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Multi-Lingual Interoperability in 
Speech Technology 

(RTO MP-28) 

Executive Summary 

Communications, command and control, intelligence, and training systems are more and more making 
use of speech technology components: i.e. speech coders, voice controlled C2 systems, speaker and 
language recognition, and automated training suites. Interoperability of these systems is not a simple 
standardisation problem as the speech of each individual user is an uncontrolled variable such as non- 
native speakers using, additional to their own language, an official NATO language. For multinational 
operations, this may cause a reduced performance or even cause malfunction of an action. Standardised 
assessment methods and specifications for both commercial-off-the-shelf (COTS) and for development 
of new technology are required. 

In the past the former DRG study group on speech technology (Panel-3, RSG.10) studied various 
effects of military environments in relation to the performance of speech technology focused on 
specific applications. Examples are the effect of noise on speech recognition, the effect of stress 
induced by workload, sleep deprivation, or battlefield stress, and presently the effect multi-linguality. 

The present study considers interoperability of speech (communication) technology and embraces a 
wide range of military applications. It was identified that many nations, represented in the Task Group 
001 of the IST-panel, have a major interest in command and control (speech recognition and 
synthesis), electronic war-fare (speaker and language recognition), training (communication operators, 
air traffic controllers) and understanding and translation systems. 

In order to address these subjects a workshop on multilingual interoperability of speech technology 
was organised under responsibility of the RTO-IST-TG001 task group and the European Speech 
Communication Association. There were four tutorial papers and fifteen papers on a specific topic. The 
workshop took place in Leusden, The Netherlands from 13 to 14 September 1999. Over sixty people 
from twelve countries participated. Four topics were addressed in separate sessions: 

Non-native speech and regional accents 
Cross language speech processing 
Identification of language and speaker 
Human Perception and Assessment. 

Each session was concluded with a plenary discussion. In these proceedings the tutorial papers, the 
topic related papers and a resume of the discussions are given. 



l'interoperabilite multilinguistique dans 
la technologie de la parole 

(RTO MP-28) 

Synthese 

Les organismes C3, le renseignement et les systemes d'entrainement font de plus en plus appel ä des 
composants issus de la technologie vocale : il s'agit de codeurs vocaux, de systemes C2 ä commande 
vocale, de systemes de reconnaissance du locuteur et du langage, ainsi que de programmes automatises 
d'entrainement. L'interoperabilite de ces systemes ne se presente pas comme un simple probleme de 
normalisation, car la voix de chaque utilisateur individuel est une variable non-controlee, comme dans 
le cas d'un locuteur qui s'exprime dans une langue officielle de l'OTAN qui n'est pas la sienne. Dans 
le cas des operations internationales, ce probleme peut entrainer des performances reduites, voire 
meme l'echec d'une action. Par consequent, il y a lieu de definir des methodes et des specifications 
d'evaluation normalisees, tant pour les produits du commerce (COTS), que pour le developpement de 
nouvelles technologies. 

Dans le passe, le groupe d'etude sur la technologie vocale de 1'ancien GRD (Panel-3, RSG.10), a 
examine les differents effets des environnements militaires sur les performances de la technologie 
vocale pour des applications specifiques. Des exemples de telles applications sont les effets du bruit sur 
la reconnaissance vocale, l'effet du stress engendre par une surcharge de travail, le manque de 
sommeil, le stress du champ de bataille, et recemment, l'effet multilingue. 

Cette etude examine l'interoperabilite des technologies vocales (communication) et couvre un large 
eventail d'applications militaires. II a ete constate que de nombreux pays represented au Groupe de 
travail 001 de la commission 1ST s'interessent vivement au commandement et contröle 
(reconnaissance et synthese de la parole), ä la guerre electronique (reconnaissance du locuteur et du 
langage), ä l'entrainement (Operateurs de communications, contröleurs de la circulation aerienne) et au 
Systeme d'analyse et de traduction. 

Afin d'examiner ces sujets, un atelier sur l'interoperabilite multilingue de la technologie vocale a ete 
organise sous l'egide conjointe du groupe RTO-IST-TG001 et de l'Association europeenne de la 
communication vocale. En tout, quatre communications pedagogiques et quinze communications 
specialisees ont ete presentees. L'atelier a ete organise ä Leusden, aux Pays-Bas, les 13 et 14 
septembre 1999. Plus de soixante personnes, de douze pays differents y ont participe. Quatre sujets ont 
ete examines lors de quatre sessions distinctes, ä savoir: 

Les locuteurs non-natifs et les accents regionaux 
Le traitement de la parole interlingue 
L'identification du locuteur et du langage 
La perception humaine et 1'evaluation 

Chaque session a conclu par une discussion pleniere. Ce compte rendu de conference contient les 
communications et un resume des discussions. 
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Foreword 
Interoperability of systems is of crucial importance. When speech and language come into play, interoperability of 
systems developed for specific languages becomes an issue. Several different situations must be envisaged. For 
instance, one might want to use a speech coder optimised for American English in German or French. Or a native 
speaker of Dutch might want to use a speech recogniser trained for Spanish. These examples show that 
interoperability is an important issue for many applications of modern speech technology. For this reason a special 
task group of the NATO Research and Technology Organisation started a project on the development and assessment 
of multi-lingual applications of speech coding, speech recognition, topic spotting, speaker and language identification, 
and speech synthesis. 
In the past this task group organised a number of workshops in co-operation with ESCA thus initiating an interaction 
between civil and military applications that to a large extent pose the same requirements. Recent workshops based on 
this concept were: "Applications of Speech Technology", Lautrach-Germany 1993, "Speech under Stress", Lisbon- 
Portugal 1995, and "Robust Speech Recognition for Unknown Communication Channels" Pont-ä-Mousson-France 
1997. 
The program of the "MIST" workshop covers four themes: 

Non-native speech and regional accents 
Cross language speech processing 
Identification of language and speaker 
Human Perception and Assessment. 

Four tutorial lectures introduce the various sessions of the workshop. Additionally, each session concluded with a 
plenary discussion. A resume of these discussions are included in these final proceedings. 
I would like to thank the NATO-RTO and ESCA for their support in the organisation of the workshop; the tutorial 
speakers, the discussion leaders and reporters for their time, effort and expertise; the International Scientific 
Committee for their help in reviewing the proposals and their constructive advise. Finally, I would like to thank my 
colleagues of the local organising committee who spent a lot of their time supported by their enthusiasm to ensure the 
very promising programme, for taking care of all of the logistics and for editing these final proceedings. 

Herman J.M. Steeneken 
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SPEECH RECOGNITION BY 
GOATS, WOLVES, SHEEP and ... 

NON-NATIVES 
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ABSTRACT 

This paper gives an overview of current understanding of 
acoustic-phonetic issues arising when trying to recognize 
speech from non-native speakers. Regional accents can 
be modeled by systematic shifts in pronunciation. These 
can often better be represented by multiple models, than 
by pronunciation variants in the dictionary. The problem 
of non-native speech is much more difficult because it is 
influenced both by native and spoken language, making a 
multi-model approach inappropriate. It is also 
characterized by a much higher speaker variability due to 
different levels of proficiency. A few language-pair 
specific rules describing the prototyical nativised 
pronunciation was found to be useful both in general 
speech recognition as in dedicated applications. 
However, due to the nature of the errors and the 
mappings, non-native speech recognition will remain 
inherently much harder. Moreover, the trend in speech 
recognition towards more detailed modeling is 
counterproductive for the recognition of non-natives. 

INTRODUCTION 

That recognition of non-native speech is significantly 
harder than that of native speech can't be a surprise. We 
as humans often have a hard time understanding someone 
speaking his second or third language. We might also 
readily determine the accent and will quickly make an 
assessment on the degree of non-nativeness. 
But we also know that there is not something like "a non- 
native". French, Japanese and Indians will speak English 
in a very different way. The sounds will not just be 
accented, but they will insert and delete phonemes, they 
will make grammatically weird sentences, etc. After 
some time we may get used to the peculiarities of their 
speech and understand them quite well. Listening to 
another non-native in a language, non-native for 
ourselves, sometimes turns out not to be too difficult 
because the speaker uses a restricted vocabulary and easy 
syntax. 

A speech recognizer is often compared to a person who 
is bad of hearing, a young child or to someone who isn't 
too familiar with the language. So maybe a recognizer 
should like non-native speech. We'll see that this is not 
at all the case as the recognizer will take little or no 
advantage from the reduced grammatical complexity, but 
will suffer greatly under miserable acoustic phonetic 
conditions. So a recognizer will only see the bad sides of 
non-native speech and generally poor robustness of 
speech recognition systems will show double. 
In this review paper I will focus on the acoustic phonetic 
issues. It is structured as follows. First I'll discuss native 
accents; then I will revisit the complexity of differences 
in phoneme spaces across languages, moving on to the 
complexity of non-native speech recognition for general 
purposes and dedicated applications. 

ACCENTS AND DIALECTS 

CHARACTERIZING ACCENTS 

Each living language has numerous accents which are 
continuously on the move. It's sometimes implicitly 
assumed accents will differ most distinctively in the 
realization of vowels[Bary89], but consonantal 
differences may be strong as well. Eg regional 
distinctions in Latin American Spanish are especially 
pronounced for a few consonants. 
Accents will only show minor differences at the higher - 
abstract - phonemic level, but the specific acoustic- 
phonetic realizations might shift considerably. Small 
phonetic shifts can freely be applied to almost all sounds 
of any language without having any impact on 
recognition as all languages only use a limited part of the 
articulatory space. As phonemic ambiguity shouldn't 
increase markedly by accent shifts, a strong shift of one 
class could have a forceable impact on other classes as 
well. It is possible that accents introduce or remove 
homonym confusions, but overall acoustic confusability 
should not change significantly. 
In terms of pattern recognition one might describe an 
accent as a shift in classes across the feature space, but 
with maintenance of the same degree of separability of 
the classes. Typical of native accents is that these shifts 



will be applied in a pretty consistent manner by whole 
groups of speakers. 
There have been two main paths in attacking the dialect 
problem for speech recognition. The first one tries to to 
model accents as pronunciation variants at the detailed 
phonetic level[Bary89,Cohe89,Adda98]; the other one 
doesn't get involved with detailed modeling but creates 
multiple models for large speaker groups 
[VCom91,Beat95,Drax97]. 
Existence of accents questions the validity and feasibility 
of symbolic representation of sounds, but at the same 
time highlights the tremendous abstraction applied in our 
alphabetic    writing    systems. At    the    abstract 
(phonological) level a unique symbolic representation 
may suffice for a whole group of accents. If, on the 
contrary, we want to represent all the different 
realizations in a symbolic (phonetic) way, then the better 
chance is that no system will be detailed enough. 
Straightforward reasoning also leads to a few more 
conclusions. Because of the continuity of the shifts that 
are feasible at the pronunciation level, any symbolic 
representation is inherently local and not universal. 
Abstraction and symbolic representation are hence not 
absolute but relative and only valid within the applicable 
language. Phoneme boundaries aren't absolute, but 
defined wrt. to the collection of phonemes valid for that 
language. Ultimately it follows directly from the 
continuity of the characteristic sound shifts, that 
granularity and categorization of dialects is a very ill- 
defined problem. 
Now, let's confront the above hypotheses with 
experiences with real world speech recognition. The 
Dutch/Flemish language group is an interesting case 
study as accent and dialect diversity is tremendous, given 
its compact geography, but we'll restrict to the case 
where everyone at least attempts to speak the "standard" 
language and not the local dialect. Contrary to the 
British/US English distinction there are no spelling 
differences between Dutch and Flemish. 

MODELING ACCENTS BY MULTIPLE 
ACOUSTIC MODELS 

Everyone who has tackled the problem of Dutch/Flemish 
speech recognition knows that models trained on one 
group perform very poor on the other group. Error rates 
may double or triple. Relaxing within class variability 
will not help, because it isn't random extra variability that 
needs to be modeled, but a systematic shift. Putting all 
data in a single model gives reasonably satisfying results, 
but will still be significantly (eg 20%) worse than accent 
specific models. There are also some interesting 
asymmetries showing increased or decreased separability 
for certain classes depending on the accent. One such 
example are the digits. For Dutch speakers the pair 
'twee/twe:/-drie/dri/' (similar as for German zwei- 

drei), while for the Flemish the pair 'vijf /veif/ - 

zes/zes/' is by far the more confusable one. The above 
can be understood by following two characteristic 
differences of Dutch vs Flemish: 
■ Diphtongization of long vowels by Dutch, reduces 

the ee-ie phonetic distances. This goes together with 
a stronger diphtongization of the real diphtongs in 
Dutch vs Flemish which increases the distance of ei- 
e 

■ Devoicing of voiced fricatives, which is stronger 
however for the Nl than for the Izl which increases 
the phonetic distances of the v-z pair. 

Interesting to note is that the above shifts get more 
pronounced the further north one goes and that the 
geographical boundary for these phenomena might even 
be better characterized by the Maas-Rijn Delta than the 
Belgian-Dutch border. 
The strength of the shifts - up to the phonemic level - 
causes a strong overlap of distributions in a global 
modal, while accent specific distributions are much 
better separated. The latter may be a good criterion to 
decide if accents should be modeled as extra speaker 
variability in a single model or if multiple models are 
required. The above is also a good example that accent 
shifts can either somewhat reduce or enhance phonetic 
contrasts between words. These small changes may have 
little impact on human performance, but show up in 
machine based recognition. 
Now that usage of 2 models for Dutch/Flemish seems 
perfectly reasonable, one may wonder how many more 
models would make sense and how to define them. In 
some early work on this problem [VCom91] it was found 
that extra models based on regional clustering provided 
little or no advantage, but the interpretation may have 
been influenced by insufficient data to train a larger 
number of models. In unrelated more recent work, it was 
found that 3-4 models does make sense. 
In similar experiments for US English [Beat95], it was 
found that 3 accent models for the US gave a good 
tradeoff between performance, compactness and 
trainability of the models. 
Overall we can conclude that using multiple models for 
the different dialects is an easy and effective way to 
improve performance. Modeling of a very small number 
of well designed large clusters seems to perform better 
than many small clusters, because of loss in intrinsic 
speaker variability in the clusters when insufficient 
training data is available. 

MODELING ACCENTS BY PRONUNCIATION 
VARIANTS 

The strong phonetic differences between Flemish and 
Dutch or British and US English would intuitively 
suggest another way to model strong accent differences, 
i.e. by pronunciation variants[Cohe89].    In last year's 



ESCA workshop on pronunciation variation much 
interesting work was presented [eg Adda98,Rile98], but 
often with somewhat disappointing results. Only the most 
pronounced variants are essential, especially so for the 
most frequent short words of a language. When modeling 
variants in great detail, eg for speaking style differences, 
then increased confusability seems to offset the increased 
modeling capacity. 
A major weakness of implementing accent variability by 
multiple pronunciations in a single dictionary is that 
accent consistency for a given speaker is not enforced. 
Therefore, another approach - which is rarely feasible in 
real-time speaker independent systems - is the use of 
parallel phonetic dictionaries, with dictionary selection 
on a maximum likelihood criterion. This is easily done 
however in speaker dependent and/or speaker adaptive 
dictation systems where the choice can be based explicit 
speaker preference or after parallel batch processing. 

In the speech recognition world British and US English 
are most often treated as 2 different languages with 
different spellings, separate phonetic dictionaries - 
probably even different phonetic alphabets. It comes 
somewhat more intuitive than in the Flemish/Dutch case 
because of the spelling differences and the geographical 
separation. Nevertheless, it can be shown that speech 
recognition performance will still be very reasonable if 
the phonetic baseforms from one variant are used for the 
other, but trained with the correct speaker group. It 
shows great resilience of phonetic transcriptions against 
accent variation as long as the canonical transcription 
only needs to be valid for a coherent regional group and 
not for multiple groups at the same time. This is 
explained by the fact that most pronunciation variants 
will be learned implicitly when building context 
dependent acoustic models. 

CROSS-LINGUAL PHONETICS 

IPA AND ITS COMPUTER EQUIVALENTS 

Alphabetic writing systems must stand out as one of the 
greatest inventions of all times. It made it possible to 
write about every language with as few as 30 symbols, 
corresponding to the sounds of the language. Due to 
independent evolution of the Roman alphabet in different 
languages and further emphasized by the independent 
evolution of written and spoken language, the phonetic 
consistency is far away in most of today's languages and 
complicated grapheme-2-phoneme converters are 
necessary to go from written to spoken language. 
Modern phonetic alphabets are in a way a reinvention of 
the original alphabet and try to write according to the 
rule "one sound - one symbol ". The IPA (International 
Phonetic Alphabet) is the concerted international effort 
that tries to achieve this (illusive) goal for all languages 

of the world at once. That each language only sparsely 
fills the articulatory and acoustic space is well illustrated 
by the fact that the IPA needs several hundred basic 
symbols to encompass all languages. Several ASCII 
compatible computer derivatives are used by speech 
community has derived its own derivatives (SAMPA, 
Worldbet). At L&H we developed our own version 
L&H+ for internal usage. These cross-lingual phonetic 
alphabets greatly enhance readability but at the same 
time create the false impression (hope) of the existence 
of a truly language independent phonetic alphabet. 
Extensive experience over the past 5 years in speech 
technology applications has shown how illusive the target 
"one sound - one symbol" might be. L&H+ foresees in 
about 300 different classes for the 30 odd languages that 
it is currently used for. Despite all efforts and good 
definitions, there remains a great lack of inconsistency 
between transcriptions in different languages. This is 
due to the enforcement of a single symbol on multiple 
classes which are close but not truly identical. One of 
the complicating aspects is that no phonetician exists 
who can claim native or close to native pronunciation for 
a sufficiently large group of languages. Thus even the 
best implementation is based on a consensus of experts 
who don't really understand each other. 

LISTENING AND SPEAKING BY NON-NATIVES 

There are many similarities but also a few significant 
differences between accents of natives and 
pronunciations of non-natives. Class definitions are 
only valid within a single language (and accent) and 
there is no reason whatsoever why class definitions of 
one set should be portable to another one. The very fine 
distinctions will get lost in any compact symbolic 
representation. Similarly some of those distinctions we 
do hear and others we don't. Which distinctions we hear, 
depends much on our language exposure at younger age. 
It's not so extreme that we have learned strict class 
boundaries applicable only to our native language, but it 
seems that we have learned to listen for sound features 
which are most relevant to our native language[Fox95], 
somehow projecting all acoustic features onto a lower 
dimensional space appropriate for our native tongue. 
And by feedback mechanisms our acoustic and 
articulatory spaces are tightly coupled, so we only 
pronounce those sounds adequately that we need in our 
native tongue. 
Numerous straightforward examples can be given. The 
tonal phonetic features of oriental languages are tough to 
hear and learn for Europeans because it didn't get 
engraved in their front end acoustic processor. Somewhat 
less pronounced, but well demonstrated, is that natives of 
different European languages might discriminate vowels 
along different feature dimensions [Fox95]. Thus what is 
a phonemic distinguishing feature for a native of one 



language may hardly be audible to a native of another 
one. Consequently you must expect that a non-native 
will significantly mispronounce sounds that are not in his 
native auditory collection, by projecting the 
pronunciation onto his own articulatory and acoustic 
space. As an example, don't be surprised if you hear a 
Spanish person mention 'a shit of paper', by omission of 
the duration cue in the word sheet. Similarly, I shouldn't 
be too surprised if both human and machine recognizers 
mistakes my 'p' for a 'b' by lack of aspiration of the 'p'. 
While the aspiration is a distinguishing feature in English 
it is not in Flemish, where it does not exist. 
Thus there are significant differences between native and 
non-native accents. Native accents are all based on 
pretty much the same phoneme set. Because of 
proximity, it is reasonable to assume that acoustic feature 
space and distinguishing acoustic clues will be very 
similar and the average phonemic contrast will be 
maintained across native accents. Native accents are 
information preserving transformations. Non-natives 
will project sounds onto a subspace defined by the 
intersection of target language and native language, thus 
on an inherently lower dimensional feature space, thus 
potentially with loss of information. And the further that 
languages are apart from each other, the worse the 
intersection will be and the greater the information loss 
[Bona98]. 

MULTI-LINGUAL SPEECH RECOGNITION 

Our inherent skepticism about cross lingual phonetic 
alphabets can be put to test by a multi-lingual speech 
recognition system. 
In recent years, several groups have tried to build cross 
language phone models. The ultimate goal would be that 
one sufficiently large collection of phoneme models is 
sufficient to model all the languages of the world. But 
more often the goals are more restrictive. It is either 
used to have a compact footprint for multilingual systems 
or to bootstrap or augment the training of acoustic 
models in a new language when little data is available 
[Köhl96,Bona97,Schul98]. 
At L&H we've also used such systems to deal with initial 
responses in a multi-lingual system with a priori 
unknown language by the caller. This avoids the 
problem of ranking scores between 2 systems with 
completely different models. The results we found are 
similar to the ones found elsewhere in the literature. 
■ Multilingual phone models perform worse than 

single language phone models, provided there is 
enough training data for each of the languages 

■ The effect becomes more pronounced as more 
diverse languages are grouped together. This is 
naturally explained on the basis that phoneme 
classes from far away languages cluster intrinsically 

less good, but it may also be a hint that the multi- 
lingual phonetic alphabet misses some important 
details. 
Degradation may be on the order of 20-80% 
depending on the number and diversity of languages 
that are clustered. 
Despite their poorer performance, such systems may 
have a high practical value, especially when little or 
no data exists in a particular language or in some 
simple but intrinsic multilingual tasks 

NON NATIVE SPEECH RECOGNITION 

MORE DATA OR DIFFERENT MODELS ? 

Based on the above, the easy way out might be to 
consider non-native speech as just another (heavy) 
accent. If the occasional pronunciation errors are 
modeled as random then we can even forget about them. 
So all we need is data. To some extent it is a valid 
approach, except that ... variability is much larger and 
non-natives are by no means a homogeneous group. At 
least the influence of the native language needs to be 
taken into account. Thus, if we need to start collecting 
data on non-natives, then the whole data collection 
problem becomes quadratic in nature and is clearly not 
feasible nor can it be the right approach. Here we are 
just running into the limits of more and more data. 
Assuming that the data problem is quadratic might even 
be underestimating the real dimensionality. It is well 
known that people talking in their third, fourth .. 
language might copy - correctly and incorrectly - 
pronunciations from other foreign languages they know. 
All of this is further complicated by the large variability 
in language proficiency among the non-natives. 
So is there anything else to do than lay back and observe 
that non-natives are worse than natives ? Digging 
deeper, the situation looks even more grim. Much of the 
progress in the last 15 years in acoustic modeling is 
based on more detailed modeling, by creating sharper 
and sharper distributions for narrower and narrower 
classes. This is diametrically opposite of the tolerance 
and robustness required for non-natives. Distribution of 
non-native scores on allophonic variants will greatly 
differ from the distribution of natives, because they will 
emphasize different cues. So it should come as no 
surprise that for people with heavy accents the 
performance gain between context-independent and 
context-dependent models might get totally washed out. 

SPEAKER ADAPTATION FOR NON-NATIVES 

There is another feature about non-natives which has 
significant impact on ASR systems. Vocabulary of non- 
natives tends to be much more limited and occurrence of 



unknown words will not be uncommon. These are likely 
to happen in enrollment scripts. Whenever an unknown 
word occurs, the speaker will hesitate and apply certain 
letter-2-sound rules, typically a mix of the rules of his 
native tongue mixed with the non-native one, leading to 
all kind of funny pronunciations. 
Potential for speaker adaptation will thus greatly depend 
on proficiency of the non-native. If all words in the 
adaptation script are known to the non-native, then we 
fall back to the 'thick accent' case. If there are many 
unknown words, hesitations will occur and gross 
mismatches between pronunciation and transcription will 
be present. Such mismatches will not shift the sound 
categories to their desired location, but will randomly 
smear out the distributions. One way to avoid this is to 
include only speech with minimal confidence levels, but 
as could be expected, this is even more difficult for non- 
natives. For reasonably proficient non-natives, speaker 
adaptation has shown dramatic improvements[Zava95] 
reducing the error rate by a factor 2-3 without adaptation 
of the phonetic baseforms. This confirms the assumption 
that a very strong accent shift needs and can be modeled 
by transformation of the distributions. However, even 
after adaptation, non-natives still performed a factor 2 
worse than natives. This is explained by a combination 
of effects: (i) random pronunciation errors and (ii) 
projection of pronunciation onto a lower dimensional, 
less discriminative, space. Another more subtle cause 
may be that the chosen state tying - necessary in speaker 
adaptation - is optimized for natives and might be less 
applicable to the non-native accents. 

NATIVISED PRONUNCIATIONS 

Pronunciation errors are common with unknown words, 
and even more so if simple letter-2-sound rules are 
insufficient as is the case for proper names - a common 
problem in Europe with its density of languages and high 
mobility. The two most immediate application areas are 
automated attendants and car navigation. 
The automated attendant in our office is a good example 
of how complex a small problem quickly gets. There are 
roughly 100 employees of whom about 60% are Flemish 
natives of whom most but not all have a name with 
Flemish pronunciation. The only other significant 
language group are the French speakers. In total there 
are names of 12 different language origins of which 4 
from outside Europe. Despite the monolingual English 
greeting, the name pronunciation might be in many 
different ways, given in order of occurence: native 
pronunciation, pronunciation with a Flemish accent, 
pronunciation with an English accent, pronunciation 
with another accent. This is in stark contrast to the 
implementation of similar systems in US or France, 
where almost all users would have a tendency to 
bastardize the name pronunciations to the local language. 

Given the great mix of pronunciation and accent, there is 
no option for a language-pair specific solution and one 
needs to rely on some "language independent" 
recognizer as the symbol set from a single language will 
be insufficient to code all the various transcriptions that 
one might require. On average 2-3 transcriptions of each 
name suffice to yield acceptable performance. Given the 
sparseness of the language mix, we did not make great 
attempts to derive general rules that would describe 
prototypical pronunciation variants. The system has 
been operational internal for several years and many of 
us have learned fail safe pronunciations for the names we 
often use. 
Another case is the one of car navigation, as explored in 
the EC VODIS project[VODIS]. Assume a German 
travelling to France and talking to the navigation unit in 
German while specifying French location names. 
It was found that Germans - also the ones with little 
French knowledge - have some knowledge of French 
phonology and ultimately use a mix of French and 
German letter-2-sound rules[Tran99]. A reasonable 
approximation of the real pronunciations is obtained by 
starting from the correct French pronunciation and 
applying a small set of French-2-German conversion 
rules. Most of these can be related to the absence of a 
very close relative of a particular sound in the native 
language. 
While done in an ad hoc manual way, part of the above 
work can be automated and common mutations could be 
learned on the basis of a moderate body of German 
pronunciation of French names. At the same time it 
becomes obvious that many similar rules - but maybe 
somewhat reduced - would apply for a German speaking 
French. Similar rule based work has been reported in the 
field of normative speech recognition [Bona98], 
pronunciation variation in general [Crem98]. Today, this 
may stand out as one of the more promising approaches 
in dealing with non-native pronunciations. 

LANGUAGE LEARNING 

One of the most extensively researched topics in non- 
native speech recognition is the one of language 
learning[Stil98]. For this application there may be many 
more novice speakers than others who have already a 
thorough knowledge. The most intuitive measure to 
evaluate someone's pronunciation is some form of 
confidence measure. But similarly as with native speech 
recognition, simple likelihood measures aren't a most 
reliable metric, and it's correlation with expert ratings 
was found to be low[Neum96]. It was found that rate-of- 
speech [Cucc98,Neum96] is a reliable estimator of 
degree of non-nativeness. However, ROS has little 
diagnostic value as it does not identify pronunciation 
errors. 



Likelihood scores can be turned into a much more 
reliable measure if they are turned into a likelihood ratio 
of speaker vs. prototypical native pronunciation. In 
order to obtain a reference score pronunciations of 10-20 
native speakers of all sentences in a lesson can be 
recorded and processed by the recognizer. This 
procedure has been found to yield significantly better 
performance than the use of more generic methods to 
generate the reference score in the likelihood ratio. 
Still an alternative approach for turning likelihood ratios 
into indicators of pronunciation errors, is the explicit 
modeling of expected errors. Due to the very different 
phonotactic structure of Japanese vs. English, many 
pronunciation errors made by Japanese, learning English, 
can be predicted[Kawa98]. Consonant clusters, which 
are non existent, will lead to vowel insertions and 
diphtongs are likely to be replaced by a single vowel. A 
pronunciation network including the correct and 
incorrect pronunciations is subsequently fed to the 
recognizer and simple Viterbi alignment shows 
immediately all errors. The latter approach is very 
efficient for the small group of frequent language-pair 
specific errors. Basically the same set of rules applies as 
discussed in the previous section on nativised 
pronunciation. 

CONCLUSIONS 

In this paper we reviewed the difficulties arising when 
recognizing non-native speech, especially the additional 
difficulties compared to dealing with native accents. 
Non-natives are more complex than heavy accented 
speakers. Across different applications it was found that 
a few language pair specific rules can describe many of 
the typical mispronunciations. However, because the 
loss of certain distinguishing acoustic cues and heavy 
shifts in pronunciation, non-native recognition will be 
very difficult for today's recognizers using sharp 
distributions. It stresses the inherent lack of robustness 
of our current acoustic-phonetic modeling. Likelihood 
scores should gracefully decay as phonetic feature 
distance grows which is not necessarily the case in a state 
of the art recognizer. 
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Abstract 

The aim of this paper is to investigate to what ex- 
tent non native speech may deteriorate language iden- 
tification (LID) performances and to improve them 
using acoustic adaptation. Our reference LID sys- 
tem is based on a phonotactic approach. The system 
makes use of language-independent acoustic models 
and language-specific phone-based bigram language 
models. Experiments are conducted on the SQALE 
test database, which contains recordings from En- 
glish, French and German native speakers, and on the 
MIST database, which contains non-native speech in 
the same languages uttered by Dutch speakers. Us- 
ing 5 seconds of telephone quality speech, language 
identification error rate amounts to 10% for native 
speech and to 28% for non-native speech, thus yield- 
ing an important increase in error rate in the non- 
native case. We improve non-native language identi- 
fication by an adaptation of the acoustic models to 
the non-native speech. 

1    INTRODUCTION 

In the field of automatic speech processing, intensive 
research activities have been devoted to speech recog- 
nition and transcription. With the growing interest 
in multilinguality and multilingual systems, language 
identification (LID) has become a research area of its 
own [5, 7]. In a multilingual context however speakers 
may use foreign languages for communication. Under 
such conditions, i.e. dealing with non-native speech 
input, system performances are known to decrease. 
Yet systematic evaluations of such degradation and 
research efforts to minimize them are still to be fos- 
tered. 

'financed by CS (Communications & Systems) company. 

Various information sources can be exploited in or- 
der to identify a given language: acoustic, phonemic, 
phonotactic, lexical, etc. In practice, for each infor- 
mation level specific resources and corpora are re- 
quired for the languages to be modeled, and in most 
LID approaches only acoustic-phonetic and phonotac- 
tic models are used. The models are usually trained 
on native speech. Given the much greater spectral 
variability commonly observed in non-native speech, 
performance is expected to degrade when applying to 
such material. 

Studying the impact of non-native speech on LID 
requires appropriate test material. Ideally a multilin- 
gual native speaker database and a multilingual non- 
native speaker database are required. Both corpora 
should be similar in style and recorded in compara- 
ble acoustic conditions. To our knowledge the MIST 
database is the first multi-lingual corpus gathering 
non-native speech; it contains recordings in English, 
French and German from Dutch speakers. Similar na- 
tive speech material is provided by the multilingual 
corpora produced within the LE-SQALE project [6]. 

In the following, we describe the LID system used 
for the experiments. We present baseline LTD results 
on native speech using the SQALE test database, 
and results on non-native speech using the MIST 
database; by means of these experiments we measure 
the impact of native versus non-native speech on LID 
error rates. Finally we investigate the effectiveness 
of acoustic model adaptation to handle non-native 
speech. 

2    LID SYSTEM 

The LID system used in the experiments is based 
on a phonotactic approach, with a single language- 
independent acoustic-phonetic decoder. This ap- 
proach was chosen because, compared to language- 
specific acoustic modeling, it allows easier extension 
of the system to new languages, as there is no need 
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Figure 1: LID system using language-independent acoustic models and phone-based bigram language models 

of specific phonetic knowledge of the new language 
or of a phonetic labelling of the training databases. 
The drawback is that it generally requires longer test 
segments to obtain optimal results as compared to 
acoustic-phonetic approaches. Previous work showed 
that the phonotactic approach LID results signifi- 
cantly improve when the test segment length goes 
from 10s to 45s [4]. 

The system is more extensively described in an- 
other article [1], where it is referenced as LI_HC 
(language-independent hierarchically clustered phone 
set). It is illustrated in Figure 1. It uses 
one single language-independent phone recognizer 
to label the speech input. The phone sequence 
output by this phone recognizer is then scored 
with language-dependent phonotactic models approx- 
imated by phone bigrams. The language providing 
the highest phonotactic probability is hypothesized. 

of data types: 12 questions to elicit precise responses 
(7 general questions concerning the call and caller, 
and 5 prompts asking for times, dates, days of the 
week and months of the year), 18 items containing 
predefined texts to read, and 6 questions aimed at 
collecting spontaneous speech. The acoustic models 
were trained on all types of material, and the phono- 
tactic models on the spontaneous speech part. 

2.2    Front-end processing 

The front-end processing consists in 12 MFCC plus 
the energy, augmented by their first and second order 
derivatives, i.e. a total of 39 coefficients every 10 ms. 
The same setting was used for processing test data, 
except that signal frequencies over 3.5 kHz were cut 
in order to be consistent with the training database 
which contains only narrow-band telephone speech. 

2.1    Training database 

The LID system was trained using the IDEAL cor- 
pus, which is a multi-language telephone speech cor- 
pus designed to support research on LID [3]. This 
corpus contains a large amount of speech (between 15 
and 18 hours per language). The different languages 
were collected under the same conditions, and na- 
tive speakers were recruited in their home countries. 
Data have been recorded for British English, Spanish, 
French and German. All speakers called the LIMSI 
data collection system ensuring the same recording 
conditions for the entire corpus. The IDEAL corpus 
contains about 300 calls for each language (i.e., in- 
ternational calls from native U.K., Spanish, and Ger- 
man speakers and national calls from native French 
speakers), 250 of them being used for acoustic and 
phonotactic model estimation (about 13 hours per 
language). 

The calling script was designed to cover a variety 

2.3 Acoustic models 

250 calls from IDEAL (about 9000 sentences, con- 
taining up to 13 hours of speech for each language) 
have been used for acoustic model training. First, 4 
language-specific phone sets for English, French, Ger- 
man, and Spanish were trained. All acoustic models 
are three-state continuous density HMM of context- 
independent phones. Then a single multi-lingual set 
of 91 monophone models was obtained by an agglom- 
erative hierarchical clustering of these 4 phone sets, 
using a measure of similarity between phones [1]. This 
phone set has proven to allow effective extension to 
new languages [4]. 

2.4 Phonotactic models 

Phonotactic models were estimated on the sponta- 
neous speech part of the 250 training calls which 
accounts for about 15% of the IDEAL corpus.   For 



each language, an acoustic-phonetic decoding of the 
training database was performed using the multilin- 
gual phone set. The decoded phone strings are then 
used to estimate language-dependent bigram models 
for English, French and German. 

3 TEST CORPORA 

Experiments were conducted on the SQALE and 
MIST databases for LID results on native and non- 
native speech, respectively. 

3.1 SQALE database 

The development and test data of the SQALE project 
[6] were used for the native speech experiments. The 
4-language (French, British and American English, 
German) speech database contains 400 sentences per 
language from 40 speakers, plus some diagnostic 
sentences which were not used in our experiments. 
Within the SQALE project the test sentences were 
chosen to give a reasonable spread of difficulty as de- 
termined by sentence length and perplexity. French, 
English (British or American) and German speak- 
ers were recorded reading newspaper texts from Le 
Monde, Wall Street Journal and Frankfurter Rund- 
schau, respectively. 

3.2 MIST database 
The MIST database was developed by the TNO Hu- 
man Factors Research Institute to support research 
in multi-linguality and non-native speech. 74 native 
Dutch speakers (52 male, 22 female) uttered 10 sen- 
tences in Dutch, and also for most of them in En- 
glish, French and German: 5 sentences per language 
identical for all speakers and 5 unique sentences per 
language and per speaker. The text sources are the 
same as for the SQALE project concerning English, 
French and German. We used only unique sentences 
for evaluation on non native speech because identical 
sentences are not phonetically balanced over time. Fi- 
nally, the selected part of the MIST database contains 
about 300 sentences per language. 

4 EXPERIMENTAL RESULTS 

We present LID error rates for each language as a 
function of sentence duration. Every second, the sys- 
tem takes a decision on the speech segment decoded 
so far. For a given test duration, only sentences longer 
than this duration were used. In order to reduce du- 
ration variability due to pauses and hesitations, the 

silences labelled by the recognizer are discounted from 
the sentence duration. For both test corpora, mean 
sentence duration is about 6 seconds. Few sentences 
are more than 8s long, and no significant LID results 
were obtained for segment durations over this dura- 
tion. 

4.1    Results on native speech 

Identification results (on a second per second basis) 
on the SQALE database are provided in Figure 2. For 
5 second segments, the global error rate amounts to 
10%. This global rate does not show the disparity 
between languages; indeed, error rates of 16%, 3% 
and 10% are achieved for English, French and Ger- 
man speech, respectively. For all durations, results 
on French are significantly better than on the other 
languages. This might be attributed to the difference 
between French national and international telephone 
networks. 
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Figure 2: LID error rates for the native language task 
(SQALE database) as a function of segment duration. 

4.2 Results on non-native speech 

Similar experiments were conducted on non-native 
speech. The identification results using the three non- 
native MIST languages are illustrated in Figure 3. 
On 5 second segments, LID error rates for non-native 
English, French and German are 23%, 29% and 31%, 
respectively. The global LID error rate of the three 
non-native languages is 28%. 

4.3 Comparison between native and 
non-native speech 

The comparison of the identification results for native 
and non-native speech for each language is illustrated 
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Figure 4: LID error rate comparison between native and non-native speech for English, French and German as 
a function of segment duration. 
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Figure 3: LID error rates for the non-native language 
task (MIST database) as a function of segment dura- 
tion. 

in Figure 4. For French and German, the non-native 
Dutch accent increases the error rates as expected. 
But error rate increase for non-native English, though 
significant, is much lower. The English phonotactic 
model seems to be more robust with respect to accent 
variation. Another more linguistically motivated con- 
clusion consists in suggesting that Dutch speakers are 
best in speaking English as compared to French and 
German. For 5 second segments, the global error rate 
amounts to 10% for native speech and to 28% for non- 
native speech, showing an important increase in error 
rate (cf. Table 1). 

4.4    Adaptation of acoustic models 

Better results on non-native speech should be ob- 
tained after adaptating the LID system to the new 
conditions. Given the size of the available non native 
speech material (the MIST test database), an adap- 
tation of the phonotactic models does not seem possi- 

Table 1: Per language and global LID error rates 
on native speech (SQALE database) and non-native 
speech (MIST database) for 5 seconds of speech. 

SQALE MIST relative 
increase 

English 16% 23% xl.4 
French 3% 29% xlO 
German 10% 31% x3.1 
Global rate 10% 28% X2.8 

ble, and only acoustic models adaptation was tested. 
For a better use of the available data, the non-native 
MIST data were jack-knifed in 5 sets; the results were 
obtained by testing each set with acoustic models 
adapted on the remaining part of the database. 

Each non-native sentence of the adaptation sub- 
set is aligned with the original prompt using the 
language-dependent acoustic models and produces 
a phone segmentation which is converted into the 
language-independent phone set. For each of the 
three non-native language, the acoustic models (in- 
cluding means, variances and weights of gaussians) 
are adapted towards the non-native acoustic realiza- 
tion of the phones. As a result, we get three sets of 
acoustic models. A weighting factor allows to control 
the degree of adaptation. 

The LID system with adapted acoustic models is 
finally tested on the left-out fifth of the database. 
Each test sentence is decoded using the three adapted 
acoustic models in parallel with the original multi- 
lingual phone set, and the four phone sequences ob- 
tained are scored with the phonotactic models. The 
chosen language is the one with the highest global 
probability. 

Figure 5 shows the global LID error rates after 
adaptation of the acoustic models. On 5 second seg- 
ment, LID error rates of 21%, 22% and 27% are 
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Figure 5: Gobal LID error rate for the native lan- 
guage task (SQALE database) and for the non-native 
language task (MIST database) before and after 
adaptation of acoustic models, as a function of seg- 
ment duration. 

achieved for non-native English, French and German 
respectively (these figures can be compared to those 
in Table 1). A 14% relative decrease of the global LID 
error rate is observerd for the three non-native lan- 
guages (24% with adaptation vs. 28% without adap- 
tation); despite the small size of the test set, this im- 
provement can be shown to be significant using Mc- 
Nemar's test [2]. 

5    CONCLUSIONS 

Experiments have been carried out with a 
phonotactic-based approach LID system on a 3- 
language task using native and non-native speech 
(SQALE, MIST corpora). 

Using 5 seconds of telephone quality speech, LID 
error rate increased from 10% for native speech to 
28% for non-native speech. Given the limited amount 
of test data, the test segment duration has been lim- 
ited to a maximum length of 8 seconds, which stays 
far away from the typical durations (30s and more) for 
which the phonotactic LID approach performs best. 

Adaptation of the acoustic model sets allowed 
to significantly reduce the error rate on non-native 
speech. Using the phonotactic approach, adaptation 
of the phonotactic models should be more efficient, 
but it could not be tested with the databases involved. 

Needs for further investigation are obvious. Study- 
ing the effects of non-native speech on LID requires 
larger databases including more utterances of longer 
durations, more languages and various foreign ac- 
cents. The development cost of such resources is of 

course a major issue. But the MIST database, even 
if only devoted to Dutch accent over a few European 
languages, was clearly an excellent starting point for 
the study of non-native speech, especially because of 
its matching with the already studied native SQALE 
database. 
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ABSTRACT 
This paper reports results from a production study which 
shows in what ways the traditional Swedish phone set is 
expanded with phones similar to or approximating phones 
from other languages than Swedish in everyday speech. The 
inclusion of such sounds - here called xenophones - has 
implications for both automatic speech recognition and speech 
synthesis systems, especially in polylingual environments, 
which are discussed in the paper. 

1. INTRODUCTION 
In speech technology systems there is an increasing interest in 
issues such as dialectal variation, cross-language applications, 
handling of foreign accents et cetera. This problem is 
becoming more acute in an increasingly internationalized 
world, where people tend to speak more than one language, and 
also tend to ask for services that pay little or no attention to 
national or language borders. 

A hitherto somewhat neglected problem that constitutes an 
important issue in the development of such multilingual 
applications is dealing with the fully normal inclusion of 
"foreign" speech sounds in the pronunciation of foreign names 
and words. Such speech sounds can be said to expand the 
phone inventory of the (native) language in question, a 
phenomenon observed in at least some languages, such as 
Swedish [5,6,7,10,11]. An example from Swedish would be the 
voiceless dental fricative [6] (the first sound in the name 
"Thatcher"), which is not considered part of the Swedish 
phonemic inventory, but is nevertheless produced by 
approximately 50 percent of the population when pronouncing 
English words or names containing this sound in otherwise 
Swedish sentence contexts [6,10,11]. 

With a growing awareness of the need for multilingual 
automatic services (cf. e.g. [3]), the handling of language 
users' less constrained pronunciation becomes something of a 
sine qua non. 

1.1. The Xenophone Problem 
As was mentioned above, it has been shown that Swedes' 
pronunciation of names or words of foreign origin often exhibit 
sounds that are not part of what is considered the Swedish 
phoneme inventory. Such "added" sounds do not have a 
phonemic function in Swedish, and must therefore be 
attributed a particular status in the system. Even though they 
are not phonemes - or allophones of Swedish phonemes - they 
are clearly part of the phone sets of individual Swedish 
speakers. Hence, we suggested the term xenophones [6], i.e. 
"foreign phones", to denote such sounds. 

Appropriate treatment of this phenomenon is likely to 
influence the performance of any speech recognition or 
synthesis system. For both these types of applications, 
expansions of the phone set are required. What is also apparent 
in the results reported in Eklund & Lindström [ibid.], is that the 
nature of this xenophonic expansion depends on the particular 
sound in question (among other things). This leads into the 

field of phonological acquisition, and more specifically, into 
the field of second language acquisition (SLA) research. The 
phonological processes involved when approaching a foreign 
language have been discussed in detail since long (e.g. [8,9]), 
and SLA research definitely provides valuable insight with 
regard to what factors might be at play. However, we would 
like to argue that although the phonological foundation is the 
same in xenophonic expansion and SLA, xenophones present a 
different problem since we are facing a different situation. 
Within SLA, the goal of the subject(s) is to master an entire 
target language, often in a target language context, whereas in 
the case of xenophonic expansion, the subjects simply include 
words of foreign origin in native-language sentences, mostly 
within fully native-language contexts. Thus, the entire 
communicative goal may be considered different, and this in 
turn should affect the actual rendering of the linguistic items in 
question. Indeed, as we shall see, this is supported by a some of 
our observations. 

As discussed in Eklund & Lindström [7,10], a number of 
underlying factors can be assumed to be involved in governing 
the degree of adjustment. See Figure 1. 

Figure 1: The language user in a typical situation. When speaker A is 
pronouncing a name in speaker B's presence, a number of factors are 
affecting the phonetic rendering of the name, such as the name's 
country of origin, the time it was introduced in speaker A's community, 
what channel it passed through, A's knowledge of B's language 
competence and other factors. 
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These include - but are not limited to - the speaker's 
competence and performance capabilities with respect to the 
source language, the speaker's expectations of the listener's 
competence, the relative social status of speaker and listener, 
the socio-cultural distance to the country of origin, recency and 
frequency of the lexical item in question, and similarities and 
dissimilarities between the phonological systems involved. 

2.2. Previous Work 
Despite the fact that the problem is crucial, or even central in 
some languages, and despite the fact that references are found 
that date back to the 16* century, very little actual work on the 
phenomenon has been reported. 

Maddieson [12] briefly discusses the phenomenon but 
simply refers to the phones in question (in several languages) 
as "anomalous" segments. 

Abelin [1] discusses how to represent pronunciation of 
foreign (mainly English) words in Svensk Ordbok. She 
concludes that the English diphthongs [ei] and [oi] can be 
approximated with the Swedish sequences [ej] and [oj], 
respectively, but that the English diphthongs [au] and [ao] are 
harder to accommodate. The English phone [z] is more or less 
always pronounced as [s] in Swedish, and the English alveolars 
[r, t, d, n] are normally realized as dentals in Swedish. 

Eklund & Lindström [6] describe what English phones 
Swedes actually use in their speech, and show that a large 
proportion of Swedish speakers include "non-Swedish" sounds 
in their production system when pronouncing English words 
and names. Eklund & Lindström also describe the inclusion of 
xenophones into the Telia Research concatenative synthesizer. 

Möbius et al. [13] mention that the German version of the 
Bell Labs multilingual TTS system has been augmented with 
phonetic units outside the German phone inventory in order to 
cover English and French speech sounds. 

2. METHOD 
In order to acquire information and knowledge concerning 
Swedish speakers' usage of xenophones, and also, to some 
extent, insight in their expectations on xenophone usage, a 
production study was conducted. The rationale for looking at 
production data, we argue, is that knowledge may be gained in 
several dimensions: Which English phones have an effect of 
the Swedish subjects' productions? What is the nature of this 
effect—is the phone repertoire extended or does some kind of 
segmental mapping take place? Even if a speaker does not 
produce an English name or word in an accent-free manner, he 
or she might still do something that clearly lies outside the 
Swedish phone inventory. By producing something that is 
neither Swedish nor English, as it were, the speaker is 
indicating an awareness of the difference between the English 
pronunciation and a fully rephonematized pronunciation (i.e., 
"translating" the English sound into its phonetic "counterpart" 
in Swedish). This provides important information in the 
"attitude dimension", insofar as it shows that even speakers 
who do not fully master the production of English sounds 
might expect these sounds to occur in particular words. 

2.1. The Linguistic Material 
A set of twelve sentences was constructed containing the 15 
English speech sounds [tf,d3j,3,6,ö,z,3\T,w,ai,ei,3U,ju:,as]. 
The two non-English (and non-Swedish) sounds [x,a:] were 
also included in the material. All these sounds were chosen so 
that they would differ phonetically from Swedish speech 
sounds to varying degrees, and so that none of them would be 

included in any traditional description of the Swedish 
phonological system. 

The phones were included in commonly known names and 
words in twelve fully natural Swedish sentences and it was 
assumed that the words and names in which the xenophones 
appeared would be known by the bulk of the subjects. 

Two example sentences from the material are given below. 

Manga har Roger Moore somfavorit i rollen som James Bond. 
("A lot of people prefer Roger Moore's interpretation of James Bond") 

Intercity-täget gick direkt frän Aachen till Baden-Baden. 
("The Intercity train went straight from Aachen to Baden-Baden") 

2.2. Recordings and Subjects 
The sentences were included in a much larger session of 
linguistic material recorded to train the Telia/SRI Swedish 
speech recognizer as a part of the Spoken Language Translator 
(SLT) project [2,14]. The material was presented under the 
heading 'Kändisar' (Celebrities), and it can be assumed that 
subjects were unaware of the fact that their pronunciation was 
the object of study. 

The subjects were all Telia employees or relatives of Telia 
employees. The age span was 15 to 75. Hi-fi recordings were 
obtained of more than 460 subjects on 40 different locations 
covering the whole of Sweden, so that data from all major 
dialect areas were obtained. In this way a total of 
approximately 29,000 xenophone tokens were collected. The 
subjects also filled in forms, providing information concerning 
educational level, regional origin and so on. 

2.3. Evaluation 
Three phonetically trained native speakers of Swedish, with an 
above-average knowledge of English, transcribed the target 
phones, using a fairly narrow allophonic transcription scheme. 
So far, 15,202 potential xenophone tokens have been evaluated. 

3. RESULTS 
Figure 2 shows the proportional distribution of the subjects' 
productions of the speech sounds [a:,ai,ei,3U,ju:,Ee,tf,d3,x,j',3, 
6,6,Z,3\T,W], where each instance of these has been assigned 
to one of three categories along the awareness and fidelity 
dimensions. 

Category 1 corresponds to high awareness coupled with 
high fidelity, production-wise. 

Category 3 indicates low fidelity, and probably low 
awareness, although it may also be the case that some speakers 
deliberately rephonematize (for normative reasons). 

Category 2, high awareness and low fidelity, is interesting, 
since it represents those speakers who are apparently aware 
that something foreign should be going on, but fail to produce a 
good enough approximation of the "target" speech sound. 
Speakers in this category can certainly cause considerable 
problems for ASR systems. 

As can be seen in Figure 2, the distribution over the three 
categories differs considerably as a function of target phone, 
and even as a function of each individual "lexical item". It is 
interesting to note that voiced fricatives are more or less non- 
existing, despite the fact that are easy to produce, whereas the 
more "remote" phones (from a number-of-phonetic-features 
perspective), from a Swedish point of view, e.g. dental 
fricatives, are produced by a large number of subjects. 

A subset of the data presented here has also been evaluated 
with respect to which underlying factors might explain the 
differences in use of xenophones. 
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Figure 2: For each target English speech sound and each occurrence in the read sentences, the proportional distribution of the Swedish subjects' 
productions is shown. Based on the similarity between the produced sound and the target phone, the different productions are assigned to one of 
three categories along two dimensions, the awareness dimension (to what extent people are aware of the difference between Swedish and English 
pronunciation), and the fidelity dimension (how well they succeed in the production of the foreign sounds). The first category (magenta/dark grey) 
corresponds to a high awareness among the subjects coupled with a high capability in rendering a sound close to the one in the source language. The 
second category (green/middle grey) corresponds to the case where the subjects were apparently aware that something "non-Swedish" would be 
appropriate, but failed to produce a good approximation. The third category (yellow/light grey) corresponds to full adjustment to Swedish. 
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Lindström and Eklund [11] showed that age seems to be one 
factor that systematically affects the productions, in such a way 
that the youngest and oldest subjects generally produce 
relatively more category 2 and 3 productions than do the other 
subjects. 

In the same study, no significant gender differences were 
found, nor were there any systematic regional differences. The 
last result, however, may be due to lack of control for the 
variable "educational level", and re-evaluation of the data with 
that in mind is in the works. 

4. DISCUSSION 
Xenophones can be discussed and studied from several 
different angles. From a theoretical perspective, the underlying 
theoretical issues xenophones raise mainly concern general 
phonological acquisition, relating to, without being similar to, 
SLA research. 

As indicated in Figure 1, there are a number of underlying 
factors that can be assumed to be at play in determining the 
choice of the speaker's pronunciation strategy, and we believe 
that we have shed some light on the issue of what speakers do 
when solving this task of finding the socially acceptable level 
along the awareness/fidelity dimension. 

From a theoretical side, the "foreignness" of such sounds 
can be discussed. If most Swedes use certain sounds in 
everyday conversation, and/or expect them to be used, how 
"foreign" are they in the language community? Moreover, in a 
world that is characterized by increasing international 
communication - economical, cultural, social - such cross- 
breeding between languages can be expected to become more 
and more frequent. 

From a more practical side, there are a number of 
consequences that these observations are bound to have for 
automatic speech recognition and speech synthesis. 

4.1. Implications For Recognition 
A recognizer is facing the entire variety of speech sounds 
within a given speech community, and the modelling of what it 
can be expected to hear boils down to a few crucial issues. 

First, the standard view on what the Swedish phone set 
looks like must be reconsidered, since it obviously to a large 
degree contains sounds normally not considered "Swedish", 
despite the fact that a large number of Swedish speakers do use 
them in normal conversation. 

To complicate matters further, a word/name of foreign 
origin and containing foreign - or foreign-similar - sounds can 
appear in an otherwise Swedish sentence, which means that the 
recognizer needs to handle phones from (at least) two 
languages at once. Within the SLT project, a recognizer that is 
able to handle English and Swedish was developed [4,15,16]. 
The recognizer is capable of recognizing the odd Swedish word 
inside an otherwise English sentence, and vice versa. 

Another issue is exactly how acute a problem xenophones 
present to a recognizer. This, of course, depends heavily on the 
context and discourse. An application like automatic handling 
of film ticket purchasing would surely need to cope with a 
large number of xenophones, since most English film titles are 
not translated into Swedish. Within other domains, such as 
bookings of summer houses in the Stockholm archipelago, 
xenophones are not likely to occur at all. Thus, xenophone 
inclusion for a given application is also an empirical issue. 

4.2. Implications For Synthesis 
As opposed to recognition, where the entire variety needs be 
considered and catered for, a synthesizer probably only needs 
to cover one acceptable variety. The operative word here, of 
course, is "acceptable". Although it is our belief that a 
production study provides information in the acceptability 
domain insofar as it can be assumed that users of speech 
synthesis systems will be less prone to accept a synthesizer 
with a lower level of competence than themselves, the only 
safe method to gain insight in the acceptability domain would 
be to conduct a perception study. One such method would be to 
play back to subjects the obtained recordings and ask them 
rank the pronunciations along a few dimensions, such as 
intelligibility, "intelligence", pleasantness and so on. It is our 
belief that a low inclusion level of xenophones might not 
primarily show up in the intelligibility dimension, but rather 
present itself to listeners as a synthesizer with a low 
educational level. 

Another problem to consider is that "maximizing" in the 
xenophone dimension might leave certain listeners behind, 
especially concerning languages that are not so commonly 
known as English (e.g. French, German or Russian) and that an 
appropriate level must be found. It can be assumed that 
choosing too "high" a level will signal an attitude which would 
be perceived as high-browed and obnoxious. This, too, needs 
more studies. 

To the best of our knowledge, few attempts to include 
xenophones in synthesizers have so far been made. As 
mentioned above, Eklund & Lindström [6] report the inclusion 
of English xenophones in the Telia Research research 
synthesizer and Möbius et al. [13] mention the inclusion of a 
few English and French sounds in the German version of the 
Bell Labs multilingual TTS system. 

4.3. Future Research 
Apart from the perception studies mentioned above, a deeper 
look into the phonological-regional dimension is needed. The 
rationale for doing this is that one thing one would want from 
an intelligent recognizer is that it possess a certain level of 
predictive power, so that it could "tune in" to a particular 
speaker's use of xenophones (and idiosyncratic speech 
behavior in general). However, our observations so far do not 
provide much hope in that dimension, since the speakers 
generally do not exhibit a high degree of consistency in their 
use of xenophones. For example, a phrase like Diana and 
Charles (from the material) may be pronounced with 
xenophones on Diana but not on Charles, or vice versa. Thus, 
our studies so far indicate that xenophone inclusion may 
appear spot-wise, rather than consistently. However, this asks 
for more research. 

Another thing that awaits studies is to what extent prosodic 
signaling is employed. Some subjects signaled awareness of 
the foreignness of the names and words by using a prosodic 
realization that is influenced by the source-language, in this 
case English, either in addition to, or independently of, the use 
of xenophones. So far, we have not conducted any formal 
studies of this phenomenon, and the benefits from such 
knowledge of course require that recognizers make use of 
prosody, something which currently is not done, at least not to 
any larger degree. 
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Another factor to be studied further is the role of 
orthography, something we have tried to normalize for by 
including the same sounds with different spelling (i.e., the 
voiced affricate [d3] was presented both in the name James and 
in the name Roger). It proved to have some effect [6], but more 
data are needed before any far-reaching conclusions made be 
drawn concerning the role of orthography. 

Finally, an obvious factor to study is the speakers' 
educational level. It goes without saying that previous and 
close familiarity of foreign languages affect the pronunciation, 
as well as one's expectations on how names and words of 
foreign origin "should" be pronounced. Such studies are 
underway, and will be reported in future work. 
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ABSTRACT 

The paper addresses the problem of designing a 
language independent phonetic inventory for the 
speech recognisers with multilingual vocabulary. 
A new clustering algorithm for the definition of 
multilingual set of triphones is proposed. The 
clustering algorithm bases on a definition of a 
distance measure for triphones defined as a 
weighted sum of explicit estimates of the context 
similarity on a monophone level. The monophone 
similarity estimation method based on the 
algorithm of Houtgast. The clustering algorithm 
is integrated in a multilingual speech recognition 
system based on HTK V2.1.1. The experiments 
were based on the SpeechDat II databases . So 
far, experiments included the Slovenian, Spanish 
and German 1000 FDB SpeechDat (II) databases. 
Experiments have shown that the use of 
clustering algorithm results in a significant 
reduction of the number of triphones with minor 
degradation of word accuracy. 

1. INTRODUCTION 

The development of speech technology in the last 
few years raised an interest in the research of the 
multilingual speech recognition. In order to 
reduce the complexity of a multilingual 
recogniser and to reduce the cost of a cross- 
language transfer of speech technology, the 
development of methods for the definition of the 
multilingual phonetic inventories is of increasing 
concern. 

The definition of the multilingual phonetic 
inventories by exploiting similarities among 
sounds of different languages is a promising 
approach. First attempt was reported in [1]. Here 

1 The use of SpeechDat databses was enabled by 
the Siemens AG and the Universität Politecnica 
de Catalunya. 

the multilingual phonetic inventory, consisting of 
language-dependent and language-independent 
speech units, was defined using the data-driven 
clustering technique. Other attempts based on 
different distance measures and clustering 
techniques also followed [2,3,4,5], however, all 
the work so far was focused on the context 
independent phoneme modelling (monophones). 
These experiments have shown that the transition 
from language dependent monophone set to 
multilingual inventory of monophones may result 
in a degradation of recognition accuracy due to 
the lack of acoustic resolution of the multilingual 
phoneme set. 

The transition from the context independent to 
context dependent phoneme modelling seems 
inevitable in order to improve the performance of 
multilingual speech recognition systems, i.e. the 
speech recognisers with multilingual vocabulary. 
The development of a method for the definition of 
the multilingual set of context dependent 
phoneme models requires the definition of new 
clustering criteria. 

In this paper, a clustering algorithm for the 
definition of multilingual set of context dependent 
phoneme models (triphones) is proposed. The 
clustering algorithm bases on a distance measure 
for triphones defined as the combination of 
explicit estimation of the similarity of the 
phonemes of left and right contexts and the 
central phonemes. 

2. TRIPHONE DISTANCE MEASURE 

The crucial problem concerning the use of 
triphone modelling is large number of triphone 
models, which requires large amounts of training 
data. Since the amount of training data is usually 
limited many of the triphone speech units are 
rarely or even never seen during the training. For 
this reason the direct implementation of the 
distance  measures  that  were defined  for  the 
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monophones, such as [1, 2, 3, 4] is not appropriate 
for the definition of multilingual set of triphones. 

Our definition of the distance measure for 
triphones bases on the fact that the triphone is "a 
monophone in a certain context". Therefore, the 
similarity of two triphones can be estimated also 
indirectly - by explicitly estimating the similarity 
of both central phonemes, both left-context 
phonemes and both right-context phonemes. The 
similarity of two triphones Ij-cj+rj and l2-c2+r2 (I, 
c and r denote the left context - phoneme, right 
context - phoneme and the central phoneme, 
respectively) was therefore defined as: 

(1) 
S(lrCj+r,, l2-c2+r2) = Ls(l,,l2) + Cs(c,,c2) + R s(rl,r2) 

where s denotes the similarity of two phonemes, 
L, C, R are the weights for setting the influence of 
each phoneme - level similarity estimates, and 
5f//-c/+r/, l2-c2+r2) is the resulting similarity of 
both triphones. 

Such definition of distance measure for triphones 
can be based on any type of phoneme-distance 
measure (s in Equation 1). In our case, the phone- 
distance measure was defined as suggested in [1]: 

4sk//./»)+c(A>,/»)-|cC/;,/t)-c0y./t)] 

1 < i,j < N,    i *j     (2) 

where s(fj,fj) denotes the similarity between 
phonemes fi and./), N is the number of phonemes, 
c(fhfk) is the number of confusions between 
phonemes / and phone j. 

Described definition of distance measure for 
triphones has two major advantages. First it offers 
an accurate estimation of a triphone similarity 
(similarity of triphones is likely to be higher in a 
matching context and vice-versa). Next, such 
definition can provide a reliable estimation of 
similarity between triphones even in case of 
"rare" or "unseen" triphones. 

3. CLUSTERING ALGORITHM 

Having defined the distance measure for the 
triphones, the clustering algorithm for automatic 
identification of the triphones that are similar 
enough to be equated across the languages was 
defined. 

A group of triphones is equated if an average 
distance among all triphones from the group is 

less  than   a  predefined  threshold   T.   Average 
distance among M triphones was defined as: 

M    M 

Z* 
(Pk,9i£ (<Pi, <?2, ...,<PM), k±\       (3) 

where ^denotes the triphone k-ck+rk, (cph <p2, ... , 
(pM is the group of triphones, S ((ph q>2, ... , (pM) is 
the average distance among all triphones from the 
group ((plt <p2, ■■■ , (PM). To find all groups of 
triphones that complies with the condition from 
the Equation (3), the following 2-stage search 
algorithm was applied. 

In the first stage, a list of most similar phonemes 
(poly-phonemes) was defined using the method 
described in [1]. A partial list of poly-phonemes 
covering all three languages is given in Table 1. 

n Slovene German Spanish 
1 a a a 
2 O O 0 
3 n n n 
4 1 I 1 
5 t t t 
6 m m m 

Table 1. A partial list of poly-phonemes for the 
Slovene, German and Spanish language. 

In the second stage, the groups of triphones to be 
equated were identified. The search for these 
groups was limited to the classes of triphones 
consisting of triphones with the phonemes of the 
same poly-phoneme as the central phoneme. For 
example, the search for the similar triphones was 
first started among the triphones of all three 
languages with either Slovenian phoneme a, 
German phoneme a or Spanish phoneme a as the 
central phoneme. Next, the search for the groups 
of similar triphones continued among the 
triphones with either Slovenian phoneme O, 
German phoneme O or Spanish phoneme o as the 
central phoneme, etc. Such limitation of search 
has proven to significantly improve the 
convergence of the algorithm for the 
identification of the groups of similar triphones 
due to the large number of triphones 

This clustering algorithm outputs the list of 
triphones that are similar enough to be equated 
across the languages. The unlisted triphones 
remain language specific. The degree of equated 
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triphones can be adjusted by the threshold T. The 
value of T was derived experimentally (values are 
given with the experimental results). 

4. BASELINE RECOGNISER 

The speech recognition system was based on 
HTK V2.1.1 with modified frontend module for 
enhancing the speech recognition robustness. The 
acoustic feature vector produced by the frontend 
module consisted of 24 mel-scaled cepstral, 12 A 
- cepstral, 12 A A - cepstral, high pass filtered 
energy, A - energy and AA - energy coefficients. 
This feature vector was processed using the 
algorithms for maximum likelihood channel 
adaptation [8] and linear discriminant analysis 
[8]. 

Such frontend module was chosen due to the 
results of previous tests on connected digits 
recognition task with 99 speakers of the Slovene 
speech database SNABI and tests on isolated 
digits recognition task with the databases SNABI 
and Voice-Mail (German). 

The baseline speech recognition system consisted 
of three language specific recognisers (Slovene, 
German and Spanish) operating in parallel. The 3- 
state left-right topology was selected. The 
triphone models were initially built with 1 
Gaussian mixture component per state. All 
together 24173 triphone models were defined (SL- 
7146, Ge.-12279,Sp.-4748). Parameter tying 
using the tree-based clustering algorithm (as 
implemented in the HTK) reduced the number of 
triphone models to 13074 (S1.-3517, Ge.- 
6517,Sp.-3040). At the end the number of 
Gaussian mixture components per state was 
augmented to 32. 

In the multilingual experiments, the three 
language specific recognisers operated in parallel 
using either three language specific model sets or 
one multilingual set of triphones where many of 
language specific triphones are tied and used by 
all three recognisers. 

5. SPEECH DATABASES 

The experiments were carried out using the 
speech databases produced in the framework of 
the SpeechDat II project [7]. These databases 
provide a realistic basis for developing voice 
driven teleservices and multilingual systems. The 
following SpeechDat databases were used: 

♦ Slovenian 1000 FDB SpeechDat(II) [6], 
♦ German 1000 FDB SpeechDat(II), 
♦ Spanish 1000 FDB SpeechDat(II). 

In all cases, the corpuses contained utterances of 
1000 speakers. 800 speakers were used for the 
training and the remaining 200 speakers were 
used for the testing of the system. In all 
experiments the train and test sets were defined as 
recommended in SpeechDat II project 
specification. 

Only 80 - 95 % of all utterances were useful for 
the experiments. Remaining utterances were 
skipped due to the following reasons: 
- unusual pronunciation of digits, 
- incomplete utterances (speech was cut off at 

the beginning or end of the utterance), 
- unexpected utterances     (background noise, 

comments, ...). 

The system was trained using all corpuses of the 
train set, while for the testing the corpuses Wl- 
W4 of all three databases, containing phonetically 
reach words, were used (total of 2252 utterances 
containing 1960 different words). 

6. EXPERIMENTAL RESULTS 

The baseline recogniser was tested in 
monolingual and in multilingual mode of 
operation, where the three language specific 
recognisers operated in parallel. 
The recogniser performance for the monolingual 
tests is given in the Table 2.a. The word accuracy 
(WA) is listed for each language. The performance 
of the recogniser using the triphone models with 1 
Gaussian mixture component per state (models: 
tril) was low. Augmenting the number of 
Gaussian mixture components to 32 (models: 
tri32) significantly improved the word accuracy. 
The transition from the monolingusl to the 
multilingual mode of operation (Table 2.b) did 
not significantly degrade the recognizer 
performance. In most cases the recognizer 
correctly recognized the language. Errors in 
language identification usually ocured for the 
words that were already misrecognized in the 
monolingual tests. Therefore the errors in 
language identification did not cause additional 
errors in word recognition. The language 
identification rate (LI) was high for both types of 
triphone models and the word accuracy of 
multilingual tests approximately equals to the 
average word accuracy of the monolingual tests. 



24 

a) 

b) 

models 
SL 

WA 
ES DE 

tril 
tri32 

67.51% 
88.25% 

78.58% 
93.91% 

76.77% 
92.51% 

models WA LI 
tril 
tri32 

71.99% 
91.52% 

91.61% 
93.10% 

Table 2. The baseline recogniser performance for 
the monolingual tests (a) and for the multilingual 
tests (b). 

Experiments with multilingual set of triphones 
were carried out for the recogniser with 13074 
models and 1 Gaussian mixture component per 
state. The word accuracy was therefore much 
lower than it would have been in the case of 
models with 32 Gaussian mixture components per 
state. However, the purpose of the experiments 
was to determine the optimal values of the 
clustering parameters (weights L,C,R and 
threshold 7) and to compare the performance of 
the multilingual triphone set to the performance of 
monolingual triphone sets running in parallel. 
Augmenting the number of Gaussian mixture 
components per state from 1 to 32 would improve 
the performance of the multilingual triphone set in 
the similar way as it did for the monolingual 
triphone set (Table 2). 

The clustering algorithm was started at different 
values of weights L,C and R (see Equation 1) and 
at different threshold values (7) producing the 
multilingual triphone sets of different sizes. The 
performance of the recogniser using various 
multilingual triphone sets is given in the Tables 
3.a, 3.b and 3.c. 

Beside the word accuracy and the language 
identification rate, the global compression rate [4] 
was also followed. The global compression rate 
(GCR) was defined as: 

N     M 

/=i 

(4) 

where L is the number of languages, T, is the 
number of trainable models in language /, M, is 
the number of merged models in language i and c,- 
is the ratio between the number of trainable 
models in language i and the number of trainable 
models in L languages. 

The weights L,C and R were first set to the the 
values L=1,C=0,R=1 (Table 3.a) . This way the 
similarity of both central phonemes did not have 
any influence to the resulting similarity of both 
triphones. The search for the groups of similar 
triphones was limited to the classes of triphones 
consisting of triphones with the phonemes of the 
same poly-phoneme as the central phoneme. 
Therefore the similarity of both central phonemes 
has already been considered during the search for 
the groups of similar triphones. 

The use of multilingual set of triphones (models: 
trilC) produced at weights L=1,C=0,R=1 can 
reduce the total number of triphones of the 
baseline system (models: tril), but it also results 
in a decrease of word accuracy and language 
identification rates in case of multilingual 
experiments (results from Tables 3 (WA-MULTI) 
are also shown on Figure 1). In best case the GCR 
of 24.19% is achieved at approximately 1% 
decrease of WA rate and more than 5% decrease 
of LI rate. Using the multilingual set of triphones 
for the monolingual experiments have shown an 
improvement of the word accuracy in case of 
Slovene language for the threshold values larger 
than 100 (results from Table 3.a (WA-SL) are 
shown also on Figure 1). 

5C 
tril (SL) y'' 

<c 

/ 

_J 

1/1 
1 trilC 

/ 

2<CG 

/' 
X 

tfi 

Figure 1. Word accuracy in case of monolingual 
experiments (Slovene language) using the 
multilingual set of triphones produced at various 
threshold values. 

Next the value of weight C was increased to 0.5 
(actual values of weights was L,C, R was 2, 1, 2, 
respectively, since only integer values were 
allowed). Increasing the value of weight C was 
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found   to   improve   the   performance   of   the 
recogniser with  multilingual   set  of triphones 

tril 

"~-\ 
v\ 

\    tri 1C 

\ trilC 
1-0-.1 

2-1 -2 

\ 

"\ 
trilC 
1-1-1 

\ 
\ 

GCR     [%] 

Figure 2. Word accuracy in case of multilingual 
experiments for various values of weights L,C and 
R as a function of GCR. 

(Table 3.b). The WA and LI rates were similar as 
for the C=0, however the GCR was much higher 
(Figure 2). In this case the the GCR of 54.57% 
was achieved at approximately 1.6% decrease of 
WA rate and less than 5% decrease of LI rate. 
Such reduction of the total number of triphones 
with minor degradation of the WA can be 
considered as an improvement of the baseline 
system performance. As for the case of C=0, the 
use of multilingual set of triphones for the 
monolingual experiments improved the word 
accuracy in case of Slovene language for the 
threshold values of 400 or more. 
Further increase of weight C (C=l) did not 
improve the performance of the recogniser with 
multilingual set of triphones (Table 3.c). Setting 
the C to 1 can produce the multilingual set of 
triphones with the highest GCR, but on the other 
hand, it significantly reduces the WA and LI 
(Figure 2). 

a) 

b) 

c) 

L=1,C=0,R=1 
models T N WA LI GCR 

SL ES DE MULTI 

trilC 20 6498 62.34% 65.92% 69.51% 63.68% 75.73% 47.99% 

trilC 40 6799 64.38% 67.34% 70.73% 64.74% 77.57% 45.79% 

trilC 60 8226 64.83% 68.23% 72.23% 65.94% 78.23% 35.38% 

trilC 80 8662 67.60% 69.81% 73.90% 67.63% 80.37% 32.19% 

trilC 100 9424 68.12% 70.10% 74.95% 69.57% 84.52% 26.63% 

trilC 120 9758 69.41% 72.67% 75.85% 
76.77% 

70.84% 
71.99% 

86.07% 
91.61% 

24.19% 

tril - 13074 68.04% 78.58% 0% 

L=2.C=1.R=2 
models T N WA LI GCR 

SL ES DE MULTI 

trilC 100 5942 63.36% 63.21% 72.11% 64.43% 78.95% 52.04% 

trilC 160 6026 65.29% 64.02% 73.57% 65.14% 79.22% 51.43% 

trilC 180 6068 66.40% 64.89% 74.81% 65.63% 79.75% 51.12% 

trilC 260 6208 66.91% 66.12% 75.98% 66.82% 81.21% 50.10% 

trilC 340 6784 67.73% 69.47% 76.51% 69.27% 84.78% 45.89% 

trilC 400 7239 69.23% 73.20% 76.68% 70.32% 86.67% 42.57% 

tril - 13074 68.04% 78.58% 76.77% 71.99% 91.61% 0% 

L=1.C=1.R=1 
models T N WA LI GCR 

SL ES DE MULTI 

trilC 120 4238 29.12% 38.95% 40.72% 42.35% 58.89% 64.47% 

trilC 140 5284 28.63% 45.81% 47.34% 47.83% 63.55% 56.84% 

trilC 180 6475 37.78% 52.73% 53.59% 51.21% 69.26% 48.15% 

trilC 200 7526 46.62% 57.37% 59.45% 54.67% 76.31% 40.48% 

trilC 240 8577 56.16% 62.48% 64.83% 62.13% 82.74% 32.81% 

trilC 280 9971 65.41% 69.41% 71.73% 69.25% 86.07% 22.64% 

tril - 13074 68.04% 78.58% 76.77% 71.99% 91.61% 0% 

Table 3. Performance of the recogniser using various multilingual sets of triphones produced at different 
values of weights L,C,R.. 
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7. CONCLUSION AND FUTURE WORK 

Experiments have shown that the use of clustering 
algorithm can produce the multilingual set of 
triphones that achieves almost the same word 
accuracy as the language specific triphone sets 
operating in parallel. Slight decrease of the word 
accuracy is acceptable considering the fact that 
the number of triphones in a multilingual set of 
triphones is significantly smaller than total 
number of triphones in the language specific 
triphone sets. In best case the use of clustering 
algorithm resulted in a reduction of the number of 
triphones by more than 40% with degradation of 
word accuracy by 1.67%: Such result shows that 
the multilingual set of triphones produced by the 
clustering algorithm can improve the performance 
of a multilingual recogniser based on language 
specific triphone sets operating in parallel. 

The monolingual experiments with multilingual 
set of triphones have shown that in some cases the 
use of multilingual set of triphones can also 
improve the performance of the monolingual 
recognisers, that is, the performance of the 
recognisers based on monolingual triphone sets. 
Such improvement has been observed for the 
Slovenian language where the performance of the 
recogniser using the Slovenian triphone set was 
significantly lower than the performance of the 
recogniser (based on the Spanish and German 
triphone sets) for the Spanish and German 
languages. The multilingual set of triphones tends 
to equalise the performance of all monolingual 
triphone sets that were used for definition of the 
multilingual triphone set. 

similarity on a monophone level. In this case the 
monophone distance estimation method was 
based on the algorithm of Houtgast. In future, 
other methods of monophone distance estimation 
will be also considered. 
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Results of the monolingual experiments using the 
multilingual triphone set indicates that the 
multilingual triphone set might also perform well 
for the new languages, that is the languages that 
were not included during the definition of the 
multilingual triphone set. However, no 
experiments have been done so far to prove this. 

In future, the number of SpeechDat databases will 
be increased in order to expand the scale of 
experiments and to provide more reliable 
assessment of the clustering algorithm efficiency. 

The clustering algorithm bases on a definition of 
distance measure for triphones defined as a 
weighted sum of explicit estimates of the context 
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ABSTRACT 

A speech recognition system is subjected to the 
speech of non-native speakers, using both native and 
non-native acoustic phone models. The problems in- 
volved with the mapping of phoneset from the non- 
native to native language are investigated, and a 
detailed analysis of phone confusions is made. For 
Dutch speakers, British English acoustic models give 
the best word recognition results. 

INTRODUCTION 

The study of speech as uttered by non-native speak- 
ers of the language has been a subject of research in 
phonetics for along time [1]. With maturing speech 
technology, the subject of non-native speech is be- 
coming a topic of interest. Non-native speakers will 
form a new challenge for any technology for which 
acoustic training is an important factor, e.g., code- 
book based coding systems, or speech and language 
recognition systems. One of the problems of train- 
ing for non-native speakers is that the target group is 
very inhomogeneous—there are in principle as many 
potential non-native classes as there are languages in 
the world. This is a larger number than the num- 
ber of dialects within a language, which has been the 
classic acoustic modelling challenge. 

The standard approach for a technology such as 
speech recognition is to gather a database of the tar- 
get group of users, and (re)train the system using this 
new database. For non-native speech, this means that 
if there are N languages for which speech recognition 
is available, a full matrix of native and non-native 
recognition systems would require N2 speech data- 
bases, most of which will be non-native databases. 
Currently, the number of available non-native data- 
bases is very limited. 

An alternative approach to non-native speech is 
to assume that non-native speakers will dominantly 
use their native phones, presumably by mapping the 
phones of the language they are speaking (L2) to their 
native language (LI). If this is the case—and the 
fact that foreign speakers can very well be charac- 
terized (and caricatured) supports this assumption— 
a speech recognition system can use the LI phone 
models for the non-native speakers, combined with 

L2 dictionary and language models. In this way, only 
N acoustic training databases must be available for a 
full set of native and non-native recognition systems 
in N languages. Of course, there are non-native is- 
sues in pronunciation rules (dictionary) and language 
modelling as well, but we will not address these in 
this study. 

This paper reports on an experiment for Dutch 
speakers speaking English, where a speech recognition 
system is trained with either native Dutch, British 
English or American English speakers. The main ob- 
jective is to investigate whether LI speakers should be 
recognized using LI or L2 acoustic models when they 
are speaking in a non-native language L2. The imple- 
mentation is limited—only one non-native language 
combination is investigated, using only one speech 
recognition system—and therefore the methodology 
of the experiment might have more implications than 
the bare results. 

THE MIST SPEECH DATABASE 

In late 1996 TNO recorded a speech database for 
Dutch continuous speech recognition named NRCO, 
similar to the Wall Street Journal corpus, (WSJO) [2]. 
The main purpose of the database was to boot- 
strap the development of large vocabulary continu- 
ous speech recognition for the Dutch language. This 
database consisted of 52 speakers, each uttering 65 
unique sentences. The sentence texts were taken from 
a Dutch newspaper (NRC/Handelsblad), read from a 
CRT screen in a quiet and low reverberant room, us- 
ing a Sennheiser HMD 414-6 microphone, and high 
quality digital recording equipment. The number of 
speakers is smaller than for WSJO (and similar data- 
bases such as WSJCAMO [3] and BREF80 [4]), and 
therefore TNO decided to extend the database in 
1998 with another 80 speakers (NRC1). For these 
sessions, special sentences were recorded additional 
to the 65 utterances for continuous speech recogni- 
tion systems. These included 'foreign language sen- 
tences,' which were sentences in English, French and 
German. The prompt texts for the foreign language 
sentences were taken from newspaper texts, English 
from Wall Street Journal, German from Frankfurter 
Rundschau and French from Le Monde. These were 
the same sources from which the development and 
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test sentences in the SQALE project [5] were chosen. 
The recordings of the foreign language sentences can 
be considered non-native speech material for English, 
French, and German. 

The majority of the speakers for NRC1 were re- 
cruited from the institute. Of the institute's employ- 
ees, 60% has an academic background, and 20% a 
higher technical education. This is not a represen- 
tative sample of the Dutch population. There is the 
advantage, however, that a relatively high fraction of 
subjects can be expected to be able to speak one or 
more foreign languages. It was left to the subject's 
own discretion to decide whether or not to record 
the foreign sentences. Thus, of the 74 subjects that 
recorded foreign speech, 71 recorded English, 66 Ger- 
man and 60 French. The prompt texts consisted of 
five sentences that were the same for all speakers, 
and could function as adaptation sentences. A fur- 
ther five sentences were chosen, which were unique 
for every speaker.f 

For the purpose of the MIST workshop, TNO de- 
cided to share the non-native speech data with other 
research institutions. A liberal license agreement al- 
lows people to use the speech material for research 
purposes, free of charge. As a reference, 10 Dutch 
sentences per speaker were added to the non-native 
speech database, again consisting of 5 sentences that 
were the same across all speakers, and 5 unique sen- 
tences. Thus a total of over 5 hours of speech is 
available for the scientific community. Only for the 
Dutch sentences, a detailed orthographic transcrip- 
tion could be made, for the other three languages just 
the prompt texts were distributed. It is hoped that 
native speakers at other institutes will provide the 
community with corrected transcriptions 4 A number 
of articles in these proceedings [6, 7] already report 
on results using this database. For the experiments 
in this paper, only the English utterances were used. 

THE ABBOT SPEECH RECOGNIZER 

For the speech recognition system used in this experi- 
ment, we used the Abbot large vocabulary continuous 
speech recognition system [8]. Abbot is a hybrid neu- 
ral net/Markov model recognition system. The most 
important difference from traditional hidden Markov 
model systems is that the neural net directly esti- 
mates a posteriori phone probabilities for each speech 
frame. The forward pass in the recurrent neural net 
can be calculated quickly, and phone probabilities 
are quite well determined. This makes the decod- 
ing search relatively easy, and therefore the system is 
known for its fast recognition speed. By choosing the 
appropriate decoder, both a phone recognition system 
and a word recognition system can be built. 

The components needed for the various word rec- 
ognizers are 

■ L2 (English) and LI (Dutch) acoustic models 
■ L2 dictionary 
■ L2 to LI phoneset mapping 
■ L2 language model. 

When Dutch acoustic models are used, a dictionary 
of English words in terms of Dutch phones is needed. 
One way to achieve this is to use an English dictio- 
nary, and to translate all English phones into corre- 
sponding Dutch phones. For this the reason the L2 
to LI phoneset mapping is necessary. 

For a phone recognizer, the phone mappings ap- 
pear to be unnecessary. However, for evaluation of 
the Phone Error Rate (PER) a phone level reference 
transcription is needed. Because the test database is 
annotated at the word level, a dictionary is needed 
to convert the L2 reference words into LI phones. As 
English dictionaries in terms of Dutch phone sets are 
not available, the phone mapping is necessary in this 
case as well. 

EXPERIMENTAL SETUP 

The test database used is the English part of the 
MIST speech database. The speakers were separated 
into two groups, training and testing speakers. The 
training speakers were not used in this experiment, 
and only the five unique sentences per speaker were 
used. This resulted in 180 utterances by 36 speak- 
ers. Of the 3147 words 129 (4 %) words were Out Of 
Vocabulary (see below). 

Table I. Acoustical training conditions for three lan- 
guages. 

Language                  American British Dutch 
Database                   WSJ0 WSJCAM0 NRC0 
# speakers                84 90 48 
speech length (hr)    13 13 7 
phones                       53 44 39 
phoneset                   ICSI/LIMSI BEEP CELEX 

Three different acoustical models were used, 
American English, British English, and Dutch. The 
training conditions are comparable, except for Dutch, 
which has about half the training time (7 hr). The 
Abbot speech recognition system is known to have 
a relatively quickly saturating performance with in- 
creasing training data, due to the limited number of 
parameters to be estimated. In table I the acoustical 
conditions are tabulated. The phoneset for Dutch is 
a subset of the phoneset defined in the CELEX dic- 
tionary [9]. For American English, the ICSI/LIMSI 
phoneset is used [10, 11]. The training for Ameri- 
can and British English was performed by Cambridge 

f For each language, there are 2-5 sentences that occur twice among the speakers, due to an unfortunate 
misconfiguration during the sentence selection. 

| The latest transcriptions can always be found at URL ftp://ftp.tm.tno.nl/pub/speech/mist. 
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Table II. The phone map used in order to translate 
the American and British English dictionaries using the 
Dutch phoneset. The second and fourth conlumn show 
the full English phonesets, the middle column shows the 
Dutch phones to which the phones are mapped. The 
phones f, h, <%, 1, m, n, rj, s, J, v, j, z, 3 occur in all 
three phone sets, and are not shown. 

American—^ Dutch «-British 

bottle a a a heart 
hamm ae e ae zap 
sum A a A rough 
might 
more 

ai 
0 

a: j 
3 

ai 
0 

ice 
lord 

0 D pot 
ago 
annoyed 
house 

ou 
DI 

au 

Öl 

3j 
au 

3U 

au 

rogue 
boil 
house 

again 
alive 

3 

1 
3 

al 
3 again 

atom m a m 
heaven n a n 
after 
hurd 
bet 

j 
1 

31 

e 

3 R 

3 R 

e 
e 3 

3: 

£ 

£3 

burn 
bet 
hair 

pain 
adding 
fit 

ei 

i 
1 

e: 
1 

1 

I 3 

ei 

1 

13 

pain 

fit 
here 

beat 
hook 
cool 

i 
u 
u 

i: 
u: 
u: 

i 
u 
u 

beat 
bush 
cool 

lobe V 
u: 3 

b 
U3 

b 
poor 
board 

bow 
beach 
shed 

b 

d"1 
tj 
d d 

beach 
does 

does 
this 

d 
3 d 8 that 

butter r d 

jig 9" 9 9 go 
go 
aha 

9 
fi h 

arc kn k k cow 
cow k 
chip 
pot 
raise 

P1 

P 
j 

P 

R 

P 

j 

pot 

raise 
fit f t t tip 
tip 
thing 
walk 

t 
e 
w 

t 
V 

e 
w 

thing 
walk 

University. In the American English training proce- 
dure, a different dictionary was used [12]. 

The size of the vocabulary was conservatively 
chosen to be 20k words. The limited size was used 
because it was not an objective to optimize a system 
for performance, but rather to compare performances. 
The vocabulary and dictionaries were effectively de- 
termined by the freely available demonstration ver- 
sion of Abbot [13]. The American English pronuncia- 

tion dictionary is based on the CMU dictionary [14], 
whereby the phoneset was converted using an auto- 
matic phone mapping to the ICSI phone set. The 
British English dictionary is a subset of the BEEP 
dictionary [15]. In order to obtain dictionaries for 
the Dutch phone set, both dictionaries were trans- 
lated using a phone map shown in table II. 

The language model used is a 20k word trigram 
language model, which was developed using American 
English texts pre-dating spring 1998. The decoder 
used for Abbot is 'chronos,' a time-synchronous stack 
decoder [16]. The language model was used for all 
word recognition runs, except for the Dutch baseline 
run. 

Phone mapping 

The phone mapping shown in table II needs some 
explanation. It was based on our phonetic intuition 
of the similarity between Dutch and English phones. 
The table shows only one mapping per phone, but 
later we will show that experiments have been carried 
out with multiple mappings. Some phone mappings 
have been made consistent with the way the Dutch 
vocabulary, that was used in the acoustic model train- 
ing, expresses words in terms of the Dutch phones. 
For instance, the mapping [ai] ->■ [a: j] is chosen over 
[a: 1], because the CELEX dictionary has entries for 
words like haai -»• [h a: j] (shark). In the training 
process of the Dutch acoustic models, therefore, the 
[j] models the [1] in the context of [ai]. 

The American English phoneset has separate en- 
tries for 'closures,' plosives without an audible release, 
[bn, <T, g1, k"1, pn, f], in combination with the standard 
IPA plosives. In the dictionary used for American En- 
glish, most occurrences of a plosive are preceded by a 
closure, e.g., bee —>■ [b'bi]. However, the non-audible 
release can stand on its own, e.g., as in add —>• [ad]. 
For this reason, the closures are mapped to Dutch 
plosives, and the plosives are mapped to nothing. 

BASELINE RESULTS 

In order to have a reference for the experiments with 
non-native speech, a number of baseline tests were 
performed. For this, development test material used 
in the SQALE project was used. This consisted of 20 
native speakers for American and British English (10 
male, 10 female). For a baseline for the Dutch mod- 
els, 20 speakers of the NRC1 Dutch database were 
used. Each of the speakers contributes 10 utterances 
to the test. In table III the phone and word errors of 
the recognizer are given. The baseline results are only 
indicative of the recognition system; they are not 'op- 
timal' values. For instance, the language model has 
not been optimized for the speech domain. In deter- 
mining the PER for English, an automatic expansion 
of the reference word transcriptions has been made, 
using the appropriate dictionary. Because the English 
dictionaries have multiple pronunciations per word, 
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many arbitrary decisions have been made in generat- 
ing the phone reference transcription. This leads to 
an estimation for the PER which is too high. 

The Dutch dictionary has only single pronunci- 
ation entries. This may be the reason that the PER 
figure is lower than for English. The word error rate 
for Dutch is much higher than for English. The Dutch 
language model was based on a 78 million words text 
of newspaper text, defining the vocabulary as the 
most frequent 20 000 words. The language model was 
built specifically for the baseline test, and has not 
been optimized. 

Table III. Word and phone error rates (WER) in % for 
baseline conditions. The top line gives the WER in the 
standard 'forward' condition, that is used throughout this 
work. 'Forward' means a forward pass only, 'fw/bw' 
means forward and backward pass (see text). 

Language American    English    Dutch 
WER (forward) 27.6 26.2 37.7 
WER (fw/bw) 22.4 22.5 34.4 
PER (forward) 39.8 37.4 35.6 
PER (fw/bw) 37.3 34.7 33.4 

In table III results for a forward/backward pass 
are given as an indication as to how much lower the 
error rates are if the posterior log probabilities are 
averaged with 'backward' runs. Because Abbot uti- 
lizes a recurrent neural network, past acoustic con- 
text is automatically modelled. In order to model 
future acoustic context, a 'backwards' network can 
be trained by feeding the network acoustic features 
that are reversed in time. In the recognition pass, 
the backwards classified phone probabilities can be 
merged with the forward stream, which generally 
leads to lower error rates. 

Results for non-native speech 

In table IV the results for the MIST database are 
given. Results obtained with Dutch models are made 
with either US or UK dictionary, translated using the 
phone map of table II. 

Table IV. The word and phone error rates (in %) for the 
MIST database of Dutch speakers speaking English. A 
20k English vocabulary and an accompanying trigram lan- 
guage model was used. (US, UK, NL) means American, 
British, Dutch. The standard deviation of the numbers is 
approximately 0.8 %. 

Acoustic models US     ÜK     NL     NT7 
Pronunciation dictionary     US     UK     US     UK 
WER 
PER 

68.8   60.9   68.9    73.4 
55.7   49.1    54.5    56.2 

It appears that British acoustic phone models 
give the lowest error rates for the Dutch MIST speak- 
ers, both in phone and word error rate. It is inter- 
esting to note, that the difference between PER and 
WER is smaller—and has actually reversed sign— 
with respect to the baseline. One is tempted to assign 

this to a language model incompatibility, but this is 
unlikely because of the very similar source of both 
tests, namely the SQALE sentences. 

Influence of the phone mapping 

Of the results of table IV, the last two columns are 
most interesting, because they involve a non standard 
combination of LI acoustic models and L2 language 
models. The phone mapping shown in Table II is the 
first mapping we tried, based on phonetic intuition. 
The Dutch phoneset contains some phones that are 
not covered by the English mappings, namely [0:, ei, 
u, cey, x], and [y:]. Other English phones, that ex- 
perienced speakers are capable of using, have no real 
Dutch equivalent. Examples of these are the infamous 
'th' consonants [9] and [3]. We experimented with a 
couple of changes to the phone mapping, in order to 
investigate if any of them would lower the word error 
rate. 

First, we adapted the dictionary conversion tool 
to accept alternatives for phone conversions. This in- 
volved a recursive expansion of alternative pronun- 
ciation strings. For instance, if both the alterna- 
tives [3] ->■ [d|z] and [A] -+ [a|u] are allowed, the 
word 'mother' ([ITIA3J]) gets four alternative pronun- 
ciations, [madaR, muctaR, mazsR] and [mazaR]. The 
inclusion of the above examples and [6] ->• [t|s] lead 
to an increase in word error rate of 7 %-point for the 
American English dictionary. Apparently, allowing 
more pronunciation variants per word causes more 
options for erroneous words than that it helps to find 
options for the correct word. 

We have run several tests in order to investigate 
what the individual contribution of the alternatives to 
this increase is. The alternatives that we defined for 
American and British pronunciation are shown in the 
first columns of table V, together with the difference 
in WER the individual alternative makes. Again, al- 
most all alternatives lead to an increase in word error 
rate. 

Table V. Changes from the default phone mapping (see 
table II). In the last column, the increase in the word error 
rate (in %-point) with respect to the baseline is given. 

English    Dutch       US      UK 
A              a|u         +2.6    +1.4 
A              H            +4.3    +3.0 
6              t|s          +0.5    +2.1 
6              s             +0.8    +2.1 
3              d|z         +2.9    +1.8 
r               djt          -0.8 
r               t                0.0 
ai             a: i:        +2.2    +3.4 
ai             a: 1         +2.0    +2.3 
i               B            +0.8 
£3             ER —0.2 
U8 u: R —0.5 

The increase of PER for the mapping [A] ->■ [u] 
surprised us, because in the stereotypical Dutch En- 
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Table VI. Individual phone confusions. Only phones that are confused more often with others (left number) than that 
they are recognized correctly (right number) are shown. The leftmost columns show the phone confusion considered. The 
second three columns show the phone confusion numbers for the baseline tests. The third and fourth three columns show 
the confusion numbers for the non-native database. Boldface indicates more errors than correct. In the case of the Dutch 
phoneset (last group of rows), a dictionary phone mapping for the reference transcription was used. 

Phones Reference Non native database MIST 

Set ref. rec. test err corr mapping err   corr mapping err corr 

US m 
n 
fi 

3 
i 

m 
n 
h 

J 
i 

SQALE 27 
163 

2 
0 

146 

2 
42 

1 
6 

74 

US 29        1 
332       56 

5         1 
3        3 

207      53 

UK a 

3 

e 

f 
SQALE 9 

0 
126 

6 
UK 112       55 

2         1 

NT; a a: NRC1 141 2679 UK 184     166 US 74 183 

0 o: 254 1580 223    340 181 167 

u r 3 225 36         7 0 0 

3 r 15 0 2        0 3 0 

<fe j 6 0 18        0 19 0 

f V 218 517 175     161 178 161 

g X 4 4 18        4 9 5 

g k 11 4 80        4 81 5 

V f 303 1968 216     164 214 162 

z s 214 1221 268     149 151 266 

glish accent [A] is pronounced as [a]. The reason 
might be, that the acoustic modelling for [«] in Dutch 
is relatively poor. The confusibility of [a] with [a] is 
high because the schwa lies acoustically very close to 
the unstressed [a]. 

One more elaborate expansion is that of the plo- 
sives in the American English phone set. The map- 
ping of [b, d, g, k, p, t] to nothing leads to a few errors 
in the converted dictionary. Words like update have 
the US expansion [ApMeif], where there is a closure 
of /p/ followed by the release /d/. In our original 
mapping, the latter phone was deleted. Correcting 
for these occurrences (translating update -» [apde:t]) 
lead to a decrease of the word error rate for the Amer- 
ican dictionary of 0.3 %-point. A combination of this 
with the alternative [r] ->• [d|t] lead to a total decrease 
of 1.2 %-point. 

Individual phone scores 

By investigating the phone recognition result, it is 
possible to make an inventory of the individual phone 
scores. A phone class based alignment algorithm [17] 
can provide a fairly good measurement of the phone 
confusion matrix, even for continuous speech recog- 
nition. A way to summarize the problems in phone 
recognition is to tabulate the phones that are recog- 
nized more often as a different phone than as them- 
selves. In table VI these phones are indicated for a 
number of baseline and non-native tests. 

In some cases we can conclude that the basic 
models are not well trained. This is the case for, e.g., 
the American [m, n] and [i], and the Dutch [3, <%] and 
[g]. But for other phones, there is a clear effect of 
the non-native speech. Prom table VI it is clear that 
the British [a] is pronounced closer to the [e] by the 

Dutch speakers. When the Dutch phoneset is used 
for the non-native speaker, there are many examples 
of phones that have a high confusibility with others. 
This may be an artifact of the automatic dictionary 
mapping. Interestingly enough, both [f] and [v] have 
a tendency to be interchanged in recognition with re- 
spect to the dictionary expansion. Our understanding 
of this is that in Dutch local accents, the /f/ and /v/ 
have acoustic realizations that are similar, because 
the difference in voicing tends to blur. 

CONCLUSIONS 

We have shown a methodology that allows non-native 
(L2) speech recognition using native (LI) speech 
models, L2 dictionary and grammar, and an L2 -> LI 
phone mapping. In the case of Dutch non-native 
speakers of English, the plain word recognizer using 
British English models gives lower word error rates 
than the approach given above, but it is not known 
whether this will generalize to other combinations of 
non-native speech. Still, the word error rate of the 
non-native speakers is a factor 2 higher than for na- 
tive speakers. The phone mapping, necessary in order 
to define a L2 dictionary in terms of LI phones, forms 
a weak link in the approach. A more elaborated rule 
based translation of the vocabulary should lead to 
better results for the approach taken here. 
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Report of the plenary discussion on 
"Non-native speech and Accents" 

Chairperson:    Denis Johnston (BT, United Kingdom) 
Reporter: Els den Os (KPN-Research, the Netherlands) 

Questions from Hunt and Boves: Both commented on the assumption made by Van Com- 
pernolle that accents can be considered as "information preserving transforms," in not more 
homophones in one accent than in another. Van Compernolle also argued that speech recog- 
nisers should impose constraints to exploit this consistency. There are a number of issues that 
call these assumptions into question. 

1 Accents are not only related to the sound structure in a language but also to the vocabulary 

2 French provides a counter example. For many (young) speakers pairs of phonemes are 
becoming collapsed into single phonemes, often with context dependent allophones corre- 
sponding to the earlier phoneme pair. Pairs that are collapsing: /e/-/e/ et-est; /a/-/a/ 
päte-patte. In some Dutch accents the distinction between voiced and voiceless fricatives 
has disappeared. 

3 Since people move around more in their lives and as they are increasingly influenced by 
telecommunications, accents will increasingly become inconsistent. Imposing consistency 
constraints on the recogniser could then be harmful rather than helpful. On the other 
hand, mobility and telecommunication may cause accents to become more similar. This 
should help ASR. 

Reaction Van Compernolle: There is indeed no direct evidence for considering accents in this 
way, however, it is a good working hypothesis. 

Comment from Hunt: In a reaction on the presentation by Geoffrois, Hunt mentioned an 
explanation for the fact that language identification was better for French natives than the 
identification of English and German for the native speakers. This explanation relates to the 
fact that French has relatively few consonant clusters, while English and German share the 
property of having many consonant clusters. 

Reaction Geoffrois: This may well be the case. When looking at the confusion matrix it was 
noticed that there were more confusions between English and German than between French 
and either of the two other languages. 

Van Leeuwen pointed out that there might be an explanation for the fact that no language 
dependency results were found for the non-natives, while this was the case for natives. This 
explanation is related to the fact that the same group of Dutch speakers produced the English, 
German and French items, while the native items were produced by different groups of speakers. 
Hunt indicated that another explanation might be that Dutch speakers speak better German 
and English than French. 

Reaction Geoffrois: This might well be the case. The results in the paper of Geoffrois/Durou 
also point into this direction. 

Reaction Boves: It might be worthwhile to look at the output of the decoder to see the 
succession of phones, since the bigram training is done on the decoder output. 

Questions to Eklund: Some questions were related to the collection and transcription of the 
speech data on which his study is based. Van Compernolle indicated that the type of instruc- 
tions may have an influence pronunciations.   Eklund pointed out that the speakers did not 
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receive any special instructions on how to pronounce the names in the sentences. Furthermore, 
Eklund explained that he chose proper names only, because only in this way you can obtain 
many different non-native sounds. There has been no check of the level of agreement between 
the three labellers. 

Reaction Van Compernolle: Xenophonesf should be used for training. This gives at least 
some information even if there are not enough data. There is always the risk that there are 
too few different words with non-native sounds so that the xenophone models become context 
dependent 

Reaction Hunt: referring to earlier work, adding two Scottish phonemes to English improved 
the performance of at least one recognizer substantially. 

Reaction Van Leeuwen: it is really very important to properly choose your phone set. 

General comments, not related to a specific paper 

Boves mentioned that we should really ask ourselves: what is the nature of the models of 
todays ASR systems. An important issue is the distinction between the discrete and symbolic 
representation (e.g., IPA) on the one hand and the continuity of speech on the other hand. 

Related to this, he suggested that foreign accent might be primarily in the dynamics, especially 
for languages that are phonetically close. The question is how to model this dynamics and 
how and where does this interfere with ASR. 

Hunt indicated that the work of Li Deng and John Bridle on Hidden Dynamic Modelling is 
interesting in this respect. It was also mentioned that we should try to find more robust 
phonetic units. 

Two general issues were mentioned related to non-native speech: 

1. The need for the collection of more non-native databases 

2. How to deal with unseen data 

Related to point 1: Schulz indicated that only collecting extra databases would not solve the 
problem, because of the diversity of non-nativeness. We should try to find rules to deal with 
non-nativeness. However, it is questionable whether these rules are easy to derive. 

Micca said that we should get better ideas on when it is better to have pronunciation variants 
in the lexicon and when it is better to have non-native acoustic models. 

Adda-Decker mentioned that it might be a very good idea not only to look at the recognition 
errors, but also to look at what is correctly recognised. 

Related to point 2: Van Compernolle indicated that we must find ways to deal with unseen 
data. The range of variation due to non-nativeness is too large to hope that we can build 
models from just more data. The question is how to get the best models. Shifting means 
of distributions is a possible solution, provided that we know how to do this correctly. This 
corroborates the opinion expressed by Schulz. 

f Xenonphones are phones that approximate phones from other languages (see paper from 
Lindstrom and Eklund) 
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ABSTRACT 

The goal of the MIVA project was to answer a number 
of fundamental questions concerned with the 
exploitation of speech technology enabled systems. The 
experimental service chosen was designed to help 
foreign people travelling in the country to find 
emergency and embassy numbers, country and area 
codes, useful numbers (directory service, country direct, 
etc.) and how to use Telecom and credit cards for 
placing calls. 

Services were implemented in each of the countries 
taking part and two stages of experimentation were 
undertaken. The first of these was a mono-lingual 
experiment carried out in each country to optimise 
performance for each country /language combination. 
The second was a fully multi-lingual service in which 
each of these optimised services was re-implemented in 
all languages. All systems were evaluated over 
combinations of local and international environments. 
Correlations derived from a subset of the subjective and 
objective results were used to provide a predictive 
model of users opinions and the remaining subset of 
data used to test these predictions. 

1. INTRODUCTION 

Many services based upon advanced speech technology 
such as ASR have been implemented in recent years but 
in the main these services have been limited to one 
language. In this project we undertook basic research 
into how such systems might be implemented, applied 
and evaluated in a multi-lingual environment. With so 
many interacting factors likely to impact upon users' 
perceptions selecting the best combination is far from 
trivial.   Previous   experience,   recogniser   accuracy, 

recogniser speed, recogniser threshold settings, 
vocabulary choice, characteristics of spoken prompts, 
line types, phone types, dialogue characteristics are all 
important and interact strongly. Simultaneously 
optimising them can be exceedingly difficult. Dealing 
with is complexity was expected to be a major 
challenge. This multi-dimensional problem has 
generally resulted in two broad approaches to 
evaluation. One has been to arbitrarily choose one of 
the more obvious and directly measurable factors such 
as recogniser threshold settings, attempt to hold all 
others constant and then measure some other 
quantifiable effect such as total transaction time. The 
second has been to set up the service, invite people to 
use it and then use questionnaires or interviews to 
collect opinions about the quality or usability of the 
service. 

However neither of these is really satisfactory. The 
problem with the first is that there are few factors that 
are directly measurable and meaningful. More often it is 
the unmeasurable and intangible features of the service 
such voice quality and dialogue styles that tend to 
dominate user perceptions. On the other hand in the 
field trial approach, reliable data collection (especially 
of users perceptions) is difficult and expensive. And 
subsequent analysis and interpretation of the results in 
what is an almost totally uncontrolled environment is 
often impossible. 

In the MIVA project we substantially circumvented 
these problems by adopting a methodology based upon 
multi-factor experimental designs. This approach has 
been widely applied in other disciplines and is one of 
the standard methodologies applied in the life sciences1. 
We show how this approach overcome all of the 
disadvantages of the methods described above and 
allowed decisions concerning the best 'mix' of 
characteristics to be determined. 
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2. ASKING THE RIGHT 
QUESTIONS 

2.1 High level questions 
The starting point for such a process is a list of high 
level questions. This was done in consultation with the 
technical and marketing departments of our 
organisations. This ensured a high level customer led 
drive for the project and simplified the agreement on 
what issues were of importance to all concerned. Once 
the questions were established they were prioritised. 

The key questions identified were: 

• Do users prefer speech recognition to DTMF input 
for Interactive Voice based services? 

• Is the performance of speech recognisers 
significantly impaired when services are accessed 
over GSM networks? 

• Are there certain preferred dialogue structures ? 
• What speech recogniser parameters (e.g. rejection 

settings, cut- through strategies) are preferred? 
• What is the best way to prompt users at the start of 

a dialogue so that their language can be identified? 
• Do recognisers perform differently when accessed 

over international links? 

In examining these questions it became apparent that 
they could best be answered using two separate series 
of experiments. The first series would be undertaken 
independently in each country and would address those 
questions (numbers 1-3) that did not have a direct 
multi-lingual dimension. This first phase would also be 
used to optimise platforms and dialogues and identify 
the appropriate prompts and words to be recognised. 
The second phase would embrace those tests that 
demanded multi-linguality. 

2.2.Supplementary questions 
During the course of project it became apparent that we 
could and should, address other questions such as: 

How should the problem of 'unanswerable' queries be 
resolved? For example if a person accesses an 
information system expecting to obtain information 
about telephone fault repair how do you deal with the 
problem that this information is not in the database? 
What, if any, are the important differences, due to 
networks, country size, languages, cultures etc. which 
must be taken into account when providing multilingual 
services? 

2.3 From questions to hypotheses 
Once the questions had been established we were able 
to move to the experimental design stage. The first step 
in that direction was to convert the questions into the 

'null hypothesis' format necessary to allow statistical 
tests to be performed at the subsequent analysis stage. 

Formulations of null hypotheses for the above questions 
are: 

• Users show no preference or behavioural patterns 
between speech recognition or DTMF 

• The performance of speech recognisers is not 
impaired when services are accessed over GSM 
networks? 

• All dialogue structures are equally efficient and 
effective. 

• Recogniser parameters such as rejection settings, 
cut- through strategies make no difference to 
performance or user behaviours. 

The value of recasting the questions into a null 
hypothesis format comes from the fact that the onus 
shifts from having to prove something true to proving it 
untrue. 

2.4 Selecting an appropriate service 
Having established the basic 'scientific' hypotheses the 
next stage was to establish the framework of the 
service. Other issues, such as data exchange 
agreements and protocols were also established at this 
point. Our choice of service was determined by a 
number of factors amongst which were 

• The potential for using Automatic Speech 
Recognition 

• Usefulness in a multilingual environment 
• Relevance to our parent Telecommunications 

companies 
• Feasibility within the time frame of the project. 

One service that met these all of these constraints was 
originally conceived as a pan-European multilingual 
help-line. This would provide help on how to use the 
telephone network in foreign countries. For example an 
Italian speaker visiting France would be able to obtain 
guidance, in Italian, on how to use the major facilities 
of the France Telecom network. Examples of the types 
of information to be provided were emergency and 
embassy numbers, country and area codes, national and 
international directory service numbers, country direct 
numbers, tariffs and how to use Credit and Telephone 
Cards. 
Clearly such a service could be implemented with 
various degrees of sophistication ranging from a simple 
DTMF service to one using a full natural language 
interface. It was also apparent that each implementation 
would have to be 'tuned' to the services actually 
available in each host country. 

By this stage the architectural structure of Fig 1 was 
beginning to emerge. However just how well this 
would work in all countries was not clear, so in parallel 
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with addressing the first set of questions, the first 
experimental    phase was designed to optimise the 

dialogue structure for the service environment of each. 

language 
selection 

neVaeiecUon// 
yBlrect acces/ 

Fig 1 - Outline of the basic service structure 

3. THE MONOLINGUAL 
EXPERIMENTS 

3.1 General 
The first series of experiments were mono-lingual 
experiments. In these all partners independently 
implemented and tested their platforms but adhered to 
the common structure and methodology. 

The aim of these was to undertake experiments 
concerned with: 

fixed/cellphone comparisons 
prompt optimisation 
recognition/Touch-tone comparisons 
recognition threshold settings which are preferred 

The following factors were used in each case 
A total of 16 test conditions were devised by combining 
three recogniser settings + 1 'Touch-tone' with four 
dialogue structures. At least two different types of 
phone (GSM and fixed network) were then used in the 
test process. 

3.2 Tasks 
For each 'conversation' with the system subjects were 
given a task to complete. These were divided into two 
categories - those, which had answerable questions, and 
those which the system could not answer. The two 
types were chosen because in real systems many users 
request information which the system does not contain. 
We wanted to examine how different dialogue 
strategies coped with this situation and how users 
reacted to them . Examples of the answerable questions 
were: 

What is the number for the French Embassy? 
What number do you call for an operator? 
What number do you dial forchargecard information? 

The unanswerable questions were very similar - but 
the database did not support them e.g.: 

What is the number of the Russian Embassy? 
What number to you call to install a new phone line? 
What is minimum charge for calls made using credit 
cards? 

3.3 Test Procedures 
In principle, with 16 test conditions/treatments it should 
be sufficient to undertake a fully balanced experiment 
with 16 subjects and 16 tasks.   However the 
complicating factor of the answerable/unanswerable 
questions and the slight imbalance created by having 3 
recogniser based system and one DTMF system meant 
that a modified design involving 16 subjects and 20 
tasks were used. 

This highlights the sequence of conditions that a typical 
subject experienced. Each subject was first given 3 
'practice' sessions to ensure they were comfortable with 
the procedures. The above design is balanced in that 
every subject experiences all the conditions and all the 
tasks. However no subject experiences exactly the 
same combination of tasks and conditions as any other. 
The advantage of using such a balanced approach 
becomes evident when the analysis stage is reached for 
it becomes possible to partition the data in many 
different ways. For example exactly half of all calls will 
have been to fixed networks and exactly half to GSM 
networks. The balancing process guarantees that each of 
these groups will contain exactly the same set of tasks 
and exactly the same distributions of talkers. 
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How this helps in the analysis is shown below, but 
before that we examine the responses. 

3.4 Responses 
There are a number of well known subjective response 
scales available for this type of subjective procedure2. 
However for our purposes none were immediately 
suitable. The added complication of task completion - 
which could be successful or unsuccessful had to be 
taken into account as there is an important distinction to 
be observed between satisfaction with the result 
obtained and satisfaction with the system used to obtain 
it. 

The three dimensions identified were: 

• Did the service deliver what it was supposed to? 
• Was it easy to use? 
• Was it pleasant to use? 

To deal with this complication the following three 
simple subjective responses were collected after each 
transaction. 

Please think first about the quality of the result you 
have just obtained, and mark one of the following to 
show your opinion. 

• Fully satisfactory 
• Satisfactory in the main, but left something to be 

desired. 
• Unsatisfactory or misleading 
• Irrelevant or positively wrong 
• No result obtained at all 

Now please think about your satisfaction or 
dissatisfaction with the system that you have just used 
to obtain this result. 

How easy or difficult was this system to understand 
and use? 
Allocate a figure of merit in the range 1 to 10 where 1 
represents "Very difficult to understand or use" and 10 
represents "Very easy to understand and use". [   ] 

How pleasant or unpleasant was this system to use? 

Allocate a figure of merit in the range 1 to 10 where 1 
represents "Very unpleasant, slow or tedious to use" 
and 10 represents "Very pleasant and interesting to use" 
[   ]• 
Besides these subjective responses to each transaction, 

the following measurements were made: 

Time taken per transaction. 
Number of error-correcting dialogues entered. 
Numbers of substitution or insertion errors. 
Correctness or incorrectness of each result obtained. 

Each task and result was presented separately to each 
subject who then had to respond on paper with each 
sheet collected after each call. 

3.5 Analysis of results 

The factorial design allows the results to be analysed in 
several ways. It also allows statistical tests to be 
undertaken to determine the significance of the 
components. 

To illustrate the richness of the output data , some 
examples of these types of results are shown in Figures 
3 and 4. These show the various objective (speed, error- 
rate and length) responses and the three subjective 
responses (Result, effort and Pleasant) for each case 
with the data partitioned between fixed and GSM 
results. 

O MIVA_BASE 
■ MIVA_YN 
D MIVA_DIG 
OMIVA_GRUNT 
■ MIVA_DTMF 

Result Easy Speed Pleasant NoErr Length 

Figure 3 - Fixed phone responses 



39 

6 

5.5 

5 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

1 

MIVA_BASE 

■ MIVA_YN 
D MIVAJ3IG 
D MIVA_GRUNT 

MIVA_DTMF 

Result Easy Speed Pleasant NoErr Length 

Figure 4 GSM phone responses 

Direct observation shows that there are few substantial 
differences between the two sets of results and that the 
differences between, for example, dialogue types are 
much greater. Statistical tests were undertaken to 
establish any significant differences. The main 
conclusions from the analyses at this point were: 

• All partners found that for menu driven systems of 
the type explored here, accessed over the fixed 
network, DTMF was easier to use than speech 
recognition. 

• When the same services were accessed from 
mobile phones (mainly GSM) speech recognition 
was marginally preferred by all partners with the 
exception Deutsche Telekom where DTMF was 
still slightly preferred. 

• 'Simple' recognition strategies e.g. using 'grunt' 
detection or numbered items are preferred less than 
proper word based recognition for all cases of fixed 
and mobile phone access. 

• The absolute accuracy of recognition over mobile 
networks (as compared to the performance of the 
over the fixed network) was found to be slightly 
worse than that for fixed network in Deutsche 
Telekom and Italia Telecom. However no 
significant difference was found in the BT and 
Portugal Telecom systems. 

4.MULTILINGUAL 
EXPERIMENTS 

4.1 Introduction 
The mono-lingual experiment had addressed the bulk of 
the technical questions but had not addressed any of the 
multi-lingual aspects. It had also tested out the 
individual platforms and allowed us to define the 
country specific dialogues. 
The multi-lingual experiments built upon these results 

and answer the remaining questions by exploring 

• Effects of cut-through 
• What is the best way to prompt users to say a 

language 
• Comparison of national versus International access 
• Language/cultural differences. 
• Predictive    modelling    of    objective/subjective 

results. 

As each partner had by now implemented and optimised 
their own local service in their own language the basic 
structures of the services were now well established. 
The next stage was to migrate to the totally multi- 
lingual environment. This meant that every suite of 
dialogue prompts in each language had to be translated, 
sent to the 'mother tongue' country for recording and 
then sent back. At the same time a data collection 
exercise to collect the necessary words to train the 
speech recognisers in every language had to be 
undertaken. There were, on average, about 70 words to 
be recorded per dialogue. Appropriate vocabularies had 
to be collected from a representative set of over 800 
people in each country, labelled and stored in a form 
that would allow the specific service to be implemented 
in every location 

Although the logistics of this seemed quite complex, in 
reality the use of digitised speech recordings stored as 
files on CD-ROMS proved so reliable that the 
recording and distribution processes ran extremely 
smoothly. To check quality at various stages the 
recognition components were tested in the laboratory 
with a common test set -country experiment. 

With the five platforms each supporting the five 
language variants the experimental phase could start. 

4.2 Multi-lingual Experimental design 
Balanced experimental designs similar to those for the 
mono-lingual experiments were used as the basis for 
collecting objective performance data and subjective 
preferences. 
This time the variables of interest were factored by the 
5 languages and 2 dialogue types to give a total of 10 
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treatments. The dialogue types were either "Short and 
concise" or "Descriptive/verbose" and were further 
subdivided into technologies (by countries) to the extent 
that two classes of service could be identified. The first 
had essential information first (e.g. country direct 
number), followed by details on how to use it. This 
structure was implemented on the FT, BT and PT 
platforms. 
The second had descriptive information first, followed 
by information content successively. This structure was 
typically implemented on the IT and DT platforms. 
Also two countries (France and Italy) deployed 'cut- 
through' in their systems. 

The total number of subjects recruited for the test was 
100, a panel of 20 subjects per partner. At end of the 
experiment a total number of 900 calls had been 
collected and 886 questionnaires completed. Extensive 
objective data had also been collected. 

4.3 Multilingual Analysis 
As before, the results could be factored and analysed 
using analysis of variance techniques. For example 
comparisons could be drawn between the dialogue 
types, the use (or not) of cut through and any effects of 
language. 

It was also possible to use the data to see if there were 
any 'learning' effects taking place. Evidence that there 
was is illustrated by the following analysis. Learning 
effects were tested by means of the Chi-square test 
between opinions for consecutive calls. Subjective 
measures were then compared once we had identified 
the number of calls a subject needed to place before he 
could be considered an expert. Figure 5 which is 
extracted from 3 illustrates the effect. 

Figure 5. Transaction time as a function of order of call 

4.4 Regression analysis. 
Regression analysis is a technique used to determine the 
relationships between variables. 
In this case we wanted to see if we could predict 
subjective responses from the various objectively 
measured parameters. From an initial examination of 
the data suggested that the subjective variables with the 
highest association with satisfaction were transaction 
time, number of utterances and number of correction 
turns. Using half of available data a series of regression 

analyses were performed to find an analytical model 
that best fitted the data for each parameter. 

For the linear case functions and parameters found 
were: 

Ease of Use = 4.440576 - 0.004778* transaction time 
Learnability = 3.848315 - 0.080385*numbers of utterances 
Pleasantness = 3.881013 - 0.003505*time 
Effort = 3.914733 - 0.288068*corrections turn 
Correctness = 0.576166 + 0.035409*word recognition rate; 
Duration = 3.726034 - 0.005278* transaction time 

4.5 Validation of the model 
To validate the above the other half of the data was 
used. Below shows the results when the 
complementary data was applied to the ease of use data. 

N Mean 
time 

Observed Prediction by 
linear 

regression 
BT 111 96.51 3.89 3.98 
DT 104 172.5 3.54 3.62 
FT 116 68.0 4.47 4.12 
IT 54 177.4 3.61 3.59 
PT 101 116.6 3.71 3.88 

The differences between observed and predicted values 
were tested by means of t-test. In both cases the test was 
not significant: the predicted mean value did not differ 
from the observed mean demonstrating external 
validity. 

4.6 Observations 
The regression methodology provided some further 
intriguing data concerning different 
language/nationality behaviours. For example English 
users strongly associated satisfaction with 'transaction 
time'. Germans on the other hand associated 
satisfaction and correct recognition feeling with 
'transaction success'. Italian subjects associated 
satisfaction, correct recognition and effort ratings with 
'correction turns' and 'word recognition'. For the 
Portuguese subjects learnability was the only parameter 
associated with the objective 'transaction success'. One 
conclusion may be that the questions were interpreted 
significantly differently by different groups. 

5. CONCLUSIONS 

We have described how standard methods of multi- 
factor experimental design have been adapted to 
evaluate the relative importance of various aspects of 
Interactive Voice response systems. The way in which 
subjective and objective data may be correlated and 
used as the basis of a predictive model has also been 
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demonstrated. The model itself was then verified using 
a split data approach. 
Although the project covered a great deal, there were 
some limitations. For example all experimentation was 
undertaken in a laboratory - as opposed to a market - 
environment. One exception to this was France 
Telecom who went one step further and undertook a 
public trial in the Musee de Lannion. 
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ABSTRACT 

Multilingual speech technology research would be 
greatly facilitated by an integrated and comprehensive 
set of software tools that enable research and 
development of core language technologies and 
interactive language systems in any language. Such a 
multilingual platform has been one of our goals in 
developing the CSLU Toolkit. The Toolkit is composed 
of components that are essentially language-independent, 
and support research and development of recognition, 
understanding, text-to-speech synthesis, facial animation, 
and spoken dialogue systems. Portions of the Toolkit 
have already been ported to Italian, German, and 
Vietnamese. In addition, a complete Mexican-Spanish 
version of the Toolkit has been created, and is in daily 
use at the Universidad de las Americas in Puebla 
(UDLA). In this paper we outline some of the issues 
involved in porting the Toolkit to a new language, and 
describe why the Toolkit is well suited to multilingual 
adaptation. 

1. INTRODUCTION 

Speech communication occurs within social and cultural 
contexts, and is influenced by the perceptions, beliefs, 
attitudes, and backgrounds of the speakers. Research in 
spoken language systems requires participation by native 
speakers who understand not only the language, but also 
the subtle social conventions and cultural factors that 
enable natural communication. As a result, the best way 
to understand and model linguistically-related 
differences, create natural spoken-dialogue systems, and 
achieve acceptable machine translation between 
languages is through multinational collaborative 
research. 

One of the main factors preventing more intensive 
multinational research is the "knowledge engineering 
bottleneck" — the massive costs associated with 
developing and deploying spoken language systems for 
each additional language and new application. These 
costs present formidable barriers to progress in human 
language technology. 

Currently, spoken language systems development 
and research are limited to a few specialized laboratories 
because of the infrastructure and expertise required. The 
systems   that   are   created   in   these   laboratories   are 

generally not portable; each new language and 
application requires collection of speech data, 
application-specific system development, and human 
engineering to create a graceful user interface. Data 
collection for training recognizers and for building 
language and dialogue models is costly and often must 
be done via "Wizard-of-Oz" simulation, with humans 
attempting to mimic the performance of a spoken 
language system. Such experiments are notoriously 
expensive and time-consuming. Consequently, all but 
the most fortunate students and researchers are denied 
the opportunity to explore this interesting frontier of 
human-computer interaction. 

To break the knowledge engineering bottleneck and 
realize the potential of international, multilingual 
spoken-language research, it is necessary to develop 
available, usable, and powerful tools and corpora to 
engage and enable a generation of students to study, use, 
research, and develop language technologies and 
systems. These tools must be readily applicable to all 
languages of interest, so that there can be a common 
research framework. In general, most tools available 
today were designed by experts for use by other experts, 
and are not sufficiently tutorial to be used to train new 
researchers in undergraduate and graduate programs. 

Our research efforts are aimed at overcoming these 
barriers, and the platform we use to integrate our 
advances is called the CSLU Toolkit. The Toolkit is 
freely available for research use from the CSLU Web 
site, and integrates speech recognition, natural language 
understanding, text-to-speech synthesis, facial animation, 
dialogue modeling, and spoken-language interface 
design in one package. The Toolkit is essentially 
language-independent; we have successfully ported the 
Toolkit to Mexican Spanish, and we are now developing 
a Brazilian Portuguese version of the Toolkit with 
colleagues at the Universidade Federal do Rio Grande do 
Sul, in Porto Allegre, Brazil. 

The remainder of this article describes the CSLU 
Toolkit and its use a platform for multilingual research 
We hope that release of the Toolkit will remove entry 
barriers to research and education in human language 
technology, and enable researchers and students around 
the world to participate in creating the multilingual 
spoken-language systems of the future. 
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Figure 1.  Screen shot of the Rapid Application Developer (RAD), the animated face Baldi (with texture map), 
and a parameter window for setting properties of the recognizer. 

2. THE CSLU TOOLKIT 

The CSLU Toolkit is a comprehensive set of tools and 
technologies for learning about, researching and 
developing interactive language systems and their 
underlying technologies [1, 2, 3, 4]. It is available, free 
of charge, from the CSLU OGI Web site [5], along with 
CSLU's multi-language phonetically hand-labeled 
speech corpora. The Toolkit supports real-time 
interactive dialogues on standard off-the-shelf PC 
platforms running Windows (Solaris and Linux will be 
available soon). It provides a modular, open architecture 
supporting distributed, cross-platform, client/server- 
based networking. This flexible environment makes it 
possible to easily integrate new components and to 
develop scalable, portable speech-related applications. 

The components of the Toolkit include both neural- 
network and HMM-based speech recognition systems, a 
natural-language semantic parser called PROFER, the 
Festival text-to-speech system, an anatomically accurate 
talking face called Baldi, and software for recording, 
displaying, labeling, and manipulating speech. The 
Toolkit also includes a GUI-based application developer 
called RAD and the documentation required to train 
HMM and neural-network based recognizers. 

The tools are designed to enable inexperienced users 
to rapidly design, test and deploy spoken language 
systems. In addition to the pre-existing components, 
users can write their own C-level or script code for 
integration into the Toolkit. The recognition, synthesis, 

and natural language systems (and their tutorials) also 
support basic research and system development. 
Research advances can then be evaluated in real-world 
applications designed with the Toolkit's dialogue design 
tools. 

Because the Toolkit is portable, runs on affordable 
off-the-shelf computing platforms, and provides both the 
knowledge (tutorials) and resources needed to conduct 
research, it removes some of the main entry barriers that 
currently prevent universities and research laboratories 
from establishing new programs in human language 
technology. 

3. A PLATFORM FOR RESEARCH AND 
DEVELOPMENT OF MULTILINGUAL SPOKEN 

LANGUAGE SYSTEMS 

The CSLU Toolkit is a proven platform enabling 
international collaboration in multilingual research and 
system development. Between 1996 and 1998, a joint 
NSF/CONACyT program supported collaboration 
between OGI and UDLA, the Universidad de las 
Americas, Puebla. The collaboration aimed to establish 
UDLA as a center of excellence in speech technology in 
Mexico, capable of educating students, of developing 
state-of-the-art Mexican Spanish spoken language 
systems, and of supporting research and education in 
language technologies throughout Mexico. These goals 
were accomplished. 

As a result of our collaboration, the Tlatoa speech 
group   has   developed   a   complete   Mexican-Spanish 
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version of the Toolkit by collecting and transcribing 
corpora, implementing Mexican-Spanish recognition and 
text-to-speech systems, and converting Toolkit 
documentation to Spanish. UDLA now develops and 
distributes Mexican Spanish language resources, trains 
undergraduate and graduate students in language 
technology [6], publishes articles on speech research [7], 
and transfers knowledge and technology to other 
Mexican universities [8]. The collaboration has also 
produced industrial investment — a U.S. speech 
technology company has hired two UDLA students, has 
established a subsidiary in Puebla, and has made a 
substantial investment in the Tlatoa speech group (more 
than recovering the original investment from 
CONACyT). 

The Toolkit has also been used successfully in 
European labs. Michael McTear has used the Toolkit to 
train undergraduate students at the University of Ulster 
to develop interactive language systems [9, 10]. Piero 
Cosi at the Istituto di Fonetica e Dialettologia Consiglio 
Nazionale delle Ricerche (Institute of Phonetics and 
Dialectology - National Research Council) has used the 
Toolkit to develop English and Italian speech recognition 
systems and compare Hidden Markov Model and neural 
network approaches [11,12]. 

4. COMPONENTS OF THE TOOLKIT 

In this section, the main components of the Toolkit 
are described. Issues in developing each component in a 
new language will be discussed, with examples from 
previous multilingual efforts where applicable. 

4.1 Rapid Application Developer (RAD) 
RAD is the Toolkit's high-level application 

developer. RAD's easy-to-use graphical authoring 
environment enables users to rapidly design and test 
spoken dialogue systems. It seamlessly integrates the 
core technologies of facial animation, speech recognition 
and understanding, and speech synthesis with other 
useful features such as word-spotting, barge-in, dialogue 
repair, telephone and microphone interfaces, and open- 
microphone capability. 

RAD enables users to design interactive dialogues 
by specifying prompts, recognition vocabularies, and 
actions. Prompts can be either recorded or typed in as 
text, in which case they are produced as speech using the 
Toolkit's text-to-speech system. Both recorded and 
synthesized prompts are produced automatically by 
Baldi, the animated talking face [13]. Words or phrases 
to be recognized at any dialogue state are simply typed 
in by the system builder. Arbitrary actions can be 
associated with recognized utterances, such as producing 
a new prompt, displaying an image or retrieving and 
displaying information from a Web site. RAD contains 
many useful objects for retrieving, organizing and 
presenting information. In addition, users can develop 
new objects using the Tcl/Tk programming language. 
By connecting RAD  objects,  dialogues  of arbitrary 

complexity can be designed. A sample screen shot of a 
RAD dialogue using Baldi with texture mapping is 
shown in Figure 1. 

RAD currently includes both English and Mexican- 
Spanish recognizers and TTS voices. Addition of new 
recognizers and voices is easily done by creating new 
containers for the relevant objects (including the 
dictionary, if applicable) and storing them in the 
appropriate directories. Once these steps have been 
accomplished, RAD functions in the target language. 

4.2 Facial animation 
Baldi can be programmed within RAD to produce 

synthetic or recorded speech with different emotions. 
The face can be made transparent during speech 
production, revealing the movements of the teeth and 
tongue, and the orientation of the face can be changed 
while speaking to view it from different perspectives. 
Recently, a more complex and accurate tongue 
(consistent with electropalatography and imaging data), a 
hard palate, and three-dimensional teeth have been 
incorporated in Baldi. These features offer unique 
capabilities for language instruction — features that 
cannot be easily controlled in real faces. 

Baldi is totally language-independent, in that he is 
controlled entirely by phoneme-level input. The input to 
Baldi consists of Worldbet [14] phonetic symbols, which 
are ASCII representations of the IPA and can represent 
all phonemes available in that alphabet. (The Worldbet 
system is used throughout the Toolkit, giving multi- 
language implementations a consistent phonetic 
representation.) 

4.3 Speech Recognition 
The Toolkit includes (a) English and Spanish digit 

and alpha-digit recognizers for recognizing sequences of 
digits and/or letters; (b) general-purpose English and 
Spanish recognizers for recognizing arbitrary words or 
phrases specified as text; and (c) a medium vocabulary 
English speech recognition system (MVCSR) that 
supports training of acoustic and language models for 
real time recognition of continuous speech with 
vocabularies up to 5000 words. The Toolkit supports 
research and education using several approaches to 
computer speech recognition, including artificial neural 
network (ANN) classifiers, hidden Markov models 
(HMM), and segmental systems. The Toolkit also 
includes step-by-step tutorials for training and testing 
new ANN and HMM recognizers. 

The methods for training speech recognizers in the 
Toolkit are essentially language independent, with the 
selection of phonetic symbols and training corpora the 
only language-dependent parts. Pitch information is not 
currently used in the default feature set, but for tonal 
languages such as Mandarin or Vietnamese, the default 
feature set can be easily modified to include such 
information. 

The Toolkit appears to be gaining acceptance as a 
platform for recognition research. In addition to English 
and Mexican Spanish recognizers,  we are aware of 
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Toolkit recognizers developed for digit recognition in 
Italian, Vietnamese, and Korean. Consistent results have 
been observed across languages; for digit recognition, 
recognizers trained on telephone-band speech have 
word-accuracy levels of about 97% to 98%, and 
recognizers trained on microphone-quality speech have 
word-accuracy levels of about 99% [12, 15]. 

4.4 Natural Language Understanding 
People do not always speak grammatically, and they 

often make false starts, or correct themselves as they are 
speaking. To parse this kind of spontaneous input 
requires a robust parser — that is, a parser that when 
confronted with such ill-formed input doesn't break, but 
finds the best allowable partial parse. Robust parsers, 
like Carnegie Mellon's Phoenix parser [16], are based on 
semantic case-frame architectures. They allow slots 
within a particular case-frame to be filled in any order, 
and allow out-of-grammar words to be skipped over. 
Thus, partial parses can be returned as frames in which 
only some of the slots have been filled. Typically, 
semantic case-frame parsers are implemented as chart 
parsers, and accept a transcript from the speech 
recognizer as their input. This requires separate 
grammars for the recognizer and the semantic parser, and 
limits the possibility of feedback between the two. 

We have developed a semantic case-frame parser 
that runs as a finite-state machine rather than as a chart 
parser [17]. We believe this makes it more amenable to 
being tightly integrated into a speech recognizer, in such 
a way that the recognizer and semantic parser can share 
grammars and provide immediate feedback to each 
other. This tight integration is the aim of our current 
research. However, our initial version of Profer (which 
stands for Predictive, RObust, Finite-state parsER) can 
be used as a standard robust parser in a second-pass 
system, accepting the transcript produced by a 
recognizer. For example, using a grammar that defines 
sequences of numbers (each of which is less than ten 
thousand, greater than ninety-nine, and contains the word 
"hundred"), inputs like the following string of three 
numbers, which is rife with false starts and on-line 
corrections, can be robustly parsed by Profer [18]: 

Input: 
first I've got twenty ahhh thirty yaaaaaa thirty 
ohh wait no twenty twenty nine hundred two 
errr three ahhh four and then two hundred 
ninety uhhhhh let me be sure here yaaaa ninety 
seven and last is five oh seven uhhh I mean six 

Parse tree: 
[fsType:number_type, 
hundred_fs: 

[decade:[twenty,nine],hundred,four], 
hundred_fs: 

[two,hundred,decade: [ninety,seven]], 
hundred_fs: 

[five,hundred,six]] 

Profer is essentially a regular grammar parser. It 
allows the grammar writer to specify patterns in the input 
that should be "tagged" in the output parse tree as 
belonging to certain slots in a particular frame. The 
names of slots and frames are arbitrary — they can 
describe standard syntactic elements or task-specific 
semantic categories. Both tag-names and the patterns 
that define them are language independent. The 
grammar writer has free reign in this regard. Thus Profer 
is a language-independent tool, and has been used to 
define both English and Spanish grammars. A step-by- 
step tutorial has been developed for Profer to develop a 
conversational system for retrieving movie times and 
locations from a Web site. 

4.5 Festival Speech Synthesis System 
The Toolkit integrates the Festival text-to-speech 

synthesis system [19], a complete environment for 
learning, researching, developing, and using synthetic 
speech, including modules for normalizing text (e.g., 
dealing with abbreviations), transforming text into a 
sequence of phonetic segments with appropriate 
durations, assigning prosodic contours (pitch and 
amplitude) to utterances, and generating speech using 
either diphone or unit-selection concatenative synthesis. 
In addition, a graphical user interface enables users to 
"mark up" a text string to control many features of the 
resulting synthesized speech (e.g., rate, pitch, and 
amplitude) and to insert pauses, filled pauses, coughs, 
and sneezes. 

During the summers of 1997 and 1998, researchers 
in the Speech Synthesis Research Group at OGI 
developed Spanish and German voices for use in the 
CSLU Toolkit. Students from the University of the 
Americas Puebla (UDLA), the University of Stuttgart, 
and the University of Bonn collaborated in these efforts. 
More information on these projects is available at 
http://cslu.cse.ogi.edu/tts. 

While details vary, the overall process of developing 
a new voice is consistent between languages. As 
Festival is a concatenation-based synthesizer, a speech 
corpus must be designed and collected that optimally 
covers the target linguistic space. For example, a sample 
target linguistic space might be the phonemes of a 
language. In practice, such simple speech units are not 
used because they do not capture the coarticulatory 
effects between phonemes. Both the Spanish and 
German voices developed at OGI use the diphone as the 
basic unit of concatenation. 

A promising technique known as unit selection is 
the focus of much ongoing research at OGI and other 
speech labs. In unit selection, longer — possibly non- 
uniform — "chunks" of speech may be extracted from a 
large, continuous-speech corpus. The goal of unit 
selection is to reduce the number of concatenation points 
in an utterance and increase the number of coarticulatory 
events captured in the speech in order to improve 
naturalness. 

The process of developing text-to-speech corpora 
for waveform synthesis of new voices in new languages 
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requires a series of steps. A protocol or script must be 
designed that contains at least one instance of each 
speech unit. Often the protocol is comprised of nonsense 
words or word pairs from which the diphones may be 
extracted. As not all phoneme-to-phoneme transitions 
exist in a given language, the advice of a native speaker 
or a trained linguist is exceedingly useful in keeping the 
protocol to a manageable size. 

Once the protocol is optimally designed and the 
speaker selected, recording may proceed. High-quality 
recording is vital to the successful deployment of a new 
voice. The recording studio should be as anechoic as 
possible and possess high-quality microphones. A 
laryngograph is used to measure the impedance across 
the glottis during the session. These data are used to 
determine pitch marks, which are needed for smoothing 
concatenation points and altering prosody. The bulk of 
time invested in the development of the voices was spent 
separating and labeling these data. 

For any language, rules must be developed to 
transform text into a sequence of tokens. For instance, 
the English text, "Dr. Suess spent $2.01 on Lorax Dr." 
may be represented by the tokens "doctor suess spent 
two dollars and one cent on lorax drive". Festival 
allows these rules to be easily scripted in Scheme, a 
dialect of the LISP programming language. In addition, 
mechanisms for determining the pronunciation of a token 
must be prepared. Since Spanish is a very consistent 
language, a set of letter-to-sound rules suffices. 
However, as the English and German languages are not 
particularly consistent, a lexicon must be found or 
created. 

Finally, modules for the prediction of phoneme 
duration and pitch must be devised. These can be as 
simple as averages or they may be trained from data. 
Festival provides a number of tools for training prosodic 
modules from data. 

Once all the above steps are complete, the voice 
may be defined within Festival. While this may be a 
challenging task for the first time Festival developer, 
once achieved for a particular language, the file formats 
and configuration files for each additional language are 
quite similar and readily created. In fact, the German 
synthesizer was speaking "guten tag" after only one day's 
work. The remaining month was spent collecting and 
preparing the speech data. 

4.6 Speech View 
Speech View is the Toolkit's interactive analysis and 

display tool. It allows users to create new waveform and 
label files, display data that are associated with a 
waveform (such as spectrograms or pitch contours), and 
modify existing waveforms and label files. It is used at 
CSLU for research, corpus development activities, and 
forms the basis for an interactive spectrogram reading 
class [20]. SpeechView supports simultaneous recording 
and subsequent annotation of auditory and visual speech 
data, and was recently used to collect bimodal speech 
data from over 250 children. SpeechView is entirely 
language-independent. 

4.7 Perceptual Science Laboratory (PSL) 
PSL provides a user-friendly research environment 

for designing and conducting multimodal experiments in 
speech perception, psycholinguistics, and memory. It 
enables users to manipulate auditory and visual stimuli; 
design interactive protocols for multi-media data 
presentation and multi-modal data capture; transcribe 
and analyze subjects' responses; perform statistical 
analyses; and summarize and display results. We plan to 
use PSL in our research to evaluate auditory visual 
synthesis for new languages. PSL, like SpeechView, is 
language-independent. 

4.8 Programming environment 
The Toolkit comes with complete programming 

environments for both C and Tel, which incorporate a 
collection of software libraries and a set of API's. These 
libraries serve as basic building blocks for Toolkit 
programming. They are portable across platforms and 
provide the speech, language, networking, input, output, 
and data transport capabilities of the Toolkit. 

5. CONCLUSION 

The Toolkit has proven itself to be well suited for 
multilingual research in several areas. It is in use in over 
300 laboratories worldwide, and has enabled research 
leading to over 200 publications. 

In recognition, both English and Mexican-Spanish 
general-purpose recognizers have been created and are 
incorporated within the rapid application developer 
(RAD). Furthermore, the tutorial for training a digits 
recognizer has been used successfully by others in 
languages as diverse as Italian and Vietnamese. The 
semantic parsing tools in Profer are essentially language 
independent and are being used in both English and 
Mexican-Spanish applications. 

In text-to-speech, we have developed Mexican- 
Spanish and German voices, the implementations of 
which were performed in one month, including the time 
required to collect and hand-label the diphone databases. 
In addition, we are currently refining a unit selection 
approach which is easily applicable to other languages 
and promises to improve naturalness. 

Once the recognition and TTS components have 
been implemented in a given language, the graphical 
authoring tools enable rapid development of structured 
dialogue applications in that language. Finally, the 
components of the Toolkit can easily be interchanged, 
allowing quick substitution of an English recognizer with 
an Italian one, or German TTS with English. These 
factors all contribute to making the CSLU Toolkit 
powerful and easy to use in a multilingual environment. 
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ABSTRACT 
For some phonemic distinctions human listeners 

exhibit a marked cross-language capability, in that they 
are capable of highly correct classification in relation to 
sounds (like CVs or VCVs) uttered by speakers of 
another language. This is particularly true regarding 
distinctions that are perceived in a more categorical 
fashion, like that of 3-way PLACE discrimination in stop 
consonants. It is plausible that the reason for this is a 
mostly common (across languages) auditory basis for 
human communication of this discrimination. Also, 
human communication of this discrimination is notably 
impervious to non-drastic variations in the frequency- 
transfer curve, which suggests that the relevant auditory 
features must have some inherent insensitivity to these 
variations. 

Models for two specialized auditory cells (onset 
cells with wide receptive fields, which can detect weak 
onsets synchronized across frequency, and sequence 
cells which detect frequency-ascending sequences 
composed of two onsets) were refined for the 
discrimination of DENTAL vs LABIAL stop consonants 
and applied to large spelling databases in Portuguese, 
German, and U.S. English. Similar discriminatory 
capability was observed both for German and U.S. 
English. Integration with a 3rd auditory feature resulted 
in error scores of approximately 2% when exactly the 
same model is applied to either German or U.S. English 
sounds. 

1 - INTRODUCTION 

1.1  - Human  cross-language capabilities  in stop 
consonant PLACE discrimination 

It is well established that stop consonant PLACE 
discrimination is very well carried across languages 
(contrary to the voiced/unvoiced distinction, which for 
instance carries very poorly from U.S. English speakers 
to Portuguese listeners). 

In a recent study [1], it is shown that native Korean 
listeners are capable of discriminating stop consonant 
PLACE, as uttered by U.S. English speakers, with less 
than 1% errors. This result, however, was obtained with 
utterances previously selected to be consistently 
classified, as well as to be the highest rated in goodness 
judgements, by native listeners of U.S. English. Thus, 
the results that might be obtained with an unselected mix 
of speakers, comprising speakers of good to below 
average intelligibility, could be somewhat poorer. That 
is,   speakers   of  less   good   intelligibility   strain   the 

classification capabilities of native listeners, but these 
listeners are still able to maintain a very high score of 
correct recognition. Non-native listeners, on the other 
hand, may incur in significant error rates when faced 
with these poorer speakers. 

The above discussion is useful in that it suggests 
expectations for a wholly correct model of human 
recognition (for listeners of a particular language, and 
for the above mentioned task): error scores as low as 1% 
may not be attainable, when the model is faced with 
databases of a different language which include a 
significant proportion of speakers of less good 
intelligibility. On the other hand, if this proportion is not 
high (say, less than 5%), the error rate should not be 
much higher than 1% (say, on the order of 2%) and 
should not suffer appreciably from mild variations of the 
frequency-transfer curve (say, on the order of 
±2dB/octave in the range above lKHz). 

1.2 - General assumptions about human phoneme 
communication 

These assumptions have been given elsewhere [2] 
but are recast here along with some additional 
considerations. We are bearing in mind communication 
tasks - such as spelling, and communication of nonsense 
words - in which humans exhibit a clear capability of 
speaker-independent phoneme communication. 
Nonetheless, the mechanisms crucial to this capability 
will obviously also be operative in word or sentence 
communication - though they may then be used for the 
communication of other speech units. 

In the former tasks, there emerges - with very clear 
contours - the paradox of constancy of perception, in 
spite of variation of form. That is, the same CV, uttered 
by different speakers, presents very diverse acoustic 
forms (so diverse that extensively trained automatic 
recognizers incur - persistently - significant error rates) 
whereas human listeners correctly recognize the 
consonant, with apparent ease. The paradox is 
heightened when we consider that recording sounds 
through different microphones, or including speakers 
native of a different language (provided these are of 
"good quality") does not diminish appreciably the 
performance of human listeners, while wreaking havoc 
with automatic recognizers' performance. 

To solve the paradox, we propose to consider the 
following visual communication analogy: 
Suppose that a person is asked to draw pictures of a small set 
of fruits (pineapple, banana, orange, ...) just good enough to 
be correctly recognized when briefly flashed on a screen. 
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One particular drawer might present the PINEAPPLE texture 
very markedly; this will allow him to relax, for instance, the 
contour of the pineapple which may even be rendered in 
a form ambiguous between PINEAPPLE and ORANGE 
Another drawer might "synthesize " a weakly marked texture, 
but then trace the contour in a very marked way. 

In this "thought experiment", it may also be expected that 
to draw a well perceived PINEAPPLE, a drawer may produce 
a texture that is much more marked than in any real pineapple 
(thus getting away from any conceivable category centroid), 
and by that he will still be aiding correct recognition 

This analogy suggests that for each phonemic 
distinction there are multiple information carriers (ICs) 
- or cues, or features - evaluated independently of each 
other, all being orthogonal to between-categories 
boundaries and that there exist, among the cues, trade- 
off relations that may extend to the point of alternativity. 
It is even conceivable that two different speakers may 
successfully communicate the same CV using entirely 
disjoint ICs ; this might be the case if a new speaker 
undergoing speech acquisition finds especially easy to 
emit a particular IC with high "intensity": this speaker 
may then "rest satisfied" and relax the emission of other 
ICs to the intended category. This plausible process is 
reminiscent of natural selection [3]: the well-known case 
of the panda's thumb, which achieves functional success 
(grasping action) with no morphological conformity (no 
real thumb) is particularly enlightening with respect to 
the paradox. 

Another concept from natural selection which may 
be relevant to the phoneme communication problem is 
that of exaption, that is, the "seizing" by a new function 
(phoneme communication) of biological mechanisms 
that evolved previously as adaptations to other tasks 
(such as recognizing species calls in some distant animal 
ancestor, or as an even more basic survival-enhancing 
acoustic detection ability). This makes it likely that some 
of the ICs are mostly direct expressions of the acoustical 
metrics computed by some "hard-wired" (that is, not 
substantially modified in response to speech use) neural 
assemblies. 

Use of several ICs pointing to the same category 
achieves redundancy and robustness to signal 
degradation: when degradation is not drastic, some ICs 
may be obliterated, but if some others survive, correct 
recognition by listeners will still be obtained. 

The speakers also want to accommodate 
articulatory ease, indulge articulatory variability induced 
by various motivations (the conveyance of a personal 
speaking style, emotional status, etc.) - all of this is 
made possible by the extensive trade-offs between the 
several ICs for the same category. 

1.3 - The set of Information Carriers (ICs) for human 
communication of the PLACE distinction in stop 
consonants 

Characterization of this set is the subject of our on- 
going research, but the following ICs are thought to be 

well stabilized; further additions may have to be made, 
but their importance will be of a secondary degree. 

Introduction of the ICs was driven by the need to 
explain the perception of PLACE in natural or edited 
sounds when no explanation could be found in terms of 
the ICs known at a particular time in the research 
undertaking. It order to provide a substantial number of 
such "driving sounds", the need for considering several 
languages was recognized early on; for a single 
language, most speakers conform to acoustic regularities 
particular to that language and the number of sounds that 
provide a clear-cut challenge for explanation of their 
perception is very limited. 

The current characterization of each IC is the result 
of an hypothization endeavor, followed by satisfactory 
results in the application of a model of the IC to a large 
number of sounds. 

Acceptable ICs must be biologically plausible and 
must exhibit some degree of independence to non-drastic 
variations in the frequency-transfer curve. Some ICs may 
correspond closely to metrics computed by some 
specialized auditory cells - in this case, the neural 
algorithms computed by these cells may yield a high 
selectivity in frequency and/or in time. Other ICs may 
correspond to speech Schemas [4] and thus must be 
expressible in terms of plausibly auditory-salient 
representations such as gross integration of energy. 

The (current) set of ICs for PLACE discrimination 
into the three categories LABIAL, DENTAL and 
GLOTAL/VELAR is then: 

LABIAL-IC1: ascending sequence in the F2/F3 
zone. This is assumed to be evaluated by ascending 
sequence cells such as those that have been found in the 
primary auditory cortex of primates [5]. Since the 
abruptness of onset is the most important characteristic 
of each of the two components of the sequence, 
insensitivity to non-drastic variations of the frequency- 
transfer curve is assured. There are many references in 
the perception literature to an "ascending" quality being 
a cue for LABIAL (see for instance [6]). 

LABIAL-IC2: ascending trajectory of the 
dominant low-frequency skirt in the F2-F3 zone. For 
this IC there is also a two-times comparison but the 
"after" term is to be evaluated through temporally-gross 
integration, and the onset of the vowel functions as a 
temporal marker signaling this "after" term. 

LABIAL-IC3: complete or near-complete absence 
of unvoiced energy prior to vowel onset. This is similar 
to the "burstless" quality referred in [7] as a cue for 
LABIAL. There are a number of studies in the literature 
that also concur in this finding, many of which are also 
cited in [7] . However, we added the detail that high- 
frequency energy occurring just at the vowel onset may 
provide a non-burstless percept. This IC is thought to be 
evaluated through temporally-gross integration. 

LABIAL-IC4: initial brief (<3-5ms) "vertical 
bar" in the spectrogram, followed by no significant 
high-frequency energy. This is thought to be evaluated 
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with the help of wide-receptive field onset cells, in 
conjunction with temporally-gross integration of energy. 

DENTAL-IC1: initial tone-burst-like segments 
(>6-8ms) (usually corresponding to the initial aspirated 
or voiced segments ofF2 or F3) of very thin bandwidth. 
This IC is primarily based on the output of hypothetical 
cells similar to level-tolerant neurons [8], although there 
seems to be also a temporal windowing mechanism 
involving onset cells. 

DENTAL-IC2: existence of upward inflections in 
the spectrum, occurring at "high" (>3.5KHz) frequencies 
during the burst+aspiration segment. This is - albeit 
distantly - related with [9]. The metric for this IC is 
assumed to be dependent on auditory cells exhibiting 
marked lateral inhibition from the lower sideband. 

DENTAL-IC3: segment prior to vowel release 
(that is, the burst+aspiration segment) having a 
considerably stronger high-frequency content then the 
ensuing vowel. This is likely to depend on temporally- 
gross energy integration, and on the use of the vowel 
onset as a temporal marker to distinguish the 2 terms of 
the comparison. 

DENTAL-IC4: grossly equifrequencial sequence in 
the F2/F3 zone. Assumed to be based also on sequence 
cells of the primary auditory cortex. 

GLOTTAL-IC1: descending sequence in the 
F2/F3 zone. Also based also on sequence cells of the 
primary auditory cortex 

GLOTTAL-IC2: Strong onset of "compact 
energy" in the F2-F4 zone, followed briefly (<10-20ms) 
by abrupt offset. No specific auditory cells have been 
found in the literature to account for the evaluation of 
such a metric, but their existence has some biological 
plausibility. 

GLOTTAL-IC3: descending trajectory of the 
dominant low-frequency skirt in the F2-F3 zone. The 
fact that such a trajectory will continually meet 
unadapted cells in the auditory nerve provides a basis for 
its auditory evaluation. 

The above characterizations, and the present state 
of development of models for some of the ICs has been 
the result of extensive studies with natural and edited 
sounds. As a first step, we tried to predict the perception 
of sounds (of unknown PLACE) based on inspection of 
several spectral displays, and the estimation of how the 
relevant auditory structures would react to the sound. 
This in turn led to the development of fuzzy-logical, 
auditorily-plausible, models for some of the ICs. 

We develop/refine the models through inspection of 
their results in 5 sets of sounds: an in-house research 
database of /ti/ and /pi/ sounds from 33 Portuguese 
speakers (representative of Portuguese unvoiced stops), 
the letters "T" and "P" from the first set (30 speakers, 
120 sounds) of the Oregon Graduate Institute ISOLET 
Database   (representative   of U.S.   English  unvoiced 

stops), the letters "D" and "B" from the first set of 
ISOLET (representative of U.S. English voiced stops), 
the letters "T" and "P" from the first 50 speakers of the 
Bavarian Archive for Speech Signals PHONDATA1 
Database (representative of German unvoiced stops), 
and the letters "D" and "B" from the same 50 speakers 
(representative of German voiced stops). It is to be 
emphasized that for each IC the same model is used 
throughout, with no adaptation whatsoever, and that the 
different sets have obviously used different 
microphones, as well as recording conditions. 

2 - AN INFORMATION CARRIER FOR THE 
LABIAL CATEGORY, BASED ON ONSET CELLS 

In this section, a model for LABIAL-IC4 is 
discussed, along with its motivation. 

In our research towards being able to predict the 
perception of sounds of unknown PLACE, we came 
across some sounds ("P" and "B" in spelling databases 
in German and U.S. English) whose LABIAL perception 
seemed more robust than could be explained in terms of 
the other three ICs for LABIAL (which were uncovered, 
and characterized, first). More definite conclusions 
could be extracted from some particular sounds which 
lent themselves to filtering or editing operations that 
clearly removed (or greatly diminished) the other ICs for 
LABIAL; many of these sounds maintained a clear 
LABIAL perception, raising the need for another 
LABIAL IC. 

The common acoustical trait among these sounds 
was the presence of an initial "vertical bar" in the 
spectrogram followed by (at least) a few milliseconds 
with little energy across higher frequencies. One 
difficulty in the way of making this observation was that 
most often the "vertical bar" seemed to be of such low 
energy (relative to the rest of the speech signal) that at 
first it seemed improbable that it would play a 
significant part in perception. 

But it was realized that some onset cells in the 
cochlear nucleus could exhibit an extremely wide 
receptive field, measured using the concept of two-tone 
facilitation [10] and that this could result in measurable 
responses even with the "best-frequency" tone being as 
low as 30dB below threshold. So, if it turns out that a 
fair proportion of LABIAL stops are capable of exciting 
these cells, while non-LABIAL stops are not, it is clearly 
conceivable that this came (during the evolution of 
languages) to constitute a valuable IC for LABIAL. 

Since there are varied types of onset cells (with 
differently wide receptive fields), and members of each 
type may be found with central frequencies all along the 
audible range, there remains the question of establishing 
the characteristics of those onset cells that are mobilized 
for LABIAL-IC4. Cells sensitive to very low frequencies 
(say, below 2KHz) would tend to give unreliable 
information, since acoustical accidents due to non- 
speech noise are apt to cause excitation of such cells; we 
considered only cells with receptive fields extending 
upwards from 3.5KHz, up to 7.0KHz. Another issue is 
the   frequencial   width   of  the  receptive   field;   we 
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considered a fixed width of 1400Hz (a point which is to 
be refined in the future). 

The essence of the neural algorithm for onset cells 
is the summation of the outputs from a large number of 
auditory nerve cells (spanning a wide frequency range), 
occurring simultaneously. It is possible that for some 
cells contributions emanating from a restricted frequency 
range will not suffice to excite the cell, however strong 
these contributions (it is even possible that a very strong 
frequency-local contribution will turn off the cell, 
through the hypothetical mechanism of shunting 
inhibition). 

We implemented a fuzzy-logical model to account 
for these dependencies. For direct comparison with 
commercial spectrographic displays and sound editing 
software, we use simple FFT spectra as the input 
representation. The speech signal is represented by FFT 
spectra calculated, with a Hamming window, over 
frames of 11.6ms, with a 3-ms frame advance. Thus the 
input matrix is composed of points E(F,T) where 
F=fx86Hz and T=tx3ms. At each such point, we 
computed the Unadapted-Increment(F,T) considering 
the energy at point (F,T) and energy previously 
occurring at frequencies proximal to F. Synch- 
Increment(F,1) was computed with a metric similar to 
summation applied to Unadapted-Increment(F' ,T) with 
F' spanning from F to F+ 1400Hz. In this summation-like 
metric, the contribution of outstanding peaks is subject 
to limitations. The most adequate form of these 
limitations is still being studied; for instance, the 
intriguing possibility that an extremely outstanding peak 
might actually decrease the response of the cell, through 
shunting inhibition, is for the time being kept open. 

It is interesting to note that this metric is 
unavailable to conventional automatic recognizers, since 
their input representation has, as a rule, much poorer 
time resolution than used here. 

The model was refined (in the version reported 
here, only about 10 parameters were explored) 
primarily using U.S. English "P" and "T" sounds and 
was applied unaltered to German and Portuguese "P" 
and "T" sounds. The histograms for U.S. English are 
presented below: 

100% 

90% 

80% 

70% 

60% 

50%+ 

40% 

30% 

20% 

10% 

0% I U-I 
^0   vP 

s?s;n 

Figure 1 - Histogram for the fuzzy variable expressing 
LABIAL IC 4 for 60 U.S. English "P" sounds (holet, 1" set) 
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Figure 2 - Histogram for the fuzzy variable expressing 
LABIAL IC 4 for 60 U.S. English "T" sounds (holet, 1" set) 

From these histograms, it is apparent that significant 
to high values in this metric only occur for LABIAL 
sounds, and not at all for DENTAL sounds, making it an 
obviously useful information carrier for the 
discrimination between these two categories. It is 
evident that the metric exhibits a generous "exclusively 
LABIAL" range of medium to high values, which range 
is only attained by LABIAL sounds. 

The results obtained applying the same model to 
German sounds are given below: 
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Figure 3 - Histogram for thefiizzy variable expressing 

LABIAL IC 4 for 50 German "P" sounds (PhonDatal, first 50 
speakers) 
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Figure 4 - Histogram for the fuzzy variable expressing 
LABIAL IC 4 for 50 German "T" sounds (PhonDatal, first 50 

speakers)) 

The results for German are similar to those for 
U.S.English. The "exclusively LABIAL" range is here 
somewhat spoiled by a single sound with a mark at 0.42 
(sound "hdbdT" - PhonDatal labels) but that likely is 
the result of imperfect refinement of the model. 

The results for Portuguese, however, are very poor: 
"P" sounds almost never elicit significant values in the 
metric. But this is not surprising, since "P" sounds in 
Portuguese have very weak and short burst+aspiration 
segments; in fact, it is uncommon in Portuguese for 
these segments exceeding 15ms in duration, whereas for 
U.S. English durations in excess of 100ms are frequent. 

3 - INTEGRATION OF DIFFERENT 
INFORMATION CARRIERS 

Even granting success in modeling the different ICs 
, the problem of their integration adds another layer of 
complexity. We will simply show - using the simplest 
possible fuzzy-union operator (the maximum) - how two 
different LABIAL ICs yield discrimination superior to 
that of the better of those ICs . 

The LABIAL IC which has the better 
discriminatory power is LABIAL-IC1: ascending 
sequence. Histograms for Isolet 1 "P" and "T" are 
shown below: 

Figure 5 - Histogram for the fuzzy variable expressing 
LABIAL IC lfor 60 U.S. English "P" sounds (Isolet, 7" set) 
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Figure 6 - Histogram for the fuzzy variable expressing 
LABIAL IC lfor 60 U.S. English "T" sounds (Isolet, Is'set) 

Simply taking the maximum of the two fuzzy 
variables expressing LABIAL IC 1 and LABIAL IC 4 
yields the following histograms: 
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Figure 7 - Histogram/or the maximum of LABIAL IC's 1 and 
4for 60 U.S. English "P" sounds (holet, 1" set) 
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Figure 8 - Histogram for the maximum of LABIAL IC's 1 and 
4 for 60 U.S. English "T" sounds (holet, Is'set) 

Bringing in more ICs further improves 
discrimination. Performing fuzzy intersection of the 
above maximum (of LABIAL IC1 and LABIAL IC4) 
with the fuzzy variable expressing DENTAL IC-3 results 
in a fuzzy variable which, thresholded at 0.15 yields 
1.7% "P" vs. "T" discrimination errors for U.S. English 
and 2% for German. 

4 - CONCLUSIONS 

A small number of Information Carriers, each with 
a reasonably simple characterization in terms of known 
auditory processes, is shown to be able to approach 
human capabilities in the cross-language communication 
of stop consonant PLACE. This was shown through 
modeling of some of the Information Carriers relevant 
to the LABIAL vs. DENTAL distinction. 

Low error scores were maintained not only across 
languages, but also in spite of differences in recording 

settings that exist between databases. This suggests that 
the proposed metrics are substantially insensitive to non- 
drastic variations in the frequency-transfer curve. 

Further work is going on in connection to 
Information Carriers relevant to the discrimination of 
GLOTAL/VELAR PLACE. 
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ABSTRACT 

Recordings of Diagnostic Rhyme Test (DRT) materials by 
native talkers of English (American), German and French 
were presented under undegraded and degraded conditions to 
English speaking listening crews of three national origins: 
American, German and French. The results were analyzed for 
the effects of the talker's native language, the listener's native 
language and all permutations of the two on scores yielded by 
the DRT. With undegraded speech, the total number of errors 
was lowest when the talkers were American, regardless of the 
nationality of the listeners, and when the listeners were 
American, regardless of the nationality of the talkers. On 
average, French talkers yielded the lowest DRT scores, but the 
interaction of talker nationality and listener nationality was 
significant. Errors of discrimination with respect to voicing, 
sustention, sibilation and graveness occurred most often. 

Keywords: Intelligibility, Diagnostic Rhyme Test, multi- 
lingual interoperability 

1. INTRODUCTION 

Many factors potentially contribute to errors in speech 
communication in circumstances where the communi-cators 
are required to communicate in other than their native 
languages, as is frequently the case in civilian and military 
aviation communications. These factors include language 
differences in syntactical and grammatical rules. They also 
include differences in the phonemic alphabets of the various 
languages involved. Comparisons of the phonemic alphabets 
of the languages involved may permit identification of some 
of the more important sources of mis-communication, i.e., 
speech elements not common to the native languages of the 
communicators involved. Such comparisons do not, however, 
permit quantitative predictions regarding communication 
failures, nor do they permit distinctions between 
communication failures due to errors of articulation and those 
due to errors of perception — distinctions between failures 
due to the talker and those due to the listener. 

2. PURPOSES 

The purposes of this study were (1) to demonstrate the 
sensitivity of the Diagnostic Rhyme Test [1, 2] to the effects 
of communicator differences in linguistic background on 
voice communications conducted in English, (2) to evaluate 
the relative contributions of the talker's and the listener's 
linguistic backgrounds to voice communication failures and 

(3) to identify the speech elements and/or features most 
susceptible to misarticulation or misperception by non-native 
talkers of English. 

3. METHODS AND MATERIALS 

3.1 Speech materials 

The speech materials used for this study were recordings of 
the test words of the Diagnostic Rhyme Test (DRT-IV). 
Although originally designed to aid communication scientists 
and engineers in pinpointing specific system defects or 
malfunctions, the DRT has been widely used for predicting 
overall intelligibility in voice communication systems and 
devices. It is the NATO standard and an ANSI standard for 
evaluating intelligibility of voice coding and communication 
systems and algorithms. 

The DRT tests the discriminability of six distinctive features 
of consonant phonemes, only. It uses a 2AFC paradigm in 
which the listener's task with each test token or stimulus word, 
is to choose between two rhyming words whose initial 
consonants differ only with respect to one of six features: 
voicing, nasality, sustention, sibilation, graveness and 
compactness. In addition to a total score, the DRT yields 
more than 24 independent scores. Among these are scores for 
the discriminability, generally, of each feature, separate scores 
for each feature state, and various other subscores for each 
feature, e.g., separate subscores for the discriminability of 
sibilation in voiced and unvoiced phonemes. 

3.2 Talkers 

The talker sample consisted of three adult males from each of 
three linguistic backgrounds: American, German and French. 
They were originally recruited in their native countries by 
Caldwell P. Smith of the USAF Rome Air Development 
Center laboratory at Hanscomb AFB, Massachusetts, USA. 
All, presumably, had formal education in English, but their 
facility and experience with this language were not 
independently determined. Each talker recorded several 
randomizations of the American Diagnostic Rhyme Test 
words and assorted other speech materials. 

3.3 Listeners 

Three crews of seven test-naive listeners, male and female, 
representing, respectively, American, German and French 
linguistic backgrounds, were also recruited from present 
residents of Austin, Texas. None had previous experience 
with the DRT.  All were residing in academic or vocational 
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environments where English was the dominant language of 
everyday speech communication. 

3.4 Testing procedures 

The listeners were instructed in DRT testing procedures, given 
three practice sessions with the test and then presented 
recorded DRT materials by American, German and French 
talkers under two conditions, undegraded speech and speech 
masked by speech-modulated noise at an S/N of 0 dB. The 
speech materials were presented binaurally over TDH-39 
headphones at a comfortable listening level, circa 79 dB 
SPL. 

4. RESULTS 

DRT results are conventionally expressed in terms of "percent 
correct, adjusted for chance." In a 2AFC case, the adjustment 
involves simply doubling the number of observed errors. We 
will find it convenient to adopt a system of abbreviations for 
denoting the various permutations of talkers' (TN) and 
listeners' (LN) linguistic backgrounds: A = English 
(American), G = German and F = French such that, e.g., GA = 
German talker(s) * American listener(s), FG = French 
talker(s)* German listener (s). 

Due to the small number of talkers and listeners available for 
this study, the effects of "talker nationality," "listener 
nationality" and their interaction are statistically significant in 
a relatively small number of cases. However, a number of 
potentially important trends are strongly suggested by these 
results. 

4.1 Results for undegraded speech 

Total DRT errors for each of the nine permutations of (TN) 
and (LN) are shown for the undegraded case in Table 1. 
Scores were highest when both talkers and listeners were 
native-born Americans; lowest when the talkers were German 
and the listeners were French. Listeners of all linguistic 
backgrounds yielded the highest scores when the talkers were 
Americans, next highest when the talkers were German and 
lowest when the talkers were French. 

Table 1. Effects of communicators' nationalities on total DRT 
scores 

Talkers 

Listeners America 
n 

German     French      Mean 

American 96.5 92.1 89.9 92.8 

German 92.4 89.9 87.3 89.9 

French 86.2 82.8 85.3 84.8 

Mean 91.7 88.3 87.5 89.2 

(ForTN,P<.10; forLN, P< .001; forTN*LN, 
P< .001 ) 

The distribution of voicing discrimination scores for the nine 
TN * LN permutations are shown in Table 2. Voicing scores 
were highest when listeners and talkers were American-born; 
lowest on average when the talkers were of French national 
origin. Overall, fewest errors occurred with German talkers; 
most errors occurred with French talkers. 

Table 2. Effects of communicators' nationalities on 
discrimination scores with respect to voicing 

Talkers 

Listeners       American      German    French    Mean 

American 97.0 94.9 85.1    1   92.4 

German 90.8 94.3 78.9        88.0 

French 89.6 91.7 84.5   |   88.6 

Mean 92.7 93.6 82.8        89.6 

(ForTN*LN,P<.05) 

As shown in Table 3, a consistent positive bias (measured as 
the difference between "percent correct for the positive 
feature state" and "percent correct for the negative feature 
state") appears in all cases involving French talkers, 
suggesting that French talkers tend to "overvoice". All 
listeners had a small, but statistically insignificant, tendency 
to perceive unvoiced phonemes as voiced when the talker was 
French. 

Table 3. Effects of communicators' nationalities 
ondiscrimination biases for voicing 

Talkers 

Listeners      American     German    French    Mean 

American 0.0 0.6 9.5    |    3.4 

German -0.6 3.0 12.5          5.0 

French -1.8 -4.8 4.8         -0.6 

Mean -0.8 -0.4 8.9    j    2.6 

Historically, nasality has proven to be the most robustly 
encoded of the six features dealt with by the DRT. Errors 
were negligible for all talker-listener permutations, but, as 
shown in Table 4, occurred most frequently with French 
listeners. 

Table 4. Effects of communicators' nationalities on 
discrimination scores with respect to nasality 

Talkers 

Listeners American German French Mean 

American 99.1 99.1 99.4 99.2 

German 97.9 99.4 98.8 98.7 

French 98.5 96.4 96.1 97.0 

Mean 98.5 98.3 98.1 98.3 

(ForLN, P<.05; for LN*TN, P<.10.) 

In all cases, biases with respect to nasality were less than 2%, 
and no distinguishing trends evident. 

Results for the case of sustention are shown in Table 5. The 
main effect for LN is highly significant; the interaction 
LN*TN is moderately significant. No bias effects approached 
significance. Here as elsewhere, a significant main effect 
should be examined critically where an interaction involving 
that effect is significant. Most of the variation observed here is 
attributable to cases involving French listeners, the 
implication of which is that French listeners have greater 
difficulty  than  those  of other  linguistic  backgrounds  in 



57 

distinguishing stopped or interrupted consonants from their 
sustained counterparts. This phenomenon was evident 
independently of whether the contrasting phonemes involved 
were voiced (e.g. bat vs. vat) or unvoiced (e.g., pat vs. fat). 
However, no biases with respect to this feature approached 
significance. 

Table 5. Effects of communicators' nationalities on 
discrimination scores with respect to sustention 

Talkers 

Listeners American German French Mean 

American 97.6 90.5 94.0 94.0 

German 90.2 83.9 89.6 87.9 

French 72.0 69.3 78.3 73.2 

Mean 86.6 81.2 12.8 14.9 

(ForLN,  P<.001; forLN*TN,P<-10.) 

Table 6 shows the distribution of errors with respect to 
sibilation. Errors with respect to this feature were negligible 
when both talkers and listeners were American, moderate for 
the case of American talkers and German listeners, but very 
frequent for all other LN * TN permutations. Moreover, 
the variation over 

Table 6. Effects of communicators' nationalities on 
discrimination scores with respect to sibilation 

Talkers 

Listeners American German French Mean 

American 98.5 80.4 76.2 85.0 

German 93.7 78.0 72.0 81.2 

French 81.8 68.8 75.9 75.5 

Mean 91.3 75.7 74.7 81.6 

(For LN, P<.01; for TN, P<.001; for LN*TN, P<001.) 

the nine LN * TN permutations was pronounced, both when 
the response options involved voiced consonants (e.g., zee 
vs. thee) or unvoiced consonants (e.g., sing vs. thing). For 
the voiced case, P<.01 for LN, P<..05 for TN and P< 05 for 
the interaction, LN * TN. For the unvoiced case, P<.05 for 
LN, P<05 for TN and P<.001 for LN * TN. 
Sibilation bias was pronounced in the case of several LN * TN 
permutations. The extreme negative biases in some cases 
involving non-American talkers raises the possibility of 
recording artifacts, but the relatively small biases that 
occurred in the case of French listeners argues against such an 
explanation. Bias values for the case of sibilation are shown 
in Table 7. 

Table 7. Effects of communicators' nationalities on 
Bias scores for sibilation 

Talkers 

Listeners American German French Mean 

American -1.8 -25.0 -23.8 -16.9 

German -1.8 -21.4 -15.5 -12.9 

French 0.6 

-1.0 

-7.7 

-18.1 

0.6 

-12.9 

-2.2 

-10.7 Mean 

Results for the "place feature," graveness is shown in Table 8. 
Although graveness is generally one of the most vulnerable 
features there is relatively little variability across LN*TN 
permutations except for that contributed by French listeners, 
who appear generally to have greatest difficulty in 
discriminating this feature. This difficulty is evident 
regardless of whether the critical consonants of the test words 
were voiced or unvoiced, sustained or interrupted. 

Table 8. Effects of communicators' nationalities on 
discrimination scores with respect to graveness 

Talkers 

Listeners American German French Mean 

American 87.8 90.2 88.7 88.9 

German 83.9 85.1 88.1 85.7 

French 70.1 77.4 80.7 79.4 

Mean 83.9 84.2 85.8 84.7 

((For LN, P<.001.) 

Table 9 shows the distribution of biases over the nine 
permutations  of LN   and  TN. Whether  due   to  the 
characteristics of the talker's or to their own, listeners' 
responses to the grave test words were biased toward the acute 
state of the feature in all but two cases, both involving 
German talkers. This is attributable in part to the fact that 
four of the items on the grave subtest of the DRT require the 
listener to distinguish between /and 8, the latter of which is 
absent from the German phonemic alphabet. 

Table 9. Effects of communicators' nationalities on 
biases with respect to graveness 

Talkers 

Listeners American German French Mean 

American -16.1 6.5 -8.3 -6.0 

German -13.1 3.6 -3.6 -4.4 

French -6.5 -17.9 -12.5 -12.3 

Mean -11.9 -2.6 -8.1 -7.6 

(ForLN,P<.001) 

Table 10 shows the distribution of errors with respect to the 
place feature, compactness. Few errors occurred under with 
any permutation of LN and TN, only the LN and LN*TN 
effects approached statistical significance. All biases were 
negligible in this case. 

Table 10. Effects of communicators' nationalities on 
total scores with respect to the feature compactness 

Talkers 

Listeners American German French Mean 

American 98.8 97.3 95.8 97.3 

German 97.9 98.8 96.1 97.6 

French 95.2 93.5 96.4 95.0 

95.5 Mean 97.3 96.5 96.1 

(For LN, P< .10; for LN*TN, P<10) 
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Figure 1. Diagnostic score and bias patterns for the various permutations of listener and 
talker nationality 
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4.2. Effects of speech degradation 

Recordings of the DRT by the three talker samples were also 
presented to the three listening crews after being degraded by 
speech-modulated noise at a speech-to-noise ratio of OdB. As 
expected, errors increased significantly across the board. The 
effects of degradation on total DRT errors are shown in 
Table 11. 
Although significant in two instances, the effects of the 
communicators' nationalities were generally less pronounced 
in this case than in the case of undegraded speech, and this 
trend was generally maintained at the level of individual 
features. However, when the distribution of errors for the case 
of degraded speech is compared with that for undegraded 
speech, differences between the various LN*TN's largely 
disappear, as shown in Table 12. Evidently, degradation did 
little to potentiate communication difficulties attributable to 
specific LN*TN permutations. 

Table 11. Effects of communicators' nationalities on total 
DRT scores under degraded channel conditions 

(OdB MNRU) 

Talkers 

Listeners American German French Mean 

American 72.3 36.5 37.6 33.9 

German 65.0 43.1 41.6 39.9 

French 57.9 47.7 45.6 45.1 

Mean 65.1 42.4 41.6 39.6 

(For LN, P < .01; for TN, P < .05) 

Table 12. Increase in error percentages due to speech-signal 
degradation 

Talkers 

Listeners American German French Mean 

American 24.2 28.6 27.0 26.6 

German 27.4 33.1 28.9 29.8 

French 28.3 30.5 30.9 29.9 

Mean 26.6 30.7 28.9 8 

4.3 Relative contributions of listener nationality and talker 
nationality to communication failures 

Figure 1 shows the results of this study from a different point 
of view. It permits comparisons among patterns of diagnostic 
scores and biases for the various LN * TN combinations. 

Figure la shows that, for American listeners, the state of the 
feature, voicing, is most difficult to discriminate in French 
talkers. In both German and French talkers, sustention and 
sibilation are poorly discriminated. Figure lb suggests that 
these difficulties are attributable to a tendency of the French 
talkers to "over voice" and to a tendency of both German and 
French talkers to "under sibilate." 

Figure lc shows that German listeners had difficulty in 
discriminating voicing in the case of French talkers and, 
otherwise, experienced difficulty in discriminating sustention 
and sibilation in the speech of their compatriots and that of 
French talkers.   They exhibited a pattern of biases (Fig. Id) 

similar to that of American listeners. French listeners had 
difficulty discriminating the states of all  features except 
nasality and compactness in talkers of all three nationalities, 
including their own.    They tended to perceive interrupted 
consonants as their sustained counterparts 
and to perceive grave phonemes (Fig.  If) as their acute 
counterparts. 
When the talkers were American, listeners of French origin 
had serious difficulty discriminating the states of the features 
sustention, and sibilation. 

When talkers were of German origin, listeners of all 
nationalities had some difficulty discriminating sustention, 
sibilation and graveness, but French listeners had the greatest 
difficulty in this respect. American and German listeners 
exhibited pronounced negative biases with respect to 
sibilation but negligible biases in the cases of all other 
features. French listeners, alone, exhibited a substantial 
negative bias in the case of the feature, graveness. 
When the talkers were French, listeners of all nationalities, 
including French, had substantial difficulty discriminating the 
states of voicing and sibilation. Also, French listeners had 
difficulty discriminating sustention and graveness. French 
talkers induced positive biases in voicing and sustention for 
listeners of all nationalities; negative biases in the cases of the 
feature, sibilation, for American and German listeners but not 
for their compatriots. 
In the results of ANOVA described above the effects of 
listener nationality generally proved to be more significant 
than those of talker nationality. However, an examination of 
the data from a different point of view provides some 
potentially important insights. This involved comparing the 
nine permutations of LS *TN in terms of their error patterns 
over 224 items of the DRT (including 32 "easy" items. 
Cluster analysis was 

C lu ste r T re e 

i—i—i—i—■—i—i—■—i—i 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

D is ta n ce s 

Figure 2. Cluster tree-showing similarities among LN * TN 
permutations with respect to error patterns across individual 
DRT items 

the instrument of choice for this purpose. For this case, 
distance = Pearson r; linkage = complete. 
Figure 2 shows the similarity among the nine permutations of 
LN and TN in terms of their error patterns under two 
conditions of signal quality. In the figure, the first letter of the 
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identifying label denotes the nationality of the listeners; the 
second denotes the nationality of the talkers and the third 
denotes the quality of the speech signal (C = clear or 
undegraded; D = degraded). 

In the figure, there are two large clusters based on speech 
signal quality, one containing only the cases of undegraded 
speech and the other containing only cases of degraded 
speech. Within each of these, there are three subclusters, all 
of which are based on the nationality of the talkers. Thus, 
whereas the nationality of the listener appears to account for 
the bulk of communication failures, the patterns of these 
failures — the specific types of error—appear to depend 
primarily on the linguistic background of the talker. 

5. CONCLUSIONS 

Subject to the results of additional research, the present 
findings suggest that remedial programs for non-native 
speakers of English should place primary emphasis on 
articulatory rather than perceptual factors in multilingual 
voice communications. The DRT has potential for purposes 
of diagnosing communication failures in circumstances 
requiring communication in English by non-native speakers of 

English. It may also be a useful tool for evaluating the 
efficacy of remedial training programs and for evaluating the 
progress of participants in such programs. 
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ABSTRACT 

The intelligibility of speech is known to be lower if the 
talker is non-native instead of native for the given 
language. This study is aimed at quantifying the overall 
degradation due to acoustic-phonetic limitations of non- 
native talkers of Dutch, specifically of Dutch-speaking 
Americans who have lived in the Netherlands 1-3 years. 
Experiments were performed using phoneme 
intelligibility and sentence intelligibility tests, using 
additive noise as a means of degrading the intelligibility 
of speech utterances for test purposes. The overall 
difference in sentence intelligibility between native 
Dutch talkers and American talkers of Dutch, using 
native Dutch listeners, was found to correspond to a 
difference in speech-to-noise ratio of approximately 3 
dB. The main contribution to the degradation of speech 
intelligibility by introducing non-native talkers and/or 
listeners, is by confusion of vowels, especially those that 
do not occur in American English. 

1. INTRODUCTION 

Many attributes of individual talkers are known to 
influence human speech intelligibility. Some of these are 
at the linguistic level (such as syntactical and lexical 
aspects [1,2]), some are at the acoustic-phonetic level 
(e.g. syllabic rhythm and speed, F0-range, intonation, 
articulation of different phonemes [3,4,5]). Non- 
nativeness of a particular talker or listener may be 
interpreted as a specific category of attributes 
influencing speech intelligibility. 
Among the attributes known to be related to non- 
nativeness of talkers are vowel-onset time, intonation, 
speaking rate and phonemic repertoire [e.g. 6,7]. Many 
fine-grained phonetic studies of second-language talkers 
have given insight in factors that may contribute to 
recognition of foreign accents [e.g. 8]. Also, factors 
contributing to speech intelligibility by non-native 
listeners were investigated [9,10]. Development of 
accents with experience in using a foreign language has 
been studied extensively [eg. 11]. Relatively much work 
has been done in the field of second language (L2) 
speech perception; however, many studies have been 
focussed on particular phonetic attributes or phenomena, 
usually across two (or few) languages. 

An important motivation to study the effect of non- 
native speech, is the effectiveness of human speech 
communication. From this perspective, it is not 
important to have detailed knowledge of speech 
production by L2 talkers; it is more interesting to 
quantify the effect on the overall speech intelligibility in 
general terms. 
This may be achieved by carrying out speech 
intelligibility experiments with LI and L2 subjects 
(talkers/listeners) in a certain language, in our case 
Dutch. As with all speech intelligibility tests, a choice 
has to be made of test fragments: sentences, words or 
phonemes. In the case of words, meaningful words or 
nonsense-words may be used. Also, the paradigm will 
have to be suitable for non-native subjects; on one hand, 
the limited control of a second language is the object of 
study, on the other hand it may be experienced as a 
problem in carrying out some types of speech 
intelligibility tests (for instance those depending on 
typing out nonsense words by second-language listeners, 
who will have a tendency to use native-language spelling 
of some nonsense words). 

2. EXPERIMENTAL SETUP 

2.1. Test types 

Two types of speech intelligibility experiments were 
performed: a sentence intelligibility test and a phoneme- 
intelligibility test based on nonsense-words. The 
sentence intelligibility test was essentially identical to a 
standard and widely used test method known as the 
Speech Reception Threshold (SRT) method [12]. The 
phoneme intelligibility test is closely related to the 
equally-balanced CVC test [13]. 

2.2. Speech Reception Threshold (SRT) method. 

The sentence intelligibility test was a standard Speech 
Reception Threshold (SRT) experiment [12]. This test 
gives a robust measure for sentence intelligibility in 
noise, corresponding to the speech-to-noise ratio that 
gives 50% correct response of short redundant sentences. 
In the SRT testing procedure, masking noise is added to 
test sentences in order to obtain the required speech-to- 
noise ratio. The masking noise spectrum is equal to the 
long-term   spectrum   of   the   test   sentences.   After 
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presentation of each sentence, a subject responds with 
the sentence as he or she perceives it, and the 
experimenter compares the response with the actual 
sentence. If the response is completely correct, the noise 
level for the next sentence is increased by 2 dB; after an 
incorrect response, the noise level is decreased by 2 dB. 
The first sentence is repeated until it is responded 
correctly, using 4 dB steps. This is done to quickly 
converge to the 50% intelligibility threshold. By taking 
the average speech-to-noise ratio at the ear over the last 
10 sentences, the 50% sentence intelligibility threshold 
(SRT) is obtained. 
During the actual experiments, the subjects (listeners) 
were seated in a sufficiently silent room. A set of Sony 
MDR-CD770 headphones were used to present the 
recorded sentences, diotically, to the listeners. Using an 
artificial head, distortion components introduced by the 
experimental setup were found to be sufficiently small. 

2.3 Semi-open response equally balanced CVC test 
method 

A type of semi-open response CVC (consonant-vowel- 
consonant) intelligibility test was developed for the 
purpose of testing phoneme intelligibility with non- 
native subjects. Using this test, recognition of initial 
consonants and vowels could be scored, and confusion 
matrices could be composed [14]. The method is similar 
to an open-response equally-balanced CVC paradigm 
[13]. The main differences are that the final consonant is 
not tested, and that the subject responds by choosing an 
alternative from a (nearly) exhaustive list of possible 
CVC-words, instead of typing the word in response to 
the stimulus. The advantage of this approach is that 
extensive training of subjects becomes unnecessary, 
while the construction of confusion matrices is still 
possible. Problems that were expected using a 'difficult' 
open-response paradigm with non-native subjects were 
successfully avoided. 
During each 3 to 4 minute test, all test phonemes were 
tested once. Initial consonants and vowels with a 
frequency of occurrence (based on a Dutch newspaper) 
below 2% were not included in the test, leaving 17 initial 
consonants and 15 vowels. Thus, when testing an initial 
consonant, 17 alternatives were displayed on screen, and 
for a vowel 15 alternatives. When testing the vowel Aa:/, 
for instance, the list of CVC words for the listener to 
choose from could be 'jaap', 'jup', 'jeup', 'jip', etc. 
In each test, the order of presentation was randomized. 
The other phonemes in the CVC words, not tested 
themselves, were selected. Four of these non-tested 
phonemes, influencing the test through co-articulation 
effects, were selected per test, in an attempt to maximize 
the spread of these phonemes over a perceptual space 
[15]. Several selections of four non-tested phonemes 
were used for each talker. 

2.4. Collection of speech material 

The speech material was collected using a B&K type 
4192 microphone with a B&K type 2669 microphone 

pre-amplifier. The sound was digitized using the wave- 
audio device of a Topline 9000 notebook-computer, 
which was screened for adequate bandwidth, dynamic 
range and electronic noise properties This same 
notebook-computer (with the same audio-device) was 
used to implement the test procedure. 
Since non-native talkers of the Dutch language, 
matching all criteria, are rather difficult to find, the 
arguable choice was made to record the material at a 
location of the talker's choice. This proved to be an 
effective measure to facilitate the recruitment of 
subjects, but lead to a lesser control of the influence of 
background noise and room acoustics in the recorded 
material. To limit this influence, the microphone was 
placed at relatively close range (15 cm). Signal-to-noise 
ratios were verified to be always higher than 20 dB for 
all frequencies relevant for speech perception. Hence, no 
effects of the variation in acoustics and background 
noise on the outcome of the perceptual experiments is 
expected. 
All speech material was calibrated to have the same 
speech level for each utterance. In the case of the CVC 
test, the utterance over which the speech level was 
determined was not just the CVC-word itself, but also 
the carrier sentence in which it was embedded. 

2.5. Subjects. 

Two groups of talkers were recruited, each group 
consisting of four subjects, two male and two female. 
The LI group of talkers consisted of native talkers of the 
Dutch language without strong regional accents. The L2 
group of talkers were native Americans, speaking Dutch 
fluently but with an accent that was immediately 
recognized by most listeners. 
Perception and production of foreign speech sounds 
depends on the experience of subjects with the foreign 
language [11]. Also, the age of acquisition is of 
importance, leading to a distinction between early and 
late bilinguals. Generally, the transition age between 
those categories is found roughly to be puberty [eg. 
11,16]. Three of the four L2 talkers had acquired 
knowledge of the Dutch language above age 23, and 
spoke Dutch for less than 3 years. The fourth subject 
(referred to later on as subject L2F8) had first learnt 
Dutch at age 13 and had been speaking Dutch for 18 
years. Although this fourth subject, the only subject that 
might be categorized as 'early bilingual', showed 
appreciably better control of the Dutch language, the 
American accent was still readily noticed. 
The LI talkers were selected to match the L2 group in 
terms of age and level of education. 
The L2 listeners all had over 12 years experience with 
the Dutch language (average 20 years), and used the 
Dutch language frequently in communication at home or 
work. No special requirements were included in the 
selection of the LI listeners. 
None of the subjects suffered from speech or hearing 
impairments, or any unusual hearing loss likely to affect 
the outcome of test results. 
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3. RESULTS 

3.1. Sentence intelligibility 

Four sets of sentence intelligibility experiments were 
carried out, corresponding to all combinations of LI and 
L2 listeners and talkers. The condition with LI listeners 
and LI talkers may be seen as a baseline condition, 
involving only Dutch subjects. In figure 1, average 
results are given for these four conditions. 

L1 >L1 L1>L2 L2>L1 L2>L2 

a. - 
CO 
m 

a. 
Co 
c 
(0 a 
E 

Figure 1. Results for four types of talker-listener 
combinations (16 talker-listener pairs per 
condition, mean values and standard errors 
given). LI > L2, for instance, means native 
talker, non-native listener. 

The lowest (most negative) SRT value is, as expected, 
for the baseline group with both LI listeners and LI 
talkers. This means that in this condition the highest 
noise level may be allowed to still obtain 50% correct 
sentence responses, down to a speech-to-noise ratio 
(SNR) of-6 dB. 
The condition with L2 talkers and LI listeners requires a 
3 dB lower noise level for the same 50% sentence 
intelligibility than the L1>L1 condition. The L1>L2 
condition (LI talkers, L2 listeners) also allows less noise 
for 50% sentence intelligibility; the difference is now 
nearly 4 dB. The L2>L2 condition, showing the lowest 
intelligibility results, allows for 4.5 dB less noise. 
Figure 1 gives us a general image of the influence of 
non-nativeness of speakers and listeners on speech 
intelligibility, at least for these particular LI and L2 
languages. It also shows that, even though the L2 talker 
group was less experienced than the L2 listener group, 
having L2 listeners gives relatively more degradation of 
speech intelligibility than having L2 talkers. The 
combination of L2 listeners and L2 talkers gives an 
additional degradation which is less than the degradation 
caused by L2 talkers and L2 listeners separately. 

The results of figure 1 are also given in figures 2 and 3, 
but now by talker instead of talker/listener group. For the 
LI listener group (figure 2), all LI talkers offer better 
intelligibility than any L2 talker, although the difference 
between talker L1F4 and L2F8 is not significant. Figure 
3 is quite different; to L2 listeners, the highest 
intelligibility is offered by one of the L2 talkers. The 
average score by L2 talkers as shown in figure 1 is quite 

low, but mainly because of talkers L2M5 and L2F6. The 
difference between LI and L2 listeners is not as clear 
with L2 talkers as with LI talkers. 

L1F2 L1M3 L1M1 L1F4  L2F8 L2M7 L2F6 L2M5 

0 
-1 
-2 
-3 
-4 
-5 
-6 
-7 

Figure 2. Mean SRT scores for eight 
individual talkers, with the LI group of 
listeners (4 listeners per condition). L2M5, for 
instance, means L2 talker, male, talker #5. 

L2M7 L2F8 L1M1 L1M3 L1F2 L1F4 L2M5 L2F6 
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Figure 3. Mean SRT scores for eight 
individual talkers, with the L2 group of 
listeners (4 listeners per condition). 

3.2. Phoneme intelligibility 

The CVC-based phoneme test, although somewhat 
different in nature, may be expected to yield results that 
correspond well with the SRT results. However, the 
CVC test scores are percentages of correctly recognized 
phonemes, whereas the SRT results are speech-to-noise 
ratios to obtain 50% sentence intelligibility. To verify 
correspondence between both test types, CVC 
experiments were performed at various signal-to-noise 
ratios. Results, for initial consonants and vowels 
separately, are given in figures 4 and 5. 
Due to the relatively small number of listeners, the 
experiment data are slightly too noisy for a clear 
polynomial curve fit. The general trend, however, may 
well be observed from the data. 
At relatively low speech-to-noise ratios, the L2 talker 
leads to better initial consonant recognition than the LI 
talker. At higher speech-to-noise ratios the initial 
consonant recognition of the L2 talker appears to 
saturate at a somewhat lower level then the initial 
consonant recognition of the LI talker. 



64 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

•/V /   o / 

:   // 

 1—i—i—i—i—i—i— 

■ ^i- 

■ L1 

o L2 

—t- —i— ■A 1  

-18-15-12-9 -6-3 0 3 6 9 12 15 18 

SNR(dB) 

Figure 4. Initial consonant recognition 
score as a function of speech-to-noise ratio, 
for a single LI talker (L1M4) and a single 
L2 talker (L2M7). Results are mean values 
for 4 LI listeners. The lines are third order 
polynomial fits of the data. 
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Figure 5. Vowel recognition score as a 
function of speech-to-noise ratio, for a 
single LI talker (L1M4) and a single L2 
talker (L2M7). Results are mean values for 
4 LI listeners. The lines are third order 
polynomial fits of the data. 

This is more clearly the case with the vowels; for the L2- 
talker, vowel recognition saturates at a much lower 
percentage of correctly recognized vowels. This 
indicates that, irrespective of speech-to-noise ratio, some 
vowels by the L2 talker are consistently confused. 
At two speech-to-noise ratios (-3 and +15 dB), phoneme 
recognition was measured for all 8 talkers, with 4 LI and 
4 L2 listeners. Results are shown in figures 6 and 7. 
Figures 6 and 7 show, that differences between LI and 
L2 speech intelligibility are cause mainly by the vowels. 
This is in agreement with the data presented in figures 4 
and 5. 
Non-nativeness of either talkers or listeners has a strong 
effect on vowel recognition, as may be verified by 

L1 > L1        L1 > L2       L2 > L1        L2 > L2 

Figure 6. Initial consonant recognition 
scores at SNR-values of -3 and +15 dB. 
Results are averages (and standard errors) 
for 16 talker-listener pairs. 

L1 >L1 L1 > L2       L2 > L1 L2>L2 

Figure 7. Vowel recognition scores at SNR- 
values of -3 and +15 dB. Results are 
averages (and standard errors) for 16 talker- 
listener pairs. 

comparing the L1>L2 and the L2>L1 conditions on one 
hand, to the L1>L1 condition (baseline) on the other 
hand. In both cases (L2 talker or L2 listener) the 
difference in vowel recognition is around 15 percent- 
points in the +15 dB condition and more than 20 percent- 
points in the -3 dB condition. This suggests that the 
effect of additive noise on vowel recognition is 
somewhat stronger when non-natives are involved. 
The loss of vowel intelligibility due to having a L2 
talker, is not influenced much by also having a L2 
listener. One might hypothesize that a L2 listener would 
be able to recognize and interpret the L2 accent better, 
hence recognizing vowels by L2 talkers more 
effectively. This is not the case, the L2>L1 scores are 
even slightly higher than the L2>L2 scores. This is 
consistent with the results from the SRT experiment. 

4. ANALYSIS OF VOWEL CONFUSIONS 

In order to perform a more diagnostic analysis of vowel 
confusions, confusion matrices were calculated from the 
phoneme responses. Although results were obtained at 
various SNR conditions, only the -3 and +15 dB results 
included all talkers. In order to obtain sufficiently 'filled' 
matrices, joint confusion matrices were calculated over 
both the -3 dB and +15 dB SNR conditions. This way, 
four matrices were obtained, corresponding to the four 
LI and L2 talker-listener combinations. Each matrix 
contained   32   responses   for   each   vowel   (2   SNR 
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conditions, 4 talkers, 4 listeners). Unfortunately, the 
dataset was insufficiently large to perform meaningful 
multi-dimensional scaling analyses, which otherwise 
could have been used to construct 'nativeness- 
dependent' vowelspaces. 
For each of the 15 vowels, in each condition, two types 
of confusion   scores   may  be   calculated   from  the 
confusion matrices: the percentage of false positive and 
the percentage of false negative responses.  A false 
negative response is the failure to correctly respond with 
a   phoneme   upon   presentation   with   that   specific 
phoneme; a false positive response, is responding with 
that phoneme upon presentation of another phoneme. 
The   false   negative   scores   are   relatively   robust, 
psychophysical indicators of phoneme recognizability; 
the paradigm is such, that a small false-negative error 
actually means good phoneme recognition in practice, 
and vice versa. The meaning of the false-positive error 
score is  different;  a large  false-positive error may 
indicate consistent misarticulation of vowels in such a 
way that they all resemble another vowel; however, it 
may also reflect a measure of doubt of the listener. Even 
a vowel that is recognized fairly well as a stimulus, may 
attract false-positive responses as a response category. 
Such a response bias may occur, if listeners subjectively 
classify this vowel as 'difficult' and it as a response to 
any unrecognized (or similar-sounding) stimulus. 
Of the 15 tested vowels, 8 were selected for further 
analysis. This set of 8 vowels comprised the 5 vowels 
with the highest overall false-positive scores, and the 5 
vowels with the highest overall false-negative scores. 
The set consists of 6 monophthongs (Jal, Ice/, ly.l, hi, 
lol, la-J)   and 2 diphthongs (/cey/, /an/). Of this set of 
vowels, three are not normally found in American 
English: lyj, lerJ and /cey/. The 8 vowels within the set 
contribute 64% to the total number of false-negative 
responses, and 74% to the total number of false-positive 
responses of all 15 vowels. For the L1>L1 experiment, 
vowel recognition error scores are given in figure 8. 
Note that the false-positive error rate is not limited to a 
maximum of 100%, since the number of times a vowel is 
"recognized" when it is not presented is only limited by 
the total number of vowel presentations. 
All error scores in figure 8 are relatively low. The 
highest percentage of confusions occur with the vowel 
lol. 
In figures 9, 10 and 11, similar data is given as presented 
in figure 8, but now for the L2>L2, L1>L2 and L2>L1 
experiments. 
In figure 9, the distribution of false-negative responses 
over the vowels is quite different from the distribution of 
false-positive responses. Remarkably high false-positive 
scores are observed for the vowels ler] and /cey/, two of 
the vowels that do not occur in regular American 
English. 
Figure 10 shows a closer correlation between false- 
positive and false-negative responses than figure 9, with 
the exception of the vowel 10:1. 

/cey/   lal    lal    ler.1    lol    lyj     hi    laul 

Figure 8. False-positive and false-negative 
responses in the L1>L1 experiment, to a 
limited set of vowels. An error score of 
100% corresponds to 32 false responses 

/cey/   Ice/    lal    lei:/    lol    ly:l     hi    laul 

Figure 9. False-positive and false-negative 
responses in the L2>L2 experiment, to a 
limited set of vowels. 

/cey/   lal    lal    led    lol    lyj     hi   laul 

Figure 10. False-positive and false-negative 
responses in the L1>L2 experiment, to a 
limited set of vowels. 

/cey/    lal     lal     led    lol     ly.l 

Figure 11. False-positive and false- 
negative responses in the L2>L1 
experiment, to a limited set of vowels. 
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The vowel recognition errors are considered to be 
originating largely from two different error sources: 
non-nativeness of talkers, and non-nativeness of 
listeners. This is illustrated by the fact that the error 
scores in figure 8 (only native) are small in comparison 
to figures 9, 10 and 11. 

The highest false-negative score in the L2>L1 
experiment is obtained with the vowel lerj; this 
indicates that unusual articulation of this non-English 
vowel by L2 talkers leads to reduced recognition by LI 
listeners. Most of the other vowels also show higher 
error scores than in the L1>L1 experiment, which 
indicates that other vowels suffer from unusual 
articulation as well. 

In the L1>L2 experiment, the highest false-negative 
score is of the non-English vowel /y:/, closely followed 
by several other vowels. Although the distribution of 
errors over vowels is somewhat different, the general 
tendency is similar to the L2>L1 case. 
The largest false-positive scores in the L2>L1 
experiment are /oey/ and laal. Many of these responses 
are given upon presentation of L2-versions of IB:I, 

which are usually very close to /oey/ or laal. 
Two vowels, I0J and /oey/, lead to remarkably high 
false-positive recognition by L2 listeners (L1>L2 and 
L2>L2 experiments). Not many of the 10:1 and /oey/ 
presentations are missed, but at the expense of much 
false recognition. All this reflects the relatively poor 
model by the L2 listeners of the place of non-English 
vowels among other vowels. 

5. CONCLUSIONS 

Two types of speech intelligibility tests (SRT en CVC) 
produced results that correspond well. Both test types 
may be used to quantify the effect of non-nativeness on 
speech intelligibility. The advantage of the CVC test is 
the diagnostic value of the confusion matrices that may 
be generated. 
Speech intelligibility of L2 (American) talkers of the 
Dutch language by Dutch listeners is less than LI (native 
Dutch) speech intelligibility. The difference corresponds 
to approximately 3 dB difference in speech-to-noise 
ratio. 
The main cause is consistent confusion of vowels, 
specifically those that do not occur in American English. 
This confusion is introduced by L2 talkers, but also by 
L2 listeners. The total degradation caused by introducing 
L2 talkers is slightly enhanced (certainly not reduced) by 
also having L2 listeners. 
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Report of the plenary discussion on 
"Human Perception and Assessment" 

Chairperson:    Edouard Geoffrois (DGA, France) 
Reporter: David van Leeuwen (TNO-HFRI, The Netherlands) 

Question from Anderson for Voiers: What is for non-native speech the more important factor in 
intelligibility: speech production or speech perception? And how is the situation for degraded 
speech? 

Reaction Van Wijngaarden: The Dutch /0:/ is an example in his SRT experiment. The vowel is 
unfamiliar and difficult for non-natives, but yet there are many false positives with non-native 
listeners. Because there are also many false negatives with non-native speakers, he argues both 
production and perception are of comparable importance. 

Voiers argues that a non-native effect for listeners is random, while that for speakers is sys- 
tematic. In order to improve intelligibility, listeners should be trained. 

Eklund remarks that linking production with perception is a tricky business. "How much do 
you listen with your articulators?" 

Anderson identifies the question as a chicken-and-egg problem. (Reporter read an answer in 
the paper: the dioxine chicken was there before the dioxin egg). 

Compernolle remembers that he found the difference in perception between the various places 
of articulation for Indian stops very difficult. Feedback seems necessary in order to learn to 
differentiate. 

Steeneken summarizes the differences in the two perceptual experiments: Voiers measures 
initial consonant, Van Wijngaarden finds that vowels show a large effect for non-native speech. 

Van Wijngaarden adds that also prosody shows an important difference between natives and 
non-natives, which might be influential on sentence understanding. 

Sä Maria reminds us of an experiment conducted by Victor Zue. In noise, vowel recognition 
is quite robust, while the consonants can only be recognized in broad categories. This is a 
similar to the experiments of patients using cochlear implants. 

Boves replies that Zue's results cannot be extended to continuous speech. He suggests that 
dynamics of speech are more important than statics in the production/perception of non- 
natives. 

Hunt reports a small improvement seen in Hidden Dynamic Modeling, but Lou believes this is 
not The Way To Go. 

Geoffrois suggests to discuss the question: Is the open software model applicable to speech 
technology. Can we learn and develop from shared systems, platforms and resources? 

Reynolds questions the lifetime maintainability of open software. Resources are not a problem, 
given LDC and ELRA. 

Geoffrois gives the examples of the CSLU toolkit, and the ISIP speech recognition system. 

Boves finds open software a tricky issue. He names SPSS as an example. People used to input 
data until there was a significant effect with no understanding of statistics. Soon, people will 
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think that they can do linguistics. Herman Ney is quoted: "Too many people use off-the-shelf 
crap software." 

Van Compernolle, who was a member in the panel at Eurospeech about the same issue, argues 
that for a speech recognition system, there are simply too many lines of code in order to make 
the open software model successful. Geoffrois separates users and developers. An example, 
of the same complexity in terms of lines of code, is the GNU C-compiler. Van Compernolle 
claims that the user base for a compiler is completely different from that of an ASR. The model 
cannot work. 

Jones remarks that the model did not work for Mozilla, the open software version of Netscape. 

Reynolds reminds us that in the current, non-open model, licensing is a problem for developers. 

Koehler brings up that common tools are important for evaluation etc. For researchers, stan- 
dardized test databases are also important. Geoffrois replies that the LDC/ELRA model seems 
to work quite well. Hunt notices that the Terrible English Database is quite useless, because 
no transcription has been made. 

Micca says that the exchange of data bases works. 

Johnston replies that this is not the case for evaluation, because of learning effects. 

Hunt points out that adaptation was ignored in the evaluation. But it works. 

Johnston concludes by remarking that in the MIVA project, the exchange of data proved to 
be extremely successful. 
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ABSTRACT 

In this communication, we address multilingual interoperability 
aspects in speech recognition. After giving a tentative defini- 
tion of multilingual interoperability, we discuss speech recogni- 
tion components and their language-specific aspects. We give 
a sample overview of past multilingual speech recognition re- 
search and development across different speaking styles (read, 
prepared and conversational). The problem of adaptation to 
new languages is addressed. Language-independent and cross- 
language techniques for acoustic modeling provide a means to 
port recognition systems to new languages without language 
specific acoustic data. Pronunciation lexica and text material 
appear to be the most crucial language-dependent resources for 
porting. Fast porting being a step towards multilingual interop- 
erability the ongoing efforts of producing multilingual pronun- 
ciation lexica and collecting multilingual text corpora should be 
extended to the largest possible number of written languages. 

1.   INTRODUCTION 
The important progress achieved in speech recognition these last 
decades has led to successful demos using speech technology. 
Demos raise expectations when shown to potential users, but 
yet only few systems are ready for operational use. In a mul- 
tilingual environment, where potential users have distinct na- 
tive languages, speech recognition systems have to deal with 
these different languages or with non-native speaker accents, if 
a common language is shared. Multilingual environments are 
common in international communication contexts, which may 
be political, military, scientific, commercial or tourist contexts. 
The development of multilingual recognition and spoken dialog 
systems is hence an important research issue, opening a large 
spectrum of potential applications. To increase the usability of 
a prototype system the problems of multilingual and non-native 
speech have to be addressed efficiently. 

Speech recognizers are still very sensitive to non-native 
speech input or more generally to any kind of condition mis- 
match. Porting a given system to a new language requires of- 
ten a significant part of language specific knowledge and re- 
sources before achieving viable recognition results. Multilin- 
gual corpora have been gathered for language identification and 
multi-lingual recognition research (OGI-TS, LDC CALLHOME, 

GLOBALPHONE...). Research and development in multilingual 

recognition has been widely supported by the European commu- 
nities (EC) and the Defense Advanced Research Project Agency 
(DARPA) [39,5,12,40,14,43]. 

In this contribution we address issues of multilinguality and 
multilingual interoperability in speech recognition. 

Using a standard recognizer architecture based an acous- 
tic HMM phone models, pronunciation dictionaries and word 
N-gram language models, the language-specific aspects of each 
component are discussed. Many observations are gathered from 
our experience at LIMSI in developing multilingual speech rec- 
ognizers [35, 54, 2, 1, 4]. We will then focus on multilingual 
recognition systems. Without attempting to be exhaustive we 
try to give an overview of some representative research actions 
in multilingual and cross-lingual speech recognition. 

2.   MULTILINGUALITY AND MULTILINGUAL 
INTEROPERABILITY 

There exist about 3000 different spoken languages without ac- 
counting for dialects, at the end of this millennium [38]. Ac- 
cording to this author only several 100 languages have also a 
significant written language production for which current speech 
recognition systems (speech to text systems) are applicable. 
Studies in automatic speech recognition (ASR) are presently 
limited to about 20 languages, comprising English, Arabic, Chi- 
nese, Japanese, Spanish, French, German, Italian, Portuguese, 
Greek, Swedish, Danish, Dutch... 

Interoperability is a term which is widely used in product 
marketing descriptions: products achieve interoperability with 
other products either by adhering to published interface stan- 
dards (example: the WEB with standards such as TCP/IP, HTTP, 
HTML) or by making use of a "broker" of services that can 
convert one product's interface into another product's interface 
on the fly (example: common object request broker architec- 
ture CORBA). Interoperability becomes a quality of increasing 
importance for information technology products, and naturally, 
the demand for interoperability of speech technology products 
arises. Voice over IP (VoIP) protocols have already evolved into 
world-wide standards (IETF's SIP, JTU.s H.323) to support the 
emerging voice, data and video services of the next millennium. 

For speech recognition systems the term of interoperability 
is not yet commonly used in the corresponding researcher com- 
munity. Nonetheless many past or present research actions aim 
at defining standards for text and speech processing (e.g. the EC 
EAGLES project on language engineering standards [26]), at de- 
veloping multilingual resources ([51,45,15,12,5]), at installing 
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multilingual recognizer evaluations (e.g. the EC SQALE project 
on multilingual speech recognition evaluation, the DARPA 
Hub5 program on conversational multilingual speech), and at 
achieving larger robustness across varying experimental condi- 
tions (e.g. the DARPA Hub3 program and Hub4 broadcast news 
transcriptions). Research towards better multilingual interoper- 
ability is supported and fostered by national and international 
institutions: EC (European Commission), NSF (National Sci- 
ence Foundation), DARPA... 

Multilingual interoperability which is the topic of this 
workshop deals with the problem of designing speech prod- 
ucts which are operative in a multilingual context and/or eas- 
ily portable to new languages. The development of multi- 
lingual corpora and resources can be considered as a mile- 
stone on the way to multilingual interoperability. Developing 
such resources however is time-consuming, expensive and their 
reusability is not always ensured, when moving to new appli- 
cation domains. Important related research areas concern cross- 
domain portability. Research directions towards more language- 
independent approaches for speech recognition are also being 
investigated[47, 32, 31] especially for acoustic modeling. 

3.   SPEECH RECOGNITION 
We briefly review the main components of the recognizer in a 
statistical approach commonly used for LVSR (Large Vocabu- 
lary Speech Recognition) [6], [27], [53] and discuss to what ex- 
tend these components are language-specific. The speech rec- 
ognizer has to determine the most probable word sequence w^ 
given the acoustic input xf: 

»?< ■■ arg max Pr(u>") Pr(o;1 \w") 

where w" is a sequence of n words each in the lexicon, 
n being a positive integer. The acoustic input xf is a feature 
stream, chosen so as to reduce model complexity while trying 
to keep the relevant information (i.e. the linguistic information 
for the speech recognition problem). While the use of language- 
dependent acoustic features has been investigated (see dedicated 
session of ICSLP'98) acoustic parameter extraction can be con- 
sidered as mostly language-independent. 

Pr(w) is to be provided by a language model, and Pr(x|tt>) 
by an acoustic model. The recognition decision is taken as a 
joint optimization of two terms: Pr(u>), the a priori probabil- 
ity of a word or a word sequence as given by the language 
model and Pr(x\w) the conditional probability of the signal cor- 
responding to the word sequence, given by the acoustic model. 
The output wf is a sequence of items from the vocabulary {«);}. 
Pronounced items which are not in the lexicon (referred to as 
out-of-vocabulary words or OOVs) are necessarily missing in 
the recognizer's output, and thus misrecognized. Hence the mo- 
tivation for maximizing lexical coverage by appropriate defini- 
tion and selection of the lexical items during training. 

• the acoustic model Pr(x| ID) 

Acoustic units generally correspond to subword units 
which when compared with word models, reduce the num- 
ber of parameters, enable cross word modeling and port- 
ing to new vocabularies in a monolingual context. For 
Hidden Markov Model (HMM) based systems acoustic 

modeling most commonly makes use of context-dependent 
(CD) phone units.1 Pr(x\w) is then obtained via a pro- 
nunciation lexicon, where each word tu; is described as a 
sequence of the appropriate phones: 

*W = ^ie^®...4 
Pr(x\wi) = Pr(x|$(W,)) = PrWi © 4>2 © ... <P'm) 

Consistent use of the different phone symbols in the lex- 
icon is probably the most important requirement in pro- 
nunciation generation. CD models allow for implicit coar- 
ticulation modeling within the acoustic model. Coartic- 
ulation due to the surrounding phones necessarily occurs 
for all languages and hence context modeling should be 
an effective approach for any language. As CI models 
merge all different coarticulation effects within the same 
model, they are more robust as compared to CD models. 
Separating coarticulation effects using an increasing num- 
ber of contexts results in a more accurate representation 
of the acoustic patterns. CD models, accounting for the 
phonotactic constraints of the language, are hence more 
language-specific than CI models. Concerning the acous- 
tic phone models (CI or CD) we have to be aware that they 
always best model the most frequently observed coartic- 
ulation effects of the training data. For training corpora 
with a low lexical variety, CI phone models tend to be- 
come word-dependent with possibly poor generalization 
abilities, both intra and inter language. 
Language-dependent CI models (and even recently 
context-dependent phone models [31]) have been experi- 
mented with for porting a recognizer to new languages. 
To overcome the problem of unobserved sounds when 
porting acoustic models to a new language, studies aim- 
ing at developing multilingual or language-independent 
acoustic phone models are undertaken both for speech 
recognition and language identification. Recent re- 
searches on language-independent acoustic phone models 
and cross-language adaptation can be found in [47, 32, 
31, 16]. These studies tend to demonstrate the viability 
of a language-independent acoustic modeling approach. 
Whereas it is important to be able to bootstrap a recognizer 
for a new language without prior acoustic models of that 
language, most researchers tend nonetheless to conclude 
that using a small amount of language-specific acoustic 
data either to train language-dependent models or to carry 
out a language-dependent adaptation, rapidly outperforms 
foreign language data. MLLR [37] and MAP adaptation 
techniques are used for adapting cross-lingual or multilin- 
gual acoustic models to the new language. 

the language model Pr(iu) 
Language models are used to model regularities in natural 
language, and can therefore be used in speech recognition 
to predict probable word sequences during decoding. The 
most popular methods, such as statistical n-gram models, 
attempt to capture the syntactic and semantic constraints 

'In some real-time systems context-independent (CI) phone 
units may be used in order to reduce the computation time and 
search space. 
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by estimating the frequencies of sequences of n words. 

The lexical unit, w,, can be considered the basic obser- 
vation for statistical language models. The extraction of 
wi units from text sources can be more or less straightfor- 

ward depending on the language (e.g. easy for English or 

French, difficult in Japanese: no spacing between words) 

Given a fixed amount of training data, less reliable lan- 
guage models (LMs) are usually obtained for highly in- 

flected languages (with large lexical variety) than for less 

inflected languages. The same observation can be made 

for agglutinative languages. In the latter case decom- 

pounding could be applied for lexical unit definition. Tok- 
enizations or text normalizations aimed at reducing lexical 

variety include some language-independent and a variable 
amount of more or less complex language-dependent pro- 

cessing [1, 24]. 

The effectiveness of N-gram LMs for a given language 
also depends on the validity of the approximation of cap- 

turing the language structure within sequences of N words. 
We know that the validity of this approximation is strongly 
language-dependent, and hence the N-gram modeling ap- 

proach will not give the same benefit to speech recogni- 
tion systems for all languages, even if no limit on available 

training data were imposed. 

• the decoder arg max;,»} 
The search space to be explored by the decoder is related to 
the lexicon size and the language model (LM) complexity. 

For a bigram LM the search space is proportional to the 

lexicon size. Pronunciation variants introduce additional 
entries in the search space. Computational requirements 

can be controlled by limiting LM size, lexicon size and 

pronunciation variants. 

A speech recognizer should meet the following require- 
ments to guarantee good performance. The vocabulary, the 
acoustic and language models have to achieve good cover- 
age during the system's operating conditions. The vocabulary 

should thus contain all or most words likely to appear during 
operation. This means that the out of vocabulary (OOV) word 

rate should be minimal. Acoustic models should be able to ac- 
curately model the vocabulary words. Context-dependent mod- 

els allowing for a high coverage of the vocabulary are likely 
to produce better results, than context-independent models or 
contextual models which are seldom observed during operation. 
Similarly language models should produce low perplexity dur- 
ing operation. The same criteria have to be met by multilingual 

systems. 

4.   MULTILINGUAL SPEECH RECOGNITION 

Ideally a multilingual speech recognizer is able to transcribe 

speech from different languages, thus identifying both the lan- 
guage used and the word sequence uttered by the speaker. 

Whereas language and word string can be identified in paral- 
lel (multi-lingual recognizer), a more effective way, at least for 
now, is to prior identify the language using a language iden- 
tification system on homogeneous acoustic segments, and then 
decode the word string with the appropriate language-dependent 

recognizer. 

Existing systems have been developed for specific domains 

and a restricted number of languages, requiring large amounts 
of annotated language-specific corpora. Without trying to be 

exhaustive, we can cite some examples of multilingual recog- 
nizer developments: the LE-Sqale project on read speech LVSR 

in English, German and French [35, 54], the DARPA Hub5 
program on conversational and multilingual speech LVCSR 
(Large Vocabulary Conversational Speech Recognition) over 

telephone [9, 12] using SWITCHBOARD and CALLHOME cor- 

pora. 

4.1.   Multilingual LVSR using read speech 

The aim of the EC SQALE project (Speech recognizer Quality 
Assessment for Linguistic Engineering) was to experiment with 

installing in Europe a multilingual evaluation paradigm for the 
assessment of large vocabulary, continuous speech recognition 
systems (LVSR) to assess language-dependent issues in multi- 
lingual recognizer evaluation. This project, running from 1993 
to 1995 gathered CUED Cambridge (UK), Philips Aachen (Ger- 

many), LIMSI Paris (France) and TNO Soesterberg (Nether- 

lands). 
In the SQALE project, the same system is being evaluated 

on comparable tasks in different languages (American English, 

British English, French and German) to determine cross-lingual 
differences. The recognizer makes use of phone-based contin- 
uous density HMM for acoustic modeling and n-gram statistics 

estimated on newspaper texts for language modeling. The sys- 
tem has been evaluated on a dictation task developed with read, 

newspaper-based corpora, the ARPA Wall Street Journal corpus 
of American English, the WSJCAMO corpus for British English, 

the BREF-Le Monde corpus of French and the PHONDAT- 
Frankfurter Rundschau corpus for German. Experimental re- 
sults under closely matched conditions are reported. The aver- 
age word accuracy across all 4 languages is about 85%, obtained 
for a 20k vocabulary open test (65k open test for German) on a 
multilingual test set where the OOV rates are kept comparable 
across languages (about 2% OOVs) Trigram LMs and context- 
dependent acoustic models were used (about 800 CD models for 
French and more than 2500 tied-state CD models for English 
and German). A similar recognizer was developed in Japan [42] 

using 180M business newspapers. With a 7k vocabulary and an 
appropriate 7k test set without OOV words, an 80% word ac- 
curacy rate is achieved using a bigram LM and about 700 CD 

models. 
In Tab. 1, lexical variety across different languages was in- 

vestigated for comparable amounts of text corpora2. Coverage 
figures of Japanese reported in [42] are very close to those ob- 
tained for Italian. Whereas English achieves the highest lexical 

coverage (close to 100% for a 65k vocabulary, German has the 

highest OOV rate of about 5%. For a given speech technology 
(e.g. a 65k system) better results can thus be expected for En- 
glish than for German. In German, a major obstacle to high lexi- 

cal coverage arises from inflected forms and word compounding 

2The newspaper text corpora compared are the Wall Street 
Journal (American English), Le Monde (French), Frankfurter 
Rundschau (German) from the ACL-ECI cdrom, // Sole 24 Ore 

(Italian), and Nikkei (Japanese). 
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language English Italian French German Japanese 
corpus WSJ Sole 24 Le Monde FR Nikkei 
#words 37.2M 25.7M 37.7M 36M 180M 
^distinct 165k 200k 280k 650k 623k 

5k cover. 90.6 88.3 85.2 82.9 88.0 
20kcover.% 97.5 96.3 94.7 90.0 96.2 
65kcover.% 99.6 99.0 98.3 95.1 99.2 

20k-OOV% 2.5 3.7 5.3 10.0 3.8 
65k-OOV% 0.4 1.0 1.7 4.9 0.8 

Table 1: Comparison of WSJ, II Sole 24 Ore, Le Monde , Frankfurter Rundschau and Nikkei text corpora in terms of number of distinct 
words and lexical coverage of the text data for different lexicon sizes. OOV rates are shown for 20k and 65k lexica. 

for which morphological decomposition could be effectively ap- 
plied. 

More recently within the German GLOBALPHONE project 
a multilingual read speech database comprising 15 languages 
(Arabic, Chinese, Croatian, English, French, German, Ital- 
ian, Japanese, Korean, Portuguese, Russian, Spanish, Swedish, 
Tamil and Turkish) has been collected. Using these data the 
University of Karlsruhe is working on a multilingual LVSR sys- 
tem [47]. Their research efforts focus on multilingual acous- 
tic modeling and fast bootstrapping of acoustic models for new 
languages. Speech recognition results have been obtained for 6 
languages (word error rates ranging from 10% to near 50%) us- 
ing 10k vocabularies. Closed test sets have been used by adding 
missing words in the vocabularies and assigning a low proba- 
bility to the corresponding monograms in the LM. The multilin- 
gual text material is yet too limited for reliable language model 
estimation. 

Experiments in multilingual read speech recognition indi- 
cate that good performances can be achieved across languages, 
provided that sufficient training material is available (10-100 
hours of speech, 50-200M of words). 

4.2.   Multilingual LVCSR using conversational speech 
The CALLHOME program [14] (part of the DARPA Hub5 pro- 
gram) was initiated in the US in 1995 in order to study con- 
versational speech between family members over long-distance 
telephone in a multilingual context. Corpora were recorded in 
English, Mandarin, Japanese and Spanish (with a variety of di- 
alects) during 1995, Arabic (colloquial Egyptian) and German 
during 1996. LDC provided the multilingual data to partici- 
pants. Word error rate results reported in 1997 range from about 
40% for English to around 60% for Spanish, Arabic, Mandarin 
and German. As stated by G. Zavaliakos [55], work on CALL- 
HOME Corpora has verified that current technology is largely 
language independent. The better results obtained in English 
can be related to relatively more training data available in this 
language and maybe a longer and more reliable expertise in En- 
glish system development. Nonetheless word error rates remain 
high across the different languages, significantly higher than 
those reported for read or prepared broadcast speech (around 
20% word error rates, Hub4 DARPA program). To measure the 
impact of mere speaking style on recognition results, by con- 

trolling speaker, channel and LM effects, an interesting experi- 
ment was carried out at SRI as reported in [14]. Conversational 
speech was recorded and then transcribed. The same speakers 
were then invited to read the transcriptions, imitating sponta- 
neous style and a second time in pure read style. Word error 
rates of about 50% for the true conversational style, drop to 
about 40% for the false spontaneous elocution, and to around 
30% for the read version. Conversational speech doesn't fit the 
spoken language modeling assumptions as well as read speech 
(see section 3.). This is particularly true for the articulated phone 
sequence assumption of the pronunciation lexicon. 

Results are consistently disappointing across languages for 
conversational speech. Whereas read or broadcast speech can be 
considered as normative to be understood by a large audience, 
familiar conversational speech spreads a larger variety of indi- 
vidual speaking styles. This may explain the discrepancy ob- 
served between performance in read and conversational speech. 
For the C ALLHOME languages about 15 hours of acoustic train- 
ing data and about 150k words for language model estimation 
were available. Vocabulary sizes ranged from about 10k to about 
20k [12]. Experience taken from conversational speech in En- 
glish (using Switchboard) shows that significant error reduction 
(i.e. better conversational speech modeling) can be achieved 
when moving from 15 to 150 hours of speech and from 150k 
to 2M words. 

4.3.   Multilingual Broadcast Transcriptions 
The DARPA-Hub4 program, introduced in 1995, concerns 
broadcast news transcription. 

Within the Broadcast transcription program, data collection 
and corpus design have become more efficient, as large amounts 
of news are constantly available. Corpus transcription and anno- 
tation standards [10] have been developed. Annotated corpora 
are easily created using freeware transcribing tools [7]. Human 
broadcast transcription/annotation can range from 10-50 times 
real-time. 

Whereas the main effort is centered on English sources, 
non English (multilingual) evaluations have been carried out for 
Spanish [25] and Chinese systems [56], demonstrating the fea- 
sibility for other languages. English best results are below 20% 
word error rate. Error rates on non-native speech (F5 condi- 
tion [48]) are higher for the corresponding native condition (F0), 
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but the F5 proportion remains low in the overall test sets. 
Automatically generated broadcast news transcripts can be 

used for indexing or document retrieval tasks (NIST SDR pro- 
gram). These research areas go in the direction of speech un- 
derstanding. The benefits of the Broadcast news task on speech 
recognition technology progress is discussed in [33]. 

In Europe the EC is also sponsoring research on multilin- 
gual broadcast transcriptions. As an example we can cite the 
LE4-OLIVE project launched in 1998, which aims to support 
automated indexing of video material by use of human lan- 
guage technologies and in particular multilingual speech recog- 
nition. The prime interest of the OLIVE users is to obtain 
an efficient, detailed and direct access to their video archives. 
The users in the OLIVE consortium are two television sta- 
tions, comprising ARTE (Strasbourg, France) and TROS (Hil- 
versum, Netherlands), as well as the French national audio- 
video archive, INA/Inatheque in Paris, France, and NOB, a large 
service provider for broadcasting and TV productions (Hilver- 
sum, Netherlands). Technology development and system imple- 
mentation involve: TNO-TPD (Delft), the project co-ordinator 
supplying the core indexing and retrieval functionality, VDA BV 
(Hilversum) building the video capturing software, the Univer- 
sity of Twente and the LT Lab of DFKI GmbH Saarbrücken, 
responsible among others for the natural language technology, 
LIMSI-CNRS (Orsay, France) and Vecsys S A (Les Ulis, France) 
developing and integrating the speech recognition modules, re- 
spectively. 

OLIVE is making use of speech recognition in English, 
French and German to automatically derive transcriptions of the 
sound tracks, generating time-coded linguistic elements which 
serve as the basis for text-based retrieval functionality. Confi- 
dence scores are associated with each hypothesized word to al- 
low further processing steps to take into account the reliability 
of the candidates. 

Taking advantage of the corpora available through the 
LDC, the speech recognizer! 18, 21] has been developed and 
tested on American English. The acoustic models are trained 
on 150 hours of transcribed audio data, with the language mod- 
els trained on 200M words broadcast news transcriptions and 
400M words of newspaper and news wire texts. Using broadcast 
data collected in OLIVE, LIMSI has ported its American English 
system to French. A port to German is underway. 

Experiments with 700 hours of unrestricted broadcast news 
data indicate that word error rates around 20% are obtained for 
American English. Preliminary experiments in French and Ger- 
man indicate that the word error rates are higher, which can be 
expected as these languages are more highly inflected than En- 
glish, and less training data are available. However, it has to 
be kept in mind, that for the purpose of indexing and retrieval 
a 100% recognition rate is not necessary, since not every word 
will have to make it into the index, and not every expression in 
the index is likely to be queried. Research into the differences 
between text retrieval and spoken document retrieval indicates 
that recognition errors do not add new problems for the retrieval 
task[28]. 

The broadcast transcription testbed is particularly rich in 
varying acoustic conditions, topics, domains and languages, 
with native and non-native speakers.   Significant progress in 

multilingual interoperability can be expected from research in 
broadcast transcriptions. 

4.4.   Portability 
Porting a speech recognizer to a new language consists mainly 
in the creation of the language specific acoustic models, pro- 
nunciation lexica and language models. As mentioned before 
the acoustic parameter extraction, the model estimation tech- 
niques and the search engine may be considered as language- 
independent. Porting can thus appear as a rather straightforward 
process, provided there are sufficient speech and text databases 
available, together with either a pronunciation lexicon or ap- 
propriate letter to sound rules for the pronunciation generation. 
In the previously described SQALE and CALLHOME programs 
multilingual resources were provided to the different partici- 
pants for system development. Porting efforts can then be lim- 
ited in time to a several months span. Much of the demonstrated 
progress in speech recognition and spoken language understand- 
ing over recent years has been fostered by the availability of 
large commonly used corpora for system training and evalua- 
tion in different languages. 

But these resources, while in constant increase are still 
lacking for many human languages. Especially in military and 
intelligence applications, interest in exotic languages may arise 
suddenly and the porting phase should span the shortest duration 
possible. 

4.4.1. Porting using language-dependent resources 
In the following we relate some of our experience from the 
SQALE project where our read speech recognition systems of 
American English and French have been ported to British En- 
glish and to German. Language-dependent resources (tran- 
scribed speech, text material and pronunciation dictionaries) 
were available to all partners. 

For German the acoustic models were bootstrapped using 
a mix of French and English models. German acoustic models 
were then estimated from the PHONDAT read speech database, 
available for research purposes from the University of Munich. 
Phondat contains a variety of prompt types including phonet- 
ically balanced sentences, a few short stories, isolated letters 
and train timetable queries. There are a total of 15,000 sen- 
tences from 155 speakers. Vocabulary items are rather limited, 
with only about 1700 different words and the prompt texts are 
quite different in style from the language model training mate- 
rial (taken from newspaper texts). Despite these relatively mis- 
matched acoustic data as compared to the read newspaper task, 
and despite the limited amount of distinct lexical items, good 
recognition performance could be observed for German. But we 
have to recall two important facts: first the German system used 
a 65k vocabulary to get acceptable lexical coverage, whereas for 
the other languages the systems were still using 20k vocabular- 
ies. Second the SQ ALE test sets were designed to achieve similar 
OOV% rates of about 2% for all languages: the OOV rate with a 
20k lexicon without OOV control on the test is 10% in German 
(2.5% in American English). The OOV problem could be re- 
duced by decompounding compound words, as was done for the 
numbers during text normalization. Decompounding is however 
a non-trivial task requiring a refined morphological analysis and 
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even sometimes semantic information. Many compounds can 

result in two and more items depending on the degree of mor- 
phological analysis carried out. For example consider the fol- 

lowing compound word occurring in the training texts: Bundes- 

bahnoberamtsrat (approximate translation: Federal-Rail-Head- 

Office-Chief). The following decompositions are possible and 
semantically correct: 
Bundesbahnoberamtsrat —¥ Bundes Bahn Ober Amts Rat 

Bundesbahnoberamtsrat -» Bundesbahn Ober Amtsrat 

Bundesbahnoberamtsrat -¥ Bundesbahn Oberamtsrat 
Other decompositions such as: 
Bundesbahnoberamtsrat^ Bundes Bahnober Amtsrat 

are possible, but semantically poor. This example clearly illus- 

trates that word compounding in German constitutes an OOV- 
source, as long the recognition system considers a word to be an 
item occurring between two spaces. 

German system development would have taken benefit 

from a reliable morphological analyzer, both for the quality of 

the vocabulary (better coverage) and for the LM (more data to 

estimate Ngrams). As mentioned before even the pronunciations 

could have been improved, as a lack of consistency may occur 

when a given morpheme is observed in a long list of compounds. 

To conclude here we can say that porting to a new language 

can be very fast if all resources are available. A baseline system 

can then be produced in a short delay. In a second step de- 

velopments can be carried out to better account for language- 
specificities: typical pronunciation variants, regional accents, 
stemming, decompounding for agglutinative languages..., Here 
years can be spent to move away from a baseline performance. 

4.4.2. Lacking training data for the new language: cross- 

lingual approaches 

A tentative definition of cross-lingual modeling can be the fol- 
lowing: resources from one or multiple source languages are 
used to estimate models for a new target language. Cross-lingual 
approaches can apply for acoustic phone modeling as similar 

sounds are often shared across different languages. A relatively 
large number of research actions aim at defining multilingual 
or language-independent acoustic model sets [47, 32, 31]. The 
availability of language-independent acoustic models reduce the 
problem of lacking acoustic data in the target language. 

For lexical and language modeling however language- 
dependent resources remain mandatory, at least at the present 
state-of-art. Progress may be achieved through research areas 
comprising machine translation, multilingual indexing, speech 
understanding. 

The problem of insufficient training material is addressed 
in [55]. According to this author the dominant factor with re- 

spect to performance is the amount of training data available. 
The author proposes to use the automatically transcribed test 
data of the new language to adapt the acoustic models to the 
new language. The proposed method shows a slight but consis- 
tent gain in word accuracy when using a subset of automatically 

transcribed data, selected using a confidence measure criterion, 
to adapt acoustic and language models. 

5.   CONCLUSION 

We can consider that present recognition systems are potentially 

multilingual, as the same family of methods and algorithms ap- 
ply for developing recognizers in a large variety of languages. 

Depending on the level of spoken language representa- 

tion, a more or less important language-dependency is observed. 
Whereas the acoustic parameter front-end can be considered as 
mostly language-independent, words and their pronunciations 
are completely language-dependent. Successful porting to a new 

target language then requires appropriate language-specific re- 
sources, among the most important are text material and pro- 

nunciation lexica. The availability and size of these resources is 
significantly linked to the final recognizer's performance. De- 

veloping multilingual resources is expensive, even if dedicated 
tools exist and speed up the transcription and annotation pro- 

cess. Porting an ASR system to a new target language requires 
as minimum resource text material for language modeling and 

pronunciations for the vocabulary. Baseline performance can 

then be improved either by increasing the volume of training 

material and/or by adding language-specific knowledge in the 

various components [52], Cross-domain research remains an 

important area, to ensure reusability of these resources when 

moving to new application domains and to increase ASR inter- 

operability. To overcome the problem of insufficient or missing 

data researchers are developing interpolation methods to com- 
bine corpora. Language specificities, when accounted for prop- 
erly, will contribute to optimize the recognizer's performance 
for the new language. 

Other research directions concern more language- 
independent approaches for speech recognition, and more 
specifically for acoustic modeling. The IPA phone sym- 
bol set can theoretically be used to train a collection of 
language-independent acoustic phone models covering all 
possible sounds. Language-independent approaches are being 
investigated [47, 32, 31], and have shown a certain success 

in porting systems to new languages. Language-independent 

models have proven useful in bootstrapping recognizers for a 
new language. Comparative studies show that a small corpus of 
language-specific acoustic data (1 hour) then rapidly allows to 
train or adapt better acoustic models [31 ]. 

Lexical modeling comprising the definition of the recog- 
nizer's vocabulary (word list) with corresponding pronuncia- 
tions rely on completely language-dependent resources. Vocab- 
ularies are often chosen as frequent words occurring in training 

text corpora which also ensure a good coverage of the appli- 
cation. To overcome a lack of target text corpora for vocab- 
ulary definition, bilingual (multilingual) dictionaries can con- 
tribute to port vocabularies from source to target languages. 

But language-dependent resources are necessary for word level 
modeling (target language text corpora or multilingual dictio- 
naries, letter to sound rules ...). Statistical language modeling 
for a new target language generally requires huge amounts of 
text corpora. New challenging research directions joining the 
domains of machine translation and cross-language information 
retrieval may contribute in increasing multilingual interoperabil- 
ity in the future. 

Multilingual interoperability in automatic speech recogni- 

tion can be seen as a goal, as a guiding principle to orient 



75 

research away from purely language-dependent towards more 
language-independent questions. This is an important goal to 
strive for. As the number of written languages remains rela- 
tively low, we can imagine having baseline resources available 
for a large proportion of written languages in a near future. 
An important research issue then consists in defining and de- 
veloping these resources and generic corpora, which allow for 
easy adaptation across domains and languages. The availability 
of these resources for a large proportion of the spoken/written 
languages will allow to judge the multilingual capabilities of 
present speech recognition technology. As underlined by V. Zue 
in his keynote paper of Eurospeech'97 [57], real deployment 
of spoken language technology cannot take place without ade- 
quately addressing this problem of portability. 
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ABSTRACT 

The paper describes a method for dealing with multilingual 
vocabularies in speech recognition tasks. We present an approach 
that combines acoustic descriptive precision and capability of 
generalization to multiple languages. The approach is based on 
the concept of classes of transitions between phones. The classes 
are defined by means of objective measures on acoustic 
similarities among sounds of different languages. This procedure 
stems from the definition of a general language-independent 
model. When a new language is to be added, the phonological 
structure of the language is mapped onto the set of classes 
belonging to the general model. Successively, if a limited amount 
of language-specific speech data becomes available for the new 
language, we identify those sounds which require the definition 
of additional classes. The experiments have been conducted in 
Italian, English and Spanish languages. The method can also be 
considered as a way of implementing cross-lingual porting of 
recognition models for a rapid prototyping of recognizers in a 
new target language, specifically in cases whereby the collection 
of large training databases would be economically infeasible. 

1.    INTRODUCTION 

The design of an Automatic Speech Recognition system for 
flexible vocabularies requires the definition of an inventory of 
acoustic-phonetic units reflecting the phonetic and phonotactic 
structure of a language with the maximum degree of precision 
compatible with the constraint of statistical trainability of the 
units. A commonly adopted approach consists in modeling 
allophones by specifying the phonetic context in which a given 
phone may appear. The context can extend as far as non adjacent 
phones ([10]); syllables have been considered as an alternative 
model, but the larger cardinality of this model - a few thousands 
of units - prevents from a practical and viable implementation of 
this approach, even if it shows the benefit of an implicit 
representation of coarticulation effects. A different method is 
based on stationary-transitory units [7], where an explicit model 
is given to transitory segments between two adjacent phones. The 
higher is the degree of detail in the set of units, the higher is the 
precision of the model, but the difficulty in the training stage 
increases correspondingly due to the larger number of units to be 
trained. For instance, the full coverage of the Italian language in 
terms of triphones would imply the adoption of an inventory of 
7-8 thousands of units, and each of them should appear at least a 
few tens times in the training corpus to provide enough statistical 
strength. Transitory-stationary units can be considered as a nice 

compromise between precision and trainability, because their 
cardinality is limited to a few hundreds, even if they allow to 
represent all the most relevant phonotactic phenomena. All these 
factors are enhanced when we consider the dimension of 
multilinguality. In this paper we try to give an answer to two 
questions: 
1) how to design a multilingual recognizer for applications 

requiring the activation of vocabularies including words 
belonging to several languages; this happens, for instance, 
in automated vocal access servers providing information on 
international travel or finance services; 

2) how to exploit such a multilingual model in the 
"interpolation" of a recognizer in a new language, 
accounting for the similarities of sounds of the target 
language with respect to the sounds of each language of the 
multilingual model. The goal here is to base on the 
robustness and richness of the multilingual model, avoiding 
the burden of collecting several thousands of utterances 
from hundreds of native speakers in the target language. 
This goal clearly impacts the economy of ASR design in 
applications requiring efficient procedures for cross- 
language transfer of speech technology. 

This research follows two major guidelines: 
1) Deployment of cross-language similarity metrics among 

acoustic-phonetic units, obtaining hierarchies of 
multilingual sounds; 

2) Introduction of the concept of class of transitory unit. 

Several different techniques have already been developed for 
cross-language portability of speech recognition models. In most 
cases, the starting point is represented by the search for 
similarities among sounds of different languages. After the 
pioneering work by Wheatly and al. [1] and the introduction of 
the concept of poly-phonemes [2], experimented with four 
European languages (Dutch, British English, German and 
Italian), several other approaches followed where different 
combinations of acoustic density clustering and cross-language 
phonetic lexica mappings were designed and experimented. In 
[3], we presented an approach similar to [4], and we developed a 
context-independent multilingual phoneme inventory covering 
Italian, English, Spanish and German, based on a combination of 
HMM (Hidden Markov Model) distance measures introduced to 
compute similarities of acoustic-phonetic units belonging to 
multiple languages. We also showed how these similarities can 
be   exploited   to   interpolate   acoustic   models   for   a   new, 
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undertrained language. In [5] a language-independent approach 
was attempted, by combining up to eight languages in a global 
set of polyphones and then by using this model for cross- 
language transfer purposes. The procedure performs well in the 
target language, but the large size of the phonetic unit inventory 
(a few thousands) is an obstacle to a full generalization of the 
approach towards the direction of language independence. In this 
paper, we extend the method presented in [3] to transitory units. 
In [9] a bilingual Italian-German recogniser was investigated, 
where results from different adaptation schemes are reported. 

2. THE METHOD 

2.1 Transitory units 
Stationary and Transitory units [7] explicitly represent the 
central, more stable section of phone realizations and the 
transition from one phone to the adjacent one. For instance, in 
Italian, the word "bene" ("well"), lb'en el, is transcribed as 

# #b b b'e 'c 'en n ne e e# # 

where odd components represent stationary events - # is the 
silence - and even components represent transitions. #b and e# 
are the positional units at the beginning and at the end of the 
word. In this case, for instance, b is the voice bar and b'e 
represents the transition to the following front vowel. This 
structure has proven to perform well as far as all the units in the 
inventory can be properly trained. It may happen that the 
occurrence frequency of some units is below a minimum 
threshold in a given language-specific training database; in this 
case those units would be undertrained. In fact, the minimal 
statistical coverage requirement can be challenged by the 
scarceness of data for rare sounds. Furthermore, this drawback is 
highly emphasized when we look for a global model suitable for 
multiple languages. 

In our method, phones are classified in classes, similar 
sounds are merged into one class, then these classes are used to 
build up the set of phone-to-phone transitory classes. Resuming 
the previous example, the word "bene" can be transcribed as 

SL SLVP b VPFV 'e FVNA n NAFV e FVSL SL 

where SL, VP, VF, FV and NA correspond to "silence", voiced 
plosive, front vowel and nasal phonetic classes. In [3], the 
acoustic model was based on context-independent units, 
therefore all the sounds whose cross-language distance resulted 
to be below a given threshold were merged into a single class. In 
the method presented in this paper, classes are introduced only 
for transitory units. Stationary units are not clustered because 
they convey the information on the lexical identity of a word. 
The phonological structure of a given language is preserved, and 
it is therefore maintained in the multilingual inventory of units. 
Small classes of transition units preserve a higher degree of 
acoustic precision than large classes, but reduce the compression 
factor of multilingual inventories because fewer units are merged 
into a single transition class. An optimal trade-off between 
average size of classes and accuracy of acoustic modeling has to 
be found in order to guarantee a specified level of statistical 
robustness - trainability - of units without loosing too many 

details in the model. 

2.2 Classes of transitions 
Several models were tested according to the design criteria 

described in the following. We started developing monolingual 
inventories, then moved to the multilingual case. In the 
monolingual experiment, we developed two types of unit sets for 
each of the three languages. 
• Basic class set, corresponding to the classical 
taxonomy of consonant and vowel sounds: voiced and unvoiced 
plosives, nasals, laterals/vibrants, voiced an unvoiced fricatives, 
affricates; front, central and back vowels. This method produced 
the inventories en-170, it-114, sp-140 for English, Italian and 
Spanish respectively. 
• Improved class set, designed according to similarity 
measures computed on the HMMs of phones in each language. 
Measures were based on a metrics introduced in [3], where up to 
five different algorithms are applied to compute the acoustic 
similarity of the sounds of a language. The phone hierarchy 
derived from this computation is represented by a dendogram. 
The data-driven method is as follows: for a given transition of 
type xy, the corresponding transitory class is identified by 
combining the information provided by the dendogram of both 
left (x) and right (y) constituent phones. In this stage, the absolute 
values of distance measures are taken into account. Two specific 
classes were introduced for the closure section of plosives 
(silence or voice bar). The generation of the improved class was 
carried out in two successive steps. In a first step, the procedure 
was separately performed for each language and the 
corresponding HMMs for the transitory and stationary units so 
obtained were trained. In a first stage, for the English language, 
we designed the transitory unit classes according to a priori 
phonetic criteria, and generated the set en-363-mon. This model 
was therefore similar to model en-170-mon, but resulted in a 
finer and more detailed phonetically motivated distinction of 
classes. Since this model did not yield satisfactory improvements 
in recognition performance, we moved to the data-driven 
approach, which produced the set en-358-mon-dd. The other two 
data-driven inventories for Italian and Spanish were it-220-mon- 
dd and sp-269-mon-dd respectively. Finally, we obtained the 
global inventory for the multilingual, multivocabulary model: 
mul-670-mul. It consisted of the combination of the three 
language-specific sets where classes of different languages, 
representing cross-language sounds which could be clustered 
according to the distance measures, were unified. Also closure 
silences and voice bars were unified across the languages. This 
cross-language unification operator is represented by the symbol 
ffi in the following formula: 

mul-670-mul=en-358-mon-dd& it-220-mon-dd® sp-269-mon-dd 

3. EXPERIMENTS 
3.1 Speech Databases 
Training and test databases used in the experiment consisted of a 
portion of the SpeechDat databases [8] for Italian and Spanish, 
while the training English component was collected by CCIR- 
University of Edimburgh. The size of the databases is given 
Table 1. Two test data sets were used for English: one from 
SpeechDat and the other one from CCIR. 
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ENG ITA SPA 
Train. Test Train. Test Train. Test 

#utt. 34400 1797 12800 1050 5174 1730 

Table 1. Training and Test corpora. 

3.2 Initialization of transitory HMMs 
Two different bootstrapping methods for transitory units were 
implemented: coarse (c) and fine (f) initialization. With c- 
initialization, the left state of a transitory unit is given the density 
function of the rightmost state of the context-independent HMM, 
represented by a left-to-right, three state topological structure, 
corresponding to the left component of the transitory unit. The 
same process is followed for the right state of the transitory unit. 
Stationary units are assigned the density function of the central 
state of the corresponding context-independent model. With f- 
initialization, a Viterbi segmentation of training data is 
performed using the context-independent three-state models. 
Acoustic sequences, segmented by the rightmost state of the 
HMM that correspond to the left component of a transitory unit, 
are assigned to the left state of this unit; a similar relationship 
holds for the right state and for the stationary unit. Finally, all 
segments insisting on a given state are processed by a clustering 
procedure to derive the Gaussian mixture of the state. The 
process is iterated on all states of the transitory/stationary unit 
inventory. Since the segmentation is consistent with the 
phonotactic constraints (e.g. the leftmost state of transition xy is 
associated to segments of the rightmost state of phone x only in 
contexts where the successive phoneme is y), it results in a more 
precise bootstrap representation of the transitory/stationary units. 
Anyway, f-initialization requires longer computing time than c- 
initialization. 

3.2 Experimental results 
Continuous Density HMMs of acoustic-phonetic units were 
trained by the K-means algorithm. Each HMM state was 
represented by a variable mixture density function with up to 32 
Gaussians per mixture. The Viterbi decoder generated the N-best 
scored hypotheses with beam search acceleration. English was 
the working language for tuning and testing the method; the 
optimal choices were then extended to Spanish and Italian. 
Finally the multilingual unit inventory was generated. The 
multilingual tests were performed on a 535 words vocabulary 
(475 Italian, 30 English and 30 Spanish). A separate test set for 
English consisted of a list of 300 railway and underground 
stations. 

3.2.1 Monolingual experiments 
The baseline model for English was en-170-mon. We tried both 
c- and f-initialization. Since the latter performed significantly 
better than the former - Word Recognition rate (WR) of 92.14 
compared to 91.59 - we decided to adopt f-initialization in all the 
successive experiments. The next model, en-363-mon, which 
included quite a larger amount of phonetic knowledge (Section 
2.2), brought about only a limited improvement in recognition 
performance, 7% of Error Reduction rate (ER). Then we moved 
to the next model, where the new source of information, the 
distance metrics, was taken into account in the definition of the 

inventory of phonetic class transitions. Several different 
mappings of phones to classes were induced by this procedure. 
Table 2 shows the different allocation in classes for plosive and 
some fricative/affricate sounds. The new model significantly 
outperformed the previous one (WR = 94.21, ER = 20.7), 
indicating that data-driven criteria can be exploited in the 
optimization of this type of acoustic-phonetic units. 

en-363-mon en-358-mön-dd 
dt dt 
Pb pk 
ke e 

b 
r3d3 rtrds 
tf 3 

Table 2. Different partitions of English sounds in classes. 

The method was applied to Spanish and to Italian 
languages; this time we directly applied the distance criteria. The 
error reduction observed with respect to the baseline models was 
38.9% for Spanish and 38.8% for Italian (Table 3). 

ENG en-170-mon en-363-mon en-358-mon-dd 
WR 92.14 92.70 94.21 
SPA sp-140-mon . sp-269-mon-dd 
WR 95.55 > 97.28 
ITA it-114-mon , . it-220-mon-dd 
WR 84.54 - 90.54 

Table 3. WR performance of different models. 

3.2.2 Multilingual experiments 
The multilingual phonetic inventory mul-670-mul designed 
according to the method presented in Section 2 was trained by 
means of the super-corpus obtained by merging the English, 
Italian and Spanish training corpora. An example of cross- 
language alignment of sounds is given in Table 4 for some nasal 
consonants. 

■■"! J.ENG :   '; ITA SPA ■■: 

NA Class mnn mn mn.n 
GNI Class Ji 

Table 4. Classes for nasal sounds. 

Interestingly enough, the Italian sound ji is not assimilated 
to the corresponding sound in Spanish, but it is left apart as a 
single member phonetic class. 

These models were tested in two different modes: 
monovocabulary and multivocabulary. In the former mode, the 
test was carried out separately for each language. In the latter 
mode, all the words of each of the monolingual test vocabularies 
were merged in a global test vocabulary. The aim of this test was 
twofold: to probe the preservation of language-specific accuracy 
of the multilingual models and to evaluate the extent these 
models might support a multilingual vocabulary recognition task. 
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IC 

UMonovoc. 

■ Multivoc. 

Fig.l. WR performance of mul-670-mul multilingual models. 

Results are given in Fig. 1. 
The test in Spanish privded a significantly better result than 

the corresponding monolingual model (98.44 WR compared to 
97.28). This effect was explained in terms of a greater robustness 
of multilingual models than the monolingual models, and it was 
specifically observed in the test with Spanish utterances. In fact 
the multilingual models took advantage of the larger size of the 
multilingual training set, and the Spanish language included the 
smallest language-specific training corpus of the three languages. 
The tests in the other two languages did not show relevant 
deviations from the results observed with the corresponding 
monolingually trained models. The result was WR = 95.23, 
which is consistent with the figure of 94.68 which was obtained 
with language-specific models. 

A second series of tests was designed and carried out aiming 
at evaluating the capability of the multilingual models to 
strengthen the recognition models of a poorly trained recogniser. 
To this purpose, we selected a portion of about 10% of the 
training set for Spanish, taking care of including a balanced 
proportion of male and female speakers. The resulting subset 
consisted of 517 utterances. WR results are reported in Fig.2. 
This test clearly points out the effect of strengthening of models 
for the Spanish language due to the contribution of the training 
material of the other two languages. 

The approach is being evaluated in a cross-language 
recognition model transfer task involving the Rumanian 
language. The HMMs of the unseen language will be interpolated 
by mapping their phonological structure onto the multilingual set 
of acoustic-phonetic units described in the paper. In this case, 
since no acoustic data is available in the target language, also the 
stationary components will have to be bootstrapped from the 
stationary constituents of the multilingual model. Eventually the 
HMMs for the new language will be improved by including a 
limited portion of Rumanian utterances in the multilingual 
model. 

4.    CONCLUSIONS 

A method for designing multilingual acoustic-phonetic 
models for automatic speech recognisers has been presented. The 
approach extends the concept of phone-to-phone transitions in a 
given language to multiple languages, where similar sounds are 
represented by a class of transitions. The procedure increases its 
efficiency and generality as new languages are added to the 
model. Experiments with a three-lingual recogniser for English, 
Spanish and Italian languages outline the capability of the model 

95 ■ 
94 

IE   93 - 
5   92 

90 - 
89 - 

sp-269-mul                   training 557 uttrs. 

Fig.2. Strengthening of Spanish models. 

of combining acoustic precision and generalization towards the 
direction of language independence. The approach is being 
experimented in a cross-language transfer of acoustic-phonetic 
knowledge for the Rumanian language. 
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ABSTRACT 

In this study we present approaches to multilin- 
gual speech recognition. We first define different ap- 
proaches, namely portation, cross-lingual and simul- 
taneous multilingual speech recognition and present 
results in these approaches. In recent years we have 
ported our recognizer to other languages than Ger- 
man. Some experiments presented here show the per- 
formance of cross-lingual speech recognition of an un- 
trained language with a recognizer trained with other 
languages. Our results show that some languages like 
Italian are per se easier to recognize with any of the 
recognizers than other languages. The substitution 
of phones for cross-lingual recognition is an impor- 
tant point and we compared results in cross-lingual 
recognition for different baseline systems and found 
that the number of shared acoustic units is very im- 
portant for the performance. 

1.    INTRODUCTION 

Over the years we have studied speech recognition 
and speech understanding systems in German, and as 
more and more multilingual applications are needed, 
the ISADORA system was also used for multilingual 
speech recognition [1, 8]. 
The need for multilingual speech recognition appli- 
cations has risen for example by the growing inter- 
nationalism like within the European Community or 
in telecommunications. Thus, applications are devel- 
oped for recognition in a new language, for example 
dictation systems are ported to a new language or 
information systems are developed for e. g. tourist 
information at airports and train stations which have 
to be able to understand a couple of languages. 
When developing a recognition system for a new lan- 
guage either exclusively for the new language or for 
the new language in addition to existing languages, 
the recognition system optimized for the first lan- 
guage has to be adapted to the characteristics of the 
new language. 
During this process, mainly data like the vocabulary, 
acoustic parameters, language models, and the dialog 
structure have to be adapted. Most of these adapta- 
tions have already been performed before, e. g. when 
porting a system to a new domain. One topic is still 
specific to the portation to a new language: the defi- 
nition and the use of acoustic units. If the recognizer 
is completely rebuilt for a new language with training 
material of that language, the definition of new acous- 

tic units arises from the pronunciation of the words in 
the vocabulary, but when there is not sufficient train- 
ing material available for the new language or when 
two languages are recognized at the same time, the 
acoustic units of the old and the new language have 
to be set in relation. This problem and solutions to 
it will be the central aspect in this contribution. 
In the following, we will cluster approaches of mul- 
tilingual speech recognition in order to provide clear 
definitions for the different approaches and describe 
characteristics of these approaches. Then we will 
shortly describe the available data material for our 
experiments and present different strategies of phone 
substitution during the transition of languages. We 
will present experiments and results for different ap- 
proaches of multilingual speech recognition and phone 
substitution techniques. 

2.    DEFINITIONS 

When looking at the approaches made in multilin- 
gual speech recognition, we find that they may be 
clustered into three groups depending on the ap- 
plication goal and available data, namely porting, 
cross-lingual recognition and simultaneous multilin- 
gual speech recognition. 
When a speech recognition system developed for one 
language is used for recognition in another language, 
we speak of porting. This step is similar to that of de- 
veloping an application in a new domain of the same 
language. The vocabulary and the acoustic units have 
to be defined for the new language. Special attention 
must be paid to characteristics of languages like ho- 
mophones or compound words and other characteris- 
tics affecting the recognition process. For these char- 
acteristics, algorithms have to be found that can cope 
with these new problems. The system is then trained 
with data of the new language. This approach can be 
found for example in [2, 3, 11]. 
Another approach follows the same application goal 
as the approach above with the only difference, that 
there is not sufficient training material available in 
the new language. Thus, for cross-lingual recogni- 
tion methods must be found to use training material 
of another language for a rough modeling of acoustic 
parameters and only to perform an adaptation with 
few data of the goal language. One main problem is to 
determine identical acoustic units or to model exist- 
ing acoustic units in a way that with few adaptation 
data a good recognition can be provided. Approaches 
of this kind can be found for example in [4, 7]. 
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The third cluster of approaches is that of simultane- 
ous multilingual recognition . Applications of this ap- 
proach allow utterances of different languages at the 
same time for the same recognition system. There 
are a two main strategies for this approach: firstly, to 
perform some kind of language identification and per- 
form then monolingual recognition or to have only one 
recognizer that distinguishes in some way between the 
languages. For this latter strategy, identical acous- 
tic units may be used across the languages or com- 
pletely different acoustic units as well as sets of mono- 
and multi-lingual acoustic units. Also, for language 
modeling, it may be determined between multi- and 
monolingual language modeling, which also means 
that transitions between languages are allowed or not. 
Approaches for simultaneous speech recognition can 
be found for example in [1, 8, 10]. 

3.    DATA BASES 

The data used in our experiments result from three 
projects: the EU project SQEL (Spoken Queries 
in European languages), the EU project SPEEDATA 

(Speech Recognition for Data-Entry), and from the 
BMBF project VERBMOBIL. 

The SQEL project covers the languages Slovak, 
Slovenian and Czech in an information system for 
train and flight time tables. The SPEEDATA project 
covers the languages Italian and German, both spo- 
ken by dialect and non-natives speakers. The task of 
the project is the entry of land register data in the 
bilingual region of South Tyrol in the original lan- 
guage, thus the rate of non-native speech will always 
be around 50 percent. The VERBMOBIL project deals 
with date scheduling among humans in Japanese, En- 
glish and German including automatic translation 
among the languages. 
An overview on the training data used from these 
projects is given in Table 1. With these data, we 
cover seven languages (German (Gl, G2) , Ital- 
ian (It), Slovak (Sa), Slovenian (Se), Czech (Cz), 
Japanese(Jp), and English (En)), while German is 
covered twice. The German data assigned with Gl 
result from the SPEEDATA project and contain di- 
alect and non-native speakers whereas the data set 
G2 from the VERBMOBIL project covers only native 
German speech. 

Language Gl It Sa Se 
Data/hours 
Distinct vocabulary 

8.6 
5455 

7.6 
6748 

5.1 
1061 

6.1 
955 

Cz Jp En G2 
Data/hours 
Distinct vocabulary 

7.2 
1323 

27.4 
3207 

9.6 
2157 

28.5 
7444 

Table 1. Acoustic data for each language 

The data consist of spontaneous speech for most of 
the languages, only for Gl and Italian read speech 
was recorded. Due to the high amount of non-natives 
and dialect speakers who often try to speak the stan- 
dard language there are a couple of hesitations and 
corrections. 
The size of the vocabulary differs much among the dif- 
ferent tasks and languages. The smallest vocabulary 

size is observed for the train/flight information do- 
main with around thousand words per language. For 
the other domains, land register data-entry and date 
scheduling the vocabulary is higher and varies among 
2000 and 7000 words depending on the language. For 
the experiments we tried to limit the recognition vo- 
cabulary to a smaller and equal size for all languages 
in the experiments without language modeling, but 
left the original size of the lexicon for the experiments 
with language models. 

4.    PHONE SUBSTITUTIONS 

Each language has its own characteristic set of pho- 
netic units, and from the phones, different phoneme 
systems may be built. For example, in Japanese, no 
distinction is made between /r/ and /l/ and they 
would thus belong to the same phoneme class in 
that language, whereas in other languages they are 
phonemes classes on their own since a semantic dif- 
ference occurs such that words get a new meaning 
when e. g. /r/ is replaced by /l/. Some sounds are 
also unique to some languages, for example the vowel 
IYI appears within these languages only in German. 
If recognition is performed for German with a rec- 
ognizer that was trained with other languages, the 
sound IJI must be modeled although it was not repre- 
sented in the training material. Thus, the parameters 
of /y/ must be estimated from other vowels like /I/. 
Sometimes there is the same symbol used for sounds 
of different languages, but the acoustic properties dif- 
fer for these sounds. When recognizing multiple lan- 
guages simultaneously, it may thus be reasonable to 
share some sounds across languages and to stay with 
monolingual units for other sounds. 
Thus, for both approaches of cross-lingual and simul- 
taneous multilingual recognition, relations and simi- 
larities among sounds of different languages must be 
found. 
In general, we can distinguish between a 1:1 mapping 
of phones between languages and a n:l or l:m map- 
ping of phones, which would mean that for example 
the parameters of /y/ are estimated as e. g. the mean 
values of /I/ and /u/. In this work we will refer to the 
first strategy of a 1:1 mapping. In a rough classifica- 
tion, we distinguish among three different approaches 
within the 1:1 mapping. 

na(t)ive approach: this approach follows the prin- 
ciple a non-native would follow when speaking a 
second language: he basically has the phonetic 
inventory of the first language and partially uses 
that inventory when speaking the second lan- 
guage. Some of the new phones can be learnt 
by a language learner, but they are not always 
pronounced correctly, and under stress condition 
or within difficult words a non-native may fall 
back to his native phonetic inventory. For exam- 
ple Japanese speaking English or German often 
confuse the use of /r/ and /l/. 

phonetic approach: this strategy follows principles 
in the production of sounds in the human vocal 
tract. These characteristics for the production of 
sounds can be classified into place and manner 
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of production, where the first describes, where 
obstacles are put in the air flow and which organs 
are involved in the production of sounds, and the 
second one describes the manner in which the 
obstacles act, e. g. a complete or partial closure 
of the air flow. 
Thus, for consonants it can be distinguished 
with regard to the manner among stop- 
fricative-approximant-lateral-rhotics and others 
and for the place between labial-dental-alveolar- 
palatal-velar-alveolar and others. Another crite- 
rion is the voicing of consonants which can be 
either voiced or unvoiced. For vowels, differ- 
ent tongue positions are distinguished like front- 
central-back, and for the opening of the mouth 
among close-close-mid-open-mid-open as well 
as between rounded and unrounded for the shape 
of the lips. 
The difference between consonants is clearer 
than between vowels, e. g. a plosive has a com- 
plete closure, while others do not have a complete 
closure, and there is no sound between e. g. a 
plosive and a fricative. For vowels, the position 
of the tongue can gradually change and there are 
transitions between a front and a central vowel, 
so the distinction and classification of vowels can 
be more difficult. 
For the substitution of sounds in this approach, 
that sound that agrees in the most phonetic fea- 
tures with the untrained one is taken instead of 
the unknown one of the goal language. For ex- 
ample, /p/ (plosive, labial, unvoiced) may be re- 
placed by /b/ (plosive, labial, voiced) or by /t/ 
(plosive, dental, unvoiced). Some hierarchy has 
to be built in order to define which of the criteria 
will be changed first. 

data-driven approach: this approach determines 
the similarity among phones with the data given 
by the trained recognizer. This approach is only 
possible if there is training data available for the 
new language, i. e. some adaptation data or for 
the case of simultaneous multilingual recognition 
for the decision if acoustic units should be joined. 
Measures for the similarity can e. g. be estimated 
from the Gaussian densities or the codebook pa- 
rameters of a trained recognizer. Therefore a 
recognizer must be trained with all languages, 
and for all observations of a language-dependent 
sound the similarity parameters like mean val- 
ues must be estimated and then according to a 
distance measure the most similar units may be 
joined. This merging of units can happen in one 
or more steps and it may also be allowed to split 
units. The advantage of this approach is that 
there is no human knowledge or manual work 
necessary to estimate similarities, but the dis- 
advantage may lie in an exact determination of 
the segmentation of the speech signal into sounds 
and consequently an error prone measure for sim- 
ilarities among sounds. 

The phonetic description of consonants separates bet- 
ter into classes while measures for the classification 

of vowels correlate with formant frequencies and of 
these formant frequencies every compromise between 
two vowels of, say, 500 and 600 Hertz is possible and 
thus really different sounds may occur. On the other 
hand, this characteristic may make it easier to calcu- 
late the parameters of sounds by mixing sounds which 
would average in the same formant frequency. 
Another decision is the type of acoustic units that 
will be used for the target recognizer, especially if 
the units ought to be mono- or multilingual. For ex- 
ample, to decide for n available languages each con- 
taining the sound /a/, if the sound /a/ for the target 
language (without own training material) shall result 
from one /a/ of a language or from a mixture of a 
certain number of /a/'s. With substitution approach 
1 and two, the multilingual units may be trained to- 
gether, and with approach 3 it may be determined 
according to the data if all or only a couple of /a/'s 
shall have an influence on the modeling of the new 
/a/. 
Comparing the results of these different strategies for 
phone substitution it can be found that approaches 
1 and 2 are quite similar, of course depending on 
the priorities set for substitution to manner or place 
in approach 2. Differences occur mostly when the 
orthography proposes the pronunciation of another 
native sound than the similarity according to acous- 
tic features would propose it. For example, in the 
na(t)ive approach, /u/ may be replaced by /U/ ac- 
cording to the same orthographic spelling [u] rather 
than to the possibly phonetically closer /o/ if the cor- 
responding criterion is chosen. 
Approach 3 is only possible if a certain amount of 
data is available for all languages; in general it is used 
for the design of multilingual acoustic units. Errors in 
this approach can occur if there is not sufficient data 
available for each language and thus the parameters 
have not been well estimated. Another source of error 
for the third approach may be given when the label- 
ing of the speech material according to acoustic units 
is not completely correct, e. g. with automatic seg- 
mentation. Sometimes, silence is assigned to a certain 
sound and changes this way the statistic properties of 
this sound. 
Another source for errors may be different recording 
conditions. A consequence may be that sounds of the 
same language without respect to their phonetic fea- 
tures are estimated as more similar than any sound of 
the other language. In our experiment, this happened 
for Slovenian sounds which were for many cases more 
similar than any sound of another language. 
One special phenomenon that has arisen in data- 
driven decision is the similarity of /j/ and /z/ 
which have quite different phonetic characteristics 
(approximant-palatal-voiced vs. fricative-alveolar- 
voiced) , which has also been shown in several other 
approaches [5, 6], thus there may be some other mea- 
sures important besides the phonetic features deter- 
mined so far. 

5.    EXPERIMENTS 

For our recognition experiments we used the 
ISADORA recognizer [9] with semi-continuous Hid- 



den Markov Models. We performed experiments both 
with and without language models, for the experi- 
ments without language models we used a reduced 
recognition vocabulary in order to limit the perplex- 
ity of the task. 
Instead of the technique of polyphones with context- 
dependent acoustic units we only used monophones 
with the phone itself and no context around. The 
performance decreases by using context-free acoustic 
units, but only with these units we can hold the num- 
ber of acoustic units and, even more important, the 
number of necessary substitutions at a relatively low 
level. 
As baseline systems, we ported our recognition sys- 
tem to the new languages and use the performance 
obtained with monolingual recognizers for our cross- 
lingual experiments. 
Concerning acoustic units, we considered sounds rep- 
resented by the same phonetic symbol as identical, 
and thus, for our cross-lingual experiments, we have 
to replace those phones whose symbol does not oc- 
cur in the target language. Furthermore, we did not 
count replacements for the length of phones, i. e. if 
there existed only a long vowel like /i:/ and the short 
correspondent /i/ was needed, we did not count this 
as substitution. The same is done for Italian gemi- 
nates, thus /nn/ was set equal to /n/ and the substi- 
tution was not counted. 
In Table 2 the number of substitutions across lan- 
guages is shown. There are no substitutions between 
Gl and Italian since they share proper names of 
both languages and thus phones of both languages 
are modeled for each recognizer. Between Gl and 
G2 there are two substitutions for originally Italian 
phones (/J/, /L/) which are used in the Gl recog- 
nizer. There is a high number of substitutions be- 
tween the Germanic languages (English, German) 
on the one side and the Slavic languages (Slovak, 
Slovenian, Czech) on the other side, once due to the 
high number of consonants modeled in the Slavic lan- 
guages and the high amount of vowels in the Ger- 
manic languages. 
Furthermore, we can observe, that, using the 
Japanese recognizer for the recognition of any of the 
other languages, a high number of substitutions has 
to be made, since the phone inventory of the Japanese 
language is small in comparison to those of the other 
languages. On the other hand, for recognition of 
Japanese with any other recognizer, only a small 
number of substitutions has to be performed. 
Furthermore, we have listed in that table also the 
number of substitutions for multilingual recognizers, 
and, of course, the number of substitutions decreases 
with respect to the corresponding monolingual recog- 
nizers, although the complete phone inventory can- 
not be covered with three languages for all others. 
We have found out that, besides Japanese, that the 
phone inventory of the remaining 6 languages can 
only be covered without substitution only when all 
6 languages are involved into training, thus there is 
no real multilingual inventory possible with a subset 
of these languages. 
We performed experiments with na(t)ive and pho- 

Rec \ Lg Gl It Sa Se Cz Jp En G2 
It 0 0 3 1 4 0 8 0 
Gl 0 0 3 1 4 0 8 0 
Sa 10 10 0 4 6 4 12 11 
Se 9 9 5 0 7 2 9 8 
Cz 12 12 7 5 0 3 11 11 
En 11 11 8 3 7 3 0 9 
Jp 12 12 9 6 9 0 13 10 
G2 2 2 4 0 5 0 7 0 
It-Gl 0 0 3 1 4 0 8 0 
Se-Sa 7 7 0 0 3 2 8 7 
Sa-Se-Cz 7 7 0 0 0 2 8 7 
G2-En 2 2 3 0 4 0 0 0 
G2-En-Jp 2 2 3 0 4 0 0 0 

Table 2. Substitution of phones with different languages 
and recognizers 

netic substitution as well as some preliminary exper- 
iments with data-driven substitution for the cross- 
lingual experiments. 

6.    RESULTS 

The experiments performed for this contribution are 
done without optimization, i. e. without using the 
technique of polyphones for acoustic units, without 
using a polygram verification for language modeling 
and without optimizing the training procedure in or- 
der to obtain recognizers trained at the same level. 
Thus, the results given here, do not correspond to the 
optimally trained recognizers, but are comparable to 
each other with respect to modeling and training. 
Results of the experiments with language modeling 
are given in Table 3 for monolingual and cross-lingual 
recognition, where the monolingual results are shown 
in the diagonal. We also give some experiments for 
multilingually trained recognizers in the second part 
of that table. 
Using different strategies for phone substitution did 
not lead to significant differences between the na(t)ive 
and the phonetic approach, but often the na(t)ive ap- 
proach seems lightly better compared to the replacing 
strategy proposed by [5]. With data-driven substitu- 
tion, we found substitutions that correspond roughly 
to phonetic similarities for Italian and Gl data, but 
for other languages the similarities do not correspond 
to phonetic properties. For Slovenian, for example, 
the phones classified as most similar were in most 
cases also Slovenian phones, probably the recording 
conditions dominated over the phonetic similarities. 
For all languages besides German G2, recognition is 
best for the monolingual recognizer trained with data 
of that language and domain. For G2, recognition 
showed to be better for the bilingual German-English 
recognizer under these conditions. 
The performance among the languages differs from 
37 % for G2 to 94 % for Italian. There are vari- 
ous reasons for this difference: the domains have a 
different difficulty, in the SPEEDATA task the best 
recognition is achieved, followed by SQEL and fi- 
nally the VERBMOBIL task. There are different types 
of speech and other recording conditions with hesita- 
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Rec \ Lg It Gl Sa Se Cz En Jp G2 

Gl 80.96 87.89 28.05 30.96 55.34 8.49 17.89 20.61 
It 94.22 70.74 22.19 38.61 59.03 7.44 18.31 18.70 
Slovak 77.60 57.07 88.33 71.03 68.91 7.47 20.15 2.59 
Slovenian 86.63 60.66 66.60 90.26 52.25 8.87 30.20 2.01 
Czech 81.45 57.07 35.02 58.51 88.57 10.54 22.02 5.85 
English 41.41 36.14 35.35 26.77 42.71 48.16 20.28 3.07 
Japanese 83.30 56.78 40.70 44.11 36.33 5.48 64.53 1.05 
G2 81.53 67.59 39.63 59.40 53.49 12.19 25.19 37.10 
Gl-It 94.14 86.72 28.19 43.22 63.87 8.81 27.29 19.46 
Sa-Se 85.83 60.61 84.23 88.00 62.43 7.41 27.99 1.82 
Sa-Se-Cz 86.74 65.02 84.05 85.70 83.88 7.16 29.97 1.53 
En-G2 84.40 77.13 38.33 60.71 62.28 24.54 29.60 46.98 
En-G2-Jp 87.91 73.89 46.37 64.22 64.42 24.10 52.38 46.50 

Table 3. Recognition results for cross-lingual experiments 

tions, background noise etc. Furthermore, the size 
of the vocabulary is different for each language. Fi- 
nally, the languages themselves differ in the difficulty 
for recognition, some languages may be easier to be 
recognized than others due to the phonetic structure, 
word length and other reasons. 
In order to compare the performance of the cross- 
lingual recognizers trained with one language we av- 
eraged the performance of all recognizers besides the 
one of the original language and domain. Best cross- 
lingual recognition averaged over the seven other rec- 
ognizers was achieved for Italian with 78.73 %, worst 
performance was achieved for G2 with 11.37 %. The 
ranking in the recognition rate remains the same with 
respect to the monolingual recognition experiments, 
only Czech moves one step which could be interpreted 
that Czech is easier to recognize than Slovenian which 
moved that step down. 
Furthermore, we calculated the ratio of the loss 
of performance by dividing the cross-lingual perfor- 
mance by the monolingual performance and obtain 
the same ranking. Here, Italian obtains 85.56 % of 
the recognition, thus the loss of performance when 
recognizing with other languages is below 15 % on 
average, while for G2 with 30.65 % only one third of 
the performance is achieved. 
These both calculations are difficult for interpretation 
since the similarity of languages and thus the recog- 
nizability cannot be taken into account, for example 
we have two German recognizers in the cross-lingual 
experiments. Assuming a higher similarity among 
the Slavic languages, the cross-lingual performance 
should be higher when recognizing with Slavic rec- 
ognizers for the Slavic languages than for the oth- 

Furthermore, the cross-lingual recognition of ers 
Japanese could be worse because there are no lan- 
guages similar to Japanese used for recognition. 
From these numbers, we can observe, that starting 
with a poor recognition rate for monolingual recog- 
nition, the performance for cross-lingual experiments 
suffers more than for languages and domains where 
the performance is already higher itself. 
Averaging the performance of cross-lingual recogniz- 
ers on different spoken languages, we find, that, for 
monolingually trained recognizers, the best cross- 
lingual performance was achieved by the Slovenian 
recognizer which lead three times to the best cross- 

lingual recognition, whereas Czech, English and 
Japanese never performed best, thus the Slovenian 
recognizer seems to be best for cross-lingual recogni- 
tion in this task. The similarity among languages 
and therefore their reciprocal cross-lingual perfor- 
mance has a high ranking compared to other lan- 
guages. Only Slovak and Slovenian showed mutu- 
ally the best performance for cross-lingual recognizers 
and may therefore be assumed similar for this speech 
recognition task, although theoretically, Slovak and 
Czech should be more similar than those two lan- 
guages. 
For other languages, there is no such symmetry ob- 
servable, even the two German recognizers do not 
lead to highest reciprocal results: Gl recognizes best 
G2, but not vice versa. This may be due to differ- 
ent speaking styles, but more probable to the differ- 
ent speakers, since the speakers of Gl speak with a 
dialect and with a non-native accent, while the G2 
speakers are German natives and do not speak with 
a strong dialect. 
With multilingual recognizers, trained with several 
languages, performance is worse than with the ap- 
propriate monolingual recognizer. Having the target 
language not included into training, the performance 
is better than with cross-lingual monolingual recog- 
nizers. Unfortunately, for those languages which have 
the highest cross-lingual performance, no multilingual 
recognizers were trained, thus often the best mono- 
lingual cross-lingual recognizers perform better than 
the best multilingual recognizers trained in these ex- 
periments. 
Of the available multilingual recognizers, the G2- 
English-Japanese recognizer performs best for these 
data, possibly due to a larger variety in the models 
provided by Japanese in addition to the Germanic 
languages models. 

7.    CONCLUSION 
In this contribution, we compared the performance 
of different monolingual recognizers with respect to 
cross-lingual recognition. We found with our exper- 
iments with non-optimized recognizers (only mono- 
phones, no polygram verification in the language 
models, no optimization in the training), that besides 
the German G2 task, performance is best for mono- 
lingual recognizers. The performance of the different 
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languages differs due to the different difficulty of the 
task and also due to differing recognizability of the 
languages. 
When monolingual recognition is already bad, cross- 
lingual performance gets even worse. Thus, for Ital- 
ian, the average decrease in performance is 15 %, 
whereas for G2 only one third is recognized with re- 
spect to the monolingual recognizer. Cross-lingual 
performance does not show strong symmetry in the 
recognition, only Slovak and Slovenian recognize ut- 
terances of the other language better than any other 
language. 
When recognizing with multilingual cross-lingual rec- 
ognizers, performance gets better than with the corre- 
sponding monolingual recognizers. Unfortunately, we 
have not trained all combinations of recognizers, so 
the combination of the best monolingual cross-lingual 
recognizers could not always be tested. 
Concluding, we found for these languages and do- 
mains, that best performance is obtained with mono- 
lingual recognizers. For cross-lingual recognition, the 
choice of the language for training the recognizer 
is important for the performance. Furthermore, we 
found that performance increases if training data of 
more languages are involved and thus both acoustic 
units are modeled with more variety and more train- 
ing material as well as more different acoustic units 
are modeled overall. 

REFERENCES 

[1] U. Ackermann, F. Brugnara, M. Federico, and 
H. Niemann. Application of Speech Technology 
in the Multilingual SpeeData project. In 3rd 
Crim-Forwiss Workshop, Montreal, 1996. 

[2] J. Barnett, A. Corrada, G. Gao, L. Gillick, 
Y. Ito, S. Lowe, L. Manganaro, and B. Peskin. 
Multilingual Speech Recognition at Dragon Sys- 
tems. In Proc. Int. Conf. on Spoken Language 
Processing, Philadelphia, USA, 1996. 

[3] H. Cerf-Danon, S. De Gennaro, M. Feretti, 
J. Gonzalez, and E. Keppel. TANGORA — 
a Large Vocabulary Speech Recognition System 
for Five Languages. In Proc. European Conf. 
on Speech Communication and Technology, vol- 
ume 1, pages 183-186, Genova, September 1991. 

[4] P. Dalsgaard, 0. Andersen, and W. Barry. 
Multi-Lingual label alignment using acoustic- 
phonetic features derived by neural-network 
technique. In Proc. Int. Conf. on Acoustics, 
Speech and Signal Processing, pages 197-200, 
Toronto, Kanada, 1991. 

[5] P. Dalsgaard, 0. Andersen, and W. Barry. Cross- 
Language Merged Speech Units And Their De- 
scriptive Phonetic Correlates. In Proc. Int. Conf. 
on Spoken Language Processing, volume 6, pages 
2627-2630, Sydney, December 1998. 

[6] C.-H. Jo, T. Kawahara, S. Doshita, and 
M. Dantsuji. Automatic Pronunciation Error 
Detection And Guidance For Foreign Language 
Learning. In Proc. Int. Conf. on Spoken Lan- 
guage Processing, volume 6, pages 2639-2942, 
Sydney, December 1998. 

[7] J. Köhler. Multi-lingual Phoneme Recogni- 
tion Exploiting Acoustic-phonetic Similarities of 
Sounds. In Proc. ICSLP'96, Philadelphia, USA, 
1996. 

[8] E. Nöth, S. Harbeck, H. Niemann, V. Warnke, 
and I. Ipsic. Language Identification in the Con- 
text of Automatic Speech Understanding. In 
N. Pavesic, H. Niemann, S. Kovacic, and F. Mi- 
helic, editors, Speech and Image Understanding, 
pages 59-68. IEEE Slovenia Section, Ljubljana, 
Slovenia, 1996. 

[9] E. G. Schukat-Talamazzini. Automatische 
Spracherkennung - Grundlagen, statistische 
Modelle und effiziente Algorithmen. Künstliche 
Intelligenz. Vieweg, Braunschweig, 1995. 

[10] F. Weng, H. Bratt, L. Neumeyer, and A. Stol- 
cke. A Study of Multilingual Speech Recognition. 
In Proc. European Conf. on Speech Communica- 
tion and Technology, volume 1, pages 359-362, 
Greece, September 1997. 

[11] S.    Young,    M.    Adda-Decker,    X.    Aubert, 
C. Dugast, J.-L. Gauvain, D. Kershaw, L. Lamel, 
D. Leeuwen, D. Pye, A. Robinson, H. Steeneken, 
and P. Woodland. Multilingual large vocabu- 
lary speech recognition: the European SQUALE 
project. Computer Speech & Language, 11:73-89, 
1997. 



87 

A MILITARILY OPERATIONAL AUTOMATIC INTERPRETING SYSTEM 

Melvyn Hunt**, Paul Bamberg*, Jay Tucker* & Steven Anderson* 

**Dragon Systems UK 
Research & Development Ltd 

Millbank, Bishops Cleeve, 
Cheltenham 

Glos, England, GL52 4RW 

*Dragon Systems, Inc 
320 Nevada Street 

Newton, MA 02160 
USA 

ABSTRACT 

This paper describes a real-time interpreting system in 
which the operator speaks one of around 4000 phrases in 
one language, which is automatically recognised and the 
corresponding spoken phrase in the target language is 
played through a loudspeaker. This system has been 
used operationally by NATO forces. The basic system is 
first described, followed by an account of the wide range 
of uses to which this relatively simple one-way 
interpreting system can be put. Some developments of 
the basic system are then listed, both developments that 
are already in place and some that have potential for 
future implementation. Finally, an account is given of 
some relevant research on the use of statistical phonetic 
mapping techniques for extending the usability of such 
systems to non-native speakers of the source language. 

1. BACKGROUND 

This paper is concerned with a cross-language automatic 
interpreting system that has been used operationally by 
Nato forces. Experience with this system demonstrates, 
we feel, that relatively simple technology can perform a 
surprisingly useful task. 

Reportedly, during the Gulf War Alliance forces had 
some difficulty in finding enough Arabic speakers to 
communicate with the very large numbers of Iraqi 
prisoners that had to be handled. This led the US 
military to seek some automated means of 
communicating with people in languages other than 
English. Dr. Lee Morin of the U.S. Navy created the 
"Medical Translator," with a point-and-click interface, 
to permit simple medical interviews. Anticipating a 
similar situation in Bosnia, DARPA asked Dragon 
System to add a voice interface to the Medical 
Translator, and Dragon Systems responded by 
developing the Multilingual Interview System, which 
first saw operational use in Serbo-Croatian with US 
forces assigned to the UN in Bosnia. More recently, in 
response to the troubles in Kosovo, an Albanian version 
has been developed. 

2. THE MULTILINGUAL INTERVIEW SYSTEM 

The first version of this system, which saw service in 
Bosnia, was based on the discrete-utterance, large- 
vocabulary speech recognition system, DragonDictate® 
[1,2]. The term "discrete-utterance recogniser" is 
normally taken to be a synonym of "isolated-word 
recogniser". However, DragonDictate is capable of 
accepting and recognising long phrases. The first system 
developed had a "vocabulary" of 4000 such fixed 
phrases. They could be developed simply by providing 
the orthographic text of for each phrase and using the 
built-in 200,000-word pronouncing dictionary to develop 
a phonetic spelling for the phrase. Each phrase, no 
matter how long, was modeled as if it were an "isolated 
word." 

The corresponding phrases in the target language are 
recorded by a native speaker of that language and stored 
as digitised waveforms. This provides a spoken output 
that is much more intelligible and natural than is possible 
with the current state-of-the-art in automatic text-to- 
speech systems. In any case, text-to-speech systems, or 
at least good-quality text-to-speech systems, exist only 
for a small number of major languages, not necessarily 
including the languages of interest for the Multilingual 
Interpreting System. 

An operator speaks one of the 4000 phrases. He or she 
then confirms that the recogniser has correctly identified 
the phrase, either by seeing it displayed on a screen or — 
if eyes-free operation is needed — by having a recorded 
version of that phrase spoken back to the user. After 
confirmation, the phrase is then converted to the target 
language by simple table look-up, and the corresponding 
recorded phrase in the target language is played out 
through a loudspeaker. In cases where there exist 
several phrases that differ only in their final words, the 
system saves disk space by playing back a concatenation 
of two or more recordings, e.g. "I am a member" + "of 
the NATO peacekeeping forces." 

Because the discrete-utterance recogniser needs to 
perform less computation than a continuous speech 



recogniser, the hardware requirements are more modest. 
Portable computers using 486-style processors can be 
used in place of the Pentium-style processors needed for 
large-vocabulary continuous speech recognition, 
reducing the weight and our requirements of the portable 
equipment. The only technical weakness of the system 
is that it is vulnerable to errors in the "rapid match" 
portion of the discrete-utterance recogniser, which 
narrows the list of candidate phrases to 1000 or fewer by 
inspecting only the first 300 milliseconds of speech. 

One of the operational systems was based on the Fujitsu 
portable PC, which thanks to speech recognition was 
particularly compact in that it needed no keyboard or 
mouse during use, its only input being via a headset- 
mounted microphone. This PC has the unusual feature 
of a monochrome transflective display that is easily 
readable in bright sunlight. 

Although the system could be used with all 4000 phrases 
simultaneously active, it has often been found to be 
convenient to use the phrases in situation-specific 
subsets, such as those appropriate for a medical 
examination or for landmine clearance. Even the most 
dedicated user could not memorize all of the 4000 
phrases, but individual users quickly learned the subset 
needed for their own tasks. The system included several 
techniques (categories, keyword search, prebuilt 
dialogues) to help users find phrases that were unfamiliar 
to them. 

When used as a conventional dictation system, 
DragonDictate normally needs to be adapted to the voice 
of the user. However, in the Multilingual Interpreting 
System, especially when used with phrase subsets, it has 
generally been found to perform satisfactorily in 
speaker-independent mode, allowing military personnel 
of the same gender to share the same system freely 
without any need to signal to the system that a change of 
user has occurred. 

Although this system was originally developed for 
operators whose language is American English, it could 
in principle be operated in several other major 
languages, since the DragonDictate recogniser on which 
it is based is available in British English, French, Italian, 
German, Spanish and Swedish. In practice, because of 
the length of the phrases and the vocabulary restriction, 
speakers of British English and indeed other national 
variants of English can satisfactorily operate a system set 
up for American English. 

Generating a system for new target language is a simple 
operation, requiring the 4000 phrases to be translated 
into the new language and a native speaker of that 
language to record them. 

3. USES OF THE MULTILINGUAL INTERVIEW 
SYSTEM 

The system described in the previous section clearly 
operates only in one direction: from English into Serbo- 
Croatian, for example. This might appear at first to be a 
crippling limitation, since spoken communication is 
normally a two-way process. There are, of course, 
situations, such as crowd control, where one-way 
communication is all that is needed. But in a 
surprisingly large proportion of cases where two-way 
communication is needed, the Multilingual Interpreting 
System can perform a useful task. This section will 
describe just a few of the ways and situations in which it 
can be effective. 

Often, questions can be posed in a way that allow yes/no 
responses. The military user can learn the words for 
"yes" and "no" in the target language or head movement 
gestures for these words may be common between the 
two languages. It is of course important to avoid 
negative questions (e.g. "You aren't injured, are you?) 
where the meaning of responses using the words 
normally translated as "yes" and "no" differs between 
languages. 

In medical examinations, many things that need to be 
said are either instructions (e.g. "Please lie still", "Please 
open your mouth") or items of information (e.g. "I'm 
going to give you an injection to ease the pain"). The 
appropriate response to some others (e.g. "Point to where 
it hurts") is a gesture rather than a verbal response. 

In gathering personal information, the individual being 
addressed can respond by writing down an answer (e.g. 
his or her date of birth, name, place of birth...). This will 
always be comprehensible for numerical information and 
for other information provided the language uses the 
Roman alphabet. Even when it does not use the Roman 
alphabet, the written information can be saved as a 
bitmap and taken away to be interpreted by others not 
necessarily located in the field of operation. 

In the important area of avoiding or clearing minefields, 
individuals providing information can indicate locations 
on a map displayed on the computer screen and point to 
the kind of mine that has been laid when shown a screen 
that displays pictures of various mines. Such responses 
can be acted upon immediately or saved as annoted 
graphics for later review. 

At security checks, the phrases being interpreted will 
normally be instructions, such as a request to leave a 
vehicle, to present identity papers or to hand over any 
firearms. 

Finally, in cases where what is required is an extended 
verbal response, but the information required is not 
urgent, the person being interrogated can have his or her 
spoken response recorded for translation away from the 
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field of operation. The Multilingual Interview System is 
provided with the ability to make such recordings. 

One of the advantages of the Multilingual Interview 
System surprisingly did not involve communication in 
the conventional sense at all. Reportedly, the use by 
soldiers of the system was a source of fascination to 
Bosnian young men, who were drawn into better 
relations with the soldiers because of it. 

4. DEVELOPMENTS 

The second version of the Multilingual Interview System 
allowed the recognition process to be enhanced from the 
fixed-phrase recogniser used in the first version to a true 
continuous large-vocabulary recogniser, namely the 
recogniser used in Dragon's general-purpose continuous 
speech recognition product, Dragon 
NaturallySpeaking™ [3]. At the price of requiring a 
more powerful microprocessor, this allows much greater 
flexibility in the form of the input in the source 
language. For example, a user does not have to 
remember whether "Please point to where it hurts" or 
"Point to where it hurts, please" is the required form of 
the phrase: both can be accepted with the more flexible 
arrangement that the continuous recogniser permits. 

Both versions of the Multilingual Interview System have 
thus been based on a recogniser designed primarily for 
the very large vocabulary speech recognition needed for 
general-purpose dictation, where the grammar used must 
be probabilistic and allow in principle any word to occur 
in any context. Dragon Systems have recently 
developed a more compact recogniser suited to tasks in 
which the vocabulary and the structures of the phrases 
constructed from the vocabulary are more constrained. 
This will in principle allow the Multilingual Interview 
System to function on simpler hardware with lower 
power consumption yet with the flexibility provided by 
the second version just described. 

Future developments can be envisaged that take 
advantage of research carried out at Dragon Systems on 
robust speech recognition in noisy conditions [4]. 
Currently, the operator of the Multilingual Interpreting 
System wears a headset-mounted close-talking 
microphone. Such a microphone contains a pressure- 
gradient element, making it relatively insensitive to 
distant sources of noise and consequently able to 
function well in high-noise environments. In some 
situations, however, it may be more natural and 
convenient to use a more conventional desk- or lapel- 
mounted microphone. Such microphones do not have 
the noise-cancelling properties of the headset-mounted 
microphone, but the developments in noise-robust 
recognition should allow the Multilingual Interpreting 
System to function with them in noisy conditions, at 
least when the noise is reasonably steady, such as noise 
from machinery. 

The work on speech recognition in noise has also led to 
techniques for very rapid adaptation to the voices of 
native speakers of the source language and to techniques 
for compensating for the Lombard effect [5, 6] (the 
changes that occur in the voice of a user when the noise 
environment changes — principally an increase in the 
loudness of the speech when the noise gets louder). 

5. POSSIBILITY OF USE WITH NON-NATIVE 
SPEAKERS 

The performance of a system with non-native speakers is 
clearly of central interest to this workshop. Although no 
research using the Multilingual Interview System has 
been carried out with non-native speakers, relevant tests 
have been carried out in the framework of the 
development of speech recognition in noise just 
described [4]. 

The performance of the noise-robust recognition system 
was tested in noisy conditions in speaker-independent 
mode with both native and non-native speakers in a 
phrase recognition task not dissimilar from that in which 
the Multilingual Interview System might be used with a 
vocabulary of a few hundred words. The non-native 
speakers showed error rates roughly six times greater 
than the native speakers. The phonetic models used in 
recognition were then adapted using data from prompted 
training utterances from the speakers. There is no 
attempt to train the recogniser for specific words; rather, 
we use statistical techniques to map [7] the speaker's 
phonetic system into that of the standard language. In 
these particular tests, the training utterances were not 
chosen to give a balanced phonetic coverage of the task 
vocabulary but rather were selected randomly from 
phrases that can occur during use. 

Figure 1 shows that adaptation is very effective with the 
non-native speakers, with a useful reduction in error rate 
after just 10 utterances, and a factor-of-three reduction 
after 80 utterances. The proportional reduction with 
native speakers is much less: only about 40% for female 
speakers and no clear improvement at all for male 
speakers. We have found in our tests that adaptation 
with our non-native test speakers always improved 
recognition performance, while with native speakers 
performance could even be degraded if an inadequate 
amount of adaptation material was used. This experience 
encourages our belief that the statistical techniques are 
indeed mapping acoustic realisations of phonemes from 
some consistent but non-standard forms produced by 
non-native speakers to something closer to standard 
forms. Note, however, that despite the evident 
effectiveness of the adaptation, the error rate with the 
non-native speakers remains about twice as high as the 
unadapted error rate with native speakers. 

Of course, the term "non-native speaker" covers an 
immense range of deviation from the standard form of 
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the language, both in extent and in the type of deviation. 
Nevertheless, the adaptation behaviour seen here might 
reasonably be expected to be seen with any non-native 
speakers whose deviations from the norm correspond 
substantially to non-standard but consistent acoustic 
realisations of particular phonemes. 

A key aspect of this kind of adaptation is that it is 
"supervised"; that is, the system knows what the speaker 
actually said. In the experiments just described this was 

achieved by prompting the speakers to produce the 
training utterances. In the Multilingual Interpreting 
System it is usual for the user to confirm that the system 
has correctly recognised the phrase spoken before it is 
translated into the target language. This process 
achieves the end of confirming to the system what the 
speaker actually said, and consequently adaptation of the 
form just described could be carried out unobtrusively 
during use. 

W 
E 
R 
(%) 

Non-native Males 
Non-native Females 

Native Males 
Native Females 

Figure 1 Word recognition error rate versus number of utterances used 
to adapt to the speakers for native and non-native speakers 

6. CONCLUSIONS 

This paper has attempted to show that an operationally 
useful automatic interpreting system for both military 
and non-military applications can be constructed from 
the current widely available large vocabulary speech 
recognition technology. The one-way nature of the 
interpreter does not prevent it from being effective in a 
wide range of tasks. There is much scope for the 
development of such a system to allow use with non- 
native speakers and in noisy environments without close- 
talking microphones, and for further reductions in the 
size and weight of the hardware required. 
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ABSTRACT 

This paper presents three different methods to develop multilin- 
gual phone models for flexible speech recognition tasks. The 
main goal of our investigations is to find multilingual speech 
units which work equally well in many languages. With this uni- 
versal set it is possible to build speech recognition systems for a 
variety of languages. One advantage of this approach is to share 
acoustic-phonetic parameters in a HMM based speech recogni- 
tion system. The multilingual approach starts with the phone 
set of six languages ending up with 232 language-dependent and 
context-independent phone models. Then, we developed three 
different methods to map the language-dependent models to a 
multilingual phone set. The first method is a direct mapping to 
the phone set of the International Phonetic Association (IPA). In 
the second approach we apply an automatic clustering algorithm 
for the phone models. The third method exploits the similar- 
ities of single mixture components of the language-dependent 
models. Like the first method the language specific models are 
mapped to the IPA inventory. In the second step an agglom- 
erative clustering is performed on density level to find regions 
of similarities between the phone models of different languages. 
The experiments carried out with the SpeechDat(M) database 
show that the third method yields in almost the same recognition 
rate as with language-dependent models. However, using this 
method we observe a huge reduction of the number of densities 
in the multilingual system. 

1. INTRODUCTION 

Over the last years automatic speech recognition systems have 
reached a level of quality which allows the introduction of com- 
mercial products. However, a new problem has occurred: the 
language-dependency of current recognition technology. The 
phonetic models used in state-of-the-art systems are extremely 
language-dependent. The overall goal of our research activi- 
ties is to create a multilingual and almost language independent 
recognition system which works in the most important languages 
of the world. We started our multilingual approach with OGI 
MLTS database [15] based on the work of [lj. Nowadays, even 
larger multilingual databases are available like SpeechDat(M)1, 
Call-Home etc. These databases allow a robust modeling of pho- 
netic units for different languages. Instead of using language- 
dependent acoustic models our approach tries to exploit the 
acoustic-phonetic similarities of sounds across languages. This 
approach has two main advantages. First, the number of HMM 

'For information about SpeechDat see the following URL's: 
http://www.phonetik.uni-muenchen.de/SpeechDat.html 
http://www.icp.grenet.fr/ELRA/home.html 

parameters can be reduced significantly if it is possible to share 
phone models in different languages. Second, these multilingual 
models speed up the process of cross-language transfer. With 
the multilingual phone models the huge data collection process 
can be avoided or at least it can be reduced. This paper shows 
different approaches to achieve the goal to exploit the acoustic- 
phonetic similarities. 

The paper is organized as follows: First, we present three 
different methods to create multilingual phone models using 
HMM technology. Then we perform our experiments with a 
language-dependent system covering six languages. These mul- 
tilingual experiments are then given in the following chapter. At 
the end we give a summary of the current research status and a 
perspective for future research activities. 

2. MULTILINGUAL PHONE MODELING 

This section shows different approaches to find multilingual 
phone models for automatic speech recognition tasks. One cen- 
tral problem is to detect and to exploit the acoustic-phonetic sim- 
ilarities across languages. Which sound in one language is sim- 
ilar enough to a sound of another language to provide only one 
common model? This question leads to the definition of a sim- 
ilarity measurement of speech sounds. The other question is, if 
the phone is the optimal entity to exploit the similarities. Or is 
another speech unit like a sub phone unit or a single density of 
a continuous density HMM (CDMM) more appropriate to cre- 
ate multilingual models. The overall goal of the different ap- 
proaches to find multilingual speech units is to generate models 
which perform as well as language-dependent models for differ- 
ent recognition tasks. Thus, we can formulate the task to cre- 
ate accurate acoustic models which also exploit the similarities 
across languages. 

2.1. Mapping to the IPA based phone set (IPA-MAP) 

The most obvious approach is to map the language-dependent 
models to the appropriate phone of the inventory of the Interna- 
tional Phonetic Association (IPA). Here, the phonetic mapping 
is performed with phonetic knowledge rather than with some 
statistical based similarity measurement. Most of the phonetic 
inventories which are in use are based on IPA, like SAMPA, 
WORLDBET, TIMITBET or SPICOS. The rule of the mapping 
of the language-dependent phones Pfiffp to the multilingual 
phone units is: 

Phf-fP -> Ph]PA (1) 
The mapping is performed for each language. All phonetic seg- 
mentation and transcription files (label files) are transformed to 
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the IPA based inventory. After this mapping a Viterbi based 
HMM Maximum Likelihood training is performed. Figure 1 
shows the different steps of the approach IPA-MAP. 

loop over all languages 

loop over all phones of one language 

mapping of the language-dependent phones to IPA 
phone: 
Ph\fp -> Ph)PA 

add to mapping file 

transformation of the label-files using the mapping file 

HMM-training over all languages: 
- HMM-init 
- HMM-Viterbi training, 6 iterations 

Figure 1: Algorithm IPA-MAP 

The main advantage of this approach is the simple way of getting 
multilingual models. Further, the final IPA-based models have 
a clear representation in the multilingual context and the cross- 
language transfer is also very simple. The sounds of the new lan- 
guage can be extracted very easily from the multilingual phone 
library. On the other hand the direct use of IPA does not con- 
sider the spectral properties and the statistical similarities of the 
phone models. Further, the IPA-based units do not model some 
language-dependent properties of the sounds. This can yield in 
a decrease of the accuracy of the acoustic models. This problem 
will be more severe as more languages will be included in this 
approach. Another disadvantage is that some inconsistencies of 
different phone systems of different languages and inventories 
can hurt this method. 

2.2. Multilingual Phone Clustering (MUL-CLUS) 

In this approach the language-dependent phone models are 
mapped to a multilingual set using a bottom-up cluster algo- 
rithm. Therefore, a similarity between two phone models has 
to be defined. In this work we apply a log-likelihood LL based 
distance measure. The distance between two phone models A; 
and A,- is: 

DLL(\i,\j) 

LL\ - LL) 

logpiXi^-logpiX^Xj 
(2) 

(3) 

where Xi is the model of phone i. The data is given by the token 
Xi. Respectively, the distance DLL(XJ , A;) is given by: 

DLL{\j,\i)    =    LL\-LL\ (4) 

DLL(XhXi)    =    logppOIA^-logppOIAO      (5) 

Because the distances are not symmetric we calculate the aver- 
age distance: 

At each cluster step the most similar pair of clusters are 
merged to a new cluster. This means that the two clusters (7* 
and Cj of all cluster pairs C, and Cj with the smallest distance 
are merged: 

(Ci,Cj) = axgmm D(i,j) (7) 
Ci,Cj 

Because the estimation of the new phone models of the 
merged cluster is difficult to achieve the distance is always com- 
puted with the original language-dependent models which are 
the basic elements of one cluster. Hence, the distance between 
two clusters are determined with the furthest neighbor criterion. 
Therefore, we calculate the maximum distance of the initial clus- 
ters Cl and Cf which are in this case the language-dependent 
phone units. 

(Ci,Cj) =  argmax D(fc, I) (8) 

The usage of the furthest neighbor criterion has also the advan- 
tage to avoid huge log-likelihood calculations. The calculation 
of equation 6 requires also the data of the phone models. The 
data corresponds to the phone tokens which are extracted from 
the phonetic label files. Each phone has a pool of tokens which 
are used for the distance calculation. The number of tokens of 
each language-dependent phone unit is set to 500. 

The complete algorithm to create multilingual phone models 
using clustering methods is given in figure 2. 

loop over all languages 

HMM Viterbi training 

create language-dependent phone models 

init: define a set of initial clusters from language-dependent 
phones d := {Phi} 

Compute a symmetric distance matrix 

While (Dmi„  < Dthres) 

find pair of clusters with the minimum distance D™jn 

Merge the two clusters C = d U Cj 

update the distance matrix 

mapping of the language-dependent phones to the 
multilingual clusters 

HMM-training over all languages: 
- HMM-init 
- HMM-Viterbi training, 6 iterations 

Figure 2: Algorithm to create multilingual phone models using 
phone distance measurement and clustering (MUL-CLUS) 

DLL{Xi;\j) = -(DLL(\i,\j) + DLL(Xj,Xi)) (6) 
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The cluster process continues until all calculated cluster dis- 
tances are higher than a pre defined distance threshold. Alter- 
natively, the clustering stops if a specified number of final clus- 
ters is achieved. After the clustering is finished we can use the 
cluster information to map the language-dependent models to 
the multilingual inventory. All label files are processed with this 
mapping information. Then the HMM models are trained with 
the maximum likelihood based Viterbi training. 

The automatic clustering has the advantage to use statistic 
measurement based on HMM technology which is also used dur- 
ing recognition. The disadvantage is that the final multilingual 
units lose some clear representation and it is more difficult to 
transfer this models to a new language. 

2.3. IPA-based Density Clustering (IPA-OVL) 

The previous two approaches try to create complete multilingual 
phone models. This means that all parameters (i.e. sub phone 
units, densities of a CDHMM) of one model are shared across 
the different languages. On the other hand there are several lan- 
guage specific properties of the sounds. They exist due to dif- 
ferent phonetic context, speaking style and rate, prosodic fea- 
tures and allophonic variations. To cover these effects we have 
presented a novel approach to create multilingual phone models 
[15]. Instead of complete overlapping phone models we assume 
that there are language-independent realization. This approach 
is achieved by using mixture densities. Figure 3 shows the idea 
of this method. There are regions of one IPA sound which are 
used in one, two or three languages. In this example the nasal 

English 
English 

Right-State 

measure giving the similarity between fa und fij the weighed 
Ll-norm is applied: 

D(Xj;Xi) = ^f^ J2 l/'M - to A (10) 

In previous investigations we found that is important to normal- 
ize the distance by the number of occurrences Ni und Nj which 
give information how often the densities are seen during train- 
ing. This normalization avoids the generation of very big clus- 
ters which dominate the small clusters. One important aspect 
is that all clusters should have a similar number of elements. 
Otherwise the resulting clusters lose their power to discriminate 
between different sounds. 

Figure 3: principles of the method IPA-OVL (two dimensional 
case). 

loop over all IPA-based phones 

loop over all three segments of one phone 

create a pool of densities belonging to the same 
IPA-based segment 

calculate the distance matrix for each pool of 
densities 

minimum number of densities 

loo] ) over all IPA-based phones 

loop over all phone segments (1,2,3) 

find pair of clusters d, Cj with the minimum 
distance D(i j) 

merge the two clusters: C = Ci U Cj 

and remove cluster d and Cj 

update distance matrix 

[ m ] occuring in the languages German, Spanish and English 
has mixture components which are used in one, two or all three 
languages. 

The creation of the multilingual models is shown in figure 4. 
First, the language-dependent models are trained as before. Each 
language-dependent phone consists of 3 segments (sub phone 
units) each modeled by a mixture density. This is expressed by: 

A mono     f Qir, 'mono 
,P,I 

QTtlOftO 5 mono \ (9) 

where I is the language index and p in the phone index. 
In the second step the mixtures of the language-dependent 

segments which belong to the same IPA-based phone are col- 
lected in one common pool of densities. Then we apply an hier- 
archical agglomerativ cluster algorithm to find and merge similar 
densities. The clustering is performed for each segment sepa- 
rately. 

Because we work in our system with global variance val- 
ues we use only the mean vectors for clustering. As distance 

Figure 4:  Algorithm to create multilingual mixture densities 
(IPA-OVL) 

For each pool of densities a distance matrix is calculated using 
equation 10. After each clustering step the overall number of 
densities is reduced by one element. The new cluster is given 
by the averaged mean vector of the two merged clusters. The 
clustering is finished if the complete system has a pre-defined 
number of densities. After finishing the cluster algorithm we 
have for each IPA-based phone a multilingual mixture density. 
Whereas the mixture density has multilingual regions the mix- 
ture weights are still language-dependent. For the calculation of 
the emission probabilities we use: 

M. 

»(f)= 51 ' LDP 'W/O (ii) 
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Hence, this approach has some similarities to the semi- 
continuous HMMS. However, here the densities are shared only 
for one segment of one IPA-based phone across different lan- 
guages. As final step the parameters of the multilingual mixture 
densities are reestimated during a Viterbi training. With this kind 
of multilingual modeling we also achieve a huge reduction of pa- 
rameters in multilingual system. The combination of language- 
specific properties and automatically detection of multilingual 
realizations we exploit the acoustic-phonetic similarities in an 
optimal way. 

3. EXPERIMENTS 

In this section we perform several tests to compare the multilin- 
gual approaches. First, we describe briefly the speech engine. 
Second, we present the multilingual system using the language- 
dependent models. This system serves as comparison to the three 
previously described methods. 

3.1. Description of the HMM-Based ASR system 

For our investigations we use the SIEMENS HMM-based 
speech engine. The feature extraction generates every 10 ms 
a frame consisting of 24 mel-scaled cepstral, 12 A cepstral, 12 
AAcepstral, 1 energy, 1 A energy and 1 AA energy compo- 
nents. Each frame is processed by a LDA transformation re- 
ducing the 51 components to 24 values. To work in a multilin- 
gual environment one single LDA is calculated for all different 
languages. The acoustic models are based on Continuous Den- 
sity HMMs (CDHMM) with Gaussian density functions. In our 
investigations we work only with context-independent models 
which consist of 3 sub-phone units (phone segments). Each seg- 
ment is modeled by two states with tied emission probability. 

3.2. Multilingual System with language-dependent models 

The multilingual system covers the six languages American En- 
glish, French, German, Italian, Portuguese and Spanish. The 
speech material is taken from the SpeechDat(M) and the Ma- 
crophone databases. Because all databases have only an ortho- 
graphic transcription, all systems must be bootstrapped to gen- 
erate an initial segmentation and label files. The bootstrapping 
was carried out with multilingual phone models based on the 
IPA-MAP method. The evaluation and tests were carried out on 
word and phone level. The word recognition rates are important 
for a final application and the phone recognition rates give some 
detail information about the acoustic modeling accuracy. 

The training of the models is performed with the phonetic 
rich sentences of the databases. This should guarantee the vo- 
cabulary independence of the acoustic models. These models 
are also called Type-In models. The amount and structure of the 
training and test material is given in table 1. The training is per- 
formed with more than 4000 speakers and more than 35K sen- 
tences. The duration of the training material is almost 32 hours 
of pure speech without silence. The overall number of language- 
dependent phone units is 232. Italian has the greatest number of 
phones (49) because the SAMPA inventory distinguish between 
short and long consonants. Spanish has the smallest number us- 
ing only 31 phones. The complete system has 31999 densities 
which means that in average each of the 232 language-dependent 
phone models have 45 densities. 

After the training the models are tested on an isolated word 
and a phone recognition task. The recognition results for isolated 
words are summarized in table 2. The vocabulary size of this 

#speaker 
tr-dev-te 

#utt. 
Tr-Utt 

hour.min 
Tr-Time 

# 
phones 

French 667-166-167 6.0K 5.03 37 
German 667-166-167 5.0K 4.18 38 
Italian 667-166-167 5.8K 4.15 49 
Portuguese 667-166-167 5.9K 7.33 38 
Spanish 667-166-167 6.0K 5.38 31 
Am.-English 1000-500-500 6.4K 5.12 39 

Overall 4335-1330-1335 35. IK 31.59 232 

Table 1: Structure of the training and test databases using 
SpeechDat(M) and Macrophone: tr = number of speakers for 
training; dev = number of speakers for developing purposes; te 
= number of speakers for testing; Tr-Utt = number of phonetic 
rich training sentences; Tr-Time = time and duration of phonetic 
rich training sentences; number of phone units per each language 

Language #Rec-. 
Tokens 

Voc. 
Size 

Rec- 
Rate 

French 1420 57 92.2% 
German 949 49 96.6% 
Italian 983 47 94.4% 
Portuguese 931 61 93.0% 
Spanish 1242 70 93.3% 
Am.-English 2612 685 64.9% 

Average - - 89.0% 

Table 2: Isolated word recognition rate for SpeechDat(M) and 
Macrophone database; Rec-Tokens: number of tested words; 
Voc. size: size of the vocabulary (perplexity); Rec. rate: word 
recognition rate 

task varies between 47 and 70 words for the languages taken 
from SpeechDat(M). For American English the vocabulary size 
is 685 because there is no core test set for application words. The 
best results are achieved for German (96.6%). Also for the other 
4 European languages we get results better than 90%. The result 
for American English is only 64.9% due to the high perplexity 
of the recognition task. 

In the second test phone recognition rates are measured. The 
results given in table 3 including insertions, deletions and sub- 
stitutions. For the continuous phone recognition task language- 
dependent bigram models are used to achieve a higher phone 
accuracy. It is very obvious that for Spanish and Italian the best 
phone recognition rates are achieved (56.9% and 53.2%). Both 
languages have a clear vowel structure. Also for German, French 
and Portuguese the recognition rates varies between 47.0% and 
48.5%. Only for American English the recognition result ends 

Language #Rec-. 
Tokens 

Voc. 
Size 

Phone 
Ace. 

French 12964 37 48.3% 
German 12839 38 48.5% 
Italian 10804 49 53.2% 
Portuguese 21751 38 47.0% 
Spanish 17512 31 56.9% 
Am.-Englich 10815 39 37.7% 

Average - - 48.6% 

Table 3: Continuous phone recognition rate for SpeechDat(M) 
and Macrophone including deletions, insertions and substitu- 
tions 
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LDP IPA- 
MAP 

MUL- 
CLUS 

IPA- 
OVL 

French 92.2% 90.9% 90.8% 92.5% 
German 96.6% 91.6% 94.8% 96.5% 
Italian 94.4% 93.6% 94.0% 93.7% 
Portuguese 93.0% 89.6% 91.9% 91.9% 
Spanish 93.3% 92.5% 93.3% 93.1% 
Am.-English 64.9% 56.5% 57.0% 63.2% 

Average 89.0% 85.5% 86.9% 88.5% 

Table 4: isolated word recognition rates using the different mul- 
tilingual approaches 

with a disappointing 37.7% rate. One reason for this result could 
be the quality of the orthographic and phonetic transcription of 
the Macrophone database. In other investigation the results for 
American English are very similar to results in French or Ger- 
man [18]. 

Altogether the results on word and phone level show that it 
is possible to create task independent models with phonetic rich 
training material. These models are compared in the following 
section with the multilingual approaches. 

3.3. Results using the Multilingual Approaches 

Table 4 summarizes the isolated word recognition rates of 
the three different approaches in comparison to the language- 
dependent modeling. For these tests the number of densities 
was almost the same to achieve a fair comparison. The method 
IPA-OVL outperforms the other two methods (IPA-MAP and 
MULS-CLUS) and it was nearly as good as with the language- 
dependent models. The decrease in recognition rate was only 
0.5% with only 13K densities instead of 31K densities in the 
language-dependent case. Hence, the method IPA-OVL is able 
to detect and exploit the acoustic-phonetic similarities across the 
phones of different languages. The data-driven phone cluster- 
ing approach (MUL-CLUS) performs also better than the direct 
and simple mapping to the IPA inventory. For this two meth- 
ods which model complete multilingual phones the decrease of 
recognition rate was 3.5% (IPA-MAP) and 2.1% (MUL-CLUS). 
Before we give a final conclusion the detailed results of the three 
methods are discussed. 

IPA-MAP 
The method IPA-MAP maps the 232 language-dependent mod- 
els to 95 multilingual models. There are 13 phones (plosives, 
fricatives and nasals) which occur in all six languages. Table 5 
gives an overview how many phones are used in different lan- 
guages. This table also shows that 48 phones are still mono- 
lingual because they occur only in one language. However, the 
number of system parameters is drastically reduced. The number 
of densities decreases from 31999 to 13555 which reduces mem- 
ory and computational resources of the multilingual recognition 
system significantly. However, the isolated word recognition rate 
decreases from 89% to 85.5%. 

Whereas the decrease for the four Romance languages is 
small the reduction for German and American English is 5.0% 
and 8.4% respectively. Possible explanations for this effect are: 

• differences in the quality and recording conditions of Ma- 
crophone and SpeechDat(M) databases: 
Although a channel compensation algorithm is used not 
all differences in the databases can be removed.   This 
would at least explain the reduction of the American sys- 
tem. 

#La. #Ph. list of phones 

6 13 bdf gj klmnpstz 
5 7 J a aruvw 
4 7 e n n 3 eio 
3 3 9 A tj 
2 17 uoer,RaY£5i aiau 

d3 h i: s: x 6 
1 48 as 5 l 0 0: p e: J: Y Sji: 

3Y 31 £ B q A ä 8 1 öe  a: b: 
d: d3: dz e: ei f: g: j: J k: 1: m: 
n: o: ou p: pf tj: t: ts u: fl 
v: w y ai 

Table 5: Multilingual inventory using IPA-MAP 

• sensitivity of the models for big vocabulary size: 
If the recognition task has a very high perplexity (in this 
case it is 685) very exact acoustic models are required. A 
small degradation of the models yields in a severe reduc- 
tion of recognition rate. 

• dominance of the Romance language in comparison to 
Germanic languages: 
Four of the six languages belong to the Romance lan- 
guage family. Hence, the multilingual models are dom- 
inated by the Romanian languages. This would explain 
the decrease of the German system. 

• Inconsistency of the different phone inventories: 
Whereas for the Romance languages SAMPA is used, the 
German lexicon is based on SPICOS and the American 
lexicon uses TIMITBET. Although all inventories tries to 
realize the IPA-inventory there are some inconsistencies 
and problems during the mapping. For example in SPI- 
COS the affricates [ tS ], [ dZ ], [ pf ] and [ ts ] are di- 
vided in two single phones. Also in the CMU-lexicon we 
observed some differences to the other inventories which 
could not be resolved easily. The central phone [ e ] and 
the back vowel [ A ] have the same phoneme symbol / ah /. 
Hence, the same symbol / ah / is used to transcribe the 
words "bottom" / b aa t ah m / and "cut" / k ah t /. 

MUL-CLUS 
The data-driven method MUL-CLUS yields in a higher recog- 
nition rate than the method IPA-MAP. Especially for German 
the results are much better. Instead of a reduction of 5.0% we 
observe only a decrease of 1.8%. However, the reduction for 
American English is still very obvious (7.9%). For this experi- 
ment the final number of multilingual phone units was chosen to 
95 to have the same number of phones as before. The remaining 
clusters differs from the IPA-based mapping. The biggest clus- 
ter contains the fricatives [ f ], [ s ] of all six languages. Table 
6 shows a selection of generated phone clusters. There are also 
some clusters which have same elements as with the IPA-MAP 
method. These clusters contain the nasals [ m ] and [ n ]. Phones 
which differ only in the phonetic length are very often mapped 
to the same cluster, especially for consonants. However, we also 
have 50 clusters with only one element. This means that we have 
still a huge number of monophones. Further, experiments were 
carried out with a varying size of final multilingual phone clus- 
ters. An observable decrease in recognition rate was observed 
when the 232 language-dependent models were clustered to less 
than 130 multilingual phones. 

IPA-OVL 
Here the clustering was performed on density level. The final 
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#CL Cluster elements 

15 fAE fSP j-/T fGE fPT fFR j-./T &AE SGE &PT &FR 

s:'T ssp s/T 6SP 

12 -AE     SP    IT    FR    PT    GE jSP j/T {PT jFi? jGE j./T 

10 j^lß j,AE ;SP j/T jPT jFB j,GE :SP j/T -PT 

7 „AE „SP „IT „FR „PT „GE „,IT m      m     m     m     m     m      m: 

7 „AE „SP „IT „GE „FR „PT „,IT n      n     n     n      n      n     n: 

Table 6: Selection of multilingual phone clusters generated with 
MUL-CLUS 

number of densities was set to 13K. After the clustering process 
there were 7720 density clusters with more than one element 
(multilingual clusters) and 5280 monolingual clusters. This 
means that 25K of the 31K language-dependent densities are 
mapped to a multilingual cluster. The method IPA-OVL shows a 
significant improvement for the American system. The decrease 
was now only 1.7% in comparison to the language-dependent 
case. 

4. SUMMARY AND CONCLUSION 

In this paper we demonstrated the usefulness and feasibility of 
the multilingual approach. First, a telephone-based multilin- 
gual speech recognition system was built for 6 languages. The 
language-dependent phonetic models can be used for a vocabu- 
lary independent recognition tasks. Second, we developed and 
compared three different methods to create multilingual phone 
models. The best result was achieved with the method IPA-OVL 
which exploits the acoustic-phonetic similarities in an optimal 
way. However, this method works on the density level rather 
than on a complete phone level. Hence, it is important to con- 
sider the language-dependent properties of the phones even if 
they belong to the same IPA-based phone. The main advantage 
of the data-driven methods are the higher recognition rate and 
the fact that the final number of parameters can be adjusted dur- 
ing clustering. In all our investigations we used only context- 
independent models. Now it would be interesting to know how 
these methods would work with context-dependent models. Fur- 
ther, more languages of other language families should be inte- 
grated in this multilingual approach. 
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ABSTRACT 
With the distribution of speech technology products all over the 
world, the fast and efficient portability to new target languages be- 
comes a practical concern. In this paper we explore the relative ef- 
fectiveness of porting multilingual recognition systems to new tar- 
get languages with very limited adaptation data. For this purpose we 
introduce a polyphone decision tree specialization method. Several 
recognition results are presented based on mono- and multilingual 
recognizers developed in the framework of the project GlobalPhone 
which investigates LVCSR systems in 15 languages. 

1. Introduction 
With the distribution of speech technology products all over 
the world, the fast and efficient portability to new target lan- 
guages becomes a practical concern. So far one major time 
and costs limitation in developing LVCSR systems in new lan- 
guages is the need of large training data. According to the 
amount of data used for porting acoustic models to a new tar- 
get language we differentiate three aspects of research: 

* Cross-language transfer (no data) 
* Bootstrapping (much data) 
* Language adaptation (very limited data) 

The term cross-language transfer refers to the technique 
where a system developed in one language (group) is ap- 
plied to recognize another language without using any training 
data of the new language. We do not distinguish whether the 
transfer to the target language is done from one language or 
from a group of languages. Research focuses on the questions 
whether cross-language transfer from one language to another 
language of the same family performs better than across fam- 
ily borders [4], and second if the number of languages used 
for training the transfer models influences the performance on 
the target language [7], [13]. Results seems to indicate a rela- 
tion between language similarity and cross-language perfor- 
mance [4], [3]. Furthermore it is clearly shown that multilin- 
gual transfer models outperform monolingual ones [3], [14]. 

The key idea in the bootstrapping approach is to initialize a 
recognizer in the target language by using already developed 
acoustic models from other language(s) as seed models. Af- 
ter the initialization step the resulting system is completely 
rebuild using large training data of the target language. This 

Language Abbr Utts Spks Units Hours 

Ch-Mandarin CH 8529 112 219K 26.7 
Croatian CR 3374 72 89K 12.0 
English (WSJ) EN 7137 83 129K 15.0 
French (Bref) FR 7143 74 123K 13.9 
German GE 9173 71 132K 16.7 
Japanese JA 9096 108 212K 22.9 
Korean KO 6335 80 301K 16.4 
Spanish SP 5419 82 138K 17.6 
Turkish TU 5466 79 87K 13.2 
Total 68276 839 1554K 170.4 

Table 1: GlobalPhone database used for experiments 

idea was first proposed by Zue and evaluated by [6] and [15] 
showing that crosslanguage seed models perform better than 
flat starts or random models. Recently the usefulness of multi- 
lingual phonemic inventories and multilingual phoneme mod- 
els as seed models have been demonstrated by [9], [11]. 

The language adaptation technique lies between the two ex- 
tremes in terms of available training data. In this approach an 
existing recognizer is adapted to the new target language with 
only very limited data. [15],[9], [10] focus on two issues: first 
the amount of data needed to get reasonable results, second the 
question of finding suitable acoustic models to start from. For 
the first question they found -coincident to our expectation- 
that the language adaption performance is strongly related to 
the amount of data used for adaptation. [15] proved that the 
number of different speakers used for training is more criti- 
cal than the number of utterances. The question of suitable 
models to start from was investigated by [9] and [10] compar- 
ing the effectiveness of multilingual acoustic models. Again 
it could be shown that multilingual models outperform mono- 
lingual ones. 

Previous systems which combined multilingual acoustic mod- 
els have been limited to small tasks and context independent 
modeling. Since for the monolingual case the use of larger 
phonetic context windows has proven to increase the recog- 
nition performance significantly, such improvements extend 
naturally to the multilingual setting. The idea how to construct 
context dependent multilingual models was first proposed by 
[5] and [14]. For the language adaptation purpose we intend 
to exploit the context information learned from several Ian- 
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guages. How this information can be incorporated into the 
language adaptive process is still an open issue. In this paper 
we present a new approach to adapt polyphone decision trees 
to the new target language. 

2. Multiple Languages 
For our experiments we developed monolingual LVCSR sys- 
tems in nine languages which will be introduced in this sec- 
tion. For training and testing we are using our multilingual 
database GlobalPhone. 

2.1. The GlobalPhone Database 

GlobalPhone currently consists of the languages Arabic, Chi- 
nese (Mandarin and Shanghai dialects), Croatian, German, 
Japanese, Korean, Portuguese, Russian, Spanish, Swedish, 
Tamil, and Turkish. In each of these languages we collected 
about 15 hours of speech spoken by 100 native speakers per 
language. Every speaker read several articles from a national 
newspaper. The articles were chosen from the areas: national 
politics, international politics, and economy. The speech data 
was recorded at a sampling rate of 48kHz using a close-talking 
microphone connected to a DAT-recorder. After transferring 
the sound data from DAT to hard disc it was downsampled to 
16kHz, 16-bit. The GlobalPhone corpus is fully transcribed, 
and during validation process special markers were added for 
spontaneous effects like false starts, and hesitations. Further 
details about the GlobalPhone project are given in [12]. 

Since English and French are already available in very sim- 
ilar frameworks we decided not to collect additional data in 
these well covered languages but add the two databases Wall 
Street Journal (WSJO, distributed by LDC) for English and 
Bref (BREF-Polyglot sub-corpus, distributed by Elsnet) for 
French to our training data. The resulting database covers 9 
of the 12 most widespread languages of the world. 

Throughout the experiments 80% of the speakers were used 
for training the acoustic models, 10% were defined as a 
test set, and the remaining 10% were kept as further cross- 
validation set. See table 1 for an overview of the database used 
throughout the experiments. 

2.2. Monolingual Baseline Recognizers 

We developed equally designed monolingual LVCSR systems 
in nine languages using our Janus Recognition Toolkit (JRTk). 
For each language the resulting baseline recognizer consists of 
fully continuous 3-state HMM systems with 3000 polyphone 
models. Each HMM-state is modeled by one codebook which 
contains a mixture of 32 Gaussian distributions. The prepro- 
cessing is based on 13 Mel-scale cepstral coefficients with first 
and second order derivatives, power and zero crossing rate. 
After cepstral mean subtraction a linear discriminant analysis 
reduces the input to 32 dimensions. 

Language Word based Phoneme based 
ER Vocab PP ER Vocab PP 

Ch-Mandarin 14.5 45K 207 45.2 141 12.5 
Croatian 20.0 15K 280 36.7 32 9.6 
English 14.0 64K 150 46.4 46 9.2 
French 18.0 30K 240 36.1 38 12.1 
German 11.8 61K 200 44.5 43 9.0 
Japanese 10.0 22K 230 33.8 33 7.9 
Korean 31.0 64K 130 36.1 43 9.9 
Spanish 20.0 15K 245 43.5 42 8.2 
Turkish 16.9 15K 280 44.1 31 8.5 

Table 2: Word and phoneme based error rates (ER), vocabu- 
lary size, and trigram perplexity (PP) for nine languages 

In table 2 we arranged the error rates1, vocabulary size and 
trigram perplexities for the monolingual recognizer. Since the 
engines are the same across the languages, differences in the 
recognition performance are due either to language specific 
inherent difficulties or to differences in quality and quantity 
of the used knowledge sources and data. In our opinion it is 
misleading to infer from the given word error rates to language 
difficulties. On the one hand the concept of a word does not 
hold for each language (Chinese, Japanese, and Korean). On 
the other hand the word error rates are strongly affected by 
available corpus data and resulting artifacts like different vo- 
cabulary sizes, OOV-rates, language model perplexities, and 
last but not least by the human language expertise, which in 
our case is not comparable in all languages. 

A reliable measure of the acoustic difficulties of the nine 
languages is the phoneme based recognition rate using a 
phoneme recognizer without any (phoneme) language model 
constraints. The results in table 2 indicate significantly dif- 
ferences in acoustic confusability between languages, ranging 
from 33.8% to 46.4% phoneme error rate. English seems to be 
the most hardest task in acoustical sense whereas Japanese is 
the easiest. 

3. Multilingual Systems 
In this section we describe our approach to create a multi- 
lingual recognizer engine by combining context dependent 
acoustic models across languages. 

3.1. Global Phonetic Inventory 

We intend to share acoustic models of similar sounds across 
languages for the adaptation purpose. Those similarities can 
be either derived from international phonemic inventories 
documented in Sampa, Worldbet, and IPA or by data-driven 
methods as proposed for example by [1]. 

In our work we defined a global phoneme set based on the 
phonemic inventory of the monolingual systems.   Sounds 

1 Mandarin is given in character based error rate, Japanese in hiragana 
based error rate, and Korean in syllable based error rate 
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which are represented by the same IPA symbol share one 
common phoneme category. In case of five languages we 
started with 171 language specific phonemes and pooled them 
together into 85 phoneme categories. In case of nine lan- 
guages we pooled 339 language dependent phonemes into 140 
phoneme categories. Thus the phone-set compression rate of 
49% in the five-lingual case increases to 41% in the nine- 
lingual case. 

3.2. Multilingual acoustic model Combination 

Based on the above described phoneme categories we de- 
signed multilingual systems by combining the language de- 
pendent acoustic models of the languages Croatian, Japanese, 
Korean, Spanish, and Turkish in two different ways and com- 
pared their effectiveness for the language porting purpose. 

In system ML-mix we share all models across these five lan- 
guages without preserving any language information. We 
build context dependent models by applying a decision tree 
clustering procedure which uses a question set of linguistic 
motivated phonetic context questions. We train the models by 
sharing the data of the five languages. In the second system 
ML-tag the phoneme model sharing across languages is per- 
formed by attaching a language tag to each of the phoneme 
categories in order to preserve the information about the lan- 
guage. The above described clustering procedure is enhanced 
by introducing questions about the language and language 
groups to which a phoneme belongs. Therefore the decision if 
phonetic context information is more important than language 
information becomes data-driven (see [14] for details). 

We explore the usefulness of the two different modeling ap- 
proaches by running three experiments on 7 recognizers sum- 
marized in table 3: 

1. Monolingual baseline test: all five monolingual recog- 
nizers are tested on the corresponding language 

2. Multilingual test: ML-mix and ML-tag are applied to rec- 
ognize one of the five languages involved in training the 
multilingual models 

3. Porting test: the five monolingual systems as well as ML- 
mix and ML-tag are applied to recognize German utter- 
ances. 

The results of the multilingual test show that ML-tag outper- 
forms the mixed system ML-mix by 5.3% (3.1% - 8.7%) er- 
ror rate. This indicates that preserving the language informa- 
tion achieves better results with respect to the ideal situation 
that sufficient training data is available to build a language 
specific system. This finding is coincident to other studies 
[5], [9]. The porting test prove that ML-mix outperforms ML- 
tag in both techniques. This is evident since sharing informa- 

Language Mono          ML-tag ML-mix 

Croatian 26.9             31.9 35.0 
Japanese 13.0             15.0 20.0 
Korean 47.3            49.0 
Spanish 27.6            32.4 37.0 
Turkish 20.1             21.3 29.0 
Technique Porting to German 
Crosslanguage 49.5-65.0     50.0 41.5 
Bootstrap 28.4-50.5     35.7 29.2 

Table 3: Word error rates of ML-mix versus ML-tag 

tion across languages augments the language robustness of the 
transfer system (see [14] and [10] for details). 

3.3. Dictionary Mapping 

For all our experiments we presume that a pronunciation 
dictionary for the target language is given in an arbitrary 
phoneme set. Since we are interested in time and cost ef- 
fective algorithms we created dictionaries which are not al- 
ready available from scratch by grapheme-to-phoneme tools. 
However we post-edit the dictionaries by human experts who 
added pronunciation variants and treated special events like 
acronyms. 

Nevertheless for recognizing the target language with the ML- 
mix or ML-tag system we need to define an appropriate map- 
ping from our global phoneme set to the target phonemes. We 
investigate two approaches to find this mapping: In the first 
approach we apply an heuristic IPA-based mapping, meaning 
that a human experts defines for each target phoneme the cor- 
responding counterpart according to our IPA phoneme cate- 
gories. In the second approach we perform a data-driven map- 
ping by calculating a phoneme confusion matrix, and picking 
the phoneme as a counterpart which leads to the highest con- 
fusion with the target phoneme. For this experiment we as- 
sume that an accurate phoneme recognizer in the target lan- 
guage is already given. We calculated phonetic alignments of 
500 utterances spoken in the target language and did a frame- 
wise comparison with the viterbi decoded alignment of the 
same 500 utterances using a multilingual recognizer. Our ex- 
periments show that the IPA-based approach outperforms the 
data-driven approach by 27.1% vs 34.3% word error rate for 
the bootstrap technique and 66.7% vs 74.5% word error rate 
for the cross-language transfer technique (see [13] for details). 

4. Polyphone Decision Tree Specialization 
When creating the ML-mix system we uses a divisive clus- 
tering algorithm that builds context querying decision trees 
[8]. As selection measure for dividing a cluster into two sub- 
clusters we used the maximum entropy gain on the mixture 
weight distributions. This clustering approach gave signifi- 
cant improvements across different tasks and languages [8]. 
Figure 1 shows for 10 languages the number of different mod- 
els we can get when using different context sizes.  As can 
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be seen these numbers differs very much between the lan- 
guages. These differences are due to the perplexity of the lan- 
guage, to the number of words in the training corpus, and to 
the length of the modeled word units. The latter is according 
to a contraint imposed by the decoder which limits the maxi- 
mum context width to all phonemes within a word and up to 
one phoneme into the neighboring words. For example the ex- 
tremely shortness of Korean units used in our recognizer re- 
sults in zero polyphones of context larger than 2. While for 
Chinese, Japanese and Spanish the most frequent word length 
in the training data is 2 phonemes, it is 5 for Turkish and 6 
for Russian. The most frequent numbers of phonemes in the 
dictionary various from 2 for Spanish to 9 for Turkish. 
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Figure 1: Different Sub-polyphones in training corpus 

The concept of the IPA-based phoneme categories allows us 
to share context models across languages. To estimate the 
percentage of polyphone overlap between languages we de- 
fine the non symmetric polyphone coverage measure as the 
number of polyphone occurrences in one language covered by 
polyphones in another language. In table 4 we give the tri- 
phone coverage for 10 languages. Here we distinguish be- 
tween the coverage of polyphone types (upper row) and the 
coverage of polyphone occurrences (lower row), where the 
first one focus on the aspect whether common polyphones ex- 
ists across languages, and the latter one focus on the aspect 
that frequent polyphones are more important to cover than 
rare ones. For example 33.6% of Japanese triphone occur- 
rences are covered by German triphones, whereby 22.3% of 
the polyphone types are responsible for this coverage rate. On 
the other hand only 19.5% of German triphone occurrences 
are covered by Japanese polyphones. This effect is due to 
the Japanese phonotactic which only allows consonant vowel 
combinations. 

From table 4 it is obvious that we should be aware of a large 
mismatch between represented polyphones in the multilingual 
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0.1 
4.2 

0.0 
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4.2 
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4.9 

DE 0.1 
3.9 
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19.6 
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34.9 
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28.0 
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3.4 
11.6 

1.5 
7.7 

0.9 
6.6 

1.3 
6.6 

3.8 
9.2 
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20.3 
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100 

Table 4: Triphone Coverage for 10 languages 

decision tree and the observed polyphones in a new target lan- 
guage. We therefor specialize the already existing multilin- 
gual polyphone decision tree to the new language by continu- 
ing growing the decision tree. The limited amount of adapta- 
tion data is used to train separate mixture weight distribution 
for the resulting leaf nodes. 

5. Language Adaptation to Portuguese 
In the previous sections we report on the usefulness of mul- 
tilingual acoustic model combination with respect to porting 
these acoustic models to the German language with the cross- 
language transfer and bootstrap technique. Now we investi- 
gate the benefit of these multilingual models in combination 
with the polyphone decision tree specialization (PDTS) for 
language adaption. We intend to adapt the different described 
multilingual systems to Portuguese. For adaptation we pre- 
sume that a Portuguese dictionary as well as the recordings 
and transcriptions of 200 spoken utterances are given. Al- 
though [15] found that the number of speakers for adaptation 
is more critical than the number of utterances we decide to use 
200 utterances spoken by only 7 different Portuguese speaker 
since at least in our dictation task it is more expensive to get 
single utterances of many different speakers than to get many 
utterances spoken by one speaker. The 200 utterances result 
in 25 minutes speech with 3370 spoken word units for adapt- 
ing the acoustic models. The dictionary mapping was done 
according to our heuristic IPA-based mapping approach. 

A subset of 96 uniformally selected utterances from 3 test 
speakers was used to carry out our experiments. The test dic- 
tionary has 7300 entries, the OOV-rate is set to 0.5% by in- 
cluding the most common words of the test set into the dic- 
tionary. A trigram language model with Kneser/Ney backoff 
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scheme was calculated on 10 million word text corpus from 
Agency France Press interpolated with the GlobalPhone data 
leading to a trigram perplexity of 297. 

5.1. Polyphone Coverage 

Before applying our polyphone decision tree specializing ap- 
proach we want to examine how well the 49 Portuguese mono- 
phones and resulting polyphones are covered by the nine- and 
five-language pool. Therefore we calculated the coverage of 
Portuguese polyphones according to our IPA phoneme cat- 
egories. This measure indicates how well a not specialized 
polyphone decision tree fits to the target language. The cover- 
age is shown in figure 2 for context width 0 (monophones) and 
1 (triphones). The calculation of plotted coverage proceeds 
as follows: first we select that language among all pool lan- 
guages which achieves the highest coverage for Portuguese. 
We then remove this language from the pool and calculate the 
coverage between Portuguese and each language pair result- 
ing from the combination of removed language plus remain- 
ing pool language. The procedure is repeated for triples and 
so forth. Thus in each step we find the language which maxi- 
mally complements the polyphone set. 
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Figure 2: Portuguese polyphone coverage by nine languages 

From the figure 2 we observed that as expected the cover- 
age dramatically decrease for larger context (for quintphones 
a maximal coverage of 46% could be attained). After incor- 
porating three languages the coverage of Portuguese mono- 
phones can not increased any further, limited to 91% with the 
nine language pool and dropping to 85% when the most im- 
portant language for monophone coverage (SP) is removed 
from the language pool. The contribution of the Spanish 
phoneme set to the monophone coverage can not be compen- 
sate by other languages remaining in the pool. Second we 
found that when increasing the context width to 1 the cover- 
age saturate after four languages. When increasing to con- 

System Data Labels     Technique Ptree 

Cross-language transfer 
SI 0 - ML 
S2 0 - a 

Language adaptation 
S4 100 initial       MLAdapt a 
S5 100 initial      Vlterbi ML 
S6 100 initial      MLAdapt ML 
S7 100 good        MLAdapt ML 
S8 200 good        MLAdapt ML 
S9 200 good        PDTS ML-PO 

Bootstrap 
S3 100 initial       Rebuild PO 
S10 6600 good        Rebuild PO 

Table 5: Description of systems adapted to Portuguese 

text width to 2 we observed that at least five languages con- 
tribute to the quintphone coverage rate. Therefor we infer that 
increasing the context width requires more languages. For 
the context width 1 the main contribution comes from the 
Croatian language. Removing this language from the pool 
is nearly completely compensate by German and Spanish tri- 
phones. This indicate that Croatian, German, and Spanish 
polyphones covers a similar portion of the Portuguese tri- 
phones set. Whereas the curve (KR-SP-JA-TU-KO) indicates 
that the French language contribute unique polyphones which 
can not be recruited from other languages. In this case the 
lacking phonemes belong to the categories of nasal vowels. 
We conclude from this observation that when designing a lan- 
guage pool for adaptation purposes it is more critical to find 
a complement set of languages than to cover a large number 
of languages. Our method of calculating the polyphone cov- 
erage across languages can help to find such a complemen- 
tary language set. From analyzing the polyphone coverage we 
draw the conclusion that using a polyphone tree even based on 
several languages can not be applied successful to Portuguese 
without adapting to the new contexts. 

5.2. Results 

Table 5 describes the systems used for our adaptation experi- 
ments, their performance on Portuguese is compared in figure 
3. The column Data in table 5 refers to the number of record- 
ings used as adaptation data. Applying no data results in a 
cross-language transfer approach as performed in the systems 
SI and S2. Whereas the training based on 6600 utterances 
(S10) represents the bootstrap technique. For the systems S3 
to S9 we used very limited data of 100 and 200 utterances. 

Labels explains whether the phonetic transcription of the 
recordings are created based on the multilingual recognition 
engine ML-mix (Labels = initial) or based on good phonetic 
alignments which we presume to be already given (Labels = 
good). The latter was used to accelerate our adaptation pro- 
cess. In future work we will examine if we can get close to 
this label quality by iterating our adaptation approach. 
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The term Technique is related to the training approach ap- 
plied to the systems. Viterbi refers to one iteration of viterbi 
training along the given labels. MLAdapt means Maximum 
Likelihood Adaptation technique, Rebuild refers to the itera- 
tive procedure of writing labels, viterbi training, model clus- 
tering, training, and writing improved labels. PDTS is the de- 
scribed Polyphone Decision Tree Specialization. 

The Ptree item describes the origin of the polyphone deci- 
sion trees. CI refers to context independent modeling, mean- 
ing that no polyphone tree is used, ML is the 3000 polyphone 
tree of system ML-mix and PO is a polyphone tree build ex- 
clusively on Portuguese polyphones. ML-PO refers to the re- 
grown ML-mix polyphone tree applying PDTS. 
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Figure 3: Language adaptation to Portuguese 
As expected the recognition of Portuguese speech by running 
the five-lingual recognizer ML-mix without any training data 
results in extremely high word error rates of 73.1% for the 
context dependent system (SI) and slightly better error rates 
of 70% for the context independent system (S2). Therefor the 
initial labels are written with the multilingual context indepen- 
dent system S2. Using 100 of these initial labels for adapting 
the context independent multilingual system (S4) and the con- 
text dependent system by MLA (S6) or viterbi training (S5) 
shows a significant gain. In S3 the initial labels are used to 
completely rebuild a Portuguese system after bootstrapping 
from multilingual seed models. The comparison of S6 and S3 
indicate that the adaptation of non matching polyphone trees 
is outperformed by the bootstrap technique (S3) even if data 
are very limited. Nevertheless the word error rate of the win- 
ning system S3 achieving 50.9% is still unsatisfying. 

We obtain the next performance boost from using improved 
labels (S7) and double amount of adaptation data (S8). Finally 
we applied our PDTS approach (S9) which leads to signifi- 
cant improvements achieving 33% word error rate. This per- 
formance compares to 19.7% word error rate (S10) resulting 
from bootstrapping and rebuilding a Portuguese LVCSR sys- 
tem using 16 hours of speech spoken by 78 speakers. To sum- 
marize we get the highest performance gain in language adap- 
tation from the PDTS technique, enlarging adaptation data, 
and improved labels, in this order. 

6. Conclusion 
In our language adaptive approach we explore the relative ef- 
fectiveness of multilingual context dependent acoustic models 
in combination with a polyphone decision tree specialization 
(PDTS). We examine the profit when porting a multilingual 
engine to new target languages with very limited training data. 
The results are very promising achieving 33% word error rate 
for an Portuguese LVSCR system when using only 200 spo- 
ken utterances for adaptation. 
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Report of the plenary discussion on "Cross Language" 

Chairperson:    Timothy Anderson (WPAFB, USA) 
Reporter: Johan Koolwaaij (KUN, the Netherlands) 

Questions to Adda-Decker: Most questions were about the degree of realism in Adda-Decker's 
view on interoperability in the future. Van Leeuwen asked if real time porting of speech 
recognition means that she expects rule based porting of language models in the future. Adda- 
Decker replied that it is more about general availability of the language models, for example 
via Internet. So real time porting means real time acquisition in this case. 

Koehler asked how realistic is it to expect standardization of phone sets? According to Adda- 
Decker it is better to have something global you agree upon, than having detailed phone sets 
and no agreement. 

Geoffrois inquired if automatic learning is really possible? Adda-Decker replied that this is only 
feasible for low complex applications, it is not to be expected for higher complex applications. 

Hunt asked if Micca's approach on 'Multilingual Vocabularies in Automatic Speech Recogni- 
tion' is possible to apply within a language. Micca responded that he tried this already with 
reasonable success. 

Anderson inquired why the performance of the Ueblers English recognizer is so poor compared 
to the other languages? Dehler remarked that it is difficult to compare recognizers because of 
differences in application, vocabulary size, language model, etc... 

Eklund noted that speakers tend to use the native approach, but what happens if they don't? 
Does it happen that they phones from a 3rd language, like when Swedish have to pronounce 
Aachen and don't know any German, they sometimes choose an English pronunciation. Uebler: 
Not really looked into, but might very will be. 

Cole to Hunt: What exactly is unsupervised adaptation in your 'Military Operational Au- 
tomatic Interpreting System'? Hunt: Adaptation without the system having any a priori 
knowledge about what the speaker is going to say. 

Boves. How do you handle confirmation? Hunt: Confirmation is usually by gestures, like 
nodding in case of agreement. To be sure that the system translates the correct sentence, 
audio verification mode does exist. 

Junqua: Is the system available in other languages? Hunt: All Dragon-Dictate languages are 
possible as input language. 

Anderson: Why is the performance worse in case of a female speaker? Hunt: It is not the 
SNR, not the speech rate, not the amount of variability, but the fundamental frequency. Worst 
performing female had a Fo of 300 Hz. There is a proprietary algorithm now which solves this 
problem to some extent. 

Anderson: Are there plans for two-way translation? Hunt: One and a halfway already exists: 
one way full translation, other way translation of numerals only. 

Van Compernolle to Koehler: on "Comparing Three Different Methods to Create Multilingual 
Phone Models for Vocabulary Independent Speech Recognition Tasks" "Is the LDA done after 
the IPA mapping?" Koehler: Yes. 
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Kienappel: Does it happen that all phones from one language end up in one cluster? Koehler: 
Yes, and this is indeed a problem. 

Imperl to Schultz: Would you expect improvement by using more languages with your Language 
adaptive LVCSR? Schultz: Going from 5 to 8 languages does not make real difference. Carefully 
choosing 5 languages to obtain a phone set with highest coverage helps a bit more. 

Adda-Decker: OOV rate per language should be mentioned in the table, since it is proven 
to have a large impact. Schultz is aware, also comparing error rates over languages does not 
really make sense because of different types of units in some languages. 

General discussion 

Phone models 

What are the best phone models? Context dependent (CD) models or context independent (CI) 
models? The outcome of the discussion is that this is really application dependent. In general 
more specific CD models are better that global CI models (Koehler and Micca) But the choice 
for the contexts of the CD models should be made carefully. Hunt adds that in general the 
segmentation for pronunciation guessing is better with CI models. Martine Adda says that 
CD models include the coarticulation effects. 

Porting 

What is the biggest issue in porting? Lack of data is an important issue when you want to 
start from CI models to go to CD models because data driven approaches to select the right 
contexts need lots of data (Van Compernolle). Hunt adds that the SQALE projects showed 
that the choice of units in different language is not straightforward. For example, Japanese 
and Turkish have a concept totally different from English. Schultz: So language-modeling 
issues are really important for languages other than English. Adda-Decker: For German OOV 
control is needed, but that implies control on the difficulty of the language, and German also 
has the compounding problem. Perplexity only is a rough indication of the complexity of the 
problem. Schultz mentions the issue of transcriptions in the original language. So far she used 
'romanized' transcription, but at some point in time original transcription will be needed. 

Phone sets: 

What is the right phone set? IPA, SAMPA, xenophones, ... Knowledge or data driven? This 
appeared to be an endless discussion. Geoffrois says that standardizing the phone set is com- 
parable to standardizing the words in a language. Others prefer a working solution. Boves 
concludes the discussion by remarking that the optimal solution does not exist, and that we 
necessarily should agree on a sub-optimal solution. 

Similarity measures 

Should phonetic similarity measures in perceptual space or spectral space? Van Compernolle 
starts off with the remark that all these measures also include differences in for example 
recording conditions as we have seen in a number of papers which makes it extremely difficult 
to interpret these measures. Koehler says that using these measures for clustering of phones 
over languages sometimes results in the unwanted effect that all phones from one language end 
up in one cluster. His working solution was to use SpeechDat corpora. Others also have good 
experience with these corpora. 
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ABSTRACT 
Automatic language identification is the process by which 
the language of a digitized speech utterance is recognized 
by a computer. In this paper, we will describe the set of 
available cues for language identification and discuss the 
different approaches to building working systems. This 
overview includes a range of historic approaches, con- 
temporary systems that have been evaluated on standard 
databases, as well as promising future approaches. Com- 
parative results are also reported. 

1. INTRODUCTION 

Automatic language identification is the process by which 
the language of a digitized speech utterance is recognized 
by a computer. It is one of several processes in which in- 
formation is extracted automatically from a speech signal. 

Language-ID (LID) applications fall into two main 
categories: preprocessing for machine systems and pre- 
processing for human listeners. Figure 1 shows a ho- 
tel lobby or international airport of the future that em- 
ploys a multi-lingual voice-controlled travel information 
retrieval system. If no mode of input other than speech 
is used, then the system must be capable of determining 
the language of the speech commands either while it is 
recognizing the commands or before it has recognized the 
commands. Determining the language during recognition 
would require many speech recognizers (one for each lan- 
guage) running in parallel. Because tens or even hundreds 
of input languages would need to be supported, the cost of 
the required real-time hardware might prove prohibitive. 
Alternatively, a language-ID system could be run in ad- 
vance of the speech recognizer. In this case, the language- 
ID system would quickly list the most likely languages 
of the speech commands, after which the few most ap- 
propriate language-dependent speech-recognition models 

THIS WORK WAS SPONSORED BY THE DEPARTMENT 
OF DEFENSE UNDER AIR FORCE CONTRACT F19628-95-C- 
0002. OPINIONS, INTERPRETATIONS, CONCLUSIONS, AND 
RECOMMENDATIONS ARE THOSE OF THE AUTHORS AND ARE 
NOT NECESSARILY ENDORSED BY THE UNITED STATES AIR 
FORCE. 

could be loaded and run on the available hardware. A fi- 
nal language-ID determination would be made only after 
speech recognition was complete. 

Figure 2 illustrates an example of the second category 
of LID applications—preprocessing for human listeners. 
In this case, LID is used to route an incoming telephone 
call to a human switchboard operator fluent in the corre- 
sponding language. Such scenarios are already occurring 
today: for example, AT&T offers a Language Line inter- 
preter service to, among others, police departments han- 
dling emergency calls. When a caller to Language Line 
does not speak English, a human operator must attempt 
to route the call to an appropriate interpreter. Much of 
the process is trial and error (for example, recordings of 
greetings in various languages can be used) and can re- 
quire connections to several human interpreters before the 
appropriate person is found. As reported by Muthusamy 
et al. [33], when callers to Language Line do not speak 
English, the delay in finding a suitable interpreter can be 
on the order of minutes, which could prove devastating in 
an emergency. Thus, a LID system that could quickly de- 
termine the most likely languages of the incoming speech 
might be used to reduce the time required to find an ap- 
propriate interpreter by one or two orders of magnitude. 

2. LANGUAGE IDENTIFICATION CUES 

Humans and machines can use a variety of cues to distin- 
guish one language from another. The reader is referred 
to the linguistics literature (e.g., [5, 6, 12]) for in-depth 
discussions of how specific languages differ from one an- 
other and to Muthusamy et al. [35], who has measured 
how well humans can perform language ID. In summary, 
the following characteristics differ from language to lan- 
guage: 

• Phonology. A "phoneme" is an underlying men- 
tal representation of a phonological unit in a lan- 
guage. For example, the eight phonemes that com- 
prise the word "celebrate" are /s eh 1 ix b r 
ey t/. A "phone" is a realization of an acoustic- 
phonetic unit or segment.   It is the actual sound 



106 

SPEAKER IN AN 
INTERNATIONAL 
SETTING 

SPEECH 
LANGUAGE-ID 

SYSTEM 

TOP THREE LANGUAGE 
HYPOTHESES: 

#1 GERMAN 
' #2 DUTCH 
#3 ENGLISH 

SPEECH-RECOGNITION 
SYSTEM LOADED WITH 
DUTCH MODELS 

SPEECH-RECOGNITION 
SYSTEM LOADED WITH 
ENGLISH MODELS 

SPEECH-RECOGNITION 
SYSTEM LOADED WITH 
GERMAN MODELS 

ACOUSTIC AND 
LANGUAGE 

MODEL LIBRARY 

AFRIKAANS 
ALBANIAN 
ARABIC 
AZERBAIJANI 

|DUTCH     1 

J 

GERMAN 1 

J 
TOP THREE ACOUSTIC 
AND LANGUAGE MODELS 

DUTCH 
TRANSCRIPTION 

ENGLISH 
TRANSCRIPTION 

GERMAN 
TRANSCRIPTION 

Figure 1: A language-identification (LID) system as a front end to a set of real-time speech recognizers. The LID system 
outputs its three best guesses of the language of the spoken message (in this case, German, Dutch, and English). Speech- 
recognizers are loaded with models for these three languages and make the final LID decision (in this case, Dutch) after 
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Figure 2: A language-identification (LID) system as a front end to a multi-lingual group of directory-assistance or emer- 
gency operators. The LID system routes an incoming call to a switchboard operator fluent in the corresponding language. 

produced when a speaker is thinking of speak- 
ing a phoneme. The phones that comprise the 
world celebrate might be [s eh 1 ax bei b r 
ey q]. As documented by linguists, phone and 
phoneme sets differ from one language to another, 
even though many languages share a common sub- 
set of phones/phonemes. Phone/phoneme frequen- 
cies of occurrence may also differ, i.e., a phone may 
occur in two languages, but it may be more fre- 
quent in one language than the other. Phonotactics, 
i.e., the rules governing the sequences of allowable 

phones/phonemes, can also be different. 

• Morphology. The word roots and lexicons are usu- 
ally different from language to language. Each lan- 
guage has its own vocabulary, and its own manner 
of forming words. 

• Syntax. The sentence patterns are different among 
languages. Even when two languages share a word, 
e.g., the word "bin" in English and German, the sets 
of words that may precede and follow the word will 
be different. 
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• Prosody. Duration characteristics, pitch contours, 
and stress patterns are different from one language 
to another. 

3. LANGUAGE IDENTIFICATION SYSTEMS 

Research in automatic language identification from speech 
has a history extending back to the 1970s. A few repre- 
sentative LID systems are described below. The reader 
will find references to other LID systems in reviews by 
Muthusamy et al. [33] and Zissman [50]. 

Figure 3 shows the two phases of LID. During the 
"training" phase, the typical system is presented with ex- 
amples of speech from a variety of languages. Each train- 
ing speech utterance is converted into a stream of fea- 
ture vectors. These feature vectors are computed from 
short windows of the speech waveform (e.g. 20 ms) dur- 
ing which the speech signal is assumed to be somewhat 
stationary. The feature vectors are recomputed regularly 
(e.g. every 10 ms) and contain spectral or cepstral infor- 
mation about the speech signal (the cepstrum is the inverse 
Fourier transform of the log magnitude spectrum; it is 
used in many speech processing applications). The train- 
ing algorithm analyzes a sequence of such vectors and 
produces one or more models for each language. These 
models are intended to represent a set of language depen- 
dent, fundamental characteristics of the training speech to 
be used during the next phase of the LID process. 

During the "recognition" phase of LID, feature vec- 
tors computed from a new utterance are compared to each 
of the language-dependent models. The likelihood that 
the new utterance was spoken in the same language as 
the speech used to train each model is computed and the 
maximum-likelihood model is found. The language of the 
speech that was used to train the model yielding maxi- 
mum likelihood is hypothesized as the language of the ut- 
terance. 

The key issue becomes that of modeling the lan- 
guages. We will discuss a series of different features 
that have been extracted from speech, yielding increas- 
ing amounts of knowledge at the cost of rendering the 
language identifications system more and more complex. 
Some systems require only the digitized speech utterances 
and the corresponding true identities of the languages be- 
ing spoken because the language models are based sim- 
ply on the signal representation or on self generated to- 
ken representation. More complicated LID systems use 
phonemes to model speech and may require either (1) a 
phonetic transcription (sequence of symbols representing 
the spoken sounds), or (2) an orthographic transcription 
(the text of the words spoken) along with a phonemic 
transcription dictionary (mapping of words to prototypi- 
cal pronunciation) for each training utterance. Producing 
these transcriptions and dictionaries is an expensive, time 
consuming process that usually requires a skilled linguist 
fluent in the language of interest. 

3.1. Spectral-Similarity Approaches 

In the earliest automatic language ID systems, developers 
capitalized on the differences in spectral content among 
languages, exploiting the fact that speech spoken in dif- 
ferent languages contains different phonemes and phones. 
To train these systems, a set of prototypical short-term 
spectra were computed and extracted from training speech 
utterances. During recognition, test speech spectra were 
computed and compared to the training prototypes. The 
language of the test speech was hypothesized as the lan- 
guage having training spectra that best matched the test 
spectra. 

There were several variations on this spectral similar- 
ity theme. The training and testing spectra could be used 
directly as feature vectors, or they could be used instead to 
compute formant-based or cepstral features vectors. The 
training exemplars could be chosen either directly from 
the training speech or could be synthesized through the 
use of K-means clustering. The spectral-similarity could 
be calculated by the Euclidean, Mahalanobis, or some 
other distance metric. Examples of spectral similarity LID 
systems are those proposed and developed by Cimarusti 
[4], Foil [11], Goodman [13], and Sugiyama [45]. 

To compute the similarity between a test utterance and 
a training model, most of the early spectral-similarity sys- 
tems calculated the distance between each test utterance 
vector and each training exemplar. The distance between 
each test vector and its closest exemplar was accumulated 
as an overall distance, and the language model having 
lowest overall distance was found. In a generalization 
of this vector quantization approach to LID, Riek [40], 
Nakagawa [37] and Zissman [49] applied Gaussian mix- 
ture classifiers to language identification. Here, each fea- 
ture vector is assumed to be drawn randomly according 
to a probability density that is a weighted sum of multi- 
variate Gaussian densities. During training, a Gaussian 
mixture model for the spectral or cepstral feature vectors 
is created for each language. During recognition, the like- 
lihood of the test utterance feature vectors is computed 
given each of the training models. The language of the 
model having maximum likelihood is hypothesized. The 
Gaussian mixture approach is "soft" vector quantization, 
where more than one exemplar created during training im- 
pacts the scoring of each test vector. 

Whereas the language identification systems described 
above perform primarily static classification, hidden Mar- 
kov models (HMMs) [38], which have the ability to model 
sequential characteristics of speech production, have also 
been applied to LID. HMM-based language identification 
was first proposed by House and Neuburg [17]. Savic 
[41], Riek [40], Nakagawa [37], and Zissman [49] all 
applied HMMs to spectral and cepstral feature vectors. 
In these systems, HMM training was performed on unla- 
beled training speech. Riek and Zissman found that HMM 
systems trained in this unsupervised manner did not per- 
form as well as some of the static classifiers that each had 
been testing, though Nakagawa eventually obtained bet- 
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Figure 3: The two phases of language identification. During training, speech waveforms are analyzed and language- 
dependent models are produced. During recognition, a new speech utterance is processed and compared to the models 
produced during training. The language of the speech utterance is hypothesized. 

ter performance for his HMM approach than his static ap- 
proaches [36]. 

Li [26] has proposed the use of novel features for 
spectral-similarity LID. In his system, the syllable nu- 
clei (i.e. vowels) for each speech utterance are located 
automatically. Next, feature vectors containing spectral 
information are computed for regions near the spectral 
nuclei. Each of these vectors is comprised of spectral 
sub-vectors computed on neighboring (but not necessar- 
ily adjacent) frames of speech data. Rather than collect- 
ing and modeling these vectors over all training speech, 
Li keeps separate collections of feature vectors for each 
training speaker. During testing, syllable nuclei of the test 
utterance are located and feature vector extraction is per- 
formed. Each speaker-dependent set of training features 
vectors is compared to the feature vectors of the test utter- 
ance, and the most similar speaker-dependent set of train- 
ing vectors is found. The language of the speech spoken 
by the speaker of that set of training vectors is hypothe- 
sized as the language of the test utterance. 

3.2. Prosody-based Approaches 

Features that carry prosodic information have also been 
used as input to automatic language identification sys- 
tems. This has been motivated, in part, by studies showing 
that humans can use prosodic features for identifying the 
language of speech utterances [35, 31]. For example, Ita- 
hashi has built systems that use features based on pitch 
estimates alone [18, 19]. He argues that pitch estimation 
is more robust in noisy environments than spectral param- 
eters. 

Hazen [14], however, showed that features derived 
from prosodic information provided little language dis- 
criminability when compared to a phonetic system. A 
system that used both prosodic and phonetic parameters 
performed about the same as a system using phonetic pa- 
rameters alone. 

Finally, Thyme-Gobbel et al. [47] have also looked 
at the utility of prosodic cues for language identification. 
Parameters were designed to capture pitch and amplitude 
contours on a syllable-by-syllable basis. They were nor- 
malized to be insensitive to overall amplitude, pitch and 
speaking rate. Results show that prosodic parameters can 
be useful for discriminating one language from another; 
however, the accuracy of any particular set of features is 
highly language-pair specific. 

3.3. Phone-Recognition Approaches 

Given that different languages have different phone in- 
ventories, many researchers have built LID systems that 
hypothesize exactly which phones are being spoken as 
a function of time and determine the language based on 
the statistics of that phone sequence. For example, Lamel 
built two HMM-based phone recognizers: one in English 
and another in French [25]. These phone recognizers were 
then run over test data spoken either in English or French. 
Lamel et al. found that the likelihood scores emanat- 
ing from language-dependent phone recognizers can be 
used to discriminate between English and French speech. 
Muthusamy et al. ran a similar system on English vs. 
Japanese spontaneous, telephone-speech [32]. 

The novelty of these phone-based systems was the in- 
corporation of more knowledge into the LID system. Both 
Lamel et al. and Muthusamy et al. trained their sys- 
tems with multi-language phonetically labeled corpora. 
Because the systems require phonetically-labeled training 
speech utterances in each language, as compared to the 
spectral-similarity systems which do not require such la- 
bels, it can be more difficult to incorporate new languages 
into the language recognition process. This problem will 
be addressed further in Section 3.4. 

To make phone-recognition-based LID systems easier 
to train, one can use a single-language phone recognizer 
as a front end to a system that uses phonotactic scores to 
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perform LID. Phonotactics are the language-dependent set 
of constraints specifying which phonemes are allowed to 
follow other phonemes. For example, the German word 
"spiel" which is pronounced /sh p iy 1/ and might be 
spelled in English as "shpeel" begins with a consonant 
cluster /sh p/ that cannot occur in English (except if one 
word ends in /sh/ and the next begins with /p/, or in a 
compound word like "flashpoint"). This approach is rem- 
iniscent of the work of D' Amore [9,21], Schmitt [42], and 
Damashek [8], who have used n-gram analysis of text doc- 
uments to perform language and topic identification and 
clustering. By "tokenizing" the speech message, i.e. con- 
verting the input waveform to a sequence of phone sym- 
bols, the statistics of the resulting symbol sequences can 
be used to perform language identification. Hazen [15] 
and Zissman [51] each developed LID systems that use 
one, single-language front end phone recognizer. An im- 
portant finding of these researchers was that language ID 
could be performed successfully even when the front end 
phone recognizer(s) was not trained on speech spoken in 
the languages to be recognized. For example, accurate 
Spanish vs. Japanese LID can be performed using only 
an English phone recognizer. Zissman [51] and Yan [48] 
have extended this work to systems containing multiple, 
single-language front ends, where there need not be a front 
end in each language to be identified. Figure 4 shows an 
example of these types of systems. 

3.4. Using Multilingual Speech Units 

Alternative approaches to training language dependent 
phoneme recognizers use multi-lingual speech units. These 
are derived by either a mixture of language dependent 
and language independent phones or by deriving tokens 
automatically from training data. Advantages of this ap- 
proach include data sharing and discriminant training be- 
tween phonemes across languages and easy bootstrapping 
to unseen languages [10]. 

Research has also focused on the problem of iden- 
tifying and processing only those phones that carry the 
most language discriminating information [1, 52]. These 
language-dependent phones are called "mono-phonemes" 
or "key-phones" in the literature. Kwan [24] and Dals- 
gaard [7] use both language specific and language in- 
dependent phones in their systems. The language- in- 
dependent phones, sometimes called "poly-phones", can 
be trained on data from more than one language with- 
out loss of language ID accuracy. Berkling [2], and 
Köhler [22, 23] have also tested systems that use a single 
multi language front end phone recognizer, i.e., a recog- 
nizer containing a mixture of "poly-phones" and "mono- 
phones". 

3.5. Word Level Approaches 

Between phone-level systems described in the previous 
sections and the large-vocabulary speech recognition sys- 
tems described in a subsequent section are "word-level" 

approaches to language ID. These systems use more so- 
phisticated sequence modeling than the phonotactic mod- 
els of the phone-level systems, but do net employ full 
speech-to-text systems. 

Kadambe [20] proposed the use of lexical modeling 
for language identification. An incoming utterance is pro- 
cessed by parallel language-dependent phone recogniz- 
ers. Hypothesized language-specific word occurences are 
identified from the resulting phone sequences. Each lan- 
guage dependent lexicon contains several thousand en- 
tries. This is a bottom-up approach to the language ID 
problem, where phones are recognized first, followed by 
words, and eventually language. Thomas [46] has shown 
that a language-dependent lexicon need not be available in 
advance; rather, it can be learned automatically from the 
training data. Ramesh [39], Matrouf [29], Lund [28, 27] 
and Braun [3] have all proposed similar systems. 

3.6. Continuous Speech Recognition 

By adding even more knowledge to the system, re- 
searchers hope to obtain even better LID performance. 
Mendoza [30], Schultz [43,44] and Hieronymus [16] have 
shown that large-vocabulary continuous-speech recogni- 
tion systems can be used for language ID. During train- 
ing, one speech recognizer per language is created. Dur- 
ing testing, each of these recognizers is run in parallel, 
and the one yielding output with highest likelihood is se- 
lected as the winning recognizer—the language used to 
train that recognizer is the hypothesized language of the 
utterance. Such systems hold the promise of high qual- 
ity language identification, because they use higher-level 
knowledge (words and word sequences) rather than lower- 
level knowledge (phones and phone sequences) to make 
the LID decision. Furthermore, one obtains a transcrip- 
tion of the utterance as a byproduct of LID. On the other 
hand, they require many hours of labeled training data in 
each language to be recognized and are the most compu- 
tationally complex of the algorithms proposed. 

4. EVALUATIONS 

From 1993-1996, the National Institute of Standards and 
Technology (NIST) of the U.S. Department of Commerce 
has sponsored formal evaluation of language ID systems. 
At first, these evaluations were conducted using the Ore- 
gon Graduate Institute Multi-Language Telephone Speech 
(OGI-TS) Corpus [34]. The OGI-TS corpus contains 90 
speech messages in each of the following 11 languages: 
English, Farsi, French, German, Hindi, Japanese, Korean, 
Mandarin, Spanish, Tamil, and Vietnamese. Each mes- 
sage is spoken by a unique speaker and comprises re- 
sponses to ten prompts. For NIST evaluations, the mono- 
logue speech evoked by the prompt "Speak about any 
topic of your choice" is used for both training and test- 
ing. No speaker speaks more than one message or more 
than one language, and each speaker's message was spo- 
ken over a unique long-distance telephone channel. Pho- 
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Figure 4: A LID system that uses several phone recognizers in parallel. 

netically transcribed training data is available for six of the 
OGI languages (English, German, Hindi, Japanese, Man- 
darin and Spanish). 

Performance of the best systems from the 1993, 1994 
and 1995 NIST evaluations is shown in Figure 5. This 
performance represents each system's first pass over the 
evaluation data, which means that no system-tuning to the 
evaluation data was possible. For utterances having du- 
ration of either 45 s or 10 s, the best systems can dis- 
criminate between two languages with 4% and 2% er- 
ror, respectively. This error rate is the average com- 
puted over all language pairs with English, e.g., English 
vs. Farsi, English vs. French, etc. When tested on nine- 
language forced-choice classification, error rates of 12% 
and 23% have been obtained on 45-s and 10-s utterances, 
respectively. The syllabic-feature system developed by Li 
and the systems with multiple phone recognizers followed 
by phonotactic language modeling developed by Zissman 
and Yan have exhibited the best performance over the 
years. Error rate has decreased over time, which indicates 
that research has improved system performance. 

Starting in 1996, the NIST evaluations have em- 
ployed the CALLFRIEND corpus of the Linguistic Data 
Consortium. CALLFRIEND comprises two-speaker, 
unprompted, conversational speech messages between 
friends. 100 North-American long distance telephone 
conversations were recorded in each of twelve languages 
(the same 11 languages as OGI-TS plus Arabic). No 
speaker occurs in more than one conversation. In the 1996 
evaluation, the multiple phone recognizer followed by lan- 
guage modeling systems of Yan and Zissman performed 
best. The error rates on 30 s and 10 s utterances were 5% 
and 13% for pairwise classification. These same systems 
obtained 23% and 46% error rates for twelve-language 
classification. The higher error rates on CALLFRIEND 
are due to the informal conversational style of CALL- 
FRIEND vs. the more formal monologue style of OGI-TS. 

The CSR-based LID systems have not been fully eval- 
uated at NIST evaluations, because orthographically and 
phonetically labeled speech corpora have not been avail- 
able in each of the requisite languages. As such corpora 
become available in more languages, implementation and 

evaluation of CSR-based LID systems will become more 
feasible. Whether the performance they will afford will be 
worth their computational complexity remains to be seen. 

5. CONCLUSIONS 

Since the 1970s, language identification systems have be- 
come more accurate and more complex. Current sys- 
tems can perform two-alternative forced-choice identifi- 
cation on extemporaneous monologue almost perfectly, 
and these same systems can perform 10-way identification 
with roughly 10% error. Though error rates on conversa- 
tional speech are somewhat higher, there is every reason to 
believe that continued research coupled with competitive 
evaluations will result in improved system performance. 

The improved performance of newer LID systems is 
due to their use of higher levels of linguistic information. 
Systems which try to model phones, phone frequencies, 
and phonotactics naturally perform better than those that 
model only lower-level acoustic information. Presumably, 
systems that model words and grammars will be shown to 
have even better accuracy. 

Improved performance, however, comes at a cost. 
The higher levels of linguistic information must be pro- 
grammed or trained into the newer LID systems. Whereas 
older systems required only digitized speech samples in 
each language to be recognized, more modern systems 
tend to require either a phonetic or orthographic transcrip- 
tion of at least some of the training utterances. State-of- 
the-art large-vocabulary CSR systems are often trained on 
hundreds of hours of transcribed speech. In recognition 
mode, these systems tend to run tens or even hundreds of 
times slower than real-time. Thus, the potential user of 
LID must balance the need for accuracy against the need 
for speedy deployment and low-cost (and possibly real- 
time) implementation. 
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ABSTRACT 

In this paper, we investigate two facets of speaker recog- 
nition : cross-language speaker identification and same- 
language non-native text-independent spea-ker identifica- 
tion. In this context, experiments have been conducted, 
using standard multi-gaussian mo-deling, on the brand 
new multi-language TNO corpus. Our results indicate 
how speaker identification performance might be affected 
when speakers do not use the same language during the 
training and testing, or when the population is composed 

of non-native speakers. 

1. INTRODUCTION AND MOTIVATION 

Speaker recognition systems working in text independent 
(TI) mode have been characterized by their flexibility but 
also by their insecure aspect. Indeed, the non-imposing of 
words or sentences can lead to the breaking of the system 
if the voice of an authorized person is pre-recorded. 

However, text-independent speaker identification sys- 
tems are involved in many applications. That is the rea- 
son why many efforts have been developed in order to im- 
prove text-independent speaker recognition methods. For 
the last decade, the technology in this field has achieved 
significant progress. Now, these techniques can be used 
in real conditions, for that the application field be well de- 

fined. 
Nowadays, more and more users of such systems are 

polyglot. So, if we do not have a priori know-ledge of 
the mother tongue of the talker - or at least the tongue he 
used during the training - and if we can not apply any lan- 
guage identification system, then it is possible to perform 
speaker identification in a language different from the one 
used during training. Let us note that no restriction about 
the tongue would still increase the flexibility of the sys- 
tem. However, the system may still impose one specific 
tongue. Since, it should be open to all users, we can eas- 
ily imagine that any given language might differ from the 

native language of some of the users. 

In order to start a descriptive study on (a) the cross- 
language and (b) the same non-native language effects 

on speaker recognition performance, we carried out some 
text-independent speaker identification experiments on a 
subset of 57 speakers extracted from the TNO multi- 
language database. Our system is based on the standard 
GMM technique, which has already been successfully 
used by the past for TI speaker recognition [3] [2] [4]. 

In section 2 we present in detail the TNO corpus and 
our identification system. The speaker identification ex- 
periments are described in section 3, which is subdivided 
into three items : (a) native speaker identification, acting 
as reference experiment; (b) cross-language speaker iden- 
tification; (c) non-native same-language speaker identifi- 
cation. Results are then discussed and, in particular, cross- 
language spea-ker identification results are compared to 
performance recently obtained on the POLYCOST tele- 
phone speech corpus [5] [1]. 

2. EXPERIMENTAL SETUP 

2.1. Database 

Speech material for our experiments was taken from the 
new Dutch TNO corpus. This database consists in 82 
Dutch speakers. All of them were prompted to pronounce 
10 sentences in four different languages : Dutch, English, 
French, and German. All the sentences were read from 
a computer screen in a anechoic silent recording room. 
Given one language, the first five sentences are common 
for all speakers, while the others differ from one speaker 
to another. 

We decided to accomplish the identification tests over 
all the speakers for whom speech data in the four tongues 
are available. So we conducted our experiments on a sub- 
set of 57 speakers (68 % males and 32 % females). 

The first 5 utterances (per language identical for all 
speakers) were used for the training, while the other 5 
sentences (per language and per speaker unique) were re- 
served to the identification tests. 
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In our experiments, we have systematically considered 
four different training durations (10 s, 15 s, 20 s, and 25 
s) and five different testing durations (5 s, 10 s, 15 s, 20 s, 
and 25 s). 

2.2. Feature Extraction 

Speech recordings were sampled at 16 kHz. Analysis win- 
dows consisted of 512 samples taken every 16 ms. After 
pre-emphasis (factor 0.95) and application of a Hamming 
window, 10 autocorrelation LPC coefficient were com- 
puted and transformed into 12 cepstral coefficients. Fi- 
nally, training and testing features consist only of 12 cep- 
stral coefficients : neither the energy, nor dynamic infor- 
mation (delta coefficients), nor the pitch were used. No 
cepstral mean subtraction was applied. 

2.3. Speaker Model 

Our speaker identification system is based on the statis- 

tical modeling by Gaussian mixtures [3] [2] [4]. Each 

mixture is composed of 12 Gaussian distributions, with 
diagonal covariances matrices. 

3. EXPERIMENTS 

3.1. Native speaker Identification 

First of all, let us carry out a preliminary experiment, con- 
sidering both training and test phases in the mother tongue 
of the speakers. This might be seen, in the context of this 
paper, as the reference experiment. 

Let us remind once again that for these experiments 
and all the experiments that will follow, we shall system- 
atically choose the five sentences per language identical 
for the training, and the other five per language and per 
speaker unique for the identification tests. 

The identification error rates for various training and 
testing durations are given hereafter in Figure 1. 
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Figure 1: Identification error rates over 57 native speak- 
ers of Dutch as a function of test trial length for various 
training conditions 

Results for different training and testing durations are 

reported in Figure 2, Figure 3 and Figure 4 below. 

Test trial l«ngth (s) 

Figure 2: Cross-language speaker identification error 
rates (Dutch / English) over 57 Dutch speakers as a func- 
tion of test trial length for various training conditions. 

We can notice at this point that the closed set speaker iden- 
tification rate reaches 100 % for a 20 second testing dura- 
tion and more, whatever the training duration considered. 

3.2. Cross-language speaker identification 

It would now be interesting to measure the impact of lan- 
guage on our speaker recognition system. 

For that purpose, we conduct an experiment character- 
ized by the use of different languages during the training 
and the test : models are trained on native speech (i.e. 
Dutch), while identification tests are made successsively 
on non-native speech (successively English, French, and 
German). 

For values of training and testing durations large enough, 
we are still able, in the case Dutch/English, to reach the 
maximal performance. 
On the contrary, we are unable to reach a 100 % identifi- 
cation rate in the case Dutch/French, given our proposed 
training and testing conditions. 

When German is used for the test, error rates seem to con- 
verge to about 2 %. 

Similar experiments have been recently conducted on 
a telephone speech database [1]. In this context, cross- 
language speaker identification tests on a set of 111 speak- 
ers showed that the performance degradation induced by 
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Figure 3: Cross-language speaker identification error 
rates (Dutch / French) over 57 Dutch speakers as a func- 
tion of test trial length for various training conditions. 
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Figure 4: Cross-language speaker identification error 
rates (Dutch / German) over 57 Dutch speakers as a func- 
tion of test trial length for various training conditions. 

(2.3 %) even though the population size is more restricted. 
However, we must be aware that, first, the maximal train- 
ing duration is here of 25 seconds, whereas each training 
session lasted about 90 seconds in the previous work. Sec- 
ondly, our identification system is now based on statistical 
modeling by Gaussian mixtures. These two points make 
it difficult to compare in the absolute results from these 
experiments. 

3.3. Non-native speaker identification 

Let us finally consider a last set of experiments conducted 
on non-native talkers. We conducted three sets of ex- 
periments characterized by the use of same non-native 
language during the training and the test : models were 
trained and identification tests were made on non-native 
speech (successively English, French, and German). 

Once again, we report separately results on English, 
French, and German speech in Figure 5, Figure 6, and 
Figure 7, for different training and testing durations. 
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the use of a non-native tongue for the test did not exceed 
1 % (relatively to the use of the native tongue for the 
test) in the case of a speaker identification system based 
on a vector quantization technique. We justified this very 
restricted difference by the fact that spectral characteris- 
tics of the speaker speech is not importantly modified as 
he speaks a second language. This corroborated another 
study which has shown that people who learn a second 
language at an advanced age (> 10 years old), instead of 
learning new phonemes, substitute phonemes from their 
native language and impose the rythm of this native lan- 
guage as they speak a non-native language [8]. Let us 
also mention that this conclusion was consolidated by an 
experiment described in [6] and which showed that the 
spectrum difference, measured by Kullback's divergence, 
on English and Japanese words pronounced by bilingual 
speakers was very small. 

Here, in the case of maximal training and testing du- 
rations, we observe that the degradation easily exceeds 1 
% in the cases Dutch-French (4.8 %) and Dutch-German 

Figure 5: Identification error rate over 57 non-native 
speakers of English as a function of test trial length for 
various training conditions. 

When English is chosen as non-native language, we see 
that there is no big difference between these plots and 
the reference plots. Surprisingly enough, the system per- 
forms sometimes better when this non-native language is 
employed. 

We may reiterate the same observation if German is used. 
However, our system performs slightly worse if French is 
employed. 

Globally, as expected, we observe through these ex- 
periments that even if non-native speakers use the pho- 
netic and prosodic patterns of their first language, the 
identification scores are not really affected. 
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Figure 6: Identification error rate over 57 non-native 
speakers of French as a function of test trial length for 
various training conditions. 
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Figure 7: Identification error rate over 57 non-native 
speakers of German as a function of test trial length for 
various training conditions. 

Major aspects that can make non-native speech deviate 
from native speech are notably fluency, word stress, and 
intonation [7]. Although these factors might be respon- 
sible of a score degradation in the cross-language case, 
we can easily understand that they have a much more re- 
stricted effect on these last experiments. In particular, if 
a non-native talker tends to speak more slowly during the 
training, he will also tend to speak roughly the same way 
for the tests, because the language is the same. This point 
should explain partly why the identification scores are not 
so affected. 

4. CONCLUSION 

The purpose of this paper was to describe and carry out 
multi-lingual speaker identification experiments on the 
TNO database made of native speakers of Dutch, and to 
comment on the results. Various training and testing du- 
rations were considered. 

We first carried out a preliminary set of experiments 

(what we considered as being the baseline experiments) 
where both training of the speakers models and the iden- 
tification tests were made on their mother tongue (i.e. 
Dutch). Then, regarding to our baseline results, we have 
measured the evolution of our speaker identification sys- 

tem performance when (a) different languages are used 
during the training and the tests; (b) a same non-native 
language is used both for the speakers models training and 
the identification tests. Three non-native languages were 
tested : English, French, and German. 

We also pointed out and partly justified the discor- 
dance between the conclusions about the effect on the lan- 
guage if the performance degradation is measured on the 
microphone TNO corpus or on the telephone POLYCOST 
database. 
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ABSTRACT 
Most systems of Automatic Language Identification are 
based on phonotactic approaches. However, it is more 
and more evident that taking other features (phonetic, 
phonological, prosodic, etc.) into account will improve 
performances. This paper presents an unsupervised 
phonetic approach that aims to consider phonological 
cues related to the structure of vocalic and consonantal 
systems. 
In this approach, unsupervised vowel/non vowel 
detection is used to model separately vocalic and 
consonantal systems. These Gaussian Mixture Models 
are initialized with a data-driven variant of the LBG 
algorithm: the LBG-Rissanen algorithm. 
With 5 languages from the OGI MLTS corpus and in a 
closed set identification task, the system reaches 85 % 
of correct identification using 45-second duration 
utterances for male speakers. Using the vowel system 
modeling as a complement to an unsupervised phonetic 
modeling increases this performance up to 91 % while 
still requiring no labeled data. 

1. INTRODUCTION 
Until recently, Automatic Language Identification 
(ALI) was a marginal domain of automatic speech 
processing. The times are changing and today, it raises 
as one of the main challenges as far as Human- 
Computer Interfaces (HCI) are concerned. The need for 
multilingual capacities grows with the joined 
development of world communication and multi-ethnic 
societies as the European Economic Community. The 
language obstacle will remain until either multilingual 
large vocabulary continuous speech recognition or ALI 
systems reach excellent performance and reliability. 
Besides, video and audio contain-based indexing 
requires the extraction of extra linguistic information 
(music/speech segmentation, speaker and language 
identification). 
Presently, the most efficient ALI systems are based on 
phonotactic discrimination via specific statistical 
language modeling [1,2,3,4]. In most of them, phonetic 
recognition is merely considered as a front-end: it 
consists in a projection of the continuous acoustic space 
into one or several discrete sets corresponding more or 

less to phonetic units. Though this approach achieves 
the best results, it seems that increasing performances 
necessitates to consider additional features (especially 
phonetic ones). 
Obviously, if these features have been neglected for a 
while, it is because they are not so easy to exploit in 
ALL Efficient phonetic modeling, based mainly on 
Hidden Markov models (HMM) used to require a 
consequent amount of hand-labeled data for training. 
Unfortunately, this kind of data is expensive to acquire 
and it is available only for a few languages (6 in the 
Multi Language Telephone Speech database from OGI 
[5]). Consequently, phonetic based systems were 
limited to these 6 languages. Fortunately, HMM reach 
today better performances and enhanced capacity of 
adaptation while requiring less and less hand-labeled 
data: phonetic modeling becomes a competitive 
approach and reaches good results [6]. 
Exploiting both phonetic and phonotactic cues is a very 
efficient approach, but we think that it may be 
significantly improved by taking phonology in 
consideration, especially for languages where no 
labeled data are accessible. For such languages, we 
propose to emphasize the structure of their phonological 
systems. This approach consists in two steps: 

splitting   the    speech   utterance   in    segments 
corresponding    with   natural    sound   categories 
(vowels, fricatives, etc.) and then 
modeling each category as a whole, in order to 
capture   the   salient   phonological   cues   of  the 
language. 

Linguists   are  collecting   language  descriptions   and 
developing language typologies for a while [7]. We 
think that taking advantage of phonological typologies 
is a promising approach both for ALI and for automatic 
language description. 
This paper reports experiments that aim to assess the 
discriminative power of an unsupervised phonological 
approach. 
Next section will describe briefly the two systems (a 
global segmental model or GSM and a Phonetic 
Differentiated Model or PDM) which are used in the 
experiments. Each model is then described in details 
(Sections 3 and 4). Experiments on the OGI MLTS 
database are reported in Section 5. We discuss the 
performance and the perspective of such approaches in 
the conclusion paragraph. 
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2. DESCRIPTION OF THE SYSTEMS 
Two systems have been implemented for these 
experiments. 
In the first one, all the utterances of a given language 
are segmented, gathered and modeled by a single 
Gaussian Mixture Model (GMM) evaluated in a cepstral 
space. This Global Segmental Model (GSM) is partially 
similar to the simplest model proposed by M. Zissman 
in [4] and is used as a reference system. 
The second model is an extension of the first one, but it 
is designed to test the hypothesis that the structural 
information on the vowel system of each language can 
be modeled to identify it. A vowel detection algorithm 
is used to split the segments gathered for each language 
in 2 categories: vowel and non-vowel. For each 
language, one GMM is subsequently evaluated from 
each set: a Vowel System Model (VSM) and a 
Consonantal System Model (CSM) though non-vowel 
segments can not be exactly considered as consonants 
(vowel transitions may also be labeled as non-vowels). 
The choice of the vowel/non-vowel distinction is based 
on both linguistic and acoustic considerations: from a 
linguistic point of view, vowel system typologies are 
available for a few years [8]. Additionally, the 
homogeneous structure of the vocalic acoustic space 
provides a good framework to investigate structure 
modeling. 

Both systems take advantage from an a priori 
segmentation algorithm [9]. It provides variable length 
segments by detecting ruptures in the statistical 
structure of the speech signal. This way, a duration 
information is provided for each sound before any 
additional modeling. 

3. GLOBAL SEGMENTAL MODEL 
The idea of modeling all the sounds of a language in a 
single model is not new. It has been first proposed in 
the 80's and M. Zissman has implemented it in [4]. The 
goal is to model the phonetic space of each language 
rather than each phone. The advantage is that it does not 
require any knowledge on the allophones for each 
language. Unfortunately, it tends to be less 
discriminative than a phone modeling approach. 
However, taking the duration provided by the a priori 
segmentation into account may enhance the 
performances as it is used to in speech recognition [10]. 

3.1 Statistical framework 

Let L = {Lh L2,..., LNL] be the set of NL languages to 
identify; the problem is to find the most likely language 
L in L, given that the effective language is really in this 
set (closed set experiments). 

Let T be the number of segments in the spoken 
utterance and O = [olt o2,...oT] the sequence of 
observation vectors. Given O and using Bayes' theorem, 
the most likely language L* according to the model is: 

L' = arg max   [Pr( L;|0)]= arg max 
Pr( 0|L,)Pr( L,) 

Pr(O) 

L* = arg   max   [Pr( 0|L,)Pr( L,.)]   (1) 
\i,i<NL 

Additionally,  if a priori language probabilities  are 
assumed to be identical, one gets the equation: 

L* = arg max [Pr(L,-\0)] = arg max [Pr(0\Lt)]   (2) 
\<i<NL l<,i<NL 

Under the standard assumptions, each segment is 
considered independent of the others, conditionally to 
the language model. Finally, L* is given in the log- 
likelihood space by: 

L = arg max £logPr(0,|L,) (3) 

For each language L„ a GMM is trained with the set of 
speech segments. The EM algorithm is used to obtain 
the maximum likelihood parameters of each model [11]. 
This algorithm presupposes that the number of the 
mixture components, ß„ and initial values for each 
Gaussian probability density functions are given; in our 
system, the LBG [12] and/or the LBG Rissanen 
algorithms [13] fix these parameters. During the 
recognition, the utterance likelihood is computed with 
the speech segments according to each language- 
specific model. 

3.2 GSM Implementation 

The training procedure consists in the following 
processing: 

An  a priori  segmentation  provides  steady  and 
transient segments. 
A speech activity detector is applied to discard 
pauses. 
A cepstral analysis is performed on each segment. 
One GMM per language is estimated with the set of 
language dependent observations. 

Note that, unlike most acoustic-phonetic decoders, the 
cepstral analysis is performed on variable length 
segments rather than on constant duration frames; the 
segment duration is added to the observation vector. 

The same acoustic processing is applied during 
recognition, and the language is identified via a 
maximum likelihood computation of the utterance 
according to the language dependent models. 

3.2.1 Segmentation and speech activity detection 

The segmentation is provided by the "Forward- 
Backward Divergence" algorithm [9], which is based on 
a statistical study of the acoustic signal. Assuming that 
the speech signal is described by a string of quasi- 
stationary units, each one is characterized by an auto 
regressive Gaussian model; the method consists in 
performing an on line detection of changes in the auto 
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regressive parameters. The use of this segmentation 
partially removes redundancy for long sounds, and a 
segment analysis is very useful and relevant to locate 
coarse features. 
The segmentation is followed by a Speech Activity 
Detection in order to discard pauses. Each segment is 
labeled "silence" or "speech"; long silences (longer than 
150 ms) are considered as non-speech and subsequently 
discarded. 

3.2.2 Cepstral analysis 

A set of 8 Mel-Frequency Cepstral Coefficients 
(MFCC) and 8 delta-MFCC characterize each segment. 
Cepstral analysis is performed using a 256-point 
Hamming window centered on the segment. This 
parameter vector may be extended with the duration of 
the underlying segment. A cepstral subtraction performs 
blind deconvolution (to remove the channel effect) and 
speaker normalization. 

3.2.3 GMM Modeling 

Initializing GMM with the LBG algorithm 
The LBG algorithm [12] elaborates a partition of the 
observation space by performing an iterated clustering 
of the learning data into codewords optimized according 
to the nearest neighbor rule. The splitting procedure 
may be stopped either when the data distortion variation 
drops under a given threshold or when a given number 
of codewords is reached. This last procedure has been 
used in our experiments. 

Initializing GMM with the LBG Rissanen algorithm 
The LBG-Rissanen algorithm is similar to the LBG 
algorithm except for the iterated procedure termination. 
Before splitting, the Rissanen criterion J(q) [13, 14], 
function of the size q of the current codebook is 
computed from the expression: 

J(q) = Dq(X)+2p4.\oiilogN) (4) 

In this expression, Dq(X) denotes the log-distortion of 
the training set X according to the current codebook, p 
the parameter space dimension and N the cardinal of X. 
Minimizing J(q) results in the optimal codebook size 
according to the Rissanen information criterion. We use 
this data-driven algorithm to determinate automatically 
the optimal number Q, of Gaussian pdfs for each 
language. 

3.2.4 Recognition processing 

During the identification phase, the utterance is 
processed the same way, and its likelihood is computed 
according each language model using the speech 
segments. According to equation (3), the maximum 
likelihood rule is applied. 

4. PHONETIC DIFFERENTIATED 
MODEL 

In the PDM approach, language independent vowel 
detection is performed prior to the cepstral analysis. The 
detection locates segments that match vowel structure 
according to an unsupervised language-independent 
algorithm [15]. For each language L,-, a Vowel System 
GMM, VSt, (respectively a Consonantal System GMM, 
CSi) is trained with the set of detected vowel segments 
(resp. non-vowel segments). 

Signal 

A priori Segmentation    ► Speech Activity Detection 

Vowel Detection 

Acoustic Modelling  ^ 

VS Model-1   < 

VS Model - 2 

VS Model - N 

►  CS Model-1 

CS Model-2 

CS Model-N 

Vowel System 
Decision Rule 

Consonant System 
Decision Rule 

Statistical 
Merging 

L* 

Figure 1 - Block diagram of the Phonetic Differentiated 
Model system. The upper part represents the acoustic 
preprocessing and the lower part the language dependent 
Vowel and Consonant-System Modeling. 

4.1 Statistical framework 

Let T be the number of segments given by the 
segmentation in the spoken utterance and O = {oj, 
02)...or/ be a sequence of observation vectors. Each 
vector ok consists of a cepstral vector yk and a macro- 
class flag cjt, equal to 1 if the segment is detected as a 
vowel, and equal to 0 otherwise. In order to simplify the 
formula, we note ok={yhck}. 
Since (ck) is a deterministic process, the most likely 
language computed in the log-likelihood space is given 
by: 

L =argmaxj 
\ä<NL 

XlogPrOlVS,) 5>gPr(>>*|CS,.) 
c,=0 

(5) 
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4.2 PDM Implementation 

Vowel detection is based on a spectral analysis 
algorithm. It is language independent and no training 
procedure is required. 
To train the VS and CS models, the procedure is the 
same as the one used for training the GSM. The EM 
algorithm is combined with an initialization, by the 
LBG algorithm or the LBG-Rissanen algorithm. 
In recognition phase, the utterances are processed the 
same way. It provides two sets of observations (vowel 
and non-vowel segments). For each language, two 
likelihoods are computed, according to the VS and the 
CS models. The maximum likelihood rule is applied to 
the overall likelihood (computed according to equation 
5). 

5. EXPERIMENTS 

5.1 Corpus description 

The OGI MLTS corpus [5] has been used in our 
experiments. The study is currently limited to 5 
languages (French, Japanese, Korean, Spanish and 
Vietnamese). The phonological differences of the vowel 
system between these languages have motivated the use 
of this subset [8]. Spanish and Japanese vowel systems 
are rather elementary (5 vowels) and quasi-identical. 
Korean and French systems are quite complex, and they 
make use of secondary articulations (long vs. short 
vowel opposition in Korean and nasalization in French). 
Vietnamese system is of average size. 
The aim of this corpus is to estimate the discriminative 
power of vowel system modeling with either close 
phonological VS or different ones, when salient features 
are available (e.g. nasal vowels). 
The data are divided into two corpora, namely the 
training and the development sets. Each corpus consists 
in several utterances (constrained and unconstrained). 
There are about 20 speakers per language in the 
development subset and 50 speakers per language in the 
learning one. There is no overlap between the speakers 
of each corpus. The identification tests are made with a 
subset of the development corpus, called '45s' set, since 
45s is the mean duration of the utterances. 

5.2 Global Segmental Model 

Several acoustic analyses and the two procedures of 
initialization have been assessed with the GSM system. 
Preliminary experiments have shown that considering 
the segment duration always improves performances. 
With 5 languages, the correct identification rate raises 
86 % using the classical LBG algorithm initialization 
with the codebook size constrained. 

■2   80 

40 60 80 
GSM Model topology 

Rissanen 

Figure 2 - Correct identification rate as a function of the 
GSM model topology. Dash bar corresponds with GSM 
initialized by LBG-Rissanen and plain bars with LBG 
algorithm (the a priori codebook size is displayed). 

These results are obtained with 50 Gaussian laws for 
each language. The LBG-Rissanen algorithm is quite 
inefficient (see Figure 2). It does not handle correctly 
with the complexity of the global acoustic space and it 
is trapped, resulting in ineffective codebook sizes 
smaller than the expected ones (see Table 1). 

5.3 Phonetic Differentiated Model 

5.3.1 Vowel system modeling 

To assess the VS models, a first sequence of 
experiments has been performed: the most likely 
language L is computed according to the VS models 
and non-vowel segments are discarded. When using the 
LBG algorithm, the best result is 67 % of correct 
identification (with 20 Gaussian components by VS 
model). Using the LBG-Rissanen algorithm to estimate 
the optimal size of each VS GMM is more efficient 
since the identification rate reaches 78 % (Figure 3). 
Remembering that only vowel segments are used (i.e. 
less than 10 seconds per utterance), this result shows 
that the VSM coupled with the LBG-Rissanen 
algorithm is able to correctly capture the structure of the 
vowel systems unlike what happened with GSM. 
Codebook sizes determined by LBG-Rissanen are 
significantly higher and the joined performances are 
much better for VSM than for GSM (see Table 1). 

French Japanese Korean Spanish Vietnamese 
GSM 15 12 2        2( 1C 
VSM 29 24           2 3          22 21 
CSM 22 23 24         ; 5            2 7 

Table 1: Language-dependent model size given by LBG- 
Rissanen algorithm as a function of the parameter set (global, 
vocalic or consonantal). 
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20 40 60 

VSM Model topology 

Figure 3 - Correct identification rate as a function of the 
VSM model topology. Dash bar corresponds with VSM 
initialized by LBG-Rissanen and plain bars with LBG 
algorithm (the a priori codebook size is displayed). 

5.3.7 Consonant system modeling 

The same kind of experiments has been performed to 
assess the CS models. Non-vowel segments are used 
(about 25 seconds per utterance). The best performance 
has resulted from the initialization of the GMM with the 
LBG algorithm: 30 Gaussian models reach 78 % of 
correct identification (Figure 3). The LBG-Rissanen 
algorithm has provided less discriminative models than 
those of constant size: consonant segments are 
acoustically more heterogeneous than vowel segments. 
Therefore, the consonant parameter space is much more 
complex than the vowel space and the LBG-Rissanen is 
unable to deal with it, similar to its behavior with the 
GSM. 

80 

2   60 
o 

50 

if 
III i 

i 
% 

20 40 60 80 

CSM Model topology 

Rlssanen 

Figure 4 - Correct identification rate as a function of the 
CSM model topology. Dash bar corresponds with GSM 
initialized by LBG-Rissanen and plain bars with LBG 
algorithm (the a priori codebook size is displayed). 

5.3.1 Phonetic Differentiated Modeling 

The previous CS and VS models are combined to give 
the PDM approach (equation 5); The best system 
merges the VS model initialized by the LBG Rissanen 
algorithm and the CS model initialized by the classical 
LBG. 85 % of correct identification is reached. 

5.4 GSM and PDM Comparison 

As the previous experiments have shown, no significant 
differences, in term of identification rate, arises between 
the  PDM  and  GSM  approaches  since  they  reach 

respectively 85% and 86% of correct identification 
(Table 2). 

»SMI 
78 

oeSMR: 
78 

PDM' 

85 

iflGSNT 

£6 

Table 2: Identification scores with all languages among 5 
languages (45s male utterances). 

In order to see if the information extracted from the 
signal by the two approaches is redundant or 
complementary, another sequence of experiments is 
performed to merge the different models. Scores 
provided by the considered models are combined and 
the maximum score is selected. 
The best performance is reached when the GSM system 
and the VS model system are merged: identification rate 
among 5 languages raises from 86 % to 91 % (see 
Figure 5). The combination "CS model-GSM" does not 
improve the results: consonantal information seems to 
be redundant with GSM ones. When we merge the 
results of the GSM and the PDM, the results are 
intermediate: the CS modeling attenuates the gain of the 
VS modeling. 

Figure 5 - percentage of correct identification according to 
the models. Dash bars correspond with systems resulting from 
merging. 

The improvement of performance when using VSM as a 
complement to GSM is statistically significant. 
Additional experiments have been done to investigate if 
it is due to the redundant use of the vowel segments 
(resulting in a double weight with respect to 
consonantal segments) or if the VSM brings additional 
information. They confirm that the improvement is not 
an artifact of the weighting factor applied to vowel 
segments. Thus, the structure of the vowel system is a 
discriminative feature that is complementary to global 
phonetic modeling. 
Additional experiments have been done with 3 
languages, in order to compare with systems proposed 
in the literature. The figure 6 shows the results for the 
male part of the test corpus and for the global test set. 
The mean results are respectively 93.3 % and 86.4 %. 
This last result must be compared to the 84% obtained 
by O. Andersen [16] and 91% by S. Kadambe [17]. In 
these systems, Hidden Markov Models (HMM) and n- 
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Figure 6: Identification rate for a 3 language identification task, and the '45s' test set. (in light, the test is limited to the male 
speaker set, while in dark, both male and female speakers are considered). Note that the models have been trained only with 
male speakers. 

gram models have been used to model respectively the 
acoustic space and the phonotactic level. 

6. CONCLUSION 
This work proves that a significant part of the language 
characterization is embedded in its vowel system: vowel 
segments seem to be highly discriminative since the 
same level of performance is reached with vowel 
system modeling and consonantal system modeling 
though the consonantal duration is twice the vocalic 
duration in the utterances. Moreover, vowel system 
modeling using the LBG-Rissanen algorithm provides 
additional identification cues that are not exploited in 
the global segmental model (GSM). Thus, merging of 
the GSM and the VSM shows that extracting and 
modeling this information is possible and efficient. 
The interest of the differentiated modeling approach is 
actual, and many advantages of the use of acoustic 
modeling in homogeneous spaces may be pointed out: 

Minimum   Description   Length   algorithms   (like 
LBG-Rissanen)   are   able   to   handle   with   the 
structure of the acoustic-phonetic system. 
A better discrimination  is  reached inside each 
model. 
The parameter space can be adapted to the 
characteristics of the acoustic class that is modeled 

We will complete the notion of differentiated model, 
by introducing different model structures (GMM, 
HMM) and different acoustic parameters dependent of 
the phonetic classes (occlusive, fricative, et al). Then, to 
compare this approach to the classical ones, it will be 
necessary to complete our system with a phonotactic 
model, appropriate to our own acoustic projection. 

7. REFERENCES 
[1] T. J. Hazen, & V. W. Zue, (1997), Segment-based 
automatic   language   identification,   Journal   of  the 
Acoustical Society of America, Vol.  101, No. 4, pp. 
2323-2331, April. 
[2]   L.F.   Lamel,   J.L.   Gauvain,   (1994),   Language 
Identification using Phone-Based Acoustic Likelihood, 
Proc. oflCASSP '94, Adelaide, pp. 293-296. 
[3]   Y.   Yan,   E.   Barnard   &   R.   A.   Cole,   (1996), 
Development of An Approach to Automatic Language 
Identification based on Phone Recognition, Computer 
Speech and Language, Vol. 10, n° 1, pp 37-54, (1996) 

[4] M.A. Zissman, (1996), Comparison of four 
approaches to automatic language identification of 
telephone speech. Proc. IEEE Trans, on SAP, January 
1996,vol.4,n°l. 
[5] Y. K. Muthusamy, R. A. Cole & B. T. Oshika, 
(1992),   The   OGI   Multilingual   Telephone   speech 
Corpus, Proc. oflCSLP '92, Banff, pp. 895-898 
[6] D. Matrouf, M. Adda-Decker, J.-L. Gauvain & L. 
Lamel, (1999), Identification automatique de la langue 
par telephone, actes de la 1"' Journee d'etude du GFCP 
sur Videntification automatique des langues, Lyon. 
[7]  I. Maddieson,  (1986), Patterns of sounds,  2nd 
Edition, Edited by Cambridge Univ. Press, USA 
[8] N. Vallee, (1994), Systemes vocaliques : de la 
typologie aux predictions, These de 3eme cycle, Univ. 
Stendhal, Grenoble 
[9] R. Andr6-Obrecht, (1988), A New Statistical 
Approach for Automatic Speech Segmentation. IEEE 
Trans, on ASSP, January 88, vol. 36, n° 1. 
[10] R. Andre-Obrecht, B. Jacob, (1997), Direct 
Identification vs. Correlated Models to Process 
Acoustic and Articulatory Informations in Automatic 
Speech Recognition, Proc. of ICASSP '97, Munich, 
pp. 989-992. 
[11] A.P. Dempster, N.M. Laird, D.B. Dubin, (1977), 
Maximum likelihood from incomplete data via the EM 
algorithm, J. Royal statist. Soc. ServB.,39. 
[12] Y. Linde, A. Buzo, R.M. Gray, (1980), An 
algorithm for vector quantizer. IEEE Trans on Com., 
January 80, vol 28. 
[13] J. Rissanen, (1983), An universal prior for integers 
and estimation by minimum description length.  The 
Annals of statistics, vol 11, n° 2. 
[14] N. Parlangeau, F. Pellegrino and R. Andre-Obrecht 
(1999),        Investigating        Automatic        Language 
Discrimination via Vowel System And Consonantal 
System Modeling, Proc. oflCPhS '99, San Francisco. 

[15]  F.  Pellegrino,  R Andre-Obrecht,  (1997),  From 
vocalic detection to  automatic  emergence  of vowel 
systems, Proc. ICASSP'97, München, April 1997. 
[16]    O.   Andersen   &   P.    Dalsgaard,   Language- 
Identification   Based   on   Cross-Language   Acoustic 
Models and Optimised Information Combination, Proc. 
of Eurospeech '97, Rhodes, pp. 67-70, (1997) 
[17]    S.    Kadambe,    J.L.    Hieronymous,    (1994), 
Spontaneous  speech  language  identification   with  a 
knowledge    of    linguistics,    Proc.    of   ICSLP'94, 
Yokohama, pp. 1879-1882. 



125 

SCoPE, SYLLABLE CORE AND PERIPHERY EVALUATION: AUTOMATIC 
SYLLABIFICATION AND APPLICATION TO FOREIGN ACCENT IDENTDJICATION 

Kay Berkling 

M.I.T. Lincoln 
Laboratory, 244 Wood Street, 

Lexington, MA 02420-9185, USA 
kay@sst.ll.mit.edu 

Julie Vonwiller, Chris Cleirigh 

University of Sydney, Dept. of Elect. Eng. 
Sydney, Australia, 

julie,cleirig @ speech.su.oz.au 

ABSTRACT 

In this paper we apply a study of the structure of the En- 
glish language towards an automatic syllabification algo- 
rithm. Elements of syllable structure are defined accord- 
ing to both their position in the syllable and to the posi- 
tion of the syllable within word structure. Elements of 
syllable structure that only occur at morpheme boundaries 
or that extend for the duration of morphemes are identi- 
fied as peripheral elements; those that can occur anywhere 
with regard to word morphology are identified as core el- 
ements. All languages potentially make a distinction be- 
tween core and peripheral elements of their syllable struc- 
ture, however the specific forms these structures take will 
vary from language to language. In addition to problems 
posed by differences in phoneme inventories, we expect 
speakers with the greatest syllable structural differences 
between native and foreign language to have greatest dif- 
ficulty with pronunciation in the foreign language. In this 
paper we will analyse two accents of Australian English: 
Arabic whose core/periphery structure is similar to En- 
glish and Vietnamese, whose structure is maximally dif- 
ferent to English. 

1. INTRODUCTION 

The goal of this paper is to exploit detailed knowledge 
of the English syllable structure model in order to add an- 
other dimension to phoneme-based feature analysis of for- 
eign accented speech. This application to foreign accented 
speech in English derives from a more general study of 
the syllable structure of languages. The first part of this 
paper is therefore devoted to the application of this study 
to English, followed by an analysis of foreign accents in 
English as a function of syllable position. Properties of 
accented speech are expressed in terms of phoneme sub- 
stitutions, deletions or insertions as a function of sylla- 

THIS WORK WAS SUPPORTED IN PART BY TWO CONSEC- 
UTIVE POST-DOC POSITIONS AT SYDNEY UNIVERSITY AND 
PROF. FURUI'S LABORATORY AT TOKYO INSTITUTE OF TECH- 
NOLOGY, AND IN PART BY THE DEPARTMENT OF THE AIR 
FORCE. OPINIONS, INTERPRETATIONS, CONCLUSIONS, AND 
RECOMMENDATIONS ARE THOSE OF THE AUTHORS AND ARE 
NOT NECESSARILY ENDORSED BY THE UNITED STATES AIR 
FORCE. 

ble position. A very simple example of the importance 
of position is provided by German phonology. Speakers 
tend to devoice obstruents (stops, fricatives and affricates) 
at ends of words but rarely in the middle. Position inde- 
pendent substitution probabilities would be inaccurate for 
both cases. By meaningfully discriminating position of 
the phoneme, we can potentially improve our feature set 
(of phoneme substitutions) for this type of phonological 
variation. In this paper we will analyse two accents of 
Australian English: (1) Arabic whose syllable structure is 
relatively similar to English. (2) Vietnamese, whose syl- 
lable structure is considerably different to that of English. 
Section 2 will describe an automatic syllabification algo- 
rithm of a pronunciation dictionary followed by a syllable 
structure analysis. Section 3 will analyse the differences 
in pronunciation as a function of syllable position for both 
foreign accents. 

2. ENGLISH SYLLABLE STRUCTURE 

Syllabification of pronunciation dictionaries is an impor- 
tant problem because syllable information is used for text 
to speech synthesis and can be an important feature in 
speech recognition. Most theoretical approaches to syl- 
labification take the beginning or ending of words as their 
guide to the sorts of syllable structures that are allow- 
able in a given language. In contrast, this paper takes 
morpheme-internal syllable structures as the basic tem- 
plate, and treats syllable structures specific to morpheme 
boundaries as exceptional, inasmuch as they carry bound- 
ary information. In order to understand the syllabification 
algorithm that is used in this work, we first present the 
model of syllable structure and the rationale that motivates 
it. 

2.1. Syllable Constituents 

A syllable usually consists of an obligatory vowel with op- 
tional surrounding consonants the exception being where 
a schwa-like vowel and following consonant are realised 
singly as a syllabic consonant. One familiar way of sub- 
dividing a syllable is into Onset and Rhyme. However, 
these categories alone do not indicate where the syllable 
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is placed within the word. We propose another additional 
structure of the syllable as shown in Figure 1 which dis- 
tinguishes between a Core and Periphery. 

Syllable 

Figure 1: Constituents of a syllable as defined in this pa- 
per. (P, Cl, C2, F, and E denote allowed sets of conso- 
nants. V denotes the set of vowels.) 

In English, peripheral phonemes are those conso- 
nants that only occur as syllable constituents at morpheme 
boundaries. As such, the Periphery is a marker of morpho- 
logical boundaries, and more often than not, this means 
word boundaries. We take the Periphery to be essentially a 
word-boundary phenomenon that can come to be incorpo- 
rated within words historically through such processes as 
compounding. As an example, the word "flame" (/fleim/) 
can be broken down into the constituents as /flei/ (Core) 
and /m/ (Periphery), where the periphery demarcates the 
end of the (monomorphemic) word. Similarly, the word 
"lodgement" (AOdZm@nt/) contains two syllables, ZlOdZ/ 
and/m@nt/; the first syllable hasAO/(Core) and/dZ/(Pe- 
riphery), while the second has /m@n/ (Core) and A/ (Pe- 
riphery). Here the first Periphery /dZ/ marks the end of 
the first morpheme "lodge", and the second Periphery A/ 
marks both the end of the second morpheme "-ment", and 
the end of the word "lodgement". By way of contrast, the 
word "freely" (/frtli:/) contains two syllables, An:/ and 
Ai:/; the first syllable has /fri:/(Core), while the second 
has /7«:/(Core). In this case then, although this word con- 
tains two morphemes, free and -ly, neither is demarcated 
by peripheral elements of syllable structure. While all lan- 
guages potentially make a distinction between core and 
peripheral elements of their syllable structure, these struc- 
tures will vary from language to language. Where English 
has demarcative consonants at syllable boundaries as Pe- 
riphery, for tone-languages, such as Vietnamese, it is the 
"lexical" tone, which extends for the duration of the mor- 
pheme or word, that is analysed as the peripheral element 
of syllable structure. By analysing syllables in this way, 
we are able to identify not just differences in phoneme 
inventories across languages, but also differences in the 
ways that languages position their phonemes in syllables, 
and, importantly, differences in the ways that languages 
vary syllable structure according to the morphological lo- 
cation of a syllable. Comparing languages using such fine 

distinctions provides us with a powerful predictive tool 
for identifying elements of syllable structure that should 
prove most difficult for foreign speakers of English, and as 
such, a rich theoretical resource for the automated recog- 
nition of foreign accents of English. 

2.2. Syllable Marking 

In order to use the linguistic knowledge of syllable con- 
stituents as defined, we now want to devise an automatic 
method of marking syllables. Each pronunciation of a dic- 
tionary which is used by the system, will have to be split, 
first into syllables and then into its constituents. There are 
some basic rules for splitting a word into syllables. At the 
nucleus of any syllable is always the vowel (syllabic con- 
sonants are treated here as /@/+ consonant); long vowels 
and diphthongs count as a single phoneme, but occupy 
two syllable positions (V+F). Considering syllable struc- 
ture in terms of the constituents Onset and Rhyme, the 
Rhyme begins with the vocalic nucleus, and anything be- 
fore it in the same syllable is the Onset, a complex Onset 
being one containing more than one consonant. If there 
is only one consonant between two vowels, then that con- 
sonant is the Onset of the second syllable. If there are 
two consonants abutting of the same sonority, the syllable 
boundary falls between them, as in "threadbare." In gen- 
eral, if there are several consonants between vowels, then 
the consonant with the lowest sonority marks the start of 
the second syllable. The sonority hierarchy is given in Ta- 
ble 1 [3]. The principal exception to this is peripheral A/. 
For example, in the compound word "snakeskin" /sneik- 
skln/, the word-internal proclitic A/ that starts the sec- 
ond syllable falls between two consonants (AV) of lower 
sonority Note that, on phonological criteria alone, it is 
not possible to determine whether peripheral A/ is pro- 
clitic or enclitic. This can only be resolved by reference 
to morphological information. More generally, since our 
algorithm doesn't include direct knowledge of morphol- 
ogy (other than through knowledge of periphery), we will 
need to add this information if we are to match syllab- 
ification with morphology for words like "be+smirched", 
"be+stow", "bath+robes", and "birth+rates", which would 
be syllabified as A? axs /-/ m er ch t /, Aa ax s /' t ow /, / b 
aeth/rowbz/ and A> er th /-/ r ey t s /, respectively, by 
rule of sonority. 

Sound Sonority Sound Sonority 
Index Index 

a 10 e,o 9 
i,u 8 r 7 

1 6 m,n 5 
s 4 v,z,th(voiced) 3 

f,th(voiceless 2 b,d,g 1 
p,t,k 0.5 

Table 1: Sonority scale for phonemes. 

Once the syllables are marked, we define the following 
three constituents as detailed in [2], where we distinguish 
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between Enclitic and Proclitic in the Periphery. 

Proclitic: Syllable component that only occurs mor- 
pheme initially, /s/ in (still) or /S/ in (shrugged). 

Core: Syllable component common to all languages types. 
It contains the obligatory vowel. 

Enclitic: Syllable component that only occurs morpheme 
finally. 

These three parts, thus defined, capture a certain sylla- 
ble structure, where P, Cl, C2, and E (Figure 1) denote 
allowed sets of consonants, V denotes the set of vowels, 
and F denotes either a consonant or vowel, the latter being 
the second moraic element of a long vowel or diphthong. 
Given a word then, which is marked at the syllable level, 
it is possible to automatically find the three constituents. 
In a complex onset (consisting of more than one conso- 
nant), the first phoneme is marked as proclitic if it is A/or 
/S/. In the Rhyme, consonants are marked as enclitic un- 
less they are either an A/, an /U or an "assimilating nasal" 
occurring immediately after a short vowel. Assimilating 
nasals occur in words such as pump, rant, rank, combat, 
bandage, languid, ranch, hinge, mince, lens, triumph, etc. 
The "assimilating nasal" refers to a nasal consonant whose 
place of articulation (labial, laminal/apical-dentalveolar/ 
postalveolar, dorso-velar-lips, front-tongue, back-tongue), 
coincides with the place of articulation of the following 
consonant. Given these rules, we have therefore described 
the algorithm for marking core and periphery of syllables. 
The next step is then to syllabify a pronunciation dictio- 
nary so that core and periphery can be marked. 

2.3. Evaluation 

There is no validated reference syllabification by which 
to judge lexicon syllabification. So, in order to evaluate 
our algorithm, we want to syllabify a dictionary, which is 
already marked at the syllable level. The dictionary we 
are using for comparison has been developed at the Johns 
Hopkins summer school [5] and is a close variation of the 
high quality Pronlex lexicon, which has been automati- 
cally marked at the syllable level using Daniel Kahn's [4] 
Principle of English syllabification. Here, syllabifica- 
tion was controlled by three user-supplied lists: permit- 
ted syllable-initial consonant clusters (onsets), permitted 
syllable-final consonant clusters (codas), and prohibited 
onsets. This process is first run on native onsets and codas 
and then repeated for all words that failed syllabification 
by using corresponding lists of foreign onsets and codas 
while handchecking for satisfactory results. This syllab- 
ification algorithm used the generally accepted syllabifi- 
cation method that maximises onsets, assigning as many 
consonants as possible to syllable onsets while subject to 
the constraints of the list of permitted onsets. The dic- 
tionary contains around 71000 entries where we agreed 
on all but ca. 1300 syllabifications. In many cases, the 
phoneme A/was at the onset of a syllable in the dictionary 

while we assign /s/ to the coda (F or E) in certain com- 
pound words. Since conventional methods use beginnings 
of words as the way to model how syllables start, /thr/ in 
bathrobe, is allowed because it occurs in words such as 
'throng'. English has the sequence /str/at the beginning 
of words like "string", so that syllabification of "mistreat" 
for example is analysed as /ml/+/stri:t/. Similarly, since 
English doesn't have short vowels at the end of words, 
in some models 'attitude' is analysed as /At/+/It/+/u:d/ 
rather than /A/+AI/+/tu:d/ as in our algorithm. Such mod- 
els often designate single consonants between vowels as 
"ambisyllabic"—ambiguous or belonging to both sylla- 
bles). 

Generally our syllable boundaries were correctly pla- 
ced at the morphological boundaries more often than in 
the reference dictionary which can be explained with our 
indirect knowledge of morphology due to the knowledge 
of periphery. We take what happens at the beginnings and 
the ends of words to be exceptional, not the norm. We 
take syllable boundaries in the middle of words to be the 
way to model how syllables end and start generally. In 
addition, we differentiate between syllable transitions that 
occur where two morphemes meet and those that occur 
within a single morpheme. Though we can capture many 
morphologically correct syllables by this method, we need 
to extend our algorithm to include morphological knowl- 
edge in order to deal more effectively with prefixes and 
suffixes in the syllabification of words like "besmirch" /b 
axs/merch/. 

3. FOREIGN ACCENT IDENTIFICATION 

We expect speakers with greatest syllable structure differ- 
ences between native and foreign language to have great- 
est difficulty with pronunciation in the foreign language. 
Similar to the example of the German accent, the be- 
haviour of substitution of phonemes can be radically dif- 
ferent for Core and Periphery of the syllable. We hypoth- 
esise a typology of syllable types based on Core vs. Pe- 
riphery functions. At one end is English (or German) and 
at the other, tone languages like Vietnamese, Cantonese, 
Mandarin. Between these two extremes are languages 
without lexical tone with segmental configurations sim- 
pler than English. Syllable structures in tone languages 
tend to be comparatively simple in terms of phone seg- 
ments, but are complicated by tones, each of which ex- 
tends for the duration of a syllable or syllables expressing 
a grammatical unit, usually the word. The tone thus indi- 
cates the extent of the word. This difference in language 
typology has a strong effect on the ability to pronounce 
English in parts of the syllable that demarcate grammat- 
ical units. In order to study the structure of this type of 
foreign accent in English, we chose Vietnamese speech 
data. In contrast, Lebanese Arabic syllable structure has 
much more in common with English. We hypothesise that 
the pronunciation of English by Lebanese foreign speak- 
ers will be much closer to that of native speakers, and the 
variability less than that of a Vietnamese speaker. 
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3.1. DATA 

The data used in this study come from the The Australian 
National Database of Spoken Language (ANDOSL ') [6]. 
The speech was recorded in an Anechoic chamber at the 
National Acoustics Laboratories of Sydney, Australia. We 
compare native Australian English to Vietnamese- and 
Lebanese-accented Australian English. The training set 
and test set for Australian English consist of one male 
speaker each. Each speaker read 200 phonetically rich and 
balanced sentences containing all types of phoneme com- 
binations of Australian English pronunciation. Because 
the 200 sentences demanded a high degree of literacy from 
speakers for whom English was a non-native language, 50 
sentences were chosen from the 200 and adjusted to have 
one member of every phoneme class in every permissible 
position. These were then read by the Vietnamese- and 
Lebanese-accented speakers. For Vietnamese, the training 
set and test set consist of six and three speakers respec- 
tively; the Lebanese training and test set consist of three 
speakers each. In order to analyze the accents, all speech 
was labelled by linguists with the closest Australian En- 
glish phonemes achieved by the speakers. The second 
level of labeling consists of the transcribed words. Also 
available were a small dictionary covering all the words in 
the sentences that were uttered. This dictionary contained 
a single pronunciation model for each word representing 
the "ideal" speaker. Our syllabifier performs at 100% ac- 
curacy according to this dictionary which was syllabified 
by linguists. 

Word Syllable 
structure 

actual 
pronunciation 

l.The D@(C) /d/@:/ 
2. length 1E(C)NT(E) /1/E/N/ 
3. of 0(C)v(E) /O/b/ 
4. her h@:(C) /h/@:/ 
5. skirt s(P)k@:(C)t(E) /s/k/@:/s/ 
6. caused ko:(C)zd(E) /k/@u/s/ 
7. the D@(C) IAI@I 

8. passers-by pa:(C)s@(C)z(E)bai(C) /p/a:/s/b/ai/ 
9. to tu:(C) /t/u:/ 
10. stare s(P)te:(C) /s/t/e:/ 

Table 2: Examples of English words as pronounced by a 
Vietnamese speaker. (E) denotes the Enclitic part, (C) the 
core part. Types of mistakes include: D—► d (1,7), dele- 
tion (2,8), Enclitic substitution (3,5), Enclitic devoicing 
(6), Enclitic simplification (6) 

by linguists) with the target phoneme strings. An example 
sentence, in Table 2, "The length of her skirt caused the 
passers-by to stare" shows both target phonemes (in Aus- 
tralian English) and achieved phoneme string (as spoken 
by a sample Vietnamese speaker). The example shows 
how difficult it can be to align the two strings correctly 
in order to tag the syllable position of each of the actual 
pronunciations. 

In the absence of a confusion matrix which could be 
obtained from training a phoneme recognizer, we use Dy- 
namic Time Warping (DTW) in order to align the two 
strings with linguistic knowledge. The score to be max- 
imized by matching achieved and target phoneme is cal- 
culated by summing up points as given in Table 3 over 
all shared categories over all possible phoneme pairs to be 
matched. Points listed in this table approximately reflect 
the degree of relatedness between two phonemes contain- 
ing this feature. If we were to make a tree of all phoneme 
features, then the number reflects the depth of the tree 
at which is located a particular feature. For example, 
phonemes can be either vowels or consonants (1 point), 
vowels can be short or long (1.5 points), short vowels 
can be back or front (2 points). From this basic method, 
ambiguities are resolved with linguistic knowledge and 
points are altered by looking at the relative similarity of 
phonemes at different depths in the tree. So, for example, 
high short vowels and mid short vowels only receive 1 
point, even at the same depth in the tree as back and front 
vowel. Matching /D/ (loath) to target /T/ (bath) results 
in a score: 1 (consonants) + 2 ( fricatives ) + 4 (lamin- 
odentals) +1.5 (continuants) = 8.5. A perfect match to 
/T/ would have included 1.5 (voiceless). Matching l\l to 
/T/, the score would result in 1 (consonants) + 2.5 (distal 
voiceless) +1.5 (voiceless) = 5, which is smaller than 8.5; 
a less valuable match. 

Category Points Category Points 

VOWELS 1 SHORT 1.5 
LONG 1.5 BACK SHORT 2 

CENTRAL SHORT 2 FRONTSHORT 2 
BACKISH LONG 2 CENTRAL LONG 2 
FRONT LONG 2 HIGH SHORT I 
LOW SHORT 1.5 MID SHORT 1 
HIGH LONG 1 LOW LONG 1.5 
MID LONG 1 DIPHTHONGS 1.5 

RISING DIPH 3 FRONTING DIPH 0 
CLOSING DIPH 3 CENTERING DIPH 2.5 

INIT ROUNDING 1.5 FINAL ROUNDING 2 
CONSONANTS 1 VOICELESS 1.5 

VOICED 1.5 NASAL 4 
LIQUID 4 APPROXIMANT 4 
GLIDE 4 SONORANT 3 
STOP 2.5 CONTINUANT 1.5 

FRICATIVE 2 AFFRICATE 15 
STOPFRIC 3 OBSTRUENT 1 

LABIAL 2 LABIODENTAL 4 
LAMINO DENTAL 4 APICO ALVEOLAR 2 

LAMINO POSTALVEOLAR 3 DORSO VELAR 4 
DISTAL VOICELESS 2.5 DISTAL VOICED 2.5 

3.2. Aligning Utterances to Target Pronunciation 

In order to study the accented speech as a function of 
syllable position, it is necessary to align the achieved 
phoneme sequence (handlabeled with English phonemes 

'More   information   on   this   database   can   be   obtained   at 
http://andosl.anu.edu.au:80/andosl/ 

Table 3: Linguistic Categories with corresponding points 
directly proportional to acoustic closeness (proportionate 
to number of common linguistic features). 

The dynamic time warp returns two phoneme strings 
of the same length AT, with each position, i, either mark- 
ing a substitution, an insertion or a deletion. We thus have 
achieved an automatic method for marking the syllable 
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position (Proclitic, Core, or Enclitic) within a pronunci- 
ation as inherited by the target dictionary pronunciation. 
While this method of alignment seems to work fine by in- 
spection, it may be possible to improve the algorithm by 
acoustic analysis of closeness of phonemes within differ- 
ent categories. 

3.3. Feature Analysis 

Our goal is to look at the discrimination capability of fea- 
tures as a function of their position in the syllable. We 
want to see if position information improves the discrim- 
ination. Features used here correspond to occurrence fre- 
quencies of phoneme labels in the hand-labeled data for 
Vietnamese, Lebanese and Australian accented English. 
In order to identify discriminating features for any two 
classes of accented English speakers, it is essential to have 
a good estimate discrimination error due to a given fea- 
ture. The estimate of the discriminability of two accents 
can be quantified for each feature based on a model of the 
feature distribution in the two accent classes introduced. 
We model each features by using a normal distribution, 
as shown in Figure 2, taking into account the mean oc- 
currence frequency of a given feature, and the variation 
across speakers. Using this model, discriminating features 
can be extracted by estimating the Bayes' error due to two 
class-dependent distributions. 

1 l(m[?]-«2[?])2    m Distance Measure = - exp — - —r^ö~, PT5~     vl > 2 4 sib]2+ s2[j]2 

Number of Speakers 

Accent 1 i j Accent 2 

Graph of estimated errors for top features" 

Occurrence Frequency 

Figure 2: Normal Distribution. 

For each of the features the corresponding discrimi- 
nation error is estimated and thus we are able to look at 
the most important N features which will indicate the 
performance of accent discrimination based on this type 
of phoneme-based feature. Based on this model, we can 
now identify and sort the features by their classification 
error. Figure 3 depicts a graph of the top 40 features 
with respect to their corresponding estimated discrimina- 
tion ability. From this graph, we can see that (1) Lebanese 
has less discriminating features which show less improve- 
ment when including position information. Vietnamese is 
a tone language and therefore, as expected, we see more 
improvement with this type of feature set. 

Figure 3: Top features or Lebanese vs. English and Viet- 
namese vs. English plotted as function of their estimated 
error and comparing position dependent features, with po- 
sition independent Features. As expected, more improve- 
ment is seen in the Vietnamese list. 
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Figure 4: Comparison of language- and position- 
dependent substitutions for phonemes of /dZ/. Substi- 
tutions are different for Lebanese and Vietnamese and 
Core and Enclitic. Lebanese has less variability than Viet- 
namese. 

3.4. Results 

The total number of confusions is too large to describe 
here. In general, looking only at consonants, we can note 
the following trends: 

• Confusions are different across accent groups. 
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• Confusions differ for Enclitic and Core. 

• Lebanese speakers are more consistent in their sub- 
stitutions than Vietnamese speakers. (See example 
for /dZ/ in Figure 4). 

• Vietnamese accented speakers have a stronger ac- 
cent than Lebanese accented speakers in terms of 
changes in voicing, manner, place and class. (See 
example for /dZ/ in Figure 4). 

• The variability of the confusions is generally higher 
in the Enclitic than in the Core part of the syllable 
for both Vietnamese and Lebanese for /N/(laughing) 
and voiced fricatives. 

• The variability of the confusions in the Enclitic is 
generally higher in Vietnamese than in Lebanese for 
stops, unvoiced fricatives, /T/, and /D/. 

• phonemes /T/, /D/, /S/ and /z/(zap) are difficult for 
Vietnamese regardless of position. 

• Voiced affricates are difficult for both accent groups. 

• These trends are upheld across all speakers, how- 
ever, the confusion probabilities vary. 

One example, in particular, relates to the phoneme /d/ 
in Vietnamese. This phoneme is much more interesting 
for discriminability when treated as a function of posi- 
tion. In the Enclitic part its frequency is higher in English, 
but in the Core part its frequency is higher in Vietnamese. 
We now have the ability to study why this phenomenon 
takes place and why syllable position is so important. Ta- 
ble 4 lists some of the relevant confusions. We can see that 
/d/ is a substitute for /D/ (as 'th' in "the") for Vietnamese 
speakers—only in the Core part. In the Enclitic part of 
the syllable the pattern is quite different in that /D/ is sim- 
ply devoiced. In addition, it can be seen that while /d/ is 
mostly pronounced correctly by Vietnamese speakers in 
the Core, /d/ is devoiced to IM in the Enclitic. All these ef- 
fects combine to result in Vietnamese accent with a higher 
frequency of /d/ in the Core and a lower frequency of I Al 
in the Enclitic when compared to native English. 

Confusions including 161 

Position Target Achieved English Vietnamese 
Core D 

D 
D 
d 

0.99 
0.00 

0.33 
0.60 

Enclitic D 
D 
D 
D 

D 
T 
s 
t 

1.00 
0.00 
0.00 
0.00 

0.15 
0.27 
0.19 
0.27 

Core d d 0.96 0.93 
Enclitic d 

d 
d 

d 
s 
t 

0.99 
0.00 
0.01 

0.48 
0.12 
0.28 

3.5. Conclusions 

No statistical analysis of these trends have been made due 
to the small amount of data used for analysis. However, 
having applied this information to a larger system, we 
have shown in [1] that accent identification can be im- 
proved by using syllable dependent information. In this 
paper we have shown that the position within the sylla- 
ble is important because the pronunciation patterns of ac- 
cented speakers vary as a function of the phoneme's posi- 
tion within the syllable and that the linguistic theory is 
reflected in real speech data and can be systematically 
captured. The linguistic understanding of this theory pro- 
vides a means of predicting the discrimination potential 
for a given accent group when using this method. Hav- 
ing shown the connection between linguistics, theory and 
real data, we have gained the ability to reason about sys- 
tem performance at the linguistic level. This algorithm 
may also serve as a powerful tool for language teaching or 
alternatively for speaker identification/verification as cer- 
tain habits of speakers might be captured much more ef- 
fectively within the syllable constituents. 
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Report of the plenary discussion on "Identification" 

Chairperson:    Louis Boves (KUN, the Netherlands) 
Reporter: Sander van Wijngaarden (TNO-HFRI, the Netherlands) 

Question by Vloeberghs: To what degree are speaker identification methods language depen- 
dent? 

Van Leeuwen points out that the main problem in finding out the language-dependency of 
speaker identification methods appears to be the availability of sufficiently large multi-lingual 
corpora. Ideally, true multi-lingual speakers should be used to be able to carry out language- 
dependency tests for speaker recognisers. It is observed that such speakers are hard to find. 

Boves suggests that another approach to answer the language-dependency question is to find 
theoretical considerations why some speaker identification methods should be less language- 
dependent than others. The method by Bimbot based on second order statistics, for instance, 
is found to be relatively language independent. 

Schultz points out that with higher level methods (more linguistics involved instead of just 
speech acoustics), the more language dependency is to be expected. 

Question by van Wijngaarden: How mature is language ID compared to other developments 
in the field of Speech technology? 

Adda-Decker replies that Language ID is still very much in development. Schultz points 
out that, although for technologically less challenging applications (along the lines of MIVA) 
language ID may be at a workable level, more advanced applications will require considerable 
refinement of language identification methods. 

Van Leeuwen asks if 'human benchmarks', the relative performance compared to humans, are 
available to use as a measure of maturity. Human benchmarks are available for most types of 
speech technology applications. Berkling replies that some human benchmarks are available 
for speaker and language ID. Boves remarks that it is difficult to obtain such benchmarks, and 
that human and machine performance are realised in different ways, and are hence difficult 
to compare. Furthermore, Reynolds remarks that human benchmarks are not very relevant in 
the case of identification; speaker and language ID systems are not used to replace humans; 
in fact, most applications will require super-human performance (for instance in terms of the 
number of languages/speakers that can be recognized simultaneously). 

Question by Boves: How do we know if new information added to identification models is 
independent information, that will really add something to the model? 

Berkling points out that if new information improves performance, one can generally conclude 
that it must have been useful and independent information. Boves remarks that the difficulty 
is predicting what information will be useful in advance, using a modeling approach rather 
than trial-and-error. For instance, one might wonder to which extent useful information for 
language identification is found in the consonants. Marta answers that empirical data suggests 
that, although consonants contribute largely to inter-speaker variability, there is little language 
information in consonants. Van Leeuwen remarks that this observation is somewhat contra- 
dictory to the fact that voice-onset times are known to discriminate strongly between some 
languages. Boves concludes that study of such phenomena may lead to a more model-driven 
approach to choosing which information to include in identification models. 
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Question by Boves: When does including new information that really does not add much start 
hurting performance? Will the saying 'garbage in, garbage out' apply? 

Adda-Decker replies that the less 'blind' the method is, the better it will be. It is better to 
add, for instance, linguistic constraints than to rely on statistics. Berkling adds that linguistics 
constraints provide checks to verify if the system makes sense. Blind statistics will allow 
researchers to trust on methods that have little relation to linguistic reality. Then, 'garbage 
in, garbage out' will apply. 
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Final Review 

1. Interoperability; what does it really mean? 

One of the questions at the beginning of the workshop was about the precise meaning of the 
term 'interoperability.' Several aspects of the concept were distinguished in the discussions, 
viz., 

- Between systems 
- Between people 
- Between people and systems 
- For different tasks 

For all different meanings of the word the need for some kind of standardisation was expressed. 
Specifically, standardisation of the overall architecture of systems, or at the very least the 
definition of commonly agreed Application Programming Interfaces, was identified as an issue 
that urgently needs further attention. In very concrete terms the need for a standardised set of 
phone symbols used in various automatic speech systems was mentioned. In this context refer- 
ence was made to the International Phonetic Association (IPA), which has spent a lot of effort 
in defining language independent phonetic units and their attendant symbols. Unfortunately, 
the work of the IPA is not widely known in the speech technology community. Reference was 
also made to SAMPA, a European attempt to define phone sets for all European languages, 
including a mapping to the IPA system and computer readable codes for all phones. 

Another field where there is a need for agreement and eventually standardisation is related 
to measurement procedures. It was pointed out that measures which characterise individual 
modules of spoken language systems (e.g., Word Error Rate for the acoustic decoder; perplexity 
for the language model) fail to predict important aspects of the performance of complete 
systems under many normal operational conditions. Moreover, as the performance of the 
modules increases, relatively crude measures like error rates will lose much of their diagnostic 
value. The participants of the workshop agreed that there is an urgent need for measures of 
the performance of 'systems in interaction.' 

2. Open Systems: what can they do for us? 

Closely connected to the issue of standards is the question whether the speech technology 
community would profit from open, public domain software and databases. On this issue 
the opinions remained divided. Some participants stressed the advantage of having common 
source code, e.g., to allow everybody to use the 'same' basic ASR system. Many experiments, 
e.g., student assignments in universities or pilot experiments in industry would be much easier 
and faster to perform if common—and therefore well-understood—software would e available. 
Other participants in the discussion expressed the feeling that few labs ever made changes to 
the HTK source code, when that was still freely available. These persons pointed out that the 
code of even a 'simple' ASR system is far too complex to allow for quick adaptations to the 
need of specific experiments. Moreover, mutual comparability is probably better supported 
by software systems that come in the form of executable code. Finally, the difficulties with 
maintaining commonality if all labs can change source code was mentioned. If the discussion 
had continued, agreement might have been reached on the statement that well documented 
public domain software will certainly facilitate experiments with the application of speech 
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technology, but that this software does not need to be available in source code. Algorithmic 
research, on the other hand, will very likely require proprietary source code, that can only be 
understood, changed and maintained by a small number of specialist in a research lab. 

Unlike the obvious lack of agreement about common software the opinion that the R&D com- 
munity is crucially dependent on the availability of common databases for training and evalua- 
tion of modules and systems was unanimously supported. Yet, it was pointed out that there are 
many unresolved issues in this field. To begin with, there is a lack of multi-lingual databases; 
it is far from evident that the necessary multi-lingual databases can be designed and built 
with the limited resources that are presently available. In this context it was mentioned that 
there may be significant differences between SpeechDat style corpora (that have successfully 
be designed and collected for many languages over the last couple of years and which are now 
appearing in the catalogue of ELRA) and the corpora that are needed to develop multi-lingual 
dictation applications (which do not seem to be available through LDC or ELRA). 

A short discussion addressed the question whether there is a need and a use for conversational 
databases in R&D in the field of Interoperability. Before this question can be decided more 
research is needed to better understand whether research on conversational databases does 
allow generalisations across the topic of the conversation and the tasks or assignments of the 
participants in the conversation. 

3. Speech Science and Technology 

In the field of multi-lingual operation and interoperability one cannot hope to obtain databases 
that are large enough to solve all modelling problems by straightforward statistics. As scarcity 
of data becomes more of an issue, the need for knowledge based approaches naturally increases. 
There was general agreement about the need for better integration of rule based and statistical 
approaches and for improved information exchange between technology and linguistics, but 
there were no ready made proposals for how to accomplish this. This stimulated quite some 
discussion about possible ways in which phonetic and linguistic knowledge can be brought to 
bear on the solution of speech technology problems. The discussion concentrated on questions 
about the relation between models and phonetic segments. Are these relations similar for 
HMMs and ANNs? No clear answers were given. 

It was pointed out that conventional phonetic wisdom has its own inherent limitations. For in- 
stance, all phonetic and phonological theories seem to make a dichotomous distinction between 
consonants and vowels. In the speech signal such clear distinctions are seldom evident. Thus, 
there seems to be a need for phonetics and phonology to adapt their theories to better match 
the acoustic reality. In this context the work on trajectory modelling in technology and the 
corresponding research in non-linear phonology were mentioned as possibilities for bridging the 
gap. Most probably, phonetics and phonology can profit from the adoption of the procedures 
for analysing very large amounts of data that have been developed in speech technology. A 
clever combination of a data driven and a rule based approach should help to come to grips 
with the enormous range of speaker and language/dialect induced variation in the articulation 
and the acoustics of speech. In this context it is worth mentioning that the papers presented in 
the workshop showed contradictory results for the performance of data driven and rule based 
approaches to the clustering of models and states within models, necessitated by the lack of 
data. Further research is needed to learn whether the contradictions are in some sense funda- 
mental, or whether they are rather artefacts caused by the specific tasks and databases used 
in the experiments. 
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Another part of the discussion addressed questions related to tone languages. The impression 
left by the discussion is that a lot of research remains to be done to develop proper ways of 
handling tone phenomena in ASR. 

Another issue that was discussed, also without yielding a clear solution, was related to the 
importance of proper modelling of prosody in 'western' languages. It is clear that proper 
prosody is absolutely essential in text-to-speech synthesis. At the same time it may be an 
understatement to say that the potential contribution of prosodic parsing to speech recognition 
is much less obvious. 

4. Open Issues 

A number of questions were raised for which the answer is completely open. For one thing, the 
very basic question was raised how to define a language. When it comes to formal modelling the 
concept of a countable set of spoken languages may eventually prove to be wanting. For many 
foreigners as well as for most—if not all—present day ASR systems the difference between 
completely acceptable pronunciation by a person raised in Scotland and a person raised in 
East Anglia is probably as large as the difference between native and many types of non- 
native English. Several developers of ASR systems have made the experience that adding a 
few number of regional phones to the inventory of sub-word units improves recognition rate 
for speakers from that region very considerable (without compromising the performance for 
speakers from other regions). 

The question of the 'best' units to model in phonetic theory, human perception as well as 
ASR was also discussed. Obviously, humans neglect an enormous amount of variation when 
they perceive and understand spoken language. Yet, not all of that variation is random, as 
testified by perception experiments with stylised versions of natural utterances. Maybe there 
is no single optimal set of units. It is very well possible that humans use units at the level of 
words, syllables, sounds and sub-phonemic phenomena in parallel, weighing those that seem 
to contribute most to the decoding problem more heavily than the others. 

In multi-lingual speech technology research there is a clear need for detailed phonetic transcrip- 
tions of ever larger databases of accented and native speech. Quite naturally, this raised the 
question what level of accuracy can be obtained through auditory transcription, and what is 
the overall ratio between the effort (and therefore the money) invested in the transcription and 
the quality of the result. It was rightfully pointed out that the best measure that we presently 
have for transcription is actually based on agreement between multiple phoneticians who each 
transcribe the same passage. Yet, agreement cannot be simply equated to accuracy; it is quite 
possible that several phoneticians make the same 'mistake,' especially in circumstances where 
the verbal content of the message strongly suggests the presence/absence of a specific speech 
sound. Most participants who participated in the discussion expressed the opinion that even 
a high degree of agreement between experts may be difficult and expensive to obtain. This 
underlines the need for the development of powerful automatic tools to provide some form of 
phonetic transcription that is accurate enough for a range of application in multi-lingual R&D. 

Some discussion time was also devoted to the issue of the relation between production and 
perception in cross-lingual problems. This is the well-known question whether learners of a 
second or foreign language are able to perceive phonemic and phonetic distinctions which they 
cannot produce, and—at least to some extent—vice versa. It is very difficult to design an 
experiment that provides an unequivocal answer to this question. Too much of the research 
reports in phonetics, language acquisition and second language learning is too strongly based 
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on single subject studies, or on studies with small number of subjects with a common native 
language who take part in courses that teach the same new language. These experiments do 
not really allow the generalisation of the results to other subjects or other language pairs. 

Limitations in the extent to which experimental results can be generalised to a wider range 
of contexts and situations were also discussed in connection to intelligibility tests that are 
completely based on the DRT or on other ways of using CVC utterances. There is a large 
body of experimental results suggesting that intelligibility in many languages, and especially in 
the languages of the Germanic and Slavonic families, is strongly related to consonant clusters. 
However, neither the DRT, nor any other test based on CVC stimuli, addresses consonant 
clusters. Given the potential ease of application of intelligibility tests with simple stimuli, 
it would be worthwhile to get a better understanding of the conditions under which 'real' 
intelligibility can be predicted from the results of DRT-like tests. 

It was pointed out that the requirements we specify for multi-lingual ASR and Language ID 
systems are clearly super-human. Very few people are able to reliably identify more than some 
ten languages, and human performance in language ID drops considerably if the languages 
under investigation are not familiar. The same goes for speaker ID. Although humans may 
show superior performance in identifying persons from a relatively small group that they are 
highly familiar with, recognition performance suffers dramatically from memory limitations if 
humans are given the task to identify or verify speakers they are not familiar with. Last but 
not least, very few persons understand and speak, say, 15 languages, some of which may be 
totally unrelated to the family of the native language. Yet, we expect computers to perform 
these tasks at a high level of accuracy. 

Another interesting discussion focused on the question about the relative importance of acoustic 
models, lexical representations and language models in ASR. It is very likely that part of the 
human advantage in speech recognition is due to the use of additional knowledge sources. Yet, 
it is difficult to imagine that the human advantage can be fully explained by pragmatic and/or 
linguistic intelligence. One example that suggest superior human performance in a task where 
additional knowledge sources are difficult to imagine is connected digit recognition (telephone 
numbers, credit card numbers, etc.). This kind of performance comparisons suggests that 
we still have a long way to go before machine performance is in the same league as human 
performance (as long as the tasks to be performed are within the range of what humans can 
do). 

The last issue that deserves attention in this overview is related to so called Xenophones, i.e., 
the phones that people produce if they pronounce foreign words in an utterance that for the rest 
is in their native language. The issue is of considerable importance in tasks that induce large 
proportions of foreign words in the input to a (human or automatic) system. Experiments 
with ASR systems indicate that recognition errors for foreign words are substantially more 
frequent than for phonetically similar native words. The problem is worst if the foreign words 
contain phonemes which do not occur in the native language, i.e., xenophones. The realisation 
of xenophones shows a wide range of variation, certainly between speakers, but also within 
speakers. Productions can range from near-native (and therefore different from any model for 
native sounds), via some approximation of the non-native sound coloured by a neighbouring 
native sound, to substitution by a native sound. Modelling xenophones is extremely difficult 
and expensive, not in the last place because it requires detailed human phonetic transcriptions. 
Above it was already explained that such transcriptions are both expensive and error prone. 
The problem is only aggravated by the fact that, in read speech, it is difficult to predict 
what the impact of the spelling will be on the selection of the phones to be produced.  One 
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technique that is frequently used to collect xenophones is to ask subjects to read sentences 
containing names of foreigners. But many of these names can also be interpreted as native. 
If a subject fails to know the foreign person, she may well read the name as if it were native. 
Even if a reader recognises the fact that a name is foreign, she may not know the grapheme-to- 
phoneme correspondence in the target language; this will give rise to unpredictable selection 
of allophones or xenophones. For the time being no straightforward solution exists for the 
xenophone problem. 

Lou Boves 
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