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DESCRIPTION OF THE NAVY COASTAL OCEAN MODEL VERSION 1.0 

1. INTRODUCTION 

This report presents a description of the Navy Coastal Ocean Model (NCOM) Version 1.0. The 
report discusses the physics and numerics of the model and some of its limitations. 

The goals in developing NCOM were to provide an ocean model that would include the best 
features of existing ocean models, would meet the Navy's needs for coastal ocean simulation and 
prediction, and would be fully compatible with and could be fully coupled with the Navy's Coupled 
Ocean and Atmospheric Mesoscale Prediction System (COAMPS) (Hodur 1997). 

The first of these goals is somewhat elusive in that new ocean model features are continually 
being developed within the ocean modeling community. The approach taken for the initial devel- 
opment of NCOM 1.0 is to make use of fairly well-established ocean modeling techniques that have 
been demonstrated to work well and to incorporate improvements and additional capabilities into 
NCOM when they are determined to be useful or needed. Also, it may not be possible to meet all 
the Navy's coastal modeling needs with a single model. However, the approach is to make NCOM 
as flexible as possible without incurring a significant penalty in terms of efficiency. 

COAMPS was developed by the Marine Meteorology Division of the Naval Research Labora- 
tory (NRL) at Monterey, California, and has a very specific code structure that provides for calls 
to (i.e., coupling between) both the atmospheric and ocean models within the same Fortran pro- 
gram. COAMPS also provides for an arbitrary number of levels of nesting within the same Fortran 
program. This nesting capability is made possible by using dynamic memory allocation with array 
dimensions specified at run time and by passing model variables to subroutines through subroutine 
argument lists rather than through common blocks. This allows the same model routines to calcu- 
late the different nests. Since most ocean models are not structured in this way, a certain amount 
of recoding is required to fully adapt an existing ocean model to the COAMPS code structure. 

NCOM Version 1.0 is based primarily on two existing ocean models, the Princeton Ocean 
Model (POM) and the Sigma/Z-level Model (SZM). POM was developed by Alan Blumberg and 
George Mellor (Blumberg and Mellor 1983; Blumberg and Mellor 1987). POM is well-known to 
anyone familiar with ocean models and has attracted a wide base of users within the academic, 
civilian, and government communities. Table 1 lists some of the main features of POM. POM is a 
three-dimensional (3-D), primitive equation, baroclinic, hydrostatic, free surface model and uses an 
orthogonal-curvilinear horizontal grid, a sigma (i.e., bottom-following) vertical grid, a split-explicit 
treatment of the free surface, Smagorinsky horizontal mixing, and the Mellor-Yamada Level 2.5 
(MYL2.5) turbulence model for vertical mixing. 

Manuscript approved August 3, 1998. 
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Table 1 — Comparison of Features of POM and SZM 

POM SZM 

Primitive Equation Primitive Equation 
Incompressible Incompressible 
Hydrostatic Hydrostatic 
Boussinesq Boussinesq 
Free Surface Free Surface 
Smagorinsky Horizontal Mixing Grid-Cell Re Number Horizontal Mixing 
Mellor-Yamada Level 2.5 Vertical Mixing Mellor-Yamada Level 2 Vertical Mixing 
Quadratic Bottom Drag Quadratic Bottom Drag 
Curvilinear Horizontal Grid Cartesian Horizontal Grid 
Sigma Coordinate Vertical Grid Combined Sigma/Z-level Vertical Grid 
Leapfrog in Time with Asselin Filter Leapfrog in Time with Asselin Filter 
Second-Order, Centered Finite Differences Second-Order, Centered Finite Differences 
Flux Conservative Formulation Flux Conservative Formulation 
Split-Explicit Treatment of Free Surface Implicit Treatment of Free Surface 
Implicit Vertical Mixing Implicit Vertical Mixing 

SZM was developed in-house at NRL, Stennis Space Center, MS (Martin et al. 1998). SZM 
is similar in many ways to POM (see Table 1) but differs from POM in that it uses a Cartesian 
horizontal grid (the grid spacing in the horizontal is constant), a combined sigma/z-level vertical 
grid with sigma layers near the surface and z-levels (i.e, fixed-depth levels) below a user-specified 
depth, an implicit treatment of the free surface, horizontal eddy coefficients calculated based on 
a maximum grid-cell Reynolds number criteria, and vertical eddy coefficients calculated using the 
Mellor-Yamada Level 2 (MYL2) turbulence closure scheme. 

In a coastal model comparison study that was conducted at NRL (Martin et al. 1998), POM 
and SZM were found to simulate a number of basic physical processes that are important in the 
coastal ocean (advection, mixing, and the propagation of surface, internal, and coastal trapped 
waves) fairly well. 

NCOM uses those features of POM and SZM that tend to provide the most flexibility and 
provides a choice in many cases where selection of one scheme or parameterization over another is 
difficult because of trade-offs that can be situation dependent. The horizontal grid is orthogonal- 
curvilinear as in POM, which allows adaptation to different map projections and also allows for use 
of a limited amount of grid curvature to follow a slowly curving coastline or bathymetric feature 
and/or to provide increased grid resolution in certain areas of the domain. The sigma/z-level 
vertical grid from SZM is used to offer a choice of sigma layers or z-levels, or some combination 
with sigma layers in the shallow water and z-levels in the deeper water. A choice of grid-cell 
Reynolds number or Smagorinsky horizontal diffusion and MYL2 or MYL2.5 vertical diffusion is 
provided. 

The free surface is treated implicitly as in SZM. This is significantly simpler than the split- 
explicit scheme used in POM and is more consistent in the sense that the depth-averaged equations 
are the almost exact vertical integral of the 3-D equations.   However, the implicit scheme is not 
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as accurate for the propagation of surface gravity waves because of the much larger timestep used 
to propagate these waves (for some comparisons, see Martin et al. 1998). However, an implicit 
treatment of the free surface has been used in a number of coastal models (Leendertse 1989; 
Blumberg 1992; Casulli and Cattani 1994; Casulli and Cheng 1994). An implicit treatment of 
the free surface has usually been found to be sufficiently accurate to simulate tides and wind setup 
since the length and time scales of these processes are relatively long. It was originally planned to 
offer a choice of an implicit or split-explicit treatment of the free surface. However, there are some 
inconsistencies between the use of a split-explicit scheme and a z-level type of grid that have not 
yet been resolved. The option of a split-explicit treatment of the free surface may be provided at 
a later time. 

Some additional features of NCOM are (1) a source term in all the equations to simplify input 
of rivers and coastal runoff, (2) the option of including forcing by the surface air pressure and the 
tidal potential, (3) a multicomponent scalar variable array that allows additional scalar fields to 
be easily added to the model (e.g., for optical or biological submodels), (4) shrink-wrapping to 
eliminate calculations over land points on the left and right sides of the domain, and (5) slabwise 
calculation through the model grid to improve the use of high-speed cache memory. 

The sections that follow include (2) a description of the model physics, (3) a description of the 
model numerics, (4) a discussion of the limitations of the model, (5) a discussion of some plans for 
future development of NCOM, and (6) a summary. 

2. MODEL PHYSICS 

2.1 Basic Equations 

The ocean model is free surface and employs the hydrostatic, Boussinesq, and incompressible 
approximations. The equations that are solved, written in Cartesian coordinates, are 

| = -V.,v„,+0^/u-I| + ,,; + |(^|), P) 

| = -„, (3) 

* + *U^ = Q, (4) 
dx     dy      dz 

_ = -V-(xT) + QT + Vh{AHVhT) + ^ {K„—)+Qrfz, (5) 

= -V • (vS) + QS + Vh(AHVhS) + — [KH — J , (6) 

dT 

at 
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p = p(T,S,z), (7) 

where t is the time; x, y, and z are the three coordinate directions; u, v, and w are the three 
components of the velocity vector; Q is a volume flux source term; v is the vector velocity; T 
is the potential temperature; S is the salinity; Vh is the horizontal gradient operator; / is the 
Coriolis parameter; p is the pressure; p is the water density; p0 is a reference water density; g 
is the acceleration of gravity; Fu and Fv are horizontal mixing terms for momentum; AH is the 
horizontal mixing coefficient for scalar fields (temperature and salinity); KM and KH are vertical 
eddy coefficients for momentum and scalar fields, respectively; Qr is the solar radiation; and 7 is a 

function describing the solar extinction. 

Density p must be calculated from T and S using a suitable equation of state. Two equations of 
state are provided within NCOM, the polynomial equation of state of Friedrich and Levitus (1972) 

and the United Nations Educational, Scientific, and Cultural Organization (UNESCO) formula as 

adapted by Mellor (1991) for use in POM. 

2.2 Surface and Bottom Boundary Conditions 

Equations (1) to (6) are subject to boundary conditions in the form of fluxes and stresses at 
the ocean's surface and bottom. The boundary conditions at the surface at z = (, which are due 

to fluxes between the ocean and the atmosphere, are 

(8) 

(9) 

oz 

dv 
OZ 

_ TV 

Po" 

Kh 
dT Qb + Qe + Qs 

PoC-p 
1 

KH 

öS 
dz ~ 

s\z= ((Ev - -Pr), 

(10) 

(11) 

where rx and ry are the x and y components of the surface wind stress, Q&, Qe, and Qs are the 
net longwave and latent and sensible surface heat fluxes, Ev and Pr are the surface evaporation 
and precipitation rates, and cp is the specific heat of seawater. At the ocean bottom at z = H, the 

boundary conditions are 

KM^~ =c6tt|v|, (12) 
oz 

KM-TT = Cbv\v\, (I3) 
oz 

KH^ = 0, (14) 
oz 
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KH^ = 0- (15) 
oz 

The bottom stress is parameterized here by a quadratic drag law with drag coefficient q,. The 
value of cb can be specified or calculated in terms of the bottom layer thickness Azb and the 
bottom roughness z0 as 

C(, = max 
K2 

.Cfcn loiter 
(16) 

where K = 0.4 is von Karman's constant, and Cbmin is a minimum value for cb. This expression for 
Cb is derived by assuming a logarithmic boundary layer velocity profile near the bottom. 

2.3 Horizontal Pressure Gradient 

Integration of the hydrostatic Eq. (3) in the vertical from a depth z to the surface at z = ( 
yields 

'< dp , t< 

The vertical pressure gradient integrates exactly to give 

K 

£^dz = -g£pdz. (17) 

p(0-p(z) = -gl Pdz- (18) 

Taking a horizontal derivative (e.g., in x) and using Leibnitz's rule for the differentiation of an 
integral, 

MO      dp d£ [<dp 
dx -!=-»«>£-'£&'•• (19) 

Taking p(() ~ p0, dividing by p0, and rearranging terms, the expression for the Boussinesq hori- 
zontal pressure gradient in x is 

l dp     1 dp(C) +  cK+g  [<dp 
I- f fdz. (20) 
'o Jz  dx p0 dx      p0   dx dx     p{ 

The first term on the right side of Eq. (20) is the pressure gradient at the surface (i.e., the surface 
atmospheric pressure gradient), the second term is the horizontal pressure gradient due to differ- 
ences in the surface elevation, and the third term is the horizontal pressure gradient due to the 
density field, which is sometimes referred to as the baroclinic pressure gradient. The horizontal 
pressure gradient in y is calculated in similar fashion. 

2.4 Horizontal Mixing 

The model uses the Laplacian form of horizontal mixing, and two horizontal mixing parame- 
terizations are provided. One is based on maintaining a maximum horizontal grid-cell Reynolds 
number, and the other is the Smagorinsky scheme (Smagorinsky 1963), which is used in POM. 

For the grid-cell Reynolds number scheme, the horizontal friction terms in the momentum 
equations use the form 
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d  ( .    du\      d  ( .    du\ ,    , 

F» - fa 0*"to) + 8^ (^»ä») ' (22) 

The horizontal mixing coefficient AM is set equal to the maximum of a constant background value 
A0 and a value needed to keep the grid-cell Reynolds Number R£g below a maximum specified 
value, i.e., in the cc-direction, 

AM = max  A0, ——   , (23) 

and in the y-direction 

loi I A ii 
(24) 

where Ax and Ay are the horizontal grid spacing in x and y, respectively. The value of Reg is 
typically set to a value in the range of 10 to 100. 

For the Smagorinsky mixing scheme, the horizontal friction terms have the form 

d  (n A    du\      d  ( .     (du     dv\\ .... 

0  /„.    9v\      d  ( ,     (du     dv\\ .... 
F"=Ty{2A"»y) + TX{

Au\TV 
+ d-X))' 

(26) 

The horizontal mixing coefficient AM is calculated as a function of the local horizontal grid resolu- 
tion and velocity shear, i.e., 

*    A    ((du\2     1 fdv      du\2     (dv\2\* ,„. AM = Csma9AxAy (^(_)   + - (- + -)   + [^) J    . (27) 

The magnitude of the Smagorinsky eddy coefficient calculation is scaled by the constant Csmag- 
Values used for Csmag range from about 0.02 to 0.5. Large values of Csmag tend to dissipate smaller 
features, whereas values that are too small can lead to excessive numerical noise and/or instability. 
A typical value that is used is 0.1. 

The grid-cell Reynolds number scheme is simpler and, with the mixing coefficients scaled ac- 
cording to the velocity magnitude, is specifically geared toward suppressing noise generated by 
numerical advection. The Smagorinsky scheme scales the rate of mixing according to the hori- 
zontal velocity shear and might be considered to be more physically based. The eddy coefficients 
calculated by the Smagorinsky scheme are isotropic and are independent of coordinate rotation; 
those calculated by the grid-cell Reynolds number method are not. 

The form used for horizontal diffusion of T and S is the Laplacian form expressed in Eqs. (5) 
and (6). NCOM provides for allowing AH to be some fraction of AM via specification of an inverse 
Prandtl Number. Setting AH = AM is a common choice, but for some applications it may be 
desirable to set AH different from AM- 
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2.5 Vertical Mixing 

The vertical eddy coefficients are specified as 

KM = max K\1Q,KMI-,KM2 
\w\Az 

Re- 
(28) 

KH 
max KHQ,KHI,KH.2, 

\w\Az 

Re. 
(29) 

where KMo and KHo are small, background values, KMl and KHl are calculated from a turbu- 
lence model, KM2 and KH2 parameterize turbulent mixing by unresolved processes at near-critical 
Richardson Numbers (Large et al. 1994), Az is the vertical grid spacing, and Rez is a maximum 
grid-cell Reynolds number for the vertical direction. 

The background values KMo and KHo are constants. Their purpose is to parameterize weak, 
vertical mixing processes that are not accounted for by the other mixing parameterizations. They 
are generally kept quite small since large values would be unrealistic and would excessively erode 
the stratification and damp the flow, especially in shallow water. Typical values are 10"5 m2/s or 
less. 

Two turbulence schemes are provided for calculating KMl and KHl, the MYL2.5 scheme (Mellor 
and Yamada 1982; Mellor 1996), which is used in POM, and the simpler MYL2 scheme (Mellor and 
Yamada 1974; Mellor and Durbin 1975). In both of these schemes, KMl and KHl are calculated as 

KMl = lqSM, (30) 

KHX = ZqSH, (31) 

where t is a vertical turbulent length scale, \q2 is the turbulent kinetic energy (TKE), and SM and 
SH are stratification functions that describe the effect of stratification on the vertical mixing. 

The MYL2.5 scheme provides a prognostic equation to calculate the TKE that includes advec- 
tive and diffusive transport. Another prognostic equation for the quantity q2£ is used to provide 
an estimate for the vertical turbulence length scale L These two equations are 

^ = -V • (v,2) + Qq2 + Vh(AHVhq>) + | UQ1 
d-£\ 

+ 2Khh 

du\2 

Tz) + £) H ̂  if 2q3 

hi' 

^ = -v- (Wi) + Qv2z + vh{AHvhqH) +1 Uqi *j£ 

+ Et KM, 
du 
~d~z 

+ S)».(ü h w, 

(32) 

(33) 

where 
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W = l + E2(-^
2, (34) 

L-i = (( - z + Zs)-i + (z - H + z0)-\ (35) 

^ = ^_c-2^. (36) 
dz      dz      s   dz 

In the above equations, Kqi is the vertical diffusion coefficient for q2 and q2£, which is taken to be 
proportional to KHl (Kqi = 0AlKHl), zs is the surface roughness, cs is the speed of sound, and 
&i, Ei, E2, and E3 are constants (see Table 2). 

As discussed by Mellor and Yamada (1982), Eq. (33), which is used to obtain the turbulence 
length scale, is somewhat ad hoc. Most of the methods used to estimate turbulence length scales 
resort to some degree of empiricism. 

Mellor and Yamada (1982) refer to W as a "wall-proximity" function, which is used to scale 
£ near the surface and bottom. This function has been modified from the form used in POM to 
account for the surface roughness length zs and the bottom roughness length z0 (in POM, L in 
Eq. (35) tends to zero at the top and bottom). Since zs and z0 are usually fairly small relative to 
the vertical grid resolution, the effect of this change is not usually significant. However, in the case 
of strong winds and breaking waves at the surface, the surface roughness can significantly increase 
the mixing in the surface mixed layer (Craig and Banner 1994; Craig 1996). 

Table 2 — Constants for MYL2.5 Turbulence Model 

parameter value 

a\ 0.92 
0-2 0.74 
h 16.6 
b2 10.1 
C\ 0.08 
Ei 1.8 
E2 1.33 
E3 1.0 

The density p, which is used to calculate the vertical buoyancy gradient in the TKE equation, 
must not include the effect of local changes in pressure on the density; otherwise, the vertical 
stability will be overestimated. If p is calculated as an in situ density, where the effect of pressure 
on the density is accounted for, Eq. (36) provides the correction to remove the effect of local pressure 
changes on the vertical density gradient. If the model density does not include the effect of pressure, 
one can set p = p (in shallow water, the effects of pressure on the density are small and are often 
neglected). 

Prognostic Eqs. (32) and (33) require boundary conditions at the surface and bottom. At the 
surface at z = (, the boundary conditions are given by 
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2 

«" = «£)■ <37) 

<?£ = b*{-)Kzs. (38) 

NCOM also provides the option of specifying the flux of TKE at the surface rather than the 
value itself. The surface TKE flux is currently parameterized in terms of the surface wind stress, 
i.e., at z = ( 

KM~Z— — cwave   — )   , (39) 
oz \p0J 

where cwaVe is a constant that scales the TKE input from the waves. (Note that if wave data are 
available, it might be preferable to parameterize the surface TKE flux in terms of the actual sea 
state.) This boundary condition for the surface TKE flux, along with accounting for the surface 
roughness due to surface waves, allows for the simulation of the wave-mixing layer near the surface 
in which there is enhanced mixing from the energy input from breaking waves (Craig and Banner 
1994). 

At the bottom at z = H, the boundary conditions are 

9
2 = 6fC6(u

2 + «2)5,. (40) 

q2l = bfcb{u
2 + v2)12KZ0. (41) 

The stratification functions SM and SH are calculated as 

SH = .     C'       , (42) 

1 - ^5<J# 

where 

fg dp 
GH = niin 0.028, (44) 

q2Po dz 

The constants C\ - C5 are calculated from the basic turbulence constants (ai, a2, 6i, 62, and c\) as 

Ci = 02(61-601)76!, (45) 

C2 = a2(18ai+362), (46) 

C3 = o1(61(l-3C1)-6o1)/6i, (47) 
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C4 = ai(18ai + 9a2), (48) 

C5 = 9axa2. (49) 

Table 2 lists the values of the constants used in the MYL2.5 turbulence model. 

The MYL2 turbulence model assumes that there is approximately a local balance between 
shear production, buoyancy production, and dissipation in the TKE equation (these are the last 
three terms in Eq. (32)). With this assumption, q can be calculated algebraically from the mean 
vertical density and velocity gradients 

Q ^M(£)M£)>^- 
An empirical formulation is used to estimate £. The turbulent length scale £ is set to zero 

outside of turbulent layers, and within a turbulent layer is scaled as the vertical distance to the 
edge of the turbulent layer, i.e., if zt is the distance to the top of the turbulent layer and zb is the 
distance to the bottom of the turbulent layer, then the local turbulent length scale £ within the 
turbulent layer is calculated as 

K(Zi + zr1)-1. (51) °b 

In the surface mixed layer, the surface roughness is added to zt, and in the bottom boundary layer 
the bottom roughness is added to zb so that the value of £ reflects the surface and bottom roughness. 
Calculated from Eq. (51), £ has a quadratic profile within a turbulent layer, and the value of £ at 
the center of a turbulent layer is about 10% of the thickness of the layer (for small values of zs and 
z0). This is a somewhat crude parameterization of £, but this is mitigated somewhat by the fact 
that the depth of turbulent layers predicted by the MYL2 scheme in density stratified conditions 
tends to be only weakly dependent on the value of £. There is also the point that more elaborate 
turbulence parameterizations frequently do not describe the details of turbulent mixing very well 
since they do not account for or adequately resolve some of the significant processes. 

The stratification functions SM and SH for MYL2 are calculated from the Richardson Number 
Ri as 

SH = C[- C'2R, (52) 

SM = SH c, _(jiRi (53) 

where 

* = Ä? <54) 

R, = O, + C^R, - ((CgRi + C,)R, + Cf)i (55) 
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Ci = a2(6i-6ai)/6i, (56) 

a2 = a2(l8a1+3b2)/bu (57) 

C7^ = ai(6i(l-3ci)-6ai)/a2, (58) 

^ = ai(18ai+9a2)/a2, (59) 

(60) 

(61) 

(62) 

(63) 

C£ = 2C*C7£-_^-. (64) 
o3 + o4 

In these equations, Rf is a flux Richardson Number (Rj = RIKH/KM = RZSH/SM), and ai, a2, &i, 
62, and ci are the the same basic turbulence constants as used for the MYL2.5 model. Table 3 lists 
the values for the constants used for the MYL2 turbulence model. Note that the basic turbulence 
constants used here for the MYL2 model are as used by Mellor and Durbin (1975) and are slightly 
different from the values used in the MYL2.5 model. 

Table 3 — Constants for MYL2 Turbulence Model 

Cs = 6i- - 6ai, 

C'G- = 9ai + 362, 

c\- 1 

2C3 

c3 

C'8 = 
IC5 

~2C3 

— or -it ^i C's 

parameter value 

ai 0.78 
a2 0.78 
h 15.0 
b2 8.0 
C\ 0.056 

The MYL2 turbulence model as described here was compared with the MYL2.5 scheme as 
used in POM for some simple cases of surface-layer mixing by winds and heat fluxes and bottom- 
layer mixing by tidal currents and was found to give similar turbulence mixing scales and similar 
turbulent layer depths for these cases (Martin 1985; Martin 1986; Martin et al. 1998). Because of its 
simplicity, the MYL2 turbulence model is relatively efficient and does not carry the computational 
burden of the MYL2.5 scheme, which requires the model to carry and calculate two additional 
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prognostic variables. However, the MYL2.5 scheme has some advantages. For example, in high- 
resolution simulations, transport of TKE will be more significant and the assumption of local 
equilibrium of turbulence by the MYL2 model may be less accurate. Also, because it does not 
account for vertical diffusion of TKE, the MYL2 model cannot simulate the wave mixing layer that 
occurs near the surface in strong winds. 

Tests of upper-ocean mixing in the open ocean with turbulence models such as MYL2 and 
MYL2.5 have frequently found that the models do not predict as much mixing as is observed 
(Martin 1985; Large et al. 1994; Kantha and Clayson 1994). It has been hypothesized that this 
is due, not so much to the fact that the mixing mechanisms in these models are incorrect, but 
that many mixing processes are not accounted for in these simulations, including many sources of 
background shear (internal waves, inertial gravity wave pumping, etc.) and Langmuir circulations. 

NCOM provides an option to include the vertical mixing enhancement scheme of Large et 
al. (1994). The purpose of this mixing scheme is to account for unresolved mixing processes by 
extending the mixing of typical oceanic turbulence models above the normal critical Richardson 
number value of 0.2 to 0.5. The Large et al. enhancement scheme extends the mixing to Ri = 0.7 
and is described by 

K0 Ri    <0 
KM2=KH2=   K0(l - (iyo.7)2)3   0<RZ   <0.7 

0 Ri   >0.7, 

where K0 = 50 cm2/s. This scheme was utilized by Large et al. in conjunction with an adaptation 
of the atmospheric boundary layer model of Troen and Mahrt (1986) and by Kantha and Clayson 
(1994) in conjunction with the MYL2.5 turbulence closure model. Both Large et al. and Kantha 
and Clayson found that the addition of this mixing improved agreement of predictions of the ocean 
surface mixed layer with observations from several open-ocean data sets. However, it is not clear 
whether such a mixing enhancement is needed in shallow, coastal water. 

2.6 Vertically Averaged Equations 

The depth-averaged momentum and continuity equations are needed to calculate the free- 
surface mode in the model. Substituting the form of the horizontal pressure gradient from Eq. (20) 
into the momentum Eqs. (1) and (2) and integrating from the bottom to the surface gives the form 
of the momentum equations used for the calculation of the free-surface mode 

(65) 
dDü 
dt 

dC      /< 
-gD-± + /   Gudz, 

ox     JH 

dDv 
dt 

-gD^f + [  Gvdz, 
oy     JH 

(66) 

where D is the total depth (D = C,— H),u and v are the depth-averaged horizontal velocities, and 
Q is the depth-averaged mass flux source term, and 
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The depth-integrated continuity equation is 

ot ox oy 

3. MODEL NUMERICS 

3.1 Horizontal Grid 

The model uses an orthogonal, curvilinear, horizontal grid as used in POM, which allows 
adaptation of the grid to different map projections and also allows the grid to be set up with some 
mild curvature. The form of the model's equations in orthogonal, curvilinear, horizontal coordinates 
is presented in Appendix A. As a practical matter, the main differences from the Cartesian equations 
with constant grid spacing in x and y with regard to converting the equations to finite difference 
form are (1) the horizontal grid-cell dimensions in x and y, Ax and Ay, respectively, can vary 
spatially and must be stored as two-dimensional (2-D) arrays, (2) the fluxes between grid cells must 
account for the changing size of the grid cells, and (3) correction terms are needed to account for the 
exchange between u and v momentum due to horizontal transport along curving grid coordinates. 

The spatial finite differencing in NCOM is done in conservative form with the advective and 
diffusive transport between grid cells calculated as fluxes between the grid cells. The use of this 
form maintains conservation of the scalar model fields for transport between grid cells regardless 
of how the size of the grid cells change. 

With transport conservation satisfied by the flux form used for differencing, the main remaining 
requirement for the use of a curvilinear grid is that, since the horizontal velocity components u and 
v follow (i.e., are directed along) curving horizontal coordinates, there is, in effect, a conversion 
of momentum between the two horizontal velocity components as momentum is transported along 
a curving grid coordinate. There is a correction for both the horizontal advection and diffusion 
terms to account for interchange between u and v momentum on a curvilinear grid. POM does not 
provide a curvature correction for the horizontal diffusion terms in the momentum equations and 
none is currently provided in NCOM. The assumption is that the transport of momentum due to 
horizontal diffusion is sufficiently small that error due to neglect of the curvature correction to this 
term will not be significant. 

To keep truncation errors associated with curvilinear grids relatively small, a rule of thumb in 
using such grids is to not change the size of the grid spacing by more than about 10% between suc- 
cessive grid cells. With the simple two-point averages and differences used for the finite differencing, 
the accuracy of spatial interpolations and gradients becomes first-order rather than second-order 
if the change in size between successive grid cells becomes more than a small fraction of the grid 
spacing. 

The philosophy that has been followed to date in applying NCOM has been to avoid using 
grid curvature, except as needed to adapt the model grid to large-scale map projections where the 



14 Paul J. Martin 

grid curvature is very gradual, to minimize spatial truncation errors. In our coastal simulations to 
date, we have not encountered a need to use strong grid curvature. The entire grid can be rotated 
to provide a desired orientation along a section of coastline, and shrinkwrapping can be used to 
eliminate calculations over land areas along the sides of the domain. Most coastlines are so irregular 
that curvilinear coordinates cannot be curved sufficiently to follow them with any fidelity. 

Figure 1 shows the horizontal arrangement of some of the variables on the model grid. The 
horizontal arrangement of the variables uses the form of the Arakawa C grid. With the C grid, 
scalar fields such as T, S, and p are located at the grid-cell midpoints, and each of the velocity 
components is located at the center of the grid-cell face to which it is normal. 

Fig. 1 — Horizontal layout of variables on model grid 

3.2 Vertical Grid 

The model uses a combined sigma/z-level vertical grid with sigma layers near the surface and 
z-levels below a depth that can be specified by the user. 

Figure 2 illustrates the different ways the combined sigma/z-level vertical grid can be set up. 
Figure 2(a) shows the vertical grid set up with a single sigma layer at the surface and with z-levels 
below. Since the model has a free surface, at least one sigma layer is needed at the surface to allow 
for changes in the surface elevation. 

If the changes in the surface elevation are large relative to the grid resolution desired near the 
surface, a single sigma layer may not be sufficient to resolve the changes in the surface elevation. In 
this case, several sigma layers can used, and the changes in the surface elevation will be distributed 
among them (Fig. 2(b)). 

If the water depth becomes shallower than the depth that defines the transition from sigma 
layers to z-levels (za), the sigma layers will shallow uniformly as the bottom depth decreases. Figure 
2(c) shows a grid in which the sigma layers extend to the bottom in the shallow water on the shelf, 
and ^-levels are used in the deeper water off the shelf. Figure 2(d) shows a grid in which sigma 
layers are used all the way to the bottom everywhere. 
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(a) (b) 

(c) (d) 

Fig. 2 — Illustration of the different ways the combined sigma/z-level grid can be set up: (a) with a single sigma layer 
at the surface, (b) with several sigma layers at the surface to resolve surface elevation changes, (c) with sigma layers 
in the shallow water and ^-levels in the deep water, and (d) with sigma layers all the way to the bottom everywhere 

Figure 3 shows the vertical arrangement of some of the model variables on the model grid. As 
in the layout of the horizontal grid, the main scalar fields are located at grid-cell centers, and the 
velocity components are located at the center of the grid-cell face to which they are normal. 

The coordinate transformation for the sigma coordinate part of the grid is given by 

a = 
Da    ' 

(70) 

where Da = ( - max(H:za). Hence, a varies from a = 0 at the free surface to o = -1 at the 
bottom interface of the lowest sigma layer. Each sigma layer is a fixed fraction of the total depth 
of the sigma grid Da ■ 

Similar to the implementation of orthogonal, curvilinear coordinates, the implementation of 
sigma coordinates is primarily a matter of accounting for the changing vertical thickness of the 
layers in calculating fluxes between adjacent grid cells and in calculating changes within the grid 
cells. Note that with sigma coordinates, the changes in the thickness of the grid cells occurs not 
only horizontally within a layer but also from timestep to timestep because of the changing surface 
elevation. To avoid having to use a large number of 3-D arrays to store the thickness of the grid 
cells at different locations and time levels, the grid thickness Az for a sigma layer is expressed as 
the product of the fractional thickness of the sigma layer ACT times the depth from the surface to 
the bottom of the sigma coordinate grid, i.e., as 

Az = AaDa. (71) 
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Fig. 3 — Vertical layout of variables on model grid 

The vertical velocity on the sigma coordinate grid UJ is the vertical velocity relative to the sigma 
surfaces. This velocity is not the true vertical velocity since it is missing the vertical component 
of the flow along the sigma layers (if they are sloping) as well as the vertical velocity due to the 
vertical motion of the sigma surfaces themselves caused by the rise and fall of the sea surface. The 
velocity UJ is related to the Cartesian vertical velocity w as 

dC d d 
w = uj + (l-a)ft+ u—(C + oDa) + v—(C + aDa). 

Since the surfaces on the z-level grid are level and fixed in time, w = uon the z-level grid. 

(72) 

The form of the model equations in sigma coordinates is presented in Appendix B. The only 
significant modification to the basic equations for the changing depth of the sigma layers, with 
regard to converting the equations to finite difference form, is a correction for the horizontal pressure 
gradient. The horizontal pressure gradient calculation in sigma coordinates contains an extra term 
to remove the vertical change in pressure between neighboring points within a sigma layer, so that 
the net pressure change that is computed will be approximately along a level surface (Blumberg 
and Mellor 1987). The form of the horizontal pressure gradient in sigma coordinates is modified 
from the Cartesian form (Eq. (20)) used on the z-level part of the grid to 

l_öp=  l_öp(0+   dCL + g_Da 
p0 dx      p0   dx dx        p0   ja 

Da-    f° 
?o    Ja 

dp 
dx 

a dDa dp 
Da  dx da 

da, (73) 

where the term ^\a is the density gradient taken along a surface of constant a. 

A potential problem with this calculation of the pressure gradient in sigma coordinates is that 
the vertical component of the pressure change along a sloping sigma surface is frequently much 
larger than the horizontal component along a level surface (Haney 1991). In this case, the desired 
horizontal component is calculated as the small difference between two large terms and is subject to 
significant truncation error. An expedient that is commonly used to reduce this error is to subtract 
the horizontally averaged density profile from the 3-D density field when calculating the horizontal 
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pressure gradient, so that the main component of the vertical change in pressure is removed from 
the calculation, i.e., p in Eq. (73) is replaced by p-p(z), where p(z) is the horizontal mean density 
profile (Blumberg and Mellor 1987). 

Strictly speaking, for a full transformation of the equations to sigma coordinates, the horizontal 
diffusion terms should be corrected for the transformation, so that they will still represent diffusion 
along level surfaces. However, NCOM (and POM) use the approximation discussed by Mellor 
and Blumberg (1985), who argued that diffusion along the sigma surfaces rather than along level 
surfaces was, in general, more appropriate for sigma coordinate models, particularly for proper 
simulation of the bottom boundary layer. 

However, in regions where there are large changes in the bottom depth, the horizontal diffusion 
along sloping sigma layers can cause severe cross-isopycnal diffusion (Paul 1994). An expedient that 
is sometimes used with sigma coordinate models (Mellor and Blumberg 1985), and is an option in 
NCOM, is to subtract a smooth background field from the T or S fields when calculating horizontal 
diffusion. By calculating the horizontal diffusion based on the anomaly from a smooth background 
field, most of the component of vertical diffusion that occurs when diffusion is calculated along 
sloping sigma layers is eliminated. 

In domains where the T and S fields don't vary much, the background T and S fields can be 
calculated as the horizontally averaged T and S profiles. An alternative strategy is to use smooth 
but horizontally varying background fields to accommodate changes in the structure of the T and 
S fields in different parts of the model domain. The background fields can also be periodically 
updated to accommodate changes in T and S that occur in time. The use of these procedures can 
significantly reduce the problem of severe cross-isopycnal diffusion (however, as discussed in Section 
4.2, they can introduce other problems). 

On the z-level part of the grid, the bathymetry is rounded to the nearest 2-level. This is the 
simplest way to implement bathymetry in a z-level model and is the way the bathymetry has been 
incorporated into a number of ocean models, including the various versions of the Bryan-Cox model 
(Bryan 1969; Killworth et al. 1991; Dukowicz and Smith 1994), the Haney model (Haney 1974), 
and the DieCAST model (Dietrich and Ko 1994). There are, however, a number of limitations to 
this representation of the bathymetry, which are discussed in Section 4.3. 

3.3 Spatial Differencing 

Spatial interpolations and gradients use second-order centered averages and differences. With 
second-order, centered interpolations, the value of a variable 0 at a location between points at 
which the variable is defined is evaluated as the average of the values on either side, e.g., for an 
interpolation in the x direction, 

4>X = -ji^x+Ax/2 + <f>x-&x/2)- (74) 

With second-order, centered differencing, the gradient of ^ at a: is calculated as the difference of 
the values on either side 

"ä~U = X-^ = TT^x+Ax/2 - 4>x-Ax/2)- (75) ox A.T Ax ' 
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3.4 Temporal Differencing 

The leapfrog scheme is used for temporal differencing. The temporal differencing of the 3-D 
equations will be illustrated here with just the u momentum equation since the treatment of the 
other model variables is similar. In the following discussion, n will denote model values at the 
current time level (i.e., values calculated on the previous timestep), n + 1 will denote the newly 
calculated values, and n - 1 will denote values at the previous time level. 

With the leapfrog scheme, most of the terms (i.e., the advection, baroclinic pressure gradient, 
and Coriolis terms) are centered in time at n. The horizontal diffusion terms are evaluated at the 
n -1 time level for the variable being diffused (since evaluation of the variable being diffused at the 
central time level of a leapfrog scheme is numerically unstable), and the vertical diffusion terms are 
treated implicitly so as to avoid the timestep restriction for explicit vertical diffusion (the high rates 
of vertical diffusion that are frequently calculated by the turbulence schemes would require a very 
small timestep for stability if the vertical diffusion were explicit). Hence, the temporal differencing 
of the u momentum equation is of the form 

s „.+..-. = _ Lg_ 8  /   J^\ 
2At 2At v po dx        u dz\ dz 

An Asselin filter is used to suppress the time splitting that can occur with leapfrog (Asselin 
1972). The Asselin filter is applied to the model fields at time level n, after the new values at n + 1 
have been calculated, by averaging in a bit of the values at the n + 1 and n - 1 time levels, i.e., 

(ßn = v(<pn+1 + (t>n-l) + (l-2v)ct)
n, (77) 

where v is the filter coefficient. If Eq. (77) is rewritten as 

(f>n = <i>n + u{<l>n+l-2<f>n + 4>n-1), (78) 

the filter looks like a numerical diffusion term, which is the way that it behaves.  A typical value 
used for u is 0.05. 

3.5 Finite Difference Form of the Model Equations 

As noted earlier, the model equations are finite differenced in flux-conservative form. The full 
finite difference form of the basic 3-D model equations used in NCOM is 

AT«A„« 1 
^l^y ö2t(Azuu) = -AyuAzugSx(C + Um - (tP) - AyuAzu-8x{Pi) 

2At Po 

+ AxAyAz(f + Ccurv)vy 

- 8x{AyuAzuuaXux) - 5y{AxvAzvvaXHy) 

- 8z{AxAyüüXüz) + AxAyAzQxusor + F* 

+ Ax" Art    ,^<       5zu^ (79) 
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AT-
V
AII

V 1 
^V/7 52t(Azvv) = -AxvAzvgSy(C + Um - (tP) - AxvAzv-6y(Pl 

2/\t Po 

- AxAyAz(f + Ccurv)u
xV 

- 8x{AyuAzuuaVvx) - 5y(AxvAzvvaXvy) 

- &z(AxAyJvz) + AxAyAzQyvsor + F* 

+ MW6z(-=M-r6zV»A (80) 

^^-82t{Az) = -5x{AyuAzuua) + -Sy{AxvAzvva) + -5z(AxAyco) 

+ AxAyAzQ (81) 

^L82t{AzT) = -5x{AyuAzuuaTx) - 8y{Axv Azv vaT») 

- 5z{AxAyu/Tz) + AxAyAzQTsor 

Ay'AzMJ^^A      .   fAx^Az^jxrrn_1 + 5x {-L^rJL8xTn  ) + *> {-1^S«T 

^^<J2t(AzS) = -^(A^A^^T) - «yAa^AsVS1') 

- 6z(AxAyuiSz) + AxAyAzQSsor 

(82) 

+ 5x [      Ax-       SxS     ) + 6y {       Ay-       ÖyS 

+ ^^AT^LT^S^), (83) 
(Azv 

where (atm is the atmospheric surface pressure (expressed in meters of water), (tp is the tidal 
potential, pi is the internal (baroclinic) pressure, ua and va are the horizontal advection velocities, 
and F* and F* are the finite difference forms of the horizontal momentum mixing terms. The 
variables are evaluated at time level n unless otherwise noted. Note that the temporal changes in 
the height of the grid cells Az that occur on the sigma coordinate part of the grid are accounted 
for in the finite difference equations. 

The primary grid-cell dimensions Ax, Ay, and Az are defined at the center of the grid cells. 
The superscripts u, v, and w denote grid-cell dimensions at the u, v, and w velocity locations, 
respectively.  These are obtained by averaging the grid-cell dimensions of the adjoining grid cells 
(e.g., Axu = 'Ax'). 

The evaluation of the surface elevation term C* can be distributed among any of the three time 
levels, i.e., 

C* = aiC«+1+a2C" + «3Cn"1, (84) 

where the temporal weights ai, a2, and a3 are specified by the user (see Section 3.6). 
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The variable Ccurv in Eqs. (79) and (80) is used to correct the horizontal momentum advection 
for the horizontal curvature of the grid. The curvature correction term for advection has a form 
similar to that of the Coriolis term (Appendix A). Ccurv is calculated as 

On the sigma coordinate part of the grid, an option is provided to calculate the horizontal 
diffusion of scalar fields relative to a spatially smooth mean or climatological field. In this case, T* 
and S* in the horizontal diffusion terms are set equal to T - Tmean and S - Smean, respectively, 
where Tmean and Smean are mean or climatological or horizontally averaged fields. On the 2-level 
grid and on the sigma coordinate grid, if this option is not used, T* = T and S* = S. 

3.6 Calculation of the Free-Surface Mode 

The free-surface mode is calculated implicitly. Hence, the surface pressure gradients and the 
divergence terms in the surface elevation equation have a component at the new time level being 
calculated. The finite difference equations for the free-surface mode are 

AX^U ö2t(D
uü) = -AyuDugSx(aiC+1 + <*2Cn + «aC1-1) + ^, (86) 

Ax^VS2t(D
vv) = -AxVDVgSyiouC*1 + ^C + «sC"-1) + Dv(^, (87) 

^^C = -öx(^yu(ßi(Duü)n+1 + ß2(D
uü)n + ß,(DuüT-1)) 

-5y{&xv{ßi{Dvv)n+l +ß2(D
vv)n + Ä(D"«)n-1)) + AxAyDQ, (88) 

where DUHU and DVG^ are the vertical integrals of all the terms on the left jdde of Eqs. (79) and 
(80), respectively, except for the surface elevation gradient terms, and Du = D   and Dv = D . 

The variables OJI, a2, and a3 are constants that specify the fractional weighting of the surface 
elevation gradient in the momentum equations at the new, current, and previous time levels. Simi- 
larly, ßi, ß2, and /?3 specify the fractional weighting of the divergence terms in the depth-averaged 
continuity equation at the new, current, and previous time levels. These weightings can be set by 
the user. Commonly used values are a\ = «3 = ßi = ßs = 0.5 and a2 = ß2 = 0 (see Section 4.4). 

The equations for the free-surface mode are solved by substituting the expressions for (Duu)n+l 

and {Dvv)n+l from Eqs. (86) and (87) into Eq. (88) and solving for the new surface elevation ("+1. 
The resulting equation is an elliptic equation for Cn+1> which can be solved with an iterative or a 
direct method (NCOM currently uses an iterative solver). 

3.7 Baroclinic Pressure Gradient 

On the sigma coordinate part of the grid, the baroclinic pressure gradient is calculated for a 
particular layer k as 
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—Sxpi\k = —SxPi\k-i + i(^Ä(A^-i + Aak)Sx(pt-i + P*k) 
Po Po Po   4 

-^*-l + <T*)(W>)(^)), 

and on the z-level part of the grid, the baroclinic pressure gradient is calculated as 

—SxPilk = —5xPi\k-\ + — -(Azfc-itfsflfc-i + Azk5xpk), 
Po Po Po * 

where p* = p - p(z), and p(z) is the horizontally averaged density. 

3.8 Horizontal Advection 

(89) 

(90) 

The advection velocities ua and va in Eqs. (79) to (83) are calculated from un and vn, respec- 
tively, but the vertical means of ua and va are adjusted to match the mean vertical velocity needed 
to account for the change in the surface elevation between time levels n - 1 and n + 1. Hence, 

ua = un+ ßYßn+l + ß2ü
n + ßzün-1 - ün (91) 

va = vn+ ßYÖn+l + ß2v
n + fov ■n-1 _ ^n_ (92) 

The purpose of this adjustment is to ensure that the advection velocity field satisfies continuity 

exactly for advection of the scalar fields. 

3.9 Horizontal Mixing 

For the grid-cell Reynolds number calculation of the horizontal mixing, the horizontal mixing 

coefficients are calculated at the staggered velocity points as 

A1!;, = max lM An RP 

(93) 

AV
M = max An 

Rp„ 

and the finite difference form of the mixing terms for the momentum equations is 

F* = 8x{AyuAzuAu
M/Axu 8xu

n-1) + 8y(Axv Azv AV
M / Ay« 8yu .n-l\ 

y& „.n-^ F* = 6x(AyvAz"AlI/Ax"y6xv
n-1) + 6y{Axv Azv AV

M / AyvV Syv 

(94) 

(95) 

(96) 

For the Smagorinsky horizontal mixing, the horizontal mixing coefficients are calculated at the 

grid-cell centers as 

AM = CgmagAxAy 
Ax 

STUn)     +- 11' ^♦äs***"*) +(i^" 2 yiAy W (97) 
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If the mixing coefficients are then averaged to the staggered velocity points, 

AU
M = A^X, (98) 

AV
M = A^. (99) 

The finite difference form of the mixing terms for the momentum equations used for the 
Smagorinsky scheme is 

,n-l\ F* = 8x{2AyuAz^Au
MIAxu 5xu

r> 

+ 5y(Äl^ÄzJAlJÄy^xSyU
n-1 + A^Az^/Aa^«"-1), (100) 

F* = Sx(AyuAzuAu
M/Ayuy5yu

n-1 + Ayu Azu AU
M / Axu!J 8xv

n-1) 

+ 8y(2Ax«AzvAv
M/Ay'>y8yVn-1). (101) 

3.10 Vertical Mixing 

Vertical mixing is fully implicit, e.g., the vertical heat flux is computed as 

fyrn+1 

-KH%~. (102) oz 

Fully implicit vertical mixing is needed to avoid spurious flip-flopping of the vertical gradients, 
which can occur with a partially implicit scheme when the vertical eddy coefficients become very 
large in regions of strong vertical mixing. The implicit treatment of vertical mixing couples the 3-D 
prognostic equations in the vertical and requires the use of a tridiagonal solver at each horizontal 
point to solve for the new values. 

The finite difference form for the prognostic equations for the MYL2.5 turbulence scheme 
(Eqs. (32) and (33)) is 

AxAy-ö2t(Azwq2) = -6x{AyuAzuuaZ^X) - 5y{Axv Az^v^) 
2At 

-Z—^Z. -jr yr jr jrZ     2 
- 8z{AxAyuV ) + AxAyAzQqi 

+A^™^(ij)2 + (^)2) + 
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AsAy.   ,.„, o.. _ ^_x-_-2-27x 
-<J2t(AzV0 = -6x(AyuAzuuaZq'H ) - ^(A^AzV g2r) 

- 6z(AxAyL0Zq2f) + AxAyAzQz{q2i 

+ b~x 

Isor 

5. (^^'M^-)+*» (^^'M^-; 

+ AIA"M(J|« M<,2<rfl 

2        /  x „. \ 2N 

^W^^))-2(g2)W+1rV)- (104) 

The variables are at time level n unless otherwise noted. The new values of Kux and KHX for the 
MYL2.5 scheme are then calculated as 

KMl = (£n+1qn+1SM + Kf/j/2, (105) 

KHl = (£n+lqn+lSH + K$)/2, (106) 

where Kff and K$f are the values of KMl and KHl calculated on the previous timestep. The 
purpose of averaging with values calculated on the previous timestep is to provide a strong temporal 
smoothing of KMl and KHl ■ Without this type of averaging, the vertical eddy coefficients tend to 
be noisy. SM and SH are calculated from GH using Eqs. (42) and (43) where 

GH = nun 
Un+l\    g dpn 

0.028,    —rr     — -£- I qn+l J   Po dz 
(107) 

Note that the eddy coefficients calculated with the MYL2.5 scheme in NCOM are not applied 
until the next timestep (Section 3.12). Since the values of momentum and density used to calculate 
the new values of KMl and KHl for the MYL2.5 scheme are at time level n and the new values of 
KMl and KHl are applied at the next timestep, the vertical eddy coefficients are calculated from 
the same leapfrog solution (i.e., odd or even) to which they are applied, which helps to suppress 
timesplitting. 

For the MYL2 scheme, SM-, SH, and q are calculated using Eqs. (50) to (64) with the values 
of momentum and density at time level n - 1. For the MYL2 scheme in NCOM, the new values 
of KMI and KHl are applied on the same timestep at which they are calculated (Section 3.12). 
Hence, as for the MYL2.5 scheme, KMl and KHl are calculated from the same leapfrog solution 
to which they are applied. Also as for the MYL2.5 scheme, the new values of KMl and KHl are 
averaged with the previously calculated values to reduce noise. 

3.11 Bottom Drag 

The bottom drag is partially implicit to improve stability and is calculated as 
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KM^ = cbu
n+1 | v"-1 | (108) 

az 

and 

KM^- = cbv
n+l | V-1 | • (109) 

oz 

The explicit part of the bottom drag terms is at the old time level n - 1 to avoid exciting time- 
splitting. 

3.12 Calculation Sequence 

The calculation sequence for the model is as follows: 

(1) Advection velocities and horizontal eddy coefficients needed for momentum, new densities, 
and new baroclinic pressure gradients are calculated. If the MYL2 turbulence scheme is being used, 
new vertical eddy coefficients are calculated. 

(2) New 3-D horizontal velocities are calculated and the forcing terms from the 3-D momentum 
equations are vertically integrated to provide the forcing terms needed for the depth-averaged 
momentum equations that are used to calculate the free-surface mode. 

(3) The depth-averaged momentum and continuity equations are solved for the new surface 
elevation and depth-averaged velocities. 

(4) The new 3-D velocity fields calculated in Step 2 are corrected by adding a depth-independent 
adjustment, so that their vertical mean agrees with the new depth-averaged velocities calculated 
in Step 3. This effectively corrects the 3-D velocities for the new surface elevation gradient. 

(5) The velocity field that will be used to advect the scalar fields is calculated by adding a 
depth-independent adjustment to the 3-D velocity fields at time level n, so that the depth-averaged 
advection velocities are consistent with the depth-averaged continuity equation. 

(6) New values of the scalar fields (T and S) are calculated using the advection fields computed 
in Step 4. If the MYL2.5 turbulence scheme is being used, the turbulence fields are updated and 
new vertical eddy coefficients are calculated. These fields are Asselin-filtered as the new values are 
calculated. 

(7) An Asselin filter is applied to the velocity and surface elevation fields. The filtered 3-D 
velocities are then corrected to be consistent with the filtered depth-averaged velocities using the 
same procedure as in Step 4. 

The adjustment of the advection velocities in Step 5 ensures that the velocity field used to 
advect the scalar fields is numerically nondivergent. This is necessary to avoid spurious sources 
and sinks when using the flux form of numerical advection. 

It is desirable that the velocity field used for advection of momentum also be nondivergent 
and consistent with the change in surface elevation. However, when the 3-D momentum equations 
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and the forcing for the free-surface mode are calculated in Step 2, the new surface elevation is not 
yet known. Hence, it is not possible for the momentum advection and the change in elevation to 
be fully consistent without some sort of iterative process. This is also a problem for free-surface 
models such as POM that use a separate, small timestep (i.e., the split-explicit scheme) for the 
free-surface equations. Iteration of the solution of the 3-D momentum and continuity equations 
and the depth-averaged equations (Steps 1 to 5 above) to eliminate this inconsistency is provided 
for in NCOM. However, in tests that have been conducted to date, the effect of iterating to remove 
the slight inconsistency between the momentum advection and the change in surface elevation was 
not significant. 

Another difficulty in the numerical calculation involves the partially implicit bottom drag 
term. If the bottom drag were treated explicitly, the implicit vertical mixing and the bottom drag 
calculation would be numerically decoupled from the solution of the depth-averaged equations. 
However, when the bottom drag calculation involves the new velocities, the bottom drag calculation 
and the solution of the depth-averaged equations are not decoupled. The initial, uncorrected 
estimate of the new 3-D velocities will be involved in the calculation of the bottom drag, which is 
part of the forcing term for the free-surface mode. This is another reason why it is important that 
the initial calculation of the new 3-D velocities (i.e., uncorrected for the new surface elevation) in 
Step 2 be as accurate as possible. Currently, in the initial calculation of the 3-D velocities, the new 
surface elevation is estimated from the horizontal divergence of the velocity field at time level n. 

3.13 Shrinkwrapping and Slicing 

The model calculations are shrinkwrapped in the ^-direction to avoid calculating over land 
areas on the sides of the domain. What this means is that the calculations start at the first sea 
point and end at the last sea point along each row of grid cells in the x-direction. How successful this 
procedure is in reducing calculations depends on the particular distribution of land and sea areas 
in the model domain. For many coastal problems, shrinkwrapping can provide a useful increase in 
model performance. 

Slicing is the procedure of calculating through the model domain in x-z slices and performing 
as many calculations as possible on each x-z slice before moving on to the next one. The purpose 
of this is to reuse variables that have already been brought into high-speed cache memory to avoid 
the slower accesses from main memory. If each calculation in the code is performed over the entire 
domain, variables are more likely to be flushed out of high-speed cache before they are reused. 
Each timestep of the model requires two major passes through the model domain, one to update 
the momentum fields and another to update the scalar fields. How much the x-z slicing improves 
program speed depends on the relative size of the domain and the particular computer being used. 

4. MODEL LIMITATIONS 

When using a model, it is important to be aware of its limitations. The purpose of this section 
is to discuss some of the limitations of the physical and numerical parameterizations in NCOM. 

4.1 Hydrostatic Approximation 

Like most ocean models, NCOM uses the hydrostatic assumption in which the vertical momen- 
tum equation is reduced to a balance between the gravitational acceleration and vertical pressure 
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gradient terms (Eq. (3)). In particular, the vertical acceleration terms are ignored. This is a fairly 
good assumption for large-scale oceanic flows where the vertical acceleration terms are usually fairly 
small relative to the hydrostatic terms. The assumption is less valid at small scales where vertical 
acceleration terms become relatively more important. 

Casulli and Stelling (1996) illustrate some situations where the hydrostatic assumption breaks 
down. One example is that of a propagating freshwater plume. As the plume advances into the 
ambient fluid, there is a convergence near the surface at the front of the plume where the water 
is accelerated downward and underneath the advancing plume. If such a plume is modeled with 
a hydrostatic model, one finds that as the horizontal grid resolution is increased, the downward 
velocity at the front of the plume continues to increase to values that are significantly higher than 
the correct values. This is because the vertical velocity in the hydrostatic model is calculated strictly 
from the divergence of the horizontal flow and its magnitude is limited primarily by the horizontal 

grid resolution. If the full vertical velocity equation were being used, as in a nonhydrostatic model, 
the other terms in the vertical momentum equation would act to limit the vertical velocities. 

Another example is that of propagating internal waves. Large amplitude internal waves tend 
to steepen as they propagate due to amplitude dispersion. Solitons form due to a balance between 
the steepening effect of amplitude dispersion and the countering effect of frequency dispersion in 
which shorter waves travel more slowly than longer waves. Hydrostatic models do not account for 
frequency dispersion; hence, they cannot simulate the formation of soliton waves. 

Nonhydrostatic phenomena can have scales as large as several km. For example, internal soliton 
waves can have horizontal wavelengths of a couple of km. But this is not to say that hydrostatic 
models cannot be used to simulate flows at small horizontal scales, just that certain processes in 
which vertical accelerations are important may not be correctly simulated. Such processes are 
frequently secondary in importance to investigating the variability of the horizontal flow, a task for 

which the hydrostatic model generally provides useful results. 

4.2 Sigma Vertical Coordinates 

Sigma coordinates provide several advantages in modeling coastal regions including the ability 
to accurately represent the bathymetry (given sufficient horizontal resolution), a smooth treatment 
of bottom-following flows, the ability to provide increased resolution and a fairly consistent grid 
in the bottom boundary layer, and increased vertical resolution in shallower water (which may 
be desirable if the focus of the modeling is nearshore processes). The major problems with using 
sigma coordinates stem from inadequate resolution of steep slopes. In such situations, the horizontal 
pressure gradient, advection, and mixing terms can all generate significant truncation errors. Note 
that "steep slope" here is a relative term and can refer to a ship channel in a bay in a high-resolution 
simulation as well as a continental slope or a seamount in a larger scale simulation. 

As noted in Section 3.2, the horizontal pressure gradient between two points in sigma coor- 
dinates is calculated as the difference between two terms, one being the pressure gradient along 
the sigma layer and the other being the vertical pressure gradient due to any difference in depth 
between the two points. For a steeply sloping sigma layer, the vertical pressure difference can be 
quite large and the net horizontal pressure gradient becomes the difference between two large terms, 
a situation in which numerical truncation errors can become significant.  Subtracting off a mean 
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vertical density gradient, as is usually done and is discussed in Section 3.2, helps considerably, but 
truncation errors can still be significant. 

Haney (1991) discussed the "hydrostatic consistency" problem with the horizontal pressure 
gradient in sigma coordinates. The degree of this problem is defined by the number of sigma layers 
that are crossed when traversing between adjacent horizontal points at a particular depth. If a 
number of layers are crossed, the pressure gradient that is calculated may not properly represent 
the actual density changes since the changes are not being resolved in the calculation. Haney argued 
that it was undesirable to cross more than one sigma layer boundary between adjacent horizontal 
points at a fixed depth (it can be seen that this restriction tends to be most strongly felt in the 
deeper layers). This turns out to be a very strict limitation to which few modelers using sigma 
coordinates actually adhere. 

A common measure of the severity of the bathymetry changes is defined as the change in depth 
between two adjacent horizontal points relative to the mean depth, i.e., 

r = H T — H- x—Ax 
2^Hx + Hx-&x) 

(110) 

Haney's hydrostatic consistency limitation for the bottom layer of a sigma coordinate model can 
be expressed approximately as 

Th = 
Hx      fix—Ax 

Aabn(Hx + Hx-&x) 
(111) 

where Aab is the fractional thickness of the bottom sigma layer. Hence, Yb = T/Aab. According to 
Haney (1991), we need Tb less than about 1. Sigma coordinate modelers frequently use a criterion 
of T < 1.5 or more, which for typical values of Aab of 0.2 or less is a significant violation of Haney's 
hydrostatic consistency criteria. 

Martin et al. (1998) discussed problems with advection and diffusion along sloping sigma sur- 
faces when using sigma coordinates. A problem that can occur with the advection term in regions 
of steep slopes is that two adjacent points within a sigma layer may lie on different sides of a ther- 
mocline or halocline. In this case, the temperature or salinity field appears as a sharp front to the 
horizontal advection term. If there is persistent advection across this front using the second-order, 
centered advection scheme, there will be what is referred to as an "advective overshoot" on the 
upstream side of the front. Such an overshoot can reach about one third the magnitude of the jump 
across the front and can result in the model calculation becoming unstable. The problem is that 
the front is not adequately resolved. The second-order, centered advection scheme requires a front 
to be resolved by at least a few gridpoints to avoid significant advective overshoots. The remedy 
in this case is to increase the horizontal grid resolution or reduce the steepness of the bottom slope 
so that the fronts are better resolved. 

As illustrated by Paul (1994), diffusion along sloping sigma layers can effectively act as vertical 
diffusion. Since horizontal mixing in ocean models is typically much larger than vertical mixing, 
the strong diffusion along a sloping sigma layer can result in excessive vertical diffusion and can ex- 
cessively erode vertical gradients. The practice of calculating the diffusive fluxes using the anomaly 
based on some mean or climatological field (Section 3.2) significantly reduces this spurious vertical 
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diffusion. However, if there is a large, local anomaly relative to the mean field being subtracted off, 
significant spurious diffusion can still occur. For example, in an area of downwelling near a coast 
there will be a warm anomaly, which can spuriously warm the shallower water closer to the coast 
by diffusion of heat along the sigma layers. This problem can be reduced by accounting for the 
anomaly in the mean field being used as a reference (which may require updating the mean field 
periodically), by increasing the horizontal grid resolution, or by decreasing the bottom slope. 

The common answer in dealing with sigma coordinate problems over steep slopes is to increase 
the horizontal grid resolution to better resolve the slope or to (artificially) reduce the severity of 
the slope. As noted by Haney (1991) and others, increasing vertical resolution does not help and 
can even make the problem worse. What the maximum slopes are that can be tolerated in sigma 
coordinates is not clear, probably because the answer is somewhat situation dependent. Modelers 
typically modify their bottom slopes as little as possible when trying to alleviate apparent sigma 
coordinate problems, so that they maintain the most accurate possible bathymetry. However, it 
is not always easy to discern whether or not steep slope areas are causing spurious results. In 
some cases, running grid convergence tests or comparing against a different (e.g., z-level) vertical 
coordinate simulation may be the only way to determine if there is a problem. 

4.3 Z-level Vertical Coordinates 

The z-level grid in NCOM truncates the bottom depth to the nearest model level. This is the 
simplest way to implement a z-level grid in an ocean model but, with such a treatment, the accuracy 
of the representation of the bathymetry in the model depends on the vertical grid resolution that is 
used. Martin et al. (1998) discussed some of the problems resulting from the use of such a z-level 
grid. Basically, the model generates the solution for the stepwise bathymetry that is used in the 
model rather than for the actual bathymetry. This may sound obvious, but modelers tend to think 
in terms of the bathymetry they are representing rather than the actual bathymetry being used in 
the model. 

The effects of a stepwise bathymetry are readily noticeable in a barotropic onshore or offshore 
flow (Martin et al. 1998). The convergence of the horizontal flow occurs at the faces of the bathym- 
etry steps, which produces a vertical velocity "jet" at the faces of the steps. If the steps were 
actually there, this would be the correct solution. However, if the steps represent an approximation 
to a smoothly varying bottom depth, the vertical velocity field will not vary smoothly in the hor- 
izontal as it should. Increased vertical resolution helps to reduce this problem. A better solution 
would be to truncate the bottom grid cells on the z-level grid to the bathymetry. 

Since the z-level grid follows level surfaces, advection and diffusion along the £-levels are di- 
rected horizontally. If isopycnal surfaces depart from the horizontal plane, horizontal diffusion along 
the level surfaces can result in excessive cross-isopycnal diffusion. This tends to be less of a problem 
than diffusion along steeply sloping sigma layers, but it can still be a problem, especially on longer 
timescales as the effects of spurious diffusion increase. Simulations of basin-scale circulation with 
z-level models have had trouble with this, which has spurred the development and use of isopycnal 
coordinate models (Bleck et al. 1992). 
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4.4 Implicit Treatment of the Free Surface 

The implicit treatment of surface waves used in NCOM is not as accurate as the split-explicit 
scheme used by POM. This is mainly because of the much larger timestep used with the implicit 
scheme. The error in propagating surface waves involves both damping and phase speed error 
(Martin et al. 1998). 

NCOM provides user-selectable temporal weightings for the surface elevation gradients in the 
momentum equations and the divergence terms in the depth-averaged continuity equation, which 
are the principal terms involved in surface wave propagation (Section 3.6). Dukowicz and Smith 
(1994) discuss selecting weightings for these terms for an implicit treatment of the free surface. 
Dukowicz and Smith used an equal weighting at the three time levels for the surface elevation 
gradients and a fully implicit weighting (i.e., fully at time level n + 1) for the divergence terms. 
This was based on a compromise between accuracy and noise damping requirements for their large- 
scale simulations. The Estuarine and Coastal Ocean Model, Semi Implicit (ECOM-si) version 
(Blumberg 1992) uses a fully implicit treatment of both sets of terms; however, this treatment 
results in strong damping of the surface waves (Martin et al. 1998). The NRL Layered Ocean 
Model (NLOM) (Wallcraft 1991) uses an even split between the old and new time levels. 

The minimum damping of surface waves with the implicit scheme can be obtained by using 
the same temporal weighting at the old and new time levels for the surface pressure gradient and 
depth-averaged divergence terms in the free-surface Eqs. (86) to (88). With this weighting, there is 
no damping by the leapfrog scheme itself; the damping is due only to the Asselin filter (Martin et al. 
1998). The damping from the Asselin filter can be reduced by reducing the Asselin filter coefficient; 
however, the filter coefficient must be kept large enough to suppress timesplitting. If the damping 
of the surface waves must be reduced further or if the phase speed error for the propagation of the 
surface waves must be decreased, then the model timestep must be reduced. 

4.5 Second-Order Centered Advection 

As already mentioned, the second-order centered advection scheme suffers from advective over- 
shoots at sharp fronts. This scheme assumes that the field being advected varies smoothly in space 
and that significant gradients are resolved by at least a few points. The advantages of this scheme 
are that it is simple, computationally efficient, and gives fairly good accuracy when the gradients 
are well-resolved. This scheme has certainly been used more than any other in ocean models (e.g., 
in the Bryan-Cox model (Bryan 1969), POM (Blumberg and Mellor 1987), NLOM (Wallcraft 1991), 
and many others). 

Other problems with the second-order centered advection scheme that are related to the over- 
shooting problem are that it does not maintain the monotonicity, extrema, or positive definiteness 
of the advected field. These are sometimes desirable properties, e.g., salinity and biological con- 
stituents being advected by an ocean model should not, in principle, take on negative values. 

The second-order centered advection scheme usually requires a certain amount of horizontal 
diffusion to maintain smooth solutions in strongly advective flows. This need is addressed fairly 
directly by the grid-cell Reynolds number horizontal mixing parameterization (Section 2.4). Using 
a small value of the grid-cell Reynolds number (e.g., 10) usually maintains a smooth solution but 



30 Paul J. Martin 

tends to significantly damp the flow and dissipate sharp gradients. Using a larger value (e.g., 
100) results in much less damping but can result in a significant amount of small-scale noise. The 
Smagorinsky mixing scheme is less directly pointed at filtering numerical noise, but as a practical 
matter, the extent to which it suppresses noise and damps the flow can be regulated by changing 
the value of its scaling parameter Csmag (Section 2.4). 

There are different philosophies regarding the presence of small-scale noise in a numerical model 
simulation. One philosophy is that all such noise is objectionable. Another is that that there is 
a fair amount of noise in the real ocean anyway and, as long as the dynamical processes being 
simulated are not significantly affected, a certain amount of noise is tolerable. 

4.6 Timestep Limitations 

A basic principle for the stability of explicit numerical schemes (at least those being used in 
NCOM) is that a signal (i.e., the propagation of a wave or the advection or diffusion of a field) 
cannot travel more than a single grid interval in a single timestep. The processes that limit the 
timestep used in NCOM are internal wave propagation, horizontal and vertical advection, and 
horizontal mixing. Since the surface waves and vertical mixing are treated implicitly, they are not 
subject to a timestep limitation with regard to numerical stability. 

The speed of internal waves depends on the vertical density stratification and the depth. In the 
deep ocean, the maximum speed of internal waves is typically 2 to 3 m/s. In coastal areas, where 
the water is relatively shallow and the stratification tends to be weaker, the maximum internal 
wave speeds are usually less than 1 m/s. The horizontal advection speeds depend on the situation 
(e.g., on the strength of the tidal currents and the winds) but are typically less than 2 m/s and 
may be less than 1 m/s in weakly forced situations. In general, the maximum speeds for internal 
wave propagation and advection tend to be comparable. 

Vertical advection is another matter. If one is trying to use high vertical resolution, vertical 
advection can be the limiting factor in setting the timestep. With sigma coordinates, the vertical 
grid spacing is reduced in shallow water and this reduced grid spacing may limit the timestep. The 
use of a stretched vertical grid with higher vertical resolution at the surface and/or bottom (on 
a sigma coordinate grid) and lower resolution at mid depth helps the situation since the vertical 
velocity must go to zero at the free surface and at the bottom. Another factor that helps this 
situation is that vertical mixing in shallow water due to winds and bottom drag helps suppress the 
generation of vertical motion relative to the sigma surfaces. 

Horizontal diffusion is almost never a factor in setting the timestep since the horizontal diffusive 
time scale necessary to achieve smooth solutions is usually much smaller than the advective and 
internal wave timestep restrictions. 

For coastal simulations, a conservative estimate of the maximum internal wave and advection 
speeds is generally about 2 m/s. With 2 m/s as a maximum velocity, the maximum allowable 
timestep for NCOM for a 1-km grid would be about 250 s (the effective timestep for the leapfrog 
scheme is 2At). For a larger or smaller grid spacing, the maximum timestep would change propor- 
tionally. Note that these numbers just provide an approximate value. Vertical advective processes 
may require a smaller timestep, and it is possible for wave and advective speeds to combine to 
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generate larger effective signal velocities than either advection or wave propagation considered 

separately. 

Another consideration for the timestep, besides stability, is accuracy. Because the advection, 
baroclinic pressure gradient, and Coriolis terms are treated explicitly and are centered in time with 
the leapfrog scheme, temporal truncation errors are small and temporal accuracy is quite good as 
long as the timestep is sufficiently small that the numerical scheme remains stable (and the inertial 
period is well-resolved for the Coriolis term). Since surface waves and vertical mixing are treated 
implicitly, their temporal accuracy must be given separate consideration. 

The accuracy of the implicit treatment of the free surface is discussed in Section 4.4. The 
damping of surface waves can be minimized for a given timestep by appropriate selection of model 
parameter values. Further reduction of surface wave damping and/or reduction of the surface wave 
phase speed error requires decreasing the timestep. 

The fully implicit treatment of vertical mixing is subject to temporal truncation error. In 
most conditions, this error in the mixing rate is small and is not especially noticeable since vertical 
mixing tends to be fairly rapid relative to the usual timescales of concern. (There is also the point 
that the rate of vertical mixing is probably not simulated very accurately anyway due to the lack 
of a physical model that correctly accounts for all the significant processes involved.) However, in 
cases with very large vertical mixing coefficients (e.g., strong winds) and fine vertical resolution, 
it is possible to have sufficient temporal truncation error in the vertical mixing such that spurious 
mixing occurs. Such spurious mixing effects were observed in some idealized forcing experiments 
where high vertical resolution was used but have not been noticed in any realistic model similations 
to date. It is planned to investigate this mixing problem more thoroughly. 

4.7 Drying of Grid Cells 

If the surface elevation reaches the bottom of a grid cell or the bottom of the sigma coordinate 
grid (za), NCOM will "blow up." This is sometimes the reason why an otherwise smoothly running 
simulation suddenly stops. To keep this from happening, the minimum depth of the model grid cells 
(or za) must be set deeper than the minimum depth of the free surface expected at that location. 
Of course, one doesn't always know what the minimum depth of the free surface will be, so that 
an educated (conservative) guess may be needed when initially setting the minimum depths for a 
particular simulation. 

5. PLANS 

For future development of NCOM, it is planned to address some of the limitations discussed 
in the previous section. Some enhancements that are being considered are as follows: 

• Provide the option for an advection scheme that provides some degree of upwinding at fronts 
to avoid or reduce the overshooting problems of the second-order centered scheme. A number 
of ocean modelers have begun using advection schemes that use some degree of upwinding 
at fronts to avoid or reduce advective overshoots. Many schemes have been discussed in the 
literature (Rood 1987; Pietrzak 1995), and the different schemes have particular advantages and 
disadvantages. They all tend to involve significantly more computation than the second-order 
centered scheme. 
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• Truncate the bottom grid cell to the bathymetry on the £-level grid to more accurately represent 
the bottom depth. 

• Implement a flooding and drying scheme. This would provide several benefits including (a) 
preventing the accidental drying out of a grid cell from prematurely terminating a model run, 
(b) providing more accurate simulations in shallow coastal areas by allowing depths and land-sea 
boundaries to be set without being restricted by the need to avoid grid cells drying out, and (c) 
providing the ability of the model to accurately simulate the flooding/drying process itself (if 
an accurate flooding/drying scheme based on correct physics is developed). 

6. SUMMARY 

This report provides a description of NCOM Version 1.0. The model has a free surface and is 
based on the primitive equations and the hydrostatic, Boussinesq, and incompressible approxima- 
tions. A choice of a grid-cell Reynolds number or the Smagorinsky scheme is provided for horizontal 
mixing, and a choice of the MYL2 or MYL2.5 turbulence models is provided for the parameteri- 
zation of vertical mixing. An option is also provided to include the vertical mixing enhancement 
scheme of Large et al. (1994) to parameterize unresolved mixing processes occurring at near-critical 
Richardson numbers. The inclusion of a source term in the model equations simplifies input of river 
and runoff inflows. 

The model uses an Arakawa C grid, is leapfrog in time with an Asselin filter to suppress 
timesplitting, and uses second-order centered spatial finite differences. The propagation of surface 
waves and vertical diffusion are treated implicitly. The horizontal grid is curvilinear. The vertical 
grid uses sigma coordinates for the upper layers and z-level (constant depth) coordinates for the 
lower layers, and the depth at which the model changes from sigma to z-level coordinates can 
be specified by the user by setting a single parameter. The combined vertical coordinate system 
provides some flexibility in setting up the vertical grid and easily allows comparisons to be made 
between simulations conducted with sigma and z-level coordinates. 

The model is based on fairly well-tested ocean model physics and numerics. However, there are 
a number of limitations of the model. Some of these are mentioned here (the model's limitations 
are discussed in more detail in Section 4). 

Since the model is hydrostatic, vertical motions on small horizontal scales may not be properly 
described. This does not prevent the model from being applied with high horizontal resolution to 
look at the structure of predominantly horizontal flows. However, nonhydrostatic processes that 
can occur in these situations will not be correctly simulated. 

Sigma coordinates can accurately represent the changing bottom depth but can suffer from 
truncation errors in their horizontal advection, diffusion, and baroclinic pressure gradient terms if 
steep bottom slopes are not adequately resolved. The solution to this problem is to increase the 
horizontal grid resolution or artificially decrease the severity of the slope. 

The z-level grid does not suffer from these problems but has limitations of its own. Since the 
z-level grid used in NCOM truncates the bathymetry to the nearest z-level, the accuracy of the 
representation of the bathymetry on the z-level grid depends on the vertical grid resolution, and 
the stepwise structure of the z-level grid can cause some distortion of flows that cross the steps. 
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Also, the z-level grid does not provide very consistent resolution in the bottom boundary layer 
unless a large number of levels are used over the depth range at which the bottom boundary layer 
exists. 

The second-order centered advection scheme provides fairly good accuracy for advection of 
fields in which the gradients are moderately well-resolved but can generate advective overshoots 
at sharp fronts. In setting the timestep for the model, the timestep limitation for the propagation 
of internal waves and for horizontal and vertical advection must not be exceeded or numerical 
instability may result. Also, the drying out of a grid cell due to depression of the free surface to 
the sea bottom in shallow water or the bottom of the sigma grid can cause a model simulation to 
suddenly terminate. 
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Appendix A 

EQUATIONS IN ORTHOGONAL, CURVILINEAR, 
HORIZONTAL COORDINATES 

The derivation of vector differential expressions in orthogonal, curvilinear coordinates is dis- 
cussed in Batchelor (1970). The form of the basic equations in orthogonal, curvilinear, horizontal 
coordinates is taken from Blumberg and Herring (1987) and Song and Haidvogel (1994). The 
notation used here is similar to that used by Batchelor and by Blumberg and Herring. 

Let the new horizontal coordinates be 6 and 6 and let a and b be unit vectors parallel to 
6 and 6, respectively. Then the change in the horizontal position vector x corresponding to 

increments in 6 and £2 is 

<Jx = M£ia+M&b, (Al) 

where hi and h2 are metric coefficients that scale the distance along the coordinate axes and are 

functions of £1 and 6- 

The horizontal velocities in the new coordinate system are defined (for convenience) to be u 
and v and are directed along 6 and £2, respectively, i.e., 

u = h^, (A2) 

v = h2—r-. (A3) 
at 

The basic, 3-D Eqs. (1) to (6) in the new horizontal coordinate system become 

du 10.,, 1      9 ,,       ,       0 ,     v  , n 

V /11/12 V  06        06//        Poh\dZx dz\      dzj 

dv 1     0 „ 1     0 ,,      x      0 /     x , n 

dt /ii/i206 hih2di2 dzK 

( 1    / dh2       dhi\\ I    dp      _   ,   0  (v   dv\ 

V M*2 V  06        06//        po'i2 06 0z V       Ö2;/ 

dp 
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1    d(h2u)  t     1    d(hiv) + dw _ 

/ii/i2 96        /ii^2   96         dz 

dt         hih2o£i hih2ot,2                 dz 

_J d_(      h2dT\     _1 8_(      hidT\,d_(K   9T\ 
+ hxh2 d£i V Hh dtJ     hh2 96 V   Hh2 di2) 

+ dz\   H dz) 

+ Qr^, (A8) 
dz 

hih2dCi\     h-i.dii)     hfadbX      h2d&J     dz \   " 8z 

These equations in curvilinear horizontal coordinates look very similar to the original Eqs. (1) to 
(6) in Cartesian horizontal coordinates. The only additional terms that appear in the curvilinear 
equations above are the curvature correction terms for advection in the momentum equations, i.e., 

the term 

1     /  dh2        dhi\ ..     . 
+ u— u——   v (AID) 

(All) 

h\h2 V  dii        d£2 

in the equation for u and the term 

1     ( dh2       dh-i 
«— u 

h\h2 V  96        96 

in the equation for v. These terms account for the interchange of« and v momentum for advection 
along a curvilinear grid. Since u and v are directed along the horizontal coordinates 6 and £2, 
momentum advection along these coordinates will effectively result in conversion of momentum 
between u and v if the coordinates have non-zero curvature. Note that the advective curvature 
correction terms in Eqs. (A4) and (A5) are combined with the Coriolis terms since they have a 

similar form. 

The Smagorinsky horizontal mixing terms for momentum, given by Eqs. (25) and (26), when 
converted to curvilinear coordinates, have the form (Blumberg and Herring 1987) 

1    fd(h2TU)     d(hiT2i) dhx dh2\ 

h\h2 \    96 96 96 96/ 

and 

where 

„ 1      d(h2Tl2)     d(h1T22)  , ^   dh2 dhi . 

hih2 V    96 96 96 96.' 

1  l   du v    dh\\ , A 1 A\ 
TU = 2AM J-^T + irr^r > (A14) \h 96      hih2d£,2. 
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—"»Gs^sslr)- (A15) 

— ^ (££(£)+££(£))■ (A16) 

The form of the terms for the grid-cell Reynolds number horizontal diffusion in curvilinear coordi- 
nates is analogous. The terms involving §|f and §|^ in Eqs. (A4) and (A5) are curvature correction 
terms for the horizontal mixing of momentum. These terms are assumed to be small and are not 
included in POM (Mellor 1996) or NCOM. 

Note that when converting the equations to finite difference form with second-order centered 
differences, we set 

rw = Ar^*- (A17) 

where 

%^=^i+A?1/2-^i-A«i/2- (A18) 

If x! is taken to be the arc length in the £1 direction and /iiA£i = Ax' is taken to be the grid 
spacing in the £1 direction and then the primes on x are dropped, then 

! ?± = _L_M. (A19) 
hxdii      Ax xV 

Similarly, 

1    d{h2U(p) = 1 8^ (h2A^u<f>) = 1-±1-8x(Ayuu<l>), (A20) 
hxh2     96 /iiA6/i2A6 ^ AxAy 

where Ay and Ay" are the grid spacing in the £2 direction at a grid-cell center and at a u-point, 
respectively. In deriving finite difference expressions such as in Eq. (A20), use is made of the fact 
that A£i and A£2 in the transformed coordinate system are constants (i.e., variations in the grid 
spacing are accounted for in the metric coefficients hi and /12). 
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Appendix B 

EQUATIONS IN SIGMA VERTICAL COORDINATES 

The basic, 3-D model equations written in curvilinear horizontal coordinates and sigma vertical 
coordinates are (Blumberg and Herring 1987) 

1   9DaU l        d-{h2D(Tuu)-1-^—^-{hlDavu) 

Id (r       1    / dh2       dhx 

1   £+*+!»(*   *), (Bl) 
p0h\ dii       u     D2

ado V      do) 

±^L = —-ir(h2Dauv) - -l—±.(hlDaw) 
Da    dt hih2DadtiK ;     h1h2Dadi2 

Id ( \    f dh2        dhi\\ 

_    »   %- + K+   '  £(KU%), (B2) 
p0h2 d& D2

ado\       do) 

dp 

Tz = -p9' 

Da    dt hifoDadti        a hxh2Dadi2 

Id 1        d   ( „   h2Da dT \ 

Daday     ' hih2Dadii\        h    d£i) 
,        1        d   (A   hxD„dT\       1    d   f      dT\      Q,gr 

+ J^h2~D;W2\   "   h2    di2) 
+ Dlda\   Hda)^Dada 

Id l        d   ( A   h2Da dS 
Dada       ' hih2Dadii \        hx   d£i 

1       d   ( „   h1Da.dS\       1   d   /„   dS 
+ w^ä6^^iJ+5i*^*i' (B6) 

where F'u and F'v are the horizontal mixing terms for u and v momentum. 

(B3) 

1  dug 1      d{h2Dau) 1      djhxDqv)  |    1  dw _ n (B4) 
£>CT   0i   + hih2Da      Ö& hih2Da      0& AT öa 
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