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A NONRESONANT TECHNIQUE TO ESTIMATETHE MECHANICAL 
MATERIAL PROPERTIES OF A VISCOELASTIC CYLINDER 

1. INTRODUCTION 

Measuring the Young's modulus, shear modulus, and Poisson's ratio of materials is 

important because these parameters contribute significantly to the static and dynamic response of 

a structure. 

Resonant techniques [1-7], which have been used to identify and measure moduli for many 

years, are based on comparing the measured eigenvalues of a structure to predicted eigenvalues 

from a model of the same structure. One limitation is that the model of the structure must have 

well-defined (typically closed-form) eigenvalues. A second concern is that resonant techniques 

allow measurements only at natural frequencies. 

Comparison of analytical models to measured frequency response functions [8-12] is another 

approach for estimating the mechanical properties (stiffness and loss) of a structure. When the 

analytical model agrees with one or more frequency response functions, the parameters used to 

calculate the analytical model are considered accurate. However, if the analytical model is 

formulated with a numerical method, a comparison of the model to the data can be difficult due 

to the dispersion properties of the materials. 

Other methods that measure Young's modulus require strain gauges [13-14] to be affixed to 

the cylindrical test specimen. However, the mounting of such gauges, which normally requires 

that the gauge be glued to the specimen, stiffens the material locally, causing an especially 

adverse impact on the estimate of stiffness and loss for soft viscoelastic materials. 

Still another technique for measuring stiffness and loss is to deform the material and measure 

the resistance to the indentation [15]. The drawback here is that the specimen can be physically 

damaged if the deformation causes the sample to enter the plastic region of deformation. 



This report describes the development of a nonresonant inverse method for measuring the 

complex Young's modulus and complex shear modulus of a cylindrical test specimen containing 

a mass on its end. The technique is best used when the end mass will change the dynamic 

response of the system, which typically occurs when an end accelerometer that measures 

response is attached to the test specimen. (It should be noted that the larger the mass, the more 

significant will be the response of the specimen.) 

In the next sections, the linear and angular equations of motion for the test specimen with the 

mass are derived. The inverse method allows two sets of experimental measurements in the form 

of transfer functions to be recorded for both the linear and rotational configurations. These sets 

are combined to yield closed-form values of Young's modulus and shear modulus at each 

frequency for which a measurement is made. The calculation of Poisson's ratio, based on a 

material constitutive equation, can then be made from these previous measurements of moduli. 



2. MEASUREMENT OF YOUNG'S MODULUS 

Measuring the Young's modulus of the test specimen begins by mounting one end of the 

specimen to a mechanical shaker and attaching the other end to a mass. Next, one accelerometer 

is attached to the shaker head and a second is attached to the end-mounted mass, with the 

measurement axis of both accelerometers in the x direction. The laboratory configuration for this 

experiment is shown in figure 1. As can be seen from the figure, the shaker inputs energy into the 

test specimen in the form of a linear translation that initiates a compressional wave. The speed 

and loss of this wave is measured with the two accelerometers, and Young's modulus is then 

calculated from the result. This measurement (estimation) process is further described below. 

The system model represents the test specimen (bar) attached to the mechanical shaker at 

x = 0 and the mass at x = L, with the two attached accelerometers measuring the acceleration 

levels at each end of the bar. The linear, second-order wave equation modeling displacement in 

the bar is 

d u{x,t)    Ed u(x,t) 

dtl        P     dxl 

where u(x,t) is the axial particle displacement at location x (m) and time t (s), p is the density of 

the bar (kg/nr5), and E is the unknown frequency-dependent, complex Young's modulus of 

elasticity (N/nT), which is yet to be determined. The boundary at x = 0 is modeled as a fixed 

end with harmonic motion and is expressed as 

u(0,t) = U0ex-p(i(Ot) , (2) 

where co is the frequency of excitation (rad/s), UQ is the amplitude (m), and i is the square root 

of -1. The boundary at x = L is formulated by matching the force at the end of the bar to the end 

mass multiplied by its linear acceleration and is expressed as 

.    dx dt2 {) 



JC = 0 

x=L 

Accelerometer 

E, p, M, A 

Specimen 

Accelerometer 

Figure 1. Laboratory Configuration for Measuring Young's Modulus 



where A is the cross-sectional area of the bar (m ) and m is the mass at the end of the bar (kg). 

Equation (1) can be rewritten in the spatial domain as 

dr 
(4) 

where U(x,o)) is the temporal Fourier transform of the axial displacement and kE is the complex 

compressional wavenumber (rad/m), which is equal to 

kE = (O/JE/P (5) 

Similarly, equation (2) becomes 

U(0,co) = U0, (6) 

and equation (3) becomes 

AE  = mco U(L,(0) 
dx 

(7) 

The solution to equation (4) is 

U(x,(o) = R(co)cos(kEx) + S(co)sm(kEx) , (8) 

where R and S are wave propagation constants. Applying boundary conditions (6) and (7) to 

equation (8) and then writing the solution as a transfer function in the form of a ratio between the 

displacement at both ends produces 

U(L,co) 

U, 0 

1 
cos(fc£L) - pL(kEL)sm(kEL) 

(9) 



where \x is the ratio of the attached mass to the bar mass and is equal to 

m 
(10) 

where M is the mass of the bar (kg) expressed as 

M = pAL . (11) 

The transfer function in equation (9) represents experimental data and is a function of 

unknown wavenumber kE. The inversion of the two transfer functions obtained from the 

different attached masses will allow both sets of data to be combined, yielding a closed-form 

solution of kE and then £ as a function of (O. The theoretical forms of these transfer functions are 

U(L,a)) 
= 7i(fl» 

cos(kEL) - Pi (kEL) sin(kEL) 
(12) 

and 

U(L,CD) 

Un 
= T2(0)) = 

cos(kEL) - ß2 (kEL) sm(kEL) 
(13) 

where the subscript 1 denotes the first attached mass and the subscript 2 denotes the second 

attached mass. Although the theoretical forms given in equations (12) and (13) are end 

displacement divided by input displacement, the transfer function created by end acceleration 

divided by input acceleration (obtained from the accelerometers) is identical in the frequency 

domain. Writing equations (12) and (13) as a function of (kEL)sm(kEL) and then equating them 

yields 

cos (14) 



where 0 is a complex quantity. The inversion of equation (14) allows the complex wavenumber 

to be solved as a function of (j>. The solution to the real part of kE is 

Re(*£) = 

1     * /   -v      n7t 

—Arccos(s) +— n even 
2L 2L 

—Arccos(-.s) +—        n odd 
2L 2L 

(15) 

where 

5 = [Re(0)]2 + [Im(<t>)]2 - V{[Re(0)]2 + Pm(0)]2 f- {2[Re(0)]2 - 2[Im(0)]2 -1} , 

(16) 

n is a non-negative integer, and capital A denotes the principal value of the inverse cosine 

function. The value of n is determined from the function s, which is a cosine function with 

respect to frequency. At zero frequency, n is 0. Every time s cycles through 7f radians (180°), 

n is increased by 1. After the solution to the real part of kE is found, the solution to its 

imaginary part is written as 

ta»«)=ifc*(-S7T--^7r}- (17) 
L        lcos[Re(fc£)L]    sin[Re(fc£)L]J 

Once the real and imaginary parts of wavenumber kE are known, the complex-valued modulus 

of elasticity can be determined at each frequency with 

2 
E((0) = Re[£(ö>)] + iIm[£(G))] = ^  . (18) 

[Re(^) + ilm(%)]2 

Equations (12)-(18) produce an estimate of Young's modulus at every frequency for which a 

measurement is made. 

7/(8 blank) 



3. NUMERICAL SIMULATION OF YOUNG'S MODULUS MEASUREMENT 

Numerical simulations conducted to determine the effectiveness of this method use the 

following parameters to define a baseline problem: M = 4.0 kg, m\ = 0.4 kg, m.2 =1.2 kg, 

L = 0.254 m,p= 1200 kg/m3,Re(£)= 108 +105/ N/m2, andlm(£) = 107+104/ N/m2, 

where/is frequency in Hertz. From these values, the mass ratios fa and fai are computed to be 

0.1 and 0.3, respectively. 

Figure 2, which corresponds to equations (12) and (13), is a plot of magnitude (top) and 

phase angle (bottom) for the transfer functions T\((0) and T2(co) versus frequency. The first 

transfer function, computed with an attached mass of 0.4 kg, is depicted with x's, and the second, 

computed with an attached mass of 1.2 kg, is shown with o's. 

Figure 3, corresponding to equation (16), is a plot of the function s versus frequency. Note 

that although this function is a cosine with respect to frequency, the period is increasing as 

frequency increases. Table 1 lists the values of n versus frequency, which were determined by 

inspection of the figure. Once the values of n are known, the modulus values of E can be 

determined from equations (15)-(18). 

Figure 4 shows a plot of real and imaginary Young's modulus values versus frequency. The 

real (actual) values used to make the transfer functions are displayed as a solid line, and the real 

(estimated) values are displayed as x's. The imaginary (actual) values used to make the transfer 

functions are also displayed as a solid line, with the imaginary (estimated) values displayed as 

o's. The estimated values agree at all frequencies with the actual values. This result is expected 

because there is no noise in the data and the same parameters used to make the transfer functions 

are used to calculate the modulus values (i.e., no error is introduced when calculating the 

modulus from the transfer functions). 

Errors, however, are introduced into this method during the measurement of the transfer 

functions and system parameters. This effect can be simulated by adding noise to the data with 

random numbers added to the transfer function, as shown in 

Te(fo) = nco) + e{Re[T(co)]aa +ihn[T(co)ab]} , (19) 
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Table 1. Value ofn Versus Frequency 

n 
Minimum 

Frequency (Hz) 

Maximum 

Frequency (Hz) 

0 0 330 

1 330 755 

2 755 1295 

3 1295 1965 

4 1965 2770 

5 2770 3715 

6 3715 4815 

7 4815 5000 

11 
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where e is the amount of error added to the transfer function and where oa and Ofr are random 

numbers with zero mean and a variance of one. 

Figure 5, corresponding to equations (12), (13), and (19), is a plot of the transfer functions 

Ti(co) and ^(ö)) with noise versus frequency. The value of e used to create this figure is 0.03, 

which represents approximately 3% noise in the data set. (If this test is properly set up and 

executed, a 3% noise level would be considered even greater than the actual noise levels in the 

experimental data.) 

Figure 6 is a plot of the function s with and without additive noise versus frequency. The 

solid line is the function with e set equal to 0.03, and the o's connected with the dotted line show 

the function without noise (also seen in figure 3). 

Figure 7 plots the estimated and actual values of Young's modulus (E) with noise versus 

frequency. The estimated values of the real part of E are depicted with x's, and the actual values 

of the real part of E are shown as a solid line. The estimated values of the imaginary part of E 

are depicted with o's, and the actual values of the imaginary part of E are shown as a solid line. 

The effect of measurement error on the accuracy of the calculation of E can also be studied 

with Monte Carlo simulations. Eleven different values of e were used to build the transfer 

functions and then calculate the modulus value. Estimation error at each frequency was defined 

according to 

,       ,       \\Eact(a>m)\-\Eest(Q>m)\\ 

max[Eact(com),Eest(com)\ 

where a((üm) is Young's modulus estimation error at the mth frequency, the subscript act 

corresponds to the actual value, and the subscript est corresponds to the estimated (calculated) 

value. Once this value is known, it can be summed across M frequencies by 

,   M 

ßj =^1Za((°m), (21) 
m=l 

13 



where ßj is the average error for they'th Monte Carlo simulation. Finally, all the simulations can 

be summed from 

1   J 

£=T£jß,-  , (22) 

where e is the estimation error using J simulations. Table 2 lists transfer function error (e) versus 

Young's modulus estimation error (e). The frequency range of the values used to prepare this 

table is 2.5 to 5000 Hz, the number of frequencies (M) used to calculate the estimation error is 

100, and the number of simulations (J) for each value of e is 100. 

Figure 8 is a plot of Young's modulus estimation error (e) versus frequency for a single 

simulation (7=1) using a known transfer function error of e = 0.03. Note that the estimation 

error for Young's modulus is slightly smaller than the transfer function error in table 2. Also 

note that the larger estimation errors tend to be near the frequency values where n is increasing. 

14 
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Table 2. Transfer Function Error Versus 
Young's Modulus Estimation Error 

Transfer 

Function Error 

iß) 

Estimation 

Error 

(£) 

0 0 

0.005 0.004 

0.010 0.008 

0.015 0.013 

0.020 0.019 

0.025 0.023 

0.030 0.026 

0.035 0.031 

0.040 0.034 

0.045 0.038 

0.050 0.041 
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4. MEASUREMENT OF SHEAR MODULUS 

Measuring the shear modulus of the cylindrical test specimen* requires mounting the shaker 

longitudinally to a stiff connecting rod (not to the specimen), which is connected to the edge of a 

large disk. A bearing mounted at the center of the disk allows it to rotate freely about its center 

point. The test specimen is rigidly attached to the middle of this disk in such a manner that when 

the disk is pushed by the connecting rod, it initiates torsional (or rotational) response in the 

specimen. The other end of the test specimen is attached to a second disk that provides rotary 

inertia when the test is run. Two accelerometers are used - one attached to the first disk and one 

attached to the second disk - with the measurement axis of both in the same angular direction as 

the disks. Although each accelerometer measures translation, this value can be converted into 

angular rotation by multiplying the recorded value by the distance from the center of the disk to 

the accelerometer. The laboratory configuration for this experiment is shown in figure 9. 

As can be seen in the figure, the shaker inputs energy into the connecting rod in the form of 

linear translation. When the rod inputs the energy into the disk, the disk rotates and initiates a 

shear wave in the test specimen. The speed and loss of this wave can be measured with the two 

accelerometers, and the shear modulus can be calculated from the result. This measurement 

(estimation) process, which is extremely similar to the measurement of Young's modulus, is 

described below. 

The system model represents a cylindrical test specimen (bar) attached via a disk and 

connecting rod to a torsional shaker at x = 0 and to a disk with rotary inertia at x = L. Each disk 

has an accelerometer to measure the angular acceleration levels at its end. The linear second- 

order wave equation modeling angular rotation in the bar is 

d26(x,t)    Gd2G(x,t) = Q 

dt2 P     dx2 

*As with Young's modulus, two sets of experimental measurements are recorded, with the disk (at x = L) in the 
second set having a different rotary inertia! value than the one in the first set. 

21 
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Figure 9. Laboratory Configuration for Measuring Shear Modulus 
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where 6(x,t) is the angular rotation at location x (m) and time t (s), p is the density of the bar 

(kg/m ), and G is the unknown, frequency-dependent, complex shear modulus of elasticity 
2 

(N/m ), which is yet to be determined. The boundary at x = 0 is modeled as a fixed end with 

harmonic angular motion and is expressed as 

0(0,0 = 0O exp(ifl*) , (24) 

where co is the frequency of excitation (rad/s), 0O is the amplitude (rad), and i is the square root 

of -1. The boundary at x = L is formulated by matching the angular force (torque) at the end of 

the bar to the rotary inertia of the end mass multiplied by its angular acceleration and is 

expressed as 

d6{L,t)       Td
26(L,t) ,.-, 

GI^-^r=-J-^2-' (25) 

where Ip is the polar moment of inertia in the cross-section of the bar (m ) and J is the rotary 

inertia of the disk at the end of the bar (kg«m2). For the cylindrical test specimen, the polar 

moment of inertia is 

Ip = |«4 . (26) 

where a is the radius of the specimen (m). For a cylindrical disk, the rotary inertia is 

J =-mr2 , (27) 
2 

where r is the radius of the disk (m) and m is the mass of the disk (kg). 

Equation (23) can be rewritten in the spatial domain as 

23 



dxz 
(28) 

where 0(x,ft)) is the temporal Fourier transform of the axial displacement and kG is the complex 

shear wavenumber (rad/m), which is equal to 

kG = (OlyJG/p (29) 

Similarly, equation (24) becomes 

9(0,0)) = 0O , (30) 

and equation (25) becomes 

y      dx 
(31) 

The solution to equation (28) is 

0(JC,O)) = X((0)cos(kGx) + Z(co)sm(kGx) , (32) 

where X and Z are wave propagation constants. Applying boundary conditions (30) and (31) to 

equation (32) — and writing the solution as a transfer function in the form of a ratio between the 

rotation at both ends — produces 

9(L,o>) 

0 0 

1 

cos(kG L) - X(kG L) sin(kG L) 
(33) 

where A is equal to 

24 



Ä = 
2/ 

a2M 
(34) 

and M is the mass of the bar (kg) expressed as 

M = pAL . (35) 

The transfer function in equation (33) represents experimental data and is a function of 

unknown wavenumber kG. The inversion of the two transfer functions obtained from the 

different attached rotary inertial masses will allow both sets of data to be combined, yielding a 

closed-form solution of kG and then G as a function of co. The theoretical forms of these transfer 

functions are 

e(L,G>) 
G 0 

■Sl(ö>) = 
cos(fcGL) - Aj (kGL) sm(kGL) 

(36) 

and 

0(1,(0) 
0 

= S2((o) = 
0 cos(kG L) - Ä2 (kG L) sin(kQ L) 

(37) 

where the subscript 1 denotes the first attached rotary inertial mass and the subscript 2 denotes 

the second attached rotary inertial mass. Although the theoretical forms given in equations (36) 

and (37) are end rotation divided by input rotation, the transfer function created by end rotational 

acceleration divided by input rotational acceleration (which is obtained from the accelerometers) 

is identical in the frequency domain. Writing equations (36) and (37) as a function of 

(kGL)sin(kGL) and then equating them yields 

-**-3^- (38) 
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where (p is a complex quantity. The inversion of equation (38) allows the complex wavenumber 

to be solved as a function of (p. This solution to the real part of kg is 

Re(kG) = 

1   . . .    mn 
—Arccos(r) +  m    even 
2L 2L 

—Arccos(-r) +         m    odd 
2L 2L 

(39) 

where 

r = [Re(q>)]2 + [Im(<p)]2 - V{[Re(<p)]2 + [Im(<p)]2}2 - {2[Re(<p)]2 - 2[Im(<p)]2 -1} , 

(40) 

m is a non-negative integer, and capital A denotes the principal value of the inverse cosine 

function. The value of m is determined from the function r, which is a cosine function with 

respect to frequency. At zero frequency, m is 0. Every time s cycles through TT radians (180°), 

m is increased by 1. After the solution to the real part of kG is found, the solution to its 

imaginary part is written as 

fafaj-iiogJ *e<f -. »"»> I. (4i) 
L        [ cos[Re(£G )L]    sm[Re(fcG )L] J 

Once the real and imaginary parts of wavenumber kG are known, the complex-valued modulus 

of elasticity can be determined at each frequency with 

2 
G(co) = Re[G(ö))] + i Im[G(fi>)] = —  . (42) 

[Re(£G) + iIm(Ä:G)]2 

Equations (23)-(42) produce an estimate of shear modulus at every frequency for which a 

measurement is made. 
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5. NUMERICAL SIMULATION OF SHEAR MODULUS MEASUREMENT 

Numerical simulations conducted to determine the effectiveness of this method use the same 

parameters to define a baseline problem as in section 3: M = 4.0 kg, m\ = 0.4 kg, TW2 =1.2 kg, 

L = 0.254 m, p = 1200 kg/m3, Re(£) = 108 +105/ N/m2, and Im(£) = 107 +104/ N/m2, 

where/is frequency in Hertz. The one additional parameter required is the radius of the rotary 

inertial masses, which is chosen to be 0.1016 m. From the above baseline values, the rotary 

inertial values of the masses are calculated to be /j = 0.0021 kg»m2 and J2 = 0.0062 kg»m2, 

which are used to compute the ratios \ and X2 as 0.247 and 0.741, respectively. The shear 
7 4 2 modulus values in this analysis are Re(G) = 3.58 x 10  + 3.43 x 10 / N/m   and Im(£) = 

2.55 x 106 + 2.34 x 103/ N/m2, where/is frequency in Hertz. 

Figure 10, corresponding to equations (36) and (37), shows the transfer functions S]{(D) and 

S2((o) versus frequency for magnitude (top plot) and phase angle (bottom plot). The first 

transfer function was computed with an attached mass of 0.4 kg and is depicted with x's; the 

second transfer function was computed with an attached mass of 1.2 kg and is shown with o's. 

Figure 11 corresponds to equation (40) and is a plot of the function r versus frequency. Note 

that although this function is a cosine with respect to frequency, the period is increasing as 

frequency increases. Table 3 provides a list of the values of m versus frequency, which were 

determined by inspection of this figure. Once the values of m are known, the modulus values of 

G can be determined from equations (23)-(42). 

Figure 12 is a plot of real and imaginary shear modulus values versus frequency. The real 

(actual) values used to make the transfer functions are displayed as a solid line, and the real 

(estimated) values are displayed as x's. The imaginary (actual) values used to make the transfer 

functions are also displayed as a solid line, with the imaginary (estimated) values displayed as 

o's. The estimated values agree at all frequencies with the actual values. This result is expected 

because there is no noise in the data and the same parameters used to make the transfer functions 

are also used to calculate the modulus values (i.e., no error is introduced when calculating the 

modulus from the transfer functions). 
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Table 3. Value ofm Versus Frequency 

m 

Minimum 

Frequency 

(Hz) 

Maximum 

Frequency 

(Hz) 

0 0 185 

1 185 405 

2 405 655 

3 655 945 

4 945 1280 

5 1280 1655 

6 1655 2075 

7 2075 2540 

8 2540 3050 

9 3050 3610 

10 3610 4215 

11 4215 4865 

12 4865 5000 
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Errors, however, are introduced into this method during the measurement of the transfer 

functions and system parameters. This effect can be simulated by adding noise to the data using 

random numbers added to the transfer function, as shown by 

Se(0)) = S(co) + e{Re[S(co)](7a +iIm[S(co)ab]} , (43) 

where e is the amount of error added to the transfer function and where aa and Of, are random 

numbers with zero mean and a variance of one. 

Figure 13, corresponding to equations (36), (37), and (43), is a plot of the transfer functions 

S]{p)) and S2((0) with noise versus frequency. The value of e used to create this figure is 0.03, 

which represents roughly 3% noise in the data set. (If this test is properly set up and executed, a 

3% noise level would be considered greater than the actual noise levels in the experimental data.) 

Figure 14 is a plot of the function r with and without additive noise versus frequency. The 

solid line is the function with e set equal to 0.03, and the o's connected with the dotted line show 

the function without noise (also seen in figure 11). 

Figure 15 is a plot of the estimated and actual values of the shear modulus (G) versus 

frequency. The estimated values of the real part of G are depicted with x's, and the actual values 

of the real part of G are shown as a solid line. The estimated values of the imaginary part of G 

are depicted with o's, and the actual values of the imaginary part of G are shown as a solid line. 

The effect of the measurement error on the accuracy of the calculation of G can also be 

studied with Monte Carlo simulations. Eleven different values of e were used to build the 

transfer functions and then calculate the modulus value. Estimation error at each frequency was 

defined according to 

,     .     \\Gact(o)m)\-\Gest(com)\\ 
<X(®m ) = J f —• S » (44) maxLGac, (com ),Gest (o)m )J 
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where a(com) is the shear modulus estimation error at the mth frequency, the subscript act 

corresponds to the actual value, and the subscript est corresponds to the estimated (calculated) 

value. Once this value is known, it can be summed across M frequencies by 

1   M 

^=-EaW- (45) 

where ßj is the average error for they'th Monte Carlo simulation. Finally, all the simulations can 

be summed from 

1  J 

(46) 
7=1 

where e is the estimation error using / simulations. Table 4 lists transfer function error (e) versus 

shear modulus estimation error (e). The frequency range of the values used to prepare this table 

is 2.5 to 5000 Hz; the number of frequencies (M) used to calculate the estimation error is 100; 

and the number of simulations (J) for each value of e is 100. 

Figure 16 is a plot of shear modulus estimation error (e) versus frequency for a single 

simulation (7 = 1) using a known transfer function error of e = 0.03. Note that the estimation 

error for the shear modulus is slightly larger than the transfer function error in table 4. Also note 

that the larger estimation errors tend to be near the frequency values where m is increasing. 
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Table 4. Transfer Function Error Versus Shear Modulus Estimation Error 

Transfer 

Function Error 

(«) 

Estimation 

Error 

(e) 

0 0 

0.005 0.007 

0.010 0.013 

0.015 0.020 

0.020 0.028 

0.025 0.035 

0.030 0.041 

0.035 0.048 

0.040 0.052 

0.045 0.058 

0.050 0.062 
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6. MEASUREMENT OF POISSON'S RATIO 

The estimation of Poisson's ratio is achieved by combining the Young's modulus and shear 

modulus previously measured. This equation is expressed as 

v = 
2G 

-1 , (47) 

where v is Poisson's ratio and is dimensionless. The formulation in this method allows for 

Poisson's ratio to be a complex number, although typically the imaginary part of this number is 

very small or zero. 

Figure 17 is a plot of the estimated and actual values of Poisson's ratio versus frequency for a 

simulation with no noise. The estimated values of the real part of Poisson's ratio are depicted 

with x's, and the actual values of the real part of Poisson's ratio are shown as a solid line. The 

estimated values of the imaginary part of Poisson's ratio are depicted with o's, and the actual 

values of the imaginary part of Poisson's ratio are shown as a solid line. The estimated values 

agree at all frequencies with the actual values, which is expected because there is no noise in the 

data and the same parameters used to make the transfer functions are used to calculate the moduli 

values (i.e., no error is introduced when calculating the moduli from the transfer functions). 

Figure 18 is a plot of the estimated and actual values of Poisson's ratio versus frequency with 

noise simulated using error e = 0.03. The estimated values of the real part of Poisson's ratio are 

depicted with x's, and the actual values of the real part of Poisson's ratio are shown as a solid 

line. The estimated values of the imaginary part of Poisson's ratio are depicted with o's, and the 

actual values of the imaginary part of Poisson's ratio are shown as a solid line. 

The effect of measurement error on the accuracy of the calculation of v can be studied with 

Monte Carlo simulations. Eleven different values of e were used to build the transfer functions 

and then calculate the Poisson's ratio. The estimation error at each frequency was defined using 

the equation 
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a^°m) = JL-r—-^—;—h > (48) max[vact(o)m),vest(o}m)\ 

where a(6)m) is the Poisson's ratio estimation error at the mth frequency, the subscript act 

corresponds to the actual value, and the subscript est corresponds to the estimated (calculated) 

value. Once this value of a is known, it can be summed across M frequencies by 

j   M 

ßj =T7yLa(<(0m) , (49) 
m=l 

where ßj is the average error for the jth Monte Carlo simulation. Finally, all the simulations 

can be summed from 

1   J 

e=jZ Pj  • (50) 

where e is the estimation error using / simulations. Table 5 lists transfer function error (e) versus 

Poisson's ratio estimation error (e). The frequency range of the values used to prepare this table 

is 2.5 to 5000 Hz; the number of frequencies (M) used to calculate the estimation error is 100; 

and the number of simulations (J) for each value of e is 100. 

Figure 19 is a plot of Poisson's ratio estimation error (s) versus frequency for a single 

simulation (7=1) using a known transfer function error of e = 0.03. The estimation error, while 

small, is not as small as the estimation error found in the calculation of Young's and shear 

moduli. This result is expected because the errors from both the estimation of Young's modulus 

and shear modulus are contributing to the error in the estimation of Poisson's ratio. 
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Table 5. Transfer Function Error Versus Poisson's Ratio Estimation Error 

Transfer 

Function Error 

W 

Estimation 

Error 

(£) 

0 0 

0.005 0.024 

0.010 0.047 

0.015 0.069 

0.020 0.092 

0.025 0.108 

0.030 0.125 

0.035 0.144 

0.040 0.155 

0.045 0.169 

0.050 0.182 
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7. CONCLUSIONS AND RECOMMENDATIONS 

This report has presented an innovative method for measuring the complex Young's 

modulus, complex shear modulus, and complex Poisson's ratio of a viscoelastic cylinder. The 

new nonresonant technique is based on measured transfer functions that are obtained by vibrating 

the cylinder linearly and rotationally with two different-size masses on its free end. Both masses 

have their own individual transfer functions, which can be measured on a spectrum analyzer and 

combined to yield the unknown Young's modulus and shear modulus values at every frequency 

where a measurement is made. Once these moduli are determined, Poisson's ratio can be 

calculated. 

This new method is particularly beneficial because it measures Young's modulus and the 

shear modulus at every frequency where a transfer function measurement is made without relying 

on system resonances or curve fitting to transfer functions. Rather, the calculation from transfer 

function measurement to the calculation of moduli is exact (i.e., no error is introduced). 

Moreover, Monte Carlo numerical simulations show that this method is relatively unaffected by 

noise introduced during the transfer function measurement. 

It is suggested that future work include laboratory experiments to verify that the closed-form, 

nonresonant method can be applied to actual physical problems. 
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