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Abstract 

This report documents a research project aimed at developing new techniques and methods 
for building intelligent, cooperative agents for assisting in the management of communica- 
tion networks. The work has focused on four primary problem areas. First, we undertook a 
redesign and upgrade of an existing testbed for a distributed simulation environment. Sec- 

ond, we developed a generalization of previous work in distributed automated reasoning to 
provide for distributed expert systems built using an extension of conventional production 
rule technology. Third, we enhanced a distributed reasoning system by utilizing a stronger 
inference rule known as hyper-resolution. Fourth, we developed a distributed constraint 
based planner. Our results demonstrate a technique for solving the coordination problem 
among multiple problem solving agents in a distributed extension of the classical artificial 

intelligence blocks world domain. We have analyzed real world communication equipment, 
presented a typical problem scenario, and identified the expert knowledge required to solve 
the problem. We have experimental data that demonstrate significant improvements in the 
performance of distributed reasoning tasks. We also have experimental data that illustrate 
the effectiveness of our distributed constraint based planner. Finally, the problem of link 
activation scheduling is discussed. We show that our planner is able to solve this problem, 
and we have experimental results comparing the performance over varying communication 

network organizations. 
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Chapter 1 

Overview 

1.1     Statement of Work 

1.1.1    Objective 

Management and control of communication networks involves a combination of automatic 
controls with manual supervision and override capabilities. As the complexity of these 
networks has increased network management has come to rely on an increasing level of 
computer automation and assistance. The use of knowledge-based computer programs, such 
as expert systems, is becoming widespread in both commercial and military communication 
systems. A typical network management system planned for development and application in 
the 21st century will incorporate several distinct machine intelligent or artificial intelligent 
(AI) systems to assist humans in managing these complex networks. These AI systems 
will most likely be distributed among several nodes of a large, geographically dispersed 
network. These AI systems must also be able to solve problems which are distributed 
over functionally distinct problem areas corresponding to the variety of communications 

subsystems and multimedia networking expected to be available. 

This research effort addresses the need for cooperative, machine intelligent aids which 
assist human operators who may become heavily overloaded in times of stress, or may not 
be aware of the scope of particular problems, or may simply lack experience in dealing with 
certain types of problems. In any of these situations these individuals could make effective 
use of an expert assistant to improve their response time in critical situations and to aid in 

generating high quality solutions to network management problems. 

The objective of this project was to identify the significant design issues involved in the 

development of distributed AI technology and to show how this technology could be applied 
to communication network management. New techniques have been discovered which can 

enable effective cooperation of machine intelligent systems in solving the complex problems 
of network management. These techniques have been developed and tested in a variety of 

1 



application problems. 

1.1.2    Background 

Our previous work [62] on distributed problem solving for network management concen- 
trated on problems in the context of networks having features similar to those found in 
the Defense Communication System (DCS) in western Europe. In that work we developed 
and implemented problem solving modules that perform such functions as distributed plan 
generation for service restoral, knowledge base management for systems involving multi- 

ple problem solvers, and construction of an underlying equipment and topological network 

knowledge base using a graphical user interface. In this new effort we have extended the 

scope of application to include modern digital networks and enhanced the functional capa- 

bility to respond to dynamic network environments. New problem solving strategies were 

needed to meet these requirements. 

1.1.3    Scope 

This research project proposed the development of a testbed in which a communications 
network could be defined, simulated, and its management demonstrated. The proposed 
testbed would have extended an existing testbed developed as part of previous work. As 
will be discussed further under Section 1.2, the work on the testbed was modified after the 
first six month review. The major goal of the project was to investigate new techniques for 
cooperative intelligent problem solving. The most promising strategies were developed and 
demonstrated to illustrate applicability and feasibility. The results of this effort include 
a description of the significant design issues, alternative approaches considered, and test 

results for those designs implemented in the testbed. 

1.1.3.1     Testbed Environment 

The development of network management tools requires an appropriate testbed environment 
in which to test, evaluate, and demonstrate the performance of these products. The testbed 
serves two functions: (1) it provides a facility on which to perform the research studies 
necessary to address the design issues specified in the statement of work, and (2) it serves 
as a form of early prototype facility for demonstration purposes to assist the technology 
transfer process. This dual objective drives the testbed design, especially the user interface, 
toward one which is easy and natural to use and reflects as realistic an environment as 
possible. In order to convey complex network management tasks to military personnel in the 
field who lack complete training or experience in using these automated tools, the testbed 
environment must be able to communicate in an appropriate manner. A machine intelligent 
problem solving system should also demonstrate an intelligent operational environment and 

interface. 



1.1.3.2    Distributed Problem Solving Agents 

Based on our earlier work in distributed reasoning [56], we proposed to investigate meth- 

ods for extending this work to a set of distributed expert agents. By far, one of the most 
perplexing obstacles faced by a set of distributed expert agents is the coordination problem. 

The coordination problem may be described as the dilemma faced by each agent in deter- 
mining: 1) how to assess its role in the distributed problem solving process, and 2) how 
best to solicit assistance from other network agents so that its piece of the solution puzzle 
may be coherently integrated with theirs. A solution to the coordination problem relies 
heavily on characteristics of the particular problem domain and often becomes an integral 
part of the distributed problem itself. We proposed a technique which effectively reduces 
such coordination problems to equivalent problems in the domain of logic and relegates the 
responsibility for their solution to our already existing Distributed Automated Reasoning 
System (DARES). In effect, a coordination problem can be made transparent by exploiting 
the distributed problem solving heuristics previously developed for the DARES reasoning 
system. However, another distributed problem must be solved in its stead. The new prob- 
lem is that of producing an adequate representation of the distributed problem in the form 

of an axiomatization which will bring about the desired coordination. 

1.1.3.3 Distributed Reasoning 

We proposed improvements to DARES, our distributed reasoning system [56]. DARES 
performs distributed reasoning by application of standard binary resolution techniques on 
a local basis, but with a modified control strategy. When a DARES problem solving agent 
perceives that it cannot make further progress or when it detects that it may be doing 
senseless work, the agent formulates a request for information and broadcasts this request 
to all other agents in the system. We proposed an alternative approach which would improve 

its performance through the use of hyper-resolution. 

1.1.3.4 Distributed Constraint Based Planning 

Problems associated with network reconstitution and restoral of service in the face of unan- 
ticipated network stress are very difficult to solve. The set of constraints that must be 
satisfied is complex, and it varies as the available assets change over time. Constraint sat- 
isfaction is, in general, an intractable problem requiring substantial computational effort in 
determining solutions to problems. The situation is only exacerbated when issues associated 

with a geographically distributed environment are introduced. 

In order to accomplish the task of network reconstitution in a timely manner, it seems 
evident that each agent should be able to solve those parts of the problem that it can locally. 
Thus, when a problem is limited to one agent's area of responsibility, that agent should be 
able to handle the problem without involving any other agents. On the other hand, when 



the problem and its solution must involve assets in other areas under the control of other 

agents, mechanisms for coordinating the activity of the group of agents are required. It 

is also clear that agents must be able to engage in problem solving at varying levels of 

abstraction, since no agent has a complete view of the global (non local) state. At any 

one time, an agent's view of the network is partial and may lack details available to other 

agents. Depending on the network state and resources available, an agent may be required 
to do the best job possible even with limited knowledge and without additional details. 

Our previous work on plan generation and multistage negotiation [12, 14, 65] resulted 
in the development of a Distributed Multi Agent Planner (DMAP) and was done in the 
context of problems that arise in network reconstitution. We proposed to investigate dis- 
tributed constraint based planning by taking a more general view of constraints, including 
a consideration of temporal constraints, in devising a general distributed constraint based 

planning system. Feasibility of the approach would be demonstrated through its application 

to problems in network management. 

In this new effort we start with a "snapshot" of the network operating state and set 

of available assets. We then generate a set of candidate restoral plans in the form of a 
(distributed) set of control actions and negotiate among agents to arrive at a near-optimal 
set of actions that restore service to a maximal number of users. In devising the mechanisms 
and inter-agent communication protocols, we have utilized the concept of "resources" and 
constraints on resource availability to drive the search for a good solution to the problem. 

1.2    Revisions to the Statement of Work 

After the first six month review of the project, Rome Labs asked us to consider how this 
work might contribute to the CNOS II effort, then being developed by a commercial defense 
contractor. We were also told that the original plan for funding was to be changed with 
the result that the second year funding level was substantially reduced. The overall funding 
level would remain approximately as planned, but funds were shifted toward the end of the 

project. 

We reviewed the CNOS II Exploratory System Model (ESM) software design and the In- 
tegrated Communication Network Management System (IMS). This review revealed strong 
similarities with our approach. We developed a new plan to build on the existing CNOS II 

technology and upgrade it to a fully supported environment. 

The objective of this plan was to utilize the ESM software as the core component 
of a distributed testbed based on the architecture of our original SIMULACT [54, 53] 
system. The ESM software was developed by Stanford Telecommunications under the 
CNOS II program. It included many of the same ideas we used in building SIMULACT. 
The ESM, unlike SIMULACT, was specifically designed as a testbed for communication 
networks.    As a result the user interface was more complete in those functions specific 



to communications networks. It also included a Management Information Base (MIB). 
However, there were two serious limitations which would need to be overcome. First, the 

EMS user interface was built on the SunView graphic window system, an obsolete system 

no longer supported by Sun Microsystems, Inc. The ESM architecture was based on a 
fixed physical architecture with limited flexibility to accommodate a variety of network 
emulation/simulation configurations. In EMS each Sun workstation could serve as the local 
manager for one region of the network. An additional workstation was dedicated to the high 

level task of managing the overall simulation. Thus the level of complexity of a simulated 

communications network was directly limited by the number of workstations, even if there 

was spare compute power available. 

1.3    Summary of Results 

In this section we provide a high level summary of the results obtained in this project. As 
will be described below, we met some objectives while falling short in others. We believe 
the overall project was successful in terms of developing new techniques and algorithms for 
distributed problem solving. We were able to show direct application of these results to 

some areas of network management. 

1.3.1 Testbed Development 

Initial work on the testbed was aimed at developing major enhancements to our existing 
SIMULACT testbed and replacing its user interface system, GUS, with a new user interface 
system. We developed a User Interface Management System based on context-free gram- 
mars. This system would have been the basis for developing a communications network 
specific user interface to replace GUS. With the change in the statement of work as dis- 
cussed previously, we did not continue with this development. Instead we undertook the 
process of understanding the design of the CNOS user interface software. We developed 
a complete design for DiST - a Distributed Simulation Tool. A key component of this 
design was the CNOS EMS software which had been built on the obsolete SunView window 
system. The process of converting the EMS software from SunView proved to be much 
more difficult and time consuming that we anticipated. The documentation available for 
the existing software was very minimal. Eventually, we were forced to abandon this part of 
the effort so as not to jeopardize successful completion of the remaining research objectives. 

1.3.2 Distributed Problem Solving Agents 

In this phase of the research we investigated new methods for finding solutions to problems 
where both domain knowledge and functional control are logically, and/or geographically 



distributed. A distributed problem solving network is broadly defined as a distributed net- 
work of asynchronous, loosely-coupled, and semi-autonomous agents (processing elements) 

which cooperatively interact with one another to solve a single problem. Each agent is itself, 
a sophisticated problem solving system which has access to certain knowledge necessary to 
solve the problem. Portions of this knowledge may overlap arbitrarily with the knowledge 
accessible to other agents. However, no single agent has access to all the knowledge neces- 
sary; therefore no agent is capable of solving the problem by itself. Only by a cooperative 
exchange of knowledge among the agents can a solution to the problem be obtained. From 

the point of view of an individual agent, a good portion of any distributed problem involves 

the agent evaluating its own progress toward a solution, and determining how it can best 

coordinate with other agents to converge upon a globally coherent solution. 

A new technique for solving distributed problems was developed in which an existing 

distributed automated reasoning system was used to facilitate interagent coordination. With 

this new technique, problem solving agents are programmed to be experts at reformulating 

distributed tasks as equivalent problems in the domain of mathematical logic. In doing so, 
the coordination problem associated with a distributed task is effectively transformed from 
one in the application domain into a corresponding problem in the automated reasoning 

domain. 

We demonstrated how this technique can be applied in a classical AI problem solving 
domain: the Blocks World. The Blocks World is a simple domain involving a robot arm, a 
table, and a set of blocks. The objective is to have the robot develop a sequence of steps to 
bring the blocks into a desired configuration. We have extended this to a distributed domain 
involving multiple robots, tables, and blocks. While still a "toy" domain, the distributed 
blocks world incorporates many important features of a real world domain without the 

overhead of a very large store of real world knowlege. 

We then developed TESS, an expert system shell written in the form of a production 
system. Unlike conventional production systems, TESS was specifically designed to operate 
in a distributed, cooperative manner and relies upon the DARES agents to conduct the 
distributed reasoning necessary to solve a problem with limited local knowledge. 

The application of this approach to the domain of network management and control 
is then discussed in the context of the Defense Communication System. We completed a 
detailed analysis of actual communications equipment and the associated alarm monitoring 
that is commonly available. A problem scenario is then presented, and an expert's solution 
to this problem is illustrated. Based upon this, it then becomes a routine task of encoding 

the expert knowledge in TESS production rules. 



1.3.3    Distributed Reasoning 

We developed SHYRLI, a domain independent automated reasoning system. SHYRLI offers 

an improvement in performance over our previous domain independent reasoning systems 

that allows SHYRLI to be applied to "real world" problems. SHYRLI provides a baseline 

distributed reasoning case against which the performance of domain dependent heuristics 

can be measured. 

The experiments with SHYRLI have given us insight into how distributed search can be 

different from single agent search. We have also discovered how SHYRLI's communication 
mechanisms allow us to identify information that can be kept "private" to a reasoning agent 
without affecting the systems progress towards a goal. SHYRLI has given us a view of how 
different distributions of knowledge can have very different affects on the performance of a 

distributed reasoning system. 

Using SHYRLI we have developed a predicate calculus formalism that allows us to 
decompose a complex problem in to smaller ones. The formalism allows these smaller parts 
to be distributed over a distributed set of agents. We demonstrated the application of this 

paradigm using SHYRLI to the simulation of digital circuits. 

To summarize the contributions of this part of our research, we have: 

• Increased the performance of the architecture proposed in DARES by incorporating 

a stronger inference rule, hyper-resolution. 

• Developed a distributed reasoning baseline from which different domain dependent 

coordination strategies can be compared. 

• Added the concept of private knowledge to the DARES architecture. 

• Added the concept of functional roles to the DARES architecture. 

• Formulated a predicate calculus formalism that provides a means of distributing a 

complex task over a set of agents. 

• Identified that different distributions of the same knowledge can have a significant 

effect on the performance of a distributed reasoning system. 

1.3.4    Distributed Constraint Based Planning 

We developed a new approach to distributed planning and implemented this design in a 
planner, DCONSA, that introduces agent autonomy in a cooperative planning context. 
This work built upon the expressive power of representational frameworks developed for 
multiagent planning combined with the coordination strategies found in distributed plan- 
ning. We have made three primary contributions. The first is the development of a search 



strategy in which agents exercise their autonomy through their individual guidance of a 

distributed localized search. The second contribution is a two stage planning process that 
exploits multiagent power by first planning for conjunctive goals in parallel and then seeking 
a satisfactory integration of these plans. Our work makes a third contribution by combin- 
ing distributed planning with organizational self design. Previous work in distributed AI 
systems has shown that incorporating organizational self design can improve performance. 
By giving agents the capability to decide if and when to redistribute planning knowledge, 
they are able to dynamically reorganize the planning problem. Our experiments show that 
when such decisions are based upon a heuristic involving relative work load, the ability to 

reorganize improves planning performance. 

The major features and contributions of the research we have conducted in the devel- 

opment of DCONSA are as follows: 

• DCONSA is the first distributed planning system that incorporates agent autonomy 

into the planning process. 

• DCONSA is the first planning system to perform searches for plans for conjunctive 

goals in parallel. 

• DCONSA is the first distributed planning system to incorporate organizational self 

design. 

• DCONSA's use of a formal distributed architecture allows us to describe a planning 
problem independent of the number of planning agents. This permits flexibility in the 
planning scenarios which can be modeled without changing the underlying problem 

definition. 

• By selecting from among three modes of interaction, planning agents can determine 
how they will aid one another during plan construction. Since this decision is based 
upon relative work load, agents can dynamically balance the planning load in a dis- 

tributed fashion. 

1.3.5    Link Activation Scheduling 

Our final result is an application of the DCONSA constraint based planner to a well known 
problem in modern multihop packet radio networks known as the link activation scheduling 
problem. This problem arises when some form of multiaccess channel is used, and a means 
for controlling access must be provided. In a distributed control environment, the access 

method must be implemented using a distributed control strategy. 

We not only show that DCONSA is able to solve this problem, but we also demontstrate 

the impact of varying network organizations. These experiments illustrate the trade-offs 
between the advantages of parallelization in a distributed environment as compared to the 

costs of increased inter connectivity among the agents. 



Chapter 2 

Testbed Development 

2.1    Introduction 

Though natural language research in artificial intelligence has concentrated on spoken or 
written communication, it is clear that the traditional "natural languages" do not neces- 
sarily provide the most effective form of communication in domains such as communication 
network management. Much of the knowledge to be conveyed is graphical in nature, re- 
flecting such network features as interconnection topology at various levels of the network 

hierarchy. 

Our previous work resulted in the development of GUS and SIMULACT. GUS [39] is 
a graphical user interface that permits the user to describe various network components 
and their interconnection in a natural, graphical fashion. Network topology can be viewed 
at various levels in a flexible way, and the underlying representation that is built is one 
that the problem solving modules can utilize effectively. The network model is one that is 
closely related to the structure of the current DCS. Thus GUS interacts with the user using 
a graphical interface and builds a frame based representation that problem solvers can use 

efficiently. 

SIMULACT [54, 53] is a development environment for distributed problem solving sys- 
tems. It provides a computational platform for an applications programmer to specify and 
implement problem solving modules in a distributed environment. SIMULACT incorpo- 
rates interactive monitoring and debugging facilities, as well as a diary facility that makes 

post-mortem analysis feasible. 

We proposed to extend this work by developing an interactive user interface to a com- 
munications system domain problem solver that is based on a more generic model and 

incorporates the following features: 

1. the ability to define instances of generic communications equipment objects as well as 

new object types and their properties, 



2. an interface with an external SQL-based network database, 

3. an interactive graphical user interface that permits multilevel views of the network, 
views from multiple perspectives, and the ability to monitor problem solving activity 

on an interactive basis 

4. an intelligent front end that permits hypothetical reasoning, so that speculative net- 

work analysis can be supported 

We first discuss a User Interface Management System we developed to use in building 
a user interface which could meet the above objectives. As we were completing this task, 
the statement of work was modified as described previously in Section 1.2. As a result of 

this modification, we directed our efforts in the testbed development toward the design of 
a completely new Distributed System Testbed (DiST). The design of DiST is presented in 

the second section of this chapter. 

2.2    User Interface Management System 

In order to meet the goals for an enhanced user interface, we conceived a User Interface 
Management System (UIMS). The UIMS provides a method for easily creating and main- 
taining user interfaces. It does this by providing a set of standard parts and the tools for 
putting these parts together. Our User Interface Management System is based on a subset 
of the Context-Free Grammars (CFG) known as S-grammars and a subset of the Attributed 
Translation Grammars. In addition to the grammar, the user interface uses a set of graph- 
ical objects, which provide graphical output to the display and input to the parser. The 
UIMS has been made portable across different underlying hardware/software platforms by 

encapsulating the interface in the input and output systems. 

Several different UIMS models exist. The most popular models are the event handler 
model [35], transition diagrams [42], and context-free grammars [64]. Our UIMS is based on 
a modified context-free grammar and employs an object-oriented approach in a Common 
LISP Object System environment. Although simple, it has been used to develop user 

interfaces for a variety of different applications. 

2.2.1     Overview of the UIMS Architecture 

Figure 2.1 presents the architecture for a prototypical user interface developed using this 
UIMS. As can be seen in the figure, the user interface is divided into four parts: the 
user interface specification and parser, the graphical objects, the input system, and the 
output system. The main reasons for dividing it into these four parts are modularity and 

encapsulation. 
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Figure 2.1: User Interface Architecture 

The specification and parser provide the flow of control for the user interface, and will 
be discussed in more detail later. The set of graphical objects is an object-oriented class 
hierarchy of objects used to provide graphical output. Objects that are mouse-sensitive 
are also used as a source of user input to the parser; they contain a type that represents 
the token given to the parser when the object is mouse-clicked by the user. The UIMS 
contains a library of predefined standard graphical object classes. A user-interface developer 
may use these existing classes or define new object classes for his objects. The input and 
output systems provide a portable method of performing I/O with the underlying hardware/ 

software platform. 

In order to define a user interface with this UIMS, the developer needs to define the user 
interface specification representing the dialog. Part of this specification includes embedded 
action routines which call application specific functions, also defined by the developer. These 
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functions may make use of graphical objects from the library of standard objects, or objects 

defined by the developer specifically for this application. 

2.2.2 Modified Context-Free Grammar 

A CFG-based specification was chosen for our UIMS, rather than state transition diagrams, 
or event handlers [42, 35]. In order to create a deterministic pushdown-automaton (PDA) 
from the specification, a restricted form of CFG was used — the S-grammar [52]. A Modified 
Context-Free Grammar (M-CFG) is a combination of an S-grammar and an attributed 

translation grammar [51]. We define a M-CFG as follows. 

An M-CFG is a set of terminal symbols, T, a set of non-terminal symbols, N, 

a set of function-codes, F, a set of mouse-documentation strings, M, a set of 

productions, P, and a starting symbol, S. Each symbol in T and N, and each 
function-code in F, has an associated attribute that may take on any value. 
Each member of P must be of the form (A -*• a ß m) such that A G N, 
a € T, ß G (N + T + F)*, and m G (M + e). Further, if A G N, a,b G T, 
a,ße{N + T + F)*{M + e), and (A -> a a), (A -> b ß) G P, then a^b. 

Using an S-grammar simplifies parsing: at any non-terminal state, the particular pro- 
duction to use can be determined by the next input token received. No lookahead token is 
required to choose the next production. This also allows prompting to be achieved easily. 

2.2.3 Example User Interface Specification 

The following example is a simple dialog box presented to the user if he tries to quit the 
application without saving an open file. This dialog box could be represented by a small 
grammar, which simply asks the user to choose which action to follow. 

Three graphical objects are required for this small example — one pushbutton for each 
of the three options presented to the user. The first part of the example creates three 
graphical objects that represent the pushbuttons; each pushbutton has a label and a type. 

This type is used as input to the parser. 

Following the button definitions is the user-interface specification. Note that the termi- 
nal symbols are given by the type of the graphical object and the mouse button that the 

user clicked. When the specification is parsed, the user has three choices — he may press 
either the yes, no, or cancel button, at which point the associated embedded action routine 
will execute. Also note the prompt information stored as the last item of each production. 
In this example, if the mouse pointer is over the yes button, the user will see the "Yes. 
Save file." prompt. Moving the mouse over the other buttons will present their respective 

prompts. 
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(defvar *yes-button*   (make-a-simple-button "Yes"   :yes-button)) 

(defvar *no-button*    (make-a-simple-button "No"    :no-button)) 

(defvar »cancel-button* (make-a-simple-button "Cancel" :cancel-button)) 

(defvar »parser* 
(create-parser   ' ((terminals   :yes-button'/.mouse-l   :no-button'/.mouse-l 

: cancel-button'/.mouse-l) 

(:non-terminals  S) 
(:start-symbol  S) 
(S ->   :yes-button'/.mouse-l   (   (save-file)   (exit)   ) 

"Yes.   Save file.") 
(S ->   :no-button'/.mouse-l   (   (exit)   ) 

"No. Don't save file.") 

(S -> :cancel-button'/,mouse-l ( (cancel) ) 

"Cancel. Don't quit.")))) 

In order to complete this example, the developer must define the application-specific 

routines save-file, exit, and cancel. The developer must also define the button graph- 
ical objects as mouse-sensitive objects. To invoke this dialog box, the application must 
display the relevant graphical objects (the three buttons), and start the parser. When the 
parser returns control to the application, the user will have selected an action, and the 

corresponding routine will have been executed. 

This UIMS has been used to create user interfaces much more complicated than the 
simple example presented here. This example is intended to illustrate the fundamental 
design features. As was discussed in Section 1.3.1, after the UIMS had been developed, but 
before it could be used to build the user interface for the testbed, the statement of work 

was revised so as eliminate further development along these lines. 

2.3    DiST: A Distributed System Testbed 

The design of DiST was based upon the requirement that we incorporate the core software 
from the CNOS II Exploratory System Model (ESM) and the Integrated Communication 
Management System (IMS). Our analysis of the design documents revealed several areas 
of similarity between the ESM/IMS and our SIMULACT. There were, however, significant 
areas of difference. For example, SIMULACT (and the problem solving agents which ran 
under SIMULACT) was written in Common Lisp. The ESM and IMS were written in the C 
programming language. The ESM incorporated a more complete, graphical interface, but 

one less capable than we had intended as the enhancement for SIMULACT. The ESM ar- 
chitecture was based on a fixed physical architecture with limited flexibility to accomodate 
a variety of network emulation/simulation configurations. In particular, in the ESM/IMS 
software, each workstation is assigned the role of exactly one network management node. 
Another workstation is used for the Executive Director function to oversee the entire sim- 
ulation.   For DiST we envisioned a logical architecture in which a workstation could be 
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assigned one or more management nodes. With this approach, a fixed set of workstations 

could simulate networks having a wide range of management nodes. 

After the initial design of DiST was complete, we began the implementation task. The 

intended plan was to build on the existing code for the ESM/IMS. At this point we began 
to encounter a series of problems which eventually became insurmountable. The ESM/IMS 
code relied on SunView for all of its user interface. SunView was an obsolete product 
of Sun Microsystems for which there was no current support available. Also, the only 

documentation for ESM/IMS was the code itself. After a significant investment of time 

and effort, we concluded that our prospects for using the ESM/IMS code were not good. 

Since work on the other components of the overall project needed to progress with some 

knowledge of the simulation environment, we decided to fall back on our original testbed 

system. It was our belief that the research goals for distributed problem solving could be 

demonstrated using SIMULACT, and it was more important to spend the time and effort 

on achieving those goals than producing an enhanced testbed. 
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Chapter 3 

Distributed Problem Solving 
Agents 

3.1    Introduction 

3.1.1    The Coordination Problem 

Since its inception, the field of study generally known as Artificial Intelligence has expanded 
to a point where it now includes any area of research which strives to achieve "intelligent" 
behavior in the class of systems under its consideration. Distributed Problem Solving (DPS) 
is one such research area and will be the setting for the material presented in this report. 
Briefly described, research in distributed problem solving is primarily concerned with finding 
solutions to a single problem whose domain is logically and/or geographically distributed. 
A prevalent representational framework for such problems assumes that knowledge of their 
underlying distributed nature is captured by a network of problem solving nodes. The 
knowledge represented by each network node corresponds to some convenient partitioning 
of the problem space. Usually this partitioning will coincide with the inherent logical 
and/or geographical distribution. The component of each network node responsible for 
local problem solving activities, consists of an asynchronous computing element generically 
known as an agent (or problem solver). The distribution of knowledge throughout the 
network is assumed to be such that no single agent is capable of solving the distributed 
problem all by itself. Rather, the network of problem solving agents must cooperate with 
one another in order to coordinate their individual efforts and collectively formulate a 

solution to the overall distributed problem. 

Distributed problem solving agents communicate with one another using a message pass- 
ing paradigm. Control of the problem solving process is exerted through various exchanges 
of information among the agents. In this work inter-agent communications are designed to 
be loosely coupled.  Tasks are said to be coupled when the input of one task depends on 
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the output of another. A coupling of tasks is considered to be "tight" when a state change 
in one task immediately affects the state of another task (i.e. task synchronization). Slack 
resources can be introduced, in the form of buffer inventories, to "loosen" the coupling 

between tasks. As one task places resources (information, partial products, etc.) into a 

buffer, coupled tasks can remove them as they are needed. In this way, vacillations in a 
task's output productivity will be absorbed by the buffer and thus will not directly affect 
the processing of coupled tasks. With respect to distributed problem solving systems, slack 
resources are used to reduce coordination complexity by buffering inter-agent communica- 
tions with message queues. Information communicated from one agent to another is placed 

into the receiving agent's message queue and is attended to when time permits. 

In many problem domains, the cost of inter-agent communication can be prohibitively 

high or the communication channels themselves may be near their capacity. Therefore, 

communication between problem solving agents should be kept to a minimum. This is es- 

pecially true of problem domains which are geographically distributed. In such domains, 

any indiscriminate inter-agent communications may cause undue contention for the commu- 
nication channels and tend to hinder the overall problem solving effort. A loosely coupled 
architecture would alleviate this contention by requiring that an agent spend the "majority" 
of its time engaged in local problem solving activities with relatively little time spent initi- 
ating and responding to inter-agent messages. It is not permissible however, for an agent to 
become loosely coupled to such an extent that it simply ignores messages sent to it by other 
agents. A second condition imposed on the distributed agents effectively prevents such a 
situation from ever occurring. This condition maintains that agents be semi-autonomous. 
A semi-autonomous agent is one which is required to process requests for knowledge from 
other agents in a timely manner as well as comply with any instructions it may receive, but 

is otherwise free to pursue its own problem solving agenda. 

The use of slack resources is another organizational substructure capable of reducing 
coordination complexity. Another complexity reducing substructure concerns the way in 
which an organization is partitioned. Organization theory distinguishes between two types 
of organizational partitioning called self-contained division and functional division. In an 
organization which is made up of self-contained divisions, each division contains all the 
necessary production facilities to produce a different product. Conversely, in functionally 
divided organizations, different products are produced by sharing production facilities, each 
of which performs a single function. With respect to a distributed processing system, 
partitioning an organization into self-contained divisions corresponds to having a group of 
equally capable homogeneous problem solving agents; functional divisions correspond to a 
group of highly specialized agents. Depending on the nature of the distributed problems 
under consideration, one type of partitioning will reduce complexity while the other will 

increase complexity. 

By far, the most perplexing obstacle in solving a distributed problem under this paradigm 
is the coordination problem.  The coordination problem may be described as the dilemma 

16 



faced by each agent in determining; 1) how to assess its role in the distributed problem 
solving process, and 2) how best to solicit assistance from other network agents so that its 

piece of the solution puzzle may be coherently integrated with theirs. A solution to the 

coordination problem relies heavily on characteristics of the particular problem domain and 
often becomes an integral part of the distributed problem itself. A technique is introduced 
which effectively reduces such coordination problems to equivalent problems in the domain 
of logic and relegates the responsibility for their solution to an already existing Distributed 
Automated Reasoning System called DARES [56]. In effect, a coordination problem can 

be made transparent by exploiting the distributed problem solving heuristics previously 
developed for the DARES reasoning system. However, another distributed problem must 
be solved in its stead. The new problem is that of producing an adequate representation 
of the distributed problem in the form of an axiomatization which will bring about the 
desired coordination. An example development of such an axiomatization for problems in a 
toy domain is presented in detail and the potential for an expert system implementation is 
discussed. A small example taken from the domain of a large-scale communication system 
is presented as further evidence of the automated reasoning technique's usefulness. 

3.1.2    Related Work 

3.1.2.1    Distributed System Organization 

The organization of a distributed system is considered to be a composite of both an (orga- 
nizational) structure and control regime. An organizational structure establishes a suitable 
framework within which all aspects of the distributed problem solving process are to be 
carried out. Its very nature represents a structural compromise between opposing organi- 
zational forces. These forces are driven by the need to accommodate certain troublesome 
attributes of distributed problems and their domains. A control regime consists of machi- 
nations which are intended to bring about an overall coordination of distributed problem 
solving activity. The initiatives undertaken by an agent must be coordinated with those of 
its partners in order to ensure each agent will produce the proper resources (services, partial 
products, etc.) at the proper time. Possible strategies for the realization of such coordinated 
problem solving behavior are constrained by the functional properties of an organization. 
Thus, it becomes apparent that what constitutes a practical mode of coordination is depen- 
dent on a wide variety of problem characteristics and how they are accommodated by an 
organization's structure and control regime. To date, no well-defined methodologies for syn- 
thesizing an appropriate coordination stratagem have yet been developed. However, many 
useful insights into their design can be obtained by considering previous work [27] in which 
distributed systems are viewed as being analogous to human organizations.1 It has been 
found that many of the concepts and theories germane to the management science field of 

1 A brief introduction to the advantages and disadvantages of distributed systems and the need to reduce 
uncertainty and complexity can also be found in [7]. 
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organization theory can also be applied to distributed processing systems. These concepts 

are summarized in the following paragraphs and will serve as a basis for the discussion 
of several distributed processing organizations and the coordination strategies which have 

been developed for them. 

Not unlike the human mind, the capacities of distributed agents for problem solving 

are limited both by their rate of program execution and effective use of available memory. 
These limitations result in a condition which is known as bounded rationality. With respect 

to a distributed organization, bounded rationality has two important implications; 1) there 
is an imposed upper bound on the amount of information an agent can process effectively, 
and 2) the extent to which an agent may exert control within the organization is limited. 

As distributed problems become increasingly larger in size and more diverse, the amount of 

information which must be processed also increases, as does the degree of control complexity. 

Eventually, the requirements of ever more difficult and involved distributed problems will 

begin to tax, and even exceed, the maximum computational capacity of a given organization. 

When this condition occurs, the organization is ultimately destined to fail. A major goal 
in the design of distributed organizations is therefore to provide an effective means of 
limiting the amount of information and control complexity perceived by any member of 
an organization. For any given distributed problem, a successful organization will prevent 
an agent from becoming inundated with information and control decisions. 

The structure of an organization depends on the degrees of uncertainty and complex- 
ity associated with tasks in a particular problem domain. Uncertainty is defined as the 
difference between available information and the information necessary to make the best 
possible decisions, and complexity is defined as the degree to which excessive demands are 
placed on the rationality of an organization. Organizational design strategies suggested by 
contingency theory are based on the manifestation of uncertain information. In a departure 
from this view, [27] identifies three additional types of uncertainty (algorithm, environment, 
and behavior) which can generally be ascribed to distributed processing systems. In addi- 
tion, three types of complexity (information, task, and coordination) are also distinguished. 
For tasks which exhibit a high degree of complexity, organizations having a heterarchical 
structure in which necessary resources are obtained through contracting are generally more 
desirable. While for tasks which exhibit a high degree of uncertainty, it is advantageous 
to "vertically integrate" facilities to produce the necessary resources into a more hierar- 
chical structure. The selection of an appropriate organizational structure for a distributed 
problem domain depends largely on the nature of its tasks, and will likely fall somewhere 

between the two extremes of being a heterarchy or hierarchy. 

An agent may have reasons, based on knowledge of the problem domain or the nature 

of specific tasks, to doubt the correctness of the available information. This is called in- 
formation uncertainty. Organizations can reduce information uncertainty by incorporating 
control mechanisms which use synthesis or predication techniques to verify intermediate 
problem solving results. The algorithms used by an agent to make various control decisions 
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are also a source of uncertainty. Regardless of the reliability of information upon which con- 

trol decisions are based, it is uncertain whether these decisions will bring about the intended 
environmental state changes. The interaction of many concurrent control decisions has a 

tendency to obscure the coordination objectives of any one particular agent. In this respect, 
no agent can be certain of what environmental state will result from such interactions. This 
condition is what is called environmental uncertainty. In the face of environmental un- 
certainty, an organization must have the capability of adapting to any unforeseen problem 
solving states. An organization can reduce algorithm uncertainty by having agents maintain 
multiple approaches to fulfilling the requirements of a task. In this way, the organization 
can recover from poor control decisions by employing an integration technique such as re- 
laxation. The last form of uncertainty is concerned with the behavior of problem solving 
agents. Behavioral uncertainty makes it necessary an agent to consider contingency plans 
in the event another agent is unable to provide the resources it has "promised". This form 
of uncertainty is primarily associated with heterarchical types of organizations. 

The sheer quantity of information which agents are exposed to during the course of 
normal problem solving activities, is measured as information complexity. If an agent must 
contend with large amounts of unrefined information, the agent's rationality can quickly 
become over burdened. When such a condition occurs, the agent is no longer an effective 
member of the distributed problem solving group. One method by which the level of 
information complexity can be reduced is through information abstraction. Abstracted 
information provides several levels of representation in which an agent may choose to carry 
out its processing activities. The lowest level of representation contains the highly detailed 
unrefined forms of information while successively higher levels contain forms of information 
which are increasingly more general in nature. As the levels of abstraction get progressively 
higher, the extent to which detailed information is concealed continually increases. Using 
abstracted information, an agent can reduce its processing burden by selecting the highest 
levels of representation possible in which to carry out its problem solving activities. 

Task complexity is a measure of the total number of actions which must be performed 
to complete a task. The complexity of a particular task can vary significantly depending on 
the organizational structure in which the task is to be performed. In a strict hierarchical 
organization, the level of required communication among agents (i.e. coordination complex- 
ity) increases as tasks become increasingly more complex. As task complexity continues to 
increase, a level will eventually be reached in which effective problem solving is no longer 
possible due to an extreme amount of communication overhead. The requirements of tasks 
at this level of complexity have exceeded the bounded rationality of the hierarchical orga- 
nization and must be reduced. An effective reduction in task complexity can be realized 
by moving to a heterarchical type of organizational structure. In a heterarchy, resources 

needed by an agent to complete a task may be obtained from other agents by a method 
known as contracting. Once an agent has made its need for a certain resource known, an- 
other agent may decide it can supply the resource and agree to do so. This agreement forms 
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a contract between the two agents and eliminates the need for any further interactions until 
the resource is subsequently tendered. Contracting therefore is capable of effectuating con- 
siderable reductions in the amount of communication overhead which in turn translates to 
a reduction in task complexity. This is the basic premise of the division of labor principle. 

As may already be evident, coordination complexity and task complexity are not inde- 
pendent, but rather are quite strongly linked. Resource interdependence among problem 
solving agents makes it necessary for the agents to cooperate with one another in order 

to complete a task. Such cooperative interactions between agents must be coordinated so 

that essential resources are made available and properly exchanged when they are needed. 

The amount of agent interactions necessary to accomplish a task coincides with the level of 

coordination complexity. There are few heuristics available to use as a guide in determining 

how to reduce the complexity of task coordination. Perhaps the most widely used heuristic 

stems from the definition of nearly decomposable systems. A system is considered to be 

nearly decomposable if it exhibits a greater level of interaction within a problem solving 
agent (interaction locality) than between agents. This implies that coordination complex- 
ity is directly related to how well the decomposition of a task exhibits interaction locality. 
To the extent a task decomposition manifests interaction locality, greater reductions in co- 
ordination complexity will be realized. As a design heuristic for distributed organizations, 
system near decomposability implies they should be constructed so as to encourage minimal 

interactions between problem solving agents. 

3.1.2.2    Distributed Control Regimes 

The agents of a distributed problem solving system cooperatively interact with one another 
through the transmission of various kinds of messages over a network of communication 
pathways. A coordination of these interactions is necessary to bring about acceptable 
and globally coherent problem solving behavior. However, coordination of the problem 
solving process as a whole cannot be achieved directly because there is no centralized form 
of network control. The only available alternative is a form of decentralized control in 
which agents must determine for themselves how best to interact with one another. Prom 
a communications perspective, a decentralized control regime can be characterized with 
respect to the assumptions made locally by agents concerning the nature of interagent 
coordination. Principally these assumptions pertain to who is going to receive messages 
sent by the agent, how are these messages going to be processed, who will send the agent 
messages, what kinds of information will these messages contain, what processing does the 
sending agent expect to be done, and what response will the sending agent expect to receive. 
A spectrum of decentralized control regimes can be discerned by considering the relative 
level of control present in interagent coordination. The level of control used to coordinate 

agent interactions can be described in terms of both the specificity with which the character 
of tasks are conveyed and the extent to which these tasks are expected to be carried out. 
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With regards to the specificity of received messages, those which specify tasks to perform 
are considered more specific than those which specify goals to achieve. Likewise, messages 

which specify goals to achieve are considered more specific than those containing only data. 

Agents which are required (to some degree) to perform certain actions in response to the 
receipt of a message, are generally referred to as being externally directed. Whereas those 

agents which decide (to some degree) for themselves how they will respond to received 
messages are referred to as being self-directed. Located at the two extremes of such a 

control regime spectrum are complementary forms of decentralized control. At one extreme 

are forms of control which are classified as being "implicit" while those located at the other 
extreme are classified as being "explicit". In any given control regime, the more externally 
directed an agent and the more specific a received message, the more explicit the form of 
control. In contrast to the explicit forms of control, the more self- directed an agent and 
the more general a received message, the more implicit is the form of control. It is easy to 
imagine a whole array of control regimes in which their level of control would place their 
classification somewhere between the two extremes of being an implicit or explicit form of 

control. 

3.1.2.3    Distributed Organizational Structures 

The design of conventional distributed problem solving systems can be viewed as a decom- 
position of what are essentially centralized systems. In a centralized system, the knowledge 
contained in their databases are assumed to both complete and accurate. For such central- 
ized problems, the knowledge contained in a system's database is both complete, meaning 
there is sufficient knowledge to solve the problem, and accurate, meaning all knowledge is 
valid. Such systems are generally organized so as to provide each agent with a consistent 
local knowledge base containing only a portion of the overall domain knowledge. When 
taken as a whole, the distribution of knowledge throughout the problem solving network 
represents a complete and accurate collection of all available domain knowledge. 

The design of conventional distributed systems inherently places a great deal of empha- 
sis on maintaining correctness in every aspect of the problem solving process. Since the 
knowledge distribution is known to be accurate, problem solving agents can be certain that 
any result they derive from a valid computation is indeed correct. Similarly, any result 
which is obtained by an agent through a cooperative exchange with another, must also 
be correct and may readily be incorporated into the agent's local problem solving effort. 
Such conventional distributed systems have been classified in [49] as being of a completely 
accurate, nearly autonomous (CA/NA) type. 

For applications of distributed problem solving to areas in which the domain knowledge 
itself is neither complete nor consistent, the use of a CA/NA type of distributed system 
would not be appropriate. Another kind of distributed system called functionally accu- 
rate/cooperative (FA/C) [49] has been defined which is able to cope with domains having 
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these characteristics. Rather than constraining agents to producing only results which are 
correct and complete as is done with CA/NA systems, the FA/C approach permits agents 

to generate tentative results which may be incorrect, incomplete, and insistent with the ten- 

tative results produced by other agents. In this way, an agent can contend with incomplete 
domain knowledge by generating alternative results based on plausible expectations of what 

the missing knowledge would have perhaps supported. An interactive process of iterative 
refinement can then be used to cooperatively eliminate any erroneous intermediate results. 

By relaxing the constraint of CA/NA distributed systems which required an agent to 
generate only complete and correct results, agents faced with the prospect of possibly incom- 
plete domain knowledge can still generate some useful information. An agent can produce 

a set of alternative partial results which are based on reasonable expectations of what 

the missing knowledge may be. These tentative results may be incomplete, incorrect, and 

inconsistent with the tentative results produced by other agents. 

Another source of information uncertainty not distinguished by Fox, but which was 

recognized by Lesser and Corkill [49] is the possibility of incomplete information resulting 
from a limited distribution of domain knowledge. In such distributions, there is certain 
information missing from the overall problem description which can never be explicitly 

attained by any computational means. 

3.1.2.4    Coordination Strategies 

It has generally been recognized there are two basic forms of cooperation in DPS systems 
called task sharing and result sharing. Task sharing is a form of cooperation in which 
problem solving agents assist one another by sharing the responsibility for solving subtasks 
associated with the overall distributed problem. In contrast, with result sharing agents 
cooperate with one another by supplying partial results which may be incorportated into an 
agent's local problem solving effort. There are several reasons why it would be advantageous 
(if not necessary) for an agent to decompose a large task into a number of smaller more 
manageable subtasks. Determining how subtasks should be delegated to other network 
agents is commonly called the connection problem. As a rule, it can be said that "optimal" 
problem solving performance may be achieved through a balance of computational loading 
among the network of distributed agents. For this reason, an agent endeavoring to solve 
a task which is too complex may cause a computational "bottleneck" that would hinder 
the overall problem solving effort. In such cases, an agent's time would be better spent 
partitioning a difficult task into a number of constituent subtasks. The subtasks would in 
turn be passed along to other agents of the network which are better able to accommodate 
the additional load needed to compute a solution. Alternatively, an agent may find it 
necessary to decompose a task, not necessarily as a result of it being too complex, but 
rather because solving the task requires certain expertise which the agent simply cannot 
provide.   Subtasks of this kind must be delegated to other agents on the basis of their 
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abilities as well as their relative computational load. 

Negotiations initiated between a contract manager and various subcontractors in dis- 

tributing the labor required to complete a task, has been suggested as a metaphor for 
describing inter-agent cooperation. The Contract Net formalism [76, 77] is a protocol which 
is used to facilitate negotiations between pairs of DPS agents. A contract is considered 
an explicit agreement between an agent (contract manager) which has generated a subtask 
to be completed and an agent (subcontractor) which is charged with completing the task. 

The role of an individual agent as being either a contract manager or subcontractor is not 
chosen a priori, but rather is determined naturally as the problem solving process unfolds. 
To establish contracts, managing agents broadcast messages to the other distributed agents 
in the form of task announcements. Each available agent (potential subcontractor) evalu- 
ates the task announcements it has received in order to assess; 1) the relative difficulty of 

each task, and 2) how appropriate the agent's expertise is for the particular task. Based 
on such evaluations, an agent will submit a bid on those tasks for which it is best suited. 
The managing agent then evaluates these bids and awards contracts to the most appropri- 
ate agents charging them with the completion of each subtask. Contract awards serve to 
establish connections between corresponding managers and subcontractors in which they 
may communicate privately while work on the contract is in progress. As the contracted 
work for each subtask is completed, the managing agent is responsible for integrating these 
results into its solution of the original task. 

There is no restriction which prevents a subcontractor from further decomposing a task 
and thus becoming the managing agent for those respective subtasks. In this way, the Con- 
tract Net formalism provides a dynamic method of recursively defining a distributed control 
hierarchy. The essence of such a distributed control structure is to provide a framework 
for coordination in which partial solutions of the distributed problem can be mechanically 
integrated into a globally coherent solution. This method of coordinating distributed agents 
is particularly appealing since the synthesis of a solution exactly parallels the structure of 
the established control hierarchy. A more detailed discussion of Contract Nets and issues 
concerning their implementation are presented in [18]. 

3.2    Distributed Task Coordination With Automated 
Reasoning 

3.2.1    An Overview of DARES 

DARES [57, 59] is a distributed automated reasoning system which was developed as a vehi- 
cle for investigating the role of knowledge in distributed problem solving systems. DARES 
utilizes a refutation based theorem proving technique similar to that of many classical au- 
tomated reasoning systems.   What sets DARES apart from other automated reasoning 
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systems is its inherently distributed architecture. In a conventional automated reasoning 
system, a reasoning problem is solved by a single theorem proving process which has access 
to all the relevant domain knowledge. In contrast, the DARES system is able to solve the 
very same reasoning problems when the domain knowledge is distributed among a network 

of identically configured reasoning agents. The distribution of knowledge among these rea- 
soning agents is such that no single agent may have enough knowledge that would enable it 
to complete the reasoning task alone. This is a characteristic of distributed problem solving 
environments and requires the reasoning agents to cooperate with one another in order to 

solve a given reasoning problem. 

Each reasoning agent is configured as the manager of a set of independent and concurrent 

theorem prover processes, each of which performs binary resolution using a set of support 

strategy. Individual theorem provers under the control of a single reasoning agent are 

dedicated to solving completely separate reasoning problems. To solve a reasoning problem, 

the task must first by relegated to a subset of the reasoning agents in the network. When 
a subset of reasoning agents has been selected, a unique tag is associated with the problem 
and the selected agents are notified of their participation in that particular reasoning task. 
The notified agents then allocate a new theorem prover process which is identified by the 
chosen theorem tag. In this way, every reasoning agent working on a particular problem has 
a theorem prover process identified by the same theorem tag. This allows a reasoning agent 
to handle communications from other agents concerning a particular reasoning task. For 
purposes of experimentation, any knowledge relevant to the problem is distributed among 
the subset of selected agents. In practice however, it is expected such knowledge is already 
distributed and can be made available. The resolution process then begins. 

At the completion of each resolution level, the individual DARES reasoning agents apply 
a Forward Progress heuristic to determine whether or not they have made any significant 
progress towards a solution. The Forward Progress heuristic is comprised of two other 
heuristics, called the Proof Advancing heuristic and the Monotonie Search heuristic, both 
of which analyze the newly generated resolvents for apparent signs of progress. The Proof 
Advancing heuristic compares the length of each resolvent, in terms of the number of literals 
it contains, with the lengths of its parent clauses. Generally, one can expect resolution to 
generate resolvents which have a length two less than the sum of the lengths of their parent 
clauses. Resolvents which fit into this category offer no evidence the proof is actually 
advancing. On the other hand, resolvents which have a length less than what may be 
expected, are considered to represent an advancement in the proof. A resolvent with less 
than the expected number of literals will be generated when a unified substitution into a 
parent clause results in a number of identical literals. All but one of these identical literals is 
redundant and will be removed from the resolvent clause, thus producing a shorter resolvent. 

The Proof Advancing heuristic also recognizes two important special cases in which the 
generated resolvents do have the expected number of literals. The first case is a resolvent 
clause which has only a single literal, or unit clause.  When resolving with a unit clause, 
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any parent clause resolved with the unit clause will generate a resolvent with one less literal 

then the parent clause. It is for this reason that unit clauses are viewed as being capable of 

narrowing the search and are therefore considered as advancing the proof. This same idea is 

used in the Unit Preference resolution strategy where clauses with the smallest number of 
literals are resolved before those clauses containing more literals. Those resolvents that were 
generated from a unit clause are the second special case recognized by the Proof Advancing 

heuristic. They represent one of the first steps in narrowing the search from a unit clause as 
mentioned above. If there is at least one resolvent that fits into any of these three categories, 

the Proof Advancing heuristic is satisfied and the reasoning agent continues its search by 

generating the next level of resolvents. 

The Monotonie Search heuristic takes a somewhat broader view of what is considered 
progress than does the Proof Advancement heuristic. Rather than considering only the 
number of literals in each clause at a particular level of resolution, the Monotonie Search 
heuristic looks at the total number of literals in all the clauses. For the search of a proof 
to be considered monotonic, the total number of literals contained within the clauses of a 
particular resolution level must be less than the total number of literals in the preceding 
level of resolution. Having stated this, the operation of the Forward Progress heuristic 
can now be summarized as follows: if the Proof Advancing heuristic is not satisfied by the 
current level of resolution and was also not satisfied by the previous level of resolution, and 
the two resolution levels do not satisfy the Monotonic Search heuristic, then there is an 
apparent lack of forward progress in the search for a proof. The Forward Progress heuristic 
is used to detect when a reasoning agent does significantly progress in its own local search 

efforts, and consequently, requests new information from other reasoning agents. 

Once DARES has used the Forward Progress heuristic to determine that it should import 
some new information from other reasoning agents, it must then decide what information 
would be most beneficial. To accomplish this, DARES first applies a Likelihood heuristic 
to the clauses of the current resolution level. Those clauses which do not have the negated 
theorem in their ancestry are considered the least likely clauses to advance the proof and 
are assigned a likelihood of 0. The remaining clauses are assigned a likelihood equal to 
the reciprocal of the number of literals they contain. In this way, a single literal clause 
is assigned the maximum likelihood of 1 since obtaining the negation of this literal from 
another agent would immediately solve the proof. When making a request to import new 
knowledge from other reasoning agents, a DARES agent actually initiates a cycle of requests. 
The first request made to the other reasoning agents is for knowledge which will resolve 
with the clauses assigned the highest likelihood. If this request fails, the reasoning agent 

will repeatedly make similar requests for knowledge based on clauses which were assigned 
successively lower likelihoods. The form of each information request is a set of literals called 

the Minimum Priority Negated Literal Set. This set is obtained from a group of clauses 
with a particular likelihood, by first combining all the literals from each clause into a set. 
The literals which are instances of other literals are subsumed to minimize the amount 
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of information in the request. Finally, each literal in the set is finally negated for the 

convenience of the other reasoning agents. 

When a reasoning agent receives a request for knowledge from another agent, it consults 

its database to find any clause which contains a literal that will unify with at least one literal 
in the Minimum Priority Negated Literal Set. If there is at least one clause found in the 
database, the reasoning agent sends a list of those clauses back to the requesting agent. 
When received by the requesting agent, this information is then tagged with the other 
agent's name and becomes incorporated in the reasoning agent's own local proof. If the 
requesting agent does not receive any new information from the other reasoning agents, 
even after the literals with minimum likelihood have been requested, the reasoning agent 

terminates its local search for a proof. 

The Subsumption strategy plays a key role in controlling the size of the search space 

generated by an automated reasoning system. Subsumption is used to reduce the number of 

clauses in a list of resolvents by removing those clauses which are instances of another more 
general clause from the list. The procedure for performing subsumption on two clauses can 
be summarized as follows: a clause Cl is said to subsume another clause C2, if the variables 
of Cl can be instantiated such that all the resulting literals occur in C22. As an example, 
consider applying the subsumption strategy to a list of two clauses; Cl = A(x), and C2 = 
(A(b) V B(.z)). Since clause C2 contains the literal B(z) and there is not a similar literal in 
clause Cl, it is not possible for clause C2 to subsume clause Cl. By assigning the variable 
x of clause Cl to the constant b, the only resulting literal A(b) is present in clause C2, 
therefore clause Cl subsumes clause C2. It is important to note that no information will 
be lost by removing clause C2 from the list. To see why this is so, consider the meaning of 
clause Cl which states that no matter what the value assigned to variable x is, the predicate 
A(x) is always TRUE. Consequently, any instance of clause Cl, such as the literal A(b) 
which occurs in clause C2, must also be TRUE. Therefore, clause C2 is TRUE regardless 
of the value of B(z) and thus is reduced to an instance of clause Cl. 

3.2.2     Developing a Distributed Axiomatization 

In the previous section, a brief description of how DARES reasoning agents prepared for 
a new reasoning task was given. While the precise nature of how reasoning agents are 
actually prepared was not made explicit, the level of detail given was sufficient to gain an 
understanding of the DARES system as a whole. In this and later sections, it would be 
helpful to become familiar with some of the more important details. As they are currently 
implemented, DARES reasoning agents are pre-programmed to accept various commands 
from external sources. Principally, these commands are given by other kinds of distributed 
agents.   For a typical application, a DARES system would be used in conjunction with 

2 This description of subsumption was adapted from Exercise 2 on page 90 of [91]. 
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other kinds of distributed problem solving systems as a mechanism for facilitating inter- 
agent reasoning. Generally, each DARES agent is considered to be uniquely paired with 

a specific agent from one of the other distributed systems. These agents are generally 

in control and manage their respective reasoning agents as a subordinate system. The 
basic commands understood by each reasoning agent include the following; 1) create and 

initialize a new theorem prover process, 2) load a theorem prover process with axioms and 
negated theorem, and 3) start a theorem prover process. Once a group of controlling agents 
has recognized the need for a distributed reasoning task, the members of the group must 

mutually agree upon a symbolic designator to uniquely identify the new task. From now 
on, when issuing commands to their respective reasoning agents, this symbol is referred to 
by each controlling agent in the group as the theorem tag. When a controlling agent has 
completed an axiomatization of its portion of a reasoning task, it then issues the above three 
commands in order, with each command being associated with the agreed upon theorem 

tag. 

The axiomatization developed by each controlling agent affiliated with a particular dis- 
tributed reasoning task will henceforth be referred to as a local axiomatization. Recall from 
section 3.1.1 a basic assumption of distributed problem solving which presumes no single 
agent has sufficient knowledge to completely solve a distributed problem without the co- 
operation of other agents. As a consequence, it can further be assumed the distribution of 
knowledge among any set of controlling agents is such that an axiomatization formulated 

by each agent must necessarily be incomplete. Thus, for a given distributed reasoning task, 
the axiomatization developed by each controlling agent is but a partial axiomatization and 
will reflect only that portion of the problem which is locally observable from an agent's per- 
spective. A distributed axiomatization is considered to be the set of all local axiomatizations 
produced by a group of controlling agents for a single distributed reasoning task. 

To describe in detail all the possible ways in which a distributed axiomatization may be 
devised to represent even a single distributed reasoning task would be exceedingly difficult. 
Unquestionably, a more pragmatic means of elucidating such a procedure would be to 
develop, in a step-by-step fashion, a distributed axiomatization for a typical distributed 
reasoning problem. Such a developmental process would not only serve to illustrate many 
of the difficulties typically associated with distributed reasoning problems, but would also 
show at least one way in which these difficulties may be overcome. A problem often used 
for such purposes is the classic blocks world problem. In the blocks world problem the 
object is to have an assembly robot arrange a stockpile of building blocks into a specific 
goal configuration. By adding more assembly robots, the blocks world problem can be 
made a suitable distributed problem for demonstrative purposes. In the distributed blocks 
world problem a number of independent robots must coordinate their interactions with one 
another in order to achieve a common goal configuration of blocks. In the following sections, 
a distributed axiomatization of the problem which automatically coordinates the actions of 

each assembly robot is developed. 
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Figure 3.1: A Two-Robot Assembly Environment. 

3.2.2.1    A Distributed Blocks World Problem 

For the sake of simplicity, it will be assumed that all assembly robots are identical in 
form and function and that each robot manipulates blocks synchronously with respect 
to the others. Furthermore, it will be assumed that each assembly robot is (and always 
remains) stationary, much like many industrial robots. The environment of an assembly 
robot will be defined to include all physical objects of the distributed domain within its 
region of influence. Accordingly, the environments of any number of robots may overlap in 
an arbitrarily complex manner. As a matter of convenience in discussing the development 
of an exemplary distributed axiomatization, a particular instance of the distributed blocks 
world problem involving only two such assembly robots will be discussed and is illustrated 
in Figure 3.1. Throughout the following discussion, it is presumed the problem solving 
behavior of each physical assembly robot is being modeled by a corresponding distributed 
problem solving agent. It is these distributed assembly robot agents which actually produce 
the individual local axiomatizations that make up a particular distributed axiomatization. 
The local axiomatizations are then assumed to be given directly to a respective set of 
subordinate DARES reasoning agents in the manner described previously. Results from 
the distributed reasoning subsequently performed by the DARES system is what actually 

determines the actions of each assembly robot. 

Figure 3.1 is a depiction of a two-robot blocks world problem as seen from a global 
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perspective. The objects to be manipulated are simple blocks labeled A, B, C, and D. The 
two robots labeled Rl and R2 are only capable of moving blocks directly from one table 

to another. Also, the tables labeled Tl, T2, T3, and T4 are permanently attached to the 

floor of the robot assembly area and have only enough surface area to accommodate a single 
block being placed directly on them. Thus, the principle function a robot performs is one 
of picking up a block from one table and stacking it onto another table or block. For the 

purposes of developing an axiomatization, this sequence of robot actions will be simplified 
by consolidating them into a single stacking operation. When viewing the two-robot blocks 

world problem as a distributed problem, boundaries need to be established which delineate 
a region of responsibility for each individual problem solving agent. For the problem of 
Figure 3.1, the boundary between the regions of robot Rl and robot R2 can be visualized 
as a vertical line dividing tables T2 and T3 equally into two halves. Tables T2 and T3, as 
well as any blocks stacked on them, are what may be called boundary objects in that they 

are common to two or more (logically) adjacent regions of distribution. In Figure 3.1, the 
boundary objects common to the regions of both robots are shown enclosed by dotted lines. 

The distribution of knowledge in the two-robot blocks world problem is such that proper- 
ties of domain objects are maintained across distribution boundaries and remain consistent 
with the global problem. For example, an object which was a block named 'B' in the global 
problem is still a block named 'B' in every region of distribution it belongs to. As a conse- 
quence, an object labeled as 'C in two different regions refers to exactly the same domain 
object. Likewise, the properties of 'C will not conflict across distribution regions. For ex- 
ample, if one agent has knowledge that 'C is an apple, no other agent will possess knowledge 
contrary to this. Each robot agent has complete knowledge of the domain objects within 
its designated region. Accordingly, both robot agents have knowledge of their own region's 
boundary objects. The definition of a robot's environment given previously parallels ex- 
actly the distribution boundaries for each robot agent established above. Therefore, the 
term "robot environment" will be used to designate a robot agent's region of responsibility. 
Robot Rl's environment includes tables Tl, T2, and T3, along with any blocks which may 
be on top of these tables. Similarly, the environment of robot R2 includes tables T2, T3, 
and T4, along with all the blocks on top of these tables. Herein lies most of the problem's 
difficulty, the overlap in robot environments translates to the boundary objects being si- 
multaneously accessible to both assembly robots. Regulating their access to these domain 
objects constitutes a large portion of the distributed blocks world coordination problem. 

Most distributed reasoning tasks fall into two broad general categories; 1) those which 

answer questions such as "Yes the condition exists" or 'Wo the condition does not exist", 
and 2) those which find complete solutions to a given problem. With regards to the type of 
reasoning required, the distributed blocks world problem, as it has been described, falls into 
the second category. The desired result of a reasoning task is a valid plan which, if faithfully 
followed by each assembly robot, will automatically coordinate their actions in achieving 
the desired assembly goal. In terms of defining an appropriate axiomatization for this kind 
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of reasoning response, the complications involved in representing a state space search must 

necessarily be introduced. When applying the method of state space search to distributed 
reasoning problems, a fundamental difficulty arises in maintaining a coherence between the 

local states of each reasoning agent and the global state of the distributed problem. 

3.2.2.2     The Basics of a Local Axiomatization 

While for demonstrative purposes the distributed blocks world problem under consideration 
has only two assembly robots, the axioms devised will not be limited to this special case 

as it would detract from the example's overall effectiveness. Wherever appropriate, the 

axioms will be structured in such a way as to accommodate a generalized n-robot prob- 

lem. Turning now to the actual design of a distributed axiomatization, several types of 

predicates can immediately be identified which will be used to represent the kinds of phys- 

ical domain objects associated with the distributed blocks world problem. In particular, 

these predicates are BLOCK(x) and TABLE(:r). Their respective interpretations are "x is 
a BLOCK" and "re is a TABLE." A predicate ROBOT(x) could be defined as well, but for 
the axiomatizations which will be developed, it is not actually necessary. In order to facil- 
itate a generalization of the developed axioms while at the same time keeping the number 
of required predicates to a minimum, it will be convenient to identify each robot using a 
recursive function representation. The successor function can be used for this purpose and 
will later be exploited to impose an ordering on the selection of simultaneous robot actions. 
In number theory, the successor function s(x) is defined as s(x) = x + 1 for all x and can 
be used as a means of counting. More importantly for the purposes of naming individual 
robots, the successor function can be used to conveniently represent integers recursively in 
the following way: s(0) = 1, s(s(0)) = 2, s(s(s(0))) = 3, and so on, where the level 
of functional recursion is equal to the desired integer. When assigning labels to the vari- 
ous assembly robots, their respective robot agents will substitute a corresponding recursive 
successor function representation. For example, robots which would normally be labeled 
Rl, R2, and R3 will be named respectively s(0), s(s(0)), and s(s(s(0))) in a distributed 
axiomatization. The beginnings of a distributed axiomatization for the two-robot assembly 
problem of Figure 3.1 can now be tabulated. In the following, axioms listed on the left form 
a partial local axiomatization for robot Rl while those on the right form a partial local 
axiomatization for robot R2.3 

3 Throughout this section , axioms which are part of a distributed axiomatization will be labeled consec- 
utively with positive integers prefixed with an 'A'. Likewise, clauses will be labeled using positive integers 
prefixed with a 'C. Additionally, some axioms and clauses will also be marked with a prime (') or double 
prime (") to distinguish those which are specific to either of robot Rl or R2 respectively. 
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Robot Rl Robot R2 

BLOCK(a) (Al') BLOCK(c) (Al") 

BLOCK(c) (A2') BLOCK(d) (A2") 

BLOCK(d) (A3') BLOCK(b) (A3") 

TABLE(tl) (A4') TABLE(t2) (A4") 

TABLE(t2) (A5') TABLE(t3) (A5") 

TABLE(t3) (A6') TABLE(t4) (A6") 

A rudimentary set of predicates for the distributed blocks world problem should be 

sufficiently expressive to adequately describe all primitive aspects of the domain. One 
aspect of the blocks world problem which has not yet been expressed in predicate form is 
the existence of various relationships among domain objects in which one object is on top 
of another. Many axiomatizations of the classic blocks world problem have used a pair of 
predicates such as ON(x y s) and CLEAR(x s) to describe these relationships, and these 
will be used in this distributed axiomatization as well. Respectively, their interpretations 
are "x is ON y in state s" and ax is CLEAR in state s." Both predicates are dependent on 
the current state of the problem domain and will become the cornerstones in searching the 
problem's state space for a solution. Conceptually, when the assembly robots synchronously 
move their respective blocks, they are transforming the previous state of the world into 
the next current state. In this new state, blocks which were on top of other objects, or 
objects which were clear, may no longer be so. Therefore, the only valid ON and CLEAR 
properties are those which are true in the current state of the world. For each robot, the 
initial state will be designated by the constant symbol 'end'. The choice of 'end' is entirely 
arbitrary and is intended to convey the meaning of being the end of a list. Successive 
states will be represented as lists which are built upon previous state representations. Lists 
are constructed using a functional representation similar to that of the successor function 
discussed previously. In this respect, the initial state 'end' will serve as an "anchor" for 
subsequent state representations in much the same way that 0 "anchored" the successor 
function. The relationships among the domain objects in the current state can now be 

expressed for each robot by the following additional axioms: 

Robot Rl Robot R2 

CLEAR(a end) (A7') CLEAR(c end) (A7") 

CLEAR(c end) (A8') CLEAR(d end) (A8") 

CLEAR(d end) (A9') CLEAR(b end) (A9") 

ON(a tl end) (A10') ON(c t2 end) (A10") 

ON(c t2 end) (AH') ON(d t3 end) (All") 

ON(d t3 end) (A12') ON(b t4 end) (A12") 

Due to the distributed nature of the blocks world problem under consideration, yet 
another predicate needs to be introduced before the state of the problem domain can be 
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completely described. In anticipation of the need for such a predicate, the environment 
of a robot was previously denned and now becomes a convenient way of representing the 
distribution of domain knowledge in the current state. Conceptually speaking, when robot 
A removes an object from the environment of robot B, robot A has in effect redistributed 

the domain knowledge since robot B does not possess knowledge of the object in the next 
state. The predicate ENVIRONMENT^ y s) which has the interpretation "object x is 
in the ENVIRONMENT of robot y in state s" will be used for this purpose. With the 
addition of this predicate there is now sufficient representation to completely describe the 

problem domain in any state. Adding the following axioms to the local axiomatizations of 

the respective robots will complete the descriptions of their initial states. 

Robot Rl: 

{\/z)ENVIRONMENT{tl s(0) z) (A13') 

{\/z)ENVIRONMENT(t2 s(0) z) (A14') 

(Vz)ENVIRONMENT{t3 s(0) z) (A15') 

Robot R2: 

{Mz)ENVIRONMENT{t2 s(s(0)) z) (A13") 

(\/z)ENVIRONMENT(t3 s(s(0)) z) (A14") 

(\/z)ENVIRONMENT(U s(s(0)) z) (A15") 

A complementary relationship exists between the ON and CLEAR predicates in that an 

object which is clear does not have any other object on it, and an object which has another 
object on it is not clear. This relationship can be expressed concisely with a well-formed 
formula (wff) from the predicate calculus and will become the first nontrivial axiom in the 
local axiomatizations of each assembly robot. The axiom can be written as follows: 

(Vxz)(CLEAR(x z) & ^(3y)ON{y x z)). (A16) 

For an automated reasoning program however, the handling of such expressions can be 
cumbersome as well as time consuming. Instead, most automated reasoning systems re- 
quire logical statements to be written in a language closely related to that of the predicate 
calculus called the language of clauses. Fortunately, there exists a relatively straightforward 
procedure for transforming wffs of the predicate calculus into corresponding sets of clauses. 
Essentially, this transformation procedure involves manipulating a wff into an equivalent 
prenex normal form4 in which all quantifiers have been brought to the "outside". The result- 
ing formula which now lies within the scope of every quantifier is subsequently transformed 

4 A wff (Qij/i) • • • (QnVn)A, where each (Qiy{ is a universal or existential quantifier, yi is different from 
j/j for i / j, and A contains no quantifiers, is said to be in prenex normal form. (Includes the case n — 0 
when there are no quantifiers.) [60, page 82] 

32 



into an equivalent conjunctive normal form— a conjunction of disjunctions.5Existential 

quantifiers are then removed and each disjunction is taken to be a single clause. In practice 

however, it is not necessary for a wff to be put into prenex normal form. Simply renaming 

the variables of each quantifier so that each variable is given a different name will serve 
the same purpose. Each existential quantifier present in the formula can then be removed 

by consistently replacing all occurrences of the quantified variable with a suitable skolem 
function. A skolem function is used to name whatever it is which exists. For example, in 
the wff (Vx)(3y)P(x y) the existentially quantified variable y can be replaced by a function 

f(x) as in (\/x)P(x f{x)). The value of f(x) is considered to be the name of an object 

y which exists and will make P(x y) true. It is necessary to replace each existentially 
quantified variable with a uniquely named skolem function. In addition, skolem functions 
must have as many parameters as there are universally quantified variables which enclose 
the existential quantifier as was done in the above example. The reason is the value of 
an existentially quantified variable may depend on the values of any enclosing universally 

quantified variables. 

Clause representations of axioms and theorems are more easily manipulated internally 
by an automated reasoning program in that they lend themselves to a purely mechanical 

and uniform processing. 

The above axiom can be expressed using clauses as follows: 

-iCLEAR(xz)    |   ^ON{yxz) (C16) 

ON{yxz)    |   CLEAR{xz) (C17) 

Notice, for example, how by resolving clause C7' (same as axiom A7') with the above 
would produce the clause ->07V(y a end) which can be interpreted as "there is no object 
on top of object 'a' in the 'end' (initial) state." Strictly speaking, the CLEAR predicate is 
not really necessary since it merely translates to a negated ON predicate. When devising 
axioms and theorems, expressing such relationships in a positive sense is often desirable 
since this is less confusing and often eliminates errors. 

In the representations of each assembly robot's initial state of the world as given above, 
it may appear as though a number of axioms describing the extent of their environments 
has been omitted. Specifically, axioms which explicitly assert that certain blocks are in the 
environment of a particular robot are absent from these representations. As a result of the 
assumptions that all robots and tables in the assembly area are fixed in their location, a 
universal axiom such as Axiom A13' can be used as a basis for inductive reasoning. Given 
representations of world states like those for robots Rl and R2 above, there exists sufficient 
information to automatically derive all knowledge of which robot environments a particular 

5 A form is in conjunctive normal form (cnf) if it is a conjunction of one or more conjuncts, each of 
which is a disjunction of one or more literals—for example, (B V -<C) A (A V D), A, A A B, A V -iB, and 
A A {B V A) A (-.B V A). [60, page 25] 
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block is a member of. Using Axiom A13' as a base case for an induction, it can be inferred 
that any object which is on another object, known to be in a particular robot environment, 
must also be in that same environment. In the local axiomatization produced by each 

assembly robot, this induction of knowledge is provided by the following axiom: 

{Vuvxz) {ON{u vz)A ENVIRONMENT^ x z) => 

ENVIRONMENT^ x z)) (A17) 

Employing a robust axiom such as this will prove to be quite advantageous as it will allow 
the state transformation axioms, which will be discussed later, to be significantly simplified. 

3.2.2.3    Controlling Robot Agent Interactions 

As mentioned earlier, some kind of scheme is needed for controlling each robot's access 

to boundary objects in its current environment. Simply writing an axiom which imposes 
mutually exclusive access to these objects would not be effective. An analogy can be drawn 
between such an axiom and a multiprocessing computer program which requires access 
to a shared variable. The normal procedure for gaining access to the variable would be 
to first check its status flag to determine whether or not access is allowed. If access is 
allowed, a processor must then change the variable's status flag to block other processors 
from accessing the variable. Without some means of localizing controlled access to the 
variable, there can be no guarantee that between the time when the processor checked the 
status flag and subsequently changes it, that another processor has not already done so. 
Typically, this problem is solved by extending the memory bus cycle to include both a read 
and subsequent write operation of the status flag's memory location. Likewise, it is possible 
for a number of robot agents to each believe they are the agent which has exclusive use 
of the same domain object. There are two possible ways in which this difficulty may be 
overcome: 1) allow each robot agent to choose the block it will move independently of the 
other agents and backtrack to resolve conflicts when they are detected, or 2) impose an 
ordering on the robot agents such that an agent selects a block to move only after all the 

robot agents before it have made their selections. 

Setting aside the question of how to maintain globally coherent states, independently 
selecting blocks becomes very expensive, computationally, when these selections are found 
to be incompatible. Adopting such a strategy when using an automated reasoning system, 

with its combinatorially explosive nature, would be ill-advised. However, the latter approach 
is much more straightforward and is a reliable method of ensuring globally coherent search 
states. This methodology for controlling robot agent interactions is based on the assumption 
that an effective procedure exists for establishing a global ordering recognized by all involved 
agents. For the distributed blocks world problem under consideration, there are only two 
robots labeled Rl and R2 respectively. These labels were assigned a priori when the problem 
was first defined.    Since both robots are expected to participate in the solution of the 
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problem, establishing an ordering of agents is a simple matter of recognizing that robot Rl 
selects its block before robot R2. So long as all assembly robots are involved in the problem 
and they are consecutively named, an a priori ordering can be extended to any number 

of assembly robots. Otherwise, it must be assumed the group of agents working on the 
problem are capable of developing such a consecutive ordering, or some equivalent. 

Recall from an earlier discussion in which it was described how the robot agents sub- 
stituted their respective robot names for a corresponding recursive successor function rep- 
resentation. Such a functional representation is very convenient for implementing a robot 
agent ordering without knowing a priori how many robots are participating in the problem. 
For reasons which will become clear shortly, the ordering of robot agents is such that those 
with names less than n must all select blocks to move before the robot agent named n is 
allowed to make its selection. With respect to the robot agent named n, all other robot 
agents less than n are predecessors with the robot agent named n - 1 being the immediate 
predecessor. As will become evident in the following discussion, only the immediate prede- 
cessor relationships are strictly necessary to the formulation of a local axiomatization. By 
cleverly choosing a representation for robot names, knowledge of these immediate predeces- 
sor relationships have been purposefully encoded into the name of each robot. For example, 
any robot whose name can be represented as s(x), implicitly carries the knowledge that its 

immediate predecessor's name is x. 

3.2.2.4    Searching for Globally Coherent States 

Using the ordering technique for controlling robot agent interactions suggested in the pre- 

vious section, a methodology for searching distributed state spaces can now be developed. 
The basic idea is to implement a two-level search procedure—a kind of search within a 
search. At the root level, descendants of a given valid global state are produced by search- 
ing the space of all combinations of simultaneous robot activities. A globally coherent state 
is generated by incrementally incorporating actions for each robot to perform within a single 
synchronous time step. This incremental procedure progresses according to the assumed a 
priori ordering imposed on the robot agents. A better understanding of this portion of the 
search strategy can be gained by visualizing the chain of robot agent immediate predecessor 
relationships as a series of directed line segments spanning the network of involved agents 
as depicted in Figure 3.2. With respect to the figure, if it is assumed the agent labeled 'A' 
is the predecessor of all other agents, then agent 'A' would always select first from the set 
of possible robot actions in the current global state. After agent 'A' has made its selection, 
agent 'B' can then make its selection from a reduced set of possible robot actions. The set 
of possible robot actions is effectively reduced after each robot makes its selection in that 
each succeeding robot must avoid choosing an action which would conflict with one chosen 
by a predecessor robot. When the last robot agent, agent 'F', selects its action to perform, 
the set of individual actions chosen by each participating robot agent represents a new (and 
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Figure 3.2: Chaining of Robot Agent Superiority. 

globally coherent) state in the distributed problem's search space. 

In order to express in a set of axioms the incremental development of globally coherent 
search states as described above, it is necessary to augment the existing repertoire of pred- 
icates. A number of new predicates need to be devised which would capture this notion of 
incrementally constructing a new global state. The first such predicate to be introduced is 
CONTEXT(a; y s) which will be interpreted as meaning "robot x has chosen its action and 

produced CONTEXT y in the current global state s." A second predicate LEGAL(x y z s) 
will be understood to mean "it is legal for robot x to choose an action involving object y 
for the context z in the current global state s." Setting aside for the moment an axiomatic 
definition of LEGAL, the CONTEXT predicate may be defined as follows: 

(Vuvwxz)(CONTEXT(x f{a(u v) w) z) «*■ (BLOCK(u)A 

LEGAL(x u w z) A LEGAL(x v w z) A -^EQUAL{u «))) (A18) 

The functional argument f(a(u v) w) in the above definition is of a recursive form which 
simultaneously represents the newly generated context as well as the action chosen by robot 
x which generated the context. In this notation, the action performed by robot x, denoted 
by the function a(u v), is interpreted as meaning object u is placed on top of object v. The 
arguments of function / will be understood to convey the knowledge "action a(u v) was 
selected in context w." Using a function in this manner is a representational "trick" often 

practiced when writing axioms for an automated reasoning system. In effect, it implements 
a recursive list structure where the leading argument (s) is the data which constitutes the 
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list's first element. The last argument of the function is usually reserved for holding the 

remainder of the list in a manner similar to the CDR of a LISP list structure. The above 

axiom may be thought of as the top-level axiom responsible for generating all possible 

combinations of placing a block on another domain object. One possible action which a 
robot may choose to perform during any synchronous time step, is the "action" of remaining 

idle. This possibility can be accommodated with the following axiom: 

{Vxyz)(CONTEXT{x y z) => CONTEXT(s{x) f{idle y) z)). (A19) 

A definition of the LEGAL predicate must rely heavily on the detection of any proposed 

robot actions which would conflict with the actions of its predecessors. To represent such 
contention for the domain objects, a new predicate CONFLICT^ y z s) will be defined. 
This new predicate has the interpretation "an action by robot x which involves object y is 
a CONFLICT in context z of the current global state s." Because it has been assumed the 
assembly robots are completely synchronous, it could be argued that while one robot has 
picked up and is presently moving a particular block, a second robot could place its block 
where the first block once was. Allowing such actions to occur however, would significantly 
complicate the axiomatizations of each robot, which is not the aim of this example. There- 
fore, with the exception of an idle action, involving either of the domain objects required 
by the actions of a predecessor robot will be considered a conflict. In any given context, 
determining which of the domain objects would cause a conflict, were they manipulated by 
a particular robot, is accomplished using two pieces of information readily available. The 
most immediate of which is found in the context generated by a robot's immediate prede- 
cessor. Involving either of the objects associated with an immediate predecessor's action 
would be a conflict. This is the main mechanism for deriving new conflict relationships. 
The remaining conflicts are generated through inheritance from the immediate predecessor's 
set of conflict relationships. Certainly, manipulating an object which was a conflict for a 
robot's immediate predecessor, is also a conflict for the robot. An axiomatic definition of 

CONFLICT is given below; 

(Vuvwxyz)(CONFLICT{s(x) y f(a{u v) w) z) «*• 

{CONTEXT(x f{a{u v) w) z) A {EQUAL{y u) V 

EQUAL{y v) V CONFLICT{x y w z)))). (A20) 

The definition of LEGAL can now be given in terms of the existing inventory of predicates. 
For a robot to legally involve an object in a proposed action, it must first be accessible to 
the robot. In the current global state, the object should at least be in the environment 
of the particular robot as well as be clear. Additionally, in the context generated by the 
particular robot's immediate predecessor, using the object should not be a conflict. These 
properties are used to define what it means to be legal in the following axiom: 

(Vwxyz)(LEGAL(s{x) y w z) ■& 
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{ENVIRONMENT^ s{x) z) A CLEAR{y z) A 

CONTEXT(x wz)A ^CONFLICT{s{x) y w z))) (A21) 

In the preceding axiomatic definitions that were developed for predicates CONTEXT, 

CONFLICT, and LEGAL, an inductive assumption has been made; that is, given a context 

created by some robot and a corresponding set of conflicts, a new context for the succeeding 
robot can be generated. If this is not perfectly clear, it may help to refer back to Figure 3.2. 
In the figure, the inductive assumption may be visualized in the following way; suppose a 
partial global state has somehow been developed from agent A along the segmented line to 

agent C. Using these predicates, this partial solution may be further developed by extending 

it to include agent D. Once begun, such an inductive procedure could be carried out to 

include any number of participating robot agents. To complete the procedure for developing 

globally coherent search states, two additional requirements need to be satisfied; 1) a means 

of initiating the search procedure must be devised, and 2) a method for recognizing valid 
global states must be established. In order for the first robot to initiate the procedure by 
generating a new context, suitable conditions must be supplied which would "enable" a set 
of LEGAL predicates to be derived. Since no other robot has previously selected an action, 
it is of course legal for the selected action of the first robot to involve any domain object 
within its environment. Referring back to Axiom A21, it can be seen that an initial context 
and conflict axiom are all that is required. The following two axioms will suffice: 

(Vz)CONTEXT(0 end z) (A22) 

{Vxz)^CONFLICT(s(0) x end z). (A23) 

Axiom A22 represents an initial context which will initiate the search for new global states 
given any current global state. Note this context was generated by some fictitious robot 
named 0 (i.e. the immediate predecessor of the first robot Rl assigned the name s(0)). As 
with the initial global state, all initial contexts will be represented by the constant 'end'. 
Axiom A23 is used to establish the fact there are never any conflicts for the first robot when 

it selects an action. 

A newly generated globally coherent state can be recognized by examining each new 
context for the name of the robot which generated it. If the robot name corresponds to 
the name of the last robot in the assumed a priori ordering, then the particular succession 
of context generation has produced a new valid global state. Any such context will be 
referred to as a terminal context. The information contained in a terminal context can 
be thought of as a kind of program for issuing directives to each participating assembly 
robot. This program essentially informs each respective robot that it is now permissible 
to create a new search state by performing the action it selected during the construction 
of the terminal context (i.e. the new global state). A new predicate STATE(z y z) will be 
introduced to facilitate the execution of such a program. Its interpretation is "the robot 
which generated context x can create a new search state by performing its corresponding 
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selected action in the current state z." The argument y is used to distribute an intact version 

of the terminating context to each participating robot agent so that it may use this context 
to generate a label g{y z) for the new global state. The following axiom is used to recognize 

each new terminal context: 

{Vwxz)(MAXROBOT{x) A CONTEXT\x w z) <* STATE{w w z)). (A24) 

The predicate MAXROBOT(x) is used to identify which of the participating assembly 

robots has been assigned the name of the last robot in the assumed a priori ordering. 

While each robot agent can refer to this predicate, as was done above, only the robot agent 
understood to be last in the ordering will actually have an axiom which instantiates the 
predicate with its assigned name. Notice that Axiom A24 does not actually terminate a 
succession of robot context generation, it merely "marks" a particular robot context as 

representing a terminal point in the sequence of real physical robots. 

A second axiom is needed to "breakdown" the information of a terminal context so 
that the appropriate assembly action directives may be recognized by each predecessor 
of MAXROBOT(x). With respect to Figure 3.2, this process may be conceptualized as 
reversing the direction of travel along the segmented line connecting each participating 
assembly robot agent. As the terminal context is successively broken down, a new STATE 
predicate needs to be generated for each predecessor robot along the way. Programming of 
the assembly robots with a terminal context will be complete when a STATE predicate is 
generated for the first robot in the assumed ordering. The following axiom can be used to 
accomplish the task of breaking down a terminal context and programming each predecessor 

robot: 

(Vvwxz){STATE(f{v w) x z) =► STATE{w x z)). (A25) 

3.2.2.5    Implementing State Transformations 

Were the Blocks World problem under consideration not distributed, a simple search of 
the problem's state space would have yielded a solution to the problem providing one did 
exist. However, in the distributed problem, the primary obstacle in implementing a state 
space search is discerning an appropriate distributed state space to search. This obstruction 
was overcome in the previous section by effectively circumscribing just such a distributed 
state space. An inductive procedure was developed which produces all possible simultane- 
ous robot actions permissible in any state of the distributed problem. Referring back to 
Section 3.2.2.2, the axioms dependent on the current global state, by default uniformly des- 
ignated the initial state of the distributed Blocks World problem as the symbolic constant 
'end'. Similarly, the local axiomatizations produced by any number of participating robot 
agents would also designate their initial global states by the constant 'end'. By doing so, 
any number of robot agents can establish an initial (or "root") global state which they can 
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Figure 3.3: A Hypothetical Robot Action. 

all refer to by the same name. From this initial global state, branching of the search tree 
is accomplished by applying global state transformations corresponding to the valid simul- 
taneous actions of a terminal context. In the previous section, the STATE predicate was 
introduced as a mechanism for breaking down global state transformations into their con- 
stituent transformations of individual robot environments. Each STATE predicate imparts 
knowledge sufficient for a robot agent to complete a local transformation of its environment 

and effect an overall global state transformation. 

A number of axioms will need to be developed in order to bring about the necessary 
robot environment transformations. To gain some insights into the details which must 
be accommodated when performing a transformation, consider the hypothetical situation 
depicted in Figure 3.3. In this figure, the robot agent has been directed to move block A 
from on top of block D on table Tl over to the top of block B on table T2. The table 
below is a partial summary of the robot's environmental state before and after the action 

is performed. 
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Before After 

CLEAR(a s) =» CLEAR(a s') 

ON(d tl s) =► ON(d tl 5') 

ON(bcs) =* ON(bcs') 

ON(c t2 s) =» ON(c t2 s') 

CLEAR(b s) CLEAR(d s') 

ON(a d s) ON(a b s') 

Notice how the transformation of the robot's environment preserved the first four prop- 
erties from the previous state s by including them in the new state s'. The retained ON 
properties can be seen to correspond with descriptions of the stacked blocks beneath the 
block which was moved (i.e. block A) before and after the action took place. This domain 
characteristic can be exploited so that axioms may be devised which will readily preserve 
such relationships. In addition to the properties retained during an environment trans- 
formation, several new properties are also introduced which directly reflect the particular 
action being performed. Specifically, block D is now CLEAR and block A is now ON block 
B. The following axiom initiates an environment transformation by asserting the existence 

of properties which are a direct consequence of a particular action. 

(\/uvwyz){STATE(f(a{u v) w) y z) =» {CLEAR{u g{y z))A 

ON{u v g{y z)) A (Vx)(OJV(u x z) => CLEAR{x g{y z))))) (A26) 

Including the assertion which states the moved block remains CLEAR in the new state 
in Axiom A26, was purely a matter of convenience. With respect to the hypothetical 
situation depicted in Figure 3.3, the new environment properties of block D is CLEAR and 
block A is ON block B can be used to activate an induction for deriving the persistent 
properties of the environment transformation. Consider the stack of blocks on table T2 
which block A has been placed on top of. In keeping with assumptions made previously 
which placed limitations on the allowable modes of robot interaction, there is no need to 
consider situations in which several robots may have manipulated blocks of the same stack 
in any synchronous time step. Therefore, a robot agent can readily use the new environment 
property ON (a b s') asserted by Axiom A26 in conjunction with the old property ON(b c s) 
to infer that block B must still be ON block C in the new state. Similarly, this new property 
can then be used to infer others until all the ON properties corresponding to the stack of 

blocks under the moved block have been carried over to the new state. An axiom which 

provides such an induction is the following: 

{Vuvwyz)(ON(u v g(y z)) A ON(v w z) => ON(v w g{y z))) (A27) 

Axiom A27 provides a natural means of carrying out the desired state transition for the 
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Stack of blocks which are under the moved block in the new state. This induction procedure 
can be extended to include the stack of blocks which were under the moved block in the 
previous state as well. Referring once again to the hypothetical situation of Figure 3.3, two 

pieces of information concerning block D are readily available. The first piece of available 
information was provided by Axiom A26 which states that block D is CLEAR in the new 
state, and the second piece of information available is that block A was ON block D in the 
previous state. Considering the restrictions placed on robot interactions, it can be assumed 
that whatever domain object block D was on in the previous state, it must also be on in 
the new state. The following axiom is used to generalize a recognition of this relationship; 

(Vuvyz){ON{u vz)A CLEAR{v g{y z)) =* 

(Vw){ON(vwz) ^ ON{vw g(y z)))) (A28) 

Axiom A28 will assert, at most, a single ON relationship for a CLEAR block in the new 

state. This is all that is necessary since an ON property in the new state becomes a basis 
for Axiom A27 to inductively assert the remaining properties which are carried over into 
the new state. With the addition of Axiom A28, the local axiomatization provided by 
each robot agent is sufficiently complete to effect a local state transformation involving only 
those domain objects associated with a particular robot action. However, since a robot may 
choose to be idle during any synchronous time step, the possibility always exists that a stack 
of blocks on some table (or the table itself) will not be involved in any robot's action. The 
axioms developed to this point are not capable of coping with this situation and therefore 
may not always bring about a global state transformation. Fortunately, there is information 
available which can be used to detect such a condition should it ever occur. The key is 
Axiom A20 which defines exactly when involving an object in a robot action would conflict 
with that of a superior robot. Stacks of objects left untouched after a synchronous time 
step can be identified by considering which of the domain objects could be involved in an 
action by a successor of MAXROBOT(:r), if one existed. The context parameters carried by 
CONFLICT predicates applicable to the direct superior of MAXROBOT(a;), correspond to a 

terminal context in the particular global state. In any global state, all domain objects which 
are CLEAR and may be manipulated by some fictitious direct superior of MAXROBOT(a;), 
must also be CLEAR in the next corresponding global state. This knowledge is sufficient to 
identify which blocks were left untouched on top of a stack as well as any untouched empty 
tables. A similar condition to Axiom A28 can be used to transform the ON properties of 
blocks beneath a CLEAR untouched block and can be stated as in the following axiom; 

(Vuvxyz)(MAXROBOT{x) A -^CONFLICT(s(x) uyz)A CLEAR{u z) =► 

(CLEAR(u g(y z)) A (Vv)(CW(u v z) =*► ON(u v g{y z))))) (A29) 

Axiom A29 completes the set of axioms needed to bring about comprehensive global 
state transformations. It may appear as though some axioms are needed to update which 
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robot environments each domain object belongs to in the new state. However, as was 
mentioned previously in Section 3.2.2.2, Axiom A17 is capable of inductively asserting the 

necessary relationships using the ON properties established for each new state. 

3.2.3    Instituting a Distributed Solution Criteria 

The only remaining aspect of each local axiomatization which must be addressed, is that 
of establishing a global goal condition. Simply stated, a global goal condition is a single 
theorem which is supplied to each DARES reasoning agent that represents the overall goal 

of a distributed problem. For example, in the case of the distributed Blocks World problem, 
a possible theorem (i.e. reasoning objective) may be stated as "it is possible to achieve a 
distributed problem state in which block A is on block B, and block B is on table Tl." A 
proof of this theorem would determine one possible set of actions each assembly robot could 
perform which would transform the initial problem state into one satisfying the theorem. 
If a theorem represents a global goal and is known throughout the distributed domain, 
each robot agent could complete its local axiomatization simply by including the negated 
form of the theorem. The theorem must be negated to facilitate the refutation method of 
proof used by DARES. While it may be feasible in certain distributed domains to provide 
global knowledge of the desired goal condition, suitable axioms can be included in each local 
axiomatization which would achieve the same effect for the general case in which the goal 
condition is also distributed. With reference to the distributed Blocks World problem under 
consideration, robot R2 may have partial knowledge of the goal condition reflecting its view 
of the distributed problem which states that block B should be ON table T2. Likewise, Rl 
may have partial knowledge of the goal condition which states that block A should be ON 
block B and CLEAR. Any valid problem state which simultaneously satisfies both partial 
goal conditions, can be said to satisfy the global goal condition and therefore represents a 

solution. 

A new predicate PARTIAL (z x) can be used by each robot agent to essentially "mark" 
each global search state which meets the requirements of its partial goal condition. It has 
the interpretation "the global search state z satisfies the partial goal condition of robot x", 

and can be defined as; 

(Vz)(PARTIAL{z x) & A(x)). (A30) 

The term A{x) is used to denote a problem dependent wf which is used by each robot agent 
to describe its partial knowledge of the global goal condition. For instance, in the example 
given above, the agent corresponding to robot Rl would produce the following axiom: 

[Mz){PARTIAL{z s(0)) & ON {a b z) A CLEAR{a z) 

Using a method similar to the one developed in Section 3.2.2.4 for incrementally deriv- 
ing valid global states, a second predicate SOLUTION^ x) can be used to represent an 
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incremental conjunction of the partially satisfied goal conditions. This new predicate has 

the interpretation "the global search state z satisfies the partial goal conditions of all robots 
upto and including x." An axiom suitable for incrementally extending a partial solution is 

defined as follows: 

(Vxz){SOLUTION(z x) A PARTIAL(z s(x)) «• SOLUTION(z s{x))) (A31) 

As with the other inductive axioms presented thus far, an initial condition is required to 

begin the process and is given as follows: 

{Vz)SOLUTION{z 0) (A32) 

The only remaining axiom needed to complete the local axiomatization of each robot, 

and hence a distributed axiomatization, is a specification of the global goal condition. With 

the above axioms, a global theorem which may be asserted by each robot agent can be 

written as follows: 

(3xz){MAXROBOT(x) A SOLUTION(z x)) 

Negating this theorem for DARES produces the following: 

(Varz)-.(Af AXROBOT(x) A SOLUTION{z x)) (A33) 

3.3    An Expert System Approach 

Throughout the development of the distributed axiomatization presented in the previous 
section, a body of knowledge was drawn upon which exists above and beyond any fun- 
damental knowledge of the problem domain. This body of knowledge does not represent 
knowledge of objects in a problem domain and their properties, but rather it represents 
knowledge of the problem domain itself—a kind of meta-level knowledge. For example, two 
pieces of meta- level knowledge used to develop the axiomatization of the distributed Blocks 
World problem were: 1) the names of each robot were purposefully assigned to correspond 
with an a priori ordering of the distributed agents, and 2) the agent corresponding to the 
last robot in the ordering has knowledge to that effect. Such knowledge is typically accessi- 
ble to all distributed agents and can be viewed as a unifying thread by which the problem 
solving agents are intimately connected. In other words, a body of readily accessible meta- 
level knowledge can be used by a homogeneous distributed problem solving system as a 
basis for a uniform and consistent treatment of certain aspects of the problem domain. A 
case in point is the use of the two pieces of meta-level knowledge described above. The 
local axiomatization produced by each robot agent effectively applied this knowledge in a 
uniform and consistent manner to distributively implement a search for globally coherent 
distributed Blocks World problem states. In the next section we show how these ideas can 

be implemented in a system of distributed expert agents. 
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3.4    System Implementation 

3.4.1    The Simulation Environment 

SIMULACT [58] is a domain independent distributed simulation environment for developing 

and experimenting with distributed problem-solving systems. The active elements of a 
simulation are thought of as being like a group of characters performing on stage. There are 
two basic types of characters, actors and ghosts, which are used to model the characteristics 
associated with a particular distributed problem-solving domain. A simulation is controlled 
in much the same way as a theatrical drama is produced for the stage. The actions of 
individual actors and ghosts are supervised by a director and proceed in accordance with 
a pre-defined script function. A character's script function determines its problem solving 
role and defines how it may interact with other characters. These interactions are in the 
form of discrete messages communicated from one character to another and are expedited 
in SIMULACT by a mechanism analogous to a stage manager. The director is a control 
structure which integrates the activities of each character into an appropriate sequence of 

simulated actions. 

Actors are designed to model a single problem-solving agent in a network of distributed 
processing nodes. Each actor is implemented as a distinct and independent process which 
executes a script function especially tailored for the requirements of the agent being mod- 
eled. Agents of distributed networks are generally thought of as being persistent. That is, 
they remain present throughout any and all problem- solving activities. When this is the 
case, the script function for an agent is typically structured as an infinite loop which dis- 
patches and receives various control messages. The response of an agent evoked by control 
messages is based on the problem-solving nature of the particular agent and the abilities 
it has been endowed with. For a group of homogeneous agents, SIMULACT provides a 
support package facility which enables a group of agents to share a common framework or 
set of capabilities. As required by its task, an actor may inherit functional components from 
any number of support packages. The complete specification of all the actors and ghosts as 
well as individual support packages is described by a world file. SIMULACT uses such files 

to create and initialize simulations. 

Many real-world distributed problems are complicated by the presence of extraneous 
information, and/or may exhibit some anomalous behavior which in order to be properly 
accounted for, must be injected into a simulation. It is often the case that these kinds of 
events represent an instance of a distributed problem and thus become the catalyst for some 
problem-solving activities. Such events may readily be compiled into a temporal sequence, 
called an event scenario, and be injected into a simulation with the use of a ghost. Ghosts are 
similar in most aspects to actors, but with respect to the simulation environment, ghosts 
are more efficient for producing the desired domain effects of a simulation. The script 
function of a ghost can be programmed to dispatch a notification message to the various 
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actors involved in a particular event scenario. In this way, many different simulations can 
be implemented by simply supplying a ghost with varying event scenarios for any given 

domain configuration. 

Each actor and ghost participating in a given simulation is assigned a unique stagename 
which serves as an address for receiving communications from other characters. The mes- 
sages received by a character are collected by SIMULACT and placed into each characters 
respective mailbox. It is the responsibility of every actor to check its mailbox and handle 

any messages it may find there in an appropriate and timely manner. SIMULACT provides 

three types of mail objects called memos, futures, and future streams. The most basic type 

of communication among the three, is the memo. A memo is a simple one-way communi- 

cation from one actor or ghost to another actor. There is no obligation on the part of an 

actor which has received a memo to initiate a response. For instances when a response is 

both required and expected, an actor may choose to use the future mail object which has 

been especially provided for this purpose. 

When using memos, an actor responding to a message, must actually send another memo 
containing the response. With this method, some care must be taken to ensure the actor 
receiving the reply will understand the message is in response to a memo sent previously. 
Using futures in these instances would greatly simplify the exchange of a reply. An actor 
which sends a future mail object actually holds onto a copy of it while another copy is sent 
to the desired actor. A response is all that is necessary for the actor to reply to this future. 
The actor's response will automatically be rerouted back to the sending actor's copy of the 
future by SIMULACT. In this way, the actor always knows which message the response 
is in reference to. Future streams are much like futures except the reply communication 
path remains open enabling the receiving actor to reply with multiple responses, as they 
are formulated, rather than sending them all at once. 

3.4.2    An Overview of TESS 

3.4.2.1    A Production System 

For many areas of application requiring both an effective and practical means of produc- 
ing "intelligent" problem solving behavior, the use of an expert system has emerged as the 
predominant choice. In essence, an expert system constitutes both the knowledge and skill 
which a human expert would possess. The type of program most often used to implement 
an expert system is called a production system. In a production system, the knowledge 
of a human expert is embodied in a collection of if-then type statements called production 

rules, or simply productions. Each production rule is used to assert a piece of knowledge 
in the form of a pairing of conditions and actions such that; if the conditions are satisfied 
(or TRUE), then the associated actions are appropriate.  The condition and action parts 
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of a rule are commonly called its left-hand side (LHS) and right-hand side (RHS) respec- 

tively. Production systems employ an iterative control structure called an interpreter which 

enables an expert system to replicate the problem solving skills of a human expert. This 

is accomplished by repeatedly applying the relevant knowledge, expressed as production 
rules, at every stage in the problem solving process. If the expert system has been properly 

designed, it will incrementally converge upon a solution and eventually terminate. 

As an example of how particular domain knowledge may be captured using production 

rules, consider the expertise of an automobile mechanic. Suppose a mechanic is confronted 

with the problem of a car whose engine "turns over", but will not start. Among the many 
pieces of knowledge used by the mechanic, two such pieces may be represented by the 

following rules; 1) "IF the engine will not start AND there is gas in the gas tank, THEN 
check the fuel pump", and 2) "IF the engine will not start AND there is gas in the gas tank, 
THEN check the ignition." In both of these rules, the mechanic is predicating the actions of 
checking the fuel pump and ignition upon the simultaneous existence of two pieces of data, 
namely the engine will not start and there is gas in the gas tank. In a production system, 
data of this kind is stored in a global data base called working memory. The individual 
data stored in working memory is referred to as working memory elements (wmes), or more 
casually as facts. When a combination of facts stored in working memory satisfies the 
conditions stated in the LHS of a rule, they are "tagged" as constituting an instance of the 
particular rule. For example, if the two facts the engine will not start and there is gas in 
the gas tank were stored in working memory, they would be found to satisfy the conditions 
of rules one and two, and would be registered accordingly as representing an instance of 

each rule. 

Every rule instance represents one combination of facts for which the actions of the 
corresponding rule are applicable given the current contents of working memory. In terms 
of the automobile mechanic, an instance at a particular stage in the problem solving process 
represents one possible action taken in order to isolate the reason for the engine's failure to 
start. As in the above example, there may be any number of instances generated as a result 
of the current contents of working memory. These instances represent a dilemma for the 
production system. Typically, all the associated actions could be performed at the same 
time, however, only one action may be executed at a time. To resolve this dilemma, all 
the instances generated are grouped together to form a conflict set. The production system 
then uses a process called conflict resolution to select and remove a single instance from the 
conflict set whose associated actions are to be performed. When the actions of the selected 

rule instance are executed, a process known as firing the rule, the action procedure is given 
access to the group of facts which constitute the instance. This allows the actions of a rule 
to manipulate the set of facts which satisfied its conditions. In particular, the firing of a 

rule can modify and delete these facts from working memory as well as create new facts 
to be added to working memory. Any changes made to the working memory will generally 
cause instances affected by these changes to be removed from the conflict set as well as 
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cause new instances to be added. 

This cycle of recognizing rule instances and performing selected actions is commonly 

known as the recognize-act cycle and can be summarized as follows: 

1. Recognize: Given the current contents of working memory, determine every possible 

way the LHS of each production rule can be satisfied. 

2. Conflict Resolution: Select a single rule instance from among those in the conflict set. 

If there are none, then halt the interpreter. 

3. Act: Perform the actions specified by the RHS of the selected rule instance. 

4. Goto 1. 

TESS is the name of a SIMULACT support package which implements an expert system 

shell written in Common LISP [78]. An expert system shell essentially provides a generic 
language for specifying production rules and a command loop for controlling, interrogating, 

and tracing the actions and elements of the interpreter's environment. 

3.4.2.2    The Production Language 

The language6 used to specify production rules in TESS, incorporates a number of features 
which allow the conditional parts of rules to be specified in terms of explicit patterns of 
working memory element attributes. A production rule LHS, its conditional part, consists 
of a number of condition elements which represent the necessary conditions under which 
the associated actions of the rule may be applied. The set of condition elements comprising 
a rule LHS serve as an outline for a general structure, or pattern, of wmes which would 
satisfy its applicability requirements. Such patterns describe certain characteristics which 
all acceptable groups of wmes must exhibit. These characteristics are; 1) the number of 
wmes (not necessarily distinct) in the group, 2) the features which individual wmes are 
required to have (intra-element features), and 3) the features which the group as a whole 
must have (inter-element features). For each production rule, and for each corresponding 
group of wmes which are found to exhibit the specified pattern, an instance of the rule is 

created based on those wmes and is made a member of the conflict set. 

Production rules are defined in TESS with a function7 P (an abbreviation for production) 

which has the following general form: 
6 The production language designed for TESS was, in part, closely modeled after the production language 

of OPS5 [5] and consequently shares many of the same features. In fact, with the exception of the symbol 
used for the index operator, the language used by TESS to specify a production rule LHS is a superset of 

OPS5. 
7 However, in the actual Common LISP implementation, P is defined as a macro in order to avoid the 

interpreter evaluating any of its parameters. After essentially "quoting" these parameters, they are then 
passed to a function called P-l. 
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(P   rule-name     [salience) 

(condition-element CO) 

(condition-element Cn) 

- -> 

action-body) 

The first parameter, rule-name, specified for each production rule must be a symbol. This 

symbol is never evaluated (in the LISP sense) and will be used to denote the name of the 
rule. Every rule name should be distinct from that of any other rule which has previously 
been defined. There are several reasons why this should be so. For instance, duplicate 
names would cause the interpretation of a rule firing trace to be ambiguous, thus making it 

that much more difficult to "debug" a program. But, perhaps the most important reason 
has to do with the method by which the actions of a rule are stored. The actions associated 
with each rule, as defined by their action-body, are stored after some pre-processing as an 
entry of a hash table for rapid retrieval. In defining a rule which has the same name as a 
previous one, the associated action of the previous rule would essentially be re-defined and 
may thus be the cause of unintended program behavior. TESS will issue a warning message 
in such instances to notify the user of the possibility for adverse side-effects. Production 

rules may also have an optional second parameter, as indicated by the enclosing square 
brackets, called salience. The salience parameter is used by a conflict resolution strategy 
as an aid in choosing the next rule instance to fire. Its value can be any numerical value, 
positive or negative, which establishes the relative priority of the rule in relation to others. 
By default, the value of the salience parameter is set equal to zero. 

For the purpose of discussion, the condition elements specified in the LHS of a production 
rule will be referred to as CO, Cl, C2, ect., where the condition element referred to as 
CO is the first one specified, Cl is the second, and so on. The pattern of wme attributes 
described by the condition elements consists of various constraints on the allowable values of 
certain attributes. These constraints are expressed in the form of attribute-value pairs. Each 
attribute-value pair imposes a single constraint on the permissible values of a particular wme 
attribute. This constraint requires the attribute must relate to the paired value in a specific 
way. This relationship, unless explicitly stated otherwise, is by default, one of equality— 
the specified attribute of an attribute-value pair must be equal to the corresponding value. 
For example, an attribute- value pair which specifies an attribute AGE and a corresponding 
value 21, asserts a constraint which requires a wme to have an AGE attribute which is equal 
to the value 21. Constraints of this kind, involving only one wme, are actually specifications 
of characteristic intra-element features which each element of the working memory can be 
tested for on an individual basis. Typically, a wme will be recognized as exhibiting a number 
of the attribute patterns which are specified by the condition elements of various production 

rules. 
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Generally speaking, the patterns of wme attributes described by the condition elements 
of a typical production rule, are not so ingenuous as to require testing for intra-element 

features only. On the contrary, a typical production rule will describe a pattern of wme 
attributes which involves an inter-dependence of their values such that testing for inter- 
element features is also necessary. As an example, in a particular production rule, it is 
known the value of an attribute ATTR2 specified in condition element C2 must always 
equal the value of attribute ATTR1 specified in condition element Cl. Situations of this 
type often arise in practice and are easily accommodated using a variable to establish 
a conjunctive constraint between the values of each attribute. In TESS, symbols which 

are used to identify variables are distinguished from ordinary symbols by enclosing them 

in angle brackets with no spaces inserted, as in the symbol <VAR>. By specifying a 

common variable, such as <VAR>, for the value attributes ATTR1 and ATTR2 in condition 

elements Cl and C2 respectively, a conjunctive constraint between the condition elements 

is defined. In particular, this constraint requires the value of attribute ATTR1 of condition 
element Cl, by default, to be equal to the value of attribute ATTR2 of condition element 
C2. Conjunctive contraints specify tests for inter-element features which a group of wmes 
must exhibit in addition to any individual intra-element features. Only those groups of 
wmes, which have attributes agreeable with both kinds of features defined by a particular 

production rule, will be used to form specific instances. 

3.4.2.2.1 Literals and Working Memory Element Attributes Thus far, nothing 
has been said regarding the association of various attributes with particular working memory 
elements. Working memory elements are generally considered to represent various objects 

such as automobiles, houses, plants, animals, etc. The kinds of objects wmes can represent 
is not limited to merely tangible objects but, they can also represent many kinds of abstract 
objects such as, control knowledge, statistical data, concepts, and so forth. Wmes can be 
used to represent almost any kind of object. In addition, it can be said of all these objects 
thate each has the following aspects in common: 1) each object belongs to a particular 
class, and 2) within each class an individual object is distinguished from the others by its 
particular attributes. For example, these aspects are most easily seen when considering 
objects belonging to a class named PERSON. Each person has many attributes which are 
frequently used to distinguish one from another, such as their physical attributes of height, 
weight, sex, eye color, etc., as well as other attributes such as their social security number, 
date of birth, address, telephone number and so on. All of these attributes, and perhaps 
more which were not mentioned, would likely be associated with each objects in the class 

labelled PERSON. In TESS, the mechanism for declaring a class of objects and the names 
of attributes which are to be associated with those objects is a (macro-) function called 

LITERALIZE whose general form is as follows: 
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(LITERALIZE  object-class 

object-attribute 0 

object-attribute n) 

A LITERALIZE statement is used to establish an association between the names of 

object attributes (literals) affiliated with a class of objects and individual storage locations in 
the underlying representation of wmes. Working memory elements are represented internally 

with an addressable data structure, or to be more precise, a Common LISP sequence. Each 
wme sequence is uniform in length.8 A Common LISP sequence is addressable in the same 

sense that arrays are normally thought to be. Each sequence is a contiguous block of memory 
locations, the individual contents of which can be efficiently accessed with an appropriate 
index. Using LISP sequences adds the advantage that they may also be treated as ordinary 
list structures thereby admitting all the usual list operations. By convention, the elements 
in a sequence of length n are addressed with indexes 0,1,2,... ,n - 1. With respect to 
object representation, each element of a wme sequence is considered to contain the value of 
an object attribute. The LITERALIZE statement essentially gives names to some of these 
object attributes, which, in effect lends a certain interpretation to the contents of a wme. 
Internally, TESS reserves the first attribute of each wme, the value stored in address 0, and 
interprets it as a special time stamp attribute. A time stamp is a positive integer which 

reflects the time, in terms of a relative ordering, at which a particular wme was created (i.e. 
added to the contents of the working memory). Each successive time stamp is one number 
larger than the previous, and no two time stamps have the same value. One way in which 
time stamps are used is in referring to individual wmes. For example, when examining the 
contents of working memory, a wme with a time stamp attribute of 15, for instance, would 

be designated as element F15. This allows a user to specify a particular wme to be removed 

from the contents of working memory. 
8 In the current implementation of TESS, the length of a sequence used to represent a wme is fixed by 

a system parameter to 32 elements. This value allows classes of objects to be defined with as many as 30 
user-defined attributes. If a program's requirements demand greater numbers of attributes, the parameter 
can be changed to accommodate as many attributes as are needed and the system is then re-compiled. 
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The procedure by which LITERALIZE statements associate the names of object at- 
tributes with specific wme attributes is best explained with the use of an example. With 
this in mind, consider the following set of statements abstracted from an implementation 

of the "Monkey and Bananas"9 problem: 

(LITERALIZE PHYS-OBJECT NAME AT WEIGHT ON) 

(LITERALIZE MONKEY AT ON HOLDS) 

(LITERALIZE GOAL STATUS TYPE OBJECT-NAME TO) 

In the "Monkey and Bananas" problem, there is a monkey in a cage with various objects 

such as a couch, ladder, and several boxes. In the center of the cage hangs a bunch of 

bananas. Unfortunately, the bananas are much too high for the monkey to reach them. 
However, if the monkey is able to reason out a plan of action which utilizes other items in 
its cage, such as the ladder, it would be possible for the monkey to reach the bananas and 
eat them. The couch, ladder, boxes, and so on, in the monkey's cage are represented as 
specific items in a class of objects called PHYS-OBJECT. Their attributes, from the first 
LITERALIZE statement above, are NAME (what the object is), AT (Cartesian coordinates 
representing location of object), WEIGHT (relative weight of object such as heavy, light, 
etc.), and ON (what the object is resting on). Similarly, the monkey's present activity is 
represented by objects in a class called MONKEY which has the attributes of AT, ON, 
and HOLDS (object monkey is holding). Notice the existence of duplicate attributes (i.e. 
AT and ON) defined for both object classes PHYS-OBJECT and MONKEY. The stages 
of the monkey's planning activities are represented by objects belonging to a GOAL class 
of objects. Their attributes are STATUS (either active or satisfied), TYPE (action to be 
performed by the monkey), OBJECT-NAME, and TO (location to move the object to). 

What results from mapping the names of object attributes onto the indices of specific 
wme attributes, in some sense may be considered a kind of template for interpreting the 
contents of a wme. Such templates, when used to "screen" wmes, filter their components in 
such a way that only those which correspond to the attributes of a certain object class are 
meaningful. This interpretation of the purpose of literal mapping coincides with the way 
in which condition elements are normally specified, that is, with a structure much like that 
of predicates in first-order logic. A specially named object attribute is defined internally as 
CLASS, which can be used to facilitate this interpretation. The CLASS literal always maps 
to the first available index of each template, address 1 of a wme. The class of object which 
a wme represents, is normally stored in this location. For example, a wme which represents 
a particular physical object in the "Monkey and Bananas" problem would have the name 
of its object class, PHYS-OBJECT, stored in attribute 1 of the wme sequence. In this way, 

9 The implementation of the "Monkey and Bananas" problem used for demonstrative purposes in this 
chapter was adapted with few modifications from [5] Appendix 1, pp. 383-408. 
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the class of an object can be treated as just another wme attribute. The names of attributes 
associated with a class of objects, as defined by a LITERALIZE statement, are then mapped 

in the order they were specified onto the remaining wme attributes beginning with the first 

available address, which is the index 2. The result is the following correspondence between 

the literals of a template for the PHYS-OB JECT class of objects and wme attributes. 

Wme Attributes: 0 1 2 3 4 5 6 

Template: * CLASS NAME AT WEIGHT ON — — 

While a template representation of the attributes associated with an object class is only 
a conceptual contrivance, when expressed visually (as in the above example) the notion 
of interpreting the contents of a wme can be seen more clearly. For instance, if the value 
stored in the CLASS attribute of a wme is PHYS-OBJECT, then, with respect to the 

above template, the values stored in indices 2, 3, 4, and 5 of the wme have a definite 
interpretation. In particular, the contents of each wme index has the interpretation which 
is indicated by the corresponding template literal. On the other hand, if the value stored in 
a wme's CLASS attribute is not PHYS-OBJECT, then the mapping of literals represented 
by the above template could be entirely without meaning. However, there is the possibility, 
that a number of the literals present in the template for a PHYS-OBJECT class of object 
are the same as those in the templates of other classes of objects. When this situation 

occurs, as it does with the ON and AT literals for objects of class PHYS-OBJECT and 
MONKEY, the indices associated with subsequent occurrences of previously encountered 
literals are retained. In other words, a particular attribute literal is mapped to a specific wme 
index only once. Any future LITERALIZE statements which names a previously mapped 
attribute literal, must accommodate the earlier mapping in their object class "templates". 
The purpose of handling duplicate object attribute literals in this manner is to make it 
possible for production rules to treat the attributes of objects, within different classes, in a 
more generalized way. 

The process of literal mapping can now be continued for the MONKEY and GOAL 
object classes. Including the internally defined CLASS attribute literal, the previously 
mapped literals of the MONKEY class are; CLASS = 1, AT = 3, and ON = 5. Viewing 
these associations as a partial description for a MONKEY object template, the index cor- 
responding to the first available wme attribute is index 2. This is the wme index which the 
remaining attribute literal, HOLDS, is associated with. Notice how this mapping leaves a 
hole in the MONKEY object template at wme index 4 as there is no additional attribute 
associated with a MONKEY object which would occupy that location. Holes in object 
attribute templates are common and are of little consequence. Like the object attributes 
defined for the PHYS-OBJECT object class, none of the attributes defined for the GOAL 
object class had been previously mapped. The mapping procedure for its attribute liter- 
als is a straightforward one. The final results of the attribute literal mapping procedure 
for the LITERALIZE statements given above, are summarized in Table 3.1.   The entries 
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Object Attribute 
Literals 

Object Classes 
PHYS-OBJECT    MONKEY GOAL 

CLASS 1                        1 1 
NAME 2 
AT 3                        3 
WEIGHT 4 
ON 5                         5 
HOLDS 2 
STATUS 2 

TYPE 3 
OBJECT-VALUE 4 

TO 5 

Table 3.1: Association of Attribute Literals with Wme Indices. 

of Table 3.1 are the wme index values to which the various object attribute literals were 
assigned. Those entries which appear in a box indicate the particular attribute literal was 
associated with a wme index in a LITERALIZE statement. 

3.4.2.2.2 Pattern Specification Syntax In previous discussions, it was described on 
an elementary level, how patterns of wme attributes are specified by the condition elements 
of production rules. Recall that the detection of such patterns, in terms of identifying 
suitable groups of wmes, typically involves testing for both intra- and inter-element group 
features. These features are specified in a production rule's condition elements with a 
series of attribute-value pairs. Because the exact nature of wme attributes had not yet 
been introduced, the actual means by which attribute-value pairs are specified was not 
discussed. However, now that the association between object attributes names and wme 
index locations has been discussed, the specification of attribute-value pairs can now be 
presented. The index operator, a special operator with the exclamation mark (!) as its 
symbol, is used to identify a particular wme attribute in terms of its index address. The 
index operator can be applied to either a positive integer, or an object attribute literal. 
Applying the index operator to an integer or literal is accomplished by placing it directly 
in front of them—there may or may not be any space in between. In the case the index 
operator is applied to an integer, the wme attribute specified is the one which corresponds 
to the index of the same number. For example, when the index operator is applied to the 
integer 5, as in !5, the wme attribute which is specified is the one occupying index address 
5.10 When the index operator is applied to a literal however, the specified wme attribute 

10 Note that the index operator could also be used to gain access to a wme's time stamp attribute, as in 
!0. Although it is not clear what purpose this may serve. 
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corresponds to the index which the literal was associated with by a previous LITERALIZE 
statement.11 For example, applying the index operator to the internally defined attribute 
literal CLASS, as in ICLASS, specifies the wme attribute which occupies index address 1, 

normally the name of the object's class. Following the specification of each attribute is a 

corresponding value of an attribute- value pair. The specified wme attribute is required to 

have a certain relationship to this value, by default, they must equal. A condition element 
in a production rule for the "Monkey and Bananas" problem might look like the following: 

(ICLASS PHYS-OBJECT       I NAME LADDER       !AT <P>       !0N FLOOR) 

Extra space has been added between each attribute-value pair for emphasis. With respect 
to the association of literals and wme indices summarized in Table 3.1, the above condition 

element could also have been written as: 

(!1  PHYS-OBJECT       12 LADDER       !3 <P>       !5 FLOOR) 

The pattern constraints described by each of the above condition elements will only be 
satisfied by wmes which have the following intra-element features: 1) the value stored in 
attribute 1 is PHYS-OBJECT, 2) the value stored in attribute 2 is LADDER, and 3) the 
value stored in attribute 5 is FLOOR. Since the specified value for attribute 3 is a variable, 

and there are no other condition elements to impose a conjunctive pattern constraint, wme 
attribute 3 may contain any value. This is also true of all wme attributes which are not 
constrained by the condition element. 

When the contents of a condition element are processed, to determine what pattern 
constraints have been specified, a counter is maintained internally which steps through each 
wme index to be addressed. For each condition element, the initial value of the counter is set 
to 1, which reflects the index address normally associated with a wme's CLASS attribute. 
As successive values are specified in the condition element, the counter is incremented to 
reference the next consecutive wme attribute. In actuality, the attribute specified in an 
attribute-value pair is really determined by the current contents of the index counter and 
only values are specified in condition elements. Consider, for example, the attribute-value 
pairs which are specified by the following condition element: 

Condition Element:        (ARG1     ARG2    ARG3) 

Index Counter: 12 3 

The values of ARG1, ARG2, and ARG3, in conjunction with the current contents of the 
index counter, specify the following attribute-value pairs: 

11 It is for this reason that all LITERALIZE statements in a production system declaration file should be 
located before the definition of the first production rule. In this way, all literals will have been associated 
with a wme index before the index operator is first applied. 
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Attribute 1 = ARG1 
Attribute 2 = ARG2 

Attribute 3 = ARG 3 

With the use of an index operator, be it applied to a positive integer or attribute literal, 

the progressive sequence of wme indices normally produced by the index counter can be 

arbitrarily altered. During the processing of a condition element, when an index operator is 

encountered, it is treated as a directive which specifies a wme attribute to be stored in the 

index counter. In particular, the new wme attribute is the one which corresponds to what 

the operator is being applied to. Once the index counter has been set to this new value, 

its contents, as before, are incremented for each value specified in a condition element. For 

example, consider the following condition element: 

Condition Element:        (ARG1     !5 ARG2    ARG3) 

Index Counter: 15 6 

The presence of the directive !5, sets the value stored in the index counter to 5 which is the 
wme attribute used for the next encountered value. Following are the attribute-value pairs 
which are specified by the above condition element: 

Attribute 1 = ARG1 
Attribute 5 = ARG2 

Attribute 6 = ARG3 

In the preceding examples, the relation between wme attributes and specified values 
which needed to be satisfied was, by default, taken to be equality. That is, it was necessary 
for a wme attribute to be equal to the corresponding value specified in the respective 
condition element. However, any one of a number of relations could have optionally been 
selected as the one to be used with each specified value. The need for a particular relation 
between an attribute and value to be satisfied is expressed in a condition element by placing a 
special relation symbol immediately before the specified value. The symbol '<', for example, 
is used to denote the "less than" relation. When this symbol is placed in front of a value, 
for instance as in < 35, it specifies that a suitable value for a wme attribute is any number, 
so long as it is less than 35. Table 3.2 gives a complete summary of the attribute-value 
relation symbols and their meanings which are available in TESS. Consider the following 
example which incorporates many of the production language aspects discussed up to this 

point; 

CE: (ARG1     !5  >  21     !5  <= 65    ARG2     !3 #   (RED BLU GRN)) 

Index: 15 5 6 3 

The attribute-value pairs specified by the condition element are summarized in the following: 
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Attribute 1 = ARG1 

Attribute 3 # (RED BLU GRN) 

Attribute 5      > 21 

Attribute 5 <= 65 

Attribute 6      = ARG2 

Notice how the index operator was used to impose two pattern constraints on the value of 
wme attribute 5. The first attribute-value pair involving attribute 5 requires its value to be 
greater than 21, while the second requires its value to be less than or equal to 65. Together, 

they specify a conjunction of intra-element feature tests which are to be applied to a single 
wme attribute. In particular, they specify an interval of suitable attribute values, such that, 
if x is the value of wme attribute 5, then it must lie somewhere within the limits defined by 
21 > x > 65. In general, a conjunction may consist of any number of pattern constraints. 

Although conjunctions could be defined as in the above condition element, a special syntax 
is provided to emphasize the presence of such conjunctive attribute-value constraints. This 
syntax has the following general form: 

{[< variable >]   [[[relationl] value!]    ■■•    [relationN] valueN]} 

where bracketed items are optional. The first parameter is an optional variable which, if 
present must be the first occurrence within a production rule, the particular variable name 
has been used. When this variable is present, it refers to the value of the particular wme 
attribute (i.e. it is "bound" to the value of the attribute), and as such, it does not represent 
an attribute-value pair. The remaining (optional) parameters are values which represent 
the conjunctive attribute-value constraints. If relational symbols are present, they pertain 
to the immediately following value. If a relation is not specified for a particular value, 
equality is used by default. Using this syntax, the conjunction of values for wme attribute 
5 in the above condition element could have also been specified as: 

{> 21 <= 65} 

Like the special syntax which can be used to denote a conjunction of attribute values, 
there is also an alternate representation for a disjunction of attribute values. A disjunction 
of values for a particular wme attribute is indicated by enclosing a number of "literal" 
values within two special symbols, << U and U >>, where U is used here to represent a 

required space character. The value of the particular wme attribute may be equal to any 
one of the enclosed literal values. Because enclosed values are taken literally, a symbol, 
which under normal circumstances would be taken as a variable, can be specified as one of 
the disjunctive values. In the example condition element given above, the value and relation 
specified for wme attribute 3 is essentially the same as a disjunction. The specified value is 

a list containing three symbols, RED, BLU, and GRN. The relation symbol, #, indicates 
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A <B Wme attribute A is less than the value of B. Can be used for arithmetic 
comparisons as well as lexicographic string comparisons (as with STRING < 
function). 

A >B Wme attribute A is greater than the value of B. Can be used for arithmetic 
comparisons as well as lexicographic string comparisons (as with STRING > 

function). 

A = B Wme attribute A is equal to the value of B. Can be used for arithmetic, symbol, 
string, and general LISP data structure comparisons. 

A@B Wme attribute A is a list and has the value of B as a member. The value of B 
can be any LISP object (the EQUAL function is used). 

A#B Wme attribute A is a member of the list which is the value B. The attribute 
A can be any LISP object (the EQUAL function is used). 

A <> B Wme attribute A is not equal to the value of B.  Can be used for arithmetic, 
symbol, string, and general LISP data structure comparisons. 

A <=B Wme attribute A is less than or equal to the value of B. Can be used for 
arithmetic comparisons as well as lexicographic string comparisons (as with 
STRING <= function).   

A >=B Wme attribute A is greater than or equal to the value of B. Can be used 
for arithmetic comparisons as well as lexicographic string comparisons (as with 
STRING>= function). 

A ~@B Wme attribute A is a list and does not have the value of B as a member. The 
value of B can be any LISP object (the EQUAL function is used). 

A~#B Wme attribute A is not a member of the list which is the value B. The attribute 
A can be any LISP object (the EQUAL function is used). 

A <=>B Wme attribute A is of the same data type as the value of B. Can be used for 
any LISP objects suitable for comparison with the TYPE function. 

Table 3.2: Attribute-Value Relation Symbols Available in TESS. 
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that wme attribute 3 should be tested for membership in this list (refer to Table 3.2). 
Therefore, the values for which attribute 3 of a wme are acceptable can be one of the 
symbols RED, BLU, or GRN. Combining the alternate syntactic representations for both 

a conjunction and disjunction of attribute values, the previous example condition element 

is entirely equivalent to the following: 

(ARG1     !5 {> 21     <= 65}    ARG2     !3 « RED BLU GRN ») 

Several other features of the TESS production language have yet to be discussed and can 

be easily described by considering an example production rule. The following production 
rule, abstracted from an implementation of the "Monkey and Bananas" problem, will be 

used to identify the remaining production language features: 

(P HOLDS-OBJECT-CEIL 
{(GOAL  !STATUS ACTIVE  !TYPE HOLDS   !OBJECT-NAME <0» <G0AL» 
{(PHYS-OBJECT  !NAME <0>   !WEIGHT LIGHT  !AT <P>   !0N CEILING)  <0BJECT>} 

(PHYS-OBJECT   !NAME LADDER  !AT <P>   !0N FLOOR) 
{(MONKEY  !0N LADDER  !HOLDS NIL) <M0NKEY» 

-   (PHYS-OBJECT   !0N <0>) 
—> 

(FORMAT T "-2'/.Grab "AT <0>) 
(MODIFY <M0NKEY>   !HOLDS <0>) 
(MODIFY <0BJECT>   !0N NIL) 
(MODIFY <G0AL>   !STATUS SATISFIED)) 

Perhaps the most obvious language feature which has yet to be discussed is the use of a 
minus sign in front of a condition element, as with the fifth condition element, C4. A minus 
sign is put in front of any condition element describing wme attributes in which it is required 
that no element currently in the working memory satisfies. With respect to the above rule, 
condition element C4 requires there to be no wme present in the working memory which is 
of class PHYS-OBJECT and has an !ON attribute equal to the value specified by variable 
<0> (i.e. the contents of attribute IOBJECT-NAME of a wme corresponding to condition 
element CO). In terms of a suitable group of wmes which exhibit the described pattern 
of wme attributes, a total of four satisfactory wmes are required to exist simultaneously 
in the current contents of the working memory while a fifth must not exist. Thus, for 
each condition element which is negated by a preceding minus sign, a group of wmes which 

is one less wme in size than the total number of condition elements is needed to satisfy 
and instantiate, a production rule. A second notable language feature is the presence of 
braces enclosing certain condition elements, in particular condition elements CO, Cl, and 
C3. Located outside each of these condition elements, inside the braces and to the far 
right, is a variable symbol. The braces are used to associate or "bind", the variable to the 
particular wme of a rule instance which corresponds to the condition element. This is the 
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basic method by which the action-body of a production rule can reference a particular wme 
of a group which constitutes an instance of the rule. The variable can appear on either side 

of a condition element so long as it is inside the braces. The names of such variables should 

also be unique and distinct from those used in any of a rule's condition elements. More will 

be said concerning the internal use of these variables in the action-body of a production 

rule in the next section. 

A production language feature not demonstrated by the above rule comes into play when 
a rule fails to specify any condition elements. Intuitively, this means that whatever actions 
may have been programmed into the rule, they are applicable no matter what the contents 
of the working memory may be. Indeed, they are applicable even when there are no elements 

in the working memory. To insure something is present in working memory to match against 

a production rule with no specified condition elements, a technique was borrowed from the 

CLIPS [33] expert system shell. In CLIPS, when rules are processed in which there are no 

specified "condition elements", a special pattern is inserted into the rule's definition. This 

pattern always matches an "initial-fact" which is automatically asserted and placed into the 
working memory when the system is "reset". In this way, from a programming standpoint, 
there is something in the working memory which will match and consequently instantiate 
a production rule which has no specified condition elements. 

3.4.2.2.3    Production Rule Action-Bodies and Lambda-Expressions    Due to the 
fact that TESS is both implemented in Common LISP and intended to be executed in a 
"standard" LISP environment, there are few restrictions which limit the kinds of actions 
that may comprise a production rule action-body. The actions associated with a production 
rule are actually nothing more than a succession of ordinary LISP function calls which are 
written as if they were the body of another function. In fact, when each production rule 
is processed, its associated actions are made to be the body of a lambda-expression [78, 
pages 75-83] which requires a single functional argument. With respect to a particular 
production rule, the argument given to its corresponding lambda-expression is a list with 
elements representing a group of wmes which constitute an instance. The group of wmes in 
the list are ordered with respect to the condition element which they were found to satisfy. 
Thus, the execution of a production system proceeds by successively applying, in the LISP 
sense, lambda-expressions to corresponding rule instances of the conflict set. In order to 
facilitate this kind of execution, the instance data structures which comprise the conflict 
set supply the hash table key (i.e. rule name) by which the appropriate lambda-expression 
is retrieved. This lambda-expression is then applied to the group of wmes "stored" in the 

instance data structure. 

As an example of how a lambda-expression is constructed for a particular production 
rule, consider, once again, the HOLDS-OBJECT-CEIL rule described in the previous sec- 
tion.  In all, there are a total of five different variables used in the rule, the use of which 
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Binding Used in 
Variable Type Address Action-Body 

<0> ATTR CO(IOBJECT-NAME) X 

<GOAL> WME CO X 

<P> ATTR C1(!AT) 
<OBJECT> WME Cl X 

<MONKEY> WME C3 X 

Table 3.3: Variables Used in HOLDS-OBJECT-CEIL. 

can be classified into one of two categories; 1) variables which refer to a particular wme at- 
tribute (ATTR), and 2) variables which refer to an entire wme (WME). With respect to the 
components of a production rule instance, each variable can be identified with a particular 
constituent wme and/or attribute. In the implementation of production rules, variables are 
nothing more than symbols which have been associated with instance components, they are 
not bound in the conventional LISP sense. However, because the action-body of a produc- 
tion rule is used as the body of a lambda-expression, a variable symbol which appears in the 
action-body will, when executed, be evaluated in the LISP environment as if it were bound 
to some value. This disparity between the way in which production rule variables are used 
internally for pattern matching purposes, versus their use in an action-body, is compensated 
for by including a header in the lambda-expression created for each rule. A header pro- 
vides LISP code sufficient to encapsulate an action-body in a local execution environment. 
Within this environment, bindings are provided for the variable symbols which appear in a 
rule's action-body thereby allowing them to be evaluated directly by the LISP interpreter. 
Each variable symbol is made to point to the component of an instance which corresponds 
to the value specified in the condition elements of the respective production rule. 

In relation to an action-body, the important aspect of each variable is the address to 
which it is a reference, regardless of what the address may contain. This address can 
either be a wme attribute index address or a location within an instance, as supplied to a 
lambda-expression, where a particular wme can be found. Table 3.3 summarizes the address 
components referenced by the variables used in the HOLDS-OBJECT-CEIL production rule. 
This information will be encoded into the header of the corresponding lambda-expression. 

The variables which are listed in the table as being of type WME have as their specified 
binding address the condition element which they reference. For example, in the particular 
production rule, the variable <MONKEY> is bound to the condition element referred to 
as C3, which is used as the binding address in the Table. What this means is that when a 
function call in the action-body of the HOLDS-OBJECT-CEIL rule refers to the variable 
<MONKEY> in the corresponding lambda-expression, it can be treated as a reference to 

element 3 (the fourth component) of the wme instance list argument. 
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The variables in Table 3.3 which are listed as being of type ATTR and which occur in 
the action-body of HOLDS-OBJECT-CEIL, can be treated in the corresponding lambda- 
expression in a manner similar to the WME type variables. However, with ATTR variables, 

two addresses are required to access the particular wme attribute. The first address is a 
reference to the condition element in which the variable was bound. In particular, this is the 
condition element in which the variable is first specified under the equality relation as the 
value of a specified wme attribute. The index corresponding to the specified wme attribute is 
used as the second address. For example, the variable <0> in the HOLDS-OBJECT-CEIL 

production rule is bound in condition element CO as the specified value of a wme attribute 

OBJECT-NAME. In Table 3.3, the complete binding address is specified as C0(!OBJECT- 

NAME) which is used to connote the need for two separate address components. With 

respect to variable references within the body of a corresponding lambda-expression, the 

CO address component is an indication that the value actually being referenced is con- 

tained in the first element of the supplied wme instance list argument. The second address 
component, IOBJECT-NAME, specifies which wme attribute of that first element is the 
referenced value. The address information contained in Table 3.3 is used when process- 
ing the HOLDS-OBJECT-CEIL production rule to create the header LISP code for the 
corresponding lambda-expression. This is done using a LET special-form which encloses 
the production rule's action-body. For example, the following special-form is used in the 
lambda-expression created for the HOLDS-OBJECT-CEIL rule: 

(LET ((<D>      (ELT (ELT *FACTS* 0) 4)) 
«G0AL>        (ELT *FACTS* 0)) 
«0BJECT>      (ELT *FACTS* 1)) 
«M0NKEY>      (ELT *FACTS* 3))) 
  Action-Body   ) 

The symbol *FACTS* is a variable argument specified by each lambda-expression which 
a wme instance list is bound to when the function is applied. 

There are a number of standard (macro-) functions defined in TESS which are especially 
designed for manipulating wmes in various ways. The two most commonly used functions 
are named ASSERT*12 and RETRACT. When wmes are asserted, with an ASSERT* 
statement, the wmes are added to the contents of working memory. Likewise, a retraction 
of wmes, by a RETRACT statement, removes the wmes from the contents of working 
memory. The general form of the ASSERT* and RETRACT statements are given below: 

12 A function called ASSERT is already a part of the Common LISP function repertoire. In order to avoid 
re-defining the function, an asterisk was appended to the name. 
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(ASSERT*    {attribute-value UstO) 

(attribute-value listl) 

(attribute-value listn)) 

(RETRACT wmeO wmel ■■■ wmen). 

Any number of new wmes can be added to the contents of working memory with an AS- 

SERT* statement. The values of each wme's attributes are specified as a list of attribute- 
value pairs in exactly the same way that patterns are specified in the condition elements of 
a production rule. The only exception is that all attribute values must be specified under 
the equality relation. For example, the following ASSERT* statement when executed would 

assert two new wmes whose attributes have the indicated values: 

(ASSERT*    (PHYS-OBJECT !NAME <0> WEIGHT LIGHT !AT X5-Y3) 

(GOAL ISTATUS ACTIVE !TYPE ON 10BJECT-NAME <0>)) 

The ASSERT* function is also the mechanism used at the top-level of TESS (i.e. the shell 
environment) for adding new wmes to the contents of working memory. However, the above 

example could not be processed at the top-level because it specifies a variable, <0>, as the 
value of a wme attribute. This can only be done within the action-body of a production 
rule where the variable is a reference to a specific value. Like ASSERT*, the RETRACT 
function is also the mechanism used to remove wmes from working memory at the top-level. 
When used at the top-level, the wmes to be removed are specified with respect to their 
time stamp attributes. On the other hand, when used in the action-body of a production 
rule, variables references to specific wmes of an instance are specified. To illustrate this 
distinction, consider the two example RETRACT statements given below: 

(RETRACT 15 37 8) 

(RETRACT <WME2> <FACT>). 

The first statement is a typical example of how the RETRACT function would be used at 
the top-level. It instructs TESS to remove from working memory those wmes which have 

the time stamp attributes 15, 37, and 8. Incidentally, when RETRACT is used at the top- 
level, as in this example, it is not an error to have specified a time stamp for which there 
is no corresponding wme. If there were a wme in working memory with the specified time 
stamp, it would be removed anyway. The second statement above is an example of how the 
RETRACT function would be used in the action-body of a production rule. In this case, 
the variables <WME2> and <FACT> were presumably used in the LHS of the rule as 
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references to particular wmes of an instance. When used in the action-body of a production 
rule, it would be an error to non-existent wmes (i.e. to specify unbound variables). 

Another standard function provided in TESS for manipulating wmes is the MODIFY 

(macro-) function. Unlike the ASSERT* and RETRACT functions which can be used in 
production rule action-bodies as well as at the top-level, the MODIFY function can only be 
used in action-bodies. In a sense, the MODIFY function may be considered to embody a 
combination of the operations performed by the ASSERT* and RETRACT functions. The 
MODIFY function is used to modify a number of wme attributes, where the particular wme 

is one of those which comprise a rule instance. Its operation proceeds as follows: first, a 

copy of the wme is made and the original is removed from the working memory; next, the 

necessary modifications are made to the attributes of the copy, and finally, the modified 

copy is added to the contents of the working memory. However, before the wme copy is 

asserted, an additional modification is made to its time stamp attribute. The new value 

stored in this attribute is a positive integer representing the latest wme time stamp. This 
is an important modification as it serves to distinguish between the old wme and the newly 
modified one. The general form of the MODIFY function is given below: 

(MODIFY wme-reference attribute-value-list) 

The wme-reference argument to the MODIFY function is a variable which, within a par- 
ticular production rule, is "bound" to one of the condition elements. Following such a 
variable are the attribute-value pairs which are used to specify the wme attributes which 
are to be modified to contain the specified values. Like the attribute-value lists required 
for the ASSERT* function, the attribute-value list given to a MODIFY function must also 
be specified under the equality relation. The example HOLDS-OBJECT-CEIL production 
rule under consideration lists three separate MODIFY statements, the first of which is the 

following: 

(MODIFY <M0NKEY>     !HOLDS <0>) 

In the LHS of rule HOLDS-OBJECT-CEIL, the variable <MONKEY> is "bound" to con- 
dition element C3 which is a requirement for ensuring the monkey is not presently holding 
anything (i.e. IHOLDS NIL). Also, variable <0> is "bound" to the name of the physical 
object which is the goal of the monkey to grab. The purpose of this MODIFY statement 
then, is to change the monkeys status to reflect a condition in which the monkey is currently 
holding the object. With respect to the creation of a lambda-expression which corresponds 
to the HOLDS-OBJECT-CEIL production rule, the above MODIFY statement, which is ac- 
tually a macro call, is expanded before being inserted into the lambda-expression. The LISP 
code produced by this expansion, which is inserted verbatim into the lambda-expression, is 

shown below: 

(LET   ((*FACT*   (COPY-SEQ <M0NKEY>))) 
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(FUNCALL 
(SIMVAL   >TESS::*PROCESS-ASSERT-NEAR-HOOK*)  *FACT*   :RETRACT) 

(SETF  (ELT *FACT* 0)   (FACT-TIME-STAMP) 

(ELT *FACT*  2)   <0>) 

(FUNCALL 
(SIMVAL  'TESS::*PR0CESS-ASSERT-NEAR-H00K*)  *FACT*   :ASSERT)) 

The procedure outlined for the operation of the MODIFY function, as explained previ- 
ously, can easily be recognized in the above LISP code. A programming variable, *FACT*, 

is first set equal to a copy of the instance wme referenced by <MONKEY>. The function, 
pointed to by the global variable TESS::*PROCESS-ASSERT-NEAR-HOOK*, which is ac- 

cessed in SIMULACT with the SIMVAL function, is then used to remove the wme from 
the working memory. After the copy's attributes have been modified, this same function 
is used to add it to the contents of the working memory. However, the actual altering of 
attribute values, is performed by the interposed SETF macro. Recalling that index address 
0 is where the time stamp attribute of each wme is stored, it can be seen that the first 
attribute modified by SETF is the time stamp attribute, the value of which is returned by 
the FACT-TIME-STAMP function. Referring back to the previous MODIFY statement, 
the attribute to be modified is specified as IHOLDS, which from Table 3.1 maps to index 
address 2 of a wme. Therefore, the next attribute modified by SETF is the one located 

at index address 2. The value placed in this wme location is the value bound, by the 
lambda-expression, to the symbol <0>. LISP code of the same general form as above 
is inserted into the lambda-expression for each occurrence of a MODIFY statement. The 
lambda-expression created for the HOLDS-OBJECT-CEIL production rule is given below: 

(LAMBDA  (»FACTS*) 
(DECLARE (OPTIMIZE SPEED)) 

(LET ((<0>      (ELT (ELT *FACTS* 0) 4)) 

(<G0AL>        (ELT *FACTS* 0)) 

(<0BJECT>      (ELT *FACTS* 1)) 

(<M0NKEY>      (ELT *FACTS* 3))) 

(FORMAT T "-2%Grab ~A~'/."  <0>) 
(LET ((*FACT* (COPY-SEQ <M0NKEY>))) 

(FUNCALL 
(SIMVAL 'TESS::*PROCESS-ASSERT-NEAR-HOOK*) *FACT* :RETRACT) 

(SETF (ELT *FACT* 0) (FACT-TIME-STAMP) 

(ELT *FACT* 2) <0>) 

(FUNCALL 
(SIMVAL >TESS::*PROCESS-ASSERT-NEAR-HOOK*) *FACT* :ASSERT)) 

(LET ((*FACT* (COPY-SEQ <0BJECT>))) 

(FUNCALL 
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(SIMVAL 'TESS::*PROCESS-ASSERT-NEAR-HOOK*) *FACT* :RETRACT) 

(SETF (ELT *FACT* 0) (FACT-TIME-STAMP) 

(ELT *FACT* 5) 'NIL) 

(FUNCALL 
(SIMVAL 'TESS::*PR0CESS-ASSERT-NEAR-H00K*) *FACT* :ASSERT)) 

(LET ((*FACT* (C0PY-SEQ <GOAL»)) 

(FUNCALL 
(SIMVAL 'TESS::*PROCESS-ASSERT-NEAR-HOOK*) *FACT* :RETRACT) 

(SETF (ELT *FACT* 0) (FACT-TIME-STAMP) 

(ELT *FACT* 2) 'SATISFIED) 

(FUNCALL 

(SIMVAL 'TESS::*PROCESS-ASSERT-NEAR-HOOK*) *FACT* :ASSERT)))) 

Before the above lambda-expression is stored in a hash table as the action to be associated 
with the HOLDS-OBJECT-CEIL production rule, it is first compiled so that it can be 

executed more efficiently. Since production systems are relatively slow in comparison with 
other types of programming systems, a compiler feature which optimizes the resulting code 
for speed, is declared in each lambda-expression created. This declaration can be observed 
in the second line of the lambda-expression above. 

3.4.3    The Pattern Matching Algorithm 

An important component of any production system is the pattern matching algorithm em- 
ployed by its interpreter. In a production system, the pattern matching algorithm is respon- 
sible for maintaining the correctness of the conflict set from one cycle of the interpreter to 
the next. The algorithm accounts for changes made to the working memory as the result of 
a rule firing, by making appropriate modifications (i.e. the addition and deletion of various 
rule instances) to the conflict set. Classical pattern matching algorithms accomplish this 
task by repeatedly computing the entire conflict set for each cycle of the interpreter. For 
every production rule LHS, the pattern matcher will iterate over all suitable combinations 
of working memory elements to find those which satisfy the specified conditions. When a 
satisfactory combination is found, an instance of the particular rule is created and added to 
the conflict set. Unfortunately, such simplistic algorithms are extremely inefficient and se- 
riously reduce production system performance. On the other hand, the RETE [26] pattern 
matching algorithm has been specially designed to address the many pattern/many object 
pattern matching requirements of production systems. By using a special matching net- 
work, which saves certain state information, the RETE algorithm avoids iterating over the 

contents of working memory, as was previously done. Consequently, the RETE algorithm is 
able to achieve a significant increase in the overall performance of production systems and 
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has emerged as one of the most efficient pattern matching algorithms.13 

The match network used in conjunction with the RETE algorithm is partitioned into two 
inter-connected networks called the pattern network and the join network. Their structure 

and inter-connections correspond to an aggregate representation of the conditions expressed 

within a collection of production rules. In essence, the match network combines the individ- 
ual pattern matching requirements common to a number of production rules into a "single" 
comparison. The results of such a comparison are effectively distributed among its corre- 

sponding production rules, thus, the costs associated with redundant pattern matching are 
eliminated. The motivation for sharing such intermediate pattern matching results was due 
to observations of actual expert system implementations. It was found that in a typical 
expert system, the collection of production rules were organized into a number of logi- 
cal groups, with each group containing various rules whose objectives are closely related. 
Among the rules comprising any particular group there was often found to be a considerable 
amount of structural similarity exhibited by their respective condition elements. Therefore, 
the pattern network was designed to share the results of comparisons for intra-element fea- 
tures among the collection of production rules. Likewise, the join network was designed 
to share the results of comparisons for inter-element features. As an example of how each 

network is structured, consider how the following two general english statements pertaining 

to the "Monkey and Bananas" problem might be realized. 

"IF the monkey is to get on some physical object AND 
the physical object is on the floor AND 
the monkey is standing next to it holding nothing, 

THEN 
have the monkey climb onto the physical object." 

"IF the monkey is to get on some physical object AND 
the physical object is on the floor AND 
the monkey is not standing next to it, 

THEN 
have the monkey first walk over to the location 

of the physical object." 

These two closely related english statements were coded in an actual implementation 
of the "Monkey and Bananas" problem using TESS in the form of two production rules 
named ON-PHYS-OBJECT and ON-PHYS-OBJECT-AT-MONKEY respectively.   Their 

13The TREAT algorithm discussed by Miranker [63] is similar in most respects to the RETE algorithm, 
except TREAT uses an additional source of information called conflict set support, which has been shown 
through quantitative experimentation to yield a more efficient matching algorithm. 

67 



production rule representations have been abstracted below. 

(P ON-PHYS-OBJECT 
{(GOAL  !STATUS ACTIVE  !TYPE ON   !OBJECT-NAME <0>)       <G0AL>} 

{(PHYS-OBJECT  !NAME <0>   !AT <P>   !0N FLOOR) <0BJECT» 

{(MONKEY  !AT <P>   !HOLDS NIL   !0N <> <0» <M0NKEY» 

—> 
(FORMAT T "~2y.Climb onto "A"*/."  <0>) 

(MODIFY <M0NKEY>   !0N <0» 
(MODIFY <G0AL>   !STATUS SATISFIED)) 

(P ON-PHYS-OBJECT-AT-MONKEY 
(GOAL   !STATUS ACTIVE  !TYPE ON   !OBJECT-NAME <01» 

(PHYS-OBJECT  !NAME <01>   !AT <P>   !ON FLOOR) 

(MONKEY   !AT <> <P>) 
—> 

(ASSERT*   (GOAL   !STATUS ACTIVE   ITYPE AT   !OBJECT-NAME NIL   !TO <P>))) 

As their names would suggest, both production rules belong to the same logical grouping. 
The particular group of rules they belong to is responsible for achieving goals which require 

the monkey to get on some physical object in its environment when various conditions exist 
(i.e. for particular world states). Notice how the structural similarities exhibited by the 

english statements have been preserved by the production rule encoding. 

The intra-element and inter-element feature tests extracted from the condition parts 
of ON-PHYS-OBJECT and ON-PHYS-OBJECT-AT-MONKEY are summarized in Tables 
3.4 and 3.5 respectively. Focusing for the moment on their intra-element feature tests, 
it is readily apparent that condition elements CO and Cl of both rules specify the exact 
same list of pattern requirements. In addition, while the feature tests specified by their 
respective C2 condition elements are not identical, they do share the stipulation that slot 1 
of any satisfactory wme must contain the symbol MONKEY. These pattern requirements 
are combined together, along with those from any other production rules, into a pattern 
network. The construction of the pattern network is accomplished in such a manner as 
to maximize the number of shared feature tests. For instance, the feature tests necessary 
for condition element CO of both rules can be combined into a single series of tests with 
the provision that any wme satisfying the tests be distributed to the corresponding CO 
condition of each rule. A pattern network constructed from the intra-element feature tests 
of ON-PHYS-OBJECT and ON-PHYS-OBJECT-AT-MONKEY is illustrated in Figure 3.4. 

The structure of the pattern network shown in Figure 3.4 can be seen to be that of a 
rooted tree. Each path from its root node toward a leaf node represents one distinct series 
of intra-element feature tests. For example, the feature tests along the path of nodes labeled 
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Figure 3.4: Example Pattern Network. 
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CO 
Cl 
C2 

Intra-Element Feature Tests 
<(= 1 GOAL) (= 1STATUS ACTIVE) (= !TYPE ON)) 
{(= 1 PHYS-OBJECT) (= !ON FLOOR)) 
((= 1 MONKEY) (= IHOLDS NIL))        

Inter-Element Feature Tests 
CO - Cl:     <(= (CO IOBJECT-NAME) (Cl !NAME))) 

CO, Cl - C2:     ((jt (CO IOBJECT-NAME) (C2 ION)) (= (Cl !AT) (C2 !AT))) 

Table 3.4: Feature Tests for ON-PHYS-OBJECT. 

CO 
Cl 
C2 

Intra-Element Feature Tests 
((= 1 GOAL) (= ISTATUS ACTIVE) (= !TYPE ON)) 
((= 1 PHYS-OBJECT) (= !ON FLOOR)) 
((= 1 MONKEY)) 

Inter-Element Feature Tests 
CO - Cl:    ((= (CO IOBJECT-NAME) (Cl !NAME))) 

CO, Cl - C2:    (& (Cl !AT) (C2 !AT)))  

Table 3.5: Feature Tests for ON-PHYS-OBJECT-AT-MONKEY. 

PI, P2, and P3 represent the sequence of intra-element feature tests corresponding to con- 
dition element CO as listed in Tables 3.4 and 3.5. Given a single working memory element, 
the production system interpreter performs a type of depth-first traversal of the entire pat- 
tern network. Along each path the interpreter draws upon the information contained in 
the encountered nodes to carry out a series of feature tests on the wme. Whenever one of 
these tests is successful, the interpreter continues its traversal to the next sequential node. 
However, if the wme fails any single feature test, the interpreter will abandon its traversal 
of the particular branch and will continue by visiting the next available node. In the event 
a wme passes all the feature tests specified by any condition element, the interpreter makes 
a copy of the wme and deposits it into an associated storage area, or bucket. Thus, the in- 
terpreter utilizes the structure of a pattern network to effect a kind of filter for partitioning 
working memory elements into groups possessing an assortment of intra-element features. 
It should be noted that a solitary wme may have suitable features entitling it to be de- 
posited in any number of distinct buckets. Table 3.6 summarizes the association between 
the buckets (labeled B1-B4) in Figure 3.4 and the condition elements of production rules 
ON-PHYS-OBJECT (denoted by an 'X') and ON-PHYS-OBJECT-AT-MONKEY (denoted 

by a 'Y'). 

Thus far, the role of the production system interpreter has been described as one of 
traversing the pattern network in order to determine in which buckets a single working 
memory element should be deposited. Intuitively, this process could easily be extended to 
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Condition Element 

Bucket CO Cl        C2 

Bl XY 

B2 XY 

B3 X 

B4 Y 

Table 3.6: Association Between Condition Elements and Buckets. 

include the entire contents of working memory. The result would be a set of buckets, each 
containing a copy of the wmes which satisfied its specific pattern requirements. Since these 
pattern requirements were specified by the condition elements of individual production rules, 
the enumeration of rule instances can be viewed as a matter of correlating the contents of 
buckets associated with a particular rule according to its inter-element requirements. The 
data structure utilized by the RETE algorithm to facilitate such correlations is the join 
network. The join network consists of various join nodes which are used to merge paths 
extending from the buckets of the pattern network. Each join node has two inputs called 
the left input and right input, and a data storage area associated with each one called the 
left memory and right memory. In order to correlate the contents of n buckets (i.e. merge 
n paths of the pattern network into a single path), n — 1 join nodes connected in a cascade 
type of arrangement are required. For example, to merge the paths leading from three 
nodes of the pattern network labeled A, B, and C would require two join nodes which will 
be referred to as Jl and J2. The first join-node, Jl, can be used to merge paths A and B 
into a new path called AB, while join-node J2 is used to merge paths AB and C into the 

desired path ABC. 

For matters of convenience, wmes were previously thought of as being deposited into 
various buckets according to the attributes they possess. In fact, when the interpreter 
reaches a node of the pattern network which completes a series of intra-element feature 
tests, rather than depositing a copy of the particular wme into a bucket, the interpreter 
places a copy into the corresponding memories of every join node connected to it. Consider 
the structure of the join network generated for the production rules ON-PHYS-OBJECT 
and ON-PHYS-OBJECT-AT-MONKEY shown in Figure 3.5. The left and right inputs 
of join node Jl now take the place of buckets Bl and B2 respectively as depicted in the 
pattern network of Figure 3.4. Exactly which nodes in the pattern network are to be 
merged is implicitly specified by the structure of each production rule LHS. When compiling 
a production rule, the last node traversed, 14 and/or inserted into the pattern network 
when integrating the intra-element feature tests of each condition element, is marked as a 

14 The intra-element features common to a number of condition elements may only require those nodes 
which have been previously inserted into the pattern network. 
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( = (CO lOBJECT-NAME)(Cl 1NAME) 

(<> (CO !OBJECT-NAME)( J2 ) 
(C2 !ON)) V   J 
(= (Cl SAT) (C2 !AT) )   ^-^ 

(C2) 

T-,   )    (<>    (Cl   !AT) 
'    (C2    !AT)) 

(CO   Cl   C2) 

ON-PHYS-OBJECT       ON-PHYS-OBJECT-AT-MONKEY 

Figure 3.5: Example Join Network. 

point of reference for modifying the join network. Since only the wmes which reach these 
marked nodes could possibly satisfy the production rule's respective condition elements, 
connections must be established to an appropriate cascade of join nodes which will perform 
the required inter-element feature tests. For example, the three nodes in the pattern network 
corresponding to condition elements CO, Cl, and C2 of Table 3.5 are P3, P5, and P6 
respectively, which are then merged together by join nodes Jl and J3 as shown in Figure 
3.5. As with the pattern network, the join network can be made more efficient when the 
results of inter-element tests common to a number of production rules are combined into 
a "single" comparison and then distributed accordingly (e.g. the correlated output of node 

Jl is shared by nodes J2 and J3 in Figure 3.5). 

All that remains to complete the discussion of the RETE pattern matching algorithm is 

to introduce the procedures by which join nodes are used to correlate data in their memories 
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in order to produce a series of changes in the conflict set. The basic data structure used 

for computing this correlation is called a token which represents an intermediate pattern 

matching result in the form of a partial match. Join nodes accept these tokens as input 

and produce extended tokens as output when a match for their inter-element feature tests 

is found. The general form of a token is the following: 

(action wmeo wme\ wme2 ■ ■ ■) 

The first component of a token, the action parameter, is one of the LISP keywords : ASSERT 
or :RETRACT which is used to indicate to the nodes of the join network how the token is to 
be processed. The remaining parameters represent a partial match as an ordered sequence 

of working memory elements, such that, each wmen matches condition element Cn of some 
production rule. This correspondence between token wmes and condition element matching 
is denoted in Figure 3.5 as a parenthesized list of condition element labels appearing along- 
side each join node connection. For example, the designation (CO Cl), located near the 
connection from the output of node Jl to the left input of node J2, indicates that all tokens 
traversing this path contain two wmes which match the corresponding CO and Cl condition 
element of the rule ON-PHYS-OBJECT. By observing that such designations increase in 
size by one condition element label at each level of a particular join node cascade, a better 
understanding can be obtained of how partial matches are progressively generated. Since 
join nodes are cascaded by connecting the output of one node to the left input of another, all 
tokens received by the right input of any join node have descended directly from the pattern 
network. The information contained in these tokens can be seen to represent a single wme 
which has the pattern features specified by a particular condition element. Likewise, a token 
which propagates through the pattern network to the left input of a join node also matches 
a particular condition element, specifically condition element CO. A join node extends these 
tokens by examining the contents of other tokens it has received from its right input. If any 
matches are found (i.e. the inter-element feature tests are satisfied), the tokens received by 
the left input are extended by appending the wme contained in the tokens received from 
the right input to the end of the token received by the left input. Thus, the first join node 
always outputs tokens of the form (CO Cl). This process is continued inductively until a 

token representing a complete match is generated. 

As an example, consider a portion of the join network corresponding to the production 
rule ON-PHYS-OBJECT duplicated in Figure 3.6, and the contents of working memory 

listed in Table 3.7. In the figure, the tables on either side of the join nodes represent the 
contents of their respective memories, and each memory entry is represented as a list of 

wme (fact) identifiers (e.g. F6 represents "fact" number 6) which were extracted from the 
received tokens. The example to be considered is one in which a new fact, F16, has just 
been added to the working memory. The state of the join network prior to this action is 
indicated by the unmarked memory entries. Those memory entries which are marked with 
an asterisk, were added as a consequence of the interpreter's processing of the new fact. 
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ID Working Memory Element 
~~F2~ (PHYS-OBJECT !NAME LADDER !ON FLOOR !AT X3-Y7) 

F5    (PHYS-OBJECT !NAME BIGBOX !ON FLOOR !AT X1-Y3) 
F7    (PHYS-OBJECT !NAME LADDER !ON FLOOR !AT X5-Y5) 

F10    (MONKEY !AT X5-Y5 !ON FLOOR) 
F14    (GOAL ISTATUS ACTIVE !TYPE ON IOBJECT-NAME BIGBOX) 
F16    (GOAL !STATUS ACTIVE !TYPE ON !OBJECT-NAME LADDER) 

Table 3.7: Example Working Memory. 

(:ASSERT  F16) 

(CO] 

(F14) 

(F16) 

P5 

(Cl] 

(F2) 

(F5) 

(F7) 

(CO  Cl) 

(:ASSERT   F16   F7   F10) 

Figure 3.6: A Pattern Matching Example. 
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Before a new fact can be added to or deleted from working memory, an appropriate 

token must be created which contains the fact. For this example, the token (:ASSERT 
F16) is created for adding fact F16 to working memory and given to the match network 
interpreter. The interpreter then traverses the pattern network with this token until it 

performs the intra-element feature test associated with node P3 (refer to Figure 3.4). The 

token is then passed to the left input of join node Jl. An action component of :ASSERT 
indicates the join node should store the contents of the token (i.e. a list of the token's wmes) 
in its respective memory. Likewise, an action component of :RETRACT indicates the join 

node should remove the token's contents from memory. For this example, join node Jl 
adds the wme list (F16) to its left memory. Having performed the appropriate memory 
storage operation, a join node next iterates over the contents of its opposite memory with 
the new information to determine which entries satisfy its inter-element feature tests. For 
join node Jl, it will iterate over the contents of its right memory (i.e. wmes corresponding 
to condition element Cl) using the new information (F16) for CO. Referring back to Table 

3.4, the inter-element feature tests programmed into node Jl are: 

((= (CO IOBJECT-NAME) (Cl '.NAME))). 

While performing these tests, node Jl finds that only entries (F2) and (F7) are acceptable. 

Entry (F5) fails because its NAME attribute is BIGBOX and not LADDER. Join node Jl 
then uses these two entries from its right memory to generate the following two extended 

tokens: 

(:ASSERT F16 F2) 
(:ASSERT F16 F7). 

These new tokens are then output from node Jl and distributed to the left input of join 
node J2. Again, the :ASSERT action parameter instructs node J2 to add these wme lists 
to its left memory, and perform the matching operation against the contents of its right 
memory. Referring again to Table 3.4, the inter-element feature tests performed by node 

J2 are the following: 

((^ (CO IOBJECT-NAME) (C2 !ON)) (= (Cl !AT) (C2 !AT))>. 

Comparing the contents of the first token against the right memory entry (F10) fails because 
the AT attribute of F2 is not equal to the AT attribute of F10 (i.e. the monkey is not by the 
particular ladder), and therefore cannot be extended. However, the contents of the second 
token does satisfy the inter-element feature tests of J2 and is therefore extended and output 

from J2 as: 

(:ASSERT F16 F7 F10). 
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The contents of this token constitute an instance of the rule ON-PHYS-OBJECT and are 
passed to the terminal node Tl (Refer to Figure 3.5). Terminal nodes are used to convert 
received tokens into a corresponding production rule instance and add or delete them from 

the conflict set according to the action parameter of the token. An action parameter of 
:ASSERT indicates the generated rule instance should be added to the conflict set, while a 
parameter of :RETRACT indicates the rule instance should be removed from the conflict 

set, if it is present. 

3.4.4    Conflict Resolution and Rule Execution 

Conflict Resolution is a process by which one of the production rule instances contained in 

the conflict set is selected for execution. In TESS, the conflict set consists of an ordered 
list of instances stored in a data structure called an agenda, and the selected strategy for 

conflict resolution is used to determine how the entries in the agenda are to be ordered. 
TESS provides two conflict resolution strategies called SALIENCE and LEX, either of which 
can be selected by the user for ordering the agenda. To select the desired conflict resolution 

strategy, the user executes a function call of the following form: 

(SET-CONFLICT-RESOLUTION-STRATEGY -.Strategy). 

Ideally, the selection of a particular strategy should be the first declaration of any production 
system. However, this can be accomplished anytime before a working memory element is 
asserted or deleted without error. If no such declaration is made, the SALIENCE strategy is 
selected by default. In both strategies, instances are mapped onto the set of integers which 
are used as keys for determining where in the agenda the instances should be inserted. An 
agenda can be thought of as a priority queue where the value of an instance's insertion key is 
its priority with the smallest integer key present being of the highest priority. The agenda is 
maintained as a list of instances in which those with the highest priority are located nearest 
the front of the list, and the first element of the list is always occupied by the next instance 
to be fired. When a new instance is generated, the keys for entries already in the agenda 
are compared one after the other to the new key. When an entry is found which has a key 
greater than the new key, the new instance is inserted into the agenda before that entry. In 
this way, a group of rule instances which all have the same value key will be inserted into 
the agenda in a manner which produces a First-In/First-Out (FIFO) type of rule execution. 

For example, consider the portion of an agenda shown below: 
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Agenda 

Priority Entry Production Rule Instance 

-13 

0 

5 

8 

22 

0 

1 

2 

3 

4 

(RULEOl F34 FO F29) 

(RULE07 F58 F23) 

(RULE13 FO F9 FIO F57 F13) 

(RULE04 F47 F39 Fl) 

After inserting two new instances, first the instance (RULE07 F59 F23) and then instance 
(RULE07 F60 F23), both of which happen to produce a key of zero, the agenda now 

becomes; 

Agenda 

Priority Entry Production Rule Instance 

-13 0 (RULEOl F34 FO F29) 

0 1 (RULE07 F58 F23) 

0 2 (RULE07 F59 F23) 

0 3 (RULE07 F60 F23) 

5 4 (RULE13 FO F9 FIO F57 F13) 

8 5 (RULE04 F47 F39 Fl) 

22 6 

Of the two strategies, LEX and SALIENCE, the SALIENCE strategy is the easiest to 
understand since it represents an explicit form of control. With this strategy, the mapping 
of production rule instances onto the set of integers according to their relative priority is 
declared using the optional argument to the function P. With no salience value specified, 
all instances of the particular rule will map to the integer 0 by default. For the purposes 
of understanding the operation of a production system, specifying saliences other than 
the default should be used cautiously and sparingly. When it does become necessary to 
explicitly control the order in which production rules are fired, the reasons for doing so and 

their effects on the system should be clearly documented. 

Recall that each working memory element is assigned its own unique time tag (i.e. a 
positive integer incremented for each wme) at the time it is created. These time tags are 
utilized by the LEX conflict resolution strategy to impose a kind of lexicographical ordering 
on production rule instances stored in the agenda. The time tags of each wme which make 
up an instance are considered as a single key formed by a list of integers sorted in descending 
order. For example, the instance (RULE17 F20 F51 F32 Fll) is taken to be the key (51 32 
20 11). When comparing two keys, the dominance of one key over the other is established 
based upon which key contains the most recent time tags (i.e. the largest set of integers). 
Since a key is composed of a sorted list of integers, this determination is very similar to 
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a lexicographic ordering. Thus, this strategy is called LEX.  As an example, consider the 

following list of keys: 

1. (51 32 20) 

2. (39 26 22 18 14) 

3. (64 48 30) 

4. (51 32 20 11). 

Of the four keys, the one with the largest (and most recent) first element is the third key. 

Since there are no other keys with the same first element, the third key is dominant over all 

the others. The next highest first element is 51 and is present in both the first and fourth 

keys. In order to determine which of these two is dominant, their second elements must 

be compared. However, their second elements are also equal, as are their third elements; 
thereby making it necessary to compare their fourth elements. Because the first key does 
not have a fourth element, key number four is determined to be more dominant because it 
is more specific. Carrying this process through to completion yields the following ordered 

set of keys; 

1. (64 48 30) 

2. (51 32 20 11) 

3. (51 32 20) 

4. (39 26 22 18 14). 

In the case where a number of keys are found to be equal, the keys are ordered randomly 
with respect to one another. With regards to the ordering of instances within the agenda, 
all instances under the LEX conflict resolution strategy are considered to have a priority 
of zero. Thus, unlike the SALIENCE strategy which orders instances chronologically with 
respect to a number of priorities, the LEX strategy orders instances lexicographically with 

respect to a single priority. 

After a production rule instance has been selected for execution (i.e. the instance occu- 
pying the first element of the agenda), the rule name is removed from the instance leaving 
a list of matching working memory elements. Next, the compiled function corresponding 
to the rule's RHS is retrieved from a hash table using the rule name as a search key. Once 
the compiled function has been retrieved, it is called using the list of matching wmes as an 

argument and the recognize-act cycle begins another pass. 
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3.5    The Distributed Network Architecture 

A cooperative problem solving agent incorporating the TESS system has been designed 

to execute in the SIMULACT distributed simulation environment. It consists of an actor 

process, configured to perform as a continuously running expert system, and a dedicated 

mail server for processing communications with other problem solving agents. Figure 3.7 
shows a block diagram for this cooperative agent architecture. The structures labeled *IN- 
QUEUE* and *OUT-QUEUE* are buffers for holding incoming and outgoing mail messages 

respectively. Periodically, the mail server will check the agent's mailbox for any received 
messages. If there are messages, they are first organized by their time of arrival, then 
according to their relative priority and placed in the *IN-QUEUE*. These mail messages 
are then processed one after another by selecting an appropriate handle according to the 
type of message and who it is from. A handle is a function which has been specially 

designed to process a certain kind of message. Depending on the nature and content of a 
particular message, the corresponding handle function may expedite the message without 
ever involving the actor process. For example, a received message which was incorrectly 
formed or not understood may prompt a handle function to immediately dispatch a response 
by placing an error message in the *OUT-QUEUE*. However, generally, a handle function 
may place information into either the Interface Buffer for use by the actor process and/or 

into the *OUT-QUEUE*. 

With this particular agent architecture, the information put into the Interface Buffer 
by the handle functions processing incoming mail messages are actually tokens for direct 
interpretation of the actor's pattern matching network. For received messages from similar 

agents, little is required of a handle function but to place the communicated tokens into 
the Interface Buffer. However, when processing a message from other kinds of agents, a 
handle function may have to put considerable effort toward translating the information 
from its native form into an acceptable token for a TESS system. Similarly, outgoing mail 
messages generated by an agent's expert system must have a way of transforming its basic 
unit of information (i.e. working memory elements) into suitable forms for other agents. 
For this purpose, a set of fact translation functions are provided which essentially perform 
the reverse procedures of their respective handle functions. The results of such translations 
are then placed into the *OUT- QUEUE* and periodically dispatched to the appropriate 

agents by the mail server. 

As is the case with most production system interpreters, TESS employs a closed world 

assumption as an implicit means of ascertaining when an expert system has concluded its 
processing and should be terminated. A closed world assumption presumes that nothing 
exists beyond the extent of an expert system's own innate knowledge and stored data. This 
assumption is commonly used when matching wmes against production rules containing 
negated condition elements. If no wme matches, the rule may be instantiated (i.e. it is 
assumed that no wmes exist beyond the contents of working memory).  Similarly, if there 
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Figure 3.7: Cooperative Problem Solving Agent Architecture. 
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are no rule instances on the agenda given the current contents of working memory, the closed 

world assumption precludes any future instantiations and is therefore used as a criteria for 

terminating the production system. On the other hand, in a distributed environment such 

an assumption may prompt the interpreter to halt an expert system prematurely. For 

instance, if an agent executing an expert system sends a message to another agent and 

expects to receive a reply, a situation could arise where the agent's agenda becomes empty 
before a reply is received. In such a case, the closed world assumption would cause the 

agent's expert system to terminate before it was actually finished. 

Complications of this kind can be overcome by treating the environment of an agent's 
expert system as a kind of locally closed world in which the existence of other knowledge 
sources beyond its own extents are periodically acknowledged. Pattern matching and pro- 
gram termination in a locally closed world are performed in the same manner as before, but 
with the utilization of a "snap-shot" of the working memory. The problem of premature 
termination of an expert system is circumvented by placing an agent's call to its interpreter 

(usually executed by its script function), within the body of an infinite loop. In this way, 
when the expert system terminates as a result of the closed world assumption, it can be 
restarted from its previous state when new information from other agents is received. A 
snap-shot of working memory allows an agent to ensure its contents will not change unex- 
pectedly during an interpreter cycle. Any proposed changes to working memory received 
by external knowledge sources are held in the Interface Buffer until they can be properly 
incorporated into a succeeding snap-shot of the working memory. A hook programmed into 
the interpreter of TESS allows the recognize-act cycle to include other processing functions. 
This hook is used by expert system agents to check the Interface Buffer for changes to 
working memory by other external agents. When there are tokens present, they are inter- 
preted one after another into the pattern matching network. Once this has been done, the 

interpreter proceeds to its next cycle. 

Cooperative agents of the type described have been paired with DARES distributed 
theorem proving agents to produce an effective distributed problem solving system. Each 
pairing can be thought of as one node of a distributed network of nodes as shown in Figure 
3.8. In this architecture, each TESS agent is expert at formulating distributed reasoning 
problems based upon its local interpretation of the problem domain. This formulation is 
then passed to each agent's respective DARES counterpart. Having accomplished this, 
the DARES agents are then signaled to begin their problem solving activities. Once some 
conclusion has been reached by the DARES system, the data derived by each DARES agent 

is transferred to their respective TESS agent. 

3.5.1    Distributed Domain Extensions of TESS 

Modern software engineering guidelines dictate that low-level implementation details should 
be keep transparent to a user in order to provide a uniform set of system interfaces.   In 
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Figure 3.8: Architecture of a Distributed Problem Solving Node. 

keeping with this policy, two extensions to the TESS system have been especially installed 
for distributed domains under the SIMULACT simulation environment. These extensions 

allow an agent to assert and retract various facts from external working memories. In other 
words, for agents designed around the TESS support package, any agent can communicate 
with and in fact control if need be, another agent simply by placing foreign facts into its 
working memory. Two functions closely resembling the use of ASSERT* and RETRACT 
have been provided for this purpose. These functions are appropriately called ASSERT-FAR 
and RETRACT-FAR. They have the following calling structure: 

(ASSERT-FAR    stagename (attribute-value listß) 

(attribute-value listl) 

(attribute-value listn)) 

(RETRACT-FAR    stagename    (attribute-value UstO) 

(attribute-value listl) 

(attribute-value listn)). 

The only visible difference between these functions and their "near" counterparts is 
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the additional stagename argument which is evaluated. As a matter of convention, the 
stagenames given to various distributed agents have two parts, a genus and an identifier, 

separated by a hyphen. The genus describes what kind of distributed agent an actor is 

and the identifier specifies which agent in the genus a particular actor is. For example, the 
stagename TP-C could be used to specify agent C of a distributed theorem proving (TP) 
system. The form of a stagename is significant to these functions and how the attribute- 

value lists are treated. When the genus of the agent specified by the stagename argument 
is of the same type15 as the agent firing the rule, the attribute-value lists are simply sent 
to the specified agent using a memo. That agent's mail server will select the appropriate 
handle function for processing them. In the case of an ASSERT-FAR, the lists are used 
by the receiving agent to generate new wmes which are then made into tokens with an 
:ASSERT action parameter. On the next cycle of the agent's interpreter, these new tokens 
will be incorporated into its match network. However, in the case of a RETRACT-FAR 
function call, all the elements of the receiving agent's working memory which match the 
specified lists of attributes and values, are used to make tokens with an action parameter 
of :RETRACT. Thus, all those matching wmes will be removed from the agent's working 

memory on its next interpreter cycle. 

When communicating with agents of another genus, a special translation function (refer 

to Section 3.5) must have been previously defined for transforming the information contained 
in the attribute-value list into a representation suitable for the particular agent. In this way, 
agents built around the TESS expert system shell can interface with many disparate types 

of system agents. 

3.6    Application to the Defense Communication System 

The Defense Communication System (DCS) is a world-wide military communication net- 
work that has been upgraded by replacing its analog equipment with comparable digital 
technology. With the introduction of this new digital equipment there is the opportunity 
for implementing a more efficient form of network control. Ordinarily, when a problem 
arises in the network, it is handled by the coordinated efforts of a group of technical control 
personnel. When the incidence of network failures becomes increasingly more frequent, or 
when there are many simultaneous faults caused by some catastrophic failure, the judgment 
and decision-making abilities of the technical controllers can be impaired by high levels of 
stress. This problem can be alleviated by automating many of the more tedious decision 
making processes currently performed by the technical controllers. By presenting the tech- 
nical controllers with accurate preprocessed information, they are better able to make the 

correct network control decisions. 
15 For agents within a given genus, a shorthand can be used where only the agent's identifying symbol 

needs to be specified. 
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To automate some of the more difficult decision making processes of a technical con- 

troller, the automated system must have the capability to coordinate its efforts in a similar 

fashion to that of the technical controllers. Since a large portion of the tasks performed by 

a technical controller are recognition tasks, a distributed situation recognizer can be used to 

coordinate the efforts of an automated system. An example of how this can be done in the 
DCS domain will be presented in section 3.6.4. Before one can thoroughly appreciate such a 

detailed example however, a good understanding of communication networks is necessary as 
well as some of the more specific details associated with the DCS and its implementation. 

The following sections should be easily understood by a reader who is not familiar with 
communication networks and may be useful as a refresher for more knowledgeable readers. 

3.6.1    Communication System Concepts 

A communications network is sufficiently complex for it to be worthwhile spending some 
time to briefly discuss the concepts underlying its implementation. Without understanding 
these few basic concepts, it would be extremely difficult, if not impossible, to fully under- 
stand and appreciate a detailed example. This is especially true of an example based on the 
physical implementation of a communications network. The most basic concept is that of a 
channel. A communications channel can be thought of as a pathway that allows information 
to be exchanged between two or more parties. To avoid loosing any part of a communica- 
tion, the method of exchanging information through the channel must be understood and 
adhered to by all parties involved. There are generally two such modes of communication 

known as half-duplex and full-duplex. 

In the half-duplex mode of communication, the exchange of information in the channel is 
in one direction only. At any particular time only one party is designated as the transmitter, 
while the other is designated as a receiver. If both parties have the facilities to either 
transmit or receive, then two-way communications are possible in the half-duplex mode 
by alternately designating each party as either a transmitter or a receiver. In the case 
where one, or both, parties do not have both transmit and receive capabilities, the half- 
duplex mode of communication permits either send-only or receive-only types of information 

exchanges. 

The full-duplex mode of communication is possible when the channel between two com- 
municating parties supports simultaneous bi-directional exchanges of information. Each 
party has the ability to transmit and receive information and is allowed to do so at the 

same time. When using electronic transmission media, such as a cable or microwave link, 
a full-duplex channel is necessarily composed of two half-duplex channels. One channel is 
always designated as send-only while the other is always designated as receive-only, with 
respect to a single party. This is the most versatile type of communications channel and 

the type generally used in most communication systems. 

One important aspect of a communications channel is the rate at which information can 
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be exchanged. A communications channel has physical limitations that determine an upper 
bound on the amount of information it can carry in a given period of time. This is known 

as the bandwidth of a channel. The bandwidth of a communications channel imposes both 

economical and architectural constraints on the design of a communications system. For 
example, if a particular application requires two 500 Kbit/sec channels to be constructed 
between the same locations and the only channel bandwidths available are 500 Kbit/sec at 
$750/mile and 1.5 Mbit/sec at $1000/mile, two options need to be considered. The first is 

to use two parallel 500 Kbit/sec channels at a cost of $1500/mile, and the second is to use 
a single 1.5 Mbit/sec channel to carry the information of both channels. Clearly the second 
option would minimize the cost of implementation, and in addition, would provide another 

500 Kbit/sec of bandwidth for other applications. 

Although greatly simplified, the example described above does illustrate the usefulness 
of grouping several channels together and transmitting their information on one channel. 
In communication terms, a channel used in this way is known as a trunk channel, or simply 
a trunk. It should be pointed out however, that a trunk channel must have at least the 
bandwidth of its constituent channels combined. To make this point clear, consider a 
channel that transmits information at a rate of 250 Kbits in one second and another channel 
that transmits information at a rate of 300 Kbits in one second. In parallel, these two 
channels are capable of transmitting a total of 550 Kbits each second. It should be obvious 
that a 500 Kbit/sec channel is not capable of transmitting the same amount of information 
in one second as the two channels in parallel. Therefore, to carry an equivalent amount of 
information as the two channels in parallel, a trunk channel with at least a bandwidth of 

550 Kbit/sec is necessary. 

Figure 3.9 depicts a simple communications trunk between two black boxes labeled X 
and Y. For the sake of clarity, they will be referred to simply as X and Y. All that is 
known about the black boxes is that each one has two dedicated sections, one section is 
a transmitter and the other is a receiver. The transmitter section combines two channels 
into a trunk channel and the receiver section separates a trunk channel into its constituent 
subchannels. By connecting the output of the transmitter section of X to the input of the 
receiver section of Y, a send-only half-duplex channel is constructed from X to Y. A similar 
channel is constructed from Y to X completing the full-duplex trunk channel labeled T. The 
two input channels XI and X2 of X are combined and transmitted through trunk T where 
they become the respective output channels of Y. Channels Yl and Y2 are transmitted in a 
similar fashion from Y to X. Two full-duplex channels can be transmitted over trunk T by 
making associations between pairs of channels. Channel XI can be grouped with channel 
Yl and denoted as the full-duplex channel XIYl, and likewise, channel X2 can be grouped 

with channel Y2 and denoted as the full-duplex channel X2Y2. 

As an example, consider the problem of connecting a pair of telephones together from 
X to Y. By arbitrarily choosing input channel XI of X and connecting it to the pickup 
coil of the X telephone and connecting the XI output channel of Y to the voice coil of the 
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Figure 3.9: A two-channel full-duplex communications trunk. 

Y telephone, a person using the Y telephone could listen to a person speaking into the X 

telephone. To complete the hookup, a similar connection can be made using channel Yl 

in the opposite direction. The result is a complete telephone circuit X1Y1 that provides 
simultaneous speaking and listening capabilities for each party. Since T is a two-channel 
full-duplex trunk, a second, and totally separate, telephone circuit could be established 

using the remaining channels X2 and Y2 in a similar fashion. 

It should not be surprising that trunk channels can be combined with other trunk 
channels to make even larger trunks. This process of combining trunks can be continued to 
form a trunk hierarchy. Figure 3.10 illustrates a simple two-level full-duplex trunk hierarchy 
using four black boxes, identical in function to those of the previous example, labeled W, 
X, Y, and Z. It is assumed that trunk Tl carries two full-duplex channels W1Z1 and W2Z2 
from W to Z by first combining with channel X2Y2 to form trunk T2. Whenever one 
channel combines with another channel to form a trunk, the constituent channels are said 
to ride the trunk. For example, in Figure 3.10 channels W1Z1 and W2Z2 both ride trunk 
Tl which in turn rides trunk T2. Channel X2Y2 does not necessarily have to be a trunk 
with the same structure as trunk Tl to be able to ride trunk T2. Depending on the local 
architecture, channel X2Y2 may be a point of termination. Channels can be terminated 
in many ways by devices such as a telephone as in the previous example, or a computer 
terminal. In general a channel can be terminated by any device that sources/sinks data at 
a rate which is compatible with the bandwidth of the channel. 

In a communications network there are a number of stations, or sites, which are inter- 
connected by high-speed trunk channels. In general, each site has several trunk connections 
to other sites. Typically, a trunk that enters a site may have some of its channels termi- 
nated, and possibly replaced with channels from other trunks and/or termination equip- 
ment, before being redirected to another site. In this manner, the required circuits for 
communication can be established by following a path over the necessary trunks from site 
to site until their destinations are reached. As may have been evident from Figure 3.10, the 
trunks and channels formed by this simple type of routing architecture, like those discussed 
thus far, terminate on similar black boxes at the same hierarchical level. To make this point 
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Figure 3.10: A two-level communications trunk hierarchy. 

more clear, Figure 3.10 has been redrawn as Figure 3.11 using the more conventional single- 
line representation of full-duplex channels and with more emphasis placed on a network 

interpretation. 

When trunk T2 is viewed as a high-speed channel linking the two sites labeled SI and 
S2, the mirror quality exhibited by trunk hierarchies is readily apparent. The lowest level 
of a trunk hierarchy is considered to be the level at which the slowest channels are combined 
into trunks. From the previous discussion concerning the necessary speed of trunks over that 
of their constituent channels, it should be clear that W and Z combine the slowest channels 
in their respective sites. Black boxes W and Z are therefore considered to be the first level 
in the trunk hierarchy as shown in Figure 3.11. Likewise, while the functions performed by 
black boxes X and Y are the same as those performed by W and Z, it should be clear that 
X and Y must necessarily be capable of performing theses functions at least twice as fast 
as W and Z. Since black boxes X and Y combine the next highest speed channels, they are 

considered to be the second level in the trunk hierarchy. 

This structural property of trunk hierarchies in a communications network has particular 
advantages for a technician troubleshooting a problem in the network. For instance, if W 
were indicating that it has a problem receiving data from trunk Tl and X appears to 
be functioning properly, the technician can eliminate possible causes by coordinating with 
another technician located at site S2. Together the technicians can verify the operation of 
the black boxes at every level in the hierarchy traversed by trunk Tl until the transmission 
problem is isolated. From the point of view of the technician located at site SI, W and X 
are considered to be local devices. Likewise, a black box at another site that terminates 
the same channel as a local device is referred to as that local device's distant end, or d/e, 

device. For example, black box Z is the distant end device of W as viewed from site SI. 

Up to this point a number of concepts and terms relevant to the underlying physical 
implementation of the transmission network of a communications system have been dis- 
cussed. Typically, a communication system is visualized as having several layers where the 
transmission network is considered the most fundamental layer.   It is the layer where all 
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Figure 3.11: A two-site communications network. 

signals are physically transferred from one site to another on a path to their destination. 
The next layer above the transmission network is called the switch network. The switch 
network is generally viewed as a network of gates that determines what path a call will 
take in getting from its origin to its destination. Once a path has been determined, the 

call is switched onto the appropriate channels and trunks of the transmission network . For 
the purposes of an example, consideration of a communications system will be limited to 

maintaining the integrity of the transmission network. 

3.6.2    The DCS Transmission Network 

In the DCS, a system known as Transmission Monitoring and Control (TRAMCON) is in- 
tended to oversee and maintain the operation of its transmission network. The TRAMCON 
system, although not yet fully implemented, will be responsible for detecting and isolating 
equipment failures that have a direct impact on the performance of the transmission net- 
work. In addition, after having verified an equipment failure, TRAMCON will be responsi- 
ble for finding alternative routes for as many of the affected channels as possible according 
to their relative priority. Due to the natural geographic distribution of the transmission 
network and the relatively high cost of communications, a distributed problem solving ap- 

proach to the TRAMCON problem has been adopted. In a communications network, like 
the DCS, there may be hundreds of individual sites making it impractical, and inefficient, 

to represent each site as a distributed processing node. Instead, the TRAMCON system 
groups the sites into disjoint subsets called subregions. Each subregion has one site desig- 
nated as the controller of all the other sites in the subregion. The site designated as the 
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Figure 3.12: A simple network divided into subregions. 

subregion controller is referred to as the Subregion Control Facility (SRCF) and represents 
a processing node, in the distributed problem solving sense, of the TRAMCON system. 

Figure 3.12 illustrates an example of how the sites of a small communications network 
may be grouped into three subregions labeled A, B, and C, as shown delineated by dashed 
lines. Each circle in the figure represents a site in the network and is identified by the 
label shown in the center of the circle. Those sites which are designated as the SRCF for 
their subregion are represented using a second larger circle concentric with the one used for 
an ordinary site. For example, sites Al, B2, and C3 in Figure 3.12 are designated as the 
SRCFs for subregions A, B, and C respectively. A labeling convention often used, and the 
one adopted in this report, is to assign labels to each of the sites in a network according 
to the subregion they are a member of. For instance, the sites which are a member of 
subregion C have been assigned the labels Cl, C2, C3, and C4. In this way, the subregion 
a particular site belongs to can be identified simply by looking at the label it was assigned. 

Every communications site in the DCS is supplied with a piece of equipment known as a 
DATALOK-10, or as simply a DATALOK. A DATALOK is used to monitor the operation 
of other equipment in the site which are considered to be important to the functioning of 
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the transmission network. It does this by temporarily storing the status and alarm signals 
generated by each piece of equipment until this information is requested sometime in the 
future. The SRCF of each subregion communicates with the DATALOKs at all the other 

sites in the subregion using a dedicated service channel. A SRCF continually polls the 
DATALOKs of each site in its subregion in a round-robin fashion. When a DATALOK is 
polled by a SRCF, it responds by transmitting back to the SRCF its current set of status 
and alarm signals, reported by the equipment it monitors, since the last polling period. In 
this way, each SRCF site in the network incrementally updates its view of the problems 

being experienced by important pieces of equipment throughout the entire subregion. 

3.6.2.1    TRAMCON Node Architecture 

The local problem-solving architecture of each SRCF node in the TRAMCON system is 
logically distributed into three functional units (i.e. problem-solving agents) known as 
Fault Isolation (FI), Performance Assessment (PA), and Service Restoral (SR) as shown in 
Figure 3.13. Another agent, the Knowledge-Base Manager (KBM), is used to ensure the 
views of each of the other agents remains consistent with the known state of the subregion. 
To accomplish this task, the KBM is given detailed apriori knowledge about the equipment 
present at each site in the subregion, their local connectivity, and their connectivity with 
other sites [15]. The KBM is also given knowledge to reflect the information gathered from 
the DATALOKs during each polling period. Whenever one of the agents requires knowledge 
from the KBM, all that is necessary is for the agent to make an appropriate request and 
the KBM will forward a reply sometime shortly thereafter. However, for the KBM to be 
an effective manager, the knowledge derived by each agent must also be registered with 
the KBM. This is especially true of the knowledge derived by one agent that may have 
an impact on the processing being performed by another. As an aid in maintaining a 
consistency among the beliefs registered by each agent, the KBM employs the MATMS[41] 

truth maintenance system. 

The role of each Performance Assessment agent is a central one for initiating problem- 
solving activity within the TRAMCON system. As the alarm and status information is 
gathered from each site in the subregion, the PA agent attempts to quickly interpret this 
information and assess its impact on the performance of the transmission network. In most 
cases, an assessment can not be made solely on the information available to a single subre- 
gion, some distributed problem-solving effort by a group of PA agents is necessary. During 
this problem-solving activity, each PA agent registers its beliefs concerning the operational 
status of equipment and associated trunks, channels, and circuits with its respective KBM. 
When the PA agents have completed their assessment, each one notifies its respective FI 

and SR agents as required. 

As mentioned above Performance Assessment makes a quick, or first-cut, estimate con- 
cerning the cause of the problem implied by the reported status and alarm signals. Because 
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Figure 3.13: The local architecture of each TRAMCON node. 

of this, the likelihood of Performance Assessment making an error is considerable. It is for 
this reason the PA agents notify Fault Isolation of equipment it has decided are not oper- 
ating properly. The role of Fault Isolation is to methodically and meticulously interrogate 
the operation of each piece of equipment named by PA. If FI determines that a piece of 
equipment is in fact not operating correctly, then FI and PA beliefs about the equipment 
are consistent and nothing needs to be done with the knowledge-base. On the other hand, 
if FI determines that a piece of equipment is functioning properly, the beliefs of FI and PA 
on the status of this equipment are contradictory and must be resolved. Fortunately, based 
on the purpose of each agent the MATMS can, in good conscience, adopt a policy of always 
believing an FI agent over a PA agent. In this case, the PA agent would have to be notified 
that its belief was incorrect so that it could incorporate this more believable knowledge. 

The Service Restoral agents rely heavily on the beliefs asserted by the agents of Per- 
formance Assessment. Once Performance Assessment has notified Service Restoral of par- 
ticular circuit outages, the SR agents work together trying to find alternative routes for 
those circuits. To do this, each SR agent must request, from the KBM, which channels are 
available to carry the circuits. The response from the KBM will not include those channels 
considered by its respective PA agent to be down, which otherwise may have been useful. 
After receiving this information, the SR agent must register with the KBM that it believes 
all these channels to be up and in good working order.   Always registering such beliefs 
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ensures that Service Restoral will only consider rerouting circuits using reliable channels. 

The need for an SR agent to register its beliefs can be made clear by considering a 
potential problem involving contradictory beliefs between PA and SR agents similar in 
nature to the one between FI and PA agents. Suppose Performance Assessment has been 
notified that a belief it previously asserted has been updated by Fault Isolation and it 
incorporates this new belief. The consequence of this action would cause Performance 
Assessment to re-evaluate its data and update its beliefs in the KBM. This situation has 

the potential of changing the status of a channel from up to down which is being used 
by Service Restoral to generate a rerouting plan. However, since Service Restoral knows 

nothing about trunks, channels, circuits, etc., the beliefs of Performance Assessment are 

clearly superior to those of Service Restoral. This problem is easily resolved by allowing the 

MATMS to adopt a policy of always believing a PA agent over an SR agent. In this way, 

SR agents affected by the change in status would be notified by their KBM to no longer 

include that channel in their plans. 

3.6.2.2    TRAMCON Status and Alarm Signals 

Equipment that generate status signals usually implement them as digital pulses which 
indicate that some operational transition has just been made. To capture this data for 
transmission at the next polling period, a DATALOK must latch, or lock in, the signal. 
As an example of the type of information a status signal represents, consider a piece of 
equipment that transmits and receives a trunk channel. If for some reason the equipment 
suspects a malfunction of its on-line receiver, it may issue a status signal which essentially 
says "Attention, I'm using my backup receiver now." to indicate that it has switched over 
to its redundant receiver. Alarm signals are similar to status signals but are more directly 
related to a problem. An alarm signal indicates that a piece of equipment has detected 
an internal fault or there is something wrong with the data being transmitted or received. 
A typical example of what two such alarm signals may indicate could be interpreted as 
"Hey, my power supply is failing!", or "Hey, I'm not receiving any data!" respectively. 
Alarm signals are implemented using digital logic voltage levels to represent their active 
and inactive alarm conditions and do not require latching by a DATALOK. Under normal 
circumstances an alarm signal maintains its inactive voltage level, and throughout the time 
interval a problem continues to exist, the alarm signal is held at its active voltage level. 

In the previous section it was mentioned that DATALOKs only report the status and 
alarm signals of important pieces of equipment back to their SRCF, but there was no further 
mention of what it meant to be important. The TRAMCON system considers any piece of 
equipment used to implement the highest three levels of a trunk hierarchy to be important. 
TRAMCON neglects all other levels of the trunk hierarchy and refers to the three highest 

levels as level one, level two, and level three. The equipment at each of these levels are 
also ranked by their relative importance to the network making level one equipment the 
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least important and level three equipment the most important. It should be clear from 
previous discussions that these three trunk levels consist of the highest speed channels in the 

network and hence carry the most communications traffic. This strategy allows TRAMCON 
to maintain the parts of the transmission system which have the greatest impact on the 
performance of the network by reducing the amount of necessary information. 

Although the exact nature of the alarm signals that may be generated by important 
equipment has not yet been discussed, it should not be surprising that a single failure 

could lead to a string of alarms along each path affected by the failure. In a substantially 
complex communication network, hundreds of alarms could potentially be generated from 
a single failure depending on its exact nature and level of importance. To further reduce 
the amount of information TRAMCON must deal with, the alarm signals generated by 
equipment at each level are arranged in order of their level of importance. For example, 
the alarms recognized by TRAMCON are more numerous and meaningful at level three 
than those at level two. The same is true of alarms generated at level two compared to 

those generated at level one. TRAMCON accomplishes this by progressively 'ORing' more 
of the equipment generated alarm signals into a single alarm as the level of their relative 
importance decreases. In this way, when any one of the equipment generated alarm signals 
is active, a single representative alarm signal is activated and recognized by TRAMCON. 

Thus far three strategies used by the TRAMCON system have been discussed to reduce 

the complexity of the problem of maintaining the transmission network. To summarize 
these strategies, they are; 1) use a SRCF to represent an entire subregion, 2) emphasize 
only the three most important levels of the trunk hierarchy, and 3) generalize the equipment 
alarm signals based on the equipment's relative importance. While these strategies are very 
effective at reducing the complexity of the distributed problem, they are not without their 
associated costs. Consider the polling mechanism employed by the subregion strategy, it 
introduces uncertainty about the accuracy in a SRCF's knowledge of the subregion. This 
condition arises because a site relays local alarm conditions back to the SRCF as they are 
when the site was polled. As the SRCF polls the next site in its cycle, it is possible the local 
alarm conditions reported by the previous site are no longer valid. Generally speaking, a 
worst-case problem for this strategy would cause each site to completely change its alarm 
conditions immediately after it has been polled, making it impossible to solve the problem. 
Fortunately, the nature of a transmission network causes the majority of alarm conditions 
generated by a site to persist from one polling cycle to the next, making it more likely that 
a solution to the problem will be found. For the purposes of this report, it will be assumed 
that any network problem causes a set of alarms to be generated which remain constant 

throughout the problem solving process. 

The second and third strategies summarized in the above paragraph limit the amount 
of usable information the TRAMCON system can apply to a problem. By considering only 
the most important levels of the trunk hierarchy, TRAMCON does not have access to local 
information within a site which may help verify a network problem.   Instead, it may be 
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necessary for the TRAMCON system to consider a large number of related alarms in order 
to make the best verification possible. This introduces an uncertainty as to the problem 

itself and makes solutions all that much more difficult to find. 

3.6.3    Transmission Network Equipment 

To understand the details involved in monitoring and controlling a transmission network, 
like that of the DCS, a good deal of knowledge about the actual equipment used for its 
implementation is needed. The purpose and operation of the DATALOK-10 has previously 

been discussed, but thus far no mention has been made of the equipment actually used to 

implement a trunk hierarchy. Before going into any detailed descriptions of this equipment, 

it would be prudent to first understand some of the more basic concepts related to data 
transmission and synchronization which are common to each type of equipment. Afterward, 

a description of each piece of equipment used to implement TRAMCON trunk levels one, 
two, and three will be presented. Finally, one last piece of equipment used for cross- 
connecting channels between trunks will be described and will complete the knowledge 
necessary for an example in this domain. 

In the communications domain, equipment used to perform functions similar to those 
of the black boxes mentioned earlier, are known simply as multiplexers. Although they 
are referred to as multiplexers, it is generally understood they perform both multiplexing 
and demultiplexing functions simultaneously in a manner similar to that modeled by the 
black boxes. The hardware used to implement a multiplexer is designed to work with either 
digital or analog data. An analog multiplexer senses the voltage at each of its input channels 
and replicates them in a time-slice of the trunk channel producing an output which is a 
segmented voltage waveform. A digital multiplexer is simpler in design and capable of 
performing its function much faster than its analog counterpart. Each input channel to 
a digital multiplexer can be thought of as a stream of data represented as a sequence of 
binary digits. The binary digits of each input channel are gated into a, frame and transmitted 
serially on a trunk channel as a stream of bits, or bit-stream. Due to their simplicity of 
design and higher operating rate, the DCS is currently upgrading the analog multiplexers 
now in use to digital multiplexers for its transmission network, and will be the only type 

considered here. 

A digital trunk channel can therefore be viewed as a stream of frames transmitted 
from the output of a multiplexer to the input of its distant-end device. Every frame is 

constructed from a number of bits, representing an equal amount of data from each of its 
constituent channels, together with an identifier to synchronize the multiplexed data. For 
example, consider the problem of transmitting four separate 14 Kbit/sec channels over a 
single 64 Kbit/sec trunk channel. Each of the four 14 Kbit/sec channels transmits seven bits 
of data (one ASCII code) in exactly 500 /^s, while the 64 Kbit/sec trunk channel transmits 
32 bits in the same period of time. In light of this, an obvious choice for the size of a frame 
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Figure 3.14: A four channel frame structure. 

is to use 32 bits with seven bits allotted to each of the four channels in each frame. The 
remaining four bits are assigned to a special frame identifier code as illustrated in Figure 
3.14. A frame identifier is a mutually agreed upon code for recognizing the beginning of each 
frame in a bit-stream. The transmitting device inserts the identifier into each frame and 
the distant-end device looks for the identifier in each frame to verify its synchronization. If 
the distant-end device were not synchronized (i.e. it is decoding a string of data offset by at 
least one bit), the data being demultiplexed from the trunk channel would be meaningless. 

While the four bit frame identifier code used in the above example was convenient, typi- 
cally they need to be much larger (e.g. 16 bits) to reduce the number of data strings within 
a bit-stream which could possibly be recognized as a frame. If there were a problem with 
the transmission of a trunk channel somewhere between the output of the multiplexer and 
its distant-end, or the channel were just opened, the distant-end device must somehow be 
able to resynchronize itself with the trunk channel. It does this by initiating a synchro- 
nization algorithm where the incoming bit-stream is first scanned for an occurrence of a bit 
pattern that matches that of the frame identifier code. Once found, the device assumes this 
pattern frames the multiplexed data. However, if the following string of bits, assumed to 
be the next frame, does not contain the proper identifier code, the search algorithm starts 
over. When two consecutive frame identifier matches are found, the device assumes it is 
now synchronized. Once a device declares itself to be synchronized, it keeps track of the 
number of consecutive times it fails to find the correct identifier within a frame. If this 

number becomes too large (e.g. over 123), the device assumes it has lost synchronization 
and initiates the resynchronization process again. 
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3.6.3.1     The Level 1 Multiplexer (MUX-98) 

The AN/FCC-98(V) Multiplexer Set [83], known as a MUX-98, is a full-duplex device for 

simultaneously transmitting and receiving digital information over a communications trunk. 

In the transmission network, MUX-98s are used to implement TRAMCON level one trunk 

structures. As such, they are the most accommodating of the three types of multiplexers 

to be discussed. A MUX-98 has the capacity to multiplex a total of 24 voice frequency 
(VF) channels, or 18 data channels into a single trunk channel called a digital group, or 
digroup trunk. Other combinations of VF and data channels are also possible depending on 

the speed of the data and whether it is synchronous or asynchronous. Each channel to be 

multiplexed interfaces with the MUX-98 by using one of the available plug-in port modules. 

A port is a location in the MUX-98 architecture where channel data are transmitted to 
the multiplexer module and received from the demultiplexer module as illustrated in Figure 

3.15. Each communications channel to be multiplexed requires exclusive use of at least 
one of the 24 ports available in a MUX-98. Some applications may need a channel with a 
bandwidth broader than is provided by a single port location. For these applications a port 
module can be configured to utilize more than one port location, thereby providing a channel 
with additional bandwidth. As an example of the function performed by a typical port 
module, consider the problem of interfacing an ordinary four-wire telephone with a MUX- 
98. This can be done using a special voice-frequency (VF) channel module. A VF channel 
module converts an analog input signal into a pulse-code modulated (PCM) digital signal 
for transmission and converts a received PCM digital signal back into an analog output 
signal. A variety of other modules are also available for interfacing with such equipment as 
a low-speed multiplexer, teletype, computer terminal, DATALOK, etc. 

In the 24-channel mode of operation, the MUX-98 uses a frame structure consisting of 
193 bits. Each VF channel, or its data channel equivalent, contributes 8 bits of data to 
each frame for a total of 192 bits. The last remaining bit is reserved for a special frame 
identifier. The rate at which these frames must be transmitted and received is determined 
by the frequency of data used to digitally encode a voice frequency analog signal. For 
voice communications, a good quality telephone service can be provided by using only the 
frequency components of a voice in the range of 4 KHz. To digitally encode this signal into 
a PCM signal requires a sampling rate of at least twice that of the highest frequency, or 
8000 data samples per second. Therefore a digroup trunk must transmit and receive data at 
a rate of 8000 frames per second which translates to a bandwidth of 1.544 Mbit/sec. When 
a MUX-98 is in this mode of operation, a digroup trunk is equivalent to a standard T-l16 

communications trunk. In the examples that follow, it will be assumed that each MUX-98 is 
configured for a 24-channel mode of operation and that digroup trunks are interchangeable 
with T-l trunks. Figure 3.16 shows the schematic symbol for a MUX-98 that will be used 

16 In the communications domain T-l is a standard unit of trunk capacity. When a trunk is described 
as being a T-l trunk, this means the trunk is capable of carrying the equivalent of 24 (voice-frequency) 
channels. 
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Figure 3.15: Functional block diagram for a MUX-98. 
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Figure 3.16: Network schematic symbol for a MUX-98. 

in the example communications networks. 

The MUX-98 has a Built-in Test Equipment (BITE) module which contains circuitry 
for monitoring the terminal characteristics of the multiplexer, demultiplexer, power supply, 
and port modules. By observing the data flowing into and out of each module, the BITE 
is able to determine whether or not the multiplexer set is functioning properly. Some of 
the problem conditions detected by the BITE module are; 1) loss of input or output data 
from a port module, 2) loss of synchronization by a demultiplexer module, 3) transmission 
problems with a multiplexer module, and 4) a loss of power from a power supply module. 
In the event any of these conditions have been detected, an appropriate alarm signal is 
generated by the BITE module and remains active for as long as the condition persists. 
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Figure 3.17: Functional block diagram for a MUX-99. 

In the TRAMCON system all of these generated alarm signals are represented by a single 
general alarm which may be interpreted as "Something is wrong with my digroup trunk!" 
Due to the lack of information conveyed by such an alarm signal, some indication of what 

it may imply must be derived from other sources. 

3.6.3.2     The Level 2 Multiplexer (MUX-99) 

The AN/FCC-99(V) Multiplexer Set [84], known as a MUX-99, is very similar in function 
to that of the MUX-98 multiplexer. It is used to implement second level trunk structures in 
the transmission network. Unlike the MUX-98 however, the MUX-99 has two functionally 
redundant systems referred to as the A-side and B-side multiplexers. Both sides of the MUX- 
99 are identically configured to perform the same multiplexing function. At any point in 
time only one side actually performs the required multiplexing function and is designated 
as the on-line system, while the other side is designated as being the off-line system. In 
the event the on-line system develops a problem which would degrade its performance, 
the MUX-99 can switch-over, replacing the on-line system by the multiplexer that was off- 
line. A switch-over operation can be initiated in one of three ways; 1) manually by a local 
operator, 2) remotely with a command from a SRCF, or 3) automatically by the peripheral 
module. Figure 3.17 shows a functional block diagram of the MUX-99 multiplexer. The 
MUX-99 is designed to multiplex a total of 8 digroup trunks into a 12.352 Mbit/sec Mission 

Bit-Stream (MBS), also known as a supergroup, or supergroup trunk. 
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In the MUX-98 there was a BITE module for monitoring the operational status of the 
other modules and generating alarms when problems where detected. The MUX-99 contains 
a similar module, called the peripheral module, which performs the same type of monitoring 

functions as the BITE module, but in a more sophisticated manner. The peripheral module 

is able to take advantage of the dual architecture by continually performing a series of five 

tests on the two systems, to more accurately identify operational faults. The first test is 

used to establish the proper operation of the off-line system. By connecting the output of 
the off-line multiplexer to the input of the off-line demultiplexer and supplying generated 
data, the output of the demultiplexer can be compared with the data being supplied. If the 
two sets of data match, then the off-line system is determined to be functioning properly. 

Using the known operating condition of the off-line system as a basis for comparison, 
the peripheral module can now accurately test the on-line multiplexer and demultiplexer 

modules. The second test is similar to the first one, but instead of using the output of the off- 
line multiplexer, it uses the output of the on-line multiplexer and makes another comparison 
using actual transmission data. If the data from the output of the off-line demultiplexer 
is the same as that being transmitted, then the on-line multiplexer is determined to be 
operating normally. In the third test a similar technique is used to verify the operation 
of the on-line demultiplexer. The peripheral module connects the input of the off-line 
demultiplexer to the input of the on-line demultiplexer so they are both receiving actual 
trunk data. A comparison of their outputs will determine whether the on-line demultiplexer 

is also operating normally. 

The last two tests performed by the peripheral module are designed as a self-test to 
ensure that it is also functioning correctly. A repetition of the first test is performed to 
once again verify the operation of the off-line system. Having done this, the combined 
operation of the comparator and data generator is tested by looping the generated data 
through the off-line multiplexer and demultiplexer as in the first test. The data generated 
is modified with a 1 % bit error rate before being input to the multiplexer. By comparing 
the generated data and the data output from the demultiplexer, the comparator should 
find them identical and be able to detect the 1 % bit error rate. If it does not, the test 
fails and a peripheral fault alarm is generated. This cycle of internal testing is performed 
approximately 23 times each second and is quite reliable as long as a peripheral fault is not 

indicated. 

The peripheral module of the MUX-99 detects all the same faults as did the BITE 
module of the MUX-98 with respect to either of the redundant systems. In addition, the 
peripheral module is capable of detecting 1) a loss of data being transmitted or received 
on the MBS, 2) how many frame errors have been found, and 3) the number of seconds 

synchronization has been lost. There are also several status signals generated that specify 
in what way a switch-over was initiated and which side of the MUX-99 is currently on-line. 
Figure 3.18 shows the schematic symbol that will be used to represent a MUX-99 in sample 

communication networks. 
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Figure 3.18: Network schematic symbol for a MUX-99. 
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Figure 3.19: Network schematic symbol for a RADIO. 

3.6.3.3    The Level 3 Multiplexer (RADIO) 

The AN/FRC-171(V) Radio Set [85], known simply as a RADIO, is used to implement level 
three of the transmission network and is by far the most important and complex piece of 
equipment recognized by the TRAMCON system. A RADIO multiplexes two supergroup 
trunks and a single digroup trunk into a Aggregate Bit-Stream (ABS) for transmission over 
a microwave link to other communications sites in the network. The two supergroup trunks 
are referred to as MBS-1 and MBS-2, and the digroup trunk is what is known as the Service 
Channel Bit-Stream (SCBS). The SCBS is typically interfaced with a MUX-98, yielding 24 
channels that can be used for such purposes as allowing a SRCF to communicate with a local 
DATALOK, interfacing with a TRAMCON terminal, etc. Figure 3.19 shows the schematic 
symbol that will be used to represent a RADIO in sample communications networks. 

In Figure 3.20 one can see the multiplexing section (everything left of the transmitters 
and receivers) is very similar to a MUX-99. The peripheral module for this part of a RADIO 
performs much the same functions and generates the same alarm signals as the MUX-99. 
The RADIO is further complicated by the dual transmitter and receiver tacked onto the 
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Figure 3.20: Functional block diagram for a RADIO. 

right. Each transmitter section contains modules for scrambling the data, modulating 
the data onto a microwave carrier signal, and sending it through a waveguide and into a 
dish for transmission. Similarly, the receiver section contains modules for descrambling, 
demodulating, and receiving the microwave signal from the waveguide. Additional alarms 
are generated for conditions associated with the radio portion of this unit. The additional 
conditions detected are; 1) transmitter frequency drift, 2) transmitter power failure, 3) 
failure of a modulator or demodulator, 4) bad signal quality, and 5) receive signal loss. 

3.6.3.4     The Digroup Trunk Channel Switch (DPAS) 

When the DCS transmission network is fully upgraded to use digital equipment, each com- 
munications site will be equipped with a Digital Patch and Access System (DPAS). A 
DPAS17 is a software controlled switch that functions as a digital patch matrix for inter- 
connecting the channels of various trunks. The DPAS is designed to interface with all the 
T-l data trunks in a site and provide arbitrary circuit switching capabilities between them. 
To better understand its function, Figure 3.21 illustrates how the channels of one trunk 
may be patched into the channels of another trunk using a DPAS. Channels Al and A2 of 

trunk A are patched into channels B2 and B3 of trunk B respectively, and channel A3 of 
trunk A is patched into channel Bl of trunk B. In general, a DPAS can cross-connect the 
24 channels of a connected T-l trunk to the channels of any other connected trunks in an 

arbitrary way. 

A DPAS is designed to be a junction box between the output of all MUX-98s and the 

17Pronounced dee-pas. 
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Figure 3.21: Channel patching function of a DPAS. 

input of all MUX-99s. In this position, it allows the TRAMCON system to control and 
access every channel in a communications site. A DPAS can be used to reduce the amount 
of equipment required in a site by packing all' the terminating channels onto as few as 
possible digroup trunks. In this way, only the minimum number of MUX-98s are used to 
terminate the channels rather than using a separate MUX-98 for every under utilized trunk 
used to carry them. Exactly how the channels switched by the DPAS are interconnected, 
is controlled by the TRAMCON system. The DPAS is used by TRAMCON to implement 
a circuit rerouting plan generated by the Service Restoral system. It also serves as Fault 
Isolation's interface to the individual channels of the transmission network. By providing 
access to these channels, FI agents are able to diagnose equipment failures by monitoring 

and performing tests on the individual circuits affected by a fault. 

3.6.4    An Example 

In this section a typical problem associated with the DCS transmission network will be 
discussed from the global perspective of a human expert. The objective here is to identify 
the expert knowledge that would be required in order to solve the problem. The architecture, 
equipment specifications, and communication paths of a particular network are described 
graphically using a program called GUS. GUS enables an individual to design an entire 
transmission network suitable for performing experiments and simulations. The output 
of GUS is used to supply the knowledge base for each KBM agent and also describes a 
set of script that describes how the status and operating conditions of individual network 
components is to change throughout the course of a simulation. In the lingo of GUS, these 

scripts are referred to as event scenarios. 

For the purposes of this work, SIMULACT is being used to design and simulate the 
necessary facilities which would enable the TRAMCON system to be automated using a 
network of distributed problem solving agents. The DCS transmission networks to be used 
in these simulations are first described using a graphical design tool called GUS [40]. GUS 
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allows a network designer to precisely describe a DCS transmission network by graphically 

specifying various network objects and their interconnections. Among the objects to be de- 
scribed using GUS are sites (including SRCF designations), subregions, multiplexers, radios, 

trunks, microwave links, etc. When the network designer has completed the graphical de- 
scription of a particular transmission network, the structural knowledge extracted from this 

description are partitioned into a distributed knowledge base. The partitions separate a 

network's structural knowledge along its subregion boundaries to form the knowledge bases 

located at each SRCF. 

Recall that the TRAMCON system consists of three distinct distributed problem solv- 
ing systems superimposed upon the same network of nodes, each of which correspond to an 
individual SRCF. These distributed systems are called Fault Isolation (FI), Performance 
Assessment (PA), and Service Restoral (SR). Each distributed problem solving node con- 
tains a single FI, PA, and SR agent which are modeled in the simulations as actors. Another 
agent, also modeled as an actor, called the Knowledge Base Manager (KBM) is also located 
at each problem solving node and is responsible for supplying and maintaining all network 
knowledge pertinent to its respective subregion. The knowledge base given to the KBMs at 
each problem solving node are exactly the partitioned structural knowledge bases provided 
by GUS which correspond to the particular subregion. Each agent obtains knowledge from 
its respective KBM agent using futures, and communicates with its own agents located at 
other processing nodes in a predetermined way using the available mail objects as provided 

by SIMULACT. 

The event scenarios used to drive transmission network simulations are defined with the 
use of GUS in much the same way the network itself was defined. GUS has expert knowledge 
about the kinds of alarms and status signals recognized by TRAMCON for each piece of 
equipment in the network. Using this information, GUS allows an event (alarm) scenario 
to be defined by selectively choosing alarms and their time of activation for various pieces 
of equipment. When all the alarms for a particular event scenario have been defined, GUS 
organizes this information into a file ordered by alarm activation times. The sequence of 
alarms contained in this file are injected into a simulation by a ghost whose script function 
has been specially designed for this purpose. During each time interval in the simulation, 
the alarm ghost checks its list of alarm activations and if there are alarms whose activation 
time is equal to the current simulation time, the ghost dispatches memos to alert a particular 

SRCF of the alarm activation. 

3.6.5    The Example Network 

A small transmission network has been designed using GUS and will serve as a basis for 
discussing many of the intricate details associated with this application domain. Portions 
of this network spanning three subregions encompassing, for the most part, the scope of 
the example are shown in Figures 3.22 and 3.23.   Due to the spatial limitations and a 
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desire to reduce the overall visual complexity of the network, all unnecessary connections 
have been truncated and given a label consisting of a site name in square brackets. These 
labels indicate the site at which the truncated connection's distant-end device is located. 
One of these truncated connections, microwave link L9, has been especially identified by an 
encircled X to denote the interconnection of Figures 3.22 and 3.23. The physical boundaries 

of each site are easily be identified by considering the location of RADIOs and MUX-98s 
as a sort of perimeter that discriminates the equipment of one site from another. In the 
network diagrams, each site has been given a label, consistent with the previously described 
naming convention, and is shown in bold-face located somewhere within the site's general 

vicinity. 

The architecture of the transmission network depicted in Figures 3.22 and 3.23 is such 

that all digroup trunks within each site terminate on a DPAS. While this type of equip- 

ment configuration has the advantages of reducing the number of required MUX-98s and 
promoting higher levels of trunk utilization, it has the disadvantage of increasing network 
complexity. Each DPAS represents a point in the network where two channels from different 
digroup trunks may be arbitrarily interconnected. Since with this equipment architecture 
all digroup trunks eventually terminate on a DPAS and each digroup channel carries a single 
circuit, the paths of each circuit through the network can be described by specifying how 
these channels are switched at each DPAS along the way. For this purpose, a notation of 
the form [x:y] will be used to represent the channel y of trunk x. With this notation the 
interconnection of channel 1 of trunk Tl and channel 2 of trunk T2 can be represented by 
the pair ([Tl:l], [T2:2]). The path of a circuit through the network can be represented by a 
sequence of these interconnections. For example, the path of circuit CIO from M08 to M32 
in Figure 3.22 is described by the following sequence of connections: 

CIO:      <([T14 : 2], [T12 : 1])   ([T12 : 1], [T39 : 3])) 

3.6.6    Expert Knowledge Required For a Solution 

It is instructive to discuss how a group of human experts (i.e. the technical control personnel 
located at each SRCF) would approach a typical problem. In large communication systems, 
technical controllers are often confronted by problems which do not substantially affect 
the performance of the transmission network, however. These same problems often do 
require significant coordination efforts by the technical controllers to accurately identify, 
and subsequently restore, any lost network services. An example of a network problem 
with this characteristic is that of interpreting the pattern of alarms generated throughout a 
network which is the result of a single port module malfunction in a MUX-99. With regards 
to the network of Figures 3.22 and 3.23, the specific problem that will be considered here is 

the one in which the port module that interfaces trunk T45 with MUX-99 M31 in site A5 

is defective. 
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Figure 3.22: Example Communication Network (Part 1). 
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DPAS D02 Trunk Channel Interconnections 

Trunk    Channel Trunk    Channel Circuit 

T14            1 T13            1 C32 

T14            2 T12            1 CIO 

T14       ■    3 ' T12            2 C03 

Table 3.8: Circuit Switching Map for DPAS D02 

DPAS D08 Trunk Channel Interconnections 

Trunk    Channel Trunk    Channel Circuit 

T44            1 T57            1 C03 

T45            1 T54            3 C32 

T45            2 T54            4 C07 

T45            3 T54            5 C12 

T45            4 T59            3 C13 

T45            5 T57            3 C25 

T58            1 T54            2 C15 

T58            2 T56            1 C47 

T59            1 T57            2 C37 

T59            2 T54            1 C06 

Table 3.9: Circuit Switching Map for DPAS D08 

DPAS Dll Trunk Channel Interconnections 

Trunk    Channel Trunk    Channel Circuit 

T54            1 T82            3 C06 

T54            2 T78            1 C15 

T54            3 T82            2 C32 

T54            4 T78            2 C07 

T54            5 T80            1 C12 

T56            1. T78            3 C47 

T79            2 T80            2 C49 

T82            1 T79            1 C26 

Table 3.10: Circuit Switching Map for DPAS D08 
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DPAS D05 Trunk Channel Interconnections 

Trunk    Channel Trunk    Channel Circuit 

T12            1 T39            3 CIO 

T12            2 T44            1 C03 

T13            1 T45            1 C32 

T39            1 T45            2 C07 

T39            2 T45            3 C12 

T39           4 T45           4 C13 

T39           5 T45            5 C25 

Table 3.11: Circuit Switching Map for DPAS D05 

DPAS D09 Trunk Channel Interconnections 

Trunk    Channel Trunk    Channel Circuit 

T57            1 T64            1 C03 

T57            2 T64            2 C37 

T57            3 T64            3 C25 

T58            1 T64            5 C15 

T58            2 T63            2 C47 

T63            1 T64            4 C48 

Table 3.12: Circuit Switching Map for DPAS D09 

DPAS D12 Trunk Channel Interconnections 

Trunk    Channel Trunk    Channel Circuit 

T78            1 T85             2 C15 

T78            2 T85            5 C07 

T78            3 T85            4 C47 

T79            1 T85            3 C26 

T79            2 T85            1 C49 

Table 3.13: Circuit Switching Map for DPAS D12 
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DPAS D14 Trunk Channel Interconnections 

Trunk    Channel Trunk    Channel Circuit 

T80           1 T90            1 C12 

T80           2 T89            2 C49 

T90           2 T89            1 C46 

Table 3.14: Circuit Switching Map for DPAS D14 

Circuit Trunk Channel Path 

C03 ([T14:3] [T12:2] [T44:l] [T57:l] [T64:l]) 

C06 ([T59:2] [T54:l] [T82:3]) 

C07 ([T39:l] [T45:2] [T54:4] [T78:2] [T85:5]> 

CIO ([T14:2] [T12:l] [T39:3]) 

C12 ([T39:2] [T45:3] [T54:5] [T80:l] [T90:l]) 

C13 ([T39:4] [T45:4] [T59:3]) 

C15 {[T64:5] [T58:l] [T54:2] [T78:l] [T85:2]) 

C25 ([T39:5] [T45:5] [T57:3] [T64:3]} 

C26 ([T82:l] [T79:l] [T85:3]) 

C32 ([T14:l] [T13:l] [T45:l] [T54:3] [T82:2]) 

C37 ([T59:l] [T57:2] [T64:2]> 

C46 ([T90:2] [T89:l] • • ■> 

C47 ([T85:4] [T78:3] [T56:l] [T58:2] [T63:2] • • •) 

C48 <[T64:4] [T63:l] • ■ •) 
C49 ([T85:l] [T79:2] [T80:2] [T89:2] ■ • •) 

Table 3.15: Trunk Channel Paths of Circuits. 

Scenario: T45 in] put data blocked by input port of M31 

Subregior l    Site Equipment Generated Alarm 

B B2 M42 OUTPUT-PORT-DATA-LOSS 

B B2 M45 1ST-LEVEL-MUX-FAILURE 

B B3 M48 1ST-LEVEL-MUX-FAILURE 

C Cl M60 1ST-LEVEL-MUX-FAILURE 

C C4 M73 1ST-LEVEL-MUX-FAILURE 

C C2 M63 1ST-LEVEL-MUX-FAILURE 

Table 3.16: Alarms Generated in Event Scenario. 
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The failure of this port module manifests itself as a disruption in the flow of data from 
trunk T45 to the multiplexer module of M31. In other words, the data from trunk T45 has 

been effectively blocked from being multiplexed with the input data of the remaining port 

modules, and is therefore not being transmitted on trunk S15. This particular internal fault 

of a port module occurs at a point beyond what is monitored by a MUX-99's Peripheral 

module. Consequently, the port module fault goes undetected and generates no TRAMCON 
alarms for M31. From the perspective of M31's distant-end device, MUX-99 M42, the 
channel in each frame of trunk S15 which transmits the input of trunk T45 contains no 

data whatsoever. As a result, no data from trunk T45 input to the faulty port module 
of M31 is output from the corresponding port module of M42. This condition is detected 
by the Peripheral module of M42 which then generates an OUTPUT-PORT-DATA-LOSS 

alarm for that particular MUX-99. It would be worthwhile to note here that an alarm of 

this type is ambiguous in that there is no indication as to which of the eight possible port 

modules in M42 are experiencing this problem. 

The number of circuits affected by this loss of data from trunk T45, can be found by 
considering the entries in the circuit switching map of DPAS D08 of Table 3.9. A total of five 
circuits from trunk T45 are switched by DPAS D08 with each one terminating downstream 
from M42 on a different MUX-98. Since for each of these circuits there is no data, their 
corresponding MUX-98 BITE modules will detect that no data is present on the output 
side of the corresponding port module. Since the MUX-98's comprise level three of the 
TRAMCON hierarchy, and hence are less important, they are capable of generating only 
one alarm for all the fault conditions that may be detected. Then MUX-98's M45, M48, 
M60, M63, and M73 are all generating a 1ST-LEVEL-MUX-FAILURE alarm due to the 
loss of output data from at least one of the 24 possible port modules. This event scenario 

is summarized in Table 3.16. 

The problem chosen for this example is of particular interest since the multiplexer creat- 
ing the real network fault does not detect the condition, and there are no alarms generated 
within the subregion containing the multiplexer. Rather, sympathetic alarms are gener- 
ated in two other network subregions resulting from the propagation of the real fault. The 
subsequent problem solving process will be discussed from the viewpoints of three technical 
controllers, positioned at the SRCF of each subregion A, B, and C which lie within the scope 
of the problem. From the perspective of the technical controller located in subregion A, 
there is no indication that a problem exists and therefore does nothing out of the ordinary 

for the time being. 

The tech controller for subregion C is confronted with three general 1ST-LEVEL-MUX- 
FAILURE alarms and has no indication, within the extent of its subregion, as to what 
may have caused these alarms. Since a 1ST-LEVEL-MUX-FAILURE alarm does not relay 
any useful information, other than a particular MUX-98 is experiencing some problem, it 
is entirely possible the alarms are unrelated, however. The alarm data provided to the 
tech controllers contains information about the time at which each alarm was generated 
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and may reveal some probable relationships among the various alarms. In the case of this 

event scenario, all the alarms (in particular those of subregion C) were generated at the 
same time. When the tech controller makes this observation, it suggests to him the strong 

possibility that these alarms are all the result of a single network fault. This is but one piece 
of evidence which the tech controller may apply to the problem in an attempt to eliminate, 

or lend support to, a possible cause of the alarms in its subregion. A more general strategy 
employed by the tech controller is to trace the paths of each circuit which terminates on at 

least one of the MUX-98's generating an alarm. With this information the tech controller 

is able identify what these alarms have in common and formulate a set of possible network 

faults which have the potential for causing this particular pattern of local alarms. 

Considering the network architecture of the affected sites in subregion C as shown in 
Figure 3.23, it can be seen that the tech controller must trace a total of nine circuits. Since 
the SRCF of any subregion does not have trunk connection knowledge for sites other than its 
own, the tech controller can only trace each circuit within the extent of its subregion. Using 
the circuit path information contained in Table 3.15 and observing the trunk connection 
boundaries imposed by the limits of subregion C, the tech controller would generate the 

following traces of circuit path segments: 

C06    ([T82:3] [T54:l] • • •) 

C07    ([T85:5] [T78:2] [T54:4] • • •) 

C12    <[T90:1] [T80:l] [T54:5] • • ■) 
C15     ([T85:2] [T78:l] [T54:2] • • •) 

C26    ([T82:l] [T79:l] [T85:3]) 

C32    ([T82:2] [T54:3] • • •) 

C46    ([T90:2] [T89:l] • • ■> 

C47    ([T85:4] [T78:3] [T56:l] ■ ■ ■) 
C49 ([T85:l] [T79:2] [T80:2] [T89:2] • • •) 

The tech controller is now in a position to analyze the circuit path information looking 
for anything which the three 1ST-LEVEL-MUX-FAILURE alarms may have in common. 
Perhaps one of the most noticeable features of these circuit paths, is that five of the nine 
circuits all ride trunk T54. In addition, for each of the three MUX-98's generating an 
alarm, there is at least one of these five circuits that terminates on it. Thus, the failure of 
trunk T54 has the potential to produce the alarms being generated in this subregion, but 
there are no alarms on MUX-99 M57 to support such a hypothesis. It is still possible that a 
suitable combination of the five circuits riding trunk T54 are all affected by a single network 
fault located somewhere beyond the extent of this subregion. This fact is communicated 
to the tech controller of subregion B in hopes that it will add support for a more informed 

hypothesis elsewhere in the network. 

In order to automate the above process so that it can be performed by a group of 
distributed expert agents cooperating to solve the observed problem, this expert knowledge 
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must be encoded in the production rule language of TESS. While this process is somewhat 

routine, it requires a very large investment of manpower to do completely. We determined 
that such a complete encoding of real world knowledge was beyond the scope of this effort. 

We have demonstated (for a much simpler domain) the principles used by TESS and have 

shown a simple example of knowledge encoding to solve a specific problem. 
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Chapter 4 

Distributed Reasoning 

4.1    Introduction 

The goal of our research is to investigate problem solving behavior that is exhibited by 
distributed problem solving systems. When knowledge and problem solving capacity are 
distributed among a group of agents, coordination of the problem solving effort is critical 
because the ability of the system of agents to effectively reach a solution is affected by the 
coordination strategy that is employed. System behavior is also affected by a number of 
other factors, such as the specific distribution of knowledge and the ability of the agents to 

share knowledge among themselves. 

Most distributed problem solving systems [48] [22] [6] have a structure that incorporates 
a high degree of domain specific knowledge in control of the problem solving process. This 
makes it difficult to distinguish domain dependent aspects of problem solving behavior 
from those that are attributable to such factors as knowledge distribution and coordination 
strategy. For this reason, we have chosen to investigate problem solving in the context of 
a formalized domain: theorem proving. When the features of a "real world" domain are 
removed, it is easier to focus on behaviors that are common to many distributed problem 

solving environments. 

In this chapter we will explore how how the relative strength of an inference rule affects 

distributed automated reasoning. In DARES [55] [11] [56] [61] significant analysis was done 
on a distributed automated reasoning system that used binary resolution as its inference 

rule. In DARES it was shown that a distributed reasoning system was possible in which 
the reasoning mechanism employed no domain specific mechanisms. DARES also showed 
that in using binary-resolution as an inference rule, the distribution of knowledge had little 

effect on the performance of the system. 

One criticism of the work in DARES was that the binary resolution is a relatively weak 

inference rule which is inefficient and costly. We have decided to continue the work begun 
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in DARES by exploring how a stronger inference rule would effect the performance of the 

reasoning architecture proposed in DARES. 

In order to accomplish this we have developed a distributed automated reasoning system, 
SHYRLI. When we began this research and the development of SHYRLI we identified six 
tasks that a set of distributed agents must be able to accomplish to reason cooperatively: 

1. An agent must have a representation for expressing its knowledge. 

2. An agent must be able to reason on its own local data expressed in this representation. 

3. An agent must be able to judge whether its reasoning is resulting in progress towards 

a goal. 

4. An agent must be able to formulate requests for aid in obtaining knowledge that is 

likely to be useful in moving its line of reasoning towards a goal. 

5. An agent must be able to formulate appropriate responses to requests for aid trans- 

mitted by other agents. 

6. An agent must have a coordination strategy for controlling the process of interacting 
with other agents in the system. Specifically, controlling when an agent decides to 
interact with other agents and with whom an agent interacts is essential. 

To satisfy the first point our system uses the first order predicate calculus for knowledge 
reprentation. Since we sought to compare results with DARES, using the same knowledge 

reprentation as DARES made sense. 

The predicate calculus satisfies one of our requirements: it is domain independent. The 

predicate calculus is a representation language that can be used to describe many different 
domains [30]. By formulating a reasoning problem about a specific domain in the predicate 
calculus, our system may be used to reason about that domain. As our system embodies 
no domain specific knowledge in how it performs its reasoning, it is completely domain 

independent. 

To satisfy point two our system makes use of hyper-resolution, an inference rule for 
the predicate calculus. Although there are a number of stronger inference rules than bi- 
nary resolution we settled on hyper-resolution, as it is tied to binary resolution in many 
ways and behaves in a similar manner. Hyper-resolution outperforms binary resolution by 
substantially pruning its search space. The use of hyper-resolution allowed us to build a 
powerful reasoning system that was comparable to DARES in its architecture, but not in 

its behavior. 

To satisfy point three, we modified the mechanism that DARES used to judge whether 

outside assistance was necessary to better fit our new inference rule. 
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To satisfy points four and five we took advantage of the way in which hyper-resolution 
behaves to construct mechanisms for formulating requests for assistance and replies to 

requests for assistance. These mechanisms allow the agents to ask for knowledge they can use 

to continue reasoning, while recognizing knowledge that does not need to be communicated. 

To satisfy point six, we use a broadcast mechanism. An agent broadcasts its request to 

all other agents when it is in need of assistance. If an agent has knowledge that fits another 
agent's request it responds immediately. Otherwise, it places the request to the side until it 
generates knowledge that fits the request. Once knowledge is generated that fits the request 

a reply is sent. 

The development of SHYRLI has given us a mechanism that allows us to recognize what 

knowledge must be shared and what can be kept private in order for a group of agents to 
solve a problem. By not communicating irrelevant knowledge we reduce communication 
bandwidth and processing time. By incorporating a stronger inference rule into the archi- 
tecture proposed in DARES we have increased the performance of the architecture. We 
have also seen that our system may be made to perform problem solving based on a func- 
tional distribution of task knowledge, and that our communication mechanisms are able to 
coordinate the different functional roles of a set of agents to cooperatively solve problems. 

We have found that the change in inference rule has created a significant behavior dif- 
ference between DARES and SHYRLI. DARES agents are essentially performing a breadth 
first search over a rather large search space. SHYRLI agents, although still using an infer- 
ence rule that executes a breadth first search, search a significantly pruned space. 

4.1.1    Related Work 

There are two types of work that relate to this research. The first is work in the realm 
of automated reasoning using the first order predicate calculus. The second is work in the 

realm of distributed automated reasoning. 

Much has been done in the area of automated reasoning. The key seminal work was 
the discovery of resolution [71]. This discovery was followed by a great deal of activity in 
which many different inference rules were developed. These included binary resolution [71], 
hyper-resolution [70], unit resolution, semantic resolution, paramodulation [69], and hyper- 
paramodulation. Binary resolution is a simplified form of resolution. Hyper-resolution, 
semantic resolution and unit resolution are attempts to increase the efficiency of resolution. 

Paramodulation is an inference rule that is more efficient in reasoning about equality. These 
inference rules were developed to operate on knowledge represented in the predicate calculus 

and are usually used to operate in a refutation based proving style. 

A problem with each of these mechanisms is that they essentially perform their rea- 

soning in a breadth first fashion. Their search spaces grow in an exponential fashion. As 
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they are given larger and larger problems, the time they take to solve the problem in- 
crease exponentially. Mechanisms have been formulated that try to control this explosive 
behavior by recognizing irrelevant results or redundant information and paths in the search 
space. These mechanisms include set of support [89], demodulation [90], subsumption [71], 

tautology reduction [71], and pure literal deletion. 

An alternative to resolution-based inference rules has been developed by R. Boyer and J. 
Moore [4]. Their reasoning system does not use the typical predicate calculus representation, 

but instead uses a lambda calculus/LISP like representation. Their theorem prover can also 

find other types of proofs besides refutation based proofs, most importantly induction based 

proofs. Resolution based theorem provers cannot perform mathematical induction, which is 

necessary for some applications such as proving computer program correctness. Although 

the main thrust of Boyer and Moore's research was in proving program correctness, their 

knowledge representation and inferencing method are domain independent. 

In [10] M. Cline presents a fast parallel algorithm for unification. Unification is a neces- 
sary mechanism for proving theorems in the predicate calculus. This algorithm performed 
unification over a set of processors. Although this algorithm is distributed, its intent was 
not distributed automated reasoning, but rather the improvement or speedup of reasoning 
using a single or centralized knowledge base. The purpose of SHYRLI is to explore how a 
distributed set of agents can perform distributed reasoning given a set of knowledge that is 

already distributed. 

Distributed automated reasoning is an attempt to extend automated reasoning to a 
group or groups of reasoning agents. The key ingredient in distributed automated reasoning 
is the interaction of the agents. Given a set of agents, how does that set of agents coordinate 

its activity in order to arrive at common goals. 

In [29] Les Gasser and Michael Huhns discuss current themes in Distributed Artificial 
Intelligence. Themes they describe that have relevance to the subject of distributed au- 
tomated reasoning include the development of new problem solving architectures and the 
social behavior of a large collection of agents. An issue in which they place importance 
is what they term Deep Theories of Coordination. They mention that no broadly used 
definitions for coordination, cooperation, or interaction exist in the Distributed Artificial 
Intelligence Community. In the following paragraphs we will describe some of the current 
research in distributed automated reasoning that is trying to address this issue. 

Different characteristics of distributed problem solving were discussed in work by Cam- 
marata, McArthur and Steeb [6]. Agents in the distributed system could be characterized 
by their skills, their knowledge of their environment, their resources, and their appropriate- 
ness for different tasks. Strategies for cooperation were also characterized into two groups: 
organizational policies and information distribution policies. Organization policies dictate 
how a larger task should be decomposed into smaller tasks while information distribution 

policies dictate how cooperating agents communicate. 
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The authors describe four different organizational policies and provide experimental 

results for three of them. These three policies all involve selecting an agent to be the 
problem solver and letting that agent solve the problem after transmitting to the selected 
agent the necessary information. The interaction between the agents is only used to select 
which agent could best solve the problem at hand. There is no cooperative problem solving 

as such, only a group decision making process that selects which agent will be the problem 
solver. The authors provided no experimental results for the fourth policy, which involved 
cooperative problem solving. This differs from SHYRLI in that all SHYRLI agents can 

potentially participate in reasoning about the problem at hand. The authors applied their 

techniques to only one domain, air-traffic control, and do not discuss how it can be extended 

to other domains. 

E. Durfee and V. Lesser proposed mechanisms that allow a group of agents to coordinate 

their activity through the use of partial global plans [22]. A partial global plan is a repre- 
sentation of how several nodes are working towards a larger goal. These mechanisms were 
presented in the domain specific environment of a distributed vehicle monitoring testbed. 
In this context a partial global plan is a skeleton of vehicle tracks through the testbed. The 
partial global plans were passed among agents as a way of communicating the agents' view 
of the world and partial solutions to the problem. The agents coordinated by planning how 
to fill gaps in the tracks and how to resolve discrepancies. Although the authors state that 
they believe their mechanisms could be extended to other domains, they do not provide an 
example of how this can be done. This differs from SHYRLI in the respect that SHYRLI 
agents do not have any view of what other agents are doing, SHYRLI agents only commu- 
nicate the type of information they can potentially use, not a plan of how they are solving 

the problem. 

In [50], C. Lewis and K. Sycara present a mechanism that allows a set of heterogeneous 

(i.e. agents with different specialties) to develop a shared model through which they can 
develop a shared perception of the problem at hand. The authors state that as a prerequisite 
to coordinating shared actions, agents must first coordinate to form a shared mental model 
of their knowledge. By constructing a shared model, or language, different specialists can 
then better reason about what interaction and coordination is necessary to solve a problem. 
This shared model is a high level structure that can be independent from the agents actual 

reasoning process. 

Unlike both of these latter approaches, SHYRLI coordinates on a low level. A SHYRLI 
agent achieves its coordination by examining the syntactic structure of the predicate calculus 

clauses in its database. 

4.1.2    Results Summary 

As a tool, DARES was limited in its practicality.   Its inference rule was so weak that in 

order to solve even small problems extensive resources were necessary.   SHYRLI extends 
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the practicality of the architecture considerably.   SHYRLI's inference rule is sufficiently 

powerful to solve interesting problems, rather than small toy proofs. 

SHYRLI provides a baseline case of a distributed reasoning system that incorporates 

no domain knowledge. SHYRLI provides a testbed that can be used to test heuristics that 

use domain specific information to help select what to communicate and which lines of 
reasoning to follow. The baseline case could be used as a point of comparison between 
different strategies for managing coordination and interaction in order to increase system 

performance. 

By examining the syntactic structure of its knowledge SHYRLI agents can decide if that 

knowledge will have no bearing on other agents progress towards a goal. This means that 
agents can reliably decide what knowledge can be kept private without adversely affecting 

the progress of the system towards a goal. 

SHYRLI's inference rule realizes its performance increase by substantially pruning the 

search space. We have found that SHYRLI attempts to find a proof by performing a dis- 

tributed search over a substantially pruned search tree. SHYRLI, unlike DARES, does not 
recognize a tremendous benefit by distributing the problem. A large part of DARES perfor- 
mance increase came from the partitions of knowledge that were created by the distribution. 
The distribution effectively pruned the search space. By incorporating communications 
heuristics that tried to maintain a beneficial distribution of knowledge the system was able 
to perform reasoning on the order of magnitude faster than the single agent case. SHYRLI's 
inference rule prunes the search space better than DARES artificial pruning. The pruning 
in SHYRLI is built into the control structure of the inference rule, not the distribution of 

knowledge in the system. 

We have performed a set of experiments using SHYRLI that have shown us that different 
distributions of the same knowledge over a set of agents can have a significant effect on 
performance. We have been able to characterize these distributions along two dimensions: 
the amount of parallelism and the coordination necessary to solve the problem. 

We have developed a predicate calculus formalism that allows a complex problem to 
be divided into smaller parts and the different parts distributed over a set of agents. We 
illustrate the application of this formalism to a simple model a digital circuit simulator. 
In the problem one agent knows that a device exists that performs the function of a half- 
adder, but does not know how the half-adder works. The device asks other agents if they 
understand half-adders. When an agent is found that understands half-adders, the task of 

simulating the half-adder is given to that agent. 

The following sections will describe SHYRLI. We first give an introduction to the pred- 
icate calculus. This will provide a background necessary for understanding the rest of this 
chapter. The following section describes SHYRLI. We then describe the experimentation 
that has been done using SHYRLI and point out certain behaviors found in the SHYRLI 
reasoning process.   Finally we summarize the significant results of the work and discuss 
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future directions of research. 

4.2    Knowledge Representation and Inference Rules 

We are exploring domain independent issues in distributed automated reasoning. We have 
chosen to investigate problem solving in the context of the formalized domain theorem 
proving. There has been a great deal of work in the area of automated theorem proving. 
Much of this work uses the predicate calculus as its representation language [30]. Many 

mechanisms for extracting information about and reasoning within a model expressed in 
the predicate calculus have been devised. Among them are binary resolution [71], hyper- 

resolution [70], unit resolution, and paramodulation [69]. 

This section explains the fundamentals of the basic concepts of the predicate calculus 
and resolution based theorem proving. We begin by defining the syntax of the predicate 
calculus along with an example explaining how to interpret the syntax with a semantic 
meaning. We then describe two inference rules for the predicate calculus, resolution and 
hyper-resolution. We describe ways of controlling the reasoning processes that use resolution 

as an inference rule. Finally a complete example of a hyper-resolution proof is given. 

4.2.1    Predicate Calculus 

The predicate calculus has been selected as our form of knowledge representation. In this 
section we will first explain the propositional calculus, then extend it to the predicate 

calculus. 

4.2.1.1     Propositional Calculus 

The predicate calculus is based in the propositional calculus. The propositional calculus 
concerns declarative sentences or propositions. A proposition is a declarative sentence that 

is either true (T) or false (F). 

This simplest proposition is an atomic symbol. For example, the following atoms are 

propositions: 

M: The power is on. 

N: The switch is in the on position. 

P: The computer is plugged in. 

More complex propositions may be built by combining atoms with logical connectives. 
The five logical connectives used in the propositional logic are not (->), conjunction (A), dis- 
junction (V), implies (-»), and equivalence (<->). The truth values of the logical connectives 
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are described in the following table. 

M N ^M MAN MVN M -> N M^N 

T T F T T T T 

T F F F T F F 

F T T F T T F 

F F T F F T T 

Figure 4.1: Truth Values of Logical Connectives. 

Complex propositions are built recursively using the rules for well-formed formulas [8]: 

1. An atom is a well-formed formula. 

2. If M and N are well-formed formulas then (-i M), (M A N), (M V N), (M -> N), 

and (M «-» N) are well-formed formulas. 

3. All well-formed formulas are generated by applying the above rules. 

The following precedence is assigned to the logical connectives in decreasing order so 

that parenthesis may be dropped for ease of reading: 

-., A, V, -», O 

4.2.1.2    First-Order Predicate Calculus 

The propositional calculus is useful for representing certain sets of knowledge, however it is 

limited. For example: 

M: Odeon is a computer. 

N: The switch for Odeon is in the on position. 

P: If the switch for a computer is in the on position then the computer is running. 

In the propositional calculus it is impossible to deduce from the above well-formed formulas 
that Odeon is running. This is becasue that it is not possible to associate Odeon in M with 
the computer in P. By adding variables to the propositional calculus this becomes possible. 
The predicate calculus uses predicates and variables to extend the propositional calculus so 

it can handle situations such as the one above. 

A predicate in the predicate calculus is a function that maps a set of arguments to 
the set {T  F}.   An n-place predicate accepts n arguments.   Each argument accepted by 
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a predicate is a term.  A term is either a constant, a variable, or a function.  An n-place 

function maps n elements in the domain to a member of the domain. 

Terms are defined recursively as follows: 

1. A variable is a term. 

2. A constant is a term 

3. If / is a n-place function symbol, and *i, ..., tn are terms, then /(*i, ...,<„) is a 

term. 

4. All terms are generated by applying the above rules. 

An atom is an n-place predicate and is constructed using the following rule [8]: 

If P is an n-place predicate and ti, ..., tn are terms, then P{ti,... ,i„) is an 

atom. 

Two more symbols are also added to the predicate calculus. These are the universal (V) 
and the existential (3) quantifiers. These symbols are used to characterize variables. If a 
variable, x, is employed in a universal quantifier then every instance of x within the scope 
of the quantifier applies to every element in the domain. If a variable, y, is employed in a 
existential quantifier then every instance of y within the scope of the quantifier applies to 

one or more elements in the domain. 

A variable is considered bound if it is within the scope of a quantifier employing that 

variable. A variable is considered free if and only if it is not bound. 

We extend the notion of a well-formed formula of the propositional calculus to the 
predicate calculus by adding the notion of a more complex atom as above and the following 

rule about quantifiers: 

If F is a well-formed formula and x is a free variable in F, then (Vi)F and (3x)F are 
well-formed formulas, x is said to be employed by the quantifier. The scope of the 

quantifier is F. 

Quantifiers have the least precedence of all symbols in the predicate calculus. 

As an example, we will now represent the statements given at the beginning of this 

section in the predicate calculus. 

Odeon is a computer. 

Odeons switch is in the on position. 

If a computers switch is in the on position then the computer is running. 
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becomes: 

P: Computer(Odeon). 

Q: Switch(Odeon,On). 

R: (Vx) (Computer (x) A Switch(z,On)) -> Running^). 

Prom these well-formed formulas we can conclude: 

Running(Odeon). 

This can be done by substituting Odeon with the variable x in R. 

4.2.2    Interpretations 

An interpretation is an assignment of constants to specific entities in the domain being 
described, functions are assigned mappings from elements in that domain to an element 
in the domain, and predicates are assigned mappings from elements in the domain to the 

values of true (T) or false (F). 

This can be stated formally as follows [8]: 

Definition: An interpretation of a well-formed formula F in the first-order logic consists 
of a non-empty domain D, and an assignment of "values" to each constant, function 

symbol, and predicate symbol occurring in F as follows: 

To each constant, we assign an element in D. 

To each n-place function symbol, we assign a mapping from Dn to D. 

To each n-place predicate symbol, we assign a mapping from Dn to {T, F}. 

Well-formed formulas can be evaluated to true or false under an interpretation over a 

domain D using the following rules: 

If the truth values of M and N are known, then the truth value of (-• M), (M A N), 
(M V N), (M -> N), and (M «-> N) are evaluated using table 4.1. 

(Vi)M is evaluated to true (T) if the truth value of M is evaluated to true (T) for 

every x in D, otherwise, it is evaluated to false (F). 

(3x)M is evaluated to true (T) if the truth value of M is evaluated to true (T) for at 

least one x in D, otherwise, it is evaluated to false (F). 
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Using the definition of an interpretation the following terms are defined [56]: 

Definition A well-formed formula is satisfiable (consistent) if and only if there exists an 

interpretation in which the well-formed formula evaluates to true. 

For example, the following well-formed formula is consistent: 

(Vx)(Vy)(M(x) -> M(y)). 

By observing the logical value of the connective ->• in Figure 4.1 and the rules for evaluating 
variables in the scope of a universal quantifier it can be observed that the truth value of 
this well-formed formula is dependent upon the interpretation. There is an interpretation 
that will make this well formed formula true. Therefore this statement is consistent. 

Definition A well-formed formula is unsatisfiable (inconsistent) if and only if there exists 
no interpretation in which the well-formed formula evaluates to true. 

For example, the following well-formed formula is unsatisfiable: 

(Vx)(M(z) A -.M(aO). 

There is no x that would enable this well-formed formula to evaluate to true (T). 

Definition A well-formed formula is valid if and only if for all possible interpretations the 

well-formed formula evaluates to true. 

The following well-formed formula is valid: 

(Vx)(M(x) -> (3y)M(y)). 

The only way for this formula to be false would be for M(x) to evaluate to true and M(y) 
to evaluate to false. However this cannot be for if M(x) evaluates to true there exists a 
y (namely x) that allows M(y) to evaluate to true. Therefore this well-formed formula is 

valid. 

Definition A well-formed formula is invalid if and only if there exists at least one inter- 

pretation in which the well-formed formula evaluates to false. 

The example given for a consistent well for formed formula is also invalid. This is due to 
the fact that there is an interpretation under which that well-formed formula evaluates to 

false. 
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Definition A well-formed formula P is said to be a logical consequence of a set of well- 
formed formulas {Qi, Q2, ■ ■ ■, Qn}, if for every interpretation satisfying the set of 
well-formed formulas {Qx, Q2, . •., Qn}, the well-formed formula P is also satisfied. 

In our earlier example about the computer named Odeon there was an implied inter- 

pretation in the well-formed formulas that we wrote. We implied the interpretation that 
Odeon was a computer, that On meant a state that the switch was in, that the predicate 

switch mapped a computer and a switch state to a value of true or false if the switch was in 
the state given as an argument. This is not the only interpretation of these sentences. This 

is easier to see if we rewrite the well-formed formulas to contain no semantic information: 

P(A). 

Q(A,B). 

(Vrr)(P(x) A Q(x,B)) ->• R(x). 

With the names of the symbols changed in the above example the original interpre- 
tation of the well-formed formulas becomes obscure. Indeed we could even map another 

interpretation to these same formulas. 

Beverage(Beer). 

In(Beer,Refrigerator). 

(VrE)(Beverage(rc) A In (re,Refrigerator)) -» Cold (re). 

The implied interpretation here is completely different than the one we were considering 

when we wrote the formulas. 

4.2.3    Unification 

Unification is a process for determining whether two well-formed formulas can be made 
identical through the use of an appropriate substitution [8]. A substitution is a set of 
variables and associated terms. A substitution is defined formally as follows: 

Definition A substitution is a finite set of ordered pairs of the form {t\/v\,.. .,tn/vn}, 
where every Vi is a variable, U is a term, t{ does not contain vif and no two elements 

contain the same V{ after the stroke symbol. 

Now that we have defined substitutions, we define how to apply a substitution to a 

well-formed formula. 
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Definition: Let 9 = {h/Xl,.. .,tn/xn} be a substitution and E be a well-formed formula. 
Then EÖ is a well-formed formula obtained by replacing simultaneously each occur- 

rence of the variable xh 1 < i < n, in E by the term U. 

As an example consider the substitution 0 and the well-formed formula R: 

9 - {Odeon/x} 

R: (Computer(x) A Switch(x,On)) -> Running(x). 

Then R0 is: 

K0 = (Computer(Odeon) A Switch(Odeon,On)) -» Running(Odeon). 

Unification finds a unifying substitution 0 for a set of well-formed formulas. When 0 
is applied to each member of the set of well-formed formulas every member in the set is 

identical. This is defined formally as follows: 

Definition: A substitution 0 is called a unifier for a set of well-formed formulas {Ei, ..., 
Efc} if and only if Ei0 = • • • = En0. The set of well-formed formulas {Ei, ..., Efc} is 

said to be unifiable if there is a unifier for that set. 

The unifier of the following two well-formed formulas is the substitution 9 given above: 

P: Computer(Odeon). 

R: Computer(x). 

When 6 is applied to either of these well-formed formulas the result will be identical with 

P. 

Through the course of computing a unification it is sometimes necessary to combine two 

substitutions. The composition of two substitutions is defined as follows: 

Definition If 9 = {ti/xu...,tn/xn} and A = {u1/yl,... ,un/yn} are two substitutions, 
then the composition of 0 and A is represented by 9\ and has the form: 

{t\\/xi,... ,tn\lxn,u\lyu... ,unlyn} 

and by deleting any element of the form: 

UX/xj where t{\ = Xj 

Ui/yj where yj € {x\,..., xn) 

As an example assume we have the substitutions a and 7 where: 
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Then: 

a - {Odeon/x,F(z,On) /y u/v} 

7 = {Odeon/z,v/u,On/x} 

{Odeoiry/z, F(z,On)7/y wy/v, Odeon/z, v/u, On/z} = 

{Odeon/x,F(Odeon,On)/yu/u,Odeon/z,u/ti,On/a:} 

Two of the members of this set have to be removed because they meet the requirements for 

deletion in the definition of substitution composition. Thus the composition of a and 7 is: 

{Odeon/z, F(Odeon,On)/y Odeon/z, v/u} 

In many situations there is more than one 6 that can unify a set of expressions. The 
most general unifier has the property that it is unique for a set of expressions up to variable 

renaming. The most general unifier is defined as follows: 

Definition: A unifier a for a set of well-formed formulas {El7 ..., Efc} is a most general 
unifier if and only if for each unifier 0 for the set there is a substitution A such that 0 

equals the composition of a and A. 

4.2.4    Skolem Normal Form 

In order for certain inference rules based in the predicate calculus to work properly, the 
predicate calculus sentences must be in a normal form. The Skolem normal form was 
introduced in [17]. The Skolem normal form is based on two other normal forms, conjunctive 
normal form and prenex normal form, along with the concept of Skolem functions. 

A well-formed formula is said to be quantifier free if it contains no instances of the 
universal (V) or the existential (3) quantifiers. A well-formed formula is said to be in 

prenex normal form if it is of the form: 

(QlXi) . . . (QnXn)(F) 

where n > 1, Qi is either the universal (V) or the existential (3) quantifier, and F is quantifier 

free. 

We begin our definition of conjunctive normal form by defining literals and clauses. 

Definition: A literal is an atom or a negated atom. 
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Definition: A clause is a disjunction of literals. The well-formed formulas Lj V L2 V ■ • • VLn 

where L\, L2, • • •, Ln are literals is a clause. 

A clause can be thought of as a set of literals with the disjunction implied. 

Conjunctive normal form can now be defined in terms of clauses: 

Definition:  Conjunctive normal form is a conjunction of clauses. 

Replacing existential quantifiers with functions may be done without affecting consis- 

tency. This process is called skolemization. Skolemization can best be presented with an 

example. Assume we have the well-formed formula: 

(3v)(\/w){3x){Vy){3z)P(v,w,x,yiz) 

The skolemization of this well-formed formula is as follows: 

{Vw){Vy)P{fi,w,f2{w),y,Mw,y)) 

The first existential quantifier in the first expression states that there exists one or more 
objects in the domain that makes the five-place predicate P true. We simply instantiate a 
Skolem constant /i that corresponds to one of those objects. The next existential quantified 
variable, x, is preceded by the universally quantified variable w. Depending on the predicate 
P the value of x may depend on the value of w. Thus we provide the one-place function f2 

to provide this mapping. In the same manner we provide the two-place function /3 for the 
existentially quantified variable z because z may depend on the two universally quantified 

variables w and y. 

A well-formed formula is said to be in Skolem standard form if the expression is of the 

form: 

(Qix1)...(Qnxn)(F) 

where every Qi is the universal quantifier and F is quantifier free and in conjunctive normal 

form. 

To convert a well-formed formula into Skolem normal form the following steps are fol- 

lowed: 

1. Convert the well-formed formula into prenex normal form. 

2. Convert the quantifier free portion of the prenex normal form into conjunctive normal 

form. 

3. Perform skolemization to eliminate existential quantifiers. 
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4.2.5    Resolution 

Resolution [71] is a procedure for performing proof by refutation. Resolution works with 
a set of well-formed formulas that are in Skolem normal form. Every variable in Skolem 
normal form is universally quantified, therefore the quantifiers may be assumed. The set of 
knowledge that resolution works with is a conjunction of clauses. As one further step the 

variables in each clause are renamed so that they are unique. 

Consider a well-formed formula P. We would like to show that P is valid. Under the 

definition of a valid well-formed formula, for P to be true it must evaluate to true (T) 

under all interpretations. To prove that P is valid we need only evaluate P under all 

interpretations. If P always evaluates to true T we know that P is valid. As the number of 

symbols in a well-formed formula grows, however, the number of interpretations increases 

exponentially. 

If P is valid then ->(P) evaluates to false under all interpretations. ->(P) is said to be 
unsatisfiable. If we can show that ->(P) is unsatisfiable then we can assume P is valid. This 
is the goal of resolution, and is known as a refutation proof. Remember that our knowledge 
is in the form of a conjunction of disjunctions, where every disjunction is called a clause. 
If we can find two complementary clauses -iQ and Q then the set of clauses must be false 
under all interpretations. Under any arbitrary interpretation one of the two clauses will 
always be false, and under the truth value of a conjunction the entire set will be false. 
Resolution attempts to find two such clauses, and if it cannot, it attempts to deduce clauses 

of this type from the set of clauses. 

To get an intuitive idea of how resolution works consider the following example. Assume 

the following clauses are known to be true under any interpretation: 

P:(AvC) 

Q: {B V -C) 

We can then deduce that the following clause is true: 

R: (A V B) 

We can make this deduction because of the complementary literal C in P and Q. We know 
that C is either true or false. If C is true then B must be true. If C is false then A is true. 

So either A is true or B is true, thus clause R. 

This is formalized in the following definition: 

Definition: Let Ci and C2 be two clauses with no variables in common. Let L\ and £2 
be two literals in Ci and C2 respectively. If L\ and -1L2 have a most general unifier 

a, then the clause: 
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(CKJT - Lio) U (C2CT - L2a) 

is called a binary resolvent of Ci and C2. 

Let P and Q be clauses such that: 

P: A(x,y) V C(x). 

Q: B(z) V -.C(A). 

Remember that clauses may be interpreted as sets of literals, thus: 

P: {A(x,y), C(x)}. 

Q: {B(z), -nC(D)}. 

Clauses P and Q contain the complementary literal C. To unify C{x) and C(D) we compute 

the substitution a: 

a: {D/x}. 

Using C as the complementary literal a resolvent of P and Q is: 

({A(x,y), C(x)}a - {C(x)}a) U ({B(z), -C(D)}a - {-C(D)}a) 

Which simplifies to: 

{A(D,y), B(z)} 

The goal of resolution, when applied to refutation proofs, is to deduce a contradiction 
(D). A contradiction is known as an empty clause and occurs when two complementary 

clauses ->Q and Q are resolved. 

Some proof procedures will not necessarily find a proof for a certain set of well-formed 
formulas even if one exists. If a proof procedure is always guaranteed to find a proof if one 

exists it is said to be complete. Completeness can be defined as follows: 

Definition: An inference rule is complete if and only if given a set of unsatisfiable clauses 

S, the inference rule can deduce that the set S is unsatisfiable. 

There are certain cases that if a contradiction exists, it is not necessarily the case that 
binary resolution will find the contradiction. For example, binary resolution will never infer 

a contradiction from the following clauses: 

P: Q(x) V Q(y). 
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Q: -.Q(t;) V -Q(w). 

By itself, binary resolution is not complete. When combined with factoring however, it 

is complete. Factoring is defined as follows: 

Definition: If two or more literals of a clause C have a most general unifier a, then CCT is 

called a factor of C. 

The clauses P and Q above can be factored into the two clauses P' and Q': 

P': Q(x). 

Q': -Q». 

From these clauses a contradiction is easily deduced. 

A resolvent of two clauses Ci and C2 is defined as: 

Definition: A resolvent of two clauses Ci and C2 is a binary resolvent of C'x and C2 where 
C'a is Ci or a factor of Ci and C2 is C2 or a factor of C2. 

Using the above rule to generate resovents, resolution is complete [8]. 

One problem with resolution-based theorem provers is that they are not guaranteed to 
halt. Let S be a valid set of clauses. Assume that the number of resolvents that may be 
generated from S is infinite. Any theorem prover that is applied to the set S will generate 

resolvents forever. 

We will now present a small example of resolution. Remember the example of the 

computer named Odeon: 

P: Computer (Odeon). 

Q: Switch(Odeon,On). 

R: (Vz)(Computer^) A Switch(x,On)) ->■ Running(z). 

The hypothesis we would like to prove is that Odeon is running: 

H: Running(Odeon). 

We negate this statement and add it to our list of statements 

The next step is to convert these predicate calculus statements into Skolem normal form: 

CI: Computer (Odeon). 
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C2: Switch(Odeon,On). 

C3: ^Computer(x) V ->Switch(a;,On) V Running(x). 

HI: -iRunning(Odeon). 

It is not necessarily the case that each predicate calculus statement will generate only one 

clause. 

We can now begin performing resolution. By resolving HI and C3 we get: 

Rl: -.Computer(Odeon) V ->Switch(Odeon,On). 

We can then resolve Rl with Cl: 

R2: -iSwitch(Odeon,On). 

Finally we can resolve R2 with C2: 

R3: □. 

This results in a contradiction indicating that our hypothesis was indeed valid. 

4.2.5.1     Hyper-Resolution 

Resolution based theorem provers are computationally explosive because they tend to pro- 
duce a great many clauses that have no bearing on the proof or are redundant in na- 
ture. Many mechanisms for reducing the amount of redundant information have been 
proposed. Among them are deletions strategies which will be discussed in a later section. 
Another method is to try to produce fewer redundant clauses. Hyper-resolution accom- 

plishes this [70]. 

Hyper-resolution is a form of semantic resolution. Semantic resolution reduces the num- 

ber of possible resolutions by dividing the set of clauses into two sets and only allowing 
resolutions between those two sets. Semantic resolution uses an interpretation to decide 
which clauses are assigned to each set. Any interpretation may be used. If a clause is true 
(T) under the interpretation it is assigned to the set of nuclei, if it is false (F) it is assigned 

to the set of electrons. 

The division into two sets limits the number of resolvents, because this limits the com- 
binations of clauses that may be resolved together. Semantic resolution limits the number 
of resolvents further by imposing an ordering on the predicate symbols. When resolving 
between these two sets of clauses we can only resolve with the literal that contains the 

largest predicate symbol in the set of electrons under the ordering. 

Semantic resolution is defined formally as follows [8]: 
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Let I be an interpretation. Let P be an ordering of predicate symbols. A finite 

set of clauses {Ei, ..., E„ N}, q > 1, is called a semantic clash with respect to 
P and I, if and only if Ei, ..., E, (called electrons) and N (called the nucleus) 

satisfy the following conditions. 

1. Ei, ..., Eg are false in I. 

2. Let Ri =N. For each i = 1,..., q, there is a resolvent R;+i of R* and E». 

3. The literal in Ei, which is resolved upon, contains the largest predicate 

symbol in E; 

4. Rg+i is false in I. 

R9+i is called a Pi-resolvent. 

Consider an interpretation I in which every atom in the set of clauses is false under 
I. Under this interpretation every Pi-resolvent must contain only positive literals. This 
is hyper-resolution and the PI-resolvent is called a hyper-resolvent. With the addition of 

factoring, hyper-resolution is complete [8]. 

As an example we will show how hyper-resolution may be used to deduce that our 
computer Odeon is running. Remember the Skolem normal form of our predicate calculus 

statements and our negated hypothesis: 

Cl: Computer (Odeon). 

C2: Switch(Odeon,On). 

C3: -.Computer(a;) V ->Switch(a;,On) V Running(:r). 

HI: -iRunning(Odeon). 

The first step is to choose an ordering P. For simplicity we will choose alphabetical order 
by predicate name. The next step is to divide the clauses into the sets of electrons and 

nuclei. 

Electrons: 

Cl: Computer (Odeon). 

C2: Switch(Odeon,On). 

Nuclei: 

C3: -.Computer(x) V -iSwitch(a;,On) V Running(:r). 

HI: -.Running(Odeon). 
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We can now begin generating hyper-resolvents. We can resolve Cl, C2, and C3 together 

to generate the hyper-resolvent: 

HR1: Running(Odeon). 

HR1 may be hyper-resolved with HI to generate the hyper-resolvent: 

HR2: D. 

We have generated a contradiction and therefore shown that our hypothesis was valid. 

4.2.6    Deletion Strategies 

Another method of reducing the amount of redundant information is the use of deletion 
strategies. A deletion strategy is used to delete clauses that are redundant from the set of 
clauses. Not only does this reduce the current number of clauses, but it prevents the deduc- 
tion of further redundant clauses from the current redundant information. Three deletions 
strategies we will describe are subsumption, demodulation, and tautology reduction. 

4.2.6.1 Subsumption 

Subsumption was first proposed as a deletion strategy for resolution based theorem provers 
in the paper that introduced resolution [71]. Subsumption is used to eliminate clauses that 
are less general than other clauses. If there is a clause that contains general information, any 
clause that is a redundant specification ofthat information is unimportant. For example, if I 
know that all dogs have four legs, knowing that fido is a dog who has four legs is redundant. 

The formal definition of subsumption is: 

Definition: If C and D are two distinct nonempty clauses, we say that C subsumes D if 

there is a substitution a such that Co CD. 

Subsumption algorithms are expensive and have been shown to be iVP-complete [34]. It 
has been argued that the gains in efficiency that the reduction of the subsumed clauses pro- 
vides is outweighed by the cost of the subsumption algorithm itself. Most of the successful 

theorem provers, however, employ subsumption [34]. 

4.2.6.2 Demodulation 

Demodulation, in part, consists of rewriting a set of clauses into a canonical form. As an 
ample, suppose it is known that inv(inv(x)) is equivalent to x. Given two clauses: ex 

Al: P(inv(inv(a:))). 
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A2: P(x). 

we can reduce Al to P(x) and then delete it because the information is already present in 

our set of clauses. 

Demodulation is described formally as [90]: 

Definition: Let W be a finite set of the form {aifa,..., a„ßn} where a* and # are terms. 
A modulant relative to W of a clause A consists of replacing a single occurrence of a 
term a' in A with the term ßiO where a is a substitution and a.iO is identical to a' 

and ciißi is a member of W. 

Definition Let W be a finite set of the form {aißi,..., anßn} where a{ and ß are terms. 
Demodulation consists of replacing A by a modulant C of A relative to W. C is 

determined by generating a sequence A0, . •., Afc such that A=A0, C=Afc, Aj+i is a 

modulant of A* relative to W, and Ak has no modulant relative to W. 

4.2.6.3    Tautology Reduction 

Tautology reduction deletes clauses that are true under every interpretation from the set 
of clauses. If a clause is true under every interpretation it is valid, and therefore will not 
be part of the contradiction. Removing a tautology from the database will not remove any 

information necessary in finding a contradiction. 

For example consider the clause: 

Cl: M(x) V -iM(x). 

Any other clause, C2, that resolves with Cl will generate a resolvent that is identical to 
clause C2. This is due to the fact that in unifying the variable x and removing the resolved 
upon literals in Cl and C2, the remaining literal in Cl will replace the literal that was 

resolved upon in C2. Therefore no useful work will be accomplished. 

As another example consider the following clause: 

C3: -M{x) V M(x) V P(y). 

This clause can be stated as: if M(x) is true then M(x) or P(y) is true. By resolving with 
this clause we will produce redundant information. If we know that M(x) is true, it is 
redundant to know that M(x) or P(y) is true. A resolvent of C3 is the type of information 
that will be deleted through the use of subsumption. Therefore, deleting C3 from our 

database of clauses is justified. 
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4.2.7    Control Strategies 

The way in which an inference rule is applied can contribute enormously to the efficiency 

and performance of a reasoning system. Hyper-resolution can be seen as a control strategy 

for resolution. Hyper-resolution restricts and directs how resolution may be applied to 

the clauses. We will describe three additional control strategies in this section. The first, 
level saturation, is used by SHYRLI. The second, set of support is a simple but powerful 

extension of level saturation. Finally we will discuss unit preference. 

4.2.7.1    Level Saturation 

Level saturation is a brute force, breadth first search control strategy for resolution. Assume 
the set of clauses known is S. Level saturation works by generating sets So, Si, ..., Sn 

where [8]: 

So = S, 

Sn = {resolvents of Cx and C2 where Ca G (50 U • • ■ U Sn-i) and C2 G 5„_i}. 

This process of generating new sets continues until a contradiction is generated, in which 
case a proof has been found, or until no new clauses can be generated, in which case the 
hypothesis is invalid. Each Sk is called a saturation level, in this case saturation level k. 
In certain cases the number of saturation levels is infinite, in which case a resolution based 

reasoning system might never halt. 

4.2.7.2    Set of Support 

When performing refutation based proofs the hypothesis usually does not stand by itself. 
It is often the case that we know that clauses Ci,..., C„ are consistent, and based on 
these clauses we are trying to conclude the validity of H. In a refutation based proof 
we would attempt to show that Cx,..., Cn,-yH is unsatisfiable. Since Ci,..., C„ are 
consistent, any clauses deduced from these clauses should also be consistent and will not 
contain the contradiction. The set of support strategy attempts to increase the efficiency 
of the reasoning system by avoiding resolving clauses in Ci,..., Cn with each other [89]. 

The set of support strategy works by dividing the set of clauses into two sets. The set 
of support T, and the rest of the clauses not in the set of support, (S - T). In most cases 
the clauses making up the negated hypothesis are chosen as the set T. Set of support only 
allows clauses to be resolved between the two sets. Any new resolvent is placed in the set 
T. There are many similarities between set of support and hyper-resolution. The two have 

been proven to be two instances of semantic resolution [74]. 
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Set of support is easily implemented using the level saturation control strategy. By 

simply setting S0 = S-T and Si = T and generating the sets S2 ■■■ Sn in the same manner 

described for level saturation the rules for set of support will be satisfied. 

4.2.7.3    Unit Preference 

The unit preference strategy attempts to reduce the search space of a resolution based 
refutation proof by recognizing that some resolvents may be closer to a contradiction than 

others [88]. The resolvent of two single literal clauses is a contradiction, therefore unit 

preference attempts to resolve single literal clauses together first. Unit preference works by 
sorting the clause list of each saturation level so that single literal clauses are considered first, 

allowing a potential contradiction to be deduced as soon as possible. When a contradiction 

is found the theorem prover may stop processing. 

4.2.8    An Example 

Now that we have defined the predicate calculus and mechanisms for reasoning about knowl- 
edge represented in the predicate calculus we will present an example of a complete hyper- 
resolution proof. We hope that this will provide an example of how the concepts presented 

in the previous section are tied together. 

We have implemented the theorem proving component of SHYRLI using hyper-resolution 

as an inference rule. SHYRLI's theorem prover can be configured to use tautology deletion 
and subsumption. SHYRLI's theorem prover utilizes a saturation level control strategy. Its 
algorithm in generating resolvents, although not exactly unit preference, generates resol- 

vents of smaller nuclei first. 

The proof we will present here was generated by SHYRLI using one theorem proving 

agent. 

The clauses used in the proof are: 
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Al: I(y) V -,F(z) V -P (x) V -.Q(x) (Axiom) 

A2: -P{x) V --T(x) (Axiom) 

A3: P(y) V -,S(A,y) (Axiom) 

A4: J(x) V -1(C) (Axiom) 

A5: -d(A) (Axiom) 

A6: -.H(a:) (Axiom) 

A7: F(C) (Axiom) 

A8: G(D) (Axiom) 

A9: H(B) V R(A) (Axiom) 

AlO: P(A) V -iG(x) (Axiom) 

All: Q(E(i)) V T(x) V -.R(a;) (Axiom) 

A12: S(x,E(x)) V T(x) V -iR(x) (Negated Theorem) 

Our first step is to decide on an ordering of predicate symbols. To make this simple, we 
will choose alphabetical order by the predicate symbol. Our next step is to divide this set 
of clauses into the sets of nuclei and electrons. Let the interpretation I be {->F(rr), -"G(ar), 

-.H(ar), -.I(ar), -<J(s), -P(z), --Q(x), -R(a;), ~-S(x, y), -T(x)}. Remember that the nuclei 
are clauses the are true (T) under I, while the electrons are false (F) under L Any clause 
which contains a negated literal is therefore true and a nucleus, all others are electrons. 

The two sets are then: 

Nuclei = {Al, A2, A3, A4, A5, A6, AlO, All, A12} 

Electrons = {A7, A8, A9} 

The following is each saturation level and the electrons that were derived in each: 

137 



Saturation Level 1: 

A13: R(A) 

A14: P(A) 

Parents: A9, A6. 

Parents: A8, AlO. 

Saturation Level 2: 
A15: S(A,E(A)) V T(A)    Parents: A13, A12. 

A16: Q(E(A)) V T(A)       Parents: A13, All. 

Saturation Level 3: 
A17: P(E(A)) V T(A)        Parents: A15, A3. 

Saturation Level 4: 

A18: I(x) V T(A) Parents: A16, A7, A17, Al. 

Saturation Level 5: 
A19: 3(x) V T(A) Parents: A18, A4. 

Saturation Level 6: 

A20: T(A) Parents: A19, A5. 

Saturation Level 7: 

A21: □ Parents: A14, A20, A2. 

Figure 4.2 shows the deduction tree for this example. Circles represent given axioms 
and the negated theorem, boxes represent the derived clauses. The electrons that were 
derived earliest are higher in the tree than electrons that were derived later. No redundant 
or unnecessary clauses were produced in this example so no deletion strategies were needed. 

This is not usually the case. 

This example was originally used in the first general behavior experiment in [56]. The 
theorem prover used in [56] used binary resolution and set of support. The theorem prover 
proved the theorem in eleven saturation levels, took 713 seconds and produced 383 resol- 
vents. Using hyper-resolution, our theorem prover proved the theorem in seven saturation 
levels, took eight seconds and produced nine hyper-resolvents. This is an indication of the 

performance benefit that can be gained through the use of hyper-resolution. 
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A21 

Figure 4.2: Deduction tree for the single agent example. 
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4.3    SHYRLI 

The focus of this section is distributed hyper-resolution. We have chosen the predicate 
calculus and the refutation based theorem proving inference rule hyper-resolution to satisfy 

the first two goals outlined in the first section of this chapter. Hyper-resolution, and reso- 
lution, as originally formulated, requires that an agent have a complete world view of the 
problem. In distributed environments, no agent has a complete world view, as information 
is distributed among many agents. This can be seen in Figure 4.3. Although the entire 

system contains a complete world view of the domain, each agent only as a partial view. 
Clearly, modification of the reasoning strategy is required for distributed problem solving. 

One strategy for distributed automated reasoning using the predicate calculus was im- 

plemented in DARES, the system described in [11] [55] [56] [61]. Experience with DARES 
demonstrated that binary resolution coupled with a set of coordination strategies and heuris- 

tics may be used to prove theorems in a system of semi-autonomous agents over which a 
knowledge base is distributed. One interesting aspect of DARES' behavior is that the distri- 
bution of axioms across agents seldom has strong adverse affects on DARES' performance. 

Unfortunately, the inference rule used by DARES (binary resolution) is somewhat ineffi- 
cient and costly. In order to better investigate problem solving behavior in distributed prob- 
lem solving systems we have implemented SHYRLI. We have attempted to adapt DARES 
strategies to hyper-resolution. Some of the strategies carried over with little or no changes, 
for example the heuristic that determines whether outside assistance is necessary. Others 

had to be discarded and new approaches taken. 

This section will describe how SHYRLI meets the six requirements for distributed rea- 

soning. We will describe the coordination strategies used by SHYRLI and the extensions 
made to the heuristics used in [56] that determine whether outside assistance is necessary. 

4.3.1    Distributed Hyper-Resolution 

In order to satisfy the first two requirements for a distributed reasoning system we have 
chosen the predicate calculus as our representation language and hyper-resolution as our in- 
ference rule. We have chosen the predicate calculus because it allows a domain independent 
representation and we are exploring domain independent issues in distributed automated 

reasoning. 

Before a distributed hyper-resolution theorem prover may begin reasoning the different 

reasoning agents must agree on an ordering P. If the agents do not agree on the ordering P 
they would be searching different paths throught the search space, paths which potentially 

would not allow an existing contradiction to be inferred. As will be seen, the P that the 
agents agree upon must only be a partial ordering of predicate symbols. For the time being 

assume that all agents share a complete ordering P of predicate symbols. 

140 



Agenti 

Domain 

Agent2 

Agent3  ^ 

Figure 4.3: Different Agents see Different Parts of the Domain 
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4.3.2     SHYRLI Control Structure 

SHYRLI is a system of cooperating agents. A model of the structure of SHYRLI can 

be seen in Figure 4.4. The SHYRLI architecture is one of several agents connected by a 
communication network. Agents communicate with one another via an exchange of messages 

over this network. 

Agenti Agent2 o o o Agents 

Communication Network 

Figure 4.4: SHYRLI Agent Network 

SHYRLI agents incorporate hyper-resolution in a saturation level theorem proving algo- 
rithm. Each agent is capable of performing its own problem solving using hyper-resolution 
as its inferencing mechanism. Each agent consists of two independent processes as show 
in in Figure 4.5; the theorem prover and the secretary. The theorem prover performs the 
reasoning tasks necessary for individual problem solving. The theorem prover is augmented 
with the ability to assess local progress and formulate requests. The secretary manages 
communication with other agents. The secretray broadcasts the requests formulated by the 
theorem prover to other agents and answers requests posed by other agents. 

We have formulated our agents using this two process strategy in order to avoid the 
deadlock condition where two theorem provers wait for responses from each other indefi- 
nitely. Let A and B be two theorem provers, each having only one thread of control. In 
the cycle of an inference step the theorem prover performs the following three steps: 

1. Ask questions of other theorem provers. 

2. Wait for responses from other theorem provers. 

3. Answer questions of other theorem provers. 

The theorem prover performs these steps in the order given.  Imagine the scenario where 
theorem prover A and B simultaneously ask each other a question. They will both wait in 
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step 2 indefinately. The division of the theorem prover into two processes has allowed us to 

overcome this deadlock condition, and acheive a faster response time to questions. 

Agentj 

Secretary^ Theorem  Prover; 

Communications Network 

Figure 4.5: Internal View of a SHYRLI Agent 

4.3.2.1     Theorem Prover Control Structure 

The theorem prover process in a SHYRLI agent is responsible for local reasoning, formula- 
tion of requests, and judging whether outside assistance is necessary. The control loop for 

the theorem prover component is shown in figure 4.6. 

The first step a theorem prover takes is to determine whether outside assistance is 
necessary. This is accomplished through the use of a heuristic derived from one used in 
DARES. If the heuristic decides that aid is needed the theorem prover formulates a request 

for information. The way a request is formulated is discussed in section 4.3.4. 

The next step a theorem prover takes is to check whether it has received any new 
information from other agents. If this is the case the new knowledge is incorporated into 
the agents knowledge base at the current saturation level. The information is tagged with 
the name of the sending agent so that knowledge of the source of information can be 

maintained. 

At this point hyper-resolution is applied and a new saturation level is generated. If a 
contradiction is discovered the theorem prover indicates that this is so and stops processing. 
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Figure 4.6: SHYRLI Theorem Prover Control Structure. 
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If a contradiction has not been found the agent signals the secretary that new information 

has been derived and the process is repeated. 

4.3.2.2    Secretary Control Structure 

The secretary process of a SHYRLI agent is responsible for the communication with other 
agents. This includes broadcasting requests to other agents in the system and answering 
requests posed by other agents. The control loop for the secretary process can be seen in 

figure 4.7. 

The secretary begins by waiting for mail. This includes signals from the theorem prover 
that new knowledge has been derived. Once mail arrives the secretary begins processing 

the incoming messages. 

If an incoming message is a request for aid from the associated theorem prover, the 

secretary broadcasts the request to the other agents it knows in the system. 

If an incoming message is a request for aid from another agent, the secretary begins by 
constructing a reply. The way a reply is constructed is discussed in section 4.3.4. If the 
constructed reply is empty the secretary places the request in a buffer for future consider- 
ation, otherwise the reply is sent to the requesting agent. Any information sent to another 
agent is tagged with the name of the requesting agent so that any future requests from the 
same agent will not be answered with redundant information. If the reply is empty, but a 
request from the requesting agent is already in the buffer, the new request replaces the old 

request in the buffer. 

If an incoming message is new information received from another agent, the secretary 
places the information into the theorem provers mailbox. The theorem prover incorporates 

the information in its current saturation level. 

If an incoming message is a signal from the associated theorem prover, the secretary 
incorporates the new knowledge generated by the theorem prover and attempts to answer 
the requests in the buffer. For each message in the buffer the secretary constructs a reply 
from the agents database. If the reply is empty the request is left in the buffer, if the reply 

is not empty the reply is sent to the requesting agent. 

4.3.3    Forward Progress Heuristic 

In a distributed environment it is entirely possible that a given theorem proving agent may 
not have an appropriate combination of clauses in its database to infer a contradiction. 
Two unproductive situations could arise. One is a scenario in which no new clauses can 
be generated because the agent does not possess an appropriate combination of clauses 

to trigger its inference rule. In this situation, the agent has a clear indication it is not 
moving towards a contradiction.   The second unproductive scenario is one in which the 
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agent can produce new clauses indefinitely but no effective progress is being made towards 
a solution. If this is the case, the agent must engage in introspection to assess how its 

work is progressing. This is accomplished through the use of heuristics. We have devised a 
heuristic for assessing progress in hyper-resolution based reasoning that is a generalization 

of the forward progress heuristic used in DARES. 

SHYRLI performs hyper-resolution using a breadth first search strategy, where each 

saturation level corresponds to a level in the search tree. Recall the definition of a saturation 

level from the previous section. The forward progress heuristic is applied at the end of 
each saturation level. As was the case in DARES, our forward progress heuristic has two 
components: a proof advancing heuristic and a monotonic search heuristic. The proof 
advancing heuristic is used to detect whether an agent has advanced its proof towards a 
contradiction. It can only decide that the proof is advancing or that it is uncertain that 

the proof is advancing. In order to reduce the uncertainty we use the monotonic search 

heuristic. 

The proof advancing heuristic examines the new resolvents in a saturation level to 
determine if they are moving towards a contradiction. If any new resolvent in a saturation 
level satisfies the proof advancing heuristic then the saturation level satisfies the proof 
advancing heuristic. As has been mentioned, the proof advancing heuristic used in SHYRLI 
is a generalization of the one used by DARES. Because DARES used binary resolution, its 

proof advancing heuristic assumed each clause would only have two parents. When using 
hyper-resolution a clause may have any number of parents. Our proof advancing heuristic 
is an extension of the proof advancing heuristic found in DARES that allows for this fact. 

Key to the definition of the proof advancing heuristic is the concept of literal length. 

Literal length is defined as: 

Definition: The literal length of a clause is the number of literals contained within that 
clause. In other terms: the literal length of a clause is the cardinality of the set 

representing that clause. 

A clause R generated through hyper-resolution from clauses {Eu...,Eq,N} satisfies 

the hyper-resolution proof advancing heuristic if: 

1. Where c is the sum of the literal lengths of all the clauses in {Ex,..., Eq, N}, 

the literal length r of R is less than c - 2q, 

or 

2. R is a single literal, 

or 

3. a member of {E\,. •., Eq, N} is a single literal. 

A contradiction is detected when a resolvent of literal length zero is generated. In most 

cases resolution will produce a clause that has a longer literal length than its parents.  A 
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resolvent that is shorter in literal length than its parents is an indication that the reasoning 
is moving towards a contradiction. When performing hyper-resolution, the maximum literal 

length of a resultant clause is c - 2q. If the literal length of a hyper-resolvent is less than 

this maximum the proof is seen as advancing. 

Some resolvents, however, are desirable even though their literal length meets the upper 

bound. Under the unit preference strategy, resolution is conducted with unit clauses (clauses 
with one literal) whenever possible. Resolving with single literal clauses can be seen as 
advantageous because resolution of a single literal with a longer clause reduces the literal 
length of the longer clause by one. A resolvent generated using single literals as parents 
could still possibly meet the upper bound on clause length. Generation of a hyper-resolvent 

that has a single literal parent, or is a single literal itself is also seen as a sign that the proof 

is advancing. 

The monotonic search heuristic is used when the proof advancing procedure fails to 

indicate forward progress. The monotonic search heuristic tries to determine if the theorem 

prover is narrowing its focus to fewer and fewer distinct predicate symbols. The monotonic 

search heuristic is defined as: 

Let an be the total number of distinct predicate symbols in the newly generated 
clauses at saturation level n. The search for the proof is said to be monotonic 

at level i if for i > 1, aj_i > CCJ. 

With these two heuristics denned, the forward progress heuristic can be stated as follows: 

A proof is said to exhibit an apparent lack of forward progress at saturation 

level i if 

1. The proof advancing heuristic is not satisfied at saturation level i — 1, 

and 

2. The proof advancing heuristic is not satisfied at saturation level i, 

and 

3. The search is not monotonic at saturation level i. 

4.3.4    Formulation of Requests and Replies 

What distinguishes this work from previous research is the cooperation strategies that are 
embodied in the strategies for formulation of requests for nonlocal aid and the responses to 
requests from other agents. The cooperation strategies used in DARES are strongly biased 
towards the unit preference strategy and set of support. Those that have been devised 
for SHYRLI take advantage of features found in hyper-resolution to focus attention more 
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quickly. The response strategy also permits agents to respond at a later time, should more 

information become available. 

In any distributed problem solving environment we would like to limit the exchange 

of information between agents. The more information an agent receives, the greater the 

potential of its being less focused, and the greater the likelihood that more irrelevant and 
redundant inferences could be produced. The coordination strategy must limit the amount 
of information an agent will import, but still result in an exchange of information that will 

help problem solving progress. 

Hyper-resolution as an inferencing mechanism divides the clauses into two subsets across 

an interpretation I: the set of electrons and the set of nuclei. To reduce amount of informa- 
tion exchanged, we restrict formulation of requests for information to one set and generation 

of responses to the other. 

The issue of which set should be utilized to construct requests and which should be used 
in constructing responses is of some importance. In order to compute a resolvent there must 
exist a set S such that S contains one nucleus and q electrons where the largest predicates 
in the electrons relative to the ordering P unify with every negated atom in the nucleus. If 
an agent were to construct requests for new information using the electrons, it would expect 

to receive in response a set of nuclei with which it could potentially resolve. Suppose that 
{Ei,E2,Ni} and {E3,E4,N2} are each semantic clashes.   Let A\ and A2 be agents.   A\ 
has'clauses{iVi,£i,£3} in its database and A2 has clauses {N2,E2,EA} 

in its database. It 
is clear that neither Ax sending the clause Ni to A2 nor A2 sending the clause N2 to A\ 
would allow either agent to discover a semantic clash. It is possible, however, to exchange 

electrons in such a manner as to generate semantic clashes. If A\ transmits £3 to A2 and 
A2 transmits E2 to Ai, two semantic clashes are possible and hyper-resolution can proceed. 

We have chosen a strategy where the information that will be exchanged between agents 
consists of electrons. Remember that information exchanges are in response to requests for 
aid from a specific agent.  In order for electrons to be useful to the requesting agent they 
must be able to participate in a semantic clash. The criteria for membership in a semantic 
clash is tied to the negated atoms in the nucleus that is participating in the semantic clash. 
Therefore, in responding to a request an agent must know what type of things the requesting 

agents needs. 

The simplest strategy would be for an agent to formulate and transmit a request for 
information that contains the nuclei known to that agent. This would result in an inordinate 
amount of information exchange. To reduce the volume of inter-agent message traffic, we 

could form a set that is the union of all the literals in the nuclei. Remember that agents 
expect to receive sets of electrons in response to their requests for information. Electrons 
only contain positive literals. Thus we can further restrict requests so that they contain just 
the negated literals in the nuclei and still elicit the same information. We thus construct a 
request set that is the union of all the negated literals in the nuclei. To reduce the overhead 
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incurred in the responding agent we negate all the literals in the request set. Therefore the 

request set only consists of positive literals. 

Now that we have formulated a mechanism for constructing requests for information, 

we must specify how responses should be constructed. As was mentioned earlier, responses 
should only be constructed using the set of electrons. The response strategy should only 
return electrons that resolve with literals in the request set. A nucleus can only resolve 
with an electron if the electron's largest predicate (relative to the ordering P) can resolve 
with one of the nucleus's negated literals. An electron should be considered as a candidate 
for response only if its largest predicate resolves with a member of the request set. 

4.3.5    Privacy 

The behavior engendered by this coordination strategy is different from that observed in 

most other automated reasoning systems. In other systems, an agent must be able to share 
all of its knowledge (in the worst case). There is no concept of private knowledge that is 
never shared. In our system the nuclei are never made known to other agents. Requests 
derived from the nuclei are, but the internal structure of an agent's nuclei is never seen 
by other agents. Furthermore, it is possible for a SHYRLI agent to keep a set of clauses 
private and still guarantee that the system will achieve the goal. To see this suppose that 
Q is a subset of the predicate symbols contained in the system. Consider the case in which 
all clauses containing predicate symbols in Q are initially known only to agent A. Suppose 
further that the members of Q are assigned the largest values in the ordering P. Other 
agents will never formulate a request containing a member of Q (because no predicate 
symbol in Q is in their sets of nuclei). Agent A will never respond to a request with an 
electron containing a member of Q (because the member of Q would be the largest predicate 
symbol in such an electron and therefore would never satisfy the membership criteria of the 
response set). Agent A need never place a member of Q in its request set (because no other 
agent has an electron containing a member of Q). Thus knowledge of a set of predicate 
symbols and all clauses containing those symbols can be kept private to an agent through 

the choice of the ordering P. 

In section 4.3.1 we assumed a complete global ordering P. If there are private predicate 
symbols this does not have to be the case. As long as the set of globally known predicate 
symbols is completely ordered among the set of agents, each set of agents may have its own 
ordering which specifies the ordering of its private predicate symbols. The only stipulation 
on this ordering is that the private predicate symbols come before the global ones in the 
ordering P. There is no ordering relation necessary between two agents private predicate 
symbols. P only has to be a partial ordering over the entire set of predicate symbols known 

to the system. 

There is one other mechanism in the request/response formulation strategy of SHYRLI 
which allows a SHYRLI agent to maintain information as private. SHYRLI agents can be 
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seen as "specialists." An agent never receives any new nuclei, nor does it share its own nuclei 
with the other agents. This means that if (in the proof of some hypothesis) a combination 

of electrons and a particular nucleus is necessary, one of the agents that has that nucleus 

in its database must participate in the proof. 

4.3.6    A Three Agent SHYRLI Example 

So that the reader will better understand how SHYRLI coordinates its activities to prove 

a theorem we will present a small example using three agents. The thereom we will use 
SHYRLI to prove is the one given as an example in the previous section. The example 
presented here was generated using SHYRLI. The nuclei were distributed randomly among 
the three agents. The clause distribution is shown in figure 4.8, figure 4.9 and figure 4.10. 

electrons: 
AE1: F(C) (Axiom) 

AE2: G(D) (Axiom) 

AE3: H(B) V R(A) (Axiom) 

nuclei: 
AN1: -J(A) (Axiom) 

AN2: P(A) V ->G(x) (Axiom) 

Figure 4.8: Agent A's Clauses. 

electrons: 
BEI: 
BE2: 
BE3: 
nuclei: 
BN1: 
BN2: 

F(C) (Axiom) 
G(D) (Axiom) 

H(B) V R(A) (Axiom) 

I(y) V -.F(z) V -TP(X) V -nQ(x)     (Axiom) 
Q(E(x)) V T{x) V -R(z) (Axiom) 

Figure 4.9: Agent B's Clauses. 

A mapping of these axiom designators to the deduction tree of the single agent example 

can be seen in Figure 4.11. This tree is identical to the deduction tree in the previous 
section, Figure 4.2 except for the names of the axioms. As before, circles represent given 
axioms and the negated theorem, boxes represent the derived clauses. The electrons that 
were derived earliest are higher in the tree than electrons that were derived later. 

We are going to choose the same ordering as was chosen in the single agent example 
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electrons: 
CE1: F(C) (Axiom) 

CE2: G(D) (Axiom) 

CE3: H(B) V R(A) (Axiom) 

nuclei: 
CN1: -.P(a;) V -T(z) (Axiom) 

CN2: P(y) V -S(A,y) (Axiom) 

CN3: 3{x) V -1(C) (Axiom) 

CN4: -.H(a;) (Axiom) 

CN5: S(x,E(x)) V T(x) V ->R(x) (Negated Theorem) 

Figure 4.10: Agent C's Clauses. 

of the previous section: alphabetical ordering by predicate symbol. Figure 4.12 shows the 
deduction tree for the proof and which agents derived which hyper-resolvents. Figure 4.13, 
Figure 4.14, and Figure 4.15 show the steps taken for each agent as they proceed with the 

problem. 

Notice that no clauses are produced that were not produced in the one agent example 
in the previous section. This three agent proof follows the same path to the contradiction 
as the single agent example. This will be the case in all proofs where there is only one path 

to the goal. It is not necessarily the case when there are multiple paths. 

We will describe in detail agent A's activities during the course of the proof. Agent A 
begins by assessing its current state. It decides that outside assistance is not needed as it 

has not tried to resolve its current electrons with its set of nuclei. 

At time 2 agent A infers the hyper-resolvent AHR1, which was the result of the semantic 
clash {AE2, AN2}. Agent A now tries to compute a semantic clash using this new hyper- 
resolvent. This activity produces no new resolvents. At this point agent A has computed all 
the hyper-resolvents it can, it judges that outside assistance is now neccesary and constructs 

a request. 

While agent A is constructing its request, a new request arrives from agent B. Agent A's 
secretary begins constructing a reply to this request. The predicate F(x) in the request set 
from agent B unifies with the largest predicate symbol in the clause AE1. The predicate 
P(x)in the request set from agent B unifies with the largest predicate symbol in AHR1. 

Thus AE1 and AHR1 are included in the reply to agent B. 

At this point agent A has constructed its own requests consisting of the negated literals 

in its nuclei. This set is broadcast to the other two agents. At time 10 agent A receives 
replies from the other two agents. This reply contains no helpful information. Both of 
the clauses are duplicates of information agent A already contains.  Agent A resends the 
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AE2") (AN2J (CESJ (CNJ 

AHR1 

CHR5 

Figure 4.11: Deduction tree for the single agent example. 

request. 

At time 12 a request arrives from agent C. AHR1 is considered as part of the reply 
since its largest predicate unifies with P{x) in agent C's request set. Similarly the largest 
predicate in AE3 unifies with H(x) in agent C's request set. These two clauses, AE3 and 

AHR1, are sent to agent C as the reply. 

At time 21 another request arrives from agent C. As no more clauses have been inferred 

that might be of use to agent C, agent A enqueues the request. 

153 



(cE3 )     (CN4 ) 

Figure 4.12: Deduction tree for the three agent example. 

A clause, CHR4 is imported at time 27 from agent C. Agent A then tries to perform an 

154 



time 1 
time 2 

time 3 
time 4 
time 5 
time 6 (secretary) 

(secretary) 

time 6 

time 1 0: 

time 1 1: 
time 1 1: 
time 1 2:     (secretary) 

(secretary) 

time 1 2: 
time 1 3: 

time 1 9:     (secretary) 
(secretary) 

time 2 1:     (secretary) 
(secretary) 

time 2 7: 

time 2 8: 

time 1 8:     (secretary) 

time 1 9: 
time C SO: 
time C 1:     (secretary) 

(secretary) 

time [ 51: 

Determined Outside Assistance Unnecessary. 

Inference Step: 
AHR1: P(A) Parents: AE2, AN2. 
Determined Outside Assistance Unnecessary. 

Inference Step: no clauses produced. 
Determined Outside Assistance Necessary. 
Request from Agent B: {F(x), P(x), Q(x), R(x)}. 

Responding with: AHR1, AE1. 
Sending a request: {J(A), G(x)}. 
Waiting for replies. 
Imported Axioms: 
BE2: G(D). 
CE2: G(D). 
BE2 deleted, equivalent to AE2. 
CE2 deleted, equivalent to AE2. 
Request from Agent C: {P(x), T(x), S(A,T/), 1(C), H(x), R(x)}. 
Responding with: AHR1, AE3. 
Determined Outside Assistance Unnecessary. 
Sending a request: {J(A), G(x)}. 
Waiting for replies. 
Request from Agent B: {F(x), P(x), Q(x), R(x)}. 
No clauses for response, request placed on queue. 
Request from Agent C: {P(x), T(x), S(A,y), 1(C), H(x), R(x)}. 
No clauses for response, request placed on queue. 

Imported Axioms: 
CHR4: J(x) V T(A). 
Inference Step: 
ARH2: T(A) Parents: CHR4, AN1. 
Responding to enqueued Agent C's request with : ARH2. 
Determined Outside Assistance Unnecessary. 
Inference Step: no clauses produced. 
Request from Agent C: {P(x), T(x), S(A,y), 1(C), H(x), R(x)}. 
No clauses for response, request placed on queue. 
Sending a request: {J(A), G(x)}. 
Waiting for replies.  ___^^  

Figure 4.13: Agent A's Steps 

inference step using this clause. The hyper-resolvent ARH2 is computed from the semantic 
clash {CHR4, AN1}. Agent A then determines that outside assistance is not necessary 

and attempts another inference step. 

At time 28 agent A's secretary responds to the enqueued request of agent C with the 

clause ARH2. 

Agents A's next inference step produces no new resolvents. Agent A then computs that 

outside assistance is necessary and broadcasts a request. 
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time 1 
time 2 
time 3 
time 4 

time 8: 

time 8: 

time 14: 
time 15: 

time 15 
time 16 
time 17 

time 21: 

time 33: 

(secretary) 
(secretary) 

time 9: 
time 9: 
time 10: 
time 11: 

time 12: (secretary) 
(secretary) 

time 12: 
time 13: 

(secretary) 
(secretary) 

(secretary) 
(secretary) 
(secretary) 
(secretary) 

Determined Outside Assistance Unnecessary. 
Inference Step: no clauses produced. 
Determined Outside Assistance Necessary. 
Sending a request: {F(x), P(x), Q(x), R(x)}. 

Waiting for replies. 
Request from Agent A: {J(A), G(x)}. 
Responding with: BE2. 
Imported Axioms: 
CHR3: P(E(A)) V T(A) 

CHR1: R(A) 
CE1: F(C). 
AHR1: P(A). 
AE1: F(C). 
CE1 deleted, equivalent to AE1. 
AE1 deleted, equivalent to AE1. 
Determined Outside Assistance Unnecessary. 

Inference Step: 
BHR1: Q(E(A)) V T(A) Parents: CHR1, BN2. 
Request from Agent C: {P(x), T(x), S(A,y), 1(C), H(x), R(x)}. 
No clauses for response, request placed on queue. 
Determined Outside Assistance Unnecessary. 
Inference Step: 
BHR2: I(x) V T(A) Parents: CHR3, BEI, BHR1, BN1. 
Determined Outside Assistance Unnecessary. 
Request from Agent A: {J(A), G(x)}. 
No clauses for response, request placed on queue. 

Inference Step: no clauses produced. 
Determined Outside Assistance Necessary. 
Sending a request: {F(x), P(x), Q(x), R(x)}. 
Waiting for replies. 
Request from Agent C: {P(x), T(x), S(A,y), 1(C), H(x), R(x)}. 
Responding with: BHR2, BE3. 
Request from Agent A: {J(A), G(x)}. 
No clauses for response, request placed on queue.  

Figure 4.14: Agent B's Steps. 

At time 31 a request arrives from agent C. This request is enqueued as there are no 
clauses that fit the requirements for the response set in agent A's database of clauses. 

Agent A now halts waiting for mail. It is agent C that eventually proves the theorem. 

It is not necessarily the case that all agents in SHYRLI will solve the problem, as long as 
the forward progress heuristic is an accurate judge of progress it is the case that at least 

one of them will find a contradiction if one exists. 
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time 1: 
time 2: 

time 3: 
time 4: 

time 5: 
time 6: 

time 6:       (secre 

time 7: 
time 8: 

time 8: 
time 9: 
time 10: 

time 14: 

time 15: 
time 15: 

Determined Outside Assistance Unnecessary. 

Inference Step: 
CHR1: R(A) Parents: CE3, CN4. 
Determined Outside Assistance Unnecessary. 

Inference Step: 
CHR2: S(A,E(A)) V T(A) Parents: CHR1, CN5. 
Determined Outside Assistance Unnecessary. 

Inference Step: 
CHR3: P(E(A)) V T(A) Parents: CHR2, CN2. 

r)     Request from Agent B: {F(x), P(x), Q(x), R(x)}. 

(secretary)     Responding with: CHR3, CHR1, CE1. 
Determined Outside Assistance Unnecessary, 

(secretary)     Request from Agent A: {J(A), G(x)}. 

(secretary)     Responding with: CE2. 
Inference Step: no clauses produced. 
Determined Outside Assistance Necessary. 
Sending a request: {P(x), T(x), S(A,y), 1(C), H(x), R(x)}. 

Waiting for replies. 
Imported Axioms: 
AHR1: P(A). 
AE3: H(B) V R(A). 
AE3 deleted, equivalent to CE3. 

(secretary)     Request from Agent A: {J(A), G(x)}. 
(secretary)     No clauses for response, request placed on queue.  

Figure 4.15: Agent C's Steps, Part 1. 

4.4    Experimentation 

The goal of this research is to study domain independent issues in distributed automated 
reasoning. To facilitate this we have developed a distributed automated reasoning system 
that is not tied to any domain. SHYRLI's use of the predicate calculus and hyper-resolution 

meets this domain independence requirement. 

We have implemented SHYRLI. SHYRLI is written in Common LISP and runs on TI 
Explorers under SIMULACT, a distributed testbed environment developed at Clarkson 

University [61] [54] [56]. 

Our initial experiments with SHYRLI demonstrate its ability to perform distributed rea- 

soning using randomly selected distributions of knowledge (clauses). The agents in SHYRLI 
have generated significantly fewer irrelevant clauses in the production of a proof than did 
the agents in DARES with the same knowledge distributions. This is to be expected, given 

the use of hyper-resolution by SHYRLI agents. 

In this section we will show how SHYRLI can be applied to a specific domain, the 
simulation of digital circuits.   We then present a set of experiments that has allowed us 
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time 16: 
time 17: 
time 19: (secretary) 

(secretary) 

time 19: 

time 23: 

time 24: 
time 25: 

time 25: (secretary) 

time 26: 
time 27: 
time 28: 
time 29: 

time 30: 

time 31: (secretary) 
(secretary) 

time 32: 
time 33: 
time 34: 

Inference Step: no clauses produced. 
Determined Outside Assistance Necessary. 
Request from Agent B: {F(x), P(x), Q(x), R(x)}. 
No clauses for response, request placed on queue. 
Sending a request: {P(x), T(x), S(A,y), 1(C), H(x), R(x)}. 

Waiting for replies. 
Imported Axioms: 
BHR2: I(x) V T(A). 
BE3: H(B) V R(A). 
BE3 deleted, equivalent to CE3. 

Inference Step: 
CHR4: J(.A3664) V T(A) Parents: BHR2, CN3. 
Responding to enqueued Agent A's request with: CHR4. 
Determined Outside Assistance Unnecessary. 

Inference Step: no clauses produced. 
Determined Outside Assistance Necessary. 
Sending a request: {P(z), T(x), S(A,y), 1(C), H(x), R(x)}. 

Waiting for replies. 
Imported Axioms: 
ARH2: T(A). 
Request from Agent A: {J(A), G(x)}. 
No clauses for response, request placed on queue. 

Inference Step: 
CHR5: D Parents: AHR1, AHR2, CN1. 
Contradiction detected: Done Processing.  

Figure 4.16: Agent C's Steps, Part 2. 

to gain some insight into SHYRLI's behavior. Finally we explain the difference between 

SHYRLI's search space and a single agents search space. 

4.4.1    A Domain Specific Example. 

To show that through the predicate calculus SHYRLI can reason about specific domains, we 
have implemented a small domain specific example. This example is a simple simulator for 
digital circuits. It allows the abstraction of a complex device made from simpler elements. 
An agent using a complex device does not have to know how the internal parts of the device 
work. When trying to simulate a circuit containing a complex device, an agent can ask other 
agents who understand the device in question to simulate the components of the device for 

it1. 

Digital circuits are made up of devices and connections.  Our simulator can only rep- 
resent simple combinatorial logic made from these objects, aside from this limitation, it is 

'The inspiration for this example came from [30] 

158 



quite robust. We have chosen to represent the devices as constants and the connections as 

predicates. 

A device is a constant in our representation. The following predicate associates a specific 

type with a constant: 

Type(Scope, Device, Type). 

The symbols in italics are variables. This predicate associates the type Type with the device 
Device in the scope Scope. The types that can be used in the Type field consist of but are 

not limited to the following list: 

And-Gate - Represents a logical AND gate. 

Or-Gate - Represents a logical OR gate. 

Xor-Gate - Represents a logical XOR gate. 

Not-Gate - Represents a logical NOT gate. 

This list can be extended through a mechanism which allows the creation of new devices 

consisting of existing devices. 

The Scope field defines the name space or scope in which the device is defined. Every 
device in a scope must have a unique name. Scope provides a way of dividing the problem 
between agents. An agent can be assigned a specific scope to work in. This assignment of 
scope can be used to divide a complex problem into logical parts that can be distributed 
over a group of agents. The mechanism that allows the abstraction of complex devices 
include methods that pass values between scopes. The use of this scoping mechanism is not 

tied to the domain of digital circuits. 

Each device also has pins or links to other devices. A devices links are characterized by 

the Link function. The format of the Link function is: 

h'mk(Link- Type,Pin,Device). 

where Pin is a specific pin on the device Device. Different Link-Type's may have the same 
numbered pin on the same device. The values of Link-Type are limited to the following 

constants: 

Input - Input to a simple gate. 

Output - Output from a simple gate. 

Down - Input to a complex device. 

Up - Output from a complex device. 
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NOT gates have links: 

Link(Output,Pl,JVoi-Gafe) 

Link (Input ,T>1, Not-Gate) 

All other simple gates have links: 

Link(Output,Pl, Two-Input-Gate) 

Lmk{lwput,P2,Two-Input-Gate) 

Link (Input ,Pl,Ttuo-Jnpui-Gaie) 

In order to connect devices together the predicate Connect is used. The format of the 

Connect predicate is: 

Connect(Scope,Linkl,Link2). 

where Scope is the scope in which the connection is valid.  Linkl and Link2 are links and 
Linkl is connected to LinkB.   It is important to make the connections flow in a forward 

direction (i.e. from outputs to inputs). 

The following is an example of Connect: 

Type(Scope-A,Nl,Not-Gate). 

Type(Scope-A,Al,And-Gate). 

Connect(Scope-A,Link(Output,Pl,Al),Link(Input,P2,Not-Gate)). 

This example says that we have two devices, Nl and Al. Nl is a constant representing a 
NOT gate in scope Scope-A. Al is a constant representing an AND gate in scope Scope-A. 
The Connect predicate states that in the scope Scope-A the pin one output of the AND 

gate, Al, is connected to the pin two input of the NOT gate, Nl. 

To place a value on a specific pin the Value predicate is used. The value predicate had 

the following format: 

Vaiue(Scope,Link, Value,Return). 

Scope is the scope in which we are working. Link is the pin with which we are associating 
Value (which may be either the constant High or Low). Return is used by the sentences of 
the simulator to indicate where the outputs of a complex device should be sent. Return is 
used as a stack. If it becomes necessary to simulate a complex device the simulator "shifts" 
into the scope in which the device is defined in order to simulate it. In order to remember 
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Figure 4.17: Circuit Diagram of a Half-Adder. 

where the outputs of the complex device should be sent the Return stack is used. When 
providing values to the simulator the constant value "nil" should be used in the Return 

field. 

As an example, suppose we want to create a new device called a Half-Adder which 

simulates the functionality of a half-adder. The circuit diagram for a half-adder is shown 

in Figure 4.17. We will need two gates, an XOR gate and an AND gate: 

Type(Scope-B,Xl,Xor-Gate). 

Type(Scope-B,Al,And-Gate). 

We are creating this device in the scope Scope-B. Within a scope all device names must be 
unique, the same device name may be used to represent different devices in different scopes. 

We are creating an abstract type Half-Adder in the scope Scope-B so we add the following 

predicate. 

Understands(Half-Adder,Scope-B). 

If a device of type Half-Adder is used, the simulator will know that the definition of a 

Half-Adder is in the scope Scope-B. 
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The following predicates are used to represent the connections in a Half-Adder: 

Connect(Scope-B,Link(Input,Pl,Half-Adder),Link(Input,Pl,Xl)). 

Connect(Scope-B,Link(Input,P2,Half-Adder),Link(Input,P2,Xl)). 

Connect(Scope-B,Link(Input,Pl,Half-Adder),Link(Input,Pl,Al)). 

Connect(Scope-B,Link(Input,P2,Half-Adder),Link(Input,P2,Al)). 

Connect (Scope-B,Link(Output,P 1 ,X1) ,Link(Up,P 1 ,Half-Adder)). 

Connect(Scope-B,Link(Output,Pl,Al),Link(Up,P2,Half-Adder)). 

The final two Connect predicates specify that the outputs of XI and Al are used as the 

outputs of the complex device Half-Adder. 

We will now present the predicate calculus sentences that implement the simulator. 

The following sentences describe how connections work: 

Cl: (V Scope, Pin, Device, Link, Value, Return) 
(Connect(Scope, Link(Input, Pin, Device), Link) A 
Value(Scope, Link(Input, Pin, Device), Value, Return)) -> 

Value(Scope, Link, Value, Return). 

C2: (V Scope, Pin, Device, Link, Value, Return) 
(Connect(5cope, Link(Output,Pin, Device), Link) A 
Value(5cope, Link(Output, Pin, Device), Value, Return)) -> 

Value(Scope, Link, Value, Return). 

C3: (V Scope-1, Pin, Device-1, Value, Scope-2, Device-2, Return) 
Va\ue{Scope-l, Link(Up, Pin, Device-1), Value, R{Scope-2, Device-2, Return)) -> 

V&\ue{Scope-2, Link(Output, Pin, Device-2), Value, Return). 

C4: (V Scope-1, Pin, Device, Value, Return, Type, Scope-2) 
(Va\ue{Scope-l, Link(Down, Pin, Device), Value, Return) A 

Type(Scope-l, Device, Type) A 
Understands (Type, Scope-2)) ->■ 
Value{Scope-2, Link(Input, Pin, Type), Value, R{Scope-l, Device, Return)). 

Cl and C2 are sentences which describe the behavior of input and output links. The 
sentences simply state that if a value of a link, link-1, is known and the link is connected 

to another link, link-2, then link-2 has the same value as link-1. 

The two final sentences are more complex and deal with complex devices. In order for 

the sentences describing a device to be used with more than one Value predicate the return 
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field is used. The R function is used as a stack to hold the scope and name of the device 
that is representing the instantiation of a complex device. Sentence C4 states that if a 

value, Value, is known for a down link, and Scope-2 has the definition of the device in the 

down link then the input link of the device has Value for a value. The return field Return 
holds the original name of the device to differentiate this value from any others that might 

be using the same circuit definition. Return also holds the scope of the original name of the 

device. 

The definition of C3 states what to do when an up link has a value. This sentence 

uses the values in the R function to give the orginal device name instantiated values for its 
outputs. The R function also provides a mechanism to return to the scope in which the 

complex device was imbedded. 

The following predicate calculus sentences describe the simple gate elements: 

AND1:  (V Scope, device, Return) 
{Type(Scope, Device, And-Gate) A 
Value(Scope, Link(Input, PI, Device), High, Return) A 
Value(5cope, Link(Input, P2, Device), High, Return)) -> 
Value(Scope, Link(Output, PI, Device), High, Return). 

AND2:  (V Scope, Device, Pin, Return) 
(Type(Scope, Device, And-Gate) A 
Value(5cope, Link (Input, Pin, Device), Low, Return)) -> 
Value(Scope, Link(Output, PI, Device), Low, Return). 

OR1:  (V Scope, device, Return) 
(Type{Scope, Device, Or-Gate) A 
Value( Scope, Link (Input, PI, Device), Low, Return) A 
Value(5cope, Link(Input, P2, Device), Low, Return)) -» 
Value(5cope, Link(Output, PI, Device), Low, Return). 

OR2: (V Scope, Device, Pin, Return) 
(Type(5cope, Device, Or-Gate) A 
Value(5cope, Link(Input, Pin, Device), High, Return)) -» 
Value(5cope, Link(Output, PI, Device), High, Return). 

XOR1:  (V Scope, device, Value, Return) 
{Type{Scope, Device, Xor-Gate) A 
Value(5cope, Link(Input, PI, Device), Value, Return) A 
Value(5cope, Link(Input, P2, Device), Value, Return)) -» 
Va\ue{Scope, Link(Output, PI, Device), Low, Return). 

XOR2:  (V Scope, device, Return) 
(Type(Scope, Device, Xor-Gate) A 
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Value(Scope, Link(Input, PI, Device), Low, Return) A 
Value(Scope, Link(Input, P2, Device), High, Return)) -► 
Value(Scope, Link(Output, PI, Device), High, Return). 

XOR3:  (V Scope, device, Return) 
(Type(Scope, Device, Xor-Gate) A 
Value(Scope, Link(Input, PI, Device), High, Return) A 
Value(Scope, Link(Input, P2, Device), Low, Return)) -> 
Value(Scope, Link(Output, PI, Device), High, Return). 

NOT1: (V Scope, Device, Pin, Return) 

(Type(Scope, Device, Not-Gate) A 
Value(Scope, Link(Input, PI, Device), Low, Return)) -> 

Value(Scope, Link(Output, PI, Device), High, Return). 

NOT2:  (V Scope, Device, Return) 
(Type(Scope, Device, Not-Gäte) A 
Value(Scope, Link(Input, PI, Device), High, Return)) -> 
Value(Scope, Link(Output, PI, .Device), Low, Return). 

In order for these sentences to be used in SHYRLI they must be converted into Skolem 

normal form. The resulting sentences are shown in Figure 4.18. 

We will now show a complete example of how SHYRLI can reason about knowledge 

expressed in this domain. Our example will have two scopes and two agents, Agent A and 
Agent B. We will explicitly assign an agent to each domain. To accomplish this each agent 
will receive a copy of the sentences in Figure 4.18 with the variable Scope replaced with the 
constant that represents the agents name. In this manner agents will only be able to reason 

about things within their scope. 

We will be simulating a full adder (see Figure 4.19). Agent A has the definition of a 
full adder in it scope. The full-adder consists of two half-adders and an OR gate. Agent A 
however does not have the definition for a half-adder in its scope. Agent B has the definition 

of the half adder contained within its scope. 

Besides the modified clauses in Figure 4.18, Agent A has the clauses contained in Fig- 
ure 4.20. Agent B also has modified clauses from Figure 4.18 and the clauses contained in 

Figure 4.21. 

Agent A's clauses S1-S3 in Figure 4.20 supply initial input values to the full adder. 

The clause NH1 is the negated hypothesis. 

When SHYRLI starts processing agent B attempts to perform an inference step it fails. 

Realizing that outside assistance is necessary agent B sends a request to agent A. At this time 
agent A cannot handle the request, so agent A enqueues the request for a later saturation 

level. 
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Cl: 

C2: 

C3: 

C4: 

AND1: 

AND2: 

OR1: 

-.Connect(Scope, Link(Input, Pin, Device), Link) V 
-.Value(Scope, Link(Input, Pin, Device), Value, Return) V 

Value(Scope, Link, Value, Return). 
-.Connect{Scope, Link(Output,Pin, Device), Link) V 
-.Value(Scope, Link(Output, Pin, Device), Value, Return) V 

Value(Scope, Link, Value, Return) 
Value(Scope, Link(Up, Pin, Device-1), Value, R{Scope-2, Device-2, Return) V 

Value(Scope-2, Link(Output, Pin, Device-2), Value, Return).  

-.Value{Scope, Link(Down, Pin, Device), Value, Return) V 
-.Type(Scope, Device, Type) V -iUnderstands( Type, Scope-2)) V 
Value(Scope-.g, Link(Input, Pin, Type), Value, R{Scope, Device, Return)). 

-.Type(Scope, Device, And-Gate) V 
-.Value{Scope, Link(Input, PI, Device), High, Return) V 
-nValue(Scope, Link(Input, P2, Device), High, Return) V 
Value(Scope, Link(Output, PI, Device), High, Return).  

-VType(Scope, Device, And-Gate) V 
-. Value {Scope, Link(Input, Pin, Device), Low, Return) V 
Value(Scope, Link(Output, PI, Device), Low, Return).  

-iType(Scope, Device, Or-Gate) V 
-.Value{Scope, Link(Input, PI, Device), Low, Return) V 
^Value(5cope, Link(Input, P2, Device), Low, Return) V 
Value(Scope, Link(Output, PI, Device), Low, Return).  

OR2: -.Type(5cope, Device, Or-Gate) V 
-.Value(Scope, Link(Input, Pin, Device), High, Return) V 
Value(Scope, Link(Output, PI, Device), High, Return). 

XOR1:      -.Type(Scope, Device, Xor-Gate) V 
-1Value(Scope, Link(Input, PI, Device), Value, Return) V 
-.Value(Scope, Link(Input, P2, Device), Value, Return) V 
Value(Scope, Link(Output, PI, Device), Low, Return). 

XOR2:      -iType(Scope, Device, Xor-Gate) V 
-.Value{Scope, Link(Input, PI, Device), Low, Return) V 
-.Value(Scope, Link(Input, P2, Device), High, Return) V 
Value(Scope, Link(Output, PI, Device), High, Return). 

XOR3:      -.Type(Scope, Device, Xor-Gate) V 
-.Value(Scope, Link(Input, PI, Device), High, Return) V 
-.Value(Scope, Link(Input, P2, Device), Low, Return) V 
Value(Scope, Link(Output, PI, Device), High, Return). 

NOT1:      -.Type(Scope, Device, Not-Gate) V 
-,Value(Scope, Link(Input, PI, Device), Low, Return) V 
Value(Scope, Link(Output, PI, Device), High, Return). 

NOT2:      -.Type(Scope, Device, Not-Gate) V 
-nValue(Scope, Link(Input, PI, Device), High, Return) V 
Value(Scope, Link(Output, PI, Device), Low, Return). 

Figure 4.18: Skolem normal form sentences for digital circuit simulation. 
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Figure 4.19: Circuit Diagram of a Pull Adder. 

Al 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
A10 

All 
A12 

SI 
S2 
S3 

Type( Agent-A ,F1 ,Fuil-Adder). 
Type(Agent-A,01,Or-Gate). 
Type(Agent-A,HAl,Half-Adder). 
Type(Agent-A,HA2,Half- Adder).  
Connect(Agent-A,Link(Input,A,Fl),Link(Down,Pl,HAl)) 
Connect(Agent-A,Link(Input,B,Fl),Link(Down,Pl,HA2)). 
Connect(Agent-A,Link(Input,Cin,Fl),Link(Down,P2,HA2)). 
Connect(Agent-A,Link(Output,Pl,HAl),Link(Output,Sum,Fl)). 

Connect(Agent-A,Link(Output,P2,HAl),Link(Input,Pl,Ql)). 
Connect(Agent-A,Link(Output,Pl,HA2),Link(Down,P2,HAl)). 
Connect(Agent-A,Link(Output,P2,HA2),Lmk(Input,P2,Q2)) 
Connect(Agent-A,Link(Output,Pl,01),Link(Output,Cout,Fl)). 

Value (Agent-A,Link(Input,A,Fl),High,Nil).  
Value(Agent-A,Link(Input,B,Fl),High,Nil). 
Value(Agent-A,Link(Input,Cin,Fl),Low,Nil). 

NH1:     -.Value( Agent- A,Link(Output,Cout,Fl),High,Nil). 

Figure 4.20: Circuit Example, Agent A Clauses. 

Agent A is able to infer some hyper-resolvents: 

HRA1: Value(Agent-A,Lmk(Down,Pl,HAl),High,Nil). 

Parents: SI, A5, Cl. 

HRA2: Value(Agent-A,Link(Down,Pl,HA2),High,Nil). 

Parents: S2, A6, Cl. 

HRA3: Value(Agent-A,Link(Down,P2,HA2),Low,Nil). 

Parents: S3, A7, Cl. 
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Bl 

B2 

B3 

B4 

B5 
B6 

B7 
B8 

B9 

Understands(Half-Adder,Agent-B). 

Type(Agent-B,Xl,Xor-Gate). 

Type(Agent-B,Al,And-Gate) 
Connect(Agent-B,Link(Input,Pl,Half-Adder),Link(Input,Pl,Xl)). 
Connect(Agent-B,Link(Input,P2,Half-Adder),Link(Input,P2,Xl)) 

Connect(Agent-B,Link(Input,Pl,Half-Adder),Link(Input,Pl,Al)). 
Connect(Agent-B,Link(Input,P2,Half-Adder),Lmk(Input,P2,Al)). 
Connect(Agent-B,Link(Output,Pl,Xl),Link(Up,Pl,Half-Adder)). 
Connect(Agent-B,Link(Output,Pl,Al),Link(Up,P2,Half-Adder)). 

Figure 4.21: Circuit Example, Agent B Clauses. 

At this point agent A attempts another inference step and fails. Agent A formulates a 

request and sends it to agent B. Agent B responds with Bl. Agent A can now continue 

inferencing and infers the following clauses: 

HRA4: Value(Agent-B,Link(Input,Pl,Half-Adder),High,R(Agent-A,HAl,Nil)). 

Parents: HRA1, A3, Bl, C4. 

HRA5: Value(Agent-B,Link(Input,Pl,Half-Adder),High,R(Agent-A,HA2,Nil)). 

Parents: HRA2, A4, Bl, C4. 

HRA6: Value(Agent-B,Link(Input,P2,Half-Adder),Low,R(Agent-A,HA2,Nil)). 

Parents: HRA3, A4, Bl, C4. 

Agent A realizes that these clauses (HRA4, HRA5, and HRA6) fit the requirements 
of agent B's request. Agent A sends these clauses to agent B. After attempting another 
inference step and failing to produce any new hyper-resolvents agent A sends a request and 

waits. 

After receiving the clauses (HRA4, HRA5, and HRA6) from agent A, agent B 

produces the following hyper-resolvents: 

HRB1: Value(Agent-B,Link(Input,Pl,Xl),High,R(Agent-A,HA2,Nil)). 

Parents: B4, HRA5, Cl. 

HRB2: Value(Agent-B,Link(Input,Pl,Xl),High,R(Agent-A,HAl,Nil)). 

Parents: B4, HRA4, Cl. 

HRB3: Value(Agent-B,Link(Input,P2,Xl),Low,R(Agent-A,HA2,Nil)). 

Parents: B5, HRA6, Cl. 

HRB4: Value(Agent-B,Link(Input,Pl,Al),High,R(Agent-A,HA2,Nil)). 

Parents: B6, HRA5, Cl. 
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HRB5: Value(Agent-B,Link(Input,Pl,Al),High,R(Agent-A,HAl,Nil)). 

Parents: B6, HRA4, Cl. 

HRB6: Value(Agent-B,Lmk(Input,P2,Al),Low,R(Agent-A,HA2,Nil)). 

Parents: B7, HRA6, Cl. 

After this inference step agent B can infer the following hyper-resovents: 

HRB7: Value(Agent-B,Link(Output,Pl,Al),Low,R(Agent-A,HA2,Nil)). 

Parents: B3, HRB6, AND2. 

HRB8: Value(Agent-B,Link(Output,Pl,Xl),High,R(Agent-A,HA2,Nil)). 

Parents: B2, HRB1, HRB3, XOR3. 

After this inference step agent B can infer the following hyper-resolvents: 

HRB9: Value(Agent-B,Link(Up,Pl,Half-Adder),High,R(Agent-A,HA2,Nil)). 

Parents: B8, HRB8, C2. 

HRB10: Value(Agent-B,Link(Up,P2,Half-Adder),Low,R(Agent-A,HA2,Nil)). 

Parents: B9, HRB7, C2. 

After this inference step agent B can infer the following hyper-resolvents: 

HRB11: Value(Agent-A,Link(Output,Pl,HA2),High,Nil). 

Parents: HRB9, C3. 

HRB12: Value(Agent-A,Link(Output,P2,HA2),Low,Nil). 

Parents: HRB10, C3. 

Agent B realizes that the clauses HRB9 and HRBIO match the requirements of agent 
A's request. Agent B sends these clauses to agent A. After attempting another inference 
step and failing to produce any new hyper-resolvents agent B sends a request and waits. 

After receiving the clauses HRB9 and HRBIO from agent B, agent A produces the 

following hyper-resolvents: 

HRA7: Value(Agent-A,Link(Down,P2,HAl),Bigh,Nil). 

Parents: A10, HRB11, C2. 

HRA8: Value(Agent-A,Link(Input,P2,02),Low,Nil). 

Parents: All, HRB12, C2. 

After this inference step agent A can infer the following hyper-resolvent: 
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HRA9: Value(Agent-B,Link(Input,P2,Half-Adder),High,R(Agent-A,HAl,Nil)). 

Parents: Bl, A3,HRA7, C4. 

Agent A realizes that the clause HRA9 fits the requirements of agent B's request. 

Agent A sends this clause to agent B. After attempting another inference step and failing 

to produce any new hyper-resolvents agent A sends a request and waits. 

After receiving the clause HRA9 from agent A, agent B produces the following 

hyper-resolvents: 

HRB13: Value(Agent-B,Link(Input,P2,Xl),High,R(Agent-A,HAl,Nil)). 

Parents: HRA9, B5, Cl. 

HRB14: Value(Agent-B,Link(Input,P2,Al),High,R(Agent-A,HAl,Nil)). 

Parents: HRA9, B7, Cl. 

After this inference step agent B can infer the following hyper-resolvents: 

HRB15: Value(Agent-B,Link(Output,Pl,Xl),Low,R(Agent-A,HAl,Nil)). 

Parents: B2, HRB2, HRB13, XOR1. 

HRB16: Value(Agent-B,Link(Output,Pl,Al),High,R(Agent-A,HAl,Nil)). 

Parents: B3, HRB5, HRB14, AND1. 

After this inference step agent B can infer the following hyper-resolvents: 

HRB17: Value(Agent-B,Link(Up,Pl,Half-Adder),Low,R(Agent-A,HAl,Nil)). 

Parents: HRB15, B8, C2. 

HRB18: Value(Agent-B,Link(Up,P2,Half-Adder),High,R(Agent-A,HAl,Nil)). 

Parents: HRB16, B9, C2. 

After this inference step agent B can infer the following hyper-resolvents: 

HRB19: Value(Agent-A,Link(Output,Pl,HAl),Low,Nil). 

Parents: HRB17, C3. 

HRB20: Value(Agent-A,Link(Output,P2,HAl),High,Nil). 

Parents: HRB18, C3. 

Agent B realizes that the clauses HRB19 and HRB20 fit the requirements of agent 
A's request. Agent B sends this clause to agent A. After attempting another inference step 
and failing to produce any new hyper-resolvents agent B sends a request and waits. 

After receiving the clauses HRB19 and HRB20 from agent B, agent A produces the 

following hyper-resolvents: 
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HRA10: Value(Agent-A,Link(Output,Sum,Fl),Low,Nil). 

Parents: A8, HRB19, C2. 

HRA11: Value(Agent-A,Link(Input,Pl,01),High,Nil). 

Parents: A9, HRB20, C2. 

After this inference step agent A can infer the following hyper-resolvent: 

HRA12: Value(Agent-A,Link(Output,Pl,Ol),High,Nil). 

Parents: A2, HRA11, OR2. 

After this inference step agent A can infer the following hyper-resolvent: 

HRA13: Value(Agent-A,Link(Output,Cout,Fl),High,Nil). 

Parents: A12, HRA12, C2. 

After this inference step agent A can infer the following hyper-resolvent: 

HRA14:  D. 
Parents: HRA13, NH1. 

At this point the theorem is proved and our hypothesis is proven correct. Notice that by 
looking at the clauses produced we can find the values of all the pins in the digital circuit. 

SHYRLI's base mechanism has no understanding of digital circuits, however the knowl- 
edge given SHYRLI allows SHYRLI to reason about different domains. SHYRLI has no 
knowledge about specific domains except what is given it in terms of the predicate calculus. 
Even then, SHYRLI applies one interpretation to the clauses, the one that is necessary for 

hyper-resolution. 

4.4.2    Impact of Different Knowledge Distributions 

In DARES it was noted that certain distributions had adverse affects on performance, 
however even in its worse case the distributed cases outperformed the single agent case 
significantly. This behavior is does not seem to be the appear in SHYRLI. In SHYRLI, 
hyper-resolution prunes the search space extensively so any pruning as a result of a distri- 

bution of knowledge is minimized. 

This pruning of the search space leads to fewer paths through the search space to the 

goal. In DARES there are potentially more paths to follow to a contradiction than in 
SHYRLI. This means that the allowable paths to a contradiction might wind their way 
through knowledge held by several different agents in SHYRLI, while in DARES a path 
might be found that uses fewer agents or less coordination. The winding of a path through 
the agents is distribution dependent, and would indicate that SHYRLI is very sensitive to 

specific distributions of knowledge. 
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Al- I(y) V iF(z) V -.P(s) V -iQ(ai)    (Axiom) 

A2 -iP(x) V -iT(x)                               (Axiom) 

A3 P(y) V ->S(A,y)                               (Axiom) 

A4 J(x) V -.I(C)                                   (Axiom) 

A5 ->J(A)                                               (Axiom) 

A6 -~H(x)                                              (Axiom) 

A7 F(C)                                                 (Axiom) 

A8 G(D)                                              (Axiom) 

A9 :      H(B) V R(A)                                   (Axiom) 

AlO:    P(A) V -.G(x)                                   (Axiom) 

All:     Q(E(x)) V T(a;) V -.R(a;)                (Axiom) 
A12:    S(x,E(a;)) V T{x) V ->R{x)            (Negated Theorem) 

Figure 4.22: Clauses for the coordination experiment. 

4.4.2.1     Sensitivity to Distributions 

As an example of two different knowledge distributions that have vastly different processing 
times on SHYRLI we present two different distributions of axioms for two agents from the 
example in section 4.2.8. The axioms we are using are shown in Figure 4.22. The two 
distributions are shown in Figure 4.23. The resulting times and broadcasts for assistance 

for the two different distributions are shown in Figure 4.24. 

Distribution One 

Agent A 
Agent B 

A3, A6, A7, A8, A9, All, A12. 
Al, A2, A4, A5, A7, A8, A9, AlO. 

Distribution Two 

Agent A 
Agent B 

A2, A3, A4, A6, A7, A8, A9, AlO 
Al, A5, A7, A8, A9, All, A12. 

Figure 4.23: Distributions in the coordination experiment. 

Distribution One Distribution Two 

Processing Time 11 seconds 33 seconds 

Number of Broadcasts 3 8 

Figure 4.24: Results of the coordination experiment. 
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The reason for the increase in processing time in the second distribution is the increase 
in coordination needed to traverse the search space to a contradiction. To get a graphical 
picture of this, Figure 4.25 shows the deduction tree of the first distribution. Notice how 
that only two coordination points are necessary. To compute the hyper-resolvent A18 

Agent B must import two clauses from Agent A. In Figure 4.26 notice that there are many 
coordination points. In order for an Agent to generate a hyper-resolvent it was almost 
always the case that the agent had to import knowledge. This behavior leads to a higher 

coordination cost for SHYRLI. 

4.4.2.2    Experiments 

In order to judge the impact that different distributions have on SHYRLI's performance 

we have devised a random distribution experiment. The experimental evidence given in 
this section supports our view that different distributions can have signicant effects on the 

performance of SHYRLI. 

To minimize the behavior characteristic of a particular set of clauses we have run our 
experiment on three different sets of clauses. The test sets can be seen in Figure 4.22, 
Figure 4.27 and Figure 4.30. We have run fifty random distributions of each of these sets of 
clauses on a SHYRLI network of three agents. The experimental results show that different 
distributions have vastly different communication patterns. 

We have assumed that there is no overlap (or redundancy) of information in the SHYRLI 
network of agents. At the start of theorem-proving no agent possesses information that 
another agent has. We devised an automatic collecting system that collected the following 

information during a run: 

• Processing time. 

• Time agents spent waiting for replies from other agents. 

• Number of requests an agent broadcast. 

• Size of an agents requests. 

• Number of replies an agent received. 

• Number of electrons an agent produced. 

• Number of electrons an agent received. 

Each experiment was performed on a cold-booted lisp machine to reduce the effect of garbage 
collection on the processing time parameter. The clauses used in experiment 1 are the same 
clauses that were used in the general behavior experiment in [56]. 
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© A13 

A15 

© 
A16 

A17 

Agent A 

A14 

Agent B 

A21 

Figure 4.25: Deduction tree for distribution one. 

173 



Figure 4.26: Deduction tree for distribution two. 

In our experiments we have seen that different distributions exhibit markedly different 
performances. As a general rule, it seems that as the number of broadcasts for assistance 
increases, the time to solve the problem increases also. Data from each of these three sets 
can be ssen in the graphs in Figure 4.32, Figure 4.33, and Figure 4.34. These graphs plot 
the number of broadcasts for assistance versus the time to find a contradiction. 

The variance of the data is high. These graphs tell us that the number of broadcasts 
for assistance is not as closely tied to the amount of time necessary to solve the problem as 
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Al 

A2 

A3 

A4 

A5 
A6 

A7 

A8 
A9 

AlO 
All 
A12 
A13 
A14 
A15 
A16 
A17 
A18 
A19 
A20 
A21 
A22 
A23 
A24 
A25 

-nValue(Actor-A,Link(Output,Cout,Fl),High,C). 

Value(Actor-A,Link(Input,D,Fl),High,Nil). 
Value(Actor-A,Link(Input,C,Fl),Low,Nil). 

Value(Actor-A,Link(Input,B,Fl),High,Nil). 

Value(Actor-A,Link(Input,A,Fl),High,Nil). 
Connect(Actor-B,Link(Output,Pl,Al),Link(Up,P2,Half-Adder)). 

Connect(Actor-B,Link(Output,Pl,Xl),Link(Up,Pl,Half-Adder)). 

Connect(Actor-B,Link(Input,P2,Half-Adder),Link(Input,P2,Al))- 
Connect (Actor-B,Link(Input,Pl,Half-Adder),Link(Input,Pl,Al)). 
Connect(Actor-B,Link(Input,P2,Half-Adder),Link(Input,P2,Xl)). 

Connect(Actor-B,Link(Input,Pl,HaIf-Adder),Link(Input,Pl,Xl)). 

Type(Actor-B,Al.And-Gate). 

Type(Actor-B,Xl,Xor-Gate). 
Understands(HaIf-Adder,Actor-B). 
Connect(Actor-A,Link(Output,Pl,N2),Link(Input,Cin,Fl)). 
Connect(Actor-A,Link(Output,Pl,A2),Link(Input,Pl,N2)). 
Connect(Actor-A,Link(Output,Pl,Nl),Link(Input,P2,A2)). 

Connect(Actor-A,Link(Output,Pl,Al),Link(Input,Pl,Nl)). 

Connect (Actor-A ,Link(0utput,Pl,02),Link(Inpiit,Pl,A2)). 

Connect(Actor-A,Link(Input,D,Fl),Link(Input,P2,Al))- 
Connect(Actor-A,Link(Inpat,C,Fl),Link(Input,Pl,Al)). 
Connect(Actor-A,Link(Input,D,Fl),Link(rnput,P2,Q2)). 

Connect(Actor-A,Lmk(Input,C,Fl),Link(Input,Pl,Q2)). 
Connect(Actor-A,Link(Output,Pl,01),Link(Output,Cout,Fl)). 

Connect(Actor-A;Link(Output,P2,Ha2),Link(Input,P2,01)). 

Figure 4.27: Clauses for the second Random Distribution Experiment (part 1 of 3). 

we thought it would be. This is because the number of broadcasts for assistance is not as 
close a measure of the amount of coordination necessary to solve the problem as we had at 

first believed. 

We surmised that a better way to measure the amount of coordination necessary would 
be to measure the wait time of all agents. As this was not one of the parameters we 
originally decided to measure we ran the test cases again on fifty distributions of test set 
one and twenty of test set three. Our assumption seems to have been correct. A great deal 
of the agents time seems to be spent waiting for other agents to derive results or in time 
lost in communicating over the network. The graphs of this data can be seen in Figure 4.35 

and Figure 4.36. 

In order to reduce the time the agents spend waiting for mail we reduced the cost of 
communication to see how the system performs. The results (shown in Figure 4.37 we 
obtained indicate that the system performance is still very linear, only the slope seems to 
have shifted. In this example, unlike the earlier trials with this data set, the best multiple 

agent case outperformed the single agent case. 
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A26 Connect(Actor-A,Link(Output,Pl,Ha2),Link(Dowii,P2,Hal)). 

A27 Connect(Actor-A,Link(Output,P2,Hal),Link(Input,Pl,01)). 

A28 Connect(Actor-A,Link(Output,Pl,Hal),Link(Output,Sum,Fl)). 

A29 Connect(Actor-A,Link(Input,Cm,Fl),Link(Down,P2,Ha2)). 

A30 Connect(Actor-A,Link(Input,B,Fl),Link(Down,Pl,Ha2)). 

A31 Connect(Actor-A,Link(Input,A,Fl),Link(Down,Pl,Hal)). 

A32 Type(Actor-A,N2,Not-Gate). 

A33 Type(Actor-A,Nl,Not-Gate). 

A34 Type(Actor-A,A2,And-Gate). 

A35 Type(Actor-A,Al,And-Gate). 

A36 Type(Actor-A,02,Or-Gate). 

A37 Type(Actor-A,Fl,Full-Adder). 

A38 Type(Actor-A,01,Or-Gate). 

A39 Type( Actor-A ,Ha2,Half-Adder). 

A40 Type(Actor-A,Hal,Half-Adder). 

A41 Value(5cope,Link(Output,Pl,Z)emce),Low, Return) V 
-iType(Scope,.Dewce,Not-Gate) V 
->Value(Scope,Link(Input,Pl,Device),High, Return). 

A42:     Value(Scope,Link(Output,Pl,.Dem'ce),High, Return) V 
-iType(5cope,Z?eu2ce,Not-Gate) V 
->Value(5cope,Lmk(Input,Pl,Z?eOTce),Low, Return). 

A43:     Value(5cope,Link(Output,Pl,Z?eOTce),High, Return) V 
-iType(Scope,.Demce,Xor-Gate) V 
-iValue(Scope,Link(Input,P2,.DeOTce),High, Return) V 
-iValue(5cope,Lmk(Input,Pl,DeOT'ce),Low, Return). 

A44:     Value(Scope,Link(Output,Pl,.DeOTce),High, Return) V 

-iType(Scope,Device,Xoi-Gate) V 
->Value(5cope,Link(Input,P2,I>ew"ce),Low, Return) V 
-iValue(5cope,Link(Input,Pl,i)eOT'ce),High, Return). 

Figure 4.28: Clauses for the second Random Distribution Experiment (part 2 of 3). 

These experiments confirmed our assumptions that SHYRLI would be very sensitive to 
distributions of knowledge. In cases where the deduction path to the contradiction winds 
itself through many agents, agents spend a great deal of time waiting for results from other 

agents. 

When we examined the deduction trees of individual examples we were able to see that 
more coordination was necessary in distributions that the system took longer to prove than 

in distributions that the system proved quickly. We also noticed that in some faster cases 
deductions that could be done in parallel were distributed over the agents and not in a 

single agent. 

We have been able to characterize the distributions along two dimensions, the amount 
of coordination necessary and the amount of parallelism. A graphical picture of this can 
be seen in Figure 4.38. The dimensions are tied together. In most cases where there is an 
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A45:     Value(Scope,Lmk(Output,Pl,Z)etnce),Low, Return) V 

->Type(Scope,Device,Xor-Ga.te) V 
-iValue(Scope,Link(Input,P2,.Dewce), V, Return) V 
-iValue(5cope,Link(Input,Pl,Dewce),V, Return). 

A46:     Value(Scope,Link(Output,Pl,.DeOTCe),High, Return) V 

->Type(Scope,.De«ce,Or-Gate) V 
-iVaIue(5'cope,Link(Input,Pm,Z)et;ice), High,Return). 

A47:     Value(5cope,Link(Output,Pl,Dewce),Low, Return) V 

-^Type(Scope,Device,Oi-Gate) V 
-nValue(Scope,Link(Input,P2,.Deirace),Low, Return) V 
-nValue(5cope,Link(Input,Pl,.Dewce),Low, Return). 

A48:     Value(5cope,Link(Output,Pl,Z)eOTce),Low, Return) V 
-iType(Scope,.Deiiice,And-Gate) v 

-iValue(Scope,Link(Input,Pm,r>ewce), Low,Return). 
A49:     Value(Scope,Link(Output,Pl,Dewce),High, Return) V 

-iType(5cope,Deuice,And-Gate) V 
-iValue(Scope,Link(Input,P2,.Dewce),High, Return) V 
-iValue(5cope,Link(Input,Pl,J>ewce),High, Return). 

A50:     Value(J4cior,Link(Input,Pin,rj/pe), Va/ue,R(5cope,Dewce,Äeiurn)) V 

->Type(5cope,Z)ewce,Type) V 
-iUnderstands( Type,Actor) V 
-'Value(5lcope,Link(Down,Piw,Dewce), Value,Return).  

A51:     Value(,4cfor,Lmk(Output,Pin, Tag), Value,Return) V 
-.Value(.?cope,Lmk(Up,Pm,£)eOTce), Vaiue,R(^ctor,rag,.Retum)). 

A52:     Value(5cope,LinA:, Value,Return) V 
-iConnect(5cope,Link(Output,Pin,I>em'ce)1 Linfc) V 
-iValue(.gcope,Link(Output,Pin,Device), Value,Return). 

A53:     Value(5cope,Lmfc, Value,Return) V 
-.Connect(5cope,Link(Input,Pin,Device), Link) V 
-iValue(gcope,Link(Input,Pt'n,Dewce), Vo?ue,ÄefKrra). 

Figure 4.29: Clauses for the second Random Distribution Experiment (part 3 of 3). 

attempt to increase parallelization, the amount of coordination necessary is increased. This 
works the other way as well. In attempts to decrease the amount of coordination necessary 

some parallelization is lost. 

Figure 4.26 shows a distribution that is poor in parallelization and has a high amount 
of necessary coordination. The distribution in Figure 4.25 is better in parallelization and 
has a small amount of necessary coordination. Figure 4.12 shows a distribution that maxi- 
mizes the potential parallelization of the axiom set, but increases the amount of necessary 

coordination over the distribution in Figure 4.25. 

This insight into the different types of distributions has allowed us to understand why 

wait time is a good indicator of performance. High wait times mean that: 

• Time was spent waiting for communication to travel between agents. 
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Al: iEqual(A,T4). 

A2: --Equal(T4,Tl). 

A3: -.Equal(T4,B). 

A4: -.Equal(A,Tl). 

A5: ->Equal(A,B). 

A6: -.Equal(B,Tl). 

A7: -.Equal(B,D). 

A8: -.Equal(D,C). 

A9: -.Equal(D,A). 

AlO -.Equal(B,C). 

All -.Equal(B,A). 

A12 -.Equal(A,C). 

A13 On{v,vp,G{wp,z)) V -.Clear(u,G(«;p,z)) V ->On(v,vp,z) V ->On{u,v,z). 

A14 On(v,vp,G(wp,z)) V ->On(v,vp,z) V -<On(u,v,G(wp,z)). 

A15 C]esa(vp,G{wp,z)) V -<On(u,vp,z) V -.State(F(A(u,t/),w)1G(«;p, z)). 

A16 On{u,v,G{wp,z)) V -iState(F(A(u,v),w),G(tüp, z)). 

A17 Clear(u,G(tup,z)) V --State(F(A(u,v),u;),G(wp, z)). 

A18 State(w,z) V -.State(F(y,tü),z). 

A19 State(wp,G(tup,z)) V -iContext(a:,wp,z) V ->Maxrobot(s). 

A20 -.Conflict(S(0),y,End,z). 

A21 0ontext(O,End,z). 

Figure 4.30: Clauses for the Third Random Distribution Experiment (part 1 of 2). 

• Time was spent waiting for other agents to derive a result. 

The first case is dependent on the communication network on the system. As was shown in 

Figure 4.37, reducing this time can improve performance. 

The second case is an aggregate of two phenomena: the amount of coordination necessary 
and the amount of parallelization in the problem. If the deduction tree is highly linear, then 
only one agent may be working on a piece at a time. In distributing this problem over a set 
of agents processing time will invariably suffer. Certain distributions could lead to a large 
amount of necessary coordination which impedes the performance of the system. If the 
deduction tree is highly parallel, the best case scenario leads to low wait time as the agents 
cooperate to accomplish parts of the problem at the same time. Most of the wait time in 
this case would come from the cost of communication. A side affect to parallelization is 
that the amount of necessary coordination might increase thereby increasing coordination 

cost. 

We do not intend for these characterizations to be used by system architects in dis- 

tributing axioms among a set of agents, but rather as a way to understand how a set of 
distributed agents behave. In the problems in which we are interested, the distribution of 
knowledge is not a variable we can control. We would like to be able to understand why 
our systems exhibit certain behaviors and SHYRLI has shown us that the distribution of 
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A22:     Conflict(:z:,y,w,z) V Lega\(x,y,w,z) V -.Clear(y,z) V ~-Environment(y,i,z). 

A23:     Conflict(i,y,iü,z) V Equal(y,u) V Equal(j/,u) V 
-.Conflict(S(x),2/,F(A(u,i;), w),z) V -.Context(i,F(A(u,i;),w),z). 

A24:     Context(z,F(A(u,i/),iu),z) V Equal(u,w) V 
-■Block(w) V -iLegal(x,v,w,z) V -^Lega\(x,u,w,z) 

A25:     Environment(u,i,z) V -iEnvironment(a,i,z) V -<On(u,v,z). 

A26:     Maxrobot(S(S(0))). 
A27:     Environment(T4,S(S(0)),z). 

A28:     Environment(T3,S(S(0)),z). 
A29:     Environment(T2,S(S(0)),z). 

A30:     Environment(T3,S(0),z). 
A31:     Environment(T2,S(0),z). 

A32:     Environment(Tl,S(0),z). 

A33:     On(A,Tl,End). 

A34:     0n(B,T4,End). 
A35:     On(D,T3,End). 

A36:     0n(C,T2,End). 
A37:     Clear(A,End). 
A38:     Cleax(B,End). 
A39:     Clear(D,End). 

A40:     Clear(C,End). 
A41:     Block(A). 
A42:     Block(B). 

A43:     Block(D). 
A44:     Block(C). 
A45:     -On(B,Tl,z) V -Qn(A,T4,z). 

Figure 4.31: Clauses for the Third Random Distribution Experiment (part 2 of 2). 

knowledge can greatly affect system behavior. 

We have found that for small problems the distributed case performs rather poorly in 
comparison to the single agent case. For a larger problem the best case begins to ap- 
proach and even surpass the time for a single agent. Our first two set cases fit into the 
low parallelization category. Their distributions therefore run from low coordination to 
high coordination. Those distributions which maximize parallelization while minimizing 
coordination cost achieve the best performance and outperform the single agent case. 

Test set three provides more parallelization. This means that a set of distributed agents 
has a better chance of outperforming the single agent case. Distributions of test set three 

can fall into any of the quadrants of Figure 4.38. Using a network with a high cost of 
communication, forty percent of the distributed cases outperformed the single agent case. 

These experiments have not shown us the performance benefit of distributing the prob- 
lem over a set of agents that was obtained using DARES. DARES reported a performance 
increase of about a factor of two in processing time. Although the authors were not looking 
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6.0 8.0 10.0 12.0 14.0 16.0 

Total number of broadcasts for assistance 

Figure 4.32: Test Set 1: Completion time vs. number of broadcasts. 

30.0 40.0 

Total number of broadcasts for assistance 

Figure 4.33: Test Set 2: Completion time vs. number of broadcasts. 
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40.0 50.0 60.0 

Total number of broadcasts for assistance 

Figure 4.34: Test Set 3: Completion time vs. number of broadcasts. 

£   30.0   - 

60.0 80.0 

Sum of the waiting times of all agents 

Figure 4.35: Test Set 1: Completion time vs. wait time. 

181 



£       900.0 

1500.0 2000.0 2500.0 

Sum of the waiting time of all agents 

Figure 4.36: Test Set 3: Completion time vs. wait time. 

6.0 
10.0 15.0 20.0 25.0 

Sum of the wait time of all agents 

Figure 4.37: Test Set 1: Completion time vs. wait time with smaller communication cost. 
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less Low Coordination 
Low Parallelism 

Low Coordinatior 
High Parallelisn. 

Amount of 
Coordination 
Necessary 

Increasing,/ Performance 

High Coordination 
morel Low Parallelism 

High Coordination 
High Parallelism 

less Parallelism more 

Figure 4.38: Variance in performance among distributions. 

for an increase in performance this was a desirable side effect. 

DARES achieved much of its performance by pruning its search space through the 
distribution of knowledge. By using coordination and communication heuristics to maintain 
beneficial distributions a set of DARES agents was able to reason much better than a single 
agent. Our experiments with SHYRLI have shown us that hyper-resolution has already 
pruned the search space to such a degree that distributing the axioms incurs almost no 
further benefit. Some benefit is gained in that the agents have fewer axioms with which to 

attempt resolution. SHYRLI, however, significantly outperforms DARES. 

Our experiments have shown us that SHYRLI agents perform functional roles in re- 
lation to their nuclei. Each agents role is defined by their nuclei. The behavior that the 
communication and coordination strategies engenders is one that when an agent determines 
it is no longer making progress it attempts to import anything that will allow it to continue 
processing. The type of knowledge that will allow an agent to continue processing and the 

type of deductions that an agent can make are defined by an agents nuclei. 

4.4.3    Differences between Single Agent and Multiple Agent Search 

In order to better understand the difference between the way the multiple agents and the 
single agent perform search, we give the following examples. Figure 4.39 shows the deduction 
tree for one distribution of the clauses shown in Figure 4.22. This is the same set as in the 
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example given in Chapter 3. The deduction tree for the distribution given in Chapter 3 can 
be seen in Figure 4.12. As before, circles represent given axioms and the negated theorem, 

boxes represent the derived clauses. The electrons that were derived earliest are higher in 

the tree than electrons that were derived later. 

Figure 4.39: Deduction tree for the three agent example. 
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(El   )            (NI )            (E2  j 

HRA! HRB! 

1 1 
o           o 
O                O 
O                O 
♦ i 

HRAn HRBm 

Figure 4.40: Single agent deduction tree example. 

When comparing these two trees notice how BHR1 is derived earlier in time in Fig- 
ure 4.39 than in Figure 4.12. This is due to the cost of communication. In the example 
in Figure 4.12 we modeled a higher cost of commmunication than in Figure 4.39. In the 
example in Chapter 3, Agent C replied to Agent B's first request for assistance with CHR1 
and CHR3. In the example given in Figure 4.39 Agent B's first request resulted in a reply 
from Agent C with the electron CHR1. Agent B then made a second request in which it 
obtained CHR3. This faster communication resulted in somewhat more communication 

and more tightly coupled the agents. 

As can be seen from Figure 4.12 and Figure 4.39 in some cases the deductions in the 
multiple agent case do not neccesarily occur in the same order as in the single agent case. 
In comparing the multiple agent case to the single agent case at an instance in time, some 
lines of deduction in the tree are longer and some are shorter than the single agent case. 
This can be due to the cost of communication as above or the distribution. 

As an example of this phenomena, observe the case in Figure 4.40. Notice that there are 
two lines of reasoning that the single agent pursues. Each level of deduction in both lines 
are produced at the same time. The search is at the same level for both lines of reasoning 

at a given instance of time. 

Now examine the multiple agent case in Figure 4.41. Notice that agent B will follow one 
line of reasoning until it determines outside assistance is necessary. This can occur when 
either the line of reasoning can proceed no further (because other agents hold neccessary 
knowledge or the line is a dead end) or the forward progress heuristic is not satisfied. In 
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Figure 4.41: Multiple agent deduction tree example. 

Figure 4.41 when Agent B's forward progress heuristic is not satisifed when hyper-resolvent 
HRBj is generated. At this point Agent B asks Agent A for help and receives as an answer 
electron El. Now Agent B can begin pursuing the second line of reasoning. The deductions 

in line A and line B are now offset in time by j. 

It can be seen in this example that the multiple agent case will not necessary find the 
same proof as the single agent case. If both lines of reasoning lead to a contradiction, the 
single agent case will find the contradiction that is closest to the top of the tree, for that 
is the nature of breadth first search. If the closest contradiction exists in reasoning line A, 
then the multiple agent case in this example might find the contradiction in line B, as the 

agent has pursued reasoning line B further than the single agent case. 
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4.5    Results Analysis 

The motivation behind this research was the inefficiency of the binary-resolution used in 

DARES [56]. With SHYRLI we have extended the architecture of DARES to incorporate 

a stronger inference rule, hyper-resolution. In doing so it became necessary to modify or 

replace many of the heuristics that guided the theorem-proving system. These included the 
heuristic for assessing local performance and the heuristics for formulating questions and 

answers. 

The use of hyper-resolution in SHYRLI has allowed us to apply the architecture proposed 

in DARES to problems of more practicality. Binary-resolution was so inefficient that it could 
only be applied to small toy problems. At the moment SHYRLI is being used in ongoing 
research into generic multi-agent coordination schemes [37]. 

We have used specific aspects of the hyper-resolution inference rule to develop mecha- 
nisms to identify the information that does not have to be communicated in problem solving. 
This allowed us to develop the notion of private knowledge that an agent does not have 
to share. Knowledge that can be kept private can be identified in a domain independent 
manner. These privacy mechanisms guarantee that keeping specific information private will 

not affect the problem solving activity of the group of agents. 

SHYRLI's behavior is substantially different from DARES. Although SHYRLI outper- 
forms DARES, SHYRLI's single agent case usually outperforms multiple agent cases for 
small problems. As the size of the problem increases SHYRLI's multiple agents case be- 

gins to outperform the single agent case. This was not the case in DARES. The DARES 
reasoning system took advantage of a large unpruned search space. DARES was able to 
prune its search space using the distributions of knowledge. By incorporating heuristics 
DARES was successfully able to continue to maintain a fairly good partition of knowledge 
when communicating between agents. These distributed sets of knowledge produced fewer 
resolvents than the single agent case increasing the efficiency of the multiple agent case. 

SHYRLI's use of hyper-resolution means the advantage of gaining a pruned search space 
through a distribution of knowledge is lost. Hyper-resolution has already significantly 
pruned the search space. SHYRLI's sensitivity to different distributions is a result of a 
distributed set of agents trying to traverse a search tree with a very limited number of 

paths to the goal (or contradiction). 

DARES concluded that although some distributions affected DARES performance, these 
cases still outperformed the single agent case significantly. Therefore it was not important 
how the knowledge was distributed. The results we have obtained with SHYRLI seem 

to contradict this. Different distributions can significantly affect the performance of the 

reasoning system. 

When we originally began the experiments described in section 4.4 we were sure that 
SHYRLI agents would request assistance more often than DARES. For the general behavior 
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experiment described in DARES, SHYRLI coordinated about the same amount. This means 
that we are achieving a speed up in performance without an increase in communication cost. 

As this small problem took DARES to its limits we could not compare the results of our 

larger problems with DARES. 

SHYRLI agents have a functional role. Because SHYRLI agents keep their nuclei private, 

the agents with specific nuclei assume specific roles in the proof of a theorem. Using 
this inherent functionality we have developed a formalism in the predicate calculus that 
allows agents with different specialties to coordinate their activities. This predicate calculus 
formalism allows a complex problem to be decomposed and then distributed over a set of 

agents. 
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Chapter 5 

Distributed Constraint Based 
Planning 

5.1    Introduction 

Interaction. This is the key ingredient, the very essence of what distinguishes Distributed 
Artificial Intelligence (DAI) from Artificial Intelligence (AI). Interaction is what drives the 
formation of architecture, plan and environment representation, and search control - the 
three major factors involved in developing a model for semi-autonomous agent behavior 
and an associated planning system. In the following paragraphs, we will first describe the 

requirements of these three components of what we term a cooperative planning system. 
Then we will outline our approach for meeting these requirements and we conclude by 
denoting the major contributions and features of our research. 

Multiagent interaction can take on various and diverse forms. In some instances, agents 
work as equals cooperating to develop solutions[13]. In other cases, agents behave in a 
more managerial way with one or more agents directing the actions of other subordinate 
agents[6, 16, 31]. Sometimes a centralized problem is distributed with the hope of improving 
performance, in which case agent interaction is freely designated by the problem designer. 
Often the motivation in a case such as this is to improve the speed of problem solving. 
In other cases, time is not a factor. Instead it may be desirable to model an inherently 
distributed problem, in which case agent interaction must conform to an existing structure. 
As a result, a model for semi-autonomous agent behavior must have a flexible architecture 
so that various forms of agent interaction may readily be represented[75, 22, 28, 21]. 

Plan and environment representation must be sufficiently rich to capture all aspects 
of interaction in a complicated multiagent world. Of critical importance are aspects of 
time and temporal relations concerning agent interactions. Some interactions may require 
simultaneous actions of multiple agents. Other actions may be decoupled so as to have no 

189 



temporal relation at all, and thus multiple plan executions representing various orderings 

of these decoupled actions should be permitted. 

In giving agents some degree of autonomy, the system must allow for flexible and dif- 

fuse control of search strategies. An agent should be able to take responsibility for task 
decomposition, either through its own actions or by directing the actions of others and 

collecting the results. It should also be possible for an agent to ask other agents to assume 
the responsibility of task decomposition. Decisions for when and how agent interactions 
occur should take into account agent work load, local availability of required resources to 

complete the plan, and local availability of task decomposition knowledge. Effective coor- 

dination of semi-autonomous agents should result in a balance of planning responsibilities 

and a coherent reorganization of the problem while minimizing agent interference. 

With these factors in mind, we have developed a cooperative planner called DCONSA 

- Distributed Constraint-based planner for Semi-autonomous Agents. We call DCONSA a 
cooperative planner because it builds upon the expressive power of representational frame- 
works developed for multiagent planning combined with the coordination strategies found 
in distributed planning. In section 5.2 we give an overview of the planning literature cov- 
ering many of the basic concepts of planning, Distributed AI, and constraint satisfaction 

problems. We also discuss how DCONSA relates to and expands this work. 

DCONSA uses a plan and environment representation that embodies the intent of the 
GEM model [45]. As Lansky has shown through several examples, the GEM model is 
sufficiently rich to capture the many aspects of interaction, including critical temporal 
aspects. GEM explicitly recognizes the need to exploit constraint localization, and this 
concept plays a major role in the search strategy of DCONSA. Understanding the GEM 
model is fundamental to understanding DCONSA, therefore, we cover the basics of this 

model in section 5.3. 

In section 5.4, we discuss how one can create a distributed architecture for distributed 
planning by taking a different view of the GEM model. We illustrate the flexibility of this 
distributed architecture through the introduction of the Multi-table Blocks World. 

The major portion of our work has involved the development of a coherent distributed 
planning process that incorporates multiple parallel searches and agent autonomy. In sec- 
tion 5.5, we explain in detail how we start with a localized search process and add mecha- 
nisms to distribute that search. We then discuss how parts of this search can be conducted 
in parallel by planning for conjunctive goals. This parallel search is then followed by a 
serial search that combines these plans into one overall coherent plan. In the last part of 
this section, we discuss how agent autonomy is incorporated into this distributed, parallel 
search. This is accomplished by allowing agents to select from among three interaction 
modes. This selection is made mutually between two agents through a simple negotiation. 
The criterion for accepting a proposed interaction mode is based upon a heuristic measure 
of the agents' respective work loads. By basing this decision on relative work load, agent's 
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can interact in a distributed, dynamic fashion that balances the planning work load and 

reduces agent interference. 

Section 5.9 presents the experimental work we have conducted using DCONSA. Through 

empirical results, we show that when agents use the heuristic decision criterion described 

in section 5.5, the planning work load is more balanced, thus increasing the amount of 

planning work performed in parallel. The result is an improvement in the time to construct 

a plan. 

5.2    Planning, The Constraint Satisfaction Problem and Why 
DCONSA? 

Perhaps the best method for describing the motivation for the development of DCONSA is 
to look at the progress of planning within the AI field. In this section, a partial historical 
overview of the planning literature is presented [38]. Included in this description are the 
origins of planning, various modifications resulting from a maturing field, and recent work 
which is directly related to our work. The section concludes by illustrating how DCONSA 

follows as a logical step in the development of the field. 

5.2.1    History of Planning 

5.2.1.1    Defining a New Field 

Since the early 1970's, researchers have been intrigued with the notion of a computer pro- 
gram which could determine the steps required to achieve a desired outcome. This research 
effort became known as planning and remains an active field of AI to this day. 

One of the earliest planners was STRIPS[25]. This planner set the model for many 
future planning systems and defined many of the terms and classic problems of the field. 
STRIPS is a linear state-based planning system which determines plans in the following 
manner. The planner is given a description of an initial world state and a goal state using 
first order predicate logic statements. The planner is also given a set of operators which 
can be used to modify the state of the world. The operators modify the world state by 
adding and deleting first order predicate logic statements used to describe world state. The 
statements which are effected by an operator are enumerated in the add-list and delete-list 
ofthat operator. Before an operator may be applied, the planner must decide if it is possible 
for the operator to be used. For instance, in order to walk into a room, the door to the 
room must be open. This is accomplished by ensuring that each statement in the operator's 

preconditions is true before the operator is applied. 

The planning strategy of STRIPS involves forward chaining, that is, by examining the 
initial world state and the goal state, STRIPS tries to find a sequence operators that will 
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transform the state of the world from the initial state to the goal state 1. In selecting 
an operator, STRIPS measures the difference between the current world state and the 
goal state and chooses an operator that reduces this difference. This strategy, known 
as means end analysis, was first presented in [24]. If the required operator cannot be 
applied because certain preconditions are not true, STRIPS establishes achievement of the 

unsatisfied preconditions as temporary intermediate goals. 

If more than one goal is described in the goal state, then conjunctive goals exist and 

STRIPS will arbitrarily order the goals and attempt to achieve them serially. For this reason, 

STRIPS is termed a linear planner. The assumption made, termed the linearity assumption, 

is that the achievement of conjunctive goals is a decoupled problem. A problem arises, 

however, if the solutions of conjunctive goals are not decoupled. The arbitrary ordering 

of goals can not only effect the efficiency of the planning system, it can even determine 

whether or not a solution is found. 

A partial solution to this problem was presented by ABSTRIPS[72] through the use 
of hierarchical planning. Levels of criticality were introduced into the STRIPS planning 
model. A criticality was assigned to each goal and to the preconditions of each operator. 
Thus, a plan could be constructed by working from the most abstract or general level to 
the most complete or detailed. However, since no backtracking between levels was allowed, 
there were still problems for which no plan could be found. 

5.2.1.2    Planning with Partial Orderings 

NOAH was the first planner to introduce the concept of planning with partial orderings [73]. 
Rather than viewing a plan as a linear series of operators, NOAH introduced the procedural 
net. A procedural net represents a plan as a network (graph) of planning states related 
by a partial ordering. The search strategy involves developing a plan through successive 
changes to the network of states. This alleviated the problems associated with placing an 
arbitrary order on the solutions of conjunctive goals. NOAH was a hierarchical planner 
as well, although it did not use criticality assignments. Instead, NOAH allowed nodes 
in the procedural net to represent different levels of detail. Nodes are initially abstract 
and represent a skeletal plan. As planning progresses, abstract nodes in the network are 
expanded to represent more detailed actions. 

Some later planners were essentially modifications to NOAH which made its search more 
efficient. NONLIN [82] used a heuristic to rank the possible expansions of a node. The 
expansion which locally looked the most promising was chosen, and the other expansions 
were saved in case of required backtracking. NONLIN also introduced a goal-state table 
which explicitly represented the dependency between actions and the goals which they 

were attempting to achieve. SIPE [87] also used this notion and added the use of limited 

JThis is opposed to backward chaining in which a planner starts with the goal state, finds an operator 
that achieves the goal state, and then attempts to satisfy the preconditions necessary to apply that operator. 
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resources as a means of pruning search. DEVISER[86] is another planner which used the 

NOAH model of planning. DEVISER introduced the use of deadlines and time windows 

for goals and actions to improve the search process. 

5.2.1.3     Constraint-based Planning 

MOLGEN[79, 80] is another hierarchical planner which introduced new ideas for managing 

the solution of conjunctive goals. The interactions between subproblems in MOLGEN 
are represented explicitly as constraints which must be satisfied in order for a plan to be 
successful. Variables included in these constraints could be instantiated immediately or 
instantiation could be delayed until sufficient information in the form of additional refining 
constraints was gathered. The concept of delaying variable instantiation until absolutely 
necessary is called the least commitment strategy and is used to avoid early uninformed 

decisions which could possibly lead to backtracking. 

MOLGEN also introduced a new form of hierarchical planning. Not only did MOLGEN 
plan by using various abstractions of operators, it also planned how it was going to plan. By 
incorporating a level of planning which selected from various planning strategies, MOLGEN 

introduced the idea of meta-planning. 

5.2.2    Planning and Distributed AI 

After MOLGEN and the NOAH family of planners, work in the planning field branched 
into many different research directions. Emphasis was placed on particular aspects of plan- 
ning depending upon individual research interests. These varying interests include plan 
recognition in natural language processing, reactive planning, real time planning, execution 
monitoring, etc. This section is devoted to recent work in planning in Distributed AI (DAI), 

for it is this work that is most closely related to DCONSA. 

Planning in DAI takes on several different meanings including systems with one or more 

of the following characteristics: 

• Distributed world state information 

• Distributed planning knowledge 

• Distributed system control 

• Plan execution by multiple agents 

• Plan construction by multiple agents 

Each of the systems described in this section is considered a part of DAI since each has 
at least one of the above characteristics. So, although the emphasis of the work presented 
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varies greatly, each makes a significant contribution to aspects of planning in DAI and is 

therefore related to DCONSA. 

5.2.2.1 Distributing a Traditional Planner 

One of the first research efforts in planning in DAI involved distributing a well known 
planner, NOAH. Distributed NOAH[16] used multiple agents to construct a plan, uniform 
planning knowledge at each agent, and investigated the passing of skeletal plans between 

agents. Control of plan construction is directed by agents that parcel out node expansion 

to other agents. Once node expansion is completed, the subordinate agents return the 

resulting expansion to the initiating node. 

5.2.2.2 Cooperation in Planning 

When multiple agents are involved in constructing a plan, an immediate concern is the 
organization of these agents. What will be the form of the architecture that defines their 
interrelationships? Will they act as equals or will a more managerial architecture be enforced 
with one or more agents directing the actions of other subordinate agents? What will be 

the cooperation strategy? 

These questions were the focus of experiments in various cooperation strategies for air 
traffic control[6]. This research pointed out that cooperation strategies fall into two cate- 
gories, organizational policies and information-distribution policies. Organizational policies 
are concerned with how a random network of agents takes on a fixed architecture at least 
for one task. Information-distribution policies determine strategies of inter-agent commu- 
nication. These policies consider whether information is broadcast to all agents or directed 
to specific agents, whether information should have to be solicited or automatically offered, 

etc. 

Other work in cooperation has concentrated on the efficient use of distributed resources 
for achieving multiple goals [13, 44, 14]. A protocol for information exchange when agents 
work as equals controlling distributed system resources was developed. A major focus of 
the work is discovering what minimum information is required for transmission among the 
agents. Agents use local information relating alternative plans with local resource usage 
to determine sets of local alternatives which are incompatible. This information is sent 
to other agents whose alternatives are tied to the local decision process. This information 
is then abstracted to the level of goals to determine incompatible goals. In this manner, 
agents exchange abstracted information regarding local resource conflicts to determine sets 

of goals whose achievement is mutually exclusive. 

194 



5.2.2.3     Modeling Multiagent Actions 

As planning efforts in DAI increased, it became apparent that a richer plan and environment 
representation was needed to express the various types of interaction that occur in multia- 
gent domains. This led to new models of representation that were explicitly developed to 

capture the interaction of multiple agents. 

Process models[32] were introduced as a means of modeling the observable behavior of 

agents. Process models are essentially finite state graphs with state transition functions 

that may be dependent upon the state of other agents or the environment. As such, they 

can be used to model interaction between agents or an agent and its environment. They 
can be used to represent sequential as well as concurrent actions. Moreover, process models 
can be used to detect interference between the actions of multiple agents or an agent and 

its environment. This is essential in developing multiagent plans. 

Another approach involves concentrating on the events that occur in a world model and 
their related constraints rather than focusing upon the transition of state. This method, 
introduced by the GEM[45] model, easily represents the complicated causal and temporal 
relations among the actions of multiple agents. Although process models emphasize agent 
actions over world state, they utilize a state-based framework. Concepts such as mutual 
exclusion, required simultaneity and priority requirements are commonplace in multiagent 
domains but are awkward to describe in a purely state-based approach. These types of 
constraints, however, are easily defined in an event-based model using first order predicate 
logic constraints. Another significant contribution of the GEM model is the localization of 
constraints to regions of activity. This bounds the constraints that must be checked at any 

point and guides the search process in planning. 

5.2.2.4    Cooperative Distributed Problem Solving 

Although cooperative distributed problem solving (CDPS)[19] is not strictly the same as 
planning for multiagent domains, it involves some of the same concepts and thus the two 
are directly related. The two major works in CDPS are the Contract Net Protocol[75] and 
PGP (Partial Global Plans) [22]. The main difference between this work and planning for 
multiagent domains is that in CDPS, the main objective is not to generate a complete plan. 

Rather, the concept of forming plans is used to guide problem solving. 

In the Contract Net Protocol, an agent decomposes a problem into its subparts and 

posts notices of work it needs accomplished to solve these subparts. Other agents in the 
system place bids for the jobs depending upon their current capabilities and workload. After 
a time out period, the originator of the job (the contractor) awards the contract to the agent 
(bidder) with the best bid. A basic assumption in this work is that the subparts (subgoals 
in the planning context) are relatively independent and thus there is no concern regarding 
interaction among the subparts. The importance of this work is its ability to dynamically 
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change the architecture defining agent interaction. Agents will take on the contractor or 
the bidder role at various points in problem solving as the needs of the system change. 

PGP has been developed for CDPS in a domain that involves analysis of distributed 

sensor data for vehicle track monitoring. The problem solving agents exchange local partial 

plans describing their current problem solving strategy. These are in turn used by the agents 
to form partial global plans which describe, at an abstract level, the planning strategy of 
several neighboring problem solvers. The partial global plans can then be used to focus 
and guide cooperative behavior among these agents. As indicated by the name, PGP does 
not create a complete plan with all interactions and details resolved. The intent is to use 

an abstract and partial view of agent problem solving state to steer future problem solving 

down a productive path. 

5.2.3    The Constraint Satisfaction Problem 

As noted in our discussions of MOLGEN and GEM, planning can be viewed as a constraint 
satisfaction problem. A distributed version of this approach is used in DCONSA, so we will 
now define the constraint satisfaction problem, and discuss related research in distributed 

constraint satisfaction. 

The constraint satisfaction problem is defined as follows. Given a set V = {Vi,..., Vn} 
of variables, a set D = {Di,...,Dn} of domains, where each domain A is the set of 
possible values for the variable Vi, and a set C = {Ci,...,Cm} of constraints which define 
compatible instantiations of values for the variables in V, find a value for each variable in 
V such that the set of values found does not violate any constraint in C. 

Yokoo et al. [93] present a distributed version of the constraint satisfaction problem 
where there is a one to one mapping of variables to agents. Each agent is responsible for 
assigning a value to its variable. The set of variables is fixed and only binary constraints 
are allowed. Constraint checking among variables belonging to distinct agents is accom- 
plished locally and assignments which turn out to be incompatible are collected in a data 
structure. This data structure is passed to other relevant agents thus allowing nonlocal 
constraint information to be incrementally formed by the problem solving agents. An algo- 
rithm is presented utilizing this information passing which the authors say can readily be 
extrapolated to a multi-variable per agent model. 

A distributed approach which does not restrict the constraint types or agent-variable 

mapping is presented in Sycara et al. [81]. In this work, each agent is assigned a set of 
variables for which it must find values consistent with a set of constraints. Agents make 
value assignments asynchronously with limited global information. The domain explored in 
this work was job shop scheduling. In this domain, agents are assigned orders to schedule 
(the variables). Orders consist of activities which use system resources (the values). Some 
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resources can only be assigned to activities by a single agent while other resources can be as- 

signed by multiple agents. These are termed, local and shared resources respectively. Many 

heuristic approaches are employed to improve local assignments and lessen the need for 

backtracking. These heuristics include the exchange of demand vectors for shared resources 

and various value and variable ordering schemes. 

One assumption made by these distributed approaches is that the set of variables and 
their possible values are fixed. While this is a valid assumption in many AI problems, it is 

not always the case in planning. Planning often involves the synthesis of new variables and 

new domains for these variables in the form of subgoal creation. 

5.2.4    Introducing DCONSA 

The development of DCONSA draws from the best ideas of these past research efforts 
and extends them in a new general framework for cooperative planning. DCONSA is an 
acronym for Distributed Constraint-based Planning for Semi-autonomous Agents. In this 
section, each of these phrases will be explained as well as how DCONSA incorporates these 

past research efforts. 

Distributed - DCONSA has a general framework which allows the modeling of dis- 

tributed world state information, distributed plan decomposition knowledge, and distributed 
system control or any combination thereof. With such flexibility, DCONSA is able to model 
agents which cooperate as equals[13, 44, 14], in a more managerial fashion [16], and exper- 

iments on a range of cooperation strategies are possible as well[6]. 

Constraint-based Planning - DCONSA uses a constraint-based representation [79, 
80] with an emphasis on events and agent behavior [32, 45]. The planning process involves 
changes to an evolving graph representing actions and their interrelationships [73, 46]. 

Semi-autonomous Agents - DCONSA allows the agents developing the plan to have 
some degree of autonomy over their own actions and the role they play. Therefore, the 
architecture of the cooperation among agents is not fixed, but is dynamic and responsive 

to the needs of the system [75]. 

To summarize, DCONSA is a cooperative planner which permits investigation into each 
of the characteristics of DAI planning as listed in Section 5.2.2: 

• Distributed world state information 

• Distributed planning knowledge 

• Distributed system control 

• Plan execution by multiple agents 

• Plan construction by multiple agents 
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5.3    The GEM Model 

The GEM model [45] (Group Element Model) has been selected as the basis for our 
environment and plan representation. The GEM's emphasis on constraint localization - 
the association of constraints with explicitly defined regions of activity - serves three im- 
portant purposes for the DCONSA system. Constraint localization directs the search pro- 

cess, bounds the set of constraints that must be checked at any point, and provides insight 
concerning the rules for distribution of environment information and planning knowledge. 

Since the GEM model plays such an important role in the DCONSA system, this section 

presents a thorough discussion of its concepts. 

5.3.1    Basic Concepts 

GEM is an event-based model for specifying the behavior of agents in multiagent domains. 
Events are used to represent occurrences in the world and the actions taken by agents. Each 
event is unique and should be considered atomic.2 Events may be parameterized and they 
may also be grouped into event types. For instance, in the world of restaurants, there exists 
an event type of the form Or der {f : Food,w : Waitress) where a specific event may be 
represented by order(steak, shirley). Throughout this discussion, types will be capitalized 
and specific instances will be represented with lower case letters. Unless a distinction is 
made, the word "event" will refer to both event types and specific event instances. 

There are three event relations which can hold between any two events. These are: 
temporal order =>, simultaneity # and causality ~>. The temporal ordering is a partially 
ordered, irrefiexive, antisymmetric, transitive relation between events. The simultaneity 
relation is a partially ordered, reflexive, symmetric, and transitive relation between events. 
The causality relation is a partially ordered, irreflexive, antisymmetric, and nontransitive 
relation between events. The causality relation is nontransitive because it models direct 
causality between two events. As such, causality necessarily implies a temporal ordering 
(A ~» B D A => B). However, if one event is causally related to a second event, the 
occurrence of the first event does not imply that the second event must eventually occur. 
Lansky has defined the ->-»■ relation to have the sense of "enabling". If two events, A and B, 
have a causal relationship, A-^> B, then every event B must be enabled by the occurrence 
of an event A. However, if every event A must eventually be followed by an event B, then 
this must be explicitly defined in the domain description. This can be accomplished with 
a first order predicate calculus statement of the form: VA3B : A^> B. This sense of the 

causal relation is adopted in the DCONSA system. 

Events are grouped into regions of activity called elements and groups. Elements identify 
regions of sequential activity - i.e. events which are members of the same element must be 

2If reasoning about temporal intervals is to be modeled, a single event may be comprised of a starting 
event and an ending event. 
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sequentially ordered. Every event must belong to a unique element. Groups, on the other 
hand, are used to identify regions of causal or required simultaneous activity. Groups 
consist of elements (and consequently their member events) and other groups. There are 
no limitations set upon the structural relationships among the regions that groups identify. 

These regions may be disjoint, strictly hierarchical, or they may overlap to varying degrees. 
As with events, elements and groups may likewise be collected into element and group types. 

The same naming conventions will apply. 

Groups not only identify regions of causal activity, they also limit "causal flow". The 

structure formed by their interrelationships imposes implicit causal restrictions between 
events. Causal relations are directed relations. Causal relations may be directed or "flow" 
from within a group to events outside its group. However, causal relations may not flow 
from outside a group to the events within its borders. A simple analogy is the scoping of 

variables in the structure of programming code. 3 

Figure 5.1 illustrates some of the concepts presented thus far. Elements are enclosed 

by curved boundaries and groups by straight boundaries. The areas controlled by two 
assembly line robots are represented by groups gl and g2. The "realm" of robotl includes 
a robotic arm, arml, and two assembly tools, tooll and tool2. The realm of robot2 includes 
a robotic arm, arm2, and one assembly tool, toolS. Since robotic arms perform actions in 
a sequential order, they are modeled as elements. The areas controlled by the assembly 
line robots are modeled as disjoint groups because events involving their respective tools 
can only be causally related to events (actions) of their respective robotic arms. Group 
g3 models the coordinated activities of arml and arm.2 such as the simultaneous actions 
required in passing a product between the arms. The alarm is modeled as an element as well, 
since its "ringing" events must be sequentially ordered. The alarm element is not placed in 
a group with any of the other elements because it cannot cause any of the events associated 
with these elements to occur. Note however, that there is no group that encompasses the 
alarm element. Thus, there is no restriction on causal flow directed from the other elements 
to the alarm. This allows events (e.g. accidents) involving the robotic arms to cause the 

alarm to ring. 

5.3.2    Execution Modeling 

Using these basic concepts, a structure is required which models the possible execution of 
specific events in a defined environment. This structure is called a world plan. A world plan, 
W, is a formal structure containing a set of event instances, a set of element instances, a set 
of group instances, the interrelationships among events, and the transitive subset relations 

3To simplify this notion, a causal relation may exist between two events only if they belong to a common 

group in DCONSA. 
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Figure 5.1: Robotic Assembly Line World 

among events, elements, and groups. 

W =< E, EL, G,~>, =>, T±, €> 

• E = A set of event instances. 

• EL = A set of element instances. 

• G = A set of group instances. 

• ~»: (E x E) The causal relation between the events. It is a partial, irreflexive, anti- 

symmetric, nontransitive relation. 

• =>: (E x E) The temporal ordering among the events.   It is a partial, irreflexive, 

antisymmetric, transitive ordering. 

• v^: (E x E) The simultaneity relation between the events.  It is a partial, reflexive, 

symmetric, transitive relation. 

• e: (E x {EL, G}) The membership relation between the events and the elements or 

the events and the groups. 

A world plan is the "upper tier" of a two level model. At the lower level, one can view a 
world plan as all the possible executions of that plan. When no explicit temporal ordering 
exists between two events in a world plan, the lower level interpretation of that world plan 
will include a plan for each possible ordering of those two events. The world plan is thus a 

compact representation of many plans. 
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g3 

(  alarm  ) 

Figure 5.2: Example World Plan 

Returning to the assembly line robot example, consider Figure 5.2 which is a graph- 
ical representation of a possible world plan. As before, elements are represented with 
curved boundaries and groups are represented with straight boundaries. Events are repre- 
sented graphically as small squares. This world plan models the execution of four events: 
opl(tooll), op2(tool3), op3, op4. The events op\{tool\) and op2(tool3) can be interpreted 
as assembly operations involving locally available tools. These local operations must be 
completed before two coordinated events, op3 and op4, occur. 

Since there is no temporal relation between events opl(tooll) and op2(tool3), there are 
three possible executions of this world plan: 

1) 1st opl(tooll) 2nd op2(tool3)     3rd op3, op4, 

2) 1st op2(tool3) 2nd opl(tooll)    3rd op3, op4, 

3) 1st opl(tooll), op2(tool3)     2nd op3, op4; 

opl(tooll) may occur before, after, or simultaneously with op2(tool3). 

Each of these possible executions is termed a valid history sequence (VHS). A history, 
a, of a world plan is a prefix of that world plan. A history is a set of events and their 
relations which have occurred up to a point in the execution of a world plan. If two events 
are temporally ordered, they must enter a VHS in different histories. On the other hand, if 
two events occur simultaneously, they must enter a VHS in the same history. To illustrate, 

201 



öl «0 <*i aJ 
S2 Q0 <*l aJ 
S3 QO aJ OLk 

VHS 1 above has four histories: 4 

• a0:{} 

• cei:{opl(tooll)} 

• aj:{opl(ioon),op2(ioöZ3)} 

• ak-{opl(tooll) ,op2(tool3) ,opS,opi} 

A VHS is called complete if its first history is empty. There are three complete valid his- 

tory sequences containing each event in the world plan depicted by Figure 5.2. Introducing 

ai:{op2(tool3)}, these three VHSs can be described by: 

Oik 

Formally, a sequence of histories, S : ao, ai,... is a VHS if and only if [45]: 

1. The sequence is monotonically increasing: 

ao C ai C 0.2 ■ ■ ■ 

2. Temporally ordered events must enter the sequence in distinct histories: 

(V<*i eS,i> 0){Vej,ek G {a{ - aj_i})-i[ej => ek) 

3. Simultaneous events must enter the sequence in the same history: 

(Vej,ek)[ej ^ ek D (Vai)[ej € Oj D ek G ai\] 

As stated earlier, elements and groups define regions of activity. The constraints on 
activities within these regions are described by user defined constraints. Two types of 
constraints are handled: first-order temporal logic formulas, and constraints expressed as 

regular expression patterns. 

The regular expression constraints are used to express patterns of event occurrences 

in a domain. Constraints of this type can only be applied to a set of events which are 
totally ordered. A qualifying formula is used to determine which events are relevant to the 

constraint. These events and their relations are then checked against the pattern described 
by the regular expression of the constraint.   This regular expression may use the normal 

4For brevity, only the events are listed here.   Remember, however, that each history also includes the 
relations among these events. 
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operators of concatenation, Kleene closure, positive closure, and union, over a string of 

events and event relations. 

The first-order-temporal logic formulas may use the standard connectives and quanti- 

fiers: A,V,-i,D,«=>,V,3,3! (unique existence). Event, element, and group variables 
may also be used in these formulas with domains of event, element, and group instances 

respectively. Nontemporal formulas may be applied to a single history (e.g. a (= Q) 5. 
Predicates which may be evaluated in these nontemporal formulas include: 

occurred(e)    Event e is in the history. 

e G EL Event e is in the history and is a member of element EL. 

e G G Event e is in the history and is a member of group G. 

el => e2 el and e2 are in the history and el occurs before e2. 

el ^ e2 el and e2 are in the history and occur simultaneously. 

el ~» e2 el and e2 are in the history and el causes e2. 

First-order temporal logic formulas may be applied to history sequences using the 
linear-time temporal operators D henceforth, O eventually, O next, |J until, A before, 

fi until-now, and -e- back-to. Note that VHSs have the tail closure property: if S : 
a0,ai,... ,ai-i,ai,ai+i,... is a VHS, then S[i] : ai,ai+i,... is a VHS. Given a history 

sequence, S : ceo,ot\,..., these temporal operators are defined as [45]: 

• P is henceforth true for a sequence S[i] if P is true of every tail sequence of S[i). 

S\i] |= DP = (Vj > i)S[j] \= P 

• P is eventually true for a sequence S[i] if P is true for some tail sequence of S[i]. 

S\i] \=OP= (3j > i)S[j] \= P 

• P is true next for a sequence S{i] if P is true of the first tail sequence of S[i]. 

S\i] \= O-P = S[i + 1] f= P 

• P is true until Q for a sequence S[i] if 1) P is true of every tail sequence of S[i], or, 
2) there is some tail sequence of S[i], S[k], in which Q is true and P is true of every 
tail sequence S[j] where i < j < k. Note, nothing is stated about the truth of P for 

j>k. 

S[i\ ^P[JQ = (yj> i)S[j] (= P V (3k > i)S[k] HQA (Vj, i < j < k)S[j] h P 

• P is true before for a sequence S[i] if P is true of the previous tail sequence of S[i\. 

S[t\ \=AP = S[i -1}\=P 
5This is read:   "alpha models Q". 
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• P is true until now for a sequence S[i] if P is true of every previous tail sequence 

S[i\:S[0],...,S[i-2],S[i-l],S\i]. 

S\i]\=5 P = (Vj,0 < j <i)S[j}\= P 

• Q backJo P is true for a sequence S[i] if 1) Q is true until now S[i], or, 2) there 

exists a sequence S[j], j < i, such that P is true of S[j] and Q is true of every 
sequence S[j + 1], S[j + 2],..., S[i]. Note, nothing is stated about the truth of Q for 

S[0],...,S[j}. 

S[i\ \= P £=fi Q V (3j, 0 < j < i)S[j] $=PA (\/k,j <k< i)S[k] \= Q 

• A nontemporal formula Q is true for a sequence S if it is true of the first history of 

the sequence S. 

S\=Q = a0\=Q 

Constraints in the form of first-order temporal logic constraints can be applied to a world 
plan W by applying them to each of its complete, valid history sequences. The world plan 
W satisfies a constraint P, if and only if P is satisfied by all of its valid history sequences: 

W \= P = (V VHS S of W)S \= P . 

5.3.3    Environment Representation 

A GEM domain description is the representational definition of a particular problem's 
elements, groups, and the constraints on events associated with these elements and groups. 
Each element definition includes descriptions of the events which may occur within that 
element. Group definitions include descriptions of the elements and groups which they 
encompass. Also included in each element and group definition are domain dependent 
constraints. These localized constraints only pertain to those events which are associated 
within the scope of the element or group being defined (the relevant region). At any 
particular point in the planning process, only those constraints relevant to the current 

region involved need to be checked. 

5.3.3.1    Element Definition 

To reiterate, elements define regions of sequential activity. Elements will most often be 
used to model objects which can perform actions or make events happen. 6The definitions 

6In GEM, physical, inanimate objects are defined as elements that can perform no events. In DCONSA, 
the existence of such objects are denoted by logic statements. 
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of such elements must include an enumeration of the events associated with these elements. 

Also included in these definitions will be additional constraints on these associated events. 

Returning to the assembly line robot example, the robotic arms, arml and arm2 may 

be defined in the following manner. For this example, we assume that every 0p3 must be 

preceded by an Opl and every 0p4 must be preceded by an 0p2. 

RobotArm = ELEMENT TYPE 

EVENT TYPES 

Opl(t:ToolA) 

0p2(t:ToolB) 

0p3 

0p4 

CONSTRAINTS 

(Ve3 : Op3)(3!el : Opl)[el => e3] (Ve4 : Op4)(3!e2 : Op2)[e2 => e4] 

END RobotArm 

arml = RobotArm ELEMENT 

arm2 = RobotArm ELEMENT 

5.3.3.2     Group Definition 

Group descriptions are used to define regions of causal or required simultaneous activity. 
Thus, they can be used to model regions of directed or cooperative behavior. In addition, 
groups can be used to restrict causal flow among events in an environment. Thus, groups 
can be used to conceptually separate areas of independent activity. 

As with elements, group type definitions may be used to define a form that several 
identical group instances may take. 

To illustrate, consider the realms of the robots of the assembly line example and their 
cooperative behavior. Here we assume that every 0p3 must occur at the same time as an 

Opl 

RobotRealm = GROUP TYPE  (a:RobotArm) 
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END RobotRealm 

gl = RobotRealm GROUP (arml) 

g2 = RobotRealm GROUP (arm2) 

g3 = GROUP (arml,arm2) 

CONSTRAINTS 

(Ve3 : Op3)(3e4 : Op4)[e3 # e4] A (Ve4 : Op4)(3e3 : Op3)[e3 ^ e4] 

END g3 

5.3.3.3    GEMPLAN 

GEMPLAN is Lansky's planner that uses the GEM model. DCONSA's localized search 
method is based upon that of GEMPLAN. Therefore, we will present GEMPLAN's localized 
search method in the following paragraphs. For a more detailed discussion of GEMPLAN's 
localized search, the reader is strongly encouraged to see [47]. 

5.3.3.4    The Localized Search Method 

At the region level, the search method of DCONSA is based upon that of GEMPLAN; that 
is, search is viewed as a localized constraint satisfaction problem. The search is "localized" 
because when search occurs in a region, only those constraints associated with that region 
are checked, and only events and event relations belonging to that region (and its subregions) 
are considered. Goals and task decomposition knowledge are represented as constraints to 
be satisfied by "fixes".7 A fix is the method by which a constraint is satisfied and may 
include the addition of events and/or temporal relations among existing events in a plan. 

The general form of a local search in a region can be viewed as a loop. With each pass 

through the loop, some region constraint which is not already satisfied by the region plan 
is selected. Fixes for this constraint are applied until one is found which alters the region 
plan in such a way that the constraint is satisfied. 8 This loop is repeated until all region 

7These are called "resolvers" in DCONSA. 
8GEMPLAN allows the user to specify a search method with a depth-first search as the default. DCONSA 

has been implemented with a depth-first search. 
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Figure 5.3: Example of a Local Search Space 

constraints are satisfied. Thus, a region search space is a tree of nodes in which each node 
represents an attempt to verify the region constraints given the current region plan (see 
Figure 5.3). Each branch in the region search space represents the application of a fix to 
bring about modifications to the region plan. The branching factor of the region search 

space depends upon the number of possible fixes for each constraint. 

The fixes used to satisfy constraints add events and event relations to the plan. Search 
must also extend to regions which could possibly be affected by plan modifications because 
the search process must ensure that the local region constraints of these affected regions 
are satisfied as well. For example, if the resolver includes adding an event to a subregion, 
that subregion must be searched. To illustrate, consider the graphical representation of the 
region gl in Figure 5.1. If during search in gl, a fix is applied which adds an event to arml, 
the plan of gl is obviously modified. Thus, the constraints in gl must be checked against 

the new plan. 

In addition, once search is completed in a region, the regions which encompass that 
region must be explored. This occurs because the plan of a region is a component of 
the plans in each "super"-region which encompasses it. Furthermore, information about a 
region's plan must be updated in its encompassing regions before search can proceed there. 
Returning to our example using Figure 5.1, the region plan of arml is a component of the 
region plans of gl, and g3. Thus, any modification to the region plan of arml, also induces 
changes in the plans of gl and g3. Such a modification must be reflected in the region plans 
of these super-regions and these new plans must be checked with their respective region 
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Figure 5.4: Incarnations in the GEMPLAN Search Space 

constraints. 

Thus, the search process for a plan, can be viewed as a series of region searches in region 
search trees. This process continues until the constraints in every region are satisfied or 

until all fixes have been tried. 

During the search for a plan, the local plan of a given region may be visited multiple 
times. Each visit of a search to a region is called an incarnation of that search. Each 
incarnation will produce its own portion of the search space within that region. When 

backtracking occurs in a region, it is confined to the current incarnation. 

To illustrate, consider Figure 5.4 showing an example of search spaces in group gl and 
Arm arml. In this diagram, the application of the fix that transforms gl's plan from Plan-i 
to Plan-k, involves the addition of an event(s) to the plan of Arm arml. This induces an 
incarnation of search in arml beginning at node 3, the last node of the previous incarnation, 
and completing at node 4. Upon completion of this incarnation of search, search will 
continue in gl at node 2. If a failure occurred during the incarnation of search induced in 
arml, the search process would backtrack as far as node 3, the head of the incarnation, and 
then the backtracking would stop in arml. Backtracking would then proceed at node 2. 
Thus search flows through the search trees in the proper reverse order during backtracking. 

This concludes our discussion of the basic points of the GEM model and its related 
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planner, GEMPLAN. In the following sections, we will begin our discussion of how DCONSA 

uses these concepts as a basis and expands upon them. 

5.4    Creating a Distributed Planning Architecture 

DCONSA is designed to develop plans in a distributed environment. This environment con- 
sists of semi-autonomous agents, each having local knowledge and control of local resources. 
These agents must be able to coordinate individual choices and actions so as to cooperate in 
achieving global goals. We achieve this coordination by organizing the domain knowledge 
in a formal structure which is distributed across a set of planning agents. 

In this section, we describe how we can exploit the GEM model to create a distributed 
architecture from a formal organization of the planning problem. This formal organization 
is not dependent upon the number of existing planning agents. Thus, using this formal 
organization, we can vary the number of agents used in the distribution. Furthermore, the 
mapping of the organization to a fixed set of agents can be varied as well. This means we 
can use DCONSA to model different planning scenarios without changing the underlying 
problem representation. This flexibility is one of the contributions DCONSA makes to the 
area of Distributed Planning. In the DVMT [20], the mapping of problem representation 
to problem solving agents is tied to geographic considerations. MACE [28] leaves problem 

representation up to the user. 

5.4.1    Looking at Regions in a Different Light 

In GEM, regions are used to improve the centralized search for a plan by focusing the 
constraint satisfaction problem. Regions accomplish this by ensuring that constraints are 
checked against only those portions of the plan which are relevant to them. Without regions, 
all constraints would be checked against the entire plan. In DCONSA, regions conceptually 
serve a second purpose. Regions can be viewed as a means of organizing the constraint 
satisfaction problem into a distributed planning architecture. 

When viewed in this way, domain knowledge, formulated as a constraint satisfaction 
problem, is organized using the concept of a region. In this organizational view, a region is 
a conceptual means of encapsulating a set of events with a set of constraints that relate those 
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events. An element, in effect, becomes a primitive unit of organization, since every event 

belongs to a unique element. The set of constraints which pertain only to the events of a 

single element are included as part of the element description. To reason about constraints 

which relate events in distinct elements, we need to incorporate a higher level of organization 

- a group. Remember, a group is a set of regions (elements and/or groups) and a set of 
constraints which relate events in its member regions. Thus, by using primitive and higher 
order units of organization, i.e. elements and groups, a planning problem can be structured 
as a set of regional constraint satisfaction problems. 

Using this view of regions as organizational units, we can represent distributed domain 

knowledge in a formal way by distributing the given set of region definitions in a domain 
description to a collection of planning agents. To create a flexible planning architecture, we 

do not restrict this distribution to a "one region per agent model". 9 On the contrary, an 

agent may plan for any number of the regions included in a domain description. 10 Each 
group definition must include an enumeration of its subregions, but the definitions of these 
regions are not required to exist at the same agent as the group definition. Similarly, each 
region definition must enumerate the regions which encompass it, its "super"-regions, but 
again, these regions are not required to exist at the same agent as their common subregion. 

5.4.2    The Multi-table Blocks World 

In this section, we introduce the Multi-table Blocks World n to demonstrate the definition 
of a domain specific problem and its distribution among planning agents. The Multi-table 
Blocks World consists of multiple robotic arms working over multiple table surfaces. A 
robotic arm may have sole access to a table surface, or it may share access to a table 
surface with a number of other robotic arms. 

The actions of an arm over a specific table surface must be fully temporally ordered. 
Therefore, we define this region of activity as an element. Furthermore, we define two types 
of events which can be executed by an arm over a table surface: Pick(X) and Put(X, Y). 

9Lansky suggests that GEMPLAN, her GEM related planner, could be distributed[46]. However, from 
the context of the statement it is evident that the flavor of the suggested distribution is different from that 
of DCONSA. Lansky's suggested distribution involves distributing each regional search space to a separate 
processor. This distribution still involves an essentially centralized control of search with agents having 
direct access to the local plan structures of other agents (through data inheritance) and a global view of 
world state. 

10Note however, that if one agent plans for all the given regions, a centralized version of the problem is 
modeled. 

11 An extension of the Blocks World domain presented in [46] with multiple table surfaces. 
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Figure 5.5 shows an informal definition for a TABLEARM element type. 

TABLEARM Element Type 
EVENT-TYPES:Pic/c(X),Pui(X, Y) 
CONSTRAINTS: 

1. All Pick(X) events and Put{X,Y) events over the table surface must be temporally 
ordered. 

2. All movement of the same block b, Pick{b) and Put(b, Y), must occur before anything 
is stacked on b, Put(X,b). 

Figure 5.5: Table-Arm Element Type Definition 

Now that we have a means of representing the actions of a robotic arm over a table 
surface, we can model the robotic arm itself as a composite of its actions over each table 
surface that is within its reach. To accomplish this, we define an ARM group type whose 
member regions are tablearm elements. The definition of this group type is found in Fig- 
ure 5.6. The constraints in the arm definition are similar to the constraints of the tablearm, 
but they differ in the following manner. Whereas Constraint #2 of the tablearm definition 
ensures that movement of a particular block over a single table surface must occur before 
anything is stacked upon the block, Constraint #2 of the arm definition ensures the same 

condition over multiple table surfaces. 

ARM Group Type 
CONSTRAINTS: 

1. The arm must alternate Pick(X) events and Put(X,Y) events. 

2. All movement of the same block b, Pick(b) and Put{b, Y), must occur before anything 
is stacked on b, Put(X,b). 

Figure 5.6: Arm Group Type Definition 

We also define a TableRealm group which describes the actions of the various TableArms 
over a Table. A TableRealm encompasses a table surface and the set of tablearms that can 
reach that table surface. The definition for a TableRealm group type is shown in Figure 5.7. 
We need this region definition for three reasons. First, we define goal conditions in terms 

of configurations of blocks over particular table surfaces. Thus, we define a constraint that 
ensures that these goal conditions are met. We also need to ensure that the mutual use 
of a block by different arms over the same table is coordinated so that nothing is stacked 
on the block until after all movement of the block is complete. The third reason we need 
this region, is to determine whether blocks are clear before they are picked up or put down. 
In the case where multiple arms have access to a table surface, the "clear"-ness of a block 
is effected by the actions of all the arms that can reach that block.   Thus to check this 
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condition, we need a region that encompasses all the actions of arms over a table surface - 

the TableRealm. 

TABLEREALM Group Type 
CONSTRAINTS: 

1. All goals of the form On(X,Y) are achieved. 

2. All movement of the same block b by the arms over the table, Pick(b) and Put(b, Y), 
must occur before anything is stacked on b, Put(X,b). 

3. For every Pick(X) event, X is clear before the Pick(X) event occurs. 

4. For every Put(X, Y) event, Y is clear before the Put(X, Y) event occurs. 

Figure 5.7: TableRealm Group Type Definition 

Continuing our description, we now define a region that describes the interaction of the 
arm with the blocks that are on the table surfaces within its grasp. Again, in the case of a 
table surface that has multiple arms over it, determining whether a block is within an arm's 
grasp depends upon the actions of other arms. Therefore, this region, called a RobotRealm, 
will consist of an Arm, the composite TableArm elements of the Arm, each TableRealm to 
which the Arm has access, and each TableArm and Table of the TableRealms. The definition 

is given in Figure 5.8. 

ROBOTREALM Group Type 
CONSTRAINTS: 

1. For every Pick(X) event, there must exist a Put(X,Y) event such that Pick(X) ~» 
Put(X,Y). 

2. For every Put(X,Y) event, there must exist a Pick(X) event such that Pick(X) ~> 
Put{X,Y). 

3. For every Pick(X) event, before Pick(X) occurs, X must be over a table within reach. 

4. For every Put(X,Y) event, before Put(X,Y) occurs, Y must be over a table within 
reach. 

Figure 5.8: Arm Group Type Definition 

For the purpose of illustration, we use an example that involves five arms and nine table 
surfaces (see Figure 5.9). Table tl can only be reached by Arm arml, t2 by only armS, 
etc. Table tl2 can be reached by arml and arm£, 123 by arm2 and arm3, etc. Goals in 
this example involve stacking blocks on various table surfaces and other blocks. The group 
and element organization is presented graphically in Figure 5.10. Element regions are 
represented by circles, and group regions are represented by polygons. To help distinguish 
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arml 

Figure 5.9: Multi-table Blocks World Example 

various regions in this particular diagram, groups are drawn with solid, dashed, or dotted 
lines. These differing borders have no significance in this diagram. 

5.4.3    Distributed Architectures for the Multi-table Blocks World 

Many distributions for our example problem are possible. In the following paragraphs, we 

describe a few planning scenarios and show possible distributions to model them. 

One can imagine modeling a situation where each robot plans its own actions and 
each table has a manager that coordinates the actions of the arms that work over its 
surface. This situation can be modeled with the distributed organization shown graphically 
in Figure 5.11. This distribution requires 14 agents, five for the RobotRealm groups and 
nine for the TableRealm groups. The dashed regions in the architecture represent regions 
whose relation with local regions is known (subregion or super-region), but whose definition 
resides at another agent in the system. This convention will be followed in the remaining 
distributed architecture diagrams in this section. In this distributed organization, there 
is much potential for parallel activity due to the number of planning agents. However, 
interaction among agents will be high, likewise communication costs, since no planning 
agent has a complete view of the regions for which it needs to plan. 

Another possible scenario involves eliminating the managers and appointing one of the 
robots as the coordinator of actions over the table. Two possible ways to model this 
situation are shown graphically in Figure 5.12 and Figure 5.13. Both distributions require 
five planning agents. In this scenario, there is less potential for parallelization due to fewer 
planning agents. However, since each planning agent has a more complete view of the 
regions for which is to plan, agent interaction will be lower and thus communication costs 

will be less. 
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Figure 5.10: Multi-table Blocks World Example Organization 
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We can also model a third situation where again, each robot plans its own actions, 
but the coordination of the arms is centrally controlled. This distribution requires six 
DCONSA agents and the organization is shown graphically in Figure 5.14. In this scenario, 

we can observe the effects of centralized management on planning parallelization and agent 

interaction. 

There are, of course, many more possible distributions. The point to observe is that 

DCONSA has enough flexibility to model many planning scenarios for a given problem 

description. These scenarios can involve changing the number of planning agents, or fixing 

the number of planning agents. In all cases, the planning scenario can be modeled without 

changing the underlying problem description. 

5.5    The Distributed Search for a Plan 

In this section, we focus upon the distributed search for a plan. In DCONSA, this search 
takes the form of a distributed constraint satisfaction problem where constraints and plans 
are organized in a distributed architecture, as described in section 5.4. Search control is 
decentralized. As the search process moves from one agent to another, control of the search 
is passed as well. In addition, to exploit the multiagent power inherent in a distributed 
system, parts of the search are conducted in parallel. Finally, when two agents interact 
during the search for a plan, they participate in a negotiation to determine how they will 

interact. 

In the following sections, we discuss how we can integrate decentralized control, parallel 
searches, and interagent negotiation, while guaranteeing that the planning process proceeds 
in a coherent manner. This combination of features in a distributed planning system is 

unique to DCONSA. 

5.6    Distributing a Localized Search 

In this section, we first describe a slight difference in DCONSA's use of incarnations and 
then we describe how GEMPLAN's localized search may be distributed. Distributing the 
localized search requires that we make explicit the record of where the search process has 
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Figure 5.15: Incarnations of Search Space in DCONSA 

been and where the search process needs to go. In this section, we present the methods we 
have developed for conducting this type of localized search in a distributed fashion. 

5.6.1    DCONSA's Incarnations 

In DCONSA, a new incarnation is created each time that search is conducted in a region. 
This includes a region search induced by a super-region, as well as a region search that is 
interleaved with subregion searches. In GEMPLAN, a new incarnation is created only when 
search is initiated by a super-region. A region search that is interleaved with subregion 
searches is considered a single incarnation. We have eliminated this distinction so that 
multiple visits of a search to a region are treated in a uniform fashion. When the search in 
a region is reincarnated, the first node in the new incarnation is a copy of the last node in 
the last incarnation. In this way, search state is carried over from one incarnation to the 
next. When backtracking occurs, it is confined within a single incarnation. 
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To illustrate, consider the search spaces presented in Figure 5.15 and the graphical 
representation of the regional architecture of Figure 5.16. In this example, search begins in 
TableRealm trealml at node 1. The application of resolverl modifies the plan of TableArm 
tlal. Thus search in trealml stops at node 2, and the new plan of tlal is checked with its 
region constraints. The flow of search between region search spaces is represented by the 
dashed arrows. This search creates the search space of incarnationl beginning at node 3 
and ending at node 4. The search now returns to trealml at node 2'. Node 2' is a copy of 
node 2, that is, they are essentially the same node, represented by the dotted line, except 
that node 2' is at the head of a new incarnation. The application of resolver2 modifies the 
plan of tlal, and thus search in trealml stops again. A new incarnation is created in tlal 
with node 4', a copy of node 4, at its head. If the search fails at node 6, the search will 
back up to node 4'. If the search fails here as well, the search process will stop backtracking 
within the search space of tlal. The backtracking process will proceed at node 5. 
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5.6.2    The Distributed Version 

In a centralized planner such as GEMPLAN, a record of where the search process has been 
and where it needs to go can be maintained implicitly in the call stack with a recursive 
local search function. In a distributed planner such as DCONSA, this record needs to be 
explicit in order to facilitate transfers among regional search trees which exist in distinct 
planning agents. In DCONSA, as a search process progresses from region to region, a list 
of regions whose local constraints must be checked is maintained and associated with that 

search process. This list is implemented as a stack and serves as a control structure for the 
search. This structure is termed a region stack and each search has a region stack associated 

with it, guiding its progress through the distributed architecture. 

To illustrate, consider a search in the region arml in Figure 5.17. If search in this 

region results in the addition of an event, say Pick(a), in the subregion tlal , then search 
in arml is suspended so that the affected region, tlal, can be searched. Arml is pushed 
onto the region stack and then tlal is pushed onto the region stack. In this way, search will 

eventually return to arml. 

Once the search in tlal is complete, all super-regions of tlal are pushed onto the region 
stack since the addition of the event Pick(a) has changed their plans as well. In this 
instance, rrealml is pushed onto the the stack (we need to ensure that a is within reach), 
and trealml are pushed on the stack (we need to ensure that a is clear before it is picked 
up). Thus, the search process is guaranteed to move through all regions which could be 
affected. To limit the potential size of the region stack, a region is only pushed onto the 
stack if it is not already present. 12 This bounds the length of the region stack by the 

number of regions in the system. 

The region stack we have described controls inter-region coordination during search in 
the forward direction, but it does not aid backtracking in the case of a regional search failure. 
Recall that a distributed search process can be viewed as a series of regional searches in 
regional search trees. One way to direct backtracking would be to associate a second region 
stack with each search process to record the list of regions where that search has been. One 
drawback of this method is that the length of this "backtrack" stack can not be bounded 
in the same manner as our original region stack. For this reason, we employ a different 
method to direct backtracking. Each agent maintains a variable, *region-transfers*, which 

is a list of "ties". A tie is a data structure of the form: 
12Thus, since arml was already on the region stack, it was not pushed on with tlal's other encompassing 

regions in the previous example. 
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Figure 5.17: Example Region with Nonlocally Defined Subregions 

223 



(region-id . incarnation-node). 

The region-id indicates the region which was searched immediately before the portion of 
the search space in the agent headed by the node incarnation-node. Thus, if a search 
backtracks to the beginning of an incarnation, the agent can look up the tie associated with 
this incarnation and determine the region where search needs to backtrack. When search 
backtracks to this region, the last node visited in its most recent incarnation is revisited. 

One other consequence of distributing GEMPLAN's localized search strategy is that 

regions may no longer have direct access to the plans of their subregions. This occurs when 

some of a region's subregions reside at other agents in the system. As noted previously, 

changes that are made in the local plan of a region, must be reflected in that region's 

encompassing regions before search is carried out in those regions. For example consider 

the RobotRealm rrealml in Figure 5.17. When changes occur in the region plans of any 
of rrealml 's subregions, those modifications must be reflected in the plan of RobotRealm 
rrealml before rrealml's search returns to RobotRealm rrealml. This includes modifications 
to the plans of the nonlocally defined subregions TableRealm trealml and TableArm tlal. 

One possible strategy for propagating any changes is to update the plan in a region 
each time the search in one of its subregions completes. Another strategy is to update a 
region's information about each of its subregions' plans just before the region is searched. 
The second strategy has the advantage that when multiple subregions of the same region 
have local plan changes, the region is only updated once. Because this potentially saves 
message traffic within the system, we have implemented this strategy in DCONSA. 

5.7    Exploiting Multiprocessor Power 

DCONSA, as it has been described thus far, makes it possible to model interaction among 
executing agents as well as interaction among agents involved in the distributed process 
of plan development. So far however, we have only described distribution of the localized 

search of GEMPLAN. Thus, the process that has been described involves the serial search of 
region search spaces which are distributed among planning agents. It would be advantageous 
to exploit the inherent capability of a multiagent planning system to conduct the search in 
parallel. In this section we describe a distributed parallel search strategy that employs a 

two stage planning process. 
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5.7.1    A Two Stage Approach 

The basic strategy for exploiting the multiprocessor power of our multiagent planning sys- 
tem is to plan for conjunctive goals in parallel and then to combine these plans into one 
coherent plan. This is accomplished by partitioning the regional constraints of each region 

into two sets - constraints that pertain to the development of a plan for a single goal (goal 
constraints), and those constraints that deal specifically with the interaction of plans for 

conjunctive goals (interaction constraints). As an example of an interaction constraint, 
consider two goals to configure blocks: on(a,b) and on(b,c). The plan pick(a) ~» put{a,b) 
will achieve the first goal and the plan pick(b) ~» put{b,c) will achieve the second goal. 
However, since both plans involve the movement of block b, events in these plans must be 
timed properly to create a coherent overall plan. The regional constraint which ensures 
that stacking events for these conjunctive goals occur in a logical order is an example of an 
interaction constraint. 13 In addition to partitioning the regional constraints, each regional 
search space will also be partitioned. A distinct search space is created each time a region 
plans for a new goal. Thus, a region will maintain a search space relative to each goal for 
which it has created a local plan. This may or may not include every conjunctive goal in the 
system. Furthermore, a separate search space will be created for the combination of these 
local plans. To illustrate, consider Figure 5.18 which depicts an agent, al, which plans for 
three regions, rl, r2 and r3. Each of these regions has a distinct search space pertaining 
to each goal for which it has constructed a local plan, and a distinct search space for the 

combination of these plans. 

In the first stage of planning, each agent which has a region with a goal will initially 
assume responsibility for developing a plan for that goal. Each of these searches will pro- 
ceed in parallel as described previously, except that regional interaction constraints will be 
ignored. In addition, events and event relations will be associated with the goal that they 
are intended to achieve. Thus, when an agent plans for a goal in a particular region, it 
will use the regional search space created for that goal and check constraints using only 
those events and relations which are locally associated with that goal. Once a plan for each 
conjunctive goal is found, the agents move into the second stage of planning. 

During the second stage of planning, each region combines the local plans it has con- 
structed thus far. This is accomplished by a serial search of each region's "interaction" 
space. During this search, the only constraints which are considered are those pertaining 
to the interaction of plans for conjunctive goals. These constraints are tested using the 
events and event relations of every local plan. When the last of the stage one searches 
completes, the agent which was directing this search consults with the other system agents 

13This constraint appears in [46], pg 46. 
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Figure 5.18: Conceptual View of Partitioned Search Spaces in an Agent 

to initialize the region stack for the interaction search. This region stack initially contains 
every region which was given a goal at the time of that region's initialization. The agent 
which constructs this region stack finds out which agent plans for the first region on the 

stack and initiates the serial interaction search. 

Interactions among plans for distinct goals should be resolved at the lowest level regions 
first and from there, the interaction search should continue up the regional architecture. To 
achieve this, DCONSA permits the interaction search to occur in a region only if the inter- 
action search has already successfully completed in all of that region's subregions. Before 
a region is searched in the interaction space, this condition is checked. If the interaction 
search has not been completed at some number of subregions, the region is pushed onto 
the list of regions to check, and then the appropriate subregions are pushed onto this list 
as well. This gives the interaction search the desired form. 

If the search in the interaction space is successful, then a plan which achieves each of the 
conjunctive goals will have been created. A search failure in the interaction space can have 
different consequences depending upon the characteristics of the domain being considered. 
If there is only one possible plan to achieve each of the conjunctive goals, then a failure in 
the interaction search space indicates that no plan exists which will solve the complete set 
of conjunctive goals.   If at least one of the conjunctive goals has more than one possible 
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Figure 5.19: An Example Leading to Redundant Events 

plan, then the search space should be revisited using a different combination of plans. 

5.7.2    Working Out Some Details 

One consequence of planning for conjunctive goals in parallel is that redundant events can be 
created. For example, consider the goals and configuration of blocks shown in Figure 5.19. 
Planning for these goals in parallel will result in two plans: pick(evl,b) ~> put(ev2,6, tl) 
and pick(evS, b) ~> put(ev4, b,tl) => pick(ev5,a) ~> put(ev6, a, c). 14Obviously, when these 
two plans are combined into one overall plan, the redundant pick and put events using b 
should be merged. The first time an element region is visited in the interaction search, 
the redundant events in that region are merged. A set of events is redundant if all of the 
events are the same event type, their parameters are identical (except for their ids), and 
if they are unordered with respect to one another. This last condition ensures that no 
temporal relations are violated when these events are merged. To merge these events, a 
new event is created using the parameters of the redundant events and the id is set to be 
the concatenation of the redundant event ids. This new event is substituted in every event 
relation involving one of the redundant events. This new set of events and event relations 
is set as the initial plan in the element's interaction search space. The first time a group 
region is visited in the interaction search space, its event relations are updated to reflect 
any redundant event merging that may have occurred in its subregions. 

Mechanisms for the partitioning of regional constraints into goal constraints and inter- 

action constraints need to be formalized. At this stage, the process of partitioning regional 
constraints is guided by intuition and corrected later by experiment. We also intend to 
consider ways of classifying interactions so that we can investigate whether it is possible 
to conduct a distinct interaction search. There may be domain specific characteristics that 

14 Every event is identified by a unique id so that distinct events with identical parameters may be 
differentiated. 
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make it impossible to decompose the search into these two phases.  We have found some 

promising ideas in the work of Yang, Nau, and Hendler [92]. 

5.8    Incorporating Agent Autonomy 

The previous sections discussed the distribution and partial parallelization of a localized 

search process. We now turn our attention to modeling agent autonomy within the context 

of distributed localized search. As described in the previous section, in DCONSA the 

distributed localized search is carried out at a regional level. We incorporate agent autonomy 

by adding a second search tier at the agent level. At this second level, agents use negotiated 

forms of interaction to guide search at the regional level. 

5.8.1    A Two Tiered Approach to Search 

For agents to be semi-autonomous, they must have some control over their own actions. 
In DCONSA, autonomy comes through an agent's ability to dynamically determine how it 
will interact with other agents during the distributed planning process. This distributed 
process involves a search that progresses forward as well as backtracks. Agents exercise 
their autonomy by selecting from one of three modes of interaction during planning. This 
selection is made each time interaction is required between agents and is not tied to past 

choices. The three modes of interaction are: 

1. (Mode I) An agent may choose to assume responsibility for plan development. 15 

Should this occur, that agent will direct the search for a plan for a particular goal 
until a plan is found or until it can find another agent that will take over this plan 

responsibility. 

2. (Mode II) An agent may perform a portion of the search locally, and then pass the 
result of this search to the agent that is directing the search. 

3. (Mode III) An agent may send the local information required to continue the search to 
the agent directing the search. This allows the directing agent to continue the search 

on its own. 
15The search for a plan for a given goal is always the responsibility of some agent in the system. 
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To incorporate these three alternative modes of interaction in a distributed localized 

search, one can think of the search process as being two tiered, with an agent search layer 

built upon the distributed localized search layer. The autonomy of the agents resides at the 
agent search layer and it is this layer which directs the distributed localized search using 
a negotiated interaction mode as a guide. The following paragraphs describe the interplay 
between these two layers. 

Mode I - When an agent chooses to take over plan responsibility for a goal, it directs 

the search in the localized search layer using the region stack to control where search should 
progress. In the course of this search, it is possible that a region will be encountered on 
the region stack whose definition is unknown to the agent. At this point, the agent knows 
it must request assistance from whatever agent has the definition of the required region. 
The requesting agent can ask the assisting agent to interact in any of the three modes. If 

no preference for interaction between these two regions has been indicated previously, the 
default is to try each mode in succession until one is acceptable to the assisting agent. The 
order in which these requests are made is as follows: first Mode I - the assisting agent is 
asked to assume plan responsibility, then Mode II - the assisting agent is requested to plan 
locally and return a result, and as a last resort Mode III - the assisting agent is asked to 
pass the definition of the required region to the requesting agent. 

Mode II - When an assisting agent agrees to aid a requesting agent in developing a 
plan, the assisting agent is told which region the requesting agent wants it to search. This is 
accomplished by pushing a single item, the desired region, onto the region stack associated 
with the request. Using this region stack, the assisting agent conducts a localized search 
in that region and determines what other regions need to be searched as a result of that 
particular localized search. The result returned by the assisting agent includes an indication 
of whether the search completed successfully and a list of regions that should be added to 
the region stack for the search. 

Mode III - If an assisting agent receives a request to send a region definition, the 
assisting agent must send a description of the requisite region including that region's local 
constraints and resolvers as well as a description of the progress made within the search 
space associated with that region. In addition, the ties which link that search space to other 
regional search spaces must be transmitted. The region definition is then removed from the 
assisting agent's records, along with any existing pointers to the search space that was sent. 
Thus, only one definition of each region exists in the system. 

We have restricted our attention to cases in which there is only one definition of each 
region for the sake of simplicity.   With only one instance of a region in the system, all 
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planning for that region must be accomplished by an agent with a complete view of that 
region. If more than one instance of a region existed in the system, additional coordination 
would be required to guarantee that the agents holding the multiple instances had consistent 

views of planning state. Such a scheme may be desirable in situations where redundancy is 
a requirement. 

5.8.2    Negotiated Interaction 

To make effective use of agent autonomy, agents must have a basis for selecting one mode 

of interaction over another that produces desirable behavior. In a cooperative system, each 

agent should attempt to strike a balance between its self interest and its interference with 
other agents. Whenever one agent interacts with another, it necessarily interferes with what 
the other agent was doing by requiring processing of its request. Of course, the degree of 
interference depends upon the type of request or interaction. Thus, our interaction modes 
can be viewed as representing different levels of interference. Clearly Mode I requires the 
most interference, while Mode III requires minimal interference and Mode II is somewhere 
in between. By incorporating autonomy, agents should be able to make decisions about 
how to interact that tend to minimize interference in the system as a whole. To achieve 
this desired behavior, we use a heuristic decision criterion that is based upon relative agent 
work load- By attempting to dynamically balance agent work load, we try to reduce agent 

interference. 

When a requesting agent asks an assisting agent for aid in planning using a particular 
interaction mode, the request carries with it a measure of what the requesting agent's work 
load would be if the request were accepted, wlreq. In making its decision whether to accept 
the request, the assisting agent projects what its work load would be if it accepted the 
request, wlassist and compares this to wlreg. The request is accepted if: 

Wlreq ;> x\m X Wlassist, 

where Km is an acceptance threshold for the interaction mode m. Different acceptance 
thresholds for Mode I and Mode II may be defined. Since the agents are cooperative, and a 
request to use Mode III is the last available option, Mode III requests are always accepted. 

This acceptance criterion can be viewed graphically as shown in Figure 5.20. With wlreq 

plotted on the vertical axis, and wlassiSt plotted on the horizontal axis, the assisting agent 
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Figure 5.20: A Graphical Representation of the Acceptance Criterion 

will accept the request whenever the coordinate {wlassist,wlreq) lies on or above the line 
of the above equation. The slope of the line representing the acceptance criterion can be 
shifted by modifying the acceptance threshold for a given mode. Three examples of this 
line are shown: one for Kmode = 1, one representing a shift when Kmo(ie > 1, and one 

representing a shift when Kmode < 1- 

The success of this acceptance criterion will necessarily depend upon the accuracy with 
which we can assess an agent's work load, wlagent. To assess this value, we have focused upon 
two parameters: committed work, cwagent, and current responsibilities, cragent. Committed 
work refers to work required to fulfill requests for planning aid which an agent has already 
agreed to perform. The other measure, current responsibilities, refers to the work required 
to conduct searches for plans for which the agent currently has plan responsibility. The 
combined assessment is a weighted sum of these two measures: 

IVl-agent  — ^cw  * cwagent "t" ^CT  * cragenti 

where Ccw and Ccr are parameters used for fine tuning. The measures cwagent and cragent are 
given values by approximating the number of region searches that the agent will complete 
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to accomplish its committed work and current responsibilities respectively. 

To give a value to cwagent, we use a heuristic that looks at planning being done for 
other agents that is in progress, but temporarily suspended, and requests for planning aid 

to which the agent has committed, but not yet started: 

cw, agent suspended aid + unstarted aid. 

Searches being conducted for other agents using Mode II can be suspended for only one 

reason - to gather information about subregion plans before planning in the given region 

takes place. We use region locks, a device analogous to process locks, to guarantee that 

the given region does not move from the agent while the search is suspended. 16 Therefore, 
the agent is guaranteed to eventually search this region. This component of cwagent is the 

number of suspended Mode II searches. 

To measure the second component of cwagent, we look at the agenda of requests for 
planning aid that the agent has committed itself to fulfill and approximate the number of 
region searches required by these requests. Each request will involve conducting a search 
using either Mode I or Mode II. Also, each request will have an associated region stack used 
to guide search. By committing to fulfill a request, an agent will, at a minimum, conduct a 
search in the region at the top of the region stack. The only exception to this rule occurs if 
at the time that the request is processed, it is discovered that the definition of the region in 
question has been transmitted to another agent in the system. In this situation, no search 
would take place, and the requesting agent is notified that the region has moved. This 

component of cwagent is the number of requests on the agent's agenda. 

To determine a value for cragent, we examine the suspended searches for which an agent 
currently has plan responsibility. These Mode I searches can be suspended for two reasons: 
to gather subregion plan information before a region search, and to wait for a reply from 
a Mode II request. The queries associated with each of these cases contain information to 
restart the suspended search. In particular, they will hold the region stack for the suspended 
search. Each region on the region stack of a suspended search that is locally defined will 
eventually be searched by the agent with plan responsibility. This is true unless that region 
moves in the interim to another agent in order to balance the planning workload. Thus, to 
determine an estimate of the work involved in completing these suspended searches, cragent, 

16These axe discussed in Section 5.8.3. 
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we determine the number of locally defined regions in the region stack of each suspended 

Mode I search. 

One result of giving agents autonomy, specifically the option of transmitting region 

definitions, is that the distribution of region definitions is dynamic. It is possible for an 
agent's knowledge regarding which agent plans for a particular region to become outdated. 
As a result, queries regarding the update of subregion plans and requests for interaction in 
plan development may be sent to inappropriate agents. In DCONSA, if an agent receives 

a reply indicating that the region involved in its query is unknown to the receiving agent, 
a broadcast message is sent to locate the agent that currently plans for the given region. 
Associated with this broadcast query is a function and a set of arguments to call when the 
appropriate agent is found. The call to this function creates a new query and directs it to 
the appropriate agent. 

5.8.3    Distributed System Issues 

In this section, we discuss two issues regarding agent autonomy in the distributed search - 
search completeness and coherency. For instance, is it possible for planning not to progress 
because agents get in a loop of asking someone else to plan for them? Or, what happens 
when an agent is conducting a search in a region for one goal, and some other agent wants 
that region sent to it to continue a search for a different goal? In the following paragraphs, 
we discuss the mechanisms we provide for dealing with these issues. 

First, we'll look at search completeness. We call DCONSA's planning agents semi- 
autonomous because they work cooperatively together during the planning process. That 
is, an agent that has been asked for planning aid, must agree to one of the planning modes. 
No agent is allowed to refuse to help another agent. Therefore, agents are not completely 
autonomous, because they are forced into one of three interaction modes. 

This forced cooperative behavior coupled with the notion of plan responsibility, prevents 
a situation such as the one described above. Once an agent has plan responsibility, it can 
request another agent to take over that plan responsibility. However, if that agent refuses, 
the first agent retains plan responsibility. The first agent can then ask for another agent to 
do the planning, but if this is refused as well, then the other agent must send the required 
planning information to the agent with planning responsibility. When the region is received, 
the requesting agent is guaranteed to conduct a search in that region. 
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Now, let us consider the situation where agents get into the following pattern of passing 

plan responsibility: 

1. An agent accepts plan responsibility for a goal, gl, because it holds the definition of 

the next region, rl, to be searched for a plan for gl. 

2. The agent puts the request for that search on its agenda. 

3. Eventually, the agent takes the request off the agenda only to discover that rl has 

since been transferred to another agent as the result of search for a plan for a goal 

other than gl. 

4. The agent requests the agent with the rl to accept plan responsibility for gl. 

5. Repeat 

Although a loop of passing planning responsibility such as this is possible, it does not 
mean progress is not being made. Consider that every time rl moves from one agent to 
another, a search in rl for some goal is conducted. Thus progress is being made and 
eventually the searches for goals other than gl will progress to the point where they either 
complete, or no longer need to search rl. At this point, either the agent that has the 
definition of rl or the agent that currently has planning responsibility for gl will complete 

the search for gl in rl. 

We now turn our attention to search coherency. One mode of interaction among agents 
involves the transfer of a region definition between two agents. Furthermore, the first stage 
of the search process involves multiple parallel searches. Thus, it is possible that an agent 
may be currently conducting a search in a region for one goal, when it receives a request to 
send that region definition to another agent. This request would result from a search for a 
different goal. As explained earlier, only one definition of each region exists in the system. 
Therefore, for search coherency, we would like the agent to finish its current search in the 

region before shipping it to another agent. 

To achieve this desired behavior, we use a device called a region lock. A region lock is 

conceptually similar to a process lock. Whenever an agent begins a search for a goal in a 
region, the agent places a lock on that region associated with that goal. When the search 
for that goal in that region completes, the lock for that region associated with that goal is 
unlocked. Thus a region is locked, if there is a lock for any goal on that region. Likewise, a 
region is unlocked if there are no locks for any goal on the region. Note that for any given 
goal, there is at most one region locked for that goal at any time. When a request to ship 
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a region is received, the agent checks to see if the region is locked. If it is, the request is 

put onto the agent's agenda and is periodically retried until the region becomes unlocked. 

Note however, that locking a region does not prevent requests for information about that 

region from being serviced. For example requests for information regarding plans within 
that region can be answered whether or not the region is locked. The lock only prevents 
the transfer of the region between agents, not the transfer of information about the region. 

The only way agents could become deadlocked, is if an agent had a lock on a region and 

continued to hold that lock until one or more locks on a region in another agent were released. 
If this situation were possible, then we could "mirror" the scenario thus deadlocking two 
agents. 

We have designed DCONSA so that this will not occur. An agent will unlock a region 
involved in a search before it requests the transfer of another region for that search. An 
agent may suspend a search in a locked region while waiting for subregion plan information 
and lock another region while it works on another goal. But, as pointed out above, the 
subregion plan information will not be blocked by other locks. Thus the suspended search 
in a locked region can progress regardless of locks on other regions. Therefore, deadlock 
can not occur. 

Consider a simple case, as shown in Figure 5.21, where Agent A has a lock for goal gl 
on region rl and Agent B has three locks for goals g2, g3, and g4 respectively on region r2. 
Let us assume that Agent B completes its search in r2 for g2 and therefore releases that 
lock. Furthermore, let us assume that the next region to be considered in the search for g2 
is rl and that after a brief negotiation, the agents mutually agree that Agent A will transfer 
rl to Agent B. Agent B now must wait for Agent A to release its lock for gl on rl. Note 
however, that the search resulting in the lock for gl can not be blocked by any of the locks 
on r2. The search for gl in rl may be suspended to gather plan information from r2, but 
this is not prohibited by the locks. The only behavior prohibited by the locks on r2 are its 
transfer to Agent A for the search of a plan for gl. But the search of a plan for gl will not 
progress to r2 without first unlocking rl. Thus, there is no way that the locks on r2 can 
prevent the search for gl in rl from completing. Eventually Agent A will release its lock on 
rl and the transfer of rl to Agent B will occur. 
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Figure 5.21: Impossibility of Deadlock 
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Figure 5.22: Data Flow in a DCONSA Planning Agent 

5.8.4    Internal Agent Implementation 

In this section, we discuss the flow of data within a DCONSA planning agent and the 
internal agent control. The data flow within an agent is shown in Figure 5.22. Each 
DCONSA planning agent has a Planner, a Request Screening component, an Agenda, a 

Region Table, and a Query Table. 

The Planner contains the code that performs the actual search for plans for goals. It can 
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read and modify the Region Table, the Agenda, and the Query Table. 

The Request Screening component processes requests from other DCONSA planning 

agents. It can place requests for planning aid onto the Agenda, it can reject requests 

using the acceptance criterion described in Section 5.8.2, and it can process requests 
for plan and synchronization information. 

The Query Table is used to record queries made to other agents. These queries include 
requests for planning aid, requests for region plan information, and synchronization 

queries such as termination of the first stage of planning. Replies to these queries are 

stored here as well. 

The Agenda is used to store tasks which the Planner needs to address, namely requests 
for planning aid. The Agenda can be modified by both the Planner and the Request 
Screening Component. The Planner may pop items off the Agenda and as well may 
put things back on the Agenda if action on the item must be delayed. 

The Region Table stores the region definitions known to the agent. The Region Table 
can be modified by both the Planner and the Request Screening component. The 
Request Screening component may remove a region definition as the result of a Mod- 
elll interaction or it may add this request to the Agenda if the requisite region is 
locked. The Planner may add and delete region definitions during search as the result 
of interaction Modelll. 

To complete this discussion of the internal agent implementation, we now consider the 
internal control of the Planner and the Request Screening component. Diagrams of the 
internal control are shown in Figure 5.23 and Figure 5.24. 

The Request Screening component waits for the arrival of a request from another plan- 
ning agent. Once a request arrives, it reads the request and determines whether the request 
is for information or a request for planning aid. If the request is for information, a reply 
is sent. If the request if for planning aid, the Request Screening component checks the 
acceptance criterion. If the request is accepted, it is placed on the Agenda, otherwise a 
reply is sent rejecting the request. 

The Planner is driven by tasks on the Agenda and replies to entries in the Query Table. 
The Planner waits for such an occurrence and processes it accordingly. 

This completes our discussion of the distributed search process of DCONSA and our 
description of how agent autonomy can be exercised. In the following chapter, we describe 
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our experiments and discuss their results. 

5.9    Experiments 

We have run a number of experiments using DCONSA. In this section, we outline the 
experiments we have conducted and discuss their results. Our experimentation shows that 

our heuristic decision criterion, based upon relative agent work load, improves planning 

performance. 

We have conducted our experiments using the instance of the Multi-table Blocks World, 
described in Section 5.4.2, that involves five arms and nine table surfaces. Each arm has a 
table surface that it alone can access, and the remaining four table surfaces are each shared 
between two agents. Thus we are able to model independent action as well as actions which 

require coordination. 

5.9.1    Fine Tuning the Acceptance Criterion 

Our first set of experiments focused upon measuring the effectiveness of our heuristic deci- 
sion criterion for selecting modes of interaction. An effective criterion should result in the 

ability of DCONSA planning agents to: 

balance agents' individual responsibility for conducting portions of the planning pro- 

cess, 

shift region definitions to appropriate agents, 

and accept responsibility for planning in such a way that the overall process is coop- 

erative, coherent and minimizes agent interference. 

Three performance measures indicate how well our heuristic decision criterion enables 

the DCONSA planning agents to meet the above objectives. These three indicators are 
agent utilization, overall time for plan construction, and the redistribution of regions to 
appropriate agents during planning. The latter two indicators are easy to measure and 

express. Agent utilization is slightly more complicated. 
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Figure 5.25: Example Agent Utilization Bar Graph 

We express agent utilization using a bar graph with %Planning Time measured on the 
vertical axis and Number of Agents measured on the horizontal axis. Figure 5.25 is a 
typical example. Each bar represents the percentage of planning time that a particular 
number of agents were planning in parallel. The black bars represent the case in which 
agents were given no capability to select among interaction modes 17, thus no decision 
criterion was employed. The white bars represent the case in which agents use our heuristic 
decision criterion to make decisions regarding agent interaction. Planning time refers to 
the simulation time during which at least one planning agent was running. This eliminates 
measurements of simulation overhead. To compare agent utilization in different simulation 
runs, where total planning time may differ, we look at percentage of planning time rather 
than absolute planning time. Therefore, by definition, we will see the utilization of one 

planning agent at 100% in all agent utility graphs. 

In our first set of experiments, we looked at a problem with five planning agents and 
five goals to achieve. The search spaces associated with the goals are disjoint, that is, each 
search travels through a unique set of regions. Since the searches will never try to pass 
through the same region, we call the searches non-overlapping. Because there are five non- 
overlapping searches and there are five planning agents, it follows that we should expect a 

high level of agent utilization to be possible. 
I7Agents always propose and accept interaction Mode 1 
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Furthermore, we used this first set of experiments to compare two different heuristic 

decision criteria. The acceptance criterion described in Section 5.8.2 is actually the second 

criterion we tried. The old criterion was a rougher estimate of an agent's work load. This 

estimate was merely a sum of the number of goals for which the agent currently has plan 
responsibility and the number of accepted requests for planning aid. Our new heuristic, you 
will recall, attempts to measure the number of regions that will be searched by an agent. 

Figure 5.26 shows the results of this set of experiments. 18 The degree to which plan 

performance can improve depends partially on the particular initial mapping of regions to 
agents. Some distributions are better than others. To remove the impact of any single 

particular initial distribution on the results, we ran the same problem using ten random 
distributions of the regions to planning agents. To get an idea of overall agent utilization 
across distributions, we averaged our graphs as shown in Figure 5.26 a. For example, this 
graph shows that on average we were able to utilize three agents 72% of the time with 
the new heuristic, 69% of the time with the old heuristic, and 42% of the time without 
a heuristic. To measure the improvement in time to construct the plan, we averaged the 
percent change in simulated elapsed times as shown in Figure 5.26 b. The results show that 
employing either heuristic significantly increases agent utilization and improves the overall 
time to construct a plan when a high degree of agent utilization is possible. Thus, by using 
our heuristics, agents were able to effectively balance their individual responsibilities for 
conducting portions of the search. Since the new heuristic resulted in a slightly improved 
performance over the old heuristic, the new heuristic was used in the rest of our experiments. 

5.9.2    Dynamic Self Organization 

In addition, we used the same scenario to measure the agents' ability to reorganize the prob- 
lem distribution using our decision criterion. Since the search spaces are non-overlapping 
and there is an equal number of planning agents and goals, we would expect to make two 
observations. First, each agent should eventually take responsibility for one goal, thereby 
balancing responsibilities. Second, each agent should eventually collect the distinct set of 
regions that are included in the search space of a plan for its goal, thereby minimizing agent 

interference. 

We ran five trials in which we examined the mapping of regions to agents before and 

after plan construction. The results are shown in Table 5.1. Each entry for an agent and a 

18Since our heuristic can only effect the first stage of planning, the %Planning Time and Simulated Elapsed 
Time refer to the first stage of planning only. 
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Figure 5.26: Experimental Results - 5 Agents - No Search Space Overlap 

distribution has two columns. The left column represents the distribution of regions to that 
agent before planning, and the right column represents the distribution of regions to that 
agent after planning. The following abbreviations are used to conserve space: AX = Arm 
X, RRX = RobotRealm X, TXAY = TableArm TableXArmY, and TRX = TableRealm 
X. Although each trial began with a different random distribution of region definitions to 
agents, they all converged to approximately the same distribution through the planning 
process. Four of the final distributions matched the characteristic distribution we expected 
to see. The other distribution, number 2, came close with one agent giving up all its regions, 
and another taking on two goals rather than merely one. Thus, these experiments show that 
our decision criteria is effective in allowing agents to shift region definitions to appropriate 

agents. 

5.9.3    Effects of Increased Agent Interference 

Our next sets of experiments involved varying the overlap of the search spaces for the five 
goals. Keeping the same number of planning agents and the same number of goals, we 
looked at four cases: (1) search spaces for the goals with no regions in common - the case 
above, (2)search spaces for the goals having a few regions in common, (3)search spaces with 
many regions in common, and (4)search spaces involving exactly the same regions. In these 
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Agent 

Dist A B C D E 

1 A2 A3 RR2 A4 Al A5 A4 A2 A3 Al 

TR1 RR3 TR4 RR4 A5 RR5 T2A2 RR2 RR4 RR1 

TR3 T3A3 T3A3 T4A4 RR1 T5A5 TR5 T2A2 RR5 T1A1 

TR3 TR2 TR4 RR3 TR5 TR2 T1A1 TR1 

T4A4 

T5A5 

2 A2 Al A4 A5 A3 T1A1 A3 Al A4 

RR5 RR1 RR3 RR5 A5 T3A3 RR3 RR2 RR4 

TR1 T1A1 RR4 T5A5 RR1 TR2 T3A3 T2A2 T4A4 

TR5 TR1 T4A4 TR5 TR3 TR3 TR4 TR4 

A2 T5A5 

RR2 
T2A2 

TR2 

3 A3 A2 T4A4 A4 Al A5 A4 A3 A2 Al 

RR4 RR2 RR4 A5 RR5 TR3 RR3 RR1 RR1 

T5A5 T2A2 T4A4 RR2 T5A5 T3A3 T1A1 T1A1 

TR2 TR4 RR3 TR5 TR3 T3A3 TR1 

RR5 TR1 
T2A2 TR4 
TR5 

4 RR1 A5 A2 A4 T3A3 Al A4 A2 Al A3 

RR3 RR5 T4A4 RR4 TR1 RR1 A5 RR2 A3 RR3 

RR4 T5A5 T4A4 TR2 T1A1 T2A2 T2A2 RR2 T3A3 

RR5 TR5 TR4 TR1 T5A5 TR2 T1A1 TR3 

TR3 TR4 TR5 

5 A2 Al A3 A3 Al A4 A5 A5 RR5 A2 

RR1 RR1 A4 RR3 RR2 RR4 T1A1 RR5 T2A2 RR2 

TR1 T1A1 RR3 T3A3 RR4 T4A4 T5A5 T5A5 TR2 T2A2 

TR1 TR3 T3A3 TR4 TR3 TR5 TR4 TR2 

T4A4 TR5 

Table 5.1: Results from Experiments on Dynamic Self Organization 
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Figure 5.27: Experimental Results - 5 Agents - No Search Space Overlap 

four scenarios, there is an increasing potential for one agent to interfere with another by 
having its search "block" the progress of another agent's search. That is, one search may 
have to wait for another search to complete in a region before it can continue in that region. 

The objective of these experiments was to determine the effectiveness of our heuristic 
as the inherent agent interference increases. These results are shown in Figures 5.27, 5.28, 
5.29, and 5.30. We observe from Figures 5.28 and 5.29 that agents were able to improve 
their performance in cases with both low and intermediate levels of partial overlap in the 
search spaces. As one should expect, the degree of improvement in performance is limited 
by the increased agent interference inherent in the problem. Figure 5.30 demonstrates that 
for situations in which the search spaces completely overlap, there is a cost associated with 
determining that reorganization may not be effective. This cost is small, representing an 

average of 2% increase in the total simulated planning time. 
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Figure 5.28: Experimental Results - 5 Agents - Low Search Space Overlap 
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Figure 5.29: Experimental Results - 5 Agents - Intermediate Search Space Overlap 
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Figure 5.30: Experimental Results - 5 Agents - Total Search Space Overlap 

246 



5.9.4    Varying the Goal-vs-Agent Ratio 

In our final set of experiments, we observed the effect of varying the ratio of the number 
of goals to the number of planning agents. We repeated the experiments of the previous 

section for two agents, four agents, seven agents, and ten agents. In each case we ran trials 
for five random distributions. The results are shown in Figures 5.31 - 5.46. The changes in 
time to construct a plan and message traffic are are summarized in Figures 5.47 and 5.48. 

The results were surprising. As the number of agents grows smaller than the number of 
goals, as in the two agent case (Figures 5.35-5.38) and the four agent case (Figures 5.31-5.34), 
we had expected to see a decrease in the ability of our heuristic to improve performance. 
However, although the overall planning time increased with fewer agents, the improvement 
we observed in agent utility with the heuristic remained significant. Furthermore, the 

percent change in simulated elapsed time followed the same pattern as when there were 
equal numbers of goals and planning agents as shown in Figure 5.47. From this we observe 
that, although the ratio of goals to agents necessarily restricts the number of searches that 
can be done in parallel, our heuristic can bring about significantly improved performance 

within those bounds. 

In the cases where the number of planning agents exceeds the number of searches, we 
also observed significant improvement in agent utility and simulated elapsed time using our 
heuristic (Figures 5.39-5.46). As in the case with equal numbers of goals and searches, we 
see a general decrease in agent utility as the inherent agent interference increases. The 
improvements in agent utility and elapsed simulated time remain significant as with all the 
other cases. The increased cost in message traffic though, becomes significant. 

In Figures 5.47 and 5.48, we compare the percent improvement in planning time and 
the percent change in the number of messages sent for number of planning agents. The 
bars are grouped in sets by the number of agents. Each bar within a set represents the 
percent change with and without the heuristic. There are four bars in each set representing 
the four cases of search space overlap. They represent the case of no overlap, low overlap, 

intermediate overlap, and total overlap respectively. 

Note that as the number of planning agents increases relative to the number of goals, 

we observe a significant reduction in the number of messages sent when there is no search 
space overlap. In these situations, the agents are able to quickly reorganize the regions into 
their distinct groups for each goal and to reorganize planning responsibilities. Once this is 
completed, agents no longer need to communicate with one another because each has the 
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Figure 5.31: Experimental Results - 4 Agents - Non-overlapping Searches 

information it needs to complete the plan for the goal for which it has responsibility. Thus 
the system realizes a reduction in required message traffic because agent interference is 
reduced. Note however, that this is not the case as the inherent agent interference increases 
with greater search space overlap. As the inherent agent interference increases, it becomes 
more and more difficult to find a good organization. This is reflected in increased message 
traffic. As noted above, this cost becomes quite significant when there are many more 

agents than goals. 
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Figure 5.32: Experimental Results - 4 Agents - Low Search Space Overlap 
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Figure 5.33: Experimental Results - 4 Agents - Intermediate Search Space Overlap 
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Figure 5.34: Experimental Results - 4 Agent - Total Search Space Overlap 
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Figure 5.35: Experimental Results - 2 Agent - No Search Space Overlap 
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Figure 5.36: Experimental Results - 2 Agent - Low Search Space Overlap 
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Figure 5.40: Experimental Results - 7 Agent - Low Search Space Overlap 
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Figure 5.41: Experimental Results - 7 Agent - Intermediate Search Space Overlap 
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Figure 5.42: Experimental Results - 7 Agent - Total Search Space Overlap 
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Chapter 6 

Link Activation Scheduling 

6.1    Introduction 

For communication networks which utilize some form of multiaccess channel, a means for 
controlling channel access must be provided. In this chapter we discuss multihop shared 
channel networks having a prescribed connectivity matrix. An example of such a network 
is a multihop packet radio network in which each activation of a link between two nodes 

must be scheduled so as not to produce conflicts with activations on other links. 

Link scheduling can be viewed as a constraint satisfaction problem with constraints used 
to prevent link activation conflicts and to ensure that each link is scheduled for a prescribed 
number of activations. In previous work [67, 66], we have developed an approach to solving 
constraint satisfaction problems in distributed environments. In this chapter we present a 
formulation of link scheduling as a distributed constraint satisfaction problem and explore 
the impact of varying the organization of network control on link activation scheduling. 

The link scheduling problem is known to be NP-complete under most conditions [1, 

36] but variations of the problem have been introduced [36, 9] which can be solved m 
polynomial time. Even in these cases the computational cost for scheduling of large networks 
is substantial. Furthermore, in networks with dynamic connectivity, a centralized decision 
making node may not have correct global data needed for link activation scheduling. To 
mitigate these problems, our approach is to divide the larger, network-wide scheduling 
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problem into smaller, independent scheduling problems. These independent scheduling 

problems are solved in parallel by a set of network control agents acting autonomously. Links 
shared between two agents are then scheduled by a process of agent-to-agent coordination 

in order to produce a complete schedule. Although the resulting schedules are not optimal, 
they satisfy the property of maximal slot assignment [9] which guarantees that for each 
time slot no additional node could schedule a link activation without conflict. Thus these 

schedules have high channel utilization. 

In the next section, we define the problem and compare our work to related results from 
the literature. Section 3 describes DCONSA - a Distributed CONstraint-based planner for 
Semi-autonomous Agents - and shows how link scheduling may be formulated as a constraint 
satisfaction problem in the context of DCONSA. Section 4 presents the experimental results 
which illustrate the tradeoffs to be made in solving the link activation problem as network 

control organization is varied from centralized to fully distributed. These results clearly 
demonstrate a benefit to be gained using a distributed approach which is intermediate 
between the extremes of a single agent centralized model and the one agent for every node, 

fully distributed model. 

6.2    The Scheduling Problem 

We define the problem of scheduling link activations as follows. Given a graph G = (V, E) 
expressing network topology, a traffic demand set TDSD of source-destination pairs, and 
a multihop path of link activations to satisfy each TDi3;, produce a link activation sched- 
ule that is conflict free. This is the same problem formulation as in Barnhart et al. [3], 
although our approach to solving the problem is not related to their neural net solution. 
Following their problem definition, we also examine in this chapter the nonsequential acti- 
vation scheduling (NAS) problem. In this version of the problem the goal is to determine a 
schedule of time slots in which each link is allotted a number of time slots which corresponds 

to the number of activations required to satisfy the traffic demand set. 

In reviewing the literature, one can find the link scheduling problem posed in several 
different ways, each with a different set of assumptions. We are interested in the distributed 
forms of this problem and will focus our discussion on these implementations. In [68], Post 
et al. present a distributed version of their heuristic algorithm. It involves the distribution 
of all network topology and link transmission demands to each node in the system. Each 
node can then perform the centralized version of the algorithm for itself. Kershenbaum and 
Post [43] present an algorithm that requires minimal information but does not use traffic 
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demands and produces nonoptimal schedules. In [23] and [2] distributed algorithms for 

scheduling are proposed but these do not take into account traffic demands. Cidon and 
Sidi [9] present an algorithm that finds a maximal assignment of link activations for a slot, 

and then explore ways to extend this algorithm over a sequence of time slots. 

In general these distributed algorithms operate under the assumption that the prob- 
lem is fully distributed at a nodal scale - i.e. link activations are assigned to time slots 
by each transmitting node. As pointed out in [2], these fully distributed algorithms must 

tradeoff considerable communication overhead against the quality of the schedules pro- 

duced. In order to achieve optimal or near optimal schedules each node must have global 

or nearly global information. Thus, there is an interest in studying alternative network 

control organizations which allow for a degree of distributed decision making using only 

limited connectivity information. Our approach provides a uniform examination of various 

network control organizations as applied to the link allocation scheduling problem. 

Many of the algorithms are closely tied to the assumption about which types of conflicts 
are allowed and can not adapt to changes in this assumption. We use a framework which can 
facilitate changing the allowed forms of conflict without changing the scheduling algorithm 

itself. 

Finally, in comparing the quality of schedules obtained in our results with those cited 
above, we are able to guarantee maximal slot assignments but not maximum slot assign- 

ments as defined in [9]. 

6.3    Link Scheduling as a Problem for DCONSA 

In this section, we present our formulation of the link scheduling problem in the DCONSA 
planning system [67, 66]. DCONSA is a distributed planning system that employs the 
GEM model [46] for problem representation. The flexibility of the DCONSA system allows 
us to investigate various network organizations in a single framework without changing the 
underlying scheduling process. We first give an overview of DCONSA, and then we describe 

how the link scheduling problem is represented in DCONSA. 

In DCONSA, a plan is represented as a set of events and relations on those events. 

Planning is viewed as a constraint satisfaction problem in which constraints are used to 
describe goals and required relations on events. Plan construction involves the incremental 
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addition of new events and relations to a plan until it conforms to a given set of constraints. 
Initially, the plan may be empty or it may consist of a set of initial events and relations. 

DCONSA is designed to develop plans in a distributed environment. This environment 

consists of semi-autonomous agents, each having local knowledge and control of local re- 
sources. These agents must be able to coordinate individual choices and actions so as to 
cooperate in achieving global goals. We achieve this coordination by organizing the domain 

knowledge in a formal structure which is distributed across a set of planning agents. 

Domain knowledge, formulated as a constraint satisfaction problem, is organized by the 
concept of a region. A region is a conceptual means to encapsulate a set of events with 
a set of constraints that relate those events. A region may be either a simple element or 
a group. An element is a primitive unit of organization. Every event belongs to a unique 
element. The set of constraints which pertain only to the events of a single element are 
included as part of the element description. To reason about constraints which relate events 
in distinct elements, we need to incorporate a higher level of organization - a group. A group 
is a set of regions (elements and/or groups) and a set of constraints which relate events in 
its member regions. Thus, a planning problem can be structured into a set of regional 
constraint satisfaction problems. A plan is created by conducting a set of bounded region 

searches. Region searches are bounded, because only the events and constraints within 
that region are considered during the search. An acceptable plan is one that satisfies all 

constraints in all regions. 

We can use this model to represent the link scheduling problem as follows. We model 
link activations as events, and we define a relation, Assign(ev,ts), that associates a link 
activation with a time slot. This relation represents the scheduling of the link activation 
event during that time slot. A plan is a set of Assign relations on a set of link activation 
events. A plan is complete if each link activation event has an associated time slot. Network 
links are modeled as elements whose member events are its activations. Each network node 
is modeled as a group comprised of link elements. To distribute the problem across a set 
of planning agents, we divide the network into areas. Each area is modeled formally as a 
group comprised of node groups. Thus, each network area represents a subset of the network 
whose activations will be scheduled by a particular DCONSA planning agent. Network links 
which physically join nodes in distinct areas are called shared links. A shared link belongs 

to two node groups which in turn are members of distinct network areas. All other links 
are called interior links. Activation events on shared links represent planning activity which 
will necessarily have to be coordinated between the planning agents associated with their 
respective network areas. However, each agents' view of this link is limited - nothing is 

known about its connectivity in the other area. 
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As described earlier, our basic approach is to break the larger scheduling problem into 

smaller independent scheduling problems, plan these schedules in parallel, and then to 

serially schedule the activations which interconnect the independent schedules. Using the 
organization described above, we can identify the independent scheduling problems. Each 
agent can independently schedule the activations of the interior links of its network area, 
since time slot assignments for these links do not have to be coordinated with any other 
agent. However, as noted earlier, the scheduling of link activations on shared links does 
require agent coordination and thus, these will be scheduled serially. Furthermore, since 

two agents that share a link have limited views of that link, each will have to coordinate 
proposed time slot assignments of its activations with their respective interior schedules. 

Therefore, to complete the representation of problem structure, we also define a boundary 

group to represent the interface between problem solving in different network areas. The 

members of a boundary group are the node groups of a network area which have link 

elements that are shared with other network areas. Each planning agent is associated with 

a network area group and a boundary group. 

To complete the model, we need to furnish the constraints which describe an acceptable 
schedule, and which will model the problem solving activity as described above. We ac- 
complish this with the area group constraints shown in Table 6.1 and the boundary group 

constraints shown in Table 6.2. 

1. All activations on interior links are scheduled. 

2. No two activation events which are members of the same link can be scheduled for 

the same time slot. 

3. No two activations events which are members of the same node can be scheduled for 

the same time slot. 

Table 6.1: Area Group Constraints 

1. All activations on shared links are scheduled. 

2. No two activation events which are members of the same link can be scheduled for 

the same time slot. 

3. No two activations events which are members of the same node can be scheduled for 

the same time slot. 

Table 6.2: Boundary Group Constraints 
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Using the area constraints, each DCONSA planning agent can schedule the interior 

activations of its associated area group. Area Constraint #1 ensures that links which are 
shared among areas are not scheduled. Thus, the scheduling of interior activations in distinct 

network areas is guaranteed to be independent and can be executed in parallel. Once the 
planning agents detect that they have completed their interior schedules, they can begin to 
serially schedule the activations on shared links. This is accomplished using the boundary 

group constraints shown in Table 6.2. 

Since an agent's view of its shared links is limited, a time slot it selects for a given 
activation on a shared link may not be compatible with the interior schedule of another 
agent. If this situation arises, the regional search in the second agent's boundary region 
will fail, and search will backtrack to the first agent which scheduled the activation. The 
first agent will then select another time slot. This process continues until a slot assignment 
which is compatible in both schedules is found, or if none exists, a new time slot is appended 
to the schedule. This guarantees that slot assignments made during the parallel search need 

not be retracted. 

An advantage of this model is the flexibility provided by expressing conflict types as 
constraints. The constraints we have presented in this section prevent primary conflicts 

from occurring in the schedule - see Area Constraints #2 and #3 and Boundary Constraints 
#2 and #3. However, the set of conflicts which are not allowed can easily be expanded to 
include other forms of conflict (such as secondary conflicts [3, 9]) by modifying the set of 
constraints in the area and boundary groups. This addition does not require any changes 
to the overall scheduling algorithm. Although not pursued in this report, this permits us 

to explore the effects of various conflict types on the schedules produced. 

Area and boundary groups allow us to organize a given network in various ways. We 
can model a centralized scheduling problem by representing the entire network in a single 
area with no boundary group. We can model a completely distributed scheduling problem 
by representing each node as an area group and a boundary group. In this case, there is no 
parallel search because all links are shared. Link activations are scheduled through message 
passing among agents during planning in the boundary groups. We can also model various 
distributions between these two extremes by varying the size of the network areas and their 
mapping to physical network topology. In the next section, we describe the experiments we 

have performed using these various organizations. 
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6.4    Experiments 

Using the model described in Section 6.3, we have performed experiments to investigate 

distributed link activation scheduling using various network organizations. In particular 
we are interested in the tradeoffs between increased parallelization of the problem with the 
decrease in knowledge to make time slot assignments. As the network is divided into a 
greater number of areas, more of the problem can be done in parallel thus decreasing the 
amount of time to create the schedule. However, two factors work against the improved 

speed of this parallelization. Depending upon the sparseness of the network, an increase in 

the number of network areas (as we have defined them) potentially results in an increase of 

shared link activations. Thus, more of the problem is pushed from the parallel search to the 

serial search. Furthermore, time slot assignments in the serial search are more likely to fail 
because they are based upon limited information. Therefore, not only do we increase the 

time to complete a plan because of a decrease in parallelization, we also potentially increase 

the time due to increased backtracking during search. 

To investigate these tradeoffs, we have implemented the ideas presented in this chapter 
using a scheduling example from [3] shown in Figure 6.1. Each arrow represents a link 
activation between two nodes. Thus, the two arrows between nodes 4 and 5 indicate that 
the link connecting these nodes has two activations to be scheduled. We create a schedule 
for this network using 1, 2, 4, 6, and 23 planning agents. In the 1 agent case, the entire 
network is modeled as a single area group. Thus, slot assignments are made with complete 
knowledge. In the cases with 2, 4, and 6 agents, the network is divided into the respective 
number of network areas as shown in Figures 6.2, 6.3, and 6.4. The 23 agent case represents 
this division into areas taken to its extreme with each area consisting of a single node. Thus, 
no interior scheduling occurs and all slot assignments are made with limited information. 
Table 6.3 presents the simulated time to create the schedule, the length of the schedule 
created in time slots, and relevant characteristics of the network organization. Schedule 
creation times have been normalized to the simulation time of the single agent, centralized 

organization. 

As expected, the tradeoffs discussed previously are present in the experimental results. 
The time to create a schedule improves from the single agent case to the four agent case, but 
decreases in the last two cases. Note the ratio of the average number of interior activations 

per region to the total number of shared activations. This is a rough indication of how the 
scheduling process is shifting from the parallel search to the serial search. In the two agent 
case the ratio is about 2:1 parallel to serial, then about 1:2 in the four agent case, and 
nearly 1:5 in the six agent search. As discussed earlier, the method we employ guarantees 
a schedule with time slots that are maximal but not maximum as described in [9].   In 

268 



1MI ( 14 

Ö 

Figure 6.1: Example Network 

Figure 6.2: Network Organization: Two Agents 
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Figure 6.3: Network Organization: Four Agents 

Figure 6.4: Network Organization: Six Agents 
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Agents 

Simulation 

Time 

Schedule 

Length 

Avg Int 

Activations 
per Region 

Shared Link 

Activations 

1 1.00 8 41 0 

2 .57 9 16.5 8 

4 .53 9 7 13 

6 .74 8 3.83 18 

23 1.47 10 0 41 

Table 6.3: Scheduling Results and Organization Characteristics 

this example the optimum schedule length is eight time slots and our method has found 

schedules at or close to that length. 

6.5    Results 

In this chapter, we have explored the effects of distributing the link scheduling problem us- 
ing varying network organizations. By organizing the network into areas with independent 
scheduling problems, we can parallelize portions of the problem and then schedule the link 
activations which are not included in these independent problems. Using the distributed 
planner DCONSA, we have conducted experiments varying the size of these network ar- 
eas. These empirical results illustrate that the overall time to create a schedule can be 
decreased by this parallelization. However, there is a point at which the advantage of the 
parallelization is overshadowed by increased interconnectivity among the independent areas 
and limited knowledge resulting in potentially poor time slot assignments. This point de- 
pends in general on the ratio of the link activations interior to an area and the shared link 
activations. Another strong determiner of this tradeoff point which we have not explored 
here is a measure of "fit" between the network topology and the organizational structure. 
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Chapter 7 

Conclusions 

The overall results have been well documented in summary form in section 1.3 and in detail 
in each of the sections discussing one aspect of this research. In this chapter we discuss some 
of the limitations and unresolved problem areas of this research, and we identify significant 

issues for future work. 

In the area of testbed development, we believe our proposed design of DiST was sound. 
Instead of attempting to reuse existing software, it should be designed in detail and imple- 
mented from scratch. The decision to attempt to use existing software from a third party 

was the single worst decision we made. 

The Distributed Problem Solving systems discussed in the third chapter have both made 
use of the DARES automated reasoning system in a straightforward and conventional way. 
That is, each distributed system assumed a one-to-one correspondence between its agents 
and the' reasoning agents of the DARES system. Furthermore, only distributed reasoning 
tasks which involved a single theorem were considered. The structure of DARES is flexible 
enough however, to admit a number of other possible problem solving paradigms. For 
example, suppose a distributed problem has arisen in which it is known that every solution 
must follow a generally predictable sequence of steps. Each step toward a solution can be 
thought of as a solution sub-goal and given to a separate DARES reasoning agent as a 
theorem to prove. The various theorems representing a solution and its sub-goals, can then 
be "linked" together to form a problem-solving cascade by supplying each reasoning agent 
with the same theorem tag. Conceptually, this technique amounts to imposing a hierarchical 
organization on the search space in which each "successive" reasoning agent can incorporate 
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the intermediate results obtained by the "lower-level" reasoning agents. Further research 
into the feasibility and usefulness of this problem solving organization, as well as others, 
may lead to drastic reductions in the "effective" size of a search space. Proven reductions 

of this kind, would make the use of distributed automated reasoning all that much more 

appealing. 

In order to make effective use of an automated reasoning system, it is necessary to ensure 

an absolute consistency of the encoded knowledge. Without a consistent base of knowledge, 
there is no way of readily determining whether or not the results obtained from a reasoning 
task may be considered valid. For applications of automated reasoning in domains which are 
both dynamic and distributed, the problem is significantly compounded. Clearly, some form 
of distributed "truth maintenance" is necessary. For a highly dynamic distributed system, 
such as a communication network, it may be more practical for a truth maintenance system 
to support a grade of knowledge believability rather than strictly enforcing a two-value 
system. Presumably such a system would be based on some form of Bayesian probability. 
When a distributed agent initiates a request for knowledge it requires to formulate axioms 

for a reasoning task, it registers its use of this knowledge with the truth maintenance 
system. An agent could handle the graded believability of this knowledge in two ways; 1) 
use a limiting function to reduce the belief values of the obtained knowledge to a binary 
system, or 2) incorporate the believability of each piece of knowledge into the axioms it 
will generate. Certainly, axioms generated by the first method would be the easiest for 
an automated reasoning system to handle, but it may not be possible to assure consistent 
axiomatic knowledge. At the other extreme, selecting the second choice would require that 
a reasoning system be able to cope with the inherent uncertainty of the supplied "axioms." 

In either case, when the truth maintenance system has detected that knowledge regis- 
tered by a distributed agent has changed, it notifies the agent of the knowledge which is 
currently out of date. The agent must then assess the situation, and if necessary, formulate 
an updated set of axioms and notify its respective reasoning agent. Mechanisms need to be 
devised which would ease (if not automate) the knowledge updating procedures between the 
truth maintenance system and distributed agent, and likewise between the distributed agent 
and the automated reasoning agent. For distributed agents built around an expert system 
shell, like TESS, it may be possible to incorporate a direct truth maintenance interface into 
the shell's control structure. In this way, a change in knowledge status would immediately 
cause a re-formulation of the necessary axioms which would then be sent directly to the 
automated reasoning agent. A modification of the TREAT algorithm may make such an 

interface possible while still retaining production system efficiency. 

The work of analyzing how hyper-resolution affects the DARES architecture is not 
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complete. One item we have not explored is the forward progress heuristics behavior and 

how it affects the reasoning process. In most of our clause sets the importation of knowledge 
was the result of an inability to produce new resolvents, not the forward progress heuristic. 

The forward progress heuristic is important for SHYRLI to be "complete" (given a problem 
where there is a contradiction, complete means that the contradiction is guaranteed 

to be  found).     An analysis  of  this heuristic  and  others would be  interesting. 

The effect that the amount of private predicates in a network of agents has on the 

performance of the reasoning system has not been explored. It is our intuitive guess that a 

large number of private predicates would increase the performance of the reasoning system. 

Private predicates imply that there is a portion of the problem that can be resolved locally 

without communicating with other agents. This fits in with the idea of SHYRLI agents 

having a functional distribution. This would lead to longer chains of local reasoning, thus 

increasing performance. 

Voluntary exportation of knowledge is another interesting concept that could be ex- 
plored. Coupled with the idea of public and private predicates this concept could be easily 
implemented. A small set of global predicates (i.e. information that may be shared with 
other agents) and a large set of private predicates would make the choice of voluntarily 
exporting knowledge easy. An agent would know to export knowledge if a hyper-resolvent 
contained only global predicates. If the number of global predicates is large, however, 

knowing when to export knowledge voluntarily becomes difficult. 

SHYRLI provides a baseline case of a distributed reasoning system that incorporates 

no domain knowledge. SHYRLI provides a testbed that can be used to test heuristics that 
use domain specific information to help select what to communicate and which lines of 
reasoning to follow. The baseline case could be used as a point of comparison between 
different strategies for managing coordination and interaction in order to increase system 

performance. 

The flexibility of DCONSA's distributed architecture permits the modeling of inherently 
distributed systems with fixed organizations. Although not focused upon here, such mod- 
eling can be useful to point out advantages and disagnose disadvantages with an existing 
system. DCONSA could also be used to evaluate different organizations of a problem as 
was done in the link activation scheduling problem. If problem characteristics change as 
new problems are given to a set of agents, a single organization will most likely not be ade- 
quate to improve performance. By incorporating organizational self design into distributed 
planning, DCONSA can also model distributed autonomous agents that dynamically reor- 
ganize to improve performance during planning. Thus agents could discover on their own 
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the organization that best enhances performance for the current problem. 
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