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Abstract         

The free-flight motion of an elastic missile is approximated with three bodies connected by 
two massless elastic cantilever beams. If the mass distribution of the three bodies is 1-2-1, the 
frequency of the symmetric oscillation of the outer bodies is within 5% of the classical frequency 
of the oscillation of a free-free beam. A second combined pitching antisymmetric flexing motion 
can occur with a frequency that is almost twice that of the symmetric flexing motion. As the 
beam stiffness is reduced, the symmetric flexing motion frequency approaches the rigid body 
aerodynamic zero-spin frequency, and the flight zero-spin aerodynamic frequency is 
considerably reduced. Moderate beam damping can cause dynamic instability for spins greater 
than the zero-spin aerodynamic frequency. Resonance mode amplification can occur when the 
spin is equal to the zero-spin aerodynamic frequency, but more importantly it can occur when the 
spin is equal to the two elastic flexing frequencies. Spin-yaw lock-in occurs at the lower elastic 
frequency. 
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1. Introduction 

The linear flight mechanics of spinning projectiles was first developed after World War I and 

later extended after World War II [1-4]. These results were reformulated by Platus [5] in 

missile-fixed coordinates for reentry vehicles. Thus, the linear flight mechanics of symmetric 

projectiles, including finned missiles, is well established. Nonlinear flight mechanics, as well as 

the effect of liquid payloads, have also been extensively addressed [4, 6, 7]. 

Recently, with the development of long-finned anti-armor projectiles and long flare- 

stabilized reentry vehicles, the effects of aero-elasticity have become a matter of possible 

concern for designers. In 1992, Platus [8] developed a simple theory for elastically deforming 

missiles. This theory showed significant decreases in pitching frequency when the smallest 

bending frequency was less than four times the pitching frequency. He also showed that linear 

beam damping could actually make the missile dynamically unstable when the spin was greater 

than the pitching frequency. 

Platus assumed that the elastic missile oscillated in the modal waveform of a nonspinning, 

free-free beam. For uniform mass distribution, the waveform is symmetric with equal 

deflections at each end. The aerodynamic loads on a finned missile, however, are quite different 

at the nose and the tail, and this may not be a good assumption. Moreover, it would be desirable 

to predict the resonant response induced by mass or aerodynamic asymmetries at aerodynamic or 

elastic frequencies. The response of a spin-stabilized body of revolution to the motion of an 

interior elastic beam-mounted mass was studied, and beam damping destabilized the shell [9, 

10]. Since all shells have spin rates that exceed their pitching frequencies, this is in agreement 

with Platus' result. 

In this report, the beam theory [9, 10] was used to construct a simple model of an elastic 

projectile acted on by two significant aerodynamic loads. The complicated elastic projectile was 

replaced by three rigid projectile components connected by two massless cantilevered beams. 

Next, this three-body model was used to yield good predictions of the frequency of the motion of 
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a uniform free-free beam flying in a vacuum. With the inclusion of aerodynamic terms, the 

frequencies and damping of the angular motion of a symmetric elastic missile can be estimated 

from a 5 x 5 determinant. 

Beam damping should be based on derivatives in a missile-fixed coordinate system. Thus, 

beam damping has no effect on the trim motion, which is constant in these coordinates. 

Resonance frequencies, however, will decrease as the ratio of elastic frequency to rigid-body 

pitching frequency decreases. Beam damping can adversely affect the damping of transients. 

Finally, the effect of permanent deformations were considered (i.e., the case of a "bent" missile). 

These deformations affect the size of resonant trim and introduce the possibility of spin-pitch 

lock-in [11]. 

2. Linearized Equations of Motion 

The actual projectile is approximated by a homogenous cylinder of fineness ratio, L, and 

mass, m, divided into three segments with fineness ratios, Lj, and masses, nij. A fixed-plane 

coordinate system, which pitches and yaws with the center segment (component 1) and has an 

origin located at the center of mass (cm) of the center segment, is shown in Figures 1 and 2. 

(Fixed plane coordinates roll so that the Z axis is always in the Xe-Ze plane.) Its orientation with 

respect to earth fixed axes (i//,6) and the velocity vector (j3,a) are also shown in the figures. 

For j = 2 and 3, let \X.,Yj,Zj) be the location of the cm of component j with respect to the 

cm of component 1, and let ^yj,Tzj ) be the inclination of the forward body (j = 2) and of the rear 

body (j = 3), as shown in Figures 1 and 2. 

Next, it is assumed that the fore and aft components are elastically connected to the center 

component by two massless cantilever beams of lengths a and b and stiffness (EI)j. The moment 

and force exerted on these components by these beams can be computed from simple beam 

theory [10]. For motion in the x-y plane, 



and 

^=V)+V*> (2) 

where b12 = -(12/a3)(EI)2, b13 = -(12/b3)(EI)3, b22 = (6/a2)(EI)2, b23 = - (6/b2)(EI)3, b32 

= -(4/a)(EI)2, and b33 = -(4/b)(EI)3. 

Similar relations apply for Fzj and M .. 

For the dynamics analysis, a coordinate system with its origin at the center of mass of the 

complete projectile is much more convenient. Throughout this report, complex quantities are 

used to describe the lateral motion of the three components. Their lateral locations are specified 

by the dimensionless complex variables Ejt and their axial location by the dimensionless variable 

Xj. Both the lateral and axial locations are with respect to the projectile cm. 

Ej -Ex= (Yj + iZj )/d;     Ex = -(m2E2 + m3E3 )/m,; (3) 

Xj =[Xj/d)+xl; and x, =-(m2X2 +m3X3)/md. (4) 

The complex beam forces and moments exerted on the forward and aft components are 

and 

Mj=i[b2j(Ej-E1)d + b3jTJ] 

(5) 

(6) 

where Tj =Tyj +iTzj. 



The velocity vector of the j-component is {vxj,vyj,vzi), and the complex transverse velocity is 

Vyj + ivv = Ejd + V%~ ix)Qd> (7) 

where E, = ß + ia, the complex angle of attack, 

Q = 6 + i\j/, the complex transverse angular velocity, and 

V = vxj is the magnitude of the projectile's velocity. 

The transverse components of the equations of motion for each component's center of mass can 

provide differential equations for the Ej 's, 

mj \ßjd + Vii ~ *ß)+ H ~ iXjQd] = Fj + Fj.. (8) 

where F- is the transverse aerodynamic force acting on the j component.   The axial beam 

forces, Fxj, are determined by the requirement that each component has the same axial velocity, 

B/SBA=V^-. (9) 

where Fxj is the axial aerodynamic force acting on the j component. 

The angular momentum of each component,  Hj, can be simply expressed in fixed-plane 

coordinates that pitch and yaw with that component, 

Hj^iPjM-ttliM+rJ, (io) 



where T, = 0. 

After differentiating each angular momentum vector, three differential equations can be written 

for the two F.- 's, and Q from the transverse components, 

I^Q + ifjYipIxjiQ + itj^Mj +Mj, (11) 

where M= is the transverse aerodynamic moment acting on the j component. 

The forces exerted on the center component by the other components are the negatives of the 

beam forces, and the moment exerted on the center component can be computed from the 

negatives of the beam forces and moments. 

Fx=-F2-F,   ;Fxl=-Fx2-Fx3, (12) 

and 

Mj=-M2 -M3 -i [{x2 -Xj)F2+(x3 - Xj)F3 +Fx2 fe -Ej)+Fx3 {E3-Ej)]d.      (13) 

The sum of equations 9 yields the usual drag equation, 

mV = fjFxj. (14) 

Equations 8 can be added to eliminate the beam forces to provide a simple relation between 

Öand£, 

v(i-iQ)=fj[FJ-^]. (15) 
7=1 



Equations 8 is now multiplied by i(xj -xx)d, equations 9 multiplied by i(Ej -El)d, and all 

are added to the sum of equation 11 to eliminate the beam forces and moments.  The resulting 

differential equation for Q is simplified to 

ItQ-ipIxQ= £ [mjixj-x^jd2 +ItJfj-ipIxJtj] 
j=2 

+ i[Mj+i(xJFJ+FxjEj)dl 
j=l 

(16) 
where 

h = hi + hi + hi + k fa f + m2 fa, f + m3 fa f]d2 and 

*x       •'jtl ~T~-*x2 ~T~*x3 ■ 

3. Linear Aerodynamics 

The linear aerodynamic forces and moments acting on the three bodies have the following 

forms in terms of the angle of attack at each body, 

^xj ~     S\CDj> (17) 

F . +iF ■ =-e 1 yj ^ irzj        Si cij+i(pd/vy tj+c.jijd/v (18) 

and 

Myj+iMzj=-iSxd c3i+i(pd/V]c* 
. 3J 

Zj+cjjd/r (19) 



where g, = pSV2/l. 

The Magnus force and moment coefficients  (clj,c*3j) are usually neglected for slowly 

spinning finned missiles, but must be retained for spin-stabilized bodies of revolution. The local 

angles of attack at the three components are determined by their location, inclinations, and 

motion, 

£j=Z-£ Xjd/V - Tj + Ejd/V. (20) 

The transverse aerodynamic force on the rigid projectile is obtained by adding the three 

equations 18 and using equation 20 for Tj = Ej = 0. 

FyR + iFzR = -gl [(Cl + i(pd/vK)? + c2(|d/v)], and (21) 

^Afa ~C1 = 2-iC>J' 
1 

where CNpa = c] = ]Tc* and CNq +Cm = c2 = Y\c2j -xjClj]. 

Similarly, the transverse aerodynamic moment for the rigid projectile is obtained by adding 

the sum of ix}d times each of equations 18 to the sum of equation 19 and again using 

equation 20. 

MyR+iMzR =-igxd (c3 +i{pd/V)c;\ + c4fed/v)], and CMa =c3 =£[c,y +xyciy],  (22) 

In reference 8, the relation similar to equation 20 erroneously uses the missile-fixed derivative of Ej, and not the 
derivative in a nonspinning coordinate system. 



where CMpa = c*3 = £ [cy + x/y} and CMq + CMä = c4 = ]T [c4J + Xj (c2J - cy )- (Xj) 2cx; 

From equations 14 and 17, the familiar form of the drag equation is written 

mV = -glCD, (23) 

where CD =cDi+cD2+cD3. 

For the aerodynamic force, equations 17-19 can be inserted in equation 14, and the small 

effects of the Magnus force, the damping force, and the center body lift on the trajectory can be 

neglected (c*y = c2J =cn=0). 

mv{i-iQ)=-g\cLaz-cu(r2-E2d/v)-ci3(r3-E3d/vj (24) 

where CLa=CNa-CD. 

Equations 8 and 11 for j = 2.3 and equations 15 and 16 are six differential equations in six 

variables—£, Q, E2, T2, E3, and T3.        If   the    aerodynamic    forces    and   moments    of 

equations 17-19 are inserted and Q is eliminated by equation 24, a set of five equations in five 

variables results, as in 

T,[R
nJm+{Snm+ipSl)zm+{T„m+ipTn

,
m)zm]=0;andn=l,2,3,4,5, (25) 

where (z1,z2,z3.z4,z5) = ^,E2,T2,E3,r3). 



Rnm and S*nm are primarily dynamics terms involving various masses and moments of inertia. 

The aerodynamic contributions to these terms are quite small and will be neglected. Tnm 

contains combinations of beam elastic terms and aerodynamic terms, while Snm and Tnm are 

combinations of beam damping terms and aerodynamic terms. In equation 25, 

* nm nm       ornm, 

Snm=Snm+(gld/V)Snm,md (26) 

T;m=f;m+(gld/v)T;m. 

Twenty of the dynamics terms, twelve of the elastic terms, and eight of the beam damping terms 

are nonzero; these forty terms are given in Table 1. The forty-six nonzero aerodynamic terms 

are given in Table 2. 

A general solution of equation 25 can be expressed as the sum often modal functions of the 

form 

zm=zmke
At   and    A = Ak ,k= 1 to 10. (27) 

When a function of this type is substituted into equation 25, the final result can be written in the 

form of five linear homogenous equations in the constants zmk. These equations are specified by 

a 5 x 5 matrix (unm) which is a function of A. 

2>nA*=0 and n= 1,2, 3,4, 5, (28) 
m=l 

where unm = Ak
2Rnm + Ak (s„m + ipS'nm)+ Tnm + ipT^. 



The ten values of Ak are the roots of 

det unm = 0. (29) 

Forzu * 0, the corresponding values of the Zmk's for each of the ten modes can be determined 

from the solution of a fourth-order inhomogeneous linear system, 

*t 

X w»mymk = w„  and n = 1, 2, 3, 4, (30) 
m=l 

where wnm =u(n+iXmn), 

Ymk =Z(m+i)k/zik,and 

Wn  =-U(n+l)l. 

Equation 29 can be solved in general by a simple trial-and-error Newton's quadratic formula. 

The first of the five modal equations is 

ItA
2 +(s11-ipIx)A + TI1+ipTj1 = [m2(x2 -xj)d2'A2 -S12A-T12] yi 

+ (lt2A - iplx2 )A - S13A - T13 - iptu y2 

+ m \x3    Xj)d A  -S14A-T14 y3 

(31) 

+ [lt3A - ipIx3)A - S1SA - T15 - ipf15 y4- 

(The k subscript has been omitted from equation 31 for simplicity). The rigid projectile 

frequencies and damping rates can be computed from equation 31 when the Vj's are zero. Very 

good approximations [4] for the frequencies are 

$kR = plx ± 4(plx )2 + 4ItTn      211 = ±0}R + (J ± PIX /4ItaR )plx j2It, and k = 1, 2, (32) 

10 



where coR = ^Tn/It  is the rigid projectile zero-spin frequency. Exact relations for the damping 

rates are 

*« = -&.*« +pT1])/(2<j>kRIt -plx). (33) 

The magnitude of y2k specifies the relative size of the angular motion of the fore component 

with respect to the projectile angular motion for mode k, while the magnitude of y4k specifies 

the angular motion of the rear component for that mode. For example, the argument of y4k 

determines whether the fins of an elastic missile are more or less effective than those on a rigid 

projectile. Usually, the phase angle is near zero and they are less effective. 

4. Three-Component Motion in a Vacuum 

A nonspinning projectile with identical components 2 and 3 and identical connecting beams 

is now considered. For this case, all parameters for components 2 and 3 are equal, except for 

x2 = -x3 and b22 = -b23. For motion in a vacuum, gj = 0 and the aerodynamic terms vanish. 

The five equations of motion become 

Jtzlk -m2xl{z2k -ZAkY1 -Itlfak +z5k) A2=Q, (34) 

-m2x1A
1zlk +[m2A

2-bl2(l + rm)]z2k -{b22/d)z3k -bnrmzAk =0, (35) 

It2A
2zlk + b22d{l + rm )z2k + (- It2A

2 + b%2 \k + b22drmz4k = 0, (36) 

m2x2A
2zlk-bl2rmz2k+[m2A

2-bl2(l + rm)}z4k+{b22/d)z5k=0, (37) 

11 



and 

Il2A
2zlk -b22drmz2k -b22d{l + rm)z4k +{-InA2 + b32)z5k = 0, (38) 

where rm = m2 /ml. 

Equation 34 indicates that zero is a double root (Ai = A2 = 0). If modal functions are considered 

for which z2k = z4k and z3k = -z5k, Zik is zero, and equations 37 and 38 are identical to equations 

35 and 36. Thus, four more roots are the solutions of a quadratic in A2, as in 

[m2A
2 - bn(m/m,)] [lt2A

2 -b32]- (b22 f (m/m,) = 0. (39) 

For small It2, 

A3A = ± i ^2,mEl/[mxm2a
3), and Alfi = ± 2ijEI/{It2a). (40) 

The third and fourth roots are particularly interesting. Planar motion occurs when z23 = z24. The 

sum of the modal functions for Ej is 

E2 = E3 = 2z23 cos co t, (41) 

where cb = l{A3} and l{a + ib) = b. 

This in-phase symmetric motion of the fore and aft components is quite similar to that for the 

classical free-free beam vibration. Geradin and Rixen [12] give the theoretical frequency for two 

lower free-free vibrations as 

coK = 4 JEl)'{mÜd'), (42) 

12 



where A, = 4.730, A2 =7.853. 

If the length of the beam is assured to be the distance between the em's of the center component 

and the forward component, 

a = x2d = {L/2Xl + rm)/(l + 2rm), (43) 

and 

coxl& = (4.566)Jrm(l + rJ/(l + 2rJ . (44) 

mj& is plotted vs. the mass ratio rm in Figure 3, and the three-body approximation is quite 

good for fore and aft components which are one half the mass of the center component or are 

each 25% of the total mass. In the numerical examples of this report, each end component is 

specified to have one quarter of the total mass. 

The remaining four roots can be obtained by assuming an antisymmetric oscillation of the 

end bodies (i.e., z2k = -Z4k and z3k = zsk). Equation 34 becomes 

z\k = 2m2x2d
2zlk+Itlz3k Ht, (45) 

and equations 37 and 38 reduce once again to equations 35 and 36.   The last four roots are 

solutions of the following equation in A : 

[m^A2 -bn][lt2a2A
2 -b32)-[2m2x2{ll2/It)A2 +b22f =0, (46) 

where ax =\-2m2{x2)
2d21It and a2 =l-2It2/It. 

13 



For small It2, 

A5,6=+iV3EI/V2aia
3),   and   A910 = ±2i ,/EI/(It2a). (47) 

The ninth and tenth roots are approximately equal to the seventh and eight roots. These roots 

correspond to very high frequencies and will not be considered in the remainder of this report. 

If /, is assumed to be the value for a slender uniform cylinder of length L, /, is ml}/\2. 

The ratio of A56 to A3A can be derived from equations 40,43, and 47, as in 

^6=4,4(l + 2rJ/Vl + 2rffl
3. (48) 

Roots five and six represent a pitching motion of the center component, combined with an 

opposing oscillation of the fore and aft components. For rm = 0.5, this pitching antisymmetric 

motion is 80% faster than the free-free in-phase oscillation that was considered earlier. The 

second free-free oscillation is antisymmetric, but is 180% greater than the first. Thus, the three- 

body theory qualitatively describes this oscillation, but predicts its frequency very poorly. 

5. Flare-Stabilized Rod 

Platus [8] first applied his theory to a 5-ft-long rod stabilized by a very light 1.5-ft-long flare 

with a base diameter of 0.8 ft. Since he neglected the very small normal force associated with 

the nose, this missile has a very simple normal force distribution of 

rIC 
--^- = -1.138{x +1.25)   and   -3.12<x<-1.25. (49) 

ax 

The displacement oscillations of a free-free uniform beam can be described by the following 

sum of eigenfunctions: 

14 



d(x, t) = 2 &g& K W exp{iu K*\   
and    -L/2<x< L/2. (50) 

The SK 's are constants detennined by initial conditions.   The first two eigenfrequencies, coK. 

were given by equation 42, and the corresponding eigenfunctions are 

yi(x) = cosh('K1x/L)-r}1cos('h!x/L), and'92(x)=sinb.(\x/L)-ri2s3n(\x/L), 
(51) 

where r\K = 7.527,35.975. 

The other pairs of eigenfunctions for K greater than 2 have the same form as equation 51, with 

larger values of XK, r\K. 

The linear motion of an elastic missile with distributed aerodynamic loads can be expressed 

as a sum of periodic functions. Their frequencies are related to the aerodynamic frequencies of 

the rigid projectile and the free oscillation frequencies of the elastic projectile. Platus assumed 

that each of the periodic components had the form 

Sk(x,i) = I4AM exp(v)and l{Ak} = j>k. (52) 

Although the first three eigenfunctions were used to compute the motion of the flare- 

stabilized rod, the second and third eigenfunctions had very little effect on the low frequency 

motion. The first eigenfunction gave the following expression for the lowest four frequencies: 

M-ptJj-T\Jlhl-<ti+hlMi\=hhlM- (53) 

The ratio of the displacement at position x and the angle of attack for the k-th frequency is 

15 



ök (x)lt = [% (x)][/, IM, ][fe )2 - a>\ +16 //, (54) 

Table 3 provides the appropriate parameters, including Platus's integrals I1,I4,I6,mdM1. The 

parameters for the three-body theory are given for m2=m3 = m1 /2. 

The ratio of the three-body elastic frequency, cb, to the rigid-body zero-spin pitch 

frequency, coR, is a good measure of the effect of elasticity on the projectile's aerodynamic 

frequencies and damping rates. This ratio, S/(oR , is denoted by a and is usually greater than 5. 

When it is less than 5, a large effect on the aerodynamic motion is expected. By varying El, 

<I>J(DR can be computed as a function of a. The result is plotted as Figure 4a and compared 

with the three-body theory. In Figure 4b, the two deflection magnitudes, \Ej/g\, of the three- 

body theory are also plotted against a, and they are compared with the corresponding deflection 

magnitude, [#, (3Z/8)]/£, of the Platus [8] theory. (The three-body deflections are given by yn 

and v3i in equation 30.) 

These figures show similar behavior for the two theories. The three-body theory predicts a 

much slower decrease in fa, with decreasing a and a displacement of the aft component that is 

twice that of the forward component. Forcr = 2, the flare angle of attack is reduced by 40%, 

thereby reducing the frequency by 23%. 

6. Finned Missile 

The implications of this aeroelastic theory can best be seen by considering a particular 

hypersonic finned projectile with a fineness ratio of 20 flying at 6,000 ft/s. This projectile has a 

body diameter of 0.35 ft, and its forward and rear segments are each 25% of the total length; this 

is slightly less than the optimum length of 27%. The various aerodynamic coefficients are 

computed from an assumed force distribution (see Appendix A). All necessary parameters are 

16 



listed in Table 4. For zero spin, the rigid body frequency ö>ä is 8.52 Hz, and the rigid body 

damping rate is -2.4 s"1. For a = 8, the three-body symmetric beam frequency oo is 69.0 Hz, 

and the elastic projectile frequency is 8.06 Hz (i.e., 6.5% less than the rigid body frequency). 

The equations derived in section 3 can now be used to calculate <j>J(0R as a function of 

a between 1.0 and 10.0. The result is plotted in Figure 5, while the magnitudes of T2/^ and 

T31% are plotted in Figure 6.   For a = 4, the effective angle of attack of the fins has been 

reduced by 30%, and the adverse angle of the nose increased by 35%, thereby reducing the 

projectile frequency by 45%. The large nose deflection with its increased destabilizing moment 

has a large effect on the projectile frequency, which did not appear for the flare-stabilized 

missile. In Figure 7, the elastic frequencies 03/coR and 4>s/coR are plotted against a. The 

frequency of the antisymmetric pitching oscillation, ^5, is seen to be approximately twice 03, the 

symmetric oscillation. 

7. Beam Damping 

Beam damping is a very complicated process that will be approximated by a simple linear 

proportionality with the displacement velocity. This velocity must be computed in a coordinate 

system spinning with the beam. Thus, the damping force exerted by each beam is assumed to 

have the form: 

[KJ 
+iPXmp =-2kJmAe^lEJ -^h-Ujmj&jfa -Ex -ip(Ej -£j,and 

Cd- = ^3{El)2l{mlm2a
l), (55) 

17 



where a>3 = -yß(ßljj\m^n^) and <j> = p. 

The definition of kj was selected so that k, = 1 corresponds to the critical damping of a free-free 

beam. For example, the forward beam damping contribution to the first mode is 

- 2k2m2d>2 [A, + z'(^ - p)\[(wj + m2 )z21 + m3z4i ]/mx. 

Thus, beam damping is a strong function of spin and is essentially zero when spin is equal to 

the modal frequency. The beam damping terms are given in Table 1(c). In Figure 8, the finned 

missile's fast mode damping rate, Ai, is plotted vs. spin for a = 5 and k2 = k3 - 0, 0.05, and 

0.10. Beam damping increases projectile damping when spin is less than the modal frequency 

and decreases projectile damping when it is greater than modal frequency. Figure 9 shows A2, 

the second projectile damping rate, for the same parameters. For this mode, the coning motion is 

opposite to the spin, the frequency is approximately the negative of the first frequency, and beam 

damping always increases the damping of this mode. Finally, Figure 10 shows A, vs. a for spin 

of 2.3ö>ä, and k2 = k3 = 0, 0.05, and 0.10. For low values of cr, beam damping can actually 

cause projectile instability. Indeed, Chadwick and Murphy [9, 10] show that the beam damping 

of an internally mounted beam can destabilize a spinning shell (Appendix B). 

8. Bent Missile 

If the beam deflection is large enough, the maximum stress exceeds the yield limit, and the 

beams are permanently deformed or bent. All future elastic motion will be about this new bent 

shape. Thus, the component location variables E. and ry. are no longer completely elastic, but 

consist of an elastic part and a permanently bent part that rotates with the projectile, 

Ej=Ej+EjBei* (56) 
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and 

ry=f,+I>''', (57) 

where <f> = p and Z^f^varyelastically. 

Both fore and aft components will have trim force and trim moment terms associated with YJB 

and EJB in equation 20. If the fins are deformed relative to the aft component, additional fin 

force and moment terms must be added for the rear component, as in 

{Fys+^z3)fm=glcl3r3Fe^ (58) 

and 

{My,+M2,)fin=ig,dc%%Tmei*, (59) 

where T3F and T3M are measures of the deformation. 

The equations of motion derived in section 3 should be modified by inserting the new 

variables of equations 56 and 57 in the dynamics and aerodynamics terms, adding the fin trim 

terms to the aerodynamic force and moment, and replacing EJ,TJ with Ej,Tj in the elastic 

terms. The new set of five inhomogeneous differential equations contains terms multiplied by 

exp(z'^), as in 

tk2- + (*- +*>£.)*. +fc- +9>C>.] = '.«pfa) andn= 1,2, 3,4, 5,       (60) 

where t„ = [p2 -ipjt^ +pY„D +g1tnA +ip{gldjV)t'nA 

KD ' CD 'tnA't'nA Ere defined in Table 5. Equation 60 can be solved by the assumptions of constant 

spin and a solution with the following form: 
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(^,z2.z3,z4,z5)=(^T,E2T,f2T,E3T,f3T)exp(ipt)=(s1,s2,s3,s4,s5)exp(ipt). (61) 

The Sj's are solutions of the following linear inhomogeneous system of equations: 

5 

^tnmsm = tn , n = 1,2, 3,4, and 5, (62) 

where *„ = -p2 (Rnm + ^)+ ip(Snm + T^)+ Tnm. 

A simple bent version of the finned missile is considered. All of the bent parameters are 

taken to be zero, except for E3B = -.063 and T3B =.020. In Figure 11, the zero-spin trim 

angle, | J10 |, divided by its zero-spin rigid body value, \s10R |, is plotted against a. For a = 4, the 

flexible missile has a trim angle twice that for a rigid missile, and this angle increases rapidly 

with decreasing <j. The magnitude of the trim motion is smaller than that for zero spin motion, 

except in the vicinity of the five resonant spins. For a = 5, the maximum values of the trim 

motion parameters for spin near the three lower-resonant frequencies are given in Table 6, and 

Sj/sio vs. spin is plotted in Figures 12(a)-12(c) for j = 1, 3, 5. 

For spin near 0.7coR and 4.9coR, the forward and aft components move in phase with each 

other while they are out of phase for spin near 9.7a)R. This out-of-phase motion is similar to the 

fifth and sixth modes for vacuum flight. For resonant spins of 0.7coR and 9.7a>R, the aft 

component moves to reduce the effective angle of attack of the fins, but it actually increases the 

effective angle of attack for the intermediate spin of 4.9coR. The motion of the two end bodies 

does dominate the two elastic beam resonant frequencies. 
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9. Quadratic Roll Equation 

Since the trim motion is large in a very small region near resonant spin, the trim motion of 

rigid spinning finned missiles is usually a minor concern for designers. Some missiles, however, 

can "lock in" at resonant spin for a range of initial conditions. A rigid missile with mass 

asymmetry and a trim aerodynamic force can lock in at resonant spin [11]. Quadratic terms in 

the missile's roll equation cause this; therefore, the quadratic version of roll equations must be 

derived for the three components. 

Each component's roll equation is expressed with respect to that component's fixed plane 

X-axis, 

IxjPj=MXJ+glcejd. (63) 

If linearity is assumed, then 

Pl=P2=P3=P> (64) 

Mxl=-Mx2-Mx3, (65) 

and 

IxP = giCtd, (66) 

where C( =ca+ct2+ca=Ctp(p-p„)dIV. 

pss is the linear steady-state spin produced by either intentional cant of the fins or unintentional 

damage to the fins. 
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The exact relations for p2 and p3 depend on the requirement that they should be equal to the 

corresponding body's fixed-plane X-component of the central body's angular velocity, 

pj=p[l-r
2

j/2]+0 Tyj +y, r^p + RifQ-pTj/lfj), (67) 

where  y} =jry , 

R{a + ib) = a, and 

z is the complex conjugate of z. 

Equation 65 can be replaced by a more exact expression for the roll moment exerted on the 

central body by the two beams; this replacement is 

Mx, =-Mx2[l-y
2

2/2]+R\M2T2}-Mx3 [l-tf/l]+R\M3T3} 

-I{F2{E2 -E^ + Zfc -E,)d\. (68) 

Equations 63, 67, and 68 can be combined to give the nonlinear version of equation 66, resulting 

in equation 69. 

[A -{hiYl +Ix3r
2

3)/2]p = glced + R\M2r2 +M,T3}-I\F2{E2 -E^ + F^E, -£,)/}-C0, (69) 

where C0 ^VÜQ-P^/^j}. 

Equation 69 is the nonlinear spin equation and must be combined with equation 60 to describe 

the motion of a bent missile. Any study of the steady-state solutions would require the numerical 

integration of equations 60 and 69. The linear spin equation had a constant steady-state solution, 

and constant steady-state solutions for the nonlinear spin equation are possible. Indeed, the 

nonlinear spin equation for a rigid bent missile has only constant steady-state solutions [11]. For 
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constant spin, the trim motion given by equations 61 and 62 describe the steady-state transverse 

motion of an elastic missile. If the equations for trim motion are inserted in equation 69 and p is 

taken to be zero, the appropriate equation for equilibrium spins can be written. 

g1Cep{p-Pss)d2/V = -(MxlI, (70) 

where (Mx)n! = R\M2TT2T + M3TT2T}-I{F2T(E2T -E1T)d + F3T(E3T -ElT)d}. 

The trim values ofiiy and IT,, are defined in Table 5(b). Two functions of spin, ^(/^and f2(p), 

are defined as 

fM = -{Mx)ni{giCipd
2lv)\  mdf2(p) = p-pss. (71) 

Equation 70 states that equilibrium spins are spins for which /, intersects f2. fx [p) is a 

function of spin, and except for near resonance spin, it is quite small; equilibrium spin must be 

near the design pss. Near resonance, however, fx (p) is large. Although pss could be quite far 

from resonance spin, a near resonance spin could satisfy equation 70 and be an equilibrium spin. 

If this equilibrium spin is a stable equilibrium, it would be a possible constant steady-state spin 

and therefore produce spin-yaw lock-in. Numerical integration of the differential equations of 

motion, equations 60 and 69, would determine the stability of the equilibrium spins. 

In Figure 13, fx{p) for a nonlinear roll moment is computed from equation 71 for the bent 

missile, and the result is plotted against p/o)R . The line f2(p) for the linear roll moment is also 

plotted for pss = lcoR. The three intersections of the two curves are equilibrium spins. The 

effect of other values of pss can be determined by changing the p/coR intercept of the f2 (p) 

line. This process shows that 0.7coR could be an equilibrium spin when pss is between 0Jo)R 

and 3.1a>R, and similar observations apply for 4.9a>R. 
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The equations of motion for the bent missile case were integrated for pss = lcoR and 

p0 - 4.9coR , 5.2<x>R . The resulting spin history is plotted against time in Figure 14. For p0 

greater than 5.2coR, the spin goes to a constant value near the linear prediction of pss. For p0 

between 0 and 4.9coR, it goes to a value of 4.7a>R near the lowest elastic frequency. Figure 14 

shows that the boundary value of p0, which separates these different behaviors, is approximately 

5.05a>R . Thus, spin lock-in can occur for this elastic frequency. 

10. Summary 

(1) The aero-elastic motion of a flexible projectile is approximated by three bodies 

connected by two massless elastic beams. 

(2) This three-component projectile theory gives excellent estimates of the first elastic 

frequency of a free-free uniform beam. 

(3) Two types of beam motion are simulated—the classical free-free symmetric motion and 

an out-of-phase antisymmetric flexing motion combined with pitching motion. 

(4) When the elastic frequency is less than eight times the aerodynamic rigid body pitch 

frequency, the fins move to reduce the stabilizing moment significantly, and the pitch 

frequency can be significantly reduced. 

(5) Moderate beam damping can cause dynamic instability when the spin is much greater 

than the pitch frequency. 

(6) The trim motion of a bent missile shows large resonant responses when the spin is near 

the lower three modal frequencies. 

(7) The quadratic roll equation shows that spin-yaw lock-in can occur for the lower elastic 

frequency. 
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*• X. 

Figure 1.    X-Y Coordinates for Three-Component Projectile (Every Variable Is 
Shown as Positive, Except Ty3). 

*v- C 

*-x. 

Figure 2.    X-Z Coordinates for Three-Component Projectile (Every Variable Is 
Shown as Positive, Except T^). 
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Figure3.  u,/« vs. rm. 
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Figure 4(a). g\lcoR vs. CT for Flare-Stabilized Rod. 
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Figure 4(b). \E3/£\ and \E3/2j\ vs. CT for Flare-Stabilized Rod. 
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Figure 5. ^; j(DR vs. a for Finned Missile. 
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Figure 6. \TJ /B VS. CT (j = 2,3) for Finned Missile. 

345 6789 10 

Figure 7. <j>J<üR and &J(DR vs. a for Finned Missile. 
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Figure 9. X2 vs. p/eoR for a = 5; k2 = k3 =0,0.05, and 0.10. 
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Figure 10. ^ vs. a for p = 2.3 6>Ä; k2 = k3 = 0, 0.05, and 0.10. 
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Figure 11. Scaled Zero Spin Trim Angle |sU/|sw J vs. CT. 
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Figure 12(b). \s3/Sio\ vs- /V®* for <7=5. 
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Figure 13.  ft(DR vs. pj(0R for Bent Missile With <r= 5; i = 1,2. 
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Figure 14.       P/®R   VS. Time for Bent Missile With  a = 5   (pss = 7oR; p0 

= 4.9oR; 5.2wR). 
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Table 1. Nonerodynamic Matrix Elements 

(a) Dynamics Terms 

*//=   I, R4I = -m3x3d 

R12 = -m2[x2 -Xjjd2 R44 =m3d 

R13 = -Jt2 R51 = -R5s = I,3 

R14 = -m3[x3 -x;)d2 
Sn=~Ix 

RI5 = -It3 ^13 = IX2 

R2! = -m2x2 d ^15  = 1x7, 

R22 =m2d ^31  = "~^33  = ~IX2 

R31 = -R33  = It2 ^51  = ~^55  = ~IX3 

(b) Beam Elastic Terms 

T22=-b12(m1+m2)d/m1 T42 = ~bi3 m2d/m, 

T23 = ~b22 T44 = -b13 {m, + m3]d/mj 

f24 = -b12 m3dlm, T45 = ~b23 

f32 =b22(m]+m2)d/mJ T52 = b23 m2d/m1 

*33 ~b32 T54 = b23 (nij + m3 )d/m! 

f34=b22m3d/m1 T55 = b33 

Beam Damping Terms 

S22 = -f22 = 2k2m2cb2 {nij + m2]d/mj S42 = —T42 = 2k3m3cb3m2 d/rrij 

S24 = -T24 = 2k2m26)2 m3d]m.j S44 =-T44 = 2k3m3cb3(m1 +m3)d/m, 
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Table 2. Aerodynamic Matrix Elements 
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Table 2. Aerodynamic Matrix Elements (continued) 

nm 

where gt = It/md2;gt2 =It2/md2; andg,3 = Il3/md2. 

T* nm 

Tx\=-(gxCLa+cz)d -*35 ~gx2C13" 

T\i={gx
cn+Cn+X2cn)d ^=-{gxzCLa-cl3)d 

^5 =(gxcu+c*33+x3c*li)d r53 = g^cl2d 

^i=-{gx2CLa-c32)d ^5*5  =(^3C13-4V 

-*33 = \gx2 Cl 2 ~ C32 /" 

where   gx = Ix/md2; gx2 =Ix2/md2; and gx3 = Ix3/md2. 
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Table 3. Flare-Stabilized Rod Parameters 

m = 2.40 slug a = b= 1.875 ft 

ni2 = ni3 = 0.60 slug p = 0.002 slug/ft2 

Ix= 0.0132 slug-ft2 V= 18,000 ft/s 

1x2 = 1x3 = 0.0033 slug-ft2 Ci =Ci3=2 

It = 5.00 slug-ft2 c3 = -5 

It2= It3 = 0.0781 slug-ft2 C33--0.32 

L = 5ft all other c 's are zero 

x2 = -X3 = 2.34cal Ii = 1.176 xlO6 lb/ft 

(EI)2= (EI)3 I4 = 2.550 x 106 lb-ft 

d = 0.80 ft I6= 4.609 x 106 lb/ft 

drod = 0.20 ft Mi = 18.36 slug 

J-L/2    ax 
J~L/2   dx 

h=gxdfx^%dx J-v2     ax 
M^im/L^^fdx 
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Table 4. Finned Missile Parameters 

m = 3.50 slug cm =0.18 

m2 = m3 = 0.875 slug c,=9.4 

Ix= 0.054 slug -ft2 c3 = -34.4 

Ix2=Ix3 = 0.0135 slug-ft2 c4 = -750 

It= 14.20 slug-ft2 c12 = 2.3 

It2 = It3 = 0.22 slug-ft2 c13=7.1 

x2 =-x3 =7.5cal c22=19 

(EI)2=(EI)3 c23=27 

d = 0.35 ft c32 = 5.4 

a = b = 2.63ft c33 = —3.6 

p = 0.002 slug/ft3 c42 = -30 
V = 6,000 ft/s c43 =-10 

CD = 0.40 c43=-10 

cD2 =0.15 all other c • are zero 
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Table 5. Bent Missile Terms 

(a) Values of tnD, tnD, tnA, 4 

*W = ^12^2B +"^13^25 + ^14-^35 + ^15 ^3B KD ~ ^13^ 2B + "lS^- 35 

*2D = ^22^ 2B 4=o 
hü = "^33 ^ IB ^3Z> = ^33* 2B 

^AD = -^44-^35 4=o 
*5Z> = ^55 * 35 

/* - 9* r l5D ~ °55x 35 

'u --TnE1B -Tl3T2B -Tl4E3B -r15r35 

-[C33Y3M + x3c\3T3F]d 

hA = S\2E2B ~ 1^13 + ^13 A^2B ~~ ^14-^35 

-\Sis+Ti5jr3B 

tzA = — ^23^ 25 — ■* 25 V- 35 + ^ 3F / t2A  =~^22^2B — "23*25 ~ "24-^35 — "25*35 

l3A = _c32r25^ ^ =S32E2B — \S33 + T33^2B -S34E3B 

- \S3S + T35 JT3B 

*4A = _743r25 _ ^O^B + r3F J t4A =-S42E2B -"43125 - "44-^35 ~ "45*35 

^=-c33(r35+r3MV ^5^ = Ss2E2B ~ 1^53 + ^531 IB ~ $54E3B 

~ 1^55 + ^55 A 35 
(b) Trim values of E}, Tj 

h2T — s2 + E2B 1 2T — S3 +1 2B 

E3T = s4 + E3B 1 3T = 55 +1 3B 

Table 6. Sj/si0 for Resonant Spins, a= 5 

p 0.74ö)Ä 4.S7(0R 9.72coR 

mag (si/sio) 10.0 1.2 10.9 

mag (s2/sio) 4.9 22.1 90.1 

mag (s3/sio) 2.2 8.8 19.5 

mag (S4/S10) 4.7 16.2 93.3 

mag (s5/sio) 2.0 7.3 20.6 

arg (si/sio) -87.3° 106.0° -104.0° 

arg (s2/sio) 93.3° 102.6° -103.8° 

arg (s3/sio) 92.7° 102.4° -103.6° 

arg (S4/S10) 91.8° 102.4° 75.6° 

arg (s5/sio) -87.8° -77.5° -104.6° 
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Appendix A: 

Aerodynamic Properties of 
Finned Missile 
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Our finned missile is assumed to have uniform mass distribution over a 20-cal.-long cylinder 

with the density of aluminum. The external configuration has a fineness ratio of 22 due a very 

light conical windshield of 1 cal. and a 1-cal. extension of the four fins past the cylinder base 

(Figure A-l). The centers of mass of the three components are located at Xj, and these locations 

can be computed in terms of the lengths of the cylindrical segments. 

Figure A-l. Sketch of a Hypersonic Missile. 

xt =(L3-L2)/2       ;x2 =(L-L2)/2       ;X3 =-(L-L3)/2. (A-l) 

In Wood and Murphy,1 the slender distribution of normal force coefficient is shown to be: 

dC N 

dx 

1_ 

S 
a 

dA     äjAd    ed 

dx 
 \A + \x-xi)-r \+—T" 

xA •10<x<ll,    (A-2) 

where A is the body crossectional area and a. is angle of attack at x;. 

1 Wood, R. M., and C. H. Murphy. "Aerodynamic Derivatives of Both Steady and Nonsteady Motion of Slender 
Bodies." Journal of the Aeronautical Sciences, vol. 22, pp. 870-871, December 1955; see also BRL-MR-880, 
U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, MD, April 1955. 
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For the flight dynamics of this report, ä = 9 and the 0 term have no effect. 

dCN 

dx body 

CC; 
dx       V dx j 

;-10<x<ll. (A-3) 

This expression usually underestimates CNa by 30% due to its prediction of no normal force 

acting on the constant area cylinder. Therefore, we add a cylinder normal force term. 

dCN 

dx 
= 0.6[aJ-(x-xJ.\äd/V)]ex-10       ;x<10. 

cylinder 
(A-4) 

The contribution of the fins can be estimated by the "strip" theory of Boltz and Nicolaides,2 

which is based on the two-dimensional linear supersonic theory for the two fins in the x-z plane. 

dCN 

dx 
= 2(aLd

2/s){yf -0.5)[aj-(x-Xj)(äd/V)], 
fins 

(A-5) 

where 
yf =-(l3 + 3x)/4    .-7<x<-5, 

= 2 -ll<x<-7 
-l 

; M = Mach number. aT =2 VM2-1 

(dCNa/dx) is the sum of three coefficients of a} in equations A-3 through A-5.   (CN). can be 

obtained by integrating the sum of equations A-4 through A-6 over the i-th component. 

dCx 

dx 
(CN\=\~Ldx = cu^+c21{i1d/v). (A-6) 

Boltz, R. E., and J. D. Nicolaides. "A Method of Determining Some Aerodynamic Coefficients From Supersonic 
Free Flight Tests of a Rolling Missile." Journal of the Aeronautical Sciences, vol. 17, pp. 609-629, October 1950. 
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(cN)2 = ] 
5 

dCN 

dx 

(c,\ = J 
-11 

dCN 

dx 

dx = cl2^2 + c22 \g2d/V). 

dx = cl3^+c23(i3d/v). 

(A-7) 

(A-8) 

(CM). can now be obtained by multiplying the sum of equations A-3 through A-5 by [x - Xj) 

and integrating the result over the j-th component.   In Table 4, these relations were used to 
compute Cy for L2 = L3 = L/2. 

Finally, the roll damping moment, Ctp, was computed from (dCN/dx)fms using the local angle 

of attack due to spin. 

-5 

Cep{pd/V) = -4{aLd
3/s)l(yf-0.5lp{yf +0.5)/2v}ix. (A-9) 
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Appendix B: 

Internal Beam-Supported Mass 
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Chadwick1 and Murphy2 studied the effect of beam damping on the dynamic stability of a 

spinning projectile with a beam-mounted symmetric mass and aerodynamic damping. These 

references showed that beam damping could cause dynamic instability when the beam's elastic 

frequency is near the projectile's fast pitch frequency. The effect of an internal cantilever beam- 

supported asymmetric mass on the motion of a spinning projectile, however, was first studied by 

Reed3 for no aerodynamic or elastic damping. He showed that dynamic instability would occur 

when the elastic frequency was near the projectile's slow pitch frequency and that large resonant 

motion would occur for spins near the cantilever beam elastic frequency. 

The equations of this report can be used to study the complete problem for both symmetric 

and asymmetric masses. Table B-l gives the necessary parameters for the projectile studied by 

Murphy.4 In Figure B-l, we plot Xx vs. &3j<j)XR for different beam damping, k3 = 0, 0.1, 0.2. 

We see that dynamic instability does occur near a>3 = <f>lR when k3 is 0.2. Figure B-2 shows the 

damping of the slow frequency, A2, as a function of a>3/<p2R . We see that this mode is unstable 

near &3 = 02R as was predicted by Reed. In Figure B-3, we plot %T and E3T vs. p/d>3 ■ 

Resonance occurs for p = l.07a>3, and this large beam deflection was predicted by Reed. This 

analysis can be extended to other beam types, pinned, fixed-fixed, etc., by using the beam 

influence coefficients given by Chadwick and Murphy. 

1 Chadwick, W. R. "Stability of Spinning Shell." Unpublished NSWC Report, Naval Surface Weapons Center, 
Dahlgren, VA, September 1975. 

2 Murphy, C. H. "Spinning Projectile Instability Induced by an Internal Mass Mounted on an Elastic Beam." ARL- 
MR-270, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, November 1995; see also AIAA 
paper 92-4493CP, August 1992. 

3 Reed, H. L. "On the Motion of a Shell With an Internally Mounted Cantilever Beam" BRL-TR-1039, U.S. Army 
Ballistic Research Laboratories, Aberdeen Proving Ground, MD, November 1957. 

4 Murphy, C. H. "Influence of Moving Interior Parts on the Angular Motion of Spinning Projectiles." Journal of 
Guidance and Control, vol. 1, no. 2, pp. 117-122, March-April 1978; see also BRL-MR-2731, U.S. Army 
Ballistic Research Laboratories, Aberdeen Proving Ground, MD, February 1977. 
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Table B-l. Parameters for Spinning Projectile With Interior Beam-Mounted Mass 

m2 = 1x2 = It2 = 0 d = 0.6667 ft 
x2 = k2 = cil = 0 a= 0.50 ft 
p = 637rad/s b = 1.16 ft 
m = 22.6 slug p= 0.0020 slug/ft' 
m3 = 2.6 slug V= 1,200 ft/s 
Ix = 0.370 slug-ft' ci=2.5 
1x3 = 0.130 slug-ft^ CD = 0.5 
It = 2.610 slug-ft^ c3 = 5.0 
It3 = 0.070 slug-ft" c4 = -5.0 
x3=-0.45 cal. »      *      *     . 

Cl = c2 = C4 = ° 
E3B= 0.002 

c3*=0.10 
r3B=o — 

0.3 

0.2 

0.1 

-0.1 

-0.2 

-0.3 

-0.4 

k3 = 0.0 
k3 = 0.1 
k3 = 0.2 

1 2 3 

Figure B-l. Ay vs. (D3/& 1R   ■ 
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Figure B-2. k2 vs. &■ 31 T2R 
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Figure B-3. |£J and IE3J VS. p/S3. 
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List of Symbols 

d projectile diameter 

Ej dimensionless complex lateral location of cm of body j 
with respect to projectile cm 

(EI)j stiffness of beam attached to body j 

gi pV2S/2 

H j angular momentum vector of body j 

Ix axial moment of inertia of proj ectile 

IXJ axial moment of inertia of body j 

It transverse moment of inertia of proj ectile 

Itj transverse moment of inertia of body j 

Lj dimensionless length of body j, i.e., fineness ratio 

m projectile mass 

mj mass of body j 

p pi, projectile spin 

Pj axial component of angular velocity of body j 

Q 9 + iif/, complex angular velocity of body 1 

rm m2 /m, mass ratio 

S nd2JA 

V magnitude of proj ectile velocity 

Xj dimensionless axial location of cm of body j 

with respect to the cm of the projectile 

55 



a angle of attack at the projectile cm 

ß angle of sideslip at the projectile cm 

<f> roll angle of body 1 

<t>k frequency of k-th mode 

K damping of k-th mode 

0 pitch angle of body 1 

p air density 

o- col<j)XR 

a) common value of beam frequency when cb2 - d>3 

a>2 yl3(El)2/(mim2a
3) 

&, ^{El\l{mxm2b") 

®K K-th frequency for free-free uniform elastic beam 

aR V^ii /A ' rigid projectile zero-spin frequency 

£ ß + ia, complex angle of attack of projectile 

^K (x) K-th eigenfunction for free-free uniform elastic beam 

Y yaw angle of body 1 

\Fxj , Fyj , F2j) aerodynamic force exerted on body j 

\Fxj , Fyj , Fzj j elastic beam force exerted on body j 

[Mxj ,Myj, Mxj) aerodynamic moment exerted on body j 

\Mxj, Myj, M2j J elastic beam moment exerted on body j 
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(vxJ, vyj, vzj)   velocity of body j 

\Xj, Yj, ZjJ   location of cm of body j with respect to 

the cm of body 1 

(r •, r • j pitch and yaw angles of body j with respect to 

body 1 

R{Z] real part of z 

'M imaginary part of z 

NOTES: 

-Tilde superscript denotes quantity related to elastic beam. 

-Circumflex superscript denotes aerodynamic quantity. 

-e subscript denotes earth-fixed axes. 

-B subscript denotes parameter for bent projectile. 

-R subscript denotes parameter for rigid symmetric projectile. 
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