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Introduction
The overall goal of this research is to elucidate the complex role of transforming growth

factor 3s (TGFI3s) in sequential stages of mammary epithelial transformation, and to determine
whether blocking autocrine TGFI3 signaling in breast cancer cells affects their metastatic
phenotype in vitro and in vivo. This knowledge is of potential importance for the development
of rational therapeutic approaches in human breast carcinoma.

Body

Specific Aim 1
The purpose of this Aim was to generate MMTV/tTA + tet-op/TGFI3 1 S223/225 mice. As

stated in our 1999 Annual report, although MMTV/tTA mRNA was expressed in the mammary
glands of the F1 bigenic animals we generated, expression levels were very low, and tet-
op/TGF[31 mRNA was not detectable. Since this may have been due to the low level of
expression of the MMTV/tTA, we have obtained other MMTV/rtTA founder lines with more
robust MMTV expression in the mammary gland from Dr. Lewis Chodosh (University of
Pennsylvania, Philadelphia, PA; D'Cruz et al., 2000). These mice are currently being
quarantined in our mouse facility. In the presence of doxycycline, which can be administered to
mice in the drinking water, the rtTA transactivates the tet-op minimal promoter upstream the
active TGF 1 sequence. We anticipate being able to start mating these mice with six new tet-
op/TGF 3 1 homozygous founder lines, which we have generated in the same mouse strain (FVB)
as Dr. Chodosh's MMTV/rtTA mice, in January 2001.

Specific Aim 2
This Aim initially proposed to study the effect of mammary TGF I31 overexpression on

different stages of breast transformation in MMTV/neu + TGFcx bigenic mice. Due to the
complexity of generating a mouse between these two bigenics bearing four different transgenes,
these studies will be replaced by studies in which we induce tumors with the carcinogen 7, 12-
dimethylbenzanthracene (DMBA) in MMTV/rtTA + tet-op/TGFI31 bigenic mice of <8 weeks of
age supplemented with estradiol/progesterone subcutaneous pellets. Following challenge with
the initiator (DMBA) and the promoter (estradiol/progesterone), mice will be supplemented with
doxycycline in the water to transactivate TGF 1 transcription at different times of mammary
transformation and tumor progression. These studies will be initiated as soon as an appropriate
MMTV/rtTA + tet-op/TGFI31 bigenic mouse is generated.

Specific Aim 3
This Aim initially proposed to test the effect of antisense TGF3 1 and antisense TGFP32 on

MDA-231 human breast cancer cells. However, since we were unable to generate stable
transfectants with sustained expression of antisense, we chose to disrupt autocrine TGFP3
signaling in these cells by stably expressing a dominant negative type II TGFP3 receptor in which
the Lysine at position 277 within the kinase domain has been mutated to Arginine, rendering the
receptor kinase dead. Expression vectors for this mutant (TP3RII K277R) and the control vector
were obtained from Dr. Martin Oft (University of California, San Francisco, CA). Results to
date can be summarized as follows:
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1. The TI3RII K277R protein is expressed on the surface of MDA-231 cells, as evidenced by
immunoprecipitation of 1 251I-TGF3 I -labeled HA-tagged TP3RIIK277R.

2. The TPRII K277R is functional in that it impairs various aspects of TGF3 signaling
including:

i) TGFj3-mediated Smad2 phosphorylation
ii) TGFf3-mediated translocation of Smad2 to the nucleus
iii) TGFf3-mediated transcription of TGFI3 responsive reporter contructs (p3TP-

luciferase and p(CAGA) 12-luciferase)

3. Expression of T3RII K277R in MDA-231 cells impairs their motility.

Biochemical experiments are currently underway to confirm that the impairment in motility
observed upon expression of T3RII K277R in MDA-231 cells is indeed due to impaired TGF3
signaling. We have data suggesting that in addition to blocking TGF3 signaling, expression of
TI3RII K277R may also block BMP signaling in MDA-231 cells. We have obtained
adenoviruses encoding constitutively active mutants of TGF[ and BMP type I receptors in order
to assess the relative contribution of each pathway in motility.

Tumor studies in nude mice are also underway to evaluate the effect of TP3RII K277R
expression on tumor formation and metastases in vivo. Similar transfections have been done in
EMT-6 and 4T1 Balb/C mouse mammary tumor cells. Characterization of these pools and
clones is underway.

Key Research Accomplishments

Generation and characterization of MDA-231 pools and clones stably expressing TfRII K277R
or control vector.

Reportable Outcomes

Dumont N, and Arteaga CL. Autocrine transforming growth factor-P3 signaling in mammary
tumor cell invasiveness. Submitted to the AACR Pathobiology of Cancer Workshop, July 2000.

Dumont N, and Arteaga CL. Tumor promoting effects of transforming growth factor . Breast
Cancer Res. 2:125-132, 2000.

McEarchem JA, Kobie JJ, Mack V, Wu RS, Meade-Tollin L, Arteaga CL, Dumont N, Besselsen
D, Seftor E, Hendrix MJC, and Akporiaye ET. Invasion and metastasis of a mammary tumor
involves TGF-f3 signaling. Int. J Cancer (in press, 2001)

Conclusions

T[3RJI K277R is expressed, functional, and impairs motility in MDA-231 cells.
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Autocrine Transforming Growth Factor-J3 Signaling in Mammary Tumor Cell
Invasiveness. Nancy Dumont and Carlos L. Arteaga, Departments of Cell Biology and
Medicine, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer
Center.

Transforming growth factor-P (TGFP3) is a pleiotropic growth factor, which plays a
critical role in modulating cell growth, differentiation and plasticity. There is increasing
evidence that after cells lose their sensitivity to TGFP3-mediated growth inhibition,
autocrine TGF[ signaling may potentially promote tumor progression. Studies have
shown that introduction of a dominant negative TGFP3 type II receptor (TI3RII) in a
variety of tumor cells can delay tumor formation and prevent the conversion of cells from
an epithelial to a more invasive and metastatic mesenchymal phenotype. The purpose of
this study is to identify the biochemical pathways perturbed by a dominant negative
TP3RII that are causally associated with the metastatic phenotype of tumors. In order to
do that, the MDA-MB-231 human breast cancer cell line was stably transfected with
either a kinase-dead TI3RII-K277R (dnTP3RII) construct or the vector control. Affinity
labeling of cell surface receptors with 125I-TGF[31 revealed an increase in the labeling of
T3RII on the surface of cells transfected with dnTP3RII compared to the vector control or
parental cells, suggesting that the dnTP3RII was indeed expressed. This was confirmed by
immunoprecipitating the affinity-labeled exogenous receptor via its HA tag. The
function of the transgene was evaluated by i) examining phosphorylation and nuclear
translocation of Smad2, a TGF[3 signal transducer, and ii) measuring transcription
utilizing the TGFP3 responsive promoters, p3TP-lux and p(CAGA)12-1ux. These assays
revealed that TGF[-mediated Smad2 phosphorylation, Smad2 nuclear translocation, and
transcriptional responses were reduced in cells stably transfected with dnT3RII compared
to vector control. In addition, wound closure assays indicated that the basal migratory
potential of dnTf3RII expressing cells was impaired. Biochemical experiments are
currently underway to identify the signal transducers perturbed by the dnTP3RII
expression which impair motility, and which may, in turn, be relevant to TGF3-mediated
invasion and metastases.
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Abstract

The transforming growth factor (TGF)-p3s are potent growth inhibitors of normal epithelial
cells. In established tumor cell systems, however, the preponderant experimental evidence
suggests that TGF-p3s can foster tumor-host interactions that indirectly support the viability
and/or progression of cancer cells. The timing of this 'TGF-j switch' during the progressive
transformation of epithelial cells is not clear. More recent evidence also suggests that
autocrine TGF-P signaling is operative in some tumor cells, and can also contribute to tumor
invasiveness and metastases independent of an effect on nontumor cells. The dissociation of
antiproliferative and matrix associated effects of autocrine TGF-P signaling at a
transcriptional level provides for a mechanism(s) by which cancer cells can selectively use
this signaling pathway for tumor progression. Data in support of the cellular and molecular
mechanisms by which TGF-13 signaling can accelerate the natural history of tumors will be
reviewed in this section.

Keywords: transforming growth factor (TGF)-P, TGF-1 receptors, epithelial-to-mesenchymal transition,
angiogenesis

Introduction biphasic: TGF-j1 acts early as a tumor suppressor, proba-
Although the transforming growth factor (TGF)-ps can be bly by inhibiting the proliferation of nontransformed cells,
tumor suppressive [1], there is increasing evidence that and it acts later as a tumor promoter by eliciting an epithe-
TGF-P secretion by tumor cells and/or stromal cells within lial-to-mesenchymal transition (EMT). Additional experi-
the peritumoral microenvironment can contribute to tumor ments have suggested that upregulation of TGF-33 in the
maintenance and progression. How, then, can TGF-ps be spindle carcinomas was responsible for maintenance of
both tumor suppressive and tumor promoting? This appar- this invasive phenotype [2"1]. This is consistent with
ent paradox is reconciled by a study showing that, in a TGF-33 expression at sites in mouse embryos where
mouse skin model of chemical carcinogenesis, targeted epithelial-mesenchymal interactions are important, like the
expression of TGF-31 in suprabasal keratinocytes appears lung and palatal shelves [3,4], and also the abnormal lung
to have dual effects. It suppresses the formation of benign development and cleft palate observed in TGF-p3 null
skin tumors, but once tumors develop, it enhances their mice [5]. Also consistent with an early tumor suppressive
progression to a highly invasive spindle cell phenotype effect is the recent observation that tgf-/l-/- mice develop
[2-1. These results suggest that the effects of TGF-j1 are an accelerated progression of epithelial hyperplasia to

CTL = cytotoxic T lymphocyte; EMT = epithelial-to-mesenchymal transition; JNK = c-Jun N-terminal kinase; MMP = matrix metalloproteases;
PAl-1 = plasminogen activator inhibitor; PTHrP = parathyroid hormone-related protein; TPRI = TGF-P receptor type I; TPRII = TGF-P receptor type II;
TGF-P = transforming growth factor-P. 125
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colonic adenomas and cancers [61. The existence of dual EMT in vitro or in vivo display loss of epithelial polarity,
effects for TGF-ps in tumor progression follows the obser- downregulation of E-cadherin, disruption of cell-cell adhe-
vation that TGF-p-induced growth inhibitory responses sion, and invasive properties in several in vitro assays
and extracellular matrix responses may represent distinct [117]. Supporting the importance of autocrine TGF-0 for
processes in certain cell types. For example, overexpres- the tumorigenesis of Ha-Ras mammary cells, introduction
sion of the antagonistic Smad, Smad7, in pancreatic carci- of dominant negative TiRII into these cells retarded tumor
noma cell lines not only suppresses TGF-j1 -mediated formation and prevented EMT in vivo; moreover, introduc-
growth inhibition, but enhances the ability of TGF-31 to tion of the same construct into highly invasive murine
induce matrix associated transcriptional responses [71. colon carcinoma cells reconstituted an epithelial pheno-

type in vitro, and inhibited both tumor outgrowth and the
The progression of epithelial tumors to an invasive establishment of metastases [20"1. In colon cancer cells of
metastatic state is often associated with EMT, downregu- low invasive potential and with naturally occurring muta-
lation of cellular adhesion molecules, elevated expression tions in the TPRII gene, re-expression of TIPRII function
of metalloproteases, and increased motility and angiogen- restored tumor cell invasiveness [20"]. In another study,
esis, all of which can be modulated by TGF-jps. It is there- expression of dominant negative TPRII in clones derived
fore not surprising that the TGF-3s can also promote from a metastatic squamous carcinoma cell line prevented
tumorigenesis by modulating these critical processes. In their spontaneous progression to a spindle phenotype in
support of this view, elevated levels of TGF-13 are often vivo [21]. Furthermore, approximately 900/0 of colon
observed in advanced carcinomas, and have been corre- cancers with microsatellite instability have inactivating
lated with disease progression in several studies [8-13]. mutations of TI3RII [33], and this instability is significantly
This suggests that secreting higher levels of TGF-P3 may correlated with longer patient survival [34], suggesting
provide an advantage to tumor cells. Both autocrine and that complete loss of TI3RII in carcinomas may limit sys-
paracrine signaling may be involved in conferring this temic metastases. Taken together, these results suggest
selective advantage. While mutations in various compo- that EMT, local tumor growth, and metastatic progression
nents of the TGF-3 signaling pathway have been observed can be sustained by autocrine TGF-13 signaling.
in some carcinomas, particularly colorectal cancers
[14,15], an intact TGF-P signaling pathway is often When tumors are grown in nude mice, TGF-jps made by
retained in other malignancies as some tumors can exhibit host cells can induce responses in tumor cells with intact
increased invasiveness in response to exogenous TGF-13 TGF-3 signaling, with the net effect of these tumor-host
[16,17",18,19,20*,21]. Moreover, in a recent study of a interactions being deleterious to the host. For example,
large cohort of human breast tumors, loss or low levels of MDA-231 human breast tumor cells secrete parathyroid
the type II TGF-13 receptor (TIPRII) correlated with high hormone-related protein (PTHrP) in response to exoge-
tumor grade, but 60%/0 of in situ and invasive breast carci- nous TGF-13I, metastasize to bone when injected into
nomas retained robust levels of T3RII expression by nude mice, and induce osteolysis and hypercalcemia,
immunohistochemistry [22]. Finally, although Smad4 is fre- resulting in host death. Transfection of these cells with
quently inactivated in pancreatic cancers [23,24], the dominant negative TlRII blocks TGF-f1 -mediated stimula-
Smad genes, which encode proteins that transduce tion of PTHrP production. Mice injected with these cells
TGF-j3 signals, are rarely mutated in most human carcino- exhibited less osteolysis, higher body weight, lower serum
mas [25-30]. This suggests that after cells lose their sen- calcium and PTHrP levels, and longer survival than mice
sitivity to TGF-3 growth inhibition, autocrine TGF-jP injected with control MDA-231 cells [35°1. On the con-
signaling may potentially promote tumor progression. In trary, accelerated osteolysis and reduced host survival
addition, TGF-ps produced in excess by tumor cells may were observed when mice where injected with tumor cells
act in a paracrine fashion on the peritumoral stroma, tumor transfected with a constitutively active TIPRI, suggesting a
neovessels, or the immune system, indirectly fostering possible role for TGF-j3-mediated responses in the patho-
tumor progression. genesis of some adverse paraneoplastic syndromes.

Autocrine effects Several recent studies have contributed to our understand-
Epithelial-to-mesenchymal transition ing of the biochemical mechanisms by which transformed
Similar to keratinocytes [2"], TGF-j1 can also induce a cells can lose autocrine growth inhibition but retain TGF-j-
rapid and reversible EMT in melanoma cells [31], and in mediated responses that contribute to tumor progression.
both nontumor [32] and Ha-Ras transformed [17*] For example, oncogenic activation of the Ras pathway,
mammary epithelial cells in vitro. In Ha-Ras mammary acting via MAP kinases, causes phosphorylation of Smad2
tumors, EMT appears to be initiated by TGF-P produced and Smad3 at specific Erk consensus sites in the linker
by peritumoral host cells and later maintained by autocrine region between their DNA binding and transcriptional
TGF-P1 as the converted tumor cells themselves begin to activation domains. This results in loss of nuclear accumu-

126 secrete TGF-pI. The Ha-Ras tumor cells obtained after lation of Smad2/3 and silencing of TGF-p-mediated
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antiproliferative responses [36-1. In nontransformed Increased motility
mammary cells, introduction of mutant Ras not only blocks TGF-f can stimulate the motility of many cell types in vitro
growth inhibition by TGF-13, but also subverts this pathway [43-45], therefore suggesting that TGF-3 production in
into one that can stimulate epithelial-to-mesenchymal vivo may enhance migration of tumor cells and metastatic
transdifferentiation [17*,20*]. In MDCK epithelial cells, potential. Indeed, cyclosporine treatment of lung adeno-
transfection of the missense mutations Smad2.D450E carcinoma cells results in increased cell motility and
and Smad2.P445H, reported in primary colorectal and anchorage independent growth in vitro, as well as
lung carcinomas, does not abolish TGF-3-mediated growth increased metastases in vivo, all of which can be blocked
arrest. Instead, it increases both basal and TGF-P stimu- with neutralizing TGF-P1 antibodies [46]. These results
lated invasiveness, neither of which is prevented by overex- suggest that in vivo tumor progression by cyclosporine is
pression of the inhibitory Smad7 [37"1. This suggests the dependent on autocrine TGF-P1. In prostate cancer cells,
existence of Smad 'gain-of-function' mutations that TGF-f1 stimulates motility without affecting cell prolifera-
enhance malignant progression by mechanisms indepen- tion, suggesting that the effects on motility and prolifera-
dent of T3RI and Smad phosphorylation. Another study has tion may occur via different biochemical pathways [43].
shown that Smad7 mRNA levels are increased in human
pancreatic cancers compared with normal pancreas [71]. Whether blockade of the Smad pathway, critical for
Stable transfection of COLO-357 human pancreatic TGF-13-mediated antimitogenic effects [47,48], is also
cancer cells with a Smad7 expression vector results in loss critical for the effects of TGF-Ps on cell motility is not
of TGF-1l-mediated growth inhibition and p21/Cip1 pro- clear. Some evidence suggests that the latter may follow
moter activity. However, TGF-pl-induced plasminogen alternative signaling pathways, perhaps in cooperation
activator inhibitor-1 (PAl-i) promoter activity is maintained with activated oncogenes. Atfi et al [49] reported
and, more importantly, basal PAl-1 promoter activity, PAl-1 recently that inactivating components of the JNK
mRNA levels, anchorage independent colony growth, and pathway, which regulates AP-1 activity via c-Jun, inhibits
tumorigenicity in nude mice, are all increased in the Smad7 TGF-1-mediated induction of 3TP-Lux, a reporter con-
transfected clones [7]. This result suggests another poten- struct that contains Smad and AP-1 binding elements.
tial mechanism, the overexpression of Smad7, for the seg- Dominant negative mutants of RhoA, Racl, and Cdc42,
regation between antiproliferative and matrix associated GTPases that mediate cell shape, cytoskeletal organiza-
TGF-3 responses. In addition, overexpression of Smad4 in tion, and motility, abolish TGF-3-mediated transcription
colon carcinoma cells does not reconstitute TGF-3-medi- of AP-1 [49,50], suggesting that the Rho family of
ated antiproliferative responses [38',39], but inhibits cell GTPases and the JNK pathway are essential compo-
adhesion and spreading, reduces the levels of urokinase nents of TGF-P signaling responses. TGF-1I can also
plasminogen activator and PAl-l, and prolongs tumor upregulate integrin linked kinase [31], a protein associ-
latency [39], suggesting an additional function for Smad4 ated with fibronectin production and increased cell motil-
in restraining genes involved in peritumor proteolysis and ity. In another study, TGF-31 treatment of NMuMG
invasion. This is further supported by reports of homozy- mouse mammary epithelial cells increased the expres-
gous deletion of T3RI or homozygous missense mutations sion of N-cadherin [51], which has been shown to
of T/RII [40,41], each coexisting with deletions of Smad4 increase motility of squamous cancer cells [52].
in individual tumors. The coexistence of these mutations in
the same tumors would not be expected if the function of Paracrine effects
these two gene products (TI3RII and Smad4 or TPRI and Induction of metalloproteases
Smad4) was limited to a single common signal transduc- Matrix metalloproteases (MMPs) play a critical role in the
tion pathway. Taken together, these studies suggest, first, proteolytic degradation of basement membrane that is
that the threshold for loss of TGF-f3 antimitogenic effects is required for tumor invasion [53]. The expression of several
lower than that required to lose responses associated with MMPs, including MMP-2 [54] and MMP-9 [1 8,31,55], can
cell adhesion, invasion, and metastases; second, that not be induced by TGF-I3. Moreover, TGF-f1 has been shown
one but multiple biochemical mechanisms can contribute to selectively induce MMP-9 activity in a subset of
to the enhancement or unmasking of the tumor promoting metastatic but not primary mouse prostate tumors, imply-
effects of autocrine TGF-3; and, third, that some of these ing that this TGF-131 -induced response may be an impor-
mechanisms may be independent of Smad function or T3RI tant selection step in tumor progression [18]. There is also
phosphorylation. The identification of Smad dependent and evidence that TGF-3 increases MT-MMP-1 and MMP-9
independent genes causally involved in these TGF-j-medi- expression in metastatic melanoma [31]. Although MMPs
ated tumor promoting effects requires further research. Of are listed separately, recent data implicate them strongly
note, Hocevar et al [42"] recently reported c-Jun N-termi- in the process of tumor-induced neovascularization [56],
nal kinase (JNK) dependent TGF-p-induced fibronectin thereby suggesting that their upregulation might be an
expression in cell lines lacking the Smad4 gene or protein integral component of the TGF-p-mediated angiogenic
expression. processes discussed next. 127
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Tumor angiogenesis body that blocks TGF-P1, TGF-132, and TGF-33 has been
It is generally accepted that solid tumors require an ade- shown to suppress the growth of TGF-pl-overexpressing
quate blood supply in order to grow beyond a few milli- renal cancer xenografts [70]. In this study, the TGF-P
meters in size. TGF-Ps, particularly TGF-31, have been blocking monoclonal-abrogated factor VIII staining in the
shown to regulate new blood vessel formation both in vitro xenografts, suggesting an antitumor mechanism that
and in vivo by a combination of responses that include targets endothelial cells [70]. Furthermore, TGF-f31 and
increased production and facilitation of vascular endothe- PAl-1 have been shown to inhibit the conversion of plas-
lial growth factor, facilitation of basic fibroblast growth minogen to the anti-angiogenic molecule angiostatin in
factor mediated capillary sprouting, inhibition of endothe- medium conditioned by human pancreatic cancer cells
lial cell migration, and increased production of extracellular [71]. This suggests an additional pro-angiogenic mecha-
matrix, among others (reviewed in [57]). In most cells, nism for TGF-P by interfering with the production of
T3RI/ALK-5 is the signaling receptor for TGF-13. However, endogenous inhibitors of endothelial cell proliferation.
in endothelial cells, it has been suggested that ALK-1 may Finally, high levels of TGF-Pl mRNA correlate strongly with
also function as a type I receptor for TGF-13 [58]. In addi- high microvessel density in breast tumors, and each of
tion to the type 1, 11, and III TGF-P receptors, endoglin is these factors is associated with poor patient outcome [72].
another integral membrane protein that binds TGF-f1 and
TGF-P3, and is highly expressed in endothelial cells [59]. Host immunosuppression
Although TGF-P effects appear to be mediated mostly by TGF-P1 and TGF-j2 are potent immunosuppressants
the receptor specific Smad2 and Smad3 proteins [47,48], [73]. Thus, elevated levels of TGF-Ps secreted by tumors
there is evidence that Smad5 is involved in TGF-P signal- could potentially inhibit immune effector cells and favor
ing in hematopoietic cells [601. Targeted disruption of tumor progression. In support of this idea, Torre Amione et
genes encoding various components of the TGF-f signal- al [74] demonstrated that, unlike parental tumor cells,
ing pathway, including TGF-I1 itself [61], its receptors, fibrosarcoma cells transfected to express 10ng/ml
TPRII [62], ALK-1 [63], and endoglin [64], and one of its TGF-P1 in vitro are unable to induce cytotoxic T lympho-
signal transducers, Smad5 [65], has each revealed that cyte (CTL) responses and can escape immune recogni-
these proteins play an important role in vascular develop- tion. Likewise, EMT6 mammary tumor cells, which
ment. The phenotype of the TGF-1I and T3RII knockout produce high levels of TGF-j1, can inhibit CTLs in vivo.
mice is virtually indistinguishable and is characterized by Transfection of these cells with interleukin-2, a known
defective endothelial differentiation resulting in abnormal T cell growth factor, can reverse this TGF-f1 effect and
capillary tube formation [61,62]. In contrast, disruption of induce tumor rejection [75]. This result suggests that, by
ALK-1, endoglin, or Smad5 does not affect endothelial dif- dampening the generation of tumor reactive T cells, TGF-3
ferentiation or vasculogenesis, but instead they each can promote tumor viability. There is also evidence that
affect angiogenesis. In addition, endoglin-/- and overexpression of the soluble TPRII extracellular domain in
Smad5-/- mice exhibit impaired vascular smooth muscle thymoma cells can prevent the progression of unmodified
cell development. These results are consistent with previ- thymoma cells when injected near the primary tumor inoc-
ous reports demonstrating that TGF-P can regulate ulation site [76], further suggesting that secretion of
smooth muscle cell differentiation and migration in vitro soluble TPRII by these cells is sufficient to restore tumor
[66'], thus contributing to pericyte recruitment and vessel specific cellular immunity and mediate partial tumor rejec-
stabilization. This hypothesis, as it applies to tumor angio- tion. Overall, these results are consistent with the pheno-
genesis, is somewhat challenged by the notion that the type of TGF-f1 null mice that die shortly after birth as a
majority of intratumoral neovessels seem to lack perien- result of widespread inflammation and multiorgan Tcell
dothelial smooth muscle cells [67], suggesting that there infiltration and necrosis [77].
may be additional roles for the TGF-Ps in tumor angiogen-
esis. In that light, Higaki and Shimokado [68] recently In addition to inhibiting CTL responses, TGF-Ps can mod-
reported TGF-pl-mediated stimulation of phosphatidyli- ulate other immune functions that may favor tumor pro-
nositol-3 kinase activity and amino acid uptake in vascular gression. For example, CHO cells transfected with an
smooth muscle cells, suggesting a direct anti-apoptotic expression vector encoding latent TGF-31, when injected
role for TGF-f3. Elucidation of the paracrine mechanisms into nude mice, can decrease mouse spleen natural killer
driving TGF-p-mediated tumor angiogenesis requires activity and rapidly form tumors [78]. Antagonizing TGF-Ps
further investigation. by intraperitoneal injection of an antibody that neutralizes

TGF-P1, TGF-P2, and TGF-P3 has the opposite effect. It
Further supporting the role of TGF-Ps in tumor angiogene- prevents tumor and metastases formation by MDA-231
sis, administration of a neutralizing TGF-P1 antibody to human breast carcinoma cells, and markedly increases
nude mice harboring CHO cell xenografts transfected with natural killer activity of mouse splenocytes [79]. Consis-
ectopic TGF-P1 inhibits both tumor growth and intratumor tent with this TGF-p-mediated immunosuppressive effect,

128 microvessel density [69]. In addition, a monoclonal anti- reduced immune function has been observed in animals



http://breast-cancer-research.com/content/2/2/1 25

bearing TGF-3 overexpressing tumors [80] as well as in spare the tumor host from undue toxicity. Several
patients with glioblastoma, a common type of brain tumor approaches have been proposed, including the use of
that frequently overexpresses TGF-32 [81]. blocking antibodies against TGF-PI, TGF-P2, and

TGF-P33, using the soluble ectodomains of the type II
The cited studies suggest that tumor cell secreted TGF-Ps and Ill TGF-P receptors, which would sequester TGF-P
may block the efferent function of immune effectors at isoforms at tumor sites and prevent binding to cognate
sites of tumor implantation. Other reports, however, receptors [87,88], and, finally, using adenovirus encoding
suggest tumor cell TGF-js may modify the afferent com- inhibitors of TGF-P3 signaling [89], to name a few. The
ponent of the immune response and confer antitumor theoretical and logistical strengths and limitations of these
immunity. Stable infection of breast and glioma tumor cells approaches are beyond the scope of this review. Nonethe-
with antisense TGF-P31 and antisense TGF-P2 retro- less, these represent tools that, if effective in blocking
viruses, respectively, has been shown to restore the TGF-I3 action, will allow us to address the net effect of
immunogenicity of these tumor cells when injected into autocrine/paracrine TGF-j3 signaling at early and late
immunocompetent animals. Furthermore, they induce a stages of transformation and cancer progression.
partial rejection of unmodified, less immunogenic estab-
lished wild type tumor cells [82,83]. In both of these References
studies, in vitro and in vivo CTL activity was markedly Articles of particular interest have been highlighted as:
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ABSTRACT

Several studies have correlated escape from TGF-13-mediated cell cycle
arrest with the tumorigenic phenotype. Most often, this escape from growth
control has been linked to dysfunctional TGF-13 receptors or defects in the TGF-
B-mediated SMAD signaling pathway. In this report, we found that highly
metastatic 4T1 mammary carcinoma cells express functional TGF-f3 receptors
capable of initiating SMAD-mediated transcription yet are not growth inhibited by
TGF-B1. We further observed that TGF-B directly contributes to the metastatic
behavior of this cell line. Exposure to TGF-B caused 4T1 cells to undergo
morphological changes associated with the metastatic phenotype and invade
more readily through collagen coated matrices. Furthermore, expression of a
dominant negative truncated type II receptor diminished TGF-B signaling and
significantly restricted the ability of 4T1 cells to establish distant metastases. Our
results suggest that regardless of 4T1 resistance to TGF-B-mediated growth
inhibition, TGF-13 signaling is required for tumor invasion and metastases
formation.
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Introduction
Tumor invasion and metastasis are complex processes in which cancer

cells detach from the original tumor mass to establish metastatic foci at distant
sites. Metastatic cells characteristically lose growth inhibitory responses, undergo
alterations in adhesiveness and demonstrate enhanced production of enzymes
that can degrade extracellular matrix components (Woodhouse et al., 1997;
Reiss and Barcellos-Hoff, 1997). Since it is the development of metastatic
disease that is primarily responsible for cancer mortality, an understanding of the
mechanisms that facilitate metastatic tumor progression is of great importance.

One cytokine that may contribute to the metastatic potential of tumor cells
is transforming growth factor beta (TGF-B). Originally identified as a positive
growth factor for mesenchymal cells, TGF-B has been identified as a potent
growth inhibitor of most cell types, including cells of hematopoetic origin and
epithelial lineage (Taipale et al., 1998). TGF-13 inhibits the growth of normal
epithelial cells by inducing an arrest in G1 phase of the cell cycle and, less
commonly, by promoting apoptosis (Taipale et a., 1998; Alexandrow and Moses,
1995). In contrast, most malignant cells are refractory to TGF-3-mediated growth
arrest (Fynan and Reiss, 1993). This loss of sensitivity has been linked to tumor
progression, and may be due to loss or mutation of TGF-13 receptors or
dysregulation of TGF-B signal transduction pathways (Reiss and Barcellos-Hoff,
1997; Alexandrow and Moses, 1995; Yingling et al., 1995).

It is widely accepted that TGF-13 promotes tumorigenicity by stimulating
angiogenesis (Roberts et al., 1986), inducing extracellular matrix degradation
(Albo, eta!., 1997) and inhibiting anti-tumor immune responses (Torre-Amione et
a!., 1990; Arteaga et al., 1993; Park eta!., 1997; Wojtowicz-Praga et al., 1997).
Recent studies have shown that tumorigenicity can also arise via the action of
TGF-3 on the tumor cells directly (Miettinen et a., 1994, Oft et al., 1996, Oft et
al., 1998, Portella et al., 1998, Hojo et al., 1999, Piek et al., 1999, Yin et al.,
1999). In this report, we have employed a highly metastatic murine mammary
cancer cell line (4T1) to examine the role of TGF-B on invasion and metastatic
potential in vivo. We found that although 4T1 mammary tumor cells are resistant
to TGF-3-mediated growth inhibition, TGF-B signaling is critical to tumor invasion
and metastases formation. Engagement of ligand initiated downstream signaling
pathways that culminated in Smad2 phosphorylation and transcription of a Smad
responsive reporter gene (3TP-lux). Furthermore, disruption of TGF-13 signaling
by expression of a dominant negative truncated type II receptor significantly
curbed tumor metastasis without affecting primary tumor growth.

Materials and Methods

Cell lines. The metastatic line 4T1 is a thioguanine-resistant variant of 410.4, a
tumor subline isolated from a spontaneous mammary tumor that developed in a
BALB/cfC3H mouse. The 4T1 cell line was kindly provided by Dr. Fred Miller of
the Michigan Cancer Foundation (Detroit, MI). The TGF-13 sensitive Mink lung
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epithelial cell line (MvlLu) was purchased from ATCC (CCL64; Rockville, MD).
Both cell lines were maintained in vitro by passage in Iscove's Modified
Dulbecco's Medium (IMDM) supplemented with 10% FBS.

Mice. Female C.B-17/IcrACCscid mice, 6-8 weeks old, were purchased from a
colony maintained at the University of Arizona. The mice were housed in the
University of Arizona animal facilities in accordance with the principles of animal
care (NIH publication No. 85-23, revised 1985).

Cell cycle analysis. 4T1 tumor cells and TGF-f3 sensitive MvlLu cells were
arrested at the G1 phase of the cell cycle by seeding them at high density (107
cells/T75 flask) for 72h. The cells were then detached and plated at a
concentration of 5 x 105 cells/100 mm x 15 mm tissue culture dish in the
presence of increasing amounts of TGF-1I. Forty-eight hours later, the cells
were collected, fixed at a concentration of 106 cells/ml with cold 70% ethanol for
2h and stored at 40C for up to 1 week. For analysis, 106 cells were suspended in
1 ml of Vindelov's PI buffer pH 8.0 (10mM Trizma base, 10mM NaCl, 0.1% NP-
40, 50 jig/ml RNase A, 50 gg/ml propidium iodide). After a 20 min incubation at
room temperature, the cells were filtered through a 30 jim nylon mesh and
measured for DNA content with a FACStarPLUS flow cytometer (Becton
Dickinson Immunocytometry Systems; San Jose, CA) using an Innova 90-5
argon laser (Coherent; Palo Alto, CA) tuned to 488nm at 100mW. Fluorescence
emission was captured through a 575/26 nm bandpass filter. Data were acquired
using Lysys II software and analyzed with CELLFIT (Becton Dickinson
Immunocytometry Systems).

Determination of TGF-13 receptor expression.
Reverse-transcriptase polymerase chain reaction (RT-PCR). Total RNA was
isolated from 4T1 and MvlLu cells with TRIzol reagent (GIBCO BRL Life
Technologies Inc.; Gaithersburg, MD), treated with DNase I and reverse
transcribed to generate cDNA (cDNA cycle kit #K1310-02, Invitrogen; San Diego,
CA). PCR amplification was performed in a 50 gl volume containing 2 RIl of the
cDNA reaction, 1.5mM MgCI2 , 200gM dNTPs, 0.1gjM sense and antisense
primers for TGF-13RI or TGF-I3RII, and 2.5 units Amplitaq Gold DNA polymerase
(N808-0241, PE Applied Biosystems; Foster City, CA) in 1X PCR buffer. Cycling
parameters were 950C for 10 min followed by 940C for 10s, 650C for 30s and
750C for 45s for 50 cycles. TGF-3RI- and TGF-B3R-11 specific primers were
designed using the OLIGO program (National Biosciences; Plymouth, MN) and
were as follows: TGF-BRI upper primer (5'-GGGGCGAAGGCATTACAGTG-3',
position 76) and TGF-BRI lower primer (5'-ATTTGGCACACGGTGGTGAA-3',
position 461); TGF-BRII upper primer (5'-TCCACGTGCGCCAACAACAT-3',
position 915) and TGF-BRII lower primer (5'-GCGCAAGGACAGCCCGAAGT-3',
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position 1420). These primers amplify 405 bp and 525 bp fragments of TGF-13RI
and TGF-BRII respectively.
1251-TGF-B1 Affinity Crosslinking studies. Subconfluent 4T1 tumor cells in 12-
well plates were labeled with 100pM 125 1-TGF-131 (1731VCi/pgg, DuPont NEN;
Boston, MA) in the presence or absence of 10nM unlabeled rhTGF-B1
(Genentech; South San Francisco, CA) for 4h at 40C. After washing, the
specifically bound labeled ligand was cross-linked to cell surface receptors with
1mM bis(sulfosuccinimidyl) suberate (BS3) (Pierce; Rockford,IL) as described
previously (Koli and Arteaga, 1997). Equivalent amounts of protein were then
resolved by 3-12% gradient SDS-PAGE and labeled receptors visualized by
auto radiography.

Cell Migration and Invasion Assays. Cells were seeded at a density of 10i
cells per well in triplicate in the upper chamber of 12-well transwells (8gm pore,
#29442-120, Corning Inc., Corning, NY) in the presence or absence of 2 ng/ml
rhTGF-B1 or anti-TGF-B neutralizing antibody (100[ig/ml) (ATCC HB-9849).
Twenty hours later, the transwells were removed and the lower chambers were
incubated for an additional 20h. Cells that migrated through the transwell into the
lower chamber and attached were treated with trypsin and counted. The
transwells were untreated (migration assay) or coated with rat tail type I collagen
(invasion assay) as previously described (Keely et al., 1997).

Confocal microscopy. Cells (104) were grown on 0.17 mm thick coverslips in a
C0 2-humidified incubator for 48h in the presence or absence of 2 ng/ml rhTGF-
B1. The cells were then fixed with 4% methanol-free formaldehyde for 20 min at
room temperature, permeabilized with 100% methanol at -200C for 6 min, air-
dried and stored at -200C until time of staining. Morphological changes in tumor
cells treated with TGF-13 were detected by staining the cells with 100 RI of a 1:40
dilution of bodipy-phalloidin (#B-3416, Molecular Probes; Eugene, OR), a
fluorescent molecule that binds to actin filaments. The cells were visualized with
a LEICA confocal microscope.

Western blotting. Cells grown overnight in serum free IMDM were untreated or
treated with 0.25 ng/ml of rhTGF-11 for 45 minutes, washed twice with ice cold
PBS and scraped into a buffer containing 50 mM Tris-HCI, pH 7.4, 150 mM NaCI,
1% NP-40, 0.25% Na-deoxycholate, 1 mM EDTA, 1 mM PMSF, 1 mM NaF, 1
mM Na3VO4, 1 pig/ml aprotinin, 1 gg/ml leupeptin, and 1 gg/ml pepstatin. The
lysate was placed on a rocker at 4 °C for 30 min, centrifuged at 14,000 x g and
protein in the supernatant recovered and quantified by BCA Protein Assay
(Pierce, Rockford, IL). Proteins (25 jig) from the cell lysates were resolved by
SDS-8% PAGE and electrotransferred to polyvinylidene fluoride (PVDF)
membrane. Nonspecific binding sites were saturated by incubation in TBS
containing 0.1% Tween-20 and 5% nonfat powdered milk. Membrane bound anti-
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Smad2 and anti-phosporylated Smad2 antibodies (S66220; Transduction
Laboratories, Lexington, KY and 06-829; Upstate Biotech, Lake Placid NY
respectively) were visualized with horseradish peroxidase-conjugated secondary
antibodies (Santa Cruz Biotech) and enhanced chemiluminescence (Amersham
Pharmacia Biotech, UK).

Plasmids. A plasmid construct containing cDNA encoding a truncated TGF-BRII
lacking the serine/threonine kinase domain (DNRII)(Choi and Ballerman, 1995)
was kindly provided by Dr. Barbara Ballerman of The Johns Hopkins University.
For our studies, the 0.58 kb DNRII fragment was excised by a Nhel/Xho digest
and cloned into a commercially available plasmid pcDNA3.lzeo(+) (V860-20,
Invitrogen). Proper insertion of this fragment into this plasmid was confirmed by
restriction analysis and sequencing. The resultant construct (DNRII-pcDNAzeo)
contained the truncated receptor under control of human CMV promoter and a
SV40-driven zeocin resistance gene to allow for selection of stably transfected
cells. The p3TPLux TGF-r3-inducible luciferase construct was a gift from Dr. Joan
Massague (Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer
Center, New York, NY) and has been described previously (Wrana et al., 1992).
The f3-galactosidase expression vector VR1412 used to normalize luciferase
activities was kindly provided by Vical Inc. (San Diego, CA).

Transcriptional Response Assay. Cells were plated to semiconfluency and
24h later were transiently co-transfected with 1 gg each of p3TPLux and a control
vector (VR1412) with Lipofectamine reagent (#18324-012, GIBCO BRL)
according to the manufacturer's instructions. Twenty-four hours after transfection,
the cells were plated in triplicate at a concentration of 5 x 104 cells/well of a white
96-well culture plate (#6005180, Instrument Company, Inc., Meriden, CT) in the
presence or absence of 2 ng/ml rhTGF-31 for 18h. Extracts were then prepared
and assayed for luciferase and 13-galactosidase activity using the LucLite Plus
(#6016961, Packard) and Galacto-Light Plus (BL100P, Tropix, Bedford, MA) kits
respectively. Light emmission was detected with a Packard Lumicount and
luciferase activity was normalized on the basis of 13-galactosidase expression.

Northern Blot Analysis. Messenger RNA was isolated from subconfluent cells
and subjected to Northern blot analysis using a NorthernMax-Gly kit (#1944;
Ambion Inc., Austin, TX). Briefly, the mRNA was separated on a 1% agarose gel,
transferred to nylon membrane, UV crosslinked and hybridized with biotin-labeled
rat TGF-B receptor II and mouse GAPDH-specific RNA probes overnight at 800C
and 650C respectively. Hybridized bands were visualized by the addition of
streptavidin/alkaline phosphatase using a BrightStar Biodetect kit (#1925;
Ambion Inc.). To develop an antisense TGF-13 receptor II (TBRII) template for
transcription of a TfRII-specific probe, the DNRII fragment obtained from a
Nhel/Xhol digest was cloned into pcDNA3.1(+) that had been digested with
Xhol and Xbal. To generate the sense TBRII RNA probe, this template was
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linearized by Apal digestion, treated with proteinase K and purified on a 4%
polyacrylamide gel. The linearized plasmid was transcribed with T7 polymerase
in the presence of a nucleotide triphosphate RNA-labeling mix (#1685 597;
Roche Molecular Biochemicals, Indianapolis, IN) containing biotin-16-UTP
according to the manufacturer's instructions. Biotin-labeled RNA probe specific
for GAPDH and RNA millennium markers were similarly generated from
linearized templates (#7431 and #7785, respectively; Ambion Inc.).

Spontaneous Metastasis Assay. Mice challenged orthotopically in the
mammary gland with 105 cells were sacrificed 21 days post-injection. Lungs were
removed, stained with India ink and the tumors bleached with Fekete's solution
as previously described (Wexler, 1966). Primary tumors were measured in two
dimensions every 3-4 days post inoculation. Tumor volume was calculated using
the formula v= (I x w2)/2, where v = volume (mm'), I = long diameter and w =

short diameter (Wexler, 1966).

Results

TGF-13 does not inhibit cell cycle progression of 4T1 cells
We assessed whether exposure of 4T1 tumor cells to TGF-13 resulted in

growth inhibition. For this purpose, cells were arrested at G1 by crowding,
released to transit through the cell cycle in the presence or absence of increasing
amounts of TGF-B and then analyzed by flow cytometry. As shown in Figure 1,
4T1 cells were not growth arrested in G1 but instead progressed through the cell
cycle in the presence of high concentrations (20ng/ml) of TGF-1I. In contrast,
indicator Mink lung epithelial cells (MvlLu) that are growth inhibited by TGF-13
were arrested in G1 following exposure to 2ng/ml TGF-B1 (Figure 1). The
resistance of 4T1 cells to TGF-13 growth control was additionally supported by
cell counting; no differences in cell number and viability were observed between
untreated (2.3 x 106 ± 3.6 x 105) and TGF-B-treated cells (2.4 x 106 + 1.5 x 104)
after 48 hours of in vitro culture.

Expression of functional TGF-B receptors in mammary tumor cells
Since 4T1 cells were resistant to TGF-13-mediated cell cycle control, we

examined them for the presence of functional TGF-13 receptors. Analysis of RNA
by RT-PCR demonstrated that 4T1 cells transcribe mRNA for TGF-B receptors I
and II (Figure 2A). The PCR product obtained for TGF-13RI was sequenced and
determined to be ALK-5 (data not shown). 4T1 cells also express TGF-BRI and
TGF-13RII as surface proteins capable of binding TGF-13 ligand. When labeled
with 1251-TGF-131 in a receptor cross-linking experiment, TGF-13 receptors 1, 11
and III were detected in 4T1 cells (Figure 2B). Binding of 1251-TGF-B1 was
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competitively inhibited by the addition of an excess of unlabeled TGF-B1 (Figure
2B).

TGF-B signaling in 4T1 tumor cells
Next we evaluated if TGF-B signaling occurred in 4T1 tumor cejls following

TGF-B treatment. The involvement of Smads in TGF-B signaling_wa/s determined
by Western blot to detect the presence of phosphorylatedmad ý•2 and by gene
expression analysis of cells transiently transfected with the Smad responsive
3TP-Lux reporter construct. Smad2 phosphorylation and gene transcription in
unstimulated 4T1 cells were significantly increased upon addition of exogenous
TGF-B1.

Morphological changes induced by TGF-13 treatment
The 4T1 mammary tumor cell line typically adheres to plastic or glass

substratum and grows in rounded clumps (Figure 4A). When incubated with
2ng/ml rhTGF-B1, the cells became less clumped, assumed a fibroblast-like
appearance and demonstrated reorganization of the cytoskeleton characterized
by prominent F-actin filaments and stress fibers (Figure 4B). In order to
determine if this morphologic change involved an epithelial to mesenchymal
transition (EMT), cells were stained with vimentin and keratin antibodies as
previously described (Hendrix et. aL, 1997). 4T1 cells constitutively co-expressed
vimentin and keratin intermediate filaments and TGF-13 treatment did not alter
their expression (data not shown). This interconverted phenotype has been
previously reported and is characteristic of highly malignant breast cancer cells
(Thompson et aL, 1992, Sommers et aL, 1992, Lichtner et aL, 1991, Hendrix et.
al, 1997).

TGF-B stimulates in vitro migration and invasion of 4T1 cells
Since SMAD-mediated-TGF-B signaling was intact in 4T1 cells and TGF-B

treatment induces morphologic changes, we speculated that TGF-13 might
contribute to tumor progression by stimulating cell migration and invasiveness.
To explore this possibility, the effect of TGF-B on in vitro migration and invasion
of 4T1 cells was evaluated. The data (Figure 5) demonstrated basal levels of
migration but negligible invasive capacity in 4T1 cells in the absence of TGF-13.
Addition of TGF-13 resulted in a four-fold increase in in vitro migration and a
seventeen-fold increase in invasiveness that was completely abrogated in the
presence of TGF-13 neutralizing antibody (Figure 5).

Disruption of TGF-13 signaling inhibits metastasis formation
To directly evaluate the role of TGF-B signaling in tumorigenicity and the

development of metastasis, 4T1 cells were transfected with a truncated
dominant-negative TGF-B type II receptor (DNRII). This receptor lacks the
cytoplasmic serine/threonine kinase domain and is therefore unable to transduce
TGF-B-initiated signals (Choi and Ballerman, 1995). Expression of DNRII was
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demonstrated by Northern blot (Figure 6) and four of the stably transfected
clones were selected for further analysis. Expression of DNRII blunted
transcriptional activation by TGF-B in the majority of clones tested (Figure 7).
Additionally, the expression of DNRII resulted in a decrease of TGF-13-induced
phosphorylation of Smad2 (Figure 7B). Furthermore, when injected orthotopically
into the mammary gland of immunodeficient SCID mice, three of the four clones
expressing the DNRII were severely inhibited in their ability to form metastatic
lung nodules (Table I). Approximately 114 + 35 (n=4) metastatic nodules were
found in the lungs of mice that were orthotopically injected with mock-transfected
4T1 cells (4T1Zeo) compared with 15.5 + 6.5 (n=15) in mice injected with DNRII-
expressing tumor cells. In the majority of mice injected with gene-modified tumor
cells, the sizes of the primary tumors were not significantly different from those in
control animals injected with tumor cells transfected with vector alone (Table I).
Histologically, no discernible differences in the morphology or local invasiveness
of the primary tumors were observed among the test and control groups. All
primary tumors were well-demarcated and extended from the epidermal/dermal
junction through the dermis with infiltration into the abdominal musculature. Each
tumor was bordered by mild neutrophilic inflammatory infiltrates and contained
extensive necrotic foci. Carcinoma cells were not observed in blood vessels
adjacent to the primary tumors. In contrast to the effects on in vivo metastasis,
the expression of the truncated TGF-13 type II receptor did not affect in vitro
migration and invasion (data not shown).

DISCUSSION
In this study we investigated the role of TGF-13 in the metastatic phenotype

of a highly metastatic murine 4T1 mammary tumor. We found that TGF-13
contributes to the ability of the tumor cells to invade and metastasize in vivo. The
results also show that 4T1 cells are resistant to TGF-13-mediated growth
inhibition, yet respond to TGF-13 as demonstrated by the presence of membrane
receptors that bind ligand, initiate down-stream phosphorylation of Smad2 and
induce Smad-dependent transcriptional activation. Thus, unlike numerous cancer
cells whose resistance to TGF-13 growth inhibition is due to inactivation of TGF-13
receptors (Laiho et al., 1990; Park et al., 1994; Myeroff et al., 1995) or Smad
family signal transducers (Zang et al., 1997), 4T1 cells are capable of TGF-B-
receptor-mediated signal transduction. These findings are in concordance with
those of others that have identified functional receptors in TGF-B growth resistant
cancers such as glioma (Isoe et al., 1998), melanoma (Rodeck et al., 1999) and
cervical carcinoma (Kang et al., 1998). The intactness of Smad-mediated gene
transcription in the 4T1 mammary tumor cell line is similar to that reported in
human melanoma cells in which Smad-mediated gene transcription was shown
to be independent of cell proliferation (Rodeck et al., 1999).

The TGF-13-induced morphological changes that we observed in 4T1
mammary tumor cells are consistent with those reported by others in transformed



murine mammary epithelial cells (Oft et a., 1996) , murine colon cancer cells (Oft
et al., 1998) and skin carcinoma cells (Portella et a/., 1998) and have been
correlated with metastatic potential (Oft et al., 1996; Oft et aL, 1998; Portella et
aL, 1998). Recent work by Piek et al. (Piek et al., 1999) suggests that Smad
proteins may play a role in the invasive and metastatic phenotype. Using the
NMuMG murine mammary epithelial cell line they demonstrated the requirement
for Smad2 and Smad4 proteins in inducing transdifferentiation in cells
constitutively expressing low levels of type I receptor (ALK-5). The transition from
the epithelial to the mesenchymal phenotype was characterized by stress fiber
formation and downregulation/relocalization of E-cadherin, changes frequently
associated with the invasive and metastatic phenotype (Oft et aL, 1996; Oft et al.,
1998). Similar Smad-dependent pathways present in 4T1 tumor cells may
contribute to their invasive and metastatic activities. That 4T1 cells secrete TGF-
B and exhibit basal levels of Smad2 phosphorylation suggests a cell autonomous
mechanism of TGF-B signaling which may contribute to the metastatic phenotype
as has been proposed in murine models of renal, lung, mammary and colon
cancers (Oft et aL, 1998; Yin et aL, 1999; Hojo et aL, 1999). Experiments are in
progress to resolve this question.

The importance of TGF-B in the invasion and metastasis of 4T1 tumor
cells was demonstrated in studies in which expression of a truncated dominant
negative receptor significantly suppressed formation of lung metastases in vivo.
Whereas metastasis formation was severely curbed, tumorigenicity at the
primary tumor injection site was not affected. This observation is in agreement
with that of Yin et al. using the human breast cancer cell line MDA-MB-231 in
which they showed that dominant-negative blockade of the type II TGF-B
receptor had no effect on the growth of local tumor yet significantly diminished
metastasis to the bone (Yin et a/., 1999). In our study, histological analysis did
not reveal any discernible differences in the morphology or local invasiveness of
the primary tumors between mock-transfected (4T1-Zeo) and DNRII-expressing
tumors. In addition, no histologic evidence of hematogenous metastases was
observed in blood vessels adjacent to the primary tumors. These findings are not
unexpected since hematogenous invasion of neoplastic cells is a relatively
infrequent occurrence that is rarely documented histologically. A more reliable
indicator of hematogenous invasion of carcinoma cells is the presence of
metastases at distant sites such as the lung. The decreased number of lung
metastases in the DNRII group is therefore considered a significant finding in our
study and reflective of decreased hematogenous invasion of the carcinoma cells
that express the mutant receptor. Taken together, our findings suggest that TGF-
B may preferentially exert its effect on cellular genes that control invasion and
spread of tumor cells.
Our observation that the DNRII affected in vivo metastasis but not in vitro
migration and invasion suggests that in vitro assays are limited in their ability to
predict metastatic capacity and that characteristics other than increased motility
are required for spread to occur in vivo. TGF-B may promote metastasis in part
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through its ability to regulate the expression or activity of extracellular matrix-
degrading proteases like MMP-9 whose role in tumor metastasis is well
established (Bernhard et aL, 1994; Ray and Stetler-Stevenson, 1994). Our
finding that TGF-13 upregulates the secretion of MMP-9 by 4T1 cells (unpublished
observation) is in agreement with this mechanism. Understanding the TGF-13-
induced downstream effectors mediating the metastatic phenotype will likely lead
to the identification of molecular targets that once perturbed could override this
phenotype.
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Table I. Expression of truncated TGF-B receptor II suppresses metastases
formation.

Cell Type Tumor Volume # Lung Metastases

4T1 783.4 34.2 251 ± 36

Zeo 810.7 102.8 114 ± 35

clone 5 899.4 110.6 10 ± 3
clone 25 606.7 ± 53.2 1 ± 1

clone 32 952.1 192.4 61 ± 13
clone 34 407.2 ± 23.9 3 ± 1

SCID mice were injected orthotopically with parental, mock transfected or gene-
modified 4T1 cells. Three weeks post-injection, the mice were sacrificed and their
lungs were collected and examined for the presence of surface metastases.
Values represent the mean ± standard error (n=4).

12



Figure Legends

Figure 1. Effect of TGF-13 on the cell cycle of 4T1 cells. MvI Lu and 4T1 cells
arrested in G1 by crowding were released from growth arrest by detaching and
plating at a lower cell density in the presence of different concentrations of
rhTGF-B1. After 48h, the cells were collected and evaluated for DNA content by
flow cytometric analysis as described in materials and methods.

Figure 2. Expression of TGF-13 receptors by 4T1 tumor cells. A. RT-PCR was
performed on total RNA isolated from 4T1 (lanes 2) and Mv1Lu cells (lanes 4)
using primers specific for a 405 bp fragment of TGF-BRI, a 525 bp fragment of
TGF-BRII or a 215bp fragment of histone. Lanes 1,3 and 5 represent PCR
reactions containing no template, 4T1 RNA or MvLu RFNA~-(qo RT) respectively.
B. Subconfluent 4T1 tumor cells were labeled with 0 pM ' 125I-TGF-B1 in the
presence (+) or absence (-) of 10 nM competing unl aeled TGF-B1. Bound
labeled ligand was cross-linked to cell surface receptors, the proteins resolved by
SDS-PAGE and labeled receptors visualized by autoradiography.

Figure 3. TGF-B induction of Smad2 phosphorylation and transcriptional
reponses in 4T1 cells. A. Cells were incubated in the presence (+) or absence
(-) of 2ng/ml rhTGF-B for 45 min. Cell lysates were separated by SDS-PAGE,
transferred to membrane and incubated with pretested dilutions of antibodies
specific for Smad2 or the phosphorylated form of Smad2 (55kD). B. 4T1 cells
cotransfected with p3TP-lux reporter and VR1412 13-galactosidase control
plasmids were treated with 2ng/ml rhTGF-B1 and/or anti-TGF-B neutralizing
antibody 18h before determination of luciferase activity. Bars represent the mean
relative light units and standard deviation of triplicate samples. Luciferase
activities were normalized based on 13-galactosidase expression.

Figure 4. Effect of TGF-B on tumor cell morphology. Subconfluent 4T1 cells
were grown on glass coverslips for 48h in culture medium in the absence (A) or
presence (B) of rhTGF-B1. Cells were visualized with a Lieca confocal
microscope after staining actin fibers with bodipy-phalloidin. Magnification =

400X.

Figure 5. TGF-131 enhances migration and invasion of 4T1 cells. Tumor cells
were placed in the upper chamber of 12-well transwells and incubated in the
presence of anti-TGF-B antibody, rat IgG (isotype) or rhTGF-131. Cells that
moved through untreated transwells (migration assay) or collagen coated
transwells (invasion assay) into the lower chamber were counted. Bars represent
the mean cell number ± SE of duplicate wells. The data shown are representative
of at least two experiments.
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Figure 6. Expression of dominant negative truncated TGF-B receptor II in
transfected 4T1 cells. mRNAs isolated from mock-transfected control cells
(Zeo) and 4T1 cells stably transfected with DNRII-pcDNAzeo (clones 5, 25, 32,
34) were subjected to Northern blot hybridization with TGF-B receptor II and
GAPDH-specific RNA probes.

Figure 7. Gene transcription in dominant negative TGF-B receptor II
expressing clones. A. 4T1 cells stably transfected with a mock vector (Zeo) or
the dominant negative truncated TGF-B receptor II (clones 5, 25, 32, 34) were
transiently co-transfected with p3TP-lux reporter and VR1412 B-galactosidase
plasmid DNA. Cells were then treated with rhTGF-B1 for an additional 18h before
determination of luciferase activity. Bars represent fold increase and standard
error of triplicate samples. Luciferase activities were normalized based on B-
galactosidase expression. The data shown are representative of three
experiments. B. 4T1 cells stably transfected with a mock vector (Zeo) or the
dominant negative truncated TGF-B receptor II (clones 5, 25, 32, 34) were
treated with rhTGF-B1 and immunoblotting for Smad2 and the phosphorylated
form of Smad2 was performed.
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