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1.    INTRODUCTION 

This final report covers the period August 30, 1999 through February 28, 2001. We summarize 

our progress in determining the delamination resistance of through thickness reinforced 

structures under dynamic load conditions. Leveraging collaborations at Los Alamos National 

Lab and the University of Genova, Italy and a subcontract with Dr. Ares Rosakis (ETECH Inc.) 

for dynamic push-in experiments will also be described. 

Our progress in this reporting period has resulted in eight papers written or in preparation [1-8]. 

We are especially pleased with some fundamental results that we have derived with simple 

analytical models. The models have yielded particularly insightful results for general 

combinations of properties of the matrix and the through thickness reinforcement, crack velocity, 

loading configurations, elastic anisotropy, and bridging parameters. 

Highlights of our accomplishments are as follows. 

(i) Through-thickness reinforcement is a promising solution to the problem of delamination 

susceptibility in laminated composites, but its acceptance by the design community 

awaits dependable models of its performance and failure to treat mixed mode loading 

cases and bridging tows that are canted relative to the delamination fracture plane. We 

have constructed elaborate micromechanical models that show how a bridging tow 

should behave if it is initially inclined to the fracture plane and subject to mixed mode 

quasistatic loading [1]. From these models, the effective bridging law for a bridged 

delamination crack can be derived. Approximations guided by experiments enable the 

results to be obtained in remarkably simple form, with closed form analytical expressions 

available for certain cases. The approach outlined above is an excellent starting point for 

studying dynamic delamination under mixed mode loading conditions. 

(ii) The generalized model developed above should be applicable to all problems of 

monotonic loading and for general stress state. The model reveals that, provided pullout 

of the entire tow does not occur, shear bridging tractions are sustained more effectively 

by fibrous tows canted so that they will be loaded with the nap (tension along their axes) 

1 
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than by tows canted so that they will be loaded against the nap.  Pullout can be avoided 

either by using continuous stitching or, if short rods are used, by ensuring that the aspect 

ratio of the rod (length/circumference) is sufficiently large. Orienting fibrous tows to be 

loaded in axial tension exploits the high axial stiffness of the fibres in the tow. Orienting 

them so that they are initially in compression will cause initial fibre rotation by a 

mechanism analogous to kinking that depends primarily on the matrix strength and also 

maximises the tendency of the tow to deflect laterally through the laminate. Both of 

these mechanisms tend to create a softer response under shear bridging tractions. 

(iii) A bridging law for fiber reinforced composites under dynamic crack propagation 

conditions has been derived [2,3]. Inertial effects in the mechanism of fibre pullout 

during dynamic propagation of a bridged crack were critically examined for the first time. 

By reposing simple shear lag models of pullout as problems of dynamic wave 

propagation, the effect of the frictional coupling between the fibres and the matrix is 

accounted for in a fairly straightforward way. Analytical solutions were found to the 

problem of coupled waves that propagate away from the fracture plane of the bridged 

crack as the bridging tractions increase with time. These solutions yield the time- 

dependent relationship between the crack opening displacement and the bridging traction. 

(iv) With the aid of the dynamic pullout law derived above, simple criteria were determined 

for significant inertial effects in representative crack propagation problems. We find that 

inertial effects in the bridging mechanism will often be significant for a matrix crack 

propagating dynamically in the steady state ACK limit in a brittle matrix continuous fibre 

composite or for delamination in laminates reinforced by through-thickness stitching or 

rods. We also find that significant inertial effects are favoured by low fibre volume 

fraction, low friction stress, low matrix bar wave speed, and low fibre modulus; and high 

fibre diameter and high matrix modulus. If the fibre modulus is high enough (relative to 

the matrix modulus), the criterion for inertial effects becomes independent of fibre 

modulus. The matrix density enters the criterion only through the matrix bar wave speed. 

The criterion is always independent of the fibre density. Inserting values for typical 

stitched laminates, one finds that dynamic effects will in fact be significant for many 
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delamination crack propagation cases.  Using a dynamic traction law rather than a law 

for static loading is therefore essential in general. 

(v) For pullout or bridging stresses that linearly increase in time, the instantaneous crack 

displacement is less in the presence of inertial effects than it would be under static 

loading to the same bridging stress. However, solutions for pullout from a rigid matrix 

suggest that, if the bridging stress rises rapidly and is then held at a constant value, the 

crack displacement when all particle motion finally stops will be greater than it would 

have been under static loading to that stress level. Thus regimes of both hardening and 

softening of the bridging traction law due to inertial effects can be expected in bridged 

crack problems. 

(vi) We also formulated fast numerical solutions for general loading cases and hence have a 

scheme to compute the bridging law for fairly general conditions [4]. This will be 

required to solve large-scale bridging, dynamic crack problems to self-consistency 

(bridging tractions unknown a priori). The history dependent bridging law thus 

computed will form the basic ingredient in the computation of the structural response of 

the composite under dynamic loading conditions. 

(vii) The dynamic delamination cracking behavior and the energetics of crack growth in 

through thickness double cantilever beam (DCB) specimens has been analyzed [5]. The 

double cantilever beam (DCB) specimen loaded dynamically by a flying wedge offers a 

relatively simple experimental approach to analyzing the mode I dynamic delamination 

problem. The role of bridging by stitches or rods on dynamic crack growth was computed 

by solving the bridged crack problem within the framework of beam theory. Analytical 

results were obtained for steady state crack propagation conditions. 

(via) The magnitude of the bridging traction, which is controlled by the properties of the 

through thickness reinforcement, plays a significant role in the crack growth behavior. 

For steady state crack growth conditions, different regimes of the solution behavior have 
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been identified which would correspond to different crack propagation characteristics. 

Critical velocities that demarcate the various solution regimes have been identified. 

(ix) Steady state crack growth is attainable for this loading configuration provided certain 

conditions are satisfied. Regions of stable crack growth have been identified in terms of 

the material properties of the through thickness reinforcement, the size of the DCB 

specimen and the velocity of the wedge. This provides guidelines for design of 

experiments to probe the efficacy of bridging on improving the dynamic fracture 

toughness of through thickness reinforced structures [6]. 

(x) The dynamic crack energy release rate as a function of the local crack tip velocity has 

been computed for a material possessing orthotropic symmetry under general mixed 

mode loading conditions. The dynamic energy release rate varies asO[(vr-v)_1]as 

v -> vr, and where v is the crack speed and vr is the Rayleigh wave speed. We find that 

the variation in the dynamic crack energy relase rate for orthotropic materials can be 

rationalized in terms of the orthotropy parameters X and p, just as in the static case. This 

computation of the dynamic energy release rate is necessary to calculate the energetics of 

crack growth for standard engineering specimens [7]. 

(xi) An approximate formula for the static weight function that describes the crack tip stress 

intensity factor due to a pair of point loads on the fracture surface of an orthotropic 

delamination specimen has been postulated and validated numerically [8]. This weight 

function enables accurate solution of mode I delamination problems in the presence of 

large scale bridging over all crack length regimes, since it avoids the errors of beam 

theory in describing the singular crack tip fields. However, comparison of results for 

large scale bridging problems with a Dugdale (uniform traction) bridging law shows that 

a beam theory model with appropriate crack tip corrections (available in the literature) 

may be acceptably accurate. The weight functions will be used to formulate integral 

equation solutions,  which will be to ensure that accurate results are always available sL 
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least as a reference in future work.   Extension to mode II loading and dynamic weight 

functions is under way. 

(xii) A subcontract was issued to Etech, Inc. for experiments to gain understanding of the 

mechanics of fibre push-in (analogous to pullout) under dynamic loading. The first 

experiments have already been completed (Owen and Rosakis) and the key strain field 

and velocity data successfully recorded. Further reports will follow after proper analysis 

of the data. 

Considerable headway has been made in all of the tasks listed above, even though the program 

has been in effect for only a short time period (~ 16 months). The work in each case is mainly 

finished and we are well advanced in writing papers. Unfinished mansucripts will be completed 

in the next few months. 
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2.0     FUTURE WORK 

The following issues remain as the natural continuation of our work. 

1. The dynamic traction law model must be generalised to mixed mode loading. We have a 

model for mixed mode loading in the static case [1]. We now know from this year's 

work that dynamic effects are likely to be important in most cases and we therefore 

should consider how to adapt our static model to deal with inertial effects during mode II 

deflections of a stitch in a laminate. 

2. The fracture or crack propagation problem must be solved for mixed mode loading. We 

know from the static case that mode ratio effects have a major influence on the 

qualitative character of crack propagation in the presence of large scale bridging. This 

fundamental question must therefore also be resolved for dynamic fracture. 

3. We are now in position to map out (a) a method of predicting the extent of delamination 

damage during composite impact and (b) the energy absorption capacity of delaminating 

composites. In both cases, the outcome will be very strongly affected by the presence of 

through-thickness reinforcement (large scale bridging zones). 

4. Experimental data must be obtained and analyzed for dynamic crack and pullout 

problems to validate our theoretical results. Although there has been considerable 

experimental characterization of fibre - matrix debonding under quasi-static loading 

conditions, comparatively little is known regarding the process at relatively high, 

dynamic loading rates. Prof. Ares Rosakis of Caltech, with a sub-contract under this 

program, is conducting a detailed experimental study of the dynamic fiber pull-out / 

push-in process and will provide data with which the validity of the pull-out model will 

be assessed.    Through the use of a carefully designed 2D model material system a .11V* 
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high-speed diagnostics, a complete quantitative description of process can be obtained 

which makes direct comparison with the model possible. 

5. Upon passing of the crack tip, a debond crack propagates along the length of the fibre 

away from the fracture plane. Propagation of the debond crack is governed by the 

fracture energy associated with the separation of the matrix and the fibre at the debond 

crack tip and the work done against friction in displacing the debonded fibre along its 

axis. In many composites, the debond energy is small and pullout is dominated by 

friction over a wide range of pullout displacements. However, to deal with cases where 

this assumption is not true, we intend to develop a theoretical framework that 

incorporates the debond energy in the pullout model. Although, simple extensions of 

shear lag models are available to deal with debond energy contribution for the quasistatic 

loading case, the corresponding formalism for the dynamic case appears much more 

complicated and is yet to be developed. 

6. Weight function or other computational formulations must be used to validate and extend 

analytical and illustrative results based on beam theory. 

7. Based on our increasing understanding of the dynamic delamination process with large 

scale bridging, models of energy absorption in a laminate structure and delamination 

resistance must be formulated. Such models are intended to enable systematic 

optimisation of energy absorption and delamination resistance by providing reasonably 

simple but physically correct design rules. 

These are the issues identified in our original proposal.  We are very much on track to address 

them in their turn. 
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3.0     SUMMARY OF PROGRESS 

3.1     Mechanics of Crack Bridging by Fiber Tows under Mixed Mode 

Loading 

Through-thickness reinforcement is a promising solution to the problem of delamination 

susceptibility in laminated composites, but its acceptance by the design community awaits 

dependable models of its performance and failure. Models have been slow in coming, mainly 

because the mechanisms involved in the failure of through-thickness reinforcing elements are at 

first sight very complicated. 

However, from a micromechanical standpoint, key mechanisms of damage recently revealed by 

detailed experiments show encouraging universality among bridging tows of various kinds, 

including stitches and short fibrous rods (so-called "z-fibers"). The key phenomena are as 

follows: The bridging tow deforms plastically in axial shear at the smallest observable crack 

sliding (mode II) displacements. Plasticity is mediated at first by crazing and microcracking in 

the resin within the tow. Plasticity and damage (microcracking, splitting, and spalling) occur 

soon after in the adjacent laminate. Plasticity allows fiber rotation near the delamination crack 

plane, so that the axial stress in the fibers creates significant shear components on the fracture 

plane (creating shear bridging tractions). By this mechanism, the mode II bridging tractions can 

reach ~ 1 GPa across the section of the tow, which is an order of magnitude higher than the tow 

could support in axial shear prior to fiber rotation. At small crack opening or sliding 

displacements, the tow also detaches via circumscribing matrix cracks (not necessarily fiber/resin 

debond cracks) from the surrounding composite. The debonded tow slides through the laminate 

and the debonded zone extends fairly quickly to the outer surface of the laminate. Sliding 

displacement can accommodate the increase in path length that occurs when the locus of the 

bridging tow is altered by fiber rotation. Fiber rotation in the bridging tow also implies lateral 

motion of the tow into the surrounding laminate. This ploughing action may be modeled 

phenomenologically as the problem of a punch being driven into a plastic medium, since the 

8 
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laminate deforms by matrix mediated plasticity. The driving force for the punch deflection may 

be regarded as the combination of the line tension sustained by the fibers in the bridging tow in 

concert with their curvature, which increases as the tow deflects. 

In this work, all of the phenomena described above has been modeled with remarkable 

simplicity, and without betraying the observed physics of the bridging process [1]. A model of 

the response of the bridging tow has been formulated and solved analytically, giving useful 

insight into the governing material and geometrical factors. The formulation is generalised to 

allow the bridging tow to be canted relative to the fracture plane and to deal with mixed mode 

loading conditions. The essential material property that came out of solving the mechanics of 

the bridged crack problem is the traction law, p(u), relating the vector of relative displacements 

of the crack surfaces, u, to the vector of tractions, p, supplied to the fracture surfaces by the 

bridging through-thickness reinforcement. Generalizations to any combination of mode I and II 

displacements and tractions was considered to make it relevant to problems of interest. The 

mixed mode traction law was derived in analytical form, requiring at most the solution of two 

transcendental equations in a single scalar variable. The results contain only a few material 

parameters, including a shear flow stress for the bridging tow, a friction stress for tow sliding, 

and a punch resistance stress, all of which can be independently estimated. Reasonable values for 

the parameters lead to laws that agree very well with experimental measurements. Thus a good 

description is readily available for the physics of crack bridging in the static delamination crack 

problem. 

The generalized model developed above should be applicable to all problems of monotonic 

loading and for general stress state. The model reveals that, provided pullout of the entire tow 

does not occur, shear bridging tractions are sustained more effectively by fibrous tows canted 

such that the tows are loaded with the nap (tension along their axes). Pullout can be avoided 

either by using continuous stitching or, if short rods are used, by ensuring that the aspect ratio of 

the rod (length/circumference) is sufficiently large. Orienting fibrous tows to be loaded in axial 

tension exploits the high axial stiffness of the fibres in the tow. Orienting them so that they are 

initially in compression will cause initial fibre rotation by a mechanism analogous to kinking that 
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depends primarily on the matrix strength and also maximises the tendency of the tow to deflect 

laterally through the laminate. Both of these mechanisms tend to create a softer response under 

shear bridging tractions. 

To conclude, we have constructed an elaborate micromechanical model that shows how a 

bridging tow should behave if it is initially inclined to the fracture plane and subject to mixed 

mode loading. From these models, the effective bridging law for a bridged crack model of the 

delamination can be derived. Once again, approximations guided by experiments enable the 

results to be obtained in remarkably simple form, with closed form analytical expressions 

available for certain cases. The approach outlined above is an excellent starting point for 

studying dynamic delamination under mixed mode loading conditions. 

3.2     Inertial effects in the pullout mechanism of a bridged crack 

In this part of our research [2,3], it is our aim to develop an equivalent bridging model for 

individual through-thickness reinforcement tows under dynamic loading. Dynamic loading rates 

can significantly affect the mechanisms described above, probably leading to a hardening of the 

traction law and more brittle behavior of the bridging tow. In order to get insights into how 

dynamic effects modify the mechanics of deformation, we begin by modifying the mechanics of 

pullout under quasistatic loading to include the inertial effects. 

The mechanics of pullout and the resulting traction law have been much studied and are well 

understood for static loading. Simple analytical forms are available for p(u) when the factional 

coupling of the reinforcement to the matrix is uniform and slip extends over distances that are 

large compared to the reinforcement diameter (Marshall, Cox, and Evans, 1985; McCartney, 

1987). In this limit, which is a common case in ceramic composites and textile polymeric 

composites, the shear lag model of load transfer between the reinforcement and the matrix is 

accurate. Simple extensions of models of this class are also available to deal with small but 

nonzero levels of the work required to debond the reinforcement from the matrix prior to slip 

10 
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[11]. Given the relationship, p(u), the characteristics of crack propagation can be computed by 

solving a bridged crack problem [19-22]. 

In this section, we extend existing models of the mechanics of pullout to high loading rates. An 

approach to evaluating a traction law that takes account of the inertia of the reinforcement and 

the matrix is formulated as a direct extension of the elementary static loading model [9,10]. The 

chosen base model for static loading has proven consistent with experiments in many material 

systems and has been the foundation of major advances in understanding damage in composites. 

The spirit of the present work is to seek equivalent insight into dynamic damage by incorporating 

the influence of inertia into the simplest credible model. Thus not all aspects of the 

micromechanics of pullout that could be important in some cases will be addressed. Instead, 

attention will be focused on identifying a characteristic time for the frictional pullout problem 

that will allow rapid assessment of when inertial effects will be important. 

Idealization of the Bridged Crack problem 

The crack propagation and pullout problems are depicted schematically in Fig. 1. A matrix 

crack propagates on the plane z = 0 and is bridged by intact fibres in its wake. (For simplicity of 

expression, the term fibre from here on will be used to refer to bridging entities of any kind, 

including stitches, rods, and bridging grains.) Upon the passing of the crack tip, a debond crack 

propagates along the length of each fibre away from the fracture plane. Propagation of the 

debond crack is governed by the fracture energy associated with the separation of the matrix and 

the fibre at the debond crack tip and the work done against friction in displacing the debonded 

fibre along its axis. In many composites, the debond energy is small and pullout is dominated by 

friction over much of the range of pullout displacements. Therefore, in this first mode! the 

debond energy will be ignored. 

For static loading, the crack propagation problem can be idealised by replacing the process zone 

by elastic composite material down to the fracture plane and representing the phenomena within 

the process zone by bridging tractions applied continuously on the fracture surfaces (Fig. 1). The 

11 
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bridging tractions,p, are related to the axial stress, T, in the fibres at the fracture plane hyp =JTt 

where / is the area fraction of the fibres on the plane z = 0. For aligned continuous 

reinforcement,/is also the volume fraction of the fibres. The total crack opening displacement, 

2u, in the idealisation should be defined as the difference in the actual displacement evaluated 

across the process zone and the displacement that would be expected if the material in the 

process zone was elastic. 

(a) 

ft 
n / 
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4 
il „/.. 
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■!!S 
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Lt 

II Li 

„ crack tip 

* Boundary of 
process zona 

MCCSCKMOUMC 

R506MC« 072500 

Figure 1. (a) Schematic of a crack bridged by fibres, showing process zone where relative 

displacement exists between fibres and matrix, (b) Idealization of the bridged crack problem 

with process zone replaced by surface tractions acting on the fracture surfaces. 

The traction law, p(u), is derived by considering the micromechanics of the phenomena 

occurring within the process zone, which is to say the micromechanics of factional sliding. The 

micromechanical problem can be represented by a small volume of material, e.g., the material 

12 
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bounded by one of the dotted rectangles in Fig. la.   The traction boundary conditions for the 

representative volume are as follows. At z = 0, the matrix is traction-free, while the fibres 

sustain the axial traction T. At z = /s, the strain in the fibres and the matrix must equal the 

average strain in the composite adjacent to the process zone (z > ls). Shear tractions may arise 

along the vertical boundaries of the representative volume (parallel to z), but these are neglected. 

In the problem of a crack propagating under static loading, the traction at z = /s for the 

representative volume associated with a fixed volume of material is assumed to rise from zero 

when the material is immediately behind the crack tip to increasing values as the material passes 

further back into the wake [9]. The tractions are not truly zero right at the crack tip, since the 

fibres are not stress-free, but assuming they are leads to reasonable results for the bridged crack 

problem as long as the fibres remain intact over sufficiently long distances into the crack wake. 

Then shielding of the crack tip is dominated by the bridging tractions acting in the further crack 

wake, where the boundary conditions are correct. In dynamic loading, the boundary conditions 

at the boundary of the process zone involve displacement and displacement rates as well as stress 

or strain conditions. 

The Micromechanics of Dynamic Pullout 

When friction is the only active force of resistance, the static pullout problem reduces to an 

idealization in which fibers are pulled out of a half-space to which they are not initially bonded. 

The dynamic problem is one of wave propagation along a fibre in the presence of factional 

retardation and with no debond crack tip or crack tip field to be considered. 

The archetypal problem is illustrated in the figure 2 below. A representative volume consists of 

cylindrical fibres of radius R and volume fraction/embedded in a matrix (z > 0). The fibre and 

the matrix have axial Young's moduli E{ and Em and densities pi and p^ respectively. The axial 

displacement, strain, and stress of the fibre and the matrix are denoted «f and um, s? and e^, and 

oi and <jm, respectively. The axial displacements will be assumed to be the only nonzero 

displacement components induced by loading and to be uniform across any section of the fibre or 

13 
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the matrix. Thus the displacement, strain, and stress in the fibre and the matrix are functions of z 

and / only. They are consistent with assuming that the friction forces are constant (unaffected by 

fibre contraction or dilation due to axial stresses). 

a=eE 
t   t  \ 

7 H i 

matrix crack 
plane 

lilt 

boundary of 
process zone 

2R 

0 
<Tf(0,T) 

^ traction free surface 
of matrix 

RSC0586 Cox 080500 

FigureJ: Schematic of the dynamic pullout problem in a composite near the fracture plane. 

There is no initial bond between the fibres and the matrix. The fibres are coupled to the matrix 

by friction tractions, rf, which are assigned the following properties. If relative motion exists 

between the fibres and the matrix, then 

rf=r  (wf<wm) (3.2.1a) 

rf=-r (rif >7?m) (3.2.1b) 

where a dot indicates time differentiation, r is a positive constant and rf > 0 indicates friction 

tractions acting on the fibres in the positive z direction. When the fibres and the matrix are not in 

14 
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relative motion, the friction tractions may support stress gradients in the fibres and the matrix, 

provided that the required magnitude of Tf does not exceed  r.     Thus,  by equilibrium 

considerations, 

dtJr 

dz -Pi 
di'if 

dt R 

da„ diK 
dz dt 

< 2/  T 

l-fR 
(Äf=i/m).      (3.2.1c) 

Here the possibility is included that the matrix and the fibres have the same non-zero velocity 

and may also be accelerating together, although such general solutions will not be exhibited in 

this paper. With such a friction law, the dynamic wave equations describing those parts of the 

fibres and the matrix that are in relative motion may be written approximately as 

d2uf 

dz2 

29x     1 d2uf 

REe c2  dt2 (3.2.2a) 

and 

d2um _ 2/    Or 

dz 1-fRE. 
+- i aV 

c-m dt' 
(3.2.2b) 

where 6= 1 if wm> wf and 0= -1 otherwise; and cf and cm are the bar wave velocities in the 

fibres and the matrix, given by 

& cm=. (3.2.2c) 

15 
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The approximation of using the bar wave velocities rather than the longitudinal wave velocities 

in the z direction in the wave equations is consistent with the simplified treatment of stresses and 

strains and the assumed uniformity of the friction stress. 

Boundary conditions in the dynamic case are as follows. At the fracture plane, 

Uf(0,t) = 0      &        am(0,t) = 0     (z = 0). (3.2.3) 

At the boundary of the process zone (limit of relative fibre/matrix motion), 

*'f = "m = uc     (z = /s) (3.2.4) 

where uc is the displacement of the adjacent intact composite; and conditions also exist on stress 

or strain and particle velocities. These further conditions depend on the nature of the loading 

history, which can be expressed as the function e(t), where sis the strain in the z direction in the 

intact composite adjacent to the process zone boundary. The bridging traction, p, is related to s 

by 

P = sE (3.2.5a) 

where the composite modulus, E, is given by 

E=/Er+(l-j)Em (3.2.5b) 

In the depiction of Fig. 2, the process zone boundary will propagate away from the fracture plane 

as e(t) rises. In the case to be considered in this paper, dj) will be assumed to rise continuously 

and monotonically from zero. Placing the origin of time, / = 0, at the onset of nonzero ttf), the 

location of the zone boundary at time / may then be written as: 

h = r](t)cmt (3.2.6«) 
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where the function t]{t) depends on material and geometrical parameters and the form of s(t) and 

will be shown to be bounded by 

0 < 77(0 < 1 . (3.2.6b) 

For the loading conditions considered, the additional boundary conditions at z = /s are: 

wf=wm=ttc (z = ls) (3.2.7a) 

and 

3r=Sn = £(0 (* = /.). (3.2.7b) 

If the load history, äj), possesses discontinuities, e.g., a step load, then discontinuities in stress 

and velocity will also propagate at the boundary of the process zone (e.g., Achenbach [12] ). 

Composite Stress Rising Linearly in Time 

A case of representative interest for dynamic bridged crack problems and for which analytical 

results can be found is that of a load or bridging traction that increases linearly in time. A 

linearly increasing load might give insight, for example, into bridging effects in a specimen in 

which substantial bending arises, such as a standard double cantilever beam delamination 

specimen. In such specimens, the crack profile is often approximately linear and the rate of 

increase of the bridging tractions at any point might also be approximately linear if the crack 

propagates at approximately constant speed. The bridging traction at a particular material point 

might be expected to rise from zero as the delamination crack first passes until a peak value is 

reached, perhaps corresponding to bridging fibre rupture. Analytical results can be found for 

linearly increasing loads. 
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Let 

e(t) = kt (3.2.8) 

where k is constant and all displacements and boundary tractions are zero for / < 0. In this case, 

0= 1 and the wave equations have the solutions 

z/f = az2 + [l + 2T]O\SZ (3.2.9a) 

"m=^2V2+i[i+2?7ah (3.2.9b) 

where 77 is independent of time and satisfies 

arf + V2Ti2 + ßari-V2 = 0 

with the dimensionless parameters a and ßgiven by 

& a 
TC _        m ß=J--S 

EfRk -     i-fEm 

Analysis shows that Eq. (3.2.9c) has only one real root, which always lies in (0,1). 

(3.2.9c) 

(3.2.9d) 

The particle velocities and the strains for 0 < z < ls are given by 

wf = [l + 27]cc]kz (3.2.10a) 

um =\i + 2r]a]cls (3.2.10b) 

£i = \ + 2rja 1-- (3.2.10c) 
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sm=js (3.2.10d) 

The matrix particle velocity is uniform and increases in proportion to /s. The fibre velocity rises 

linearly through the process zone. A strain concentration, erfe, propagates in the fibre behind the 

process zone front, while the matrix strain in the process zone is always less than e. The strain 

distributions and velocities beyond the process zone, z > 4, need not be specified, provided the 

composite strain s obeys the condition Eq. (3.2.7) on the process zone boundary. 

The displacement, u, to be used in defining the traction law, p{v), is given by the common fibre 

and matrix displacement, u\ = ufe = /s) = um{z = 4) at the boundary of the process zone minus 

the displacement expected if the process zone material were elastic: 

u = V\ - e!s 

k 

CmCCT}2-p2 . (3.2.11) 2 kE 

Equation (3.2.11) constitutes the traction law for the case of linearly rising loads. The limit of 

very fast loading corresponds to k -» oo, whereupon a -> 0 and rj -> 1, since the first and third 

terms in Eq. (3.2.9c) become negligible. The disturbance then propagates at the bar wave speed 

in the matrix. Static loading is represented by the limit k -> 0 or a -» oo, for which the first two 

terms of Eq. (3.2.9c) become small and one has the asymptotic solution 

"^      ■ (3212) 

For this limit, substituting Eq. (3.2.12) into Eqs. (3.2.6a) and (3.2.11) yields 
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A-iz/5** 
/     2T -£ (3.2.13a) 

»->i/(rt) = 
fi-/Y^/? 2 

* (3.2.13b) 4£fr I  / 

which coincide with the results obtained by McCartney [10]. 

Equations (3.2.10) and (3.2.13b) show that for loads that increase linearly with time, the form of 

the traction law is identical in the static and dynamic cases and 

^k = 2a^ ■ (3.2.14) 

Thus the strength of the effects arising from inertia is measured by the degree to which the limit 

of Eq. (12) is not approached. This can be conveniently summarised by comparing the product 
laßt] to unity. 

Large ß   Asymptotic analysis of Eq. (3.2.9c) shows that in the limit ß -+ oo, 2aßrj -> 

2 V(a/?)4 + (aßf -faß)2    (second, third, and fourth terms of Eq. (3.2.9c) dominant), which is 

a function of aß and not of ß separately; and Fig. 3a shows that this limit is approached quite 

closely for ß> 1, which is expected, for example, for composites containing relatively stiff fibres 

(Ef>Em). Fig. 3a also suggests that, as an engineering estimate, inertial effects are large when 

aßS-6fiü¥j2 V>X) . (3.2.15) 
Remembering that *'' is the time constant of the loading, this condition can be rewritten 

*-<2!^^JL V>1) (3216) 
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Figure 3: The product 2aßrj, which indicates the relative importance of inertial effects in the 

bridging phenomenon, (a) Numerical results for representative values of ß. (b) Numerical 

results for laßrj compared with asymptotic limit for large Em (dashed curves). The value of 

(aß)i is marked for ß= 0.01 and is to be compared with the value of aß at which laßt]« 0.9, 

which is taken as a representative cutoff for significant inertial effects. 
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Small ß. The limit of a relatively stiff matrix can be analysed by observing that a oc E% while ß 

cc £m
!; and that Eq. (3.2.9c) in the limit £m -> oo therefore yields the limiting solution 77 ->■ (2a)" 

1/3 (first and last terms of Eq. (3.2.9c) dominant). Thus 2aßrj -> (2aß)2ßf3 when aß ->• 0. 

Figure 3b shows this approximation for three values of ß< 1. While the limit is approached only 

for a/? so small that laßt] is also small, it can nevertheless be used as the basis for engineering 

estimates of the condition for significant inertial effects, i.e., the first significant departure of 

laßt] from unity. The construction of Fig. 3b suggests that inertial effects will be significant 

when aß<4(aß)u where (aß)l is the value of the product aß at which the equation (2aß)2ß/?ß 

= 1 is satisfied; i.e., 

aß<~p (/?<!)• (3.2.17) 

This leads to the criterion for significant inertial effects for composites with relatively stiff 

matrices that 

k~l<2 hi 
f 

3    2 

fr^f 0»<D ■ (3.2.18) 
hi     T   Cm 

The criteria of Eqs. (3.2.16) and (3.2.18) coincide when ß= 1.  Since 2aß?j < 1 always, inertial 

effects increase the stiffness, dpldu, of the traction law for loads that increase linearly in time. 

Conclusion: 

Some analytical results have been presented for the problem of bridging by the mechanism of 

fibre pullout when the inertia of the fibre and the matrix are taken into account. With this model, 

we also calculated simple criteria for significant inertial effects in the bridging mechanism in 

representative mode I crack propagation problems. We find that the inertial effects in the 

bridging mechanism will often be significant for a matrix crack propagating dynamically in the 
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steady state ACK limit in a brittle matrix continuous fibre composite or delamination in 

laminates reinforced by through-thickness stitching or rods. 

We also find that significant inertial effects are favored by low fibre volume fraction, low 

friction stress, low matrix bar wave speed, and low fibre modulus; and high fibre diameter and 

high matrix modulus. If the fibre modulus is high enough (relative to the matrix modulus), the 

criterion for inertial effects becomes independent of fibre modulus. The matrix density enters 

the criterion only through the matrix bar wave speed. The criterion is always independent of the 

fibre density. 

Finally, we also find that for pullout or bridging stresses that rise linearly in time, the 

instantaneous crack displacement is less in the presence of inertial effects than it would be under 

static loading to the same bridging stress. However, solutions for pullout from a rigid matrix 

suggest that, if the bridging stress rises rapidly and is then held at a constant value, the crack 

displacement when all particle motion finally stops will be greater than it would have been under 

static loading to that stress level. Thus regimes of both hardening and softening of the bridging 

traction law due to inertial effects can be expected in bridged crack problems. 

We also formulated fast numerical solutions for general loading cases and hence have a scheme 

to compute the bridging law for fairly general conditions [4]. This will be required to solve 

large-scale bridging, dynamic crack problems to self-consistency (bridging tractions unknown a 

priori). The history dependent bridging law thus computed will form the basic ingredient in the 

computation of the structural response of the composite under dynamic loading conditions. 
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3.4     Mechanics of Crack Growth in Through-Thickness Reinforced DCB 
Specimens 

In this portion of the research [5,6], the role of bridging by stitches or rods on steady state 

dynamic crack growth is analyzed. In particular, the dynamics of crack growth for through 

thickness reinforced double cantilever beam (DCB) specimens are examined. The DCB 

specimen is widely used in Mode I fracture toughness tests of polymers and composites. 

Certain solution characteristics as a result of the bridging are first identified. In the next section, 

we look into detail into the energetics of crack growth for a through thickness reinforced DCB 

specimen loaded by a flying wedge. The double cantilever beam (DCB) specimen loaded 

dynamically by a flying wedge offers a relatively simple experimental approach to analyzing the 

mode I dynamic delamination problem. The test is especially attractive for studying the bridging 

effects supplied by through-thickness reinforcement (e.g., stitches or rods) in laminates. The role 

of bridging by stitches or rods on steady state dynamic crack growth was computed by solving 

the bridged crack problem within the framework of beam theory. 

Beam Theory Formulation and Solution Characteristic- 

The equations of motion for the beam element are: 

ax"pbh^" (3Ala) 

at 
•^--P(w,t)b= pbh— (3Alb) 

ox       Q~ pI^" (3.4.1c) 

where u(x,t) and w(x,t) are the in-plane and transverse displacements of the neutral plane 

respectively, <J,(x,t) is the clockwise rotation of the cross-section, t is the time variable, N is the axial 

force, Q is the shear force, M is the bending moment, 2h is the total thickness of the DCB specimen, 

b is the width of the specimen, p is the density, I (= bh3/12)is the moment of inertia and p(w,t) is the 

24 



SC71164.RPRTTA 
bridging traction corresponding to the opening mode. The time dependent bridging traction p 

corresponding to the opening mode is assumed to depend only on the transverse displacement w. 

For a Timoshenko beam, the equations of motion for steady state cracking reduce to: 

d2u 
dX 2 = 0 (3.4.2a) 

a4w c? 12 R d2w   +  l-  
,2\/i     „2\    u2      av2 ax4        (R-cf)O-cf)   b     dX1 

1 1   a2p(w,X) 1 12 R 
(3.4.2b) 

+ ^Z 57" ^T7TTP(W>X)     =    0 (R-c2)Eh      OX2 (R-c2)(l-c2)Eh3 

3£ =   p(w,X)  _   (R-cj) d2w 
dX  ~    REh R       dX2 (3.4.2c) 

where X = x - v t, cf = p v2 IE and R = K GIE and where v is the (constant) velocity of the 

crack tip. In the limit of steady state crack velocity v-»0, we obtain the equations 

corresponding to the static case. 

Similarly, it is easy to show that for and Euler-Bernoulli beam (where both the shear deformation 

and rotational inertia is ignored), equations of motion for steady state cracking reduce to: 

SF =0 (3A3a) 

d4w     12 c? d2w       12    ,    w 

^+l^^+iFp(w-X)=0 (3A3b) 

where X = x - v t, v is the (constant) velocity of the crack tip, cf = pv2 IE and R=KGIE. 

We shall now consider a linear bridging law of the following type: 

p(w,X) =p0 + ß3w (3.4.4) 

A linear bridging law of the type above is a simple but realistic constitutive law. In the results 

that follow, we non-dimensionalize the length variables by the laminate thickness h. Therefore, 

w = h W, it = h U and X = h %.  We now analyze the solution characteristics. 
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For a linear bridging law in Equation 3.4.4, £/(£)=0. The transverse displacement obeys: 

0l+^^+i.Br + rf..O (3A5a) 

Also, for the Timoshenko beam the clockwise rotation § is: 

01 =   (Po+ßJW) _   (R-cf)82W 
d£ RE R       d£2 (3A5b) 

The coefficients ß, b and d in Equation 3.4.5a are: 

For Timoshenko beam: 

12 cfR ß3h 
Q-cfHR-cf)     (R-cf)E 

b=  \_        R 12ß,h 
(l-cf)(R-cf)    E 

d- \ R        ~ÜP^ „,., 
i(l-cf)(R-cf)   E (3A6a> 

For Euler-Bernoulli (E-B) beam: 

and where c2 = pv2/E, c) = p v2 I{K G) and R = KG IE. In the limit that the crack velocity 

approaches zero ( v = c, = cs -> 0), we retrieve the static case of Roberta and Cox [17,18]. 

The general solution to equation 3.4.5a is: 

r-,  ,       • (3-4.7) 
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There are three regimes to the solution behavior and these are identified below. In the equations 

below, we have introduced the dimensionless quantities: 

S=  ß>h      and    R=KG 

UKG                      E 

•    Case 1:      ß2 < 0 and ß4 > 4b2 => Exponential behavior 

-    For Timoshenko beam, this is true provided: 

^1<-^-    and     3(S(l-cf)-cf)2>S(\-cf)(R-cf) 
E      \ + S 

(3.4.8a) 

-    For the E-B beam, the above condition is never satisified. 

•    Case 2:      ß2 > 0 and ß4 > 4b2 => Oscillatory and non-decaying behavior 

-    For Timoshenko beam, this is true provided: 

££->-£-     and     3(S(l-c?)-c?y>S(l-c?)(R-c?) 
E      \ + S 

(3.4.8b. 1) 

-    For the E-B beam, this condition is satisified when: 

E       v (3.4.8b.2) 

•    Case 3:      ß4 < 4b2 =>  Oscillatory with exponential decay behavior 

-    For the Timoshenko beam, this is true when: 

3(S(l-cf)-cf)2<S(l-cf)(R-cf) (3.4.8c.l) 

-    For the E-B beam, this is true when: 

%  <2fiR 
E 

(3.4.8c.2) 

The arbitrary constants Ki, K2, K3, and K4 in Equation 15 are defined through the associated 

boundary and continuity conditions. The conditions determined above give us insight into when 

dynamic effects can significantly alter the mechanisms of deformation and the resultant bridging 

phenomena. For instance, if the crack tip velocity exceeds the conditions prescribed in either 
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(3.4.8a), oscillatory displacement fields will be introduced in the wake of the crack. These 

multiple oscillations are of a very different form to the crack face interpenetration caused 

sometimes by bridging effects in the static case. When such oscillations result from dynamic 

effects, the mechanics of bridging and the efficacy of through thickness bridging ligaments on 

the energetics of crack growth will be considerably altered. For example, stick-slip propagation 

modes become likely. 

Wedge-Loaded Double Cantilever Beam 

Delamination crack tip 

Figure 4: Schematic of through-thickness reinforced DCB specimen loaded with a flying wedge 

We now concentrate on the mechanics of delamination for the Euler Bernoulli beam, 

where both shear deformation and rotational inertia can be ignored. Therefore the constants ß, b 

and d referred to hereafter are the ones presented in Eqn. 3.4.6b. The double cantilever beam 

(DCB) specimen loaded dynamically by a flying wedge, of constant velocity, offers a relatively 

simple experimental approach to studying the mode I dynamic delamination problem (Fig. 4). 

The test is especially attractive for studying the bridging effects supplied by through-thickness 

reinforcement (e.g., stitches or rods) in laminates. In figure 4, 2a is the wedge angle, l is the 

distance between the wedge and the crack tip and ao is the length of the bridging zone. In non- 

dimensional form, / =h L, and a0 ^h A0. Due to symmetry, we focus our attention only on the 
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top half of the DCB specimen.   A detailed analysis of the role of the bridging on dynamic 

delamination behavior is presented in this section. The analysis is valid when the bridging 

constituent has a linear bridging relationship (as presented in Eqn. 3.4.4). 

For the unbridged portion, the deflection profile (wu =hWu) is obtained by setting b = d = 0. 

Therefore: 

-TZT + P2 ~^r = ° for (-Z < £ < -A0) (3.4.9a) 

^7T  +ß2 ^r + b2W + d2=0 for(-A0<Z<0) (3.4.9b) 
og oq 

The relevant boundary conditions are: 

W& = -L) = -a, w;(£ = -L) = 0 . (3.4.10) 

The deflection profiles should satisfy the continuity conditions at the end of the bridging zone 

(£ = -A0). The continuity conditions are: 

W(Z = -A0) = WU(£ = -A0),       W\4 = -A0) = W;(Z = -A0), 

W(Z = -A0) = W;({ = -A0),     W
m(t = -A0) = W;(t = -A0) . (3.4.11) 

The governing equation (3.4.9) together with the boundary conditions (3.4.10) and the continuity 

conditions (3.4.11) will completely determine the deflection profile of the beam. The bridging 

zone length (Ao) will be dictated by the critical crack opening displacement (wc =h Wc) required 

for failure of the bridging ligament. Therefore, Ao is obtained by solving: 

Wtf = -A0) = Wc . (3.4.12) 

The energy release rate (GTotaI), determined through the total energy balance is: 

r      - I 
^Total    ~     _. 

fauext    aus   öuk^ 
(3.4.13) 

J 3a 3a       Sa 

where Uext is the work done by the applied load, Us is the strain energy, Uk is the kinetic energy, 

B is the uniform width of the DCB specimen, and a is the crack length. For steady state crack 

extension a = v t, where v is the crack velocity and t is time. Further, under steady stair 
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delamination, there is no net change in strain energy (Ü. = 0) upon crack extension since both 

the material ahead of the crack tip and the material in the wake of the wedge have zero strain 

energy. However, for small a: 

dU 
= 2-H 

dt dt 
d(l 3„2 -m v/   = BphvJSin2(a)« Bphv3a 

do t ex   = 2 .Applied Force, v 
dt 

= -2Sin(a)vQ|       «Bv 
aEh 5jW. 

2£3 
% 

(3.4.14a) 

(3.4.14b) 

$ = -L 

where m is the mass in the wake behind the wedge, vn is the normal velocity and Q is the shear 

force in the beam. Therefore, 

G aEh 53W„ 
Total 

^ 
2 „2 - phv a (3.4.15) 

S = -L 

In addition, by application of the dynamic J-integral, the energy released at the crack tip is 

related to the bending moment M by : 

GTip    = 
12 

Eh3 kJ - % 12 
d2W 

^ 
(3.4.16) 

l=oJ 

In general, due to crack bridging, AG = GTotal - GTip * 0. The energy difference, AG , is the 

extra work done in fracturing the bridging ligaments. In the absence of crack bridging, AG= 0 

and GTotai = GTiP = Go is given by: 

phv2 a2 
Go = 

Tan2(X/2) 
(3.4.17) 

With this formalism, detailed calculations of the deflection profile and crack energy release rate 

was computed for the linear bridging law [5]. Analytical results were obtained for steady state 

crack propagation conditions. The key results are summarized below: 

ah •    The magnitude of the bridging traction, which is controlled by the properties of the throu, 

thickness reinforcement, plays a significant role in the crack growth behavior.   For steady 
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state crack growth conditions, different regimes of the solution behavior have been identified 

which would correspond to different crack propagation characteristics. Critical velocities 

that demarcate the various solution regimes have been identified. 

Steady state crack growth is attainable for this loading configuration provided certain 

conditions are satisfied. Regions of stable crack growth as a function of the material 

properties of the through thickness reinforcement, the size of the DCB specimen and the 

velocity of the wedge have been identified. This provides guidelines for design of 

experiments to probe the efficacy of bridging on improving the dynamic fracture toughness 

of through thickness reinforced structures. 

3.5 Dynamic Crack Energy Release Rate for Orthotropic Laminates 

In this portion of the work, we compute explicit relations for the dynamic crack energy release 

rate and crack tip stress intensity factors in a form most amenable to computational work for a 

crack propagating along any principal axis in an orthotropic material [6]. The results presented 

in this form may be particularly useful for work on delamination cracks in laminated composites, 

which are orthotropic in many important applications. Although Yang and co-workers [13] 

presented results for a mixed mode crack in an orthotropic material, it is in a form that is not best 

suited for immediate computation. By an adaptation of the Stroh method of analysis used by Wu 

[14], the results of Yang et al. [13] are rendered here in a different form better suited to 

numerical evaluation. The role of orthotropic anisotropy in determining the velocity dependence 

of Gd is then illustrated for delamination cracks in typical ceramic, metal and polymer matrix 

laminated composites. 

The relation between the energy release rate and the crack tip stress intensity factor is central to 

fracture analysis. It appears, for example, in the derivation of stress intensity factors from 

applications of the ./-integral and in the derivation via energy arguments of integral equations for 

bridged cracks from weight functions. Freund [15] showed that the dynamic crack energy 

release rate for an extending crack in an elastic body can be written as the modified J-integral, 

which leads to the G-k relationship in the following, convenient form: 
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where Gd is the dynamic crack energy release rate and k(t) is the instantaneous crack tip stress 
intensity factors (see Eq. 4.19 in Wu [14] and references therein). The elements of the L"1 matrix 
are universal functions, in the sense that they are independent of the details of the applied 
loading or on the configuration of the body being analyzed. We calculated the L"1 matrix when 

the material possesses orthotropic symmetry and when the crack is extending along one of the 

principal axis [6]. In this case, the off-diagonal elements of the matrix are zero and the diagonal 

elements of the L"1 matrix is just dependent on the elastic properties of the orthotropic medium 

and the instantaneous value of the crack tip velocity. For an orthotropic material with the crack 

propagating along the 1 direction (and direction 3 being the plane strain direction), elements of 
the L"1 matrix are: 

-l 

G 66 
o 

o 

o 

-(YI-YIYA) 

(Y^-YSYS) 

0 

0 

0 

Ye 

where the y'sare presented in detail in the appendix paper [6]. We can also define the 
generalized Rayleigh wave function R(v) as 

*00 = Yl-YiYs 

and the Rayleigh wave speed (vr) is obtained by setting R(vr) = 0. 

The diagonal elements L"\,i and h\2 were computed numerically for cracks propagating along 
different principal axes in various representative composites. The L"1 matrix elements are 
functions of the elastic properties and the instantaneous crack velocity. Each diagonal element 
approaches the corresponding static value as v -> 0 and has the property of 0[(vr - v)"1] as 

v -> vr, where vr is the Rayleigh wave speed. In addition, we find that the that the variation in 

the normalized crack energy release rate (I/1 / [L"1]^)  as a function of the normalized crack 
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velocity v/vr can be rationalized in terms of the orthotropy parameters X and p (Suo et 

al.,[16]). For the same normalized crack speed, the normalized mode I contribution (L'\,i / [L" 

\,i]static) to the dynamic crack energy release rate increases as X monotonically increases and as 

p monotonically decreases. For the same normalized crack speed, the normalized mode II 

contribution (L_12,2 / [L^Wic) to the dynamic crack energy release rate increases as X increases 

and as p decreases. However, as opposed to the mode I case, the variation on X and p is much 

smaller. In addition, we observe that although the energy release rate shows a monotonic 

dependence on X, the dependence on p, for small p, is not monotonic. 

To conclude, we have provided an analytical form for easy estimation of the dynamic crack energy 

release rate, in terms of the crack tip stress intensity factors, has been presented for cracks 

propagating along any of the principal axis in orthotropic material systems. The dynamic crack 

energy release rate depends on the magnitude of the two orthotropic parameters and the 
instantaneous crack tip velocity.   The dynamic crack energy release rate is 0[(vr - v)_1] as v —> vr, 

and where vr is the Rayleigh wave speed. The variation in the dynamic crack energy relase rate for 

orthotropic materials can be rationalized in terms of the two orthotropy parameters X and p. 
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5.        COLLABORATIONS 

We continue to collaborate with Dr. Irene Beyerlein of Los Alamos National Labs and Dr. 

Roberta Massabö of University of Genova, Italy on modeling the mechanisms of deformation 

under dynamic loads. 

Prof. Ares Rosakis of Caltech, with a sub-contract under this program (~$20K), is conducting 

experiments for detailed study of the dynamic fiber pull-out / push-in process to provide data 

with which the validity of the pull-out model will be assessed. Through the use of a carefully 

designed 2D model material system and high-speed diagnostics, a complete quantitative 

description of process can be obtained which makes direct comparison with the theoretical model 

possible. 
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6.  FINANCIAL SUMMMARY 

As of January 21, 2001, we had received $188k in total funding since the inception of the 

program (Sept 2, 1999), of which approximately $3 5k stands unspent. Thus we are spending at 

slightly below linear rate. We expect the activity and the spending level in the program to 

increase over the next two months. 

We continue to add substantial value to our contract through collaborations with Dr. Irene 

Beyerlein of Los Alamos National Labs and Dr. Roberta Massabö of the University of Genova, 

Italy. The only expenses incurred in these collaborations so far have been for the travel expenses 

of Dr. Beyerlein and Dr. Massabö to Rockwell Science Center. Dr. Beyerlein visited us 2 times 

in this reporting period (~ a week per visit) and the total travel costs incurred were $1500. Dr. 

Massabö visited us 2 times in this reporting period (~ a week per visit) and the total travel costs 

incurred were $2000. 

37 



Science Center 
SC71164.RPRTTA 

7.   SCIENTIFIC PERSONNEL SUPPORTED BY GRANT 

Dr. Sridhar Narayanaswamy, Member of the Technical Staff, 

Design and Reliability Department, Materials Science Function 

Rockwell Science Center 

Dr. Brian Cox, Principal Scientist, Materials Science Function 

Rockwell Science Center 

Ms. Catherine Dunn, junior in the Department of Aeronautics, MIT was supported as a summer 

intern (May - July 2000) under the ARO grant. 

38 



SC71164.RPRTTA 
NOTE: Not included for internal distribution 
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OF A BRIDGED CRACK 

B. N. Cox and N. Sridhar 
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Thousand Oaks, CA 91360 
U.S.A. 

and 

I. Beyerlein 
Los Alamos National Laboratory 
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U.S.A. 
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June 2000 
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ABSTRACT 

Inertial effects in the mechanism of fibre pullout during the dynamic propagation of a 
bridged crack are examined by reposing simple shear lag models of pullout as problems 
of dynamic wave propagation. The only coupling considered between the fibres and the 
matrix is uniform, rate independent friction - no debond energy is included. Analytical 
solutions are found to the problem of the coupled waves in the fibres and the matrix that 
propagate away from the fracture plane of the bridged crack as the bridging tractions 
increase with time. These solutions yield the time-dependent relationship between the 
crack opening displacement and the bridging traction. Engineering criteria for inertial 
effects being significant are deduced by comparing the dynamic bridging traction law 
with its counterpart for static loading, which is recovered as a limit of the dynamic case. 
The criteria are evaluated for two crack cases: the asymptotic limit of a long, fully 
bridged matrix crack propagating unstably through a fibrous composite under remote 
tension; and a delamination crack bridged by stitches or rods that is loaded by a flying 
wedge splitting a double cantilever beam. In both cases, the rate of increase of the crack 
opening displacement appears to be sufficient for inertial effects to be pronounced in the 
bridging (pullout) mechanism. Expected trends of the significance of inertial effects with 
material and geometrical parameters are identified. 
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1.     Introduction 

The pullout mechanism is the fundamental source of toughening and fracture resistance 
in many composites. In brittle matrix composites, reinforcing fibres that are weakly 
bonded to the matrix can survive the passage of matrix cracks, across which they then 
provide bridging tractions that shield the crack tip from the applied load. The main 
mechanism of load transfer from the fibres to the matrix is interfacial friction. In 
polymeric laminates reinforced through the thickness by stitches or rods, analogous 
pullout phenomena are observed, but on the scale of fibre tows, which may be 1 mm in 
diameter, rather than on the scale of individual fibres (10 - 100 urn). Scale 
considerations aside, the mechanics of pullout are very similar in the two cases. Other 
systems in which bridging entities are coupled to a matrix by friction include so-called 
self-reinforced polycrystalline ceramics, in which elongated grains bridge cracks; and 
ceramic layered systems, in which fractured layers slide past one another during failure. 

For mode I cracks, the shielding effect created by the pullout phenomenon can be 
summarised by a bridging traction law that relates the stress in the bridging entities at the 
fracture plane, T, to the crack opening displacement, 2u. To a very good approximation 
in many cases, the tractions in the bridging entities can be replaced by an equivalent 
continuous traction, p, that is to be applied to the entire bridged interval of the fracture 
surfaces (e.g., Cox and Marshall, 1994). Predicting the traction law, p(ti), becomes one 
of the central problems of crack bridging theory. 

The mechanics of pullout and the resulting traction law have been much studied and are 
well understood for static loading. Simple analytical forms are available for p(u) when 
the frictional coupling of the reinforcement to the matrix is uniform and slip extends over 
distances that are large compared to the reinforcement diameter (Marshall, Cox, and 
Evans, 1985; McCartney, 1987). In this limit, which is a common case in ceramic 
composites and textile polymeric composites, the shear lag model of load transfer 
between the reinforcement and the matrix is accurate. Simple extensions of models of 
this class are also available to deal with small but nonzero levels of the work required to 
debond the reinforcement from the matrix prior to slip (Hutchinson and Jensen, 1990). 

Given the relationship, p(u), the characteristics of crack propagation can be computed by 
solving a bridged crack problem. In composites in which the bridging mechanism is 
most effective, the zone of bridging can be comparable to the crack length and much 
larger than features such as notches (Bao and Suo, 1992; Cox and Marshall, 1994) or, in 
the case of delamination cracks, the laminate thickness (Jain and Mai, 1995; Massabö and 
Cox, 1999). Crack propagation then does not follow Linear Elastic Fracture Mechanics, 
in the sense that there is no single material parameter such as toughness that correlates 
with the crack growth. Instead, the bridged crack problem is one of large scale bridging 
and the characteristics of propagation show features peculiar to the form of the traction 
law, p(u) [Cox, 1991]. 

This paper extends existing models of the mechanics of pullout to high loading rates. An 
approach to evaluating a traction law that takes account of the inertia of the reinforcement 
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and the matrix is formulated as a direct extension of the elementary static loading model 
of McCartney (1987) and Marshall, Cox, and Evans (1985). The chosen base model for 
static loading has proven consistent with experiments in many material systems and has 
been the foundation of major advances in understanding damage in composites. The 
spirit of the present work is to seek equivalent insight into dynamic damage by 
incorporating the influence of inertia into the simplest credible model. Thus not all 
aspects of the micromechanics of pullout that could be important in some cases will be 
addressed. Instead, attention will be focused on identifying a characteristic time for the 
factional pullout problem that will allow rapid assessment of when inertial effects will be 
important. 

2.     Idealisation of the Bridged Crack problem 

The crack propagation and pullout problems are depicted schematically in Fig la A 
matrix crack propagates on the plane z = 0 and is bridged by intact fibres in its wake 
(For simplicity of expression, the term fibre from here on will be used to refer to bridging 
entities of any kind, including stitches, rods, and bridging grains.) Upon the passing of 
the crack tip, a debond crack propagates along the length of each fibre away from the 
fracture plane. Propagation of the debond crack is governed by the fracture energy 
associated with the separation of the matrix and the fibre at the debond crack tip and the 
work done against friction in displacing the debonded fibre along its axis. In many 
composites, the debond energy is small and pullout is dominated by friction over much of 
the range of pullout displacements. Therefore, in this first model the debond energy will 
be ignored. 

For static loading, the crack propagation problem can be idealised by replacing the 
process zone by elastic composite material down to the fracture plane and representing 
the phenomena within the process zone by bridging tractions applied continuously on the 
fracture surfaces (Fig. lb). The bridging tractions, p, are related to the axial stress T in 
the fibres at the fracture plane byp =JT, where/is the area fraction of the fibres on the 
plane z - 0. For aligned continuous reinforcement, / is also the volume fraction of the 
u e!-f7he t0tal CraCk openin8 displacement, 2u, in the idealisation should be defined as 

the difference in the actual displacement evaluated across the process zone and the 
displacement that would be expected if the material in the process zone was elastic. 

The traction law, p(u), is derived by considering the micromechanics of the phenomena 
occurring within the process zone, which is to say the micromechanics of frictional 
sliding^ The micromechanical problem can be represented by a small volume of material 
e.g., the material bounded by one of the dotted rectangles in Fig. la. The traction 
boundary conditions for the representative volume are as follows. At z = 0, the matrix is 
traction-free, while the fibres sustain the axial traction T. Atz = /„ the strain in the fibres 
and the matrix must equal the average strain in the composite adjacent to the process 
zone (z > /,). Shear tractions may arise along the vertical boundaries of the representative 
volume (parallel to z\ but these are neglected. 
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In the problem of a crack propagating under static loading, the traction at z = /s for the 
representative volume associated with a fixed volume of material is assumed to rise from 
zero when the material is immediately behind the crack tip to increasing values as the 
material passes further back into the wake (Marshall et al, 1985). The tractions are not 
truly zero right at the crack tip, since the fibres are not stress-free, but assuming they are 
leads to reasonable results for the bridged crack problem as long as the fibres remain 
intact over sufficiently long distances into the crack wake. Then shielding of the crack 
tip is dominated by the bridging tractions acting in the further crack wake, where the 
boundary conditions are correct. 

Further details of the analysis of the micromechanical problem may be found in 
McCartney (1987) and the appendix to Marshall et al. (1985). 

In dynamic loading, the boundary conditions at the boundary of the process zone involve 
displacement and displacement rates as well as stress or strain conditions. 

3.     The Micromechanics of Dynamic Pullout 

When friction is the only active force of resistance, the static pullout problem reduces to 
an idealization in which fibers are pulled out of a half-space to which they are not 
initially bonded. The dynamic problem is one of wave propagation along a fibre in the 
presence of frictional retardation and with no debond crack tip or crack tip field to be 
considered. 

The archetypal problem is illustrated in Fig. 2. A representative volume consists of 
cylindrical fibres of radius R and volume fraction / embedded in a matrix (z > 0). The 
fibre and the matrix have axial Young's moduli E( and Em and densities pi and pm 
respectively. The axial displacement, strain, and stress of the fibre and the matrix are 
denoted Uf and um, er and Sm, and at and am, respectively. The axial displacements will be 
assumed to be the only nonzero displacement components induced by loading and to be 
uniform across any section of the fibre or the matrix. Thus the displacement, strain, and 
stress in the fibre and the matrix are functions of z and t only. These are the usual 
assumptions of shear lag theory with the simplest conditions of elasticity (Poisson's 
effect omitted). They are consistent with assuming that the friction forces are constant 
(unaffected by fibre contraction or dilation due to axial stresses). 

There is no initial bond between the fibres and the matrix. The fibres are coupled to the 
matrix by friction tractions, rf, which are assigned the following properties. If relative 
motion exists between the fibres and the matrix, then 

rt=T (Wf<«m) (la) 

rf=-r («f>«m) (lb) 
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where a dot indicates time differentiation, r is a positive constant and rf > 0 indicates 
friction tractions acting on the fibres in the positive z direction. When the fibres and the 
matrix are not in relative motion, the friction tractions may support stress gradients in the 
fibres and the matrix, provided that the required magnitude of rf does not exceed r. Thus, 
by equilibrium considerations, 

day 

dz Pi 
di'if 

dt R 

da„ 

dz "Ar 
dw„ 
dt 

<M. 
1-fR 

("r =«„,)•  (1c) 

Here the possibility is included that the matrix and the fibres have the same non-zero 
velocity and may also be accelerating together, although such general solutions will not 
be exhibited in this paper. With such a friction law, the dynamic wave equations 
describing those parts of the fibres and the matrix that are in relative motion may be 
written approximately as 

dz2 

29r     1 d2uf 

REf dt2 (2a) 

and 

82um _ 2/    9x       1  d2um 

dz7      -     -—   +   " W^m      <    dt' 
(2b) 

where 9- 1 if üm> ?/f and 9= -1 otherwise; and cf and cm are the bar wave velocities in 
the fibres and the matrix, given by 

& Cm=. 
\E„ 

(2c) 

The approximation of using the bar wave velocities rather than the longitudinal wave 
velocities in the z direction in the wave equations is consistent with the simplified 
treatment of stresses and strains and the assumed uniformity of the friction stress. 

Boundary conditions in the dynamic case are as follows. At the fracture plane, 

Wf(0,0 = 0 & o-m(0,/) = 0 (z = 0). (3) 

At the boundary of the process zone (limit of relative fibre/matrix motion), 

Uf=Hm = Uc (z = /s) (4) 
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where uc is the displacement of the adjacent intact composite; and conditions also exist 
on stress or strain and particle velocities. These further conditions depend on the nature 
of the loading history, which can be expressed as the function s(t), where s is the strain in 
the z direction in the intact composite adjacent to the process zone boundary. The 
bridging traction, p, is related to shy 

p = eE (5a) 

where the composite modulus, E, is given by 

E=fE(+{\-f)Em . (5b) 

In the depiction of Fig. la, the process zone boundary will propagate away from the 
fracture plane as s(t) rises. In the case to be considered in this paper, s(i) will be assumed 
to rise continuously and monotonically from zero. Placing the origin of time, / = 0, at the 
onset of nonzero s(i), the location of the zone boundary at time / may then be written1 

/s = 7](t)cmt (6a) 

where the function 77(f) depends on material and geometrical parameters and the form of 
e(t) and will be shown to be bounded by 

0 < 77(0 < 1 . (6b) 

For the loading conditions considered, the additional boundary conditions at z = /s are: 

"f="m=«c (* = '.) (7a) 

and 

£r=Sn=£(0 (? = h). (7b) 

If the load history, e{t), possesses discontinuities, e.g., a step load, then discontinuities in 
stress and particle velocity will also propagate at the boundary of the process zone (e.g., 
Achenbach, 1973; see also Appendix A). 

4.     Composite Stress Rising Linearly in Time 

A case of representative interest for dynamic bridged crack problems and for which 
analytical results can be found is that of a load or bridging traction that increases linearly 
in time. A linearly increasing load might give insight, for example, into bridging effects 
in a specimen in which substantial bending arises, such as a standard double cantilever 

It is easy to show that all the ensuing results for linearly rising loading, e = kt, are unchanged if 77 is 
defined instead by writing /s = Tj(f)cf, and thus do not depend on the relative magnitudes of cf and cm. 
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beam delamination specimen. In such specimens, the crack profile is often 
approximately linear and the rate of increase of the bridging tractions at any point might 
also be approximately linear if the crack propagates at approximately constant speed. 
The bridging traction at a particular material point might be expected to rise from zero as 
the delamination crack first passes until a peak value is reached, perhaps corresponding to 
bridging fibre rupture. Analytical results can be found for linearly increasing loads. 

Let 

s(t) = kt (8) 

where k is constant and all displacements and boundary tractions are zero for / < 0.  In 
this case, 9= 1 and the wave equations have the solutions 

tu —az2 +[\ + 2rja]ez (9a) 

"m = 
k   1 

cm2,2+i[l+277*k (9b) 

where rj is independent of time and satisfies 

caf + V2Ti2 + ßari-V2 = 0 

with the dimensionless parameters a and ß given by 

(9c) 

a = 
TC„ 

E{Rk 
& ß-J-* 

i-/£n 

(9d) 

Analysis shows that Eq. (9c) has only one real root, which always lies in (0,1). 

The particle velocities and the strains for 0 < z < ls are given by 

«f =[\ + 2rja]/cz 

wm=[l + 27«>/s 

er = 1 + 27JCC 1-- 

(10a) 

(10b) 

(10c) 

(lOd) 
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The matrix particle velocity is uniform and increases in proportion to /s. The fibre 
velocity rises linearly through the process zone. A strain concentration, Sfjs, propagates 
in the fibre behind the process zone front, while the matrix strain in the process zone is 
always less than e. The strain distributions and velocities beyond the process zone, z > /s, 
need not be specified, provided the composite strain e obeys the condition Eq. (7) on the 
process zone boundary. 

The displacement, tt, to be used in defining the traction law, p(u), is given by the common 
fibre and matrix displacement, ii\ = nfe = ls) = um(z = ls) at the boundary of the process 
zone minus the displacement expected if the process zone material were elastic: 

u = u\ - eh 

k     ' 

kE2   P (11) 

Equation (11) constitutes the traction law for the case of linearly rising loads. 

The limit of very fast loading corresponds to k -> oo, whereupon a -> 0 and 77 —> 1, since 
the first and third terms in Eq. (9c) become negligible. The disturbance then propagates 
at the bar wave speed in the matrix. 

Static loading is represented by the limit k -» 0 or a -> 00, for which the first two terms 
of Eq. (9c) become small and one has the asymptotic solution 

n -> 
laß 

(12) 

For this limit, substituting Eq. (12) into Eqs. (6a) and (11) yields 

f     2r 
(13a) 

u-^u (st) _ 1-/ KRC2 
4Efr 

(13b) 
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which coincide with the results obtained by McCartney (1987).2 

Equations (10) and (13b) show that for loads that increase linearly with time, the form of 
the traction law is identical in the static and dynamic cases and 

^k = 2afo        ■ (14) 

Thus the strength of the effects arising from inertia is measured by the degree to which 
the limit of Eq. (12) is not approached. This can be conveniently summarised by 
comparing the product laßrj to unity. 

Large ß.   Asymptotic analysis of Eq. (9c) shows that in the limit ß -> oo, laßt] 

VM4 + (aßf -(aß) 
-> 

(second, third, and fourth terms of Eq. (9c) dominant), which 

is a function of aß and not of /? separately; and Fig. 3a shows that this limit is approached 
quite closely for ß > 1, which is expected, for example, for composites containing 
relatively stiff fibres (£f > Em).   Fig. 3a also suggests that, as an engineering estimate 
inertial effects are large when 

aß = -^-——-^-<2 (ß>\) ns^ 

Remembering that K' is the time constant of the loading, this condition can be rewritten 

** n 
(ß> 1) • (16) 

Small ß. The limit of a relatively stiff matrix can be analysed by observing that ax E% 

while ß cc £m
!; and that Eq. (9c) in the limit Em -» oo therefore yields the limiting 

SOlUti 2/3^^ (2a)1/3 (firSt and last terms of Ecl- (9c) dominant). Thus laßt] -> 
(laß) ß when aß -> 0. Figure 3b shows this approximation for three values of ß < 1. 
While the limit is approached only for aß so small that 2aßrj is also small, it can 
nevertheless be used as the basis for engineering estimates of the condition for significant 
inertial effects, i.e., the first significant departure of laß?] from unity. The construction 
of Fig. 3b suggests that inertial effects will be significant when aß<4(aß)h where (aß)x 

is the value of the product aßzX which the equation (laß)2/3f3 = 1 is satisfied" i e 

" Marshall et al. (1985) derived expressions with different coefficients, but those of McCartney are to be 
preferred since they correspond to a proper definition of the crack displacement and are consistent with 
conservation of energy. 

49 



INERTIAL EFFECTS IN PULLOUT 

*<jr (/*<!)• (17) 

This leads to the criterion for significant inertial effects for composites with relatively 
stiff matrices that 

*-1<2 1-/ 

L /  J  Er 
KEm R 

x c (/?<1) (18) 

The criteria of Eqs. (16) and (18) coincide when ß= 1. 

Since 2aßrj < 1 always, inertial effects increase the stiffness, dpldu, of the traction law 
for loads that increase linearly in time. 

5.      Fibre PuIIout from a Rigid Matrix 

Analytical results have not been obtained for other loading histories for the composite 
problem. (The matrix and fibre motions evolve in quite complicated ways for other 
cases.) However, results for the pullout of a single fibre from a rigid matrix to which it is 
coupled by friction can be found for step loads as well as linearly increasing loads. The 
problem considered for a rigid matrix is as shown in Fig. 4. The fibre is loaded on the 
fracture plane by tractions, T{t), which can be represented by the boundary condition, 
so{f), for the axial strain in the fibre at z = 0. The response of the system that is of interest 
is wholly represented by the load point displacement, i.e., the displacement, u0(t), of the 
fibre at z = 0, since the matrix is rigid (motionless). Specifying a boundary condition on 
the fracture plane, rather than at the end of the slip zone, as for the composite problem, is 
preferred here because it allows a simpler statement of the step loading case. 

Full solutions of this problem for step and linearly increasing loads are given in Appendix 
A. For the present discussion, the most interesting features are the following. 

While the load point displacement is reduced by inertial effects for linearly increasing 
loads, for a step load it is increased. For a linearly increasing load, SQ = kt, 

,(st) 
= 2 

(*02 (19) 

at any time, where the characteristic time of the system, tu is given by 

_ELR 

TCc 
(20) 
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with the subscript "r" referring to the matrix being rigid. The ratio of Eq. (19) is plotted 
in Fig. 5. It is always less than unity. In contrast, for a step function load $>(/) = £b, a 
constant for / > 0, all motion ceases when / = SQU, at which point u0 = 2«Jst): inertial 
effects double the displacement expected from loading statically to the same applied load 
Correspondingly, the strain gradient left in the fibre following dynamic (step) loading is 
exactly half that found after static loading. 

From these results, one can see that the following behaviour should be expected in the 
composite problem (with a compliant matrix) if a linearly increasing load is followed by 
a period of constant loading. If the composite strain has been increased linearly to some 
value sat time tu the matrix and fibre will both be moving at the boundary of the process 
zone with (positive) velocities given by Eqs. (10a) and (10b) evaluated at z = ls To 
achieve this state, the still-intact composite itself must be accelerating towards positive z 
maintaining the same velocity at z = /,. If the composite strain is then fixed (no longer 
increasing), the composite will slow down and the matrix and fibre will begin to 
compress into the boundary of the process zone, under the influence of their inertia This 
gives rise to quite complex motions, but the end result will be that the matrix will have 
displaced further relative to the fibre at the crack plane and the effective crack 
displacement, u, will have increased from its value at / = tv Analogy with the problem of 
the fibre being pulled out of a rigid matrix suggests that ti might finally be larger than if 
the composite strain increased to the same level statically. However, this conjecture must 
be substantiated by numerical solutions. 

6.     Implications for Dynamic Bridged Cracks 

Whether or not dynamic effects in the pullout process will be important in the problem of 
a propagating bridged crack will depend on the loading rate for the bridging element 
(stitch or rod). The loading rate will depend on the crack profile, which will depend on 
the specimen shape and the loading configuration. It will also depend on the crack 
propagation rate, but the onset of significant dynamic effects can be evaluated by 
considering the rate of change of displacements implied by static solutions to the 
instantaneous load. 

The likely magnitude of inertial effects is analysed for two crack problems in the 
following. To derive analytical estimates based on the results obtained above the 
composite strain at the boundary of the process zone must be assumed to rise linearly in 
time. Of course, this may not be the case - the dynamic crack propagation problem must 
be solved with a self-consistently derived dynamic traction law before the form of the 
rate of increase can be known. But assuming a linear increase will yield insight into the 
likely order of magnitude of inertial effects. 

6.1    Steady-State, Fully-Bridged Crack - the ACK Limit 

Consider first a crack that would propagate under static conditions to the so-called ACK 
limit, in which a uniform applied stress comes into equilibrium with the bridging stresses 
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provided by intact fibres in the far crack wake (Fig. 6). The ACK limit can be attained, 
for example, by a matrix crack in a ceramic matrix composite in an infinite specimen 
loaded in remote tension (Aveston, Cooper, and Kelly, 1971; Cox and Marshall, 1994). 
The static applied stress, <TACK, required to continue crack propagation in the ACK limit 
is invariant and the crack opening displacement in the far crack wake is uniform (Fig. 6). 
For a composite in which the bridging elements are coupled to the matrix by uniform 
friction, static analysis gives the following well-known results (e.g., McCartney, 1987; 
Appendix B in Massabö and Cox, 1999; Marshall and Cox, 1988). The critical stress, 
OACK, is given by 

a ACK 

-,V. 

:GJ (21) 

where 

r 
2fi; 

^ (a-/)£j ~R~ 

i/ 
/2 

(22) 

and Gc is the critical crack tip energy release rate for the matrix crack. The bridging 
stress approaches close to OACK at a characteristic distance, /ACK, from the crack tip given 
by 

'ACK - 
JtE -a (23) 

where E is an elastic constant that depends on the degree of anisotropy of the composite 
(defined, e.g., in Cox and Marshall, 1991). If the composite strain on the boundary of 
the process zone in the wake of the ACK crack is assumed to rise linearly in time, as in 
Eq. (8), then 

£ _ ^ACK IE 
'ACK /Cd 

(24) 

where cd is the velocity of propagation of the delamination crack tip, which is assumed 
constant. Using Eq. (9d), the product aß, which determines the magnitude of inertial 
effects for a linearly rising load, is then 

aß „ 
n l~fEEmcm 

16   /   E E{ cd 
(ACK crack) (25) 
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For the square root traction law, p oc um, the friction stress, r, the fibre radius, R, and the 
critical energy release rate for the matrix, Gc, do not appear in this expression, although 
they appear in /ACK and <JACK separately (Eqs. (21) and (23)). 

For composites satisfying ß > 1, the criterion for significant inertial effects in the 
bridging mechanism is that aß< 2 (Eq. (15)). For elastically homogeneous composites, 
E*E and aß depends only on/and the ratio of the wave speed cm and the crack 
velocity cd. For example, for/= 0.5, aß will have a value less than 2 if cd > (n/32)cm 

The velocity of a crack propagating in the ACK configuration has not previously been 
calculated. However, if the crack is fully bridged, as in an unnotched composite 
exhibiting multiple matrix cracking, crack growth is known to be unstable (e.g., Cox and 
Marshall, 1994), so that crack velocities satisfying cd > (;z/32)cm would appear to be 
feasible. 

For composites satisfying ß < 1 (ß ~ 0.1 would appear to be easily attainable), inertial 
effects will appear at crack velocities lower by a factor of/? (Eq. (18)). 

Thus inertial effects are predicted to be significant for the ACK crack configuration for at 
least some common composites. 

6.2    Wedge-Loaded Double Cantilever Beam 

The double cantilever beam (DCB) specimen loaded dynamically by a flying wedge 
offers a relatively simple experimental approach to the mode I dynamic delamination 
problem (Fig. 7). The test is especially attractive for studying the bridging effects 
supplied by through-thickness reinforcement (e.g., stitches or rods) in laminates An 
estimate of the likely role of inertia in bridging by stitches or rods follows. In the context 
of this paper, the "fibre" refers in this case to a stitch or rod and the "matrix" to the 
laminate. 

For an increasing bridging traction law, i.e., a law for which dp/du > 0, the crack surfaces 
at the crack tip are predicted to come into contact in the DCB specimen under static 
loading at a certain crack length (Massabö and Cox, 2000). The crack will be arrested at 
this point, since the crack tip energy release rate must then vanish. Furthermore the 
crack surfaces remain in contact when the applied load is increased so that the crack 
remains arrested and failure eventually ensues by another mechanism. An analogue of 
this interesting phenomenon of crack tip closure and crack arrest, which is a result of 
large scale bridging effects, might also be anticipated in dynamic loading (Beyerlein et 
al., 2000). An interesting case therefore is to consider the rate of opening of a crack that 
has arrested and is being loaded further by the flying wedge. 

Simple analytical expressions for the opening displacements are available in the static 
case for a linear bridging law, p = fa,, and a composite with moderate levels of elastic 
anisotropy. If/ is suitably large in Fig. 7, then the bending moment at the notch root, .v = 
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0, will dominate over the shear load at x = 0.   In this case, the crack will arrest after 
propagating a distance ci\ given by (Massabö and Cox, 2000) 

n 
a\ =— 

2b 
(26) 

where 

b = 
*Kh 

(27) 

with EK' = EJ(l - Vxy vyx) (plane strain conditions assumed) and h = 12//?, with h the 
laminate half-thickness (see Fig. 7 for coordinates and dimensions). Insight into the 
magnitude of dynamic effects in the bridging phenomenon can be gained by considering 
the rate at which the crack opens at the end of the bridging zone (x = 0 in Fig. 7) under 
the influence of the wedge load when the crack length is fixed at a = a\. From the results 
of Massabö and Cox (2000), the load point displacement, 8, at the point where the wedge 
contacts the specimen can be related for large / to the crack opening displacement, ii0, at 

x = 0 (the last intact bridging element) by (see Appendix B)3 

5 = S E'Kh
3 

-,V 

tin (28) 

The composite strain at the boundary of the process zone at x = 0 is 

€ = ■ 

while, for a wedge subtending an angle 2<j> and moving at velocity vw, 

- = vwtan«S 

(29) 

(30) 

If vw is constant, Eqs. (28 - 30) yield a linear rate of increase for s, where, in the notation 
of Eq. (8), 

These estimates are based on results for a linear bridging law. Equivalent results for a quadratic law, p <x 
,.ic it -, which is expected for static loading of fibers coupled to the matrix by friction, have not been 
published. However, the estimated times for reaching a given displacement and composite strain are likely 
to be of the same order of magnitude as for a linear law. 
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2 
KßJ 

H -7— (31) 

and thence 

a/? = ^r77Wt^^n7    (wedSe-loadedDCB).       02) 

Here cm refers to the bar wave speed in the laminate ("matrix") in the through-thickness 
direction. The modulus E3 is that of the composite (with stitches or rods) in the through- 
thickness direction, while Em is that of the laminate (without stitches or rods) in the same 
direction. If/is small, which is the usual case, Em * £3; and the factor //(l -/) */ with 

/= 0.05 a typical value. Experimental data for typical stitched laminates show fr * 100 
MPa/mm (Massabo et al., 1998; Turrettini, 1996). Taking E'x = 60 GPa and h = 6 mm, 

the factor jE'xß3h has the representative value 6 GPa. The ratio r/^/fi^Äwill have 

typical values - 10"3 - 10'2 (r = 6-60 MPa). With /= 20 mm, R = 1 mm, and ^=20° 
for example, Eq. (32) reduces to the particular numerical estimate 

0.01^L<a£<0.1^L ( 

For composites for which ß> 1 (including most stitched laminates), inertial effects will 
be significant (i.e., aß < 2) provided vw > cm/200 (r = 6 MPa) or vw > cm/20 (r = 60 
MPa). 

Such wedge velocities are eminently attainable and inertial effects in the bridging law are 
likely to be significant in the wedge-loaded DCB test. 

7.     Discussion 

The solutions presented here are based on the approximation that displacements are 
functions of z only. For static loading, this is an accurate approximation as long as the 
slip distance is large compared to the fibre diameter (Hutchinson and Jensen, 1990) The 
condition that the slip zone length should be much larger than the fibre diameter will be 
satisfied if the friction stress, T, takes values typical in brittle matrix composites or 
polymer textile composites. 

For dynamic problems, the conditions under which solutions that depend on z only will 
be accurate have not yet been studied. The solutions presented in this work will at least 
provide tentative limits against which three-dimensional numerical solutions can be 
compared. 
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Whether the approximation that displacements depend on z alone is accurate will also 
depend on the presence of a nonzero debond energy (energy required for separation of the 
fibres and the matrix). Here the debond energy was assumed to be zero (fibres and 
matrix already chemically separated). Dynamic analysis of materials in which the 
debond energy is not small will be significantly more complicated. 

For stitched laminates, one of the cases assessed in Section 5, the requirement that the 
slip or process zone, /s, be large compared to the fibre (stitch) diameter (typically 1 mm) 
implies that it will also be comparable to or greater than a typical laminate half-thickness, 
h (~ 6 mm). When the value of /s predicted for an infinite body would exceed h, stress 
waves will reflect from the laminate surface, complicating the micromechanics of the 
process zone. These effects are not studied here. 

A feature of the wave solutions for loads that increase monotonically from zero with time 
is that stress disturbances propagate away from the fracture plane at velocities other than 
either the matrix or fibre bar wave speed. This is the case for both the composite problem 
(Section 4) and the problem of a fibre being pulled out of a rigid matrix (Nikitin and 
Tyurekhodgaev, 1990; Appendix A). In the composite problem, the front velocity is 
always less than the matrix bar wave speed. The possibility exists that the front velocity 
will exceed the bar wave speed in the fibres, but numerical checks show that this can 
happen only for very high (and unlikely) ratios of fibre to matrix density. 

No account has been attempted here of the conditions under which the strain at the 
boundary of the process zone, s, can be expected to rise linearly in time, apart from the 
special case of a wedge loaded DCB specimen. The relationship between s and the far 
field conditions in a dynamically loaded body will generally be complicated and revealed 
only by computational solutions of the dynamic stress propagation problem for the whole 
body, including the process zone. The particular problem of finding far field loading 
conditions that will result in s(t) being linear in time is very challenging. 

8.     Conclusions 

Some analytical results have been presented for the problem of bridging by the 
mechanism of fibre pullout when the inertia of the fibre and the matrix are taken into 
account. Simple criteria have been specified for significant inertial effects in the bridging 
mechanism in representative mode I crack propagation problems. Inertial effects in the 
bridging mechanism will often be significant for a matrix crack propagating dynamically 
in the steady state ACK limit in a brittle matrix continuous fibre composite or 
delamination in laminates reinforced by through-thickness stitching or rods. 

Significant inertial effects are favoured by low fibre volume fraction, low friction stress, 
low matrix bar wave speed, and low fibre modulus; and high fibre diameter and high 
matrix modulus. If the fibre modulus is high enough (relative to the matrix modulus), the 
criterion for inertial effects becomes independent of fibre modulus.   The matrix density 
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enters the criterion only through the matrix bar wave speed. The criterion is always 
independent of the fibre density. 

For pullout or bridging stresses that rise linearly in time, the instantaneous crack 
displacement is less in the presence of inertial effects than it would be under static 
loading to the same bridging stress. However, solutions for pullout from a rigid matrix 
suggest that, if the bridging stress rises rapidly and is then held at a constant value, the 
crack displacement when all particle motion finally stops will be greater than it would 
have been under static loading to that stress level. Thus regimes of both hardening and 
softening of the bridging traction law due to inertial effects can be expected in bridged 
crack problems. 
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Appendix A. Fibre PuIIout from a Rigid Matrix. 

Solutions are exhibited here to the problem described in Fig. 4 and related text.4 Since 
the matrix is rigid, it experiences no motion. The motion of the fibre is governed by the 
wave equation of Eq. (2a). The problem is defined by stating the value of the load 
applied to the end of the fibre at z = 0, rather than the matrix strain at the end of the 
process zone. 

Boundary Conditions for Front of Propagating Disturbance 

Let the location of the front limiting the extent of the stress disturbance caused by waves 
propagating along the fibre be written /r = nctf, where the applied load is turned on at 
time t = 0. (The subscript V is used for this problem as a mnemonic for "rigid" matrix.) 
The jump in the stress, Acrf, and jump in particle velocity, Auf (where ftf =du{/8t), 

across the front, i.e., from z > nctf to z < nctf, must satisfy the energy-conserving relation 
expected from integration of the impulse across the front, namely (see, e.g., Achenbach, 
1973) 

Aäf=-^L (A.1) 
Pfvo 

where v0 is the velocity of the front, v0 = Cfd(nt)/dt. To ensure integrity of the fibre, the 
displacement must be continuous across the front, i.e., 

uf(z,t) = 0 (*->/;) (A.2) 

Two front conditions may now be distinguished. If a stress discontinuity exists at the 
front, Acrf > 0, then kinematic considerations along with Eq. (A.1) necessitate that (see, 
e.g., Achenbach, 1973) 

TJ=\ (Ao-f>0) (A.3a) 

or, equivalently, v0 = Cf. If the stress is continuous across the front, i.e., or = 0 at z = Z{, 
then the velocity of the front remains indeterminate: 

0<7<1 (AOf=0)      . (A3b) 

4 
The same problem of an end-loaded rod damped by friction was also solved for various cases by Nikitin 

and colleagues in the 1960's. These slightly arcane Russian publications are summarised in Nikitin and 
Tyurekhodgaev (1990), which itself has been cited only once previously in the western literature. In the 
following, dynamic solutions are developed for the cases of particular interest to the delamination problem, 
with emphasis on the relationship between the dynamic results and the static limit. Some minor errors in 
Nikitin and Tyurekhodgaev for the case of loading that is linear in time are corrected. 
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Solutions obeying both Eqs. (A.3a) and (A.3b) will be demonstrated in the following. 

Step function Load 

Consider first a step function load such that 

8ii{ 

Ef dz = E{e0 fovt>0 . (A.4) 
z=0 

Since a stress discontinuity is implied by a propagating step load, the front conditions 
given by Eqs. (A.l), (A.2), and (A.3a) are expected to apply. The solution to the wave 
equation, Eq. (2a), that satisfies these boundary conditions is 

"f =~2/^2 "c?/2)+*o(*-cf0 (A.5) 2REt 

with ?] = 1 (front velocity v0 = cf) always. The particle velocity is thus 

dUf        x     24 t 

~dT-WCtt~e°Ct=Cr7 (A-6a> I r 

where 

TCf 
(A. 6b) 

and is independent of z: within the sliding zone 0 < z < Cft, the fibre moves with uniform 
velocity. The particle acceleration is given by 

d uL_   r_ 2_cf 

f T dt2  ~REf
Cf-T (A7) 

which is uniform in time. Motion stops when 

t=*tr . (A8) 

This is the characteristic time of the dynamic process for the case of a rigid matrix. At / = 
£btr, the sliding zone has advanced a distance 

lT=crtt£0=-L-e0 (t=£otr) (A.9) 
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The strain along the rod has the distribution 

diif- 

dz £o- 
RE[ (A.10) 

The load point displacement, w0, (i.e., the displacement at z = 0) evolves in time 
according to 

u0=-e0ctt 1 — 
2e0tr 

(A. 11) 

When t = soh, 

it = £btT) (A. 12) 

which is exactly twice the displacement, 7/£st), developed under static loading (see 

below). The final slip length, /r, is also twice the slip length for static loading; and the 
strain gradient, du{ /dz, is half that developed under static loading. 

One important consequence of the last fact is that when motion is arrested at / = &>U, no 
further stress relaxation is required: the stress gradient at t = soU is only half the 
maximum gradient that can be supported in the fibre by the friction tractions. According 
to the constitutive behaviour assumed for the friction phenomenon, Eq. (lc), the fibre will 
remain motionless. Therefore, the configuration predicted for / = sbtT is the final 
configuration. Since Eq. (A. 10) predicts that qj(/r) = 0 at / = stfr, the front condition will 
switch at this instant to Eq. (A.3b): the condition of Eq. (Al) leads to an indeterminate 
front velocity. 

When the fibre arrests at / = satr, the particle acceleration in the slip zone falls 
instantaneously to zero from the constant value of Eq. (A.7). At the same instant, the 
friction tractions along the slip zone fall from the uniform value, r, which they had during 
the motion of the fibre, to r/2, the value required to sustain the stress gradient in the fibre 
at the time of arrest. This discontinuous change in the friction stress is a direct 
consequence of the constitutive behavior embodied in Eq. (1). 

For the step load case, Eq. (A.5) yields the following energy analysis. The work done by 
the load at time t < e^U is given by 

W\=nR E{sQuQ = _ TTE^S
3

0R
3
 (  t  "l 

\S0frJ 

f      4     \ 
1-- 

V eo'r J 
(A.13) 

The kinetic energy in the moving fibre at time / is given by 
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w*=& 
.ttnR2pJdu{ 

8t 
dz = 

nE^s3
0R

3 r 

2r \.£QfT J 

(t ^ 
-i2 

vVry 
-1 (A. 14) 

The strain energy in the fibre at time / is given by 

2F f 

we=l e ~ JO 
#**% ditf 

y,    BZ 
dz 

nEhlR^  < > _ iu-,( e0i 

2r \solt J 

r , \ 
l- 

\
£

0*TJ 

( , v 

V^o^y 
(A.15) 

These energy dissipated in friction up to time f is given by 

7cF2F3R3f  t  ^2 

\sdt J 
x-1- 

3 

f   .   \ 

\SQftJ 
(A. 16) 

The energy terms are plotted in Fig. A.l.  The total work done at time / = soU is exactly 
three times that done in static loading to svEf (see below). 

Linearly Increasing Load 

Consider next the case of an applied strain that is given by the linear law 

diif 
cr{(0) = Er 

dz 
= Etkt      (/>0) (A.17) 

z=0 

In this case, a physically meaningful solution is found only for the front condition given 
by Aar = 0 and Eq. (A.3b). With these boundary conditions, Eq. (2a) has the solution 

2    r 

"f^-^hr M*02+i 2RE{ 

TCft2 

J   2REf 
M*02-i +ktz 

with 

(z < rjCft) (A18) 

T] = ktr fi^f + 1 (A. 19) 

where U is the characteristic time of Eq. (A.8). Thus the particle velocity is given by 
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du f _ xc\t 

dt       RE{ 

the acceleration by 

d2Jif _    xc\ 

~dir~~^E{ 

the stress distribution by 

M*02-i + kz {Z < 7]Cft) 

M*02-i (Z < 7/CfT) 

(Tf = A£f / - 
7Z fi^y +i (z < rjCff) 

and the load point displacement by 

«o=- 
rCf/2 

2#£f 
^M C>o) 

The static limit in this case can be found by taking the limit k —» 0. One finds 

77Cf/ 

3wf 

a/ 
+Jt 

IT IT 

Of-»<7f(0,/) 1- 

R 

IT 

->0 

crf(0,0*_ 
- ^-(st) 

4r 4£fT 

(*-»0) 

(#->0) 

(*->0) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24a) 

(A.24b) 

(A.24c) 

(A.24d) 

where the superscript "(st)" indicates the result obtained by static analysis for loading to 
the instantaneous value, crz{Q,t\ of the applied tractions (see below). In the static limit, 
Eq. (A24b) also shows that 77 -> 0 (consistently with Eq. (A24a)); while in the limit of 
very rapid loading (k -> 00), or vanishing friction (r -> 0), Eq. (A24b) leads to 77 -> I, 
i.e., the front reverts to propagating at the bar wave velocity. 
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Equations (A.23) and (A.24d) allow the dynamic load point displacement to be related 
very simply to the displacement expected for static loading to the same instantaneous 
applied load: 

u, o  _ 
,(st) 

= 2 
(*02 (A.25) 

The same characteristic time, tu identifies cases where dynamic effects are important in 
both the step and linear loading cases. 

The Static Problem 

Under static loading to stress aQ = EtSb, force equilibrium leads to a linear stress gradient 
along the fibre 

<x«"»=a0 
2tz 

(A.26) 

so that the slip length, where of0 = 0, is given by 

^(st) _ £f-R 
2r ' (A.27) 

The load point displacement can be found by integrating the strain along the fibre and is 
given by 

,<*) EfR 

4r ' (A.28) 

The total work done by the load in the static problem is given by 

jdüelF? 

6r 
(A29) 

where here u and a denote the displacement and stress at z = 0 during loading. 
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Appendix B. The Wedge-Loaded DCB Specimen with Large Scale Bridging. 

In a specimen in which shear deformation may be neglected (material anisotropy not too 
large) and in which a linear bridging law, p =ßsii, acts on the bridged part of the crack 
(Fig. 7), analytical expressions can be found for the characteristics of crack propagation 
(Massabö and Cox, 2000). The crack displacement profile is given by 

u = ebx(clcosbx + c2smbx)+e~bx(c:icosbx + c4smbx) (B.l) 

where 

b = 
*Kh. 

(B.2) 

p-3/ and h = h /12, EK' = EJ{\ - VyXvx-y), and Ex and vyx and vsy are Young's modulus and 
Poisson's ratios for the laminate, respectively. The constants c; are determined by 
boundary conditions. At the crack tip, u = 0 and the bending rotation ^ = - daldx = 0 
(shear deformation neglected); while at the notch root, x = 0, one can write generally that 
a = it0 and <f> = ^0. Observing that the bending moment, M =M(x = 0), and shear force, 

Q=0(x = 0), at x = 0 are related by 

M      PI      , 

T'T-' (B3) 

where P is the load applied by the wedge and, for a beam with negligible shear 
deformation, 0 = -(£x7d)d

3H/dx3 and M = -(Ex'Iä)d
2ii/dx2, one finds by solving for the 

coefficients c\ in (B.l) that 

2     -bü\e~K +1 + 2/4?-*-l)l 
&= A     /    V—\—^ (B.4) 

and thence 

M = -2u0   /^-+l) . ^ 
e-*-l+Ib(e-*+l) K     ' 

If the loading arm length, /, is not short, then the deflection at the point of contact with 
the flying wedge, 8, will be much greater than u0 and therefore £can be estimated as the 
deflection expected for a cantilever beam with built-in end condition at x = 0: 
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6 = Ml2 

3^/d 
(B.6) 

and thus 

-    2.   22 e~K +1 
ö = —uJb  j K 

3 e-'r+l + (/ö)-1(e-'
r-l) (B.7) 

In the limit that lb is large, 

d«-7= 
V3 

ß/ 
E'xh

3 

-,v 
?'n (B.8) 
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2. 

3. 

INERTIAL EFFECTS IN PULLOUT 

Figure Captions 

1. (a) Schematic of a crack bridged by fibres, showing process zone where relative 
displacement exists between fibres and matrix, (b) Idealisation of the bridged 
crack problem with process zone replaced by surface tractions acting on Ihe 
fracture surfaces. ö 

fractof1 lanl ^ dynami° PUll°Ut Pn>blem " * representative volume near the 

The product 2aßn, which indicates the relative importance of inertial effects in the 
bridging phenomenon, (a) Numerical results for representative values of ß. (b) 
Numerical results for laßrj compared with asymptotic limit for large Em (dashed 
curves). The value of (aß), is marked for ß= 0.01 and is to be compared with the 
value of aß at which 2aßrj * 0.9, which is taken as a representative cutoff for 
significant inertial effects. 

4. Fibre pullout from a rigid matrix. 

5. The ratio of dynamic and static load point displacements for a fibre pulled out of a 
rigid matrix by a load that rises linearly with time. 

6. A matrix crack propagating in the ACK limit. 

7. A double cantilever beam specimen loaded by a flying wedge. 

A. 1    The distribution of energy as a function of time for a fibre pulled out of a rigid 
matrix by a step load. B 
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1.   Introduction 

This note presents explicit relations between the dynamic crack energy release rate 

and crack tip stress intensity factors in a form most amenable to computational work for a 

crack propagating along any principal axis in an orthotropic material. The results 

presented in this form may be particularly useful for work on delamination cracks in 

laminated composites, which are orthotropic in many important applications. 

Prior work in the literature that treats the problem of interest here include the analysis 

of a mode I crack in an orthotropic medium by Piva and Viola (1988); and the analysis of 

a mixed mode crack in a transversely isotropic medium by Wu (1989). Yang and co- 

workers (1991) presented results for a mixed mode crack in an orthotropic material, but 

in a form that is not best suited for immediate computation. By an adaptation of the Stroh 

method of analysis used by Wu, the results of Yang et al. are rendered here in a different 

form better suited to numerical evaluation. The role of orthotropic anisotropy in 

determining the velocity dependence of Gd is then illustrated for delamination cracks in 

typical ceramic, metal and polymer matrix laminated composites. 

2.   Results 

The relation between the energy release rate and the crack tip stress intensity factor is 

central to fracture analysis. It appears, for example, in the derivation of stress intensity 

factors from applications of the ./-integral and in the derivation via energy arguments of 

integral equations for bridged cracks from weight functions. Details of the latter for 

dynamic cracks with large scale bridging in the crack wake will appear elsewhere. 

Freund (1972) showed that the dynamic crack energy release rate for an extending 

crack in an elastic body can be written as the modified J-integral, which leads to the G-k 

relationship in the following, convenient form: 

Gd = ^kD(t)T 17^(1) 
2 w        - -,, (1) 

74 



where Gd is the dynamic crack energy release rate and k(t) is the instantaneous crack tip 

stress intensity factors (see Eq. 4.19 in Wu and references therein). The elements of the 

L" matrix are universal functions, in the sense that they are independent of the details of 
the applied loading or on the configuration of the body being analyzed. We present 
results for the L"1 matrix when the material possesses orthotropic symmetry and when the 

crack is extending along one of the principal axis. In this case, the off-diagonal elements 

of the matrix are zero and the diagonal elements of the L'1 matrix is just dependent on the 

elastic properties of the orthotropic medium and the instantaneous value of the crack tip 

velocity. For an orthotropic material with the crack propagating along the 1 direction (and 

direction 3 being the plane strain direction), elements of the L"1 matrix are: 

L~l =■ a 66 

-irs+rin) 

0 

0 

0 

-(Y3-Y2Y4) 

0 

0 

0 

Ye) 

(2) 

where the y's are 

Y\ = 
_ ces-ßlC22-pv2 

Y2 
Cu ~ß^C66-pv2 

A(c„+cM) 
_Cu+ß2Cu-pv2 

3     A(C12+c«) 

7A 
(CI2+C«) 

C.2+ÄaCa-§*> 
Ys '66 

Ä(C12+C«) Ye  = ^Ä 
'66 

(3) 

where Q are coefficients of the stiffness matrix, pis the density of the medium and v is 
the instantaneous velocity of the crack tip. The expressions for ß are: 
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n+Jr?-r2 n   _   fr,-Vr,2-r2 _   \Ci5-pv2 

A =J'    "'      ' Ä = 1   _  \     n r>    r< H2 \\    ~ n    n Hi 1C  C V   2C  C V     C 

where 

(4) 

1  — ^11^22       ^12       ^^12^66       \^22       ^66//^ 

and 
'i=4C22C«(C11-^XC«-pw2)    . 

The L"S 3 matrix elemenet is 

L   3,3 = 

c44    u44 

(5) 

We can also define the generalized Rayleigh wave function R(v) as 

R<y) = rl-riYi iß) 

and the Rayleigh wave speed (vr) is obtained by setting R(vr) = 0. 

In the next section, the diagonal elements L\, and L'\2 are plotted numerically for 
cracks propagating along different principal axes in various representative composites. 
The L'1 matrix elements are functions of the elastic properties and the instantaneous crack 
velocity. Each diagonal element approaches the corresponding static value as v -» 0 and 
has the property of 0[(vr - v)"1 ] as v -» vr, where vr is the Rayleigh wave speed. 

3.   Discussion 

In this section, we will present results for the the mode I and mode II contributions to 

the crack energy release rate, as represented by the L'S.i and IS12,2 matrix elements, for 
various representative composites that possess orthotropic symmetry and where the crack 
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is extending along one of the principal axis. These results are presented graphically as a 

function of the orthotropy parameters and the instantaneous crack tip velocity. The mode 

III contribution to the crack energy release rate is a simple expression (see Eq. 5) and 
hence will not be examined further. 

In the results presented below, the orientation is such that the principal axes of 
orthotropic symmetry are aligned with the coordinate axis, the crack lies in the 1-3 plane 

and the crack is propagating along the 1 direction (with direction 3 being the plane strain 

direction). Table I shows the stiffness tensor for various representative composites, the 

corresponding orthotropy paramaters and the Rayleigh velocity (vr) normalized by the 

shear wave velocity (vs). Also examined in Table I are cases where the crack is running 

along the different principal directions of orthotropic symmetry. The orthotropy 
parameters X and p as presented by Suo, et al. (1991) are: 

* = —     and     p = —^L_      where 

h = 
Sy (plane stress) 

Sy —'—— (plane strain) 
^33 

and where S„ are the elements of the compliance tensor. 

Figure 1 shows the variation of the normalized I/1,., / [L"1,,,]^ , where [I/1,,,]^ 
is the value of I/1,,, when v-> 0, as a function of the normalized crack velocity v/vr, 

where vr is the Rayleigh wave speed. This variation is shown for the different cases 
listed in Table I. However, it is clear from the figure that the variation in the crack 
energy release rate can be rationalized in terms of the orthotropy parameters X and p. For 
the same normalized crack speed, the normalized mode I contribution (I/1,., / [I/1,,,]*,^) to 
the dynamic crack energy release rate increases as X monotonically increases and as 
p monotonically decreases. 

Figure 2 similarly shows the variation of the normalized V\,2I [v\2]smic, where 
[L'dstatic is the value of v\a when v -» 0, as a function of the normalized crack velocity 
v/vr, where vr is the Rayleigh wave speed. This variation is shown for the different cases 
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listed in Table I. As in the mode I case, the variation in the crack energy release rate can 

be rationalized in terms of the orthotropy parameters X and p. For the same normalized 

crack speed, the normalized mode II contribution (vl
v/ [L-'^W) to the dynamic crack 

energy release rate increases as X increases and as p decreases. However, as opposed to 

the mode I case, the variation on X and p is much smaller. In addition, we observe that 

although the energy release rate shows a monotonic dependence on X, the dependence on 

p, for small p, is not monotonic. 

4.   Conclusions 

An analytical form for easy estimation of the dynamic crack energy release rate, in 

terms of the crack tip stress intensity factors, has been presented for cracks propagating 

along any of the principal axis in orthotropic material systems. The dynamic crack energy 

release rate depends on the magnitude of the two orthotropic parameters and the 

instantaneous crack tip velocity. The dynamic crack energy release rate 
is 0[(vr - v)~ ] as v -» vr, and where vr is the Rayleigh wave speed. The variation in 

the dynamic crack energy relase rate for orthotropic materials can be rationalized in terms 

of the two orthotropy parameters X and p. 
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Figure Caption 

Figure 1: The variation of L'S,! (Fig.la) and L'lv (Fig.lb) normalized by their 
corresponding static values as a function of the crack tip velocity, normalized by the 
Rayleigh wave velocity, is shown for different values of X and p. 
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Table I 

Cll 
GPa 

C22 
GPa 

C33 
GPa 

C44 
GPa 

C55 
GPa 

C66 
GPa 

C12 
GPa 

C13 
GPa 

C23 
GPa 

X P Vr/vs 

Carbon/Epoxy 
Unidirectional 
composite 

la 150 12 12 5 30 30 5 5 5 0.08 0.58 0.838 
lb 12 150 12 30 5 30 5 5 5 12.5 0.58 0.593 
lc 12 12 150 30 30 5 5 5 5 1.0 0.58 0.864 

Carbon/Epoxy 
0°/90° 

2a 10 90 90 10 10 10 5 5 30 9.0 1.29 0.854 
2b 90 10 90 10 10 10 5 30 5 0.11 1.29 0.946 

Carbon/Epoxy 
Quasi-isotropic 

3a 10 60 60 10 30 30 5 5 20 6.0 0.19 0.512 
3b 60 10 60 30 10 30 5 20 5 0.17 0.19 0.695 

C-SiC ceramic 
matrix 
composite 

4a 20 120 120 23 9 9 8 8 20 6.0 2.49 0.971 
4b 120 20 120 9 23 9 8 20 8 0.17 2.49 0.982 

Representative 
Isotropie Comp. 

5 80 80 80 30 30 30 20 20 20 1.00 1.00 0.911 
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Figure 1: The variation of L"\,i normalized by the corresponding static value as a 
function of the crack tip velocity, normalized by the Rayleigh wave velocity, is shown 
for different values of X and p. 
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fis>ure 2: The variation of V\t2 normalized by the corresponding static value as a 
function of the crack tip velocity, normalized by the Rayleigh wave velocity, is shown 
for different values of X and p. 
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ABSTRACT 

Bridged crack models using beam theory formulation have proved to be effective in the modeling of 
quasistatic delamination crack growth in through thickness reinforced structures. In this paper, we 
model dynamic crack propagation in these structures with the beam theory formulation. Steady state 
crack propagation characteristics unique to the dynamic case are first identified. Dynamic crack 
propagation and the energetics of steady state dynamic crack growth for a Double Cantilever beam 
(DCB) configuration loaded with a flying wedge is next examined. We find that steady state crack 
growth is attainable for this loading configuration provided certain conditions are satisfied. 

KEYWORDS 
Dynamic, Delamination, Crack, Bridging, DCB, Stitching, Energy Release Rate 

INTRODUCTION 

Through thickness reinforcement of various kinds, including stitched or woven continuous fiber 
tows and metallic or fibrous short rods, has been developed to address the delamination problem m 
structural composite laminates. Substantial experimental evidence shows that through thickness 
reinforcement dramatically alters the delamination characteristics for the better under both static and 
dynamic loading conditions. For static loading, a fundamental theory based on observations of 
essential mechanisms is now mostly in place [1-6]. The mechanics of crack bridging by the through 
thickness tows has been mapped out, with governing length scales and material parameters identified 
[1-6]. However equivalent fundamental knowledge and models for dynamic delamination do not 
exist. 
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This paper deals with the delamination mechanics for through thickness reinforced structures under 
dynamic crack propagation conditions. A beam theory formulation is adopted and certain crack 
propagation characteristics are identified for mode I conditions. In the next section, we examine the 
energetics of crack growth for a through thickness reinforced DCB specimen loaded by a flying 
wedge. The double cantilever beam (DCB) specimen loaded dynamically by a flying wedge offers a 
relatively simple experimental approach to analyzing the mode I dynamic delamination problem. 
Regions of stable crack growth as a function of the material properties of the through thickness 
reinforcement, the size of the DCB specimen and the velocity of the wedge have been identified. 

Beam Theory Formulation and Solution Characteristics: 
For a beam element, the equations of motion are: 

dN        D, d2u 

dQ /       ,1P n,     d2W ---p(Wit)B = pBh— (lb) 

IT -Q= pIJ- ™ 
where u(x,t) and w(x,t) are the in-plane and transverse displacements of the neutral plane 
respectively, <p(x,t) is the clockwise rotation of the cross-section, / is the time variable, Nis the axial 
force, 0 is the shear force, Mis the bending moment, 2h is the total thickness of the DCB specimen, 
B is the width of the specimen, p is the density, / (= Bh3/12)h the moment of inertia and p(w,t) is 
the bridging traction corresponding to the opening mode. In this work, the time dependent bridging 
traction p corresponding to the opening mode is assumed to depend only on the transverse 
displacement w. In the absence of an axial force JV, u = 0. 

For a Timoshenko beam, the equations for steady state motion can be reduced to [7]: 
d4w cf 12 R d2w 
dX4       (R-c2)(l-c2)  h2    dX2 

 I        I   d2p(w,X) 1 12 R _ 
(R-cf)Eh      8X2       + (R-cl)(l-c2)J¥P(W'X)    =   ° 

at = p(w'x> _ (
R
-°I) a2™ 

dX REh R       dX2 (2b) 

whereX = x- v t, cf = pv2/E, R=rcG/E, v is the (constant) steady state velocity, G and E are 
the shear modulus and the Young's modulus of the laminate and the dimensionless shear coefficient 
K-5/6 for a beam with rectangular cross-section. For steady state dynamic delamination, the velocitv 
v is the delamination crack tip velocity. 

For an Euler-Bernoulli (E-B) beam, where both shear deformation and rotational inertia are ignored, 
the equation for steady state motion reduces to a simple form given by: 
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Ö4w      12 c   82w       12      .    v.       . 
—7 +—y r + rP(w,X) = 0 (3) 
dX4        h2   OX2     Eh3 

Let us now consider a linear bridging law of the following type to represent the bridging action of 
the through thickness reinforcement: 

p(w,X)=p0 + ß3w (4) 

The linear law particularizes to the Dugdale law p = p0 (for ß3 - 0) and to the proportional linear 

law p = ß3 w (for p0 =0).   In the results that follow, we non-dimensionalize the variables by the 

laminate thickness h(w=hW,u=hU and X = h %). Thus, the transverse displacement obeys: 

^+ß^+b^W+d^0 (5) 
d44 d%2 

For Timoshenko beam: 

ß=   ,        12 c2 R ß3h      . b=\ R 12ß3h , 

^(l-c2)(R-c2)     (R-cj)E' i(l-c2)(R-c2)    E     ' 

d__ 1 R Uto (6a) 
i(l-c2)(R-c2)   E 

For Euler-Bernoulli (E-B) beam: 

p=jin?t     „.ma.,     „= m.; m 
The general solution to Eqn. 5 is: 

d>r.-FhW- Ab1 4 
Wtf) =  -y + ^e *   *    2 +K2e 

d = 
12 Po . 

H- i^-46^ 

l ß* '     1 nA     .^2    r 

(7) 

+ K*e 2        2' .3.   V   2    2 +K4e 
V 

There are three regimes to the solution behaviour which are independent of the boundary conditions, 
and these have been identified below (Note: S = ßsh/(12 KG) ): 
•    Casel:      ß2 < 0 and ß4 > 4b2 => Exponential behavior 

For Timoshenko beam, this is true provided: 

^-<-^-    and     3(S(l-cf)-cf)2>S(l-cfXR-cf) (8a) 

For the E-B beam, the above condition is never satisfied. 
Case 2:      ß > 0 and ß4 > 4b2 => Oscillatory and non-decaying behavior 

For Timoshenko beam, this is true provided: 

p\'2/E>S/(l + S)     and     3(S(l-cf)-c2)2 >S(l-c?)(R-cf) (8b.l) 

For the E-B beam, this condition is satisfied when: pv2 / E> 2^SR (8b.2) 

Case 3:      ß4 < 4b2 =>  Oscillatory with exponential decay behavior 
For the Timoshenko beam, this is true when: 
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3(S(\-cf)-cfy<S(l-cf)(R-cf) 
For the E-B beam, this is true when: pv2 /E< 2jS~R 

(8c. 1) 

(8c.2) 

The conditions determined above give us insight into when dynamic effects can significantly alter 
the mechanisms of deformation and the resultant bridging phenomena. For instance if the crack tip 
velocity exceeds the condition prescribed in Eqn. 8a, oscillatory displacement' fields will be 
introduced in the wake of the crack and these multiple oscillations could lead to crack face 
interpenetration. When such oscillations are present, the mechanics of bridging and the efficacy of 
through thickness bridging ligaments on the energetics of crack growth will be considerably altered 
For example, stick-slip propagation modes would appear to be possible, as contacting fracture 
surfaces bounce. The complex details of such a possibility will be considered elsewhere Here we 
model the arms of the DCB specimen as a EB beam and study propagation characteristics up to the 
point of fracture surface contact, which is a simpler problem. (Constants ß, b and d are eiven in 
Eqn. 6b) ° 

Wedee-Loaded Double Cantilever Ream 

Delamination crack tip 

Figure 1: Schematic of through-thickness reinforced DCB specimen loaded with a flying wedge 

The double cantilever beam (DCB) specimen loaded dynamically by a flying wedge, of constant 
ye ocity v, offers a relatively simple experimental approach to studying the mode I dynamic 
delamination problem (Fig. 1). The test is especially attractive for studying the bridging effects 
supplied by through-thickness reinforcement (e.g., stitches or rods) in laminates. In figure 1 2a is 
the wedge angle, / is the distance between the wedge and the crack tip and a0 is the length of the 
bridging zone. In non-dimensional form, I =h L, and a0 ^h A0. The role of the bridging on the 
crack energy release rate is determined in this section. We assume that the crack propagates under 
steady state conditions and confirm the possibility of steady state propagation by finding consist 
solutions. Further, we assume the bridging zone size is invariant and translates with the crack r~ 

87 



For the unbridged portion, the deflection profile (wu = hWu) is obtained by setting b = d = 0. 

Therefore: 
d2W„ 

d? 

+ ß2 

+ ß2 

d£2 

d2W 

d? 

= 0 

+ b2W + d2 =0 

for(-L<Z<-A0) 

for(-A0«*<0) 

(9a) 

(9b) 

The relevant boundary conditions are: 
Wtf = 0) = 0,W(g = 0) = 0,W& = -L) = -a,W;tf = -L) = 0. (10) 

The governing equation (9) together with the boundary conditions (10) and the continuity conditions 
at the end of the bridging zone (£ = -A0) will determine the deflection profile of the beam. Note 

that the bridging zone length (Ao) will be dictated by the critical crack opening displacement 
(wc =h Wc) required for failure of the bridging ligament. The crack energy release rate (GTotaI), as 
determined through the total energy balance is: 

G Total B 

dU„ dUr 8Uk^ 
OD da da       da 

where Uext is the work done by the applied load, Us is the strain energy, Uk is the kinetic energy, B is 
the uniform width of the DCB specimen, and a is the crack length. For steady state crack extension 
a = vt, where v is the crack velocity and t is time. For the DCB specimen loaded with a flying 
wedge this reduces to: 

G. 
a Eh d3W„ 

Total d? 
- phv2a2 (12) 

t = -L 
In addition, by application of the dynamic J-integral, the energy released at the crack tip is related to 
the bending moment M by [8]: 

.     .     _  r ,       V 
72 

'Tip 
Eh 

12 

d2W 

K' S=oJ 
(13) 

In general, due to crack bridging, AG = GTotal - GTip * 0. The energy difference, AG, is the extra 

work done in fracturing the bridging ligaments. For the linear bridging law, we find that the 
shielding contribution AG  from the bridging ligaments is: 

o 
AG =GTW - Gr,„ =  2 J p du (14) 'Total ~   GTip = 

-W. 

This result is identical to what we obtain in the quasi-static case for small scale bridging conditions. 
Since there is no rate dependence to the bridging law, it is not surprising that the small scale bridging 
limit relationship is obeyed. 

Since we limit our analysis to small scale bridging, tow failure must occur in the wake of the crack. 
Small scale bridging is ensured provided the displacement profile monotonically increases within !äT 

bridging zone from the crack tip and the pull-out required for tow failure is less than the max:-_- 
crack opening displacement within the bridging zone. This condition determines a criterion for the 
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(15) 

maximum allowable bridging zone length, Amax , which is obtained by solving 

dW(4 = -Amax)/dt = 0. Therefore, if A0 <Amax, then Wc < WcriticJ= W(£ = -Amax)), and hence 
small scale bridging condition is ensured. 

Detailed calculations of the deflection profile, the crack energy release rate and the maximum 
allowable bridging length can be computed with the formalism presented above for both the Dugdale 
bridging law and the proportional bridging law. For instance, when the bridging ligaments obey the 
Dugdale bridging law, steady state crack propagation with small scale bridging is provided 
Ao ^4„ax> where Amax is given by: 

-2A(Cos(A)- Cos(A(l-Amax)))     +   2 AD Amax ( Cos(A(l-Amax)) - 1) 

+ D ( Sin(A (l-2Amax)) + Sin(A Amax) ) +  D ( Sin(A Amax) - Sin(A) ) = 0 

and where X=$L, D=d/X, and Amax=Amax/L. Regions of steady state stable crack growth 
under small scale bridging condition can thus be deduced as a function of the material properties of 
the through thickness reinforcement, the size of the DCB specimen and the velocity of the wedge. 

CONCLUSIONS 

The dynamic delamination cracking behavior and the energetics of crack growth in through 
thickness double cantilever beam (DCB) specimens has been analyzed. The role of bridging by 
stitches or rods in dynamic crack growth was computed by solving the bridged crack problem within 
the framework of beam theory. For steady state crack growth conditions, different regimes of the 
solution behavior have been identified which would correspond to different crack propagation 
characteristics. Regions of steady state crack growth under small scale bridging condition can be 
deduced as a function of the material properties of the through thickness reinforcement, the size of 
the DCB specimen and the velocity of the wedge. This provides guidelines for design of experiments 
to probe the efficacy of bridging on improving the dynamic fracture toughness of through thickness 
reinforced structures. 
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ABSTRACT 

A nonlinear fracture mechanics model is formulated for analysis of mode I delamination of 
orthotropic double cantilever beam specimens in the presence of large scale bridging conditions. 
The problem is solved using a nonlinear integral equation approach in terms of stress intensity 
factors at the crack tip. An approximate weight function is proposed and validated numerically 
for a pair of concentrated forces acting on the surfaces of the delamination. The model accounts 
for the presence of regions of contact along the wake of the crack, which may form due to the 
action of the bridging mechanisms. The influence of the orthotropy of the material on the 
fracture behavior is investigated and the validity of approximated solutions based on beam 
theory is checked. 

KEYWORDS:   Nonlinear   fracture   mechanics,   delamination,   strengthening   mechanisms, 
anisotropic material, large scale bridging. 

INTRODUCTION 

Mode I and mixed mode delamination in large scale bridging conditions, such as those created 
by through thickness reinforcement in composite laminates, shows unusual phenomena of crack 
face closure, crack arrest and crack propagation with crack face contact, which have no 
precedent in the delamination of conventional tape laminates [1,2]. In [3] the authors considered 
a typical mixed mode geometry, the Mixed Mode Bending specimen proposed by Crews and 
Reeder and explained these phenomena by means of a simple analytical model based on 
Timoshenko beam theory. The model treats the delaminated arms of the specimen as beams on 
an elastic, generally nonlinear, foundation of Winkler type with the constitutive laws of the 
springs given by the bridging law, which characterizes the bridging mechanism. The crack 

91 



BEAM THEORY AND WEIGHT FUNCTION METHODS 

closure phenomenon is a manifestation of the oscillations of the function representing the 
deflection of the beams in the wake of the crack. The wavelength of the function, X, sets the 
characteristic length scale of the problem, which in the case of linear bridging mechanisms is 

given approximately by X/4 = TC/2 i]4kd/ß3, with ß3 the modulus of the foundation and fa the 

flexural stiffness of the beam cross section. Once the limit configuration for crack tip closure is 
approached, the fracture response of the specimen will depend on the geometry and the loading 
conditions. In the case of a specimen symmetric about its midplane and in the absence of mode II 
loading, the crack will stop and the specimen will break by mechanisms other then delamination. 
In the presence of mode II loading or in asymmetric specimens, the crack will continue to 
propagate and the propagation will be opposed not only by the bridging mechanism but also by 
friction acting in the regions of contact. 

The model proposed in [3] explains qualitatively all the problems associated with large scale 
bridging delamination. However, the model makes strong assumptions which could affect the 
solutions quantitatively, namely it schematizes the specimen as a one-dimensional structure, it 
neglects the influence of the elastic material in front of the crack (built-in ends assumption) and 
it deals only approximately with regions of contact between the delaminated faces and the effect 
these regions may have on crack propagation driven by mode II loading. 

In this paper a nonlinear fracture mechanics model is formulated for analysis of delamination 
crack growth which removes the above mentioned assumptions, assumes a two-dimensional 
deformation field and accounts for the orthotropy of the material. The problem is solved through 
an integral equation approach in terms of stress intensity factors at the crack tip. Since the crack 
closure phenomenon is controlled by the mode I response of the laminate, focus in this initial 
work is restricted to the problem of a double cantilever beam. 

FRACTURE PARAMETERS IN ORTHOTROPIC DOUBLE CANTILEVER BEAMS 

Stress intensity factors 

An exact solution for the stress intensity factor K\? due to a pair of concentrated forces P applied 
per unit width onto the crack faces of a double cantilever beam at a distance d from the crack tip 
has been obtained by Foote and Buchwald [4]. They solved the problem by applying the Wiener- 
Hopf technique to an isotropic, arbitrarily loaded infinite strip and representing the concentrated 
loads in terms of the Dirac delta function. A simple formula approximating the exact solution, 
which has an accuracy of 1.1% and can be applied to double cantilever beams with an uncracked 
ligament c > 2h, is also given in [4]: 

Lf.^^yM- 0.815 
0.619 

+ 0.429 

-l 

0) 

where h is the half thickness of the specimen. For large d/h, Eq. (1) approaches the elementary 

beam theory solution of a double cantilever beam with built-in ends, Kih05/P = -J\2d/h [3]. For 
d/h > 0.3 the exact K\? is well represented (error always lower than 4%) by Gross and Srawley's 
boundary collocation solution, approximately given by the first bracket term on the right hand 
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side. The same limit solution is given by the modified beam theory of Kanninen, which removes 
the assumption of built-in ends to account for the elasticity of the uncracked ligament For very 
small <Mi the dimensionless K1? of Eq. (1) approaches Irwin's solution for a semi-infinite crack in 
an infinite sheet, KJiMIP = (2/K hldf\ A lower limit for the normalized crack length a/h of the 
double cantilever beam specimen must be set for Eq. (1) to be valid for all d/h, 0 < d/h < a/h 
Irwin's solution for very small aVh is correct only if a » d, and should be replaced by Tada's 
solution [5] for a finite crack of length a in a semi-infinite sheet when aft also becomes very 
small. A conservative lower limit for a/h can be set as a/h > 0.3, so that when d/h = a/h = 03 
Gross and Srawley's solution is already approached. 

The stress intensity factor due to a pair of concentrated forces P{ applied on the crack faces of an 
orthotropic double cantilever beam at the coordinate Xl = xVl (Fig. l.a) can be deduced from the 
expression of the strain energy release rate Gi obtained by Suo et al. [6] making use of the 

orthotropic relationship Kl{ = ^E] . Plane stress conditions are assumed along with a 

principally orthotropic material with E[ = (^2E~E^ÄV4)/^ßT^, Z = E3/E1 and 

P = JEiE3 /2G13 -^vnv31 the orthotropic ratios [6], Ex and E3 the Young's moduli in the *i and 

x3 directions, G13 the shear modulus and v13 andv31 Poisson's ratios. The dimensionless stress 
intensity factor is then given by: 

Kuh 0.5        ,3/8 a-x. =-^.2^+Yl(P)r.«j (2) 

where: 

YI(p) = 0.677 + 0.146(/?-l)-0.0178(/?-l)2 +0.00242(p-l)3 (3) 

and n = J(\ + p)l2. For an isotropic material (A = p= 1), YjCp) = 0.677 and Eq. (2) coincides 
with Gross and Srawley's solution. The last term on the right hand side of eq. (2) describes the 
influence of the elasticity of the uncracked ligament ahead of the crack tip and it vanishes for 
large (a-Xl{)/h, when the solution for an orthortropic beam with built-in ends is recovered 
Equation (2), as well as the expression of Gi from which it was derived, has 1% accuracy for all 
(a-xx-)/h > 2 X'1'4 and 0 < p < 4. 

An exact solution for the stress intensity factor KI{ when (a-xx-)/h < 2Xm is not available in th- 
literature^However, examination of Eqs. (1) and (2) along with the observation that Irwin's 
solution for very small cVh = (a- xu)/h maintains its validity also in orthotropic sheets m 
suggests the following formula: 

V-   1,0.5 33/8 / 

Pi S 

\      2h 

\n{a-xVl) 

VT2 
I    h 

^-fYl(p)r1/4 + 

0.815 
/ \0.619 

J7i 
-l-i 

\    h    ) A1/8VT2Y,(p) 

(4} 
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which has the right asymptotic behaviors for large and small (a-xu)/h. The validity of Eq. (4) for 
intermediate values of (a-x\{)/h has been checked through finite element calculations for a range 
of A and p typical of composite laminates, 0.025 < A < 1 and 0 < p < 4, and the relative error has 
been found to be always lower than 4%. The lower limit for the normalized crack length for 
which Eq. (4) is valid can be defined by referring to the limit for an isotropic material and 
exploiting orthotropic rescaling of lengths [6], which yields a/h > 0.3 X . When a reason exists 
for studying very small cracks as well as non-small cracks in numerical work, Eq. (4) can be 
combined very easily with Tada's result for the appropriate domains of a/h. 

X^A 
Pi.     PJ 

Xlj 
xr 

X-l 

a 

2h 

(a) 

>t 

n 
m^ 
^T T T T_^-^ A-^    Xl 2h 

A 
a (b) 

Figure 1: Schematic of the DCB specimen under different loading conditions. 

Crack opening displacement 

The crack opening displacement «3 at the coordinate xu due to a pair of opening forces P, acting 
at xij, Fig. 1, is obtained from the localized compliance A^ = Z/3(XIJ) / P, which can be defined 
through an energy balance or Castigliano's theorem as shown in [8] for an isotropic body. The 
localized compliance is given by: 

x = **3(*ii) = 2 |^H(g,yli)/:Ij(a,ylj) 
ij        P-        F' J P-P. rj        -^l 0 riri 

(5) 

where E[ is the orthotropic constant defined above, Pi is a pair of fictitious forces acting at xyu 

and Kn and Kq are the stress intensity factors at the crack tip due to P\ and Pj, respectively, given 
byEq.(4). 

ORTHOTROPIC DOUBLE CANTILEVER BEAM WITH LARGE SCALE BRIDGING 

The stress intensity factor at the crack tip of a double cantilever beam with tractions p acting 
along the bridged portion of the crack as shown in Fig. Lb is given by: 

Kx =K1P +Klp =K1? - ]Kli(a'Xli)p[u3M]foi 
P 

a0 1 

(6) 

where aQ is the unbridged length of the crack, £iP is the stress intensity factor due to the external 
loads P acting at xu = 0, and K\p is the stress intensity factor due to opening tractions p; KvJFi 
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represents the Green's function of the problem and is given by Eq. (4). The tractions/? depend on 

the crack opening displacement and are a priori unknown in Eq. (6). If u3(xi{) > 0, then p[u3(Xl{)] 

-Ps[ii3(xid] is the closing traction developed by the bridging mechanisms. The value ofp3 as a 
function of u3 is defined through the bridging traction law, p3(u3), which is one of the data of the 

model. If i/3(xn) = 0, then/jfifcCxii)] = -pc[(xu)] is the opening traction depicting the effect of the 
contact pressure. The contact pressure and the size of the regions of contact are unknown a priori 
and can be determined through a compatibility condition for the crack opening displacement. 

The crack opening displacement w3(*n) is obtained by applying the superposition principle and 
Eq. (6): 

«3 (*H ) = «3 (*li )p + »3 (*li )p = *l?P ~ J^P[U3 (Xy)] dXj (7) 

which yields: 

ao 

"3(*i.) = 2P °>»Kl?(a/h)h0-5 Kl{(alh,xvJh)h°-5    » 

h        E[h 1 P p. °V 

K a\lh m^Li/h] J, pt ^)Ä(V*Mf) 

(8) 

Note that the dimensionless K,'s appearing in Eq. (8) and in the equations that follow depend 
also on the orthotropic ratios, Ä and p, as shown in Eq. (4). 

Crack propagation in large scale bridging 

At the onset of crack propagation the crack tip stress intensity factor of Eq. (6) is equal to the 
intrinsic fracture toughness, Ki = Klc, and the dimensionless critical load for crack propagation 
takes the form: & 

Per 1 

Klch
05     KIP(a/h)h05 

-Kfc      a0/h 

P 

"Kl{(alh,xvJh)h™ 
P 

(9) 
p[u(xn/h)]    x^ 

P3Q h 

where p30 is a normalizing value of the crack face tractions, p3, given for instance by their 

maximum value. The dimensionless number on the right hand side of Eq. (9), p3Qh
05 IK*, is a 

measure of the brittleness of the structure. Recalling the expression for E[ and that Ku = 

V<Sic£i, Eq. (9) can be modified to allow direct comparison between isotropic and othotropic 
cases: 
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P„     _A 3/8                j 

jGlcE{h     , Jn K1?(a/h)h05 

P 

u p3Qh0-5 M[Kji<p/h,xli/h)hM~ p[u{xnlh)]AfxVls 

Pio           n 

(10) 

The normalized crack opening displacement at the generic coordinate X\\ is obtained substituting 
P = Per into Eq. (8): 

"3(*ii)£i^2    P«    °>hKl?(a/h)h0-5 Kh{alh,xvJh)h0-5    a   . p30h
05 

Klch
05   '   Klch

0i I P P{ V'2   Klc 

"l "l KiMlh,XvJh)h0-5 K^alh^lh)^5    a p[u(xVi Ih)}    xv 

a0/h max[xu/h,xli/h] P\ Pj h p30 h 

01) 

The statically indeterminate problem defined by the nonlinear integral equations (8) and (9) is 
solved for general bridging laws, psfa), through a discretization. A self-consistent solution for 
the crack profile is obtained iteratively through a numerical procedure following the approach of 
[8,9]. 

Dugdale type bridging law,/73 =/?3o 

In the special case of bridging mechanisms described by a Dugdale type bridging law, p3 = p30, 
Eqs. (9) and (8) simplify and Eq. (9) alone gives the dimensionless critical load for crack 
propagation. Beam theory predicts the absence of regions of contact for this case and this 
qualitative characteristic is confirmed by the more accurate calculations of the integral equation 
approach. Setting aside for this paper the interesting question of the nature of contact regions 
when they do occur (e.g., for linear bridging laws), a detailed assessment is made here of the 
limitations of elementary beam theory for predicting crack propagation in the presence of large 
scale bridging. 

Figures 2.a, 2.b and 2.c show dimensionless diagrams of the critical load for crack propagation 
as a function of the normalized crack length in a double cantilever beam specimen with a0 = 0. 
As already noted the curves are correct only for a/h > 0.3 X'1'4. Three different values of /?3 are 
considered, as marked. The curves named (a), (b) and (c) in each diagram describe the response 
of an isotropic material, an orthotropic material with X= 0.1 and /?=3 (e.g. a graphite epoxy 
laminate) and an orthotropic material with X = 0.05 and p = 5 (e.g. a boron-epoxy laminate), 
respectively. The dashed curves depict the elementary beam theory solution (built-in ends, 
negligible shear deformations). The dotted curve in Fig. 2b, obtained using Timoshenko beam 
theory for an isotropic material, highlights the influence of the shear deformations. 
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Figure 2: Dimensionless critical load versus normalized crack length in orthotropic DCB 

specimens, (a) No bridging, (b) Bridging tractions/* = 0.1 fi^ßjh . (c) Bridging tractionsp3 = 

Q3^GlcExlh. 

Figure 2.a confirms the validity of elementary beam theory in unreinforced specimens when a/h 
is sufficiently high. The anisotropy of the material affects the response only for relatively small 
values of a/h. The influence of the anisotropy of the material on the structural response 
apparently seems to be more marked in members reinforced through the thickness (Figs. 2.b and 
2.c). In this case, two different regimes of behavior are delineated by a transition value of a/h = 

\l(\.12pw^GlcExlhf-5, corresponding to the point where all curves cross each other. If a/h is 

smaller than the transition value, the anisotropy of the material strongly affects the response and 
the elementary beam theory solution does not describe the actual behavior even qualitatively. For 
a/h larger than the transition value, all curves tend to become parallel with a common slope 

given by 1/2 p20^GlcExlh and the deviation between the correct solution and the elementary 

beam theory solution becomes independent of the crack length and given by U2Yip)Xm 

Pio^Ejh. However, the fractional error is Yi{p)Xml(alh), which is independent of the 

intrinsic fracture toughness of the laminate, Gic, and the magnitude of the bridging tractions and 
coincides with the analogous fractional error of the case with no bridging. It depends only the 
crack length and the degree of anisotropy. This error is due to the assumption of neglecting the 
influence of the elastic material ahead of the crack tip and could be removed by using a modified 
beam theory (Kanninen's, Williams's). 

CONCLUSIONS 

An approximate weight function has been proposed and validated numerically for a pair of point 
forces acting on the surfaces of a delamination crack in a possibly thin orthotropic body. The 
weight function allows mode I large scale bridging problems in beams and plates to be 
formulated as integral equations without the limitations imposed on accuracy by beam theory- 
approximations. In particular, the crack tip singularity will be properly represented. The integral 
equations can be solved using well-known, computationally efficient and accurate methods. The 
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weight function strongly depends on the anisotropy ratio. This is a feature of the plate or beam 
geometry. 

The first application of the new weight function to the problem of a large zone of uniform 
bridging tractions (the Dugdale bridging model) shows the ranges of crack lengths over which 
beam theories of different order succeed and fail. The presence of large scale bridging is found 
not to significantly increase the sensitivity of the solutions to the degree of anisotropy with 
respect to the case with no bridging. 

While elementary beam theory will always be correct for sufficiently large crack lengths, alh, 
there is a regime of small crack lengths, alh < 2, where rigorous solutions are required, e.g. 
based on integral equation methods. Moreover, there is a regime of practical interest for 
laboratory specimens, 2 < alh < 10, where elementary beam theory yields only qualitatively 
correct trends and solutions based on integral equation methods or on modified beam theory are 
required for quantitative accuracy. 
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