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Abstract 

In two recent papers the induced loss factor is determined via the modification to the 

loss factor in the linear impedance of a master oscillator caused by its coupling to a 

set of satellite oscillators. A recapitulation of this linear impedance analysis (LIA) is 

presented. A loss factor is basically an energetic quantity and, therefore, one may 

inquire whether the induced loss factor may be estimated via an energy analysis 

(EA). An answer to this question is sought. It is shown that the two analyses; (LIA) 

and (EA), yield, in the appropriate frequency range, identical results for the induced 

loss factor. This frequency range spans the distribution of resonance frequencies of 

the satellite oscillators. In this frequency range the identity of the results is not only 

in terms of gross features, but also in details. Finally, the relationship of (EA) to 

statistical energy analysis (SEA) is explored. The loss factors of the satellite 

oscillators are directly related to modal overlap parameters. It is found that for the 

stronger couplings, the validation of (SEA) may require these modal overlap para- 

meters to exceed a certain threshold. 



I. Introduction 

In two recent papers the influence on the response behavior of a master 

oscillator due to its coupling to a set of satellite oscillators is derived and examined 

[1,2]. The complex is sketched in Fig. 1. The examination is conducted in terms of 

the induced loss factor rjs(y), where (y) is the normalized frequency variable; 

y=(o)lo)0). The normalizing frequency is the resonance frequency {co0) of the 

master oscillator in isolation. The induced loss factor rjs(y)accounts for the 

modification in the loss factor in the linear impedance of the master oscillator caused 

by its coupling to that set of satellite oscillators. This modification is the focus of the 

investigation performed in References 1 and 2 and is also the focus of the 

investigation in this paper. A recapitulation of the linear impedance analysis (LIA) 

covered in these references may, thus, be in order. 

As Fig. 1 indicates, the coupling between the master oscillator and a satellite 

oscillator allows for stiffness, mass, gyroscopic and a mixture of these forms [3, 4]. 

With the assistance of Fig. 1, the linear equations of motion for a master oscillator in 

isolation, for a coupled master oscillator and for a typical satellite oscillator are stated 

in the forms: 



Z°0(y)V0°(y) = Pe(y), 

Z0(y)Vo(y) = Pe(y), 

Vr(y) = Br(y) V0(y), 

respectively, where 

Z°0(y) = (ia?M)[l-(y)-2], 

Z0(y) = (icDM)\l-(yy2{[l-S(y)]+i[i7o+Tjs(y)]} 

(la) 

(lb) 

(lc) 

(2a) 

(2b) 

R 

S(y)-iTJs(y) = O02£{mr{[l-(zr)
2(l + ii7r)] 

\jncr-{zcr) (\ + ricr)\-(qcrly)   } 

[(l + mcr)-(zrr)
2 (1+ iTjrr)T

1}, 

Br(y) = -imcr+(zcr)
2(l + irjcr)-i(gr/y)] [(l + mcr)-(zrr) (\ + iTjrr)] 

(qcr/y)   =4mcr(zcr) (l+iTJcr) + (gr/yY 

(zrr)
2(l + iT]rr) = (Zr)

2(l + i7]r) + (zcrf (l + lTJcr), 

{zrrf = {xrr lyf;   (z,)2 = (xr Iyf;    (zcrf = (xcr Iyf, 

(xr)
2(l + i?]r) = (kr/mr);   (xcr)

2(l + iTjcr) = (kcr/mr), 

mr = (mrIM);   mcr = {mcrlmr);    gr=[Gr/(a)0mr)]. 

-l 

(2c) 

(2d) 

(2e) 

(2f) 

(2g) 

(2h) 

(2i) 



In Eq. (1) Z°(y) and V°{y), and Z0(y) and V0(y) are the unmodified and the 

modified linear impedances and responses of the master oscillator, respectively, 

Vr{y) is the response of the (r)th satellite oscillator and Pe(y) is the external drive; 

this external drive is applied to the master oscillator only [1,2]. The other quantities 

and parameters are defined in Fig. 1 and in Eq. (2). It is convenient, with only a 

slight loss in generality, to impose a similarity on the stiffnesses (springs) that are 

placed on either side of the mass (mr) of the (r)th satellite oscillator; namely 

(x,)2 = ar(x°rf;   {xcrf = acr(x°rf, (3) 

where (x°) defines a designed distribution for the normalized resonance frequencies 

of the satellite oscillators. In that design the resonance frequencies ascend according 

to the value of the index (r); i.e., (xrr)   < (xqq) ; q = (r + 1); 1 < r < (R-V), and 

the numbers of resonance frequencies on either side of the resonance frequency (&>0) 

of the master oscillator in isolation, are equal.   As in References 1 and 2, (x^)is 

assigned the specific form 

(x°r) = \\ + {(\-2r)y(R)} fll2); y{R)=[yl{2(R)l (4a) 

where 

F=r(R + l)~l;   R = R(R + l)~l;   y = 0.6. (4b) 

Other forms for (x^) are not only permissible, they are readily introduced. Finally, it 

is recognized that the coupling of the (r)th satellite oscillator to the master oscillator 



is specified in terms of the stiffness parameter (acr), the gyroscopic coupling 

parameter (gr) and the mass coupling parameter (mcr). The values of these 

parameters, either individually or in combinations, determine the coupling strengths; 

there is, by definition, no coupling between a satellite oscillator and another. 

[cf.Fig.L] 

The induced loss factor T]s(y), investigated via Eqs. (2b) and (2c), reveals the 

dependence of this quantity on parameters that define the externally driven complex; 

see Fig. 1. The dependence of this induced loss factor on the coupling forms and 

coupling strengths is of particular interest in this investigation. The dependence of 

this quantity on the distribution of the resonance frequencies and on the values of the 

modal overlap parameters that are assigned to the satellite oscillators is also of 

interest in this investigation. Computational data of these dependencies are depicted 

in a number of figures in which J]s(y) is presented, as a function of (v). In 

particular, in these figures, the phenomenon of erosion is defined and demonstrated. 

In this demonstration the corresponding first order approximations to rjs (y) play a 

role [1,2]. (The first order approximation is evaluated by replacing the summation 

in Eq. (2c) by an integration and carrying out the integration subjected to vanishing 

values of the modal overlap parameters.) In the evaluations presented, certain 

parametric simplifications are introduced. Largely, these simplifications manifest 

dropping the dependence of some parameters on the index (r); namely 



mr=m;    ar = a;    acr=ac;   g =g;    mcr-mc\    br = bcr = b. (5a) 

Moreover, to ensure that the distribution of the resonance frequencies span a 

definitive and a constant range, as a function of (F) [7=r (R + 1)~ .], the parametric 

equality 

(\ + mc) = (a + ac), (5b) 

is conditioned.   Then, under the similarity conditions specified in Eq. (3) and the 

simplifications and condition introduced in Eqs. (5a) and (5b), respectively, the loss 

factors assigned to the (r)th satellite oscillator are equal; namely 

Vrr=Vr = Vcr = v<r);  W)={b 17i)[y{R){x°r)
2 \,  b =[^b(R+iyl ],        (5C) 

where (x°) and y(R) are stated in Eq. (4) [1,2]. Although 77(F) is not a function of 

the normalized frequency (y), situations arise in which notationally it is conducive 

to cast 

V(T) - rjr(y) = (b/x)[(y)2y(R)(z°r)
2];   z° = {x°Iy). (5d) 

The loss factor 77(F) [ or 77,. (y) ], as a function of (F), for three values of (b); 

b = (0.T), (2.0) and (10), is depicted in Fig. 2. With the impositions stated in Eq. (5) 

the first order approximation (FOA) of the induced loss factor rjs (y) assumes the 

simple form 

7js(y) = D[C + 0{jj(y)}2];   tjI(y) = DC, (6) 

where 

D = [7rl{2y{R)}][Msl(MR)[\ + mcY
l;   Ms = (Rm) (7a) 
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C = [(mc+ac)
2 + (g/y)2L (7b) 

0 = [(l + mc-ac)ac], (7c) 

and the term 0{rj(y)}2 is suppressed and lumped with the higher order approx- 

imations [2]. The validity of Eq. (6) is predicated on the condition that 

\(y) = Wo) = [b(R+iTl][(y)2rW] = viy)\  < = i; 

[l+(7/2)]-(1/2) <y<[\-{yl2)Y{XI2). (8) 

[cf. Eq. 5d.) It transpires that the first order approximation of r/s(y); i.e., rjj(y), 

coincides with the mean-value averaging of the undulations that beset the exact 

levels of the induced loss factor t]s{y) when the modal overlap parameter (b) is small 

compared with unity [1, 2, 5]. [cf. Fig. 3d of Reference 2.] The first order 

approximation 777(y)of the induced loss factor is thus independent of (b). Then, the 

first order approximation rjj (y) of rjs(y) is free of erosion. (It is speculated that the 

erosion is manifested in the higher order approximations to ?]s(y). Since this higher 

order approximation procedure is geared toward accounting for the higher values of 

(b), the undulations at the lower values of (b) are not expected to be accounted for in 

this process of approximations.) In Reference 2 computations of rjs(y) are con- 

ducted and presented in Figs. 3e and 3f and 4-7. Each figure in this series pertains 

first to a coupling form and second to a coupling strength. Also, each figure is a 

superimposition of four curves; three of the four pertain to an exact evaluation of 

rjs(y)   for three modal overlap parameters; i.e.,  Z? = (0.1), (2.0) and (10).    The 



fourth curve pertains to the first order approximation stated in Eqs. (6) - (8). In this 

manner the content of information in these figures is high and can be deciphered at a 

glance. It is assumed that these figures are available to the reader. 

A loss factor is basically an energetic quantity and, therefore, one may inquire 

whether the induced loss factor rjs(y), as just determined via the linear impedance 

analysis (LIA), may be estimated via an energy analysis (EA). In this latter 

determination the induced loss factor is designated rj*(y). A question arises: Are 

rjs(y) and rjes{y), or to that matter the respective first order approximations rj1 (y) 

and rjj(y), respectively, identical quantities? A sense of such an identity, or even a 

disparity, if any, may help interpret the salient features that they commonly and 

individually possess. To this end the paper is largely dedicated. 
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II. Derivation of the Energy Equation of Motion 

The linear equation of motion of the complex composed of a master oscillator 

coupled to a set of satellite oscillators may be largely derived via the Lagrange 

equations. The Lagrangian describes the difference between the kinetic and potential 

energies stored in the oscillators and in the couplings [3]. (Notwithstanding that the 

linear equations are correctly stated in Reference 3, a persistent typographical error 

in the preceding Langrange's equations needs to be corrected.) Although the kinetic 

and potential energies are here determined separately, it is the energy and not the 

Langrangian, as such, that is of immediate interest. The kinetic energy EoK(y) plus 

the potential energy EoP(y) stored in the master oscillator is given by 

E0(y) = EoK(y) + EoP(y);    EoK{y) = (1/2)M | V0(y) |2 ; 

EoP{y) = {yT2EoK(y)\   y=W»0)> (9) 

where E0(y) is the stored energy in the master oscillator [3]. Similarly, the kinetic 

energy ErK(y) and the potential energyErP(y)that is stored in the (r)th satellite 

oscillator is given by 

Er(y) = ErK(y) + ErP(y);   ErK{y)={\l2) mr \ Vr(y) |2; 

ErP(y)=(zr)
2ErK(y);  zr=(xr/y), (10) 
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where Er{y) is the stored energy in the (r)th satellite oscillator [3]. In addition, the 

kinetic energy EcrK(y) and the potential energy EcrP (y) stored in the coupling, 

between the master oscillator and the (r)th satellite oscillator, is given by 

Ecr (y) = EcrK (y) + EcrP (y), (11a) 

EcrK(y) = (l/2)wr [mc | V0(y) + Vr(y) \2 

+ Im{ (gr/y)[V0(y) + Vr{y)Woiy)-Vriy)1 )] , (Hb) 

EcrP=(\/2)mr(zcr)
2\V0(y)-Vr(y)\2, (lie) 

where Ecr (y) is the stored energy in the coupling between the master oscillator and 

the (r)th satellite oscillator [3]. Using Eq. (2) one obtains, from Eqs. (9) - (11), the 

expression for the stored energies 

E0(y)=V + (yT2]l   E0(y)^[E0(y)/EoK(y)l (12a) 

Er(y)=[Er(y)/EoK(y)] = mr[{\ + (zr)
2}\Br\

2l (12b) 

Ecr{y) = [Ecr(y)IEoK(y)} 

= mr[mcr\\ + Br\
2+(zcr)

2\l-Br\
2-i(gr/y)(Br-B*)], (12c) 

respectively, where a single bar over a stored energy quantity, e.g., Er (y), indicates 

a normalization by the energy quantity EoK (y).   In particular, the so normalized 

energy Eor (y), stored in the (r)th satellite oscillator and in the coupling of this 

satellite oscillator to the master oscillator, is given by 
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_ _ _ _ R  _ 

Eor(y) = Er(y) + Ecr(y) ;   £osO0 = 2XO0, (12d) 
l 

where Eos(y) is the normalized energy stored in the satellite oscillators and in the 

couplings of these oscillators to the master oscillator. 
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III.     Conservation of Energy - the Balance of Power - 

and the Derivation of the Induced Loss Factor 

Remembering that the external drive acts, by definition, only on the master 

oscillator, the normalized external input power Tle(y) that is available to maintain 

the stored energies in the complex may be derived from the linear equation of 

motion. This equation is 

Z0{o))V0(co) = Pe((D), (13a) 

Z0(cD) = (^M)[l-(y)-2{[\-S(y) + i[?]o+r7s(y)]}], (13b) 

where Z0{co), V0(a>) and Pe{co) are, respectively, the linear impedance, the 

response and the external drive that induces the response in the master oscillator 

when coupled, [cf. Eq. (lb) and (2b) and, also Eqs. (5) and (7a) of Reference 2.] 

This external input power is derived in the form 

fie(y) = [ne(y)/{coEoK(y)}];     Ue{y) = Re{Pe(y) V^y)}; 

(y2/2)Tle(y) = [?lo+T]s(y)]-l, (14) 

where, hereafter, a single bar over a power quantity; e.g.,  He(y),  indicates a 

normalization by the power quantity {a>EoK(y)}.   [cf. Eq. (12).]  The third of Eq. 

(14) states that a portion U0(y) of Ue(y) is dissipated in the master oscillator such 

that 

(y2/2)n0(y) = r}e0(y).l;    r1
e

0{y) = rlo-    Ü0(y) =[TI0(y)/{coEoK(y)}],   (15a) 
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and the portion Tios(y) of TIe(y) is dissipated in the satellite oscillators and in the 

couplings 

(y2/2)U0S(y) = 7» . 1,      Uos(y) = [Ilos(y)l{co EoK(y)}] (15b) 

where, as already intimated, the superscript (e) indicates that the loss factors are 

determined via an energy analysis (EA) and not via a linear impedance analysis 

(LI A). The conservation of energy (the balance of power) demands that 

no(y)+nos(y) = ne(y). (16) 

Employing Eq. (12d), Eq. (15b) may be decomposed in the form 

_ R _ _ _ _ 
Uos(y) =2n„.(y);      nor(y) = Ur(y) + Ucr(y), (17) 

l 

where by definition 

nroo = vrK(y);    n^oo = %r Kiy) ■ (18> 

The loss factors {r]r) and (^cr)are the stiffness control loss factors associated with 

the springs on the fore and the back sides of the mass (mr)of the (r)th satellite 

oscillator. The spring on the back side constitutes the stiffness coupling form. The 

spring on the fore side renders the satellite oscillator an oscillator rather than merely 

a mass. It is assumed that the damping is provided in these springs only [1, 2]. 

Provisions for other types of damping can be made, but the increase in algebraic 

complexity can hardly be justified at this stage. 
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From Eqs. (15b), (17) and (18) one obtains the energetic version of the 

induced loss factor Tj^iy) in the form 

R _ 

r?es(y) = (yZ/2)2t{TJrEr(y) + T!crEcr(y)} , (19) 
l 

where Er(y) and Ecr{y) are more explicitly expressed in Eqs. (12b) and (12c). The 

induced loss factor r/s (y), derived via (LIA), is explicitly expressed in Eqs. (2b) and 

(2c) [1, 2]. To what degree then is //J(v), stated in Eq. (19), equal to rjs (v) ? To 

establish analytically the answer to this question may require undue algebraic 

manipulations which, again, can hardly be justified at this stage. Instead, the 

equivalence is cursorily tested computationally. Imposing the simplifications stated 

in Eq. (5), the explicit expression for rfs (y) may be reduced to the form 

R _ _ 
rjes(y) = (v2/2) X 77(F) Eor(y) = (y212) r1

e(y)E0S{y) , (20) 
l 

where Eos(y) is stated in Eq. (12d), rf(y) is the loss factor, as a function of (y), of 

a typical satellite oscillator with its resonance frequency in the vicinity of (y), 77(F) 

is stated in Eq. (5c) and depicted in Fig. 2, and Eor{y) is the normalized energy 

stored in the (r)th satellite oscillator and in the coupling of this oscillator to the 

master oscillator; namely 
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Eor(y) = mr {\ + mcT
2{ [\-{z°rf f + [{z°rf 77(F)]2 }~l 

. {[l+a«)2][{mc+«c(zr
0)2}2+{ac77(F)(zr°)2-(gr/^)}2] 

+ mc[{l-(l + mc+ac) {z°)2}2 + {t+(y)}2] 

+ [ac (z°rf ] [{(l+2mc)-a (z°rf f + {t_(y)f ] 

-(gr/yrtil-il + mc+acXz^^iavirXz?)2 + (gr/y)} 

- {(\+2mc)-a(z?)2} {(l+inc+ac) rj(r)-(gr/ y)}]}, (21a) 

where the explicit expressions for t+(y) and t_(y) are 

t+(y) - (l + mcMr)(z?)2+[acTj(F)(z?)2-(gr/y)]; 

t_(y) = (l + mc)7](r)(z?)2 -[acTj(r)(z?)2 -(gr/ y)] . (21b) 

Specific parameters involved in Eqs. (20) and (21) are defined in Eqs. (2) - (5). 

Using Eqs. (20) and (21)and the simplifications and condition stated in Eq. (5), 

rjes(y) is computed and the results are presented in Figs. 3-6. These figures are cast 

in the format of Figs. 3e and 3f and 4-7 of Reference 2.   Thus, each figure is the 

superimposition of four curves: three exact evaluations of 77^(7) for the three values 

of the modal overlap parameter (b); b = (0.1), (2.0) and (10) and one for the first 

order approximation. (The first order approximation for rjes{y), that is employed, is 

derived subsequently.) Again, in the manner of this display the content of 

information  in  these   figures   is  high  and  can  be   deciphered   at   a   glance, 
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notwithstanding that the comparison with Figs. 3e and 3 fand 4-7 of Reference 2 is, 

thereby, facilitated. 

In References 1 and 2 the summation for r]s (y) is replaced by an integration. 

The first order approximation of this integral is evaluated and is stated in Eqs. 

(6) - (8). A similar procedure, replacing the summation by an integration, is now 

applied to Eq. (20). The first order approximation only is evaluated. The induced 

loss factor so evaluated yields 

77*00 = D[C + Oe{77e(y)}2 ];     rj^y) = DC, (22) 

where (D), (C) and the range of validity in (y) are as stated in Eqs. (7) and (8), but 

Oe=(l/2)[(l + mc)(mc+ac) + 2mcac]. (23) 

In the frequency range of validity, the loss factors r/(y) and rf{y) in Eqs. (6) and 

(22), respectively, are found to be identical. From Eq. (8) one finds 

v(y) = ve(y)= MR+ir1] [(y)2r(R)]; 

[l+(r^)TiV2) <y<[l-(r/2)T{V2). (24) 

The evaluations of rf{y) [and T](y)] for b = (0.1), (2.0) and (10) are presented 

graphically in Fig. 7. In Fig. 7a, R=27 and in Fig. 7b, R=7. The essential similarity 

of rje(y) with the corresponding /7(F) is clear when Figs. 7 and 2 are appropriately 

compared. (One recalls that the loss factor, presented graphically in Fig. 2, is the 

loss factor that is designed and assigned to the (r)the satellite oscillator [2].)  Since 

rj{y) and rje{y) are identical, the first order approximation (FOA) of rjs(y) and of 
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rjes(y), stated in Eqs. (6) and (22), respectively, differ in that the coefficients (O) 

and (Oe) are not identical. Usually, the terms (DO) {?](y)}2 and (DOe) {?]e(y)}2 

are negligible and, therefore, the difference between them is rarely significant. 

Notwithstanding that these terms are considered to belong with the higher order 

approximations and, as such, they are removed from the first order approximations 

[2]. Thus, it is concluded that the first order approximations of r/s (y) and rjes(y) are 

identical. Moreover, from Eqs. (6) and (22) these first order approximations are 

independent of the modal overlap parameter (b) [2]. 

Remarkably, the equivalence between Figs. 3-6 and the corresponding 

Figs. 3e and 3f and 4-7 of Reference 2 is not only in terms of gross features, but also 

in details; e.g., the erosions in Figs. 3e and 3f and 4-7 of reference are duplicated, to 

a tee, in Figs. 3-6, respectively, at least, in the range of the normalized frequency of 

concern, [cf Eqs. (8) and (24).] 



19 

IV.     Renormalization of Stored Energies and Powers - 

Illegitimate and Legitimate Loss Factors 

It has been adopted that quantities; e.g., the stored energy Eos(y) and the 

dissipated power TI0S(y), when normalized by EoK(y)and {coEoK(y)}, 

respectively, are designated by a single bar; namely, Eos(y) and Ylos(y). Situations 

arise in which a normalization by E0(y) and {coE0{y)}, respectively, may be 

preferred.    Such normalizations are to be designated by a double bar; namely, 

Eos(y) and YI0S(y), respectively. In particular then 

7oo (y) = \n0(y)/{a>E0(y)}] = Ü0(y) = 2[l + (yf ]"' %, (25a) 

Vlsiy) = [nos(y)/{coE0(y)}] = Uos(y) = 2[l + (y)2rliJes(y), (25b) 

Vos(y) = itmEoriy) = ve(y)E0S(y). (25c) 
1 

It emerges then that whereas the loss factors (TJ0) and {rjes) relate to the normal- 

ization employing the kinetic energy EoK(y) and the power {coEoK (y)}, the loss 

factors Tjn(y) and rj^s(y) relate to the corresponding quantities normalized by the 

stored energy E0(y) and the power {coE0(y)}. The stored energy E0{y) is the 

combined energy, consisting of the kinetic energy EoK(y) and the potential energy 

EoP(y) stored in the master oscillator; E0(y) = EoK(y) + EoP(y), as stated in 

Eq. (9). Equation (25c) is then a renormalized version of Eq. (20). The ratio of the 
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energy Eos(y) stored in the satellite oscillators and in the couplings to that of the 

energy E0{y) stored in the master oscillator may be dubbed the global coupling 

strength and, as such, is designated Es
0(y). From Eqs. (25a) and (25b) one obtains 

i&O0=2 [i+O02 r1 tfOO = lv\y) K(y)]; 

K(y) = Eos(y) = [Eos(y)/E0(y)]. (26a) 

Were one to construct, from Eqs. (22) and (26a) the hybrid expression 

7/00;   b<\, (26b) 

rfs{y)\ b>\, (26c) 

[fje(y)Es
0(y)]h=2[l + y2Y] 

then, except for erosion at the higher values of the modal overlap parameter; b > 1, 

one finds the hybrid quantity [....]/, to be largely undulations free and independent of 

(b). Referring to Eqs. (26b) and (26c), it follows that in the hybrid milieu, if(y) is 

inversely proportional to Es
0(y) and vice versa. Taking note of Eq. (24), there is no 

way for a physically acceptable complex to entertain a vanishing if(y). Of course, 

Eq. (26a) does not fall under this spell, but neither can one cavalierly ignore the 

undulations that beset rfs (v) when (b) is reduced with the intention of rendering 

Tje(y) negligible [2]. 
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Being cognizant of the second of Eq. (26a), the global coupling strength 

Es
0(y) may feature in another renormalization in which the entire energy Ee(y) 

stored in the complex is employed. This stored energy is given by 

Ee(y) = E0(y) + Eos(y) = E0(y) [l + Es
0(y)]t (27) 

and the corresponding renormalization for the powers is given by {coEe{y)} . Such 

renormalizations are to be designated by a tilde over the quantity; e.g. 

Eos(y) =[E0S(y)/Ee(y));   Ü0S(y)=[U0S(y)/{cüEe(y)}]. (28a) 

From Eqs. (25), (27), and (28a) one may derive 

Eos(y) =[E0S(y)/Ee(y)]=E0S(y)[l + Es
0(y)]-\ (28b) 

n„0>) = [Uos(y)/{cDEe(y)}]=n0S(y)[l + Es
o(y)]-1, (28c) 

Ee(y) = [\ + Es
0(y)]. (28d) 

The two renormalizations just introduced, in Eqs. (25) and (28), lead to the 

definition of two distinct loss factors. The first is defined in terms of the energy 

E0(y) stored in the master oscillator only; namely 

tf 00 = [Ue(y)/{cDE0(y)}] = [?]x(y) + rje(y) K(y)l (29a) 

where use is made of Eqs. (14) and (16) .   The second is defined in terms of the 

energy Ee(y) stored in the entire complex; namely 

lt(y) = ne(y)/{a?Ee(y)} = Tif(y)[l+Es
0(y)TK (30a) 
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where use is made of Eqs. (28) and (29a).  These two loss factors were previously 

defined and discussed [6, 7]. In these discussions it was claimed that rjf(y) is not a 

legitimate loss factor. This designation was primarily predicated on assigning to the 

definition of this loss factor the entire external input power He(y), but accounting 

for the stored energy E0(y) that is maintained in the master oscillator only, thereby, 

ignoring the portion of the stored energy that is maintained in the satellite oscillators 

and in the couplings. (No wonder the question of "where did the energy go?" arose 

from accepting rjf(y)as a legitimate loss factor [8-13].) In this connection one 

recalls that 

r?!(y) = [r}Ay)+r?e
os(y)]; rjeos(y) = [i?e(y)Es

0(y)]. (29b) 

Again, since ifos(y) is found to be largely independent of rje(y), one concludes, 

from Eq. (29b), that rft (y) is also independent of rf{y). Equation (29) makes clear 

that to change rjf(y) either the coupling parameters, the mass ratio (Ms/M) or 

both, need changing.     In this assessment,   rj0   is assumed to be fixed,  and 

rjo0(y) = 2?jo([+y2yl.   [cf. Eq. (25a).]  On the other hand, the second loss factor, 

dubbed the effective loss factor and designated rfe{y), does take into account the 

whole energy stored in the complex [6, 7]. It may thus be designated a legitimate 

loss factor. From Eqs. (27) and (30a) one finds 
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ritiy) = t?f(y) tfiy)fo'OO + iWF1} < tf 0>). (30b) 

In particular, if the induced loss factor rfos (y) exceeds the indigenous loss factor 

77oo (y) of the master oscillator, Eq. (30b) may be further reduced to 

i-i ritiy) = [rie(y)Tie0s(ymrie(y)+Tios(y)Yl < 
v< OS 

; vMoiM-     (30c) 
rfiy) 

Thus, the effective loss factor rfe{y), under this condition, is a parallel combination 

of the induced loss factor 77^ (v) and the loss factor T]e(y) assigned to a typical 

satellite oscillator. It follows that rfe{y) is less than either one of these loss factors. 

Consider a reasonable complex for which rfos (y) > rf{y).   Under this additional 

condition, Eq. (30c) may be further reduced to 

r]ee(y)=rje(y); rJ
e

0S(y)>ve(y). (30d) 

Were a noise control effort intended to achieve an effective loss factor 77! (7) that 

exceeds the indigenous loss factor TJX (y) of the basic master oscillator, a number of 

design criteria need be implemented. In this exercise the noise control is to be 

derived from the attachment of a number of satellite oscillators to this master 

oscillator [12, 15]. [cf. Fig. 1.] If the two conditions stated in Eqs. (30c) and (30d) 

are to be satisfied, it follows, from Eqs. (22) and (27), that the three design criteria 

Vao(y)<v (y)K(y)=ios(y)> (31a) 

SJOO>1, (31b) 
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r?oo(y)<r?e(y), (31c) 

must be simultaneously satisfied [7].  The first of these criteria, then, demands that 

the induced loss factor rfos{y) exceeds the loss factor rj^y) of the isolated master 

oscillator. To satisfy this criterion, it is observed that both rf{y) and E*(j/)be 

designed to possess high values, as dictated in Eq. (31a). How high? As stated in 

Eq. (31b), the energy Eos(y) stored in the satellite oscillators and in the couplings 

need be in excess of the energy E0(y) stored in the master oscillator.   This is 

achieved by increasing the coupling parameters and the modal density (number of 

satellite oscillators per unit frequency) of the satellite oscillators [7]. Simul- 

taneously, a typical loss factor rf{y) of the satellite oscillator need be maintained in 

excess of TJ^ (y). This condition ensures that the dampings in the satellite oscillators 

can handle the excess in the stored energy that they are designed to harbor [7]. This 

handling needs to exceed that which is indigenous to the master oscillator, and hence 

the criterion stated in Eq. (31c). Details of these criteria may be cast in terms of the 

parameters that describe the master oscillator, the satellite oscillators and the 

couplings between them. These details may be drawn from the preceding equations. 

To help with the interpretation of these details, a number of computations are 

performed. In these computations the loss factors r/f (y) and rfe{y), as functions of 

(y), are evaluated and contrasted. Again, only a few representative cases are 

displayed. The displays are given in Figs. 8-11. The presentation covers cases that 
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parametrically conform to those governing Figs. 3-6, respectively.   The two loss 

factors; rfiiy) and rfe{y), are contrasted on the same figure and each is com- 

pounded by a superimposition of curves that pertain, in turn, to the modal overlap 

parameters b = (0.1), (2.0) and (10)). [cf. Fig. 7.] In addition to the evaluations of 

Tjf(y) and rfe{y), the corresponding levels of [(Ry] S*(y)] are also evaluated, as 

a function of (y), and are displayed in Figs. 12-15. Again, three curves that pertain 

to the modal overlap parameters b = (0.1), (2.0) and (10) are superimposed in these 

figures. The undulations in the levels when (b) is less than unity and the suppression 

of the undulations when (b) is in excess of unity is clearly apparent in these figures 

too. The first order approximation of [(R)~] Zs
0(y)] are also superimposed on these 

figures. This superimposition exposes, once again, the phenomena that the mean- 

value averaging of the undulations coincide with the first order approximation (FOA) 

and that erosion commences and increases as (b) approaches and increases beyond 

unity [1,2, 5, 12]. 
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V. Relationship to the Statistical Energy Analysis (SEA) 

It may be conducive to include in this thesis a possible relationship between 

the energy analysis (EA) dealt with in the preceding three sections and the statistical 

energy analysis (SEA). The latter analysis was initiated in the early 1960s at BBN 

and subsequently has become a major tool in noise control engineering [3, 16].  A 

rudimentary (SEA) is applied to a complex comprising of a master oscillator coupled 

to a set of individual satellite oscillators; the satellite oscillators are neither coupled 

to each other nor externally driven, [cf. Fig. 1.] In terms of (SEA) the equations that 

govern the energy distribution in the complex are 

R R 

[r7Ay)+Y,r?ro(y)]E0(y)-YJVor(y)Eor(y) = [Ue(y)/cDl (32a) 
l l 

[rjr(y)+rjor(y)]Eoriy)-T?m(y)E0(y) = Ot (32b) 

where E0(y), Eor{y), T]x(y), rjr(y) and IIe(.y)are previously defined in Eq. (9), 

(12d), (25a), (5d) and (14), respectively [3, 16]. In Eq. (32) r/or{y) and rjr0(y) are 

the coupling loss factors from the (r)th satellite oscillator to the master oscillator and 

vice versa, respectively. In a conservative coupling rjor(y) = rjro(y) [3]. After a 

straightforward algebraic manipulation of Eq. (32) one obtains 

R 

rftiy) = UM + ris(y)l   riAy) = 2>r0>) C(y)i 
i 

Co(y) = [Eor(y)/E0(y)] = Tjro(y)lvr(y) + rjor(y)T], (33) 
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where Eq. (29) is consulted and <^(v)is the modal coupling strength of the (r)th 

satellite oscillator to the master oscillator [3, 16]. From Eqs. (29) and (33) one 

further obtains that 

R 

r?os(y) = tie(y)zs
0(y); K(y>HC(y)- (34a) 

i 

In this role the stored energy ratio Es
0(y) may be designated, as already mentioned, 

the global coupling strength. Again, with a slight of statistical hand, Eq. (34a) is 

approximated 

K(y) = Co(y) [Ns(y)U{R-Ns(y)} + RU{Ns(y)-R}], (34b) 

where Ns (y) is the number of satellite oscillators that contribute viable modal coupling 

strengths. A typical modal coupling strength is designated Co(x) '■> me viable modal 

coupling strengths are assumed to be statistically indistinguishable^ The use of 

viability is in reference to investigations revealing that the coupling loss factor, 

typically rjor(y) or ijro{y), decreases as the frequency disparity increases between 

the resonance frequency of a satellite oscillator and the resonance frequency of the 

master oscillator to which it is coupled [3]. As the disparity between the resonance 

frequencies increases beyond a specific threshold, the modal coupling strength 

decreases sharply [3, 4]. The threshold is set by either a critical value of the 

frequency disparity when typically rjr(y) > rjor(y) or a critical value of the 

frequency of transition (yt) when typically rjr(y) < j]or(y),both inequalities are 

validated only in a frequency range for which (y) is at and in the vicinity of unity. In 
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the  latter  case  the  frequency  of transition  is   defined  by   rjr(yt) - rjor(yt). 

Consulting Reference 1 and imposing the simplification rendered in Eq. (5a), one 

may derive 

Ns(y) - (Aco b)[(orTie{y)rX -(Ä + l)(Ay/y)[(l+mc)
m(y2)y(R)Tl. (35a) 

Using Eqs. (4) and (24) one finds that 

y(R) = [y/(2R)];   (Av/v) = (y/2);   y < 1, (36a) 

and, therefore, from Eqs (35a) one obtains 

Ns(y) = i? [(l + m,)172^)2]-1 = *, (35b) 

indicating that all the satellite oscillators which resonance frequency distribution is 

defined in Eqs. (2) and (4), may be designated viable. Equations (34b) and (35b) 

yield 

C(y) - (XT1 3»;   K(y) « (R) Cs
0(y), (37) 

Thus, the typical modal coupling strength £5
0{y) is one (l/i?)ththe global coupling 

strength, both quantities are appropriately averaged [3]. From Eqs. (20), (25), (26) 

and (37) one obtains 

Co(y) = (y)2W+y2)RYl fß^iy), (38a) 
i 

where Eor{y)is explicitly stated in Eq. (21). Under the condition that allows the 

summation in Eq. (19) to be replaced by integration, one derives for the first order 

approximation of a typical modal coupling strength 
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C(y) =>Ci(y) = H*lb) (Ms/M)[y2y2(\ + y2) (l + m,)]-1^); 

C = [(mc+ac)
2+(g/y)2]; 

[l + (r /2)]-(1/2) < y < [l-(//2)]-(1/2), (38b) 

where use is made of Eqs. (6), (7), (22) and (23). A number of sets of parametric 

values that define previous figures are identified and applied to Eq. (38a). The 

results of this application are presented, for three values of (b); namely, b = (0.1), 

(2.0) and (10), in Figs. 12-15. Also superimposed in these figures are the levels of 

the first order approximation of £s
0{y), as stated in Eq. (38b). Moreover, if there are 

undulations in levels in curves based on Eq. (38a), these undulations are suppressed 

in the corresponding curves based on Eq. (38b). Again, neglecting the phenomenon 

of erosion, this suppression is commensurate with the appropriate mean-value 

averaging, notwithstanding that the phenomenon of erosion is found in these figures 

too. An immediate violation, however, is revealed in Figs. 12-15; in particular, in 

figures pertaining to strong couplings and a modal overlap parameters (&)that are 

small. Since the maximum value of a modal coupling strength £r
0 (y) in a rudi- 

mentary (SEA); e.g., in Eq. (33), cannot, by definition, exceed unity, (SEA) is 

invalidated for a complex for which a typical modal coupling strength C,s0(v), as 

stated in Eq. (38), exceeds unity. For example, the levels pertaining to b = (0.1) in 

Figs. 12a, 13a and 15a, which display <^(y), as a function of (v), stand in obvious 

violation of a core tenet of (SEA).   The contradictions that arise in Fig. 12a and 
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others, in which levels of £s
0(y)that are in excess of unity are found, do not, 

however, negate the analysis under which they are derived, they merely lie outside 

the range of validity for the use of (SEA). It, thus, emerges that (SEA) has a modal 

overlap parameter threshold; situations arise in which (SEA) is not valid for certain 

degrees of coupling strengths unless the modal overlap parameters assigned to the 

satellite oscillators exceed that threshold. 

A final remark briefly challenges a noise control estimate. The estimate is 

guided by all three analyses (LIA), (EA) and (SEA). The challenge is an attempt to 

dispel an assumption that often leads to overestimation of the benefits that may be 

accrued were the noise control guide implemented.  Focusing on Eqs. (1), (2), (9), 

(25) and (28) one may define the ratio s0{y), of the kinetic energy EoK(y) stored in 

the coupled to the kinetic energy E°oK (y) stored in the uncoupled master oscillator, 

in the form 

Sob) = [EoK{y)IE°oK(y)] = [| V0(y)\21 \ V°(y)\2 ] 

£0(y) = P°(y)[^(y)/r?f(y)];   P°(y) = [Ue(y)/n°e(y)l (39) 

where P°(y) is the ratio of the external input powers into the coupled and the 

uncoupled master oscillator. The loss factor rf (v) is stated in Eq. (29); namely 

rjfiy) = [riM+tfsiy)];   tfsiy) = ie(y) K(y)- (40) 
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The blessings of the noise control are assessed in terms of the smallness of s0{y) as 

compared with unity; a beneficial noise control is one for which s0(y) « 1.  Often 

one tends, in this assessment, to argue that the external input power ratio P°(y) is 

largely equal to unity [7]. Using Eq. (40) and this argument, Eq. (39) reduces to 

s0(y) =>£°o(y)=focoOO/tfOOl = fcoOO{^00+^ OOF1; P°iy>\.    (4la) 

Employing the first order approximation of r]eos{y) in Eqs. (40) and (41a), one 

further obtains 

e°0{y)^ s°I{y) = rlo{^vKy)rX^   tfOO^l. (41b) 

From Eq. (41) it becomes clear that if Tjx(y)and (TJ0) are much less than r]eos{y) 

and T]j(y), respectively, the noise control that can be projected is impressive.  For 

example, as Figs. 3-6 and 8-11 testify, if TJ0 =(\0~3) [rj^y) = 2(l + .y2r1 • (10~3).] 

then for strong and even moderate couplings, the projected noise control is two to 

three orders of magnitude. In passing, except for a minor erosion consideration, 

these noise control benefits are independent of the modal overlap parameter (b), 

notwithstanding that the undulations at low values of (b); b«\, need to be 

recognized and handled with care.   An obvious question then arises:   Are these 

projections of noise control real? Is the ratio P°(y) or its first order approximation 

Pfiy), equal to unity as assumed? After all, the external input power injected into a 

dynamic system is critically dependent on the loss factor that the system presents to 
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the external drive. As Eq. (29) shows, the coupling of a set of satellite oscillators to 

the master oscillator enhances the loss factor that the master oscillator presents to the 

external drive. It is, thus, expected that the external input power ratio P°(y) harbors 

levels that exceed unity, thereby, mitigating the noise control achievement predicted 

in Eq. (41). This kind of mitigation conforms with Le Chatelier's Principle [18.] If 

the mass of the satellite oscillators remain within reasonable limits, the rosy noise 

control projections are mitigated in the manner 

P°(y) = P+EJO;)];   e0(y) = [l + Es
0(y)K(y) = focoU'V^O')]; 

K(y) = RC(y), (42a) 

and the equivalent first order approximation 

Pf(y) = [1 + HJO0];    s0{y) = tl + SjC)] ef(y); 

Es
I(y) = RCs

I(y), (42b) 

where use is made of Eqs. (6), (7), (22), (30) and (37)-(39) [7, 17]. It is recalled that 

3*00 is the ratio of the energy stored in the satellite oscillator and in the couplings 

to the energy stored in the master oscillator. Design conditions may be found to 

render this ratio large compared with unity [7]. Except for minor erosions and 

undulations that may need to be recognized and handled for low values of (b), Figs. 

12-15 exemplify that for strong and even moderate coupling strengths one may find 

levels of as
0(y) and 3/00 that exceed unity by an order or two of magnitude [7]. 

Such large levels may mollify much of what Eq. (41) promises. Indeed, Eqs. (42a) 
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and (42b) suggest that if if{y), which is the loss factor assigned to a typical satellite 

oscillator, is less than the loss factor 77«, (v) of the master oscillator in isolation, even 

a noise control reversal may result were the coupling instituted. The unusual, but 

possible, conditions for such a reversal are 

e0(y) - [^00(y)/Tfe(y)] > 1, K(y)» U ve
os(y) = ve(y)K(y)» vM, (43a) 

£i(y)-[ri«>(y)/r?e(y)]>l sj(y)»i;  tfwziiy)»«^), (43b) 

respectively [7, 17]. [cf. Eqs. (30) and (31).] Of course, such noise control reversal 

may, when it occurs, be highly surprising to those who factually accept the validity 

of Eq. (41). 
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Fig. 2.   Loss factors 77(F) assigned to the satellite oscillators as a function of the 

normalized index (F) and with the mass coupling parameter (mc) equal to zero. 

a. R = 27. 

b. R=7. 
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Fig. 3. Induced loss factor rfs{y), as a function of (y), with stiffiiess control 

couplings. [(Ms/N) = 0.1 ; modal overlap parameter (b) and first order approx- 

imation (FOA).] 

a. (R = 27) Sprung-masses: ac=1.0[a = 0.0.],   g=mc=0. 

[Very strong coupling.] 

b. (R = 7) Sprung-masses: ac=1.0[a = 0.0.],   g= mc=0. 

[Very strong coupling.] 



Fig. 3. Induced loss factor rjes{y), as a function of (y), with stiffness control 

couplings. [(Ms/N) = 0.1 ; modal overlap parameter (b) and first order approx- 

imation (FOA).] 

c. (R = 27) Satellite oscillators: ac =0.75 [a = 0.25.],   g = wc = 0. 

[Strong coupling.] 

d. (R = 27) Satellite oscillators: ac=0.15[a = 0.85.],   g= mc=0. 

[Moderate coupling.] 



Fig. 4.   Induced loss   factor r]es(y), as a function of (y), with gyroscopic control 

couplings. [R = 27 and (Ms/M) = 0.1; modal overlap parameter (b) and first order 

approximation (FOA).] 

a.   ac = mc = 0 [ör = 1.0.],   g = 0.75.   [Strong coupling.] 

b.   ac = mc = 0 [a = 1.0.],   g = 0.15.   [Moderate coupling.] 



b. 

Fig. 5. Induced loss factor as a function of (y), with mass control couplings. 

[R =  27  and   (Ms/M) = 0.\;  modal  overlap parameter  (b)  and  first  order 

approximation (FOA).] 

a. ac= g =0 [a = \.5.],   mc = 0.15.   [Moderate coupling.] 

b. ac= g = 0 [a = 1.03.],   mc=0.03. [Weakcoupling.] 
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Fig. 6.  Induced loss factor 7*00, as a function of (y), with mix control coupling 

forms.   [R = 27 and (M, /M) = 0.1; modal overlap parameter (b) and first order 

approximations (FOA).] 

a. ar=mc=OJ5[a=i:o.],   g = 0. [Very strong coupling.] 

b. ac= 0.53[a = .47.],   g = 0.54,   mc=0. [Strong coupling.] 



Fig. 6.  Induced loss factor T]*(y), as a function of (y), with mix control coupling 

forms.   [R = 27 and (Ms IM) = 0.1; modal overlap parameter (b) and first order 

approximations (FOA).] 

c. ac= 0.1 [a = .9.1   g = 0.11,   mc = 0.       [Moderate coupling.] 

d. ac= 0.02[a = .98.],   g = 0.22,   mc=0.  [Weakcoupling.] 
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Fig. 7.    First order approximation of the loss factor r)e{y)  that is assigned to 

individual satellite oscillators, as a function of (y), in the appropriate frequency 

range. [Modal overlap parameter (b).]   [cf. Figs. 2a and 2b.] 

a. R = 27. 

b. R = 7. 
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Fig. 8.   Loss factors rjf(y) (dashed) and rfe(y) (solid), as functions of (y), with 

-3- stiffness control couplings.   [(Ms/M) = 0.1 and TJ0 = (10 J); modal overlap par- 

ameter (b).] [cf. Fig. 3.] 

a. [R = 27] Sprung-masses; ac=\.0[a = 0.0.],g = mc=0. [cf. Fig. 3a.]. 

b. [R = 7]    Sprung-masses; ac=1.0 [a = 0.0.], g = mc=0. [cf. Fig. 3b.]. 



c. 

d. 

Fig. 8.   Loss factors rjf(y) (dashed) and rfe{y) (solid), as functions of (y), with 

stiffness control couplings.   [(Ms/M) = 0.1 and 7o=(10   ); modal overlap par- 

ameter (b).] [cf. Fig. 3.] 

c. Coupling as specified in Fig. 3c. [R = 27.] 

d. Coupling as specified in Fig. 3d. [R = 27.] 
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Fig. 9.   Loss factors rft{y) (dashed) and rfe{y) (solid), as functions of (y) with 

gyroscopic control couplings. [R=27, (Ms/M) = 1 and /70 = (10~3); modal overlap 

parameter (b).] [cf. Fig. 4.] (*) 

a. Coupling as specified in Fig. 4a. 

b. Coupling as specified in Fig. 4b. 

(*)   When regions of curves clearly overlap, the color of the one with the higher 
modal overlap parameter (b) wins. 
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Fig. 10.  Loss factors rft{y) (dashed) and rfe{y) (solid), as functions of (y), with 

mass control couplings.  [R=27,  (Ms/M) = 0.1 and rj0= (10~3); modal overlap 

parameter (b).] [cf. Fig. 5.] (*) 

a. Coupling as specified in Fig. 5 a. 

b. Coupling as specified in Fig. 5b. 
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Fig. 11.  Loss factors rjf(y) (dashed) and ^(j/) (solid), as functions of (y), with 

mix control coupling forms. [R=27, (Ms IM) =0.1 and 7;0 = (1(T3); modal overlap 

parameter (b).] [cf. Fig. 6.] (*) 

a. Coupling as specified in Fig. 6a. 

b. Coupling as specified in Fig. 6b. 
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Fig. 11.  Loss factors rft{y) (dashed) and rfe{y) (solid), as functions of (y), with 

-3> mix control coupling forms. [R=27, (Ms/M) =0.1 and ^0 = (10 J); modal overlap 

parameter (b).] [cf. Fig. 6.] (*) 

c. Coupling as specified in Fig. 6c. 

d. Coupling as specified in Fig. 6d. 
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Fig. 12. Modal coupling strength £s
0{y), as a function of (y), for stiffness control 

couplings. [(Ms/M) = 0.1; modal overlap parameter (b) and first order approx- 

imation (FOA).] (*) 

a. Coupling and number of satellite oscillators as specified in Fig. 3a. 

b. Coupling and number of satellite oscillators as specified in Fig. 3b. 



(0.1) 
(2.0) 

   (10) 
   (0.1)) 
- •   (2.0)   (FOA) 

==§   (10), 

Fig. 12. Modal coupling strength £5
0{y), as a function of (y), for stiffness control 

couplings. [(Ms/M) = 0.1; modal overlap parameter (b) and first order approx- 

imation (FOA).] (*) 

c. Coupling and number of satellite oscillators as specified in Fig. 3 c. 

d. Coupling and number of satellite oscillators as specified in Fig. 3d. 



b. 

Fig. 13. Modal coupling strength £s
0(y), as a function of (y), for gyroscopic control 

couplings. [R=27, (Ms/M) = 0.1; modal overlap parameter (b) and first order 

approximation (FOA).] [cf. Fig. 4.] (*) 

a. Coupling as specified in Fig. 4a. 

b. Coupling as specified in Fig. 4b. 



a. 

b. 

Fig. 14. Modal coupling strength C,sp(y), as a function of (y), for mass control 

couplings. [R=27, (Ms/M) = 0.1; modal overlap parameter (b) and first order 

approximation (FOA).] [cf. Fig. 5.]    (*) 

a. Coupling as specified in Fig. 5a. 

b. Coupling as specified in Fig. 5b. 
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Fig. 15. Modal coupling strength £o(y), as a function of (y), for mix control 

coupling forms. [R=27, (Ms IM) = 0.1; modal overlap parameter (b) and first order 

approximation (FOA).] [cf. Fig. 6.]  (*) 

a. Coupling as specified in Fig. 6a. 

b. Coupling as specified in Fig. 6b. 
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Fig. 15. Modal coupling strength C,s0{y), as a function of (y), for mix control 

coupling forms. [R=27, (MSIM) = 0.1; modal overlap parameter (b) and first order 

approximation (FOA).] [cf. Fig. 6.] (*) 

c. Coupling as specified in Fig. 6c. 

d. Coupling as specified in Fig. 6d. 
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