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AFIT/GAE/ENY/OlM-07 

Abstract 

This research addresses the problem of formulating and analyzing the single vehicle 

path planning problem for radar exposure minimization. A single vehicle with given initial 

and final positions is exposed to a threat radar and optimal paths are sought. The cal- 

culus of variations and optimal control are applied to formulate optimal trajectories and 

numerical optimization algorithms are utilized to solve for the optimal paths. A sensitivity 

study of the objective cost is performed for flight against one radar utilizing two differ- 

ent geometries and several numerical approaches. A second threat radar is then included 

in the formulation and the optimal trajectory for flight between the radars is found for 

several symmetric threat radar geometries. The objective cost of the optimal paths are 

compared with the direct path (a straight line) as well as trajectories generated using the 

graphical Voronoi path planning approach. Finally, each radar is given a different weight, 

simulating differing transmission powers, and optimal paths are sought for the same radar 

configurations. The objective costs of these trajectories are again compared to the direct 

path and the weighted Voronoi path. 

Results indicate low sensitivity of the objective cost to suboptimal paths for flight 

against one threat radar; however, the numerical method applied to find the solution results 

in widely varying optimal trajectories. The nonlinear differential equations governing the 

optimal trajectory against multiple radars constitute a difficult, numerically sensitive two- 

point boundary value problem. Results indicate that approaching the Voronoi-generated 

curves in an optimal way from the endpoints may provide for feasible on-line and real-time 

utilization. 

xiu 



AIR VEHICLE OPTIMAL TRAJECTORIES FOR 

MINIMIZATION OF RADAR EXPOSURE 

/.   Overview 

The notion of utilizing military unmanned air vehicles (UAVs) for missions other than 

target drones and reconnaissance is at hand. In the near future, no longer will the UAV be 

digitally tied to a remote pilot; instead, it will be an autonomous vehicle, making it's own 

in-flight decisions concerning routing, target recognition, and mission success or failure. It 

will be necessary for the on-board system to handle these tasks quickly and efficiently to 

provide for successful mission completion. This research examines the avoidance of single 

and multiple radars for on-board optimal trajectory planning of an autonomous air vehicle. 

The best way to get from the start to the finish has always been of great interest, 

whether it be for a military bombing mission through enemy territory, satellite flight to 

orbit with minimal fuel expenditure, or the best way to ship a package from New York 

to Los Angeles. In the last quarter century, advances in robotics have also involved the 

pursuit of optimal trajectories while avoiding obstacles. A common denominator for all 

of these problems is the need to balance the benefits and risks involved with the different 

approaches. Scientists, mathematicians and engineers have devised clever ways to measure 

and calculate "optimal" paths from start to finish while minimizing each scenario's inherent 

risks. Approaches for solving this problem can be categorized into trajectory optimization, 

route optimization, and analogous-problem formulations. 

1.1    Review of Optimal Path Planning 

1.1.1 Trajectory Optimization. Trajectory optimization is a path planning ap- 

proach which seeks the minimization of a specific performance index or cost function 

through the determination of the time history of the states and/or state control variables of 

a dynamic model. The calculus of variations, optimal control theory and dynamic program- 

ming are techniques commonly used to solve trajectory optimization problems. Many of 
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the classic trajectory optimization problems have been solved using these techniques, such 

as the isoperimetric problem, Zermelo's navigation problem, the inverse square law describ- 

ing the orbit of a particle, and many minimum time problems, e.g. light through a medium. 

Newton, inventor of calculus, solved a trajectory optimization problem, Bernoulli's brachis- 

tochrone, in the late 17th century [6]. This is by no means an inclusive list; see [6], [8], 

[10], and [20] for more examples. 

Shapira [35] used optimal control theory to formulate a bang-level-bang type con- 

troller for optimal trajectories given a specified initial and final position and heading, 

where "bang" indicates application of a maximum rate of turn. Simplified aircraft equa- 

tions of motion were used, with the performance index being a minimum time mission with 

constrained control usage. Analytic solutions were obtained and verified using numerical 

techniques. 

Also attacking the trajectory optimization problem analytically, Pachter [26] found 

a closed-form solution to the problem of minimizing the amount of radar energy received 

by a radar from a constant-velocity target aircraft. His solution highlighted the result that 

there is a geometric limit for which an unconstrained solution exists; thus, blindly solving 

the problem numerically outside of this limit could lead to incorrect solutions unknowingly 

being labelled "optimal". 

While Pachter and Shapira were successful in finding analytic solutions to specific 

problems, more commonly the complexity of the nonlinear optimization problems lead 

away from analytic solutions and toward the application of numerical methods. Bryson's 

text Dynamic Optimization [6] includes a comprehensive set of numerical algorithms and 

MATLAB code especially for trajectory optimization. MATLAB itself has a set of widely 

used optimization codes available in the Optimization Toolbox [7]. In addition, many 

other commercial software libraries exist such as Numerical Recipes [29] and IMSL [39]. 

Since many trajectory optimization problems are formulated as two-point boundary value 

problems, the mathematical theory and numerical methods of solution are well known (e.g. 

[32]) and have been implemented in many computer languages. Each of these numerical 

methods require problem dependent user modifications. 
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Psiaki and Park [30] posed the optimal control trajectory optimization problem as 

a time-varying LQR problem with equality constraints. By taking advantage of a unique 

formulation of the cost and constraint structure, the problem is solved using a hyper-cube 

message-passing parallel processor, an iterative technique employing variable reduction and 

partial solutions at each step. The results indicate that this technique has quicker solution 

times for large problems as compared to the matrix Riccati equation. 

Vian [38] and Rao [31] used singular perturbation techniques to reduce the order 

of the airplane equations of motion, and developed a cost functional minimizing risk, fuel 

burn, and time enroute. They then applied Pontryagin's Maximum Principle, an equivalent 

formulation of the calculus of variations, and a Fibonacci search algorithm to numerically 

minimize the cost functional. 

1.1.2 Route Optimization. Route optimization is the desire for an optimal set 

of vehicle waypoints to navigate through obstacles to meet a desired objective. These 

route planning problems often employ a discretization or gridding scheme for the area 

involved, and include boundaries on the space where waypoints can be defined. Dynamic 

programming or graph-based techniques are used to solve these problems numerically, 

utilizing efficient search methods and heuristics to ease the computational burden. Sub- 

optimal paths usually result from these methods due to the gridding scheme incorporated. 

Increasing the grid mesh will give a better solution, but is often not feasible due to the 

high computational cost. 

Selvestrel [33] presents a method for generating optimal routes using a modified A* 

heuristic search method. The A* algorithm is an efficient graph-searching technique; the 

major drawback is its computational burden, as it is exponential in space requirements. 

Selvestrel reduces the search space using new heuristics and a technique to "prune" states 

from the search. His method provides an A* solution without loss of optimality; however, 

the new heuristic and pruning are sensitive to problem variations and may sometimes offer 

little benefit. 

Another common graphical method is the use of Voronoi diagram search, e.g. [18] 

and [23].  A Voronoi diagram is more general than this, but one application is to create 
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the search graph for route planning. For example, given a set of known radar locations, 

the Voronoi diagram is constructed of polygons whose edges are equidistant from all of the 

neighboring radars. Travel along these edges guarantees avoidance of threats, but it may 

not represent the best path from start to finish. Meng [23] employed this technique for 

robotic air vehicles traversing through mountainous terrain, with excellent results. 

1.1.3 Analogous-Problem Formulation. Analogous-problem formulation entails 

transforming the path planning problem to an entirely different problem which has either 

already been solved or has convenient method of solution. 

The idea of using the physical principle of potential fields has been used to deter- 

mine optimal paths for autonomous air vehicles. This method utilizes a grid with a system 

of connections between nodes on the grid that are based upon physical laws, such as at- 

traction and repulsion of magnetic fields. At the Air Force Research Laboratory, several 

researchers have employed this technique. Bortoff [3] used this method to solve the path 

planning problem against radars by representing the path as a chain of masses, intercon- 

nected by springs and dampers. The radar sites generate virtual force fields proportional 

to the 1/i?4 distance law, ultimately "pushing" the spring-mass chain into its potential 

energy minimum, a weighted sum of path length and distance from the radar. The re- 

sultant locations of the masses define the waypoints of the path, connected by straight 

line segments. McFarland [22] also employed the potential field approach against mono- 

static radars while studying the effects of minimizing radar cross section through vehicle 

orientation. 

Pellazar [27] and Min [24] used genetic algorithms to attack the path planning prob- 

lem. Genetic algorithms are a probabilistic search technique based on the principles of 

biological evolution, natural selection and genetic recombination. The algorithms perform 

an adaptive search of promising regions in the search space. The population is rated on 

its performance (objective function) and members (solutions) are rewarded or eliminated 

proportionally to their "fitness". Thus, a "survival of the fittest" scenario develops and 

eventually over many iterations the optimal solution is the only one left. Pellazar's re- 

sults indicated that near-optimal trajectories were found, but that extensive computation 
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time was necessary to produce desirable solutions. He notes that future parallel processing 

architectures will be more suited for application of this approach. 

1.2    Problem Statement 

1.2.1 Objectives. Optimal path planning research to date has been extensive, 

and many techniques exist to formulate and solve the problem. A common thread through 

much of the literature is that the formulations often include complicated dynamics and 

multiple constraints. This results in complex problems whose solution can often only be 

found utilizing numerical techniques. By approaching a simple problem first and under- 

standing its solution, insights can be gained which can later be applied to more complicated 

problems. This research aims to explore the feasibility of geometric, deterministic solutions 

which, while suboptimal, approximate the optimal solution to within acceptable limits. 

This research follows the work of Pachter [26], investigating the problem of mini- 

mizing the radar exposure of an air vehicle. With the existence of an analytic solution, 

an exploration of numerical solutions to the single radar problem can be evaluated. In 

addition, a similar formulation involving two radars is investigated. The specific objectives 

are to: 

1. Apply several numeric techniques to solve the single-radar problem, evaluate the 

optimal path cost for several scenarios and compare the results with the analytic 

solution. Examine the sensitivity of the cost to changes in the path length. 

2. Formulate the problem of trajectory optimization for a single vehicle against two 

radars. 

3. Analyze the optimal paths travelling between two radars for several geometrically 

symmetric scenarios and compare the resultant optimal paths against the direct (i.e. 

straight line) path and a path following the locus of equal radar power. 

1.2.2 Approach. The optimization for the single-radar scenario is performed 

in MATLAB using three numerical methods: a forward shooting method developed by 

Hebert [12] for solving two-point boundary value problems, a sequential quadratic pro- 
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gramming (SQP) routine developed at AFIT [16], and an optimal control algorithm from 

Bryson [6]. The two-radar problem is evaluated utilizing the forward shooting code, and 

a discrete approximation to the performance index is found. 

1.2.3 Scope. This research is limited to exploring the const ant-velocity single 

vehicle scenario. It is easy enough to complicate matters by introducing additional con- 

straints such as time, fuel burn, turn radius limits, etc. and allowing the velocity to change 

with time. The goal here is to understand the fundamental problem so that when addi- 

tional constraints are prescribed, the insights gained from this problem can be applied and 

perhaps an easier and better approach to the optimal solution can be found. 
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II.   Methodology 

2.1    A Brief Review of the Calculus of Variations 

The calculus of variations was developed in the 16th and 17th centuries by the great 

mathematicians of the time: Euler, Lagrange, Leibniz, Bernoulli and Newton. It is a 

branch of calculus concerned with examining extremal problems under conditions more 

general than the ordinary theory of maxima and minima. Specifically, it is concerned 

with the extremization of expressions in which entire functions must be determined. I will 

summarize Gelfand's formulation [10]; for the full derivation, I recommend Fox [8] and 

Gelfand [10] for their classical treatment of the subject. 

Suppose we have the following functional 

J[y] =   f F(x, y, y') dx,    y(a) = A,     y(b) = B , (2.1) 
Ja 

where J[y] is defined on some normed linear space.  The increment of this functional is 

defined as 

AJ[h] = J[y + h]- J[y], (2-2) 

where h = h{x) corresponds to the increment of the "independent variable" y = y(x). If y 

is fixed, then AJ[h] is a functional of h. Suppose AJ[h] is expressed as 

AJ[h] = cp[h] + e \\ h \\, (2.3) 

where <p[h] is a linear functional and e -> 0 as || h ||-> 0. J[y] is then called differentiate 

with (p[h] called the variation of J[h] and is denoted by SJ[h\. 

Theorem 2.1.1. A necessary condition for the differentiable functional J[y] to have an 

extremum for y = y is that its variation vanish for y = y, i.e., that 

SJ[y] = 0 

for y = y and all admissible h. 
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Proof. See Theorem 2, Section 3 in [10]. □ 

Theorem 2.1.1 leads us to the Euler equation, the foundation of modern calculus of varia- 

tions. 

Theorem 2.1.2. Let J[y] be a functional of the form 

rb 
f F{x,y,y') 

Ja 
dx 

defined on the set of functions y(x) which have continuous first derivatives in [a, b] and 

satisfy the boundary conditions y(a) = A, y(b) = B. Then a necessary condition for J[y] 

to have an extremum for a given function y(x) is that y(x) satisfy Euler's equation 

F,-±P,-0. (2.4) 

Proof See Section 4.1 in [10]. □ 

In general, the result of Euler's equation will be a second order differential equation. 

The resulting extremals will be either minimums, maximums, or saddle points; the Euler 

equation does not distinguish which. For this research it will be evident if the solution is a 

candidate minimum, as the path will decidedly head further away from the radars. Hebert 

has shown that for the single radar case that the second-order necessary conditions for a 

minimum are met [12]. 

The calculus of variations theory has been extended to encompass problems with 

varying initial and final points, as well as interior corner conditions; that is beyond the 

scope of this study and interested readers are again referenced to Fox and Gelfand. 

2.2    A Brief Review of Optimal Control 

Optimal control is another method by which to minimize a performance index. It 

attempts to optimize by finding the control histories for a dynamic system for a given time 

period. Thus, it is an indirect method of determining the optimum; the goal is to minimize 

the performance index by finding the time history of the control vector u(t) instead of 
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looking for the states x(t) themselves. A summary of the method will be provided here; 

Bryson [6] and Lewis [19] are excellent sources for the full derivation. 

Consider a system described by a state vector x(t). The choice of a control vector 

u(t) will determine the rate of change of the state vector, i.e., 

x = f{x,u,t). (2-5) 

The Bolza formulation is a common form of the performance index, 

J = 4>[x(tf)]+ /    L(x,u,t)dt, (2.6) 
Jto 

with t0, */, and x(t0) specified. An equivalent formulation is called the Mayer formulation; 

it is formed by augmenting the state vector by one state xn+\(t) and defining 

xn+i =L(x,u,t), 

then 

xn+i(tf) —  /    L(x,u,t)dt + xn+i(to), 
Jto 

and the performance index becomes 

ptf 
J = <f>[x(tf)] + /    L(x, u, t) dt = <f>[x{tf)] + xn+1(tf) - xn+i(t0) = <t>[x(tf)], 

Jto 

where the states are now x = [x,xn+i]   . 

In many optimization problems there are constraints on the terminal point, i.e. con- 

straint relations where the terminal state is specified, 

#c(*/)] = 0. 
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The optimal control problem formulation in Mayer form can now be summarized as choos- 

ing u(t) to minimize 

J = <f>[x(tf)], (2.7) 

subject to differential constraints 

x = f(x,u,t), (2.8) 

and boundary constraints 

a:(to) = xo , 

#c(i,)] = 0. 

(2.9) 

(2.10) 

To find the optimal solution, the performance index (2.7) is augmented by adjoining 

the differential constraints (2.8) and boundary constraints (2.10) using Lagrange multipliers 

A(t) and u, 

ftf 

J = <f>[x(tf)] + vTip[x(tf)} + /    AT(t){/[x, u, t] -x}dt. 
Jto 

Define the Hamiltonian to be 

H(t) = \T(t)f[x,u,t], 

and rewrite the augmented performance index as 

J = $(t7) + j f H(t) dt-  I f XT(t)x dt. 

where $(£/) = </>[x(tf)] + uTip[x(tf)]. Finally, integrating the final term in J by parts gives 

J = $(tf)-[\Tx]t/o+ [tf[H(t) + \Tx 
Jto 

dt. 
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We now consider a variation in J from u(t), i.e. 5u(t), which in turn will cause variations 

in the state histories, 6x(t), 

rtf - -, 
ÖJ=[$x-\

T]t=t.6x(tf) + \Töx(to)+ (Hx + XT)6x + HuSu   dt, (2.11) 
Jto    L J 

and will lead us to the necessary conditions for an optimal solution. If we choose AT such 

that the variations in 5x disappear, 

A   = — Hx , (2.12) 

and with boundary conditions 

\T(tf) = $x(tf), (2.13) 

then (2.11) becomes 

SJ 
ftf 

= /    Hu 
Jto 

5udt. (2.14) 

Since a:(to) is known, 8x(t0) = 0.  In order to determine a stationary point, from Theo- 

rem 2.1.1 SJ = 0 for any Su; this can only be satisfied if 

Hu = 0. (2.15) 
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In summary, to find a control u(t) that produces an extremal of the performance 

index J, the following set of equations must be solved: 

Performance Index: 

Differential Constraints/St ate Equations: 

Co-State Equations: 

Natural Boundary Conditions: 

j = <t>[x(tf)] (2.7) 

x = f(x,u,t) (2.8) 

A   = —Hx = — A jx (2.12) 

x(t0) = XQ (2.9) 

4[x(tf)] = 0 (2.10) 

AT(V) = M*f) (2.13) 

Hu = A fu — 0 (2.15) Optimality Condition: 

The state and co-state equations, (2.8) and (2.12), constitute a set of coupled differential 

equations. They define a two-point boundary value problem, since the boundary conditions 

required for solution are the initial state, equation (2.9), and the final state and costate, 

equations (2.10) and (2.13). 

2.3   A Review of Minimizing Radar Exposure in Air Vehicle Path Planning 

This section summarizes Pachter's solution [26], as well as some alternate perfor- 

mance index formulations. A discrete formulation of the performance index is presented, 

as it provides a way to utilize numerical methods such as SQP to solve the problem. The 

full application of the Euler equation is addressed; the resulting second-order differential 

equation is used with a two-point boundary problem solver as an alternate method of 

numerical solution. 

2.3.1 Continuous Performance Index. The amount of power received by a radar 

is given by the radar range equation [37] 

_ PtGAea 
r      (47r)2i?4 ' 
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where Pt is the power of the radar transmitter, G is the transmitting gain, Ae is the 

effective area of the receiving antenna, a is the radar cross section of the target, and R is 

the distance of the target to the radar. For the purposes of this study, the power received 

by the radar is considered only a function of range to the target, i.e. 

Pr<xm (2.16) 

Given a radar located at the origin and the geometry in Figure 2.1, Pachter [26] showed 

that an objective function for minimizing Pr is 

J 
rz    i 

(2.17) 

where v is the (constant) speed of the aircraft and I is the path length. Rewriting equation 

(2.17) in polar coordinates yields 

J[R(9)} = \ 
ef VE2 + R2 

Ä4 
de, (2.18) 

Figure 2.1     One Radar Problem Geometry 
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with boundary conditions 

R(0) = Ro, (2-19) 

R(6f) = Rf,    O<0<6f. (2.20) 

2.3.2 Problem Solution. The geometry of the problem is shown in Figure 2.1. 

The problem was posed as a problem in the calculus of variations. Pachter's solution is 

stated in Theorem 2.3.1. 

Theorem 2.3.1 (Pachter-Hebert Theorem). The optimal trajectory which connects 

points A and B at a distance R0 and Rf from the radar located at the origin O, where 0/ is 

the angle ZAOB, and minimizes the exposure to the radar according to Eqs. (2.18)-(2.20), 

is 

R*{d) = Ro{M^,0<e<öf (2.21) 
V       sm<p 

where 

(         sin 30/ 
(j) = Arctan     3  

Moreover, the length of the optimal path is given by the integral 

(2.22) 

i* =   Ro r6s 2 
/     [sin(30 + 4>T5 dß, (2.23) 

Jo 

and the cost function explicitly evaluates to 

j* = -1 Sin3^ (2.24) 
3i?0

3 8111(30/ + </>) ' v       ' 

This result holds provided 0 < Of < |. However, if f < 9f < it, then an optimal path does 

not exist and a constraint on the path length, I, must be included to render the optimization 

problem well posed. 

Proof. See Theorem 1 in [26]. □ 
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The solution for the optimal path, equation 2.21, as well as the optimal cost J*, 

equation 2.24, are extremely useful; they will be the baseline for which the numerical 

methods of Chapter 3 are referenced. 

2.3.3 Discrete Approximation of the Performance Index. In order to apply a 

numerical parameter optimization method such as SQP, it is necessary to approximate 

the performance index for an optimal trajectory. Pachter considers the optimal path from 

points A to B as a series of waypoints connected by straight line segments. Each line 

segment can be written as a line in polar coordinates as a function of 0, 

m =   . :;r2;';(fe"a'L ,,. <2-25> v '     r\ sin (0 - öi) - r2 sin (0 - 92) 

with the derivative 

bta\ ■   (a      n N n cos {9 - 91)-r2 cos (9-92) .       . 
R{9) = nr-2 sin (02 - 0I)T ^~77—T\ ^~Ta—~ävä • \l.K>) K' v [ri sm(0-0i)-T2 sin(0-02jj 

Substituting these expressions into the continuous performance index, equation (2.18), and 

integrating from the point (n,0i) to the next point (r2,02) yields 

*-jfT- 
= V7^ + rj - 2rir2cosAg s^ _ ^^ _ ^ + r2){2M _ sin2AÖ)] > 

4(rir2sinA0)':i 

(2.27) 

where A0 = 6>i - 02. Thus the continuous dependence upon 0 has been eliminated and the 

cost can be determined for any given pair of points (n, 0i) and (r2,02). The total cost for 

a path of N line segments is simply 

JV 

J* = £jUi+i. (2.28) 
i=\ 
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Provided AÖ is chosen sufficiently small, this gives an accurate presentation of the con- 

tinuous performance index, allowing the variational problem to be solved as a parameter 

optimization problem using SQP. 

2.3.4 Application of the Euler Equation. The following application of the full 

Euler equation defines the second-order differential equations describing the extremal path, 

which are easily converted to first-order form for use in numerical integrators. 

Given the cost functional for flight against one radar, 

mt)] = £<* + *», (2.18) 

apply the Euler equation to find the differential equation describing the optimal path, 

^-±(^.)=ü, (2.4) 
OR     d6 \dRj 

_ VR2 + R2 

L-   w 
dL _        1 4 VR

2
 + R2 

9R~RFVW+R^       
R5 

0L_ R 
OR ~ R* ^R2 + R2 ' 

d fdL\ -AR2 R R(RR + RR) 
de\dRj        R5 ^/R2 + R2       R4 ^R2 + R2       R* (R? + R?f/2 

Simplifying and solving for R results in 

R = -3R-*£, (2.29) 
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with the boundary conditions 

R(0) = Ro, (2-19) 

R(9f) = Rf,    0 < 0 < 0/ . (2.20) 

The conversion to first order form for use in MATLAB is as follows, 

X1 = R, (2.30) 

x2 = R, (2-31) 

Xl = x2 , 

with boundary conditions 

The optimal path must satisfy equations (2.30)-(2.35). 
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i2 = JR=-3x1-^, (2.33) 
xi 

xi(0) = fio, (2.34) 

xi(ef) = Rf. (2.35) 



III.   Trajectory Optimization Against One Radar 

3.1    Overview 

Variational problems often do not have an analytic solution. The non-linear differen- 

tial equations that result from the Euler equation are often too difficult to solve analytically 

and require the application of a numerical method. Pachter's analytic solution for trajec- 

tory optimization against one radar, Theorem 2.3.1, provides a unique opportunity to 

contrast different numerical solution methods with a known optimal solution. This so- 

lution will be the benchmark to judge different numerical methods used to solve for the 

optimal trajectory. 

There are many optimization techniques available to solve these problems. For this 

study, I applied three numerical methods: a two-point boundary value problem solver, an 

optimal control algorithm, and a SQP solver. All numerical optimizations were done using 

MATLAB, a widely used mathematics software suite. 

The two-point boundary value problem solver used was developed by Hebert [12] 

using core MATLAB commands. It is a forward shooting method for solving differential 

equations. Starting with a guess for the initial conditions, the Euler equation is integrated 

forward, and the error between the desired final point and the calculated final point is cal- 

culated. A nonlinear root-finding algorithm is then used to drive the error to an arbitrarily 

close user-defined tolerance. 

In Dynamic Optimization [6], Bryson provides several different algorithms for the so- 

lution of optimal trajectory problems, as well as the supporting MATLAB codes implement- 

ing these algorithms. The Functional Optimization with Constraints (FOPC) algorithm 

was used for the optimal control solution. The state equations, equations (3.7) and (3.8), 

are integrated forward from the specified initial conditions with an initial guess of the con- 

trol vector, u{9). The co-state equations, equations (3.9) and (3.10), are then integrated 

backward to determine a gradient sequence, which is used to make small changes in the 

control sequence, moving the solution closer to the desired final conditions. The process 

is repeated until the final conditions and gradient sequence are within an arbitrarily close 

user-defined tolerance, giving the optimal solution. 
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An AFIT-developed SQP solver [16] was the final numerical method evaluated. Se- 

quential quadratic programming is a nonlinear programming technique using line search 

methods to systematically march towards an optimal solution. The discrete performance 

index, equations (2.27) and (2.28), provides the cost to be minimized for this solution 

technique. 

The continuous and discrete performance indices for trajectory optimization against 

one radar were developed by Pachter [26]. These equations provide the functions necessary 

for use of the shooting method and SQP. A general development of optimal control was 

reviewed in Chapter 2; the following section determines the specific equations necessary 

for use of Bryson's FOPC algorithm. 

3.2    Optimal Control Formulation 

The one radar problem is now formulated as an optimal control problem in Mayer 

form. The performance index to be minimized is equation (2.18), with 9 as the independent 

variable. To convert to Mayer form, the states are defined as x = [R, S]T and control u = R. 

The performance index is now 

J = s{ef), (3.i) 

subject to boundary conditions 

R(90) = Ro, (3-2) 

i/> = R(9f) -RF = 0, (3.3) 

and differential constraints 

R = u, (3.4) 

Ä-^£. (3.5, 

The goal of the optimal control problem is to find u{6) to minimize the cost function, 

equation (3.1), subject to the constraints (3.4)-(3.5).   Adjoining the constraints to the 
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performance index with Lagrange multipliers v and A(0) 

j' = <t> + vTi> + / \H - \T{9)x) de, 
Jo 

(3.6) 

where 

<t> = S{6f), 

tl> = R(0f) - RF , 

TT     , x   VR2 + u2 

H = XRU + XS- 
Ä4       " 

In summary, the optimal control formulation starts with the state equations (2.8) 

R = u, (3.7) 

Ä4 

and co-state equations (2.12) 

S = ^L+Z , (3.8) 

A's = 0, (3-10) 

with natural boundary conditions (2.13) 

R(e0) = Ro, (3-2) 

ip = R{6f) -RF = 0, (3.3) 

K(ef) = vr , (3-11) 

As(ö/) = 1, (3-12) 
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and finally, the optimality condition (2.15) 

These equations constitute the optimal control formulation used for analyzing flight against 

one radar. 

3.3    Optimization Results 

Four scenarios were examined using each of the numerical techniques, as well as the 

analytic solution, Table 3.1. The radar is always located at the origin, and the starting 

endpoint was always at R0 = 1, 00 = 0°, so 6f indicates the angle traversed. Each path 

consists of one hundred points, linearly spaced in 9. 

Case 1 is a fairly simple problem, a constant radius at the endpoints and a shallow 

Of. Case 2 kept the shallow angle, but extended the endpoints by an order of magnitude. 

Case 3 is similar to Case 1, but 0/ approaches the 60° limit for an analytic solution. Case 

4 approaches the extremes in both endpoint separation and Of. The goal was to examine 

numerically diverse problems and explore the extremities of endpoint position and change 

in angle. 

The cost and path length of the optimal trajectory was tabulated for each case. The 

optimal control solver and SQP each minimize the objective cost during the search for an 

optimal trajectory, as per their formulation, so the cost was immediately available. The 

shooting method does not minimize the cost, but directly solves the Euler equation, so 

the discrete cost function was used to calculate the cost for this method.   The cost of 

Table 3.1     Scenarios Evaluated for Flight Against One Radar 

Case Ro Rf 0/ 
1 1 l 20° 
2 1 10 20° 
3 1 l 59° 
4 1 10 59° 
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the shortest path length trajectory, i.e. a straight line from i?0 to Rf, is also included as 

another comparison. 

Each trajectory solution was evaluated by the discrete cost function and the FOPC 

algorithm. To use the FOPC algorithm, the control u(d), the gradient of the path, was 

numerically evaluated by using a forward difference at the left end, a backward difference at 

the right end, and central difference in the interior. This was input as the initial condition 

to the FOPC algorithm and was then run for one iteration to determine the trajectory 

cost. Additionally, the path length for each solution was calculated using a summation 

of the distances between consecutive points, and was added as a constraint for two of the 

cases. The path length is an important factor to consider, as it defines the amount of 

time the air vehicle will be in the radar's coverage; the shorter the path length, the less 

exposure the vehicle will have to the radar. Also, in a realistic scenario, the path length 

would ultimately be constrained by fuel considerations. As was stated in Chapter 1, this 

research is concerned with understanding the simplest problem first; additional constraints 

can be easily added later when a more complex problem is desired. That being said, the 

addition of the path length constraint provides some added insight into the nature of the 

performance index of this problem. 

A couple of notes should be made regarding the operation of the numerical solvers. 

The shooting method requires an initial guess of the derivative, and it is often necessary to 

iterate on this guess to converge to a solution. This is a simple process, and the solver either 

fails or finds a solution fairly quickly. The SQP method requires a full initial path. During 

the calculation of the cost function, the path is varied slightly in the search for the optimal 

path. This makes the SQP run time quite a bit longer than the shooting method since more 

calculations are required. The FOPC algorithm requires a full initial control, which is used 

to integrate the state equations forward, and then the co-state equations are integrated 

backward. Thus, for each iteration, at least two integrations are being performed, which 

increases run time. Additionally, the formulation involves a step-size parameter, k, and a 

constant 77, which is the desired change in terminal constraints for the following iteration. 

Each of these are user inputs and their settings directly affect the convergence of the 

algorithm. Bryson himself says that it takes "a little practice" [6] to learn how to vary k 
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so that an effective step-size is reached. The process of varying these parameters so that 

the problem converges to a solution is very tedious, frustrating and non-intuitive. While 

the algorithm appears to be an efficient way of solving the problem, it is the most difficult 

to use, and I believe that the manual selection of these parameters definitely affected the 

outcome of the solver and greatly increased the time to find a solution. 

3.3.1 Case 1. This case examines a fairly short, small A0 trajectory. The results 

are shown in Table 3.2 and Figure 3.1. The numerical methods had little trouble finding 

the optimal path for this scenario. The objective cost and path lengths are nearly identical 

for all of the solutions. Note that while the length of the straight line path is slightly less 

than the others, the cost is higher; this makes sense, since the direct path stays closer to 

the radar throughout the trajectory. This finding will be true for each of the scenarios 

investigated. 

Table 3.2     Optimal Cost, J*, and Path Length, £*, for Case 1: R0 = 1, Rf = 1, Of = 20° 

J* Evaluated by 
Path From         £* Analytic Discrete FOPC 

Analytic 0.378020 0.333333 0.333336 0.333340 
Line 0.347296          - 0.361783 0.361777 

Shooting 0.378020          - 0.333336 0.333340 
SQP 0.378013          - 0.333336 0.333340 

FOPC 0.378022          - 0.333336 0.333333 

3.3.2 Case 2. For this scenario, Rf was extended from 1 to 10 while keeping 

the angle sweep at 9f = 20°. The optimization results are presented in Table 3.3 and 

Figure 3.2. This proved to be a slightly more difficult problem for some of the numerical 

methods to optimize. The shooting method found the analytic optimum and matched 

the cost function when evaluated by both the discrete and FOPC algorithms. The SQP 

formulation approached the optimal path as well, only differing from the optimal cost 

by 1.2 x 10~5 and 2.2 x 10-5 for the discrete and FOPC evaluations, respectively, while 

achieving a shorter path length. 
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Figure 3.1     Optimal Trajectories for Case 1: Ro = 1, Rf = 1, Of = 20° 

Interestingly, the FOPC algorithm found a minimum that didn't have an excessively 

high cost relative to the optimal solution, but appears to have a discontinuity in the 

calculation from the initial point to the first waypoint. Further attempts at determining 

a solution resulted in the same path. The same behavior is witnessed in Case 4, in which 

the endpoints are again separated by a factor of 10, but does not occur in Cases 1 and 3 

when Rf = Ro- It appears that the endpoint geometry of Cases 2 and 4 create numerical 

difficulties for the FOPC algorithm. The control u = R is numerically calculated in the 

shooting method as well as FOPC; this allows a comparison of the initial values of R(9), 

Table 3.4. In Cases 2 and 4, the path is changing quite rapidly with respect to 0 at 

the beginning of the path.   It is believed that this, combined with the aforementioned 

Table 3.3     Optimal Cost, J*, and Path Length, f, for Case 2: Ro = 1, Rf = 10, 9f = 20 ° 

J* Evaluated by 
Path From e* Analytic Discrete      FOPC 

Analytic 9.850997 0.333167 0.333169    0.333179 
Line 9.066761 - 0.348426    0.348447 

Shooting 9.850991 - 0.333169    0.333179 
SQP 9.806455 - 0.333179    0.333189 

FOPC 9.935508 - 0.333235    0.333234 
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Figure 3.2     Optimal Trajectories for Case 2: R0 = 1, Rf = 10, 6f = 20° 

difficulties in choosing the step-size parameter, k, is the source of this problem for the 

FOPC algorithm. 

Noting the reasonable cost from the FOPC optimization paired with an unusual 

path, a path length constraint was added to the SQP formulation to explore the relation- 

ship between path length and objective cost, Figure 3.3. The path length was iteratively 

constrained from the length of the direct path to the length of the analytic solution and 

plotted versus path length. It is interesting to note that the path length needs to change 

only a very small amount from a straight line before it is essentially constant at the opti- 

mal cost. This is because the optimal path is just slightly larger than the direct path; for 

different geometries, the optimal path will be much more pronounced and the Pareto curve 

Table 3.4     Comparison of Initial R{6) for Cases 1-4 

Case 
R{6) From 

Shooting FOPC 

1 0.577350    0.577362 

2 1154.077988 2929.756315 

3 38.182107   26.537612 

4 19122.226062 7280.038907 
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Figure 3.3     Constrained Path Length versus Cost for Case 2: R0 = 1, Rf = 10, 0/ = 20° 

generated will cover a greater range of path lengths (e.g. Figure 3.6). This result is of 

great practical importance, because it indicates these suboptimal trajectories will provide 

shorter flight times with little degradation in minimizing radar exposure. 

3.3.3 Case 3. Cases 3 and 4 explore the effects of approaching the theoretical 

limit of solution for this problem. Pachter [26] states that the path length will approach 

infinity as 8f approaches 60°, and the optimal cost will approach 

^r = 13{M + RS (3.14) 

which for Case 3, J* -> 0.666667, and for Case 4, J* -> 0.333667. This scenario explores 

how well the numerical methods work when approaching this limit; Case 4 adds a large 

separation of endpoints to the mix. 

Figure 3.4 and Table 3.5 summarize the results of Case 3. Once again, the shooting 

method found a solution which is nearly identical to the analytic optimal solution. It 

appears that the shooting method found an optimal trajectory that is shorter than the 

analytic solution; in reality, since both path lengths are calculated by discretizing the 

trajectory over only 100 points, small changes in a point's position may force one path to 
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Figure 3.4     Optimal Trajectories for Case 3: RQ = 1, Rf = 1, Of = 59° 

be smaller than the optimal. As the number of points is increased, however, both solutions 

approach the analytic solution's optimal length. 

This does not explain, however, why the FOPC algorithm calculates a lower cost 

for the path generated by the shooting method and SQP than for the analytic trajectory 

cost. The FOPC method calculated costs less than the analytic solution for all of the 

methods, including the analytic solution. Also, the path generated by FOPC is larger 

than the analytic solution. This indicates some sort of numerical problem is occurring. 

The algorithm consistently gave longer path lengths; even giving the derivative of the 

analytically exact initial condition results in a path length much greater than that of the 

analytic trajectory. 

Table 3.5     Optimal Cost, J*, and Path Length, f, for Case 3: RQ = 1, Rf = 1, 0/ = 59° 

J* Evaluated by 
Path From t Analytic Discrete FOPC 

Analytic 6.178930 0.666438 0.666486 0.666046 
Line 0.984847 - 1.430972 1.430835 

Shooting 6.178541 - 0.666486 0.666016 
SQP 88.252304 - 0.666704 0.649863 

FOPC 20.035219 - 0.668085 0.668060 
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The SQP formulation also had difficulties finding the analytic optimal trajectory. 

The SQP solution path is nearly fifteen times longer than the analytic solution's path; the 

cost, however, is only 2 x 10~4 greater than the analytic cost, calculated using the discrete 

cost function. This makes sense; flying a longer path further from the radar will cause 

a minimal rise in cost due to the longer amount of exposure. Viewed in the context of 

the Pareto diagram of Case 2, Figure 3.3, this means that the curve extending past the 

optimal solution has a very shallow positive slope, which is expected. 

I believe that the problems encountered by the SQP and FOPC numerical optimizers 

are due to the fundamental nature of the problem, i.e., the fact that as Of —»• 60 °, R* —> oo. 

Additionally, when the function describing the relation of path length to cost is nearly 

constant, as is the case in the region around the path length of the analytic trajectory, 

it becomes increasingly difficult for the numerical solvers to distinguish what the true 

optimal solution is. This reinforces the statement that understanding the fundamental 

problem is crucial; without the knowledge of the theoretical limits, the excessive path 

lengths might have been considered the "optimal" solution and been no cause for further 

investigation. It also hints that suboptimal methods for path generation may not result in 

a significantly higher exposure cost. This is important as approximate methods for on-line 

implementation are considered. 

3.3.4 Case 4. Case 4 explores the extremes in both endpoint separation and 

angle traversed and in doing so experiences all of the problems previously encountered in 

SQP and FOPC. Figure 3.5 is a plot of the optimal trajectories for each of the solvers. The 

SQP trajectory shoots out to an enormous path length solution and is not fully shown on 

the plot. While the path length is large, the cost of the SQP solution is within 1 x 10~6 of 

the optimal cost, Table 3.6. FOPC does not find a large path length trajectory as it did in 

Case 3, but it encounters problems similar to Case 2 with a quickly increasing derivative. 

FOPC finds a cost for the SQP solution which is less than the analytic optimum, similar to 

Case 3; this indicates a difficulty of the algorithm to calculate an accurate cost for extreme 

path lengths. 
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Table 3.6     Optimal Cost, J*, and Path Length, t, for Case 4: R0 = 1, Rf = 10, 0/ = 59 ° 

J* Evaluated by 

Path From t Analytic Discrete FOPC 

Analytic 53.943714 0.333666 0.333680 0.333685 
Line 9.523615 - 0.498655 0.498611 

Shooting 53.940363 - 0.333680 0.333685 

SQP 47652.155428 - 0.333681 0.333448 
FOPC 76.737776 - 0.333709 0.333698 

One constant throughout this analysis is the performance of the shooting method. 

The solutions found by the shooting method match the analytic solution for all of the 

cases. Perhaps the performance of the shooting method results from directly integrating 

the Euler equation as opposed to the other methods. SQP calculates an approximation to 

the value of the cost function. It is an indirect way of satisfying the Euler equation. The 

optimal control equations coupled together form the Euler equation; perhaps errors are 

induced in the solution by the forward and backward integrations of the FOPC algorithm. 

Regardless, the shooting method performed exceptionally well. 
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For this case an evaluation of path length versus objective cost similar to Case 2 was 

performed and is shown in Figure 3.6. The Pareto curve encompasses path lengths from 

the straight line path to the optimal path. From the curve it is evident that once the path 

length is at about 35% of the optimal path length, the cost is essentially constant. This 

information, taken in concert with the results from the optimizations, clearly show that 

suboptimal paths provide effectively the same quality of radar exposure minimization with 

the added benefit of shorter path lengths and therefore shorter flight times. 
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IV.   Trajectory Optimization Against Two Radars 

4-1    Overview 

A natural extension to the problem of radar exposure minimization is to formulate 

the problem for multiple radars. This research begins this process by examining the two- 

radar problem. In order to solve the problem, the performance index must first be derived. 

The continuous and discrete performance indices are formulated, and the Euler equation is 

applied to determine the necessary condition for an extremal solution. While an analytic 

solution to the problem is desired, the complexity of the Euler equation precludes its 

solution; thus, the shooting method from Chapter 3 is employed to numerically solve 

for the optimal trajectories for several geometrically symmetric scenarios. One should 

note that the integrator used in the solver requires a monotonically increasing dependent 

variable, x. This effectively limits the path to travel between the radars; if the path were 

to attempt to go around one radar, it would invariably want to circle around, similar to the 

results in Chapter 3 (e.g. Figure 3.4), and y{x) would have multiple values for a single x. 

Examining trajectories that travel around the radar locations is a future topic of research 

and will not be addressed in this study. 

The radar and endpoint geometry for the scenarios examined is shown in Figure 4.1. 

Three parameters of the geometry were varied to examine the effects upon the optimal tra- 

jectory: the downrange distance between the radar locations (A), the crossrange distance 

Figure 4.1      Geometry for the Two Radar Scenarios 
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between the radar locations (B), and the downrange distance between the initial and final 

point (C). When varying A and B, the endpoints of the path were fixed at (XQ, yo) = (0,0) 

and (xf,yf) = (1,0); when varying C, the radars were fixed at (xi,yi) - (0.4,0.5) and 

(^2> 2/2) — (0.6,-0.5). Two ratios of radar transmission power were examined for each 

of the cases: «1/0:2 = 1/1 and ai/a2 = 2/1. The ordinary or weighted Voronoi trajec- 

tory, as applicable, was computed to be compared with the optimal trajectory. Table 4.1 

summarizes the scenarios examined. 

A common graphical technique for optimal path planning against multiple radars is 

to make use of the Voronoi diagram. Starting with full knowledge of the radar locations, 

the Voronoi diagram is constructed of polygons whose edges are equidistant from all of the 

neighboring radars. Hence, travel along the Voronoi edge ensures that an equal amount 

of power is reflected to each radar. This is true, however, only for the case where the 

transmission power of the radars are equal. When the radars have differing transmission 

powers, i.e. a\ ^ «2 in equation (4.1), the Voronoi edge is no longer a line but a circular 

arc, known as the circles of Apollonius. Apollonius of Perga, the Great Geometer, proved 

in his books Conies [1] that the locus of points whose distance from a fixed point is a 

multiple of its distance from another fixed point is a circle. It is easy to see that if the 

points have equal weight, the resulting locus is a circle of infinite radius, or a line. Since 

this is a widely used path planning technique, it provides a useful comparison to the path 

length and the objective cost of the calculated optimal trajectories. Section 4.5.1 describes 

the ordinary Voronoi path when a\ = a2, and Section 4.6.1 develops the weighted Voronoi 

path for ai 7^ «2- 

Table 4.1     Scenarios for Trajectory Optimization Against Two Radars 

Varied Parameter 
Scenario A B C Range          A 

1 Varied Fixed Fixed 0.0- 1.0        0.2 
2 Fixed Varied Fixed 0.4- 2.0        0.2 
3 Fixed Fixed Varied 0.2-10.0        0.2 

4-2 



J..2    Continuous Performance Index 

For the case of single vehicle flight against two radars, the power received by the 

radar is now considered a function of each radar's transmission power and range, 

Pr OC 
fi4 

(4.1) 

The geometry of the problem is shown in Figure 4.2. Cartesian coordinates will be used 

for the formulation of flight against two threat radars as they yield a simpler performance 

index. First, the amount of energy received by the second radar is appended to equa- 

tion (2.17) 

J 
O-l «2 

dt. (4.2) 
R\(t)     R\{t)_ 

where OL\ and a^ signify the transmission power of each individual radar. Consider a 

transformation of the integral from the time domain to the Cartesian frame with the path 

defined as / = f(x,y(x)). For convenience, y will always be considered a function of x, i.e 

ds 
dt 

coordinates by 

ds 

y = y(x). Now, v=%ordt = ^, and ds, the element of arc length, is given in Cartesian 

= Jl+(^Ydx=VTT¥dx. 

V L          fr.y,) 

. (x0,y0)      ^1 \ 4       ^ 

\          (x,y(x)j^ 

^T 
(x2,y2) 

(x,,y,)   x 

Figure 4.2     Two Radar Problem Geometry 
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Noting that the distance from each radar to some point on the path (x, y) is simply, 

Ri(x,y) = V(x-xi)2 + (y-yi)2, 

Rzfay) = V(x - x2)2 + {y~ yi)21 

(4.3) 

(4.4) 

where (#1,2/1) and (#2,2/2) are the known radar locations in Cartesian coordinates. Equa- 

tion (4.2) can now be transformed into Cartesian coordinates, yielding the performance 

index 

'-JCG^ä)^*'        (4-5) 

with Ri(x,y) and #2(2,y) defined above. The boundary conditions are the vehicle's given 

initial point (xo,yo) and final point (xf,yf). 

4.3   Discrete Approximation of the Performance Index 

As was the case with the single radar problem, for application of nonlinear program- 

ming techniques such as SQP to the variational problem, a discrete approximation of the 

performance index is desired. For the two radar problem, the performance index is given 

in Cartesian coordinates; thus, the equation of the line segment between two points (xj,yj) 

and (xj+i,yj+i) and its derivative are easily determined from the point-slope form of a 

line, 

S/j+i ~ Vi \ x 1  gj+i Vi ~ xi %'+! 
xj+i Xj+l X 4 

.      Vj+i - Vj _ 
Xj+l — Xj 

Substituting these results into equations (4.3)-(4.5) gives 

Ji- 
JXi 

ai + «2 

Rf(xj,yj)     R%(xj+1,yj+1) V     \xJ+i-xjJ 
dx,     (4.6) 
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with 

MxJ,yJ) = ]j(x-xi)2 + (^-—^x +     Xj+l„Xj w) , 

R2(xj+1,yj+1) = J(x- x2y + ("———x + T.^_x. yV  ' 
y x3+i ~ xj xj+i    xo 

(4.7) 

(4.8) 

where (xi,y\) and («2,2/2) are the known locations of the radars. For ease in integration, 

substitute for the constants in equations (4.6)-(4.8) by 

a = x\ , 

b _ Vj+i ~ Vj 

_ xj+i yj - XJ yj+1 _ 
c — yl , 

Xj+\ — Xj 

d = X2, 

Xj+l Vj ~ xj yj+i 
e = 

Xj+l X <j 
-2/2, 

K=\l + Vj+l ~ Vj 

Xj+l — Xj 

so the performance index is represented as 

fx3 + l   ( 
Ji_2 = K { r,  

Oil + Oil 

)2 + (bx + c)2}2      [(x-d)2 + (bx + e)2}2 } dx. (4.9) 

This can be integrated through the use of tables or common symbolic mathematics software 

such as Mathematica to yield the following discrete approximation of the cost function, 

Ji- 
Kai 

'2{ab + cf 

KOL2 

2(db + e)3 

(ab + c)[(l + b2)x-a + bc]       _ fe2 Arctan c + bx' 
a2 + c2-2ax + 2bcx + (l + b2)x2     K ' yx-a\ 

{dh + e)[(1 + #)x _ d +M (i + b2) Aretan(^) 

Xj + l 

+ 

d2 + e2- 2dx + 2bex + (1 + b2)x2 x — e 

Xj + l 

(4.10) 

Thus the dependence upon x has been eliminated and the cost can be determined for any 

given pair of points (xj,yj) and (xj+i,yj+i). The total cost for a path of N line segments 
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is simply 
N 

J* = £j^+1. (4.11) 
i=i 

Again, this provides an accurate presentation of the continuous performance index, allowing 

the variational problem to be solved utilizing numerical techniques. 

4-4    Application of the Euler Equation 

The cost functional to be minimized is given in equation (4.5), repeated here for 

convenience 

Gelfand [10] identified this as a special case of problems where the desire is to minimize 

an integral of a function with respect to its arc length, i.e. a functional of the form 

rb 
/   f(x,y)^/l + y2dx. 

Ja 

He proved that the Euler equation can be represented as 

/ 

or, solving for y, 

y = ^j^(f*y-fy), (4-12) 

where fx = §£ and fy = §£. For this problem, the function f(x,y) is defined as 

Rl(x,yf     R2(x,yy 

with derivatives 

Jx — 
4 ax (Rlx + Riy y)     4 a2 (i^, + R^ y) 

Ä15 Ä25 

4iZiyai     4i?2yQJ2 
h ~       R,5 R2

5 
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Inserting /, fx, and fy into equation (4.12) and simplifying gives the Euler equation for 

the two radar case as 

.. _ -4 (l + y) ai R2
5 [Ü/2 - 1) Riy + y Ru] - 4 (l + y) *2 Ri5 [{y2 -i)R2y + yR2x] 

V~ a2Ri5R2 + aiRiR25 ' 
(4.13) 

where equations (4.3) and (4.4) provide us R\, R2 and their partial derivatives, 

R\ = y/(x- -Xlf + {y- -yi)2, 

R, 
X - -x\ + {y-y i)y 

J-X 

y/iß -Xl)2 + (y- -yi)2' 

Ri 
y- -yi 

R2 = V(x - x2)2 + {y- yi)2 > 

x - x2 + (y - y2) y 
R2 

y/(x - x2)
2 + (y- yi)1 ' 

 y-y2  

" ~ V(x-xi)2 + (y-yi)2' "'"_ \/{x-x2y + (y-y2y' 
R%> 

4.5    Trajectory Optimization Against Two Equal Power Radars 

This section examines the case of air vehicle flight against two equal power radars. 

A short development of the Voronoi path is presented first, followed by the results of the 

optimization. 

4.5.1 Voronoi Comparison Path for a\ = a2 . For this study, vehicle flight was 

against at most two radars; thus, given two equal power radars located at {x\,yi) and 

(22,2/2), the perpendicular bisector of the line segment connecting the radars will be the 

Voronoi edge. 

The equation of the line connecting the radars is 

y(x) = m{x - x2) + 2/2 , (4-14) 

m = V-2^- . (4.15) 
x2 — X\ 
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The perpendicular bisector of a line has slope -1/m and passes through the midpoint 

of the line (xm,ym), 

y±(x) = {x - xm) + ym , 
m 

Xm. — 
X\ +X2 

V\ + 2/2 

(4.16) 

(4.17) 

(4.18) 

The comparison path will be constructed of three line segments: a shortest path line from 

the initial point, the perpendicular bisector, and the shortest path line to the final point 

completing the curve, shown in Figure 4.3. The first intercept (xn,yn) is on the line 

perpendicular to (4.16) through (xo,yo), 

y(x) = m(x - x0) + yo • (4.19) 

Equating y{x) to (4.16) and solving for x yields 

xn = 
m2x0 + m(ym - yo) + xr, 

m 2 + l 
(4.20) 

y 

(Xo.Yo) 

(x„y,) (xi2,yi2) 

^ 
(x„y,) X 

(x,i,yH) (x2,y2) 

Figure 4.3     Voronoi Path for Radars of Equal Transmission Power, a\ = a^ 
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and back-substituting into y gives 

il = 
m2ym + m(xm - x0) + yp 

m2 + l 
(4.21) 

Taking a similar approach at the final point of the path, (xf,yf), results in 

m 
Xi2 = 

'■Xf + m(ym - yf) + xm 

m 2 + l 

Ui2 = 
m2ym + m(xm - xf) + y/ 

m2 + l 

(4.22) 

(4.23) 

where m, xm, and ym are given by (4.15), (4.17), and (4.18). 

4.5.2 Optimization Results. For individual plots of the trajectories generated, 

see Appendices A.1-A.3. 

4.5.2.1 Scenario 1: Varying Downrange Radar Separation. The first case 

explores changing the downrange location of the radars and the effect on the optimal 

trajectory. Six optimal trajectories were produced corresponding to six different symmetric 

radar geometries. A summary of the optimal trajectory cost, J*, and path length, £*, the 

Voronoi path cost, Jvor, and path length, £vor, and the straight line cost, June, and path 

length, tune is presented in Table 4.2. 

Intuitively, it is expected that the paths will be symmetric about the midpoint of the 

vector connecting the radars, and the path will bend away from the nearest radar. The 

results of the optimization do in fact prove this to be true. In Figure 4.4, the optimal path 

Table 4.2      Objective Cost, J, and Path Length, £, for Scenario 1, a\ = a2 

A J* r JvOT **vor ^line '"line 

0.0 20.566371 1.000000 20.566371 1.000000 20.566371 1.000000 

0.2 19.644590 1.018444 20.698733 1.176697 20.243257 1.000000 

0.4 17.363391 1.065750 18.677842 1.299867 19.240926 1.000000 

0.6 14.656035 1.120135 15.933684 1.371989 17.495753 1.000000 

0.8 12.108780 1.155987 13.296891 1.405564 15.023435 1.000000 

1.0 9.797058 1.159667 10.851193 1.414214 12.057190 1.000000 
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Figure 4.4      Optimal Trajectories for Increasing A, a\ — ot.2 

bends away from the nearest radar and intersects the downrange axis at the midpoint of 

the radars as the radars move towards the endpoints. From Table 4.2, the path length of 

the optimal path is increasing as A increases. Interestingly, at the point the radars are 

at the same x-coordinate as the endpoints, the path length is shorter than the previous 

trajectory. This is because as A becomes greater than C, the optimal trajectory will 

approach a straight line which is short compared to magnitude of A. As A —► oo, the ratio 

of optimal path length to downrange distance between radars, C/A, and the optimal cost, 

J*, will approach zero. This trend is evident in Figure 4.5, with the cost approaching 

zero as the downrange distance between radars increases. Therefore, the maximum value 

for the objective cost of the optimal trajectory is when C/A —> oo, or when A —> 0. 

The relation of the optimal path to the Voronoi path is not evident from this scenario. 

It appears at first that the optimal curve is a smoothed function of the Voronoi path; or, 

viewed from another perspective, the Voronoi path is a rough linear approximation to the 

optimal curve. In the limit as A gets very large, however, the Voronoi edge will become 

perpendicular to the optimal path and the Voronoi intercepts will move to a single point, 

the midpoint of the Voronoi edge between the radars. The only consistently common 

point is the midpoint of the paths, and this is due to the symmetry of the problem. Thus, 

graphically there appears to be little similarity between the Voronoi path and the optimal 
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Figure 4.5     Objective Cost as a Function of Downrange Distance, a\ = a.2 

path. Comparing the objective cost of the three paths, however, the cost of the Voronoi 

path is mainly between the optimal cost and the straight line cost. This indicates that 

while it is a suboptimal path, it is a better approximation of the optimal path than the 

straight line. 

4.5.2.2 Scenario 2: Varying Crossrange Radar Separation. In Scenario 2, 

the radars are kept at a fixed downrange separation, A, while the crossrange, B, is progres- 

sively increased, Table 4.3. Results similar to what was observed in Scenario 1 are expected; 

Table 4.3      Objective Cost, J, and Path Length, £, for Scenario 2, a\ = a2 

B J* Jqj Jli %-li 

0.4 — _ 139.600038 1.299867 76.497903 1.000000 

0.6 35.415026 1.413575 41.930698 1.371989 57.576626 1.000000 

0.8 17.383209 1.254360 19.308828 1.405564 23.986211 1.000000 

1.0 9.797921 1.159563 10.851193 1.414214 12.057190 1.000000 

1.2 5.964369 1.102037 6.727189 1.408406 6.812747 1.000000 

1.4 3.826028 1.066506 4.409475 1.394972 4.168714 1.000000 

1.6 2.555771 1.044101 3.000367 1.377997 2.702852 1.000000 

1.8 1.765128 1.029661 2.100850 1.359800 1.831576 1.000000 

2.0 1.253887 1.020306 1.506437 1.341641 1.285398 1.000000 
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as the crossrange B -> oo, the optimal path will approach a straight line. Indeed, this is 

observed in the optimal trajectories for this case, Figure 4.6. 

For this scenario, numerical difficulties preempted finding solutions as B -> 0. This 

is likely due to the optimal path desiring to travel around the radars instead of between 

them. When problems occurred, the calculated solution would travel through one of the 

radars. This is because the solution of the Euler equation provides an extremum, not just 

a minimum; these cases were obviously maximum or saddle point solutions to the Euler 

equation. 

From Figure 4.7 inferences can still be drawn as to the affects of varying B. For this 

formulation, as B -> 0, the cost, J*, will approach some very large number. Since x must 

monotonically increase, the path has nowhere to go but through the radars. In reality, the 

optimal trajectory would never follow this path; instead, it would travel around the radars 

at a much lower cost. As mentioned before, to solve this problem an alternate formulation 

is required. 

When B is increased, J* will go to zero and the optimal path will become a straight 

line. In addition, the Voronoi path will also flatten to a straight line. From Figure 4.7, a 

-0.3 

Figure 4.6      Optimal Trajectories for Increasing B, a\ = «2 
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Figure 4.7     Objective Cost as a Function of Crossrange Distance, a\ = a^ 

straight line path is nearly as effective as the optimal path and better than the Voronoi 

path when B/C « 1.6/1, and at that ratio there is a 4% savings in path length. 

The results of the first two scenarios followed the expectations of how the optimal 

trajectory would react to different radar geometries, and reinforced the fact that the path 

will bend away from the radars when they are close and approach the direct path as the 

radars move away from the endpoints. Little information could be gleaned by comparing 

the optimal trajectory to the Voronoi path, since it changed with each iteration. In Sce- 

nario 3, the radar geometry is held fixed and the path endpoint separation is progressively 

increased. Since the radars do not move, the Voronoi edge will be constant and the only 

variable in the Voronoi path will be the length of the segments connecting the endpoints. 

The resulting optimal trajectories reveal an opportunity to exploit the Voronoi path for 

on-line utilization. 

4.5.2.3    Scenario 3:   Varying Downrange Endpoint Separation. For this 

scenario, the distance between the path's endpoints are iteratively increased while the 

radar locations are fixed. This means that the Voronoi edge is constant, and the Voronoi 

path just gets progressively longer as the endpoint separation gets large. Table 4.4 and 

Figure 4.8 summarize the optimal trajectories calculated. 
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Table 4.4     Objective Cost, J, and Path Length, £, 'or Scenario . 3, a\ = Q!2 

C J* t Jvor tVOr Jline t'line 

0.2 5.800936 0.200057 6.747879 0.235339 5.802672 0.200000 

0.4 10.932462 0.401157 12.380733 0.470679 10.970394 0.400000 

0.6 14.937594 0.604842 16.429929 0.706018 15.103038 0.600000 

0.8 17.763680 0.810947 19.065072 0.941357 18.135953 0.800000 

1.0 19.645656 1.018353 20.698733 1.176697 20.243257 1.000000 

1.2 20.874626 1.226197 21.701820 1.412036 21.671344 1.200000 

1.4 21.681834 1.433928 22.326437 1.647376 22.635972 1.400000 

1.6 22.221526 1.641400 22.725487 1.882715 23.293968 1.600000 

1.8 22.590806 1.848554 22.988123 2.118054 23.750271 1.800000 

2.0 22.849767 2.055328 23.166208 2.353394 24.072858 2.000000 

3.0 23.410955 3.085858 23.529910 3.530090 24.776987 3.000000 

4.0 23.569667 4.113160 23.625032 4.706787 24.975693 4.000000 

5.0 23.629938 5.139262 23.659745 5.883484 25.050604 5.000000 

6.0 23.657501 6.164908 23.675263 7.060181 25.084653 6.000000 

7.0 23.671810 7.190211 23.683204 8.236878 25.102245 7.000000 

8.0 23.679951 8.215458 23.687679 9.413574 25.112217 8.000000 

9.0 23.684914 9.240641 23.690389 10.590271 25.118281 9.000000 

10.0 23.688106 10.265973 23.692125 11.766968 25.122176 10.000000 

The solutions for the optimal trajectory seem alarming at first.   As the endpoints 

move outward from the radars, the path extends further and further out.   While the 
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optimal trajectories seem excessive, looking at the relationship between objective cost and 

the endpoint separation C, Figure 4.9, it is seen that the cost for a straight line and 

the optimal path are relatively close, and a straight line path would be acceptable. Upon 

further review, a more important result is uncovered: the cost of the Voronoi path is nearly 

identical to the optimal path. In fact, after C > 1.4, the difference in cost is essentially 

negligible. Thus, the question is no longer how to get from the initial point to the final 

point; the question now is how to optimally approach to the Voronoi edge from the initial 

point and how to optimally depart the Voronoi edge to get to the final point. This has 

crucial implications for on-line path planning. Instead of a full path optimization being 

performed, utilizing valuable on-line system resources, one only needs to optimize the 

approach and departure from the Voronoi edge. Research in this area is currently being 

performed at the Air Force Research Laboratory. 
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Figure 4.9      Objective Cost as a Function of Endpoint Separation, a\ = a?, 

4.6    Trajectory Optimization Against Two Unequal Power Radars 

4.6.I Voronoi Comparison Path for a\± ai- For the case when the radars are 

of unequal transmission power, a weighted Voronoi diagram is used. The resulting curve 

is known as a circle of Apollonius. Okabe [25] provides a full derivation of the theory; a 

simple Cartesian formulation for this specific study is provided here. The weighted Voronoi 
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path starts with equating the power received by each radar, (4.1), 

^r = ^ (4-24) 

=» aiR% = a2Rf (4.25) 

^±^lRl = ±^E{Rl, (4.26) 

where Ri and R2 are defined in (4.3)-(4.4). From (4.26) it appears four cases must be 

investigated; however, two of the cases are equivalent to each other and can be eliminated. 

The two cases to examine are 

^R2
2 = ^Rl, (4.27) 

V^i^-VCT?, (4-28) 

OL\ > 1, a2 > 1, «i ^ a2. (4.29) 

We will begin by molding equation (4.27) into a more familiar form. To simplify the 

notation, let y/cn = a, y/äi = b. Substituting R\ and R2 from equations (4.3)-(4.4) into 

equation (4.27) gives 

a[(x - x2f + (y- y2f\ = b[(x - xxf + (y - yi)2]. (4.30) 

Now let c = b/a, and expand and collect terms, 

x2(l - c) - 2x(x2 - cxi) + y2(l - c) - 2y{y2 - cVl) = (cxj - x\) + (cyf - y\).     (4.31) 

Divide through by (1 — c), 

x2 _ 2x*2 - ™i +y2_ 2yy*-cyi = 
CTi ~x* + ^ - y'.     (4.32) 

1 — c 1 — c 1 — c 
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Noticing that we can complete the square for the x- and y-terms gives 

x2-cxi\2   fx2-cx1\
2
if       2/2-q/A2    (y2-cyi\2     cx\ -x% + cy\ - y\ X

--T^T) -{-T=r) +{y--T^r) i~r^J =      r^      ■ 
(4.33) 

Moving the constant terms to the right-hand side and simplifying yields 

^ _ ^^)2 + (y - ^y^)2 = (i^v^(^2 - an)2 + (w - w)2)2 ,     (4-34) 

which is obviously the equation of a circle. Applying an identical formulation for the second 

case, equation (4.28), gives the following equation of a circle 

(*" ^TT?)2 + (»" y-T^)2 = (l£^ "-P + fe "»*)''    (4'35) 

Since c = s/c^/cn > 0, equation (4.35) has a radius which exists in the imaginary realm; 

hence, equation (4.35) will be discarded and equation (4.34) will be used. Substituting 

for c, the locus of equal power received for radars of unequal transmission power can be 

summarized as a circle with center (xc,yc) and radius rc, 

Xp. — 
aix2 - y/äixi ,4 36^ 
y/äl- T/Ü2 

Q12/2 ~ yo^l/l 

a{- y/Ö2 
(4.37) 

rc=   ^/aia"V(^-x1r + (y2-y2)
2. (4.38) 

y/ai- \JOL2 

A comparison path similar to the perpendicular bisector will be constructed using equa- 

tions (4.36)-(4.38), with the shortest path taken from the endpoints to the Voronoi edge 

completing the curve as before, Figure 4.10. 

The first intercept (xn,ya) is on the line perpendicular to (4.34) through (x0,yo) 

and (xc,yc), 

y = V^^(x-x0) + y0. (4.39) 
xc-x0 
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(Xc,yc) 

Figure 4.10     Voronoi Path for Radars of Unequal Transmission Power, a\ ^ «2 

Substituting y = y in (4.34) 

(x-xcy + { (x - XQ) + y0 - yc)   =rc, 
Xc — XQ 

(4.40) 

and solving for x gives 

X{\ — xc ± 
rc{xc - XQ) 

^{xc - x0)2 + (yc - y0)
2 

(4.41) 

To determine yn, substitute xn into equation (4.39) and simplify, 

yn =yc± 
rc(yc - yo) 

y/(xc - XQ)
2
 + (yc - yo)2 

(4.42) 

This gives the four intercept points of the lines through the endpoints with the circle. 

For this study, ai > 0:2 and «2 = 1; with the geometry of Figure 4.10, this placed (xc,yc) 

in the fourth quadrant. Since we are interested in only the points between the radars, the 
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intercept point is at 

fc\XC   —   X0)  (A     AO\ 
Xi\ =xc-    . ,     . ,2 , l4-4^ 

^{xc - x0y + (yc - yoY 

 rc{yc - yo) uM^ 
y/(xc - x0)

2 + (yc - yo)2 

4.6.2 Optimization Results. Optimal trajectories for the three scenarios are again 

calculated, but now with unequal radar transmission power. The ratio of transmission 

powers is «1/0:2 = 2/1, where «i is the power of the radar at {x\,y\) and a2 is the power 

of the radar at (£2,2/2)- F°r comparison purposes, the ordinary Voronoi path is replaced 

by its equivalent weighted Voronoi path for the radar geometry. For individual plots of the 

trajectories generated, see Appendices A.4-A.6. 

4.6.2.1 Scenario 1: Varying Downrange Radar Separation. Table 4.5 is a 

summary of the optimal cost and path lengths for this scenario. Representative trajectories 

are shown in Figures 4.11-4.12, and all of the optimal paths in Figure 4.13. As expected, 

the optimal trajectories behaved similarly to the case when the radars were of equal power. 

The optimal path is now asymmetric, and bends further away from the radar in the first 

quadrant because it is radiating with twice the power of the other radar. The path no 

longer intercepts the midpoint of the vector connecting the radars; instead the intercept 

point lies where that vector intercepts the locus of equal power. The optimal trajectory 

bends just enough to closely follow the weighted Voronoi path for a short while and then 

leaves the path to meet the endpoint constraint. 

Table 4.5     Objective Cost, J, and Path Length, £, for Scenario 1, a\ ^ «2 

A J ■£ Jvor t-vor ^line ^line 

0.0 29.640530 1.008353 31.221704 1.147263 30.849556 1.000000 

0.2 28.331782 1.026904 29.594596 1.151912 30.364886 1.000000 

0.4 25.098595 1.074275 26.925237 1.278581 28.861389 1.000000 

0.6 21.271201 1.128260 23.180429 1.355481 26.243630 1.000000 

0.8 17.671044 1.163131 19.506644 1.393091 22.535153 1.000000 

1.0 14.381110 1.165595 16.011071 1.404509 18.085785 1.000000 
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The shape of the curve describing the objective cost as a function of A, Figure 4.14, 

is nearly the same as in Section 4.5.2.1. The magnitude of the curve for this case is higher, 

but this is expected as the vehicle is constrained to travel in the same area as before but 

with one higher-powered radar. The relationship between A and C remains the same: as 
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C/A approaches infinity, J* will be at its maximum, and as C/A approaches zero, J* will 

approach zero. As was the case in Section 4.5.2.1, one cannot easily discern the relationship 

between the optimal path and the Voronoi path from this scenario because the Voronoi 

path is changing with each iteration. 
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Downrange Distance Between Radars 

Figure 4.14     Objective Cost as a Function of Radar Downrange Separation, a\ ^ a^ 

4-21 



4-6.2.2 Scenario 2: Varying Crossrange Radar Separation. The trajectories 

generated for the case when the radars are of unequal power track the same trends explained 

in Section 4.5.2.2, as shown in Table 4.6 and Figures 4.15-4.16. The optimal path is again 

asymmetric, as in Section 4.6.2.1, bending away from the radar of greater power. The path 

length of the optimal trajectories are only slightly longer than those of Section 4.5.2.2, at 

most 1% greater. To make an analogy, if the optimal paths from Section 4.5.2.2 were strings 

of constant length, the paths of this section are merely a repositioning of that string. This 

is likely a factor of the radar power ratio and the length difference may become more 

pronounced as the ratio increases. 

As B is increased, the objective cost follows nearly the same curve as the equal radar 

power scenario, only translated upward in cost, due to the higher-power radar. Similar to 

the results in Section 4.5.2.2, when the ratio B/C = 1.6/1, there is only a 1% difference 

in cost between the straight line trajectory and the optimal path, while the straight line 

path is 5% shorter than the optimal. Depending upon the application, the shorter travel 

distance may outweigh the minor increase in radar exposure. 

Numerical difficulties again prevented the calculation of optimal trajectories as B 

approached the abscissa. As was the case before, the optimal trajectory would likely go 

around the radars and could be solved for using an alternate formulation. 

Table 4.6      Objective Cost, J, and Path Length, £, for Scenario 2, ai ^ a.2 

B J* £* Jyor **vor •Jline •wine 

0.4 — — 211.271635 1.300402 152.015541 1.000000 

0.6 — - 63.063121 1.369012 47.172170 1.000000 

0.8 25.577900 1.259919 28.749046 1.398834 35.979317 1.000000 

1.0 14.381110 1.165595 16.011071 1.404509 18.085785 1.000000 

1.2 8.744103 1.108858 9.858671 1.396655 10.219120 1.000000 

1.4 5.607863 1.074068 6.430085 1.381909 6.253072 1.000000 

1.6 3.747165 1.052340 4.359243 1.364122 4.054278 1.000000 

1.8 2.589466 1.038537 3.043824 1.345432 2.747364 1.000000 

2.0 1.841082 1.029601 2.177832 1.326976 1.928097 1.000000 

4.6.2.3    ScenarioS: Varying Downrange Endpoint Separtion.      As in Section 

4.5.2.3, by varying the parameter C the best approach for travelling between the radars 
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can be determined. The results of the optimization are shown in Table 4.7 and Figures 

4.17-4.18. For equal radar power, it was shown that the optimal path can be determined 

by optimizing the approach to and departure from the Voronoi edge. When the radars 

are of unequal transmission power, a similar phenomenon takes place. Whereas in Section 

4.5.2.3 the optimal trajectory approached the perpendicular bisector, for this scenario the 
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Crossrange Distance Between Radars 

Figure 4.16      Objective Cost as a Function of Radar Crossrange Separation, a\ ^ a.<i 
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optimal trajectory approached the weighted Voronoi edge, a circular locus of equal radar 

power. At the intersection with the vector connecting the radars, the optimal trajectory 

departed the locus and turned towards the final point. Interestingly, the final portion of 

the path does not follow the same trend as in the equal power case. The optimal trajectory 

breaks off of the Voronoi edge much sooner, indicating that it is less costly to get to the 

final point quickly than to follow the locus of equal power. As concluded in Section 4.5.2.3, 

the problem to be solved now is how to optimally approach and depart from the Voronoi 

edge. For on-board usage, this has a much lower computational cost than performing a 

full trajectory optimization problem. 
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Table 4.7     Objective Cost, J, and Path Length, £, for Scenario 3, a\ ^ a2 

c J* I* J-uor c-uor •Jline '-line 

0.2 8.625837 0.201447 9.640721 0.284520 8.704008 0.200000 

0.4 16.044973 0.405500 17.692042 0.486992 16.455591 0.400000 

0.6 21.733376 0.610855 23.483481 0.695163 22.654557 0.600000 

0.8 25.707102 0.818134 27.254841 0.924455 27.203930 0.800000 

1.0 28.332287 1.026878 29.594596 1.151912 30.364886 1.000000 

1.2 30.034460 1.236385 30.825946 1.376988 32.507016 1.200000 

1.4 31.144935 1.446190 31.813057 1.599261 33.953959 1.400000 

1.6 31.883008 1.656081 32.465301 1.818338 34.940951 1.600000 

1.8 32.385425 1.865962 32.903663 2.040986 35.625407 1.800000 

2.0 32.736111 2.075784 33.203846 2.277616 36.109287 2.000000 

3.0 33.488869 3.125072 33.807335 3.490995 37.165481 3.000000 

4.0 33.698376 4.175579 33.948015 4.727328 37.463540 4.000000 

5.0 33.777111 5.227868 33.991086 5.960318 37.575907 5.000000 

6.0 33.813018 6.281839 34.006707 7.175999 37.626979 6.000000 

7.0 33.831137 7.337236 34.012977 8.368961 37.653367 7.000000 

8.0 33.841803 8.393788 34.015608 9.538646 37.668326 8.000000 

9.0 33.848026 9.451291 34.016680 10.686775 37.677422 9.000000 

10.0 33.852026 10.509581 34.017028 11.815895 37.683265 10.000000 
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V.   Conclusions and Recommendations 

5.1    Conclusions 

The application of different numerical methods to optimizing the trajectory of an 

air vehicle against one radar highlighted the necessity of understanding the fundamental 

problem. The capability for comparison with the analytical baseline was invaluable in 

understanding the dynamics of the optimal trajectories as they approached the theoretical 

limit. For several of the cases, the numerical optimization found trajectories that were 

excessively long yet having a cost very near the optimal. Without a priori knowledge of 

the angle limitations, these trajectories could have mistakenly been classified as optimal. 

Instead, it led to exploration of the relationship between the objective cost and path length, 

and the finding that radar exposure minimization against one radar is relatively invariant 

to path length. This is an advantageous result, as it means that sub-optimal paths of 

shorter path length can be substituted for the optimal path at very little risk. This could 

lead to reduced flight times and fuel savings, two of the more important parameters for 

operational mission planners. 

Through the systematic variation of the downrange and crossrange radar separation, 

the shaping of the optimal trajectory with respect to varying radar geometries was identi- 

fied. Additionally, varying the crossrange radar separation helped identify situations where 

different formulations or numerical methods might be necessary. By exploring the effect 

of these parameters, a more robust numerical optimization technique can be developed. 

In contrast, varying the path endpoint separation provided a way to analyze travelling 

through the radars. Through direct comparison of objective cost and path length with the 

Voronoi diagram, it was discovered that for a feasible near-optimal trajectory, one option 

is to optimize the approach to and departure from the Voronoi edge. The calculation of 

the ordinary or weighted Voronoi edge is a simple task, and if through additional research 

a similarly deterministic calculation of the approach and departure paths is found, the 

resulting suboptimal trajectory can be quickly calculated such that it approximates the 

optimal solution to within acceptable limits. This is a significant result, especially for 

on-line optimization.   Partial path optimization is a much quicker and cheaper on-line 
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calculation than performing a full path optimization, thus conserving valuable system 

resources for other mission tasks. 

5.2    Recommendations For Future Research 

For a full understanding of the air vehicle flight optimization problem, it is necessary 

to examine what happens if the air vehicle can only fly around the radars and not between 

them. A reformulation of the problem in which no constraint exists on the solution space 

would eliminate the numerical difficulties encountered in this study and open the problem 

for additional examination. Calculation of optimal trajectories with this constraint would 

provide important information as to when it is more advantageous to travel between versus 

around the radars. 

Removing the travel path restriction and adding a path length constraint would 

allow for a Pareto analysis of the objective cost versus the path length, similar to the 

analysis done in Chapter 3 of this document. This would help determine the proverbial 

"knee-in-the-curve" at which additional path length gives little risk savings, an important 

consideration when time and fuel usage are of concern. 

An analogous assessment of air vehicle trajectory optimization might uncover ways 

to effectively reduce the amount of received radar power by bistatic radar systems. Bistatic 

radar systems utilize transmitters and receivers at different locations, providing the ability 

to track smaller radar cross section aircraft. The extension of this problem to encompass 

bistatic radars would be an informative study and may provide additional insights for both 

radar types. 

Finally, a generalization of the problem to any number of radars is necessary for true 

on-board capability to be realized. In a radar-rich environment, the air vehicle avoiding 

detection needs to have a quick computational method for discerning the best possible 

trajectory to complete the mission. Application of the results of this and studies encom- 

passing the recommendations above could be fused into a deterministic calculation of the 

optimal path, conserving system resources for other mission-essential tasks. 
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Appendix A.   Plots for Trajectory Optimization Against Two Radars 

A.l    Scenario 1: Varying Downrange Radar Separation, a\ = ul 
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A.2    Scenario 2: Varying Crossrange Radar Location, a\ = OLI 
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A.3    Scenario 3: Varying Endpoint Separation, a\ = a2 
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Figure A. 15     Optimal Trajectory for C = 0.2 
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A.4    Scenario 1: Varying Downrange Radar Separation, a\ =£ a2 
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Figure A.33     Optimal Trajectory for A = 0.0 
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Figure A.34     Optimal Trajectory for A = 0.2 
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Figure A.36     Optimal Trajectory for A = 0.6 
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Figure A.37     Optimal Trajectory for A = 0.8 
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A.5    Scenario 2: Varying Crossrange Radar Separation, a\ ^ al 
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Figure A.41     Optimal Trajectory for B = 1.2 
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Figure A.42     Optimal Trajectory for B = 1.4 
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Figure A.43     Optimal Trajectory for B = 1.6 
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Figure A.46     Optimal Trajectory for C = 0.2 

A-23 



0.5 ■ 

0.4 ■ 

0.3 ■ 

0.2 

a>    0.1 
a> 
c 
to 
<n 
tn 

0 - 

-0.1 

-0.2 

-0.3 ■ 

-0.4 ■ 

-0.5 

i 1 1 e 1 i   1 1 1 

— Optimal Path 
- —   Voronoi Path 
O   Radar Locations 

■                                      "s*-^ """ \ 
,• — ■"" 

■          ' , e 1  1 

0.2 0.4 0.6 
Downrange 

0.8 

Figure A.47     Optimal Trajectory for C = 0.4 
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Figure A.48     Optimal Trajectory for C = 0.6 
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Figure A.50     Optimal Trajectory for C = 1.0 
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Figure A.51     Optimal Trajectory for C = 1.2 
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Figure A.53     Optimal Trajectory for C = 1.6 
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Figure A.54     Optimal Trajectory for C = 1.8 
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Figure A.55     Optimal Trajectory for C = 2.0 
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Figure A.56     Optimal Trajectory for C = 3.0 
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Figure A.57     Optimal Trajectory for C = 4.0 
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Figure A.58     Optimal Trajectory for C = 5.0 
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Figure A.59     Optimal Trajectory for C = 6.0 
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Figure A.61     Optimal Trajectory for C = 8.0 
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