
ARMY RESEARCH LABORATORY

Implementation of Spread
Spectrum Image Steganography

by Frederick S. Brundick and Lisa M. Marvel

ARL-TR-2433 March 2001

Approved for public release; distribution is unlimited.

20010320 126

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2433 March 2001

Implementation of Spread
Spectrum Image Steganography

Frederick S. Brundick and Lisa M. Marvel
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

Steganographic techniques are useful to convey hidden information by using various
types of typically-transmitted multimedia data as cover for concealed communication.
Spread Spectrum Image Steganography (SSIS) is a data-hiding/hidden-communication
method that uses digital imagery as a cover signal. This report describes an SSIS
prototype system for embedding messages in images and extracting messages from
stegoimages. The components, which were written in the Java and C programming
languages, were kept modular to provide a workbench for further experimentation. We
discuss experiments that were performed with the system, along with possible avenues of
future research to improve the SSIS process.

11

Table of Contents

Page

List of Figures v

List of Tables v

1. Introduction 1

2. Spread Spectrum Image Steganography 2

3. System Components 3
3.1 Overview 3
3.2 Error-Correcting Code (ECC) 4
3.3 Interleaver 4
3.4 Message Embedder 4
3.5 Message Extractor 5
3.6 Error Maps 5
3.7 Deinterleaver and ECC Decoder 6

4. Prototype System 6
4.1 Overview 6
4.2 Hiding a Message 6
4.3 Extracting a Message 9

5. Implementation Details 9

6. Laboratory Excursions 12
6.1 Image Estimation 12
6.2 Prefiltering 13
6.3 Stegoimage Modification 14

7. Future Research 14

8. Summary 14

9. References 17

Distribution List 19

Report Documentation Page 21

m

INTENTIONALLY LEFT BLANK.

IV

List of Figures

Figure Page

1. Simplified Steganography Embedder 2

2. Simplified Steganography Extractor 3

3. Command Menu 6

4. Image Browser 7

5. Using Text Browser After Selecting Cover Image 8

6. Entering Message Key Prior to Embedding 8

7. Original Image and Stegoimage 9

8. Entering Message Key Prior to Extraction 10

9. Error Map and Extracted Message 10

10. Error Map With Obvious Edges 13

List of Tables

Table Page

1. Error-Correcting Codes 11

2. BER as a Function of Power 12

3. BER for Prefiltered Images 13

INTENTIONALLY LEFT BLANK.

VI

1. Introduction

The prevalence of multimedia data in our electronic world exposes a new avenue for
communication using digital steganography. Steganographic techniques are useful to convey
hidden information by using various types of typically-transmitted multimedia data as cover
for concealed communication. The inability to detect the hidden data, perceptually or by
computer analysis, is paramount for surreptitious operation.

There are many applications for techniques that embed information within digital images.
The dispatch of hidden messages is an obvious function, but today's technology stimulates
even more subtle uses. In-band captioning, such as movie subtitles, is one such use where
textual information can be embedded within the image. The ability to deposit image cre-
ation and revision information within the image provides a form of revision tracking as
another possible application of digital steganography. This avoids the need for maintaining
two separate media, one containing the image itself and one containing the revision data.
Authentication and tamperproofing as security measures are yet other functions that could
be provided. Digital image steganographic techniques can also provide forward and back-
ward compatibility by embedding information in an image in an imperceptible manner. If
a system has the ability to decode the embedded information, new, enhanced capabilities
could be provided. If a system did not have the capability to decode the information, the
image would be displayed without degradation, leaving the viewer unaware that the hidden
data exist. These are but a few of the possible uses of image steganography.

Spread Spectrum Image Steganography (SSIS), is a data-hiding/hidden-communication
method that uses digital imagery as a cover signal. SSIS provides the ability to hide and
recover, error free, a significant quantity of information bits within digital images, avoiding
detection by an observer. Furthermore, SSIS is a blind scheme because the original image is
not needed to extract the hidden information. The proposed recipient need only possess a
key in order to reveal the hidden message. The very existence of the hidden information is
virtually undetectable.

This report describes an SSIS prototype system for embedding messages in images and
extracting messages from stegoimages. Portability was a major consideration when designing
this application. The research and initial experimentation had been performed in MATLAB
and C under the UNIX operating system, while the target system for the prototype was a
laptop running Windows 95. This was achieved by rewriting the MATLAB portions in ANSI
C and by using Java for the graphical user interface (GUI).

The initial intention for building the prototype was to provide a vehicle by which to
demonstrate the concepts of SSIS. However, the prototype was found to be very useful from
a research standpoint. It was important to build flexibility into the system to provide a
workbench for further experimentation. Each of the major components was written as a
separate program, which also allowed multiple researchers to work on different areas of the
problem. In addition, tests could be performed without having to modify the prototype.

After providing background information on the steganography process, we will discuss
the components of the SSIS prototype and how they work together to function as an intact

system. The methods used to derive empirical values are explained, along with some excur-
sions into alternative ideas and a brief analysis of the results.

2. Spread Spectrum Image Steganography

Spread Spectrum Image Steganography (SSIS) works by storing a message as Gaussian
noise in an image (Marvel, Boncelet, and Retter 1998, Marvel et al. 1999). At low noise
power levels, the image degradation is undetectable by the human eye, while at higher levels
the noise appears as speckles or "snow." The process consists of the following major steps,
as illustrated in figure 1:

1. Create encoded message by adding redundancy via error-correcting code.

2. Add padding to make the encoded message the same size as the image.

3. Interleave the encoded message.

4. Generate a pseudorandom noise sequence, n.

5. Use encoded message, m, to modulate the the sequence, generating noise, s.

6. Combine the noise with the original image, /.

/

Cover Image -
1 J \ , Quantizer JL Stegoimage K)

, i

f \

Message —*■
Low-Rate

ECC a

1 '
r

\
\

Interleaving Modulation
) m

i

ke
 N Pseudorandom
y *

No ise General .or i 1

Figure 1. Simplified Steganography Embedder.

Figure 2 shows the decoding process. Notice that the original image is not required
to recover the hidden message. A filter is used to extract the noise from the stegoimage,
resulting in an approximation of the original image. The better this filter works, the fewer
errors in the extracted message. This is discussed further in section 6.2.

Received
s

g ,r ̂
Stegoimage 'V.

1
J

_ /N

Restoration
Filter

f

i

s

1

Pseudorandom
Noise Generator

n Demodulation 1
\

^y

As
m

key —* ■ Deinterleaving

Estimate o
Message

-< Low-Rate
ECC Decoder

Figure 2. Simplified Steganography Extractor.

The reverse process, of extracting and restoring the original message, is of course very
similar:

1. Filter the stegoimage, g, to get an approximation of the original image, /.

2. Subtract the approximation of the original image from the stegoimage to get an
estimate of the noise, s, added by the embedder.

3. Generate the same pseudorandom noise sequence, n.

4. Demodulate by comparing the extracted noise with the regenerated noise.

5. Deinterleave the estimate of the encoded message, m, and remove the padding.

6. Use error-correcting decoder to repair the message as needed.

3. System Components

3.1 Overview

During the initial research phase of the SSIS work, each major step was performed by a
different component. The image manipulation had been done with MATLAB, an integrated
technical computing environment that combines numeric computation, advanced graphics

and visualization, and a high-level programming language (MathWorks 1999). When this
prototype was built, the operations that had been performed with MATLAB were rewritten
in C for portability. The discussion that follows gives a summary of each component and its
operation.

3.2 Error-Correcting Code (ECC)

A family of ECC programs was written (in the C programming language) to read a
message file and insert error-correcting codes. Each program uses a different set of codewords
to enable it to correct a specific bit error rate (BER) (Retter 1995). The BER is computed
as a percentage that represents the number of bits in error divided by the total number of
bits. For the block codes used here, the BER is computed on a block-by-block basis with a
block equivalant to a segment of bits that is equal to the number of input bits.

There is a tradeoff between the BER correcting capability and the message payload. This
can be related to the the rate of ECC, which indicates the ratio of the number of input bits to
the output bits. Typically, codes that have a low rate (less than 0.3) can correct a significant
number of errors but at the cost of a large overhead. Use of a low rate code results in a low
payload throughput. A higher rate ECC, on the other hand, may not correct as many errors
but incurs less overhead and thereby has a higher payload throughput. Four different sets
of codewords were generated to cover a range of BERs.

3.3 Inter leaver

Gaussian noise is added to the image by having each bit in the encoded message alter
each pixel in the image. This requires that the message and image be the same size, so the
encoded message is padded with zeroes. Experimentation has shown that filtering to remove
the noise from the stegoimage at the receiver causes errors typically to occur in bursts,
usually correlating to the edges in the image.

The ECC works much better if the errors are not clustered together since the ECC BER is
computed on a block basis. Therefore, the ECC has a better opportunity to decode correctly
when the errors are spread uniformly throughout the entire image. To minimize the chance
that an encoding block will have more errors than it can correct, the encoded message bits
are interleaved or redistributed throughout the message. This act causes the number of errors
in any encoding block to occur in an equally likely fashion.

3.4 Message Embedder

Another C program, based on code developed in MATLAB, was written to combine the
cover image with the modified message. The user provides a key and the variance (power)
of the noise. In order to store a large payload, a high rate ECC must be used, which in turn
requires a low BER. This may be achieved by employing a larger power, but that degrades

the quality of the stegoimage. A series of debug flags may be set when the program is run
to record the computations and verify that everything is working properly. The embedder
was validated by examining the results at each stage.

A stegoimage must be independent of the computer architecture that was used to create
it. A standard graphics format was used for the images, and the byte-oriented algorithm
used by the ECC avoided architectural byte-ordering problems.* The only architectural issue
involved the code to generate the pseudorandom noise. The library functions available on
the UNIX and Windows platforms were drastically different and did not even return the
same size numbers, much less the same sequence. The pertinent functions were extracted
from the GNUt C library (Free Software Foundation 1996). Tests showed that a Sun and a
PC generated the same sequence when given the same key.

3.5 Message Extractor

During the early stages of the work, the message extractor was a separate program. Since
the embedder and extractor share much of the same code, they were later combined into
a single program. This had the unplanned benefit of allowing various experiments to be
performed as shown in section 6.

The user still provides the key for the random number sequence in order to extract the
message. He may also specify which one of several built-in restoration filters is used on the
stegoimage. To avoid constantly adding new filters to the program and to make it easy to
test filters for which source code was not readily available, an option was included to let the
user provide a prefiltered image. In figure 2, the Restoration Filter box is removed, and the
user supplies the filtered image, /, directly.

3.6 Error Maps

The extracted message may have errors because the restoration filter may not perfectly
generate the original cover image. These errors often occur along edges in the image. Even
when the cover image was supplied as the filtered image during testing, the message was not
always correct. The reason for this is truncation errors caused when noise was added to an
image pixel resulting in a value less than 0 (black) or greater than 255 (white).

A Perl script (Wall, Christiansen, and Schwartz 1996) was written to compare an original
and extracted message and count the number of bits that are incorrect; in other words, it
computes the BER. It also creates a new image, where a white pixel indicates the message
bit was correctly extracted and a black pixel indicates an error. These images, called error
maps, showed the errors are not random and occur along edges and white or black areas in
the image as shown later.

"The Sun used to develop the software is big-endian, while Intel chips are little-endian.
^The GNU project includes a portable C compiler and library functions.

3.7 Deinterleaver and ECC Decoder

The bits that make up the extracted message are restored to their original positions by
reversing the interleaving process. The process is completed by running the extracted and
deinterleaved message through the C program that matches the original code (i.e., uses the
same codewords). The final result is a file that contains the recovered message.

4. Prototype System

4.1 Overview

A program was written in Java 1.2 (Flanagan 1999) to allow anyone to run all of the
above components without being aware of the details. It allows the user to choose a cover
image from a group of thumbnail images, select a text file, and create a stegoimage. They
may also browse thumbnails of stegoimages (images with messages hidden in them), pick
one, and extract the original message. Because the prototype system is GUI-based, much of
the explanation that follows is in the form of screen dumps.

4.2 Hiding a Message

When the prototype is first started, it reads and stores all of the sample text files along
with the message sizes and titles. It then presents the user with a simple prompt to "Select
an option from the Command menu." The menu is shown in figure 3 with the user about to
select Create Stego Image.

Illsteganograplfp Prototype \

Help

Create Stego Image
Transmit Stego image

I Extract Message

ornmand menu

Figure 3. Command Menu.

Once the user has entered the stegoimage creation mode, the main window displays two
empty panes. The one on the left is for the cover image, while the right-hand pane is a
scrollable area for the display of the message to be hidden. A button under each pane allows
the user to select the files he wants. Figure 4 shows the image browser with the sample set of

cover (or "plain") images, while figure 5 shows the text browser on top of the main window.
The number after each message title is the size of the message in characters.

|g3 Cover image Browser
Choose a cover image:

Cancel

Figure 4. Image Browser.

In figure 6, the user has chosen both a cover image and a text message. The Dolt button
appeared, the user clicked it, and now a dialog is asking the user to enter a password to be
used as the embedding key. The password is converted into an integer as required for the
random number generator, or the user may enter an integer key directly.

The image, message, key, and some other values are passed to the C programs that insert
the ECC and create the stegoimage. The original image and the stegoimage are displayed so
the user may see the degradation in image quality. This is shown in figure 7. The message file
is saved for later comparison with the extracted message so that the errors may be displayed
and the BER computed.

Commands Heü

fgitSf»£«? Choose an image anlfSI
■ASS.

Choose message text:

i Bosnia news blurb; 270 :

■ Can for fire: 81

Start of Pari» Peace Treat: 4«?

Medium Paris Peace Treaty: 1011

ton« Pari» Peace Treaty: 2778 j

Figure 5. Using Text Browser After Selecting Cover Image.

|!fSf 8fs»gf aplw Protatpie

The Paris Peace Treaty of 1783
(Which ended the Revolutionary War)

^s^^^ssti^^s^^^^^^^^^ holy 3nd

<me Providence toI
most serene

: Liuiw ui piuiib.nniiK'cii'm'lunebourg,

I George the Third,]
I) of Great Britain,

flip snder of the faith,

arch-treasurer and prince elector of the
Holy Roman Empire etc., and of the
United States of America, to forget all past)
misunderstandings and differences that

WUJ tU A .
if^f

Text file paris2

Figure 6. Entering Message Key Prior to Embedding.

' pS Steejarrography Prototype

Commands Help

IBB

Image file: tanks Stegofile:tanks_30
■•""fmftWhWHfil

Figure 7. Original Image and Stegoimage.

4.3 Extracting a Message

The sequence of steps to recover a hidden message from a stegoimage begins with the
user selecting Extract Message from the command menu, which causes the main window
to display a single, empty pane. Clicking on the Stego file button opens an image browser
like the one in figure 4, only this time it displays thumbnail images of the stegoimage files.
Once again, clicking the Dolt button causes the password dialog to appear as shown in
figure 8.

The C programs manipulate the stegoimage—extracting, deinterleaving, and correcting
the message. The error map* and final message are both displayed, and the process is
complete. This is demonstrated in figure 9. Notice that the sky contains very few errors,
while the sharp lines caused by the vehicle antennae are clearly visible, caused by the inability
of the current filter to remove noise in the edge areas. The text in the right-hand pane has
some errors, indicating the error-correction scheme did not repair all of the errors.

5. Implementation Details

The prototype steganography system must run with a minimum of user intervention. The
ECC programs currently support four sets of codewords as shown in table 1. More correcting
code must be added as the error rate increases (becomes worse), which reduces the size of

"The error map is not required, but is displayed to show that the estimated message contains errors that
must be corrected.

^^ÄiÄÄÄÄi^liflilHSpil
Commands Help

Click bunon to perform decoding

f|S Message Key

Figure 8. Entering Message Key Prior to Extraction.

fes Steyanoyraphy Prototype

Decoding completed

The Paris Peace Treaty of 1783
(Which ended the Revolutionary Wbr)
In the name of the most holy and
undivided Trinity.
It having pleased the Divine Providence to
disPose the hearts of the most serene
and most potent Prince George the Third,
by the grace of God, king of Great Britain,
France, and Ireland, defender of the faith,
dule of Brunswick and Lunebourg,
arch-treasurer and prince elector of the
Holy Romad Empire etc., and of the
United States of America, to forgeu all
past misunderstandings and differences

*«s;i. i I**«*»». ••n*~«J *U« yvA^ol

Error map Text file

Figure 9. Error Map and Extracted Message.

10

the payload. The payload in bits per pixel is the payload divided by the ECC rate or bit
ratio (e.g., 40/155 = 0.2581). The last column—payload capacity in characters—is based on
the 256 x 256 pixel cover images used in the prototype.* If the text message is compressed,
the overall capacity may be increased, but compression schemes may be fragile and may fail
when the data contains errors.

Table 1. Error-Correcting Codes

Binary
Code

BER Correcting
Capability

Payload
(bpp)

Payload
(char)

(155,40)
(378,36)
(889,35)

(2040,32)

0.12
0.21
0.27
0.34

0.2581
0.0952
0.0393
0.0156

2114
779
321
127

The BER for various stego powers must be computed in order to determine the power
required for each payload size. A message was hidden into the same cover image using
a variety of powers. Each was then extracted and the BER computed by comparing the
extracted (but not error-corrected!) message with the original message. Table 2 contains
the error rates for two of the sample images.

The goal is to use the smallest power to hide a message, thus minimizing the amount
of noise in the stegoimage, which corresponds to its visual appearance. These values are
emboldened in table 2. Notice that Image 1 achieves all four error rates and thus may
embed a message up to each specified size. Image 2 starts at a lower BER but does not get
much better, so it is incapable of hiding a message of 2114 characters. The BER is always
higher than the desired value of 12%. A power of 150 has an error rate of 16%t and the
picture quality is becoming unacceptable.

A payload capacity file was created for each of the cover images. It contains pairs of
numbers listing the threshold powers and message sizes that were determined empirically.
When the user selects a cover image and a message, the image's capacity file is read to
determine what power should be used to generate the stegoimage. If the message exceeds
the capacity of the image, an error message is displayed and the user is prompted to choose
a different message or cover image.

When the user wishes to extract the message from a stegoimage, he must supply the same
key which was used as the embedding key. Normally, he would also give the power of the
noise. Since this value was provided during the embedding process without his knowledge,
it is incorporated into the name of the stegoimage file. In a fielded system, the user would
be told what power had been used to generate the image, and this value would somehow be
conveyed, as part of the key, to the person who performs the extraction.

•For example, (0.2581 x 256 x 256)/8 = 2114.36 hidden characters.
^Increasing the stego power results in smaller improvements of the BER, approaching a limit of just under

16%.

11

Table 2. BER as a Function of Power

Power

Image 1 Image 2

BER Payload BER Payload

5 28.5690 127 25.3815 321
10 23.7106 321 23.2391 321
15 21.2021 321 22.0413 321
20 19.3634 779 21.1685 321
25 18.1107 779 20.5292 779
30 17.1417 779 20.0500 779
35 16.2643 779 19.6060 779
40 15.5838 779 19.2245 779

45 14.8941 779 18.8339 779

50 14.4165 779 18.5989 779

55 13.8596 779 18.3060 779

60 13.4476 779 18.0389 779

65 13.1241 779 17.8650 779
70 12.8143 779 17.6682 779
75 12.4878 779 17.5140 779
80 12.2711 779 17.3676 779
85 11.9614 2114 17.2623 779
90 11.7783 2114 17.1204 779
95 11.5616 2114 17.0166 779

100 11.3571 2114 16.9357 779

6. Laboratory Excursions

The modular design of the prototype steganography system makes it very easy to con-
duct experiments. Because the embedding and extraction of a message in a stegoimage is
performed in a single program, it is very easy to share code.

The Java front end was not used in the laboratory tests because it limits the user's choice
of parameters. The various programs were either invoked manually or with an automated
script. This is work in progress, so general observations are made, but a detailed analysis of
the results is not possible at this time.

6.1 Image Estimation

The first step in extracting a message from a stegoimage consists of applying a restoration
filter to the stegoimage. If the filter perfectly reconstructs the original cover image, the
embedded message should be recovered with no errors. However, the extracted message
sometimes contained errors caused by truncation, as explained in section 3.6.

12

The better the filter works, the fewer errors there are in the extracted message. A stegoim-
age was created and subjected to a variety of filtering programs. The filtered stegoimages
were then supplied to the message extraction program, and the BER was computed for each
one. In this way a number of filters were (and continue to be) evaluated, and a few were
incorporated into the steganography program.

6.2 Prefiltering

Edges that appear in an image are a major source of extraction errors. The edges in
figure 10 are readily apparent; both the outline of the mountain and the window frames on
the building are clearly visible. An experiment was conducted where a filter was applied to
the cover image before the message was added to it. This had the effect of smoothing out the
edges, and the BER of the extracted message was reduced dramatically as shown in table 3.
However, the stegoimages produced had a blurry, slightly out-of-focus appearance and were
deemed visually unacceptable at this time.

Figure 10. Error Map With Obvious Edges.

Table 3. BER for Prefiltered Images

Cover
Image

BER (%)
Normal Prefiltered

A
B
C

19.28
24.24
12.81

6.78
10.29
6.43

13

6.3 Stegoimage Modification

A related idea approaches the filtering problem from a different direction. Instead of
finding a better filter or blindly prefiltering the cover image, take the extraction process into
account. Generate the stegoimage the usual way, then immediately extract the message.
The original message is still available, and errors may be readily detected.

The embedder may be modified to call the appropriate extraction functions and use the
errors as immediate feedback to make corrections. Various adaptive techniques are being
explored, and early results have shown that the BER may be reduced significantly with little
effect on the quality of the stegoimage.

7. Future Research

SSIS is made up of several components, and each of them may be enhanced to improve the
entire process. For example, one of the ECC codeword sets has been replaced with a set that
fixes more errors, and a fifth ECC scheme is being tested. Another idea is to add some intel-
ligence to the error-correcting process. It is known that edges cause problems, so some form
of edge detection must be used to augment the ECC algorithm (Marvel and Retter 2000).

A solution to the truncation problem may lie in scaling the data so that all pixel values
are in the range of the original image. Preliminary tests show that adding a feedback loop to
the embedding process reduces extraction errors without degrading the stegoimage, although
care must be taken to ensure the image is not altered in an unacceptable manner. A filter
that produces mediocre results with the standard algorithm may turn out to be much better
when feedback is included. All changes made to the stegoimage must be transparent to the
extractor; no out-of-band data may be exchanged between the sender and recipient (besides
the key and stego power) before the message is extracted.

A more elaborate approach is to automate the entire process. The current prototype
requires the user to select the cover image for his message, and the power used in the
embedding is based on a fixed table of message sizes. The embedding and extraction portions
of the SSIS process are fairly quick, and it may be possible to iterate on a range of powers
to determine the best to use for a given message and image combination. An algorithm to
determine, picture quality, by comparing the cover image and stegoimages, may be added to
automatically determine if a power results in an acceptable image.

8. Summary

SSIS has been shown to be a powerful way to transmit messages via normal channels
without an observer detecting them. The prototype system described in this report is both
functional and portable, using languages available on a variety of platforms. The modular
design of the system allows components to be replaced with more powerful ones and lends

14

itself to casual experimentation by multiple researchers. Some of the "what-if" excursions
that have been conducted were not anticipated during the development phase of SSIS. More
experiments are expected as the process is refined further.

15

INTENTIONALLY LEFT BLANK.

16

9. References

Flanagan, D. Java in a Nutshell. Sebastopol, CA: O'Reilly & Associates, 1999.

Free Software Foundation. GNU C Library, http://www.gnu.org/software/libc/, 1996.

Marvel, L. M., C. G. Boncelet, Jr., and C. T. Retter. "Methodology of Spread-Spectrum Im-
age Steganography," ARL-TR-1698, U.S. Army Research Laboratory, Aberdeen Proving
Ground, MD, June 1998.

Marvel, L. M., C. G. Boncelet, Jr., and C. T. Retter. "Spread Spectrum Image Steganog-
raphy," IEEE Transactions on Image Processing, Vol 8, No 8, pp 1075-1083, August
1999.

Marvel, L. M. and C. T. Retter. "The Use of Side Information in Image Steganography,"
To be presented at the 2000 International Symposium on Information Theory and Its
Applications (ISITA'2000), Honolulu, HI, 5-8 November 2000.

MathWorks. MATLAB. http://www.mathworks.com/products/matlab, 1999.

Retter, C. T. "Binary Weight Distributions of Low Rate Reed-Solomon Codes," ARL-TR-
915, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, December 1995.

Wall, L., T .Christiansen, and R. L. Schwartz. Programming Perl. Sebastopol, CA: O'Reilly
h Associates, 1996.

17

INTENTIONALLY LEFT BLANK.

18

NO.OF"
COPIES ORGANIZATION

DEFENSE TECHNICAL
INFORMATION CENTER
DTIC DDA
8725 JOHN J KINGMAN RD
STE 0944
FT BELVOIR VA 22060-6218

HQDA
DAMO FDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

OSD
OUSD(A&T)/ODDDR&E(R)
RJTREW
THE PENTAGON
WASHINGTON DC 20301-7100

DPTY CG FOR RDA
US ARMY MATERIEL CMD
AMCRDA
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

NO.OF
COPIES

1

ORGANIZATION

DIRECTOR
US ARMY RESEARCH LAB
AMSRLDD
2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AI R (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AP
2800 POWDER MILL RD
ADELPHI MD 20783-1197

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
MADN MATH
MAJ HUBER
THAYERHALL
WEST POINT NY 10996-1786

DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
D R SMITH
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

DIRUSARL
AMSRL CI LP (BLDG 305)

19

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

ABERDEEN PROVING GROUND

19 DIRUSARL
AMSRLCI

DR N RADHAKRISHNAN
DRJGANTT

AMSRL CIC
DR J GOWENS

AMSRL CI CN
H HARRELSON (4 CPS)

AMSRL CI CT
F BRUNDICK (5 CPS)
G HARTWIG
DR L MARVEL (5 CPS)
DR C RETTER

20

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Proiect(0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2001

3. REPORT TYPE AND DATES COVERED

Final, June 1999-August 2000
4. TITLE AND SUBTITLE

Implementation of Spread Spectrum Image Steganography

6. AUTHOR(S)

Frederick S. Brundick and Lisa M. Marvel

5. FUNDING NUMBERS

AH480TEP20

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-CT
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2433

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(7ltori7rium 200 words)

Steganographic techniques are useful to convey hidden information by using various types of typically-transmitted
multimedia data as cover for concealed communication. Spread Spectrum Image Steganography (SSIS) is a
data-hiding/hidden-communication method that uses digital imagery as a cover signal. This report describes an SSIS
prototype system for embedding messages in images and extracting messages from stegoimages. The components,
which were written in the Java and C programming languages, were kept modular to provide a workbench for further
experimentation. We discuss experiments that were performed with the system, along with possible avenues of future
research to improve the SSIS process.

14. SUBJECT TERMS

steganography, capacity, hidden communication, implementation

15. NUMBER OF PAGES

23
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500

21
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

22

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to
the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2433 (Brundick) Date of Report March 2001

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be

used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,

technical content, format, etc.)_

Organization

CURRENT Name E-mail Name
ADDRESS .

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or

Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001, APG, MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
U.S. ARMY RESEARCH LABORATORY
ATTN AMSRLCICT
ABERDEEN PROVING GROUND MD 21005-5067

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

