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ABSTRACT
The role of signal preprocessors, such as normalization preprocessor, channel effects inversion
preprocessor, de-noising preprocessor have become an important part of many vehicle identification
systems in order to extend their utility and provide continued performance in the face of reduced SNR.
This paper examines the role of developing a non-parametric vehicle signal enhancement preprocessor by
employing packet wavelet transform (PWT) decomposition, nonlinear noise processing methods, and signal
restoration via the inverse PWT signal reconstruction. This effort is part of a larger project aimed at
developing an Integrated Vehicle Classification System Using Wavelet / Neural Network Processing of
Acoustic/Seismic Emissions on a Windows PC performed under a Phase II SBIR for the US Army
TACOM/ARDEC.  This paper presents a systematized study of the application of PWT de-noising methods
to acoustic combat vehicle signals.  Using an acoustic combat vehicle signal segment, a linear model in the
form of an ARMA filter is developed which closely mimics the dynamics of the vehicle time-series. This
deterministic baseline model is mixed with scaled white noise to produce noise-corrupted signals of various
SNRs.  The PWT sensitivities examined include basis function families, (Daubechies, Coiflet, Symlets,
Beylkin, Biorthogonal), basis function support and Packet Tree decomposition length.  Nonlinear noise
processing sensitivities examined include the major thresholding methods (Universal, Stein's Unbiased
Risk Estimate (SURE), Minimax and Hybrid) and threshold application (Hard or Soft thresholding).
Sensitivity analysis of these methods to the acoustic vehicle signal enhancement are presented along with a
discussion concerning the reduction of this scheme to a preprocessor for a real-time vehicle monitor.

1. INTRODUCTION
This paper discusses the development and subsequent initial investigations for a vehicle signal

preconditioning method based on the development of a set of wavelet-based, vehicle signal de-noising algorithms.
The focus of this work has centered on the use of the multiresolution decomposition and reconstruction capabilities
of the Packet Wavelet Transform (PWT) along with nonlinear processing methods for noise removal. The primary
motivation is to ultimately determine the utility of applying real-time signal de-noising preprocessing to help in
preconditioning of signals prior to classification for lower SNR situations and possibly for multi-vehicle scenarios.
An attractive side-benefit to this effort is the future possibility of using the PWT directly as another set of vehicle
feature extraction methods that can be used by a classifier for vehicle identification.

Our initial goals entailed developing a suite of software, which allow selecting various Packet Wavelet
decomposition strategies, allow selection of a rich range of basis functions, and allow testing of various thresholds
and their implementation schemes.  This software suite will be initially integrated into the CYTEL Systems, Inc.,
“Vehicle Signal Analysis Environment (VSAE)” where it can be tested and analyzed on vehicle signal data.  The
following sections provide the pertinent theoretical underpinnings for using these techniques.  It describes: 1) the set
of basis functions implemented, 2) decompositions levels allowed, 3) details on the nonlinear noise processing
strategies and 4) their implementation under the VSAE.

2. UNDERSTANDING THE PACKET WAVELET TRANSFORM (PWT)

2.1. WAVELETS AND FILTER BANKS
Conceptually, according to [2], a signal s(t) can be expanded on an orthonormal basis for L2(R)
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where )(, tkjψ are the wavelet functions and )(,0 tkjφ are the scaling functions.  The wavelet functions are derived
from a single “mother-wavelet” through dilations and translations.  Analysis digital filter banks (DFB) are used to
implement the expansion to scaling and wavelet functions in discrete time.  There is another DFB called the
synthesis DFB.  It is used to reconstruct the input signal from the decomposed wavelet coefficients.

The link between the DFB and continuous time wavelets is in the limit of a logarithmic filter tree:

Figure 2.1 Scaling Function and Wavelets from Iteration of the Lowpass Filter [3].

The Packet Wavelet Transform (PWT), however, is a full tree version of the discrete wavelets.  An analysis
DFB to generate packet wavelets is shown in Figure 2.2.

Figure 2.2 A full Tree Digital Filter Bank (DFB)

2.2. DECOMPOSITION AND RECONSTRUCTION
To simplify the idea, a two-channel DFB (analysis and synthesis) is used to explain the process of

decomposition and reconstruction.

Figure 2.3 Analysis and Synthesis Filter Bank



The analysis DFB is constructed from stages comprising two downsamplers and two filters (one highpass
and the other lowpass,) and the synthesis DFB comprises two upsamplers and two filters.  In practice, the analysis
filters have nonzero transition bandwidth and stopband gain.  The signals x0(n) and x1(n) are, therefore, not
bandlimited, and their decimation results in aliasing.  To cancel the aliasing effect generated by the analysis filter
bank, the filter pair in synthesis bank can be chosen as

)()(),()( 0110 zHzFzHzF −−=−= (2.2)

The reason is stated below [4].  From Figure 2.3,
1,0)()()( == kzXzHzX kk (2.3)

The z-transform of the decimated signals vk(n) are
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And the z-transform of Yk(z) is Vk(z2).  Therefore,
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The output then can be written as
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The last term above represents aliasing.  If the filter pair in synthesis bank is chosen such that the following holds:
0)()()()( 1100 =−+− zFzHzFzH (2.7)

then the aliasing effect generated by the analysis bank is eliminated.

2.3. MAPPING BETWEEN FREQUENCY DISTRIBUTION AND BAND DISTRIBUTION
The output of the full tree PWT decomposition is an N-band array, where

LN 2= (2.8)

L is the number of decomposition level.  For example, a 2-level PWT decomposition will generate a 4-band array of
data  (lowpass-lowpass, lowpass-highpass, highpass-lowpass, highpass-highpass.)  Which means that the input
signal is decomposed into 4 frequency bands.

Figure 2.4 Frequency Response of 4-Band PWT Decomposition

However, the mapping between these bands to the corresponding frequency is not direct.  From Figure 2.4, LL band

maps to [0 
4
π

], LH band maps to [
4
π

 
2
π

], whereas HL band maps to the highest frequency [
4

3π
 π], HH band



maps to the 2nd highest frequency [
2
π

 
4

3π
].  This mapping is caused by the downsampler. When a signal is

downsampled by 2, it can be viewed as having its frequency range expanded from [0 π] to [0 2π].  The frequency
component that is originally located at π/N is then mapped to 2π/N.  Furthermore, if this component is originally in

[
2
π

 π] (i.e. in highpass band) after downsampling, 2π/N is in the range of [π 2π] and it needs to be mapped back to

the range [0 π] by the rule:
)( ππ −−= inputouput ff (2.9)

A numerical example can be found in [5].

2.4. WAVELET BASIS FAMILIES
There are a very large number of PWT basis functions. The group we have selected to implement in the de-

nosing software of the VSAE represents a healthy cross section and includes the following six wavelet families:
Daubechies, Coiflet, Symlets, Bi-orthogonal, Beylkin, and Vaidyanathan.  Their characteristics vary according to
several criteria:

1. Support of ψ and φ in Equation (2.1) and their Fourier transforms: the speed of convergence at infinity
to 0 of these functions when the time and the frequency goes to infinity, which quantifies both time
and frequency localizations.

2. Symmetry, a key property to avoid phase distortions in image processing.
3. Number of vanishing moments for ψ or for φ (if it exists).  If a wavelet has n vanishing moments, the

wavelet transform can be interpreted as a multiscale differential operator of order n.  This yields the
relation between the differentiability of a signal and its wavelet transform decay at fine scales, which is
useful for compression purposes.

4. Regularity, which is useful for getting nice features such as smoothness of the reconstructed signal or
image.

Table 2.1 provides a summary of these criteria for the different wavelet families and Table 2.2 gives the
relationship between Bi-orthogonal filter names and the actual support of the associated filters.

Table 2.1 Criteria in Different Wavelet Families.

Name Order N Filter length Symmetry Vanishing Moments
for ψψψψ (φφφφ)

Daubechies N > 0 2N Far from N
Coiflet N = 1, 2, …, 5 6N Near from 2N (2N-1)
Symlets N = 2, 3, …, 8 2N Near from N

Bi-orthogonal Nr.Nd See Table 2. Yes Nr-1
Beylkin 18 Far from

Vaidyanathan 24 Far from

Table 2.2 Map of  Biorthogonal Filter Names to Associated Filter Support

Decomposition filters lengthName
Nr.Nd Lowpass Highpass

1.1 2 2
1.3 6 2
1.5 10 2
2.2 5 3
2.4 9 3
2.6 13 3
2.8 17 3
3.1 4 4
3.3 8 4
3.5 12 4



3.7 16 4
3.9 20 4
4.4 9 7

2.5. RECONSTRUCTION PROPERTIES
According to [6], perfect reconstruction for a DFB means that the output is a delayed and possibly scaled

version of the input.

)()(ˆ zXczzX k−= (2.10)

Furthermore, if the following term from Equation (2.6) satisfies the relationship:
IzFzHzFzH 2)()()()( 1100 =+ (2.11)

the output will be exactly equivalent to the input.  This is called perfect reconstruction.

2.5.1. Validation of Perfect Reconstruction Using Vehicle Signals
Although, perfect reconstruction is conceptually a very nice result, the realities of numerical

implementations imply that residual errors of some magnitude are to be expected. For purposes of examining what
order of magnitude residuals would result we took a vehicle signal, decomposed it using the PWT and reconstructed
it using the inverse PWT. The error between the original vehicle signal and the reconstructed vehicle signal was
calculated. The error was measured in the 2L  sense. This measurement norm is specified as follows:

22
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Where the original signal is given as the series ],,,[ 21 nxxx �  and the output signal after decomposition,

reconstruction and time registration is ]ˆ,,ˆ,ˆ[ 21 nxxx � . The vehicle signal used is given in Table 2.3.

Table 2.3 Vehicle Signal Used in Verification of the Numerical Accuracy of Perfect Reconstruction

Test Signal: T-62 Battle Tank, Speed 30 kph, CPA: 75 meters, (ATC_2081.ad, channel A, 89088 samples)
Original Signal: [ ]nxxx �,, 21

Decomposed - Reconstructed Signal: [ ]nxxx ˆ,ˆ,ˆ 21 �

2L norm error = ( ) ( ) ( )22
22

2
11 ˆˆˆ nn xxxxxx −+−+− �

Prior to comparing the reconstructed signal to the original signal the proper accounting is performed to eliminate the
overhead associated with the convolution of the PWT filters that artificially pad the front and back end of the
reconstructed signal. Table 2.4 gives an example of the numerical error residuals observed due to the PWT perfect
reconstruction algorithm (i.e. the inverse PWT operation). This experiment was performed across all six PWT
family basis functions implemented in the VSAE. The results exhibited the same trends and approximately the same
order of magnitude of error residuals as shown in Table 2.4.

Table 2.4 Typical Error Residuals Observed Using PWT Signal Reconstruction

Basis Family: Symlets
Length
Level

4 6 8 10 12 14 16

1 0.01608 0.02064 0.02386 0.02314 0.02809 0.02862 0.02864
2 0.02717 0.03180 0.03976 0.03333 0.04346 0.04305 0.04096
3 0.03436 0.04486 0.05173 0.04109 0.05641 0.05559 0.04984
4 0.04108 0.05593 0.06441 0.04786 0.06918 0.06782 0.05772
5 0.04758 0.06675 0.07560 0.05351 0.08235 0.07960 0.06476
6 0.05481 0.07537 0.08928 0.05916 0.09473 0.09097 0.07158
7 0.06078 0.08648 0.09933 0.06430 0.10628 0.10187 0.07728



The conclusions to be drawn from this experiment are as follows:
1. The 2L norm error between the original signal and the decomposed-reconstructed signal is very small.  The

possible reasons of the finite error values are the limited numerical resolution of the filter coefficients and
the rounding during convolution.

2. The 2L  norm error increases as the decomposition-reconstruction level increases.  This is expected, the
greater the decomposition length in terms of additional DFB with each level the greater the number of
calculations and the more susceptible the result to round-off error.

3. The longer the signal, the bigger the 2L  norm error.  Once again this directly correlates to greater number
of calculations.

4. 2L  norm error is however not sensitive to the change in filter support. This is observable directly in Table
2.4 by noticing that their exists no strong trend in any specific given row. This general trend was observed
for all six basis families.

2.6. PACKET WAVELET TRANSFORM (PWT) BASED DE-NOISING
The most common de-noising methodology is averaging.  Although averaging can reduce the noise effect,

some finer details of the signal are also removed by averaging.  The averaging process inherently prevents a
maximum preservation of signal information and more closely resembles a low pass filtering operation. Figure 2.5
gives a comparison between wavelet de-noising and averaging.  It shows that in wavelet de-noising, although the
noise attached to the signal is removed, the finer detail is kept after de-noising. The wavelet transform has an
interesting property that makes it suitable for de-noising.  After decomposition, the number of coefficients with
significant energy is small.  However, the signal can be accurately represented by these coefficients.  By applying a
proper threshold to all coefficients, these significant energy coefficients can be extracted.  The rest of the
coefficients are treated as noise and are removed. It is has been shown that the de-noising performance of the PWT
is superior to that obtainable by the Discrete Wavelet Transform (DWT) [1].

Figure 2.5 Comparison between Wavelet De-noising and Averaging. (a) Chirp Signal Corrupted with Noise,
(b) Signal after Wavelet De-noising, (c) Signal after Averaging



2.6.1. PWT De-noising Principles
The key principle of PWT de-noising is to utilize the idea that based on the correlation of the input with the

decomposing basis function, the transformed coefficients maybe large (high correlation) or small (low correlation).
These small coefficients are possibly generated from the noise that is embedded in the signal.  If a proper threshold
can be found, some thresholding method can be applied to separate the noise from the signal. Two properties of the
PWT contribute to separating the signal and noise components [1].  The first property is that, by properly choosing
transformation parameters such as basis, support and level, the decomposition data will contain relatively few
significant coefficients.  The second property is that, if an input signal is a white noise, the transformed data will
also be white. Therefore, the noise contained in an input signal will generate noisy coefficients (small) contributing
to all coefficients in all bands.  However, the typical characteristics of a signal transformation are to concentrate the
PWT coefficients among a relatively few number of coefficients that will generally be large in their respective bands
of distribution. The exact characteristics of this process are of course dependent on the type of signal being
transformed.  It is this precise difference between the transform characteristics of noise sources verses signal sources
that permits the opportunity to provide separation via the application of an appropriate thresholding scheme on the
transformed data.

The PWT based de-noising procedure can be summarized as follows:
1. Decompose the input signal with suitable parameters using PWT.
2. Suppress the noisy coefficients by non-linear thresholding methods.
3. Reconstruct the signal using the inverse PWT.

2.6.2. Noise Estimators
Based on the discussion in the previous section, the best threshold to separate the noise and the signal

should be larger than all noisy coefficients and smaller than all signal coefficients.  In this way, all noisy coefficients
are removed and all signal coefficients are retained.  However, since it is not possible to tell which coefficients are
attributable to noise sources verses those coefficients attributable to the signal source, the calculation of the
threshold should be based on the statistical properties of the transformed coefficients. The transformed coefficients
in each band can be written as the noise corrupted observation signal y(n), where y(n) is defined as:

)()()( nznfny σ+=    n = 1,2,… (2.13)

The term f(n) is the deterministic function to be estimated and z(n) is an independent, identically distributed, normal
random variable with mean equal to zero and variance equal to one. The term σ is the standard deviation of the
noise.  At higher frequency bands, where there are a considerable number of coefficients in each band, the signal
f(n) is assumed to be sparse, this is the rational for estimating the noise variance σ2 from this portion of the data.
From [7], a robust estimator is applied:

6745.0/))),2(),1(((ˆ 2
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where med(abs(…)) denotes the median of the absolute value of a series, and the factor 0.6745 is chosen for
calibration with the Gaussian distribution. The above noise estimator can be applied to the input signal with either
color or un-scaled white noise. If the signal contains color noise, after decomposing into bands, Equation (2.14) is
applied to each band to calculate the band-dependant noise estimator.  If the signal contains un- scaled white noise,
the highest frequency band is used to calculate the noise estimator for all bands.  The noise estimator acts as a
scaling factor for the threshold value applied to each band. Figure 2.6 gives a schematic of the scaling application.

2.6.3. Threshold Selection
Four types of thresholding methods are introduced in this section: Universal, SURE, Hybrid, and Minimax.

2.6.3.1.  Universal Threshold TU

nTU log2=   n is number of coefficients available at the output of a specific band (2.15)

Universal threshold is a conservative choice from certain theoretical perspectives.  If the Z1,Z2,…,Zn are
normally distributed random variables with zero mean and variance σi

2, then
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Figure 2.6 Scaling Factor of Threshold Value

whether or not the variables are independent [7].  Equation (2.16) indicates that in the limit of large sample size n,
no elements Zi/σi will have magnitude greater than the quantity TU.  That is, the possibility of the noise passing the
threshold TU is very small.

2.6.3.2.  SURE Threshold TS

SURE stands for Stein’s Unbiased Risk Estimate.  It was proposed by Donoho and Johnstone [8] and is
based on the work of Stein [9] in the area of multivariate normal distributions.  It is a data based threshold choice

obtained by minimizing the estimated mean square error (risk) for threshold value over the range [0 nlog2σ ]

[7].  Compared to the Universal threshold, it performs better in terms of 2L loss because of smaller thresholds.

2.6.3.3.  Hybrid Threshold TH

SURE is a data based threshold choice, it is known to perform poorly in the low SNR region.  The
threshold estimate is biased and thus produces an unsuitable threshold because the noise dominates the signal in
transformed coefficients.  Hybrid is a mixture of Universal and SURE.  It chooses between TU and TS based on the
SNR.  If the SNR is very small, and TS performs poorly, TU will be chosen instead [8].

2.6.3.4.  Minimax Threshold TM

Minimax is a data independent threshold.  It is designed to select the choice of estimators that minimizes
the risk (maximum mean square error) of the input signal.  The application of this method to wavelet based
thresholding was also proposed by Donoho and Johnstone [10].  The numerical formula used is:
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Compared to other thresholds, TM performs poorly in the low SNR range which is a similar to the
performance of the SURE (i.e. TS ) threshold in the low SNR area.

2.6.4. Thresholding Methods
Two methods for applying the thresholds to suppress or modify the coefficients of the decomposition are

discussed in this section. They are known respectively as hard thresholding and soft thresholding. The relationship
between the inputs and outputs of both methods are illustrated in Figure 2.7.

Figure 2.7 Input vs. Output of Hard and Soft Thresholding Application

The outputs of the respective hard and soft thresholding methods using a generic threshold T are defined as
follows:
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In the hard thresholding method, coefficients exceeding the threshold T are retained while the others are set to zero.
One potential side effect of this process is that the removal of all fine detail from the signal may produce undesired
spikes in the reconstructed signal. In the soft thresholding method, instead of just zeroing out the coefficients that
are smaller than the threshold T, the magnitude of all other coefficients are reduced by the amount of T.  This
method can avoid the undesired spikes that may be produced by hard thresholding.  However, since all coefficients
are modified, the signal shape may be distorted.  It is especially obvious for signals with low SNR.

2.7. SOFTWARE IMPLEMENTATION OF PWT DE-NOISING METHOD

2.7.1. Architecture
In order to perform the experiments and have an initial permanent home for this preprocessing method, the

PWT was integrated into our object-oriented Vehicle Signal Analysis Environment (VSAE). Its specific
implementation closely parallels the architecture used to implement the Continuous Wavelet Transform (CWT)
object software in the VSAE.  A PWT object is created when the PWT view is generated via the user electing to use
this computational option from the menu item of the mainframe of the VSAE. All operations that are not related to
viewing the PWT view, such as the numerical operations of decomposition, de-noising, reconstruction … etc, are
done in the PWT object.  The PWT view is the user interface GUI that receives commands from a user and sends
them to the PWT object for processing.  A de-noised /reconstructed dialog will pop up whenever a PWT data de-
noising or reconstruction operation is requested.  The purpose of the pop-up dialog is to provide a de-noised or
reconstructed view where the user can compare it with the PWT view or the original signal main view respectively
before electing to replace the original data with the processed data.

2.7.2. PWT I/O and Processing Operations Under the VSAE
The PWT object gets the input data from the signal object attached to the signal main view that invoked the

PWT operation.  Like the CWT object class, the PWT object class is declared as a friend class to the signal object
class so that it can access its private data.  The PWT object can process the whole data or just part of the data
according to the starting and ending points defined by the user in the original signal object.  After processing, the



object sends a copy of the PWT data to the PWT view.  The view can modify that copy depending on whether the
user selects to view the PWT data in signed components, magnitude or dB format.  If the de-noising or
reconstruction process is selected via the processing controls available to the user in the PWT view, a copy of the
de-noised or the reconstructed data is then sent to the de-noised/reconstructed dialog which then pops up in the
VSAE.  The user then has the opportunity to compare the PWT data or signal time domain data before and after de-
noising.  If the result is acceptable, the user can elect to update the signal object by replacing the original data with
the de-noised data. Figure 2.8 illustrates the architecture and I/O of PWT view, object and dialog.

Figure 2.8 Architecture and I/O of PWT View, Object and Dialog

2.7.3. The PWT User Interface Under the VSAE
Figure 2.9 shows an example of the PWT interface under the VSAE. The PWT shown in the 2D color

display, is a de-noised version of the tank transporter (MAZ537-G, file: Atc_2104.ad, channel B) vehicle signal. The
2D display is shown in the truncated magnitude mode to highlight for the user a view of the data which facilitates
seeing the strongest PWT components. The particular decomposition used was the Biorthogonal Basis 3.5. The level
of decomposition is 8. The scale axes of the 2D projection is arranged in frequency mode. The type of de-nosing
performed involved using the SURE threshold applied using the Hard Thresholding method.

2.8. INITIAL INVESTIGATION INTO THE USE OF THE PWT DE-NOISING METHODS APPLIED
TO VEHICLE SIGNALS
The following sections provide an initial investigation into the use of the PWT de-noising methods applied

to vehicle signals through the use of empirical sensitivity studies.  The techniques developed and capabilities
integrated into the VSAE represent a rich source of discrete wavelet basis functions, decomposition/reconstruction
options and nonlinear noise removal processing options. In configuring a preprocessing or equivalently a de-noising
strategy, a number of questions surface such as:

1. Which discrete wavelet basis function is best for the vehicle signal domain?
2. What is the effect of increasing basis support?
3. What role, if any, does the decomposition and reconstruction length play?
4. Are there any advantages to orthogonal versus biorthogonal decompositions?
5. Which set of nonlinear processing strategies are most beneficial to the vehicle signal domain (i.e.

Universal, Hybrid, Minimax, SURE, etc.)?
6. Does the nonlinear processing implementation make any difference (i.e. Hard thresholding versus Soft

thresholding)?
In an attempt to address these sort of questions for the vehicle signal domain, a set of sensitivities studies

was conducted on these various PWT de-noising parameters with respect to the vehicle signals. The underlying goal
of the studies is to have a least one set of data which can be examined for determining effective combinations of
parameter choices for use in a PWT vehicle signal de-noising preprocessor.



Figure 2.9 PWT Interface under the VSAE

2.9. TEST SIGNALS USED IN THE STUDY
Two signals are used in the experiments:

1. The first signal is modeled from channel A of vehicle signal file: Atc2009.ad.  A total of 1500 samples are
taken from the high SNR region of the vehicle signal Atc2009. These samples are then used to construct a
parametric based ARMA model of the vehicle sequence. The result is an IIR filter whose impulse response
matches exactly the vehicle sequence for the first N+1 samples where N is the numerator order of the
model. This model is implemented using Matlab’s Signal Toolbox “prony method” to generate the
numerator and denominator coefficients [13].  The length of numerator and denominator of the IIR filter
are 1024 and 256 respectively.  An impulse of length 1501 samples is used to drive the model and generate
a modeled vehicle signal length of 1501 samples.

2. The second signal is a chirp signal. The signal length is 1024 samples.  Unlike the vehicle signal, the
frequency response spreads across the entire frequency range.  This signal is used as a comparison to the
test signal 1 for only one sensitivity study. That particular sensitivity study examines the sensitivity of
choosing varying levels for decomposition-reconstruction of signals during de-noising.

2.10. TEST PROCEDURE
The test procedure is shown in Figure 2.10.  A test signal is corrupted with scaled white noise to generate a

noisy signal with different SNR values.  The noisy signal is then processed by the PWT de-noising tool implemented



in the VSAE.  The L2 norm error between the de-noised signal and the test signal (without noise) is used as an
indicator of how well the de-noising tool performs.  Tests 1 through 4 use the modeled vehicle signal as input. Test 5
conducts sensitivity studies performed on both the modeled vehicle signal and the chirp signal.

Figure 2.10 Test Procedure

2.11. TEST 1: SENSITIVITY OF DIFFERENT THRESHOLDING METHOD
Parameters for decomposition-reconstruction and de-noising
Wavelet basis: Daubechies 10
Decomposition-reconstruction level: 5
Noise source: Un-scaled white noise
Thresholding value selection: Universal

Table 2.5 L2 Norm Error for Different Thresholding Methods

SNR (dB) -10 -3.0103 1 5 10 20
Hard thresholding 64.9897 36.3622 30.3071 22.4132 18.8181 13.0927
Soft thresholding 44.2898 37.1119 34.8372 29.7497 25.7482 20.6010

Table 2.5 indicates that hard thresholding has smaller L2 norm error than soft thresholding except for in the
case where the SNR equals –10 dB. Due to the better performance of hard thresholding over the SNR region of most
interest (i.e. over the range SNR: 1 dB to 20 dB), the rest of the experiments are conducted using the hard
thresholding method.

2.12. TEST 2: SENSITIVITY OF DIFFERENT THRESHOLD VALUES

Parameters for decomposition-reconstruction and de-noising
Wavelet basis: Daubechies 10
Decomposition-reconstruction level: 5
Noise source: Un-scaled white noise
Thresholding method: Hard thresholding

Table 2.6 L2 Norm Error for Different Threshold Values

L2 norm errorSNR SNR (dB)
Universal Minimax SURE Hybrid

0.1 -10 64.9897 97.9329 115.7636 106.1397
0.5 -3.0103 36.3622 41.7729 49.9544 30.0796
1 0 30.3071 30.6777 32.9313 23.4458
5 6.9897 22.4132 18.1541 15.1689 18.0940

10 10 18.8181 14.5095 11.5225 13.4898
100 20 13.0927 8.9689 5.1135 9.8736

Figure 2.11 shows the L2 norm error for different threshold values.  For higher SNR, SURE has the
smallest L2 norm error; for middle range SNR, Hybrid has the smallest L2 norm error; for smaller SNR, Universal



has the smallest L2 norm error.  As to the performance of Minimax, it lies between SURE and Hybrid.  To reduce
the number of tests, Universal and SURE thresholds are used for the rest of the sensitivity studies for the following
reasons:

1. Universal threshold is data-independent while SURE threshold is data-dependent
2. Universal threshold performs best in the small SNR region while SURE threshold performs best in the

high SNR region.

Figure 2.11 L2 Norm Error for Different Threshold Values.

2.13. TEST 3: SENSITIVITY OF DIFFERENT WAVELET BASIS

Parameters for decomposition-reconstruction and de-noising
Filter support: 18taps. (For Symlets family, 16-tap is the longest filter.)
Decomposition-reconstruction level: 5
Noise source: Un-scaled white noise
Thresholding method: Hard thresholding
Threshold value selection: (1) Universal (2) SURE
 Figure 2.12 shows the L2 norm error for different wavelet basis.  If Universal threshold is selected: for

higher SNR, Beylkin and Biorthogonal have smaller L2 norm error; for lower SNR, Daubechies and Coiflet have
smaller L2 norm error.  If SURE threshold is selected: the performance of different wavelet basis is close to each
other, especially in the high SNR region.  However, Daubechies and Coiflet seem to perform a little better than
others.  Therefore, Daubechies, Coiflet, Biorthogonal wavelet basis are used for the remaining sensitivity studies.

2.14. TEST 4: SENSITIVITY OF DIFFERENT FILTER SUPPORTS
Parameters for decomposition-reconstruction and de-noising
Wavelet basis: (a) Daubechies (b) Coiflet (c) Bi-orthogonal



Decomposition-reconstruction level: 5
Noise source: Un-scaled white noise
Thresholding method: Hard thresholding
Threshold value selection: (1) Universal (2) SURE
Figure 2.13 shows the L2 norm error for different filter support in the Daubechies family.  For both

Universal and SURE thresholds, Daubechies 12 performs best in the higher SNR region, and Daubechies 4 performs
best in the lower SNR region.  Varying L2 norm errors do not appear to be directly related to the changing of filter
support.  Figure 2.13(a) shows that the crossover point of all filters in the family is around –5 dB.  After –5 dB,
those performing well in the lower SNR region start to perform worse than those performing poorly in the lower
SNR region.  Figure 2.13(b) shows that when SURE threshold is applied, the change of L2 norm error vs. the change
of filter support is more uniform than when the Universal threshold is applied.  The crossover point is around 5 dB.
However, the observed trend remains constant that relative good performance in the lower SNR region becomes
relative poorer performance in the higher SNR region and vice versa.

Figure 2.14 shows the L2 norm error for different filter support in the Coiflet family.  Except for Coiflet 18,
in both the cases where Universal and SURE thresholds are applied, the Coiflet family seems to follow the trend that
in the higher SNR region, the longer the support the larger the L2 norm error.  And in the lower SNR region, the
longer the support the smaller the L2 norm error.  The crossover point of applying Universal threshold is around –7.5
dB, and the crossover point of applying SURE threshold is around 7.5 dB.  Coiflet 18 performs best in the SNR
region lower than the crossover point.  In the region higher than the crossover point, Coiflet 30 performs best.

Only 2.X and 3.X of Biorthogonal family are tested in this sensitivity study.  The result is shown in Figure
2.15.  From Figure 2.15, unlike Daubechies and Coiflet family, the performances of different supports are very
close.  There is no obvious crossover point.  For both Universal and SURE scheme, in higher SNR region, except
Bior 3.1, series 3.X performs better than 2.X; in lower SNR region, series 2.X performs better than 3.X.  Bior 3.1
performs worst in these two series.  And, Bior 2.4, 2.6 and Bior 3.3, 3.7 are the better filters in 2.X, 3.X respectively.

2.15. TEST 5: SENSITIVITY OF DIFFERENT DECOMPOSITION-RECONSTRUCTION LEVELS
In each of the following wavelet families: Daubechies, Coiflet, and Biorthogonal the two best filters of

different supports are chosen to perform the test.
(I) Wavelet basis function: (a) Daubechies 6 (b) Daubechies 12

Other parameters for decomposition-reconstruction and de-noising:
Noise source: Un-scaled white noise
Thresholding method: Hard thresholding
Threshold value selection: (1) Universal (2) SURE
From Figure 2.16, and Figure 2.17, if the SURE threshold is applied, the crossover point is around 8 dB.

Additionally, in the higher SNR region, the more the level the less the error; and in the lower SNR region, the more
the level the more the error.  However, if Universal threshold is applied, there is more than one crossover point.  All
of them locate between –5 dB and 0 dB.  Due to the existence of multiple crossover points, there is no obvious
discernible trend to follow if the Universal threshold is applied.
(II) Wavelet basis function: (a) Coiflet 18 (b) Coiflet 30

Other parameters for decomposition-reconstruction and de-noising:
Noise source: Un-scaled white noise
Thresholding method: Hard thresholding
Threshold value selection: (1) Universal (2) SURE
From Figure 2.18, and Figure 2.19, if the SURE threshold is applied, the crossover point is around 9 dB.

Additionally, in the higher SNR region, the more the level the less the error; and in the lower SNR region, the more
the level the more the error.  However, if Universal threshold is applied, there is more than one crossover point.
They locate in a large range between –7 dB and 10 dB. Due to the existence of multiple crossover points, there is no
obvious discernible trend to follow if the Universal threshold is applied
(III) Wavelet basis function: (a) Biorthogonal 2.4, (b) Biorthogonal 3.3

Other parameters for decomposition-reconstruction and de-noising:
Noise source: Un-scaled white noise
Thresholding method: Hard thresholding
Threshold value selection: (1) Universal (2) SURE
From Figure 2.20, and Figure 2.21, unlike the Daubechies and Coiflet families, the Biorthogonal family has

only one crossover point for both Universal and SURE thresholds. The crossover point for the Universal threshold is
around 5 dB, for the SURE threshold it is around 8 dB.  The trend appears to be that in the higher SNR region, the



Figure 2.12 L2 Norm Error for Different Wavelet Basis: (a) Universal, (b) SURE



Figure 2.13 L2 Norm Error of Different Filter Support in Daubechies Family, (a) Universal,  (b) SURE
Threshold is Applied.



Figure 2.14 L2 Norm Error of Different Filter Support in Coiflet family, (a) Universal, (b) SURE Threshold is
Applied



Figure 2.15 L2 Norm Error of Different Filter Support in Biorthogonal 2.X, 3.X Family, (a) Universal, (b)
SURE Threshold is Applied



Figure 2.16 L2 Norm Error of Different Decomposition-Reconstruction Level using Wavelet Basis Daubechies
6 (1) Universal, (2) SURE Threshold is Applied



Figure 2.17 L2 Norm Error of Different Decomposition-Reconstruction Level Using Wavelet Basis
Daubechies 12 (1) Universal, (2) SURE Threshold is Applied



Figure 2.18 L2 Norm Error of Different Decomposition-Reconstruction Level using Wavelet Basis Coiflet 18,
(a) Universal, (b) SURE Threshold is Applied



Figure 2.19 L2 Norm Error of Different Decomposition-Reconstruction Level using Wavelet Basis Coiflet 30,
(1) Universal, (2) SURE Threshold is Applied



Figure 2.20 L2 Norm Error of Different Decomposition-Reconstruction Level using Wavelet Basis
Biorthogonal 2.4, (1) Universal, (2) SURE Threshold is Applied



Figure 2.21 L2 Norm Error of Different Decomposition-Reconstruction Level using Wavelet Basis
Biorthogonal 3.3, (1) Universal, (2) SURE Threshold is Applied



larger the level the less error incurred; and in the lower SNR region, the larger the level the more error incurred. This
is true for both the Universal and SURE thresholds.

One may notice that in the test of L2 norm sensitivity of different decomposition-reconstruction levels, the
level-1 performs relatively well.  However this may be due to a bias in the vehicle data being used.

Figure 2.22 Frequency Response of Modeled Vehicle Signal

The frequency response of the modeled vehicle signal is shown in Figure 2.22.  Clearly, if the signal is
decomposed by a level 1 PWT, most of the energy will be concentrated in the lower frequency band.  In the de-
noising algorithm, the coefficients residing in the lowest frequency band are not subject to thresholding.  Therefore,
after de-noising, the coefficients in the lowest frequency band remain the same since these coefficients are “viewed”
to contain most of the signal energy.  Now in the event the majority of the signal energy resides within the lowest
frequency band of the first partition of a level one decomposition, this leads to the “artifact” that the level-1
decomposition results in a good level choice for de-noising.

Figure 2.23 Frequency Response of the Chirp Signal.

In order to perform a more even-handed study of the sensitivity of de-noising to decomposition level
choices the Chirp signal is used as another test input signal.  The frequency response of the Chirp signal is shown in
Figure 2.23.  It spreads out across the entire frequency band of interest. Since the L2 norm error plots are similar to
the plots using the modeled vehicle signal as the input, Table 2.7 is used to briefly summarized the pertinent results
obtained using the Chirp signal and the trends observed. From the Chirp signal test, some conclusions can be drawn
with respect to the empirical data summaries presented in Table 2.7 concerning the sensitivity of the de-noising
process to the selection of decomposition level.

1. In Daubechies and Coiflet studies, middle range levels on the order of level-3, level-4, or level-5 tend to
perform better than the rest of the levels.

2. In Biorthogonal study for lower SNR range, the larger the level the more error incurred. Also, after a large
enough level selection, for example, level-5 or 6, the error seems to reach a steady state and does not
appear to grow substantially. If the SURE threshold is applied, since there is no obvious crossover point,
level 1 wins all. If Universal is applied, the best performer tends to increase to level 3 when the SNR
increases.



Table 2.7 Comments for L2 Norm Errors in Different SNR Ranges. Li stands for level-i Decomposition-
Reconstruction.  TU stands for Universal threshold, TS stands for SURE Threshold.

Basis
function

Daubechies

Support 6 12
Threshold TU TS TU TS

-10 ~ 0 dB
Error spreads from
25~70. L5 performs
best.

L4 and L5 perform
better than others do.

Error spreads from
30~95. L4 performs
best.

Error of L5 ~L7 stick
together. L4
performs best.

0 ~ 10 dB
L5 ~ L7 perform
better than others do. L5 performs best.

Error of L4 < L5 ,L3 <
L2, L6  < L1, L7

Error of L5 ~L7 stick
together. L4
performs best.

10 ~20 dB
Error within 5. L3
~L7 perform the
same well.

Error spreads< 5. L5
performs best.

Error spreads< 5.
L5 performs best.

Error spreads< 5.
L4 performs best.

Basis
function

Coiflet

Support 18 30
Threshold TU TS TU TS

-10 ~ 0 dB
Error spreads from
30~100. L4 performs
best.

L4 performs best.
Error of L6 ~L7 stick
together. L4
performs best.

Error of L4 ~L7 stick
together. L3, L1
perform better.

0 ~ 10 dB L5 performs best. L4 performs best.
Error of L6 ~L7 stick
together. L4
performs best.

All levels stick
together. L2, L3
perform better.

10 ~20 dB
Error spreads< 5.
L5 performs best.

All levels stick
together. L4
performs best.

Error of L5 ~L7 stick
together. L4
performs best.

All levels stick
together. L2 performs
best.

Basis
function

Biorthogonal

Support Bior2.4: highpass=3, lowpass=9 Bior3.3: highpass=4, lowpass=8
Threshold TU TS TU TS

-10 ~ 0 dB
L2 and L3 perform
better than others do.

L1 performs best. Error spreads from
75~100. L1 performs
best.

L1 performs best.

0 ~ 10 dB L3 performs best.
All levels stick
together. L1
performs best.

Error spreads< 5.
L2, L3 perform better.

All levels stick
together. L1
performs best.

10 ~20 dB
Error spreads< 5. L3
performs best.

All levels stick
together.

Except L1 performs
worst, others stick
together.

All levels stick
together.



3. CONCLUSIONS
The results of our initial investigation of the potential for the Packet Wavelet Transform (PWT) de-noising

as a vehicle signal pre-processor has proved very promising. A significant amount of machinery was built to support
this investigation. The initial set of software is now fully integrated with the VSAE. We have an initial set of
benchmarks via a set of sensitivity studies on the effectiveness of various parameters settings afforded by the PWT
de-noising method. These benchmarks/studies will provide guidance in selecting the more capable configurations
for a PWT-based vehicle signal pre-processor.

From these initial set of sensitivity studies, no overall set of parameters walk away with the ultimate
optimization set point for the vehicle signal problem. This is to be expected, however by examining the results of the
individual sensitivity studies over the following variables individually tested: 1) threshold application method (e.g..
hard verses soft), 2) threshold values (e.g. Universal, Minimax, SURE, Hybrid), 3) different wavelet basis functions
(Daubechies, Coiflet, Symlets, Beylkin, Biorthogonal, etc.), 4) filter support (i.e. length of the basis wavelet filters),
and 4) decomposition-reconstruction level (i.e. length of Packet Wavelet Full Tree) and by choosing to optimize
over a given sub-range of the SNR sensitivities conducted one can certainly reduce the number of viable choices to a
manageable few for further testing and configuration as a vehicle signal pre-processor.

An important consideration for the application of this pre-processing method is the reduction to a real-time
vehicle monitor application. We are currently considering the role of various windowing schemes coupled with the
PWT de-noising operation to segment this operation over very long time horizons which will allow recovering in a
sub-optimal fashion as much of the benefit of the de-noising operation that is accrued when operating on the entire
vehicle signal support.
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