
Computational Modeling of 
Multimodal I/O in Simulated Cockpits 

Final Report, Project N00014-96-1-0467 

David E. Kieras 
University of Michigan 

EPIC Report No. 14 (TR-01/ONR-EPIC-14) 

May 30, 2001 

This research was supported by the Office of Naval Research, under Grant Number N00014-96-1-0467. 
Reproduction in whole or part is permitted for any purpose of the United States Government. Requests 
for reprints should be sent to: David E. Kieras, Artificial Intelligence LaboratoryElectrical Engineering & 
Computer Science Department, University of Michigan, 1101 Beal Avenue, Ann Arbor, Ml 48109-2110, 
kieras@eecs.umich.edu. 

Approved for Public Release; Distribution Unlimited 

20010611 025 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

ga 

Oa v1sH?ghwa'y.'suVtri2ÖVAril^tonrvA*HyoM3o7r*"räto the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
May 30,  2001 

3. REPORT TYPE AND DATES COVERED 
Final June 1, 1996-Dec 30, 2000 

4. TITLE AND SUBTITLE 
Computational Modeling of'Multimodal 1/0 in Simulated 

Cockpits 

6. AUTHOR(S) 
David E. Kieras 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
The University of Michigan 
Division of Research Development and Administration 
Ann Arbor,  MI 48109-1274 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Office of Naval Research 
800 N. Quincy St. 
Arlington, VA 22217-5660 

5. FUNDING NUMBERS 

N000014-96-1-0467 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

TR-01/ONR-EPIC-14 

10. SPONSORING /MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for Public Release: Distribution Unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This report summarizes the results of a project on modeling the effects of localized 3-D sound to 
facilitate performance in a complex cockpit-like dual task. This task that had been previously 
observed to produce a significant automation deficit effect: when one of the tasks has to be 
resumed at short notice, the human operator takes some time to "catch up" and reach the normal 
steady-state level of performance in the task, apparently because it takes visual search and 
inspection to identify the proper object on the display to process. Providing a localized sound cue 
to identify the proper object alleviates the automation deficit effect to some extent. Constructing 
computational cognitive models that include representation of the perceptual-motor systems 
underlying performance showed that the benefit appears to be due to low-level orienting reflex eye 
movements rather than high-level strategic use of the sound information. 

14. SUBJECT TERMS 

17.   SECURITY CLASSIFICATION 
OF REPORT 
Unclassified 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 
Unclassified 

15. NUMBER OF PAGES 

10 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 



Computational Modeling of 
Multimodal I/O in Simulated Cockpits 

Final Report 
Project N00014-96-1-0467 

Period: 1/30/1996 to 12/30/2000 

David Kieras 
Artificial Intelligence Laboratory 

Electrical Engineering and Computer Science Department 
University of Michigan 

Abstract 
This report summarizes the results of a project on modeling the effects of localized 3-D sound to 

facilitate performance in a complex cockpit-like dual task. This task that had been previously 
observed to produce a significant automation deficit effect: when one of the tasks has to be 
resumed at short notice, the human operator takes some time to "catch up" and reach the normal 
steady-state level of performance in the task, apparently because it takes visual search and 
inspection to identify the proper object on the display to process. Providing a localized sound cue 
to identify the proper object alleviates the automation deficit effect to some extent. Constructing 
computational cognitive models that include representation of the perceptual-motor systems 
underlying performance showed that the benefit appears to be due to low-level orienting reflex eye 
movements rather than high-level strategic use of the sound information 

Project Purpose and Goals 

Background 

This project was a collaboration with James A. Ballas at the Naval Research Laboratory (NRL). 
The basic purpose of the project is to follow up on some leads discovered in the Kieras & Meyer 
ONR project on the EPIC computational theory for dual-task performance (N00014-92-J-1173) 
conducted at the University of Michigan (UM). Kieras & Meyer constructed and tested models for 
the experiments conducted by Ballas and his coworkers (Ballas, Heitmeyer, & Perez, 1992a, b) on 
a simulated cockpit task. The task involves a tracking task on one display and a tactical decision- 
making task of classifying targets on a separate radar-like display; the tactical decision-making task 
is sometimes automated, and sometimes must be done by the human operator. 

Ballas had observed an automation deficit effect, a temporary depression of performance when 
the operator must resume manual control of the formerly automated tactical decision task task with 
short notice. In an informal collaboration with Ballas, Kieras & Meyer were able to model this 
deficit, and explain it as a result of several limitations on human performance, but with the need for 
eye movements between the two displays as being a major contributor. That is, a visual event on 
the tactical task display would occur (e.g. a "blip" would change color), and the operator must then 
do visual search to pick a relevant object for inspection and response. 



Can  localized sound  reduce automation  deficit? 

The focus of the project work was on the use of synthetic 3-D sound, delivered to the operator 
over headphones, that would provide a localized sound cue that designated which display object 
should be looked at. Since this cue could direct visual attention directly, it appeared that localized 
sound could be effective in reducing the visual search and extraneous eye movements, and thus 
reduce the automation deficit. 

The NRL part of the project was to collect new empirical data on the automation deficit 
phenomenon and how it might be affected by the use of multiple sensory modalities, especially 
advanced auditory displays, that might reduce the need for eye movements. The UM part of the 
project was to advise on the empirical program and construct new models that account for the 
results in the general context of the EPIC cognitive architecture. The joint responsibility was to 
arrive at new and advanced understanding of how multimodal displays might help reduce pilot 
workload. In the course of this project, further work was done on extending the EPIC architecture 
and applying it to modeling dual tasks; this part of the work was jointly supported under other 
ONR funding, Grant Number N00014-92-J-1173. 

Problems   encountered 

More so than most research projects, this project did not go according to plan. A basic 
assumption of the project was that there would be a tight iterative loop between the modeling 
program at UM and the empirical experimentation and data collection at NRL. However, after the 
first preliminary experiments, the empirical program at NRL ran into serious delays, especially 
extended delays over normally-routine human subjects approval. As a result, the key studies in the 
project were seriously delayed and there was not time to collect a complete and problem-free set of 
data on auditory localization. In the meantime, a round of modeling work on auditory localization 
was done, but the results were not put into final form pending a more complete set of data. These 
extended delays led to delays in the UM part of the project, which were handled by project 
extensions and budget reductions. When it became clear that more complete auditory localization 
data could not be collected in the available time, a second round of modeling work on auditory 
localization was completed, and useful results were obtained and distributed in the form of a 
technical report. This work, for the first time, ties a body of literature on auditory localization 
directly into a modern computational cognitive architecture. 

Accomplishments 

More background on the task 

Some additional explanation of the task is needed to provide background for the rest of this 
report. The task was developed by Ballas, Heitmeyer, & Perez (1992a, b) to resemble a class of 
multiple tasks performed in combat aircraft in which the subject must both perform a task such as 
tracking a target, and at the same time keep up with the tactical situation using sensors such as 
radar, with partial automation support by an on-board computer. Figure 1 shows a sketch of the 
display. The right hand box contains a pursuit tracking task in which the circle cursor must be kept 
on the target with a joystick operated with the right hand. The left-hand box is a radar-like display 
that contains a tactical decision task in which objects (called tracks) must be classified as hostile or 
neutral based on their behavior, and the results entered by means of a keypad under the left hand. 
These objects appear as icons that represent fighter aircraft, cargo airplanes, and SAM sites. A 
number identifies each object on the display. 
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Figure 1. Screen shot of display, showing feedback from input keystrokes. 

The blips appear near the top of the display, and then move down. The fictitious on-board 
computer attempts to classify each blip, indicating the outcome after some time by changing the 
blip color from black to red, blue, or amber. These color changes are termed events because these 
color changes are the stimuli to which the subject must respond. If the blip changes to red (hostile) 
or blue (neutral), the subject must simply confirm the computer's classification by typing a code 
key for the hostile/neutral designation followed by the key for the blip number. If the blip changes 
to amber, the subject must observe the behavior of the blip and classify it based on a set of rules, 
and then type the hostility designation and blip number. After the response, the blip changes color 
to white, and then disappears from the display 10 sec later. The basic dependent variable is the 
reaction time to the events, measured from when a blip changes color to when each of the two 
keystrokes are made in response. 

From time to time during the task, the tracking task would become difficult, and the on-board 
computer would take over the tactical task, signaling when.it did so. The computer would then 
generate the correct responses to each blip at the appropriate time, with the color changes showing 
on the display as in the manual version of the task. Later, the tracking would become easy again, 
and the computer would signal with a loud buzzer sound and then return the tactical task to the 
subject to perform. How subjects dealt with the transition was measured by recording the time 
required to respond to the individual events, counting from when they had to resume the tactical 
task. 

In the scenarios resulting in automation deficit effects, the blips and color-change events within 
an epoch were not uniformly spaced in time; rather they occurred in two waves, the first when the 
task had to be resumed in manual mode at the beginning of each epoch, and the second about two- 
thirds of the way through the epoch. Some of the event time structure was fixed, with the 
remaining allowed to vary stochastically within the overall two-wave structure. 

The automation deficit effect. Ballas et al. (1992a,b) observed an automation deficit 
effect, in which during the resumption panic phase, the period after resuming the tactical task, 
subjects produced longer response times for matched events compared to their normal steady-state 
manual performance, that is, the events at the clump panic at the second wave. Thus, as shown in 
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Figure 2. Illustration of the automation deficit effect, using data from Ballas et cd. (1992a, b). First response 
times (RTJ) are shown for each event (blip color change) after the tactical task is resumed. The numbers above 
the x-axis are the interval in seconds between each pair of events. The event sequence 1, 2, and 3 have the same 
inter-event spacing as event sequence 7, 8 and 9. The automation deficit effect appears as elevated RTsfor the first 
events (e.g. 1) relative to the comparison events (e.g. 7) after the task has been underway for some time. 

Figure 2, the times for Events 1, 2, and 3 are longer than the matched Events 7, 8, and 9, 
producing an overall descending shape to the RT profile/The reaction times for the first few events 
during the resumption panic and catching-up phase are substantially longer than those for later 
events of similar structure during the clump panic and its catching-up phase. Since Ballas et al. had 
arranged for Events 1 and 7 to be exactly matched in terms of the type of blip, they reported the 
automation deficit effect in terms of simply the difference between the RT for Event 1 and Event 7, 
which is 1312 ms for the first response keystroke. This effect represents some of the serious 
concerns about possible negative effects of automation in combat situations; if the automation fails, 
the operator can lack situation awareness, and it might take a long time to "catch up." 

Verifying the automation-deficit model 

Some of the first work in the project was verifying some of the basic assumptions and 
mechanisms in the EPIC models for the task. The automation deficit effect itself is explained as 
due to a "catching-up" process: when the signal to resume the task appears, the human must 
resume monitoring the previously-ignored display, and then attempt to determine which track to 
move the eyes to and start processing. Because the display was not monitored in the meantime, the 
first choice might be incorrect or not the highest-priority track. This extra time to get to the highest- 
priority track is the elevated reaction time, the automation deficit. The size of the deficit should 
depend on the number of tracks that the human would have to examine and process at the time of 
resumption. Thus, the greater the event density, or workload, at the time of resumption, the greater 
the automation deficit. Thus, to test the model, Ballas's group collected data in the task using a 
scenario in which the workload was very low at the time of task resumption - the resumption signal 
occurred, and some time later, only one track required processing. The result was that there was no 
automation deficit - the first track after resumption was processed as quickly as later tracks. This 
result was predicted by the previously developed EPIC models, simply by driving them with the 



low-workload scenario. These results confirmed the basic explanation of the automation deficit. 
These results are presented in Kieras, Ballas, & Meyer (2001). 

A second body of confirmation work addressed an assumption of the EPIC models that the 
tracking task was suspended while the tactical task was performed. Although in modeling other 
cases of dual-task performance we have found it important to interleave the two tasks, so that they 
were performed concurrently, the Ballas task is complex enough that we thought it more 
reasonable to assume that tracking was suspended. This assumption was supported by work done 
at NRL showing that the frequency of tracking movements was substantially reduced in the vicinity 
of tactical task responses. These results appeared in Ballas, Kieras, Meyer, Stroup, & Brock 
(1999). 

Development of the bracketing heuristic 

While the original work on auditory multimodal interfaces was delayed, this project stimulated 
some additional work on the application of computational cognitive modeling to practical problems. 
These concepts are as important as the originally planned work on multimodal interfaces, if not 
more so. A brief explanation can be given here. More complete discussion can be found in Kieras 
& Meyer (2000), and an example of their use appears . 

A major accomplishment of current cognitive psychology is several computational cognitive 
architectures. These are software packages that represent the mechanisms underlying human 
cognition and perceptual-motor performance. A simulation model of a human performing a task 
can be constructed by "programming" the architecture to do the task. Running the simulated human 
on the task produces a stream of simulated behavior which can be compared to existing data to test 
the accuracy of the simulation, or used to predict what human performance would be like if the task 
does not exist yet. For example, if a human-machine system is being designed, such a simulation 
model could be used to predict how well humans would performing in using the system; the results 
could be used to refine the design of the system functionality or human interface to produce better 
performance. 

However, there is a significant barrier to the application of computational models for human 
performance to system design, and this is what we have called the strategy identification problem. 
In order to perform a task, the human must follow a task strategy, or procedure, specific to the task 
and the design of the system and its interface. In order to construct a model of the human using the 
system, we have to have a description of the task strategy to use to program the cognitive 
architecture. Our work with the EPIC architecture had made it clear that in many high-performance 
tasks, even very simple ones, the human operator can apply a wide range of task strategies to 
optimize task performance over many different criteria. We discovered that the choice of strategy 
would make a huge difference in the level of predicted performance. In working with observed 
data on human performance, we could identify many features of the humans' task strategies by 
comparing details of their performance with the performance of models using different candidate 
strategies, and thus determine which strategy the humans appeared to be following. Clearly, the 
degree of practice or training and the motivation of the humans are the major determinants of how 
enterprising their strategies are. 

The problem is that if one is attempting to predict the performance of a human-machine system 
in advance, one has to use a strategy in the model, but there is no observed data to be used to pick 
the strategy. Given that the choice of strategy makes a big difference in predicted performance, 
how can we make useful predictions given the lack of knowledge of the detailed strategy users will 
actually learn or apply to the future system? 



Our answer was to propose a bracketing heuristic: We can build two models: a fastest-possible 
model that uses a task strategy that drives the architecture at the highest performance level possible, 
and a slowest-reasonable model that directly reflects the task structure and nominal requirements 
without any "bells and whistles" that maximize performance. The observed or actual performance 
would thus be "bracketed" by the fastest and slowest models; rather than try to predict exact 
performance by dubious guesses of future task strategy, we could confidently predict the upper 
and lower bounds of performance with a systematic approach based only on the cognitive 
architecture and the task structure and requirements. 

If the predicted performance was satisfactory with both models, then one could be confident that 
the actual system would perform acceptably with even routine training and motivation of the users. 
If neither model would be fast enough, then the system design was at fault, and would have to be 
corrected before any degree of training or motivation would suffice. If the bracketing models 
bracket the desired level of performance, then more work is needed to either improve the design, or 
to determine if the training and motivation factors will enable users to dependably work at a higher 
level of performance. 

This project provided a valuable stimulus and exercise-ground for this concept. Bracketing 
models were constructed for the original Ballas task data, but then the same models were applied to 
brand-new data collected on the same task but with different scenarios and instructional conditions. 
The bracketing predictions were generated prior to inspection of the data. In one case, the scenario 
was expected to eliminate the automation defect by reducing the event density at the time of task 
resumption. The bracketing models showed exactly this effect. A second task demonstrated 
automation deficit effects under somewhat different conditions and task scenario; again the a-priori 
bracketing models successfully bracketed the observed data. The bracketing approach was then 
applied to account for the effects of the localized sound cuing. A similar exercise was performed on 
the original Ballas task data to compare the effects of two interfaces which differed in the extent to 
which they supported direct manipulation (Kieras, Meyer, & Ballas, 2001). 

This was a successful demonstration of an additional idea: that bracketing could support 
scientific explanations of phenomena in the data, based on the cognitive architecture, without the 
difficult and time-consuming process of iteratively constructing and testing models that attempt to 
fit the data precisely. For example, the conclusion was that the effect of localized sound was an 
across-the-board speed up in task performance, and could be best accounted for by an auditorily- 
triggered eye movement to the sound source. This conclusion was supported by the results that 
only the bracketing models incorporating this assumption could produce this effect, and only if the 
eye was not already fixated on tactical task objects. 

Using the bracketing approach was far faster and more economical of modeling effort than 
iteratively constructing models that directly fit the observed data. Note that conclusions drawn 
from fitted models would be more limited, in that all of the strategy assumptions in fitted models 
would qualify the conclusions about the use of localized sound. Thus the conclusion based on only 
the bracketing models are also stronger and more general conclusions. 

Modeling  localized auditory cuing 

This work, for the first time, ties a body of literature on auditory localization directly into a 
modern computational cognitive architecture. The model analysis was conducted using the 
powerful bracketing heuristic described above. The work is presented in Kieras, Ballas, & Meyer 
(2001). 

Ballas collected data in a version of the task in which when a track changed color, a localized 
sound would be emitted by the track; the sound also represented the type of track - e.g. a siren 



sound for a fighter. Furthermore, the sound was emitted by the highest-priority (first color- 
changed) track, thereby disambiguating the visual display. This was a "kitchen-sink" approach 
intended to give the sound cue every possible chance to lead to greatly improved task performance. 
A facilitating effect of the sound cuing was found, as presented in Ballas, Brock, Stroup, Kieras, 
and Meyer (1999). 

The first problem with modeling the effects of localized sound was that originally EPIC (like all 
other extant cognitive architectures) did not have any representation of localized sound sources; the 
internal working memory representation of objects arranged in space was purely visual in content. 
Adding this feature to EPIC required generalizing the internal spatial working memory system to 
include both auditory and visual information. The architecture could then be programmed to make 
eye and hand movements to objects based on either visual or auditory location information, but that 
if the more accurate visual location information were available, it would be used instead of auditory 
information. 

The more difficult problem was then determining how the localized sound cue information could 
be used in the task. Many models for a variety of hypotheses could be built, iteratively fit to the 
data, and evaluated. However, the bracketing heuristic made it possible to conduct this part of the 
work rather rapidly once the EPIC architecture had been generalized to include localized sound, 
and the decision made to work with the available empirical data. 

In summary, the available empirical data showed the presence of a small across-the-board 
advantage of the sound cuing. The hoped-for large-scale benefits of sound did not seem to be 
present. To determine what the effect of localized sound cuing would be, three sets of bracketing 
models were constructed. The first was a baseline model that did not use sound at all, but was 
compatible with the use of sound, and followed a task strategy based on the earlier work with the 
task. The second was a modified version of the baseline model that assumed that the sound cue 
was used in the strategic process of choosing which track to process - the sound cue identified both 
by location and sound quality which was the highest priority track to process. Relative to the no- 
sound model, this model predicted a drastically reduced automation deficit because it directed the 
human's attention directly to the proper track at the start of task resumption. However, the 
remaining track responses would not be facilitated at all, because the visual information normally 
available was adequate to do the task. Thus, this "sound-selection" model could not explained the 
faster across-the-board effect of sound cuing. 

The third model required an addition to the EPIC architecture: a sound onset or change could 
trigger a reflex eye movement to the location of the sound. In the other models, a stimulus selection 
strategy would choose a track object to move the eye to for detailed examination. However, the 
sound-reflex mechanism would "automatically" move the eye to the proper track, without any 
cognitive-strategic decision-making. This one, simple, assumption was adequate to account for the 
both the uniform nature and relatively small size of the effect, being similar to results in the 
literature observed in tasks in which simple visual choice reaction tasks are facilitated by a localized 
sound cue to stimulus location. What is especially interesting is that the eye-movement trigger 
mechanism was added into the architecture without any detailed parameter-fitting attempts, using 
a-priori values only, and it proved to produce effects whose magnitude is approximately correct. 

The original goal was to gain insight into how multimodal display systems in cockpits could be 
useful. These results provide such insights: Using localized sound might well be valuable, but will 
apparently yield its benefits from low-level orienting responses (e.g. reflexive eye movements). At 
least in this task, the use of the sound cue in higher-level decision making strategies was not 
demonstrated, and the model analysis shows that such involvement is not necessary to explain the 
effects. 



Summary of Accomplishments 
In conclusion, the contributions of this project can be summarized as follows: 

• Further work was done to demonstrate the applicability to important military tasks of an 
important computational cognitive architecture, EPIC, that explicitly represents human 
perceptual-motor mechanisms. 

• Some implications and assumptions of earlier EPIC models of a complex cockpit-like dual- 
task situation that explained to automation deficit effect, were confirmed by empirical data 
collection and analysis. 

• A valuable technique for applying computational models of human cognitive and 
performance, the bracketing heuristic, was developed and demonstrated using the tasks, 
data, and phenomena in this project. 

• Localized auditoiy information was incorporated into EPIC, as a generalization of the 
internal spatial representation of objects in the environment. 

• The benefit of supplying localized auditory information in a complex dual task was 
analyzed and demonstrated to operate at a relatively low level of triggering eye movements, 
and this mechanism was incorporated into the EPIC computational cognitive architecture. 
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