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Abstract 

This report describes an algorithm for detecting military vehicles in FLIR 
imagery that will be used as a prescreener to eliminate large areas of the 
image from further analysis. The output is a list of likely target locations 
with confidence numbers to be sent to a more complex clutter-rejection al- 
gorithm for analysis. The algorithm uses simple features and is intended to 
be applicable to a wide variety of target-sensor geometries, sensor configu- 
rations, and applications. 

n 



Contents 

1 Introduction 1 

2 Data 2 

3 Features 3 

3.1 Maximum Grey Level, Feature 0     3 

3.2 Contrastbox, Feature 1  3 

3.3 Average Gradient Strength, Feature 2  4 

3.4 Local Variation, Feature 3     4 

3.5 How Features Were Selected  4 

4 Combining Features 6 

5 Experimental Results 7 

6 Conclusions and Future Work 13 

References 14 

Distribution 15 

Report Documentation Page 17 

Figures 

1 

2 

3 

4 

5 

6 

7 

ROC curve on Hunter Liggett April 1992 imagery  8 

ROC curve on Yuma July 1992 imagery  8 

ROC curve on Greyling August 1992 imagery  9 

Easy image from Hunter Liggett April 1992 dataset  9 

Results on image in figure 4  10 

Moderate image from Hunter Liggett April 1992 dataset   .... 11 

Results on image in figure 6  12 

in 



1.    Introduction 

We designed the algorithm described in this report to address the need for 
a detection algorithm that could serve as a prescreener/detector for a broad 
number of applications. While most automatic target detection/recognition 
(ATD/R) algorithms use much problem-specific knowledge to improve per- 
formance, the result is an algorithm that is tailored to specific target types 
and poses. The approximate range to target is often required, with varying 
amounts of tolerance. For example, in some scenarios, it is assumed that the 
range is known to within one meter from a laser range finder or a digital 
map. In other scenarios, only the range to the center of the field of view and 
the depression angle is known, so that a flat-earth approximation provides 
the best estimate. Many algorithms, both model-based and learning-based, 
required either accurate range information or compensate for inaccurate 
information by attempting to detect targets at a number of different ranges 
within the tolerance of the range. Because many such algorithms are quite 
sensitive to scale, even a modest range tolerance requires that the algo- 
rithm attempt to match at a large number of closely spaced scales, driving 
up both the computational complexity and the false alarm rate. Algorithms 
have often used view-based neural networks [1-3] or statistical methods 

[4]. 

The proximate motivation for developing the scale-insensitive algorithm 
was to provide a fast prescreener for a robotic application for which no 
range information was available. Instead, the algorithm attempted to find 
targets at all ranges between some reasonable minimum, determined from 
operational requirements, and the maximum effective range of the sensor. 

Another motivation was to develop an algorithm that could be applied to 
a wide variety of image sets and sensor types without the severe degrada- 
tion in performance that commonly occurs with learning algorithms, such 
as neural networks and principal component analysis-based methods, that 
have been trained on a limited variety of sensor types, terrain types, and 
environmental conditions. While we recognize that with a suitable training 
set, learning algorithms will often perform better than other methods, such 
a scenario typically requires a large and expensive training set, which is 
sometimes not feasible. 



2.   Data 

The dataset used in training and testing this system was the April 1992 
Comanche forward looking infrared (FLIR) collection at Ft. Hunter Liggett, 
CA. This dataset consists of 1225 images, each of which is 720 by 480 pixels. 
Each image has a field of view of approximately 1.75 degrees squared. 

Each image contains one or two targets in a hilly wooded background. 
Ground truth was available that provided target centroid, range to target, 
target type, target aspect, range to center of field of view, and depression 
angle. The target centroid and range to target were used to score the al- 
gorithm, as described in the experimental results section, but none of the 
target-specific information was used in the testing process. The algorithm 
assumes that only the vertical and horizontal fields of view and the pixel 
geometry are known. The only range information used is the operational 
minimum range and the maximum effective range of the sensor. 



3.   Features 

Each feature is calculated for every pixel in the image. As more complex 
features are added in the future, it might become beneficial to calculate 
some of the features only at those locations for which the other feature val- 
ues are high. While each feature assumes knowledge of the range to deter- 
mine approximate target size, these features are not highly range sensitive. 
The algorithm calculates each feature at coarsely sampled ranges between 
the minimum and maximum allowed range. 

Each feature described below was chosen based on intuition, with the cri- 
teria that they be monotonic and computationally simple. The features are 
described in decreasing order of importance. 

3.1    Maximum Grey Level, Feature 0 

The maximum grey level is the highest grey level within a roughly target- 
sized rectangle centered on the pixel. We chose it because in many FLIR 
images of vehicles, a few pixels are significantly hotter than the rest of the 
target or the background. These pixels are usually on the engine, the ex- 
haust manifold, or the exhaust pipe. The feature is calculated as 

Ffj = max{kj)eNin(i,j)f(k,l), (1) 

where f(k. I) is the grey-level value of the pixel in the fcth row and Ith col- 
umn; Nin(i,j) is the neighborhood of the pixel (i.j) defined as a rectangle 
whose width is the length of the longest vehicle in the target set and whose 
height is that of the tallest vehicle in the target set. For the applications we 
have considered, the width is 7 m and the height, 3 m. 

3.2    Contrastbox, Feature 1 

The contrastbox feature measures the average grey level over a target-sized 
region and compares it to the grey level of the local background. We chose 
this feature because many pixels that are not on the engine or on other par- 
ticularly hot portions of the target are still somewhat warmer than the nat- 
ural background. This feature has been used by a large number of authors 
and is calculated as 

Fy = ±    £    w)-^-t     E     /(M),        (2) 
n'm (U)€Nln(i.j) °ut (k.l)€Novt(Lj) 

where nout is the number of pixels in Nout(i, j), nin is the number of pixels 
in Nin(i.j), and Nin(i,j) is the target-sized neighborhood defined above. 
The neighborhood Nout{i,j) contains all of the pixels in a larger rectangle 
around (i. j), except those pixels in Nin(i. j). 



3.3   Average Gradient Strength, Feature 2 

We chose the gradient-strength feature because manmade objects tend to 
show sharper internal detail than natural objects do, even when the aver- 
age intensity is similar. To prevent large regions of background that show 
higher than normal variation from showing a high value for this feature, 
we subtract the average gradient strength of the local background from the 
average gradient strength of the target-sized region. The feature is calcu- 
lated as 

F?d = —       E       Gin(i,j)-—       E       Govtfrj), (3) 
nm (k,l)€Nin(i,j) Hout (U)eNout(i,j) 

where 

Gin(i,j) = Gl(i,j) + Gv
in(i,j), (4) 

G£,(»,j)=    E    \f(hJ)-f(i,J + l)\, (5) 
(i,j)eNin 

Gv
in(hJ)=    E    l/(M')-/(* + U)l. (6) 

(i,j)eNin 

and Gout(i,j) is defined similarly. 

3.4   Local Variation, Feature 3 

The local variation feature is calculated as 

p3 Ffj = —       E       Lin(i,j)-—        E        L0Ut(Lj), (7) 
n%n (kJ)£Nin(i,3) °Ut (kJ)eNout(i,j) 

where 

and 

Lin(i,j)=        E       -l/(M)-Mm(i,.7')l (8) 
(kJ)£Nin(i,j) 

VHn(i,j) = —       E       /(M- 0) 
m (k,l)€Nin(i,j) 

3.5    How Features Were Selected 

A full description of the feature selection is outside the scope of this report. 
We programmed a large number of features and calculated the value of 
these features over a large number of randomly selected pixels in the im- 
ages of the training set. We also calculated the feature values at the ground 
truth location of the targets. We computed histograms for each feature for 



both the target and background pixels and calculated a measure of separa- 
bility. We also calculated the correlation of the features to avoid choosing 
several features that are similar. Some of the features were highly corre- 
lated, which was expected because one of the purposes of the training was 
to determine which of similar features provided the greatest separability. 
For example, a number of contrast features were used, which normalized 
the target and background values by local standard deviation of the back- 
ground, or of the target, or neither. Similarly, a number of gradient-strength 
features were calculated. The feature-pruning process was ad hoc; thus it 
would be reasonable to expect that performance improvement could be ob- 
tained by the use of a more rigorous approach. 



4.    Combining Features 

Each feature is normalized across the image so that the feature value at each 
pixel represents the number of standard deviations that the pixel stands 
apart from the values for the same feature across the image. Thus the fea- 
ture image for the mth feature is normalized as 

i,3 

where 

FrnN = ^J_J^ m 

a„ 

ßm~ M E   FKi ÖD 
all(k,l) 

and 

= h E ra-Mm)2. (12) a"L     M 
all(kd) 

After normalization, the features, each of which is calculated for each pixel, 
are linearly combined into a confidence image, 

dj = E ^tf » (13) 
jrm.N 

Urn* 
m=0 

where the feature weights ujm are determined with the use of an algorithm 
not described here. The confidence value of each pixel is mapped by a scal- 
ing function S : K —> [0,1], as 

S(Gij) = 1 - eaGi'J , (14) 

where a is a constant. 

This scaling does not change the relative value of the various pixels; it 
merely scales them to the interval [0,1] for convenience. Confidence num- 
bers are often limited to this interval because they are estimates of the a 
posteriori probability. While this is not true for our algorithm, the use of 
this interval is convenient for evaluators. 

To determine the detection locations from the scaled confidence image, we 
choose the pixel value with the maximum confidence value. Then a target- 
sized neighborhood around the image is set to zero so that the search for 
subsequent detections will not choose a pixel location corresponding to the 
same target. The process is repeated an integer number of times, where the 
integer is chosen a priori. 



5.   Experimental Results 

The training results on the Hunter Liggett April 1992 ROI database are 
shown in the receiver operating characteristics curve in figure 1. Figure 
2 shows test results on the February 1992 ROI database collected at Yuma 
Proving Ground (YPG), and figure 3 shows test results on the Greyling 
August 1992 ROI database. The Yuma test data are much more difficult 
because they were taken in the desert in July, so many locations in the im- 
age have a higher apparent temperature than that of the targets. The data 
from Greyling, Michigan are significantly easier because the temperatures 
are milder, and the data are comparable in difficulty to the training data. 
Note that no training data were used from anywhere but Hunter Liggett, 
so the results suggest that the algorithm is not sensitive to the training 
background. This is not surprising given the simplicity of the algorithm. 
However, learning algorithms are often sensitive to training background. 
Figures 4 and 5 show a sample image and the results of the algorithm on 
the image. The crosses in figure 5 denote the ground-truth targets, and the 
x's denote the detections on the targets. Detections are designated hits if 
the detection center falls anywhere on the actual target; otherwise, they are 
designated as false alarms. The top three detections, ranked by confidence 
number, are designated on the image. The top two detections are hits, while 
the third falls near the target and is designated a false alarm. Figures 6 and 
7 show another somewhat more difficult image and associated algorithm 
results. The top detection falls on a target in the bottom left of the image, 
while the second highest detection is a false alarm near the center of the im- 
age. Although the location looks like a possible target, it is merely a warm 
spot on the dirt road. 

The algorithm, with relatively minor modifications, has been used by the 
Demo III unmanned ground vehicle (UGV) program to reduce the amount 
of imagery that must be transmitted via radio link to a human user. It will 
also be used by the Sensors for UGV program at the Night Vision and Elec- 
tronic Sensors Directorate to prescreen uncooled FLIR imagery and to indi- 
cate potential targets that should be looked at more closely with an active 
laser sensor. This algorithm has been used as a synthetic image-validation 
tool by measuring the performance of the algorithm in comparison to real 
imagery. 



Figure 1. ROC curve on 
Hunter Liggett April 
1992 imagery. 
Horizontal axis gives 
average number of false 
alarms per frame. 
Vertical axis is 
target-detection 
probability. 
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Figure 2. ROC curve on 
Yumajuly 1992 
imagery. 
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Figure 3. ROC curve on 
Greyling August 1992 
imagery. 
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Figure 4. Easy image 
from Hunter Liggett 
April 1992 dataset. 



Figure 5. Results on 
image in figure 4. 
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Figure 6. Moderate 
image from Hunter 
Liggett April 1992 
dataset. 
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Figure 7. Results on 
image in figure 6. 
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6.    Conclusions and Future Work 

Future work might include a more systematic evaluation of potential fea- 
tures and an improved classification scheme that allows useful features that 
appear rarely to be incorporated. In a small minority of FLIR images of tar- 
gets, a windshield will reflect cold sky, causing a few pixels to be extremely 
dark. The current scheme is not set up to incorporate such features because 
the weighting would be quite low since the feature is seldom useful. 

13 
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