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Introduction 

In Year 2, we were concerned with estimation techniques and analysis of data on 
breast cancer data from the Utah Population Data Base (UPDB) and the Utah 
Cancer Registry (UCR). Technical difficulties associated with estimation of the haz- 
ard function are described at length in our previous report. All these difficulties 
have been surmounted and the desired estimates have been obtained from the data 
amassed in the UPDB and UCR. 

1. Statement of Work 

This annual report covers the following four tasks formulated in the statement of 
work. 
Task 1. Extraction of breast cancer cohort data from the UPDB and UCR. 
Task 2: Development of computer programs for estimation of family history of breast 
cancer. 
Task 3: Development of software for extended hazard regression using linear, quadratic 
and cubic splines. 
Task 4:  Evaluation of family history as a predictor of breast cancer on simulated 
data. 
Task 5: Extended hazard regression modeling using familial risk estimates from the 
breast cancer cohort. 
Task 10: Preparation and mailing of the annual report. 
Comment In order to accommodate generally-structured data, we have developed a 
new methodological approach to the problem of optimal breast cancer surveillance. 
This is the reason why we began with Tasks 7, 8, and 9 in year 1. This explains why 
the present report covers Tasks 1, 2, 3, 4, and 5 originally scheduled for year 2. 

2. The research carried out to meet the objectives 
of Tasks 1, 2, 3, 4, 5, 10 

2.1. Introduction 

In Year 1, we developed several numerical algorithms and software for estimating 
the hazard function for breast cancer incidence. Allowing for the effects of random 
censoring and truncation, these procedures have been used for testing covariate effects 
associated with different indicators of family history. 

2.1. Estimation of the hazard rate 

Proceeding from preliminary studies of different spline estimation procedures, we 
chose to model the hazard function via quadratic splines. A quadratic spline with m 



knots specifies the hazard to be of the form 

2 m 
A^HETOZ + ET^-T^ (1) 

i=0 j=l 

where (x)+ = max(a;, 0). For each birth cohort, we fit splines with knots which are 
equally spaced in the interior of the interval [Tmin, Tmax], where Tmin is the minimum 
truncation age in the cohort and Tmax the maximum follow-up (failure or censoring) 
time. Restrictions are placed on the coefficients to ensure that Xm(t) remains positive 
for all t. Thus with m knots the number of parameters is m + 3. Models can be 
fit using maximum likelihood techniques applied to the corresponding conditional 
likelihood, as discussed in our previous report. 

We have developed software designed to compute the spline estimates by max- 
imizing the likelihood function using the algorithm of Powell. We start with one 
knot and increase the number of knots until the fit is not improved, as determined 
by the likelihood ratio test at the significance level a — 0.05. Three other subcohort 
estimates of the hazard function were computed for comparison with the spline esti- 
mator; an estimator of the life table type, a Gaussian kernel estimate based on the 
Nelson-Aalen nonparametric estimator, and local likelihood estimators with differ- 
ent kernels (uniform, Epachechnikov, and Gaussian). All the estimators mentioned 
above are in good agreement with each other when applied to the UPDB data. 

Using the computer programs developed in Year 1, the hazard function for can- 
cer incidence has been estimated from left truncated and right censored data on 
individuals identified through the UPDB and UCR. 

Although the estimates become less reliable at increasing age, the hazard function 
for breast cancer appears to be essentially non-decreasing in all the categories of all 
familial measures considered. Thus we find no evidence of an "immune fraction" in 
this analysis. The curves for different levels of risk appear not to merge or cross, 
indicating that the increased risk to those with a family history does not dissipate 
after a certain age. 

This study is presented at length in the paper by Boucher and Kerber included 
in Appendix 1. 

2.2. Measures of Familial Aggregation as Predictors of Breast 
Cancer Risk 

Several measures of familial disease aggregation have been proposed, but only a few 
of these are designed to be implemented at the individual level. We have evaluated 
four of them in the context of breast cancer incidence. After extensive discussions, 
we came to the conclusion that testing different measures of family history with 
simulated data was not warranted in view of the fact that such a study would have 
added little to the results of real data analysis. Therefore, we decided to focus on a 
more comprehensive analysis of epidemiological data employing a wider spectrum of 
potential predictors of breast cancer risk. 

A population-based cohort consisting of 114,429 women born between 1874 and 
1931 and at risk for breast cancer after 1965 was identified by linking the UPDB 



and the UCR. Three competing methods were used to obtain predictors of familial 
aggregation of risk: the number of first degree relatives with breast cancer, the 
posterior probability of carrying BRCA1 or BRCA2, and the Familial Standardized 
Incidence Ratio (FSIR), which weights the disease status of relatives based on their 
degree of relatedness with the proband. Spline regression methods were used to 
estimate the hazard function, stratified by measures of familial aggregation. 

We dichotomized each of our measures of familial risk, with the high risk category 
representing approximately 8.5% of the data in each case. This was a natural cut 
point, as it represents the proportion of subjects with one or more first degree rela- 
tives with breast cancer. The cutoff for FSIR roughly corresponds to a relative risk 
of two to family members. The cut points for the posterior probability of BRCAl 
and BRCA2 come at points where the posterior probability is rather small, less than 
0.0005 in both cases. 

Our previous analysis indicated that a highly significant birth-year effect exists 
in the data, with a women born ten years later having an estimated 40% increased 
age-specific risk. Birth-year was included as an additional covariate in all regression 
analyses. The baseline risk was estimated using splines, with the proportional haz- 
ards model used for birth-year and familial risk. As with most of the models, we 
found that two knots were sufficient to provide an optimal fit. 

The presence of a first degree relative with breast cancer and the dichotomized 
FSIR variable each appear to be equally effective at distinguishing high risk sub- 
jects, with the high risk category having about double the risk, while the posterior 
probability of BRCAl and BRCA2 appear to be less effective. 

We performed a more detailed stratified analysis of FSIR. The category bound- 
aries were the approximate 75th, 90th, and 99.9th percentiles of the (adjusted) FSIR 
distribution. The upper category roughly corresponds to the reported fraction of the 
general population carrying known breast cancer genes. Bootstrap confidence bands 
were computed as well as an indicator of the reliability of the estimates. 

The estimates of the age-specific hazard and percentile-based bootstrap confi- 
dence intervals are presented in Figure 1. The bootstrap confidence intervals are 
based on 100 bootstrap samples, except for the < 75th percentile category, which 
is based on 20 bootstrap samples, because of the extensive time it took to fit the 
models to the large datasets. 

We incorporated the posterior probabilities of BRCAl and BRCA2 and their log- 
arithms, as well as log log FSIR as continuous variables in separate analyses, using 
a proportional hazards model with birth-year as an additional covariate. The best re- 
sult (in terms of statistical significance) was obtained by including the log log FSIR, 
where we get a likelihood ratio xt = 316.72 (p < 0.00001). 

We also considered the indicator variable NFIRST for presence/absence of a 
first degree relative, in a proportional hazards model. The behavior of the hazard 
function across different strata shows that the proportional hazards assumption is 
not grossly violated. The variable NFIRST was highly significant (likelihood ratio 
Xi = 185.6, p < 0.0001). Addition of a second indicator variable for two or more 
first degree relatives with breast cancer did not improve the likelihood significantly. 



I 

0.010 

0.008 

0.006 

0.004 

0.002 

0.000 

N 
CO 
I 

0.004 

0.002 

0.000 

Age 

Figure 1. Stratified spline-based estimates and 95% bootstrap confidence bands for 
the age-specific hazard function for breast cancer. The categories are percentiles 0-75 
(A), 75-90(B), 90-99.9 (C), and 99.9-100 (D) of the adjusted FSIR distribution. The 
scales are different, for better resolution. 
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Figure 1 (continued). 
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More technical details on this study are given in the paper by Boucher and Kerber 
included in Appendix 2. 

2.3. Modeling cancer detection 

Let T be the age at tumor onset, and W the time of spontaneous tumor detection 
measured from the onset of disease. Introduce the random variable (r.v.) S to 
represent tumor size at spontaneous detection. Then S = f(W), where / : [0, oo) ->■ 
[1, oo) is a deterministic function describing the law of tumor growth. It is assumed 
that 
(1) random variables T and W are absolutely continuous and independent; 
(2) function / is differentiate and / > 0; 
(3) the rate of spontaneous tumor detection is proportional to the current tumor size 
with coefficient a > 0. 

We observe sample values of the random vector Y := (T + W, S) which compo- 
nents are interpreted as age and tumor size at spontaneous detection, respectively. 
We look at Y as a transformation of the random vector X :— (T, W), Y = (p{X), 
where <p(t,w) = (t + w,f(w)), t, w > 0. Observe that components of X are in- 
dependent random variables. The inverse function ip = ip~l : A -» R+, where 
A := {(u,v) e R+ : 1 < v < f{u)}, is given by ip(u,v) = (u - g{v),g(v)), with 
g ■= f~l. Note that the Jacobian of tp is g . Then for the probability density function 
(p.d.f.) of Y we have assuming that (u, v) E A : 

PY(U,V) =px(il>{u,v))g'(v) = PT(U - g(v))pw(g(v))g (v) 

= pT{u-g{v))ps(v). 

In the particular case of exponential tumor growth with rate A > 0 (f(w) = eXw) 
we obtain 

pY(u, v) = ^e-^v~ V(w - ^) ,    u > 0, 1 < v < eXu . (2) 
A A 

Thus, the distribution of random vector Y is absolutely continuous but the support of 
Y depends on the unknown parameter A. As far as the asymptotic likelihood inference 
is concerned, the usual regularity conditions are not met for the distribution py{u, v). 
However, experience with similar parametric settings suggests that the estimation 
efficiency for the parameter A may be expected to be even higher than in the regular 
case although asymptotic normality may fail. 

Let {(ui,Vi) : 1 < i < n} be sample data on age and tumor size at detection. 
The structure of the joint distribution (2) suggests the following maximum likelihood 
procedure for estimation of the parameters 6 and A: 
(1) Denote 9 = a/A in formula (2), and find the maximum likelihood estimate, 0, 
of the parameter 9 using only the tumor size data {vi : 1 < i < n}. It follows 
(see below) that the sample {vi} is drawn from an exponential distribution with 
parameter 9, and consequently 

n 1 



(2) Maximize the function 

n               hxv- 
L(A) = T\pT(ui r1),    Ui >0,Vi> 1, 

i=\ A 

or its logarithm, to find the estimate of A denoted by A. 
(3) The maximum likelihood estimate of a is given by a = OX. 

The above procedure does the same job as maximizing the likelihood function 
based on the joint distribution (2). To show this, let the joint density of the random 
variables U and V be of the form 

p(u,v;\,e) = f(u-^-)g(v;6), 

where u > 0, v > 1, A > 0. It is assumed that f(t) > 0 for t > 0, f(t) = 0 for t < 0, 
g(x) > 0 for x > 1, and ip : [1, oo) ->• (O^oo) is a measurable function. Suppose that 
there exists a unique maximizer (A, 0), A > 0, for the likelihood function 

L(\e) = l[p(ui,vi;\,9). 
i=i 

Then Ui — ip(vi)/\ > 0 for all i, whence 

A > max ^^ > 0. 
l<i<n     Ui 

Given A > 0, it is clear that A and 9 are unique maximizers for the functions 

Li(\) = n/(«i - ^)>     and     L^°) = flaiv^e), 
i=l A i=l 

respectively. Conversely, if A > 0 and 6 are unique maximizers for these functions, 
the pair (\,6) is a unique maximizer for the likelihood function L(A, 6). Finally, 
observe that g(v; 6) is the marginal density of the random variable V. Indeed, we 
have 

r f(u - ^-)9(v, 0)du = g(v; 9) f°° f(t)dt = g(v; 6). 
Jo A Jo 

The performance of the above described estimation procedure was studied by 
computer simulations. A total of 50 pseudo-random samples of (uu Vi) were generated 
from the joint distribution (2); each sample contained n = 100 realizations of the 
random vector (U,V).   We used the composition method to simulate samples of 
pairs (ui,Vi).  In accordance with this method, we first draw v{ from the marginal 
distribution of the random variable V, and then generate ut from the distribution of 
U conditional on V = v{. The p.d.f. pT(x) was specified by the Moolgavkar-Venzon- 
Knudson model of carcinogenesis with the survival function given by the following 
formula: 

(A + B)eM 

GT(t) := Pr(T >t) = 
B + Ae(A+B^ 

10 

*>0, 



where A, B, S > 0 are identifiable parameters of the model. We used the following 
values of model parameters: a = 2.3 x KT10, A = 6.9, A = 10~4,B = 0.1821,5 = 
0.0364. 
Simulation Experiment 1. In this experiment, we kept the parameters A,B, and 5 at 
their true values and applied the estimation procedure to simulated data in order to 
obtain estimates of the parameters A and a. In this case, the likelihood function can 
be maximized by a unidimensional search for A with a fixed value of 8. The estimates 
of A and a resulted from each of the 50 samples were summarized by calculating their 
sample means Ä and ä, as well as the corresponding standard errors (of the sample 
mean) denoted by a\ and aä, respectively. We obtained the following numerical 
values: A = 7.45, a* = 0.9, ä = 2.53 x 10-10, aa = 0.34 x lO"10. These results 
testify that, given the parameters A, B and 6 are known, the estimation procedure 
performs well when applied to finite samples. 
Simulation Experiment 2. Proceeding from the same true parameter values, the 
estimation procedure was applied to simulated data to obtain estimates of all the 
parameters incorporated into the model. Since there were three additional param- 
eters to be estimated from simulated data, the size of each sample was increased 
up to 1000. The results were summarized in just the same way as_in Experiment 
1 to give: Ä = 9.4, o-x = 0.9, ä = 3.1 x MT10, a& = 3.1 x 10"11, Ä = 9.5 x 10~4, 
aÄ = 3.6 x 10~4, B = 0.1407, aB = 0.0599, 5 = 0.0507, as = 0.006. 
Simulation Experiment 3. The estimation procedure was applied to a single sample 
of size 50,000 generated from the joint distribution (2). The estimated parameter 
values were: A = 6.7, a = 2.24 x 10"10, A = 5.1 x 104, B = 0.1390,5 = 0.0475. 

The above simulation experiments show that estimation of the whole set of model 
parameters is feasible given the model is adequate for the processes under study, but 
obtaining unbiased estimates would require large sample sizes. 

Suppose now that the process of tumor growth is described by the exponential law 
f(w) = eXw, w > 0, with a random growth rate A. We also assume that the random 
parameter 6 := a/A is gamma distributed with parameters a and b. Compounding 
(2) with respect to the gamma distribution of the parameter 9 we find the p.d.f. of 
the resulting randomized distribution of the vector Y : 

p(u, v) = 4-J t-e-^"1 V(« - —t)dt ,    u > 0, v > 1 . 
F{a) Jo öL 

Setting s := u — (In v/a)t we rewrite the last formula in an equivalent form 

p(U,V) = J£- (*Y+1   r(tl_a)ae3q){        «   (6 + t,_ l)(u - s)}PT(s)ds,        (3) 
T(a) \lnvj      Jo inv 

for u > 0, v > 1. Alternatively, we may assume that it is the parameter 1/A that is 
gamma distributed with parameters a and b. Should this be the case, we have 

rvha     ru/\nv 
p(U)U) = ^_ / taexp{-[b + a(v-l)]t}pT(u-t\nv)dt 

L I Lb J J \j 

= n    ^a+lTV > /   «-«) exp{ TTT L(u-s)}pT(s)ds, (4) (m7j)a+1l (a) Jo u\v 

11 



for u > 0, v > 1. 
Once the density pr of the age at tumor onset T is specified within a certain 

parametric family, equations (3) or (4) allow us to compute p.d.f. of the joint distri- 
bution of age and tumor size at detection. Observe that in this randomized version 
the support [0, oo) x [l,oo) of the distribution of random vector Y is parameter 
free. The maximum likelihood parametric inference based on the joint p.d.f. p(u, v) 
accommodates censored observations under the usual independent censorship model. 

2.4. Future Plans 

Formulas (2) and (3) will be used to estimate the natural history of breast cancer 
from the UPDB data. This will allow us to find a parametric estimate of the p.d.f. 
PT+w(t), which is necessary for designing optimal schedules of breast cancer screening 
allowing for information on family history. 

3. Key Research Accomplishments 

Our key accomplishments in Year 2 can be summarized briefly as follows: 

• We have used computer programs developed in Year 1 to estimate the hazard 
function from data on breast cancer amassed in the UPDB and UCR. These non- 
parametric estimates are in good agreement with predictions based on the proposed 
mechanistic model of cancer development and detection. 

• We have tested several aggregated measures of family history as predictors of 
breast cancer risk. This study points the way for data stratification required for 
construction of individualized strategies of breast cancer surveillance. 

• We have derived the joint distribution of tumor size and age at detection and 
its randomized counterpart which are necessary for estimation of the natural history 
of the disease. Simulation experiments have been conducted to evaluate how well 
unknown parameters incorporated into the distribution can be estimated by the 
maximum likelihood method from available bivariate data on tumor size and age at 
diagnosis of breast cancer. 

4. Reportable Outcomes 

4.1. New Publications 

1. Yakovlev, A.Y., Tsodikov, A.D., and Hanin, L.G. Optimal schedules of breast 
cancer surveillance, Abstract, Era of Hope Meeting, Atlanta, June 2000. 
2. Boucher, K.M. and Kerber, R.A. The shape of the hazard function for cancer 
incidence, Abstract, Era of Hope Meeting, Atlanta, June 2000. 
3. Boucher, K.M. and Kerber, R.A. The Shape of the Hazard Function for Cancer 
Incidence, Mathematical and Computer Modelling, to appear. 
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4. Boucher, K.M. and Kerber, R.A. Measures of Familial Aggregation as Predictors 
of Breast Cancer Risk, Journal of Epidemiology and Bio statistics, under revision. 

4.2. Awards 

1. Grant 1 U01 CA88177-01, NIH/NCI, Mechanistic Modeling of Breast Cancer 
Surveillance, RFA "Cancer Intervention and Surveillance Network (CISNET)", P.I.: 
Yakovlev, A.Y., 09/01/00 - 08/31/04, total costs: $ 537,653. 

5. Conclusions 

The results of data analysis are consistent with an increasing hazard for breast cancer 
incidence through age 85 or 90. The hazard function appears to be higher for more 
recent birth cohorts. The shape of the hazard function appears to be consistent 
with a two-stage model for spontaneous carcinogenesis in which the initiation rate is 
constant or increasing. 

We have applied several methods of measuring familial aggregation at the indi- 
vidual level to breast cancer data. All prove to be significant predictors of individual 
risk. Judging by the difference in risk estimates, as well as the likelihood ratio test, 
presence of a first degree relative and FSIR appear to be better indicators of in- 
creased risk than the posterior probability of BRCA1 or BRCA2. Judging solely 
by the likelihood ratio test, one would prefer FSIR. The latter indicator may be 
thought of as an extension of the cruder number of first degree relatives with breast 
cancer, adjusting for the level of relatedness and expected disease. It is therefore not 
surprising to find that it performs better. 

Marginal distributions of tumor size and age at detection as well as associated 
estimation problems were discussed in our previous report. Now we have derived 
the joint distribution of these two random variables and its randomized counterpart. 
Generally speaking, explicit formulas for the marginal distributions of tumor size 
and age of an individual at detection are not sufficient to utilize completely the 
information contained in the corresponding sample observations for estimation of 
the natural history of the disease; one needs to know their joint distribution in order 
to develop pertinent methods for the maximum likelihood statistical inference. 

6. So what? 

1. As evidenced by the results of data analysis, the shape of the hazard function for 
breast cancer incidence is consistent with predictions based on the proposed mecha- 
nistic model of cancer development and detection. 
2. We now know how the data should be stratified with respect to aggregated char- 
acteristics of family history in order to construct individualized optimal strategies of 
breast cancer screening. 
3. In Year 3, our focus will be on the development of methods for parametric estima- 
tion of the natural history of breast cancer based on formulas (3) and (4) from the 

13 



UPDB data stratified with respect to individual information on family history. This 
study will produce estimates to be used for designing optimal schedules of breast 
cancer screening. 
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ABSTRACT 

A population-based cohort consisting of 126,141 men and 122,208 women born 

between 1874 and 1931 and at risk for breast or colorectal cancer after 1965 was 

identified by linking the Utah Population Data Base and the Utah Cancer Registry. 

The hazard function for cancer incidence is estimated from left truncated and right 

censored data based on the the conditional likelihood. Four estimation procedures 

based on the conditional likelihood are used to estimate the age-specific hazard func- 

tion from the data; these were the life-table method, a kernel method based on the 

Nelson Aalen estimator, a spline estimate, and a proportional hazards estimate based 

on splines with birth year as sole covariate. 

The results are consistent with an increasing hazard for both breast and colorectal 

cancer through age 85 or 90. After age 85 or 90 the hazard function for female breast 

and colorectal cancer may reach a plateau or decrease, although the hazard function 

for male colorectal cancer appears to continue to rise through age 105. The hazard 

function for both breast and colorectal cancer appears to be higher for more recent 

birth cohorts, with a more pronounced birth-cohort effect for breast cancer than for 

colorectal cancer. The age specific hazard for colorectal cancer appears to be higher 

for men than for women. The shape of the hazard function for both breast and 

colorectal cancer appear to be consistent with a two-stage model for spontaneous 

carcinogenesis in which the initiation rate is constant or increasing. Inheritance of 

initiated cells appears to play a minor role. 

KEYWORDS: hazard function, truncation, survival analysis, breast cancer, col- 

orectal cancer 



1. Introduction 

The shape of the hazard function may lead to insights into the biology of carcinogen- 

esis which may not be easily discernable from a study of the survival function alone. 

For example, it is typical in the analysis of tumor recurence data to find a hazard 

function that is bimodal or unimodal, and that tends to zero as time tends to infinity 

[1]. The modes of the hazard may be interpreted biologically as arising from two 

different types of failure, one that tends to occur earlier and one that tends to occur 

later. The decrease in the hazard function to zero may lead one to conclude that 

there is a non-zero cured fraction. In fact, if we let X(t) denote the hazard function, 

and p the probability of cure, it follows from the formula 

p = lim exp \—      \{u)du >, 

that there are individuals who have been "cured" in the population exactly when 

the hazard function has finite integral. In particular, lim^oo X(t) = 0, provided the 

limit exists. 

If the hazard function under study is from disease incidence, the "cured fraction" 

must be re-interpreted as the fraction of the population that is "immune" to the 

disease. If the cumulative hazard appears to be bounded, for example, one should 

expect the existence of a non-zero immune fraction. More generally, a large degree 

of heterogeneity in disease susceptibility may lead to a population hazard function 

with one or more well-defined maxima. The maxima may correspond to discrete 

subpopulations with different genetic predisposition to disease. A maximum may 

also result from a continuous frailty, as the surviving population at higher ages may 

be overrepresented by individuals with lower risk [2]. 

Both breast and colorectal cancer are syndromes in which an inherited suscepti- 

bility has been shown to play a role. Inherited mutations in p53, BRCAl, BRCA2, 

the ataxia-telangiectasia gene (AT), HRAS, and the androgen receptor gene (AR) 

have been shown to play a role in breast cancer susceptibility [3]. About 56% of 

carriers of the mutation BRCAl or BRCA2 will get breast cancer by the age of 70 

years [4]. BRCAl has an estimated allele frequency of between 0.0002 and 0.001 

(95% CI) [5], and accounts for about 3% of diagnosed breast cancer [6]. The allele 

frequency of mutations in BRCA2 is estimated at 0.00022 [7].  Germline mutations 



in p53 and AR are extremely rare, and mutations in the HRAS1 minisatellite locus 

which confer increased risk of breast cancer are also rare, having an estimated popu- 

lation frequency of 6% [3]. In a study of 100 Finnish breast cancer families analyzed 

by protein truncation tests and direct sequencing, Vehmanen et al. [8] found that 

only 21% of breast cancer families were accounted for by mutations of BRCA1 and 

BRCA2, providing indirect evidence for the existence of other, undiscovered breast 

cancer genes. 

Indirect evidence also exists for the existence of additional colorectal cancer genes. 

Inherited mutations in polyposis coli (APC) gene and the hereditary non-polyposis 

colon cancer syndrome (HNPCC) genes hMSH2, and hMLHl have been shown to 

play a role in colon cancer susceptibility [3]. After segregation analysis of 203 pedi- 

grees, Houlston et al. [9] concluded that dominant colorectal cancer genes with a 

frequency of 0.006 account for an estimated 81% of colorectal cancers in patients 

under 35, 59% in patients between 35 and 49, decreasing to 16% in patients over 

65. The I1307K mutation of the APC gene, found in Ashkenazi Jews, confers an 

estimated relative risk of 1.7 for colorectal cancer (95% CI 1.01-2.87) [10]. APC and 

HNPCC are rare, and contribute to a small percentage of colorectal cancer cases [3]. 

Additional insight can be gleaned from the hazard function for cancer incidence in 

the framework of a mechanistic model of carcinogenesis. The most widely accepted 

model is the Moolgavkar-Venzon-Knudson two-stage clonal expansion model [11,12]. 

The Moolgavkar-Venzon-Knudson model has the following assumptions: 

(A) Normal, susceptible target cells are initiated according to a (nonhomogeneous) 

Poisson process with intensity u(i). 

(B) The expansion of the colony of initiated cells and malignant transformation is 

specified by a stochastic birth-death-migration process with the division, death (or 

differentiation) and transformation. Premalignant cells either divide into two pre- 

malignant cells with rate a(t), die with rate ß(t), or divide asymmetrically into one 

premalignant cell and one malignant cell with rate //(£). 

It has been shown that the hazard function for the Moolgavkar-Venzon-Knudson 

model with constant parameters increases monotonically and approaches an asymp- 

tote [13].   An asymptotic value for the hazard is also reached for the Moolgavkar- 
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Venzon-Knudson model with piecewise constant parameters, and in that case the 

value of the asymptote depends only on the value of the coefficients in the unbounded 

interval [13,14]. 

Expressions for the survivor function were first obtained by Moolgavkar and Lue- 

beck [13]. A simple explicit formula for the survivor function S(t) for the Moolgavkar- 

Venzon-Knudson model with constant parameters was obtained by Kopp-Schneider 

et al. [15] and Zheng [16]: 

2ce0.5(-a+ß+fi-c)t 1 vla 

S(t) = 
(-a + ß + ß + c) + (a - ß - ß + c)e-ct (1) 

where c = J(a + ß + ß)2 - 4aß. Zheng also presented an expression for the proba- 

bility generating function for the number of malignant cells given a single malignant 

cell at time t = 0, allowing an expression for the promotion time distribution 

_ (a-ß-ß + c)(a-ß-ß- c)e~ct + (a - ß - ß + c){-a + ß + ß + c) 
^ ~ 2a[(a -P-PL + c)e-ct + (-a +ß + fi +c)] 

(2) 

to be given. It is easy to see that S(t) and F(t) above are related by the formula 

S(t) = exp l-v f F{x)dx\ (3) 

which was shown by Hanin and Yakovlev [17] to be valid in a more general setting. 

Yakovlev and Tsodikov [18] replace assumption (B) above with the following as- 

sumption: 

(C) Progenitor cells are transformed into malignant lesions at a random with cumu- 

lative distribution function F{x). All progenitor cells are promoted independently 

of one another. 

Assuming F(0) = 0, it follows that the process of malignant transformation is 

also a Poisson process, with integral rate A(t) = /0* v(u)F{t — u)du. As in the 

Moolgavkar-Venzon-Knudson model, the simplest model of spontaneous carcinoge- 

nis takes v{t) — v to be constant, in which case A(t) = v $ F(u)du and the hazard 

function for time-to-tumor, given by X(t) = uF(i), is nondecreasing. The probability 

S(t) that there are no malignancies by time t is then given by (3). 

This model may easily be modified to handle inherited lesions, via the limiting 

case where v is taken to be a delta function at the origin. If Fit) is assumed to be 



absolutely continuous, then the integral rate A(t) is equal to vF(t) and the hazard 

function \{t) = F'(t) = f(t), where f(t) is the density function associated with F(t). 

We see that the hazard function for spontaneous and inherited lesions are quite likely 

to have very different shapes. 

Even though a thorough study of the hazard function may lead to new insight into 

the process of carcinogenesis, few if any population-based cohorts have been analyzed 

to determine the hazard function for cancer incidence. In addition, time-dependent 

variation in environmental risk factors for cancer may cause estimates from a cross- 

sectional study to be misleading. In this paper the age specific hazard function 

for both breast and colorectal cancer incidence are estimated using data from the 

Utah Cancer Registry and the Utah Population Data Base. We see that the hazard 

function for both these types of cancer appears to be increasing monotonically, at 

least through age 85 or 90. In the context of the above mechanistic models of 

carcinogenesis, we will see that risks for both these cancers at the population level 

appear to be relatively homogeneous, with negligible inherited component. 

2. Methods 

2.1 Data 

The data for this study was obtained by linking records from the Utah Population 

Data Base (UPDB) with the Utah Cancer Registry (UCR). The UPDB consists of 

the genealogical records of more than 1,000,000 individuals who were born, died, or 

married in Utah, or en route to Utah during the nineteenth and twentieth centuries. 

Since 1973 the UCR has been reporting to National Cancer Institutes Surveillance 

Epidemiology and End Results (SEER) program, and is required to maintain very 

high standards for case reporting and follow-up, and to periodically undergo quality 

control audits by SEER personnel to assure uniformly high quality and consistency 

from year to year. The available follow-up information comes either from Utah death 

certificates, which have been linked to the UPDB genealogical data every year from 

1933 through the beginning of 1997, or from linkage of the HCFA beneficiary data 

to the UPDB. The study population consisted of 126,141 men and 122,208 women 

recorded in the Utah Population Database, who were born from 1874 to 1931 and for 



whom follow-up information is available that places them in Utah during the years 

of operation of the Utah Cancer Registry (1966-present). Subjects with purported 

follow-up past age 105 were excluded from the data. There are 5,372 cases of female 

breast cancer and 5,177 cases of colorectal cancer represented in the data. Analyses 

were performed on subcohorts based on birth year (1874-1889, 1890-1899, 1900-1909, 

1910-1919, and 1920-1931) and gender. For each gender he entire cohort (birth years 

1874-1931) was also analyzed as a whole. The total number of subjects and cases of 

breast and colorectal cancer for each birth subcohort and gender are given in Tables 

1 and 2. Male breast cancer was not analyzed. 

2.2 Truncation: Nonparametric Estimation 

We wish to estimate the age specific hazard function for breast and colorectal cancer 

from the data described above, taking into account that the data is subject to random 

truncation: cases which occurred during or before 1965 are not recorded in the 

dataset. Subject were between the ages of 34 and 86, at the time of truncation. 

Thus, analysis of the data must take into account not only to the effects of right 

censoring, but also the effects of left truncation due to delayed entry into the risk 

set. The topic of random truncation is not mentioned in several authoritative texts 

such as Kalbfleisch and Prentice [19] and Fleming and Harrington [20], and may be 

unfamiliar to some readers, and therefore will be discussed in this and the following 

subsection. 

Let the truncation time Y have distribution function G(y) and the failure time 

(time of cancer diagnosis) X have distribution function F(x). We require that trunca- 

tion be independent of failure and for simplicity assume no censoring for the present. 

Observations are conditional on X > Y. Let G*{y) and F*(x) be the corresponding 

distribution functions, conditional on X > Y. Let S(x) = 1 - F(x) be the survivor 

function of X. Suppose that we have observations (Y*,X^),..., (Y*,X*) from the 

conditional distribution. The full likelihood of the observed data is given by 

L = f[ [dFiX^dGiY^/a], (4) 

where a = J Jy<x dF(x)dG(y). A key observation is that if X and Y are independent, 

then the hazard of X given X > Y = y at x > y is equal to the hazard of X at x 



[21,22]. This observations leads to the result, first mentioned by Kaplan and Meier 

[23], that if the distribution G(t) is allowed to vary freely, the natural generalization 

of the product limit estimator, given by the formula 

S{t)-^-m))' (5) 

where R(u) = #{Y* < U < X*} is the number at risk at U, is the nonparametric 

maximum likelihood estimator (NPMLE) of the survivor function S(t) of X (see, for 

example [21,22,24]). 

This result extends naturally to the case with random independent censoring 

[24]. It also easily follows that in the nonparametric setting (again with no censoring), 

maximizing (4) is equivalent to maximizing the conditional likelihood of (X*,..., X*) 

given (Yi*,..., Y*), which can be written 

CL=flf(X;)/S(Y*). (6) 
2=1 

(see, for example, [23-26]).  Maximizing the conditional likelihood also leads to the 

familiar Nelson-Aalen estimator for the integrated hazard function H(t) of X [24], 

which is given by 

A(t) = £ R(X:)-\ (7) 
x*<t 

These results can be extended to the case of right censoring [24]. 

2.3 Truncation: Parametric Models 

We consider the situation where X and Y are independent, F(x) is parametrized, 

while G(y) is allowed to vary freely. In a later subsection F(x) will be come from a 

quadratic spline model. 

The data are independent pairs (yi, x\),..., (yn, xn) from the joint distribuition 

(Y,X), conditional on (Y < X). We suppose, for simplicity, that there are no ties 

among yi, y2, ■ ■ ■, yn, and suppose X has absolutely continuous distribution function 

coming from a family F(x;z) parameterized by a vector z, with corresponding sur- 

vival function S(x; z) = 1 - F(x; z) and density f(x; z). The NPMLE for G should 

consist of (unknown) point masses qu q2, ■ ■ ■, qn placed at the points yi, y2,.. ■, yn- 



The logarithm of the complete likelihood (4) can be rewritten 

n 

log(L) = 5^[log(/(xi; z)) + log(ft)] - nlog ^S{yi\z)qi (8) 

If we factor the out the part of the likelihood corresponding to (6), the logarithm is 

given by 

log(CX) = X>g(/(si; I)) - log(S(yi; 5))]. (9) 
2=1 

We now discuss the changes which must be made in when censoring and additional 

covariates are present. If s is a vector of additional covariates, A(x, s; z) denotes the 

hazard associated with F(x, s; z) and A(x, s; z) the cumulative hazard, we note that 

(9) becomes 

n 

log(CL) = ^[log(A(x,, si; z)) - (A(xi5 s{; z) - A(yh £; z))}. (10) 
i=l 

In the presence of right censoring which is independent of both the failure and 

truncation times, x* is replaced in the above formulation by the minimum of the 

failure and censoring time. The term f(x,s;z) in the likelihood is replaced by 

/(x, s; z)sS(x, s; z)1^5, where ^ = 1 if observation i is a failure and 5, = 0 otherwise, 

and the conditional likelihood (6) (with xt, Si and yt regarded as fixed) becomes 

CL = nt/fc, Si; tfSixi, si; Z)V-d>]/S(yi, £; ,?). 
i=l 

In this setting log(CL) becomes 

n 

log(CX) = J2lsi log(A(xi, Si; Zi)) - (A(xh sf, z) - A(yh si; z))}. (11) 
j=i 

In the subsequent analysis we choose to maximize (11) rather than the full likelihood. 

2.4 Spline Models 

We choose to model the hazard via quadratic splines as in [27]. A quadratic spline 

with m knots specifies the hazard to be of the form 

2 m 

Am(i) = E7o/ + E7,2(t-rj)
2

+ (12) 
t=0 j=l 

where (x)+ = max(x, 0). For each birth cohort, we fit splines with knots which were 

equally spaced in the interior of the interior [Tmin, Tmax], where Tmin is the minimum 



truncation age in the cohort and Tmax the maximum follow-up (failure or censoring) 

time. Restrictions were placed on the coefficients to ensure that Xm(t) remained 

positive for all t. Thus with m knots the number of parameters was m + 3. Models 

were fit using maximum likelihood techniques applied to the conditional likelihood, 

as given by (11). 

The hazard function was estimated for breast cancer incidence (women only) and 

for colorectal cancer incidence (both men and women). The spline estimates were 

computed by maximizing log(CL) using the algorithm of Powell [28]. We started 

with one knot and increased the number of knots until the fit was not improved, as 

determined by the likelihood ratio test at the significance level a = 0.05. Two other 

subcohort estimates of the hazard function were computed for comparison with the 

spline estimator; a life table version of (5), and a Gaussian kernel estimate based on 

the Nelson-Aalen estimator (7). 

2.5 Proportional Hazards 

It became clear when fitting models to the subcohorts, that there was a birth cohort 

effect in the data. At the same time, we wished to have estimates of the hazard for 

the entire age range of 34-100+ years. We therefore fit proportional hazards models 

with splines Xm(t) for the baseline hazard and a single covariate s representing birth 

year. The resulting hazard function has the form 

\m(t,s;ß)=exp(ßs)\rn(t). (13) 

The model was again fit using the conditional likelihood of the form 

log(CL) = itlSilogiXnixuSiiß)) - (A{xusi;ß)-A(yi,si;ß))}, (14) 
i=\ 

which is (11) with X(x, s, z) = Am(xj, s*; ß). 

3. Results 

Estimates of the age specific hazard for for female breast cancer are presented in 

Figure 1 for the 1874-1889, 1890-1899, 1900-1909, 1910-1919, and 1920-1931 birth 

subcohorts.   Age specific hazards for colorectal cancer are presented in Figures 2 
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and 3, stratified by birth cohort and gender. Each figure presents three estimates 

of the hazard from the subcohort alone, namely the life table estimate, the kernel 

estimate based on the Nelson-Aalen estimator and a spline estimate, as well as and 

one gender-specific estimate from a proportional hazards model with birth year as 

covariate, fit to data from all birth subcohorts (1874-1931). The covariate is set 

to the mean birth year of the subcohort. We note that approximately 40 years of 

follow up are available for any one subcohort, as follow up data are available from 

approximately 1965-1995. 

We found that splines with very few knots appeared to fit the data. In all but one 

case two knots were sufficient for the spline estimates, as determined by the likelihood 

ratio test, and in the remaining case (breast cancer, birth years 1874-1889) one 

knot sufficed. The hazard function for both breast and colorectal cancer appears to 

increase monotonically, at least until the age of 85 or 90, when the subcohort specific 

estimates of the hazard estimates for women for both breast and colon cancer appear 

to flatten or decrease while the estimate for men appears to continue to increase. 

(In each of the three cases the proportional hazards model provides estimates of 

the hazard function which increase through all ages.) We also note that in all the 

proportional hazards models the birth cohort effect was highly significant (pj 0.0001). 

We also see from the subcohort analysis that the proportional hazards assumption 

appears to be adequate, at least up until the age of 85 or 90, when proportionality 

may fail for women. 

We also note that the colorectal cancer risk estimates are higher for men than 

for women. For example, the estimated age specific yearly hazard for the 1920-1931 

birth cohort at age 70 is approximately .0013 for women, and about .0017 for men, 

or about 30% higher for men. 

The estimated hazard from the proportional hazards models over a 70 year range 

are presented in Figures 4-6. The estimated hazards increase as the birth cohorts 

become more recent, with coefficient estimates of ß = 0.0347 (year-1) for female 

breast cancer, ß = 0.016 (year-1) for female colorectal cancer and ß = 0.020 (year-1) 

for male colorectal cancer. Thus, the additional hazard for more recent birth cohorts 

appears to be more pronounced for breast cancer than for colorectal cancer. 
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4. Discussion 

As noted in the Introduction, the presence of a large degree of heterogeneity in the 

risk for a population may lead to a decreasing age specific hazard function. Since we 

see little or no evidence of a decreasing hazard for either breast or colorectal cancer 

at least until age 85 or 90, it appears that the risk is relatively homogeneous for both 

these cancers over this age range. In particular, there appears to be little evidence 

for a high immune fraction for either breast or colorectal cancer. We should also 

note that the presence of a monotone increasing hazard over a limited range does 

not completely rule out heterogeneity. The data is quite consistant with the degree 

of heterogeneity that might result from known cancer genes, as long as the risk is 

generally increasing (at least through age 90) in the population as a whole. There 

is little or no evidence of an inherited component to the risk, as a large inherited 

component might be expected to provide a local maxima to the hazard rather early 

in life, certainly prior to age 85. 

One may extend the more general two-stage model of carcinogenesis presented in 

the Introduction to take cell death into account, by adding a Poisson process of cell 

death which competes with the process of malignant transformation, as suggested by 

Yakovlev and Polig [29]. This model has been successfully applied to data from radi- 

ation induced and chemically induced lesions [30-32]. With the cell death component 

it becomes less clear that the hazard function should increase monotonically in the 

case of spontaneous carcinogenesis. In fact, in the simplified case of constant rates 

vi of initiation and u2 of cell death, and arbitrary cumulative distribution function 

F(t) for time to transformation of intermediate lesions, the hazard function for time 

to tumor has the form 

\(t) = v1exp(-u2t)F(t). (15) 

We note that according to this model the clock for cell death in this model starts 

at birth. If the constant u2 > 0 in (15), then X(t) must decrease exponentially since 

F(t) approaches one as t approaches infinity. We conjecture that in the present 

context the cell death component is very small, so that it does not dominate X(t) 

until after age 85. The higher hazard rate for male colorectal cancer, as well as the 

continued increase in hazard through age 105, may be attributed to a smaller rate 
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of cell death. Another possibily is that the cell death should not be measured from 

birth, but from formation of the initiated cell (as in another variation of the model 

suggested in [29]). 

We have noted in the Results section that proportionality of hazard appears to 

fail after age 90 for both breast and colorectal cancer in women. This result may be 

due to sampling variability, or additional bias unique to women at these high ages. 

We note that there are only 116 female breast cancer cases and 77 female colorectal 

cancer cases after age 90. They are distributed over a 15 year period, for an average 

of 7.7 breast cancer and 5.1 colorectal cancer cases per year in this range. In addition, 

data linkage is more difficult for women, who are more likely to have changed names 

than men. An additional indication that the lack of proportionality for women may 

be spurious is that we do not see this apparent lack of proportionality in men. 
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Legends to figures 

Figure 1. Four estimates of the age-specific hazard function for female breast cancer, 

stratified by birth cohort: a spline estimate (labeled "Spline"), a kernel estimate 

based on the Nelson-Aalen estimator (labeled "Kernel"), a life table estimate (la- 

beled "Life Table"), and a proportional hazards spline estimate using all strata, with 

birth year as sole covariate, set at the stratum mean (labeled "Combined Spline"). 

Figure 2. Four estimates of the age-specific hazard function for female colorectal can- 

cer, stratified by birth cohort: a spline estimate (labeled "Spline"), a kernel estimate 

based on the Nelson-Aalen estimator (labeled "Kernel"), a life table estimate (la- 

beled "Life Table"), and a proportional hazards spline estimate using all strata, with 

birth year as sole covariate, set at the stratum mean (labeled "Combined Spline"). 

Figure 3. Four estimates of the age-specific hazard function for male colorectal can- 

cer, stratified by birth cohort: a spline estimate (labeled "Spline"), a kernel estimate 

based on the Nelson-Aalen estimator (labeled "Kernel"), and a life table estimate (la- 

beled "Life Table"), and a proportional hazards spline estimate using all strata, with 

birth year as sole covariate, set at the stratum mean (labeled "Combined Spline"). 

Figure 4. Comparison of the age-specific hazard function estimates for female breast 

cancer for various birth cohort strata from a proportional hazards model spline model. 

Birth year covariate set at the mean value for each stratum: 1884.41 for the 1874- 

1889 stratum, 1894.90 for the 1890-1899 stratum, 1904.54 for the 1900-1909 statum, 

1914.52 for for the 1910-1919 statum, and 1925.24 for the 1920-1931 stratum. 

Figure 5. Comparison of the age-specific hazard function estimates for female col- 

orectal cancer for various birth cohort strata from a proportional hazards model 

spline model. Birth year covariate set at the mean value in each stratum: 1884.41 

for the 1874-1889 stratum, 1894.90 for the 1890-1899 stratum, 1904.54 for the 1900- 

1909 statum, 1914.52 for for the 1910-1919 statum, and 1925.24 for the 1920-1931 

stratum. 
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Figure 6. Comparison of the age-specific hazard function estimates for male colorec- 

tal cancer for various birth cohort strata from a proportional hazards model spline 

model. Birth year covariate set at the mean value in each stratum: 1884.74 for the 

1874-1889 stratum, 1895.06 for the 1890-1899 stratum, 1904.74 for the 1900-1909 

statum, 1914.57 for for the 1910-1919 statum, and 1925.31 for the 1920-1931 stra- 

tum. 
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Table 1. Number of female subjects and cases of breast and colorectal cancer, strat- 

ified by birth year. 

Birth Years Number of 
Subjects 

No. of breast 
cancer cases 

No. of colorectal 
cancer cases 

1874-1889 10,115 145 116 

1890-1899 19,352 564 435 

1900-1909 27,138 1,258 755 

1910-1919 31,162 1,709 752 

1920-1931 34,441 1,696 448 

Total 122,208 5,372 2,106 
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Table 2. Number of male subjects and cases of colorectal cancer, stratified by birth 

year. 

Birth Years Number of 
Subjects 

No. of colorectal 
cancer cases 

1874-1889 6,850 101 

1890-1899 16,307 341 

1900-1909 27,122 768 

1910-1919 34,731 874 

1920-1931 41,131 587 

Total 126,141 2671 
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ABSTRACT 

BACKGROUND: Several measures of familial disease aggregation have been pro- 

posed, but only a few of these are designed to be implemented at the individual level. 

We evaluate four of them in the context of breast cancer incidence. 

METHOD: A population-based cohort consisting of 114,429 women born between 

1874 and 1931 and at risk for breast cancer after 1965 was identified by linking 

the Utah Population Data Base and the Utah Cancer Registry. Three competing 

methods were used to obtain predictors of familial aggregation of risk: the number of 

first degree relatives with breast cancer, the posterior probability of carrying BRCA1 

or BRCA2, and the Familial Standardized Incidence Ratio (FSIR), which weights 

the disease status of relatives based on their degree of relatedness with the proband. 

Spline regression methods were used to estimate the hazard function, stratified by 

measures of familial aggregation. 

RESULTS: When the measures of family history are dichotomized with approxi- 

mately 8.5% of subjects in the high risk category, presence of a first degree relative 

and FSIR perform equally well at determining individual risk, with the high risk 

category having approximately twice the risk at all ages. The posterior probability 

of BRCA1 and BRCA2 performed less well. When FSIR is further stratified, the top 

0.1% have an approximate 4-fold increase in risk. The risk appears to be increasing 

through all age groups. 

CONCLUSIONS: Family history is a highly significant indicator of risk for breast 

cancer. 

KEYWORDS: familial risk, hazard function, truncation, survival analysis, breast 

cancer 



Introduction 

Heterogeneity in a population may lead to population estimates of the hazard that 

do not reflect individual risk. For example, if we let X(t) denote the hazard function, 

and p the probability of immunity to a particular disease, it follows from the formula 

rt 
p = lim exp \—     \(u)du >, 

t->oo I,      Jo J 

that there are individuals who are "immune" in the population exactly when the 

hazard function has finite integral. In particular, lim^oo A(£) = 0, provided the 

limit exists. More generally, a large degree of heterogeneity in disease susceptibility 

may lead to a population hazard function with one or more well-defined maxima. 

The maxima may correspond to discrete subpopulations with different genetic pre- 

disposition to disease. A maximum may also result from a continuous frailty, as 

the surviving population at higher ages may be overrepresented by individuals with 

lower risk1. 

In fact, there is evidence of heterogeneity for most cancers. According to Easton2, 

"All cancer types exhibit familial clustering, suggestive of a significant inherited 

component". He goes on to conclude that as of 1994 known cancer genes accounted 

for 0.5-1% of all cancer cases, and that this figure would increase as more cancer 

genes are discovered. The breast cancer genes BRCA1 and BRCA2 both contribute 

to an increased risk of breast cancer. BRCAl has an estimated allele frequency of 

between 0.0002 and 0.001 (95% CI)3, and accounts for about 3% of diagnosed breast 

cancer4. The allele frequency of mutations in BRCA2 is estimated at 0.000225. 

Vehmanen et al.6 found that only 21% of breast cancer families were accounted for 

by mutations of BRCAl and BRCA2, providing indirect evidence for the existence 

of other, undiscovered breast cancer genes. 

In our previous paper7, linked populations-based data from the Utah Cancer 

Registry and the Utah Population Data Base was used to estimate the population- 

level hazard function for breast and colorectal cancer, stratified by birth cohort. We 

found that the hazard functions for both breast and colorectal cancer appeared to be 

monotone increasing functions for both genders and all birth cohorts. This contrasts 

with the model-based estimates of Moolgavkar et al.8, who found the hazard function 

to sharply decrease starting sometime past the age of 70. 



The lack of clear multiple modes in the hazard function made it clear that more 

delicate methods would be needed to account for the known heterogeneity of risk. 

A number of measures of familial disease aggregation have been used or proposed, 

but only a few of these are designed to be implemented at the individual level. 

The most common epidemiologic measure of familial risk is an indicator of whether 

one or more first-degree relatives has been diagnosed with cancer or some other 

disease. Khoury and Flanders9 have noted that measures of this sort are prone 

to bias under a variety of conditions. Nonetheless, it is a widely used and easily 

understood measure of familial risk that can easily be ascertained in a clinical setting. 

A second category of family history measures suggested by Kerber10 are derived from 

the complete risk experience of all observable biological relatives adjusted for the age, 

sex, number and degree of the relatives. The total familial risk is summarized as a 

familial standardized incidence ratio (FSIR) or a familial rate (FR). FSIR and FR are 

less prone to bias and substantially more sensitive than a crude indicator variable, but 

require fairly detailed family history data which may rarely be available in a clinical 

setting. A third measure, particularly relevant for breast cancer, was introduced by 

Parmigiani et al.12. Parmigiani et al. estimated the posterior probability that an 

individual carried the breast cancer genes BRCA1 and BRCA2 using information on 

first and second degree relatives of the subject. The method relies heavily on prior 

estimates of risk to carriers, and prior estimates of prevalence of the the genes. 

In this paper age specific estimates of the hazard function for breast cancer in- 

cidence is estimated, stratified by the above measures of family history. It is found 

that FSIR and presence of a first degree relative with breast cancer are highly signif- 

icant predictors of increased risk, with an identified high risk category having twice 

the risk. The hazard function for breast cancer appears to increasing as a function 

of age in all risk groups. 

Hazard Function Estimation 

Data 

The data for this study were obtained by linking records from the Utah Population 

Data Base (UPDB) with the Utah Cancer Registry (UCR). The UPDB consists of 



the genealogical records of more than 1,000,000 individuals who were born, died, or 

married in Utah, or en route to Utah during the nineteenth and twentieth centuries. 

The available follow-up information comes either from Utah death certificates, which 

have been linked to the UPDB genealogical data every year from 1933 through the 

beginning of 1997, or from linkage of the HCFA beneficiary data to the UPDB. 

The study population consists of 122,208 women recorded in the Utah Population 

Database, who were born from 1874 to 1931 and for whom follow-up information 

is available that places them in Utah during the years of operation of the Utah 

Cancer Registry (1966-present). Subjects with purported follow-up past age 105 

were excluded from the data. Potential subjects who had no relatives who were also 

in the risk set, and therefore for whom no measures of familial aggregation could 

be computed, were removed from the data. Excluding these two groups removed 

an additional 7779 women, leaving a study population of 114,429 women. There 

are 5,092 cases of female breast cancer in the data. Only female breast cancer was 

analyzed. Additional details on the data are given in Boucher and Kerber7. 

Nonparametric Hazard Estimation 

The data described above are subject to random truncation: cases which occurred 

during or before 1965 are not recorded in the dataset. Subject were between the 

ages of 34 and 86, at the time of truncation. Thus, analysis of the data must take 

into account not only to the effects of right censoring, but also the effects of left 

truncation due to delayed entry into the risk set. 

Let the truncation time Y have distribution function G(y), the minimum of the 

failure and censoring time be X and have distribution function F(x), and 8 be the 

censoring indicator, with 8=1 signifying a censored observation. We require that 

truncation and censoring be independent of failure. Observations are conditional on 

X > Y. Let G*(y) and F*(x) be the corresponding distribution functions, condi- 

tional on X > Y. Let S(x) be the survivor function for the failure time distribution. 

Suppose that we have observations (Y{,Xl,5l),..., (Y*,X*,8*), from the condi- 

tional distribution, where for simplicity we describe the situation with no tied failure 

times. Our nonparametric methods are based on the nonparametric maximum like- 



lihood estimator (NPMLE) 

^JLO-JP»)' (1) 

where R(U) = #{Y* < U < X*} is the number of subjects at risk at U, as described, 

for example in Keiding12. The Nelson-Aalen estimator of the cumulative hazard is 

given by 

A(t) = £ W1- (2) 
x*<t 

Parametric Hazard Estimation 

We again assume that X, Y and 5 are as above. We wish to have a parameteriza- 

tion Fi(x, s; z) of the failure time distribution, with covariate vector s and parame- 

ter vector z. We denote the corresponding density fi(x,s;z) and survival function 

Si(x,s;z). We condition on X > Y, and in analogous fashion to what is done in 

the nonparametric setting, maximize the logarithm of the conditional likelihood. Let 

\(x, s; z) denotes the hazard associated with Fi(x, s; z) and A(x, s; z) the cumulative 

hazard. The likelihood, conditional of X > Y, becomes 

n 

log(CL) = Ylisi log(X(xi, sf, Zi)) - (A(xi, st; z) - A(yi, st; £))]. (3) 
i=l 

We modeled the hazard via quadratic splines13. A quadratic spline with m knots 

specifies the hazard to be of the form 

2 m 

M*) = E^it" + 5>i2(* - Tj)l (4) 
i=0 3=1 

where (x)+ = max(a;, 0). For each birth cohort, we fit splines with knots which were 

equally spaced in the interior of the interior [Tmin, Tmax], where Tmin is the minimum 

truncation age in the cohort and Tmax the maximum follow-up (failure or censoring) 

time. Restrictions were placed on the coefficients to ensure that Am(t) remained 

positive for all t. Thus with m knots the number of parameters was m + 3. Models 

were fit by maximizing the conditional likelihood. 

We fit proportional hazards models with splines Xm(t) for the baseline hazard and 

a covariate vector s with one component for birth year and perhaps one component 

for family history.   Birth year was shown to be highly significant in our previous 



paper7, and may account for such effects as a decrease in parity and an increase in 

the efficacy of detection methods with time. The resulting hazard function has the 

form 
2 

Xm(t, s; ß) = exp{J2ßjSj)hm(t). (5) 

The model was fit using the conditional likelihood (3) with A(x, s, z) = \m{x, s; ß). 

The hazard function was estimated for female breast cancer. The spline estimates 

were computed by maximizing log(CL) using the algorithm of Powell14. We started 

with one knot and increased the number of knots until the fit was not improved, as 

determined by the likelihood ratio test at the significance level a = 0.05. The life 

table estimator based on (2) was used for comparison with the spline-based estimator. 

Methods of Familial Aggregation 

Number of First Degree Relatives 

The simplest and most easily understandable is the number of first degree relatives 

with breast cancer. Of the 114,429 women in the data set, 9765, or approximately 

8.5%, had at least one first degree relative with breast cancer also represented in the 

data, and 795 women, or 0.69%, had two or more relatives in the data. Having more 

than two first degree relatives with breast cancer was extremely rare: 56 women had 

three, and 10 women had the maximum of four. 

Posterior Probability of BRCA1 and BRCA2 

We used the method of Parmigiani et al11, and implemented in the computer pro- 

gram BRCAPRO, available from the authors, to computed posterior probabilities 

of carrying BRCAl and BRCA2 mutations for each of our subjects. The method 

uses age at onset of breast and ovarian cancer for first and second degree relatives 

to compute posterior probabilities of carrying BRCAl and BRCA2. The method 

incorporates prior distributions for the risk of breast and ovarian cancer to carriers 

and noncarriers of the breast cancer genes BRCAl and BRCA2 as well as prior esti- 

mates of distribution of the population level carrier probabilities. We used the prior 

probability distributions suggested by Parmigiani et al.11. 



Were were able to compute posterior probabilities for 114,221 (or 99.8%) of the 

subjects with a first degree relative in the database. The mean carrier probabilities 

were 0.000301 and 000098 for BRCAl and BRCA2 respectively, with medians of 

0.000098 and 000015. The distributions of the posterior carrier probabilities are 

shown in Figures 1 and 2. 

Familial Standardized Incidence Ratio 

The second measure of familial aggregation is a modification of the familial stan- 

dardized incidence method (FSIR)10. The familial standardized incidence ratio is 

derived from the complete risk experience of all observable biological relatives, ad- 

justed for age, sex, number and degree of the relatives. FSIR is defined in terms of 

the kinship coefficient15 c(i,j) between individuals i and j, which gives the proba- 

bility that two individuals share a gene at a given locus. The kinship coefficient is 

defined by c(i,j) = (1/2) Ylp=i 2_/(p), where Pitj is the total number of paths between 

individuals i and j, and l(p) is the length in reproductive events of each path p. Let 

Ij = 1 if the jfth member has the disease and 0 otherwise. Finally, we suppose that 

we have a stratified population, the population incidence in the kth statum is given 

by At, and let tjk be the time that the jth person spent in the kth stratum of risk. 

The familial standardized incidence ratio is then defined, for the i individual, by 

FsiR =     zU'Mu) 

In deriving a measure of variance VARi for FSIRi, it was assumed that the de- 

nominator of the above expression is fixed, and that for each fixed path length the 

number of observed cases follows a Poisson distribution with mean equal to the 

expected number of cases in the stratum. The population risk estimates used to 

construct the denominator of FSIRi were assumed to be fixed. 

A difficulty with using the "raw" FSIR scores is that the amount of information 

from which it is constructed for a particular individual is highly variable. A low FSIR 

score could be an indicator of low risk or simply reflect small family size. We therefore 

chose to adjust the scores using an empirical Bayes procedure before incorporating 

them into a regression analysis. As the raw FSIR scores are highly skewed, we first 

transformed them using a loglog transform \o$.og(FSIR) = log(l + log(l + FSIR)). 

8 



The basic assumption of the empirical Bayes adjustment is that the "true" values ß 

of loglog(F57.R) are normally distributed. The mean and variance of fi are estimated 

empirically and iteratively from the data. The procedure we use is similar to the one 

suggested by Greenland and Robins16. 

More specifically, we suppose that after iteration n-lwe have current estimates 

/ii,n-i and of n_! for the true value and ith individual, as well as an overall mean ßn-\ 

and variance u\_x for the ßt. We then computed new estimates using the formulas 

(J2_ 
ßi,n = ßn-1 + (-2 "      2 )0^ _ A^-l)) 

°n-\ + ai,n-\ 

where Yi = \o$.ogFSIRi, and with variance estimated by 

VAIL 
aj   = 

(exp(//i,n_i) exp(exp(/ii,„_i) - l))2 

given by the delta method.   We then computed the sample mean and variance of 

ßitn, over all the subjects to get fj,n and a\. 

The distribution of loglog(FSIR), before and after transformation, are displayed 

in Figure 1. Note that the "raw" distribution is bimodal, with a mode at zero which 

disappears after transformation. 

Results 

Dichotomized Comparison of Familial Risk 

We dichotomized each of our measures of famililial risk, with the high risk category 

representing approximately 8.5% of the data in each case. This was a natural cut 

point, as it represents the proportion of subjects with one or more first degree rela- 

tives with breast cancer. The cutoff for FSIR roughly corresponds to a relative risk 

of two to family members. The cut points for the posterior probability of BRCAl 

and BRCA2 come at points where the posterior probability is rather small, less than 

0.0005 in both cases. The number of subjects in each category and the ranges for 

the variables are presented in Table 1. 

Our previous analysis indicated that a highly significant birth-year effect exists 

in the data7, with a women born ten years later having an estimated 40% increased 

age-specific risk. Birth-year was included as an additional covariate in all regression 



analyses. The baseline risk was estimated using splines, with the proportional haz- 

ards model used for birth-year and familial risk. As with most of the models, we 

found that two knots were sufficient to provide an optimal fit. Separate estimates 

of the age-specific hazard for each level of each of our familial risk measures are 

presented in Figure 4. For comparison we provided life table estimates of the risk. 

The life table estimates are not adjusted for birth-year. The life table estimates 

are flatter, and this may be explained by a significant birth-cohort effect. Subjects 

contribute to the risk estimates only for a period of at most 33 years of their lives, 

namely the period from 1965-1998. A women born in 1890 contributes only after age 

75, while a women born in 1930 contributes from age 35 until the age of 68. 

The presence of a first degree relative with breast cancer and the dichotomized 

FSIR variable each appear to be equally effective at distinguishing high risk sub- 

jects, with the high risk category having about double the risk, while the posterior 

probability of BRCA1 and BRCA2 appear to be less effective. 

We performed a more detailed stratified analysis of FSIR. The category bound- 

aries were the approximate 75th, 90th, and 99.9th percentiles of the (adjusted) FSIR 

distribution. The upper category roughly corresponds to the reported fraction of 

the general population carrying known breast cancer genes. The number of subjects, 

cases, and category boundaries are given in Table 2. Bootstrap confidence bands were 

computed as well as an indicator of the reliability of the estimates. The estimates of 

the age-specific hazard and percentile-based bootstrap confidence intervals are pre- 

sented in Figure 5. The bootstrap confidence intervals are based on 100 bootstrap 

samples, except for the j75th percentile category, which is based on 20 bootstrap 

samples, because of the extensive time it took to fit the models to the large datasets. 

Regression Methods Incorporating Familial Risk as a Covari- 
ate 

We incorporated the posterior probabilities of BRCA1 and BRCA2 and their log- 

arithms^ well as loglogFSIii! as continuous variables in separate analyses, using 

a proportional hazards model with birth-year as an additional covariate. The log- 

likelihoods and the values of xl are presented in Table 3. We see that the best result 

(in terms of statistical significance) is obtained by including the loglogi7'SIR, where 

10 



we get a likelihood ratio \\ = 316.72, (p < 0.00001). 

We also considered the indicator variable NFIRST for presence/absence of a first 

degree relative, in a proportional hazards model. From Figure 4A it can be seen that 

the proportional hazards assumption is not grossly violated. The variable NFIRST 

was highly significant (likelihood ratio x\ — 185.6,p < 0.0001). Addition of a second 

indicator variable for two or more first degree relatives with breast cancer did not 

improve the likelihood significantly (data not shown). 

Discussion 

We have applied several methods of measuring familial aggregation at the individual 

level to breast cancer data. All prove to be signficantly significant predictors of 

individual risk. Judging by the difference in risk estimates, as well as the likelihood 

ratio test, presence of a first degree relative and FSIR appear to be better indicators 

of increased risk than the posterior probability of BRCA1 or BRCA2. Judging solely 

by the likelihood ratio test, one would prefer FSIR. 

FSIR may be thought as an extension of the cruder number of first degree relatives 

with breast cancer, adjusting for the level of relatedness and expected disease. It is 

therefore not surprising to find that it performs better. 

Although the estimates become less reliable at increasing age, the hazard function 

for breast cancer appears to be essentially non-decreasing in all the categories of all 

familial measures considered. Thus we find no evidence of an "immune fraction" in 

this analysis. The curves for different levels of risk appear not to merge or cross, 

indicating that the increased risk to those with a family history does not dissipate 

after a certain age. 

Other investigators have either estimated or simply assumed that the risk of 

breast cancer decreases past a certain age. As previously noted, Moolgavkar et al.8, 

found the hazard function to sharply decrease starting sometime past the age of 70. 

By age 90, the risk has decreased to about 1/3 of the peak. Parmigiani et al.11 

fit breast cancer incidence data from Easton et al17 to a three parameter gamma 

distribution. Implicit in this fitting procedure is the assumption that the risk to 

carriers of BRCA1 and BRCA2 decreases to zero with age.   There is little actual 

11 



evidence for this in the fitted data, as the last age is 70. Although based on sparse 

data, our estimates show no evidence for decreased risk to carriers at advanced age. 

It may be important for further modeling efforts to better understand the hazards 

to.carriers of disease susceptability genes, particularly at more advanced ages, where 

data are sparse. 
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Legends to figures 

Figure 1. Distribution of the posterior probability that a subject carries BRCA1. 

Figure 2. Distribution of the posterior probability that a subject carries BRCA2. 

Figure 3. The distribution of loglog(FSJ.R) before (A) and after (B) empirical Bayes 

adjustment. 

Figure 4. Spline and life table estimates of the age-specific hazard for breast cancer, 

stratified by number of first degree relatives (A), posterior probability of BRCAl(B), 

posterior probability of BRCA2 (C), and empirically-Bayes adjusted FSIR. The high 

risk category contains about 8.5% of the subjects in each case. 

Figure 5. Stratified spline-based estimates and 95% bootstrap confidencd bands for 

the age-specific hazard function for breast cancer. The categories are percentiles 0-75 

(A), 75-90(B), 90-99.9 (C), and 99.9-100 (D) of the adjusted FSIR distribution. The 

scales are different, for better resolution. 
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Table 1. Number of subjects and range of the risk categories for the dichotomized 

familial risk variables. NFIRST refers to the number of first degree relatives with 

breast cancer. Pr(BRCAl) and Pr(BRCA2) refer to the posterior probability of 

carrying BRCAl or BRCA2 from the model of Parmigiani, and FSIR refers to the 

familial standardized incidence ratio. 

Risk Low Risk High Risk 
Variable 

subjects range subjects range 

NFIRST 104680 0 9749 1-4 

Pr(BRCAl) 104442 0-0.000452 9779 0.000452-0.96 

Pr(BRCA2) 104440 0-0.000173 9781 0.000173-0.335 

FSIR 104664 0.01-2.0 9765 2.0-6.1 
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Table 2.  Stratification of FSIR for analysis with four categories, together with the 

number of cases per category. 

Percentile of FSIR Range Subjects Cases (% Cases) 

i 75 0.01-1.2 85822 3279 (3.8%) 

75-90 1.2-1.7 17165 951 (5.5%) 

90-99.9 1.7-4.1 11328 845 (7.5%) 

99.9-100 4.1-6.1 114 17 (14.9%) 
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Table 3. Likelihood ratio statistics estimates for models with posterior probabilities 

of BRCA1 and BRCA2 or their logarithms, as well as FSIR. see text for details. The 

chi-square value was computed using the likelihood ratio statistic. 

Variable x\ 

Pr(BRCAl) 8.52 

Log(Pr(BRCAl) 44.94 

Pr(BRCA2) 5.52 

Log(Pr(BRCA2)) 64.32 

Loglog(FSIR) 316.72 
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