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Abstract 

Tightening space budgets and stagnating spacelift capabilities are driving the 

Air Force and other space agencies to focus on inflatable technology as a reliable, 

inexpensive means of deploying large structures in orbit. Recent improvements in 

rigidization techniques make the use of these inflatable structures feasible for a grow- 

ing number of missions. For many of these missions, the primary design requirement 

is dimensional accuracy of the structure. Finite element analysis offers a means of 

predicting structural behavior in orbit. The analysis requires knowledge of external 

loads. This thesis examines the environmental disturbances which act upon large, 

orbiting structures. Calculations are made on a base model to relate the torques gen- 

erated by these disturbances to the orbital altitude. This facilitates identification 

of the critical loads for large, inflatable structures. An environmental disturbance 

model is then developed in MATLAB. The model calculates the critical loads on 

each element of a faceted structure as it propagates through its orbit. A basic struc- 

ture is defined and entered into the model. Results and analysis for various orbits 

are presented to verify accuracy of the code and validate the derived torque-altitude 

relationships. 

xvi 



ENVIRONMENTAL DISTURBANCE MODELING FOR 

LARGE INFLATABLE SPACE STRUCTURES 

/.   Background and Statement of Problem 

1.1    Background 

On 20 May 1996, the astronauts of the Space Shuttle Endeavor, STS-77, used 

the remote manipulator system to deploy Spartan 207/Inflatable Antenna Exper- 

iment (IAE). Shortly thereafter, the Spartan bus initiated the deployment of an 

inflatable antenna developed by L'Garde Inc and NASA's Jet Propulsion Labora- 

tory (JPL) under NASA's In-Space Technology Experimental Program. The antenna 

consisted of a 14-meter diameter reflector surface and transparent canopy, joined at 

the aperture by a strong, flexible torus. The torus was connected to the spacecraft 

bus by three 28-meter inflatable struts. The deployed antenna is shown in Figure 

1.1. Despite experiencing unexpected dynamics during initial ejection and inflation, 

the antenna attained the correct final shape in just ten minutes. After record- 

ing data and video images of the antenna during one complete orbit, the Spartan 

spacecraft ejected the inflatable structure. The shuttle crew retrieved the bus and 

returned its data and images to Earth. Although the lenticular structure itself failed 

to completely inflate, the mission was considered a great success. It validated the 

deployment and dimensional stability of a large inflatable antenna in an operational 

orbit. This successful mission sparked renewed interest and research into the use of 

inflatable structures for space missions. 

Inflatable structures have several distinct advantages over alternative deploy- 

ment methods. First and foremost is lower cost. Inflatable structures weigh 50% 

less and can be stowed in 25% of the volume of the best competing mechanical 
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Figure 1.1     Inflatable Antenna Experiment 

systems [3]. This permits the selection of a smaller launch vehicle or reduction in 

the number of vehicles for a mission which previously required multiple launches 

and subsequent on-site assembly. The resultant savings is tens or even hundreds of 

millions of dollars. Furthermore, inflatable structures themselves are less expensive 

than their mechanically-deploying counterparts due to their simple engineering and 

low production costs. The basic elements of an inflatable structure consist of flat 

sheets of material, seams and adhesives, launch packaging and an inflation system 

[3]. The materials used are not exotic, and the tooling required is relatively inex- 

pensive. JPL estimates that the cost of an inflatable structure, such as an antenna, 

will be an order of magnitude less than its mechanical equivalent [7]. 

Cost is not the only advantage. Other advantages of inflatable structures 

include strength, reliable deployment and sound thermal response. Inflatables are 

inherently strong due to their ability to absorb loads over a large surface area. In con- 

trast, mechanical structures usually have loads concentrated in a few points, which 

must be strengthened and therefore, made heavier. Inflatables also deploy more re- 

liably than mechanical systems. When properly designed, the only failure point for 
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deployment of the structure is the initiation of gas release. Furthermore, the deploy- 

ment sequence is self-correcting. If the structure starts to hang up, the pressure from 

the inflation system increases until the obstruction is overcome. The importance of 

this reliability was illustrated by the recent problems with the mechanically deployed 

solar arrays on the International Space Station. Improper deployment left the ar- 

ray in a "crumpled" configuration incapable of delivering the design power load. A 

costly and potentially dangerous spacewalk was required to correct the fault. In 

higher orbits, manual repair is not even an option. Finally, inflatable structures can 

be engineered to display favorable thermal response. The large, opposing surface 

areas allow the use of radiation exchange to reduce thermal gradients. In fact, by 

carefully selecting the internal and external optical properties, engineers can limit 

the temperature difference between sunlit and shaded elements to 10 K or less [3]. 

The use of inflatable structures in space is not a new concept. In the early 

1960's, NASA orbited several inflatables, including the passive communications satel- 

lites, Echo I and II. Although inflatable technology was in its infancy, the limited 

capacity of the launch vehicles in that era demanded that the missions be performed 

with inflatables, or not at all. As more powerful launch systems were brought on- 

line, contractors focused on developing mechanically-deployed structures. America 

was engaged in a space-race with the Soviet Union which meant that the accepted 

solution was the one which could be most easily done, not necessarily the optimum 

one [3]. The industry was familiar with mechanical systems and possessed the skilled 

engineers and analytical tools needed to develop and test these systems. In addition, 

experts were concerned with the survivability of inflatable structures in space. The 

meteoroid threat was not well defined and generally overestimated. As a result, effort 

was focused on the development of inflate-then-rigidize systems. These systems are 

more difficult to manufacture and are heavier than inflate-only systems. This further 

encouraged emphasis on mechanical systems. Eventually, these systems dominated 

the industry. This had a snowball effect, leading to the use of mechanical structures 
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even on missions where inflatable structures would provide distinct advantages. As 

Michael Dornheim puts it, inflatable technology suffered from the chicken-or-egg 

problem [7]. Program managers would not select inflatable structures because they 

were not space-qualified. Yet, the reason they were not space-qualified is that they 

were not being used. 

However, times change. The lack of any significant increase in lift capability 

in recent years has increased the focus on developing lighter-weight structures with 

minimal stowed volume. Also, shrinking budgets have forced the space community 

to look for more efficient and economical methods of performing space missions. The 

meteoroid threat is better defined as well. The conservative estimates for meteoroid 

flux used in the past were three orders of magnitude too high [3]. Even if micro- 

meteoroid damage occurs, these structures are inflated at such low pressures that 

enough makeup gas for a ten-year lifetime can easily be carried. So now, the space 

industry is looking again at using inflatable structures to reduce costs and improve 

capabilities. Companies such as L'Garde, Thoikol, Contraves and Aerospace Re- 

covery Systems are developing large inflatable structures technology for a variety 

of missions. Antennas similar to the IAE will be used in JPL's Advanced Radio 

Interferometry between Space and Earth (ARISE) mission. This concept uses orbit- 

ing 30-foot inflatable antennas in conjunction with ground antennas to synthesize 

a radio frequency (RF) interferometer with a baseline longer than the earth's di- 

ameter. This allows high angular resolution of distant RF sources [23]. Inflatable 

solar arrays are another promising application. L'Garde has built a prototype which 

produces 60 watts/kg. Experts at JPL believe that this can easily be pushed to 90 

watts/kg, which doubles the state of the art for mechanical arrays (44 watts/kg on 

Deep Space 1)[7]. L'Garde is also working with ILC Dover to develop a 32 by 14 

meter inflatable sun shield for the Next Generation Space Telescope (NGST). Other 

potential missions for inflatables include lightweight solar sails (Deep Space 5), solar 

concentrators, optical telescope mirrors, supports for synthetic aperture radars, and 
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pressurized habitat modules for the International Space Station [7]. The possibilities 

are endless. Not only do the inflatable structures reduce production and spacelift 

costs, they enable missions that were previously thought impossible. 

The Air Force will also benefit from inflatable technology. Desert Storm demon- 

strated how integrating weather, navigation, missile warning and communications 

data from space-based assets can drastically improve the effectiveness of ground, sea 

and air forces. Effectiveness is further increased by providing theater commanders 

with near real-time imagery of the battlefield. Current imaging systems are limited 

in resolution or orbital altitude by the size of the optics required and the lift capacity 

of the launch vehicle. Use of inflatable optics will permit the launch and deployment 

of imagers with much larger apertures. These sensors will provide better resolution 

from higher altitudes, extending coverage times and making the platforms more sur- 

vivable. Difficulty arises due to the tight surface precision required of optical lenses. 

However, improved methods of rigidizing inflatables and increasing precision with 

which the desired shape is attained promise the development of inflatable lenses in 

the near future. Inflatable structures are the future of space operations for missions 

requiring large apertures. 

1.2   Problem Statement 

With the space industry adopting inflatables for a host of space missions, bet- 

ter tools are needed to analyze the behavior of these large, flexible structures under 

the mechanical and thermal loads encountered in space. Since RF and optical appli- 

cations require tight surface precision, prediction and control of structure behavior 

is critical. Analytic programs used in the past, such as NASTRAN, were designed to 

analyze structures with small deflections [3]. However, inflatable structures are load 

adaptive structures, accommodating various forces by changing geometry. Models 

are being developed to better analyze inflatables. One promising method is finite ele- 

ment analysis. This is a process of dividing a large structure into many smaller units 
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(finite elements) joined at common points called nodes. Instead of trying to solve 

for the behavior of the entire body at once, displacement equations are developed 

for each element and then combined to find the solution for the whole structure. 

This process makes it possible to find a solution for problems involving complex 

geometries, loading, and material properties [16]. 

Solving the finite element model requires knowledge of the external loads. The 

applied forces, pressures and heat flux must be determined for each element and 

applied at the correct nodes. For space missions, this requires calculation of the 

loads encountered in the space environment. That is the purpose of this research: 

to determine and model the critical loads encountered by a large inflatable structure 

in orbit. 

1.3   Scope 

A MATLAB program will be developed to model the forces encountered by a 

large inflatable structure as it propagates through a variety of orbits. Chapter 2 will 

present background theory and a review of current literature concerning disturbances 

experienced by orbiting spacecraft. The model will focus on environmental forces, 

ignoring any loads generated internally from the satellite. Rough calculations will 

be performed to determine the order of magnitude of each disturbance, allowing 

identification of the critical loads. Once the critical loads are determined, a MATLAB 

algorithm will be developed to more accurately determine the loads on each element 

of an orbiting structure. Chapter 3 will describe the methodology used in developing 

this program. Chapter 4 will present the final disturbance model along with required 

inputs and sample output for a basic structure. Finally, chapter 5 will provide a 

summary of conclusions drawn, lessons learned and recommendations for further 

research. 
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II.   Literature Review and Preliminary Calculations 

2.1    Critical Load Identification 

A key step in the design of any structure is the identification and quantifi- 

cation of the critical loads. The critical or primary loads are the most significant 

forces acting on a structure which will in turn have the most pronounced effect on 

performance. According to Hedgepath [11], the successful performance of any struc- 

ture demands accurate determination of the critical loads and related design criteria. 

Furthermore, mission feasibility studies and life cycle cost projections require proper 

identification of these critical loads and design requirements. This is especially true 

for missions where large structures dominate the spacecraft design. Therefore, de- 

termination of critical loads will be the first step in modeling inflatable structures. 

A literature review of the loads experienced by a spacecraft will be presented in 

this chapter, followed by basic calculations for inflatable antenna experiment shown 

in Figure 1.1. Comparison of the relative magnitudes of these forces will facilitate 

identification of the critical loads. 

Accurate identification of critical loads requires analysis of each phase in the 

spacecraft life cycle. These phases include prelaunch, launch, inter-orbit boost, de- 

ployment, and space operations [11]. Prelaunch activities include the development, 

fabrication and testing of the spacecraft components as well as assembly and trans- 

port to the launch pad. Launch and inter-orbit boost phases encompass all the 

needed maneuvers to place the satellite in its operational orbit. Deployment in- 

cludes the pressurization of inflatable structures and/or the deployment of mechani- 

cal structures. Space operations covers the daily operations as well as the end-of-life 

disposal of the satellite. In the past, critical loads arose from the launch environ- 

ment and inter-orbit boost phase. Strength was the primary design criteria in order 

for the satellite structure to survive the extreme forces experienced during launch. 

The smaller loads encountered on orbit during the operations phase were of sec- 
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ondary concern. However, deployable structures such as inflatables will be in their 

packaged configuration during the launch and boost phases. They will not be de- 

ployed until reaching the operational orbit. Therefore, the loads encountered in the 

space environment will become the critical loads. Since the loads experienced in 

space are relatively small, strength is no longer a critical design requirement. For 

many applications of inflatable structures such as antennas, solar collectors or optics, 

dimensional accuracy throughout the operational life will be the primary design re- 

quirement. This demands structures with adequate stiffness to resist deformations. 

However, in order to fully reap the benefits of inflatable structures, they must be 

low volume and low weight. With current launch systems, volume restrictions are 

generally more difficult to meet than weight restrictions [11]. Therefore, low volume 

of the the stowed configurations is also a critical design criteria. Successful perfor- 

mance of an inflatable space structure will hinge on satisfying each of these critical 

design requirements. 

In order to strike an optimal balance between low volume and adequate stiff- 

ness in the structure design, the critical loads during the operational phase must be 

identified and quantified. Loads encountered on orbit may be generated internal to 

the spacecraft or result from interaction between the satellite and the space environ- 

ment. The most significant on-board disturbances include heating from the operation 

of spacecraft subsystems and torques generated by the attitude control mechanism 

[9]. The impact of these internally generated loads can be quite severe. For exam- 

ple, operation of the attitude control subsystem can cause high frequency mechanical 

disturbances which may initiate a structural response at the natural frequencies of 

the satellite, resulting in unstable oscillations. However, the exact magnitude and 

distribution of these internal loads is dependent on many factors such as the type of 

attitude control system used, the amount of power used by spacecraft subsystems, 

thermal shielding and insulation of various components, location of heat sources, 

location of thrusters, length and magnitude of thruster firings and so on.   Obvi- 
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ously, the loading profile of these internal disturbances can vary significantly from 

one spacecraft design to another. The modeling of these internal loads is beyond the 

scope of this research effort. Instead, attention will be focused on loads arising from 

interaction between the spacecraft and its environment. 

There are many different aspects of the space environment which impose loads 

on the spacecraft [1]. The earth's gravitational field creates torques on large satellites. 

Smaller torques can arise from interaction with the moon or sun's gravitational field. 

The earth's magnetic field can interact with the spacecraft's magnetic moment to 

generate torques. Spacecraft traveling through the upper portion of the earth's 

atmosphere experience drag forces which oppose velocity, degrading the satellite 

orbit. Impact with meteoroids or man-made debris can damage the satellite and 

generate torques. Rapidly changing thermal fluxes due to solar radiation and earth 

infrared emission can induce torques in large space structures. Solar radiation and 

solar wind create pressure forces on large satellite surfaces which can perturb the 

orbit and affect satellite attitude. The load imposed by these forces vary depending 

on satellite configuration, orbital altitude and inclination, solar activity, time of 

day, season and many other factors. However, a reasonably accurate model can be 

generated by making some simplifying assumptions and modeling only the critical 

forces. 

Several of the disturbances mentioned above are of secondary concern. For 

satellites at or below geosynchronous altitudes, the gravitational effects of the moon 

and sun are negligible [9]. Similarly, the pressure generated by solar wind is sev- 

eral orders of magnitude lower than solar radiation pressure and can likewise be 

neglected [9]. Impact with meteoroids can generate critical loads, but these impacts 

are very rare and difficult to predict. The resulting torques from impact are even 

more challenging to predict. This leaves gravity gradient, solar radiation pressure, 

aerodynamic drag, magnetic torques and thermally induced torques as possible crit- 

ical forces. 
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Garrett theorizes that the most critical loads are solar radiation pressure, grav- 

ity gradient, drag, and thermal radiation [9]. Chobotov states that the environmental 

effects of greatest concern in satellite design are solar radiation pressure, gravity gra- 

dient, aerodynamic drag and magnetic torque [4]. Furthermore, the significance of 

each load varies depending on the orbit. Figure 2.1 below, taken from Chobotov, 

shows the typical environmentally induced torques as a function of orbital altitude 

[4]. Note that solar radiation pressure is constant, while aerodynamic drag drops 

off rapidly with increasing altitude. Gravity gradient and magnetic torque follow 

similar curves, dropping off more rapidly as altitude increases. In general, gravity 

gradient and magnetic torques are considered significant below 1000 kilometers (km) 

altitude. Drag is significant below 500 km and decays rapidly, becoming negligible 

above 1000 km. Solar radiation pressure becomes significant above 1000 km when 

gravity, magnetics and drag have diminished. Hence, the critical loads are a func- 

tion of altitude. The critical loads for a low-earth orbiting spacecraft will differ from 

those of a geosynchronous satellite. 

S      10« 

Radiation 
■*~ Pressure 

\^ X.    ^Gravity Gradient 

\ \^-*-■ Magnetic Effects 

^*V"**-^-^     \          ,. Aerodynamic 
\            """""i"-"—^Effects 

Typical Torque  (N.ra) 

Figure 2.1     Torque vs. Altitude for Small Satellites [4] 

Figure 2.1 does not provide a complete picture. The torques are shown as a 

function of altitude only. These torques are typical values for small satellites [4]. 

However, the induced torques are also dependent on the spacecraft geometry and 
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attitude. The magnitude of the torques encountered by a large structure could vary 

significantly from those imposed on a small satellite. Most inflatables structures 

will be large structures. Also, Figure 2.1 does not show the relative magnitude 

of thermally induced torques. In many orbits, heat flux into the satellite varies 

slowly over time, creating negligible torques. However, when satellites enter or exit 

eclipse, rapidly changing thermal conditions can induce much larger torques which 

can significant impact on satellite dynamics. This effect must be taken into account 

when modeling critical forces. Therefore, a more precise approximation of these 

disturbances for large structures must be developed which accounts for structure 

geometry and attitude, as well as thermal torques. Using the IAE as the baseline 

model, a plot similar to Figure 2.1 will be generated for large spacecraft. From this 

plot, the critical loads will be identified. 

2.2   IAE Model 

As previously mentioned, the IAE is an inflatable parabolic antenna connected 

to a Spartan bus. Reference [8] contains a detailed description of the antenna con- 

struction and dimensions. The lenticular structure consists of two circular canopies, 

one aluminized (reflector surface) and one transparent. Each of the 14 meter diame- 

ter canopies is formed by joining together pie-shaped gores of 6.35 micron mylar film. 

The canopies are joined at the edge by a strong, but flexible torus. The rim support 

provided by the torus causes the canopies to attain the desired parabolic shape when 

fully inflated. The torus connects to three 28-meter long cylindrical struts which ex- 

tend the reflector out from the satellite bus. The struts and torus are made from 0.3 

millimeter (mm) neoprene coated Kevlar. The cross section diameter of the torus 

is 0.61 meters (m) and the diameter of the struts is 0.36 m. The antenna structure 

has a total mass of 60 kg and is connected to the Spartan bus which has a mass of 

900 kg [25].  Table 2.1 contains a summary of the material properties.  Properties 
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marked by an asterisk are assumed values. Other values have been slightly altered 

to protect L'Garde Inc. proprietary information. 

Table 2.1     IAE Material Properties 
Property Mylar Kevlar 

Density (p) 1400 kg/rri6 1370 kg/rriA 

Reflection coefficient (ß) 0.9* 0.6 
Thermal expansion coefficient (cte) 5.4e - 7/K* be - 7/K 

Thermal conductivity^) 216.3 W/m/K* 216.3 W/m/K* 
Solar absorptivity(oj) 0.1* 0.4 
Thermal emissivity(e) 0.7* 0.9 

Specific heat(cp) 500 J/kg/K* 500 J/kg/K* 

The IAE can be modeled as a composite of six basic shapes. The reflector 

and transparent canopy can be represented together as a laminar disk. The three 

struts are hollow cylinders and the spartan bus a rectangular box. The torus, of 

course, is just a torus. For simplicity sake, the three struts are assumed to converge 

at the Spartan's center of mass. A body-fixed reference frame can be defined with 

the orgin at the Spartan center of mass and the b\ axis pointed through the center 

of the reflector assembly as shown in Figure 2.2. The struts attach to the torus at 

evenly spaced 120 degree intervals. Using standard formulas [19] and applying some 

t>3 

Figure 2.2     IAE Model with Body-Fixed Axes 

basic geometry yields the center of mass location and moment of inertia about the 

center of mass for each individual component. The spacecraft center of mass is then 
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determined by the center of mass equation for a system of particles. 

where 

cm J_ST, (2.1) 

M   =   total body mass 

rrii   =   component mass 

T{   =   body fixed coordinates of component center of mass 

Treating each component as an equivalent point mass and applying (2.1) yields the 

spacecraft center of mass in body fixed coordinates. 

1.15m   Ora   Om {b} (2.2) 

Likewise, the spacecraft inertia matrix is found by summing the individual 

inertia matrices. In order to sum inertia matrices, the matrices must be in the same 

reference frame and about the same point. The body fixed inertia matrix for each 

component about the spacecraft center of mass is calculated using the parallel axis 

theorem. 

Ay2 + Az2     -Ay Ax        -AzAx 

7" + m<* -Ax Ay     Ax2 + Az2      -AzAy (2.3) 

-AxAz       -AyAz     Ax2 + Ay2 

Ic is the component's inertia about the spacecraft center of mass, and Ici is the 

component's inertia about its own center of mass. Ax, Ay and Az represent the 

distance from the component center of mass to the spacecraft center of mass along 

the bi, b2 and b3 axes respectively. Summing the component inertia matrices yields 
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Figure 2.3     Gravity Gradient Model 

the spacecraft inertia matrix. 

3432       0 0 

0      25656       0 

0 0       26324 

kgm2 (2.4) 

Detailed calculations for the spacecraft center of mass and inertia matrix are listed 

in Appendix C. 

2.3    Gravity Gradient 

One possibly significant disturbance on large satellites in low-earth orbit (LEO) 

is gravity gradient. Gravity gradient torques arise due to the varying acceleration 

of gravity across the distributed mass of a large space structure. Consider the large 

satellite shown in Figure 2.3. The gravitational torque on the satellite is determined 

by 

dm (2.5) M = J(rXa9 
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The gravitational acceleration ag is 

Ro + r 
aa = —U—zr 

9 \Ro + f\3 
(2.6) 

where the gravitational parameter ß is the product of the earth's mass and the 

gravitational constant, /vecR0 is the radius from the center of the earth to the 

spacecraft center of mass, and f is the radius from the spacecraft center of mass to 
—* 

the element of interest. Now let X,Y, and Z be the components of the vector R0 in 

the body fixed frame and let x,y and z be the components of f. Substituting (2.6) 

into (2.5) and expanding the cross product in the numerator yields 

f X (R0 + f) = (yZ - zY)b\ + (zX - xZ)b2 + (xY - yX)b3 (2.7) 

Assuming that the radius of the orbit is much larger than the size of the spacecraft, 

the denominator of (2.6) can be expanded using the binomial expansion theorem. 

Dropping all higher order terms gives 

\S. + f\-*„H?ll-*X*+g + Z*] (2.8) 

Substituting (2.8) and (2.7) into (2.5) provides the following expression for the b\ 

component of torque. 

Mi   =   --^-[Z [ydm - Y (zdm 

3XZ  f      , 3YZ  [. 2      2, , -—jxydm-  —J(y  -z)dm 

3Z2   f      ,          3XY  f     J 3F2   f      .   . 
- j yzdm H — / xzdm + — / zydm\ 

Rl 
(2.9) 

Assuming that the orgin of the body frame is located at the center of mass, the first 

two integral terms in (2.9) go to zero. Also, let the body frame be the principle axis 
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set. All products of inertia go to zero leaving 

Mx   = -^jjf-{- f y2dm + f z2dm\ 

o      J 

{hz — I22) 
3/iYZ 

Rl 
(2.10) 

The other two components of torque can also be expanded and simplified to obtain 

similar expressions. 

(2.11) M2 = ^P(/u-/33) 

M3 = 

Rl 
3ßXY 

Rl 
(/22-/11) (2.12) 

Equations (2.10)-(2.12) can be used to determine the gravity gradient torque 

on a space structure given its orbital position. However, recall that X,Y and Z, 

the components of the radius vector, are expressed in the satellite body frame, and 

therefore change with time. In order to analyze the dynamics of the satellite using 

Euler's equations, the position coordinates should be expressed in terms of orienta- 

tion angles. Assume a circular orbit and define the local orbit frame, {a}, with its 

orgin at the satellite center of mass, di pointing along the radius vector, d2 along the 
—* 

velocity vector and d3 along the orbit normal. In this frame, R0 is simply R0d\. Now 

let the orientation of {b} with respect to {ä} be expressed as an Euler 1-2-3 rotation 

as shown in Figure 2.4. The transformation matrix from ä to b is easily calculated. 

Cab = 

CÖ3CÖ2      C03s02s0i + SÖ3CÖ1     -c03sO2c6i + s93s6i 

—SÖ3CÖ2     —sO^S02s6i + CÖ3CÖ1       SÖ3SÖ2CÖ1 + CÖ3SÖ1 

S02 —s9iCÖ2 C02CÖI 

(2.13) 
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Figure 2.4     Orbit Frame Geometry 

where c and s are shorthand for the cosine and sine functions. This transformation 

can be used to express R in the b frame. 

bR0 = CabaR0 = Cab 

1R> 
0 

V0/ 

(2.14) 

Recalling that X, Y and Z are the components of bR0 yields 

X   =   R0 cos 63 cos 62 

Y   =   — R0 sin 93 cos 62 

Z   =   R0 sin 92 (2.15) 
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Substituting (2.15) into (2.10)-(2.12) provides the following expression for gravity 

gradient torques. 

-3/i sin 03 sin 02 cos 02 lT        T  \ 
Mi    =     — {I33 - I22) 

3ß cos 03 cos 02 sin 92, . 
M2   =    ^ U11 - J33J 

M3   =    -3^g.y("»^(Ja_Ju) (2.16) 

Visual examination of (2.16) leads to several conclusions about gravity gradient 

torque. First, the torques are a function of the difference between the satellite's 

principle moments of inertia. Therefore, gravity gradient torques are most significant 

on large, asymmetric bodies. Secondly, the torques are inversely proportional to the 

orbital radius cubed. This means that while gravity gradient is strong for LEO 

satellites, it drops off quickly with increasing orbital altitude. Finally, if all of the 

orientation angles are equal to zero, there is no torque due to gravity gradient. 

These equilibrium points require that one principle axis be aligned with the orbit 

normal and that the satellite spin about that axis at a rate equal to the mean 

motion of the orbit. Also, a second principle axis must be aligned with the radius 

vector. When these conditions are met, gravity gradient torques are zero. Six such 

equilibrium points exist since any one of the three principle axes can be aligned 

with the orbit normal and each of these alignments has two options as to which 

axis to align with nadir. However, solving Euler's equations for small perturbations 

from these equilibrium points shows that only one orientation is stable [30]. This 

stable orientation occurs when the satellite's major inertia axis is aligned with the 

orbit normal and the minor inertia axis is aligned with the orbit radius vector. Any 

perturbation from this orientation creates a gravity gradient torque which acts as a 

restoring force. The more asymmetric the body (larger difference between major and 

minor moments of inertia) and the larger the perturbation, the greater the restoring 

torque. This torque can impose a significant burden on the control system of a large 

2-12 



asymmetric satellite if the body is maintained in orientation other than its stable 

equilibrium. 

The stable configuration for the IAE is with the bi axis along the radius vec- 

tor and the 63 axis along the orbit normal. This would most likely be the nominal 

attitude with the antenna directed along nadir. In this orientation, gravity gradient 

torque would be zero. Assume now that the antenna is slewed to focus off-nadir. A 

gravity gradient torque will arise, acting as a restoring force towards the stable atti- 

tude. In order to get a true feel for the potential impact of each torque, calculations 

will be made for the worst case orientation (greatest induced torque). Examination 

of equation(2.16) reveals that the worst case for gravity gradient occurs when the 

IAE is rotated 45 degrees about the b% axis. Limiting the analysis to just the single 

axis rotation and substituting IAE inertia properties into equation (2.16) provides 

the following relationship between torque and orbital altitude, 

M1 

M3 

M2 

0 

0 

1.363 * 1019 

{Re + h)3 
Nm (2.17) 

where Re is the radius of the earth and h is the orbital altitude. Both Re and h 

are expressed in meters. Table 2.2 shows the gravity gradient torques on the IAE at 

various altitudes. 

Tab e 2.2     Gravity Gradient Torques 
Altitude(km) Torque(Nm) 

300 4.58 *10~2 

500 4.18 *10~2 

1000 3.39 * 10~2 

2000 2.32 * lO-2 

5000 9.25 * lO"3 

26610 3.80 * 10"4 

42240 1.19* lO"4 
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2.4    Magnetic Torques 

The earth has a magnetic field surrounding it which can interact with orbiting 

spacecraft. It is widely believed that motion in the liquid part of the earth's core 

generates currents which subsequently induce the magnetic field [26]. A dipole field 

with its magnetic axis offset 11.5 degrees from the rotational axis provides a reason- 

ably accurate representation of the earth's magnetic field. This model is illustrated 

in Figure 2.5. Anomalies do occur in the field due to concentrations of ferrous metals 

in various locations on the earth's surface. Also, a small portion of the field (less 

than 0.1%) is generated by the motion of charged particles in the ionosphere [26]. 

These currents vary based on the intensity of solar activity and the resulting solar 

wind. However, over 90% of the earth's field is accounted for by the homogeneous 

dipole field model [4]. This will provide an adequate degree of accuracy to develop 

rough order of magnitude estimates for the magnetic torques imposed upon the IAE. 

The dipole field B0 is determined by the gradient of the earth's dipole potential. 

B0   =   -V(j> (2.18) 

where 

<p   =   — cos 9 

-—      --— r dr        r 89 
r   =   distance from the center of the earth 

9   =   angle from the magnetic axis to the radius vector 

The field is expressed in terms of the polar coordinates shown in Figure 2.5. The 

magnitude of the earth's magnetic moment vector along the dipole axis, ße, is ap- 

proximately 8.05 * 1025gauss — cm3.   Taking the gradient results in the following 
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Figure 2.5     Earth's Magnetic Field [4] 

expression for the dipole field 

Bn =   -| (2 cos 6er + sin 6 eg) 

=   -f (-2 sin 9mer + cos 0me6) (2.19) 

where 9m is the magnetic latitude measured from the magnetic equator as shown in 

Figure 2.5. The magnitude of the field simplifies to 

/A 21 h B0 = ^[l + 3(sm8m)r2 (2.20) 

Equation 2.20 shows that the strength of the magnetic field encountered by a satellite 

is dependent on the magnetic latitude. The field is strongest at the magnetic poles 

(6m = 90deg) and weakest above the magnetic equator (9m = Odeg). Also, the 

strength of the field is inversely proportional to the radius cubed, just like gravity 
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gradient. Therefore, while the torques induced may be significant for LEO satellites, 

they will drop off quickly with increasing altitude. 

An orbiting spacecraft can posses a residual magnetic field. This field can be 

generated by temporarily magnetized materials on the spacecraft, eddy currents of 

charged particles around a spinning satellite, or current loops within the spacecraft 

[4]. This residual field can interact with the earth's magnetic field to generate a 

torque on the spacecraft in the following manner. 

f = MXB0 (2.21) 

where T is the magnetic torque and M is the magnetic moment of the spacecraft. 

The magnitude of the torque is 

T = MB0sina (2.22) 

where a is the angle between the two vectors. The magnitude of the earth's field is 

given by equation (2.20). 

Suppose the IAE has an unshielded current loop in one of the struts extending 

from the Spartan bus to an actuator on the torus. In the case of a current loop, the 

magnitude of the magnetic moment is simply the product of the current, ic, and the 

area, A, enclosed by the loop [30]. 

M = icA (2.23) 

The greatest torque will occur when the satellite is above a magnetic pole where the 

earth's field is strongest. In this case, 6m = 90 deg and equation (2.20) reduces to 
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Substituting (2.23) and (2.24) into (2.22) yields 

2icA[ie   . 
T = — sin a (2.25) 

Recall that the IAE strut is 28m long. Assume that the wires are separated by 1 

centimeter and carry a current of 10 ampheres. While typical load currents may 

be lower [20], 10 amps was chosen to provide a conservative, worst-case estimate. 

Also, assume that the magnetic moment is perpendicular to the earth's local field 

(a = 90deg). Plugging these values into equation (2.25) provides the following 

expression for magnetic torque as a function of altitude. 

„     4.508 * 1016 A7 

(Re + h 3 
(2.26) 

Table 2.3 lists the magnitude of the magnetic torque on the IAE at various altitudes. 

Table 2.3     Magnetic Torques 
Altitude(km) Torque (Nm) 

300 1.50 * 10~4 

500 1.38 *10~4 

1000 1.12* 10-4 

2000 7.66 * 10~5 

5000 3.00 *10~5 

26610 1.26 *10~6 

42240 3.92 * 10-7 

2.5   Solar Radiation Pressure 

Solar radiation pressure is another potential source of torque on an orbiting 

space structure. Radiation pressure occurs due to the particle nature of light. Pho- 

tons can be treated analytically as particles with mass governed by E = mc2. When 

these particles collide with a surface, a transfer of momentum occurs. The resultant 

2-17 



force on the surface is equal to the time rate of change of momentum (p). 

F=di <2-27) 

For a collimated beam of light, the momentum per unit volume is given by H/c2 

where c is the speed of light and H is the power per unit area [9]. The amount of 

momentum transferred to an absorbing surface of area A during the time interval 

At is given by 
H H 

Ap= — *c*A*At = —AAt (2.28) 
c2 c 

The force imposed on the surface by the radiation is just 

fr = ^-~A (2.29) J       At      c v      ' 

where the term H/c is the radiation pressure. The solar flux, H, is dependent on 

the distance from the source. When trying to determine solar radiation pressure 

on earth-orbiting satellite, H is taken to be the solar constant, 1353W/m2, which is 

the mean solar flux at a distance of one astronomical unit (AU) from the sun. The 

solar flux at the edge of the earth's atmosphere actually varies from ISOOW/m2 at 

apohelion to 1400W/m2 at perihelion [4]. However, the solar constant provides a 

reasonable approximation to be used on solar radiation pressure calculations. 

The term H/c calculates the solar radiation pressure for a perfect absorber 

at normal incidence which is equal to 4.5 * 10~6N/m2. Conservation of momentum 

dictates that the pressure imposed on a perfect reflector would be twice as great 

since the photons are not just stopped, but then sent back the opposite direction 

with equal velocity. However, most satellite surfaces are not perfect absorbers or 

reflectors; they are somewhere in-between. Furthermore, there are different types of 

reflection as shown in Figure 2.6. On a specular surface the reflection is directional, 

meaning that the angle of incidence is equal to the angle of reflection.  For diffuse 
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surfaces, radiation is reflected in all directions. According to Lambert's cosine law, 

the intensity of the reflected radiation in any direction from a diffuse surface is 

proportional to the cosine of the angle of reflection. Of course, most surfaces are 

not perfectly specular or diffuse. As a result, reflection from these surfaces will be 

partially diffuse, a combination of specular and diffuse reflection. Also, earth-orbiting 

satellites experience pressure from earth-reflected solar radiation and earth-emitted 

thermal radiation. However, previous analytical work has proven that pressure from 

direct solar radiation is generally more than an order of magnitude higher than the 

other terms and thus dominates the interaction [9]. 

(a) Specular 
reflection 

(b) Diffuse 
reflection 

(c) Partially diffuse 
reflection 

Figure 2.6     Types of Reflection [4] 

In order to accurately determine the solar radiation pressure on a surface, all 

types of reflection must be taken into account [4]. Consider the differential area 

dA shown in Figure 2.7. The area is oriented at an angle 6 to the incoming solar 

radiation such that the area projected normal to the incident radiation is dA cos 6. 

Let ß be the coefficient of reflection (in solar spectrum) and assume the surface is 

opaque so that solar absorptivity is equal to 1 — ß. Additionally, define (p as the 

portion of the reflected light which is reflected specularly, such that (p = 1 for a pure 

specular surface and ip — 0 for a perfectly diffuse surface. The net force imposed 

on the surface from solar radiation is a combination of the force due to absorption, 
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Figure 2.7     Solar Force Geometry [4] 

the force due to specular reflection and the force due to diffuse reflection. The force 

from absorption acts in the same direction as the incident radiation and is given by 

dfa = (1 - ß) — dA cos 6üi (2.30) 

The force due to specular reflection has two components; the force due to the incident 

radiation and the force due to reflected radiation. 

H 
dfsi = <pß—dA cos 9üi 

c 

H 
dfsr = <pß—dAcos6ü. 

(2.31) 

(2.32) 

The geometry of specular reflection is such that the tangential components of dfSi 

and dfsr cancel out, resulting in a net normal force. 

u 
dfs = (dfsi + dfsr) cos 9un = 2(pß—dA cos2 9un c 

(2.33) 
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The force due to diffuse reflection also has two components corresponding to the 

incident and reflected rays. The force due to the incident ray is given by 

dfdi = (1 - <p)ß—dA cos Oüi (2.34) 

The reflected rays from a diffuse surface reflect in all directions. Applying Lambert's 

cosine law and integrating over the entire hemisphere through which the light is 

reflected reveals that the tangential components cancel out leaving a net normal 

force. 

dfdr = 1(1 ~ ip)ß-dAcos6ün (2.35) 
6 c 

The total force on the surface is found by summing the components. 

df = dfa + dfa + dfdi + dfdr (2.36) 

Substituting (2.30), (2.33), (2.34) and (2.35) into (2.36) and combining terms gives 

the following expression for the total radiation force on the surface. 

-    H 
df = —dA cos 6 

c 

2 
{1 - (pß}üi + {2tpßcos9+-(l - <p)ß}un 

ö 
(2.37) 

Torques can be generated due to solar radiation pressure acting on various 

parts of the satellite. As shown above, the radiation pressure causes a net force 

on each surface. The sum of these forces passes through the satellite center of 

pressure (cp). If the resultant force does not also pass through the satellite center of 

mass (cm), a torque is induced. The cp-cm separation represents the moment arm 

of this torque. The solar radiation torque is a function of this cp-cm separation, 

as well as the reflection characteristics of the satellite surfaces. Additionally, the 

satellite configuration and orbital position with respect to the sun and earth affect the 

radiation torque. Surfaces may be shaded by other surfaces. The whole satellite may 
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be shaded by the earth. These factors complicate the calculation of solar radiation 

torque. 

In order to calculate the order of magnitude for the solar radiation torque on 

the IAE, the radiation pressure on the mylar canopy will be isolated. When angled 

towards the sun, the resultant radiation force on this surface is the dominant term in 

the torque equation due to its large surface area. Therefore, neglecting the pressure 

forces from other surfaces still provides a reasonably accurate approximation and 

greatly simplifies the calculations. Additionally, assume that the reflector canopy is 

a purely specular surface^ = 1). Equation (2.37) then reduces to 

df = —dA cos 0[{1 - ß}üi + 2ß cos 9un] (2.38) 

Recalling that the canopy is modeled as a laminar disk, integrating (2.38) over the 

entire area provides the resultant force through the canopy center of pressure. The 

normal component of this resultant force also passes through the satellite center of 

mass and therefore, does not create any torque. The radiation force of interest has 

now been reduced to 

Ui = —A cos 0(1 - ß)üi (2.39) 
c 

The torque about the spacecraft center of mass is found by taking the following cross 

product 

Tsr = JrfXUi (2.40) 

where cmr^ is the radius from the vehicle center of mass to the point of force appli- 

cation. By definition, the magnitude of the torque is the product of the two vectors' 

magnitude and the sine of the angle between them. Defining <j) as the angle between 

the radius and force vectors and substituting from equation (2.39) for the magnitude 

of the force gives the following equation for the solar radiation torque about the IAE 

center of mass. 

Tsr =cm rf[-A cos 0(1 - ß)] sin <f> (2.41) 
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The radius from the IAE center of mass to the canopy center of pressure is 26.15 

m along the b\ axis. This is along the same direction as the canopy surface normal 

vector for the given model. Therefore, (j> is equal to the angle of incidence, 9 as 

illustrated in Figure 2.8. Since the torque equation now contains the product of sin 9 

and cos 9, the worst case orientation for the IAE occurs when the angle of incidence 

on the canopy is equal to 45 degrees. Using this orientation along with the area and 

material properties of the IAE model, the magnitude of the solar radiation torque is 

determined to be 9.01 * 10~4Nm. Technically, the solar radiation torque is a function 

of orbital altitude since the solar flux varies with distance from the sun. However, 

the orbital radius of most earth-orbiting satellites is so small compared to the earth's 

distance from the sun that the variation in solar flux is negligible, permitting the use 

of the solar constant in the calculations. Hence, for the purposes of this analysis, 

solar radiation torque is independent of orbital altitude. 

Figure 2.8     Solar Torque Calculation 

2.6   Atmospheric Drag 

Another significant disturbance on LEO satellites is aerodynamic drag. At- 

mospheric particles colliding with the spacecraft surfaces transfer momentum to the 

satellite. This momentum transfer results in a drag force which opposes the velocity 
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of the spacecraft. The drag force is given by 

h = -\pCdArvv (2.42) 

where p is the atmospheric density, Cd is the satellite coefficient of drag, Ar is the 

presented area of the satellite, and v is the satellite velocity with respect to the 

atmosphere. Even at low orbital altitudes, the density of the atmosphere is small. 

However, the velocity of the satellite is large; thus drag force can be significant. This 

is especially true for satellites with large surface areas. The drag force has two main 

effects on a satellite's orbit [30]. First, it decreases the eccentricity of elliptical orbits. 

The force is greatest at perigee where atmospheric density and spacecraft velocity are 

at a maximum. Since the force is tangential at this point, it tends to circularize the 

orbit. The second effect is a diminishing semi-major axis. As the orbit becomes more 

circular, drag force becomes more uniform and the semi-major axis decreases more 

quickly. The satellite spirals in toward the earth, eventually crashing to the surface. 

For large satellites at low altitudes, the orbit can decay quite rapidly. Therefore, it is 

critical to model drag as accurately as possible in order to predict fuel consumption 

for orbit maintenance and the resulting satellite lifetimes. Unfortunately, modeling 

drag is a challenging task due to the difficulty of predicting atmospheric density and 

the vehicle coefficient of drag. 

Atmospheric density is a function of altitude. As shown in Figure 2.9, density 

decreases rapidly with increasing altitude [20]. One simple approach to developing 

a relationship between density and altitude is to treat the atmosphere as an ideal 

gas in static equilibrium and sum the forces on an elementary volume of the gas. 

Holding temperature and gravity constant and integrating with respect to altitude 

provides a simple exponential model for density as a function of altitude [30]. 

p   =   p0exp{^—} (2.43) 
n0 
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where 

H0   = 
RT 

9 

p0 is the density at the earth's surface, h is the altitude, T is the absolute tempera- 

ture, R is the gas constant and H0 is called the atmospheric scale height. Scale height 

is a function of temperature. The scale height at the top of the earth's atmosphere is 

approximately 6-8km. Many atmosphere models break the atmosphere into several 

isothermal layers and use equation (2.43) along with the base density and local scale 

height to predict the density within each layer [30]. While this model will provide 

approximate values for density as a function of altitude, it's usefulness is limited 

by the simplifying assumptions of constant gravity and temperature. Gravitational 

acceleration decreases with altitude and the earth's atmosphere is most definitely, 

not isothermal. 

10-14   Nj-12    10-1°   io-8     10-«     10-4     10-2      10° 

Density (kg/m3) 

Figure 2.9     Atmospheric Density Profile [20] 
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The earth's atmosphere consists of several layers. The lower 100km is referred 

to as the homosphere and is composed collectively of the troposphere (< 10km), the 

stratosphere(10km-50km), and the mesosphere(50krn-90km) [26]. The temperature 

profile in the homosphere is characterized by a gradual temperature changes, first 

decreasing through the troposphere, then increasing through the stratosphere and 

finally decreasing again in the mesosphere. Because of the small temperature gradi- 

ents, the scale height model provides reasonable values for density, especially in the 

stratosphere which is the most nearly isothermal region of the atmosphere [30]. How- 

ever, most satellites orbit in the upper regions of the earth's atmosphere above 90 

km altitude. The thermosphere(90km-500km) is characterized by rapidly increasing 

temperatures from its base up to the boundary with the exosphere(500km-1000km). 

The large temperature gradients in this region make equation (2.43) highly unreli- 

able. Furthermore, the primary heating mechanism in this region is the absorption 

of solar ultra-violet (UV) and extreme ultra-violet (EUV) radiation flux which varies 

depending on time of day, season, and solar activity. This makes temperature diffi- 

cult to predict. The average minimum temperature at the base of the thermosphere 

is approximately 180K, but the maximum at the exosphere boundary can vary from 

500K to 1200K depending on solar activity [21]. 

In contrast to the other layers, the exosphere is actually isothermal. How- 

ever, the very low atmospheric densities in this layer result in long mean-free paths 

between particles. With collision rates drastically reduced, many atmospheric par- 

ticles attain sufficient kinetic energy to escape the earth's decreasing gravitational 

pull in this region. This is especially true of lighter particles, which have higher 

velocities. This phenomenon reveals another limitation of the exponential model. 

This shortcoming arises from the changing relative densities of the atmospheric con- 

stituents in the upper atmosphere. Air has several components, the most notable of 

which are molecular nitrogen and oxygen, atomic oxygen, argon and at higher alti- 

tudes, atomic hydrogen[26]. In the homosphere, atmospheric turbulence results in a 
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vertical mixing of the gases which causes the relative densities to remain constant. 

One scale height can be applied in equation (2.43) to calculate atmospheric density. 

However, above 90km this turbulent mixing ceases. Molecular diffusion causes the 

constituents to separate, with heavier elements such as molecular nitrogen, oxygen 

and argon occupying the lower thermosphere and lighter elements (0,He,H) becom- 

ing more prevalent in the upper thermosphere and exosphere. Hence, scale heights 

and densities must be calculated separately for each element. 

The limitations of equation (2.43) underscore the need for a more accurate 

model of atmospheric density. The most widely used model is one developed circa 

1970 by L.G. Jacchia. Experimental data has proven this model to predict densities 

in the upper atmosphere with a maximum of 10-20 percent error [20]. The major 

source of this error is unpredictable variation in solar intensity and geomagnetic field 

strength. The model assumes that the atmosphere rotates with the earth as a rigid 

body, and that density is a function of altitude and temperature. Temperature is 

given as a function of altitude and the exospheric temperature, Texo. Furthermore, 

Texo is defined in terms of diurnal and seasonal variations in solar radiation flux, vari- 

ations in the earth's magnetic field, and solar activity variations within and between 

solar cycles. As a result, the model requires various solar and geomagnetic indices 

as input as well as the position and altitude of interest. Densities are calculated 

separately for each atmospheric element. The overall atmospheric density is then 

determined by the mass weighted sum of the elemental densities. The Jacchia model 

will be discussed in more depth in Chapter 3. 

Another difficulty in modeling drag is determining the spacecraft's coefficient 

of drag, Cd- The drag coefficient is dependent on the vehicle shape and the nature of 

the aerodynamic flow. A sphere in free molecular flow has a Cd of approximately 2.2 

[4]. The typical value used for a cylinder is 3.0. Many satellites can be approximated 

by one of these basic shapes. Other satellites are more complex. Observational data 

from the LAGEOS satellite indicates a drag coefficient of about 4.0 [15]. Predicting 
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the drag coefficient for more elaborate geometries is complicated by changing satellite 

attitude, shading effects and particle collisions with multiple surfaces. One method 

for analytically determining the drag coefficient is by integrating the momentum 

imparted to each element of the spacecraft surface by the impinging atmospheric 

molecules [15]. Inter-particle collisions are neglected due to the long mean free paths 

at orbital altitudes. This results in the following expression for drag coefficient. 

Cd = 2(l + j-ff(9) cos OdA\ (2.44) 

where 6 is the angle between the impinging molecules and the surface normal. The 

presented area, Ar, is determined by ^4cos0. The momentum transfer ration, f(9), 

represents the fraction of the momentum of the reflected molecules which lies along 

the direction of incidence. The transfer ratio is a function of the normal(cr„) and 

tangential(crt) momentum accommodation coefficients. 

f{6)   =   (1 - <7„)cos26 - (1 -at)sin26 + Kancos9 (2.45) 

where 

\Pni       Pnrj 
On     =       

Pni 

(Pti ~ Ptr) 
Ot     = 

Pti 

The p's represent the components of momentum, with the subscripts i and r repre- 

senting the incident and reflected components and the subscripts n and t indicating 

the normal and tangential components. K is a temperature constant which has been 

approximated at 0.038 for surfaces at 300K [15]. The accommodation coefficients are 

an indicator of how much of the incident momentum is converted to drag for each 

molecule. Zero accommodation(an = at = 0.0) is equivalent to specular reflection. 

Particles bounce off the surface with the angle of reflection equal to the angle of 
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incidence. Full accommodation^ = at = 1.0) is equivalent to diffuse reflection. 

Some of the incident particles are absorbed by the surface and later emitted in an 

arbitrary direction. Most surfaces have properties that fall somewhere between the 

two accommodation extremes. However, for the purposes of this analysis, zero ac- 

commodation will be assumed. In this case, the momentum transfer ratio simplifies 

to 

f(9) = cos(20) (2.46) 

Substituting into equation (2.44) gives the following expression for drag coefficient. 

Cd = 2 (1 +      1       / cos(20) cos 9dA J (2.47) 

In order to approximate the magnitude of drag-induced torque on the IAE, the 

canopy will once again be isolated. Since drag force is dependent on presented area, 

the force on this large surface area will dominate the torque expression when the 

canopy is angled in the direction of satellite velocity. Since the canopy is modeled as 

a flat disk, the angle of incidence of the impinging atmospheric particles with respect 

to the local surface normal is constant over the area of the disk. This simplifies 

equation (2.47) as follows. 

Cd   =   2   1+  A 
1   „(cos(2fl)cosfli4) 

,4 cost? 

=   2[l + cos(20)] (2.48) 

Substituting (2.48) into (2.42) and recalling that satellite velocity in a circular orbit 

is equal to the square root of the gravitational parameter divided by the radius of 

the orbit, gives the following result for the magnitude of the drag force on the IAE 

canopy. 

fd = p(i + cos 29) A cos 9^ (2.49) 
R 
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Equation (2.40) can be used to calculate the drag induced torque, substituting the 

drag force in for the solar radiation force. Just like radiation pressure, the resultant 

drag force acts through the canopy center of pressure. Therefore, the moment arm 

is once again 26.15m along the b\ axis, and the angle between the moment arm and 

drag force vector is equal to the angle of incidence. Also, since the magnitude of 

the torque introduces as sin# term, worst case again occurs when 9 = 45deg, which 

maximizes the product of sin 9 and cos 9. Substituting this angle into equation (2.49) 

along with the gravitational parameter and canopy area results in a simple expression 

for drag-induced torque on the IAE as a function of altitude 

Td = 7.961 * 10 17 

RP + h 
-Nm (2.50) 

where p is expressed in kg/m? and Re and h are expressed in meters. Density is 

calculated using the scale height model. Although this model is not very accurate for 

the upper atmosphere, it will serve the purpose of these general order of magnitude 

calculations. The more accurate Jacchia method will be used for the more extensive 

analysis in the actual computer model. Table 2.4 lists approximate densities and the 

resulting drag-induced torques on the IAE at various orbital altitudes. 

Table 2.' I     Drag-Induced Torques 
Altitude(km) Density(%/m3) Torque(Nm) 

300 2.4*10-u 2.86 
500 7.0 * 10"13 0.081 
700 3.6 * 10~14 4.05 * 10~3 

1000 3.0 * 10"15 3.24 * 10~4 

2000 1.2 *10~17 1.14 *10~6 

2.7   Thermal Loads 

The final environmental disturbance of concern is thermal loading. Aside from 

internal heat sources such as batteries and other electronic devices, satellites are 

subject to heat flux from environmental sources.  The primary source of heat flux 
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on a space structure is direct solar radiation. The sun radiates energy similar to a 

blackbody at 6000K [20]. As previously mentioned, the average intensity of solar 

radiation at a distance of one AU from the sun is 1353W/m2. While solar radiation 

covers the whole electromagnetic spectrum, 97% of the energy falls in the ultra-violet, 

visible and near-infrared(IR) wavebands. LEO satellites are also subject to earth 

albedo and earth IR emissions. Earth albedo is the reflection of solar radiation from 

the earth's surface. The albedo ranges from 10% to 80% and is a function of local 

surface structure and atmospheric conditions [9]. Earth IR emissions are dependent 

on the temperature of the earth. An average value of 216W/m2 is generally assumed 

for intensity at the surface of the earth. Most of this energy falls in the thermal 

IR spectrum. All of these energy sources contribute to the thermal loading on 

earth-orbiting satellites. Uneven thermal loading due to shadowing effects causes 

temperature gradients between various satellite surfaces. In the case of an appendage 

which has one side illuminated and the other in shadow, cross-sectional temperature 

gradients arise which lead to differential thermal expansion between the two surfaces. 

This results in thermo-elastic deformations. Since the key design criteria for many 

inflatable structures will be dimensional accuracy, thermal loading could potentially 

degrade mission performance. 

Thermally induced structural motions can be classified into one of four cat- 

egories [14]. Thermal bending is a structural deformation resulting from slowly 

varying thermal loading. As the hot surface of an appendage expands relative to 

the cold surface, the appendage slowly bends away from the heat source as shown 

in Figure 2.10. Since the thermal load and resulting cross-sectional temperature 

gradient change slowly, structural accelerations and consequently torques are very 

small for thermal bending. When thermal loads change more rapidly, thermal snap, 

or thermo-elastic shock(TES), can occur. This is similar to thermal bending, but 

temperature gradients change rapidly. This causes rapid, non-oscillatory deforma- 

tion of satellite appendages. The rapid deformation creates temporary acceleration 
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gradients in the appendage which induce a disturbance torque on the satellite. In 

some flexible appendages, rapidly changing thermal loads can induce thermal vibra- 

tions. The vibrations can involve bending or torsional motions, or a combination of 

both. The vibrations will generally dampen out after thermal equilibrium is reached. 

However, in some extreme cases, the incident heat flux couples with the structural 

deformations to induce unstable oscillations. This is called thermal flutter and is the 

worst case of thermally induced structural motion. 

Solar HMting 

Figure 2.10     Thermal Bending in UARS [14] 

In general, the thermal loading on an earth-orbiting satellite varies slowly over 

the course of the orbit, resulting in thermal bending of satellite appendages. How- 

ever, when the satellite enters or exits eclipse, thermal loads change rapidly which 

can cause thermal snap or vibrations in the appendages. The acceleration gradients 

caused by these dynamic motions can induce a torque on the satellite resulting in 

attitude disturbances which may degrade performance. The Upper Atmosphere Re- 

search Satellite(UARS), shown in Figure 2.10, suffers from such disturbances [14]. 

Upon eclipse exit, UARS experiences acceleration transients about the roll and yaw 

axes of sufficient magnitude to violate the stability requirements for several of the 

on-board science instruments. The time history of these accelerations is consistent 

with the predicted response from thermal snap in the solar array. Symmetric de- 

signs such as dual wing solar arrays are often more stable, but still not impervious 
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to thermally-induced torques. The Hubble telescope utilizes a symmetric, dual ar- 

ray design. Upon eclipse exit, a 10K temperature gradient quickly arises causing 

structural vibrations. These vibrations last for approximately six minutes, caus- 

ing maximum deflections of about ten inches[31]. These vibrations are sufficient 

to seriously impair Hubble's imaging capability for the duration of the disturbance. 

These examples highlight the need to be able to accurately predict thermally induced 

structural motions. 

Thermal elastic shock is function of the time rate of change of the thermal 

gradient across a flexible structure and the mass and material properties of the ap- 

pendage [31]. Figure 2.11 shows the time history of the temperature gradient across a 

solar panel array undergoing eclipse transition heating. The numbers were generated 

by a finite element analysis of a satellite in a 600km circular orbit lying in the ecliptic 

plane [14]. The model consisted of a rigid hub for the satellite body and a single rect- 

angular solar array. The analysis neglected earth albedo and IR emissions, assuming 

that variations in direct solar radiation dominated the thermal response. At time 

zero, the satellite is in umbral eclipse. At ten seconds, it enters penumbra, taking 8.5 

seconds to transition to full sunlight. The analysis also included equations of motion 

for the solar array which were integrated to determine the structural response of the 

solar array and satellite, shown in Figure 2.12. Note that the disturbance torque has 

the same profile as the second time derivative of the temperature gradient. This is 

the typical torque profile seen in TES, characterized by an impulsive response in one 

direction, followed by an exponentially decaying steplike response in the other direc- 

tion [14]. For structures undergoing thermal vibrations, the same baseline pattern 

is seen with super-imposed oscillations which increase the amplitude and duration 

of the response. The peak acceleration and torque experienced are also a function 

of penumbral duration; the shorter the transition from umbra to full sunlight, the 

greater the induced torque. 
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Figure 2.11     Satellite Thermal Response [14] 
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Figure 2.12     Satellite Structural Response to Thermal Snap [14] 

In order to predict the thermal disturbances experienced the IAE, the torque 

imposed on the satellite by thermal snap of the struts during eclipse transition will 

be analyzed. This requires a function relating disturbance torque to the temperature 

gradient across a strut. Zimbelman [31] derives an equation for torque as a function 

of cross-sectional temperature gradient for a thin rod. This work can easily be 

modified for analysis of a hollow cylindrical shell such as the IAE strut. The model, 

shown in Figure 2.13, is based on the concept of linear thermal expansion. Given 

that the strut is fixed at one end (satellite body) and exposed to a radiative heat 
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source on one side, it will bend away from the heat source.  Assuming a uniform, 

TUBE BEFORE THERMAL 
GRADIENT APPLIED 

Figure 2.13     Thermal Bending Geometry [31] 

linear cross-sectional temperature gradient along the length of the strut, the radius 

of curvature, pt,, is given by 
d 

Pb =  (2-51) Pb     cte*AT K      ' 

where d is the diameter of the tube, cte is the coefficient of thermal expansion and 

AT is the temperature gradient. The mass distribution of a cylindrical tube of radius 

r, length /, and mass m about a fixed end is given by 

T 1 o        -*-       |9 
I = -mr + -ml (2.52) 

Since the IAE strut length(28m) is so much greater than the radius(0.18m), the strut 

inertia is dominated by second term of equation (2.52). Therefore, the first term can 

be neglected, simplifying the inertia calculation. 

/ = -l2m 
3 

(2.53) 
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Now an inertial displacement function, Ib can be defined as the strut inertia multi- 

plied by the angular displacement of the free end relative to the fixed end as depicted 

in Figure 2.13. 

h = \l2m9 (2.54) 

Assuming that the strut deforms in a circular arc, then the arc length through which 

the free end travels is given by s = W. Rearranging terms and substituting into 

(2.54) gives 

Ih = ^Ims (2.55) 

Assuming that the angular deflection of the free end is small (9 < lOdeg), then the 

arc length s is essentially linear and can be expressed as 

s ~ Pb~ Pb cos <j> (2.56) 

where <j> is the curvature angle as shown in Figure 2.13. The curvature angle is given 

by 

tan<£=- (2.57) 
Pb 

If the length of the strut is small compared to radius of curvature(//p;, < 0.176), 

then 0 is a small angle, simplifying equation 2.57. 

<f)« — (2.58) 
Pb 

Combining (2.51), (2.55), (2.56) and (2.58) yields the following expression for inertial 

displacement. 
I™A     r /U^ATM 

(2.59) 
Imd 

h 3cteAT 
(lcte/ST\ 

Equation (2.59) describes the dynamic motion of a cylindrical tube about its 

fixed end in terms of its material properties and an applied temperature gradient. 

Taking the first time derivative of (2.59) yields the angular momentum time history of 
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the strut. The second time derivative gives the torque imposed on the satellite [31]. 

Recall though that the torque profile for thermal snap consisted of an impulsive 

response in one direction, followed by a steplike impulse response in the opposite 

direction which then exponentially decays. This step discontinuity occurs when 

the time rate of change of the temperature gradient hits its maximum value. This 

corresponds roughly to the transition of the satellite from eclipse into full sunlight 

[14]. Taking the the second derivative of (2.59) only captures the decaying step of 

the torque response, neglecting the impulsive term. However, while not completely 

accurate, taking this derivative and analyzing it just after eclipse exit will provide 

an approximate order magnitude for the maximum torque induced. So with liberal 

application of the chain rule and some variable manipulation, expressions for angular 

momentum(i76) and torque(Tft) are developed. 

Hh 
-ImdAT 
3cteAT2 

(lcteAT\     IcteAT  .   (IcteAT cos{-^r)—crsm{-^r- (2.60) 

_      ÄTHb     2ÄTHb     PmcteÄT2       (lcteAT\ 
Tb = ~ÄT AT" +     SdAT     C0S [~^~) {2-bl) 

In order to make use of (2.60) and (2.61), an expression for the temperature 

gradient is needed. Thorton [27] developed an expression for temperature distri- 

bution around a spacecraft boom. In this work, the spacecraft boom was modeled 

as a cylindrical shell fixed at one end. The results of this analysis can be used to 

determine temperature gradient as a function of time. The derivation is based on 

several simplifying assumptions. 

• Radiation heating starts at time zero, is uniform along the length of the tube, 
and acquires full intensity instantaneously. 

• The tube wall is so thin that the temperature gradient across it is negligible. 

• Heat conduction along the tube length is negligible. 
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• Radiation transfer within the tube is negligible. (As mentioned in Chapter 1, 
radiation between opposing surfaces can be used to limit temperature gradients 
in inflatables. However, this assumption will be used to help generate a worst 
case estimate of temperature gradient.) 

• Convection heat transfer inside and outside of the tube is negligible. 

• Thermal properties are assumed constant. 

• Incident heat flux and temperature distribution are symmetric about the tube 
diameter. 

• Incident heat flux is independent of boom deflection. 

The geometry of the analysis is shown in Figure 2.14. The temperature at any point 

LLLL It 111 ■*■ y 

So 

So 
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*■ y 

Figure 2.14     Solar Heating Geometry 

on the tube wall is given by 

T=n<t>,t) (2.62) 

where t represents time and <j> is the angle between the direction of the radiation 

source and the radius vector to the point of interest on the tube as shown in Fig- 

ure 2.14.  The intensity of radiation incident at any point on the boom surface is 
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calculated as follows 

S   =   (S0 cos 0i)6 cos <f) (2.63) 

where 

6=1   ,/   1-<#<2 

* = 0   if   |<*<| 

The term S is a step function which sets radiation intensity to zero on the shadowed 

side of the boom. Now, applying conservation of energy to a small segment of the 

wall and including circumferential conduction in the wall and radiation from the 

external surface to space results in the following [27]. 

f_jL|l + ^ = JLsw (2.64) 
at      per1 oq*2     pew pew 

where r is the tube radius, w is the thickness of the tube wall, a is the stefan boltzman 

constant and the other variables are the material properties defined in Table 2.1. The 

heat flux, S is determined by S0cos9i The right hand side of equation (2.64) can be 

represented as a truncated fourier series. 

SScos(l>^s(- + ^cos(j)j (2.65) 

Now the temperature distribution can be separated into two parts. First is a uniform 

temperature distribution, T(t) which is independent of (j>. This term corresponds to 

a uniform heat flux, S/ir, the first term of (2.65). The second part of the tempera- 

ture distribution, Tm(t) cos0, is non-uniform and corresponds to the circumferential 

varying term of heat flux in equation (2.65). So, the total temperature distribution 

is now given by 

T{4>, t) = T{t) + Tm(t) cos <f> (2.66) 
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Substituting (2.65) and (2.66) into (2.64), matching coefficients and linearizing the 

non-linear radiation term yields two separate differential equations for the energy 

balance. 

?L + ^LT
4
 = -5— (2.67a) 

dt      pew TX   pew 

W. + M+4^\       =1*_ (2.67b) 
dt       \pcr2       pew ) 2   pew 

It is the non-uniform temperature distribution, Tm cos <j>, which creates the temper- 

ature gradient that results in torque. The uniform temperature gradient does not 

impact the dynamics of the boom. Therefore, for the purposes of this analysis, 

(2.67b) is the equation of interest. In order to simplify, the f term will be set to the 

steady state value which would be attained for an undeformed boom subject to heat 

flux S. This constant temperature is given by 

la5' 
7T ere 

(2.68) 

and was found by solving (2.67a) with dT/dt = 0. Substituting this value of T into 

(2.67b) gives 

^T + -Tm   =   Is— (2.69) 
dt       rc 2   pew 

where 

1 k        4cre faS\* 
-   =    2+       
rc per1     pew \irae 

TC is referred to as the time constant. Equation (2.69) can be rewritten as 

FfT        1 T* 
^f+ -Tm   =   — (2.70) 
at      TC TC 
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where 

T>   =   Ä 2 pew 

T* is the steady state value of Tm that would be reached by an undeformed beam 

subject to heat flux S. It is found by solving (2.69) with dTm/dt = 0. Equation 

(2.70) is a linear, first order differential equation which can be easily solved for Tm 

as follows. 

Tm(t) = ^£exp{^}^ (2.71) 

Performing the integration provides an expression for the non-uniform temperature 

distribution as a function of time. 

r-w-2SMi-->G})        (2-72) 

The temperature gradient across the tube can now be found by taking the difference 

between the temperature on the front(0 = 0) and the back(0 = 7r). 

AT(<ß, t) = T(t) + Tm{t) cos(0) - [f(t) + Tm(t) cos(7r)] = 2Tm(t) (2.73) 

Combining (2.72) and (2.73) provides an expression for temperature gradient as a 

function of time. 
A rr,/ x     aS0cos9i    / (—*1\ /nr,A\ 

^«--JsrH1-""!^-}) (7) 

The first and second time derivatives of temperature gradient are easily calculated. 

Af{t) = ^^iexJll) (2.75) 
pCW { Tc ) 

Af{t) ^-aS0 cos 6„ 
pew 

i-exp{-H (2.76) 
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Equations (2.74)-(2.76) provide the expressions for temperature gradient needed 

to calculate the thermal disturbance torque using equation (2.61). However, this 

equation for torque was developed using the assumption of a linear temperature gra- 

dient across the cylindrical shell. Therefore, in order to use (2.74)-(2.76) with (2.61), 

the temperature gradient given by (2.74) must be linear. This is easily verified by 

plotting the temperature around the circumference of the tube. Using equations 

(2.66), (2.68) and (2.72) along with the dimensional and material properties of the 

IAE strut generates the temperature profile shown in figure 2.15. The temperature 

gradient across the diameter of the tube is clearly linear. 

-1   -1 

Figure 2.15     Temperature Distribution 

In order to analyze the thermal response of the IAE, assume a cylindrical earth 

shadow with the IAE exiting eclipse at time zero. Neglect earth albedo and thermal 

IR emission so that S0 is equal to the solar constant, H. Also, assume solar radiation 

is incident on the strut at an angle of 45 degrees as the IAE exits eclipse. Based 

upon earlier analysis of the thermal snap response, the maximum torque occurs when 

the second time derivative of AT is at its maximum. Visual inspection of equation 

(2.76) reveals that this maximum occurs at time zero.  However, at time zero the 
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temperature gradient is zero which causes the torque equation (2.61) to be undefined 

due to the presence of AT in the denominator of several terms. This is expected 

since (2.61) was derived neglecting the discontinuity at time zero. To work around 

this discontinuity, calculate the temperature gradient and torque just after eclipse 

exit at t=0.01s. The disturbance torque experienced by the IAE due to radiative 

heating of a strut upon eclipse exit can now be calculated using equations (2.60), 

(2.61) and (2.74)-(2.76). 

Tthermal = 5.72 * l(T3JVm (2.77) 

Depending on the shadowing effects and orientation, the torque imparted to the 

satellite could be as high as three times this value since there are three struts. Also, 

note that there is no dependence on altitude. This leads to an implied assumption 

that no matter how high the orbit, the IAE remains in the earth shadow long enough 

to reach a steady state temperature distribution before exiting. In reality, in higher 

orbits the satellite will spend less time in umbral eclipse and more time in penumbra. 

Therefore, the actual thermal load changes will occur slower and be less severe. 

However, the simple model used above provides a reasonable approximation of a 

worst case scenario. 

2.8   Summary 

Now that each major environmental disturbance has been analyzed and quan- 

tified in terms of impact on the IAE, the critical loads can be determined. Figure 

2.16 displays the magnitude of the torque imposed on the IAE as a function of 

the orbital altitude. The plot was created using the relationships developed in this 

chapter. It is similar to Figure 2.1, except that this plot is based upon analysis of 

a large space structure and includes thermal torques. Comparison of this plot to 

Figure 2.1 reveals that the torque profiles for large structures are very similar to 

those of small satellites. The magnitude of the torques has increased by a couple of 
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Figure 2.16     Torque vs. Altitude for the IAE 

orders of magnitude, but the shape of the curves are almost identical. This makes 

sense. The much greater area and mass distribution of the larger structure causes 

the magnitude of the torques to increase. But, the relationships between altitude 

and the various torques remain the same. Hence, the same shape to the curves. 

Aside from the addition of thermal snap, the one noticeable difference between the 

two figures is the magnetic torque curve. While the other torques have increased 

by two orders of magnitude, magnetic torque has gone up by just one. The method 

used to approximate this torque related the magnetic moment to the area of the 

current loop. Therefore, while the other disturbances are directly dependent on the 

surface area or mass distribution of the satellite, the magnetic torque is dependent 

on the configuration of the electrical circuits. Depending on the configuration used, 

the magnetic torque curve can shift up or down relative to the other disturbances. 
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As expected, different disturbances dominate in different orbits. Drag is the 

dominant load below 700km. In fact, depending on the exact size, shape and attitude 

of the inflatable structure, missions in this region may be of limited use due to 

extremely high torques encountered and quick orbit decay times. Above 700km, 

gravity gradient takes over as the dominant load up to around 7000km. Above 

7000km, thermally-induced torque and solar radiation pressure are the critical loads. 

While the predicted thermal torques are an order of magnitude higher than solar 

radiation torques, the thermal analysis was based on thermal snap encountered when 

exiting eclipse. Once thermal equilibrium has been reached after eclipse exit, or for 

orbits not experiencing eclipse, solar radiation pressure will be the critical load at 

these higher altitudes. The only load which is not ever dominant is magnetic torque. 

The magnetic torque follows the same curve as gravity gradient, but is two full 

orders of magnitude lower. Therefore, it does not constitute a critical load. Thus 

drag, gravity gradient, solar radiation pressure and thermal loading are the critical 

loads for large structures. With the critical loads identified, a disturbance model 

must now be developed which will calculate each load for input to a finite element 

analysis. 
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III.   Methodology 

3.1 Overview 

In Chapter 2, rough calculations on a sample satellite identified gravity gradi- 

ent, drag, solar radiation pressure and thermal shock as the critical environmental 

loads acting on large space structures. Now that these critical loads have been de- 

termined, they must be more accurately modeled in order to determine their effects 

on inflatable structures. As mentioned in Chapter 1, finite element analysis provides 

an excellent tool for analyzing the structural response of a large body under given 

loading conditions. This method requires knowledge of the loads imposed on each el- 

ement. Therefore, the next step in this analysis is to develop a program which allows 

the user to define a finite element model for a large satellite and then determines the 

total mechanical and thermal load on each element. 

The algorithm must perform several functions. First, it must take inputs from 

the user to define a finite element structure. This definition will include the location 

and orientation of each element in terms of a body-fixed reference frame, as well as 

the mass, exposed surface area and material properties for each element. Next, the 

spacecraft's inertial position and velocity must be determined at the time of inter- 

est. Finally, the program will calculate the gravity force, drag force, solar radiation 

pressure and total heat flux on each element. 

3.2 Structure Definition 

Before any loads are calculated, the finite element model must be defined. 

This requires input from the user. The exact form of the input will be discussed in 

Chapter 4. However, in general, finite element codes require the user to enter node 

locations in terms of some known reference system and then define the elements 

and their nodes. Additionally, material properties must be entered for each element. 

The program will take these inputs from the user and then calculate other element 
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properties required to determine the loads imposed on the element. These properties 

include the element's surface area and mass, as well as the location and orientation 

of the element in terms of a body-fixed reference frame with its orgin at the vehicle 

center of mass. To reduce the complexity of the code, acceptable element definitions 

will be limited to point masses (1 node), line masses (2 nodes), triangular elements 

(3 nodes) and quadrilateral elements (4 nodes). Furthermore, the equations used to 

calculate area and centroid demand that at least one pair of opposing sides in the 

quadrilateral elements be parallel. 

The surface area and mass of the elements are quickly and easily calculated. 

For point masses and line masses, the surface area will automatically be set to zero. 

The surface area for triangular and quadrilateral elements is calculated using basic 

geometric formulas 

Atriangie = -z(base * height) (3.1) 

Aquad = „(a + b) * height (3.2) 

where a and b are the lengths of the opposing parallel sides on the quadrilateral, and 

height is the perpendicular distance between them. Element mass is subsequently 

found by multiplying the surface area by the material density by the element thick- 

ness. For point and line masses, the total mass will be directly entered by the user. 

The location of each element will be defined as the vector from the body frame 

orgin to the element centroid. For point masses which have only one node, the lo- 

cation is simply the coordinates of the node. For line masses, the centroid is the 

midpoint between the two nodes. Centroid calculations for triangular and quadrilat- 

eral elements are made using the geometry shown in Figure 3.1 . In a triangle, the 

median is defined as a line drawn from the midpoint of a side to the opposing vertex. 

Drawing all three medians reveals a common intersection point. This intersection 

point is the centroid, located two-thirds of the way along each median from the ver- 

tex to the opposing side. Calculating the centroid for a quadrilateral is done by first 
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drawing a diagonal between opposing nodes 1 and 3 which splits the element into 

two triangles, A and B. Drawing lines from the midpoint of the diagonal to nodes 4 

and 2 defines medians for triangles A and B respectively. The centroid for each of 

these triangles is then determined as described above. The area and mass are also 

be calculated for each of the triangles. Treating each triangle as an equivalent point 

mass located at the triangle centroid, the quadrilateral centroid is located using the 

definition of center of mass for a system of particles, equation (2.1). 

Figure 3.1     Element Centroid Determination 

The orientation of an element is characterized by it's normal vector. Knowledge 

of the normal vector is necessary for drag, solar radiation pressure and heat flux 

calculations. For point and line mass elements, the normal is set equal to the zero 

vector. For three and four node elements, assumption of planar surfaces allows use of 

the cross product to determine the normal vector. Crossing any two vectors lying in 

the plane of the element produces a vector which is normal to the surface. However, 

the orientation of this normal vector may be either inward or outward depending on 

the order of the cross product. The orientation must be known and be consistent 

for all the elements on the vehicle in order to provide accurate force calculations. 

Therefore, a check must be performed to ensure the normal faces outward. If the 

vehicle is broken down by its major component, each of which is modeled by a basic 
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shape(i.e. rectangular boxe, cylinder, sphere etc), then a local radius vector can 

be defined for each element as shown in Figure 3.2(a). This vector runs from the 

centroid of the vehicle component on which the element resides to the centroid of 

the element itself. The dot product of this local radius with the element normal 

determines the orientation of the normal vector. A positive dot product indicates an 

outward normal. If the dot product is negative, the normal is oriented inward and 

must be reversed. However, this method will fail in the case of torus or ring type 

structures where the component centroid lies outside of the shape's enclosed volume. 

In this case, some of the outward surface normals point toward the torus centroid, 

X 
R 

V 

/ X 

A 
n 

(a) 

Figure 3.2     Normal Vector Orientation 

while others point away as shown in Figure 3.2(b). In order to work around this 

difficulty, the local radius must be redefined. If a cross section of the torus is taken 

near the element of interest, then the local radius can be defined as the vector from 

the center of this cross section to the element centroid as shown in Figure 3.2(c). 

Now the same dot product rule can be used to ensure the normal vector is oriented 

outward.   After ensuring element surface normals are oriented outward from the 
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vehicle, these vectors are normalized so that they are all have magnitude equal to 

one. 

The calculations for element mass, surface area, location and orientation are 

performed for each element in the model. The output of this function is a data 

structure whose length is equal to the total number of input elements. Each element 

of the data structure contains the following nine fields: the nodes which make up 

the element, the location of the centroid, the outward normal vector, element area, 

element mass, coefficient of reflection, coefficient of specular reflection, solar absorp- 

tivity and thermal emissivity. This data is then passed back into the main program 

so that disturbance calculations can be made for each element. 

3.3   Position and Velocity Calculations 

In order to calculate environmental disturbances, the inertial position and ve- 

locity of the vehicle must first be determined. To simplify the process, Keplarian 

orbits are assumed, ignoring perturbations from secondary effects. The algorithm re- 

quires input of the six classical orbital elements: semi-major axis(a), eccentricity(e), 

inclination(i), argument of perigee(u), right ascension of the ascending node(fü) and 

time of perigee passage(T0). Given these orbital elements, position and velocity can 

be calculated for any given time starting with Kepler's equation 

M= J^(t-T0) = E-esmE (3.3) 

where M is the mean anomaly, t is the time of interest and E is the eccentric anomaly. 

For circular orbits, eccentricity is zero and the solution to Kepler's equation is simply 

M=E. For non-circular orbits, there is no closed form solution to Kepler's equation 

[30]. Therefore, the Newton-Raphson technique is used to iteratively solve for E. 

Convergence is achieved when the correction between successive values for E is less 

than 10-8. Once the eccentric anomaly is determined, the true anomaly(f) is easily 
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calculated. 
^        /l + e       E ,„ ., tan2 = vr^tan2 (3-4) 

The polar equation for a conic section is then used to determine the magnitude of 

the radius vector. 

r =  Q(1 ~ g2) (3.5) 
1 + e cos v 

Using the true anomaly and scalar radius, a position vector can now be defined in 

the perifocal coordinate system as shown in Figure 3.3. This coordinate system is 

fixed in the orbit plane, with p lying along the eccentricity vector and w along the 

orbit normal. In this coordinate system, the radius vector is given by 

rpqW — rcosvp + rsinvq (3.6) 

Since the perifocal frame is inertial, the velocity vector is obtained by differentiating 

equation (3.6) with liberal use of the chain rule. 

Vpqw \ \—R ^{-sini;p + (e + cosv)g} (3.7) 
y a{l — e') 

Although the perifocal frame is inertial, it differs between orbits. It will be 

more useful to have the position and velocity vectors in a standard frame such as 

the Earth-centered Inertial(ECI) frame. The position and velocity vectors in ECI 

coordinates are given by 

Tijk = C>   rpqw (3-8) 

Cpiv;qw (3.9) 
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Figure 3.3     Orbit Frames 

where Cpi is a rotation matrix. Using an Euler 3-1-3 sequence, the rotation matrix 

is given by [30] 

Cpi   =   C3(-fi)CiH)C3(-w) 

cQ,cu — sSlcisoj   —CQSCJ — sQcicu sQsi 

sQcu) + cQcisu   —sflsco + cQcicu —c£lsi 

sisu                      cicu) ci 

(3.10) 

Position and velocity vectors are now expressed in the ECI frame. Taking these 

vectors to be for the satellite center of mass, the position and velocity vectors for 

each of the elements are easily calculated. Neglecting spinning of the spacecraft, 

the velocity for each of the elements is equal to the center of mass velocity. The 

position vector for each element is found by summing the spacecraft position vector 

calculated above and the radius from the vehicle center of mass to the element. This 

radius vector is the element location vector determined during model definition and 

stored in the element data strucure . Recall however, that this vector is expressed 
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in the body fixed frame.  Prior to summing, the two vectors must be in the same 

reference frame. The transformation matrix from the body fixed frame to the ECI 

frame is determined by 

Cbi = CPiCapCba (3ill) 

where Cba is the transformation from the body frame to the local orbit frame, Cap 

is the transformation from the local orbit frame to the perifocal frame and Cpt is 

the transformation given in equation (3.10). The local orbit frame{a} was defined in 

Section 2.3 and the transformation matrix Cba is simply the transpose of equation 

(2.13). The transformation from the orbit frame to the perifocal frame is just a 

single axis rotation about the orbit normal given by 

Cap = 

cos v   — sin v    0 

sin v     cos v     0 

0 0        1 

(3.12) 

Completing the transformation and summing the vectors yields the ECI position 

vector for each element. Now that the position and velocity of each element are 

known, the environmental disturbances can be calculated. 

3.4    Gravitational Forces 

Gravity will be the first environmental load addressed. In Chapter 2, gravity 

gradient calculations were made based upon a spherical earth model. In a spherical 

earth model, gravitational acceleration has no dependence on latitude or longitude. 

However, the earth is not a perfect sphere. There are asymmetries in its shape and 

mass distribution which cause gravity to vary with latitude and longitude as well 

as altitude. In order to more accurately predict the resultant forces on an orbiting 

satellite, the earth's gravitational potential^) will be modeled with a spherical 

3-8 



harmonic representation [22] 

oo     D i 

Ug = ^ £(—)'£nm(a>s0)[CiimcosmA + S^sinmA] (3.13) 
i=0 m=0 

where <^ is the colatitude and A is the longitude in an earth-fixed spherical coordinate 

system. C^m and Sl>m are spherical harmonic coefficients of degree / and order m, 

and Pitm are the associated Legendre functions of degree / and order m given by 

f — m 

^(I) 2*        ^(   1} *!(/ - k)\(l -m- 2k)\X [6-M) 

For this particular application x = cos (j>. 

The geopotential model shown in equation (3.13) can be broken into three 

constituent parts [22]. 

Ug = U1 + U2 + U3 (3.15) 

U\ is the first term of the expansion where degree and order are both equal to zero 

(l=m=0). The corresponding legendre function and harmonic coefficients are equal 

to one. In this case, equation (3.13) simplifies to the Newtonian potential for a point 

or spherical mass. 

Ux = ^ (3.16) 
r 

This term is dependent only on radius.   This simplification is used to derive the 

fundamental equation for the two body problem and was the basis for the calculations 

in Chapter 2. The second part of the geopotential is the set of all other terms where 

order is equal to zero(m=0). 

OO        j-, 

U2 = ^{—)lPi,o{^<i>)Clfi (3.17) 
r i=i   r 
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These terms, referred to as the zonal harmonics, are dependent on both radius and 

latitude, but not longitude. The notation Jt is often used for the zonal coefficients, 

where Jt — -C/,0- The third part of the geopotential is the group of all terms where 

both degree and order are greater than zero. 

00 ^        75 » 
U* = ^(y)'I]fl,m(cos0)[a,rocosmA + -VsinmA] (3.18) 

1=1 m=\ 

These terms are called the nonzonal or tesseral harmonics. In the case where degree 

and order are equal(l=m), they are sometimes referred to as the sectorial harmonics. 

These terms are dependent on longitude. The complete geopotential can now be 

written as 

OO       p 

r       r '—*'   r 
i=i 

OO 

}j>s^,R, 
+ ^^(fh)«^pJ>m(cos0)[C7,,mcosmA + 5«>rosinmA]       (3.19) 

r *—'   r 
1=1 m=l 

Equation (3.19) can be used to model the gravitational field of any planet. The 

general form of the equation is the same for any distributed mass [20]. Developing 

a specific model for earth is accomplished by specifying the constants ß, Re, C;)m 

and Sitm. This analysis will utilize NASA's GEM-T1 model. This model, developed 

by the Goddard Space Flight Center, is complete to degree and order of 36. The 

constants were calculated using tracking data from various satellites. Using these 

constants in equation (3.19), allows accurate prediction of the earth's gravitation 

potential at any point in a satellite's orbit. The acceleration due to gravity is then 

determined by taking the gradient of the potential. Working in the earth-fixed 

spherical coordinate system, gravitational acceleration is given by 

^     „TT      dUg .       ldfL 1     dUg . ,oonN 

" *      or r ocp rcosp oX 
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where er points along the radius vector to the satellite, e^ points in the direction of 

increasing north latitude, and e\ points in the direction of increasing east longitude. 

Substituting equation (3.19) into (3.20), taking the required partial derivatives and 

combining terms provides the following expression for gravitational acceleration [22]. 

00 R       l 

ag   =   {-4X^ + 1)(—~Y ^Pi,m(cos^)[Citm cosmX + Si!m sinm\}}er 

1=0 m=0 

+{4D-)' E ^#^[a,mCosmA + S,lTOBinmA]te 
'V- ^—'   r 

1=1 m=0 
d<f> 

+   M^^^mPf,m(cos0) s.nmA+ Qs 

1=1 m=l 
COS(j) 

This acceleration vector can be transformed to an earth-fixed cartesian coordinate 

system in the following manner. 

a. 

°>y f ~ 

a. 

cos <f> cos A   — sin <j> cos A   — sin A 

cos 4> sin A   — sin (f> sin A     cos A 

sin (j) cos 4> 0 

/•         \ 
ar 

< a<t> f (3.22) 

In this rotating frame, the z axis is aligned with the earth's rotational axis and the x 

and y axes lie in the equatorial plane with the x axis pointed at the prime meridian. 

Neglecting nutation and precession of the earth's spin axis, the acceleration vector 

can now be easily transformed into the ECI frame. 

Ofe 

cos 9   — sin 9   0 

sin 9    cos 9     0 

0 0       1 

0.x 

(3.23) 

where 9 is the Greenwich Hour Angle, the angle from the vernal equinox to the prime 

meridian measured in the direction of earth's rotation. (Note: The satellite radius 

vector must converted to spherical coordinates for input to equation (3.19). This is 
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accomplished by performing the above transformations in reverse order, using the 

transpose of the two rotation matrices.) Multiplying the acceleration by mass gives 

the total gravitational force on each element in the ECI frame. For planar elements, 

dividing by the element surface area provides an equivalent distributed gravitational 

load. 

3.5   Atmospheric Drag 

With the spacecraft position and velocity known, drag can also be calculated 

for each element. Recall from Chapter 2 that the drag force on a surface is given by 

fd = -\f>CdArVV (3.24) 

Velocity for each element has already been set equal to the velocity of the spacecraft 

center of mass. Therefore, determination of the drag force requires calculation of 

the three remaining variables in equation (3.24): the atmospheric density(p), the 

coefficient of drag(Cd) and the presented area of the element(Ar). 

The method used to calculate density depends on the orbital altitude. Using 

2500km as a conservative estimate for the upper boundary of the earth's atmosphere, 

density above this altitude is set to zero. Below 90km, where turbulent mixing causes 

the atmospheric constituents to scale similarly, the simple exponential model for 

atmospheric density given in equation (2.43) is be used. 

P = p0eM~{k~ho)} (3-25) 
Lo 

Recall that this equation was developed assuming gravity and temperature constant 

with respect to altitude. The variance in gravity from the surface to 90km altitude is 

small enough to be neglected. However, the temperature changes much more rapidly 

with altitude and cannot be assumed constant. To work around this, the atmosphere 

in this region can be divided into several smaller layers.   Within each layer, the 
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temperature change is small enough that the layer may be assumed isothermal. Such 

a model is described in Wertz [29]. Average values for the density at the boundaries 

of the layers are taken from the COSPAR International Reference Atmosphere, CIRA 

72. Scale height for each layer is then found by rearranging terms in equation (3.25). 

*• = £?=? (3'26) 

where hu, hi, pu and pi are the altitudes and densities at the upper and lower bound- 

aries of the layer. Now equation (3.25) can be used to find the density anywhere 

within a given layer by using the density and altitude at the base of the layer as the 

reference values(p0,/i0). 

From 90km to the upper limits of the atmosphere, the Jacchia model will 

be used to calculate density [20].  This model is based upon the vertical diffusion 

equation. 
1 dn        mg       1 dT .„       . ,„ rt_. 

where n is the number density of the gas, m is the molecular mass, a is the ther- 

mal diffusion coefficient, g is the local gravitational acceleration, k is the Boltzman 

constant and z is altitude. The temperature T is given by 

T = Texo - (Texo - Tzo) exp{-s(z - zo)} (3.28) 

where zo is a reference altitude. In this model, zo is taken to be 90km. The average 

temperature at this reference altitude, Tzo, is equal to 183K. The reciprocal scale 

height of temperature, s, ranges from 35-70km and is determined by 

. = 0.0291 exp < -I (750+1,J:V^.  ^ )   i (3-29) 
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The exospheric temperature, Texo, is dependent on solar activity and variations in 

the earth's magnetic field and can generally expressed as follows [20] 

Texo   =   Dv{Tss + ATss + ATsa) + ATm (3.30) 

where 

Dv = diurnal variation 

Tss = solar cycle baseline temperature 

ATSS = variation within solar cycle 

ATsa = seasonal variation 

ATm = magnetic variation 

Detailed expressions for these variations are found in Jacchia's 1970 paper [13]. The 

exospheric temperature generally ranges from 600K to around 2100K. Values less 

than 800K are typical for quiet solar conditions, while anything greater than 1200K 

is indicative of disturbed solar activity. 

Determination of atmospheric density using the Jacchia model, requires inte- 

gration of the vertical diffusion equation [20]. This is accomplished by first rearrang- 

ing the terms of equation (3.27) as follows. 

= -(^)<fe-(l + a,)f (3.31) 

The subscript i indicates that the equation must be solved separately for each of 

the four atmospheric constituents^,02,0,He), which scale separately above 90km. 

Also, above 500km, the density of hydrogen becomes significant and must included 

in the calculations. Integrating this equation will provide the number density for a 

specific gas at a given altitude. Integration of the first and third terms is straight- 

forward. However, integration of the middle term is complicated by the fact that both 
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gravity and temperature are implicit functions of altitude. These functions must be 

defined and substituted into equation (3.31) before completing the integration. As 

shown in the previous section, the acceleration due to gravity is given by 

9=£=JR^W (3-32) 

Pulling an R2
e term out of the denominator yields 

>=iäirh?=*{l+iT (3-33) 
"e M)' 

where g0 is the acceleration due to gravity at the earth's surface. Likewise, tempera- 

ture is a function of altitude as given by equation (3.28). By pulling out a Texo term 

and manipulating the exponential term, the equation can be rewritten. 

T   =   Texo(l-Tce-sz) (3.34a) 

where 

T     -T 
e 

Tf exo 

exo      +zo \ „szo (3Mb) 

Equations (3.34a) and (3.33) can now be substituted into (3.31) and integrated as 

follows 

where nzo, zo, and Tzo are known values at the reference altitude, z* is determined 

from the input satellite radius vector and T* is calculated using equations (3.28)- 

(3.30). At altitudes above 500km, temperature becomes constant(T = Texo) and the 
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integration is simplified. 

—2 / rji 
-Lexo 

Jnzo    ni K-Lexo Jzo     \ -"-e/ TZ1 
(3.36) 

After computing the number density for each atmospheric component, the atmo- 

spheric mass density is determined by the mass-weighted sum of the number densi- 

ties. 

Once atmospheric density is calculated, the coefficient of drag and the pre- 

sented area for each element must be determined in order to complete the drag force 

computation. Recall from Chapter 2 that the coefficient of drag for a flat plate is 

given by 

Cd = 2*(l + cos29) (3.37) 

where 6 is the angle between the element surface normal and the velocity of the 

element as depicted in Figure 3.4. This angle is easily calculated. 

0 = cos-1 \^S-\ (3.38) 
\\v\) 

The presented area is also computed using 6. 

AT = dAcos6 (3.39) 

When 6 is greater than ninety degrees, the result of equation (3.39) is negative. This 

indicates that atmospheric particles are not impinging upon the element surface due 

to the orientation of the spacecraft. In this case, the presented surface area is set 

to zero. The total drag force can now be calculated using equation (3.24). The 

distributed drag load is obtained by dividing out the presented area. 
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Figure 3.4     Drag Calculations 

3.6   Solar Intensity Calculations 

Before solar radiation pressure and heat flux calculations can be made, the sun- 

earth-satellite geometry must be analyzed to determine if the satellite is in eclipse. 

The dual-conic eclipse model, illustrated in Figure 3.5, is used. A solar intensity 

coefficient (Si) must be calculated to indicate the portion of the solar disk visible 

to the satellite. This unitless coefficient ranges from zero to one, with a value of 

zero corresponding to umbral eclipse and a value of one signifying no eclipse. Any 

mid-range value indicates that the vehicle is in penumbral eclipse. Once the solar 

intensity coefficient is calculated, it is multiplied by the solar constant to determine 

the actual intensity of solar radiation incident on the satellite surfaces. 

The first step in describing the sun-earth-satellite geometry is to determine 

the position of the sun relative to the earth. Since the ECI frame translates with 

the earth, an observer at the orgin of this frame would perceive the sun as orbiting 

around the earth. The elements of this apparent orbit are listed in Table 3.1. The 

asterisked elements are given for J2000 which is shorthand notation for 12:00:00 

Universal Time on January 1, 2000. The relative position of the sun and earth at 

this time can be found in a variety of references. JPL publishes the ephemeris for 

all of the celestial bodies in the solar system at http://ssd.jpl.nasa.gov. The output 
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Figure 3.5     Dual-conic Eclipse Model 

is available in several different formats and coordinate systems. Using the sun's 

position relative to the earth at the J2000 reference time and the orbital parameters 

in Table 3.1, the sun's position in the ECI frame can be predicted for any given time. 

This requires calculating the obliquity of the ecliptic and the true anomaly at the 

time of interest. Meeus [18] provides the following algorithm for these calculations 

which is accurate to within 0.01 deg. 

Table 3.1     Sun-Earth Orbital Parameters [18] 
Sun-Earth Orbital Parameters 

Semimajor Axis(a) 1.000 AU 
Eccentricity(e0) 0.016708634* 

Obliquity of Ecliptic (e0) 23.43929 deg* 
Right Ascension of the Ascending Node(fi) 0.0 deg 

Argument of Perigee (tu) 282.940308 deg 
Mean Anomaly(M0) 357.52911 deg* 

Obliquity of the ecliptic, e, is the angle between the ecliptic plane and the 

earth's equatorial plane. It is analogous to the inclination of the sun's apparent 

orbit around the earth. Due to the precession of the earth's spin axis, the obliquity 

of the ecliptic varies with time as follows. 

-7^3 e = e0- 0°.013004T + 1°.64 * 10_7T^ + 5°.04 * 10~'T (3.40) 
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The elapsed time since J2000, T, is expressed in Julian centuries and is calculated by 

T_JD- 2451545.0 ,       . 
36525 

where JD is the Julian date at the time of interest. Substituting equation (3.41) 

into (3.40) gives the new obliquity of the ecliptic. 

Calculating the true anomaly is slightly more involved. The first step is to 

compute the mean anomaly as follows. 

M = M0 + 35,999°.05029T - 0°.0001537T2 (3.42) 

Normally, Kepler's equation is solved using the Newton-Raphson method to deter- 

mine true anomaly. However, for orbits with small eccentricity, the true anomaly 

can be found using the equation of center, C. The equation of center represents the 

difference between true anomaly and mean anomaly, and is calculated directly from 

eccentricity and mean anomaly. 

/        p3\ 5 13 
C =    2e - —   sin M + -e2 sin 2M + —e3 sin 3M (3.43) 

\ 4 / 4 12 

Eccentricity of the sun's orbit as viewed from Earth varies with time and is given by 

e = e0 - 0.000042037T - 0.0000001267T2 (3.44) 

Substituting equation (3.44) into (3.43) gives the equation of center in radians. Con- 

verting to this value to degrees and adding it to the mean anomaly gives the true 

anomaly. 

The ECI radius from the earth to the sun (r^) can now be calculated using 

the methods outlined in Section 3.3, equations (3.5), (3.6), (3.8) and (3.10). Since % 

is defined by the point where the sun crosses the equator going south to north, right 
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ascension of the ascending node for the sun's apparent orbit is always zero.  This 

simplifies equation (3.10) to 

Cpt 

cos uj — sin LJ 0 

cos e sin u   cos e cos u   — sin e 

sin e sin u   sin e cos u    cos e 

(3.45) 

where obliquity of the ecliptic has been substituted in for inclination. Once r~ls is 

determined, subtracting the satellite's position vector (r?at) gives the vector from the 

satellite to the sun (r^vs). The sun-earth-satellite geometry, shown in Figure 3.6, is 

now sufficiently specified to make solar intensity calculations. 

Figure 3.6     Sun-Earth-Satellite Geometry 

The intensity of the solar radiation incident on a satellite is proportional to 

the area of the solar disk that is visible to the satellite [24]. Mathematically, this is 

determined by 

Si = l- 
Ab (3.46) 

where As is the total surface area of the solar disk and Ai, is the solar disk area 

which is blocked from the satellite's view by the earth. The portion of the solar 

disk blocked from view is determined by the angular radii of the earth and sun, and 

the angular separation between the two bodies as viewed from the satellite. These 
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measurements are illustrated in Figure 3.7. The angular radii of the sun and earth 

Figure 3.7     Eclipse Prediction 

are given by 

sin 

Pe = sin" 

-1 Rx 

Re 

(3.47) 

(3.48) 

where the satellite-earth vector, r^ve, is just the opposite of r^at. For earth orbiting 

satellites, pe > ps as long as the radius of the satellite's orbit is less than 1.4 *106 km. 

This means that the earth appears larger to the satellite and is capable of totally 

obscuring the sun, causing umbral eclipse. Given the angular radius, the total solar 

disk area can now be calculated. 

A, vp\ (3.49) 

The solar disk area blocked from the satellite's view by the earth is dependent on 

\&, the angular separation between the earth and sun. 

ip = cos * svs    ' sve 

' svs I ' sue I 
(3.50) 
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When iß > (ps + Pe) the earth is not obscuring the solar disk at all. Ab is equal to 

zero, resulting in a solar intensity coefficient of one. Conversely, when ijj < (pe- ps), 

the sun is totally obscured by the earth. In this case, Ab = As and the solar 

intensity coefficient is equal to zero. When ip falls between these boundaries, the 

earth is partially obscuring the solar disk. In order to determine the portion of 

the disk blocked from the satellite's view, two intermediate variables, x and h, are 

introduced [24]. 

x = -(ps + Pe + ip) (3.51) 

2      
h= - \/x(x - ip) (x - ps) (x - pe) (3.52) 

If ijj2 > (Pg - Ps), then Ab is given by 

A={sin_1(ä}^ + {sin"(ä}^-^      (3-53) 

If ip2 < (pi - p2), then Ab becomes 

Ab = pi sin"1 (A) + {TT _ sin"1 (A) J £ _ hlp (3.54) 

These expressions for Ab return a value between zero and As, resulting in a solar 

intensity between zero and one [24]. This corresponds to penumbral eclipse. The 

preceding equations remain valid as long as the spacecraft orbit radius is less than 

the threshold value specified above (1.4 * 106km). 

3.7   Solar Radiation Pressure 

Now that the solar intensity coefficient is known, it can be inserted into equa- 

tion (2.37) to obtain the force due to solar radiation pressure on each element. 

dfsrp = Si[ — ) dA cos 9 
2 

{1 - (pß}üi + {2<pßcos9 + -(1 - cp)ß}un (3.55) 
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where 9, the angle of incidence of the incoming radiation is determined by 

n ■ r 
6 = cos"1    ^f (3.56) 

The geometry of the interaction is illustrated in Figure 2.7. The vector un is simply 

the opposite of the element surface normal, h. Likewise, üi is a unit vector in the 

opposite direction of r^vs. Making the appropriate substitutions, the force due to 

solar radiation can now be expressed as 

dfSrp — —Si ( — ) cL4cos0 {1 - ¥>0}p^7 + {2<pßco80+ -(1 - ip)ß}h 
I  Ä7J.S *J 

(3.57) 

The solar radiation pressure, or the distributed load is obtained by dividing out the 

dA cos 9 term. Of course, due to the orientation of the vehicle, some elements may be 

facing away from the sun. This is easily determined by examining 9. If 9 > 90 deg, 

then the element is facing away and solar radiation pressure is set to zero. 

Recall from Chapter 2 that H represents the solar constant, given to be 

1353W/m2. The is the average solar flux at a distance of one AU from the sun. 

In reality, the solar flux at the upper edge of the earth's atmosphere varies with the 

level of solar activity and the distance between the sun and earth. While solar activ- 

ity is difficult to predict, the changing distance between the earth and sun is easily 

modeled. Treating the sun as an isotropic source with an average output power of 

3.8 * 1026 watts, the solar flux at the edge of earth's atmosphere is given by 

H. = M^ «1 (3.58) 
ATTB?    m2 

where R is the distance (in meters) from the earth to the sun [2]. This value for solar 

flux accounts for the changing distance between the two bodies as the earth travels 

through its slightly elliptical orbit. The subscript s has been added to the solar flux 
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(Hs) to distinguish it from the solar constant. Using Hs in equation (3.57) instead 

of the solar constant will provide a more accurate model. 

3.8   Heat Flux 

The final disturbance to be calculated is the heat flux into each element from 

environmental sources. There are three main sources of radiance on earth-orbiting 

satellites: direct solar radiation, earth-reflected solar radiation and thermal radia- 

tion emitted from the earth [20]. While direct solar radiation is the dominant source, 

reflected solar radiation and earth-emitted thermal energy can be significant contrib- 

utors for LEO satellites. In the case of satellites in umbral eclipse, earth emissions 

are the only source of external heat flux into the spacecraft. Therefore, heat flux 

from each source must be considered. 

The total energy from direct solar radiation incident upon a spacecraft element 

is determined by 

Gds = SiHsdAp (3.59) 

where Hs is defined in the previous section and G is called the irradiance. The 

element area projected in the direction of the satellite-sun vector, dAp, is equal to the 

element area(cL4) times the cosine of the incidence angle(0), determined by equation 

(3.56). As was done in the solar radiation pressure calculations, the orientation of 

the element is checked to determine if it is facing away from the sun. If 6 > 90 deg, 

then Gds is set to zero. 

The irradiance from earth-emitted thermal energy is obtained by 

Get = FetHedA (3.60) 

where He is the earth constant. It represents the average intensity of the emitted 

thermal radiation at the earth's surface. Treating the earth as a greybody which is 
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re-radiating absorbed solar energy, the earth constant is approximated by 

He = H?--± (3.61) 
4 

where a is the earth's albedo [20]. As mentioned in Chapter 2, albedo can range 

from 0.1-0.8, depending on surface structure and atmospheric conditions. In order 

to keep the model simple, the average earth albedo of 0.36 is used [9]. 

The configuration or view factor, Fet accounts for the fraction of the total 

energy leaving the earth which is incident on the spacecraft element. This view 

factor considers not only the orientation of the element, but also the distance from 

the earth to the satellite. Since the elements in this model are planar, Fet can be 

approximated by the standard view factor between a finite plate and a sphere [12]. 

The geometry used to calculate this view factor is illustrated in Figure 3.8.   The 

r *sve 
Pek-""" 

Figure 3.8     View Factor Geometry 

angular radius of the earth(pe) was defined in equation (3.48). The angle between 

the element normal and the satellite-earth vector, 7, is easily computed by 

7 = cos"1 (T%^) (3.62) 
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Now define variable X as the ratio of the satellite radius to the earth radius. 

X = 
Rp 

(3.63) 

If f - pe < 7 < § + pe, then the view factor is given by 

et - — — sin 
2       n 

(X2 - l)s 
Xsin7 

+ -^j{cos7cos 1[-(X2- 1)5 cot7] 
7TAZ 

If 7 < § — pe, then the view factor simplifies to 

- (X2-l)2[l-X2cos27p} 

(3.64) 

Fet = 
cos 7 
~X^~ 

(3.65) 

Finally, if 7 > § + pe, this indicates that the element is facing away from the earth. 

Consequently, the view factor is equal to zero. Using the appropriate view factor, 

the irradiance from earth-emitted thermal energy is computed. 

The irradiance from earth-reflected solar radiation is determined by 

a aHeFerdA (3.66) 

where the earth's albedo (a) is again set equal to 0.36.  The view factor from the 

spacecraft element to the sunlit portion of the earth, Fer, is approximated by [20] 

Fer = Fet cos 77 (3.67) 

where 77 is the angle between the earth-sun vector and the satellite position vectors 

as illustrated in Figure 3.6. This angle is found through the dot product of the two 
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vectors. 
-1  /   ^~es ' ^sat V = cos"1    f4^ (3.68) 

\\res\\rSat\J 

If 77>90deg, then Fer = 0. 

Heat flux from each source is now calculated by multiplying the irradiance 

by the appropriate coefficient of absorption. The coefficient is dependent on the 

material composing the element and the wavelength of the incident radiation. For 

direct and reflected solar radiation, the material's average coefficient of absorption 

across the UV and visible wavelengths is used. For earth-emitted thermal radiation, 

the element's absorption coefficient in the thermal IR band must be used. Once the 

heat flux from each source is determined, they are summed to find the total heat 

flux into the element. It is important to note that this is the total heat flux into the 

element from environmental sources. It is not the net heat flux into or out of the 

element. In order to determine the net heat flux, radiation from the element to space 

must be included. This radiation heat transfer is dependent on the temperature 

of the element. The element temperature in turn, is dependent not only on the 

incident radiation from the environment, but also on conduction from surrounding 

elements, radiation from opposing surfaces and heat sources within the spacecraft. 

The computation of the element temperature and corresponding radiation is beyond 

the scope of this analysis. 

3.9   Summary 

The critical environmental loads have now all been calculated. These calcu- 

lations are placed within two loops in the code. The outer loop is a time loop, 

calculating positions and loads at each time of interest. The inner loop is an element 

loop which calculates the loads for each element at each time step. The finite ele- 

ment definition is performed outside both loops. Position and velocity calculations 

for the satellite center of mass and the atmospheric density computation code are 

placed just inside the outer loop.  Therefore, these parameters are calculated just 
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once per time step. All other calculations are located inside the inner loop, obtaining 

unique values for each element. The final code, along with sample output and user 

instructions are presented in the next chapter. 
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IV.   Code Description and Analysis 

4-1    Overview of Code 

Using the methodology outlined in Chapter 3, a disturbance model was built 

in MATLAB v5.3.1. The complete code is included in Appendix A. The routines in 

Table 4.1 were developed specifically for this disturbance model. 

Table 4.1     Unique MATLAB Routines 

Title Description  

forces.m      main executable program which propagates the model 
through time, calling the appropriate subroutines to 
calculate the loads on each element 

newmodel.m   template for user to enter orbital, material and structural 
properties needed to create a model and run an analysis 

structure.nl    takes the node and element definitions input by the user and 
builds the finite element model 

randv.m        calculates the satellite's instantaneous position and velocity 
vectors given the classical orbital elements and current time 

sunvec.m defines the sun's location in ECI coordinates 

density.m gathers/formats data needed to determine atmospheric density 

grav.m determines the gravitational force on each element 

solintens.m calculates the solar intensity coefficient 

solpress.m determines the solar radiation pressure on each element 

drag.m calculates the aerodynamic drag on each element 

thermal.m computes heat flux into each element from the environment 

graphic2.m creates graphic representation of the loads on each element 
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In addition to the unique files listed above, the algorithm uses several routines 

from the Spacecraft Control Toolbox v3.0, developed by Princeton Satellite Systems. 

These routines are described in Table 4.2. 

Table 4.2     Spacecraft Control Toolbox Routines 

Title Description  

Date2JD.m    converts a universal date and time to Julian date format 

GMSTime.m    calculates Greenwich Mean Sidereal Time, the angle between 
the prime meridian and vernal equinox measured 
in the direction of earth's rotation 

JD2Date.m     converts a Julian date to universal date/time format 

R2LatLon.m    calculates the latitude and longitude of the satellite subpoint 
given the position vector in an earth-fixed, 
cartesian coordinate system 

AtmDens2.m   determines atmospheric density using the scale height model 

AtmJ70.m      calculates atmospheric density using the Jacchia 1970 model 

Agravity.m     computes gravitational acceleration in spherical coordinates 
using NASA's GEM-T1 model 

JSp2Cart.m     Calculates the Jacobian for converting from spherical 
to cartesian coordinates 

At each timestep, the model calculates the total force from gravity, drag and 

solar radiation pressure on each element, as well as a distributed load from each 

disturbance. These loads are stored in the matrices defined in Table 4.3. Point 

and line masses were assumed to have zero area, resulting in zero drag and solar 

radiation pressure. Therefore, the total distributed load (dP) on these elements is 

equal to the distributed gravity load with corresponding units. Each of the matrices 

in Table 4.3 is three dimensional (3xjxi) with j equal to the number of elements 

and i corresponding to the number of time steps. All loads are in terms of the body- 
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Table 4.3     Mechanical Load Matrices 

Variable Load Description (units)  

dfg total force due to gravity (N) 

dfd total force due to drag (N) 

dfsr total force due to solar radiation (N) 

df sum total force on each element from all disturbances (N) 

dPg        the distributed gravity load. For planar elements, 
this is equal to the gravity force divided by 
the element surface area (N/m2). For line elements, 
it is the force per unit length (N/m), and for point masses 
it is equal to total force (N). 

dPd        the distributed drag load (N/m2) 

dPsr       the total solar radiation pressure (N/m2) 

dP sum total distributed load on each element (N/m2) 

fixed reference frame. The program also computes and stores the heat flux into each 

element from environmental sources. These thermal loads are stored in the matrices 

described by Table 4.4. These matrices are two dimensional (jxi) with j and i as 

defined above. 

Several other variables of importance are also generated by the simulation. 

Time is a row vector containing the Julian date/time at each time step. Node is 

a data structure containing the body-fixed coordinates of each node in the model. 

Element is another data structure which includes each element's location, orientation 

and material properties. All of these variables along with the load matrices described 

above are written to the forces.mat file, which is automatically saved in the MATLAB 

work directory. 

4-3 



Table 4.4     Thermal Load Matrices 

Variable Load Description (units)  

dQs heat flux from direct solar radiation (W) 

dQer heat flux from earth-reflected solar radiation (W) 

dQet heat flux from earth-emitted thermal radiation (W) 

dQe sum total heat flux from environmental sources (W) 

4-2    User Input 

All required inputs are consolidated into a single file, Newmodel.m. Each new 

simulation requires the specification of the following data: orbital parameters, en- 

vironmental indices, simulation run parameters, material properties, structure com- 

ponent descriptions, node locations, and element properties. A sample input file is 

shown in Appendix B.l. 

The orbit is defined by the six classical orbital elements, a, e, i, ft, u, and T0. 

All elements must be specified. Therefore, for circular or equatorial orbits, small 

values for inclination and eccentricity (0.000001) must be used along with arbitrary 

values for right ascension of the ascending node and argument of perigee. All angles 

are entered in degrees. The time of perigee passage must be in universal time. 

Semi-major axis is input in kilometers. 

To determine the atmospheric density using the Jacchia model, the algorithm 

requires four solar/geomagnetic indices. The planetary geomagnetic index, Ap, is 

a planetary average of variations in the earth's magnetic field. The daily 10.7cm 

solar flux, /10.7, is a measure of solar activity. The 81-day mean of /10.7 (fhat) and 

the value of fhat 400 days prior to the calculation (/400) must also be specified. 

Historical records and current values for these geomagnetic and solar activity in- 

dices are published by the National Oceanic and Atmospheric Administration at 

http://www.sec.noaa.gov/data/geomag.html.   The Ap and /10.7 values for the day 
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prior to the simulation should be used in the model. The other two indices, fhat and 

/400, are approximated by averaging the appropriate monthly mean values provided 

in the report. The recorded values for these indices are already in the correct units 

for entry into the model. 

Next, the duration of the simulation and frequency of output are defined by 

four variables. Tint is the start time for the simulation, entered in universal date/time 

format. Freq specifies how many times per orbit the loads will be calculated. The 

algorithm calculates the orbital period (in seconds) prior to setting these simulation 

parameters. Therefore, the analyst can use the period to specify a given time interval 

between calculations. For example, setting freq = Per will tell the program to 

perform calculations once per second. The third simulation parameter, dur is the 

total number of orbital periods over which the simulation will run. Finally, picnum 

is equal to the number of points in the analysis for which graphic output will be 

displayed. These graphic displays will be created at even intervals throughout the 

duration of the simulation. 

Once the orbital and simulation parameters are defined, the spacecraft model 

must be built. First, the material composition of the spacecraft must be specified. 

The required material properties are stored in a data structure called Mat. Each 

element of this data structure has the six fields shown in Table 4.5. The data 

structure must contain entries for each material found on the spacecraft. However, 

the structure is not limited to materials used in the current model. A database of 

commonly used spacecraft materials can be maintained here. The material index, k, 

is used in later routines to access the correct element of the material data structure. 

Next, the complex satellite structure is broken into its basic components. For 

each component, a local coordinate system is defined. For example, the IAE model 

discussed in Chapter 2 and Appendix C was broken into six basic components: 

a rectangular box, three cylinders, a torus and a laminar disk. A local coordinate 

system was placed at the centroid of each component. While seemingly cumbersome, 
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Table 4.5     Material Data Structure 

Field    Contents  

mat(k).name the trade name of the material 

mat(k).dens mass density (kg/m3) 

mat(k).refl coefficient of reflection in the UV-visible spectrum 

mat(k).absp solar absorption coefficient 

mat (k) .spec specular reflection coefficient 

mat(k).emm thermal emissivity coefficient 

this procedure of breaking the satellite into individual components greatly simplifies 

the process of defining node locations for complex structures. The components and 

their coordinate systems are defined in the data structure comp. Table 4.6 list 

the fields and contents of comp.   The shape field is just a descriptor to help the 

Table 4.6     Component Data Structure 

Field Contents  

comp(i).shape    description of the component 

comp(i).orgin      location of local reference frame relative to the base frame 

comp(i).euler      rotation of local reference frame relative to the base frame 

comp(i).type      type of coordinate system used 

user distinguish between components. The algorithm will automatically take the 

first component defined and set its local reference frame as the base frame. All 

subsequent components' local reference frames will be described relative to the base 

frame, comp.orgin is a 3x1 vector containing the cartesian coordinates (x,y,z) of the 

local frame orgin relative to the base frame, comp.euler is a 3x1 vector containing 

the rotation angles required to transform from the base frame to the local reference 
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frame using an Euler 1-2-3 sequence. Finally the type field contains an integer that 

specifies which type of coordinates are used to describe nodes on that component. 

Valid entries include cartesian coordinates (1), cylindrical coordinates (2), spherical 

coordinates (3) and toroidal coordinates (4). Once each component is defined, the 

orientation of the base frame relative to the orbit frame must be specified. The orbit 

frame was defined in section 2.3 with the first axis along the satellite position vector 

and the third axis along the orbit normal. The base frame orientation is specified 

by the variables phil, phi2 and phi3, the Euler 1-2-3 rotation angles. Once again, 

all angles are entered in degrees. 

Now that the satellite structure has been broken down into its basic compo- 

nents, the finite element model can be defined. The first step is to specify locations 

for all of the nodes. This information will be in a data structure called node. Each 

element of node has two fields as shown in Table 4.7. Node(j).comp specifies which 

Table 4.7     Node Data Structure 

 Field Contents  

Node(j).comp    indicates which reference frame is used to describe the node 

Node(j).loc       coordinates of the node in the specified frame 

component's local coordinate system is used to define the node's location. The en- 

try in this field is just the index, i, for the appropriate element of the comp data 

structure. For nodes located at the junction of two components, either component's 

coordinate system can be used, whichever is more convenient. Node(j).loc is a col- 

umn vector containing the node's coordinates in the specified coordinate system. 

The format of the node's coordinates depend on the type of coordinate system used. 

In cartesian coordinates, the node location is simply [x;y;z]. In cylindrical coordi- 

nates, the location is given by [r;0;z], where r is the radius of the cylinder and 9 is 

the angle measured counterclockwise from the positive x axis to the projection of 

the radius vector into the x-y plane.  Spherical coordinates are entered as [r,0, <j)) 
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where r is the radius of the sphere, 9 is as defined above, and (j) is the angle between 

the positive z axis and the radius vector. Cylindrical and spherical coordinates are 

displayed in Figure 4.1. Toroidal coordinates are entered as [R,0,r,0], as illustrated 

in Figure 4.2. R is the radius of curvature of the torus, while r is the radius of the 

torus cross section. 6 is the clockwise measured angle between the positive x axis 

and R. (f> is the angle measured clockwise from the positive z axis to r. No matter 

which coordinate system is used, all angles are given in degrees and distances are in 

meters. 

o < e < 2;i 
0<<|><7t 

P(rc,8,z) cylindrical 
P(rs,0,(|>) spherical 

Figure 4.1     Cylindrical and Spherical Coordinates 

P(R,e,r,<|>) 

► x 

0 < e < 2JC 

0 < d> < 2n 

Figure 4.2     Toroidal Coordinates 
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Once the nodes are all defined, the elements are built. Element specifications 

are held in a data structure called inelement Each entry contains the four fields 

listed in Table 4.8. As mentioned earlier, an element may be defined by one, two, 

Table 4.8     Element Data Structure 

Field Contents  

inelement(m).nodes specifies which nodes bind the element 

inelement (m).mat defines which material composes the element 

inelement(m) .thick element thickness (meters) 

inelement(m).comp specifies which component the element is located on 

three or four nodes. The .nodes field is a row vector containing the index numbers, 

j, of the nodes which define the element. The .mat and .comp fields hold the index 

numbers k and i respectively to designate the appropriate elements of the material 

and component data structures. The .thick field is self explanatory for triangular 

and quadrilateral elements. For point masses and line masses, this field contains the 

element's total mass (kg). 

4-3   Sample Output and Analysis 

In addition to the load matrices already discussed, the simulation produces 

graphical displays of the loading distribution and text files containing node and el- 

ement lists. In order to demonstrate these products and validate the disturbance 

model, a sample analysis was run. The model used for this analysis is illustrated 

in Figure 4.3. This barbell-like structure consists of three basic components, two 

spheres joined by a cylinder. Each sphere has a radius of two meters and is con- 

structed from 75-micron mylar. The cylinder has a one-meter radius and length of 

four meters. It is constructed of 2mm Neoprene-coated Kevlar. These are the same 

materials used in the IAE model. The corresponding thermal and optical properties 

are listed in Table 2.1. The structure is oriented such that the — fc3 axis is always 
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pointed at the earth and the -b2 axis is aligned with the orbit normal. The cylinder 

was divided into 1-meter segments along its length, and 30 deg arc segments around 

the circumference. Each of the spheres was discretized into 30 deg arc segments 

both horizontally and vertically. This created a finite element model consisting of 

160 nodes defining 170 elements. The inputs for this model are listed in Appendix 

B.l. 

A n 

? 
? 

Figure 4.3     Sample Analysis Model 

Whenever a simulation is run, the algorithm first executes the structure rou- 

tine. Nodal coordinates are all transformed into a single body-fixed reference frame 

anchored at the vehicle center of mass. Elemental area, mass, orientation and ma- 

terial properties are calculated. At the end of this routine, two text files are output 

to the MATLAB work directory. Node.txt is a listing of all the nodes and their 

cartesian coordinates in the body-fixed frame. Element.txt is a listing of all the 

elements, along with several properties for each element. These properties include 

which component the element is located on, the surface area, mass, normal vector, 

material properties, location of the element centroid, and a list of the nodes which 

bind the element. The Node and Element files for the barbell model are included in 

Appendix B.2. 
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Three separate analyses were conducted with this model. First, the structure 

was put into circular orbit lying in the ecliptic plane at an altitude of 500km. The 

loads were checked at various positions within the orbit. The orbital position was 

characterized by rj, the angle between the earth-sun line and the spacecraft posi- 

tion vector as defined in Figure 3.6. The simulation was started with the spacecraft 

lying on the earth-sun vector (77 = Odeg). Loads were then calculated and graph- 

ically displayed at 90deg intervals around the orbit. For the second analysis, 77 

was held constant at 270 deg and the orbital altitude was varied. Load calculations 

were performed at orbital altitudes of 300km, 1000km, 5000km and 20,183km (semi- 

synchronous orbit). All orbits in these two analyses were circular, lying in the ecliptic 

plane. A third simulation was run to check the variation of gravitational acceleration 

across the vehicle. This analysis utilized an eliptical orbit lying in the ecliptic plane. 

The results from all three simulations are summarized in Figures 4.4-4.8. 

Figure 4.4 illustrates how the mechanical loads of gravity, drag and solar ra- 

diation pressure vary throughout the orbit. Because the orbit is circular, the —b\ 

axis is always aligned with the velocity vector. Therefore, at each point in the orbit, 

the drag loading profile is the same. The elements oriented in the —b\ direction 

experience the greatest drag. As the angle between an element's normal and the —b\ 

axis increases, the drag load decreases. For all elements oriented at 90 deg or greater 

from this axis, the drag load is zero. Furthermore, since the orbit is circular the 

satellite altitude and velocity is constant for each point in the simulation. Therefore, 

the only change in drag is the variance in atmospheric density with latitude and 

longitude. This variance is too small to significantly alter the drag force. Therefore, 

the drag appears constant throughout the orbit. Similarly, the variance in gravita- 

tional loading throughout the orbit due to higher order terms in the earth's field is 

negligible compared to the overall load. Consequently, the gravity loading profile 

also appears constant throughout the orbit. The solar radiation pressure profile, in 

contrast, varies with position. When 77 = 0 deg, the vehicle is directly between the 
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sun and earth, with the 63 axis pointed toward the sun. The elements oriented in this 

direction show the greatest values for solar pressure, while elements facing away from 

this axis are shaded. At 77 = 90 deg, the vehicle is crossing the day-night terminator 

and the front of the structure (-&i) is shadowed. Likewise, when crossing back over 

the night-day terminator (77 = 270deg), the rear of the vehicle is shadowed and the 

front experiences the greatest solar radiation pressure. At 77 = 180 deg, the satellite 

is in umbral eclipse and no elements are subject to solar radiation pressure. 

Figure 4.5 shows how the heat flux on each element from the various environ- 

mental sources varies throughout the orbit. As expected, the heating profile from 

direct solar radiation varies in the same manner as the solar pressure loading profile 

in the previous figure. The heating from earth-emitted radiation is constant through- 

out the circular orbit, with elements oriented toward the earth (-63) experiencing 

the greatest heating. This also is expected. However, the results for earth-reflected 

radiation heating do not seem to make sense at first glance. The heating profile at 

77 = 0 deg shows that the elements on the cylinder are experiencing greater heat flux 

than the spherical elements facing directly towards the earth. This is due to the fact 

that these elements have a greater surface area than the spherical elements and a 

higher absorption coefficient. The profile at umbral eclipse (7/ = 180 deg) shows zero 

heating from earth-reflected radiation as expected. But, the profiles at the day-night 

terminators also show zero heat flux. One would expect some earth-reflected radia- 

tion to still be reaching the vehicle at this point. This discrepancy is caused by the 

approximation used for the view factor between a planar element and the sunlit part 

of the earth as given in equation (3.65). The cos 77 term set the view factor equal 

to zero. In reality, some earth-reflected radiation is still reaching the vehicle at this 

point. However, even at this low altitude, the magnitude of this reflected radiation 

is two full orders of magnitude less than the direct solar radiation. Therefore, the 

view factor approximation does not significantly affect the accuracy of the results. 
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Figure 4.6 illustrates how the mechanical loads vary with orbital altitude. In 

order to facilitate easy comparison, each disturbance has been mapped against a 

common color scale. The numbers on the scales correspond to the base 10 log of 

the actual load. For example, a value of -3 indicates an actual load of 10~3 Pa. As 

expected, the solar radiation profiles are the same for each orbit, indicating that the 

solar pressure loading is independent of altitude. Also expected is the rapid decrease 

in drag loading from 300km to 1000km and the absence of drag for the two higher 

orbits. However, the gravity profile does not appear to conform to the predictions 

made in Chapter 2. The gravitational loading decreases with altitude, but not as 

rapidly as predicted by Figure 2.16. Also, the gravitational load is several orders of 

magnitude higher than drag or solar radiation pressure at all altitudes. According to 

Figure 2.16 drag should be the critical load in the 300km orbit, while solar radiation 

pressure should dominate in the semi-synchronous orbit. 

This apparent inconsistency is easily explained by looking at what each figure 

measures. Figure 2.16 displays torque about the spacecraft center of mass as a 

function of altitude. Figure 4.6 shows how the gravity force on each element varies 

with orbital altitude. Recall that gravitational force is proportional to 1/.R, while 

gravity gradient torque is proportional to 1/R3. So, the values for gravity gradient 

should be much smaller. In this particular example, the total gravity gradient torque 

would actually be zero since the vehicle is in a stable orientation. (This is easily 

confirmed by calculating the torque about the vehicle center of mass caused by 

the gravity load on each element, and then summing across the entire structure.) 

Therefore, the results displayed in Figure 4.6 are reasonable. 

Figure 4.7 shows how heat flux into each element varies with orbital altitude. 

As with Figure 4.6, each profile has been generated on a common scale to ease 

comparison between the various sources of heat flux. Also, the numbers on the 

scale represent the log of the actual thermal load. The profiles in this figure match 

the expected results.   Direct solar radiation is the largest source of heat flux in 
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Figure 4.6     Mechanical Load vs. Orbital Altitude, 77 = 270° 
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Figure 4.7     Heat Flux vs. Orbital Altitude, 77 = 270° 
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all of the orbits and is constant with respect to altitude. Earth-emitted radiation 

is a significant source of heat flux in the lower orbits, but drops off quickly with 

altitude. Earth-reflected radiation decreases with altitude similarly to earth-emitted 

radiation. However, at all altitudes it is 1-2 orders of magnitude less than earth- 

emitted radiation and 2-3 orders less than direct solar radiation. 

Finally, Figure 4.8 displays how gravitational acceleration varies across the 

vehicle. The elliptical orbit used in this analysis had a semi-major axis of 7378 km 

and an eccentricity of 0.1. This causes the altitude to vary from 262 km at perigee to 

1738 km at apogee. Perigee is located at the night-day terminator (77 = 270 deg). As 

expected, the gravitational acceleration varies with altitude, attaining a peak value 

at perigee of 9.0537 m/s2 and a low of of 6.0575 m/s2 at apogee. Furthermore, the 

variation of gravitational acceleration across the large distributed mass is graphically 

displayed. Stronger values of acceleration are experienced by the elements on the 

nadir-pointing end of the vehicle. Numerically, this variation is less than the four 

significant figures displayed on the colorbar scale. However, it is present and will be 

more pronounced for larger vehicles. This variation in gravitational acceleration will 

cause gravity gradient torques on satellites in non-equilibrium positions. 

The results of these analyses conform to expectations based upon theory dis- 

cussed in Chapter 2. Hand calculations for loads on selected elements in certain 

orientations confirm the values delivered by the code. This validates proper func- 

tioning of the program. Furthermore, the graphic output provides confirmation that 

the structure routine is correctly building the finite element model. The visual dis- 

plays also allow the user to more easily analyze the loading profile experienced by 

the vehicle. Detailed graphic output for all analyses are included in Appendix B.2. 
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V.   Conclusions and Recommendations 

5.1    Conclusions 

The objective of this study was to determine the critical loads for large, in- 

flatable space structures and then develop a model to calculate these loads for finite 

element analysis. The study focused on environmental disturbances, ignoring loads 

generated from within the spacecraft. Using the IAE as a base model, equations were 

developed to relate the torques generated by aerodynamic drag, gravity gradient, so- 

lar radiation pressure, thermal snap and magnetic disturbances to the satellite's 

orbital altitude. Since the generated torques are dependent on spacecraft attitude, 

a worst-case orientation was assumed in each analysis in order to make a fair com- 

parison. The resultant torque versus altitude profiles are displayed in Figure 2.16. 

This plot identifies the critical loads for large space structures: gravity gradient, 

drag, solar radiation pressure, and thermal flux. The shape of these curves is almost 

identical to the torque profiles for small satellites shown in Figure 2.1. The difference 

occurs in the magnitude of the torques, which increases by a factor of 102 for the 

larger satellites. 

The one difference noted in the torque profiles for large versus small satellite 

was the shift of the magnetic torque curve relative to the other loads. Drag, gravity 

gradient, thermal and solar radiation torques increased by two orders of magnitude 

for the large structure; magnetic torque increased only by one order. This results 

from the fact that the other torques are directly related to the size of the structure, 

while the magnetic torque depends on the configuration of the current loops within 

the spacecraft. Depending on the size and orientation of these loops and the amount 

of current running through them, the shift in the magnetic torque curve can be either 

greater or less than the shift in the other loading curves. Therefore, care must be 

taken in designing these electrical circuits. However, this relationship also offers the 

potential for a form of attitude control. Since magnetic torque varies with altitude 
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in the same manner as gravity gradient, carefully controlling the orientation and 

current flow within various spacecraft circuits could help to counter gravity gradient 

torques. 

The substantial increase in torques experienced by large satellites leads to 

another obvious conclusion; large inflatable structures have limited usefulness in 

low-earth orbits. The large torques generated at low altitudes will demand frequent 

attitude corrections. In particular, the significant drag force induced on large sur- 

face areas will hamper operations. Without recurrent energy-boosting maneuvers, 

the satellite orbit will quickly decay. Furthermore, the drag and gravity disturbances 

and the torques generated by the resulting attitude corrections will make it very dif- 

ficult to maintain the dimensional accuracy of inflatable appendages. As mentioned 

previously, this is the primary design requirement for many of these structures. 

Therefore, missions utilizing inflatable structures should be designed for medium 

and high altitude orbits. 

One caveat regarding Figure 2.16 must be mentioned. The torque due to ther- 

mal snap is modeled as a constant with respect to orbital altitude. This is based 

on a cylindrical earth shadow. In this model, there is no penumbral eclipse. No 

matter how high the orbit, the satellite transitions from umbral eclipse straight into 

full sunlight. This simplification was used to develop an expression relating temper- 

ature gradient to time. In reality, the earth shadow is more accurately modeled by 

the dual-conic configuration shown in Figure 3.5. As the orbit altitude increases, 

the satellite spends less time in umbra eclipse and more time in penumbra. As a 

result, the minimum temperature reached by sunward oriented surfaces will not be 

as low. Also, the preceding cool down and subsequent heating will be more gradual 

as less/more of the sun becomes visible during the penumbral transition. Therefore, 

changes in temperature gradients will also be more gradual. Since thermally-induced 

torques are proportional to the second time derivative of temperature gradient, the 

peak torques generated will diminish with altitude. 
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5.2   Recommendations for Further Research 

With the critical loads identified, a disturbance model was generated. This 

code builds a faceted model as input by the user and then generates values for the 

critical loads at each specified time step. However, this only constitutes the first part 

of a finite element analysis. The end goal is to determine how these structures deform 

under the influence of orbital loads. Therefore, the loads must be input to another 

routine which then calculates the displacement of each node. Also, temperatures 

must be determined for each element. This will permit computation of the net heat 

flux and the resulting temperature gradients across satellite surfaces. With this 

information, the deformation of these inflatable structures can be predicted. 

Furthermore, the disturbance model developed has room for improvement. 

First and foremost, a dynamics module should be added to the code. Currently, 

the satellite attitude relative to the local orbit frame is held constant throughout the 

analysis. In reality, torques on the satellite from these environmental disturbances 

will induce changing angular rates and displacements. The model already contains 

the code to calculate net torques about the body axes at each time step. Given 

these torques, adding a subroutine which integrates Euler's equations to update the 

satellite's attitude would be relatively simple and would increase the accuracy of 

the load calculations. Addition of an attitude control algorithm which determines 

the timing and magnitude of correction maneuvers based upon the updated satellite 

attitude would add even greater value to the model. According the Hedgepath 

[11], the torques generated by the environmental disturbances themselves are small 

compared to the torques caused by the corrections. Therefore, to truly appreciate the 

full impact of these environmental disturbances on the mission, the corresponding 

attitude control maneuvers must be analyzed. 

The thermal analysis in the model offers another area for improvement. The 

routine predicts irradiance based only upon each element's orientation with respect 

to the sun and earth. In more complex structures, certain elements which face in the 

5-3 



direction of the sun may be shadowed by other surfaces. Also, radiation reflected 

from or transmitted through one element may be incident upon another element. 

These effects should be considered. This can be accomplished through the use of a 

ray tracing algorithm. 

Finally, the disturbance model was designed with short term analyses in mind. 

Therefore, orbital perturbations were ignored. However, the environmental loads 

will change the orbital parameters over time. In fact, these orbital perturbation 

effects may be more pronounced than the structural distortions. Since the loads are 

dependent on orbital position and altitude, current orbital parameters must be input 

to the model. If longer term analyses are desired, an improved orbital propagator 

should be added to the code. 

With continuing improvements in deployment precision and rigidization tech- 

niques, the Air Force and other space agencies are turning to inflatables for an in- 

creasing number of applications. This technology offers a relatively inexpensive and 

reliable method of deploying large structures in space using minimal lift capacity. 

Analytical tools such as this disturbance model provide a means of predicting the 

performance of these structures prior to actual deployment. This reduces the prob- 

ability of costly operational failures. While this disturbance model is not perfect, 

it represents an important first step toward predicting the behaviour of inflatable 

structures in orbit. 
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Appendix A.   Computer Code 

A.l    Forces, m 

%%%%nxxnxnn%nn%n%xnxnxxFORCEs.MXx%xnnn%%nn!cn%%%x%n%nn%%%%xxxx%%x 
'/. 
'/. ENVIRONMENTAL DISTURBANCE MODELLING FOR LARGE INFLATABLE STRUCTURES 

•/. CAPT DONALD J DAVIS, AFIT/ENY, GSO-OIM 

'/. 
'/. THIS PROGRAM CALCULATES THE ENVIRONMENTAL FORCES AND HEAT FLUXES EXPERIENCED BY 

'/. VARIOUS ELEMENTS OF A LARGE, FLEXIBLE STRUCTURE AS IT PROPAGATES THROUGH ITS 

'/. ORBIT IN ORDER TO RUN AN ANALYSIS, THE USER MUST CREATE A FILE MODEL.M WHICH 

'/. CONTAINS THE REQUIRED INPUTS FOR ANALYSIS TO INCLUDE: ORBITAL ELEMENTS, KEY 

*/. GEOMAGNETIC INDICES, SIMULATION PARAMETERS, MATERIAL PROPERTIES AND FINITE 

'/. ELEMENT MODEL DATA. THE FILE NEWMODEL.M PROVIDES A TEMPLATE AND INSTRUCTIONS 

*/. FOR CREATING THE MODEL FILE. GIVEN THIS INPUT, FORCES.M CALCULATES THE TOTAL 
'/. FORCE & HEAT FLUX ON EACH ELEMENT AT A GIVEN POINT IN TIME. KEY OUTPUTS INCLUDE 

*/. 
'/, (for all below, j=# of elements in model, i=# of time steps in simulation 

*/. 
'/, Time    i x 1 matix containing the time (JD format) at each look 

7. 
'/, dPg     3xjxi matix of the distributed gravity force on each element 

*/, - for point mass returns total gravity force (N) 

'/, - for line mass returns gravity force per unit length (N/m) 
'/, - for planar elements, force per unit area (Pa) 
'/, dPsr    3xjxi matrix of the solar radiation pressure on each element, 

'/, at each look point, (Pa) 
'/, dPd     3xjxi matrix of the distributed drag force on each element, 

'/, at each look point,  (Pa) 
"/, dP     3xjxi matrix of the total distributed force on each element, 

'/, at each look point,  (Pa) 

'/, dQs     jxi matix of the heat flux from direct solar radiation on each 
'/, element, at each look point, (W) 

'/, dQer    jxi matrix of the heat flux from earth-reflected solar 
'/, radiation on each element, at each look point, (W) 

'/, dQet    jxi matrix of the heat flux from earth-emitted thermal 

'/. radiation on each element, at each look point, (W) 
'/, dQe     jxi matrix of the total heat flux from environmental sources 

'/, on each element, at each look point, (W) 

'/. 
'/, All of the forces are expressed in body-fixed coordinates. 

X 

clear all 

global mu Re alb c Rs Ap flO fhat f400 
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%n%%nn%n%x%%n%x%n%%%xxDEFiNEcoNSTAirrsnnnx%n%nxx%xn%%%xx%%%x%%%nxnxx 

mu=3.98601el4; '/.Earth gravitational parameter (m"3/sec"2) 

Re=6378135; '/.Earth radius (m) 

alb=0.36; '/.Earth albedo 
c=3e8; '/.speed of light (m/s"2) 

Rs=695508; '/.Sun radius (km) 

./•/•/•/•, 

'/.LOAD FINITE ELEMENT STRUCTURE 

structure; 

load structure; 

'/.CONVERT ANGLES FROM DEGREES TO RADIANS 

xi=xi*(pi/180); 

argp=argp*(pi/180); 

anode=anode*(pi/180) ; 

a=a*1000; '/.convert to meters 

'/.CONVERT TIMES TO JULIAN DAYS 

To=date2jd(To); 

Tint=date2jd(Tint); 

'/.TRANSFORMATION MATRIX FROM BODY FRAME TO ORBIT FRAME 
Cba=[cos(phi3)*cos(phi2),-sin(phi3)*cos(phi2),sin(phi2); 

cos(phi3)*sin(phi2)*sin(phil)+sin(phi3)*cos(phil),... 

-sin(phi3)*sin(phi2)*sin(phil)+cos(phi3)*cos(phil),. 

-sin(phil)*cos(phi2); 
-cos(phi3)*sin(phi2)*cos(phil)+sin(phi3)*sin(phil),... 

sin(phi3)*sin(phi2)*cos(phil)+cos(phi3)*sin(phil),.. 

cos(phi2)*cos(phil)]; 

'/.TRANSFORMATION MATRIX FROM PQW TO ECI FRAME 
Cpi=[cos(anode)*cos(argp)-sin(anode)*cos(xi)*sin(argp),... 

-cos(anode)*sin(argp)-sin(anode)*cos(xi)*cos(argp),. 

sin(anode)*sin(xi); 
sin(anode)*cos(argp)+cos(anode)*cos(xi)*sin(argp),... 

-sin(anode)*sin(argp)+cos(anode)*cos(xi)*cos(argp),. 

-cos(anode)*sin(xi); 

sin(xi)*sin(argp),sin(xi)*cos(argp),cos(xi)] ; 

•/.STEP SPACECRAFT THROUGH PERIOD OF INTEREST 

looks=freq*dur;      y.number of data points in one orbit 

tstep=(Per/86400)/freq; 

for i=l:looks 

Tep=Tint+(i-l)*tstep; 
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time(i,l)=Tep; 
x=i 

'/.CALCULATE R AND V FOR CENTER OF MASS  (m,m/s,rad) 
[Rcm(:,i),Vcm(:,i),ta]=randv(a,e,xi,argp,anode,To,Tep.Cpi); 
Rnow=Rcm(:,i); 
Vnow=Vcm(:,i); 

'/.DETERMINE EARTH-SUN GEOMETRY (ECI) 

svec=sunvec(Tep) ; '/.Sun vector (km) 

es=unit(svec) ; '/.Unit sun vector 
des=mag(svec) ; '/.Earth-sun distance(km) 

rdes=dot(Rnow,es)/mag(Rnow); 

vdes=dot(Vnow,es)/mag(Vnow); 

eta(i)=acos(rdes)*180/pi;   '/.Angle between es and Rnow 

if vdes>0 
eta(i)=360-eta(i) ; 

end 

'/.DETERMINE SOLAR AND EARTH THERMAL RADIANCE (W/m~2) 

Hsun=(3.8e26)/(4*pi*(des*1000)"2); 

Het=Hsun*(l-alb)/4; 

'/.CALCULATE TIME VARYING TRANSFORMATION MATRICIES 

'/.body frame to ECI frame 
Cap=[cos(ta),-sin(ta),0;sin(ta),cos(ta),0;0,0,1]; 

Cbi=Cpi*Cap*Cba; 

'/.ECI to earth fixed frame 

gmst=gmstime(Tep)*pi/180;   '/.Greenwich mean sidereal time (rad) 
Cief=[cos(gmst),sin(gmst),0;-sin(gmst),cos(gmst),0;0,0,1]; 

'/.DETERMINE ATMOSPHERIC DENSITY 

rho=density(Tep,Cief ,Rnow) ; '/.(kg/m"3) 

for j=l:length(element)   '/.perform calculations for each element 

'/.FIND R FOR EACH ELEMENT(m) and ELEMENT NORMAL (ECI frame) 
rcmelb=element(j) .centroid;'/.radius from cm to element in body frame 

rcmel=Cbi*rcmelb;        '/.radius from cm to element in ECI 

Rele=Rcm(:,i)+rcmel;      '/.radius from earth center to element 

norm=Cbi*element(j).norm; 

'/.ASSIGN MATERIAL PROPERTIES 

dm=element(j).mass; 

dA=element(j).area; 

beta=element(j).ref1; 

del=element(j).spec; 

alpha=element(j).absp; 
emm=element(j).emm; 
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'/.FIND GRAVITATIONAL FORCE ON EACH ELEMENT (N) 
dfg(:,j,i)=grav(Rele,Cief,dm,Cbi);    '/.body frame gravity force 

•/.Find distributed gravity force (dPg) 

if size (element (j) .nodes ,2)==1       '/.point mass 

dPg(:,j,i)=dfg(:,j,i); 
elseif size (element (j). nodes, 2) ==2    '/.line mass 

lgth=mag(element(j).nodes(:,2)-element(j).nodes(:, 1)); 

dPg(:,j,i)=dfg(:,j,i)/lgth; 
else '/.planar elements 

dPg(:,j,i)=dfg(:,j,i)/dA; 

end 

'/.FIND SPACECRAFT-SUN VECTOR (ECI) 
ss=svec-(Rele/1000); '/.S/C-sun vector (km) 

rsvs=mag(ss) ; '/.S/C-sun distance (km) 

ss=unit(ss); 7,S/C-Sun unit vector 

'/.CRITICAL ANGLES FOR SOLAR RADIATION PRESSURE AND HEAT FLUX CALCULATIONS 
rdotes=dot(Rele,es)/mag(Rele) ;  '/.radius vector dotted with earth-sun line 

ndotss=dot(norm,ss) ; '/.element normal dotted with S/C-sun line 

ndotr=dot(-Rele,norm)/mag(Rele) ; '/.element normal dotted with radius vector 

rdotss=dot(-Rele,ss)/mag(Rele) ; '/.s/c-earth vector dotted with s/c-sun line 

•/.DETERMINE SOLAR INTENSITY (SI) FOR SOLAR PRESSURE AND HEAT FLUX CALCULATIONS 

SI=solintens(Rele,rsvs,rdotss) ; 

'/.FIND SOLAR RADIATION PRESSURE (SRP) ON EACH ELEMENT (N) 
dPsr(: ,j ,i)=solpress(ss,norm,beta,del,SI,ndotss,Cbi,Hsun) ; '/.SRP 

dfsr(: , j ,i)=dPsr(:, j ,i)*ndotss*dA; '/.net force on each element due to SRP 

'/.CALCULATE HEAT FLUX ON EACH ELEMENT FROM ENVIRONMENTAL SOURCES (Watts) 

[dQs(j,i),dQet(j,i),dQer(j,i)]=thermal(dA,emm,alpha,rdotes,ndotss,ndotr,... 

Rele,SI,Hsun,Het); 

'/.CALCULATE THE DRAG DISTRIBUTED AND TOTAL FORCE ON EACH ELEMENT (N) 

[dPd(:,j,i),dfd(:,j,i)]=drag(Vnow,norm,rho,dA,Cbi); 

'/.TOTAL FORCE AND HEAT FLUX ON EACH ELEMENT 

df(:,j,i)=dfd(:,j,i)+dfsr(:,j,i)+dfg(:,j,i); '/.Total force 

dP(: ,j,i)=dPd(: ,j,i)+dPsr(: ,j,i)+dPg(: ,j,i); '/.Distributed force 

dQe(j,i)=dQs(j,i)+dQet(j,i)+dQer(j,i);      '/.Heat flux 

'/.CALCULATE TORQUES ABOUT SATELLITE CM FOR EACH ELEMENT (N-m) 

*/.Tgge(: ,j,i)=cross(rcmelb,dfg(: ,j,i));      '/.gravity gradient 
*/,Tsrpe(: ,j ,i)=cross(rcmelb,dfsr(: ,j ,i)) ;    '/.solar radiation 

'/,Tde(:, j ,i)=cross(rcmelb,dfd(: ,j ,i));      '/.drag 

end 
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'/.CALCULATE TOTAL TORQUES ON THE SATELLITE AT EACH TIME STEP (N-m) 

•/.Tgg(:,i)=sum(Tgge,2); '/.gravity gradient 

'/.Tsrp(: ,i)=sum(Tsrpe,2); '/.solar radiation 

•/.Td(:,i)=sum(Tde,2); '/.drag 

'/.Tt=Tgg+Tsrp+Td; '/.total torque 

end 

'/.PLOT MECHANICAL AND THERMAL LOAD ON EACH ELEMENT 

for j=l: length (node) '/.define vertices 

vert(j,:)=node(j).coord'; 

end 

q=0; 
for k=l:length(inelement)      '/.define faces 

if length(inelement(k).nodes)>2 

if length(inelement(k).nodes)==3 

q=q+l; 
fac(q,:)=[inelement(k).nodes NaN]; 

else 

q=q+l; 
fac(q,:)=inelement(k).nodes; 

end 

end 

end 

'/.Display finite element model -no data 
f igureCName', 'Model', 'NumberTitle', 'off', 'Color', 'w') 
axis equal 
axis vis3d 
axis off 
patchCVertices',vert,'Faces',fac,'FaceColor','w') 
view(3) 
xlabel('bl') 
ylabel('b2') 
zlabel('b3') 

'/.Display loading data 

if picnum>0 
picstep=f loordooks/picnum) ; 

for i=picstep:picstep:looks 

q=0; 
for k=l:length(inelement)     '/.define color mapping schemes 

if length(inelement(k).nodes)>2 

q=q+l; 
mcolort(q,l)=mag(dP(:,k,i)) ; 

mcolorg(q,l)=mag(dPg(: ,k,i)); 

mcolord(q,l)=mag(dPd(:,k,i)); 
mcolorsr(q,l)=mag(dPsr(:,k,i)) ; 
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hcolort(q,l)=dQe(k,i) ; 

hcolors(q,l)=dQs(k,i); 

hcolorer(q,l)=dQer(k,i); 

hcoloret(q,l)=dQet(k,i) ; 

end 

end 

tag=num2str(eta(i)); 

plotstring='graphic2'; 

run(plotstring) 

end 

end 

save forces node element time dfg dfsr dfd df dPg dPsr dPd dP dQs dQer dQet dQe; 

A.2    Structure, m 

xxnn%nxxxxxxx%n%%%%nnxsTRU(nmE.Hxnx%nnxxx%nnnn%%%%x%%nn%n%%x%%x%% 
x 
XFINITE ELEMENT STRUCTURE DEFINITION 
XCAPT DON DAVIS, AFIT/ENY, GS0-O1M 
X 
XTHIS FILE TAKES THE FINITE ELEMENT MODEL DEFINED IN MODEL.M AND CALCULATES THE 
XCENTROID AND SURFACE NORMAL FOR EACH ELEMENT AS WELL THE COMPOSITE BODY CENTER OF 
XMASS. THE ELEMENT NODES ARE REDEFINED IN TERMS OF THE BODY FIXED FRAME WITH ITS 
XORGIN AT THE CENTER OF MASS. THE OUTPUT OF THIS FILE IS ELEMENT.*, A DATA 
XSTRUCTURE WITH LENGTH EQUAL TO THE NUMBER OF FINITE ELEMENTS IN THE MODEL. EACH 
XELEMENT HAS THE FOLLOWING NINE FIELDS 
X 

.nodes - node locations in body-fixed frame cartesian coordinates(m) 

.centroid - location of element centroid (m) 

.normal - outward normal for element surface 

.area - exposed element surface area (m~2) 

.mass - element mass (kg) 

.refl - coefficient of reflection 

.spec - coefficient of specular reflection 

.absp - solar absorptivity 

.emm - thermal emissivity 

X element(i) 
X element(i) 

X element(i) 
X element(i) 

X element(i) 

X element(i) 

X element(i) 
X element(i) 

X element(i) 

X 
XTHIS FILE ALSO OUTPUTS NODE AND ELEMENT SUMMARY DATA TO TWO TEXT FILES, NODE.TXT 
XAND ELEMENT.TXT. THESE FILES CAN BE FOUND IN THE WORK FOLDER OF THE MATLAB DIR. 
X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

XLoad input model 

model; 

load model; 
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'/.Convert angles from degrees to radians 

phil=phil*(pi/180); 

phi2=phi2*(pi/180); 

phi3=phi3*(pi/180); 

for i=l:length(comp) 
comp(i).euler=comp(i).euler*pi/180; 

end 

'/.REDEFINE ALL NODE IN BASE FRAME,  CARTESIAN COORDINATES 

for j=l:length(node) 

'/.Convert nodes to cartesian coordinates in local frame 
i=node(j) .comp; '/,i is the component index 

if comp(i).type==l 

tempnode=node(j).coord; 

elseif comp(i).type==2 
tempnode(l,l)=node(j).coord(l)*cos(node(j). coord(2)*pi/180); 
tempnode(2,l)=node(j).coord(l)*sin(node(j).coord(2)*pi/180); 

tempnode(3,l)=node(j).coord(3); 

elseif comp(i).type==3 
tempnode(l,l)=node(j).coord(l)*sin(node(j).coord(3)*pi/180)... 

*cos(node(j).coord(2)*pi/180); 
tempnode(2,l)=node(j).coord(l)*sin(node(j).coord(3)*pi/180)... 

*sin(node(j).coord(2)*pi/180); 
tempnode(3,l)=node(j).coord(l)*cos(node(j).coord(3)*pi/180); 

elseif comp(i).type==4 
tempnode(l,l)=(node(j).coord(l)+node(j).coord(3)... 

*sin(node(j).coord(4)*pi/180))*cos(node(j).coord(2)*pi/180); 

tempnode(2,l)=(node(j).coord(l)+node(j).coord(3)... 
*sin(node(j).coord(4)*pi/180))*sin(node(j).coord(2)*pi/180); 

tempnode(3,l)=node(j).coord(3)*cos(node(j).coord(4)*pi/180); 

else 
fprintf (1,'You did not specify a defined coordinate type for component */.d',i) 

end 

'/.Define locent, a variable which holds the coordinates for the center of the 
'/.torus cross section at the node of interest. This value is used later to 

'/.verify normal vectors for elements located on a torus. For other shapes, 

'/.locent is set to [0;0;0] 

if comp(i).type==4 
node(j).loclent=[node(j).coord(l)*cos(node(j).coord(2)*pi/180); 

node(j).coord(l)*sin(node(j).coord(2)*pi/180);0]; 
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else 
node(j).loclent=[0;0;0]; 

end 

'/.Calculate transformation matrix from local frame to base frame 
trans=[cos(comp(i).euler(2))*cos(comp(i).euler(3)).... 

-sin(comp(i).euler(3))*cos(comp(i).euler(2)),... 
sin(comp(i).euler(2)); 

cos(comp(i).euler(3))*sin(comp(i).euler(2))*sin(comp(i).euler(l))... 
+sin(comp(i).euler(3))*cos(comp(i).euler(l)),... 
-sin(comp(i).euler(3))*sin(comp(i).euler(2))*sin(comp(i).euler(l))... 
+cos(comp(i).euler(3))*cos(comp(i).euler(l)).... 
-sin(comp(i).euler(l))*cos(comp(i).euler(2)); 

-cos(comp(i).euler(3))*sin(comp(i).euler(2))*cos(comp(i).euler(l))... 
+sin(comp(i).euler(3))*sin(comp(i).euler(l)),... 
sin(comp(i).euler(3))*sin(comp(i).euler(2))*cos(comp(i).euler(l))... 
+cos(comp(i).euler(3))*sin(comp(i).euler(l)),... 
cos(comp(i).euler(2))*cos(comp(i).euler(l))]; 

'/.Transform nodes and locale from local frame to base frame 

tempnode=trans*tempnode; 
node(j).loclent=trans*node(j).loclent; 

'/.Redefine node and locale position relative to orgin of base frame 

node(j).coord=tempnode+comp(i).orgin; 

if mag(node(j).loclent)>0.0 
node(j).loclent=node(j).loclent+comp(i).orgin; 

end 

end '/.end node calculations 

'/.BUILD ELEMENT DATA STRUCTURE 

for m=l:length(inelement) 

i=inelement(m) .comp; '/,i is the component index 

'/.Enter node and cent coordinates 

for x=l:length(inelement(m).nodes) 
j=inelement(m) .nodes(x) ;       '/.j is the node index 

temp(m).nodes(:,x)=node(j).coord; 

locent(:,x)=node(j).loclent; 

end 

'/.Collapse the locent matrix into a single reference point for each element 

for y=l:size(locent,2) 

cmag(y)=mag(locent(:,y)); 

end 
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[big,ind]=max(cmag); 
if comp(i) .type==4 '/.for elements on a torus, locent is set equal to 

locent=locent (:, ind) ; '/.the center of the local torus cross section 

else 
locent=comp(i) .orgin; '/.for elements on other shapes, locent is taken 

end '/.to be the orgin of the local coordinate system 

'/.Find element surface area, mass, centroid and normal 

k=inelement(m) .mat;    '/.k material index 

if size (temp (m) .nodes, 2) ==1 '/.point mass 

element(m).area=0; 
element(m).mass=inelement(m).thick; 

temp(m).centroid=temp(m).nodes; 

element(m).norm=[0;0;0]; 

elseif size (temp (m) .nodes, 2) ==2 '/.line mass 

element(m).area=0; 
element(m).mass=inelement(m).thick; 
temp(m).centroid=temp(m).nodes(:,l)+0.5*(temp(m).nodes(:,2)... 

-temp(m).nodes(:,1)); 
element(m).norm=[0;0;0]; 

elseif size (temp (m) .nodes, 2) ==3 '/.triangular elements 

'/.Calculate area, mass and centroid 
base=temp(m).nodes(:,3)-temp(m).nodes(:,1) ; 

hyp=temp(m).nodes(:,2)-temp(m).nodes(:,3); 

theta=acos(dot(unit(base),unit(hyp))); 

height=mag(hyp)*sin(theta); 

midpt=temp(m).nodes(:,l)+0.5*base; 

med=temp(m).nodes(:,2)-midpt; 
element(m).area=0.5*mag(base)*height; 
element(m).mass=element(m).area*inelement(m).thick*mat(k).dens; 

temp(m).centroid=midpt+(1/3)*med; 

'/.Calculate normal 

tempnorm=cross(base,hyp); 

'/.Ensure normal is oriented outward 
localrad=temp(m).centroid-locent; 
rdotnorm=dot(localrad,tempnorm); 

if rdotnorm>0.0 
element(m).norm=unit(tempnorm); 

else 

element(m).norm=-unit(tempnorm); 

end 
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elseif size (temp (m) .nodes, 2) ==4        '/.quadrilateral elements 

'/.Calculate area and mass 
base=temp(m).nodes(:,3)-temp(m).nodes(:,4); 

top=temp(m).nodes(:,2)-temp(m).nodes(:,1); 

hyp=temp(m).nodes(:,2)-temp(m).nodes(:,3); 

theta=acos(dot(unit(base),unit(hyp))) ; 

height=mag(hyp)*sin(theta) ; 

element(m).area=0.5*(mag(base)+mag(top))*height; 

element(m).mass=element(m).area*inelement(m).thick*mat(k).dens; 

'/.Calculate centroid 
med=temp(m).nodes(:,3)+0.5*(temp(m).nodes(:,l)-temp(m).nodes(:,3)); 
centA=med+(1/3)*(temp(m).nodes(:,4)-med); 

centB=med+(1/3)*(temp(m).nodes(:,2)-med); 

massA=0.5*height*mag(base)*inelement(m).thick*mat(k).dens; 

massB=0.5*height*mag(top)*inelement(m).thick*mat(k).dens; 
temp(m).centroid=(l/element(m).mass)*(massA*centA+massB*centB); 

'/.Calculate normal 

tempnorm=cross(base,hyp); 

y.Ensure normal is oriented outward 

localrad=temp(m).centroid-locent; 
rdotnorm=dot(localrad,tempnorm); 

if rdotnorm>0.0 
element(m).norm=unit(tempnorm); 

else 
element(m).norm=-unit(tempnorm); 

end 

else 

fprintf (1,'You did not specify an acceptable shape for element '/,d',m) 

end 

'/.Enter material properties into output data structure 

element(m).absp=mat(k).absp; 

element(m).emm=mat(k).emm; 

element(m).refl=mat(k).refl; 

element(m).spec=mat(k).spec; 

end    '/.end element loop 

'/.Calculate vehicle center of mass 

massrad=[0;0;0]; 
for x=l:length(temp) 

massrad=massrad+element(x).mass*temp(x).centroid; 

end 

satcm=massrad/(sum([element.mass])); 
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'/.Redefine node and centroid locations relative to the vehicle cm 

for k=l:length(element) 
element(k).centroid=temp(k).centroid-satcm; 

for m=l:size(temp(k).nodes,2) 

element(k).nodes(:,m)=temp(k).nodes(:,m)-satcm; 

end 

end 

for j=l:length(node) 

node(j).coord=node(j).coord-satcm; 

end 

'/.WRITE NODE DATA TO TEXT FILE 
fid=fopen('node.txt','w'); fprintf(fid,'Node# 

Coordinates(m)\r'); for k=l:length(node) 
fprintf(fid,'\n,/.3d     L7.5.2f 7.5.2f 7.5.2f]\r' ,k,node(k) .coord') ; 

end 

fclose(fid); 

'/.WRITE ELEMENT DATA TO TEXT FILE 
fid=fopen('element.txt','w'); 
fprintf(fid,'Element* Comp Area(m~2) Mass(kg)      Normal(m)     Absp   Emm'. 

'  Refl   Spec     Centroid(m)     Nodes\r'); 

for i=l:length(element) 
fprintf(fid,'\n '/.3d    '/.2d */.6.3f   '/.6.3f ['/.5.1f '/.5. If '/.5.1f] '/.4.3f... 

'  7.4. 3f  7.4. 3f  7.4. 3f  ['/.5. If 7.5. If 7.5. If ] ',. . . 

i,inelement(i).comp,element(i).area,element(i).mass,element(i).norm',... 
element(i).absp,element(i).emm,element(i).refl,... 

element(i).spec,element(i).centro id'); 

fprintf (fid,' ('/.d' ,inelement(i) .nodes(l,l)) ; 

if size(inelement(i).nodes,2)>1 

for j=2:size(inelement(i).nodes,2) 
fprintf (fid,' ,'/.d' ,inelement(i) .nodes(j)) ; 

end 

end 
fprintf(fid,')\r'); 

end 

fclose(fid); 

save structure; 
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A. 3   RandV.m 
•/vv•/•/vvvvv■/•/•/•/•/vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvyyvvvvvy•/y.y.y.,/•/,/•/'/•/•/,/ 

function [Rcm, Vcm, ta]=randv(a,e,xi,argp,anode,To,Tep,Cpi) 
./ 0/ 0/ o/ o/./ •/ •/ o/ o/./ o/ ■/./ •/ •/./././ •/./././ o/././././ ././././ o/././ o/./././ o/./././ •/./././././././ •/./././ •/./ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ •/ •/ •/ •/ 

'/. RANDV FUNCTION FILE 

'/, CAPT DONALD J DAVIS, AFIT/ENY, GS0-01M 

*/. 
'/. THIS FUNCTION TAKES A CLASSICAL ORBITAL ELEMENT SET AT A GIVEN TIME OF INTEREST 

'/. AND CALCULATES POSITION AND VELOCITY VECTORS IN THE EARTH CENTERED INERTIAL 

*/. (ECI) FRAME 

'/. 
'/, INPUTS:  a    semi-major axis (m) 

"/, e    eccentricity 

'/, xi   inclination (rad) 

'/, argp argument of perigee (rad) 
7, anode right ascension of the ascending node 

*/, To   time of perigee passage (modified Julian day) 

'/, Tep  time of observation 
*/, Cpi  transformation matrix from perifocal to ECI frame 

*/. 
'/, OUTPUT:  Rcm  radius vector to satellite center of mass (ECI - m) 

'/, Vcm  velocity vector (ECI - m/s) 

global mu Re alb c Ap flO fhat f400 

'/.CALCULATE MEAN ANOMALY (radians) 
MA=mod(sqrt(mu/(a~3))*((Tep-To)*86400),2*pi); 

'/.SOLVE KEPLER'S EQUATION TO FIND ECCENTRIC ANOMALY (radians) 

EA=MA+e*sin(MA); 

dE=l; 

while abs(dE)>=0.00000001 
dm=EA-(e*sin(EA))-MA; 

dE=dm/(l-e*cos(EA)); 

EA=EA-dE; 
end 

'/.FIND TRUE ANOMALY AND RADIUS (radians, m) 

ta=2*atan(sqrt((1+e)/(1-e))*tan(EA/2)); 

rmag=(a*(l-e~2))/(l+e*cos(ta)); 

'/.POSITION AND VELOCITY OF CM IN PQW FRAME (m, m/sec) 
rpqw=[rmag*cos(ta);rmag*sin(ta);0] ; 

vpqw=sqrt(mu/(a*(l-e~2)))*[-sin(ta);e+cos(ta);0]; 

'/.POSITION AND VELOCITY OF CM IN ECI FRAME (m, m/sec) 

Rcm=Cpi*rpqw; 

Vcm=Cpi*vpqw; 
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A. 4    SunVec.m 

It hit It It It It It It III» It It It It It It It It It It It It It ft ft It It It U It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It It Itltltltltlt It It It It It 

function svec=sunvec(jD) 

'/. SUNVEC FUNCTION FILE 
'/. CAPT DONALD J DAVIS, AFIT/ENY, GS0-01M 
'/. 
*/. THIS FUNCTION CALCULATES EARTH-SUN VECTOR IN ECI COORDINATES FOR 
*/. ANY GIVEN TIME. 
*/. 
*/. INPUTS:  jD     Julian date 
'/. 
'/, OUTPUT:  svec    earth-sun vector (ECI) (km) 
././ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ •/ ./ ./ 0/ 0/ ./ ./ ./1/ 0/ ./ ././ 0/ 0/ ./ ./ ./ ./ v 0/ •/ •/ •/ •/ ./ ./ •/ 0/ ./ 0/1/ v ./ ./ 0/ o/ ./ ./ ./ ./ ./ ./ ./ 0/ ./ ./ o/ o /./ 0/ ./ ./ 0/ ./ ./ ./1, t, t, t, 1/1/ ././ ./ 0/ o. 

global mu Re alb c Rs Ap flO fhat f400 Rpi 

'/.Elapsed time since J2000 
T=(j D-2451545.0)/36525; 

'/.Obliquity of the ecliptic 
obE=0.409092804-(2.26966e-4*T)-(2.86e-9*T~2)+(8.79e-9*T~3); 

'/.Mean Anomaly 
ma=6.240060141+(628.3019552*T)-(2.683e-6*T"2); 
ma=mod(ma,2*pi); 

'/.Eccentricity 
ecc=0.016708634-(0.000042037*T)-(0.0000001267*T~2); 

'/.Equation of  center 
C=(2*ecc-(0.25*ecc"3))*sin(ma)+(1.25*ecc"2)*sin(2*ma)+((13/12)*ecc~3)*sin(3*ma); 

'/.True Anomaly 
tas=mod(ma+C,2*pi); 

'/.Earth-sun distance  (km) 
d=(1.000001018*(l-ecc-2)/(l+ecc*cos(tas)))*1.4959787e8; 

'/.True longitude 
tl=mod(4.93823996l+tas,2*pi); 

'/.Earth-sun vector 
svec=d*[cos(tl);cos(obE)*sin(tl);sin(obE)*sin(tl)]; 
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A. 5   Density.m 

funct ion rho=dens ity(Tep,Cief,Rnow) 

'/. ATMOSPHERIC DENSITY FUNCTION FILE 

'/. CAPT DONALD J DAVIS, AFIT/ENY, GS0-O1M 

X 
X THIS FUNCTION CALCULATES THE LOCAL ATMOSPHERIC DENSITY ENCOUNTERED BY THE 

X SATELLITE AS IT PROPAGATES THROUGH ITS ORBIT 

X 
X INPUTS:  Tep  current time (Julian days) 
'/, Cief ECI (inertial) to earth-fixed frame transformation matrix 

'/, Rcm  radius vector to the S/C center of mass 

X 
X OUTPUT:  rho  atmospheric density (kg/m~3) 

X 
'/. This file uses the function Atm70 from the Spacecraft Control Toolbox, designed 

'/, by Princeton satellite systems. This function calculates the atmospheric 
'/, density using Jacchia's 1970 earth atmoshpere model for altitudes of 90 km to 

X 2500 km. For altitudes below 90 km, density is calculated using scale 

X heights (AtmDens2-S/C control toolbox) 
•/ •/ •/ •/ v •/ v •/ v v v v v •/ •/ •/ •/ •/ •/ •/ •/ v •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ v •/ •/ v •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ v v •/ •/ •/ •/ v •/ •/ •/ •/ v •/ •/ ■/ •/ •/ •/ •/ •/ •/ •/ 'I 'l 

global mu Re alb c Rs Ap flO fhat f400 

'/.CALCULATE INPUT PARAMETERS FOR THE JACCHIA MODEL 

'/.'/days since Jan 1 of current year (djanl - days) 
Tepdt=jd2date(Tep) ;  '/.epoch time in DTG format [yr mon day hr min sec] 

janldt=[Tepdt(l),l,l,Tepdt(4),Tepdt(5),Tepdt(6)]; 

janljd=date2jd(janldt); 
djanl=Tep-janljd; 

'/.'/.Latitude and longitude of satellite subpoint 
Rcmf=Cief*Rnow;      '/.radius vector in earth-fixed frame 
Llat,lon]=r21atlon(Rcmf) ; 

GMT=(Tepdt(4)*60)+Tepdt(5)+(Tepdt(6)/60); '/.Minutes elapsed since 0000 GMT 

alt=(mag(Rcmf)-Re)/1000; '/.Satellite altitude 

'/.SET UP STRUCTURE FOR INPUT TO DENSITY MODEL FUNCTION 
rhodata.aP=Ap; '/^geomagnetic index 6.7 hours before computation 

rhodata.dd=djanl; Xday number since Jan 1 

rhodata.f=f 10; '/.daily 10.7 cm solar flux 

rhodata.fHat=fhat; '/,81 day mean of flO 

rhodata.fHat400=f400; '/.fhat 400 days before computation 

rhodata.lat=lat; '/.satellite latitude 
rhodata. lng=lon; '/.satellite longitude 

rhodata.mm=GMT; '/.minutes since 0000 GMT 

rhodata.yr=Tepdt(1) ; '/.current year 

rhodata.z=alt; '/.satellite altitude 
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'/.CALCULATE ATMOSPHERIC DENSITY (kg/m~3) 

if altOO '/.Below 90 km use scale height model 

rho=AtmDens2(alt); 

elseif alt>2500     '/.Above 2500 km - no atmosphere 

rho=0; 
else '/.Use Jacchia model (90km-2500km) 

rho=AtmJ70(rhodata)*1000; 

end 

A. 6   Grav.m 
•/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V V V •/ V •/ •/ ■/ V •/ •/ V V •/ •/ V •/ V V V •/ •/ •/ •/ •/ V •/ V •/ V V •/ V V •/ V •/ •/ V V •/ •/ •/ V •/ •/ V V V V •/ 

function dfg=grav(Rele,Cief,dm,Cbi) 
•/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ ■/ •/ v •/ •/ •/ •/ •/ v •/ •/ •/ v •/ •/ •/ •/ •/ •/ •/ v v •/ •/ v •/ •/ •/ •/ •/ v v v •/ v v v v •/ v •/ •/ •/ V'/ •/ •/ •/ 7 •/ V V 

'/. GRAVITY FUNCTION FILE 
'/. CAPT DONALD J DAVIS,  AFIT/ENY,  GS0-01M 

*/. 
'/. THIS FUNCTION CALCULATES THE GRAVITATIONAL FORCE ON A SPACECRAFT AS IT 

'/. TRAVELS THROUGH ITS ORBIT. THIS FUNCTION USES THE SPACECRAFT CONTROL TOOLBOX 
'/. FUNCTION AGRAVITY, WHICH CALCULATES GRAVITATIONAL ACCELERATION IN SPHERICAL 

'/. COORDINATES USING NASA'S GEM-T1 MODEL. THIS SPHERICAL HARMONIC MODEL OF 

'/. EARTH'S GRAVITATIONAL FIELD IS COMPLETE TO DEGREE AND ORDER 36. 
*/, INPUTS:  Rele   radius vector from earth to center of S/C element (m) 

'/, Cief   transform from GCI to earth fixed frame 

'/, dm     element mass (kg) 
*/, Cbi transformation matrix from body fixed to ECI frame 

*/. 
*/. OUTPUT:  dfg gravitational force on S/C element 

global mu Re alb c Rs Ap flO fhat f400 

XCONVERT RADIUS TO SPHERICAL COORDINATES(r,lambda,phi) 

relef=Cief*Rele; Xr in earth fixed frame 

[latg,long]=r21atIon(relef); 
r=mag(relef)/1000; Xgravity model requires r in km 

lambda=long; 
phi=pi/2-latg; 

'/.CALCULATE GRAVITATION ACCELERATION (m/s"2) 

[ag,as,az,at]=agravity(6,6,r,lambda,phi); 
Cspef=jsp2cart([l,lambda,phi])jXtransform from spherical to cartesian(earth fixed) 

ag=Cief'*Cspef*ag*1000;      Xgravitational acceleration in ECI 

dfg=Cbi'*(ag*dm); Xtotal drag force on element(body frame) 

A-15 



A. 7   Sollntense.m 

function SI=solintens(Rele,rsvs,rdotss) 

'/. SOLINTENS FUNCTION FILE 

'/. CAPT DONALD J DAVIS, AFIT/ENY, GS0-01M 

7. 
'/. THIS FUNCTION CALCULATES SOLAR RADIATION INTENSITY AS A FUNCTION OF THE 

*/. SPACECRAFT'S POSITION IN ITS ORBIT.  INTENSITY CAN RANGE FROM 0 (UMBRAL ECLIPSE) 

'/. TO l(NO ECLIPSE). DURING PENUMBRA, SOLAR INTENSITY WILL BE BETWEEN 0 AND 1. 
'/. THIS INTENSITY WILL BE MULTIPLIED BY THE SOLAR RADIATION CONSTANT TO DETERMINE 

'/. THE SOLAR RADIATION PRESSURE INCIDENT ON A SPACECRAFT ELEMENT. 

'/. 
*/, INPUTS: Rele radius vector from earth to center of S/C element (m) 

'/, rsvs distance from S/C to sun (km) 
*/, rdotss radius vector dotted with S/C-sun line 

'/. 
'/. OUTPUT: SI solar intensity (unitless, 0-1) 

'/. 
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvyvvvvvvvvvvv'/VVVV'/'/V'/'/0/'/'/ 

global mu Re alb c Rs Ap flO fhat f400 Rpi 

'/.DETERMINE S/C-EARTH-SUN GEOMETRY 

betas=acos(rdotss) ;      '/.angle between s/c-sun line and s/c-earth line(rad) 

rhos=asin(Rs/rsvs) ;      '/.angular radius of sun as viewed from s/c (rad) 

rhoe=asin(Re/mag(Rele)) ;  '/.angular radius of earth as viewed from s/c (rad) 

'/.DETERMINE INTERFERENCE FACTOR 

if betas>=(rhoe+rhos)       '/.no eclipse, SI=1 

f=0; 
elseif betas<=(rhoe-rhos)    '/.umbral eclipse, SI=0 

f=pi*(rhos~2); 

else '/.penumbral eclipse 

x=0.5*(rhos+rhoe+betas); 
h=(2/betas)*sqrt(x*(x-betas)*(x-rhos)*(x-rhoe)); 

if (rhoe"2)-(rhos"2)<=betas"2 
f=(asin(h/rhos))*(rhos"2)+(asin(h/rhoe))*(rhoe"2)-h*betas; 

else 
f=(rhoe"2)*asin(h/rhoe)+(pi-asin(h/rhos))*(rhos"2)-h*betas; 

end 

end 

'/.CALCULATE SOLAR INTENSITY 

SI=l-f/(pi*(rhos"2)); 
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A. 8   SolPress.m 

function dPsr=solpress(ss,norm,beta,del,SI,ndotss,Cbi,Hsun) 

'/. SOLPRESS FUNCTION FILE 
X CAPT DONALD J DAVIS, AFIT/ENY, GS0-01M 

X 
'/. THIS FUNCTION CALCULATES SOLAR RADIATION PRESSURE ON A SPACECRAFT AS IT 
X PROPAGATES THROUGH ITS ORBIT 
X 
*/, INPUTS: ss unit vector pointing from the S/C element to the sun 
*/, norm outward normal vector from S/C element 
'/, beta coefficient of reflection (0-1) 
'/, del percentage of reflected light which is reflected specularly 
'/, SI solar intensity(O-l) 
*/, ndotss cosine of angle between S/C normal and S/C-sun line 
% Cbi transformation matrix from body fixed to ECI frame 
'/, Hsun solar radiance at the orbit (W/m"2) 
X 
X OUTPUT: dPsr solar radiation pressure on S/C element (Pa) 
X 

global mu Re alb c Rs Ap flO fhat f400 

if ndotss<=0      '/.element is facing away from sun 
dPsr=[0;0;0]; 

else 
dPsr=-(Hsun/c)*SI*((l-del*beta)*ss+(2*beta*del*ndotss... 

+0.6666666667*beta*(1-del))*norm); 
dPsr=Cbi'*dPsr; Xexpress pressure in body frame 

end 

A.9   Drag.m 

function [dPd,dfd]=drag(Vnow,norm,rho,dA,Cbi) 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
'/. DRAG FUNCTION FILE 
X CAPT DONALD J DAVIS, AFIT/ENY, GS0-01M 
X 
X THIS FUNCTION CALCULATES THE TOTAL AND DISTRIBUTED DRAG FORCE ON A SPACECRAFT 
X AS IT PROPAGATES THROUGH ITS ORBIT 
X 
X INPUTS:  Vnow   S/C velocity vector (ijk) (m/s) 
X norm   outward normal vector from S/C element (ijk) 
X rho    atmospheric density 
X dA     element area (m"2) 
X Cbi    transformation matrix from body fixed to ECI frame 
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'/. OUTPUT:  dPd distributed drag force on S/C element 
'/, dfd total drag force on S/C element 
•/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ 'i 

global mu Re alb c Ap flO fhat f400 

vdotn=dot(Vnow,norm)/mag(Vnow) ;    '/.cosine of the angle between Vnow and norm 

if vdotn<=0 

dPd=[0;0;0]; 

else 
'/.Calculate coefficient of drag 

thetad=acos(vdotn); 

Cd=2*(1+cos(2*thetad)); 

dPd=-0.5*Cd*rho*mag(Vnow)*Vnow; '/.distributed drag force 
dPd=Cbi'*dPd; '/.convert to body frame 

end 

dfd=dPd*dA*vdotn;      '/.total drag force in body frame 

A. 10    Thermal.m 
•/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ •/ •/ V ■/ ■/ V •/ •/ •/ V ■/ •/ •/ •/ •/ V V'/ ■/ ■/ V V •/ •/ •/ V V •/ V •/'/ •/ •/ •/ •/ •/ •/ V V V V V V V V'/ •/ v •/ •/ •/ 

function [dQs,dQet,dQer]=thermal(dA,emm,alpha,rdotes,ndotss,ndotr,Rele,SI,Hsun,Het) 

'/. THERMAL FUNCTION FILE 
X CAPT DONALD J DAVIS, AFIT/ENY, GS0-01M 

X 
X THIS FUNCTION CALCULATES THE ENVIRONMENTAL HEAT FLUX INTO A SPACECRAFT 

X AS IT PROPAGATES THROUGH ITS ORBIT 

X 
X INPUTS:  dA     area of spacecraft element (m"2) 
'/, emm    emmissivity of the element 
X alpha  absorbtivity of the element 
X rdotes angle between S/C radius and earth-sun line 
X ndotss angle between S/C normal and S/C-sun line 
X ndotr  angle between S/C normal and the radius vector 
X Rele   radius from earth center to S/C element (m) 
X SI     solar intensity (0-1) 
X Hsun   solar radiance (W/m"2) 
X Het    earth-thermal radiation (W/m"2) 

X 
X OUTPUT:  dQs    heat flux from direct solar radiation (Watts) 
X dQet   heat flux from earth thermal radiation (W) 
X dQer   heat flux from earth reflected solar radiation (W) 

X 
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global mu Re alb c Rs Ap flO fhat f400 Rpi 

'/.CALCULATE HEAT FLUX FROM DIRECT SOLAR RADIATION (Watts)nUU%Un%UUWXkW.i. 

if ndotss<=0 '/.element is facing away from sun 
dQs=0; 

else 
dQs=alpha*Hsun*SI*dA*ndotss; 

end 

•/.CALCULATE HEAT FLUX FROM EARTH THERMAL RADIATIONm%%%%mmmmm%nn%m% 

'/.Find S/C element-earth view factor  (Vet) 
X=mag(Rele)/Re; 
X2=X~2; 
phi=asin(l/X); 

if acos(ndotr)>pi/2+phi 

Vet=0; 
elseif acos(ndotr)<pi/2-phi 

Vet=ndotr/X2; 

else 
Tl=(1/pi)*asin(sqrt(X2-1)/(X*sin(acos(ndotr)))); 

T2=(l/(pi*X2))*(ndotr*acos(-sqrt(X2-l)*cot(acos(ndotr)))... 
-sqrt(X2-1)*sqrt(1-X2*(ndotr~2))); 

Vet=0.5-Tl+T2; 

end 

dQet=emm*Vet*dA*Het;      %Heat flux from earth thermal radiation 

'/.CALCULATE HEAT FLUX DUE TO EARTH-REFLECTED SOLAR MDIATI0N7X/X/.yX/X/X/X/X/X/X/X/. 

Ver=Vet*rdotes;    '/.config factor from S/C element to sunlit portion of earth 

if Ver<0 
Ver=0; 

else 

Ver=Ver; 
end 

dQer=alpha*alb*Ver*dA*Hsun; '/.earth reflected radiance 
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A. 11    Graphic2.m 
y u %i y y y y y y y y y y u y y y y y y y •/ y y ■/ ■/ V QRAPHIC 2 . MV V V *' V V V V V'' '' '' '''' '' '' '' '''''' V V V V V V V 0/ V V V V V V V V 0/ 0/ V *' '' *' '' '' 

'/. GRAPHICS FUNCTION FILE 
'/. CAPT DONALD J DAVIS, AFIT/ENY, GSO-01M 

*/. 
'/. THIS FUNCTION PROVIDES THE GRAPHIC OUTPUT OF THE DISTRIBUTED FORCES ACROSS 
'/. THE ENTIRE FINITE ELEMENT MODEL. A 3D VIEW OF THE SATELLITE IS DISPLAYED, 
'/. WITH EACH ELEMENT COLORED ACCORDING TO THE MAGNITUDE OF THE IMPOSED LOAD. 
*/. TWO PLOTS ARE GENERATED AT EACH TIME STEP - ONE DISPLAYS THE MECHANICAL LOADS 
7. ON EACH ELEMENT WHILE THE OTHER SHOWS THE THERMAL LOADS. THE TOP OF EACH 
7. FIGURE IS LABELED WITH SNAPSHOT TIME AND ETA, THE ANGLE BETWEEN THE EARTH-SUN 
7. LINE AND THE SPACECRAFT ECI POSITION VECTOR MEASURED IN THE DIRECTION OF MOTION 
•/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V V V •/ •/ V •/ •/ •/ •/ •/ •/ •/ V •/ •/ V •/ V'/ •/ •/ V V V ■/ •/ •/ •/ V V V'/ •/ V V •/ V V V V V V V V •/ V V V V V •/ V V •/ •/ V V •/ •/ V V V 

7.PLOT THERMAL LOADS (W) 
figure('Name',['Thermal Load(W): eta=',tag],'NumberTitle','off,'Units',... 

'normalized','Position',[0.1,0.1,0.8,0.8]),elf 
colormap(bone) 

subplot(2,2,1) 
patch('Vertices',vert,'Faces',fac,'FaceVertexCData',hcolors,'FaceColor','flat') 
view(3) 
axis equal 
grid on 
colorbar 
xlabel('bl') 
ylabel('b2') 
zlabel('b3') 
title('Direct Solar Radiation') 

subplot(2,2,2) 
patch('Vertices',vert,'Faces',fac,'FaceVertexCData'.hcoloret,'FaceColor','flat') 
view(3) 
axis equal 
grid on 
colorbar 
xlabel('bl') 
ylabel('b2') 
zlabel('b3') 
title('Earth-Emitted Radiation') 

subplot(2,2,3) 
patch('Vertices',vert,'Faces',fac,'FaceVertexCData'.hcolorer,'FaceColor','flat') 
view(3) 
axis equal 
grid on 
colorbar 
xlabel('bl') 
ylabel('b2') 
zlabel('b3') 
title('Earth-Reflected Radiation') 
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subplot(2,2,4) 
patchOVertices',vert,'Faces',fac,'FaceVertexCData'.hcolort,'FaceColor','flat') 

view(3) 
axis equal 

grid on 
colorbar 

xlabel('bl') 

ylabel('b2') 

zlabel('b3') 

title('Total Heat Flux') 

'/.PLOT MECHANICAL LOADS 

f igureCName', ['Mechanical Load(Pa): eta=' ,tag] , 'NumberTitle', 'off , 'Units'.... 

'normalized','Position',[0.1,0.1,0.8,0.8]),clf 

colormap(bone) 

subplot(2,2,1) 
patchCVertices',vert,'Faces',fac,'FaceVertexCData' .mcolorg,'FaceColor','flat') 

view(3) 
axis equal 

grid on 

colorbar 

xlabel('bl') 

ylabel('b2') 

zlabel('b3') 
title('Gravity') 

subplot(2,2,2) 
patch('Vertices',vert,'Faces',fac,'FaceVertexCData',mcolord,'FaceColor','flat') 

view(3) 
axis equal 

grid on 
colorbar 

xlabel('bl') 
ylabel('b2') 
zlabel('b3') 

title('Drag') 

subplot(2,2,3) 
patch('Vertices',vert,'Faces',fac,'FaceVertexCData'.mcolorsr,'FaceColor','flat') 

view(3) 

axis equal 

grid on 
colorbar 

xlabel('bl') 

ylabel('b2') 

zlabel('b3') 
title('Solar Radiation Pressure') 
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subplot(2,2,4) 
patch('Vertices',vert,'Faces',fac,'FaceVertexCData'.mcolort,'FaceColor','flat') 

view(3) 

axis equal 

grid on 
colorbar 

xlabel('bl') 

ylabel('b2') 

zlabel('b3') 

title('Total Load') 
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A. 12   Date2JD.m 
function jd = Date2JD( datetime ) 
t  

'/.  Compute the Julian Date from the date. Uses the format from clock. If no 

'/,  inputs are given, it will compute the Julian date for the instant 

'/,  of the function call. Only works for dates after 1600. 
•/,  

*/,  Form: 

'/.  jd = Date2JD( datetime ) 
%  

7. 
y.     
'/,  Inputs 

7.    
*/,  datetime [ year month day hour minute seconds ] 
*/, or the datetime data structure. 

'/, . year 
'/, . month 

'/. .day 
*/, . hour 
'/, .minute 

'/, . second 

*/. 
*/. 

7.    
7,  Outputs 

*/.    
7,  jd Julian date 

7. 
y,  

•/t  

7.  References: Montenbruck, 0., T.Pfleger, Astronomy on the Personal 

7, Computer, Springer-Verlag, Berlin, 1991, p. 12. 
%  

7,  Copyright 1993 Princeton Satellite Systems, Inc. All rights reserved. 
%  

7. Gives the current date if there are no inputs 
%  

if( nargin == 0 ) 

datetime = clock; 
else 

datetime = DTSToDTA( datetime ); 

end 

if( datetime(2) == 0 ), 
error('No zero month') 

end 
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'/, Adjust for negative years 
%  

if( datetime(l) <= 0 ) 
datetime(l) = datetime(l) + 1; 

end 

'/, datetime = [year month day hour minute second] 
t  

fracday = (datetime(4) + (datetime(5) + datetime(6)/60)/60)/24; 

a     = l.e4*datetime(l) + l.e2*datetime(2) + datetime(3) + fracday; 

if( datetime(2) <= 2 ) 

datetime(2) = datetime(2) + 12; 

datetime(l) = datetime(l) - 1; 

end 

if ( a <= 15821004.1 ) 
b = -2 + fix((datetime(l) + 4716)/4) - 1179; 

else 
b = fix(datetime(l)/400) - fix(datetime(l)/100) + fix(datetime(l)/4); 

end 

jd=365*datetime(l)+b+fix(30.6001*(datetime(2)+l))+datetime(3)+fracday+1720996.5; 

A.13    GMSTime.m 

function gmst = GMSTime( jd ) 
</t  

'/,  Greenwich mean sidereal time - the angle between the Greenwich Meridian 

'/,  and the Vernal Equinox 
y,  
*/,  Form: 

'/.  gmst = GMSTime( jd ) 
•/,  

*/. 
'/.   
'/, Inputs 

*/.   
7. jd Julian date UT (day) 

*/. 

'/.   
'/, Outputs 

*/.   
'/, gmst Greemwich mean sidereal time (deg) 

*/. 
%  

I  
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References: The Astronomical Almanac for the Year 1993, U.S. Government 

Printing Office,1993, p. B6. 

Copyright 1993 Princeton Satellite Systems, Inc. All rights reserved. 

if( nargin == 0 ) 

jd = Date2JD; 

end 

'/, Julian days at Oh UT 
%  

jdOh = R2P5( jd ); 

tu  = (jdOh - 2451545) / 36525; 

'/, This organization maximizes the precision 
X  
gmst = (((0.093104 - 6.2e-6*tu).*tu + 8640184.812866).*tu + 24110.54841); 

'/, Account for earth rotation 
•/,  

gmst = gmst/86400 + (jd-jd0h)./MSidDay(jd); 

'/, Limit to the range 0 to 360 
%  

gmst = rem( gmst, 1 )*360; 

A. 14    JD2Date.m 
function datetime = JD2Date( jd, structOut ) 
%  

'/,  Compute the calendar date from the Julian date. Uses the format 
'/,  from clock. If no inputs are given it will output the current 

'/,  date and time of the function call. 
•/,  

'/,  Form: 
*/,  datetime = JD2Date( jd, structOut ) 
yt  
'/. 

'/.   
'/, Inputs 

'/.   
'/, jd Julian date 
'/, structOut If entered, output a structure 
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7.   
'/, Outputs 

7.   
7, datetime [ year month day hour minute seconds ] 

7. 
•/t  

7,  References: Montenbruck, 0., T.Pfleger, Astronomy on the Personal 

7. Computer, Springer-Verlag, Berlin, 1991, p. 13. 
>/t  

7,   Copyright 1993 Princeton Satellite Systems, Inc. All rights reserved. 
•/,  

if( nargin < 1 ) 

jd = []; 
end 

if( isempty(jd) ) 

datetime = clock; 

else 

seconds = (jd-R2P5(jd))*86400; 

jdO    = fix(jd+0.5); 

if ( jdO < 2299161 ) 7. Gregorian calendar 

c = jdO; 
else 

b = fix(((jd0-1867216) - 0.25)/36524.25); 

c = jdO + b - fix(b/4) + 1; 

end 

c = c + 1524; 

d = fix((c-122.1)/365.25); 
e = 365*d + fix(d/4); 

f = fix((c-e)/30.6001); 
datetime(2) = f-l-12*fix(f/14) ; 

datetime(l) = d-4715-fix((7 + datetime(2))/10); 

datetime(3) = fix(c-e+0.5)-fix(30.6001*f); 
datetime(4) = fix(seconds/3600); 

seconds    = seconds - 3600*datetime(4); 

datetime(5) = fix(seconds/60); 
datetime(6) = seconds - 60*datetime(5); 

if ( datetime(1) <= 0 ), 

datetime(l) = datetime(1)-1; 

end 
end 

if( nargin > 1 ) 

datetime = DTAToDTS( datetime ); 
end 
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A. 15   R2LatLon.m 

function [lat, Ion] = R2LatLon( x, y, z ) 
X  

'/,  Computes geocentric latitude and longitude from r 
%  

'/,  Form: 
'/,  [lat, Ion] = R2LatLon( x, y, z ) 
'/.  [lat, Ion] = R2LatLon( r ) 
%  

'/. 
'/.   
'/, Inputs 
'/.   
'/. x (1,:)    X or [x;y;z] 
'/. y (1,0    Y 
7. z (1,:)    Z 
7. 
7.   
7. Outputs 
7.   
7, lat        (1,0    Latitude (rad) 
7, Ion        (1,0    East longitude (0 in xz-plane, +right hand rule 
7, about +z)  (rad) 
7. 
yt  

•/,  

7.   Copyright 1993 Princeton Satellite Systems, Inc. All rights reserved. 
•/,  

if( nargin == 3 ) 
r = [x;y;z]; 

else 
r = x; 

end 

u   = Unit(r); 
Ion = atan2( u(2,0, u(l,0 ); 
latX = asin( u(3,0 ); 

if( nargout == 0 ) 
Plot2D(lon*180/pi,latX*180/pi,'Longitude (deg)','Latitude (deg)',... 

'Latitude vs. Longitude'); 
else 

lat = latX; 
end 
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A. 16   AtmDens2.m 

function rhoOut = AtmDens2( h ) 
•/t  

Computes the atmospheric density using scale heights. 

Form: 
rhoOut = AtmDens2( h ) 

*/.- 

'/. 

'/. 
7.- 
'/. 

*/. 
'/. 

'/. 
'/. 

7. 
7. 
7. 
'/. 

'/. 

7. 
7.  

7.  
7,  References: 

7. 

7. 

Inputs 

h 

Outputs 

rhoOut 

Altitude (km) 

Atmospheric Density (kg/m"3) 

Wertz, J.R., Spacecraft Attitude Determination and Control, 

Kluwer, 1976, p. 820. 

Copyright 1994 Princeton Satellite Systems, Inc. All rights reserved. 

rhoRef [1.225 
1.057e-3 
1.905e-5 
2.438e-8 
2.789e-10 

6.967e-13 

3.899e-2 
5.821e-4 

8.337e-6 
8.484e-9 
7.248e-ll 

1.454e-13 

1.774e-2 
3.206e-4 

3.396e-6 
3.845e-9 
2.418e-ll 

3.614e-14 

8.279e-3 
1.718e-4 

1.343e-6 
2.070e-9 
9.158e-12 

3.972e-3 
8.770e-5 

5.297e-7 
1.244e-9 

3.725e-12 

1.995e-3. 
4.178e-5. 

9.661e-8. 
5.464e-10 

1.585e-12 

1.170e-14 5.245e-15 3.019e-15]; 

hRef 

lh 

hScale 

hScale 

[ 0, linspaceC 25,100,16), linspace(110, 160,6), 180,... 

linspace(200,500, 7), linspace(600,1000,5)]; 

length(hRef); 

(hRef(1:lh-l)-hRef(2:lh))./log(rhoRef(2:lh)./rhoRef(1:lh-1)); 
[hScale hScale(length(hScale))]; 

if nargin > 0, 
for i = 1:length(h), 

j    = min(find(hRef>h(i))); 
if length(j)  > 0, 

rho(i) = rhoRef(j-l)*exp(-(h(i)-hRef(j-l))/hScale(j-l)); 
rhoRef(l:j-2)  =   []: 
hRef     (l:j-2)  =   [] 
hScale(l:j-2) =   [] 
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else 
lh = length(hScale); 
rho(i)      = rhoRef(lh)*exp(-(h(i)-hRef(lh))/hScale(lh)); 

end 

end 

end 

if nargout == 0, 

NewFig('Atmospheric Density'); 

if nargin == 0, 
semilogy(hRef,rhoRef) 

else 

semilogy(h,rho) 

end 
XLabelSCAltitude (km)') 

YLabelSC'Density (kg/m~3)'); 
TitleS('Atmospheric Density') 

grid 
else 

[r,c]   = size(h); 
if( r > c ) 

rho = rho'; 
end 
rhoOut = rho; 

end 

A.17   AtmMO.m 

function  [rho,  nHe,  nN2,  n02,  nO,  tZ]  = AtmJ70( d ) 
•/,  

'/.  Computes the atmospheric density using Jacchia's 1970 model. 
y,  
'/.  Form: 
*/.  rho = AtmJ70( d ) 
yt  

7.   
'/, Inputs 

'/.   
'/, d   (:) Data structure 
7, .aP Geomagnetic index 6.7 hours before the computation 

'/, .dd Day number since Jan 1., days 
*/, .f Daily 10.7 cm solar flux (e-22 watts/m~2/cycle/sec) 

*/, .fHat 81-day mean of f (e-22 watts/m"2/cycle/sec) 

*/, .fHat400   fHat 400 days before computation date 
'/, .lat Latitude of computation point + north (deg) 

'/, .lng Longitude of computation point + east (deg) 

'/, .mm Greenwich mean time from 0000 GMT, minutes 

'/, . yr Year 
'/, .z Geometric altitude (km) 
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•/.     
'/,  Outputs 

'/.    
•/.  rho (:) Density (g/cm~3) 

•/. 
X  

y,  
*/.   Reference: Models of the Earth's Atmosphere (90 to 2500 kM) NASA SP-8021. 

7. 
'/, Roberts, C.E. Jr, "An Analytic Model for Upper Atmosphere 

•/, Densities Based Upon Jacchia's 1970 Models", Celestial Mechanics 

*/, Vol. 4, 1971, pp. 368-377. 
•/,  

'/,    Copyright 1999 Princeton Satellite Systems, Inc. 

*/,   All rights reserved. 
•/,  

ang = 23.45; 
aV = 6.02257e23; '/. Avogadro's number (per mole) 

mH = 1.00797; '/. atomic mass of hydrogen 
mN2 = 2*14.0067; '/, molecular mass of diatomic nitrogen 
m02 = 2*15.9994; "/, molecular mass of diatomic oxygen 
mO = 15.9994; '/, atomic mass of oxygen 
mHe = 4.00260; '/. atomic mass of helium 

wH = 1.6731e-24; '/, hydrogen mass (g/molecule) 

wHe = 6.6435e-24; '/. helium  mass (g/molecule) 
wN2 = 4.6496e-23; "/, nitrogen mass (g/molecule) 

w02 = 5.3104e-23; '/,  diatomic oxygen mass (g/molecule) 
wO = 2.6552e-23; '/, oxygen  mass (g/molecule) 

qN2 = 0.78110; '/, low atmosphere volumetric fraction of N2 
qAr = 0.00934; */. low atmosphere volumetric fraction of argon 

qHe = 1.289e-5; '/. low atmosphere volumetric fraction of helium 
q02 = 0.20955; '/, low atmosphere volumetric fraction of 02 

z90  = 90; '/, 90km reference altitude (km) 
rho90 = 3.46e-9; '/, assumed density at 90km altitude (g/cm~3) 

t90  = 183; '/. assumed temperature at 90km altitude (deg-K) 

m90  = 28.878; '/. assumed molecular mass at 90km altitude (unitless) 

'/, NASA Equations 

*/.  
j     = 2441683 + (d.yr - 1973)*365 + d.dd; '/. (A-l) 
jStar = (j - 2415020) /36525; '/. (A-2) 

gP    = 99.6909833 + (36000.76854 + 0.00038708*jStar).*jStar... 

+ 0.25068447*d.mm; */. (A-3) 

A-30 



rAP   = Range( gP + d.lng, 0, 360 ); '/. (A-4) 

dJ    = j - 2435839; 
IS    = Range((0.017203*dJ + 0.0335*sin( 0.017203*dJ ) - 1.41)... 

*180/pi, -180, 180); '/. (A-5) 

dS    = ASinD( SinD( IS )*SinD( ang ) ); 7. (A-6) 

rASArg = TanD( dS )/TanD( ang ); 

'/, Put rAS in the same quadrant as IS 
%  

rAS   = ASinDSameQuadrant( rASArg, IS ); 

rAS   = Range( rAS, 0, 360 ); 

hRA   = rAP - rAS; '/. (A-8) this should be >0 

'/, Angle between bulge and computation point 
%  

tau   = Range( hRA - 37 + 6*SinD( hRA + 43 ) , -180, 180 ); 7. (A-9) 

'/, Nightime minimum global exospheric temperature (deg-K) 
JJ  
tC    = 383 + 3.32*d.fHat + 1.8*(d.f - d.fHat ); 7. (A-10) 

7. Diurnal correction (deg-K) 
%  

eta = 0.5*abs(d.lat - dS); 
theta = 0.5*abs(d.lat + dS); 

r     = -0.19 + 0.25*loglO(d.fHat400); 

z     = SinD(theta)"2.5; 

a     = r.*(( CosD(eta)"2.5 - z )./( 1 + r.*z )); 
tL    = tC.*(l + r.*z).*(l + a.*CosD(0.5*tau)~3); '/, (A-ll) 

'/, Geomagnetic activity correction (deg-K) 
•/#  

tG    = d.aP + 100*(1 - exp(-0.08*d.aP)); '/. (A-12) 

'/, Semiannual correction (deg-K) 
%  

z     = d.dd/365.2422; 
tau   = z + 0.1145*( (0.5*(l+SinD(360*z+342.3)))."2.16 - 0.5 ); 
tS    = 2.41 + d.fHat.*(0.349 + 0.206*SinD(360*tau+226.5))... 

*SinD(720*tau+247.6); '/. (A-13) 

'/, Exospheric temperature (deg-K) 
%  

tE    = tL + tG + tS; 7. (A-14) 
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'/, Inflection point temperature (deg-K at altitude = 125 km) 

X  
tx    = 444.3807 + 0.02385*tE - 392.8292*exp(-0.0021357*tE); 7. (A-15) 

'/, Temperature at geometric altitude levels (deg-K) 

X  

dZ     = d.z - 125; 

1     = find(dZ <= 0 ); 
if ( "isempty(l) )  '/, Altitudes between 90 and 125 km 

tZ(l)  = TempLowAlt( d.z(l), tX, t90 ); 

end; 

1     = find(dZ > 0 ); 

if( "isempty(l) ) 
tZ(l) = TempHighAlt( d.z(l), tX, t90, tE ); 

end; 

'/. For altitude <= 105 km 
%  

1 = find(d.z <= 105 ); 

if( "isempty(l) ) 

7. Mean molecular mass (unitless) 
%  

eM(l) = MolMassLowAlt( d.z(l) ); 

7. Mass density before seasonal-latitudinal correction 

7.  Integrate barometric equation (A-19) 
%  

baromlnt = quad( 'BaromExp', 90, d.z(l), [], [], tX, t90 ); 
rho(l)  = rho90 * (t90/tZ(l)) * (eM/m90) * exp( baromlnt ); 

7. Seasonal-latitudinal density correction 
%  

dZ    = d.z(l)-90; 
dDD   = 0.02*dZ*exp(-0.045*dZ)*SinD(360/365.2422*(d.dd(l)+100))... 

*(SinD(d.lat(l))).*2 .* sign(d.lat(l)); 7. (A-20) 

rho(l) = rho(l)*10~dDD; 

7, Number densities 

7.  
par(l) = aV*rho(l)/eM(l);       '/. total number of particles per cm"3 

nN2(l) = qN2*eM(l).*par(l)/28.96; 
nHe(l) = qHe*eM(l).*par(l)/28.96; 

nAr(l) = qAr*eM(l).*par(l)/28.96; 

n02(l) = par(l).*(eM(l)*(l+q02)/28.96-1); 

n0(l) = 2*par(l).*(l-eM(l)/28.96); 

end; 

A-32 



'/, Must calculate parameters at 105 km 
%  

tZ105 = TempLowAlt( 105, tX, t90 ); 

eM105 = MolMassLowAlt ( 105 ); 

baromlnt = quad( 'BaromExp', 90, 105, [], [], tX, t90 ); 

rhol05  = rho90 * (t90/tZ105) * (eM105/m90) * exp( baromlnt ); 

dZ    = 105-90; 

dDD105 = 0.02*dZ*exp(-0.045*dZ)*SinD(360/365.2422*(d.dd+100))... 

*(SinD(d.lat)).~2 .* sign(d.lat); '/. (A-20) 

rhol05 = rhol05*10~dDD105; 

par 105 = aV*rhol05/eM105; '/. (A-22) 

'/, Molecular number densities at 105 km 
%  

fac   = eM105/28.96; 
nN2105 = qN2*parl05*fac; '/. (A-23) 
nHel05 = qHe*parl05*fac; */. (A-23) 
n02105 = parl05*(fac*(l+q02)-l); '/. (A-24) 
n0105 = 2*parl05*(l-fac); '/. (A-25) 

'/, For altitude > 105 km 
%  

1 = find(d.z > 105 ); 

if( "isempty(l) ) 

diffusionint = quad( 'DiffusionExp', 105, d.z(l), [], [], tX, t90, tE ); 

tR = tZ105./tZ(l); 

7. N2, 02, 0, He number density (cm"-3) 
X  

nN2 = nN2105 * tR * exp( mN2*diffusionInt ); '/. (A-28) 
n02 = n02105 * tR * exp( m02*diffusionlnt ) ; '/. (A-28) 

nO = n0105 * tR * exp( mO *diffusionlnt ) ; '/. (A-28) 
nHe = nHel05 * tR"0.62 * exp( mHe*diffusionlnt); '/. (A-28) 

'/, Hydrogen number density (cm"-3) 
%  

nH   = zeros(1,length(1)); 
12   = find( d.z(l) > 500 ) ; 

if( ~isempty(12) ) 

tZ500  = TempHighAlt( 500, tX, t90, tE ); 
1TE    = loglO(tE); 

diffusionint = quad( 'DiffusionExp', 500, d.z(l(12)), [], [], tX, t90, tE ); 
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nH500  = 10"( 73.13 - ( 39.4 - 5.5*1TE)*1TE ); '/. (A-26) 

nH(12) = nH500 .* ( tZ500./tZ(l(12)) ) * exp( mH*diffusionInt );  */. (A-27) 

end; 

'/, Seasonal-latitudinal variation of helium 
JJ  
dHe  = 0.5 + 1.8*( ((23.45-dS(l))/47.5)~2.5 * (SinD(45+d.lat(l)/2))~4 ... 

+ ((23.45+dS(l))/47.5)"2.5 * (SinD(45-d.lat(l)/2))~4 ) ; */. (A-29) 

nHe  = nHe*dHe; */. (A-30) 

rho(l) = nH*wH + nHe*wHe + nN2*wN2 + n02*w02 + n0*w0; '/. (A-32) 

end; 

y,  
'/, Atmospheric Temperature for Altitudes between 90km and 125km 

'/,  Jacchia Equation A-16 
%  

function tZ = TempLowAlt( z, tX, t90 ) 

tl = 1.9*(tX-t90)/35; 

dZ = z - 125; 

t4 = 3*( tX - t90 - 2*tl*35/3 )/35~4; 

t3 = 4*35*t4/3 - tl/(3*35"2); 

tZ = tX + tl*dZ + t3*dZ."3 + t4*dZ."4; '/. (A-16) 

%  

'/, Mean Molecular Mass for Altitudes Less than 105km 

'/,  Jacchia Equation A-18 
•/t  

function eM = MolMassLowAlt( z ) 

dZ    = z - 100; 

dZSq  = dZ.*dZ; 
dZCu  = dZSq.*dZ; 

dZ4   = dZCu.*dZ; 
dZ5   = dZ4.*dZ; 

dZ6   = dZ5.*dZ; 
eM = 28.15204 - 0.085586*dZ + 1.2840e-4*dZSq - 1.0056e-5*dZCu - 1.0210e-5*dZ4 . 

+ 1.5044e-6*dZ5 + 9.9826e-8*dZ6; '/. (A-18) 

yt  
'/, Atmospheric Temperature for Altitudes greater than 125km 

'/,  Jacchia Equation A-17 
JJ  
function tZ = TempHighAlt( z, tX, t90, tE ) 

tl = 1.9*(tX-t90)/35; 
dZ = z - 125; 
a2 = 2*(tE-tX)/pi; 
tZ = tX + a2*atan( (tl.*dZ.*(l+(4.5e-6)*dZ."2.5)) ./a2 ); '/. (A-17) 
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X  

'/, Put ASinD(x) in the same quadrant as z 
•/,  

function y = ASinDSameQuadrantC a, z ) 

y = ASinD(a); 

1 = find( z > 90 ); 
if( ~isempty(z) ) 

y(l) = 180 - y(l); 
end 

1 = find( z < -90 ); 
if( "isempty(z) ) 

y(l) = -180 - y(l); 
end 

%  

'/, Limit x to the range xMin, xMax 
JJ  
function y = Range( x, xMin, xMax ) 

md = abs(xMax-xMin); 
y = rem( x, md ); 
1 = find( y < xMin ); 
if( "isempty(l) ) 

y(l) = y(l) + md; 
end 
1 = find( y > xMax ); 
if( "isempty(l) ) 

y(l) = y(l) - md; 
end 

5j  

'/, Trigonometric functions 
%  

function y = SinD( x ) 
y = sin( x * pi/180 ); 

function y = CosD( x ) 
y = cos( x * pi/180 ); 

function y = TanD( x ) 
y = tan( x * pi/180 ); 

function y = ASinD( x ) 
y = asin( x )*180/pi; 

function y = ATanD( x ) 
y = atan( x )*180/pi; 
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A. 18   AGravity.m 

function [aG, aS, aZ, aT] = AGravityC nZ, nT, r, lambda, theta, s, c, j, mu, a ) 
%  

'/,  Compute the gravitational acceleration in spherical 
'/,  coordinates. Acceleration vectors are a [ a(r), a(lambda) , a(theta) ]. 
'/.  The GEM-T1 coefficients should be unnormalized. 

*/. 
*/.  [s, c, j, mu, a] = LoadGEM( 1 ) 
'/. 
*/.  for k = IrkMax 
*/.    [a, aS, aZ, aT] = AGravityC nZ, nT, r, lambda, theta, s, c, j, mu, a ); 
'/.  end 
'/. 
'/.  than 
7. 
7.  for k = l:kMax 
7,    [a, aS, aZ, aT] = AGravityC nZ, nT, r, lambda, theta ); 
7.  end 
y, _  

7.  Form: 
7,  [aG, aS, aZ, aT] = AGravityC nZ, nT, r, lambda, theta, s, c, j, mu, a ) 
JJ  
7.   
7, Inputs 
7.   
7, nZ Highest zonal harmonic Cm = 0) Cempty gives the max #) 
7, nT Highest sector ial & tesseral harmonic Cempty gives max #) 
7, r Radius 
7. lambda Equatorial angle 
7. theta Angle from pole 
7. s C36.36) S terms 
7. c C36.36) C terms 
7. j C36) m = 0 terms 
7, mu Spherical gravitational potential 
7. a Earth radius 
7.   
7. Outputs 
7.   
7, aG C3,l)  Total gravitational acceleration m/sec"2 
7, aS C3,l)  Spherical term               m/sec"2 
7, aZ C3,l)  Zonal term                   m/sec~2 
7. aT C3,l)  Tesseral term                m/sec~2 
7. 
•/,  

yt  

'/,        Copyright 1996 Princeton Satellite Systems, Inc. All rights reserved. 
yt  

ifC nargin < 6 ) 
[s, c, j, mu, a] = LoadGEMC 1 ); 

end 
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if( isemptyC nZ ) ) 
nZ = 36; 

end 

if( isemptyC nT ) ) 
nT = 36; 

end 

'/, Check the indexes 
I  
if ( nZ > 36 ), 
error('Highest zonal harmonic is 36') 

end 

if ( nT > 36 ), 
error('Highest tesseral harmonic is 36') 

end 

if   ( r == 0 ), 
aG = [000]' 
aS = [000]' 
aZ = [000]' 
aT = [000]' 
return 

end 

'/, Spherical gravity radial term 
JJ  
muORSq = mu/r"2; 

'/, Set up the vectors and compute the spherical earth acceleration vector 
JJ  
aS = [ -muORSq; 0; 0 ] ; 
aZ = [ 0; 0; 0 ] ; 
aT = [ 0; 0; 0 ]; 

'/, Return if only the spherical earth model is requested 
y,  
if( nZ == 0 & nT == 0 ) 

aG = aS; 
return; 

end 

'/, Compute powers of a/r 
%  

zTMax = max(nZ,nT); 
aOR  = zeros(l.zTMax); 
aORK = zeros(1,zTMax); 

aOR(l) = a/r; 
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aORK(l) = 2*aOR(l); 
for n = 2:zTMax 

aOR (n) =     aOR(n-l)*aOR(l); 

aORK(n) = (n+l)*aOR(n); 

end 

aORK = -aORK; 

'/. PDAL returns p(n+l,m+l) 
•/,  

sTheta = sin(theta); 

[p, pD] = PDAL( zTMax, nT, cos(theta), -sTheta ); 

rZ     = 2:(nZ+l); 

'/, Compute the zonal accelerations 
%  

aZ = muORSq*[ sum( aORK(l:nZ).*j(l:nZ).* p(rZ,l)');... 

0;... 

sum( aOR(l:nZ).*j(l:nZ).*pD(rZ,l)')]; 

'/, Compute the tesseral and sectorial accelerations 
%  

rP     = 2:(nT+l); 
p     = p(rP,rP); 

pD     = pD(rP.rP); 

'/, sin(m*lambda), cos(m*lambda) 
%  

if( nT > 0 ) 
[sL, cL] = SCHarm( lambda, nT ); 

end 

'/. Sum over n 

'/.  
for n = l:nT 

m = l:n; 
cS = c(n,m).*cL(m) + s(n,m).*sL(m); 
aT = aT + [ aORK(n)*sum(p(n,m).*cS); 0; aOR(n)*sum(pD(n,m).*cS) ]; 

if( sTheta "= 0 ) 
cS   = m.*(s(n,m).*cL(m) - c(n,m).*sL(m)); 
aT(2) = aT(2) + aOR(n)*sum(p(n,m).*cS)/sTheta; 

end 

end 

aT = muORSq*aT; 

'/, Total acceleration 
x  

aG = aS + aZ + aT; 
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A. 19   JSp2Cart.m 
function jC = JSp2Cart( s ) 
X  
y, Computes the Jacobian for converting from spherical to 
*/, cartesian coordinates. Spherical coordinates are defined as 

'/, [r,theta,phi] where phi is the angle from the +z axis and theta 

'/, is the angle from +x in the xy-plane. 

'/. 
'/, x = r*cos (theta) *sin (phi) 

'/, y = r*sin(theta)*sin(phi) 

*/. z = r*cos(phi) 

% 
%  

*/,  Form: 

'/.  jC = JSp2Cart( s ) 
%  

'/. 
*/.   
'/, Inputs 

'/.   
'/, s (3,1) Spherical coordinates [r,theta,phi] 

'/. 

'/.    
'/,  Outputs 

'/.    
'/,  jC (3,3) Jacobian from spherical to cartesian 

'/, [ x/r x/theta x/phi ] 

*/. C y/r y/theta y/phi ] 
'/, [ z/r z/theta z/phi ] 

*/. 
•/,  

%  

'/,  Copyright 1993 Princeton Satellite Systems, Inc. All rights reserved. 
%  

r = s(l); 

cQ = cos(s(2)); 

sQ = sin(s(2)); 

cF = cos(s(3)); 
sF = sin(s(3)); 

jC = [[cq*sF;sQ*sF;cF],r*[-sQ*sF,cQ*cF;cQ*sF,sQ*cF;0,-sF]]; 
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Appendix B.   Sample Output 

B.l    Model Input File 

%xnnxxx%xxnnx%nnx%%%%%xn%%nxxMODEL.Mxnxxxxx%%%%n%x%xx%x%%xx%nxx%x%%x%xx 
'/. ENVIRONMENTAL DISTURBANCE MODELLING FOR LARGE INFLATABLE STRUCTURES 
'/. CAPT DONALD J DAVIS, AFIT/ENY, GSO-OIM 
X 
7. NEWMODEL.M — THIS FILE PROVIDES THE TEMPLATE FOR INPUTTING MODEL DATA INTO 
X FORCES.M FOR ANALYSIS. 
X 
*/. IMPORTANT! !! !—FORCES.M SEARCHES FOR AND LOADS A FILE CALLED MODEL.M. BEFORE 
*/. ENTERING A NEW FINITE ELEMENT MODEL, ENSURE PREVIOUS MODELS ARE RENAMED AND 
'/. BACKED UP. THEN SAVE THIS FILE AS MODEL.M BEFORE ENTERING ANY DATA INTO THE 
'/. TEMPLATE 

XXXXXXXXXXXXXXXXXXXINPUT CLASSICAL ORBITAL ELEMENTSXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
X 
'/. DESIGNATE ORBIT OF INTEREST. NON-ZERO VALUES MUST BE ENTERED FOR ECCENTRICITY 
'/. AND INCLINATION, (i.e.  circular orbit— e=0.OOOOOOl) 

a=6878.135; '/.semi-major axis  (km) 
e=0.0000000001; '/.eccentricity 
xi=18.5; '/.inclination (degrees) 
argp=245.5774; '/.argument of perigee  (degrees) 
anode=31.5195; '/.right ascension of the ascending node 
To=[2000,1,12,21,58,23.86] ;'/.time of perigee passage[year month day hour minute sec] 

Per=2*pi*sqrt((a~3)/3.98601e5);    '/.orbital period  (sees) 

XXXXXXXXXXXXXINPUT SPACE ENVIRONMENTAL DATA'/.'/.'/.'/.XXXXXXXXXXXXX'/.XX'/.XXXXXXXX'/.X'/.XXXXXXX 
X 
X  THIS DATA CAN BE FOUND ON THE NOAA SPACE ENVIRONMENT CENTER WEBSITE 
'/,  http: //www. sec. noaa. gov/data/geomag. html 
X  THESE INDICIES ARE USED IN ATMOSPHERIC DENSITY CALCULATIONS 

Ap=12;     '/.Planetary geomagnetic index 6.7 hours before the calculation 
f 10=140;   '/.Daily 10.7cm solar flux (e-22 watts/m"2/cycle/sec) 
fhat=181.7; '/.81-day mean of f (e-22 watts/m"2/cycle/sec) 
f400=157.4; '/.fhat 400 days before computation date 

•/.•/.•/.'/.•/.'/.'/.'/.•/.•/.•/.'/.•/.•/.•/.•/.•/.•/.•/.•/.•/.'/.•/.XXX'/.XSIMULATION RUN PARAMETERS'/.'/.'/.'/.X'/.'/.'/.'/.X'/.XXX'/.XXX'/.XX'/.XXXXX'/.X 

Tint=[2000,l,28,13,25,41] ; '/.Start time for analysis [year month day hour min sec] 
freq=4; '/.frequency of calculations (looks per orbit) 
dur=l; '/.duration of sim run (# of orbital periods) 
picnum=4; '/,# of graphic snapshots during sim run - graphic output 

Xwill be displayed at evenly spaced intervals 
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iunnnnnnnnnn%nnnwxi. 
•/. 
•/. THE DATA STRUCTURE "MAT" CONTAINS THE MATERIAL PROPERTIES USED IN THE FINITE 
*/. ELEMENT MODEL. THE STRUCTURE CAN BE UPDATED AS NECESSARY FOR EACH MODEL BY 
'/. ADDING NEW ELEMENTS. ENSURE PROPERTIES ARE ENTERED IN THE APPROPRIATE UNITS. 
'/. EACH ELEMENT OF THE DATA STRUCTURE HAS SIX FIELDS 

'/. 
*/. MAT(k).NAME -TRADE NAME OF THE MATERIAL USED. 
'/. MAT(k).DENS -THE DENSITY OF THE MATERIAL (KG/M~3) 
'/. MAT(k).REFL -THE COEFFICIENT OF REFLECTION OF THE MATERIAL IN THE SOLAR 
•/, SPECTRUM(UV-VISIBLE), UNITLESS, 0-1 
*/. MAT(k).ABSP -SOLAR ABSORPTIVITY, UNITLESS, 0-1 
% MAT(k).SPEC -THE SPECULAR REFLECTION COEFFICIENT, THE AMOUNT OF THE 
7, REFLECTED LIGHT WHICH IS REFLECTED SPECULARLY, UNITLESS,0-1 
'/. MAT(k).EMM  -THERMAL EMISSIVITY, UNITLESS, 0-1 

'/. 
'/. k IS THE MATERIAL INDEX, USED TO ACCESS THE CORRECT ELEMENT OF THE STRUCTURE 

mat(l 
mat(l 
mat(l 
mat(l 
mat(l 
mat(l 

mat (2 
mat (2 
mat (2 
mat (2 
mat (2 
mat (2 

mat (3 
mat (3 
mat (3 
mat (3 
mat (3 
mat (3 

.name='kapton'; '/.assumed values 

.dens=1420; 

.refl=0.5 

.absp=0.5 

.spec=1.0 

.emm=0.5; 

.name='metallicized mylar';    '/.assumed values 

.dens=1400; 

.refl=0.9; 

.absp=0.1 

.spec=0.8 

.emm=0.6; 

.name='neoprene coated kevlar'; 

.dens=1360; 

.refl=0.631; 

.absp=0.369; 

.spec=0.5; '/.assumed value 

.emm=0.88; 

•/.•/.•/.•/.•/.'/.•/.•/.•/.'/.•/.•/.•/.•/.•/.•/.'/.•/.•/.•/.•/.'/.•/.•/.•/.•/.•/.'/.STRUCTURE C0MP0NENTS'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.y.'/.'/.,/.7.'/.'/.'/.'/.'/.'/.,/.y.,/.,/.,/.,/.y.'/. 

IN ORDER TO SIMPLIFY DESCRIPTION OF COMPLEX BODIES, THE SATELLITE STRUCTURE 
CAN BE ANALYZED AS A COLLECTION OF BASIC 3-D SHAPES (i.e. cylinder,sphere,box) 
FOR EACH COMPONENT, A LOCAL COORDINATE SYSTEM SHOULD BE DEFINED WITH ITS ORGIN 
INSIDE THE COMPONENT (THE CENTROID IS A CONVENIENT CHOICE. THE LOCATION OF 
EACH NODE IN THAT COMPONENT CAN THEN BE DESCRIBED IN TERMS OF THE LOCAL 
REFERENCE FRAME. ONE COORDINATE SYSTEM IN THE BODY MUST BE DESIGNATED AS THE 
BASE REFERENCE FRAME. THE LOCATION AND ORIENTATION OF ALL LOCAL COORDINATE 
SYSTEMS MUST THEN BE DESCRIBED RELATIVE TO THE BASE FRAME. THE COMPONENT DATA 
STRUCTURE BELOW HOLDS THE DATA WHICH DESCRIBES EACH COMPONENT OF THE SATELLITE 
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SYSTEM, INCLUDING THE LOCATION AND ORIENTATION OF THE LOCAL COORDINATE SYSTEM. 

CAUTION: THE FIRST ELEMENT OF THE DATA STRUCTURE MUST CONTAIN THE BASE FRAME 
FOR THE SYSTEM! 

EACH ELEMENT OF THE COMPONENT DATA STRUCTURE HAS 4 FIELDS. 

COMP(i).SHAPE   THIS DESCRIPTOR OF THE COMPONENT SERVES ONLY AS AN AID FOR THE 
USER TO AVOID CONFUSION IN MULTI-COMPONENT MODELS (ie LONG BOX, 
CYLINDER, SPHERE1, SPHERE2) 

COMP(i).ORGIN   A 3X1 VECTOR CONTAINING THE CARTESIAN COORDINATES [X;Y;Z] OF 
THE LOCAL COORDINATE SYSTEM'S ORGIN RELATIVE TO THE BASE FRAME. 
DISTANCES MUST BE ENTERED IN METERS. SINCE THE FIRST ELEMENT 
OF THE STRUCTURE CONTAINS THE BASE FRAME, ITS ORGIN IS ALWAYS 
[0;0;0] 

COMP(i).EULER   THIS IS A 3X1 VECTOR WHICH CONTAINS THE EULER ROTATION ANGLES 
[THETA1;THETA2;THETA3] REQUIRED TO TRANSFORM FROM THE BASE 
FRAME TO THE LOCAL FRAME USING AN EULER 1-2-3 SEQUENCE. ANGLES 
ARE INPUT IN DEGREES. SINCE THE FIRST ELEMENT CONTAINS THE 
BASE FRAME, ITS ROTATION ANGLES WILL ALWAYS BE [0;0;0] 

COMP(i).TYPE THIS FIELD ALLOWS THE USER TO SELECT WHICH TYPE OF COORDINATES 
WILL BE USED TO LOCATE NODES WITHIN EACH COMPONENT. 

1-CARTESIAN COORDINATES 
2-CYLINDRICAL COORDINATES 
3-SPHERICAL COORDINATES 
4-TOROIDAL COORDINATES 

i IS THE COMPONENT INDEX, USED TO ACCESS THE CORRECT ELEMENT OF THE STRUCTURE 

len=2*cos(pi/6); 
crad=2*sin(pi/6); 

comp(l).shape='spherel'; 
comp(l).orgin=[0;0;0]; 
comp(l).euler=[0;0;0]; 
comp(l).type=3; 

comp(2).shape='cylinder'; 
comp(2).orgin= [0;0;2+len]; 
comp(2).euler=[0;0;0]; 
comp(2).type=2; 

comp(3).shape='sphere2'; 
comp(3).orgin=[0;0;4+2*len]; 
comp(3).euler=[0;0;0]; 
comp(3).type=3; 
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yx/.y.y.y.y.y.y.'/.'/.'/.'/.y.y.r/.'/x/.y.'/.'/.y.y.y.oRiENTATioN OF THE BODY IN oRBiTyx/.yx/x/x/x/x/x/x/x/x/x/. 
y. 

THE ORIENTATION OF THE BODY IN ORBIT MUST BE DESCRIBED IN TERMS OF AN EULER 
1-2-3 ROTATION FROM THE ORBIT FRAME TO THE BODY-FIXED FRAME. THE BODY-FIXED 
FRAME IS THE BASE FRAME DEFINED IN THE FIRST ELEMENT OF THE COMP DATA STRUCTURE. 
THE ORBIT FRAME{a} IS ALIGNED SO THAT THE   al AXIS IS ALWAYS ALONG THE S/C 
RADIUS VECTOR, a3 IS THE ORBIT NORMAL, AND FOR CIRCULAR ORBITS, a2 IS ALIGNED 
WITH THE VELOCITY VECTOR. ANGLES ARE INPUT IN DEGREES. 

phil=-90; 
phi2=90; 
phi3=0; 

y////////////////////.y.y.y.y.y.yx/.y.y.yx/.y.y.y.DEFiNENODE LocATioNsrammmnm%%mm%nnm% 
•/. 
•/. THE NODE DATA STRUCTURE HOLDS THE LOCATION OF EACH NODE USED IN THE FINITE 
•/. ELEMENT MODEL. EACH NODE ELEMENT HAS TWO FIELDS 

'/. 
'/. NODE(j).COORD THIS FIELD HOLDS THE COORDINATES FOR THE NODE IN TERMS OF THE 
•/. LOCAL REFERENCE FRAME.  IT IS EITHER A 3X1 OR 4X1 VECTOR, 
•/, DEPENDING ON THE TYPE OF COORDINATE SYSTEM USED. COORDINATES 
•/, ARE ENTERED AS FOLLOWS: 

y. 
•/, CARTESIAN     [X;Y;Z] 
•/, CYLINDRICAL   [r;theta;z] 
•/, SPHERICAL     [r;theta;phi] 
'/, TOROIDAL      [R;theta;r;phi] 

'/. 
'/. In cylindrical and spherical coordinates, theta is the angle measured counter- 
'/, clockwise from the positive x axis to the projection of the radius vector into 
'/, the x-y plane. Phi is the angle between the positive z axis and the radius 
*/, vector.  In toroidal coordinates, R is the radius of curvature of the torus, 
'/. and r is the cross-sectional radius. The coordinate system has its orgin at 
'/, the center of mass and is aligned so that the z axis is the maximum moment of 
'/, inertia axis and the x-y plane bisects the torus (see Davis Thesis, Chap 4 or 
*/, any mechanics textbook for a picture) . Theta is the angle measured counter- 
*/, clockwise from the positive x axis to R. Phi is the angle meaured clockwise 
'/, from the positive z axis to r. 
•/. 
•/. ALL DISTANCES ARE ENTERED IN METERS AND ANGLES ARE INPUT IN DEGREES! 

y. 
•/. NODE(j).COMP  THIS FIELD TELLS THE CODE WHICH COMPONENT OF THE MODEL THE NODE 
•/, IS LOCATED ON AND THEREFORE WHICH TYPE OF COORDINATES ARE USED 
•/, TO DEFINE IT. FOR NODES LOCATED AT THE JUNCTION OF TWO 
•/, COMPONENTS, EITHER COMPONENT MAY BE SELECTED, WHICHEVER HAS THE 
•/, MORE CONVENIENT COORDINATE SYSTEM FOR DESCRIBING THE NODE LOCATION. 
•/, THE ENTRY FOR THIS FIELD IS i, WHERE i IS THE COMPONENT INDEX 
•/, DEFINED IN THE COMP DATA STRUCTURE 

•/. 
•/. j IS THE NODE INDEX, USED TO IDENTIFY THE NODE 
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node CD- coord=[2;0;150] ; 
node CD. comp=l; 

node [2). coord=[2;30;: L50]; 
node [2). comp=l; 

node [3). coord=[2;60;: L50]; 
node (3). comp=l; 

node (4). coord=[2;90;: L50]; 
node C4). comp=l; 

node (5). coord=[2;120 150]; 
node (5). comp=l; 

node (6). coord=[2;150 150]; 
node (6). comp=l; 

node C7). coord=[2;180 150]; 
node (7). comp=l; 

node C8). coord=[2;210 150]; 
node [8). comp=l; 

node (9). coord=[2;240 150]; 
node [9). comp=l; 

node CIO) .coord=[2;270;150] ; 
node CIO) .comp=l; 

node Cll) .coord=[2;300;150]; 
node CU) .comp=l; 

node C12) .coord=[2;330;150]; 
node C12) .comp=l; 

node C13) .coord=[2;0;: L20]; 
node C13) .comp=l; 

node C14) .coord=[2;30 120]; 
node C14) .comp=l; 

node C15) .coord= [2;60 120]; 
node C15) .comp=l; 

node C16) .coord=[2;90 120]; 
node C16) .comp=l; 

node C17) .coord=[2;120;120]; 
node C17) .comp=l; 
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node(18 

node(18 

node(19 
node(19 

node(20 

node(20 

node(21 

node(21 

node(22 
node(22 

node(23 
node(23 

node(24 

node(24 

node(25 

node(25 

node(26 

node(26 

node(27 

node(27 

node(28 

node(28 

node(29 

node(29 

node(30 

node(30 

node(31 

node(31 

node(32 

node(32 

node(33 
node(33 

node(34 

node(34 

.coord=[2;150;120]; 

.comp=l; 

.coord=[2;180;120]; 

.comp=l; 

.coord=[2;210;120]; 

.comp=l; 

.coord=[2;240;120]; 

.comp=l; 

.coord=[2;270;120]; 

.comp=l; 

.coord=[2;300;120]; 
,comp=l; 

.coord=[2;330;120]; 

.comp=l; 

.coord=[2;0;90]; 

.comp=l; 

.coord=[2;30;90]; 

.comp=l; 

.coord=[2;60;90]; 

.comp=l; 

.coord=[2;90;90]; 

.comp=l; 

.coord=[2;120;90]; 

.comp=l; 

.coord=[2;150;90]; 

,comp=l; 

.coord=[2;180;90]; 

.comp=l; 

.coord=[2;210;90]; 

.comp=l; 

.coord=[2;240;90]; 

.comp=l; 

.coord=[2;270;90]; 

.comp=l; 
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node(35 

node(35 

node(36 
node(36 

node(37 

node(37 

node(38 

node(38 

node(39 
node(39 

node(40 
node(40 

node(41 
node(41 

node(42 
node(42 

node(43 
node(43 

node(44 
node(44 

node(45 

node(45 

node(46 
node(46 

node(47 
node(47 

node(48 

node(48 

node(49 
node(49 

node(50 
node(50 

node(51 
node(51 

.coord=[2;300;90]; 

.comp=l; 

.coord=[2;330;90]; 

.comp=l; 

.coord=[2;0;60]; 

.comp=l; 

.coord=[2;30;60]; 

.comp=l; 

.coord=[2;60;60]; 

.comp=l; 

.coord=[2;90;60]; 

.comp=l; 

.coord=[2;120;60]; 

.comp=l; 

.coord=[2;150;60]; 

.comp=l; 

.coord=[2;180;60]; 

.comp=l; 

.coord=[2;210;60]; 

.comp=l; 

.coord=[2;240;60]; 

.comp=l; 

.coord=[2;270;60]; 

.comp=l; 

.coord=[2;300;60]; 

.comp=l; 

.coord=[2;330;60]; 

.comp=l; 

.coord=[0;0;0]; 

.comp=l; 

.coord=[2;0;180]; 

.comp=l; 

.coord=[crad;0;-2]; 

.comp=2; 
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node(52 
node(52 

node(53 
node(53 

node(54 
node(54 

node(55 
node(55 

node(56 
node(56 

node(57 
node(57 

node(58 
node(58 

node(59 
node(59 

node(60 
node(60 

node(61 
node(61 

node(62 
node(62 

node(63 
node(63 

node(64 
node(64 

node(65 
node(65 

node(66 
node(66 

node(67 
node(67 

node(68 
node(68 

.coord=[crad;30;-2]; 

.comp=2; 

.coord=[crad;60;-2]; 

.comp=2; 

.coord=[crad;90;-2]; 

.comp=2; 

.coord=[crad;120;-2]; 

.comp=2; 

.coord=[crad;150;-2]; 

.comp=2; 

.coord=[crad;180;-2]; 

.comp=2; 

.coord=[crad;210;-2]; 

.comp=2; 

.coord=[crad;240;-2]; 

.comp=2; 

.coord=[crad;270;-2]; 

.comp=2; 

.coord=[crad;300;-2]; 

.comp=2; 

.coord=[crad;330;-2]; 

.comp=2; 

.coord=[crad;0;-l]; 

.comp=2; 

.coord=[crad;30;-1]; 

.comp=2; 

.coord=[crad;60;-1]; 

.comp=2; 

.coord=[crad;90;-1]; 

.comp=2; 

.coord=[crad;120;-l]; 

.comp=2; 

.coord=[crad;150;-1]; 

.comp=2; 
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node(69 
node(69 

node(70 
node(70 

node(71 
node(71 

node(72 
node(72 

node(73 
node(73 

node(74 
node(74 

node(75 
node(75 

node(76 
node(76 

node(77 
node(77 

node(78 
node(78 

node(79 
node(79 

node(80 
node(80 

node(81 
node(81 

node(82 
node(82 

node(83 
node(83 

node(84 
node(84 

node(85 
node(85 

.coord=[crad;180;-l]; 

.comp=2; 

. coord=[crad;210;-1]; 

.comp=2; 

.coord=[crad;240;-1]; 

.comp=2; 

.coord=[crad;270;-l]; 

.comp=2; 

.coord=[crad;300;-l]; 

.comp=2; 

.coord=[crad;330;-1]; 

.comp=2; 

.coord=[crad;0;0]; 

.comp=2; 

.coord=[crad;30;0]; 

.comp=2; 

.coord=[crad;60;0]; 

.comp=2; 

.coord=[crad;90;0]; 

.comp=2; 

. coord=[crad;120;0]; 

.comp=2; 

.coord=[crad;150;0]; 

.comp=2; 

.coord=[crad;180;0]; 

.comp=2; 

.coord=[crad;210;0]; 

.comp=2; 

.coord=[crad;240;0]; 

.comp=2; 

.coord=[crad;270;0]; 

.comp=2; 

.coord=[crad;300;0]; 

.comp=2; 
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node(86 
node(86 

node(87 
node(87 

node(88 
node(88 

node(89 
node(89 

node(90 
node(90 

node(91 
node(91 

node(92 
node(92 

node(93 
node(93 

node(94 
node(94 

node(95 
node(95 

node(96 
node(96 

node(97 
node(97 

node(98 
node(98 

node(99 
node(99 

.coord=[crad;330;0]; 

.comp=2; 

.coord=[crad;0;1]; 

.comp=2; 

.coord=[crad;30;1]; 

.comp=2; 

.coord=[crad;60;1]; 

.comp=2; 

.coord=[crad;90;1]; 

.comp=2; 

.coord=[crad;120;1]; 

.comp=2; 

.coord=[crad;150;1]; 

.comp=2; 

.coord=[crad;180;1]; 

.comp=2; 

.coord=[crad;210;1]; 

.comp=2; 

.coord=[crad;240;1]; 

.comp=2; 

.coord=[crad;270;1]; 

.comp=2; 

.coord=[crad;300;1]; 

.comp=2; 

.coord=[crad;330;1]; 

.comp=2; 

.coord=[crad;0;2]; 

.comp=2; 

node(100).coord=[crad;30;2]; 
node(100).comp=2; 

node(lOl).coord=[crad;60;2]; 
node(101).comp=2; 

node(102).coord=[crad;90;2]; 
node(102).comp=2; 
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node :i03) 

node :i03) 

node 1104) 

node U04) 

node :i05) 

node U05) 

node :i06) 

node :io6) 

node 1107) 

node :io7) 

node :io8) 
node :io8) 

node :io9) 
node :io9) 

node :no) 
node :no) 

node :ni) 
node! :ni) 

nodel :n2) 
node! :ii2) 

nodel :n3) 
nodel :ii3) 

nodel :ii4) 
node :ii4) 

node :ii5) 
nodel '115) 

node 116) 
nodel 116) 

nodel 117) 
nodel 117) 

nodel 118) 
nodel 118) 

nodel 119) 
nodel 119) 

.coord=[crad;120;2]; 

.comp=2; 

.coord=[crad;150;2]; 

.comp=2; 

.coord=[crad;180;2]; 

.comp=2; 

.coord=[crad;210;2]; 

.comp=2; 

.coord=[crad;240;2]; 

.comp=2; 

.coord=[crad;270;2]; 

.comp=2; 

.coord=[crad;300;2]; 

.comp=2; 

.coord=[crad;330;2]; 

.comp=2; 

.coord=[2;0;120]; 

.comp=3; 

.coord=[2;30;120]; 

.comp=3; 

.coord=[2;60;120]; 

.comp=3; 

.coord=[2;90;120]; 

.comp=3; 

.coord=[2;120;120]; 

.comp=3; 

.coord=[2;150;120]; 

.comp=3; 

.coord=[2;180;120]; 

.comp=3; 

.coord=[2;210;120]; 

.comp=3; 

.coord=[2;240;120]; 

.comp=3; 
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node [120) 

node [120) 

node [121) 

node [121) 

node [122) 

node [122) 

node [123) 

node [123) 

node [124) 

node [124) 

node [125) 
node [125) 

node [126) 
node [126) 

node [127) 

node [127) 

node [128) 

node [128) 

node [129) 
node! [129) 

node( [130) 
node! :i3o) 

node :i3D 
node '131) 

node! 132) 

node! 132) 

node! 133) 
node! 133) 

node( 134) 
node( 134) 

node( 135) 
node 135) 

node( 136) 
node( 136) 

.coord=[2;270;120]; 

.comp=3; 

.coord=[2;300;120]; 

.comp=3; 

.coord=[2;330;120]; 

.comp=3; 

.coord=[2;0;90]; 

.comp=3; 

.coord=[2;30;90]; 

.comp=3; 

.coord=[2;60;90]; 

.comp=3; 

.coord=[2;90;90]; 

.comp=3; 

.coord=[2;120;90]; 

.comp=3; 

.coord=[2;150;90]; 

.comp=3; 

.coord=[2;180;90]; 

.comp=3; 

.coord=[2;210;90]; 

.comp=3; 

.coord=[2;240;90]; 

.comp=3; 

.coord=[2;270;90]; 

.comp=3; 

.coord=[2;300;90]; 

.comp=3; 

.coord=[2;330;90]; 

.comp=3; 

.coord=[2;0;60]; 

.comp=3; 

.coord=[2;30;60]; 

.comp=3; 
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node (137) 

node (137) 

node (138) 

node (138) 

node (139) 
node (139) 

node (140) 

node (140) 

node (141) 

node (141) 

node (142) 
node (142) 

node (143) 
node (143) 

node (144) 

node (144) 

node (145) 

node (145) 

node (146) 
node (146) 

node! (147) 

node( (147) 

node! (148) 
node( (148) 

node '149) 

node! 149) 

node! 150) 
node! 150) 

node 151) 
node( 151) 

node( 152) 

node( 152) 

node( 153) 
nodei 153) 

.coord=[2;60;60]; 

.comp=3; 

.coord=[2;90;60]; 

.comp=3; 

.coord=[2;120;60]; 

.comp=3; 

.coord=[2;150;60]; 

.comp=3; 

.coord=[2;180;60]; 

.comp=3; 

.coord=[2;210;60]; 

.comp=3; 

.coord=[2;240;60]; 

.comp=3; 

.coord=[2;270;60]; 

.comp=3; 

.coord=[2;300;60]; 

.comp=3; 

.coord=[2;330;60]; 

.comp=3; 

.coord=[2;0;30]; 

.comp=3; 

.coord=[2;30;30]; 

.comp=3; 

.coord=[2;60;30]; 

.comp=3; 

.coord=[2;90;30]; 

.comp=3; 

.coord=[2;120;30]; 

.comp=3; 

.coord=[2;150;30]; 

.comp=3; 

.coord=[2;180;30]; 

.comp=3; 
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node(154).coord=[2;210;30]; 
node(154).comp=3; 

node(155).coord=[2;240;30]; 
node(155).comp=3; 

node(156).coord= [2;270;30]; 
node(156).comp=3; 

node(157).coord=[2;300;30]; 
node(157).comp=3; 

node(158).coord=[2;330;30]; 
node(158).comp=3; 

node(159).coord=[2;0;0]; 
node(159).comp=3; 

node(160).coord=[0;0;0]; 
node(160).comp=3; 

%%m%%%m%m%%m%%mramn%XDEFiNE ELEMEircsmmmmmmmmnmnx 
•/. 
7. THE INELEMENT DATA STRUCTURE DEFINES EACH FINITE ELEMENT IN THE MODEL. THE CODE 
'/. CAN ACCEPT POINT MASSES (1 node), LINE MASSES (2 nodes), TRIANGULAR ELEMENTS 
*/. (3 nodes), AND QUADRILATERAL ELEMENTS (4 nodes). FOR QUADRILATERALS, AT LEAST 
'/. ONE PAIR OF OPPOSING SIDES MUST BE PARALLEL. THE INELEMENT DATA STRUCTURE HAS 
'/. 4 FIELDS: 
'/. 
'/. INELEMENT(m).NODES  THIS FIELD HOLDS THE INDEX NUMBERS OF THE NODES BOUNDING 
'/, THE ELEMENT (ie [5,6,7,8]). IT IS A ROW VECTOR WITH 1,2,3 
'/, OR 4 ELEMENTS DEPENDING ON WHAT TYPE OF ELEMENT IS BEING 
'/, DEFINED. ANY OF THE NODES MAY BE ENTERED AS THE FIRST 
'/, NODE IN THIS FIELD. THE REMAINING NODES MUST THEN BE 
•/, DESCRIBED IN ORDER GOING EITHER CLOCKWISE OR COUNTER- 
'/, CLOCKWISE AROUND THE ELEMENT. FOR TRIANGULAR ELEMENTS, 
7, EITHER DIRECTION IS ACCEPTABLE. FOR QUADRILATERAL ELEMENTS 
•/, ENSURE THE ORDERING OF THE NODES IS SUCH THAT THE LINE 
•/. BETWEEN THE FIRST AND SECOND NODES AND THE LINE BETWEEN THE 
7. THIRD AND FOURTH NODES FORM PARALLEL OPPOSING SIDES. 
*/. INELEMENT(m).MAT    ENTER THE MATERIAL INDEX, k, CORRESPONDING TO THE MATERIAL 
•/, OUT OF WHICH THE ELEMENT IS COMPOSED 
'/. INELEMENT(m).THICK  ENTER THE THICKNESS OF THE ELEMENT IN METERS.  FOR POINT 
'/, AND LINE MASSES, ENTER THE TOTAL MASS OF THE ELEMENT (KG) 
*/. IN THIS FIELD 
7. INELEMENT(m).COMP   ENTER THE INDEX NUMBER, i, CORRESPONDING TO WHICH COMPONENT 
7. THE ELEMENT IS LOCATED ON. 
7. 
7. m IS THE ELEMENT INDEX NUMBER, USED TO IDENTIFY THE ELEMENT 

B-14 



inelement(1 
inelement(1 
inelement(1 

inelement(1 

inelement(2 
inelement(2 
inelement(2 

inelement(2 

inelement(3 

inelement(3 
inelement(3 
inelement(3 

inelement(4 
inelement(4 
inelement(4 
inelement(4 

inelement(5 
inelement(5 

inelement(5 
inelement(5 

inelement(6 
inelement(6 
inelement(6 
inelement(6 

inelement(7 
inelement(7 
inelement(7 
inelement(7 

inelement(8 
inelement(8 
inelement(8 
inelement(8 

inelement(9 
inelement(9 
inelement(9 
inelement(9 

.nodes=[49]; 

.mat=l; 

.thick=20; 

.comp=l; 

.nodes=[50,l,2]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[50,2,3]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[50,3,4]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[50,4,5]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[50,5,6]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[50,6,7]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[50,7,8]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[50,8,9]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

inelement(10).nodes=[50,9,10]; 
inelement(10).mat=2; 
inelement(10).thick=0.000075; 
inelement(10).comp=l; 
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inelement( [ID 
inelement ( [ID 
inelement( :n) 
inelement( :n) 

inelement( :i2) 
inelement( :i2) 
inelement( :i2) 
inelement{ :i2) 

inelement( :i3) 
inelement :i3) 
inelement :i3) 
inelement( :i3) 

inelement :i4) 
inelement :i4) 
inelement :i4) 
inelement :i4) 

inelement :i5) 
inelement :i5) 
inelement :i5) 
inelement :i5) 

inelement :i6) 
inelement :i6) 
inelement :i6) 
inelement :i6) 

inelement :i7) 
inelement :i7) 
inelement :i7) 
inelement :i7) 

inelement :i8) 
inelement :i8) 
inelement :i8) 
inelement :i8) 

inelement :i9) 
inelement :i9) 
inelement :i9) 
inelement :i9) 

inelement :2o) 
inelement :20) 
inelement :2o) 
inelement :2o) 

.nodes=[50,10,ll]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[50,ll,12]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[50,12,l]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[l,2,14,13]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[2,3,15,14]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[3,4,16,15]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[4,5,17,16]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[5,6,18,17]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[6,7,19,18]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[7,8,20,19]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 
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inelement(21 

inelement(21 

inelement(21 

inelement(21 

inelement(22 
inelement(22 

inelement(22 

inelement(22 

inelement(23 

inelement(23 

inelement(23 
inelement(23 

inelement(24 

inelement(24 

inelement(24 

inelement(24 

inelement(25 

inelement(25 

inelement(25 

inelement(25 

inelement(26 

inelement(26 
inelement(26 

inelement(26 

inelement(27 

inelement(27 

inelement(27 
inelement(27 

inelement(28 

inelement(28 

inelement(28 
inelement(28 

inelement(29 

inelement(29 

inelement(29 

inelement(29 

inelement(30 
inelement(30 

inelement(30 

inelement(30 

.nodes=[8,9,21,20]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[9,10,22,21]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[10,ll,23,22]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[11,12,24,23] ; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[12,1,13,24]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[13,14,26,25]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[14,15,27,26]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[15,16,28,27]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[16,17,29,28]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[17,18,30,29]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 
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inelement(31 

inelement(31 

inelement(31 
inelement(31 

inelement(32 

inelement(32 

inelement(32 

inelement(32 

inelement(33 

inelement(33 

inelement(33 

inelement(33 

inelement(34 
inelement(34 

inelement(34 

inelement(34 

inelement(35 

inelement(35 
inelement(35 

inelement(35 

inelement(36 

inelement(36 

inelement(36 
inelement(36 

inelement(37 

inelement(37 

inelement(37 
inelement(37 

inelement(38 

inelement(38 

inelement(38 
inelement(38 

inelement(39 

inelement(39 

inelement(39 

inelement(39 

inelement(40 
inelement(40 

inelement(40 

inelement(40 

.nodes=[18,19,31,30]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[19,20,32,31]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[20,21,33,32]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[21,22,34,33]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[22,23,35,34]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[23,24,36,35]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[24,13,25,36]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[25,26,38,37]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[26,27,39,38]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes= [27,28,40,39]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 
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inelement(41 

inelement(41 

inelement(41 
inelement(41 

inelement(42 

inelement(42 

inelement(42 

inelement(42 

inelement(43 

inelement(43 

inelement(43 

inelement(43 

inelement(44 

inelement(44 

inelement(44 

inelement(44 

inelement(45 

inelement(45 

inelement(45 

inelement(45 

inelement(46 

inelement(46 
inelement(46 

inelement(46 

inelement(47 

inelement(47 

inelement(47 
inelement(47 

inelement(48 

inelement(48 

inelement(48 
inelement(48 

inelement(49 
inelement(49 

inelement(49 
inelement(49 

inelement(50 
inelement(50 

inelement(50 

inelement(50 

.nodes=[28,29,41,40]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[29,30,42,41]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[30,31,43,42]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[31,32,44,43]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[32,33,45,44]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[33,34,46,45]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[34,35,47,46]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes= [35,36,48,47]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[36,25,37,48]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[37,38,52,51]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

B-19 



inelement(51 

inelement(51 

inelement(51 

inelement(51 

inelement(52 
inelement(52 

inelement(52 

inelement(52 

inelement(53 

inelement(53 

inelement(53 

inelement(53 

inelement(54 

inelement(54 

inelement(54 

inelement(54 

inelement(55 

inelement(55 
inelement(55 

inelement(55 

inelement(56 

inelement(56 

inelement(56 

inelement(56 

inelement(57 

inelement(57 

inelement(57 

inelement(57 

inelement(58 
inelement(58 

inelement(58 

inelement(58 

inelement(59 

inelement(59 

inelement(59 

inelement(59 

inelement(60 

inelement(60 

inelement(60 
inelement(60 

.nodes=[38,39,53,52]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[39,40,54,53]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[40,41,55,54]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[41,42,56,55]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[42,43,57,56]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[43,44,58,57]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[44,45,59,58]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[45,46,60,59]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[46,47,61,60]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[47,48,62,61] ; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

B-20 



inelement(61 

inelement(61 

inelement(61 

inelement(61 

inelement(62 
inelement(62 

inelement(62 

inelement(62 

inelement(63 

inelement(63 

inelement(63 

inelement(63 

inelement(64 
inelement(64 

inelement(64 

inelement(64 

inelement(65 

inelement(65 

inelement(65 

inelement(65 

inelement(66 

inelement(66 

inelement(66 
inelement(66 

inelement(67 

inelement(67 

inelement(67 

inelement(67 

inelement(68 

inelement(68 

inelement(68 
inelement(68 

inelement(69 

inelement(69 
inelement(69 

inelement(69 

inelement(70 
inelement(70 

inelement(70 

inelement(70 

.nodes=[48,37,51,62]; 

.mat=2; 

.thick=0.000075; 

.comp=l; 

.nodes=[51,52,64,63]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[52,53,65,64]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[53,54,66,65]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[54,55,67,66]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[55,56,68,67]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[56,57,69,68]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[57,58,70,69]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[58,59,71,70]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[59,60,72,71]; 

.mat=3; 

.thick=0.002; 

.comp=2; 
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inelement(71 

inelement(71 

inelement(71 

inelement(71 

inelement(72 

inelement(72 

inelement(72 

inelement(72 

inelement(73 

inelement(73 

inelement(73 
inelement(73 

inelement(74 
inelement(74 

inelement(74 
inelement(74 

inelement(75 

inelement(75 

inelement(75 

inelement(75 

inelement(76 

inelement(76 
inelement(76 

inelement(76 

inelement(77 
inelement(77 

inelement(77 
inelement(77 

inelement(78 

inelement(78 

inelement(78 
inelement(78 

inelement(79 

inelement(79 

inelement(79 

inelement(79 

inelement(80 

inelement(80 

inelement(80 

inelement(80 

.nodes=[60,61,73,72]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[61,62,74,73]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[62,51,63,74]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[63,64,76,75]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[64,65,77,76]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[65,66,78,77]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[66,67,79,78]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[67,68,80,79]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[68,69,81,80]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[69,70,82,81]; 

.mat=3; 

.thick=0.002; 

.comp=2; 
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inelement(81 

inelement(81 

inelement(81 

inelement(81 

inelement(82 

inelement(82 

inelement(82 

inelement(82 

inelement(83 
inelement(83 

inelement(83 

inelement(83 

inelement(84 

inelement(84 

inelement(84 
inelement(84 

inelement(85 

inelement(85 

inelement(85 

inelement(85 

inelement(86 

inelement(86 

inelement(86 

inelement(86 

inelement(87 

inelement(87 

inelement(87 
inelement(87 

inelement(88 

inelement(88 

inelement(88 
inelement(88 

inelement(89 

inelement(89 

inelement(89 

inelement(89 

inelement(90 

inelement(90 

inelement(90 

inelement(90 

.nodes=[70,71,83,82]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[71,72,84,83]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[72,73,85,84]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[73,74,86,85]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[74,63,75,86]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[75,76,88,87]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[76,77,89,88]; 

,mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[77,78,90,89]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[78,79,91,90]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[79,80,92,91]; 

.mat=3; 

.thick=0.002; 

.comp=2; 
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inelement(91 

inelement(91 

inelement(91 

inelement(91 

inelement(92 

inelement(92 

inelement(92 
inelement(92 

inelement(93 

inelement(93 

inelement(93 

inelement(93 

inelement(94 
inelement(94 

inelement(94 

inelement(94 

inelement(95 

inelement(95 
inelement(95 

inelement(95 

inelement(96 

inelement(96 

inelement(96 

inelement(96 

inelement(97 

inelement(97 

inelement(97 
inelement(97 

inelement(98 
inelement(98 

inelement(98 
inelement(98 

inelement(99 

inelement(99 

inelement(99 

inelement(99 

.nodes=[80,81,93,92]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[81,82,94,93]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[82,83,95,94]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[83,84,96,95]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[84,85,97,96]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[85,86,98,97]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[86,75,87,98]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes= [87,88,100,99]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

.nodes=[88,89,101,100]; 

.mat=3; 

.thick=0.002; 

.comp=2; 

inelement(100).nodes=[89,90,102,101]; 

inelement(100).mat=3; 
inelement(100).thick=0.002; 

inelement(100).comp=2; 
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inelement :ioi) .nodes=[90,91 103 1023; 
inelement :ioi) .mat=3; 
inelement ( :ioi) .thick=0.002; 
inelement :ioi) .comp=2; 

inelement :io2) .nodes=[91,92 104 1033; 
inelement :io2) .mat=3; 
inelement :io2) .thick=0.002; 
inelement :io2) .comp=2; 

inelement :io3) .nodes=[92,93 105 1043; 
inelement :io3) .mat=3; 
inelement :io3) .thick=0.002; 
inelement :io3) .comp=2; 

inelement( :io4) .nodes=[93,94 106 1053; 
inelement :io4) .mat=3; 
inelement( :io4) .thick=0.002; 
inelement :io4) .comp=2; 

inelement :io5) .nodes=[94,95 107 1063; 
inelement :io5) .mat=3; 
inelement :io5) .thick=0.002; 
inelement :io5) .comp=2; 

inelement :io6) .nodes=[95,96 108 1073; 
inelement( :io6) .mat=3; 
inelement :io6) .thick=0.002; 
inelement :io6) .comp=2; 

inelement( :io7) .nodes=[96,97 109 1083; 
inelement( :io7) .mat=3; 
inelement( :io7) .thick=0.002; 
inelement( :io7) .comp=2; 

inelement( :io8) .nodes=[97,98 110 1093; 
inelement( :io8) .mat=3; 
inelement( :io8) .thick=0.002; 
inelement :io8) .comp=2; 

inelement( 109) .nodes=[98,87 99,1103; 
inelement :io9) .mat=3; 
inelement( :io9) .thick=0.002; 
inelement :io9) .comp=2; 

inelement '110) .nodes=[99,100,112,1113; 
inelement( 110) .mat=2; 

inelement 110) .thick=0.000075; 

inelement( 110) .comp=3; 
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inelement '111) 
inelement :ill) 
inelement :m) 
inelement :m) 

inelement :ii2) 
inelement :ii2) 
inelement :n2) 
inelement :ii2) 

inelement :ii3) 
inelement :ii3) 
inelement :ii3) 
inelement :ii3) 

inelement :ii4) 
inelement( :ii4) 
inelement( :ii4) 
inelement( :ii4) 

inelement :ii5) 
inelement < :ii5) 
inelement( :ii5) 
inelement( :ii5) 

inelement( :ii6) 
inelement( :ii6) 
inelement( :ii6) 
inelement( :ii6) 

inelement( :ii7) 
inelement( :ii7) 
inelement :ii7) 
inelement :ii7) 

inelement '118) 

inelement( 118) 

inelement( 118) 
inelement( 118) 

inelement( 119) 
inelement( 119) 

inelement( 119) 
inelementi 119) 

inelement( 120) 
inelementi 120) 
inelementi 120) 

inelement( 120) 

.nodes=[100,101,113,112]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[101,102,114,113]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[102,103,115,114]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[103,104,116,115]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[104,105,117,116]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[105,106,118,117]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[106,107,119,118]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[107,108,120,119]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[108,109,121,120]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[109,110,122,121]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 
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inelement C121> 

inelement [121) 

inelement :i2D 
inelement :i2D 

inelement :i22) 
inelement 1122) 

inelement 1122) 

inelement :i22) 

inelement [123) 
inelement [123) 

inelement [123) 
inelement [123) 

inelement [124) 
inelement [124) 

inelement [124) 

inelement [124) 

inelement [125) 

inelement [125) 

inelement [125) 

inelement( [125) 

inelement [126) 

inelement [126) 
inelement( [126) 

inelement( [126) 

inelement [127) 
inelement [127) 

inelement [127) 

inelement( [127) 

inelement( 128) 
inelement < 128) 
inelement( 128) 
inelement( 128) 

inelement( 129) 

inelement( 129) 

inelement( 129) 

inelement( 129) 

inelementi 130) 
inelementi 130) 

inelementi 130) 

inelement( 130) 

.nodes=[110)99,lll,122]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[lll,112,124,123]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[112,113,125,124]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[113,114,126,125]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[114,115,127,126]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[115,116,128,127]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[116,117,129,128]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[117,118,130,129]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[118,119,131,130]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[119,120,132,131]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

B-27 



inelement :i31) 

inelement :i31) 

inelement :i31) 
inelement :i3D 

inelement :i32) 
inelement :i32) 
inelement :i32) 
inelement :i32) 

inelement :i33) 
inelement :i33) 
inelement :i33) 
inelement :i33) 

inelement < :i34) 
inelement( :i34) 
inelement < :i34) 
inelement( :i34) 

inelement( :i35) 
inelement( :i35) 
inelement( :i35) 
inelement( :i35) 

inelement( :i36) 
inelement( :i36) 
inelement( :i36) 
inelement( :i36) 

inelement( :i37) 
inelement( :i37) 
inelement( :i37) 
inelement :i37) 

inelement :i38) 
inelement > :i38) 
inelement< '138) 
inelement( 138) 

inelement( 139) 
inelement' 139) 

inelement( 139) 
inelement( 139) 

inelement( 140) 

inelement( 140) 
inelement( 140) 
inelementi 140) 

.nodes=[120,121,133,132]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[121,122,134,133]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[122,lll,123,134]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[123,124,136,135]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[124,125,137,136]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[125,126,138,137]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[126,127,139>138]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[127,128,140,139]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[128,129,141,140]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[129,130,142,141]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 
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inelement [141) 

inelement [141) 

inelement [141) 

inelement [141) 

inelement [142) 
inelement [142) 

inelement [142) 

inelement [142) 

inelement [143) 

inelement [143) 

inelement [143) 

inelement [143) 

inelement [144) 
inelement [144) 

inelement [144) 

inelement [144) 

inelement [145) 

inelement [145) 
inelement [145) 

inelement [145) 

inelement( [146) 

inelement( :i46) 
inelement( [146) 

inelement :i46) 

inelement( :i47) 
inelement :i47) 
inelement( :i47) 
inelement :i47) 

inelement( 148) 

inelement( 148) 

inelement( 148) 

inelement( 148) 

inelement( 149) 
inelement( 149) 

inelement( 149) 
inelement( 149) 

inelement( 150) 
inelement( 150) 

inelementi 150) 

inelement( 150) 

.nodes=[130,131,143,142]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[131,132,144,143]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[132,133,145,144]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[133,134,146,145]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[134,123,135,146]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[135,136,148,147]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[136,137,149,148]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[137,138,150,149]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[138,139,151,150]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[139,140,152,151]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 
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inelement :i51) 

inelement :i51) 

inelement :i51) 

inelement :i5i) 

inelement :i52) 
inelement :i52) 
inelement :i52) 
inelement :i52) 

inelement :i53) 
inelement :i53) 
inelement :i53) 
inelement :i53) 

inelement :i54) 
inelement :i54) 
inelement :i54) 
inelement :i54) 

inelement :i55) 
inelement :i55) 
inelement :i55) 
inelement :i55) 

inelement :i56) 
inelement :i56) 
inelement :i56) 
inelement :i56) 

inelement :i57) 
inelement :i57) 
inelement :i57) 
inelement( :i57) 

inelement( :i58) 
inelement( :i58) 
inelement :i58) 
inelement( :i58) 

inelement( :i59) 
inelement :i59) 
inelement! :i59) 
inelement( :i59) 

inelement :i60) 
inelement! :i6o) 
inelement( :i6o) 
inelement :i6o) 

.nodes=[140,141,153,152]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[141,142,154,153]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[142,143,155,154]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[143,144,156,155]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[144,145,157,156]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[145)146,158,157]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[146,135,147,158]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[147,148,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[148,149,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[149,150,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 
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inelement (161) 
inelement C161) 

inelement (161) 

inelement (161) 

inelement (162) 

inelement (162) 

inelement (162) 

inelement (162) 

inelement (163) 

inelement (163) 

inelement (163) 

inelement (163) 

inelement (164) 

inelement (164) 
inelement (164) 

inelement (164) 

inelement (165) 

inelement (165) 

inelement (165) 

inelement (165) 

inelement( (166) 

inelement( (166) 

inelement( (166) 

inelement( (166) 

inelement( :i67) 
inelement '167) 
inelement 167) 
inelement < 167) 

inelement' 168) 

inelement( 168) 

inelementi 168) 
inelementi 168) 

inelementi 169) 
inelementi 169) 

inelement( 169) 

inelement( 169) 

inelement( 170) 
inelement( 170) 

inelement( 170) 
inelement( 170) 

.nodes=[150,151,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[151,152,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[152,153,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[153,154,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[154,155,1593; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[155,156,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[156,157,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[157,158,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[158,147,159]; 

.mat=2; 

.thick=0.000075; 

.comp=3; 

.nodes=[160]; 

.mat=l; 

.thick=20; 

.comp=3; 

save model; 

B-31 



B.2   Model Output 

Node* Coordinates (m) 
1 I 1.00 0.00 -5.46] 

2 ; 0.87 0.50 -5.46] 

3 ; 0.50 0.87 -5.46] 
4 ; o.oo 1.00 -5.46] 
5 1-0.50 0.87 -5.46] 
6 [-0.87 0.50 -5.46] 
7 ;-i.oo 0.00 -5.46] 
8 >0.87 -0.50 -5.46] 

9 ;-o.5o -0.87 -5.46] 
10 ;-o.oo -1.00 -5.46] 
11 ; o.5o -0.87 -5.46] 
12             1 : 0.87 -0.50 -5.46] 
13             1 : i.73 0.00 -4.73] 
14             1 : i.5o 0.87 -4.73] 
15             1 ; 0.87 1.50 -4.73] 
16             1 ; o.oo 1.73 -4.73] 
17             1 >0.87 1.50 -4.73] 
18             1 ;-i.5o 0.87 -4.73] 
19             1 [-1.73 0.00 -4.73] 
20 ;-i.5o -0.87 -4.73] 
21             1 >0.87 -1.50 -4.73] 
22             1 ;-o.oo -1.73 -4.73] 
23             1 ; 0.87 -1.50 -4.73] 
24             1 ; i.5o -0.87 -4.73] 
25             [ ; 2.oo 0.00 -3.73] 
26             [ : i.73 1.00 -3.73] 
27             [ ; l.oo 1.73 -3.73] 
28             [ : o.oo 2.00 -3.73] 
29             [ ;-i.oo 1.73 -3.73] 
30             [ :-i.73 1.00 -3.73] 
31             [ :-2.oo 0.00 -3.73] 
32             [ :-i.73 -1.00 -3.73] 
33             [ :-i.oo -1.73 -3.73] 
34             [ ;-o.oo -2.00 -3.73] 
35             [ : l.oo -1.73 -3.73] 
36             [ ; i.73 -1.00 -3.73] 
37             [ ; i.73 0.00 -2.73] 
38             [ : i.5o 0.87 -2.73] 
39             [ : 0.87 1.50 -2.73] 
40             [ ; o.oo 1.73 -2.73] 
41             [ -0.87 1.50 -2.73] 
42             [ -1.50 0.87 -2.73] 
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Node* Coordinate s(m) 

43 [-1.73 0.00 -2.73] 
44 [-1.50 -0.87 -2.73] 
45 [-0.87 -1.50 -2.73] 
46 [-0.00 -1.73 -2.73] 
47 [ 0.87 -1.50 -2.73] 
48 [1.50 -0.87 -2.73] 
49 [-0.00 0.00 -3.73] 
50 : 0.00 0.00 -5.73] 
51 ; l.oo 0.00 -2.00] 
52 ; 0.87 0.50 -2.00] 
53 ; o.5o 0.87 -2.00] 
54 ; o.oo 1.00 -2.00] 
55 [-0.50 0.87 -2.00] 
56 [-0.87 0.50 -2.00] 
57 ;-i.oo 0.00 -2.00] 
58             1 >0.87 -0.50 -2.00] 
59             1 [-0.50 -0.87 -2.00] 
60             [ [-0.00 -1.00 -2.00] 
61             [ ; o.5o -0.87 -2.00] 
62             [ ; 0.87 -0.50 -2.00] 
63             [ : l.oo 0.00 -1.00] 
64             [ ; 0.87 0.50 -1.00] 
65             [ ; o.5o 0.87 -1.00] 
66             [ ; o.oo 1.00 -1.00] 
67             [ :-o.5o 0.87 -1.00] 
68             [ ;-0.87 0.50 -1.00] 
69             [ :-i.oo 0.00 -1.00] 
70             [ >0.87 -0.50 -1.00] 
71             [ :-o.5o -0.87 -1.00] 
72             [ ;-o.oo -1.00 -1.00] 
73             [ : o.5o -0.87 -1.00] 
74             [ : 0.87 -0.50 -1.00] 
75             [ ' 1.00 0.00 0.00] 
76             [ 0.87 0.50 0.00] 
77             [ 0.50 0.87 0.00] 
78             [ 0.00 1.00 0.00] 
79             [ -0.50 0.87 0.00] 
80             [ -0.87 0.50 0.00] 
81             [ -1.00 0.00 0.00] 
82             [ -0.87 -0.50 0.00] 
83             [ -0.50 -0.87 0.00] 
84             [ -0.00 -1.00 0.00] 
85             [ 0.50 -0.87 0.00] 
86             [ 0.87 -0.50 0.00] 
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Node# Coordinate s(m) 

87 [ 1.00 0.00 1.00] 

88 [ 0.87 0.50 1.00] 
89 [ 0.50 0.87 1.00] 
90 [ 0.00 1.00 1.00] 

91 [-0.50 0.87 1.00] 

92 ;-0.87 0.50 1.00] 

93 [-1.00 0.00 1.00] 
94 [-0.87 -0.50 1.00] 
95 [-0.50 -0.87 1.00] 
96 [-0.00 -1.00 1.00] 
97 ; o.5o -0.87 1.00] 
98 ; 0.87 -0.50 1.00] 
99 ; l.oo 0.00 2.00] 

100             1 ; 0.87 0.50 2.00] 
101 ; o.5o 0.87 2.00] 
102 ; o.oo 1.00 2.00] 
103 ;-o.5o 0.87 2.00] 
104             1 ;-0.87 0.50 2.00] 
105             [ :-i.oo 0.00 2.00] 
106 [-0.87 -0.50 2.00] 
107 ;-o.5o -0.87 2.00] 
108             [ ;-o.oo -1.00 2.00] 
109             [ : o.5o -0.87 2.00] 
110             [ ; 0.87 -0.50 2.00] 

111             I ; i.73 0.00 2.73] 
112             [ : i.5o 0.87 2.73] 
113             [ : 0.87 1.50 2.73] 
114             [ : o.oo 1.73 2.73] 
115             [ :-0.87 1.50 2.73] 
116             [ :-i.5o 0.87 2.73] 
117             [ :-i.73 0.00 2.73] 
118             [ :-i.5o -0.87 2.73] 
119             [ ;-0.87 -1.50 2.73] 
120             | :-o.oo -1.73 2.73] 
121             | 0.87 -1.50 2.73] 
122             [ 1.50 -0.87 2.73] 
123             | 2.00 0.00 3.73] 
124             | 1.73 1.00 3.73] 
125             [ 1.00 1.73 3.73] 
126             [ 0.00 2.00 3.73] 
127             [ -1.00 1.73 3.73] 
128             [ -1.73 1.00 3.73] 
129             [ -2.00 0.00 3.73] 
130             [ -1.73 -1.00 3.73] 
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Node* Coordinates (m) 

131            1 >1.00 -1.73 3.73] 

132            1 ;-o.oo -2.00 3.73] 

133            1 ; l.oo -1.73 3.73] 
134             1 ; i.73 -1.00 3.73] 

135             1 ; i.73 0.00 4.73] 
136             1 ; i.5o 0.87 4.73] 

137             [ ; 0.87 1.50 4.73] 
138             1 ; o.oo 1.73 4.73] 
139 [-0.87 1.50 4.73] 
140             1 ;-i.5o 0.87 4.73] 
141             [ ;-i.73 0.00 4.73] 
142             | :-i.5o -0.87 4.73] 

143             I ;-0.87 -1.50 4.73] 
144             [ ;-o.oo -1.73 4.73] 
145             1 ; 0.87 -1.50 4.73] 
146 ; i.5o -0.87 4.73] 
147             I ; l.oo 0.00 5.46] 
148             [ ; 0.87 0.50 5.46] 
149             [ : o.5o 0.87 5.46] 
150             [ : o.oo 1.00 5.46] 
151             [ ;-o.5o 0.87 5.46] 
152             | :-0.87 0.50 5.46] 
153             | :-i.oo 0.00 5.46] 
154             | >0.87 -0.50 5.46] 
155             | :-o.5o -0.87 5.46] 
156             | :-o.oo -1.00 5.46] 
157             I : o.5o -0.87 5.46] 
158             [ ; 0.87 -0.50 5.46] 
159             [ :-o.oo 0.00 5.73] 
160             | ;-o.oo 0.00 3.73] 
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Figure B.l     Mechanical Loads (Pa), h=500km, 77 = 0° 
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Figure B.4     Heat Flux (W), h=500km, 77 = 90° 

B-42 



Gravity Drag 

20 

15 

10 

|5 

x10 
-|2 

1.5 

0.5 

Solar Radiation Pressure 

5-I 

Total Load 

0.5 

-0.5 

s °- 

20 

15 

10 

Figure B.5     Mechanical Loads (Pa), h=500km, rj = 180° 
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Figure B.6     Heat Flux (W), h=500km, t] = 180° 
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Figure B.7     Mechanical Loads (Pa), h=500km, rj = 270° 
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Figure B.10     Heat Flux (W), h=300km, rj = 270° 
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Figure B.ll     Mechanical Loads (Pa), h=1000km, ry = 270° 
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Appendix C.   IAE Mass Model Properties 

In order to calculate the torques on the IAE model presented in Chapter 

2, the body center of mass and inertia matrix must be determined. This requires 

knowledge of the center of mass and inertia matrix for each individual component of 

the structure. In this case, the body is broken into six basic components: the Spartan 

bus, the mylar lenticular structure, a rigid torus, and three cylindrical struts. A body 

fixed reference frame is initially set up with its orgin at the Spartan center of mass. 

The model is illustrated below in Figure C.l. 

Figure C.l     IAE Model 

The Spartan bus is modeled as a 900kg rectangular box with dimensions a=lm, 

b=3.2m and c=1.2m. Given these measurements, the Spartan inertia matrix about 

its center of mass is calculated by 

spartan 
m 
12 

b2 

0 

0 

0 

a? + c* 

a' 

0 

0 

+ b2 

876 0 0 

0 183 0 

0 0 843 

kgm2        (C.l) 

The Spartan center of mass is located at the orgin of the defined reference frame. 
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Each of the struts is modeled by cylindrical shell. The mass of each strut is 

approximated as follows 

mstrut = n*(r0-ri)*l*p (C.2) 

where 

r0 

Ti 

I 

P 

outer radius = 0.18m 

inner radius — 0.1797m 

length = 28m 

density = 1360kg/m3 

This gives a mass for each strut of 12.9kg. The inertia matrix for each strut can now 

be calculated. 

Tc     = x strut 

mr2 0 

0      \mr2 + ±ml2 

0 0 

0 

0 

\mr2 + j^ml2 

0.418 0 0 

0 843 0 

0        0     843 

kgm 

(C.3) 

This equation is based on the assumption that the strut length runs along the &i axis. 

In reality, each strut is canted at an angle off of this axis. The symmetry of strut 

placement though, is such that any off-axis mass terms will cancel when the inertia 

matrices are added. The moments of inertia will alter slighly due to this small angle, 

but not enough to significantly degrade the accuracy of the final result. However, 

this angle must be taken into account when locating the center of mass for each strut. 

The geometry is displayed in Figure C.2. Each strut is 28m long. For simplicity, 

assume each strut begins at the Spartan center of mass and connects to the torus 

at the far end. Consequently, the far end of each strut is displaced approximately 

7.3m from the b\ axis, as shown in Figure C.2(a). Using the Pythagorean theorem, 
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7.3m 

(a) 

Figure C.2     Strut CM Calculations 

the length of each strut along the &i, denoted by x, is equal to 27.0m. The projected 

length in the b2 and b$ directions, denoted by by y and z respectively, is different 

for each strut. Assume that the struts are spaced at 120 deg intervals with strut (1) 

lying in the 61 b3 plane, as illustrated in Figure C.2(b). The y and z coordinates 

of the far ends are given by 

y(l) = 0 

z(l) = -7.3m 

y(2) = -7.3m * cos 30° = -6.32m 

y(3) = 7.3m * cos 30° = 6.32m 

z(2) = *(3) = 7.3m * sin 30° = 3.65m (C.4) 

Since the centroid for each strut lies halfway down its length, the center of mass is 

found by dividing the far end coordinates by two. 

cm(l) = 

13.5 

0 

-3.65 

' 13.5 13.5 

> m cm(2) = < -3.16 

1.825 

> m cm (3) = < 3.16 

1.825 

► m (C.5) 
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The two mylar canopies which make up the lenticular structure are modeled 

as a single laminar disk with the combined thickness of the two canopies. The mass 

of the disk is calculated by 

mdisk = 7T*r  *t* p (C.6) 

where 

r   =   disk radius = 1m 

t   =   disk thickness = 12.7/x 

p   =   density = 1400kg/m3 

The total mass the lenticular structure is 2.7kg. The center of mass located at 27.3 61 

and the inertia matrix is given by 

2r2 0 0 

Tc 
disk 

m 
= T 0 r2 0 = 

0 0 r2 

66.2      0 0 

0     33.1      0 

0        0     33.1 

kgm (C.7) 

Finally, the rigid torus which supports the mylar canopies is represented, of 

course, by a torus. This torus has a radius of curvature of approximately 7.3 meters 

and a cross-sectional diameter of 0.61 meters. Given that the total mass of the 

inflatable structure is 60kg, subtracting out the mass of the struts and canopies sets 

the mass of the torus at 18.6kg. The torus center of mass is co-located with the 

laminar disk center of mass at 27.3 b\. The torus inertia matrix is given by 

r torus 

2mr2 + |mo2 

0 

0 

0 

mr' + jma' 

0 

0 

mr2 + |ma2 

1985 0 0 

0 993 0 kgm2 

0 0 993 
(C.8) 

where r is the radius of curvature and a is the cross-sectional radius. 
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Now that the mass properties of each component are known, the center of mass 

and moments of interia for the entire assembly can be calculated. The center of mass 

is determined by treating each component as a particle of equal mass, located at the 

component centroid. The center of mass for a system of particles is calculated by 

rCm = x?Em^ (c-9> „cm   

~ M 
i=l 

where 

0r
cm = center of mass position relative to orgin of current reference frame 

M = total system mass 

n — number of particles 

rrii = mass of the ith particle 

ri = location of ith particle 

For this model, n is equal to six and the total system mass is 960kg. Taking the 

product of each component's mass and centroid location and summing over the six 

components yields the composite body center of mass. 

1.15N 

rcm= < 0 

0 

> m (CIO) 

The body center of mass is shifted 1.15 meters along the bx axis from Spartan center 

of mass. 

Summing the inertia matrices of the six components will yield the inertia ma- 

trix for the composite body. However, in order to sum inertia matrices, they must 

all be expressed in a common reference frame and about a common point. All of 

the inertia matrices are expressed in terms of the body-fixed reference frame defined 
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above. However, they do not share a common reference point. Each component's 

inertia is expressed relative to its own center of mass. The inertia matrix for each 

component about a common reference point can be determined using the parallel 

axis theorem 

I* = Ic + m * 

Ay2 + Az2 -Ay Ax -AzAx 

-Ax Ay Ax2 + Az2 -AzAy 

-AxAz        -AyAz     Ax2 + Ay2 

(C.ll) 

where /* is the inertia about the new reference point, Ic is the inertia about the 

component's center of mass, and m is the mass of the component. Ax, Ay and Az 

are the b\, b2 and 63 components of the radius vector from the component center of 

mass to the new reference point. In this case, the composite body center of mass will 

be the new reference point. The resulting Arc, Ay and Az values for each component 

are summarized in Table C.l. Plugging these values into equation (C.ll) results in 

an inertia matrix for each component about the composite body center of mass. 

' spartan 

1 torus 

I. strut(2) 

876      0 0 

0 1373 0 

0        0 2033 

1985 0 0 

0      13715 0 

0 0 13715 

176     510 -291 

510 2853 75 

-291     75 2943 

kgm 1 canopy 

kgm2 
lstrut(l) 

kgm2   Istrut{z) 

66.2      0 0 

0 1880      0 

0        0      1880 

173      0       582 

0 2982       0 

582      0      2810 

176 -510   -291 

-510 2853     -75 

-291    -75    2943 

kgm2 

kgm2 

kgm2 

All of the component inertia matrices are now expressed about a common reference 
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Table C.l     Reference Point Displacements 

Component Ax (m) Ay(m) Az(m) 
Spartan 1.15 0 0 
Torus -26.15 0 0 
Disk -26.15 0 0 

Strut (1) -12.35 0 3.65 
Strut (2) -12.35 3.16 -1.825 
Strut (3) -12.35 -3.16 -1.825 

point. Summing these matrices yields the moments of inertia for the composite body. 

Tc llAE 

3452       0 0 

0      25,656        0 

0 0        26,324 

kgm2 (C.12) 

Note that the defined reference frame constitutes the principle axes. The body is 

nearly axisymmetric, with the minimum moment of inertia occurring about the &i 

axis and the maximum moment of inertia along the 63 axis. 
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