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1.   Introduction 

For radar studies of atmospheric phenomena, one natural decision is whether to operate at 
long or short wavelength. At long wavelength, the back scattering is typically from 
atmospheric turbulence, while at short wavelength it is from aerosols. Therefore, in studying 
clouds at long wavelength (say 10 cm and above), one is actually scattering from the large 
scale turbulence in the cloud, and one must wonder to what extent the turbulence defines the 
cloud. However a cloud is actually made up of, and in fact defined by aerosols. In the 
Rayleigh regime, namely the aerosol radius much less than the radar wavelength divided by 
271, the scattering cross section of the aerosols scales as X'4 where X is the radar wavelength. 
Thus at short wavelength, say 3 cm and above, there is very little large scale turbulence, and 
the scattering is by the aerosols. Since these are what define the cloud, it is natural to perform 
radar studies of clouds at millimeter wavelengths. However millimeter waves are generally 
strongly absorbed by the atmosphere. There are two important propagation windows, one at 
35 GHz and one at 94 GHz, and both have been used. 

There have been a number of studies of clouds with millimeter wave radars [1]. 
Generally, these radars are restricted to low power, typically an average power of 10 Watts or 
less. Because of their low power, and short wavelength, they are very typically portable and 
rather simple to use. For instance they have been fielded on small aircraft for remote sensing 
of clouds. However because of their low power, they are restricted in what they can detect as 
regards many important parameters of the cloud. It has long been recognized that higher 
power millimeter radar could considerably enhance capability [2,3]. 

The Naval Research Laboratory is now in the process of developing a much more 
powerful 94 GHz radar. It is called WARLOC [4]. The average power is limited to 10 kW, 
and the system is portable, although not especially lightweight. The current system is portable 
on two tractor trailers, one for the radar itself, and one for the power supply. Future upgrades 
are expected to be transportable on a large aircraft such as an Orion P3. One of the main 
breakthroughs which make WARLOC possible is the development of a 94 GHz gyroklystron 
transmitter tube with the required power and bandwidth[5,6]. The waveform generator to the 
amplifier is capable of producing flexible pulses, nearly arbitrary pulse width and nearly 
arbitrary frequency chirp. However actual amplitude pulse shape at the output of the 
gyroklystorn is restricted to be a nearly top hat amplitude distribution. The gyroklystron 
average power can be as high as 10 kW, peak power as high as 100 kW, and bandwidth is as 
high as several hundred megahertz. This bandwidth is much more than what is needed for 
cloud studies, and we do not anticipate using more than 100 MHz for any cloud study. The 
WARLOC receiver however is limited to a bandwidth of 20 MHz, and this is an important 
constraint. ' 

WARLOC will be used for a number of possible applications; one of them will be the 
remote sensing of clouds. With the additional power and sensitivity, we expect WARLOC to 
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see clouds in many ways in which they have not been seen before. As one of the first 
experiments, we hope to use the added power to observe the cloud with much greater range 
resolution. The reason for this choice is that WARLOC appears to be the only remote sensor 
which can directly examine the interior of a visibly opaque cloud with such fine range 
resolution. (For a visibly transparent cloud, or for the edges of a visibly opaque cloud a lidar 
can achieve similar range resolution.) To do these studies, different data processing ' 
techniques will be required on WARLOC. For our initial studies, we will concentrate on post 
processing of the data. That is the radar will generate raw data of the filter output on tapes 
These will produce a first look at the cloud. However this first look will be unsatisfactory in a 
number of ways. The data will be post processed so as to give a more satisfactory view of the 
cloud. This memo will discuss some of the signal processing techniques that will be used. 

Section 2 discusses the WARLOC radar and the parameters for its cloud study mode of 
operation. Section 3 discusses the statistical nature of the cloud backscatter for the case of 
square pulses with no frequency chirp. With the 20 MHz receiver bandwidth, the shortest 
transmitted pulse that can be processed is 50 ns, so the range resolution will be about 8 
meters. This is considerably less than what can be resolved with the lower power millimeter 
radar systems. Section 4 discusses improved range resolution with a frequency chirped pulse 
with both a square amplitude pulse and a Gaussian amplitude pulse. With pulse compression 
one effectively packs the energy of say a 10 us pulse into 50 ns, thereby greatly increasing the 
sensitivity of the radar. However with pulse compression, there is the possibility of range 
sidelobes and these must be reduced as much as possible. For instance if there is a large cross 
section portion of the cloud next to a small cross section portion, the range sidelobes from the 
large cross section part may swamp the main signal from the small cross section part   As we 
will see, a Gaussian amplitude profile greatly reduces this problem; but unfortunately, 
WARLOC is constrained to transmit only a square amplitude pulse. 

Section 5 discusses ways to reduce the sidelobes with an additional Gaussian filter or with 
a nonlinear frequency chirp. The sidelobes can be significantly reduced in this way but at the 
expense of some range resolution. Here the receiver bandwidth limit of 20 MHz really makes 
itself felt. In Section 6 we discuss stretch processing. This allows us to use the full 
transmitter bandwidth to obtain very fine range resolution, but only in a small part of the 
cloud. With stretch processing, WARLOC will be able to obtain roughly one and a half meter 
range resolution over about 75 meters of the cloud. Note that the range resolution of the radar 
is determined by the speed of the processor, not by the bandwidth of the gyroklystron which 
is well in excess of 100 MHz. Thus relatively straightforward and inexpensive enhancements 
to WARLOC can be achieved by increasing the processor rate to say 100 MHz. 

2.   Cloud Studies with WARLOC 

We begin here with a simple examination of the pulse requirements for a cloud radar   In 
any pulsed radar, the time between pulses T must be long enough that the return from the 



furthest target on the (n-l)st pulse does not interfere with the return from the closest target on 
the nl pulse. This then gives the condition for range ambiguity. The greater the pulse 
separation, the less of a concern range ambiguity becomes. In a pulsed Doppler radar, the 
motion of a target causes a phase change from one pulse to the next. However this phase 
change must be less than In in order to avoid velocity ambiguity or blind speeds. The 
condition to avoid both range and Doppler ambiguity in a pulsed radar is given by 

2Rmax/c<T<c/2f0vmax (1) 

where Rmax is the maximum target range, vmax is the maximum target velocity, and f0 is the 
radar frequency.   As the frequency increases, the second inequality become harder to satisfy. 
Another issue is the minimum range or dead time of the radar. Since the radar cannot receive 
while it is transmitting, the minimum range at which a target can be detected is cx/2, where x 
is the pulse time. 

The WARLOC radar is now in its final construction phase at NRL. Once some initial 
tests are made on base, the entire radar will be transported to NRL's field cite at Cheasepeake 
Bay Division (CBD), and most of the radar tests, of both clouds and other targets will done at 
CBD. It is anticipated that WARLOC will be set up at CBD in about April or May of 2001. 
Once set up there, support exists to keep the radar operational there for about 2 years, during 
which time it will examine clouds and other targets. 

We now consider WARLOC's operation in the cloud sensing mode. Its initial task will 
be to examine a cloud with finer range resolution. This can be done in either of two ways. 
The first is to transmit short pulses, the second to transmit long pulses with a frequency chirp 
and then pulse compress. Some basic approximate parameters: maximum average power: 10 
kW, peak power:  100 kW. If we consider 10 (isec pulses, maximum reprate = 5,000 Hz, so 
as not to overly stress the system, the range ambiguity distance is 30 km, and minimum 
distance to target is 1.5 km. These numbers are probably satisfactory for most initial 
applications.   As an option, we might want to consider working with shorter pulses, maybe 1- 
3 ^sec in some cases, but this would probably mean reducing the average power by this factor. 

Most of the data would be taken in a pulse compressed mode. Since the receiver 
processor is limited to 20 MHz, this means a range resolution of 7.5 meters, corresponding to 
about a 50 nsec pulse. We would send out a signal with a 20 MHz chirp and process through 
a Gaussian filter. We would want integrated sidelobes down by 30 db, and this closest 
sidelobe down by 40 db. 

There are two alternate modes in which wc would want to operate,the radar. The first 
is to simply transmit a 50 nsec pulse with no frequency chirp. This would degrade the average 
power, but it would have the advantage of operating with no problem from range sidelobes. 



Operating the radar in this mode would still give a large enhancement over typical low power 
cloud radars which have peak powers of about 1 kW. 

The second operating regime would be to examine a small part of an extended cloud at 
much greater range resolution by using stretch processing. This allows the full bandwidth of 
the transmitter to be used, but to still process at 20 MHz in the receiver. Let us imagine the 
transmitter bandwidth as 100 MHz, so that the range resolution becomes 1.5 meters 

w A DT ^ US,C°nfder °ther caPabilities we h°Pe t0 bring to bear. One other capability which 
WARLOC and only WARLOC would have would be to examine a cloud in three dimensions 
in space and time. For instance we could examine the full dynamics of a cloud as it drifted bV 

For this it would be important for the radar to have 2TU sterradian beam steering capability 
Displaying the three dimensional data collected would entail image processing and display 
technology which we have not addressed at this time. 

Depolarization by non spherical droplets (especially by ice clouds) is an important 
physical process in cloud radar systems. While WARLOC will not have full polarametric 
capability (i.e. vary the polarization on the transmit and the receive), it will be able to process 
a received signal with arbitrary polarization. 

3 Statistical properties of cloud returns from a sequence of square pulses 

Let us say that the radar transmits a pulse given by 

T(t) = ReH(t)exp-ico0t (2) 

where H is a complex amplitude function which designates both an amplitude profile and 
frequency chirp. The pulse is backscattered by a random ensemble of scatterers where index i 
denotes the individual scatterer. Then the returned pulse is denoted by 

R(t) = l5;ReH   t-2 
Ri + Vjt 

^exp-icoJt-2 Ri+Vit 
(3) 

Here R, is the posi(ion of the scatterer at üme t=Q> v. js ks ^.^ ^    ^^ ^ ^       ^ 

of the scatterer. It is proportional to the square root of its cross sect.on divided by the range 
squared. J       iails<- 

The most fundamental data that the radar system gives is to take the returned signal 
and pass it through a low pass filter to give a filtered signal 



lf(t) = I^ReH{t-2 
Ri + Vjt „. COnfRi +V:t) 

>exp-2i^n   ' L^ (4) 

Thus data processing concerns how to deal with Rf (t)  so as to obtain the desired 
information. One common way to process this signal is to sent it through a matched filter[7]. 
The matched filter selects a time, or series of times denoted tj and forms the time or Fourrier 
domain integral 

oo 1        °° 
Mj = J dtRf (t)H * (tj -1) = — J dcoRf (co)H * (ca) exp- ioot f (5) 

The Fourrier and inverse Fourrier transforms of any square integrable function are written as 

Z(t)= J dcoZ(co) exp-icot Z(oo) = —J dtZ(t) exp ioot (6) 
-~ 27U_O0 

The matched filter response both maximizes the signal to noise for the case of white noise, 
and also does the pulse compression where H(t) includes a frequency chirp. We can also 
denote reference range or sequence of reference ranges as R, = ct/2. While the integral in the 
Fourrier domain is shown as being from minus infinity to infinity, in reality, the maximum 
frequency is limited by the sampling rate of the receiver. For WARLOC in the standard mode 
of operation, this sampling rate is 20 MHz, so for realistic pulses, the factors in the frequency 
integrand of Eq. (5) are essentially zero , since the WARLOC receiver has filters which 
provide for hard frequency cutoffs at the edges of the processing bandwidth . 

Let us assume that x is sufficiently small that the Doppler shift in frequency within the 
pulse is not significant. For the case of a square pulse of pulse length x with no frequency 
chirp, the time domain integral is especially simple. It is 

Mj = X^xiexpi\}/i (7) 

where 

Tj = 0 for 2R,/c > tj (8a) 

Xi = tJ-2Rj/c fortj-x< 2Rj/c<tj (8b) 



Xi = 2R;/c - tj +2x       for tj - 2x < 2R;/c < tj -x (8c) 

xi=0 for 2R/C < tj -2x (gd) 

and 

Vi = 
2(öRj (     2v 

1 + - 
c   y 

(9) 

At the boundary between the second and third region, x; has its maximum value of x. At 

IRi-Rjl = cx/2, it falls to half its value and we define this as the range resolution   However this 
is not aprecise definition because targets outside of this range can also contribute to the filter 
response. However if IRj-Rjl > ex, M = 0, so targets far away do not contribute no matter 
how large their cross section. Thus the range resolution is determined by the pulse time for a 
pulse with no frequency chirp.   Let us consider the 20 MHz receiver bandwidth constraint 
here. If the received signal is digitized, and the nature of the digitizer is to average over 
successive 50 ns time intervals, then the A:D converter is a matched filter. 

We assume that the droplet positions are uncorrelated so that \|/, is a random phase 
Since the radar typically ultimately uses a square law detector, we find that 

[j|  ~j?N xi2+ X^k^kexPi(Vi-Vk)r (10) I i i*k J 

The first term in the summation on the left hand side of Eq. (10) is simply the sum of the 
power scattered from each droplet. This is the coherent response. For the simple case of all 
5 s being equal and the droplets distributed uniformly in the range cell, the coherent response 

|Mj|  K
2=-Nx2^2 nn I     Jlcoh        3 (11) 

where N is the number of droplets in the range cell.   However, the second term of Eq (10) 
which ensemble averages to zero over random phases, actually constitutes a significant i e' 
nearly of order unity fluctuation in any realization of the ensemble. Now let us »et the ' 
magnitude squared of the ensemble average of the error. It is & 



AMj = (     I   I  ^k^l^mtmexpKVi-Vk+Vl-Vm) 
\(i*k,l*m J 

(12) 

The ensemble average above vanishes unless i=l and k=m. Assuming that the number of 
droplets is large compared to unity, we find 

AM =m\%\2^\2^4n4 
i,k 

(13) 

where on the right hand equation in Eq. (13) we have assumed once more that all £'s are the 
same, that the droplets are distributed uniformly in the range cell, and N is the total number of 
droplets in the volume. One measure of the relative error is then 

MJ coh 
+ AM, M, 

coh 

M 
= 0.41 (14) 

coh 

or the signal is 3.8 db above the noise by this measure. Another measure [8], 

I2) -L = 27 (15) 
M.~" 

M- M 

gives a similar result. With this measure, the signal is 5.7 db above the noise. Either way, the 
errors are almost of order unity. 

Now let us consider how the noise is reduced by multiple pulses. Furthermore, if we 
consider multiple pulses, there are phase changes from pulse to pulse due to the droplet 
motion. We now consider how these effects are treated. Let us say we transmit a total of P 
pulses, and let p be an index which denotes a pulse in this sequence. Furthermore, let us say 
that during the time of the total pulse train, PT, the droplets can move long distances 
compared to the radar wavelength X, but cannot move far compared to a range cell. In this 
case, the matched filter response acquires an additional index p 

Mj(p) = I^Tiexpi\|/,(p) (16) 



where 

Vi(P) = 
2coR,- 

1 + 
2v; + 2coVjpT 

(17) 

Note that Mi(p) now has an additional phase factor which varies from pulse to pulse according 
to the droplet velocity. This phase change is what provides the velocity, or Doppler 
information in a pulsed Doppler radar. However let us first see how the multipulse operation 
reduces the statistical errors. To do so, introduce another variable z, which is the Fourrier 
transform variable to p 

f(z)=If(p)exp2ä 
p=0 P (18) 

Now form the summation 

p-i 2     P-i   P-i   P-l 
Sj=ZMj(z)   =11    XW^kEexpi 

z=0 z=0   p=0   q=0 i,k 

2C0T. ,    27c(p-qY 
Vi-Vk+ (pv;-qvk)+       VP    H) 

c p (19) 

Where to simplify, we have once more assumed that all ^'s are the same. The summation 
over z simply gives P5p,q, and then the summation over q reduces then to a summation over p 
where p = q is taken in the summation. Once more, we can break the summation into a 
coherent and incoherent part, where p = q, and p * q . The coherent term is simply P times the 
previous result for the coherent term, Eq. (11). 

The incoherent term ensemble averages to zero, but we would like to get an idea of its 
average magnitude. As before, square it and take its magnitude. We find 

M2= X    2    Z^Vfefkfexpi 
p=0   q=0   i*k 

2coT 
(p-q)Oi-vk) (20) 

Now replace the summations by integrals over distribution functions. 

I   =NjdVif(Vi)       ; (21) 

and as before, assume the ^'s are all equal and the droplets are distributed uniformly to 
Eq. (20) as 

rewrite 



AS, 
2      4,  „x4     ,P-1   P-l 

= -(t^)N2I    X   UdvdAvf(v)f(Av v)expi 
" p=0   q=0 

2©T 
(p-q)Av (22) 

The result then depends on the distribution of droplet velocities and the correlation of droplet 
velocities with one another in the range cell. If we make the simple assumption the 
distribution of Av is a Maxwellian with thermal velocity vt independent of v, 

f(Av|v) = 
27CVt 

exp- 
Av 

2v, 

-a 
(23) 

we find that 

AS 
2     4,  „,4XT2 

-T    , _ n?~\        P-l 
-KfN2I    X   exp- 

p=0   q=0 

2coT 
(p-q)vt (24) 

If p = q, the terms are as in the calculation of the coherent part. There are P of these terms. 
The terms with p * q are all reduced by the exponential factor, and their contribution 

becomes very small if p - q > c/(2coTv,).   If we further simplify by setting the exponential 
equal to unity if the inequality is violated, and equal to zero of the inequality is satisfied, we 
find approximately 

S;OC|NP(T^)
2 

J 1 + 
2coPTvt 

1/2 

(25) 

where the first term in the square brackets represents the coherent term, and the second term 
denotes the approximate magnitude of the statistical error. Thus over a long series of pulses, 
the relative statistical fluctuations to the signal get smaller and smaller. In order for the 
fluctuations to die away, the total length of the pulse train, PT must be very long compared to 
the time for the particles to move apart from one another by a radar wavelength. Of course this 
is to be expected, since it is generally assumed that an ensemble average is in some sense 
equivalent to a time average. Our calculation quantifies this for the cloud.  It shows that as 
long as there is sufficient velocity spread to the droplets, the time average approaches the 
ensemble average as the reciprocal of the total time PT. Since x and P are known, a sequence 
of P pulses then gives a reasonably accurate estimate of N^2, effectively the sum of the 
scattering cross sections of all the droplets. 



Let us now consider how to retrieve the Doppler information. Of course we cannot get 
the velocity of every droplet, so one must define moments of the droplet distribution function 
Let us consider the quantity zlMj(z)l2. Retaining only the coherent response, and setting the 
summation over particles to an integral over a distribution of droplet velocities, we find that 
this expression can be manipulated into the form 

Mj(z)|2=|(^)2Njdvf(v)z 
sin2P (COVT      7ÜZ —+ — 

c P 

sin COVT     7TZ ^ 
 + — 

c P 

(26) 

If P is large, the ratio of the two sins is sharply peaked near [(<avT/c)+(7cz/P)]=0. At this point 
the value of the ratio is P2, and the width of the function is about TC/P. If the thermal width of ' 
f(v), vt is much larger than TCC/COT, then the distribution function may be evaluated at v=- 
7Uzc/coT and taken out of the integral. Then we find 

Z|M.(z)2 =-(Tn
2 NZTCP—f(v : 

1   J 3y    J coT 
-TTZC/COT) (27) 

Since P and % are known, and N^2 can be obtained from Eq. (11) an approximation to the 
droplet velocity distribution can then be obtained. (Of course for cases where the velocity is 
positive, z does not have to go from 0 to P-l, but can be taken from for instance -P/2 to P/2 - 
1). However the correction to Eq. (27) from the incoherent return is, as before, nearly of order 
unity, so the distribution of droplet velocities has rather large statistical fluctuations in any 
realization of the ensemble. If there is time to do many sequences of P pulses before the 
droplets move out of the range cell, these statistical fluctuations can be reduced as before. 

It may not be necessary to obtain the entire velocity distribution function for the 
droplets but only a moment of the distribution. Summing Eq. (27 over z, and approximating 
the summation over z by an integral over v, we find 

IzlMjtz)!2 = (x^)2 NP—Jdvvf(v) 
■i. 7ÜC 

(28) 

Since we are now summing over z, the statistical fluctuations will be much smaller as was the 
case of Eq. (25). The right hand side is a product of known quantities times the average 
velocity of the droplets. b 



4 Improved range resolution by pulse compression 

A standard technique in radar signal processing is to use a chirped pulse. For instance, 
let us assume the envelope of the transmitted pulse is 

H(t) = Q(t)exp-i(0'(t-t/2)2 
(29) 

where Q is top hat function, equal to unity between 0 and x, and equal to zero otherwise. 
Now let us calculate the matched filter response for a single target at range R; and a time 
displacement of tj. There are 4 regimes for the time integral in Eq. (5). These are, 

I: 2Ri/c + x<tj,    n:tj<2Ri/c + x<tj+x,   IE: tj < 2R;</c< tj+ x , IV: T+tj<2Rj/c 

In cases I and IV, the matched filter response is zero because the two Q functions do not 
overlap. For case n, we find the matched filter response is 

sin oo 
Mj =exp-(2iRj(o/c)- 

'r'"1 2R; Y2R: 
- + X-t: 

CO' 
(      2R,\ 

(30) 

while for Case HI we find 

sin GO 

Mj = exp-(2iRjco/c)- 
lJ- 

2R; Y 
X+t; 2Rj "I 

CO' lJ- 
2R: 

(31) 

This matched filter response is shown in Fig. (1) for what we call our standard WARLOC 
pulse. This is a 10 ps pulse with a linear frequency chirp going from -10 MHz to +10 MHz in 
that time. In Fig. (1 A) is the magnitude squared of the matched filter response for the central 
2 ps, Fig. (IB) shows the expanded scale for the entire 20ps of overlap. We define the range 
resolution as the time between the 3 dB points in the main lobe of the matched filter response, 
which is 48 ns. This corresponds to a range resolution of 48 ft. 

Consider the case of a target near the center of the range cell, tj = 2R/c. If t, = 2Rj/c, 
the magnitude of the filter response is x, and it falls to zero at oo'x(t - 2R; /c) = n. But oo'x 



-1000 -800 
800 1000 

Figure 1.    Matched filler response for the standard WARLOC pulse, A) central 2 (.is, and B) 
the entire 20|is overlap. 



is the change in angular frequency over the course of the pulse. However, if the range is such 

that co't(tj - 2Rj /c) = 2>nl2 , the filter again is at a relative maximum, although it is smaller 

than the central maximum. These are the range sidelobes. For a square law detector, this 
maximum is smaller than the central maximum by a factor of 4/97C2, or by about 13 db. the 
integrated sidelobes are down by 9.3 dB. For many circumstances, this is not satisfactory. 
For instance if there is a large target near a small target, the range sidelobe of the large target 
may exceed the return of the small target. 

We now discuss one way of minimizing these sidelobes. One classic technique is to 
use a Gaussian, rather than a top hat amplitude envelope.   Let us say that the frequency chirp 
is as given in Eq. (29), but the amplitude is given by exp-(t/x)2. The Fourrier transform of the 
Gaussian also extends to infinity, but the amplitude at large frequency falls off very fast. 
Whether this can be accommodated by the 20 MHz receiver bandwidth depends on the details 
of the receiver filter. 

It is not difficult to do the time integral in Eq. (5) and find the filter response 

Mj = Iy|^iexpi\j/iexp- (Ri-Rj) 

(   2      8co'2x2^ 

cV+     c2 (32) 

There are two contributions to the range resolution, one from the pulse time (the first term in 
the second bracket in the exponent), and one from the total frequency chirp (the second term). 
Usually the total frequency chirp is much larger than the reciprocal of the pulse width, so the 
range resolution is determined by the frequency spread in the pulse. Furthermore, because of 
the Gaussian structure of the filter response, the sidelobes are substantially reduced. For 
instance a target four range cells away contributes only exp-16 times as much as a target in the 
center of the range cell. Thus the use of Gaussian pulses is one way of reducing the range 
sidelobes in a pulse compressed radar. However in WARLOC, this is very difficult to do. If 
the waveform generator were to generate a Gaussian pulse, there are many amplifiers between 
it and the output pulse, including the gyroklystron. All or many of these are run at saturation, 
so that in reality, the only choice for an amplitude waveform in WARLOC is a top hat. In the 
next two sections, we will discuss how range sidelobes may be reduced in this case. 

5.   Sidelobe reduction for practical radar pulses 
. * 

We have seen that a Gaussian pulse amplitude reduces the sidelobes. However between 
the waveform generator and final output pulse in WARLOC, there are several amplifiers run 
at saturation. Thus a top hat, or nearly top hat pulse amplitude is the only practical way to 
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operate WARLOC, and we would like to reduce the range sidelobes subject to this constraint 
Here we look at additional Gaussian filtering, and then very briefly discuss the use of a 
nonlinear chirp [9. We first consider a linear chirp, but a non-matched filter in the receiver 
We consider the filter in the Fourrier domain. To start, we would like to calculate the Fourrier 
transform of the radar pulse 

I     T/2 
H(©) = —  J  dtexp-i/W + cot) 

271-T/2 V ' 
(33) 

There is no simple analytic expression for the above integral, but one can use a saddle point 
approximation. There is a saddle point at 1=0/200'.    First consider the case of 

x 

2    2co 

CO        T 
< — 

2 (34) 

In this case the saddle point is along the path of integration, and the path of integration may be 
deformed as shown in Fig. (2).   With respect to an origin at the saddle point, the integrand is 
exponentially small in the second and fourth quadrant, and exponentially large in the first and 
third. The path shown as II is the saddle point path, and the paths I and IE are the other parts 
of the contour. The saddle point contribution is given approximately by 

n       . co 
7expi 

4co' (35) 

while the integral along path HI can be written as 

co 
expi exp-co' 

4co'    F 
CO 

2co' 

T/2-M/CO' 

J      d^exp coV+2ico' 
(. co 

2    2co' C (36) 

A rough measure of the magnitude of the integral in Eq. (36) is given by the maximum value 
of the integrand times the size of the region over which it has that value. This is determined 
by the fall off of the exponential, or the length of the oscillation. Both of these determine a 
reg,on of about the same size. We find that the ratio of the integral along path III to the saddle 
point contribution is about 
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Saddle Point, 
t = co/2co' 

Deformed 
Contour 

Figure 2.    The original contour for the evaluation of H(co) in Eq. 33,.and a contour deformed 
so as to pass through the saddle point. 
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j '4^ (37) 

II 

That is the saddle point contribution is larger by about the square root of the total chirp phase 
The magnitude of the saddle point contribution is independent of frequency, so the magnitude 
of the Foumer transform of the signal is roughly independent of frequency if Eq (34) is 
satisfied. H'v    ' 

Now let us consider the transform for frequency outside the range defined by Eq ()34 
The path cannot be deformed into one where the dominant contribution is from the saddle 
point Since the integrand is then everywhere rapidly oscillating, we expect that the Fourrier 
transform of the signal will be very small for co outside the range determined by Eq (34) 
Shown in Fig (3) is a numerical calculation of the square of the magnitude of the Fourrier 
transform of the signal for the standard WARLOC waveform. Clearly, a top hat function is 
also a reasonable approximation to the Fourrier transform of the radar pulse. 

From the numerical calculation of the Fourrier transform of the signal, we can do the 
integral in the Fourrier domain in Eq. ()5 to get the filter response as a function of t where 
now tj in Eq. (5) is understood as being the time delay between the filter time origin and the 
return time of the signal. That is tj = 2(R; - Rj)/C. 

The sidelobes can be reduced by multiplying the matched filter response H*(co) by a 
Gaussian filter 

2 

fG (co) = exp- 
COG2 (38) 

and using this as the filter function. Since the Gaussian has smooth wings, the sidelobes are 
greatly reduced^ Shown in Fig. (4A) is the non matched filter response, IMjnl2 as a function of 
tj for the case of COG =5 MHz for the central 2^s, and in Fig. (4B) is shown the result for the 
entire 20 ps of overlap. Clearly the sidelobes are reduced by a considerable amount 
However there is some penalty in range resolution. 

Since the filter is not matched, the sensitivity is lower than optimal. Let us define the 
filter efficiency T], for a target at the center of the range cell as 
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Figure 3.    The frequency spectrum of the square pulse with linear chirp for the standard 
WARLOC pulse. 
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Figure 4.     Filter response for the standard WARLOC pulse with an added Gaussian filtcr 
with fG = 5 MHz, A) central 2 ji.s, and B) the entire 20 (is of overlap. 
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^_        |jdcüR*(co)fG(cü)R((o)l2 

Jdcol R *(co)fG(co) I2 Jdcol R(co) I2 (39) 

By the triangle inequality, it maximizes at unity for a matched filter. In Table (1) are 
enumerated the range resolution in ns, the integrated sidelobes, and the efficiency for the 
matched filter as well as for the additional Gaussian filter with values of (j)G of 5, 7.5 and 10 
MHz. We consider mostly the 5 MHz filter which appears to be a good compromise between 
sidelobe reduction, range resolution, and efficiency. 

It is apparent form Fig. (4B), that the sidelobes are enhanced around the time where 
the center filter pulse overlaps the edge of the received pulse. We interpret this as a 
consequence of the sharp cutoffs of the top hat function. In practice, the edges of the pulses 
will be rounded somewhat. The transmitted pulse will be rounded because the turn on time of 
the gyroklystron is not instantaneous, but has some non zero turn on and turn off time. It may 
be that it is possible to exercise some control of the turn on and turn off of the transmitted 
pulse.    The filter pulse, of course can round the edges at will. 

We investigate here the effect of rounded edge pulses. We model the rounding 
function R(t) as 

R(t) = 0.5 1 + cos— ^ 
T. 

(40) 

at the end of the pulse, with an analogous function at the beginning. Here Te end time of the 
top hat pulse shape, and Tr is the time for the pulse to go to zero. Since the filter response in 
the central maximum is not strongly dependent on the precise pulse edge, the efficiency and 
range resolution are basically unaffected. However the distant sidelobes are reduced. Shown 
in Fig. (5) is the filter response for the 5 MHz Gaussian filter with a pulse turn time of 200 ns 
in both the transmitted pulse and filter. Clearly the distant sidelobes are considerably reduced. 
In Table (2)are shown the sidelobe reduction for the 5 MHz Gaussian filter for various turn on 
and turn off times for the transmitted pulse Tr(T), and filter pulse, Tr(F). While ordinarily 
these would be the same, they do not have to be. If the transmitter is constrained to a 
maximum Tr(T), the sidelobes can still be reduced by taking a larger value of Tr(F). 

Another way of reducing the sidelobes is by using a nonlinear chirp with a matched 
filter. A we have seen from our saddle point calculation, the magnitude of the Fourrier 
transform of the waveform is proportional to the reciprocal of the time the pulse is at each 
frequency. For the linear chirp we have been discussing, the frequency is uniformly swept, so 
the Fourrier transform is nearly a top hat function. This transform can be rounded off by 
sweeping faster at the frequency extreme. In Ref. (9), the "circle «T chirp is used, which is 
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Figure 5.    Filter response for tiie standard WARLOC pulse with the added Gaussian filler 
with fG = 5 MHz and 200 ns rounded edge on both the transmitted pulse and the filter pulse. 
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co(t) = co't + aco' 
>/l-(2t/T)2 

(41) 

The frequency becomes infinite at the pulse edges. Since the WARLOC radar is so 
constrained on receiver bandwidth, the nonlinear chirp does not appear to be an optimum use 
of the available bandwidth. Accordingly, at this point we do not look into the nonlinear chirp, 
but may do so in the future. 

6. Enhanced Range Resolution with 'Stretch Processing' 

In WARLOC, the transmitter will have considerably more bandwidth than the 
receiver. With stretch processing it is possible to obtain range resolution characteristic of the 
transmitter bandwidth, but only over a small distances from a central point. In theory, it is 
rather like range resolution with a cw fm radar. Imagine that the received pulse is given by 
Eq. (5), where now co' is characteristic of the transmitter. For instance let us say that the 
transmitter bandwidth is 100 MHz in a 2.5 us pulse, so that now co' = 87cx 1013 s"2.   If there is 
a single scatterer at range R, we find that the received signal is 

k(t) = ^Qh-2 
R 
c 

► exp-ico'< t-2 
R_ 

c 
I   ^S(t-2R/c) (42) 

where we have neglected the velocity of the scatterer. Next multiply the filtered signal by the 
complex conjugate of the pulse -*, but centered at time to to give a filter response which we 
define as N(t) 

N(t) = ^eivQ   t-2 
R. 
c 

•Q{t-t0}exp2ito'J2 
R. 
c 

(43) 

where \\i is a phase dependent on the range. Notice that the frequency is proportional to the 
range and in fact is 2co'(2(R/c)-t0). Thus the frequency of the filter is a measure of the range. 
However the maximum frequency is the receiver bandwidth, which we define as Q., which is 
4071 MHz for WARLOC. Clearly, when using stretch processing, it is necessary for the low 
pass filter in the receiver to eliminate signals above 20 MHz, rather than alias them into the 0- 
20 MHz acceptance of the receiver. The WARLOC radar does in fact use a filter with very 
sudden drops at the edges of the 20 MHz resolution, so there is no aliasing from the higher 
frequency portion of the transmitted pulse.    This gives a maximum range that R can be from 
the central point of 

2R 
c 

< 
Q 

2co' 
(44) 



Table 1 

3dB point Integrated Efficiency 
(ns)        Sidelobes (-dB) 

Matched filter: 48 9.3 

Gaussian filter: 

fG = 5MHz 75 26.1 

fG =7.5 MHz 60 21.0 

fG=10MHz 54 16.9 

0.63 

0.84 

0.94 

Performance characteristics of Gaussian filters of different frequency widths 
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Table 

Tr(T) ns Tr(F) ns Integrated 
Sidelobes (-dB) 

100 100 30.6 

200 200 36 

1000 1000 40 

100 200 33 

Sidelobe improvements with a Gaussian filter and rounded edges on the transmitted and/or 
filter pulses 
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Let us now look at the range resolution in the stretch processing mode. In a pulse of length % 
the frequency can be defined as long as the total phase shift is 2K or greater. Thus we get the' 
range resolution in the stretch processing mode as 

2CO'T (4!)) 

This is the standard expression for the range resolution of a radar whose bandwidth is the full 
bandwidth of the gyroklystron. For the example we have been using for WARLOC, the range 
resolution is 1.5 meters, and the total range which can be resolved is about 40 meters on either 
side of the central point. 

Since the range resolution is given in terms of a frequency now, it is important that the 
Doppler shifts do not interfere with this measurement. The total phase shift from the Doppler 
effect if the particle velocity is v is 2vcox/c, and this should be small compared to 2K  If the 
velocity is 10 m/s, the total phase shift is about 0.1 radian, which is small. Even if the pulse 
length were 10 us instead of 2.5u.s, the phase shift would still be small compared to 2K 

However the droplet motion does put a constraint on pulse time for stretch processing. 

Now let us quantify these concepts a little further. If the frequency can be resolved in 
units of ox, = 271/T, so that a frequency is specified by ncOb, let us define the Fourrier transform 
of N(n) 

N(n) = —J dtN(t)expinco0t (46) 

Let us again consider the case of a 2.5 us pulse with a linear frequency chirp extending 
from -50 MHz to 50 MHz.    Since f0 = 4xl05 sl, there are a total of 50 n values in Eq (46) s 
the frequency goes from -10 MHz to 10 MHz. We define t0 = 0 and then consider a target 
with some particular value of 2R/c. If 2R/c=0, the integral in Eq. (46) is proportional to a 
kroniker delta, 5n,0. Thus if the target is exactly centered in the range cell, there are no side 
lobes. However the target may not be exactly centered in the range cell. For instance we 
might have 2R/c=lns. In this case the N(n*0) * 0, so there is a sidelobe issue   For the cloud 
radar, we are most interested in ambiguity from the distant sidelobes, so we define the 
performance of the radar in the following way. We start at the center of a^ange cell (say at 
2R/c-0), that is the target is centered at the n=0 range cell. Then we consider the target 
uniformly distributed across the range cell, that is -2.5 ns < 2R/c < 2.5 ns   For the central 
lobe we consider n = -1,0 and +1 and sum over these. The sidelobes we consider a summation 
over all other n. Notice that we are defining the sidelobes so as to accept some ambiguity 
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between the central cell and its nearest neighbors.   With this definition, we find that the 
integrated sidelobes are below the main lobe by about 11 db. That is, over the 75 meters or so 
which the radar examines, the significant variations in radar cross section must be less than a 
factor of about 10 for stretch processing to give a reasonably accurate image of the cloud at 
high range resolution. 
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