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ABSTRACT

The purpose of this work is to determine the necessity of a near real time ocean
modeling capability such as the Naval Oceanographic Office’s (NAVOCEANO)
Modular Ocean Data Assimilation System (MODAS) model in shallow water (such as
the Yellow Sea) mine hunting applications using the Navy’s Comprehensive Acoustic
Simulation System/Gaussian Ray Bundle (CASS/GRAB) model. Sound speed profiles
inputted into the CASS/GRAB were calculated from observational (MOODS) and
climatological (GDEM) data sets fc;r different seasons and regions of four different
bottom types (sand, gravel, mud, and rock). The CASS/GRAB mode! outputs were
compared to the outputs from corresponding MODAS data sets. The results of the
comparisons demonstrated in many cases a significant acoustic difference between the
alternate profiles. These results demonstrated that there is a need for a predictive
modeling capability such as MODAS to address the Mine Warfare (MIW) needs in the
Yellow Sea region. There were some weaknesses detected in the profiles the MODAS
model produces in the Yellow Sea, which must be resolved before it can reliably address

the MIW needs in that region.
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I. INTRODUCTION

During the “Cold War” the United States Navy focused most of its research and
development efforts on weapon systems, sensors, and counter measures that were
extremely effective in destroying and countering the Soviet Navy in “blue water” (deep
water regions beginning at the 100 m mark and greater) conflicts. After the Cold War the
United States did not realize how unprepared its forces were to operate in the “littoral”
(shallow waters defined as beginning at the 100 meter mark and below) until its was
forced to gradually increase its operations in the Persian Gulf, since the Gulf War.
Unfortunately, the U.S. Navy suffered three major ship casualties as a result of mines
before significant funding went into the research and development for weapon systems,

sensors, and countermeasures that are effective in the littoral.

The sensors on ships and weapons torpedoes during the Cold War were designed
for the acoustically range independent environments characteristic of “Blue Water”
regions. These sensors are highly capable of long-range detections in deep waters but are
virtually blind even at short-range scenarios. These sensors are not designed for the
acoustically range dependent environment of the littoral. The source of interfering noise

for acoustic sensors in the littoral is reverberation from the sea surface and sea bottom.

The major threats in the littoral are diesel submarines and sea mines. The
combination of improvements in noise reducing technology and the development of Air
Independent Propulsion (AIP) technology have made diesel submarines very difficult to

detect in both the littoral and blue waters. After a weapon platform has detected its




targets, the sensors on torpedoes designed for blue water operations are not designed to

acquire a target in a reverberation-crippling environment.

Even though sea mines are not as sophisticated a weapons system as torpedoes,
they have been number one cause of U.S. Naval casualties since the end of World War I
Sea mines are a relatively cheap weapons system that‘ can be easily obtained by any
nation in mass quantities. In addition, Sea mines do not require an expensive and
sophisticated weapons platform for deployment; they can be easily deployed by small
watercraft. There are several types of mines, which are classified by their mode of
activation and their placement in the water column. The simplest of sea mines are
floating contact mines. These mines are usually detected visually and cleared by
minesweepers and Explosive Ordnance Disposal (EOD) units. A more complex type of
mines are influence mines. These mines have different mechanisms for activation, such
as magnetic and acoustic actuators. Influence mines are much more difficult to counter
since they are either tethered to the sea bottom at various depths or lie on the sea bottom.
Since these types of mines are situated below the sea surface, mine hunting sonars are
required for detection. The problems that are related to sonar detection of a target in the
littoral are compounded when the target is a sea mine due to the low target strengths of
Sea mines. The low target strengths of sea mines require the use of sensors with
frequencies higher than those sonars used for submarine detection. Bottom mines create
a much more difficult detection problem for the mine hunter. Operators of mine hunting
systems must perform the timely process of classifying all objects that closely fit the
dimensions of a Bottom mine and later evaluate these objects in closer detail with higher

resolution sensors.




In recent years, the U.S. Navy has focused much of its research and development
efforts in designing high frequency sensors and corresponding acoustic models to
overcome the threat in the littoral. The Comprehensive Acoustic Simulation System
(CASS) using the Gaussian Ray Bundle (GRAB) model is an acoustic model approved
by the U.S. Navy to predict the performance of active ocean acoustic systems that operate
in the 600 Hz to 100 kHz frequency range. Developed in 1993 by the Naval Undersea
Warfare Center Division Newport, this model is capable of modeling all the components
of passive and bistatic signal excess in range-dependent environments. The
CASS/GRAB has successfully modeled torpedo acoustic performance in shallow water
experiments off the coast of Southern California and Cape Cod, and is currently being

developed to simulate mine wai'fare systems performance in the fleet (Aidala et al. 1998).

The CASS/GRAB model is valuable tool for the AN/SQQ-32 mine hunting
detection and classification sonar. The performance of this model, as in all models, is
determined by the accuracy of its inputs such as sea surface conditions, bathymetry,

bottom type, and sound speed profiles.

The AN/SQQ-32 (Figure 1) is a variable depth mine hunting detection and
classification sonar for the Avenger (MCM-1) and Osprey (MHC-51) Surface Mine
Countermeasures (SMCM) ships. The AN/SQQ-32’s main components are a multi-
channel detection sonar assembly and near-photographic resolution classification sonar
assembly. The system has multiple operating frequencies and obtains acoustic data from
two independent acoustic search and classification arrays that maximize volumetric
coverage. Its multiple-ping processor enables it to detect mine-like objects in the high
reverberation environment of the littoral. Additionally, its multiple operating frequency

3




capability allows it to operate in both deep and shallow waters. The lower operating
frequencies allow the system to detect mine-like objects at longer ranges in shallow
waters. The classification sonar system’s near-photograph resolution and the systems
computer aided target classification system decreases the time required for mine

searching operations by reducing false target reporting.

Figure 1. The AN/SQQ-32 Mine Hunting Sonar System (From Raytheon Electronic
Systems Naval & Maritime Integrated Systems 2000).
NAVOCEANO constructs various environmental databases for Mine Warfare

(MIW) applications; these databases are used by the MIW Environmental Decision
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Library (MEDAL). One‘ of these databases is the “Provinced” (user derived) profiles.
This climatological database consists of spatial provinces that define an average of
several alternate temperature, salinity, and sound profiles for a shallow water region on a
monthly basis. Provinced profiles are derived from the MOODS database using the
Naval Interactive Data Analysis System (NIDAS) software. It has been found that the
Generalized Digital Environmental Model (GDEM) climatology (consisting of an
average profile at grid point) is often inadequate to define the vertical features of shallow
water profiles for MIW applications. Also, due to the high temporal variability in
shallow water, the average profile seldom occurs, thus a better depiction is to include
“alternate profiles” which can occur as often as the average. NAVOCEANO has
developed the Modular Ocean Data Assimilation System (MODAS) model to meet these
needs.

To determine if the MODAS model meets the MIW needs in shallow water
regions, a comparison with historical observational (MOODS) and climatological
(GDEM) profiles in an acoustic model is required. If there is a significant acoustic
difference of CASS/GRAB outputs between using MOODS and MODAS or using
GDEM and MODAS, then there is a need for a predictive modeling capability such as
MODAS. If there is no significant difference, then MODAS is not required to address
the MIW needs in these regions and the NAVOCEANO province profile products
derived from MOODS are sufficient.

In this thesis, an input file that simulates the parameters of the AN/SQQ-32 mine

hunting sonar was used to generate acoustic data. The input file was created by Ruth E.




Keenan of the Science Applications International Corporation and was created replacing
any sensitive parameters of the AN/SQQ-32 sonar with generalized sonar parameters.
The outline of this thesis is as follows: A description of the Yellow Sea geological
and oceanographic environments is given in Chapter II. A depiction of the
oceanographic data sets used for the study and the Navy’s Interactive Data Analysis
System (NIDAS) are given in Chapters IIl and IV. The CASS/GRAB model is described
in Chapter V. Seasonal variability of acoustic transmission and the severe weather
effects on the acoustic transmission are investigated in Chapters VI and VII. The
sensitivity study on the hydrographic data input (MOODS, GDEM, and MODAS) is
given in Chapter VIII. The comparison is given during four seasons and four regions of
different bottom iypes (rock, gravel, sand, and mud). The uncertainty propagation from
the hydrographic input data into the CASS/GRAB model out put is discussed in Chapter

IX. In Chapter X, the conclusions are presented.




IL. ENVIRONMENT OF THE YELLOW SEA

A. GEOLOGY AND STRUCTURE

The Yellow Sea is a semi-enclosed basin situated between China and the Korean
peninsula with the Bohai Sea to the northwest and the East China Sea to the south. The
Yellow Sea is a large shallow water basin covering an area of approximately 295,000
km?. The water depth over most of the area is less than 50 m (Figure 2). Four major
fresh water run-offs flow into the Yellow Sea: the Yangtze River to the southwest, the
Yellow River and Liao River to the north, and the Han River to the east (Chu et al.

1997a).

Due to large tidal ranges and heavy sedimentation from river outflows, most of
the coasts surrounding the Yellow Sea contain numerous shoals and troughs extending
from the shores. The bottom sediment types are finer along the coast of China and much
coarser along the shelf and the coast of the Korean peninsula. The bottom sediment of
the central and western regions of the Yellow Sea consists primarily of mud and the
eastern region is primarily sand. The mud sedimentation in the central and northwestern
regions of the Yellow Sea is due to thé runoff from the great rivers of China (Shepard

1973).

Four regions with different bottom types were selected for the acoustic model
runs in this study (Figure 3). The first region consists of a Rock Bottom type and is
located in the north-central Yellow Sea at 37°-37.5°N, 123°-123.8°E. The second region
consists of a Gravel Bottom type and is located in the northern Yellow Sea at 38.4°-39°
N, 122°-123° E. The third region consists of a Sand Bottom type and is located in the

southeastern Yellow Sea at 35.5%-36.5°N, 124.5°-126.2°E. The fourth region consists of
7




a Mud Bottom type and is located in the south-central Yellow Sea at 35°-36.5° N, 123°-

124.5°E. The bottom sediment composition parameters are listed in Table 1.
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Figure 2. Bottom Topography of the Yellow Sea and the surrounding regions. The data
was obtained from the U.S. Naval Oceanographic Office DBDBS world bathymetry
database. Depths are in meters. (From Chu et al. 1997a).
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Figure 3. Yellow Sea Bottom sediment chart (From Ninno and Emery 1961).
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Bottom Sediment | Bulk Grain Long (32 Char) Density | Sound Speed Wave
Composition Size Index Name gm/cm’ Ratio Number
Ratio

BOULDER -9 Rough Rock 2.5 2.5 0.0137

ROCK -7 Rock 2.5 2.5 0.0137

GRAVEL -3 Gravel, Cobble or Pebble 2.5 1.8 0.0137
-1 Sandy Gravel 2.492 1.337 0.01705

-0.5 Very Coarse Sand 2.401 1.3067 0.01667

0.0 Muddy Sandy Gravel 2.314 1.2778 0.01630

0.5 Coarse Sand 2.231 1.2503 0.01638

1.0 Gravelly Muddy Sand 2.151 1.2241 0.01645

SAND 1.5 Sand or Medium Sand 1.845 1.1782 0.01624
2.0 Muddy Gravel 1.615 1.1396 0.01610

2.5 Silty Sand or Fine Sand 1.451 1.1073 0.01602

3.0 Muddy Sand 1.339 1.0800 0.01728

3.5 Very Fine Sand 1.268 1.0568 0.01875

4.0 Clayey Sand 1.224 1.0364 0.02019

4.5 Coarse Silt 1.195 1.0179 0.02158

5.0 Sandy Silt 1.169 0.9999 0.01261

5.5 Medium Silt 1.149 0.9885 0.00676

SILT 6.0 Silt 1.149 0.9873 0.00386
6.5 Fine Silt 1.148 0.9861 0.00306

MUD 7.0 Sandy Clay 1.147 0.9849 0.00242
7.5 Very Fine Silt 1.147 0.9837 0.00194

8.0 Silty Clay 1.146 0.9824 0.00163

CLAY 9.0 Clay 1.145 0.9800 0.00148
10.0 1.145 0.9800 0.00148

Table 1. APL/UW TR9407 Geo-acoustic parameters associated with bulk grain size
index used by the CASS/GRAB model. Sand is the default value for CASS/GRAB
(From NAVOCEANO 1999).

B. OCEANOGRAPHY

The four seasons in the Yellow Sea are defined as follows: the winter months run
from January through March; the spring months run from April through June; the

summer months run from July through September; and the fall months run from October

through December. The Siberian high-pressure system during the winter monsoon

season brings very cold northwest winds through the Yellow Sea region. During this

period, the jet stream is located south of the Yellow Sea and the polar front is located
north of the Philippines. At the beginning of the winter season the mean wind speed is 6

m/s and the sea air temperature (SAT) falls in the range of 0° to 8° C, whereas the sea

10




surface temperature (SST) is usually 2° to 6° C warmer causing the Yellow Sea to lose
heat to the atmosphere during this time period. The winter monsoon winds peak with a
maximum of 35 m/s in the central Yellow Sea, and 28 m/s mean through out the entire
region (Chu et al. 1997a). These winds cause the formation of a southward sea level
gradient that force bottom water to flow northward. These cold/strong winter monsoon
winds cause mechanical forcing due to the strong wind stress and thermal forcing
resulting from the upward buoyancy flux at the air-ocean interface caused by the cold
SAT. The combined action of the mechanical and thermal forcing causes the mixed layeli

to drop to its deepest point during the winter season.

The transition into the spring season begins in late March when air temperatures
are an average of 5° C warmer than the previous month due to a rapid weakening of the
Siberian high that progress through out the months of March and April. By the end of the
first month of spring, the atmospheric polar front has transited northward into Korea
followed by warm and humid air masses into the Yellow Sea region. This transition
brings about an average increase in the SST of 10° C during the spring. Spring in the
Yellow Sea is also characterized by highly variable winds, cloud cover, and precipitation
due to a numerous number of front driven events transiting through the region (Chu et al.

1997a).

The transition into the summer season begins in late May and early June where
an atmospheric low-pressure system, generated north of the Yellow Sea, called the
Manchurian Low moves west over Manchurié in late June. The movement of this low-
pressure system sets up circulation of the southwest monsoon in the Yellow Sea during
the summer months. During this period, the jet stream is located south of Korea and the
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polar front is located south of the Japanese Islands of Kyushu and Shikoku. In July, the
atmospheric low-pressure system in the north, in conjunction with an atmospheric high-
pressure system located in the southeast called the Bonin High, generates warm and
humid southerly winds over the Yellow Sea region. The warm air from these southerly
winds increases the SAT ove