the theoretical 

pt{na\x) using Eqn. 5. The mean-squared-error (MSE) between the true optimal mapping 

function pt(na\x) and the Bayesian ANN model of this function using one particular sample 

of training data S = {X, T} is defined as 

e(5) = Es{(pt{Tva\x,w       )-Pt{ira\x)) } = 

//■ * MAP i-*\        ,n_» /oo\ 
■•• / Ps(x) Pt{*a\x,w       )-Pt(To|x)j   d X. (33) 

Here u)MAP is not random because it is the specific set of weights determined from the 
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data 5. This expectation value becomes difficult to compute as the dimensionality of the 

input data increases, so we estimate e(5) from a testing dataset S' = {X1, T'} with N' 

observations: 

6(5, S') = ^E   Pt(*a\£i,ti )-Pt(*a\x'i) (34) 

where x[ is the ith observation in the testing dataset S'. Equations 33 and 34 measure 

the difference between the true optimal mapping function pt(ira\x) and one particular 

Bayesian ANN model of this function weighted by the density of the data ps(x). We 

wish to measure not only the difference between a single Bayesian ANN model and the 

true optimal mapping function, but also the robustness of the methodology. Therefore we 

average multiple observations of e(S, S') where S is now random, i.e., 

1      M 

A = ^£e(S^)- (35) 

Here St and S[ are distinct and independently sampled pairs of training and testing 

datasets. It is important to note that Eqn. 35 measures the average MSE over M different 

Bayesian ANN models with M different estimates of vb . Similarly, an estimate of the 

variance of fi, the standard error squared, is given by 

M 
o2 _  -y(e(Si,S'^-ß)2. (36) M(M-l)£f V        l 

For all the studies we performed, the number (M) of different datasets used to estimate 

the sample mean and standard error was fixed at 100. 

D. Simulations 

In all simulation studies reported in this paper, we sampled data using an isotropic 

Gaussian D 

*<*W-(s:)    -p(-gl) (37) 

with zero mean and unit marginal standard deviations for the normal class and an isotropic 

Gaussian n/„ _ „. 

with marginal means a/b and marginal standard deviations of 1/6 for each feature for the 

abnormal class. Here D is the dimension of for, equivalently, the number of features used. 
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As proposed and derived in reference [18], the signal-to-noise ratio (SNR) for this data 

is defined such that the "signal" is the difference between the means of the distributions 

and the "noise" is the root-mean-square standard deviation of the two distributions. This 

results in .  

SNR(D> = Jj^r a = y/D SNR« (39) 
V o +1 

where SNR(1) is the signal-to-noise ratio of one-dimensional data with parameters a and 

b. 

We studied the accuracy of Bayesian ANN models as a function of the number of training 

samples N, the number of hidden units employed H, the SNR of the data, and the 

dimension of the data D. The relationship between the number of hidden units H and 

the total number of weights W for a single-output classification neural network is given 

by W = {D + 2)H + 1. 

V. RESULTS 

Figure 6 shows the performance of the Bayesian ANN with varying numbers of hidden 

units H and input dimensions D for a fixed signal-to-noise ratio SNR = 1.26 and sample 

size N = 200. For the lower dimensional curves (D = 1, D = 2, and D = 3), the average 

MSE between the optimal decision variable and the Bayesian ANN approximation of that 

decision variable decreases as the number of hidden units increases and then becomes 

relatively constant after a certain threshold. For £> = 2, the difference becomes relatively 

constant after 3 hidden units, whereas the D = 3 curve flattens out after 4 hidden units. 

More parameters are required to better approximate the optimal mapping function as the 

number of dimensions increases. The D = 4 and D = 5 curves show a definite minimum 

in their MSE. The "curse of dimensionality" is a common problem caused by the relative 

density of data decreasing substantially as the dimensionality of the data increases. This 

effect is seen in the D = 4 and D = 5 curves. The Bayesian ANN does not have enough 

data to properly approximate the optimal mapping function, so a tradeoff exists between 

simpler solutions with few parameters that cannot match the ideal mapping function (due 

to under-parameterization), and more complicated solutions with many hidden units that 

cannot be properly determined due to the lack of data. This effect causes the minimum 
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in the D — 4 and D = 5 curves. 

Figure 7 shows a similar plot with varying numbers of hidden units H and input di- 

mension D with a fixed SNR = 1.26 but with more training samples, N = 1000. The 

Bayesian ANN no longer has any difficulty with the D = 4 and D = 5 cases; they both 

flatten out after a certain number of hidden units. In this plot, we can also more clearly 

see the effect of the dimensionality of the data on the number of hidden units required. 

The higher the input dimension, the more weights are required to best approximate the 

optimal decision variable. 

The complexity of the optimal mapping function is, for our simulation studies, a function 

of the SNR of the data. In general, SNR by itself is not sufficient to characterize the 

relationship between data density and the complexity of the optimal mapping function. 

This relationship for one-dimensional data was explored by Metz and Pan [6] but is beyond 

the scope of this work. For our purposes it is sufficient to note that, for a fixed b / 

1. the optimal mapping function (Eqn. 20) becomes more complicated where ps(x) is 

nonnegligible as SNR decreases, and becomes more sigmoidal where ps(x) is nonnegligible 

as SNR increases (see Fig. 8). We therefore conclude that the number of weights needed 

to best model the optimal mapping function should change with SNR for a fixed b. This 

is shown in Fig. 9 where the SNR is fixed at the larger value of 3.80. Fewer weights 

(free parameters) are needed to model the optimal mapping function. In fact, increasing 

the number of hidden units H results in a gradual increase in the average MSE for the 

D = 5 curve. This increase is, however, inconsequential when compared to the average 

MSE values caused by having too few hidden units in Fig. 7. 

In order to further understand the effect of SNR on the accuracy of Bayesian ANNs, 

we performed simulation studies in which the SNR was varied between 0 and 5. Figure 

10 shows the average MSE of Bayesian ANNs äs a function of SNR for a fixed H = 4 

and N = 200. The average MSE remains relatively constant and then decreases as SNR 

increases for the D = 1, D = 2 and D = 3 curves. The remainder of the curves in Fig. 10 

show a decrease in the average MSE as the SNR increases. Figure 11 shows the effect of 

SNR on the accuracy of Bayesian ANNs with H = 10 and N = 1000. All of the curves in 

Fig. 11 remain relatively constant until the average MSE begins to decrease as the SNR 
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increases. These two figures show that the Bayesian ANN can easily model an optimal 

mapping function that is sigmoidal for values of x where ps(x) is nonnegligible (high SNR 

and b = 0.5), but has more difficulty modeling a mapping function that is more complicated 

where ps(x) is nonnegligible (low SNR and b = 0.5). Another method of describing this 

result is to note that for a high SNR and b = 0.5, the quadratic separation function 

through the data can be approximated by a line where the data are dense, whereas for 

low SNR and b = 0.5, the separation function has much more local curvature where the 

data are dense. 

We have shown the effect of the number of hidden units H, the SNR of the data, and 

the dimension of the data D on the accuracy of Bayesian ANNs. We have also indirectly 

shown the effect of sample size on the accuracy ability of Bayesian ANNs because Figs. 

6 and 7 have different sample sizes N. Figure 12 more clearly shows the effect of sample 

size on the average MSE between the true optimal mapping function and the Bayesian 

ANN model of that function with various numbers of hidden units. As the number of 

training samples increases, the average MSE decreases. When there are too few hidden 

units, the average MSE asymptotically approaches a high value but flattens out after 

just 100 samples. When enough enough hidden units are used to properly estimate the 

optimal mapping function (see Fig. 7), the average MSE asymptotically approaches a much 

lower value, but requires more samples to do so. The effect of adding additional hidden 

units beyond the minimum required to properly model the optimal mapping function has 

negligible effect. 

VI. DISCUSSION 

While the average MSE between the optimal mapping function and the Bayesian ap- 

proximations of that function is fundamentally important, it does not address all the 

issues relevant to training. If the average MSE is high, one does not know whether the 

Bayesian ANN mapping function is too complicated, too simple, or, possibly, a monotonic 

transformation of the ideal observer mapping function. Typically, when too few hidden 

units are employed in the Bayesian ANN, the resulting mapping function is overly simple, 

resulting in a large average MSE. When too many hidden units are used without enough 

training data (as for the D = 5 curve in Fig. 6), we have found that the Bayesian ANN 
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mapping function can become too complicated, i.e., the Bayesian ANN overtrains. Figure 

13 shows the training and testing dataset ROC curves for two different Bayesian ANNs. 

Figure 13(a) was generated with D = b, N = 160, H = 10, and SNR = 1.26. The 

training dataset ROC curve is clearly well above the ideal observer ROC curve, while the 

ROC curve generated using an independent testing dataset is well below the ideal observer 

ROC curve. The Bayesian ANN overtrained in this example. When more samples were 

used (N = 1000), the training and testing dataset ROC curves were similar to the ideal 

observer ROC curve (Fig. 13(b)). 

As we have previously argued, it is important that a Bayesian ANN not only approximate 

an ideal observer decision variable, but that it approximate the particular ideal observer 

decision variable pt(7r„|»). Because the Bayesian ANN models a probability function, it 

has the added benefit of allowing a specific interpretation of the ANN output. From 

decision theory [11], we know that one should call an observation x abnormal if 

\U{ira\na) - U{irn\Tra)]pt(*a\x) > PfaK) - U(ira\irn)]{l -ftWx)) (40) 

where U{i\j) is the utility of classifying an observation as i when it is actually from class 

j. Therefore, if one can quantify the utilities associated with classifying observations, then 

the Bayesian ANN output should be employed to optimally determine a threshold at which 

to call an observation abnormal. If the output of an ANN does not have this interpretation 

then one could use the slope of the estimated ROC curve (which is the likelihood ratio over 

the decision variable) to get an estimate of pt(ira\y) which could, in turn, be used instead 

of pt(na\x) in Eqn. 40. This requires an extra estimation step, namely the estimation of 

the ROC curve, and is, therefore, less direct. 

The Bayesian ANN output can also be used to provide probabilities of malignancy to 

radiologists in observer studies or computerized-diagnosis schemes. However, this is diffi- 

cult with diagnostic classifiers because the prior probabilities are typically very different. 

The traditional method of sampling is to blindly employ observations, along with their 

corresponding classes, in training a Bayesian ANN. If the prior probabilities of the two 

classes are very different, then one class will not be as well represented as the other class. 

For example, if one randomly chooses 1000 mammograms to be used in ANN training, 

then there will be, on average, only about 5 cases with malignant lesions.  Typically, for 
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diagnostic classifiers, one samples each class separately so as to get equal numbers of 

observations in each class. This would cause a Bayesian ANN trained on such data to im- 

properly approximate p^Jx), because the training data are not properly sampled from 

the screening population. The Bayesian ANN would, in fact, approximate the function 

k'LRjx) . (41) 

l + k'LR{xY 

where k' is the ratio of malignant to non-malignant training data. We can, however, 

transform the Bayesian ANN output to have a more appropriate k value. For example, 

if one samples 500 malignant observations from a population and then samples 500 non- 

malignant observations from another population, the k' value in Eqn. 41 is 1. If the ratio 

of the prior probabilities is known to be k = 0.01, then one can transform the Bayesian 

ANN output to approximate pt(7ra|x) by solving Eqn. 41 for LR(x) and substituting this 

function into Eqn. 5 using the appropriate value of k. 

We have chosen to analyze Bayesian ANNs that employ a Gaussian prior on the weight 

values with parameters a because such priors have been used extensively in the neural net- 

work community. However, other, possibly more appropriate, priors have been developed 

and studied. For example, Williams [33] has studied the use of a Laplace prior for ANNs, 

whereas entropy-based and other types of priors are discussed by Buntine and Weigend 

[34]. 

VII. CONCLUSIONS 

We have shown that the goal of training a Bayesian ANN is to approximate a particular 

ideal observer decision variable. The ROC curves produced using two different decision 

variables will be the same if the two decision variables are monotonically related. A poor 

estimate oipt{ir«\x) can yield an ROC curve equal to that obtained from a good estimate 

of PtK|x) if the two solutions are monotonically related. Thus, a measure of a Bayesian 

ANN's accuracy in approximating the particular ideal observer decision variable pt{ira\x) 

is vital. Because the output of a Bayesian ANN is an estimate of a probability, it has 

other benefits such as aiding in the determination of decision thresholds and presenting 

likelihoods of malignancy to radiologists. 

As was expected, we have shown that Bayesian ANNs better approximate the optimal 
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decision variable pt{ira\x) when the training dataset has more observations and/or fewer 

dimensions. We have also shown that, given enough training data, the performance of a 

Bayesian ANN is not impaired by excess hidden units, as seen in Fig. 7. Above a certain 

number of hidden units, the average MSE remains relatively constant despite many more 

parameters being added to the model. With less training data, however (see the D = 5 

curve in Fig. 6), there is a tradeoff between simplifying the mapping function with fewer 

hidden units and adding more parameters to allow the mapping function more freedom. 

Figure 7 also shows that a minimum number of hidden units is required to "best" 

approximate the optimal mapping function, because having too few hidden units does 

not allow the mapping function enough freedom to adequately approximate the optimal 

mapping function. This is due to the tradeoff between the ANN not having sufficient 

parameters to effectively approximate the Bayes optimal discriminant function and the 

ANN having too many parameters with too little training data to effectively estimate 

a "good" w. Fewer than 6 hidden units for the D = 5 curve will result in a poorer 

approximation of pt{na\x). However, this minimum number of hidden units is dependent 

on the density functions of the underlying data. When we increased the SNR of the data 

and, hence, simplified the optimal mapping function, the minimum number of necessary 

hidden units decreased to 1 (Fig. 9). Given an abundance of training data, it is thus safer 

to err on the side of more hidden units than fewer, because excess weights are clearly less 

detrimental than too few. This is not true when one has limited training data. 

There is clearly a complicated relationship between the performance of a Bayesian ANN 

and the number of weights H, the sample size N, the number of input features D, and 

the signal-to-noise ratio of the data SNR. Care must be taken with each new neural 

network model to ensure that the optimal decision variable pt(7ra|x) is being appropriately 

approximated. In practice, one does not know the true optimal mapping function, so inde- 

pendent test datasets or cross-validation techniques must be used to ensure the robustness 

of Bayesian ANN classifiers. 
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Fig. 1.  Example density functions with a = 1 and b = 0.5. A Bayesian ANN was trained using 500 samples 

from Px{x\ira) and 500 samples from Px{x\*n) to illustrate the estimation task of the Bayesian ANN. 
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Fig. 2. Using the data sampled from the density functions shown in Fig. 1, the Bayesian ANN produced 

the mapping function pt(ira\x,ÜMAP) (dashed curve) shown with the theoretical mapping function 

(solid curve) produced using the actual density functions and not the data sampled from the density 

functions. It should be noted that the largest discrepancies are in the x < -2 region of the plot which 

is an area where there is little data (see densities in Fig. 1). The error calculations employed in this 

work are weighted by the density of the data px{x), so discrepancies in sparse regions of the mapping 

function are not as important as discrepancies in dense regions. 
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Fig. 3. Given the theoretical mapping function (Eqn. 20) and the original density functions (Eqns. 37 

and 38) one can produce the density functions of the decision variable y which is shown (curves) for 

(a) the abnormal class and (b) the normal class. Plotted with each density function is a histogram of 

the (a) abnormal training data and (b) the normal training data after it has been mapped using the 

transfer function pt(7r0|x, ij ) in Fig. 2. The histograms were scaled to have an area of 1. A k of 

1 was used to produce these plots. 
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Fig. 4.    The ideal observer ROC curve was produced using Eqns. 1 and 2 and the theoretical density 

'     functions over the decision variable. The Bayesian ANN ROC curve was produced using the "proper" 

binormal ROC curve fitting method on the independent testing dataset output yt of the Bayesian 

ANN with 1000 samples in each class, i.e., N = 2000. 
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Fig. 5. Two different mapping functions (a) will produce the same ROC curves (b) if the two map- 

ping functions are monotonic transformations of one another. The Bayesian ANN that generated 

pt(TTa\x.wMAF) is said to be a poorly trained ANN because it does not approximate pt(7r0|a:) well 

despite the fact that it yields the same ROC curve. 
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Fig. 6. The effect of the number of hidden units H on the accuracy of Bayesian ANNs with a fixed 

SNR = 1.26 and sample size N = 200. Because there is a limited training dataset, the Bayesian 

ANN cannot properly approximate the optimal mapping function at higher dimensions {D = 4 and 

D = 5). The error bars represent ±2 standard errors of each mean (s). The density functions used in 

this simulation study had parameters a = IIS/D and b — 0.5. 
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Fig. 7. The effect of the number of hidden units H on the accuracy of Bayesian ANNs with a fixed 

SNR = 1.26 and sample size JV = 1000. With enough training data, the Bayesian ANN can properly 

approximate the optimal mapping function at the higher dimensions (£> = 4 and D = 5). The effect 

of increasing the number of hidden units after a certain point is no longer beneficial but also not very 

detrimental. The error bars represent ±2 standard errors of each mean (s). The density functions 

used in this simulation study had parameters a = 1/y/D and b = 0.5. 
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Fig. 8. For (a) low SNR and b = 0.5, the (b) optimal mapping function is complicated for values of x 

such that ps{x) is nonnegligible. When (c) the SNR is higher for the same b = 0.5, the (d) optimal 

mapping function is sigmoidal where ps(x) is nonnegligible. Equation 20 always has two roots when 

fc ^ 1 so, in actuality, the mapping function shown in (d) does have two values of x for a given y 

(except for the minimum) but the second x (for most y) occurs in an uninteresting region, i.e., an 

observation that is unlikely to occur. Analogous conclusions can be made for D larger than 1. 
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Fig. 9. The effect of the number of hidden units H on the accuracy of Bayesian ANNs with a fixed 

SNR = 3.80 and sample size N = 1000. The SNR is high, so the optimal mapping function is 

sigmoidal in shape where p£(£) is nonnegligible; few hidden nodes are needed to model this optimal 

mapping function. Note that despite the increase in the average MSE as the hidden units increases, 

the magnitude of this difference is still small when compared to Fig. 7. The error bars represent ±2 

standard errors of each mean (s). The density functions used in this simulation study had parameters 

a = 4/VD and b = 0.5. 
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Fig. 10. The effect of the signal-to-noise ratio SNR on the accuracy of Bayesian ANNs with fixed H = 4 

and JV = 200. Increasing SNR causes a decrease in the average MSE between the optimal mapping 

function and the Bayesian ANN model ofthat function. The error bars represent ±2 standard errors 

of each mean (s). The density functions used in this simulation study had a fixed b = 0.5. 
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Fig. 11. The effect of the signal-to-noise ratio SNR. on the accuracy of Bayesian ANNs with fixed 

H = 10 and TV = 1000. The average MSE remains relatively constant as SNR increases but falls 

after a certain point. The error bars represent ±2 standard errors of each mean (I). The density 

functions used in this simulation study had a fixed b = 0.5. 
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Fig. 12. The effect of sample size N on the accuracy of Bayesian ANNs with 0 = 3, SNR = 1.26 and 

varying H. Increasing the training dataset size results in a better approximation of pt(7ra|f). With 

fewer hidden units (H = 2), the average MSE flattens out quickly as JV increases. When more hidden 

units are used, the curves (H = 4 and H = 6) asymptotically approach a much smaller average MSE. 

The error bars represent ±2 standard errors of each mean (i). The density functions used in this 

simulation study had a fixed a = 1/y/D and b = 0.5. 
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Fig. 13. The training and testing dataset ROC curves generated using D = 5, H = 10, SNR = 1.26 

and (a) JV = 160 or (b) N = 1000. When little training data is used with many hidden units, the 

Bayesian ANN tends to overtrain, resulting in a large training dataset ROC curve and a much lower 

testing dataset ROC curve. When more samples are used, the training and testing dataset ROC 

curves are similar to the ideal observer ROC curve. The density functions used in this simulation 

study had a fixed a = \j\fD and b = 0.5. The average MSE between the optimal mapping function 

and the Bayesian ANN estimates of that function were 0.103 for (a) and 0.005 for (b). 
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Abstract—It is well understood that binary classifiers have 
two implicit objective functions (sensitivity and specificity) 
describing their performance. Traditional methods of clas- 
sifier training attempt to combine these two objective func- 
tions (or two analogous class performance measures) into 
one, so that conventional scalar optimization techniques can 
be utilized. This involves incorporating a priori information 
into the aggregation method so that the resulting perfor- 
mance of the classifier is satisfactory for the task at hand. 
We have investigated the use of a niched Pareto multiob- 
jective genetic algorithm for classifier optimization. With 
niched Pareto genetic algorithms, an objective vector is op- 
timized instead of a scalar function, eliminating the need 
to aggregate classification objective functions. The niched 
Pareto genetic algorithm returns a set of optimal solutions 
that are equivalent in the absence of any information regard- 
ing the preferences of the objectives. The a priori knowl- 
edge that was used for aggregating the objective function- 
s in conventional classifier training can instead be applied 
post-optimization to select from one of the series of solutions 
returned from the multiobjective genetic optimization. We 
have applied this technique to train a linear classifier and an 
artificial neural network using simulated datasets. The per- 
formances of the solutions returned from the multiobjective 
genetic optimization represent a series of optimal (sensitiv- 
ity, specificity) pairs, which can be thought of as operating 
points on an ROC curve. All possible ROC curves for a giv- 
en dataset and classifier are less than or equal to the ROC 
curve generated by the niched Pareto genetic optimization. 

Keywords— Multiobjective optimization, genetic algo- 
rithms, diagnostic classifiers, ROC analysis. 

I. INTRODUCTION 

THE task in medical diagnostic decision making is typ- 
ically one'of employing multiple features to classify 

an observation as normal or abnormal. A radiologist may, 
for example, note the size, shape and margin sharpness 
of a potential breast lesion in a mammogram and some- 
how use this information to determine whether a cancer 
is present. In computer-aided diagnosis (CAD) [1-3], com- 
puters take features extracted from medical images and de- 
termine whether pathology is present by using automated 
classifiers [4,5]. It is well known that the optimal method 
for classifying would be to use the likelihood ratio or any 
monotonic transformation of the likelihood ratio as the dis- 
criminant function [4]. The goal in training a diagnostic 
classifier is to employ a limited dataset to determine the 
parameters of the classifier such that it approximates the 
likelihood ratio decision rule. For the most part, these clas- 
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17.97-1-7202) and USPHS grants CA24806 and RR11459. 
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sifiers work in a Similar fashion. A dataset of features ex- 
tracted from both normal (without disease) and abnormal 
(with disease) images is used for determining the classifier 
parameter values, or for "training" the classifier, so that it 
correctly classifies future datasets of unknown pathology. 

Classifier training can be viewed as an optimization prob- 
lem where the quantity to be maximized is the performance 
of the classifier on an independent dataset. There are, how- 
ever, numerous problems with representing classifier per- 
formance by a single (scalar) objective function, which is 
needed so that one can use a scalar optimizer [6,7]. Bi- 
nary classifiers [4] have, in essence, two implicit objective 
functions: one describing how well they classify the abnor- 
mal cases (sensitivity) and one describing how well they 
classify the normal cases (specificity). These two objective 
functions are non-commensurable, implying that it may not 
be possible to simultaneously improve both the sensitivity 
and specificity. Traditional methods of classifier training 
attempt to combine these two objective functions (or two 
analogous class performance measures) into a single scalar 
objective function that permits the use of conventional (s- 
calar) optimization techniques [8]. A drawback of this ap- 
proach is that the proper way of aggregating the objective 
functions is usually unknown. There are, in fact, an infi- 
nite number of ways of mapping two objective functions to 
a single scalar function. Even when o priori information 
about the relative importance of the two objective func- 
tions is available, it is not always clear how to incorporate 
it in the aggregating approach to objective function de- 
sign. Sometimes numerous ad hoc combination functions 
are tried until a suitable objective function is found [8]. 
Most classifiers do not aggregate sensitivity and specificity 
directly. Artificial neural networks, for example, typically 
employ a sum-of-squares error function [5] which can still 
be thought of as a sum of two non-commensurable objec- 
tives, i.e., one objective is to map abnormal observations to 
a value close to 1 and the other objective is to map normal 
observations to a value close to 0. 

Genetic algorithms (GAs) [9] have been applied to many 
diagnostic and classification problems [8,10-15]. A conven- 
tional GA, however, is a scalar optimization technique. It 
thus has the undesirable features of an aggregating-based 
approach. One method of avoiding this is to adopt a multi- 
objective approach [16,17] to the optimization problem. In 
a multiobjective optimization approach, the objective func- 
tion is vector-valued and the independent objectives (sensi- 
tivity and specificity) are optimized simultaneously. Thus, 
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the need to aggregate the independent objective functions 
is removed. Unlike a scalar optimization that returns a sin- 
gle solution, the solution to the multiobjective optimization 
problem is a set of solutions called the Pareto-optimal set. 
The Pareto-optimal set is defined as the set of solutions 
for which no other solution exists that is better in both 
objectives. In the absence of any preference information 
about the objectives, the members of the Pareto-optimal 
set are equally valid solutions to the optimization prob- 
lem; no other solutions exist that are better in all of the 
objectives. In the context of diagnostic classifier optimiza- 
tion, the members of the Pareto-optimal set correspond to 
operating points on an optimal ROC curve, whose perfor- 
mances describe the limiting sensitivity-specificity trade- 
offs that the classifier can provide for the given training 
dataset. Conventional non-evolutionary optimization tech- 
niques have not been successfully extended to the multi- 
objective case because they are not designed to operate 
on multiple solutions. Because GAs are population-based, 
they have formed the basis of several multiobjective opti- 
mization techniques, collectively referred to as multiobjec- 
tive GAs (MOGAs) [16-19]. 

In this paper, we investigate the application of a MOGA 
called a niched Pareto GA (NP-GA) for optimizing the per- 
formance of two popular diagnostic classifiers. The paper 
is organized as follows. Section II contains a general intro- 
duction to automated classifiers and a brief description of 
the NP-GA. Section III describes the two classifiers that 
were studied, and it describes how the NP-GA was em- 
ployed to train them. The results of the two optimizations 
are presented in Section IV. Sections V and VI contain a 
discussion of the results and a summary of the advantages 
and drawbacks of the proposed approach to diagnostic clas- 
sifier training and ROC curve generation. 

II. BACKGROUND 

A. Automated Classifiers 

An automated binary classifier separates two classes of 
observations (e.g. images) and assigns new observations 
to one of the two classes. In this paper, we will label the 
two classes as normal (no disease evident) and abnormal 
(indicative of disease), denoted by 7rn and 7ra, respectively. 
Certain characteristics of the observations, called features, 
are used in making the classification decision. The set of 
features corresponding to an observation can be expressed 
by a vector x = [xux2, ■ ■ -,xp]. In order for the classifier 
to be "trained," we start with a dataset of known patholo- 
gy called the training dataset. A graphical depiction of an 
automated classifier for a two feature example (p = 2) is 
shown in Fig. 1. The {xi, x2] space spanned by the feature 
vectors is denoted by S. An automated classifier uses a pa- 
rameter vector w to partition this space into the sets Cn{w), 
the set of observations that belong to class nn, and Ca{w), 
the set of observations belonging to class 7ra. The parame- 
ters w of a classifier can represent, for example, the weights 
of an artificial neural network or the threshold values in a 
rule-based classifier. For a fixed w, Cn(w)UCa{w) = S, and 
C„(iu)nCo(w) = 0. 

•   Cn{w) 

Fig. 1. The job of an automated classifier is to partition the multi- 
dimensional feature space into two partitions, Ca(w) belonging 
to class To and Cn(w) belonging to class 7T„. These partitions, 
C„(ü7) and Ca(w), are shown by the shaded and unshaded regions. 
The two classes, 7ra and *■„, are represented by different symbols 
(x's and o's). The decision boundary is denoted by the solid line 
separating the shaded from the unshaded region. 

Given a measurement x, the classifier assigns x to class 
7Tn if x € Cn(w) or to class 7ra if x £ Ca{w). The probability 
that an observation belonging to class 7ra is correctly classi- 
fied is referred to as the sensitivity of the classifier, denoted 
by Sens{w). Similarly, the probability that an observation 
is correctly classified as belonging to class 7rn is referred 
to as the specificity of the classifier, denoted by Spec{w). 
Note that both the sensitivity and specificity of the clas- 
sifier depend explicitly on the choice of w and implicitly 
on the underlying distribution of the normal and abnormal 
observations. The sensitivity is a measure of how well the 
classifier performs on abnormal cases, whereas the specifici- 
ty is a measure of how well a classifier performs on normal 
cases. In practice, the fraction of class na observations that 
are correctly classified is used as an estimate of Sens(w). 
Likewise, the fraction of class 7ra observations that are cor- 
rectly classified is used as an estimate of Spec(w). 

A popular construct used for describing the performance 
of a diagnostic classifier is the receiver operating character- 
istic (ROC) curve [6,7,20,21]. An ROC curve is generated 
by varying the value of one (or more) of the components 
of the parameter vector w, and plotting the correspond- 
ing Sens(w) and Spec(w) values. For example, the output 
threshold is usually varied to generate an ROC curve for 
artificial neural networks [22]. Traditionally, the classifier 
is trained prior to the generation of the ROC curve [22,23]. 
In this situation, all but one point on the ROC curve rep- 
resent operating points other than the one to which the 
classifier was naturally trained. An ROC curve that was 
generated with the same dataset that was used to train 
the classifier is referred to as a "consistency" ROC curve. 
A "validation" ROC curve is obtained when the curve is 
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1-Specificity 

Fig. 2. The two ROC curves have equal Az values, but, depending 
upon the relative preferences concerning the sensitivity or speci- 
ficity of the detection task, one curve is typically preferred over 
the other. 

generated from an independent data set, and represents an 
unbiased estimate of classifier performance [24]. Two typ- 
ical ROC curves are shown in Fig. 2. The area under an 
ROC curve, or Az, is an accepted way of comparing overall 
classifier performance [6,7,20,21]. Two curves may have 
equal Az values, as shown in Fig. 2; however, one of the 
curves will typically be preferred over the other, depend- 
ing upon the relative preference of the sensitivity and the 
specificity needed for the task at hand. 

For certain types of classifiers, such as rule-based systems 
[3,25], it may not be clear how w should be varied to sweep 
out the ROC curve that best represents the sensitivity- 
specificity tradeoffs that are achievable by the classifier on 
the specified dataset. The ROC curves generated by vary- 
ing different sets of components of w will generally be d- 
ifferent. representing different sensitivity-specificity trade- 
offs that are possible. In this work, we demonstrate that 
this ambiguity can be removed if one uses the performances 
of the solutions returned by a multiobjective optimization 
of the classifier to define the ROC curve. 

B.  The Niched Pareto GA 

We have implemented a multiobjective optimization 
technique called a Niched Pareto GA (NP-GA), which is 
described in detail by Horn et al. [26]. Other types of MO- 
GAs have been proposed and are described in reference 
[18]. The NP-GA can be viewed as a conventional (scalar) 
GA that uses a modified tournament selection mechanis- 
m and ranking scheme. Readers not familiar with genetic 
algorithms may consult reference [9]. In the remainder of 
this section we review the NP-GA proposed by Horn et al. 
[26]. 

In order to directly address the multiobjective nature 
of the optimization problem, NP-GAs employ the concept 
of dominance. A solution to the optimization problem is 
called non-dominated if there is no solution superior to it 
in all objectives.  It is the goal of the NP-GA to discover 

the set of all non-dominated solutions, referred to as the 
Pareto-optimal set, all of which are considered to be equal- 
ly valid solutions to the problem in the absence of any a 
priori information about the relative merits of the different 
objectives. If a solution is not non-dominated, it is referred 
to as being dominated. A non-dominated solution is said 
to dominate a dominated solution. Equivalence classes of 
dominated solutions are formed by grouping them accord- 
ing to the number of solutions that dominate them. 

This grouping of solutions into distinct classes establish- 
es a partial order on the set of all solutions that is used 
to determine rank. We assume that the Pareto-optimal set 
corresponds to equivalence class 0, and that all other so- 
lutions have an equivalence class greater than zero. The 
rank of a particular solution is then equal to its equiva- 
lence class number. This ensures that solutions within the 
same equivalence class have the same rank, which reflects 
the fact that solutions within the same class are equally 
"good" in the absence of any other information. 

To perform selection, the NP-GA uses a modified tour- 
nament selection method. In a scalar GA, tournament s- 
election is one of the methods commonly used for choos- 
ing a subset of solutions in the current generation to be 
placed in the following generation. Implicit in its formu- 
lation is the assumption that there exists a single solution 
to the optimization problem; diversity among solutions in 
the population will be lost after a certain number of gen- 
erations. This is undesirable in a multiobjective optimiza- 
tion where we wish to discover all of the members of the 
Pareto-optimal set, not simply a single solution. To cir- 
cumvent this difficulty, Horn et al. proposed the use of a 
Pareto domination tournament in conjunction with a form 
of fitness sharing called equivalence class sharing. A Pareto 
domination tournament is a modified conventional tourna- 
ment selection method that uses the concept of dominance 
to determine the winner of the tournament. First, tdom 
randomly selected solutions are compared, and the solution 
with the highest rank wins (is carried over to next genera- 
tion). The rank, being based on the concept of dominance, 
incorporates the multiobjective nature of the problem in- 
to the selection mechanism. For situations when a certain 
tournament size provides insufficient domination pressure, 
the size of the tournament (tdom) can be increased. 

When two or more solutions in a tournament belong to 
the same equivalence class (i.e., have the same rank), there 
will not be a clear winner. A winner cannot simply be cho- 
sen at random, because genetic drift will cause the popula- 
tion to converge to a localized region of the Pareto-optimal 
set, thus obscuring other potential solutions to the opti- 
mization problem. Instead, a form of fitness sharing called 
equivalence class sharing is employed to determine the win- 
ner of a tied tournament. In equivalence class sharing, the 
winner of a tied tournament is the solution that has the 
smallest niche count. The niche count estimates the densi- 
ty of solutions in a localized region (niche) around a given 
solution. As described in reference, the niche count mi for 
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the ith solution is given by 

TUi 

je POP 

(1) 

where dy is the distance (in objective space) between so- 
lutions i and j, and s{) is the so called sharing function 
given by s(d) = 1 - d/ashaTe for d < ashare and s{d) = 0 
otherwise. Here, ashare is called the niche radius, which 
represents the maximum distance between solutions that 
will result in an increase in their niche counts. By em- 
ploying fitness sharing in this way, the Pareto-optimal set 
is more likely to be uniformly sampled, thus providing a 
more diverse set of potential solutions to the optimization 
problem from which the user can choose. 

III. METHODS 

We trained a linear classifier and an artificial neural net- 
work by using both conventional optimization techniques 
and the NP-GA. Two-dimensional exclusive-OR data [27], 
sampled from the density functions shown in Fig. 3, were 
used for this study because classifiers typically have diffi- 
culty in adequately classifying both classes of data for this 
problem. Two-dimensional isotropic standard normal dis- 
tributions with mean (^„fe) and variance 1 were sam- 
pled in the four regions of the exclusive-OR problem. The 
normal class (dashed lines in Fig. 3) occupied the regions 
centered at (1.3,1.3) and (-1.3, -1.3). The abnormal class 
occupied the regions centered at (1.3, -1.3) and (-1.3,1.3). 
A total of 100 normal and 100 abnormal samples were gen- 
erated for training data. An additional 10,000 normal and 
10.000 abnormal samples were generated for testing the 
classifiers after they had been trained. The performances 
of the conventionally optimized and NP-GA optimized clas- 
sifiers were evaluated on both the training and the testing 
datasets. 

A. NP-GA Implementation 

The NP-GA was employed to simultaneously maximize 
the sensitivity and specificity of a linear classifier and an 
ANN with a single hidden layer. The value of each com- 
ponent of w was restricted to remain within a maximum 
and minimum value, determined prior to the optimization. 
A binary representation of the chromosomes [9] was uti- 
lized so that each real-valued parameter in w was encoded 
by a binary number of fixed length. The range of each 
component of w and the length of its binary representation 
determined that parameter's floating-point precision. The 
encoding was accomplished by linearly scaling the float- 
ing point number using its specified range to an integer 
between 0 and 2n - 1 where n is the number of bits. S- 
tandard single-point crossover and standard mutation were 
employed as the genetic operations [9]. The rates of the ge- 
netic operations were determined empirically by perform- 
ing multiple optimizations. A crossover rate of 30% and a 
mutation rate of 5% were found suitable for the problems 
studied. A tdom value of 4 and a ashaTe value of 0.1 (or 10% 
of the range of each objective) were also found to work well 

Fig. 3. Contour diagrams of the two density functions that make 
up the exclusive-OR problem. The abnormal class (solid lines) 
occupies the upper-left and lower-right quadrants, whereas the 
normal class (dashed lines) occupies the upper-right and lower- 
left quadrants. 

for the optimization problems discussed in this paper.  A 
discussion of these parameter settings is presented later. 

B.  Classifiers 

A linear classifier attempts to separate the two classes 
of observations by using a linear decision boundary. We 
employed logistic discriminants [5] in order to implement 
this classification. A logistic discriminant projects the data 
onto a decision variable, and then a threshold is applied 
for determining whether a given observation belongs to 7ra 

or 7rn. The abnormal set for a logistic discriminant with 
parameter vector w is defined as 

Ca(w) = {S : g(x"wT)> 0.5}, (2) 

where f = [xux2, ... ,xp, -1] = \x,-l] and g[) is a sig- 
moidal function with output bound between 0 and 1 [5]. 
The normal set is defined as Cn(w) = S - Ca{w). The con- 
ventional method for generating an ROC curve for a logistic 
discriminant is to vary the final parameter in the vector w, 
which results in a translation of the decision boundary. 

The NP-GA was used to optimize the parameters of a 
logistic discriminant so as to work with the exclusive-OR 
data described previously. All 3 components (for 2D prob- 
lems, w has 3 components) of the parameter vector w were 
allowed to range between -3 and 3. With a population 
size of 500 solutions, we ran the NP-GA for a total of 100 
generations. Conventional logistic discriminant training, as 
described in reference [5], was employed to compare with 
the NP-GA results. 

An artificial neural network (ANN) is a set of connected 
nodes that is loosely based on the human neuron system [5, 
27-30]. For classification purposes, an ANN can be thought 
of as a mapping function that uses the weights w to map 
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an input vector x to a scalar quantity to which a threshold 
is applied to determine whether x belongs to class 7rQ or 
7rn. Unlike logistic discriminants, an ANN can separate 
the two classes of observations using a non-linear decision 
boundary. The abnormal set of observations for an ANN 
using the weights w is given by 

Ca(w) = {x : h{x;w)> 0.5}, (3) 

where h{x; w) represents the non-linear mapping of the in- 
put features to the single output value bound between 0 
and 1. 

We applied the NP-GA to optimize an ANN on the 
excIusive-OR data. A two-layered ANN with 2 inputs, 2 
hidden units, and one output unit was employed. This cor- 
responded to a total of 9 parameters to be optimized. The 
magnitudes of the weights were forced to lie between -5 
and 5 in order to simplify the optimization task and to reg- 
ularize the problem somewhat, because large weight values 
represent complex decision boundaries [28]. A population 
size of 3000 solutions was run for a total of 100 generations 
for this study. Conventional error-backpropagation ANN 
training [5,27,29,30] was also employed numerous times 
using different initial conditions. A comparison of the per- 
formances of the NP-GA results with the best conventional 
results will be shown along with a comparison of the NP- 
GA performances with a conventional optimization that 
was trapped in a local minimum. The conventional ROC 
curves were generated by varying the output bias weight 
value, which corresponds to one component of w. This is 
equivalent to varying the neural network output threshold. 
It should be noted that Woods and Bowyer [23] studied the 
effect of varying weight values other than the output bias 
weight in generating ROC curves. Their study conclud- 
ed that varying a subset of the weights can produce better 
ROC curves than the ROC curves produced by varying the 
output threshold as is conventionally done. By applying 
the NP-GA to ANNs, however, we are effectively allowing 
all the weights to vary when generating the ROC curve, 
including both the output threshold and the hidden layer 
bias weights studied in the Woods and Bowyer work. 

IV. RESULTS 

A. Linear Classifier 

Figure 4 shows the performances of the non-dominated 
solutions returned by the NP-GA and the ROC curve 
that resulted from the conventional training, generated by 
thresholding the output value. The operating points ob- 
tained by the NP-GA are seen to be better than the corre- 
sponding operating points on the conventional ROC curve 
in the high sensitivity region. Figure 5 demonstrates the 
same behavior when the NP-GA solutions and the con- 
ventional solution are evaluated on the independent data 
set. This is evidence that the performance improvement 
achieved by the NP-GA training was not simply a result 
of over-training. However, because the training data were 
sparse between the four regions of the exclusive-OR data, 
a few of the solutions returned by the NP-GA show slight 

0.4 0.6 
1-Specificity 

Fig. 4. Consistency results of the logistic discriminant training us- 
ing exclusive-OR training data. The circles represent the perfor- 
mances of the non-dominated solutions returned by the NP-GA 
based training. The solid line is the conventional ROC curve 
produced by varying the output threshold value of the logistic 
discriminant after it was trained using a scalar optimization tech- 
nique. The shaded region shows the performances achievable by 
all possible weight vectors w. 

signs of overfitting when tested on the 20,000 testing sam- 
ples, as is demonstrated by the fact that a few solutions are 
dominated when evaluated on the test set. The majority of 
the solutions, however, do not show signs of overtraining. 

The ROC curve for the conventionally trained logistic 
discriminant was generated by varying the output thresh- 
old (final parameter in w) and plotting the corresponding 
sensitivity and specificity values. Figure 6 shows the deci- 
sion boundaries at various output thresholds for the con- 
ventionally trained logistic discriminant. Decision bound- 
aries corresponding to different threshold values are seen 
to be parallel. Because of this, the classifier only performs 
well in the low-sensitivity region. If, however, the decision 
boundaries were rotated by 90 degrees to those shown in 
Fig. 6, the classifier would, instead, perform well in the 
high sensitivity region. The advantage of the NP-GA is 
that, at different ROC operating points, the orientation of 
the decision boundary can be different. Thus, the NP-GA 
trained logistic discriminant can perform optimally in both 
the high and low sensitivity regions. This is because with 
the NP-GA, all components of w are effectively allowed 
to vary when generating the ROC curve rather than just 
varying the value of one of the parameters and keeping the 
other two fixed. 

B. Artificial Neural Network 

The performances of the NP-GA results on the 200 train- 
ing samples is shown in Fig. 7. The best conventional AN- 
N optimization ROC curve, created by varying the output 
threshold, is also shown in Fig. 7. The NP-GA result is 
either equal to or better than the best conventional result 
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Fig. 5. Validation results of the logistic discriminant training for 
20. 000 samples from the exclusive-OR data distribution to eval- 
uate the performances. The circles represent the performances 
of the non-dominated solutions returned by the NP-GA based 
training. The solid line is the conventional ROC curve produced 
by varying the output threshold value of the logistic discriminant 
after it was trained using a scalar optimization technique. 

1-Specificity 

Fig. 7. Consistency results of the ANN training using exclusive- 
OR training data. The circles represent the performances of the 
non-dominated solutions returned by the NP-GA based training. 
The solid line is the conventional ROC curve produced by varying 
the output threshold value of the ANN after it was trained us- 
ing a scalar optimization technique. The dashed line represents 
the result of a conventionally trained ANN trapped in a local 
minimum. The conventional training became trapped in local 
minima in approximately 30% of the conventional optimizations 
performed. 

Fig. 6. An explanation of why the conventionally-trained logistic dis- 
criminant only performs well in the low sensitivity region. The 
decision boundaries corresponding to different output threshold 
values of the discriminant are shown superimposed on the data 
distribution. The o's represent normal signals and the x's rep- 
resent the abnormal signals. The abnormal region is to the left 
of each decision boundary and the normal region is to the right 
of each decision boundary. When the threshold value is varied, 
the decision boundary is simply translated with its orientation re- 
maining fixed. By analyzing the sensitivities and specificities for 
each decision boundary, one can generate the conventional ROC 
curve shown in Fig. 4. In order for the classifier to perform well 
in the high sensitivity region, the decision boundaries would have 
to be rotated by 90 degrees which would result in the classifier 
performing poorly in the low sensitivity region. 

at all points. The differences are small in most regions, but 
substantial in the very high sensitivity region of the ROC 
curve. No regularization techniques were applied to the 
conventional optimization; therefore, one would typically 
be concerned about over-training. Figure 8 shows the val- 
idation ROC curves generated by applying the optimized 
results to the 20,000 testing samples. Again, the NP-GA 
result is closely matched with the conventional result at 
most places in ROC space except in the high sensitivity 
region where the NP-GA result is noticeably better than 
the conventional result. Overtraining was not a noticeable 
problem in both of these optimizations because the struc- 
ture of the ANN was limited (2 hidden nodes) in both runs 
and the parameter range of the NP-GA was limited as well. 

Local minima often plague conventional ANN optimiza- 
tions. We found that, depending upon the initial staring 
point, our ANN converged to local minima about 30% of 
the time as was evident by comparing the ROC curves of 
the different ANN optimizations. The NP-GA never had a 
problem with local minima. Figure 7 also shows the per- 
formance of the conventional result that resided in a local 
minimum in the parameter space (dashed line). The NP- 
GA result is substantially better at almost all points in 
ROC space. 

C. NP-GA Performance 

We conducted experiments to analyze the behavior of 
the NP-GA and verify that our choice of NP-GA operating 
parameter settings was reasonable. Figure 9 demonstrates 
the convergence of the non-dominated set when the ANN 
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Fig. 8. Validation results of the ANN training on 20,000 samples 
from the exclusive-OR data distribution to evaluate the per- 
formances. The circles represent the performances of the non- 
dominated solutions returned by the NP-GA based training. The 
solid line is the conventional ROC curve produced by varying the 
output threshold value of the ANN after it was trained using a 
scalar optimization technique. 

was trained using the previously described training data 
and operating parameter settings. Figures 9(a), 9(b), 9(c), 
and 9(d) show the performances of the non-dominated so- 
lutions evaluated on the training data at generations 2, 5, 
13, and 100, respectively. It can be seen that the loci of 
operating points migrate upward and to the left as the gen- 
eration number increases. Beyond 100 generations, the loci 
of operating points remain approximately constant, demon- 
strating that the NP-GA had converged to a stable set of 
solutions. It should also be noted that the relatively high 
density of the operating points returned by the NP-GA 
indicates that the non-dominated set of solutions was ade- 
quately sampled. 

Although the data described above demonstrate that the 
NP-GA converged when training the ANN, we do not know 
whether the final set of solutions represents the best possi- 
ble set of solutions (i.e., the Pareto-optimal set). To verify 
this, one would have to evaluate the performances of all 
the possible combinations of parameter values of the ANN, 
which is not a computationally tractable problem with cur- 
rent computer technology. We can, however, compute this 
for the linear classifier because it possesses only 3 free pa- 
rameters. The shaded region in Fig. 4 shows the operating 
points achievable by all possible parameter settings for the 
linear classifier. Because most of the operating points re- 
turned by the NP-GA lie on the upper-left boundary of the 
shaded region, we can conclude that, for this example, the 
NP-GA was successful at converging to the Pareto-optimal 
set. 

As was noticed in reference [19], we observed that the 
size of the Pareto dominant tournament {tdom) significant- 
ly affected the convergence behavior of the NP-GA. Figure 

10 shows the operating points returned by two separate ap- 
plications of the NP-GA to the ANN training. The upper 
set of solutions, discussed previously, was obtained with 
tdom = 4- The lower set of solutions was obtained using 
the same NP-GA operating settings except with tdom = 2. 
With Uom = 2, the NP-GA returned a set of solutions that 
were clearly suboptimal. One explanation of this result 
is the following: When a tournament selection scheme is 
used, there is a non-zero probability that a solution in a 
given population will not be selected to compete in any of 
the tournaments. This can result in a potentially "good" 
solution being löst by the NP-GA. The probability of los- 
ing a solution in this way is equal to (i^r)'domJV, where 
N is the population size. When N is large, this probabil- 
ity converges to e~td°m. For tdom = 2, this corresponds 
to a probability of 0.135 of losing a solution in any given 
population. When tdom = 4, this probability is reduced to 
0.018. By increasing the size of the tournament, we reduce 
the probability of losing a potentially good solution which 
could contribute to inadequate convergence of the NP-GA. 

There are problems, however, with using too large a tour- 
nament size. When we used large values of td0m (for ex- 
ample, tdom > 20), the NP-GA converged to a solution 
similar to that achieved for td0m = 4, but subsequently 
fluctuated about that solution as a function of generation 
number. This instability is a result of having domination 
tournaments in which multiple non-dominated solutions 
are forced to compete. When non-dominated solutions are 
forced to compete in multiple tournaments, one or more of 
the members of the non-dominated set will inevitably be 
lost. (The niche count determines the winner of a tied tour- 
nament.) The observed instability of the non-dominated 
set is a result of losing and re-gaining non-dominated so- 
lutions. When large values of tdom are used, the value of 
the niche size {oshaTe) becomes increasingly important, be- 
cause multiple tied tournaments may arise. For tdom = 4, 
we found that the NP-GA performance was relatively in- 
sensitive to the value of ashare- 

V. DISCUSSION 

Genetic algorithm parameters are difficult to determine, 
and few methods exist to systematically set the GA pa- 
rameters. The total number of generations, the number of 
solutions in each generation, the crossover rate and the 
mutation rate were determined experimentally. Various 
GA parameter combinations were tested and the results 
were compared. We found a set of parameters for which 
the results were consistent in the sense that multiple opti- 
mizations gave solutions with similar performances. If the 
sets returned by different NP-GA runs were not optimal, 
one would expect that multiple NP-GA runs would return 
sets with either better or poorer performances. We also 
attempted to use various oshare values and found that the 
NP-GA results were robust with respect to ashare- 

The NP-GA exhibits several advantages over convention- 
al classifier training techniques. One advantage is that 
the objective function describing the optimization task is 
a vector-valued function.   This eliminates completely the 
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(a) 

1-Sperifirity 1-Specificity 

(c) (d) 

Fie 9 Convergence of the NP-GA for the ANN training example as described in the text. Subfigures (a), (b), (c), and (d) show the 
performances of the non-dominated solutions at generation numbers 2, 5, 13, and 100, respectively. As the generate number mcreases, 

the loci of operating points migrate upward and to the left. 

need to aggregate the different objectives (sensitivity, speci- 
ficity) into a single scalar function. Rather, a priori in- 
formation about the relative preferences of the objectives 
can be used post-optimization to choose a member of the 
Pareto-optimal set as the ultimate solution to the problem. 

Another advantage is that a set of non-dominated solu- 
tions is returned, rather than a single solution. This allows 
one to select the solution (ROC operating point) whose 
performance is most clinically appropriate for the diagnos- 
tic task at hand. Conventional classifier optimizations can 
return a series of solutions in the form of an ROC curve 
obtained by varying certain components of w after the clas- 
sifier has been trained. If the scalar cost function employed 
is an aggregation of sensitivity and specificity directly then 
only one point in ROC space is guaranteed to be optimal. 
If the scalar cost function is an aggregation of two differen- 
t performance measures (such as the sum-of-squares error 
function for ANNs) then no point is guaranteed to be opti- 
mal in ROC space. The NP-GA circumvents this problem 
by allowing all parameters in w to effectively vary in an op- 

timal manner when sweeping out the ROC curve. In this 
sense, the consistency ROC curve returned by the NP-GA, 
assuming that the optimization is complete, is optimal at 
every point. All other possible performances for the same 
classifier and dataset are either equal to or less than the 
ROC curve returned by the NP-GA optimization. Training 
the classifier to operate at a particular operating point and 
then varying a subset of the parameters in a predetermined 
way to generate the ROC curve does not ensure this. 

As we have alluded to earlier, conventional methods of 
classifier optimization can, in fact, produce the Pareto- 
optimal operating points through multiple runs of the s- 
calar optimization procedure with different weighting fac- 
tors on sensitivity and specificity (see the Appendix for a 
more detailed discussion of this). Sensitivity and specifici- 
ty are, however, discrete counting statistics and hence are 
not differentiable functions of w. Conventional gradient- 
based optimization methods such as backpropagation can- 
not be employed in this situation. One is therefore left with 
running multiple scalar stochastic optimizations (such as 
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Fig. 10. Effect of t^m on convergence of the NP-GA. At a tdom 
value of two, the NP-GA converged prematurely because of the 
lack of domination pressure. For the problems studied in this 
paper, a tdom value of four resulted in reliable convergence of 
the NP-GA. Large values of tdom caused the non-dominated set 
to fluctuate randomly. 

GAs or simulated annealing) to produce the same operat- 
ing points that were produced with one single run of the 
NP-GA. It is also not always clear how to set the relative 
weightings to evenly sample the Pareto-optimal set using a 
scalar optimization technique. Another option would be to 
run multiple optimizations using a conventional cost func- 
tion such as the sum-of-squares cost function with differ- 
ent weightings on the two objectives. No point, however, 
is guaranteed to be a member of the Pareto-optimal set if 
this type of error function is employed. By using an NP- 
GA to train pattern classifiers, we are directly addressing 
the multiobjective nature of classification problem. 

If the density functions of the normal and abnormal 
classes (/„(f) and /a(f), respectively) are known, then 
the ROC curve that is produced using the likelihood ra- 
tio LR(x) = /a(f)//„(f) or any monotonic transformation 
of the likelihood ratio as the decision variable will be the 
"optimal" ROC curve [20,31]. It will exhibit the best clas- 
sification performances that can be achieved with the giv- 
en density functions. It is often very difficult with limited 
datasets to estimate the density functions of the two class- 
es of data; thus many classifiers, including those used in 
this paper, make no attempt to accurately estimate these 
distributions. The "optimal" ROC curves that have been 
discussed in this work are quite different. Within the limi- 
tations of the classifier employed and the dataset used for 
training, the ROC curves produced using the NP-GA are 
optimal, i.e., there is no better ROC curve that can be 
produced with the same training data and classifier. 

There are sacrifices that are made when the NP-GA is 
used for classifier optimization. GAs are population-based 
stochastic optimization algorithms; thus, they are typical- 
ly more time consuming than are deterministic algorithms. 
The time to optimize the linear classifier on a 400MHz 
Pentium II system was on the order of 3 minutes.   The 

time to optimize the ANN on this system was about twen- 
ty minutes. In fact, for very complex systems, an NP-GA 
optimization may be impractical with current computer 
technology. For ANNs with a large number of inputs and 
hidden nodes, the NP-GA may not be suitable for train- 
ing with current computer technology because of the large 
number of parameters. In these situations, techniques for 
sweeping out ANN ROC curves proposed by Woods and 
Bowyer [23] may be better suited. The NP-GA, however, 
can readily be made to run in parallel which would sub- 
stantially decrease the execution time. 

This paper has dealt with binary classifiers. It is often 
important, however, to classify observations into more than 
two classes (benign, malignant, and normal, for example). 
For a three-class system, aggregating the multiple objective 
functions into a single scalar function suffers from the same 
problems as the two-class problem, but to a greater degree. 
Here, it is even more difficult to adequately incorporate the 
class preferences in the aggregated objective function. The 
ability of the NP-GA to circumvent this difficulty is very 
attractive. Because the non-dominated set of solutions will 
be larger, care must be taken in determining the NP-GA 
parameter settings to ensure that the Pareto-optimal set is 
adequately sampled. 

Complexity and over-training are issues of great impor- 
tance in diagnostic classifier research, and in particular in 
ANN training [28,32]. In practice, there is typically a lim- 
ited amount of training data available, and some sort of 
regularization is imposed during the classifier training to 
ensure that it performs well on other (unknown) data sets. 
It is well known that large ANN weights correspond to com- 
plex separation functions [28,32] that may be indicative of 
over-training. To avoid this, we have imposed limitation- 
s on the magnitudes of the ANN weights when using the 
NP-GA to determine the weight values. More systemat- 
ic methods of regularizing the NP-GA based training may 
be possible, however. One such method is to add a third 
component to the vector objective function that measures 
complexity. In this way, one can maximize the sensitivi- 
ty and specificity while minimizing the complexity of the 
classifier. Depending on the amount and quality of the 
available training data, a non-dominated solution returned 
by the NP-GA can be chosen such that the classifier per- 
formance and generalizability of the result are appropriate 
for the classification task. We are currently investigating 
this approach to classifier training. 

VI. CONCLUSIONS 

We have studied the use of a niched Pareto genetic algo- 
rithm in training two popular diagnostic classifiers. Unlike 
conventional classifier training techniques that formulate 
the problem as the solution to a scalar optimization, the 
NP-GA explicitly addresses the multiobjective nature of 
the training task. It has been demonstrated that the multi- 
objective approach removes the ambiguity associated with 
defining a scalar measure of classifier performance, and that 
it returns a set of optimal solutions that are equivalent in 
the absence of any information regarding the preference of 
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the objectives (sensitivity, specificity). The performances 
of these solutions can be interpreted as operating points 
on an optimal ROC curve, describing the limiting trade- 
offs between sensitivity and specificity that are achievable 
by that classifier, given the available training data. The 
task of classifier optimization and ROC curve generation 
are combined into a single task. It was demonstrated that 
constructing the ROC curve in this way may result in a bet- 
ter ROC curve than is produced by conventional methods 
of ROC curve generation. The NP-GA optimization typi- 
cally requires more computation time than do conventional 
non-stochastic optimization methods, which may limit it- 
s application to certain problems. The advantages of the 
NP-GA approach to classifier training become more pro- 
nounced when the number of classes to be classified in- 
creases beyond two. 

APPENDIX 

In this work, we have investigated the use of a multi- 
objective optimization algorithm to train diagnostic classi- 
fiers and generate ROC curves. In fact, scalar optimization 
methods can theoretically arrive at the same ROC curves 
as a multiobjective optimization. Consider the following 
scalar optimization problem: 

p 

Maximize      y] Aj/i(w), (Al) 
i=l 

where w is an element of the space of possible parameter 
vectors W, A; > 0 are fixed, and ££=1 

A* = L Geoffrion 
[33] proved the following lemma: 

Lemma 1: (a) If w0 maximizes Eqn. Al, then 
w0 is also Pareto-optimal in the vector objective 
space lMw),f2(w),...,fP(w)]. 

(b) Let W be a convex set, and let the /* be 
convex on W. Then w0 is Pareto-optimal if and 
onlv if w0 maximizes Eqn. Al for some A* > 0 and 

Et,v=i. 
Because the multiobjective training problem as we have 
formulated it satisfies the convexity conditions used in the 
Lemma, it must be true that the optimal ROC operating 
points can be obtained by performing multiple scalar opti- 
mizations with varying Aj's. 

It is clear from Fig. 4 that the solutions returned by 
the NP-GA are Pareto-optimal because for this problem, 
we can plot the performances of all possible solutions (the 
shaded region in Fig. 4). However, in Fig. 7, we cannot 
plot the performances of all possible solutions due to the 
large dimensionality of the parameter space. We can, how- 
ever, make a comparison between the solutions returned by 
the NP-GA and the solutions returned by multiple scalar 
optimizations which maximize 

\Sens{w) + (1 - \)Spec{w) (A2) 

with A varying between 0 and 1. We implemented a scalar 
GA using the same GA parameters and parameter restric- 
tions äs imposed on the NP-GA to optimize Eqn. A2. As 

o* 

£ o     NP-GA 

i x      Scalar GA 

.0 . 
* 
o 
5 . 

> 

0.4 0.6 

1-Specificity 

Fig. Al. A comparison of the solutions returned by the NP-GA 
and the solutions returned by 20 scalar optimizations employing 
a weighted sum of sensitivity and specificity as the scalar cost 
function. The two methods returned many similar solutions, but 
the solutions returned from multiple scalar optimizations tended 
to clump together in certain areas whereas the NP-GA solutions 
were uniformly distributed in ROC space. Note that only 18 of 
the 20 scalar solutions were distinct. 

described above, the solutions to both of these problem- 
s should be Pareto-optimal in ROC space assuming the 
optimizations are complete. Figure Al compares the NP- 
GA solutions and the solution achieved through multiple 
runs of a scalar optimization with varying A. The points 
returned by the multiple scalar optimizations are similar 
to certain points returned by the NP-GA. Note that the 
multiple scalar optimized solutions are clumped together 
in certain areas of the ROC space. It is unknown, a-priori, 
how to vary A to evenly sample the Pareto-front, whereas 
the NP-GA employs niching to ensure an even sampling 
of the Pareto-front or optimal ROC curve. One also can- 
not employ gradient-based techniques to optimize discrete 
performance measures such as sensitivity and specificity. 
Because of this, it was necessary to perform 20 separate 
stochastic scalar optimizations to get the 20 ROC operat- 
ing points. On the other hand, a more complete sampling 
of the ROC curve was obtained by a single run of the NP- 
GA, which required approximately the same CPU time as 
one run of the scalar optimizer. So despite the theoretical 
equivalence of the two methods, there are practical advan- 
tages to performing a single multiobjective optimization 
over multiple scalar optimizations. 
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Abstract 

We have investigated various methods of feature se- 
lection for two different data classifiers used in the 
computerized detection of mass lesions in digital mam- 
mograms. Numerous features were extracted from ab- 
normal and normal breast regions from a database 
consisting of 210 individual mammograms. A step- 
wise method, a genetic algorithm and individual fea- 
ture analysis were employed to select a subset of fea- 
tures to be used with linear discriminants. Similar tech- 
niques were also employed for an artificial neural net- 
work classifier. In both tests the genetic algorithm was 
able to either outperform or equal the performance of 
other methods. 

1. Introduction 

Computer-aided diagnosis in digital mammography 
is a topic that has received much attention recently[4, 
10, 13, 16] due to the potential benefits of double read- 
ing in mammography. [9, 12] Many computerized mass 
detection schemes employ a classifier, such as a neu- 
ral network, to distinguish between lesions and false- 
positives.[5, 6,14] At the University of Chicago, a com- 
puterized scheme is being developed in which features 
are extracted from potential lesion sites and merged 
into a single decision variable using a classifier. Nu- 
merous features can be extracted from potential lesions 

•To appear in the 1997 proceedings of the IEEE International 
Congress on Neural Networks. 

sites[5] making it difficult to optimally choose represen- 
tative features to be used as inputs to a classifier. In 
this paper we will undertake the problem of feature 
selection for two different classifiers using a data set 
consisting of features extracted from lesions and false- 
positive detections. 

2. Materials and Methods 

The database employed in this study consists of 210 
(53 cases) individual mammograms with 111 visible le- 
sions. All but one of the 53 cases contains the four 
standard mammographic views. Images were scanned 
on a Konica film digitizer to a matrix size of 512 by 
512 pixels with 10-bit quantization. All lesions in this 
database were biopsy confirmed. 302 false-positive re- 
gions were selected from the database to be used in 
this study along with the true-positive regions. A total 
of 71 features are extracted from each lesion and false- 
positive. A full discussion of the methods we utilized to 
locate and extract the features from the regions of in- 
terest (ROIs) can be found in our previously published 
papers.[1, 5, 15] 

Linear discriminants, namely Fisher discriminants, 
were employed as the initial classifier. Three methods 
of feature selection were tested for linear discriminants. 
The first was to select those features that exhibited the 
greatest individual separation. This method of feature 
selection is a rough first-approximation of an optimal 
subset of features to be input to a linear classifier. 
Inter-feature correlations are not taken into account. 
Also, it does not provide any means of selecting the 



number of features to be used as inputs to the linear 
discriminant. 

A second method employed to select a subset of 
features for a linear classifier was the stepwise selec- 
tion method.[3] The performance of a set of features 
is characterized by a parameter known as the Wilks' 
lambda which is the proportion of the total variance 
attributed to within-group variations in the final deci- 
sion variable.[3] If the Wilks' lambda is 0 then all of 
the variance is due to between-groups variations so the 
means of the two classes are well separated. Conversely, 
if the Wilks' lambda is 1 then all of the variance is due 
to within-group variations and one can conclude that 
the means of the two classes in the final decision vari- 
able are equal. In the stepwise method, the first feature 
is selected based on the Wilks' lambda of each individ- 
ual feature. Successive features are selected based on 
the improvement of the Wilks' lambda. After a fea- 
ture is added, all features are tested for removal. This 
continues until the statistical significance of adding or 
removing a feature is small. The advantages of this 
method is that it implicitly takes the correlation of 
features into account and also selects the number of 
features to be used as inputs. 

The third method employed to select an optimal 
subset of features for a linear classifier was a ge- 
netic algorithm.[2, 11] A genetic algorithm (GA) is a 
stochastic-based search method based on the princi- 
ples of evolution in nature. The fitness function we 
employed was the Wilks' lambda. Runs of 700 gener- 
ations were made with a 0.5% probability of mutation 
and a 70% probability of crossover. Figure 1 shows 
the typical performance of the genetic algorithm. The 
set of features with the best performance at the end of 
the GA run was used as the selected input feature set. 
All feature sets resulting from the different selection 
methods were evaluated using ROC analysis and the 
performance, was characterized by the area, Az, under 
the ROC curve.[7, 8] 

A three-layered back-propagation neural network 
was also studied as a classifier. ROC analysis was per- 
formed on both the consistency and cross validation 
results. Features were selected as inputs to the ar- 
tificial neural network using three methods similar to 
those used for selecting features for the linear classifier. 
The features that exhibited the greatest individual sep- 
aration were used in a neural network. In the second 
method, a forward selection method was used. The 
utility function was the Az from a consistency test of 
a simplified ANN structure. Forward selection begins 
with the one feature which has the best individual per- 
formance and tests all possible combinations of that 
feature with another. This process continues until the 

300 400 
Generation 

Figure 1. A typical genetic algorithm run. The 
shaded area represents the variation in pop- 
ulation performance (mean ± one standard 
deviation) at each generation. 

number of features desired has been selected. There 
is no feature elimination stage in the forward selection 
method as there is in the stepwise method. The final 
results from the forward selection method are input 
to an ANN with 2 hidden units and both consistency 
and cross validation results are evaluated. A genetic 
algorithm was also studied with the Az from the con- 
sistency test of a simplified ANN structure used as the 
fitness value. A simplified structure should reduce the 
effects of over-fitting which often plague artificial neu- 
ral networks. This final set of features resulting from 
the genetic algorithm were then input to a more com- 
plex ANN structure (2 hidden units) where both con- 
sistency and cross validation tests were employed. 

3. Results 

Table 1 shows the Az values for the feature selec- 
tion methods used for determining the inputs for a lin- 
ear discriminant. Wilks' lambdas are also shown. It 
is clear from the table that selecting features based on 
their individual performance is inadequate. In Figure 2 
the three different feature selection methods are com- 
pared using the ROC curves when 9 features are se- 
lected by each method. The Az values for the feature 
sets selected by the genetic algorithm and the step- 
wise method are statistically significantly (p < 0.05) 
better than that of the single feature analysis method. 
The genetic algorithm shows a slight advantage over 
the stepwise selection method but it is not statistically 



Table 1. Summary of results from the feature 
selection methods for linear discriminants. 

Method Az Wilks' 
Lambda 

Number of 
Features 

Single Feature 
Analysis 

0.93 
0.92 
0.93 
0.94 

0.53 
0.53 
0.51 
0.50 

9 
10 
11 
12 

Stepwise 0.94 0.47 9 

Genetic 
Algorithm 

0.95 
0.95 
0.95 
0.95 

0.47 
0.47 
0.46 
0.46 

9 
10 
11 
12 

Table 2. Summary of results from the feature 
selection methods for artificial neural net- 
works. 

Method Cross Number of 
Validation Az Features 

Single Feature 0.96 11 

Analysis 
Forward Selection 0.97 11 
Genetic Algorithm 0.98 10 

0.3 

0.2 

0.1 

0 

 Genetic Algorithm 

- - Individual Analysis 

 Stepwise 

0.2 0.4 0.6 
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Figure 2. ROC curves for the three different 
linear discriminant features selection meth- 
ods when 9 features were selected by each. 

significant (p = 0.23). 
Table 2 shows preliminary results from the ANN 

feature selection methods. It should be noted that 
multiple genetic algorithm runs were required meaning 
that the genetic algorithm did have trouble with local 
maxima. This might suggest that the probability of 
mutation be increased, as well as the population size, 
to allow for more diversity throughout the runs. As 
the table shows the set of features selected by the ge- 
netic algorithm was able to outperform the other two 
methods but the results were not statistically signifi- 
cant (p = 0.06 for the individual analysis selector and 
p = 0.15 for the forward selector). The corresponding 
ROC curves are shown in Figure 3. 

4. Discussion 

The purpose of this paper has been to introduce fea- 
ture selection methods and compare their utility with 
two different classifiers. The results from the linear 
discriminant analysis show that the genetic algorithm 
feature selection method is as good if not better than 
the stepwise method. Similar results were obtained for 
the artificial neural network classifiers but the results 
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Figure 3. Cross validation ROC curves for 
ANN feature selectors. 



were not as strong. As with all studies employing neu- 
ral networks, it is possible that there is over-fitting of 
the data. We attempted to minimize this effect by sim- 
plifying the structure of our networks and by employing 
cross validation or leave-one-out tests. Future work will 
include investigations performed on larger data sets. 
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Abstract 

In this work, we study and evaluate the ability of two classification methods (Bayesian 

artificial neural networks (Bayesian ANNs) and rule-based classifiers trained using a mul- 

tiobjective approach) to distinguish between malignant masses and false candidates in 

the computerized detection of mass lesions in mammography. A Bayesian ANN is known 

to accurately approximate the ideal observer but may require few input features due to 

training dataset limitations. The multiobjective approach to classifier training returns the 

best possible ROC curve that a given classifier can achieve on a given training dataset. 

Because of overtraining issues, the multiobjective approach is typically used to optimize 

simple classifiers (i.e., classifiers with relatively few parameters) and, thus, one can employ 

more input features with these classifiers. Both Bayesian ANNs and a simple rule-based 

classifier trained using the multiobjective approach performed well in the task of distin- 

guishing between mass lesions and false candidates in mammography. A Bayesian ANN 

with 5 features outperformed the rule-based classifier which used a total of eight features. 

However, the rule-based classifier employed only 8 classifier parameters instead of the 

Bayesian ANN's 71 parameters (or ANN weights). 

Keywords 

Mass detection, Bayesian neural networks, multiobjective training approach, computer-aided diagnosis 
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I. INTRODUCTION 

Breast cancer is the most common malignancy in women and the second most common 

cause of death from malignancy in this patient population. In the United States, more than 

180,000 women develop the disease each year [1] and women who live to an advanced age 

have a greater than one in nine chance of developing breast cancer during their lifetimes 

[2]. The disease, therefore, represents a major public health problem. 

Mammography, x-ray imaging of the breast, is currently the best method for the early 

detection of breast cancer. Between 10 and 30% of women who have breast cancer and 

undergo mammography have negative mammograms, however [3-8]. In approximately 

two-thirds of these false-negative mammograms, the radiologist failed to detect a cancer 

that was evident retrospectively [6,7,9,10]. The missed detections may be due to the subtle 

nature of the radiographic findings {i.e., low conspicuity of the lesion), poor image quality, 

eye fatigue, or oversight by the radiologists. It has been suggested that double reading (by 

two radiologists) may increase sensitivity [11-15]. Thus, one aim of CAD is to increase 

the efficiency and effectiveness of screening procedures by using a computer system, as a 

"second reader" (like a "spell checker"), to indicate locations of suspicious abnormalities 

in mammograms as an aid to the radiologist leaving the final decision regarding the like- 

lihood of the presence of a cancer and patient management to the radiologist [16]. The 

interpretation of screening mammograms lends itself to CAD since it is a repetitive task 

involving mostly normal images. 

Pattern classification has an important role in computerized detection/diagnosis schemes 

. in medical imaging. Thus, the ability to accurately and robustly classify suspicious image 

regions is vital. We previously presented a method of classification that can accurately 

approximate the ideal observer given a large enough training dataset [17], investigated 

the effect of limited datasets on feature selection [18], and also introduced a method of 

optimally designing and evaluating simple classifiers to be used when the training dataset 

is not large [19]. In this paper, we will use the knowledge gained from the research per- 

formed on feature selection, Bayesian ANNs, and the multiobjective approach to classifier 

training to design classifiers for a computerized mass detection method. Two types of clas- 

sifiers were designed (a rule-based classifier and an ANN classifier) and evaluated using 

September 23, 2000 



MEDICAL PHYSICS-UNDER REVIEW (CONFIDENTIAL) 

ANN Classifier 

Feature Selection 

Rule-Based Classifier 

Hand-Selected 

I 
Rule-Based 

Multiobjective Approach 

X 
ROC Analysis 

Fig. 1.  An overview of the classification and feature selection methods evaluated for use in a computerized 

mass detection method. 

various subsets of features. Figure 1 shows the various feature selection methods, classi- 

fiers, training methods, and methods of evaluation used here. This paper begins with an 

introduction to the mass detection method currently being developed at The University 

of Chicago. Section II discusses the databases used to determine the classifier parameters 

and to validate the classifiers. Section IV describes the features selected for the Bayesian 

ANN and the application of the Bayesian ANN to the mass detection method (the left side 

of Fig. 1). Section V describes the classifier implemented and the features selected for use 

in the multiobjective approach to classifier training for distinguishing between malignant 

lesions and false-positive candidates (the right side of Fig. 1). Finally, Sections VI and VII 

summarize the results and gives the overall performance of the mass detection method. 

II. DATABASE 

A database of 177 screening mammography cases containing at least one malignant 

mass lesion and 75 cases not containing a mass were employed in this study for a total of 

252 cases. There were a total of 181 malignant mass lesions which corresponded to 333 

radiographically visible mass lesions on the 864 digitized films (most, but not all, of the 252 

cases had 4 films available per case). The images were digitized on either a Lumisys 100 

or a Lumisys 85 digitizer to 100 /xm pixel size and 12-bit gray-level quantization. Different 

screen-film systems as well as different exposure conditions were used for the images in this 

database. The only image correction made was to ensure that the relationship between 

pixel values and optical density was approximately the same for each image. Figure 2 

shows the characteristic curves of the two digitizers both before and after the correction. 
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Fig. 2. The original characteristic curves of the two digitizers (Lumisys 100 and Lumisys 85) are shown 

in (a). Images digitized on the two Lumisys digitizers were scaled so that the effective characteristic 

curves are similar as is shown in (b). Note that the scale on the two graphs are different; the scaled 

images have effectively 10 bits per pixel. 

As we will discuss in the next section, however, many of the features employed were either 

geometric based and, hence, did not depend on the pixel values, or were gradient based 

features which only depend on the ratio of pixel values and not the raw values themselves. 

Figure 3 shows the distribution of sizes and contrast values of the visible mass lesions 

as measured by a radiologist's outlined truth. The contrast was measured by taking the 

average within-lesion pixel value and subtracting it from the average pixel value in a region 

outside the lesion [20]. For these contrast calculations, the region outside the lesion was 

defined by pixels not inside the lesion but within a bounding box around the lesion that 

was extended 3 mm (or 10 pixels) in all four directions making this analogous to the "small 

window" case in reference [20]. Many of the lesions in the database are less than 1.5 cm 

in effective diameter and have a contrast less than 0.25. Thus, a substantial fraction of 

the lesions in this database are either small, low contrast, or both. 

A total of 235 true-positive candidates were both detected by the RGI filtering method 

(to be discussed later) and segmented with an overlap fraction greater than 0.2 when 

compared to the radiologist's outlined truth. This corresponds to 150 mass cases being 

detected out of the 177 total mass cases.  There also were over 11,000 false candidates 
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Fig. 3.   The distribution of visible mass lesion (a) sizes and (b) contrast values as calculated using the 

radiologist's outlines of each visible lesion. 

returned by the initial detection algorithm. To ensure an independent evaluation of the 

mass detection method, the database was randomly split by-case into a training dataset 

and a validation dataset. The training dataset consisted of 126 cases with 121 visible mass 

lesions (or 76 mass cases) that were both detected by the initial detection algorithm and 

segmented with an overlap greater than 0.2. The RGI filtering algorithm also returned 

5472 false candidates for the images in the training dataset from which a subset of 242 false 

candidates was randomly selected for classifier training. The validation dataset consisted 

of the remaining 126 cases with 114 visible mass lesions (or 74 mass cases) that were both 

detected by the initial detection algorithm and segmented with an overlap greater than 

0.2 as well as 5685 false candidates. 

III. LESION DETECTION AND FEATURE EXTRACTION 

. Numerous research groups have developed computerized mass detection methods which 

use various classification techniques such as neural networks [21-24], linear discriminant 

analysis [23,25], and classification trees [26] as well as various features such as spiculation 

[27-29], shape [30,31], and texture [32,33]. Rationale and details of these techniques and 

others can be found in various papers and chapters [16,34-38] and in proceedings of the 

International Workshops on Digital Mammography [39-41] or the International Workshop 
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Fig. 4.   Overview of a computerized mass detection scheme. 

on Computer-Aided Diagnosis [42]. Many computerized mass detection methods use a 

similar two-phase detection approach. First, candidate lesions are located and then each 

candidate is further analyzed in a feature analysis and classification phase to determine 

the final classification of each candidate. The mass detection method being developed at 

The University of Chicago follows this pattern as is shown in Fig. 4. Each stage in Fig. 4 

will now be briefly discussed. 

A. Breast Segmentation 

In order to limit the region of search for lesion detection, the breast region is initially 

segmented from the image. Computer-defined unexposed and direct-exposure image re- 

gions are used to generate a border around the breast region [31]. Once the breast region 

is known, preprocessing and search are limited by the breast border. 

B. Initial Detection 

The computerized mass detection method being developed at The University of Chicago 

is a two-phase detection method; the first detection phase locates suspicious areas called 

lesion candidates. The methods used in this phase are typically highly sensitive but return 

an unacceptable number false-positive candidates to be used alone. We have developed a 

non-linear filtering technique called radial-gradient index (RGI) filtering [43] to be used as 

the initial detection algorithm. RGI filtering takes as input the original mammogram and 
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the breast segmentation results returned by the breast segmentation stage and outputs a 

filtered image representing the confidence that a lesion is present at each location within 

the image. 

The overall performance of the RGI filtering technique is shown in Fig. 5 with the 

implicit FROC decision variable being the RGI threshold of the filtered image threshold. 

Because images are being thresholded to generate these FROC curves, they exhibit the 

unusual behavior of starting and ending near the (0,0) point in FROC space. This is 

because at a very high RGI threshold, no pixels pass the threshold, and one achieves 0 

true candidates and 0 false candidates. Also, at a very low threshold, all pixel pass and 

one is left with a single very large detection. Thus, at very low thresholds, one achieves 

a sensitivity near 0 and nearly 1 false candidate per image. As is shown in Fig. 5, this 

technique alone can achieve a sensitivity of 93% with 16 false candidates per image at 

an RGI threshold of 0.74. A lesion was considered "detected" for this study if the center 

of mass of a connected region in the thresholded image was within a radiologist's outline 

of the lesion. The regions returned by this method represent the candidate lesions to be 

further analyzed by the subsequent feature extraction and pattern classification stages of 

the computerized mass detection method. 

C. Lesion Segmentation 

In order to automatically extract features from each candidate lesion, the potential 

abnormality needs to be segmented from the breast parenchyma background using as 

input a given seed location as returned by the previous initial detection stage. We have 

developed and investigated methods of lesion segmentation that involve multiplication of 

the suspect location (given the seed point) with a constraint function such as a Gaussian 

and generating a series of lesion-like contours by performing local thresholding on this 

"constrained" image [44]. The final contour is identified by means of either an RGI-based 

or a probabilistic method as described elsewhere in the literature [44]. The RGI-based and 

probabilistic methods outperformed a conventional region growing method when compared 

with the radiologist's outlined truth. The probabilistic segmentation method tends to be 

time consuming, so we implemented the RGI-based segmentation in the mass detection 

method. 
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Fig. 5. RGI filtering FROC curves for various minimum size cutoffs using the RGI threshold as the 

decision variable. Note that there is a large decrease in the false-detection rate when the minimum 

size cutoff is increased from 0 to 1 without a large decrease in the sensitivity. 

  Candidate Lesion C 

 Effective Circle C 

Fig. 6.   The sets used to define the geometric-based features. 

D. Feature Extraction 

The image data and the contour returned by the lesion segmentation stage are em- 

ployed to extract features for each candidate lesion within the image. These features are 

subsequently used in the pattern classifier to determine the final classification of each 

candidate lesion. Radiographically, mass lesions can be characterized by their degree of 

spiculation, margin definition, shape, density, homogeneity (texture), asymmetry, and so 

forth. Descriptors of these characteristics may be also grouped as gradient-based features, 

intensity-based features, and geometric features. 
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D.l Geometric Features 

Geometric features use the results of the lesion segmentation algorithm to arrive at 

measures of the size, circularity, irregularity, and compactness [45] of each candidate lesion. 

The geometric features are defined as: 

Perim(C) 
Irregularity   =   1 - p^-y 

Area(£ n C) 
CirCularity   =       Area(£) 

Area(£) 
Compactness   =   4ir-—:—T^yjj 

where Perim(-) is the perimeter operator, Area(-) is the area operator, £ is the set of lesion 

pixels, and C is the effective circle set which is centered at the candidate lesion's center of 

mass and has an area equal to that of the candidate lesion as illustrated in Fig. 6. 

D.2 Gray-level Features 

The gray-level features use both the pixel-value information (i.e., the image function 

f[x,y)) as well as the lesion segmentation results {i.e., £) to compute the average gray 

level within the lesion, the standard deviation of the gray levels within the lesion, the 

internal contrast ,.      . 
max f(x,y) 

IC = {x'v)€C
f.     ,, (1) 

mm f{x,y) 
(x,y)£C 

and the external contrast 
2(AvgI-AvgE) (2) 

Avgl + AvgE 

where Avgl is the average pixel value within the lesion £, and AvgE is the average 

pixel value within a periphery region outside of the lesion. To determine the periphery 

neighborhood, a bounding box for each candidate lesion was extended by 3mm on all sides 

and a smoothed version [46] of the candidate lesion contour was employed to determine 

which image pixels to exclude (see Fig. 7 for an example periphery region). 

D.3 Gradient Features 

Gradient-based features are measures such as the average and standard deviation of the 

gradient strengths within the four neighborhoods [46] (margin, grown region, region-of- 
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Fig. 7.   The four neighborhoods used to calculate gradient-based features. 

interest ROI, and periphery) as shown in Fig. 7, the RGI value, and numerous gradient- 

weighted histogram (GWH) features [46]. To compute the GWH features, one first com- 

putes the gradient vectors for each pixel within the neighborhood of interest. Then a 

histogram is generated of the either the Cartesian angles of the gradients (Cartesian 

gradient-weighted histograms or CGWHs) or the angles of the gradients relative to the 

radial direction (radial gradient-weighted histograms or RGWHs). Each entry that is ac- 

cumulated into these histograms is weighted by the magnitude of the gradients at each 

angle [46]. Kernel density estimation using a Gaussian kernel with the width determined 

optimally via cross-validation is used to achieve a continuous estimate of the histogram 

function. Finally, measures such as the full width at half maximum, the minimum his- 

togram value, and the height are computed as illustrated in Fig. 8. GWH analysis is 

performed on the four neighborhoods (Fig. 7) for each candidate lesion and in both the 

Cartesian (CGWH) and radial directions (RGWH). GWH features can characterize margin 

sharpness, spiculation, linearity, as well as other properties of candidate lesions. 

In total, 40 features (31 gradient-based, 4 intensity-based, and 5 geometric) are extracted 

from each candidate lesion site. A subset of these features must be used in the final 

candidate lesion classification stage. In general, use of all 40 features would require a 

much larger training database and would severely limit the robustness of the detection 
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Fig. 8.   An illustration of the features extracted from the gradient weighted histograms. 

method (i.e., the potential for overtraining would be large). It should be noted that 

although the pixel size of the digitized mammograms was 100 /an, subsampled images 

with effective pixel sizes of 500 /xm were employed in the initial lesion detection and in the 

calculation of the feature values. 

E.  Classification 

The task in this stage is to use some of the features described in Section III-D to classify 

the candidate lesion sites as either malignant lesions or false candidates. We have imple- 

mented a Bayesian ANN and a rule-based classifier that we train using a multiobjective 

approach to classify candidate lesions. These methods will be discussed in detail in the 

next sections. 

IV. APPLICATION OF THE BAYESIAN ANN 

A. Feature Selection 

We previously demonstrated [18] the bias that is introduced if one uses the same dataset 

for both selecting features and determining the parameters of a classifier. If the validation 

dataset is not employed in the feature selection process, then the performance of the clas- 

sifier on the independent validation dataset will be depressed. Thus, if the performance on 

the validation dataset of the classifier using features selected (using the training dataset) 

by an automated feature selection algorithm is better (and the results are statistically 
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significant) than that of hand-selected features, then the features selected using the auto- 

mated technique are "better" than those selected by-hand. It is important to keep small 

the number of performance comparisons measured on the validation dataset in order to 

reduce random effects. 

We know from our prior simulation studies [17] that in order to avoid overtraining, we 

can use a maximum of five features in the Bayesian ANN based on our training dataset size. 

Interestingly, we analyzed the performance of the Bayesian ANN on the training data using 

various subsets of six features and found that it was susceptible to overtraining as indicated 

by the the fact that the performance of the Bayesian ANN was not stable with increasing 

hidden units. Thus, we define the feature selection task as one of selecting the five "best" 

features to be used as inputs for the Bayesian ANN. Features that based upon similar 

lesion characteristics were employed because they measure the characteristics in different 

fashions. For example, two spiculation features are, generally, somewhat correlated but 

each also contains information that the other feature does not extract and, thus, both 

features may be useful. 

Malignant mass lesions tend to exhibit spiculation, they are more circularly shaped 

than a typical false candidate, they have a higher density, the pixel values tend to be 

less variable {i.e., smoother texture), and the margins of lesions are more well-defined 

than false candidates [47]. Based on this information and the individual performances 

of the various features in the database as measured on the training dataset, the features 

characterized in Table I were hand-selected to be used in the Bayesian ANN. The texture 

feature was not included in the hand-selected feature set because it performed poorly by 

itself in the task of distinguishing between mass lesions and false candidates. 

We also implemented two automated feature selection methods to select features to be 

used in the Bayesian ANN (Fig. 1). The first was a forward selection method [48] in 

which the features that improved the performance the most were added in succession. For 

example, if a contrast measure alone has the best individual Bayesian ANN performance, 

then contrast is added to the list of selected features. Then, every other feature is looked 

at in combination with contrast to see which other feature is the most beneficial when used 

in the Bayesian ANN with contrast. This continues until a specified number of features is 
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TABLE I 

CHARACTERIZATION OF THE FIVE HAND-SELECTED FEATURES IN TERMS OF THE PROPERTIES (i.e., 

SHAPE, DENSITY, TEXTURE, SPICULATION, AND/OR THE MARGINS)  EACH FEATURE IS MEASURING. 

14 

Feature 

RGI 

Contrast 

Margin Strength 

Margin RGWH FWHM 

Margin RGWH Height 

Shape    Density   Texture    Spiculation    Margin 

x 

X 

TABLE II 

CHARACTERIZATION OF THE FEATURES SELECTED USING A FORWARD SELECTION METHOD. 

Feature 

Circularity 

Margin Strength 

Contrast 

Margin RGWH Height 

Margin CGWH Height 

Shape    Density   Texture    Spiculation   Margin 

x 

x 

selected. Table II shows the features that were automatically selected using this technique 

and the training dataset. Thirdly, a genetic algorithm (GA) feature selection method 

[49,50] was implemented in order to select, again, five features to be used in the Bayesian 

ANN. The five GA-selected features are shown in Table III. 

B. Performance 

Figure 9 shows the training and validation dataset ROC curves for the three different 

subsets of five features (Tables I, II, and III) when trained using a Bayesian ANN with 10 

hidden units for each. The validation dataset Az values (Fig. 9(b)) for the hand-selected, 

forward-selected, and GA-selected features were 0.83, 0.88, and 0.89, respectively, in the 

task of distinguishing between actual lesions and false candidates. The difference in Az 
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TABLE III 

A CHARACTERIZATION OF THE FEATURES SELECTED USING A GENETIC ALGORITHM. 

15 

Feature 

Circularity 

Area 

Contrast 

Grown RGWH Height 

Grown CGWH Minimum 

Shape    Density   Texture    Spiculation    Margin 

x 

x 

X 

X 

between the hand-selected and the forward-selected feature sets on the validation dataset 

was statistically significant (p < 0.01) as it was for the difference in A, between the hand- 

selected and GA-selected feature sets on the validation dataset. There was not enough 

evidence to support a measurable difference in Az between the forward-selected subset of 

features and the GA-selected subset of features. It should be noted, however, that the 

forward selection method is substantially quicker than the GA feature selection method. 

The differences between the training dataset ROC curves and the validation dataset ROC 

curves are consistent with the known natural bias that classification systems have [51,52]. 

C. Resampling Performance 

We previously showed [18] that it is unlikely that one will select the optimal subset of 

features when one has finite data. The various subsets of features described above for 

use in the Bayesian ANN are likely to be near-optimal but still sub-optimal. Thus, if 

the database used in this study was repartitioned into different training and validation 

datasets, different features and different classifier performances would be observered. To 

study this effect, we repartitioned the original database by-case into ten pairs of randomly 

selected (by-case) training and validation datasets. The forward selection method was 

then applied to each of the ten training datasets. Table IV shows the the number of 

times out of the ten runs of the forward feature selection method that each feature from 

Table II was selected. We also computed the average training dataset Az and validation 

dataset Az values which were 0.91 ±0.01 and 0.87 ±0.02, respectively. The average ROC 
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Fig. 9.   (a) Training and (b) validation performances of the Bayesian ANN with three different subsets 

of 5 features. The classification task was to distinguish between actual lesions and false candidates. 

curves (obtained by averaging the a and b ROC curve parameters [53]) are shown in 

Fig. 10. It is clear from Table IV that a couple of the features are frequently selected by 

the forward selection method and are, thus, important for the classification of the lesions. 

Because other features are less often selected and because the performance of the Bayesian 

ANN is consistent, these features are "replaceable" by other features that measure similar 

characteristics. 

V. APPLICATION OF THE MULTIOBJECTIVE APPROACH 

The Bayesian ANN approximates the ideal observer but typically requires numerous 

parameters to do so [17]. It is often desirable to use a classifier with simple and under- 

standable rules. Because simple rules {i.e., few classifier parameters) are employed, it is 

possible to incorporate more features into the classification system than would be possi- 

ble with an ANN. We implemented a simple thresholding rule-based classifier in which 

features are sequentially thresholded to determine the class of the candidate lesions. An 

example of a thresholding rule-based classifier would be to call a candidate lesion a ma- 

lignant lesion if and only if the circularity is greater than 0.5, the contrast is greater than 
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TABLE IV 

THE NUMBER OF TIMES OUT OF THE TEN DIFFERENT FORWARD SELECTION RUNS THAT VARIOUS 

FEATURES WERE SELECTED.  THE FEATURES SHOWN IN THIS TABLE ARE THE ONE SELECTED BY THE 

FORWARD FEATURE SELECTION METHOD ON THE ORIGINAL PARTITION OF THE DATASET {i.e., TABLE 

II). 

Feature Number of times selected 

out of 10 

Circularity 4 

Margin Strength 2 

Contrast 7 

Margin RGWH Height 9 

Margin CGWH Height 1 

Average Training ROC Curve 
■- Average Validation ROC Curve 

0 0.2        0.4        0.6        0.8 1 
False-Positive Fraction 

Fig. 10.     The average Bayesian ANN ROC curves for the 10 repartitions of the entire dataset.   The 

classification task was to distinguish between actual lesions and false candidates in mammography. 
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0.2, and the margin sharpness is above 1.2. If any of these conditions are not met then 

the candidate lesion is considered a false detection. We used the Niched Pareto genetic 

algorithm (NP-GA) described in [19] to design a thresholding rule-based classifier for the 

computerized detection of malignant, mass lesions in mammography. Results on both the 

training and validation datasets are presented. 

A. Feature Selection 

Because the classifier we are implementing requires only thresholding rules, feature 

selection is a simpler task. One must choose features that individually perform well {i.e., 

have a high Az) and are not highly correlated with one another (i.e., do not provide 

redundant information). Because fewer parameters are used with this classifier we can 

likely use more input features than was possible with the Bayesian ANN. We selected 

eight features to be used in the classifier. These eight ieatures selected were done so based 

on expert knowledge {i.e., based on what radiologists' use to make decisions), individual 

performance (i.e., Az), and correlations with other features. The characteristics of these 

eight features are listed in Table V. The maximum correlation among these features was 

0.74. Note that this set of features is a superset of the features selected by the forward- 

selection method shown in Table II. Other similar subsets of 8 features were also evaluated 

but the results did not seem to vary greatly. Subsets of fewer than eight features were also 

evaluated and found to perform, on average, worse than did the eight features. Subsets of 

more than eight features were evaluated and found to have similar performances as well, 

thus there did not seem to be any benefit in adding additional features beyond eight. 

B. NP-GA Performance 

Figure 11 shows the performance of the NP-GA trained rule-based classifier on the 

training and validation datasets. The Az of the rule-based classifier was 0.85 on the train- 

ing dataset and 0.80 on the validation dataset. The substantial difference in performance 

between the training and validation datasets may indicate that the NP-GA is fine-tuning 

the thresholds to such an extent that they are not generalizable when applied to an in- 

dependent dataset. However, the number of parameters used in the rule-based classifier 

was 8 as compared with the 71 used in the Bayesian ANN (i.e., a Bayesian ANN with 5 
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TABLE V 

A CHARACTERIZATION OF THE FEATURES SELECTED FOR USE IN THE NP-GA. 

19 

Feature Shape Density   Texture    Spiculation Margin 

Circularity X 

RGI X X 

Contrast X 

Pixel Variation X 

Margin Strength X 

Margin RGWH FWHM X 

Margin RGWH Height X X 

Margin CGWH Height X X 

input features, 10 hidden nodes and 1 output node has a total of 71 parameters) which 

was able to achieve an Az of 0.89 on the validation dataset. Thus, it is interesting to note 

the high performance of the rule-based classifier trained using the NP-GA and using very 

few parameters. 

In order to fit the ROC curves shown in Fig. 11, one must generate decision variable 

data to be input into the ROC curve fitting software. To accomplish this, the NP-GA 

returned ROC operating points, and the a priori knowledge of the numbers of true and 

false observations in the dataset are used to generate mock decision variable data which 

is input into the ROC software [53]. If the ROC curve returned by the NP-GA has N 

operating points (including the (0,0) and (1,1) points in ROC space), then one has N -1 

bins of decision variable data to generate where values of the decision variable data are 

1,2,..., TV-1. One fills in these bins of data such that if N thresholds are applied between 

the bins, then the sensitivity and specificity values of the ROC curve are achieved. For 

example, if one has 100 true and 100 false detections in the dataset and the 4th and 5th 

adjacent operating points in the ROC curve have sensitivities of 90% and 85%, respectively, 

then one generates 5 (90% - 85% = 5% of 100) mock true-positive decision variable data 

with values of 4 (the 4th operating point). If, the 6th operating point has a sensitivity 

of 70%, then one generates 15 (85% - 70% = 15% of 100) mock true-positive decision 
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 Validation Dataset: Az = 0.80 
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Fig. 11.    The performance of the NP-GA trained rule-based classifier on the training and validation 

datasets in the task of distinguishing between actual lesions and false candidates. 

variable data with values of 5 (the 5th operating point). A similar strategy is taken with 

the false-positive decision variable data as well. 

C. Resampling Performance 

An evaluation of the performance of the rule-based classifier trained using the NP-GA 

using different dataset partitions was performed. In this study, the features used in the 

classifier were fixed (i.e., the features shown in Table V) and the NP-GA was rerun 10 

times on each training dataset and then tested on each validation dataset. The average 

training dataset Az was 0.87±0.02, and the average validation dataset Az was 0.81 ±0.02. 

The average ROC curves (obtained by averaging the 10 a and b ROC curve parameters 

[53]) are shown in Fig. 12. 

VI. DISCUSSION 

The Bayesian ANN can achieve an Az of 0.89 in the task of distinguishing between 

malignant mass lesions and false candidates as was shown in Fig. 9(b). Using more features 

with the rule-based classifier trained using the NP-GA, we achieved an Az of 0.80 in the 

task of distinguishing between malignant mass lesions and false candidates. While it is 

generally not true that a Bayesian ANN with fewer features will always outperform an 
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— Average Training ROC Curve 
',' Average Validation ROC Curve 
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Fig. 12. The average training dataset and validation dataset ROC curves for 10 random partitions of 

the entire dataset into training and validation datasets. The classification task was to distinguish 

between actual lesions and false candidates in mammography. 

NP-GA trained rule-based classifier, it is true for the classification task discussed in this 

paper. 

It is apparent from Fig. 9 that the Bayesian ANN is not becoming too specific to the 

training dataset and the results are generalizable to the validation dataset and other 

independent datasets. However, from Fig. 11, one can see that the NP-GA rule-based 

classifier is becoming too specific to the training dataset. The NP-GA is designed to 

produce the best possible ROC curve that the given classifier (a rule-based classifier in 

. this case) can achieve on the given training dataset. Thus the threshold values can become 

too specific to the training dataset. This causes the NP-GA trained rule-based classifier 

to perform poorly on the validation dataset. Although not shown in this work, different 

numbers of features and different subsets of features were applied to the NP-GA training 

with similar results. 

Thus far, we have shown the performance of only the classifier in the task of distin- 

guishing between malignant mass lesions and false candidates. In order to evaluate the 

overall mass detection method, FROC analysis [54-56] is employed. The Bayesian ANN 

was chosen as the final classifier with the input features being those selected using the 
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Fig. 13.    The performance of the overall mass detection method in the task of distinguishing between 

actual lesions and false candidates using the Bayesian ANN with 5 input features as the classifier. 

forward selection method (Table II). If a candidate lesion was classified by the Bayesian 

ANN as being a malignant lesion and that candidate lesion overlapped at all with a ra- 

diologist's outline of the true lesions, then that lesion was considered to be detected by 

the mass detection method. We plot our FROC curve using the by-case sensitivity, i.e., a 

lesion needed only be located by the computer in one image to be considered "detected". 

Also, if there are more than 5 detections in a single image, then only the 5 detections with 

the highest ANN output values are used so as to limit the total number of detections in a 

single image. Figure 13 shows the by-case FROC curve for the mass detection method us- 

ing the Bayesian ANN as the classifier. Using the Bayesian ANN, we were able to achieve 

a sensitivity of 75% at 2 false positives per image on the validation dataset. 

The performance of the mass detection method characterized in Fig. 13 is affected not 

only by the pattern classification stage but also by the performance of the initial detection 

method, the ability of the segmentation algorithm to accurately segment potential ab- 

normalities from surrounding parenchyma given the initial detection information, and the 

ability of the feature extraction stage to extract useful information for the classifier. Thus, 

to improve the performance of this mass detection method one can focus their attention 

on several aspects of the method. First, one could improve upon the initial detection 

algorithm and design a method that returns fewer false candidates than RGI filtering. 

One could also extract more useful features from candidate lesion sites or provide extra 
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features using previous mammograms or different views of the same breast to provide 

"better" information to the classifier. Finally, one can use larger database sizes and have 

the Bayesian ANN approximate the ideal observer with more features {i.e., information) 

used as inputs. 

VII. CONCLUSIONS 

We designed pattern classifiers to distinguish between malignant mass lesions and false 

candidates in the computerized detection of mass lesions in mammography using both 

Bayesian ANNs and the multiobjective training approach. Both methods were found to 

be practically useful in distinguishing between malignant mass lesions and false detections. 

However, there is a need for further improvements in the performance of the overall tech- 

nique if it is be used in a clinical setting. It has become readily apparent that one must 

have large databases to properly train the classifiers using as much useful information 

as possible. With more useful information extracted and larger training databases, the 

performance of the overall mass detection algorithm is expected to improve. 

Pattern classifiers are widely used in many computerized analysis methods for a wide 

variety of imaging modalities. Therefore, the methods of pattern classification presented 

here can be applied to different computerized analysis methods. For example, the multi- 

objective approach has been successfully applied to the computerized detection of micro- 

calcifications in mammograms by Anastasio et al. [57]. Bayesian ANNs have recently been 

applied to the analysis of trabecular bone patterns for determining the risk of fracture 

using texture features extracted from conventional radiographs [58], and to the characteri- 

zation of mass lesions as benign or malignant in small-field digital mammography systems 

[59]. 
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Computer-aided diagnosis has the potential of increasing diagnostic accuracy by providing a second 
reading to radiologists. In many computerized schemes, numerous features can be extracted to 
describe suspect image regions. A subset of these features is then employed in a data classifier to 
determine whether the suspect region is abnormal or normal. Different subsets of features will, in 
general, result in different classification performances. A feature selection method is often used to 
determine an "optimal" subset of features to use with a particular classifier. A classifier perfor- 
mance measure (such as the area under the receiver operating characteristic curve) must be incor- 
porated into this feature selection process. With limited datasets, however, there is a distribution in 
the classifier performance measure for a given classifier and subset of features. In this paper, we 
investigate the variation in the selected subset of "optimal" features as compared with the true 
optimal subset of features caused by this distribution of classifier performance. We consider ex- 
amples in which the probability that the optimal subset of features is selected can be analytically 
computed. We show the dependence of this probability on the dataset sample size, the total number 
of features from which to select, the number of features selected, and the performance of the true 
optimal subset. Once a subset of features has been selected, the parameters of the data classifier 
must be determined. We show that, with limited datasets and/or a large number of features from 
which to choose, bias is introduced if the classifier parameters are determined using the same data 
that were employed to select the "optimal" subset of features. © 1999 American Association of 
Physicists in Medicine. [S0094-2405(99)01010-X] 
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I. INTRODUCTION 

Computerized diagnosis schemes have the potential of in- 
creasing diagnostic accuracy in radiological imaging. " In 
computerized schemes, features characterizing suspicious 
image regions are extracted and input to a data classifier to 
predict pathology.5"7 Different combinations of features will, 
in general, yield different classification performances. In ad- 
dition, relatively few features should be used in order for the 
classifier to remain robust. Thus, one is faced with the task of 
selecting a useful and limited subset of features from many 
available features. 

In automated feature selection, a computer algorithm de- 
termines the subset of features that will result in the best 
classification performance. Jain et al.s review the different 
types of feature selection methods, which they broadly cat- 
egorized into deterministic methods such as stepwise feature 
selection,9 stochastic methods such as genetic algorithm fea- 
ture selection,7'10,11 and optimal methods that are usually 
prohibitively time consuming such as an exhaustive search 
of all possible feature subset combinations. Feature selection 
is becoming a vital step in many computerized schemes due 
to the large number of features that can be extracted from 
suspicious image regions.7'10 Sample sizes, however, are of- 
ten limited for these studies due to the nature of the prob- 
lems; for example, abnormal cases are difficult to obtain in 
many diagnostic procedures. 

In this paper, we study the effect of limited sample sizes 

and large total numbers of features on the ability of a feature 
selector to select the optimal subset of features. We also 
study the bias introduced if one uses the same data in select- 
ing features and in determining the parameters of the classi- 
fier. Section II contains an introduction to classifier feature 
selection and introduces the performance measures em- 
ployed in this work. In Sec. Ill the difficulty of feature se- 
lection with limited datasets is demonstrated using analytical 
calculations of a simple feature selection problem. Section 
IV discusses the bias introduced when the same dataset is 
employed to determine the subset of features and the param- 
eters of the classifier. Finally, Sec. V includes a discussion 
of the implications of this work to other feature selection 
methods. 

II. BACKGROUND 

A. Feature selection and classifiers 

A binary classifier takes an observation of feature values 
and determines whether the observation belongs to either the 
abnormal class 7ra or the normal class TT„. In order to 
achieve optimal performance, both a set of optimal features 
and the optimal parameters (structure) of the classifier 
need to be determined. The N features values corre- 
sponding to a particular observation that is to be classified 
can be expressed by a N-dimensional random vector 
x=[x1,x2,...,xN] where bold symbols denote random vari- 
ables. We label the N features making up this random vector 
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FIG 1 When limited data are present, there is randomness associated with the measurement of the performance of a class.fier This randomness can be 
modeled. From knowledge of the underlying density functions of the data (left graph) and the number of samples m each class, we can esfmate *e 
distribution of measured Az values (right graph). The density functions of the data are represented by fx(A ir.) for the abnormal class and JM ir.) for the 

normal class. 

by the set T. A sample of data called the training dataset, 
along with its corresponding truth information (T7„ or irb), is 
used to determine the parameters of the classifier or to select 
a set of features. Throughout this paper, we use the notation 
that there are Sa abnormal cases and Sn normal cases in the 
training dataset where Sa + Sn = S. Often an independent 
dataset with a total of S' = S'a + S'n samples is employed for 
testing. 

It is well known that determining the parameters of a 
classifier with many features can be detrimental due to the 
"curse of dimensionality." It is therefore often necessary to 
select a subset of features to use for classification. For any 
given subset of features ycf, we can define a classifier 
performance measure g(Y) which measures the performance 
of the subset of features y in the task of distinguishing be- 
tween the class ir„ and the class TT„ . The task of feature 
selection, as proposed by Jain et a/.,8 is to select a subset of 
n features denoted by the set Z from the entire set of features 
T such that 

g(Z)=    max   g(y) (l) 

where \y\ is the number of elements in the set y. We assume, 
without loss of generality, that we are trying to maximize the 
function g(-)- In this work we concern ourselves with the 
task of selecting the optimal subset of n features and not with 

the task of selecting both the optimal subset and the number 
of features within that subset. 

B. Performance measures 

Receiver operating characteristic (ROC) analysis12'13 is an 
accepted method for evaluating the performance of classifi- 
ers. The area under the maximum likelihood estimate of the 
ROC curve, A,,14 is commonly used as a single performance 
measure to characterize the performance of a classifier de- 
spite the fact that there are some drawbacks to this or any 
scalar classifier performance measure.13 In this work we in- 
vestigate the effect of the distribution of Az measurements 
due to finite sample size on the ability to select an optimal 
subset of features. In theory, however, there will always be a 
distribution associated with any measure that employs lim- 
ited data. The results presented in this paper can thus be 
generalized to different performance measures such as the 
partial area index15 or other traditional performance 
measures.16 Attention is focused on Az, however, because it 
is commonly used within the diagnostic community to select 
features and to characterize the performance of classifiers. 

From knowledge of the theoretical Az and the numbers of 
observations in each class (Sa and Sn), we can estimate the 
distribution of the random variable Az of measured Az values 
using a Gaussian centered at the theoretical Az with an esti- 
mate of the standard deviation given as 

^=V^^^(Sfl-l)(^-A2)+(Sn-l) ^-A2 (2) 
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Rc. 2. An illustration of a feature selection problem. In this example, one is 
selecting a total of n features from a total of N= 15 independent features 
where r = 5 features have a theoretical A. value of A[]) = 0.1 and N-r 
features have a theoretical A, value of ,4<2> = 0.6. We will consider the 
situation in which n « r. The distribution of A2 measurements is signified by 
the error bars on each feature's A, value. 

Equation (2) was derived by Hartley et al." using the statis- 
tical properties of the Wilcoxon statistic to predict the statis- 
tical properties of the area under an ROC curve. Figure 1 
illustrates the distribution of Az measurements for a single 
feature denoted by the random variable x. From knowledge 
of the underlying distribution of the data [Fig. 1(a)], we can 
estimate the distribution of the measured Az values [Fig. 
1(b)]. Both the theoretical true A, and the sample sizes (Sa 

and S„) determine the distribution of measured Az values. 
The Gaussian model for the density of the measured Az fails 
when the theoretical A, value is greater than approximately 
0.95. The theoretical Az values for all the simulation studies 
performed in this paper are below 0.95. We will throughout 
this paper use the notation that an estimate of the area under 
the ROC curve is given by an Az and the theoretical true area 
is given by A,. 

III. SELECTING A SUBSET OF FEATURES 

Let us consider the following ideal situation: We have a 
total of N independent features with the first r features hav- 
ing a theoretical individual A, value of A.l) and the remain- 
ing N-r features having a theoretical individual A, of A\ ' 
where A{})>A{}) ■ Because the features in this situation are 
independent, we conclude that the random variables denoting 
the N measured Az values are also independent with density 
functions given by /, (A z) for the r features with a theoretical 
A. values of Az

l) and f2(Az) for the N-r features with a 
theoretical A, value of Az

2). Similarly, the distribution func- 
tions are given by F{(AZ) for the r features with a theoretical 
Az values of Az

l) and F2{AZ) for the N-r features with a 
theoretical A, value of A,2). Figure 2 illustrates such an 
example where the error bars represent the standard devia- 
tions of the measured Az values of each feature [Eq. (2)]. 

The task in this situation is to select the n features (where 
n=Sr) that have the largest measured Az values. Because, 

however, the measured Az values have a distribution associ- 
ated with them, there is a measurable probability that one or 
more of the "worse" features (those features with a theoret- 
ical A, value of Az

2)<A(
z
l)) will be selected. Using order 

statistics,18,19 we can compute the probability that an optimal 
subset of features will be selected: 

r! f 
p=7 7777 77     dAzMAz) (n-l)!(i—n)! Jo 

X(l-F1(Az))"-1F1(Azr"F2(A/'-r, (3) 

where the integration is from 0 to 1 because A, values are 
bound between 0 and 1. A derivation of Eq. (3) is given in 
the Appendix. In theory, the probability in the situation 
where each independent feature has a different theoretical A, 
value could be computed, but it is computationally impracti- 
cal. 

Figure 3(a) plots the probability of an optimal subset of 4 
features being selected as a function of the total number of 
features to select from N [see Eqn. (3)]. In this plot the total 
number of features with theoretical Az=A(

z
l) was 4, A<° was 

set at 0.70, and A(2) was fixed at 0.60. The sample size 5 was 
also varied from 100 to 1000 where there were equal num- 
bers of abnormal and normal observations, i.e., Sa=Sn 

= 5/2. As Fig. 3(a) shows, with small sample sizes the prob- 
ability of selecting an optimal subset of features drops 
quickly as the total number of features N increases. Figure 
3(b) shows similar plots (n = 4, r=4) but with higher theo- 
retical A. values, i.e., Az° = 0.8 and A<2> = 0.7. The differ- 
ence in theoretical Az values (Az

l)-Al2)) is the same in 
Figs. 3(a) and 3(b), but as these two figures show, the prob- 
ability of selecting an optimal subset of features depends on 
the theoretical Az values and not just the difference between 
the theoretical Az's of the "good" and "bad" features. In 
this case, the probability of selecting an optimal subset of 
features decreases as the theoretical Azs decrease. 

Figure 4 shows a plot analogous to Fig. 3(a), except that 
there are now a total of 10 features with a theoretical Az 

value of Az
1}, i.e., r= 10 instead of 4. The number of fea- 

tures to select, however, is still 4 so we are analyzing the 
probability that the 4 selected features will be a subset of the 
10 actually better features. As Figs. 3 and 4 illustrate, when 
there are more "good" features in the population of features 
(r= 10 instead of r=4), the probability of selecting an op- 
timal subset tends to increase. 

Figures 3 and 4 show the effect of different theoretical Az 

values on the probability of selecting an optimal subset of 
features. Figure 5 demonstrates this effect in more detail by 
fixing the sample size at S= 100 and plotting the probability 
of selecting an optimal subset for various combinations of 
Az

n and A{2). As one would expect, when the difference 
between the "good" and "bad" features is large, it is easier 
to select an optimal subset than when the difference between 
the two classes of features is small. 
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FIG 3 A plot of the probability of selecting ah optimal subset of n =4 features from a total of N features. For (a), there are a total of r=4 features with a 
theoretical A. value of A'." = 0.7 and N-r features with a theoretical A; value of A«> = 0.6. For (b), there are a total of r=4 features with a theoretical A. 
value of A( "'=0.8 and N-r features with a theoretical Az value of A«» = 0.7. The probability of selecting an optimal subset of features is also plotted for 
various sample sizes S. The difference in A, values is 0.1 for both (a) and (b) and yet the probability of selection the optimal subset is higher for (b) than it 
is for (a). The probability of selecting the optimal subset of features depends of the theoretical A: values and not just the difference in A. value between the 

better and worse features. 

IV. CLASSIFICATION WITH SELECTED FEATURES 

The feature selection method analyzed in the preceding 
section selects the n features with the largest measured Az 

values. As illustrated, under certain realistic conditions 
(small sample sizes and large total numbers of features), it 
becomes unlikely that this method will select an optimal sub- 
set of features. The problems under these conditions, how- 
ever, are two-fold because it is not only difficult to select an 
optimal subset (as shown earlier), but data used to classify 
the features once a subset has been selected will often not be 
representative of the underlying density functions because 
feature selection methods, in general, aim to select features 
with high measured Az values. In essence if a poor feature 
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FIG. 4. A plot of the probability of selecting an optimal subset of « = 4 
features from a total of N features. There are a total of r= 10 features with 
a theoretical A, value of Aj" = 0.7 and N-r features with a theoretical A, 
value of A^2, = 0.6. The probability of selecting an optimal subset of features 
is also plotted for various sample sizes S. 

(theoretically poor Az) randomly results in a high Az value, 
then that feature is selected for use in the classifier despite 
the fact that the sample of data for this feature poorly repre- 
sents its underlying distribution. Thus it is expected that if 
the same data employed to select the features in this manner 
is also employed to determine the parameters of the classi- 
fier, then bias will be introduced into the classification pro- 
cess because the training data poorly represents the true den- 
sity of the data. 

In order to analyze this bias, we simulated N features 
using Gaussian distributions, n of which had theoretical A, 
values of A(,1) = 0.68, andN-n of which had a theoretical A. 

50 100 150 

Total Number of Features (AT) 
200 

FIG. 5. A plot of the probability of selecting an optimal subset of n=4 
features from a total of N features. There are a total of r=4 features with a 
theoretical Az value of Aj" ,N-r features with a theoretical A, value of 
A(.2) and the sample size is fixed at 5= 100. The probability of selecting an 
optimal subset of features is plotted at various combinations of A*" and 
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FIG. 6. A total of r = 4 Gaussian features were simulated with a theoretical 
A- value of A'." = 0.68 and N-r Gaussian features were simulated with a 
theoretical A, value of A'.2, = 0.6. Features were sampled 100 different times 
and the top n = 4 features were selected based on the measured Az values of 
the individual features. The selected features were then merged using linear 
discriminants and the training dataset and testing dataset Az values were 
computed. The thin solid line at an A, of 0.818 is the theoretical true A, if 
the 4 independent Gaussian (A. = 0.68) features are merged using linear 
discriminants. The curves above "this theoretical line are the average training 
dataset A, values and the curves below the theoretical line are the average 
testing dataset Az values. The same data used to select the features was 
employed in determining the parameters of the linear discriminants. A sub- 
stantial amount of bias is introduced is one has small sample sizes and a 
large total number of features from which to select. 

value of Af' = 0.60. The n features with the highest mea- 
sured Az values were then combined using linear discrimi- 
nant analysis to merge the n-dimensional features to a scalar 
decision variable representing the distance from the separa- 
tion plane to the point in question. The Az value of the clas- 
sifier was computed using, as input to the ROC analysis, the 
scalar decision variable data as output from the linear dis- 
criminant classifier. The same data employed to select the n 

features is used to determine the parameters of the linear 
discriminant that merges the n features. We also tested the 
classifier on an independent dataset of 1000 samples. This 
process was repeated 100 times for each combination of pa- 
rameters to obtain an average training dataset Az and testing 
dataset Az value for the classifier. Figure 6 shows a plot, for 
various total numbers of features N, of the average training 
and testing dataset Az values as a function of the sample size 
S. The thin solid line in Fig. 6 is the theoretical true A, value 
of 4 independent Gaussian features with equal variances and 
individual Az values of 0.68, merged using linear discrimi- 
nants. The curves above the theoretical line are the average 
training dataset Az values, and the curves below the theoret- 
ical line are the average testing dataset Az values. As this 
figure shows, bias is introduced when the same data are used 
to select and merge features. The bias is enhanced in situa- 
tions where there is little data and a large total number of 
features N; this is the same condition in which it is the most 
difficult to select an optimal subset of features (see Figs. 
3-5). Hence, a suboptimal subset of features is most likely 
selected and bias is introduced because we are employing the 
same dataset to select features and determine the parameters 
of the classifier. 

To further demonstrate this, Fig. 7 plots a normalized his- 
togram of the features that were actually selected over many 
trials when there were a total of 30 features (N=30) from 
which to select using sample sizes of 80 [Fig. 7(a)] and 200 
[Fig. 7(b)]. The first four actually best features are more 
likely to be selected than any one of the remaining features, 
but the probability of selecting all four best features is nev- 
ertheless small. With a larger sample size the difference in 
the probability of selecting one of the best features versus 
one of the worse features is enhanced. 

V. DISCUSSION 
In this paper we have only dealt with a feature selection 

methodology that employs the performances of the indi- 
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FIG. 7. Normalized histograms of the features actually selected when r=4, n = 4, ^" = 0.68, A<2)=0.6, N= 30 and (a) 5 = 80 and (b) 5 = 200. The shaded 
bars are the n = 4 actually better features with a theoretical Az value of 0.68. The better features are more likely to be selected than any one worse feature but 
the combined probability that one of the worse features will be selected is high. The chances are better that one will select the optimal first four features when 

the sample size is large (b). 
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vidual features to select the subset to be merged using a 
classifier. In this situation there are a total of N measured Az 

values to analyze. Many other feature selection algorithms 
such as stepwise feature selection9 and genetic algorithm fea- 
ture selection7'10'11 measure the performance of combinations 
of features instead of individual features. In these types of 
algorithms instead of having a total of N measurements, 
there is a total of NUnl(N-n)\ possible measurements. 
This situation is possibly even more problematic and more 
sensitive to the distribution of measured Az values than the 
individual feature selection method we have studied, because 
the probability that a theoretically poor subset of features 
will yield a high performance measure is increased. 

We have used and merged only independent features. 
More information is gained when two independent features 
are merged instead of two correlated features. It should be 
noted that the optimal classifier for n independent Gaussian 
distributed features with equal variances is a linear discrimi- 
nant, which provides justification for the method we have 
chosen to merge our simulated features. In general, feature 
selection methods that measure the performances of combi- 
nations of features must take into account correlations 
among the features. If the features in a similar study were 
correlated, then a feature selection methodology which em- 
ploys the performances of the individual features would 
clearly be suboptimal. We have restricted our attention to the 
simpler case of independent features here because it provides 
a basis for analyzing the difficulty in selecting features and 
merging the selected features. 

We have chosen the area under the maximum likelihood 
estimate of the ROC curve, Az,

14 as our performance mea- 
sure in selecting the subset of features. Because we have 
limited data, there is a distribution associated with the mea- 
sured Az values, and we have studied the difficulty in select- 
ing and merging features using Az as the selection criterion; 
in practice, there are always problems in representing the 
performance of classifiers by a single scalar measure. In 
these simulation studies our features had equal variances. 
Under this condition there is theoretically no ambiguity in 
comparing A. values only, because the population ROC 
curves will never cross if they have unequal A. values.  ' 

In practice, however, one could run into difficulty when 
using A, as a performance measure because two very differ- 
ent ROC curves could have equal A, values. Any scalar per- 
formance measure, however, is going to have a distribution 
associated with it due to limited data and is going to have 
difficulty with respect to the ambiguity associated with rep- 
resenting the performance of a classifier by a scalar quantity 
and, hence, the results presented in this paper can be ex- 
tended, in general, to different classifier performance mea- 
sures. Equation (3) is a general equation, and similar equa- 
tions could be derived for different performance measures 
but with different limits of integration and density functions. 
The datasets employed in this study had equal numbers of 
abnormal and normal cases, i.e., Sa=Sn. One can study the 
effect of unequal abnormal and normal cases by noting that 
only the variance in the measured Az value changes [see Eq. 

(2)]. 

VI. CONCLUSIONS 

We have shown that when one has small sample sizes and 
a large total number of features from which to select, the 
probability of selecting an optimal or even near-optimal sub- 
set of features is small. As the sample size increases and the 
total number of features decreases, the probability of select- 
ing an optimal subset approaches 1. The difficulties of fea- 
ture selection, however, are twofold because bias is also in- 
troduced if one selects features and determines the 
parameters of a classifier using the same dataset. This bias is 
caused by the fact that one is preferentially selecting features 
that misrepresent their underlying density functions. The bias 
is greater when one has small sample sizes and a large total 
number of features, the same situation in which it is unlikely 
that one will select an optimal subset of features. 

The results in this work have dealt with a fairly simple 
and ideal situation of independent features that, in the limit 
as the number of samples goes to infinity, are optimally 
merged using linear discriminants. In practice, the difficulties 
of features selection are, in fact, more troublesome than pre- 
sented here. The results presented can be extended to perfor- 
mance measures other than Az and inferences can be made 
about other feature selection methods that combine features 
instead of measuring their individual performances. 

APPENDIX 

Assume N independent observations x, with a joint den-, 
sity function /I(X1)/2(JC2)---/A,(XW) and joint distribution 
function Fl(xi)F2(x2y--FN(.xN). Define the set of all ob- 
servations as 5={1,2 N} and let <S be partitioned into two 
subsets B and W. We will now focus attention on one ele- 
ment of the partition B, which will be labeled xb. The prob- 
ability (i) that xb falls between x and x + dx is fb(x)dx, (ii) 
that all remaining observation in B are larger than x is 
II (1 -F,(x)), and (iii) that all observations in W are 

less than x is n.£WF,(*)- The probability that (i), (ii), and 

(iii) all occur simultaneously is 

Mx)dxU F,{x)   [I     (1-F.-W). (Al) 

Integrating the above expression over all x arrives at the total 
probability that the observations in W are less than observa- 
tion xb which is less than all other observations in B. By 
summing over all of the elements in B, one arrives at the 
probability that all of the observations in B are larger than all 
of the observations in W, i.e., 

P(X{SJ>X{W^) -s[J dxfj(x) 

XU  Fs(x)   II     (1-FJW) (A2) 

If the n observations of B are sampled from the same density 
function /I(JC), r-n of the observations in W are also 
sampled from fi(x), and the remaining N-r observations 
have common density f2(x), then Eq. (A2) simplifies to 
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P(x{B}>X{W}) = n\ dxfi(x) 

XFi(xy-nF2(x)N-r(l-Fi(X))"-1.   (A3) 

The above expression assumes that the observations in B are 
a specific subset of the r observations with density f\(x). 
There are, however, a total of r\ln\(r-n)\ possible subsets 
that contain n observations with density fi(x). Multiplying 
Eq. (A3) by this fraction, we arrive at the probability that the 
n largest observations all come from the density function 

/iW. 

-—-£—- f dxfMFdxy-" 
(w-l)!(r-H)! J 

XF2(x)N-'(l-Fl{x))n-1. (A4) 

If our observations x are measured Az values, then the above 
expression becomes Eq. (3). 
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