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ABSTRACT
The direct detection 3D imaging laser radar developed by BMDO under the DITP

effort and currently being integrated for a demonstration test flight in FY2001 has the capability
of significantly improving the PK of an interceptor by providing substantially enhanced
discrimination.  This is especially true for threats of high interest where closely spaced objects
defeat the capability of passive sensors to discriminate based on intensity modulation due to
coning.  The DITP 3D ladar can easily resolve such CSO's, it also has an inherent advantage in
that the same amount of coning will result in 3 times as much modulation as the passive sensor
would observe.  The 3D ladar can also observe the actual object orientation once it is angularly
resolved.  This can cut through confusion the passive sensor could experience where different
combinations of aspect and coning angle can yield the same modulation amplitude.

The ability of the 3D ladar to deliver such benefits hinges on the accuracy of its
intensity measurements.  This paper will present analysis backed by experiments, which
indicates that while speckle is a potential problem, the intensity fluctuations it introduces can be
mitigated by multi-pulse averaging.  Sufficient engagement timeline exists for such an approach
when proper trades between pulse energy, rep rate, and beam profile are made. Such trades will
be presented in detail, as will the proper method for estimating the extent of speckle expected for
an overall target, individual range bin, or single angle-angle pixel within a range bin.

1.0   INTRODUCTION
The BMDO Discriminating Interceptor Technology Program (DITP) is developing sensor systems to

provide enhanced seeker and guidance capability against postulated advanced NMD/TMD threats.(1-4) .  These
systems include multicolor infrared imaging detectors, laser radars, tracking and discrimination software, and a
fusion processor.  The laser radar is required to provide high-resolution imagery and track data for discrimination of
threat objects from decoys and debris.  During the past several years both coherent and direct-detection laser radar
designs and hardware concepts have been evaluated for use in DITP.  Recently the direct-detection solid-state laser
radar was selected by BMDO/DITP for integration as a space-qualified 5-kg package as part of a demonstration
flight in FY2001 which will also include a DITP advanced passive sensor system and fusion processor.  Although the
direct-detection system does not provide direct Doppler measurement, the other advantages of the direct-detection
system, including compactness, processing simplicity, and experimentally demonstrated robust discrimination
performance against representative targets, provide BMDO with a near-term laser radar for such space-based
demonstrations

The BMDO DITP scenario envisions a ground-based interceptor launched at an approaching threat cloud.
The threat cloud may consist of one or more RV targets and as many as 10 or 20 lightweight decoys and randomly
shaped deployment debris objects.  The decoys closely resemble the RVs in shape and exterior surface properties,
but are perhaps 1-5% of the RV mass.  Since the static optical properties of the two target sets are quite similar, the
laser radar is used to measure differences in dynamics of decoy vs. RV.
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2.0   INTENSITY MODULATION
One of the most important differences in dynamics between RV's and decoys is the coning angle (precession

angle).  When used as weapons of terror against an extended urban area there is no need for precision targeting of
RV's and measures such as spin stabilization are not necessary.  But any attempt to destroy U.S. retaliatory strike
capability requires precisely targeted counterforce weapons whose attitude upon reentry must be carefully controlled.
For precise targeting, RV's are deployed with as small a coning (or precession) angle as possible, where deflection
by the atmosphere on reentry is minimized by orienting the RV so that its body symmetry axis is co-aligned with the
velocity vector it will follow on the downward sweep part of its trajectory.  The large mass of the RV, careful
balancing of that mass, and precision deployment by the post boost vehicle (PBV) results in a spin stabilized motion
with relatively low coning.  Coning angles of 2-4 degrees are typical.  This is a representative value not derived from
any specific threat document.

Heavy and light decoys on the other hand simply do not have the mass required to achieve and sustain such
small coning angles.  Even with concerted efforts towards careful balancing and deployment, medium weight
"precision" decoys end up with coning angles around 8 degrees.  Light replicas exhibit coning angles of
approximately 12 degrees.  Conical lightweight balloons will have even greater coning angles.

A direct detection laser radar, such as that to be used in the DITP FY2001 demo flight, can exploit this
difference in dynamical behavior as a discriminant, because such coning produces a sinusoidal variation in the signal
returned to a laser radar as the RV completes one coning cycle with a period from a few seconds to a few tens of
seconds.  By revisiting the RV anywhere from 5 to 10 times during its coning cycle, the direct detection ladar can
determine the extent of fluctuation or modulation during that cycle.  Knowledge of that modulation depth or
amplitude can be translated into a determination of the coning angle.

It should be strongly emphasized that over most of its discrimination engagement timeline the laser radar is
collecting this intensity modulation data.  Depending on the reflectivity of the target, useful modulation
measurements can begin to be made at ranges from 400 to 450 km.  Up until ranges less than 200 km the aperture
sizes which an interceptor aperture can accommodate (of the order of 25 cm) do not make available the necessary
angular resolution for full 3D imaging.  Therefore other features for measuring precession and orientation are simply
not accessible for the majority of the engagement fly-in.  In several scenarios it is desirable to reach a final target
selection decision by approximately 150 km to allow sufficient time to reach the target given realistic interceptor
divert capabilities.  At a nominal NMD closing velocity of 10 km/s, 20-25 seconds will be spent making intensity
modulation measurements, while typically 5, or at the most 10, seconds will be involved in full 3D imaging.  This
underscores the importance of the reliability of intensity modulation as a discriminant and the impact of speckle
statistics and other considerations on that reliability.  Before turning to an examination of error sources which must
be considered in making intensity modulation measurements, it is useful to have a thorough understanding of the
source of the modulation, its expected magnitude, and the special advantages an active rather than passive sensor has
in observing such modulation.

From the point or view, literally, of an oncoming LADAR equipped interceptor, coning motion produces a
cyclical variation of the net aspect angle between the line of sight to the threat object and that object's body
symmetry axis.  For example for a cone with a mean aspect angle of 30 degrees and an 8 degree coning angle the
effective aspect angle will swing from 38 degrees down to 22 degrees and back up to 38 degrees over the time of one
coning (precession) cycle.

This change in aspect angle is very apparent to the laser radar because it produces a corresponding and
substantial change in the laser radar cross section.  For a cone this cross-section has a minimum at a head on
orientation.  It has its maximum at 90 degrees.  (Actually its maximum will be at 90 degrees minus the cone half
angle.  At this point one side of the cone will be exactly perpendicular to the LADAR line of sight.  This "glint" line
will be returned to in a subsequent discussion of moment-of-inertia algorithm(5,6) (M-O-I) determination of the threat
object orientation).  In going from 0 degrees to 90 degrees the cross section is given by an S shaped curve like the
sine function.  As shown in Figure 1 for aspect angles between 10 and 60 degrees this curve is very linear7.  It is this
linear dependence of cross section on aspect angle which produces the intensity modulation discrimination feature.

As is depicted in Figure 1, for a mean aspect angle of 30 degrees and a coning angle of 8 degrees there will
be a 60 percent increase or modulation of the returning laser radar signal as the instantaneous aspect varies from 22



degrees to 38 degrees.  This behavior was confirmed in experimental measurements made at the AMOR test facility
in December 19976.  The degree of modulation is independent of the target reflectivity on ladar output power, but the
signal to noise ratio depends on these two quantities together with the speckle statistics which form the core of this
analysis.  Before turning to those critically important photon statistics, it is instructive to note that for the same target
behavior (30 degree mean aspect angle, 8 degree coning angle) only 18 percent modulation in the target's emissivity
area product occurs.  Where the "signal" of interest is in fact intensity modulation, the ladar thus has a factor of three
advantage over the passive sensor.  The ladar also benefits from the advantages of active illumination whereas the
passive sensor must contend with cold targets which can challenge the sensitivity and noise characteristics of passive
arrays and their associated optics.  It can also be seen that the aspect angle region where modulation is useful only
extends from 15 to 50 degrees for the passive sensor.

But far more important in this comparison of ladar and passive sensor capability to reliably measure
intensity modulation is the problem of closely spaced objects (CSO's).  For targets which are well separated and
warm enough to provide adequate passive sensor signal-to-noise, the passive sensor could autonomously determine
the intensity modulation.  But passive sensor pixels are typically of the order of 50 µµµµr and the blur spot for 10 micron
radiation with a typical interceptor aperture of 25 cm is 100 µµµµr .  Objects within 50-100 µµµµr cross range at 400 km
(20-40 meters) are CSO's, and the summed signals from their individual coning behavior can present an impossible
puzzle for the passive sensor to untangle.  Many threats of high interest are heavily populated with such CSO pairs.

But with a wavelength 1/20th of 10 micron radiation the active sensor at 532 nm using the same a 25 cm
aperture has an individual pixel blur spot diameter of 5.2 µµµµr corresponding to 2 meters at 400 km for each pixel in its
10 x 10 array.  The 20 cm range resolution of the ladar can further assist in isolating one object from another in
conducting these critically important intensity modulation measurements.  Beyond the strongly enhanced confidence
in target designation which the ladar can provide, with concomitant significant reductions in needed interceptor
launches per kill (at least a factor of 3), the essential benefit the ladar introduces is the ability to perform
discrimination in CSO circumstances where the passive sensor simply cannot.

There is an additional source of potential confusion which can defeat intensity modulation based
discrimination by the passive sensor alone even in the absence of closely spaced objects.  As is depicted in Figure 2
there are various combinations of coning angle and aspect angle which can produce the same percent modulation.
For example a 4 degree coning angle at a mean aspect angle of 15 degrees will produce 37 percent modulation.  But
this same 37 percent figure could arise from 8 degree coning at a mean aspect angle of 6 degrees or 8 degree coning
at a mean aspect angle of 41 degrees.  This degeneracy can only be clarified by directly observing the aspect angle of
the target.  The direct detection 3D imaging ladar can do this once it is able to angularly resolve the target.  This
becomes possible at 200 km or less range to the target when the receiver electronically zooms its intensified photo
diode detector to shift to 2.6 µr Rayleigh pixels.  By applying the Moment-of-Inertia algorithm the apparent
"azimuth" and "elevation" of the target can be determined to a one sigma one axis uncertainty of approximately 2
degrees.  This was also demonstrated in the December 1997 AMOR field tests of the direct detection system6.  Once
so angularly resolved it is possible to observe the coning motion in stop motion snapshot fashion throughout whole
precession cycles in this way.  But engagement timeline considerations make this impossible to accomplish.

What can be done, however, is to quickly establish which of the three "degenerate" cases in the example
being considered is actually responsible for the observed modulation.  An effective strategy would be to make such
an orientation angle measurement at the time when the modulation would be expected to be halfway between its peak
and minimum values, at the "zero crossings."  This is easy to predict from the angularly unresolved measurements of
modulation made between 450 and 200 km which provide a time history from which the amplitude, period, and
phase of modulation can be determined.  At the moment of "zero crossing" modulation, the net aspect angle resulting
from the coning angle adding to the mean aspect angle would be momentarily equal to the mean aspect angle, or 8,
15 or 41 degrees for the three cases under consideration.  These values would be easily distinguishable.  There are
two zero crossing observation opportunities per coning cycle which eases the issue of scheduling measurements.  As
further confirmation measurements could be made at the time of minimum modulation where the net aspect angle is
the mean aspect angle minus the coning angle or 6-8 = -2, 15-4 = 11, 41-8 = 33 for the three possible degenerate
cases in this example.  Again, these are easily distinguishable.  A similar approach could be taken at the time of
maximum modulation.

It should be emphasized that in most cases there will not be a need to use 3D imaging extraction of
orientation angles to break degeneracies arising from intensity modulation measurements.  As illustrated in Figure 2,



8 degree coning will most often produce 50 to 80 percent modulation which is easily separable from the maximum of
less than 40 percent modulation seen for 4 degree coning at any aspect angle.  But if because of variation in
deployment and a resulting spread in decoy aspect angles a handful of objects display modulation resembling that
from an RV, the ladar can distinguish decoys from the RV once the objects become angularly resolved.  In addition
because of the aforementioned purpose of spin stabilization and careful deployment for precise targeting, the
orientation of the RV with respect to its velocity vector at any point in its trajectory may be well known on an a
priori basis.  The orientation angle measurement capabilities of the 3D imaging direct detection laser can thus
provide further confidence enhancing confirmation, thereby increasing the net system PK per interceptor launched.

As an aside, it should be noted in Figure 2 that no modulation is seen for a head-on encounter even if the
target is coning.  While coning will change the orientation, the net aspect angle remains the same.  For lethality
reasons an encounter other than head-on is preferable.  As a practical matter actual scenarios of interest produce
aspect angles between 20 and 40 degrees.

A more important consideration arising from Figure 2 is also directly related to the probability of a
successful kill per interceptor launched.  At a mean aspect angle of 30 degrees the modulation intensity is 25 percent
for 4 degrees coning and 60 percent for 8 degrees coning.  If each measured as 25 + 7 and 60 + 7 where the + 7
denotes the standard deviation values, the difference in means divided by the root sum squared standard deviations
would be (60-25)/sqrt (49 + 49) ≅   35/10 = 3.5.  This would be the so-called K factor for discrimination between
these two classes, and is a measure of the confidence of separability.  It increases with the "distance" between the
distinguishable features and decreases as measurement uncertainty blurs that distinction.

Uncertainty in the overall estimate of modulation intensity arises from the uncertainty in individual
measurements the laser radar makes at successive points during the precession cycle.  As mentioned above the ladar
has an observation period of approximately 20 seconds in which to gather intensity measurements from which
modulation parameters (amplitude, period, and phase) are extracted.  The precession period can vary between 5 and
30 seconds depending on the threat, so anywhere from 4 full coning cycles down to 2/3 of one cycle will occur
during this 20 second window.  As the sinusoidal variation of the signal is observed the ladar must accumulate
enough samples to accurately determine the sine wave's amplitude and period.

At least 4 or 5 measurements should be made during the precession period, and each measurement should
be accurate enough in terms of determining intensity so that the error bars on the individual measurements do not
seriously degrade the quality of the sine wave fit to the data.

For a 10 second period this would translate into one measurement every 2 seconds.  It will take of the order
of 20 laser pulses to obtain an individual measurement of sufficient quality as will be discussed below.  At a 100 Hz
rate this will allow for 5 measurements per second.  As a result 10 targets can be addressed with 5 measurements
every 10 seconds.

The question of optimal allocation strategies for the available laser pulses will be addressed in a subsequent
section, but two points regarding implementation warrant noting here.  The first is that the requirement for 4 or 5
measurement points in each pixel applies for the most challenging case where no a priori knowledge is available
concerning the period or the phase of the modulation.  For those targets where confusion due to the presence of
another CSO is not an issue, cueing by the passive sensor can be a very valuable form of sensor fusion in instructing
the ladar exactly when to make its measurements on a given object to achieve maximum benefit.  As previously
discussed the active sensor will often have a factor of three greater modulation to work with, thereby enhancing
discrimination potential.  The passive sensor could indicate to the active sensor the times when the modulation would
hit its maximum and its minimum, so that only two measurements per precession cycle would be necessary.  The
passive sensor in non CSO cases can do a sufficiently accurate job of determining period and phase, which are not
the primary quantities of interest to discrimination.  The ladar can then confirm and refine the passive sensor's
estimate of the modulation amplitude.

Returning to the example of targets with a 10 second coning period, if only 2 measurements per precession
period were required (one every 5 seconds), with each taking 20 laser pulses, or 1/5 second, 25 targets could be
addressed.  More likely some hybrid approach would be employed, where this fused cueing would be used when the
passive sensor had a high confidence estimate of a non-CSO object's period and phase, while the more measurement
intense 4 to 5 ladar samples per period would be directed at those objects which were CSO's or otherwise confusing



to the passive sensor.  As a result anywhere from 10 to 25 objects could be addressed depending on the possible
extent of cueing of the ladar by the passive sensor.

This approach becomes important if the target coning period can be as short as 5 seconds, for here one
measurement per second would be needed without cueing, and one every 2.5 seconds with cueing. From 5 to 12
objects could be treated depending on the fraction of objects which could be cued.  This number of objects addressed
might be increased by as much as a factor of 2 because data on more than two periods is probably not necessary, and
this would mean then an individual object need not be interrogated for the full 20 seconds flight time between 400
and 200 km range.  A 10 second observation window per object would be sufficient.

The second point regarding implementation worthy of note here is that the current 100 Hz, 250 mJ per pulse
operating parameters of the ladar are most likely not yet fully optimized.  Originally for the direct detection ladar
option, DITP had envisioned 50 Hz, 500 mJ operation, but analysis of the impact of speckle statistics on
measurement quality, as is discussed subsequently, made it clear that as long as initial acquisition range were not
penalized severely, it was beneficial to trade joules per pulse for repetition rate.  That trade perhaps should be
pushed further, or a pulse energy/rep rate agile mode of operation developed which can adjust this trade during fly-
in.  The 25 watt average power of the ladar is also not an inflexible figure which cannot be adjusted upwards.
Weight, power and volume efficiencies were gained in going to fewer joules per pulse which could open the path to a
higher rep rate at the same joules per pulse in subsequent ladar designs.

There are several potential sources of error for each measurement of intensity during a precession cycle.
There is shot noise including speckle, intensity variation due to the target being in a different section of the outgoing
Gaussian laser beam from one measurement to the next, and power variation in the laser itself.

Laser power variation has been measured to be no more than 1 to 2 percent over much longer periods than
an interceptor engagement would involve. As an additional safeguard against this unexpectedly becoming a non-
negligible error source, it is planned to measure outgoing laser power on a shot to shot basis to detect any problems
and, if necessary, serve as a normalizing factor.

If a Gaussian laser profile is used, it is necessary to position the object whose reflected intensity is being
measured at the center of the beam.  Each time the target is reacquired it must be pulled to center.  The outgoing
laser beam has a 1/e2 diameter of 52 µr spanning 20 meters at 400 km.  Some number of shots, currently assumed as
3, will be required to effect this centering.  There is a presumption in this that the ladar detector and outgoing laser
beam are perfectly aligned.  After the stresses of launch this may not be the case, and at present DITP is carrying a
worst case uncorrected boresight offset of up to 7.5 µr for these two components.  This could only exact a penalty of
15% as compared to being at true beam center, and would be replicated revisit to revisit, thereby not serving to
corrupt the intensity measurements.  However jitter about this position could compromise intensity measurements, if
the jitter magnitude and time characteristics were such that it served to introduce undesirable intensity variation.
This has been the subject of thorough analysis and for jitter value of 1 sigma 1 axis of 5 µr or less is negligible.  An
alternate approach, which will be subsequently discussed, would be to erect a top hat rather than a Gaussian in the far
field.  This avoids the three shot overhead required for centering and removes the concern with jitter.  However it
imposes a factor of three penalty in terms of intensity reduction.  Detailed trades are still underway to establish which
is the more promising path.  At present the Gaussian approach still has the upper hand.  Primarily because it is
preferable to make fewer high quality measurements during a precession cycle (using ~20 laser pulses each) rather
than more low quality measurements (with 1-4 laser pulses each).  If the latter approach were preferable, then the 3
pulse centering overhead would be unacceptably burdensome.  For 20 pulse measurements this is not the case.

What drives the need to use 20 laser pulses rather than 1 for a usable measurement of intensity is the large
shot to shot variation, 30-70 percent in relative intensity, which is inherently involved in photon emission which is a
random process.  In the limit of very low photon counts, of the order of 1 per detection period, the variation is
primarily described by Poisson statistics where the variance is given by σσσσ2 = Ns and the standard deviation is given
by σ = (Ns)1/2 where Ns is the mean number of photons, or photoelectrons after conversion by a detector.  For Ns = 1,
which is representative of the total target return at ~450 km range, the standard deviation is equal to the mean so that
the relative accuracy of a single laser pulse measurement would be σ/Ns = 1 or 100 percent relative error.  In
addition to this inherent shot noise, which would characterize emission or reflection from any source, ladar intensity
measurements may be corrupted by target surface produced "laser speckle".  Here reflections from various regions of



the surface produce small zones of coherence which can interact with other such subareas in "mutual coherence".  In
this way these subareas can either constructively or destructively reinforce to produce outgoing irregularly shaped
regions, rays, or beamlets of either greater or lesser intensity producing a mottled or "speckled" appearance of the
target as viewed at a distant aperture.  The number of such light and dark pairs, or speckle cells, is given by M, the
mean number of speckle cells in the aperture.  Involving self-interaction of the reflected light, speckle is an
inherently non-linear process and the variance associated with its effect is given by σσσσ2 = Ns

2/M.

M includes speckle cells from both polarizations when the illuminating laser includes both, or when the
target depolarizes an incoming beam upon reflecting it.  In support of the DITP program an exact computational
method was developed to calculate the mean number of speckle cells appearing in the aperture8.  The often used
approximate formula for this quantity is 9

M = 1 + (AsAr)/(λ2R2)         (1)

where As is the area of the source region, Ar is the area of the receiver aperture, λ is the wavelength, and R is the
range to the target.

The central topic of this paper is the effect of laser speckle on the accuracy of intensity measurements made
to determine the intensity modulation due to coning as a critical discriminant.  At the long target ranges of interest to
DITP, the small target source regions, particularly per voxel (range-bin per angle-angle pixel, or per 3D pixel), result
in large speckle sizes back at the ladar receiver. M per voxel is typically 2-4 for both polarizations.  This can
produce strong fluctuation in the signal per voxel depending on the intensity of the light captured by the detector
from the small source regions.

However for very small source areas, and especially for non-contiguous areas of any size (e.g., an annulus)
the approximation of Equation 1 can underestimate the true M value given by a rigorous wave optics treatment.
Such an underestimation could have a negative impact on assessments of potential system performance because it
would suggest greater intensity uncertainty than is actually present.  This in turn would indicate more laser pulses
were needed to ensure discrimination feature accuracy thereby stretching out the time required to characterize each
threat object.  Timeline effectiveness is critically important to the DITP mission.

The M values characterizing the DITP engagement for targets of interest will be described in detail, as will
the mean number of photoelectrons per voxel.  This latter quantity is important because for typical DITP M values
per voxel (M=2-4, dual polarization) if Ns < 1, Poisson behavior dominates, and speckle becomes a secondary
perturbation.  Once Ns/voxel approaches 4-10, speckle effects become of prime importance.

If the photon statistics are non-Poisson (negative binomial), careful attention must be given to the precise
fashion in which expected intensity fluctuations from different voxels are added together to yield the total intensity
fluctuations for a given range bin, or total intensity fluctuations for the entire target.  Negative binomial distributions
do not simply sum the way the normal and Poisson distributions do in producing a cumulative distribution from
contributing components.  This becomes important in deriving a total target return in the angularly unresolved case
from the photons in each range bin as they are added together.  Here, as previously discussed, the modulation of the
total return is a valuable means of determining target coning angle, but only if this modulation is not masked by
photon statistics noise.  In the angularly resolved case the contributions must be summed over both angle-angle
pixels and range in deriving a total photon return whose statistics must not be so noisy as to obscure reliable
modulation information.  Similarly the summation over angle-angle pixels in a given range bin needs to produce a
total for that range bin which can be used to reliably determine the range-sliced intensity profile of the object in
questions.

Under DITP sponsorship an exact technique has been developed for calculating the number of speckle cells
returned to a receiver aperture from a target illuminated by a ladar.  This number of speckle cells, the M value, has a
direct impact on the shot to shot fluctuation in the intensity returned to each 3D pixel (voxel), each range bin, and
from the target as a whole in a 3D imaging ladar.  As previously discussed, when Ns is the number of photons (or
equivalently photoelectrons after photon conversion by the detector) the standard deviation of the intensity taking
into account Poisson shot noise and speckle effects is given by

                                             σ = (Ns +Ns
2/M)1/2                                                                                                                                                            (2)



For many situations of interest to DITP the reflecting area of the target will not have a simple rectangular or
circular disk shape.  Those are the only cases previously treated in detail in the literature where the assumption of
uniform illumination was usually made(10-12).  The BMDO DITP funded effort has completely generalized the
computational method for M, fully and rigorously treating the mutual coherence effects responsible for speckle.
These effects are diffraction-like in their dependence on the shape of the reflecting surface, and especially so if that
shape has any open or non-reflecting areas.  Annular regions produce M values far larger than would be expected on
the basis of their area alone.

Beyond developing a previously unavailable method for obtaining critically important M values, this study
also has established how such M values for separate range bins of a target can be summed to yield the M value for
the target cross section as a whole  Moving in the opposite direction, how such an M value for the target area
appearing in a given range bin should be apportioned over the multiple detector angle-angle pixels which may view
that area was determined.  Neither the summing nor apportioning methods were previously available.  Consequently
the methodology developed here represents a significant advance not only to the DITP solid state ladar direct
detection approach but also to all similar 3D imaging applications where speckle is an important consideration.

The  M-value summing method developed by Youmans can be used for three types of summing:  summing
angle-angle pixels within a given range bin; summing contributions from different range bins; or summing intensities
in a given 3D-pixel (voxel) captured over several laser pulses or “shots."

For the M value summing technique to be strictly applicable the terms which are combined must be from
regions which are uncorrelated in terms of speckle lobes.  For 2D pixels this is satisfied when the individual pixel
centers are separated by at least 2.44 λ/D.  More accurate results are obtained when the pixel separation is 4.88 λ/D.
For Rayleigh pixels of 1.22  λ/D separation adjacent pixels are highly correlated in many cases with respect to the
speckle lobes which are viewed, especially when the mean number of speckle lobes per pixel, denoted by M, is M ≤
10.

As a consequence the initial simple summation procedure suggested by Youmans where pixels are summed
together to yield a net negative binomial distribution whose effective M value is given by

                                                                         .MM i
i

eff ����====                                                                         (3)

such an approach to summing over the pixels in a given range bin can produce an erroneously high value of Meff if
the speckle cells in adjacent pixels are correlated.  The same can be true for summing M values over adjacent range
bins if the coherence time τc is such that cτc /2 is greater than the range bin depth.

There is another potential problem in the simple M value summation even when the pixel speckle cells are
uncorrelated.  That arises from the fact that the "floor" on M is 1, indicating that M is never expressed as a fraction
of a speckle cell or lobe.  But in summing to an Meff this "floor" will potentially make the total M value several times
greater than it should be.

In the pixel summing case where speckle cell correlation or the M value floor of 1 can be a problem, the
approach which should be taken is to evaluate the M value for the entire area within a range bin.  This is the true Meff
.  As has been discussed above and is treated in depth in another paper, this Meff calculation must carefully take into
account diffraction effects not considered by the commonly used approximation for M given in Equation 1.  Once the
Meff value has been properly computed it should be apportioned to the individual pixels contributing to it.

Here another assumption implicit in Youmans' initial memo on M value summation emerges as important.
His memo assumed that each source area was emitting or illuminated with the same intensity per square meter.  In
many situations of interest this will not be the case.  The Meff should be apportioned on the basis of the fraction of
the total intensity emanating from each pixel.  If this fractional apportionment would produce an M value less than
one, the previously discussed floor of one should be applied.

The way to apportion the Mbin for the entire illuminated area in a given range bin to the individual pixel
viewing that area is
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where Mpixel is the speckle M value for an individual pixel, Npixel is the intensity in that particular angle-angle pixel
and Nbin is the total intensity in a given range bin.  This is a single polarization result and should be multiplied by two
to account for two polarizations.

The method for accumulating the total Mtarget for multiple range bins where the coherence length is not
greater than the range bin depth is to weight the contribution of each range bin by the total intensity in that bin
compared to the bin with the greatest intensity

                                                     
binmax

binbin
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where Mtarget is the net M value for the target taken as a whole, Nbin is the intensity in a given range bin, Mbin is the
speckle cell number for that bin, and Nmax bin is the intensity of the bin with the greatest reflected illumination.
Equation 5 will be used repeatedly in a subsequent discussion of representative target M values at different ranges
and aspect angles.

One of the instances where the most simple version of the Youmans' M value summation method, Equation
3, can be used is for the case of a total target, individual range bin, or single 3D pixel (voxel) where multiple shots
are accumulated to reduce the uncertainty in measured intensity.  This issue of intensity accuracy expressed as σNs/Ns
arises due to the requirements of various discrimination algorithms.  Intensity modulation as an indication of
precession angle requires about ten percent intensity accuracy (relative, not absolute) while the moment-of-inertia
algorithm as a source of shape and orientation information is more forgiving.  It requires about forty percent relative
accuracy. Youmans' formulae
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apply directly to this shot summation case for a total target, individual range bin, or single voxel.  There are some
algebraic manipulations which can be applied to the resulting expression for standard deviation which are
extraordinarily useful in system effectiveness assessment and timeline determination.

For a single shot
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where  σ1-speckle  is the standard deviation for a single shot.

The quantity of most interest is
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This is precisely the (1/n1/2) reduction in relative error from multiple shots dependency seen in the case of Poisson
statistics where
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where 1-Poisson denotes a single shot for a Poisson case and Ns is the single shot intensity, and
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Multiple shots in the Poisson case produce
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This similarity of dependency is shown in Figure 3.

There is a " penalty factor" to be applied in going from the Poisson to the speckle case in terms of more
shots being required.  This  penalty factor", pf, can be computed exactly.

To make the relative accuracy of the speckle case after n shots equal that of the Poisson after one shot set
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Here n is the number of shots required, and represents the multiplicative “photoelectron penalty factor”  ppf
introduced by considering speckle.  It represents how many times more total photoelectrons are required due to
speckle compared to those for a pure Poisson case to achieve the same level of relative accuracy.  For NS=4 and
M=2 ppf =1+2=3 = n.  So three shots in the speckle case will be necessary.
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For Ns  = 2 and M = 2 ppf = 1+1 = 2 = n
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For Ns = 1 and M = 2 ppf =1 + .5 = 1.5.  For a numerical example to make sense compare the case where m Poisson
shots are accumulated and 1.5 m is an integer as for m = 2 and 1.5 m = 3.
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For Ns = .5 and M = 2 ppf = 1 + .25 = 1.25.  Compare m=4 Poisson shots (Ns = .5 per shot) with n=5
speckle shots (Ns = .5 per shot).
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It can thus be seen that this "penalty factor" approach is applicable to Ns values greater than, less than or
equal to one.

In arriving at the equation ppf= (1 + Ns/M) it was assumed that NPoisson = Nspeckle = Ns the mean number of
photoelectrons per shot.  To more transparently handle the general case where NPoisson is not equal to Nspeckle another
expression can be derived.  This is useful because the Poisson case is so easily handled when NPoisson is set equal to
one.  Then for example it is immediately apparent that for ten percent relative accuracy one hundred shots are
needed, and for one percent accuracy ten thousand shots are required.  It is desirable to be able to immediately
translate such shot counts into a speckle case for M = 2 (the nominal DITP value per voxel) with Nspeckle = 0.6, 1.2,
3.8, etc. mean photoelectron counts per measurement.



A given fractional relative error P (e.g., 0.10 for 10 percent) can be achieved for the Poisson case by
averaging over multiple shots so as to accumulate m photoelectrons.  The relative error for that total is given by
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The total required Poisson photoelectrons m is thus equal to the well known result 1/P2.  Applying the penalty factor,
ppf = (1 + Ns/M), gives the total number of photoelectrons required in the speckle case
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The number of shots n in the speckle case to produce P fractional relative error is thus given by
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If speckle were negligible, M = ∞, this would reduce to
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and would describe the Poisson case with Ns photoelectrons per shot.  The additive 1/M term in Equation (33) causes
the need for additional shots.  If M = ∞ there is no penalty for going to larger photoelectrons per shot Ns.  But as M
approaches 1 the 1/M term can come to dominant the (1/Ns + 1/M) factor unless Ns is comparably small.  From a
system point of view it would be energetically wasteful to have a large Ns per pulse and yet have the 1/M term call
for as many pulses as if Ns were small.  To keep the speckle "penalty" in check from the point of view of the number
of shots required for an intensity measurement of given accuracy, it is advisable to keep 1/Ns four or more times
greater than 1/M, or Ns/M < .25.  This analysis in terms of shots required relates back to the "photoelectron penalty
factor" of Equation 21 (1 +Ns/M).  Operationally it means that a ladar may be far more efficient operating at a higher
rep rate and lower energy per pulse.  To turn that assertion into useful engineering guidance requires accurate
estimates of the M values for the total target, individual range bins and single voxels together with the expected
return from the target based on geometry and reflectivity.

Applying n = (1/P2) (1/Ns + 1/M) to a DITP issue of high interest will illustrate the utility of this expression.
Consider a situation where ten percent relative accuracy of the intensity estimates is required for four different Ns
values 0.5, 1, 2 and 4.  The Ns=1 Poisson case would necessitate 100 shots.  Here M=2 is assumed.

Table 1

N s  (M=2) 0.5 1 2 4 8 16 32 64

(1/Ns + 1/M) 2.5 1.5 1 0.75 0.625 0.5625 0.53125 0.515625
Shots 250 150 100 75 62.5 56.25 53.125 51.5625
EnergyRequired
= shots x Ns

125 150 200 300 500 900 1700 3300

For the Poisson case where M = ∞ this table would become

Table 2

N s  (M=∞) 0.5 1 2 4 8 16 32 64

(1/Ns) 2 1 0.5 0.25 0.125 0.0625 0.03125 0.015625
Shots 200 100 50 25 12.5 6.25 3.125 1.5625
EnergyRequired 100 100 100 100 100 100 100 100



= shots x Ns

demonstrating the well known Poisson result that photoelectrons are photoelectrons no matter how many arrive per
voxel per measurement.

An important point apparent from Table 1 is that from a system design perspective it would be optimal to be
able to adaptively adjust the ladar transmitter joules per pulse and pulse rate so that the mean number of
photoelectrons per voxel per measurement was kept around one once the target is angularly resolved.  This is where
the knee in the net energy per intensity measurement requirement curve occurs.  There is some additional benefit in
going down to a mean value of 0.5, but only a slight advantage, and it introduces detector signal to noise problems.

Examining some examples of M values calculated for individual range bins and M value summing over
those range bins to get a total target M value is probably the best way to get a firm grasp on the potential
performance of the system and the system operating parameter trades under investigation.

The graph at the top of Figure 3 shows the M value per range bin for the case of a 2 x 1m cone at 200 km
and 0 degree aspect angle calculated both using the standard approximation and the exact technique developed under
DITP and validated by data taken in September-November 199813.  The graph at the top of Figure 4 is for the same
conditions with 30 degree aspect angle.  Figure 3 clearly illustrates the substantial difference between the standard
approximation for M and the true M for the head-on cone.  Although a head-on engagement is unlikely, and
undesirable, a mean aspect angle of 15 degrees and a coning angle of 12 degrees will sweep through this near zero
region during the coning cycle.  The returning amplitude will be a minimum here, and is accordingly important in
estimating total modulation and the implications of the exact M calculation method will provide significant positive
system benefit.

As the graph at the top of Figure 4 indicates, at an aspect angle of 30 degrees where the reflective area in
each range bin much less resembles an annulus and is much more like a solid contiguous area, the standard
approximation is far more valid.  Here the diffraction effects leading to the M value, enhancement seen for the head-
on annuli play a much smaller role except in range bins eight and nine.  Even here the effect is less than would be
expected from the "annular" shape of the area because most of the intensity is concentrated around the "centerline".
As discussed before the M value is an intensity weighted phenomenon.

For the purposes of discrimination using range template matching (range profiling) or intensity modulation
as a means of determining precession angle and frequency, both the exact M value calculation technique and
intensity weighted method for summing M values become of critical importance.

In terms of intensity modulation it is the photoelectron sum over all range bins which must be accumulated.
For the head on cone case the M values of the ten annuli are added together with a weighting factor.  As previously
discussed that weighting factor is the intensity in a given range bin normalized to the range bin with the greatest
intensity.

In the table at the bottom of Figure 3 for the head-on cone case at 200 km the computation flow is captured
for calculating shots required for range template matching as well as intensity modulation.  The photoelectrons per
range bin are given along with the resulting weighting factor shown in column three.  In this case range bin 10 had
the greatest intensity and its photoelectron count becomes the normalizing divisor.  The M values which would have
been computed from the standard or Yura approximation are given in column four.  The M values calculated exactly
are given in the sixth column.  It cannot be stressed greatly enough how significantly this impacts the DITP system
timeline.  For the range bins which most significantly contribute to range template matching and intensity modulation
there is a factor of three to four enhancement of M.

The net M value for the target taken as a whole to be used in determining the uncertainty in the intensity
measurement from the total cross section is arrived at by multiplying the weighting factor in column three by the
exact M's in column six.  These sum to a net M of 21.67.  This net M is then multiplied by 2 to take into account two
polarizations returned by the target.  The fifth column shows the corresponding number from the standard
approximation which is a factor of three smaller.



To calculate how many of these shots (each returning 20.11 photoelectrons) are required to match the 10
percent accuracy of 100 Poisson photoelectrons the expression

                            pf)N/1)(P/1()M/N1)(N/1)(P/1(n effs
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is used where n is the "penalty factor" due to speckle, Ns-eff is the photoelectrons summed over all range bins (20.11)
and Meff  is the weighted sum of M over range bins (43.34).  Here, as shown in the table at the bottom of Figure 3 ,
(1/Ns-eff )pf=0.073.  So 7.3 DITP shots would be needed to produce the 10 percent accuracy which would result from
capturing 100 Poisson photons.  If seven shots are used
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To get five percent accuracy 4 x 7.3 = 29 shots would be needed.

Using similar information in the table at the bottom of Figure 4 for the 200 km 30 degree aspect angle cone
case, the number of shots required for 10% and 5% intensity modulation accuracy can be determined.  That would be
8 and 32 respectively.

Turning to range template matching, the tables at the bottom of Figures 3 and 4 determine the shots needed
for usable data.

The second graphs in Figures 3 and 4 show the photoelectrons per range bin for the 0 degree and 30 degree
aspect angle cases at 200 km.  If the intensity is held to 10 percent uncertainty (standard deviation) in the range bin
with greatest intensity it can be seen that a usable profile results.  This ten percent standard deviation is shown on the
photoelectrons per range bin curves.  Also shown as separate curves are the resulting standard deviations from one
shot and multiple shots, where the multiple shots are whatever number is required to produce ten percent relative
accuracy in the range bin with the greatest intensity.  In each instance the "penalty factor" for the most intense range
bin was used to determine the number of shots required.  For example in the case of the head-on cone at 200 km
range bin 10 is involved.  Here Ns = 3.82 and M = 5.95 (times 2 for two polarizations) so , (1/Ns-eff )pf = 0.346 and
35 shots are required.

Had the standard Yura approximation for M been used, M would have been 3.30 not 11.90 and the shot
requirement would have ballooned to 56, a 60 percent increase. Analysis of the impact of speckle on the number of
laser pulses needed to obtain sufficiently accurate intensity measurements during a precession cycle to use the degree
of intensity modulation as a discriminant, as has just been discussed, is central to the evaluation of system
effectiveness.  It also is essential to determining the most suitable strategies for ladar usage.  Here the question of
accuracy as a function of range becomes paramount.

Table 3 extends the previous analysis of the 30 degree aspect angle, 8 percent target reflectivity, 200 km
case to the entire spectrum of ranges of interest, roughly 400 down to 100 km.  The ranges in Table 3 were chosen to

Table 3   Impact Of M Values On Timeline 30 Degree Aspect 8% Reflectivity
Range (km)
Ns  (photoelectrons)

365
4

300
9

260
16

210
36

180
64

150
144

120
324

σσσσ= sqrt (Ns)  Poisson
σσσσ/Ns

2
.50

3
.33

4
.25

6
.17

8
.13

12
.08

18
.06

Shots for σσσσ/Ns = 10% 25 11 6 3 2 1 1
Mexact
σσσσ= sqrt (Ns + Ns

2/M)
σσσσ/Ns

11
2.33
.58

12
3.97
.44

14
5.86
.37

16
10.82
.30

20
16.40
.26

24
31.75
.22

30
61.83
.19

Shots for  σσσσ/Ns =10% 34 19 13 9 7 5 4



Table 4   Impact Of M Values On Timeline 16 Degree Aspect 8% Reflectivity
Range (km)
Ns  (photoelectrons)

365
8

300
18

260
32

210
72

180
128

150
288

120
648

σσσσ= sqrt (Ns)  Poisson
σσσσ/Ns

2.82
.35

4.24
.24 .18

8.49
.12 .09

16.9
.06

25.46
.04

Shots for σσσσ/Ns = 10% 13 6 3 1 1 1 1
Mexact
σσσσ= sqrt (Ns + Ns

2/M)
σσσσ/Ns

11
3.72
.46

12
6.71
.37

14
10.25
.32

16
19.90
.28

20
30.78
.24

24
61.12
.21

30
121.02
.19

Shots for  σσσσ/Ns =10% 22 14 10 8 6 5 4

Table 5   Impact Of M Values On Timeline 0 Degree Aspect 8% Reflectivity
Range (km)
Ns (photoelectrons)

365
1.6

300
3.5

260
6.3

210
14.7

180
27.2

150
56.4

120
137.5

σσσσ= sqrt (Ns)  Poisson
σσσσ/Ns

1.26
.79

1.87
.53

2.51
.40

3.83
.26

5.21
.19

750
.13

11.73
.08

Shots for σσσσ/Ns =10% 63 29 16 7 4 2 1
Mexact  Speckle
σσσσ= sqrt (Ns + Ns

2/M)
σσσσ/Ns

19
1.32
.82

26
1.99
.57

32
2.75
.44

42
4.45
.30

54
6.40
.24

64
10.30
.18

80
19.33
.14

Shots for σσσσ/Ns =10% 68 32 19 9 6 3 2
Mapprox  Speckle
σσσσ= sqrt (Ns + Ns

2/M)
σσσσ/Ns

11
1.35
.85

12
2.13
.61

14
3.02
.48

15
5.40
.37

17
8.41
.31

20
14.68
.26

25
29.90
.22

Shots for σσσσ/Ns = 10% 72 37 23 13 10 7 5

Table 6   Impact Of M Values On Timeline 0 Degree Aspect 16% Reflectivity
Range (km)
Ns (photoelectrons)

365
3.2

300
7.0

260
12.6

210
29.4

180
54.4

150
112.8

120
275.0

σσσσ= sqrt (Ns)  Poisson
σσσσ/Ns

1.79
.56

2.65
.38

3.55
.28

5.42
.18

7.37
.13

10.60
.09

16.59
.06

Shots for σσσσ/Ns = 10% 31 15 8 3 2 1 1
Mexact  Speckle
σσσσ= sqrt (Ns + Ns

2/M)
σσσσ/Ns

19
1.93
.60

26
2.98
.43

32
4.19
.33

42
7.07
.24

54
10.45
.19

64
17.65
.16

80
34.93
.13

Shots for σσσσ/Ns = 10% 36 18 11 6 4 3 2
Mapprox   Speckle
σσσσ= sqrt (Ns + Ns

2/M)
σσσσ/Ns

11
2.03
.64

12
3.33
.48

14
4.89
.39

15
9.32
.32

17
15.12
.28

20
27.37
.24

25
57.45
.21

Shots for σσσσ/Ns = 10% 40 23 15 10 8 6 4

match points where the number of photoelectrons were the squares of integers to facilitate use of the table.  The table
indicates the standard deviation and relative error which would hold if Poisson statistics were applicable were σσσσ/Ns =
(1/Ns)1/2.  The corresponding standard deviations and relative errors are also shown when speckle is considered.
Here 36 percent more up to 4 or 5 times more shots would be required as the range decreases from 365 to 120 km.
This reflects the point underlined earlier that the "photoelectron penalty factor" associated with speckle is (1 +
Ns/M).   At 365 km M is 3 times greater than Ns and the impact of speckle is perceptible but not overwhelming.  At
150 km Ns is 6 times s large as M and the impact of speckle is great reflecting its non-linear dependence on intensity.



As this would suggest, as the target reflectivity is doubled along with the number of photoelectrons at each
range, the energy efficiency price exacted by speckle becomes more acute.  As shown in Table 4 at 365 km Ns is 72
percent of M so 72 percent more ladar pulses are required than would be the case in the absence of speckle, 22 vs.
13.  So although as expected the greater returning signal reduces the number of pulses required, the energy efficiency
has dropped.  This could be regained by a rep rate agile device which could drop the pulse energy and increase the
firing rate, keeping the net power draw constant.

For the head-on cone case the effects of speckle are more muted because the number of photoelectrons
drops by a factor of 2.5 while the M values increase by about a similar factor, decreasing the Ns/M ratio by a factor
of six as is seen in Table 5.  For ranges of 200 km and above there is little difference between the speckle and
Poisson calculations of the number of shots required for 10 percent relative error.  Below 200 km Ns becomes
comparable to M and 50 to 100 percent more spots would be required.

The speckle situation would have been markedly worse at ranges less than 250 km if the M values from the
standard approximation were used.  This is apparent in the bottom section of Table 5.  As previously discussed,
experiments in September-November 199813 validated the exact approach for calculating the speckle mutual
coherence function as a way of determining M.

As the reflectivity at 0 degrees aspect is increased from 8 percent to 16 percent in Table 6, the impact of
speckle becomes pronounced (a 50% increase in the number of shots required) by 250 rather than 200 km.  It's at this
point that Ns/M = 0.5.

There are many scenario factors (target reflectivity), and system trades (laser power, rep rate, Gaussian vs.
top hat beam, number of laser shots per intensity measurement, etc.), which must be considered in overall
performance assessment.  It is useful to assume different levels of intensity at 400 km, invoke R4 intensity scaling,
select a typical aspect angle in computing M (e.g. 30 degrees), and compute the Poisson and speckle standard
deviations and relative errors.  This is what is done in Figure 5 for intensity values of 2, 4 and 8 photoelectrons at
400 km.  As a point of reference an 8 percent reflective, 2 x 1 meter cone, at the center of a 52 µµµµr 1/e2 diameter
Gaussian 250 millijoule beam for a 25 cm aperture, 40 percent quantum efficiency, 80 percent transmission
efficiency and 64 percent reception efficiency will return 2.8 photoelectrons.

Of particular interest are the Ns and M curves, and the ranges where Ns first becomes equal to and then
exceeds M.  As previously mentioned, under active analysis is the question of whether fewer pulses per intensity
measurement and more measurements rather than vice versa is optimal.  The ability to do that would hinge on
whether a flat top could be erected at range so that there was not a severe penalty for shots required to center the
target in a Gaussian, if only a few "measurement" pulses were then to be launched.  The feasibility of constructing
such a flat top has been questioned.  Such flatness usually comes at the expense of broadening the beam to such an
extent that there is a severe intensity penalty.  If the flat top radius is reduced, unacceptable "ringing" patterns could
corrupt intensity modulation measurements.  The width of the flat top is determined by the radius of curvature of the
outgoing phase front.  As is shown in Figure 6 for a beam radius at the primary aperture of 10 centimeters and a
super-Gaussian parameter of 5, a phase front radius of curvature of 3500 m produces an acceptable compromise
between beam width at range and flatness.  Figure 7 illustrates that this beam profile extends from 100 to 400 km
range.

With the relative accuracy curves of Figure 5 in hand, key implementation questions can be addressed, such
as how many laser pulses should be used per intensity measurement.  There are two possible approaches, either
choose a fixed number of pulses and let the relative error decrease with range, or select a fixed relative error and let
the number of pulses decrease with range.  In either case it is useful to gauge approximately how many pulses will be
required to produce useful measurements.  In trying to fit a sinusoid to a series of measurements, if the measurements
are of too poor quality, no matter how many there are, the fitting algorithm can be defeated altogether.  The standard
deviation of the individual measurements should not be more than roughly half of the modulation amplitude.  As an
example, for an intensity of 2 at 400 km the relative error at 300 km is 50 percent.  Averaging 25 shots would push
that down to 10% which would be appropriate for a 4 degree coning angle whose modulation depth is 25 percent.  At
200 km the same 25 shots would decrease the expected relative error from 30 percent to 6 percent, while at 400 km
the 75 percent relative error would have been reduced to 15 percent.



As previously discussed 25 shots per measurement may not fit within the engagement timeline and still
permit sufficient measurements per precession cycle.  Trades involving 4, 9, 16 and 25 shots per measurement does
not lend itself to Fourier techniques for extracting reliable estimates of amplitude and period.  Variations on the
Nelder-Mead simplex algorithm are especially effective in extracting modulation parameters from measurements.

3.0 SUMMARY
The direct detection 3D imaging laser radar developed by BMDO DITP and currently being integrated for a

demonstration test flight in FY2001 has the capability of significantly improving the PK of an interceptor by
providing substantially enhanced discrimination.  This is especially true for threats of high interest where closely
spaced objects defeat the capability of passive sensors to discriminate based on intensity modulation due to coning.
The DITP 3D ladar not only has no problem in resolving such CSO's, it also has an inherent advantage in that the
same amount of coning will result in 3 times as much modulation as the passive sensor would observe.  Beyond that
the 3D ladar can observe the actual variation in orientation once the targets are angularly resolved.  This can cut
through confusion the passive sensor could experience since different combinations of aspect and coning angle can
yield the same modulation amplitude.

The ability of the 3D ladar to deliver such benefits hinged on the accuracy of its intensity measurements.
Analysis backed by experiments indicates that while speckle is a potential problem, the intensity uncertainty it
introduces can be mitigated by multi-pulse averaging.  Sufficient engagement timeline exists for such an approach
when proper-trades between pulse energy, rep rate, and beam profile are made.  As evidenced by the ongoing demo
flight integration effort this technology has advanced significantly beyond the laboratory demonstration stage.  The
integration effort surfaced many of the implementation issues, which in turn required a thorough understanding of
speckle photon statistics.
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Figure 3.   Speckle Analysis for 200 km Range 0 degree Aspect Angle

Range BinsPE's Weighting Yura M Yura Wgtd Exact M M weightd Penalty Sigma 35 Shot Si
1 0.20 0.05 1.03 0.05 1.03 0.05 5.459 0.470 0.079
2 0.60 0.16 1.10 0.17 1.16 0.18 2.089 0.872 0.147
3 1.01 0.26 1.17 0.31 1.46 0.38 1.337 1.162 0.196
4 1.41 0.37 1.24 0.46 1.95 0.72 0.967 1.384 0.234
5 1.81 0.47 1.31 0.62 2.66 1.26 0.741 1.557 0.263
6 2.21 0.58 1.37 0.80 3.38 1.96 0.600 1.713 0.290
7 2.61 0.68 1.44 0.99 4.06 2.78 0.506 1.859 0.314
8 3.02 0.79 1.51 1.19 4.65 3.67 0.439 1.998 0.338
9 3.42 0.89 1.58 1.41 5.27 4.72 0.387 2.128 0.360

10 3.82 1 1.65 1.65 5.95 5.95 0.346 2.246 0.380
Tot PE's 20.11 7.65 <Mtarget> 21.67 0.073
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Figure 4.    Speckle Analysis for 200 km Range 30 degree Aspect Angle

Range Bin PE's Weighting Yura M Yura Wgtd Exact M M weightd (1/N+1/M) Sigma 31 Shot Sig
1 0.88 0.08 1.09 0.09 1.06 0.08 1.602 1.120 0.201
2 2.50 0.22 1.22 0.27 1.14 0.25 0.838 2.291 0.411
3 4.33 0.38 1.38 0.53 1.27 0.49 0.625 3.424 0.615
4 6.00 0.53 1.52 0.81 1.46 0.77 0.509 4.280 0.769
5 7.87 0.69 1.67 1.16 1.67 1.16 0.427 5.137 0.923
6 9.52 0.84 1.84 1.55 1.95 1.64 0.361 5.723 1.028
7 11.32 1.00 1.98 1.98 2.23 2.23 0.313 6.328 1.137
8 7.47 0.66 1.77 1.17 2.78 1.83 0.314 4.183 0.751
9 0.46 0.04 1.15 0.05 2.30 0.09 2.374 0.714 0.128

10
Tot PE's-> 50.35 7.59 <Mtarget> 8.55 0.078

15.18 Dual Polar 17.11
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Figure 5.  Speckle vs Range and Initial Intensity.

Intensity Modulation Accuracy Terms

0

5

10

15

20

25

30

35

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

Range (km)

N
s,

 M
, S

ig
m

a 
(P

oi
ss

on
 &

 N
eg

B
in

) Ns
M DualPol
Poisson
Speckle

Initial Intensity = 2
One Shot Std Deviations

M

Ns

Stdev Speckle

Stdev Poisson

Intensity Modulation Percent Accuracy 

0

10

20

30

40

50

60

70

80

90

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

Range (km)

N
s,

 M
, S

ig
m

a 
(P

oi
ss

on
 &

 N
eg

B
in

)

Ns
M DualPol
Poisson
Speckle

Initial Intensity = 2
One Shot Std Deviations

M

Ns

Stdev/Ns x 100  Speckle

Stdev/Ns x 100  Poisson

Intensity Modulation Accuracy Terms

0

10

20

30

40

50

60

70

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

Range (km)

N
s,

 M
, S

ig
m

a 
(P

oi
ss

on
 &

 N
eg

B
in

)

Ns
M DualPol
Poisson
Speckle

Initial Intensity = 4
One Shot Std Deviations

M

Ns

Stdev Speckle
Stdev Poisson

Intensity Modulation Percent Accuracy 

0

10

20

30

40

50

60

70

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

Range (km)

N
s,

 M
, S

ig
m

a 
(P

oi
ss

on
 &

 N
eg

B
in

)

Ns
M DualPol
Poisson
Speckle

Initial Intensity = 4
One Shot Std Deviations

M

Ns

Stdev/Ns x 100  Speckle

Stdev/Ns x 100  Poisson

Intensity Modulation Accuracy Terms

0

20

40

60

80

100

120

140

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

Range (km)

N
s,

 M
, S

ig
m

a 
(P

oi
ss

on
 &

 N
eg

B
in

) Ns
M DualPol
Poisson
Speckle

Initial Intensity = 8
One Shot Std Deviations

Ns

M
Stdev Speckle

Stdev Poisson

Intensity Modulation Percent Accuracy

0

20

40

60

80

100

120

140

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

Range (km)

N
s,

 M
, S

ig
m

a 
(P

oi
ss

on
 &

 N
eg

B
in

) Ns
M DualPol
Poisson
Speckle

Initial Intensity = 8
One Shot Std Deviations

Ns

M

Stdev/Ns x 100 Speckle

Stdev/Ns x 100 Poisson



Figure 6.  Irradiance (W/m2) at 200 km range versus phase-front curvatures of 2500, 3000, 3500, and
4000 m. Solid line is reference Gaussian mode.

Figure 7. Irradiance (W/m2) vs. radial distance at ranges of 100 km to 400 km with a constant phase
front curvature of 3500 m.  Solid line is reference Gaussian mode.
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