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ABSTRACT

The accuracy of a tracking system designed to determine the time, space and

position information (TSPI) of an airborne missile by detecting its telemetry signal at a

number of receiver sites is investigated. Doppler frequency measurements are converted

to range differences between the missile and receiver sites, whose locations are known in

three dimensions. An algorithm then utilizes these range differences to obtain the

missile TSPI. The accuracy of the TSPI is a function of the measurement precision and

the signal-to-noise ratio at the receiver sites.

This thesis examines the characteristics of the TSPI accuracy and investigates

how a Kalman Filter can be used to enhance the accuracy of the TSPI.
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I. INTRODUCTION

The accuracy of a tracking system designed to determine the Time, Space and

Position Information (TSPI) of an airborne missile by detecting its telemetry signal at a

number of remote receiver sites is investigated. The three dimensional positions of these

receiver sites are known. The doppler shifted signals are received and converted to range

differences to determine the telemetry source location and hence, the missile's TSPI.

This thesis studies the telemetry tracking system with 9 receiver sites that was

field tested at White Sands Missile Range in 1999, evaluates the performance of the

system's TSPJ accuracy and examines how a Kalman filter can be used to enhance the

accuracy of the TSPI. The Kalman filter is a recussive filter which minimizes the least-

squares error of the system.

There are four chapters and one appendix within this thesis. In Chapter II, the

theories of the telemetry tracking system and Kalman filter are introduced and discussed.

Chapter III discusses the simulations of the telemetry tracking system and the Kalman

filter implementation. The results of the simulations and the findings are also included in

this chapter. Chapter IV summarizes and concludes this work and discusses future

research options.
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11. BACKGROUND AND THEORY

A. TELEMETRY TRACKING SYSTEM

The tracking system investigated in this thesis determines the Time, Space and

Position Information (TSPI) for an airborne missile equipped with a telemetry transmitter

by measuring range differences with respect to time between the missile and the receiver

sites. Range differences are measured between receivers dispersed along the missile's

trajectory and a reference receiver within the constellation. For N number of receivers

used, there exist N-1 range differences that are used to compute the missile's TSPI.

Range differences are computed using doppler frequencies that are obtained at each

receiver site along with the telemetry signal's wavelength and sample time interval. By

utilizing the doppler difference between receivers and the initial receiver location, the

Range Difference Of Arrival (RDOA) is continuously determined. This RDOA is then

used within an algorithm (Smith-Abel algorithm) to determine the missile's position.

The range difference determined between two receivers restricts the source

location to a hyperbola with the two receivers as foci. By using 9 receiver sites, 8

independent hyperbolas are generated from 8 range differences and their intersection

defines the source location.

The geometric configuration of the receivers can affect the accuracy in

determining missile position. Particularly when the hyperbolas are mutually parallel, the

amount of error would become very large. In the existing receivers' con figuration, all the

sites are close to the horizontal (X-Y) plane. If some of these sites were raised to higher

heights, the system would produce better results.

3



Accurate doppler frequency measurement is another important factor in the

system. A GPS receiver is contained at each receiver site for a time and frequency

reference. During missile flight, the range to the receivers varies, causing a doppler

frequency shift in the received telemetry signal at each receiver. The doppler frequency

shift is realized at each receiver by the difference between the telemetry signal received

from the missile and the frequency reference derived from GPS for each sample time

period. Using the known wavelength of the telemetry transmitter, this doppler shift is

converted to a change in range. Range tracks for each site are obtained by integrating the

changes in range over time from the initial ranges obtained before launch. These

individual range tracks are converted to range differences with respect to a reference

receiver from which TSPI is obtained using an algorithm discussed in Chapter Im.

The ever-present noise within the systems can also introduce significant errors in

the estimated position. When the Signal-to-Noise Ratio (SNR) drops, the accuracy of the

doppler frequency measurement is degraded. This affects the range differences and the

TSPI accuracy at the output of the telemetry tracking system. As such, the TSPI

accuracy is highly dependent on the SNR of the system.

Data processing is conducted upon completion of missile flight. Data from each

receiver site is transmitted to the control and processing site over an RF modem data link.

The modulation is removed from the data to obtain the carrier frequency with doppler

shift for conversion to range tracks and then range differences to obtain the missile's

TSPI.



B. SOURCE ESTIMATION USING RANGE DIFFERENCES

The algorithm for source location developed by Julius Smith and Jonathan Abel

[Ref. 1] uses a spherical interpolation method with linear least-squares error

minimization. It is a closed-form method that uses range differences available within a

constellation of N receivers. This algorithm is used within the telemetry's post-

processing system.

Let N denotes the number of receivers and let d0 denotes the range difference

between the ith and jth receivers and the source. The vectors of (x, y, z) spatial

coordinates for the ith receiver and the source are denoted xi and xi respectively. The

distance between the ith receiver and the source is defined by

Di = xi -xs (2.1)

and the distances from the origin to the points xi and x1 , are Ri and R, respectively.

The reference receiver is arbitrarily chosen as Receiver 1 and the coordinate

system origin is translated to this receiver giving

x =0=R 1 =0 and Di=Ix1 =R, (2.2)

Figure 2.1 illustrates the notations and geometric relations between the reference receiver

(Receiver 1), the ith receiver (Receiver i), and the source. The distance between the ith

receiver and the source, Di, is found by adding the range difference between the

reference receiver and the ith receiver (di1) to distance from the reference receiver to the

source (R,).

5



Receiver i

Di=Rs+dnl
Ri

Xs _X1 =0

Source Rs Receiver 1 (Ri)
(Reference)

Figure 2.1. Notation and Geometric Relations for ith Receiver

Using the law of cosines, Di can be expressed as

Di2 = (R, + d 1)2 = Ri2 + R, 2 -21xI x. 1cos0 (2.3)

where 0 is the angle between the vectors x. and xi. The angle 0 between the two

vectors xi and x, is defined by

T
Xi Xs

cos0 = xi 1 (2.4)

Substituting (2.4) into (2.3) and canceling out terms results in

(R, +d 1 ) 2 =Ri +R'2 -2xiT x, (2.5)

Expanding and shifting terms to the right-hand side of the equation yields

EL =Ri - dil -- 2Rdi, - 2xi Xs (2.6)

where E, is the introduced equation error due to imprecise measurements and is

minimized in a least-squares sense to provide an estimate of the true source position.

Equation (2.6) can be written in matrix form for N-I range differences as

6



e = S-2Rd -2Sxs (2.7)

where

R 2 -d21 x1 y2 ZY 1F R 31 d2j [d31 x3 Y3 Z3

R N-dI N1 XN YN ZN

Here S represents the matrix of receiver spatial coordinates after translation of the

reference receiver to the origin. The least-squares solution [Ref. 1] for x, given R, is

1 "
x, =-1Sw(_- 2R, d) (2.8)

where * denotes complex conjugate

S= (STS)-S (2.9)

Tyields the minimizer of e e. The range differences can be weighted according to the

relative confidence of each range difference. Weights of zero can be used when certain

range differences are not utilized. This weighted equation error is eTWE [Ref. 1] and is

minimized for

S* = (STWS)-IS TW (2.10)

To obtain the source position x, by minimizing ETWe , R, must be allowed to vary while

maintaining the relation R, = x, because the range from the reference receiver to the

source is not typically known in advance, resulting in non-linear minimization. This non-

7



linearity can be approximately eliminated by the application of the spherical interpolation

method.

The goal of the spherical interpolation method is to minimize the equation error

with respect to R,. Substitution of (2.8) into (2.7) results in a linear least-squares

problem for finding R, [Ref. 1] due to the fact that the least-squares estimate of x,

given R, in (2.8) is linear in RS

e'=-2R d - SS* (8 - 2R~d) (2.11)

where e' is the new equation error, which is linear in Rs. Factoring out the common

term 8 - 2R, d results in

= (I - SSw)(8 - 2Rsd) (2.12)

where I is the identity matrix.

It follows from (2.10) that

SS* = S(S TWS)-IS TW = P, (2.13)

and

PS = I-P, =I-SS,, (2.14)

where SS* defines the N-1 by N-1 symmetric matrices, and Ps and P) are rank 3

projection matrices that remove both orthogonal components and components within the

space spanned by the columns of S, respectively.
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If four receivers are utilized, three range differences are produced and P, = I.

The equation error e' becomes zero for all values of R, resulting in ambiguity for the

source location. Because of this limitation, a minimum of five receivers producing four

range differences must be used for this method to be effective in non-linear minimization.

Assuming the use of at least five receivers and four range differences, substitution

of (2.14) into (2.12) results [Ref. 1] in

E= P1(_8- 2R, d) (2.15)

Utilizing the weighting matrix W produces

e_'T We., = (- 2Rs d)T P'WPL (S - 2R, d) (2.16)

A form of weighted least squares results when minimizing (2.16) with respect to R,

where the weighting matrix PfWPf is of rank N - 4. The three missing dimensions

within this matrix result from the degrees of freedom removed by substituting (2.8) in

(2.7) for the spatial coordinates of the source xs. The minimizing value of Rs [Ref. 1]

for (2.16) is

T _1 ..PWP'

=d W' 8(2.17)2d TP;Wp;d

Substituting (2.17) into (2.8) results [Ref. 1] in the source location estimate as

- 2 --w 2 Rssd)s w( - 22d (2.18)
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The source's coordinates are based on a coordinate system with the reference receiver at

the origin. To obtain the source's true spatial coordinates, the coordinate system must be

shifted back by translation.

The Smith-Abel algorithm for source location estimation was utilized in all

MATLAB simulations involving the telemetry tracking system. It was programmed into

MATLAB and used as function smithabel.m. The MATLAB source code for this

function is listed in Appendix A.

C. KALMAN FILTER

The Kalman filter was developed in 1960. It has been applied in many diverse

areas including aerospace, navigation, nuclear power plant instrumentation and many

others. The Kalman filter is a recussive filter, which minimizes the least-squares error.

It allows target dynamics to be used directly to optimize filter parameters. The theory of

Kalman filter is fairly complex involving complicated control theories. There are many

books and papers that address Kalman filter. A book written by Eli Brookner [Ref. 2]

was used as the primary reference to develop the MATLAB program.

For simplicity, assume we have a one-dimensional problem. The target's velocity

is constant. The target equations of motion

= xn+ +rxn (2.19)

x'= x" (2.20)

where xn is the target position at time n, xn is the target velocity at time n, and T is the

sampling time interval.
10



In the real world, the target will not have a constant velocity for all time. There is

actually uncertainty in the target trajectory and target acceleration at any given time. The

Kalman filter allows for this uncertainty in target motion by adding a random component

to the target dynamics. The equations for the target dynamics are

Xn+i Xn + T x,, (2.21)

x, =1xn + u, (2.22)

where u,, is a random change in velocity from time n to time n+1.

In matrix notation, the system dynamic equation is

X,+1 =(DXn + U, (2.23)

where X =. = state vector, (2.24)

D [=1 TI = state transition matrix and (2.25)0°1
U ] = dynamic model driving noise vector. (2.26)

Un

The measurement equation or the observation system equation is given as

Yn= MXn +Nn (2.27)

where M = [1 0]= observation matrix, (2.28)

Nn = [Vn ] = observation error and (2.29)
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Yn = [Y, I= measurement matrix. (2.30)

The prediction equation is

X *,n =(DX* (2.31)

where X, = .[* and (2.32)

Xnn

Xn+l,n
X . (2.33)

Ln~i,~i

The Kalman filtering equation [Ref. 2] is

X, =Xn 1 "+* n (Yn - MX, 1)+ H (2.34)

The matrix H, is known as the weight equation. It contains the filter weights for

smoothing the measurement data and predicting the next position. This weight equation

[Ref. 2] is

Hn = S*,,_M [RM + MS,nIMT --I (2.35)

where S*,n_ = rDS* - I)T + Q, = predictor equation (2.36)

Qn= COV[U,]= E[U, UT]= dynamic model noise covariance (2.37)

Sn,n-l = COV(Xn*,n-)= E[Xn, XT, 1 ] (2.38)

R, = COV(N, ) = E[N,,Nr = observation noise covariance (2.39)

S,__= COV(xl_.,_ )= [I - Hn_•M]Sn_•.._- =corrector equation (2.40)

12



In the case of a maneuvering target, we need to increase the number of states in

the tracking filter from 2 to 3, to include acceleration. Thus

Xn X (2.41)

and the dynamics equation takes the form

X'+1 =' X, + U, (2.42)

The transition matrix [Ref. 2] is now given by

1 T r2-1 + - + ex )-T j

.D(T,,r)= 0 1 -r{1- exp _-T)] (2.43)

00

where r is the correlation time of the acceleration and T is the sampling interval. When

T / z is small, the target can be considered to have a constant acceleration between sample

update periods. The above reduces to

1 T I1T 2

2
' (T,r)= 0 1 T = Newtonian matrix (2.44)

0 0 1

13



The dynamic model noise covariance [Ref. 2] can be expressed as

20 8 6
Q 20'2 IT' !T3 1TT (2.45)

"r 8 3 2

1 - 3 1T 2 T
6 2

The Kalman filter for this target model has an observation matrix given by

M=[1 0 0] (2.46)

It is initialized using

x* , , xuY =0 (2.47)

where y0 and y1 are the first two position measurements.

The elements of the covariance matrix for X,. (that is S,.) are as follows:

[s*j L = (2.48)

[S 1 = OSj'x

[ = * = (2.49)

1s, 1 2 = [S1,1 LO 0 (2.50)

U1 2 .2 22a 2T T 3  T

2So1 l T '2 2+ a 2 2- oa2T2 + 3 2e- - 2aTe- (2.51)

[* 11 2 = [$T:1]= a---T (e (2.52)

4(2.53)

14



Once the initialization of the covariance matrix is completed, the Kalman filter is

implemented by following 5 simple steps [Ref. 2] for each new measured position value.

Step 1. Compute the Kalman filter weighting equation to determine the filter

weights.

Hr_'M T [R" + MS,_ 1 MT 3- (2.54)

Step 2. Correct the covariance matrix.

SIn_1 =COV(X* ) = [I - H,_,M]S (2.55)

Step 3. Update the covariance matrix.

S*- 1 = DS- 1,- 1d + Q, (2.56)

Step 4. Apply the Kalman filter weights to filter the position, velocity and

acceleration.

X*n,, = X*.,,n_ + H,,(Y., -MX*,n_1) (2.57)

Step 5. Apply the filtered position, velocity and acceleration values to predict the

next position and next velocity.

+I,, n =(DX*•. (2.58)

15
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III. MATLAB SIMULATIONS AND RESULTS

A. TELEMETRY MISSILE TRACKING SIMULATIONS

The primary objective of this simulation is to examine the accuracy and

characteristics of the TSPI at the telemetry tracking system output. This would enable us

to implement a suitable Kalman filter to improve the accuracy of the system.

In this simulation, the actual missile trajectory data provided by a laser tracker

was used to derive the different doppler frequencies at each receive sites. The missile

trajectory data is as shown in Figure 3.1.

Missile Trajectory and Base Station Locations

1000 - - - 7 • 4
- I

00----

II"•-I

-- I I I I I4 4 t 4

m 4000 ,- -- " - ' .
200,---

N < II I - I - I.4

200 I A. I-I

00 4- 0--

4o00 - I -. --. -I I". .: . "-

S. ...- " -,-R - . -2 00

-2000 1" 8000 -6000

Y Axds (ft) -4000 -10000 XAas (ft)

Figure 3.1. Missile Trajectory and Receiver Locations
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The spatial coordinates (x, y and z) of the missile trajectory are recorded every

0.01 s. The detailed missile trajectories in the X, Y and Z axes are shown in Figure 3.2.

The missile initially launches with 30 'g's acceleration force. In 6.42 sec, the missile

travels 11,400 ft along the X-Axis and 3,900 ft along the Y-Axis . The missile also

climbs to a maximum altitude in the Z-Axis of 1,100 ft at 3.70 sec, before descending

towards the ground.

Trajectory in X, Y and ZA~ds
4000 ,

I I

II II I
2000 -- - - --- - - - -- - - - -- -- - T -- - - - - - - - - - -

I I I I

2 0 o-- --- -- -------- -------- 1 .... ---

F 3.2.• Mr Y and Z-Axes
N Y-A" ,1.. Id-ii

" -2000 --- --- -- -- - -- - -- - -- - - - - -

>, -4000 --- -- -- - -- -- -------. . - ----. . ---- --------- -- --- - -- - -

utlien ad tX-A tions a d i

fromeachrecivuer to .MsieTrjcoyi the reernc reeie aracmpt d beforemsslfigtbin

because these values remain constant and are one of the inputs to the Smith-Abel
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algorithm. Range Differences (RD) are found using an incremental integrating approach.

The initial range differences are calculated prior to missile launch to establish a base to

which average differential range differences are added at each time interval. The

flowchart for the telemetry missile tracking simulation is as shown in Figure 3.3.

The phase detector frequency measurement at each of the receiver sites is

degraded by the phase measurement noise and receiver noise. The theoretical lower

bound on doppler frequency measurement [Ref. 3) was used, described by the following

equation:

3
f SNR (3.1)

where SNR is the signal-to-noise ratio of the receiver at which the frequency

measurement is made and T is the sampling period.

Each scalar doppler frequency is converted to a differential range difference. The

RD between the reference and the i th receiver is defined by

RDi = -. T. (fd•l -fd) (3.2)

where A is the source wavelength, T is the sampling time, and fdl and fdi are the

respective doppler frequencies at the reference receiver and the i th receiver. The

negative sign ensures a positive RD value; (fdl - fdi) will always be negative because

the missile is moving away from the reference receiver through its entire trajectory,

producing lower relative doppler frequencies at the reference receiver.

19



I- 0Missile trajectory

Initialization
- Receiver locations
- Initial range difference
- SNR
- Frequency measurement error

Sample
- position and velocity at present and
next time interval

Compute (Present time) Compute (Next time)
- Source to Rx vectors - Source to Rx vectors

Doppler frequencies - Doppler frequencies
Differential range - Differential range
difference difference

Calculate
Average differential range differences
Range differences using differentials

- Range differences using position data

Position Estimation
- Use Smith-Abel Algorithm to

estimate position

Compute
- -Poosition errors

Figure 3.3. Telemetry Missile Tracking Simulation Flowchart
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Two differential RDs are then computed for each receiver used. The first RD is

based on missile position and velocity at the present sample time. The second RD is

based on missile position and velocity at the next sample time. These sets of RDs are

used to determine average differential RDs, which are added to the base RDs determined

previously. The base RDs are then reset to these values and the process is repeated

through the missile's trajectory. Geometric RDs are also calculated to determine the

error in RD computation using missile position data for range calculations.

The missile's estimated position at the next time interval is determined using the

Smith-Abel algorithm (smith abel.m). Inputs to this algorithm include receiver location

coordinates, RDs, and ranges from receivers to the reference receiver.

The position error is defined as the magnitude of the vector from the Smith-Abel

position estimation to the missile position coordinates at the next time interval. This

error is computed for each sample point along the missile's trajectory and stored. The

mean value for this error is then calculated at the end of missile flight.

The mean position error is a function of the SNR. Because of the randomness of

the noise, the mean position error is different for each run. We need to execute a Monte

Carlo simulation of the SNR to determine an accurate mean position. The overall result

of the mean position error is as shown in Figure 3.4.

21



Position Error vs SNR
60

I I

I I

50'

I - I- - - - - - - - - - - -40 .------------

•I ,

,- 30 - -----------F

10I ,

CLL

o I

15 20 25 30 35 40

SNR (dB)

Figure 3.4. Position Error vs. SNR

In order to examine the position error in detail, the program resolves the position

error into errors in the X, Y and Z Axes. A typical errors in the X, Y and Z Axes are as

shown in Figure 3.5. We noted that the error in the Z-Axis is always significantly higher

than those in the X-Axis and Y-Axis. The main cause of this characteristic is due to the

fact that all receiver sites are close to the horizontal (X-Y) plane. This would result in

higher inaccuracy in the Z-Axis that causes a larger error.
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Position Error in X, Y and Z Axis

140 I I

120 ii

100 
Z Axis Error

N 80 f

)< 60-

.40 , , X Ads Error

0 rq•,,,, ,•4,.• ,
C 0,

SY Axis Error

0

-20 I I I
0 1 2 3 4 5 6 7

"Time (sec)

Figure 3.5. Position Error in X, Y and Z Axes

B. KALMAN FILTER SIMULATIONS

The telemetry tracking system simulation has shown that the accuracy of the TSPI

is highly dependent on the SNR. The detailed examination of the position errors in the X,

Y and Z Axes also revealed that the position error in the Z-Axis is the dominant

component.

The approach adopted for the implementation of the Kalman filter was to process

the Z-Axis position information to reduce its error. When the position error in the Z-Axis

is reduced, the overall TSPI accuracy will be enhanced.
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The Kalman filter simulation flowchart is as shown in Figure 3.6. The program

starts off by loading the Smith-Abel estimated Z-Axis position as well as the laser tracker

Z-Axis position into the program. The program would initialize the transition matrix,

observation matrix, maneuver excitation covariance matrix, observations noise

covariance matrix and the initial trajectory covariance matrix.

For every new estimated position input, the program will compute the Kalman

filter adaptive weights. Then, the covariance matrix will be corrected and updated using

equations (2.55) and (2.56).

The computed Kalman filter adaptive weights are used to filter (or smooth) the

estimated position, velocity and acceleration values. Thereafter, the program will predict

the next position and velocity values.

The above iteration will continue until all the estimated positions are processed.

Finally, the program will compute the position errors.

In the implementation of the program, it was difficult to determine the value of

'the observation noise covariance. This is due to the random nature of the position error at

the output of the telemetry tracking system. For a fixed value of SNR, the position error

in the Z-Axis can either have a positively biased (positive mean value) or negative biased

(negative mean value). A certain observation noise covariance may be good for a

specific run, but it would produce undesirable results in other runs. Therefore, many

'trial and error' runs were conducted to find the optimal value for the observation noise

covariance.
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Figure 3.6. Kalman Filter Simulation Flowchart
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The result of the Kalman filter on the Z-Axis position did not improved the mean

position error. A typical output of the Kalman filter is as shown in Figure 3.7. The

Kalman filter smooths-out the position error curve but the mean position error remains

unchanged.
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Figure 3.7. Kalman Filter Simulation Output

It was noted that the position error curve is not a zero mean Gaussian distributed

variable. Depending on the randomness of the noise at the doppler frequency

measurements, there may be a positively biased (positive mean value) or negative biased

(negative mean value) error in the Z-Axis position curve. For example, in Figure 3.7, the

Z-Axis position error changes from 0 ft at launch time to a peak value of 138 ft at 6.18
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secs. This Z-Axis position error fluctuated slightly but there was a positive increasing

trend. The mean position error for this run was 34.6 ft. Inputting this Z-Axis estimated

position into the Kalman filter will result in a smoother fluctuation but the mean position

error will not be reduced.

In order to substantiate the performance of the designed Kalman filter, a zero

mean Gaussian noise was added to the laser tracker Z-Axis position for evaluation. In

this case, the Kalman filter was able to smooth-out the noise fluctuation on the Z-Axis

position and it effectively reduced the mean square error of the position from 79.3 ft to

19.7 ft. The Kalman filtered Z-Axis position versus the Gaussian noise imbedded

position is as shown in Figure 3.8. The position errors are as shown in Figure 3.9.
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Figure 3.8. Kalman Filter on Zero Mean Noise on Z-Axis Position
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Position Error vs Time
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Figure 3.9. Kalman Filter on Zero Mean Noise on Z-Axis Position Error

This evaluation demonstrated the effectiveness of the Kalman filter in reducing

the position error cause by zero mean noise. However, in the case of the TSPI output

where the position error is not a zero mean Gaussian noise variable, the Kalman filter

does not improve the position accuracy of the system.
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IV. CONCLUSION

A. SUMMARY

The objective of this thesis was to examine whether a Kalman filter can be used to

enhance the accuracy of the Time, Space and Position Information (TSPI) of the

telemetry missile tracking system. The detailed study of the telemetry system simulation

revealed that the accuracy is highly dependent on the SNR of the telemetry receivers.

Closer examination of the TSPJ also showed that the error in the Z-Axis is the

predominant component. The approach adopted for the implementation of the Kalman

filter was to process the Z-Axis position information to reduce its error. When the

position error in the Z-Axis is reduced, the overall TSPI accuracy will be enhanced.

The implementation of the Kalman filter did not enhanced the accuracy of the Z-

Axis position. The Kalman filter managed to smooth-out the position error curve but the

mean position error remains unchanged. This is due to the fact that the position error

curve is not zero mean Gaussian distributed. Depending on the randomness of the noise

at the doppler frequency measurements, the Smith-Abel algorithm may produce a

positively biased (positive mean value) or negative biased (negative mean value) in the

Z-Axis position error curve. Additional simulation has shown that the designed Kalman

filter was effective in reducing zero mean Gaussian noise.

The conclusion of this thesis is that the implementation of a Kalman filter at the

TSPI output data does not enhance its accuracy.
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B. FUTURE RESEARCH

We know that the phase detector frequency measurement at each of the receiver

sites is degraded by the phase measurement noise and receiver noise. There is a

theoretical lower bound on doppler frequency measurement and this error has zero mean

Gaussian characteristics. This presents a good opportunity for the implementation of

Kalman filter to improve the doppler frequency accuracy. With more accurate doppler

frequency input into the telemetry tracking system, the simulation will definitely produce

more accurate TSPI output.
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APPENDIX A. MATLAB SOURCE CODES

The MATLAB files shown in Table A. 1 were used for the simulations in support

of this thesis. Their respective source codes are listed within this appendix.

No MATLAB File Contents

1 trajtdoasnrmc.m Monte Carlo simulation of Smith-Abel algorithm to
determine the position accuracy as a function of SNR.

2 trajtdoasnrl.m Input missile trajectory and SNR. Compute the Smith-Abel
TSPI output. Save output into data file, ddttsl.

3 eval_ttsl.m Load data file dd_ttsl for evaluation. Resolve the error in
the X, Y and Z axes. Save Z-axis position information in
data file, dd etts 1.

4 kfl.m Load data file ddettsl and perform Kalman filtering on the
Z-axis position information.

5 zero mean.m Load missile trajectory and insert a Gaussian zero mean
noise onto the Z-axis position information. Save noise
imbedded Z-axis position information in data file,
ddzerom.

6 kfzeromean.m Load data file dd zerom and perform Kalman filtering on
the Z-axis position information.

Table A.1. MATLAB Files
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trajtdoasnrmnc .m

%Position from FDOA using Smith-Abel method
%Inputs missile trajectory and calculates
%RDOA from FDOA and position with S/N measurement error
%Random Gaussian noise is also present within the signal
%Monte Carlo simulation is used (50 iterations)
%trajtdoasnrmc.m

%Load White Sands missile trajectory
load traj;
t=traj(l,:);xm=traj(2,:);ym=traj(3,:);zm=traj(4,:);

%Smooth missile trajectory
xms=polyval(polyfit(t,xm, 14),t);
yms=polyval(polyfit(t,ym,14),t);
zms=polyval(polyfit(t,zm,14),t);

%Obtain polynomial coefficients for trajectory
xpc=polyfit(t,xm,14);
ypc=polyfit(t,ym, 14);
zpc=polyfit(t,zm,14);

%Define coefficients for velocity (first derivative of polynomials)
i=1:14;
xvc=(15-i).*xpc(i);
yvc=(15-i).*ypc(i);
zvc=(15-i).*zpc(i);

%Evaluate velocity polynomials to obtain velocity component vectors
vxs=polyval(xvc,t);
vys=polyval(yvc,t);
vzs=polyval(zvc,t);

%White Sands base station positions (feet)
RL=[-9243.4 -3085.7 -127; -9193.6 -3072.3 -125; -9278.7 -3201.8 -92.1;
-8992.9 -2879.8 -109.3; 1757 430.4 40.4; -6458.5 -2112.3 -39.3; -3704.2
-1214.7 -33.6; 607 -3517.8 208.3; -5305.4 2653 -153.6];

%Initialize range difference vectors
d=zeros(8,1);
da=zeros (8, 1)
di=zeros(8,1);
db=zeros(8,1);

%Range from non-reference receiver to reference receiver
R=zeros(8,1);
R(1) = norm(RL(1,:) - RL(2,: ;
R(2) = norm(RL(1,:) - RL(3,: ;
R(3) = norm(RL(1,:) - RL(4,: ;
R(4) = norm(RL(1,:) - RL(5,:));
R(5) = norm(RL(1,:) - RL(6,:));
R(6) = norm(RL(1,:) - RL(7,:));
R(7) = norm(RL(l,:) - RL(8,:));
R(8) = norm(RL(1, :) - RL(9, :) );

w=ones(8,1);
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%Telemetry and sampling data
fo=2.3e9; % Hz
wl=(3e8/fo)/.3048; % feet
T=le-2; % sec
Tmax=6.41; % sec

%Start SNR Loop for SNR values from 15-40 dB
for snrdb=15:40;

snr=l0'isnrdb/10);

%Theoretical minimum frequency RMS measurement error
dfrms=sqrt(3/snr) /(pi*T);

%Start Monte Carlo loop (50 iterations)
for count=l:50;

%initial range differences, with Receiver 1 as the reference
sourcei=[xms(l) yms(l) zrns(l)];

di(l) = norm(sourcei - RL(2,:)) - norm(sourcei - L1:)
di(2) = norm(sourcei - RL(3,:)) - norm(sourcei - L1:)
di(3) = norm~sourcei - RL(4,:)) - norm(sourcei - L,:)
di(4) = norm(sourcei - RL(5,:)) - norm(sourcei - L1:)
di(5) = norm(sourcei - RL(6,:)) - norm(sourcei - L1:)
di(6) = norm(sourcei - RL(7,:)) - norm(sourcei - L1:)
di(7) = norm(sourcei - RL(8,:)) - norm(sourcei - R(,);
di(8) = norm(sourcei - RL(9,:)) - norm(sourcei - L1:)

d~di;

%Generate loop for sampling trajectory points
%Read positions and velocities at each sample point (every .01 sec)

for ts=0:T:Trnax;
sample=ts/T+l;
sample=round(sample); %Sample must be an integer value
x=xrns(l,sarnple);y=yms(l,sample);z=zms(l~sample);
xl=xms(l,sample+l) ;yl=yms(l,sample+l) ;zl=zrns(l,sample+l);
v=Ilvxs(l,sample) vys(l,sample) vzs(l,sample)];
vl=[vxs(l,sample~l) vys(l,sample+l) vzs(l,sample+l)];

%Find source position at present time
source=I[x y z];

%Find source position at next time
sourcel=[xl yl z1J;

%Find source-to-base station vectors at present time
Bl=source-RL(l,:);
B2=source-RL(2, :);
B3=source-RL(3, :);
B4=source-RL(4, :);
B5=source-RL(5,:);
B6=source-RL(6,:);
B7=source-RL(7,:);
B8=source-RL (8,:);
B9=source-RL(9, :);
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%Find Doppler frequency vector at present time
F=v/wl;

%Simulate frequency changes in telemtry at present time
fac=l+(5e5/3e9)*sign(rand-.5);

%Find Doppler frequencies at base stations at present time
fdl=fac*dot(Bl,F) /norm(Bl) +dfrms*randn;
fd2=fac*dot (B2,F) /normn(B2) +dfrms*randn;
fd3=fac*dot(B3,F) /norm(B3) +dfrms*randn;
fd4=fac*dot (B4,F) /norm(B4) +dfrms*randn;
fd5=fac*dot(B5,F) /norm(B5)+dfrms*randn;
fd6=fac*dot(B6,F) /norm(B6)+Idfrms*randn;
fd7=fac*dot(B7,F) /norln(B7)+dfrms*randn;
fd8=fac*dot(B8,F) /norln(B8)+dfrms*randn;
fd9=fac*dot(B9,F) /norm(B9)+dfrms*randn;

%Find differential RDOAs at present time
drdoa2a=..wl*T* (fdl-fd2);
drdoa3a=-~wl*T* (fdl-fd3);
drdoa4a=-wl*T* (fdl-fd4);
drdoa5a=-wl*T* (fdl-fd5);
drdoa6a=-wl*T* (fdl-fd6);
drdoa7a=-wl*T* (fdl-fd7);
drdoa8a=-wl*T* (fdl-fd8);
drdoa9a=-~wl*T* (fdl-fd9);

%Find source-to-base station vectors at next time
Bl=sourcel-RL(l, :);
B2=sourcel-RL(2, :);
B3=sourcel-RL(3, :);
B4=sourcel-RL(4,:);
B5=sourcel-RL(5,:);
B6=sourcel-RL(6,:);
B7=sourcel-RL(7,:);
B8=sourcel-RL (8,:);
B9=sourcel-RL(9,:);

%Find Doppler frequency vector at next time
Fl=vl/wl;

%Simulate frequency changes in telemtry at next time
facl=l-i-(5e5/3e9) *sign(rand-..5);

%Find Doppler frequencies at base stations at next time
fdl=facl*dot(Bl,Fl) /norm(Bl)+dfrms*randn;
fd2=facl*dot(B2,Fl) /norm(B2)+dfrms*randn;
fd3=facl*dot(B3,Fl) /norm(B3)+dfrms*rand~n;
fd4=facl*dot(B4,Fl) /norm(B4)+Idfrms*randn;
fd5=facl*dot(B5,Fl) /norm(B5)+dfrms*randn;
fd6=facl*dot(B6,Fl) /norm(B6)+dfrms*randn;
fd7=facl*dot(B7,Fl) /norm(B7)+dfrms*randn;
fd8=facl*dot(B8,Fl) /norm(B8)+dfrms*randn;
fd9=facl*dot (B9,Fl) /norm(B9) +dfrms*randn;
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%Find differential RDOAs at next time
drdoa2b=-~wl*T* (fdl-fd2);
drdoa3b=-wl*T* (fdl-fd3);
drdoa4b=-wl*T* (fdl-fd4);
drdoa5b=-wl*T* (fdl-fd5);
drdoa6b=-~wl*T* (fdl-fd6);
drdoa7b=-wl*T* (fdl-fd7);
drdoa8b=-wl*T* (fdl-fd8);
drdoa9b=-wl*T* (fdl-fd9);

%Find average differential RDOAs
drdoa2= (drdoa2a+drdoa2b) /2;
drdoa3= (drdoa3a+drdoa3b) /2;
drdoa4= (drdoa4a+drdoa4b) /2;
drdoa5= (drdoa5a+drdoa5b) /2;
drdoa6= (drdoa6a+drdoa6b) /2;
drdoa7= (drdoa7a+drdoa7b) /2;
drdoa8= (drdoa8a+drdoa8b) /2;
drdoa9= (drdoa9a+drdoa9b) /2;

%Find RDOAs
da (1)=d(l) +drdoa2;
da(2)=d(2)+drdoa3;
da(3)=d(3)+drdoa4;
da(4) =d(4)+drdoa5;
da (5) =d(5) +drdoa6;
da(6)=d(6) +drdoa7;
da(7) =d(7) +drdoa8;
da(S) =d(8)+drdoa9;

%Reset range differences
d=da;

%Find RDOAs from geometry
db(l) =norm(sourcel - RL(2,:)) - norm(sourcel - L1);
db(2) = norm(sourcel - RL(3,:)) - normn(sourcel - L,:)
db(3) = norm(sourcel - RL(4,:)) - norm(sourcel - L,:)

db(4) =norm(sourcel. - RL(5,:)) - norm(sourcel - L1:)
db(5) = norm(sourcel - RL(6,:)) - norm(sourcel - L1:)
db(6) = norm(sourcel - RL(7,:)) - norm(sourcel - L1:)
db(7) =norm(sourcel - RL(8,:)) - norm(sourcel - L1:)
db(8) = norm(sourcel - RL(9,:)) - norm(sourcel - L,:)

%Estimated RDOA error
errt=norm(d - db);

%Fill matrix for estimated RDOA error
if ts==O;xet=errt;
else xet=Ilxet errt];
end;

%Apply Smith-Abel algorithm to find estimated position from RDOAs
source-est=smith-abel(RL,d,w,R);

%Estimated position error
errp=norm(sourcel - source-est);
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%Fill matrix for estimated position error
if ts==O;xep=errp;
else xep=[xep errp];
end

%Return to trajectory loop
end;

%Calculate mean TDOA and position errors for missile trajectory
%Fill matrices for these values

merrt=mean(xet);
merrp=mean(xep);
if count==l;meanxet=merrt;meanxep=merrp;

else meanxet=[meanxet merrt];meanxep=[meanxep merrp];end

%Return to Monte Carlo count loop
end;

%Calculate and print mean values for Monte Carlo iterations
mcet=mean(meanxet);
mce=mean(meanxep);
fprintf('SNR(dB) = %g\n', snrdb);
fprintf('Error in RDOA (ft) = %g\n', mcet);
fprintf('Error in Position (ft) = %g\n', mce);

%Fill SNR, RDOA, and position error matrices for plotting
if snrdb==15;snrdbm=snrdb;mcetm=mcet;mcem=mce;
else snrdbm=[snrdbm snrdb];mcetm=[mcetm mcet];mcem=[mcem mce];end;

%Return to SNR loop
end;

trajtdoasnrrl.m

%Position from FDOA using Smith-Abel method
%Inputs missile trajectory and calculates
%RDOA from FDOA and position with S/N measurement error
%Random Gaussian noise is also present within the signal
%Save data in dd_ttsl for evaluation
%trajtdoasnrl.m

%Load White Sands missile trajectory
load traj;
t=traj(l,:);xm=traj (2,:);ym=traj(3,:);zm=traj(4,:);

%Smooth missile trajectory
xms=polyval(polyfit(t,xm, 14),t);
yms=polyval(polyfit(t,ym,14),t);
zms=polyval(polyfit(t,zm, 14),t);

%Obtain polynomial coefficients for trajectory
xpc=polyfit(t,xm,14);
ypc=polyfit(t,ym, 14);
zpc=polyfit(t,zm, 14);
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%Define coefficients for velocity (first derivative of polynomials)
i=1:14;
xvc=(15-i).*xpc(i);
yvc=(15-i).*ypc(i);
zvc=(15-i).*zpc(i);

%Evaluate velocity polynomials to obtain velocity component vectors
vxs=polyval(xvc,t);
vys=polyval(yvc,t);
vzs=polyval(zvc~t);

%White Sands base station positions (feet)
RL=[-9243.4 -3085.7 -127; -9193.6 -3072.3 -125; -9278.7 -3201.8 -92.1;
-8992.9 -2879.8 -109.3; 1757 430.4 40.4; -6458.5 -2112.3 -39.3; -3704.2
-1214.7 -33.6; 607 -3517.8 208.3; -5305.4 2653 -153.6];

%Initialize range difference vectors
d=zeros(8,l);
da=zeros (8, 1);
di=zeros (8, 1);
db=zeros (8, 1);

%Range from non-reference receiver to reference receiver
R=zeros(8,l);
R(1) = norm(RL(l,:) - RL(2,:));
R(2) = norm(RL(l,:) - RL(3,:));
R(3) = norm(RL(l,:) - RL(4,:));
R(4) = norm(RL(l,:) - RL(5,:));
R(5) = norm(RL(l,:) - RL(6,:));
R(6) = norm(RL(l,:) - L7:)
R(7 = norm(RL(l,:) - RL(8,:));
R(8) = norm(RL(l,:) - RL(9,:));

w=ones(8,l);

%Telemetry and sampling data
fo=2.3e9; % Hz
wl=(3e8/fo)/.3048; % feet
T=le-2; % sec
Tmax=6.41; % sec

%initial range differences, with Receiver 1 as the reference
sourcei=[xms(l) yms(l) zms(l)];

di(l) = norm~sourcei - RL(2,:)) - norm(sourcei - L1:)
diC2) = norm(sourcei - RL(3,:)) - norm(sourcei - L,:)
di(3) = norm(sourcei - RL(4,:)) - norm(sourcei - LI:)
di(4) = norm(sourcei - RL(5,:)) - norm(sourcei - L1:)
di(5) = norm~sourcei - RL(6,:)) - norm(sourcei - L1:)
di(6) = norm~sourcei - RL(7,:)) - norm(sourcei - L1:)
di(7 = norm(sourcei - RL(8,:)) - norm(sourcei - L1:)
di(8) = norm(sourcei - RLC9,:)) - norm(sourcei - L1:)

d~di;

%Input base station SNR
%snrdb=input C snr(dB) =');
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snrdb=2 0
snr=10^~(snrdb/10);

%Theoretical minimum frequency RMS measurement error
dfrms=sqrt (3/snr) /(pi*T);

%Generate loop for sampling trajectory points
%Read positions and velocities at each sample point (every .01 sec)

for ts=0:T:Tmax;
sample=ts/T+l;
sample=round(sample); %Sample must be an integer value
x~xms(l,sample);y=Yms(l,sample);z~zms(l,sample);
xl=xms(l,samnple+l) ;yl~yms(l,sarnple+l) ;zl=zms(l,sample+1);
v=[vxs(l,sample) vys(1,sample) vzs(l,sample)];
vl=[vxs(l,sample+1) vys(l,sample-il) vzs(l,sample+1)I;

%Find source position at present time
source=[x y zJ;

%Find source position at next time
sourcel=[xl yl z1];

%Find source-to-base station vectors at present time
Bl=source-RL(l, :);
B2=source-RL(2, :);
B3=source-RL(3,:);
B4=source-RL(4,:);
B5=source-RL(5,:);
B6=source-RL (6,:);
B7=source-RL(7,:);
B8=source-RL (8,:);
B9=source-RL(9, :);

%Find Doppler frequency vector at present time
F=v/wl;

%Simulate frequency changes in telemtry at present time
fac=l+(5e5/3e9)*sign(rand-.5);

%Find Doppler frequencies at base stations at present time
fdl=fac*dot (Bl,F) /norm(Bl) +dfrms*randn;
fd2=fac*dot (B2,F) /norm(B2) ÷dfrms*randn;
fd3=fac*dot (B3,F) /norm(B3) +Idfrms*randn;
fd4=fac*dot (B4,F) /norm(B4) +dfrms*randn;
fd5=fac*dot (B5,F) /norm(B5) +dfrms*randn;
fd6=fac*dot (B6,F) /norm(B6) +dfrms*randn;
fd7=fac*dot (B7,F) /norm(B7) +dfrms*randn;
fd8=fac*dot (B8,F) /norm(B8) +dfrms*randn;
fd9=fac*dot (B9,F) /norm(B9) +fdfrms*randn;

%Find differential RDOAs at present time
drdoa2a=-wl*T* (fdl-fd2);
drdoa3a=-wl*T* (fdl-fd3);
drdoa4a=-w1*T* (fdl-fd4);
drdoa5a=-wl*T* (fdl-fd5);
drdoa6a=-w1*T* (fdl-fd6);
drdoa7a=-w1*T* (fdl-fd7);
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drdoa8a=-wl*T* (fdl-fd8);
drdoa9a=-wl*T* (fdl-fd9);

%Find source-to-base station vectors at next time
Bl=sourcel-RL(1, :);
B2=sourcel-RL(2, :);
B3=sourcel-RLC3, :);
B4=sourcel~-RL (4, :);
B5=sourcel-RL(5, :);
B6=sourcel-RL(6, :);
B7=sourcel-RL(7, :);
B8=sourcel-RL(8, :);
B9=sourcel-RL(9, :);

%Find Doppler frequency vector at next time
Fl=vl/wl;

%Simulate frequency changes in telemtry at next time
facl=l±(5e5/3e9)*sign(rand-.5);

%Find Doppler frequencies at base stations at next time
fdl=facl*dot(Bl,Fl) /norm(Bl) +Idfrms*randn;
fd2=facl*dot(B2,Fl) /norm(B2)±dfrms*randn;
fd3=facl*dot(B3,Fl) /norr(B3)±dfrms*randn;
fd4=facl*dot(B4,Fl) /norm(B4)+dfrms*randn;
fd5=facl*dot(B5,Fl) /norm(B5)+dfrms*randn;
fd6=facl*dot(B6,Fl) /norm(B6)+dfrms*randn;
fd7=facl*dot(B7,Fl) /norm(B7)±dfrms*randn;
fd8=facl*dot(B8,Fl) /norm(B8)+dfrms*randn;
fd9=facl*dot(B9,Fl) /norm(B9)+Idfrms*randn;

%Find differential RDOAs at next time
drdoa2b=-wl*T* (fdl-fd2);
drdoa3b=-wl*T* (fdl-fd3);
drdoa4b=-wl*T* (fdl-fd4);
drdoa5b=-wl*T* (fdl-fd5);
drdoa6b=-wl*T* (fdl-fd6);
drdoa7b=-wl*T* (fdl-fd7);
drdoa8b=-wl*T* (fdl-fd8);
drdoa9b=-wl*T* (fdl-fd9);

%Find average differential RDOAs
drdoa2= (drdoa2a+drdoa2b) /2;
drdoa3= (drdoa3a-4drdoa3b) /2;
drdoa4= Cdrdoa4a+drdoa4b) /2;
drdoa5= (drdoa5a+drdoa5b) /2;
drdoa6= (drdoa6a+drdoa~b) /2;
drdoa7= (drdoa7a+drdoa7b) /2;
drdoa8= (drdoa8a+drdoa8b) /2;
drdoa9= (drdoa9a+drdoa9b) /2;

%Find RDOAs
da(l) =d(l) +drdoa2;
da(2) =d(2) +drdoa3;
da(3)=d(3) +drdoa4;
da(4)=d(4) +drdoa5;
da(5) =d(5) +drdoa6;
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da(6) =d(6) +drdoa7;
da(7) =d(7)+drdoa8;
da(8) =d(8)+drdoa9;

%Reset range differences
d=da;

%Find RDOAs from geometry
db(l) = norm(sourcel - RL(2,:)) - norrn(sourcel - R. ,:)
db(2) = norm(sourcel -RL(3,:)) - norm(sourcel - L1:)
db(3) = norm(sourcel - RL(4,:)) - norm(sourcel - L1:)
db(4) = norm(sourcel - RL(5,:)) - norrn(sourcel - L1:)
db(5) = norm(sourcel - RL(6,:)) - norm(sourcel - L1:)

db(6) = norm(sourcel - RL(7,:)) - norm(sourcel - L,:)
db(7) = norm(sourcel - RL(8,:)) - norm(sourcel - L1:)
db(8) = norm(sourcel - RL(9,:)) - norm(sourcel - R1(1,:));

%Fill matrices for RDOAs, time, position, and velocity components
if ts==O;dx=db;t=ts+T;xx=x;yy~y;zz=z;vx=v(1);vy=v(2);vz=v(3);
else dx=fdx dbj;xx=[xx x);yy=[yy y];zz=[zz zlht=[t ts+TJ; ...

vx=[vx v(l)];vy=fvy v(2)h;vz=Evz v(3)];
end;

%Estimated RDOA error
errt=norm(d - db);

%Fill matrix for estimated RDOA error
if ts0=;xet~errt;
else xet=[xet errt];
end;

%Apply Smith-Abel algorithm to find estimated position from RDOAs
source-est=smith-abel(RL,d,w,R);

%Estimated position error
errp=norm~sourcel - source_est);
x>ýact=sourcel(l,l);
y-act=sourcel (1,2);
z_act=sourcel(l,3);
xý_est=source~est(l,l);
y-est=source-est (1, 2);
z-est=source-est(l,3);

%Fill matrix for estimated position error
if ts==O;xep=errp;
else xep=ilxep errp);
end

if ts==O;x>xest=x~est;
else xx~est=[xx._est x_est);
end

if ts=O;yy-est~y-est;
else yy est=[yy~est y~est];
end

if ts==O; zz~est~zest;
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else zz-est=[zz-est z-est];
end

end;

%obtain position and velocity components vectors
pos=[t' xx' yy' zz'];

v=[t' vx' vy' vz');
V=v';

%Output results to screen
merrt=mean(xet);
fprintf('Mean RDOA Error (ft) = %g \n' ,merrt);

merrp=mean(xep);
fprintf('Mean Position Error (ft) =%g \n' ,merrp);

%Plot graphs
figure Cl)
plot(t,xet) ;grid;
titleC'RDOA Error vs Time');
xlabel('Time - sec');ylabel('RDOA error -ft)

figure (2)
plot(t,xep) ;grid;
title('Position Error vs Time');
xlabel('Time - sec');ylabel('Position Error -ft)

figureC3)
plot3Cxx,yy,zz) ;grid;
hold on

hold off
title('Missile Trajectory and Base Station Locations');
xlabel('ft');ylabel('ft');zlabel('ft');

%Save data in dd_ttsl for evaluation
save dd-ttsl

eval ttsl.m

%load data from trajtdoasnr.m (dd-ttsl) for evaluation
%output TSPI Z-axis information
%save output into dd-ettsl
%eval-ttsl.m

load dd-ttsl

% Truth position without error
xms=xrns(1,l:641);
yms=yms(1,1:641);
zms=zms (1,1:641);

% Estimated position
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xx-est=xx-est(1,l:641);
yy-est=yy-est (1, 1:641);
zz-est=zz-est(l1,:641);

% Position error
xerr=xx-est-xms;
yerr=yy-est-ylas;
zerr=zz_est-zrns;
terr~sqrt (xerr."2 +yerr."2 +zerr. "2);

mxerr=mean (xerr)
rnyerr=mean (yerr)
mzerr=mean (zerr)
mterr=mean (terr)

% Time scale
T=le-2; % sec
Tmax=6.40; % sec
timel=linspace (0,Tmax, 641);

figure (1)
plot(timel,zms, 'k--',timel,zz-est, 'k-')
title('Z Position True vs Estimated');
xlabel('Time - sec') ;ylabel('Z Position ft');

figure(2)

title('X Position True vs Estimated');

xlabel('Time - sec');ylabel('X Position ft');

figure(3)
plot(timel,yms, 'k--',timel,yy est, 'k-')
title('Y Position True vs Estimated');
xlabel( 'Time - sec') ;ylabel( 'Y Position ft');
plot (timel,yins.timel,yy~est)

figure (4)
plot(timel,xerr,timel,yerr,timel,zerr)
title('X,Y,Z Position Error vs Time');
xlabelC'Time - sec');ylabel('X,Y,Z Position ft');

%save output into dd-ettsl
save dd-ettsl zms zz-est timel

kfI.M

% Execute Kalman Filtering on the Z-axis information
% load data from dd-ettsl
% Kalman Filter
% output Kalman filtered Z position

format compact; clear; clf;

% load data from dd-ettsl
load dd_ettsl
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% Re-define parameters
xm=zzest; % TM estimated data
xmns=zms; % Truth data
smp=length(xm);

T=le-2;
Tl=linspace(l,smp*T,smp);

% Generate State Variables
xp=zeros(l,smp+l);
xs=zeros(l,smp);
vp=zeros(l,smp+l);
vs=zeros(l,smp);
as=zeros(l,smp);

% Initialization of variables

xs (i) =xm (1);
xp (2) =xm.(1);
vs(l) =O;
vs(2)= [xm(2) -xm(l) ]/T;
as(l) =0;
as(2) =0;
as(3 =[xm(3)+xm(1)-2*xm(2)]/T^2;

% Initialize Kalman Filter Covariance Matrix
sigx2=60 % rms measurement error
sigu2=.5 % variance of target dynamics
tau = 3e-3 % correlation time
alpha = l/tau;

% Form Initial Covariance Matrix
S_00 = sig x2;
S_01 = sig x2/T;
S_11 = 2*sigx2/T^2;
S2= [S_00 S_01 0 ; S_01 S_11 0 ; 0 0 0 1;

S=S2;

% Form Transition and Measurement Matrix

phi= [1 T T^2/2 ; 0 1 T ; 0 0 1 1; % transition matrix
M= [1 0 0 J; % observation matrix

% Form Maneuver Excitation Covariance Matrix
Q= 2*sig u2/tau*[T^5/20 T^4/8 T^3/6 ; T^4/8 T^3/3 T^2/2 ; T^3/6
T^2/2 T ];

% Observation noise covariance
R_n = sigx2

AA=0;
BB=O;
GG=O;

for j=2:smp
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% Find Kalman Filter Adaptive Weights
D = Rn + M*S*M'; % Kalman Filter weight equation
H_n = S*Ml*inv(D); % Kalman Filter weight equation

S = S-Hn*M*S ; % Correction equation

S= phi*S'phi'+ Q ; % Predictor covariance matrix update
G= phi*Hn;

Ax= G(l,I);
Bx= G(2,1);
Gx= G(3,1);

AA = [AA Ax];
BB = [BB Ex);
GG = [GG Gx);

% Smoothing with measured value input (Filter equation)
xs(j)=xp(j)+Ax*(xm(j)-xp(j));
vs(j)=vp(j)+(Bx)*(xm(j)-xp(j)) ;
as(j)=as(j-l)+(Gx)*(xm(j)-xp(j));

% Predicting with smoothened value (Prediction equation)
vp(j+l)=vs(j)+T*as(j);
xp(j+l)=xs(j)+T*vs(j)+T^2/2*as(j);

end

% Computing the mean errors
erro = mean(abs(xm-xms)) % Original telemetry mean error
err = mean(abs(xs-xms)) % Kalman filter mean error

figure(l)
plot(Tl,xs,lb',Tl,xm,'r')

title('Smoothed Position')
xlabel('Time (sec)')
ylabel('Position (ft)')
grid,

figure(2)
plot(Tl,xm-xms,'b',Tl,xs-xms,'r');
grid;
title('Position Error vs Time');
xlabel('Time - sec');ylabel('Z Position Error -ft');

vs = vs(l,l:smp);
as = as(l,l:smp);

figure(3)
subplot (2,1,1)
plot(Tl,vs,'b')
xlabel('Time - sec');ylabel('Smoothed Velocity ft/s');
subplot (2,1,2)
plot(Tl,as,'b')
xlabel('Time - sec');ylabel('Smoothed Acceleration ft/s^2');
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zero mean .z

% To insert zero mean noise onto the Laser Track
% Z-axis information
% save data into dd-zerom for Kalman Filter execution
% zero-mean.m

load dd-ttsl

% Truth position without error

xrns=xms (1, 1: 641);
yms=yms (1, 1: 641);
zms=zms (1, 1: 641);

% Estimated position
xx -est=xx -est(l,1:641);
yy est=yy est (1, 1: 641);
zz-est=zz-est(1,l:641);

% Addition zero mean noise onto Z-axis position
noise=1OO*randn(size(zms))
zz-est=zms+noise;

% Position error
xerr=xx-est-xms;
yerr=yy~est-yms;
zerr=zz-est-zms;
terr=sqrt (xerr. ̂ 2+yerr. '2+zerr. ^2);

mxerr=mean (xerr)
myerr=mean (yerr)
mzerr=mean (zerr)
mterr=mean (terr)

% Time scale
T=le-2; % sec
Tmax=6.40; % sec
timel=linspace(O,Tmax, 641);

figure Cl)
plot(timel,zms, 'k--',timel,zz est, 'k-')
title('Z Position True vs Estimated');
xlabelC 'Time - sec') ;ylabel( 'Z Position ft');

figure (2)
plot (timel ,xms, 'k--' ,timel ,xx-est, 'k-')
title('X Position True vs Estimated');
xlabel('Time - sec') ;ylabel('X Position ft');

figure (3)
plot(timel,yms,'k--',timel,yy~est,'k-')
title('Y Position True vs Estimated');
xlabel('Time - sec') ;ylabel('Y Position ft');
plot (timel,yms, timel,yy~est)
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figure (4)
plot(timel,xerr,timel,yerr,timel,zerr)

%save output into ddzerom
save ddzerom zms zz-est timel

kf zerom.m

% Execute Kalman Filter on the zero mean noise inserted
% Z-axis position
% kfzerom.m

format compact;clear;clf;

load ddzerom

% Re-define parameters
xm=zz_est; % TM estimated data
xms=zms; % Truth data
smp=length(xm);

T=le-2;
Tl=linspace(l,smp*T,smp);

% Generate State Variables

xp=zeros(l,smp+l);
xs=zeros(l,smp);
vp=zeros(l,smp+l);
vs=zeros(l,smp);
as=zeros(l,smp);

% Initialization of variables

xs(l)=xm(l);
xp (2) =xm(1)
vs(1)=0;
vs(2)=[xm(2)-xm(l) I/T;
as(1)=0;
as(2)=0;
as(3)=[xm(3)+xm(l) -2*xm(2) ]/T^2;

% Initialize Kalman Filter Covariance Matrix
sigx2=60 % rms measurement error
sig-u2=.5 % variance of target dynamics
tau = 3e-3 % correlation time
alpha = I/tau;

% Form Initial Covariance Matrix
S_00 = sig-x2;
S_01 = sig-x2/T;
S_11 = 2*sig-x2/T^2;
S2= [S-00 S_01 0 ; S-01 S_11 0 ; 0 0 0 1;

S=S2;
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% Form Transition and Measurement Matrix

phi= [1 T T^2/2 ; 0 1 T ; 0 0 1 ]; % transition matrix
M= [1 0 0 ]; % observation matrix

% Form Maneuver Excitation Covariance Matrix
Q= 2*sig u2/tau*[T^5/20 T^4/8 T^3/6 ; T^4/8 T^3/3 TA2/2 T^3/6
T^2/2 T ];

% Observation noise covariance
R_n = sigx2

AA=O;
BB=0;
GG=0;

for j=2:smp

% Find Kalman Filter Adaptive Weights
D = Rn + M*S*M'; % Kalman Filter weight equation
H_n = S*M'*inv(D); % Kalman Filter weight equation

S = S-Hn*M*S ; % Correction equation

S= phi*S'phi'+ Q ; % Predictor covariance matrix update
G= phi*H-n;

Ax= G(1,l);
Bx= G(2,l);
Gx= G(3,1);

AA = [AA Ax];
BB = [BB Bx];
GG = EGG Gx];

% Smoothing with measured value input (Filter equation)
xs(j)=xp(j)+Ax*(xm(j)-xp(j));
vs(j)=vp(j)+(Bx)*(xm(j)-xp(j));
as (j)=as(j-l)+(Gx) * (xm(j) -xp(j));

% Predicting with smoothened value (Prediction equation)
vp (j+l) =vs (j) +T*as (j);
xp(j+l)=xs(j)+T*vs(j)+T^2/2*as(j);

end

% Computing the mean errors
erro = mean(abs(xm-xms)) % Original telemetry mean error
err = mean(abs(xs-xms)) % Kalman filter mean error

figure(l)
plot(Tl,xm, 'g',Tl,xms, 'r',Tl,xs,'k')

title('Kalman Filter Z-Axis Position')
xlabel('Time (sec)')
ylabel('Z-Axis Position (ft)')
grid,
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f igure (2)
plot (Tl,xan-xars, 'g' ,Tl,xs-xms, 'k');
grid;
title('Position Error vs Time');
xlabel('Time (sec)') ;ylabel('Z Axis Position Error (ft) ');

vs = vs(l,l:smp);
as = as(l,1:smp);

%figure (3)
%subplot (2,1,1)
%plot(Tl,vs, 'b')
%xlabel ('Time - sec') ;ylabel( 'Smoothed Velocity ft/s');
%subplot (2,1,2)
%plot(T1,as, 'b')
%xlabel( 'Time - sec') ;Ylabel( 'Smoothed Acceleration ft/sA2');
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