
DISTRIBUTION STATEMENT A
Approved for Public R^*^

r-\:~4-„;i-,i itifM-i ' i'".tl"' ■";' Distribution

Singleton Kinds and Singleton Types

Christopher Allan Stone

August 2, 2000
CMU-CS-00-153

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Robert Harper, Chair

Peter Lee
John Reynolds

Jon Riecke (Bell Laboratories, Lucent Technologies)

Copyright © 2000 Christopher Allan Stone

This research was supported in part by the US Army Research Office under Grant No. DAAH04-94-G-0289 and in
part by the Advanced Research Projects Agency CSTO under the title "The Fox Project: Advanced Languages for
Systems Software",. ARPA Order No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. Government.

20010307 081

Carnegie Mellon

DOCTORAL THESIS
in the field of

COMPUTER SCIENCE

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Singleton Kinds and Singleton Types

Christopher A. Stone

Submitted in Partial fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

•{4 /^ op
DATE

g-//V7oö
DATE

Bhjoo
DEAN DATE

In memory of my grandfather, Dr. Joseph F. Bradley

Contents

Introduction 9
1.1 Definitions and Constraints in Interfaces 9
1.2 The TIL and TILT Compilers 10

1.2.1 TIL 10
1.2.2 Standard ML Modules 11
1.2.3 Phase-Splitting in TILT 13

1.3 Dependent and Singleton Kinds 15
1.4 Dependent and Singleton Types 15
1.5 Other Uses for Singletons 18

1.5.1 Closed-Scope Definitions 18
1.5.2 TILT Program Transformations 18
1.5.3 Cross-Module Inlining 20

1.6 Dissertation Summary 23

The MILo calculus 25
2.1 Overview 25
2.2 Syntax and Static Semantics of MILo 26

2.2.1 Typing Contexts 28
2.2.2 Kinds 30
2.2.3 Type Constructors 32
2.2.4 Types 37
2.2.5 Terms 40

2.3 Admissible Rules 42
2.4 Dynamic Semantics 46

Declarative Properties 49
3.1 Preliminaries 49
3.2 Validity and Functionality 52
3.3 Proofs of Admissibility 59
3.4 Kind Strengthening 63

Algorithms for Kind and Constructor Judgments 65
4.1 Introduction 65
4.2 Principal Kinds 65
4.3 Algorithms for Kind and Constructor Judgments 70
4.4 Soundness of the Algorithmic Judgments 74

5 Completeness and Decidability for Constructors and Kinds 81
5.1 Introduction 81
5.2 A Symmetric and Transitive Algorithm 82

5.2.1 Definition 82
5.2.2 Soundness 84

5.3 Completeness of the Revised Algorithms 87
5.4 Completeness and Termination 109
K r o.o Normalization Ill

6 Algorithms for Type and Term Judgments 115
6.1 Introduction 115
6.2 Type Head-Normalization 115
6.3 Principal Types 117
6.4 Algorithms 120
6.5 Soundness 120

7 Completeness and Decidability for Types and Terms 129
7.1 Type and Term Equivalence 129
7.2 Completeness and Decidability for Subtyping and Validity 144
7.3 Antisymmetry of Subtyping 149
7.4 Strengthening for Term Variables 149

8 Properties of Evaluation 153
8.1 Determinacy of Evaluation 153
8.2 Type Soundness 153

9 Intensional Polymorphism 155
9.1 Introduction 155
9.2 Language Changes 155

9.2.1 Grammar 155
9.2.2 Static Semantics 156
9.2.3 Dynamic Semantics 157

9.3 Declarative Properties 157
9.4 Algorithms for Constructors and Kinds 158
9.5 Completeness and Decidability for Constructors and Kinds 158
9.6 Algorithms for Type and Term Judgments 160
9.7 Completeness and Decidability for Types and Terms 160
9.8 Properties of Evaluation 161

10 Conclusion 163
10.1 Summary of Contributions 163
10.2 Related Work 163

10.2.1 Singletons and Definitions in Type Systems 163
10.2.2 Decidability of Equivalence and Typechecking 164

10.3 Open Questions and Conjectures 165
10.3.1 Removing Type Annotations from let 165
10.3.2 Unlabeled Singleton Types 167
10.3.3 Recursive Types 168

List of Figures

1.1 Constraints via Type Sharing or Type Definitions 12
1.2 Structure Sharing 16
1.3 Pointless Structure Sharing 17

2.1 Syntax of the MIL0 Calculus 27
2.2 Judgment Forms in the Static Semantics 28
2.3 Free Variable Sets 29
2.4 Encodings of Labeled Singleton Kinds , 43
2.5 Reductions of Instructions 47

3.1 Context-Free Judgment Forms 50

4.1 Algorithm for Principal Kind Synthesis 65
4.2 Algorithms for Kinds 70
4.3 Algorithms for Constructor Validity 71
4.4 Kind and Constructor Equivalence Algorithms 72

5.1 Revised Equivalence Algorithm 85
5.2 Logical Relations for Kinds 88
5.3 Logical Relations for Constructors 89
5.4 Logical Relations for Substitutions 89
5.5 Constructor and Kind Normalization 112

6.1 Head Normalization Algorithm for Types 116
6.2 Principal Type Synthesis Algorithm 117
6.3 Algorithms for Types 121
6.4 Algorithms for Term Validity 122
6.5 Algorithms for Term Equivalence 123

7.1 Revised Type Equivalence Algorithm 130
7.2 Revised Term Equivalence Algorithm 130
7.3 Logical Relations for Types 131
7.4 Logical Relations for Values 132
7.5 Derived Logical Relations 133
7.6 Size Metric for Types 133

Abstract

In this dissertation I study the properties of singleton kinds and singleton types.
These are extremely precise classifiers for types and values, respectively: the kind of all
types equal to [a given type], and the type of all values equal to [a given value]. Single-
tons are interesting because they provide a very general and modular form of definition,
allow fine-grained control of type computations, and allow many equational constraints
to be expressed within the type system. This is useful, for example, when modeling
the type sharing and type definition constraints appearing in module signatures in the
Standard ML language; singletons are used for this purpose in the TILT compiler for
Standard ML.

However, the decidability of typechecking in the presence of singletons is not obvious.
In order to typecheck a term, one must be able to determine whether two type construc-
tors are provably equivalent. But in the presence of singleton kinds, the equivalence of
type constructors depends both on the typing context in which they are compared and
on the kind at which they are compared.

In this dissertation I present MILo, a lambda calculus with singletons that is based
upon the representation used by the TILT compiler. I prove important properties
of this language, including type soundness and decidability of typechecking. The main
technical result is decidability of equivalence for well-formed type constructors. Inspired
by Coquand's result for type theory, I prove decidability of constructor equivalence for
MILo by exhibiting a novel — though slightly inefficient — type-directed comparison
algorithm. The correctness of this algorithm is proved using an interesting variant of
Kripke-style logical relations: unary relations are indexed by a single possible world
(in our case, a typing context), but binary relations are indexed by two worlds. Using
this result I can then show the correctness of a natural, practical algorithm used by the
TILT compiler.

Acknowledgments

This dissertation would not be possible without the constant support of my family, the encourage-
ment of both my former advisor Peter Lee and my current advisor Bob Harper, the help of the
members of the FOX Project at Carnegie Mellon (particularly Perry Cheng and Leaf Petersen), the
helpful comments of Frank Pfenning, John Reynolds and Rick Statman, the exciting environment
created by the members of the Principles of Programming Languages group, and the friendship of all
those folks who lived with me at The Church in the past six years (Andrej Bauer, Susan Blanset,
Fay Chang, Marko Grobelnik, Mike Harkavy, John Langford, Dunja Mladenic, Chris Paciorek,
Adrian Perrig, and Jeff Polakow).

Lars Birkedal originally suggested that a 6-place logical relation might be made to work. Bob
Harper, Karl Crary, John Reynolds, and Jon Riecke proofread versions of this work particularly
carefully. All remaining errors are, of course, attributable solely to me.

Chapter 1

Introduction

1.1 Definitions and Constraints in Interfaces

Many programming languages allow some form of definitions to appear in program unit interfaces.
In the C language, for example, header files frequently contain definitions of type abbreviations.
For example,

typedef struct {
int x;
int y;

} point_t;

defines the type name point _t to stand for the type of a record containing two integers named x
and y respectively. Such type definitions in C are effectively macros; the main advantage of using
typedef rather than the C preprocessor's #def ine is that the the tortuous syntax of C variable dec-
larations (particularly for function pointers) makes simple textual substitution insufficient [KR88].

The Standard ML language [MTHM97] also permits type definitions to appear in module in-
terfaces. The specification

structure S : sig
type point_t = {x : int, y : int}

end

says that S is a module containing just one element: a type named point_t. The interface further
specifies that this type S .point_t is again the type of a record with two integer components named
x and y. Type abbreviations in SML are qualitatively different from typedef, however. This SML
code is a true specification, and as such must be a specification of something; if code is compiled
in the presence of this interface then at some later point (e.g., link time) a module satisfying this
specification must be supplied. Furthermore, the definition in this signature acts as a form of
constraint: any module satisfying this specification must contain a type point_t with an equal
definition. Supplying a different type leads to a static error, and this is not the behavior of a simple
type macro.

The type-theoretic approach to studying programming languages has proved extremely fruitful.
By isolating primitive concepts (organized around types), languages can be understood and com-
pared more easily. Such an atomistic approach can lead to the improved design and implementation
of programming languages.

Thus the question arises: what primitive language concept corresponds to type definitions
in module interfaces? Several studies have effectively taken the entire SML system of modules
and interfaces as primitive [HL94. Ler94, Ler95]. However, this is a rather heavyweight notion. In
considering a formal calculus with such modules, either the modules are ordinary values and module
interfaces just a form of type, or else these are held separate from the rest of the language. In the
former case typechecking becomes undecidable [HL94, Lil97]. In the latter case there is a certain
redundancy resulting from having structures (collections of types and values) and parameterized
modules (functions from modules to modules) separate from ordinary records of values and ordinary
functions.

An alternative approach is to focus on the type specification itself, adding to the primitive
specifications such as "a type" or "a parameterized type of one argument" specifications of the
form "a type equal to [some given type]". This leads to the notion of singleton kinds. If types or
kinds (kinds are the types of types) intuitively correspond to sets, then singleton kinds are sets
containing one element; membership in such a set is therefore a very strong statement. Analogously,
one can form singleton types, expressing membership in the "collection of values equal to [some given
value]".

The goal of this dissertation is to study the addition of singleton types and kinds to a well-
understood type system, with particular emphasis on the important properties of type soundness
and decidability of typechecking.

The remainder of this chapter explains more carefully the concepts of singleton types and kinds,
and shows several examples besides type definitions where singleton kinds and types appear useful
in theory and practice. I conclude with a high-level overview of the dissertation.

1.2 The TIL and TILT Compilers

1.2.1 TIL

TIL [TMC+96, Tar96, Mor95] was a prototype compiler for the core subset of the Standard ML
language [MTHM97]. It was structured as a series of translations between explicitly-typed inter-
mediate languages, and indeed the very name TIL refers to the Typed Intermediate Languages
used by the compiler. Each pass of the compiler (e.g., common subexpression elimination or clo-
sure conversion) transformed both the program and its type while preserving well-typedness. This
framework has several advantages:

• A wide variety of common compiler implementation errors can be detected during compila-
tion by running a typechecker on the compiler's program representation after each transfor-
mation. The location of the type error yields very precise information about which compiler
phase introduced the error and which part of the input program triggered the bug. Al-
though the fact that the compiler preserves well-typedness in no way guarantees that it is
also meaning-preserving, a very large class of compiler bugs exhibit themselves by creating
type errors [Nec98].

• By maintaining full typing information, the compiler is able to support type-based optimiza-
tions and efficient data representations; TIL used a type-passing interpretation of polymor-
phism in which types were passed and analyzed at run-time [HL94, Mor95].

• Typing information can be used to annotate binaries with an easily verifiable certificate
(proof) of safety, the absence of certain run-time errors [MWCG97, Nec,97].

10

The results from TIL — in particular the quality of the generated code — were very encourag-
ing [TMC+96]. However, the implementation was inefficient and could only compile small, complete
programs written without use of modules; very few interesting programs meet these criteria. To
further test the ideas behind TIL, the members of the CMU Fox Project decided to completely
re-engineer the compiler to produce TILT (TIL Two). The aim was to produce a more practical
compiler based on typed intermediate languages which could handle separate compilation, the com-
plete SML language, and large inputs. The biggest research challenge in scaling up the compiler to
the full language was adding support for modules.

1.2.2 Standard ML Modules

Modules in SML are "second-class" entities — there are no conditional module expressions, nor
may modules be assigned to mutable variables or be passed to or returned from ordinary functions.
The basic form of an SML module is a structure, which is a package of types, values, and sub-
modules. Structure signatures, the interfaces of structures, consist of a corresponding collection of
type, value, and module specifications. Value specifications give the type of a value component, and
module specifications give the signature of a module component. Type specifications may either be
opaque (specifying only the kind of the component) or transparent (exposing the type's definition).
For example, consider the following structure specification:

structure Set : sig
type item = int
type set
type setpair = set * set

val empty
val insert
val member
val union
val intersect

end

set
set * item -> set
set * item -> bool
setpair -> set
setpair -> set

This states that Set has three type components: the type Set .item known to be equal to int, the
type Set. set about which nothing is known, and the type Set. setpair which is the type of pairs
of Set.set's. Set also contains five value components; from the names, presumably Set.empty
will be a representation of the empty set, set .union computes the union of a pair of sets, and so
on.

There are two important points to note about this example. First, equivalences such as the one
between Set. item and int are open-scope definitions available to "the rest of the program", which
may not be written yet when this module is compiled. Such definitions cannot be eliminated by a
simple local substitution and forgotten. Second, in a type-passing implementation like TILT types
are computed and stored by the run-time code. Although it is possible to get rid of type definitions
in signatures by replacing all references to these components with their definitions [Sha98] this is
not necessarily a good idea in a type-passing implementation; such substitutions could substantially
increase the number of type computations performed at run-time.

An alternative method of expressing information about type components in signatures is by type
sharing specifications; these specify that two particular type components have the same definition.

Figure 1.1 (adapted from [MT91, p. 65]) shows two equivalent definitions for the signature for
the front end of a compiler. The first definition states that the front end has two sub-structures: a

11

signature FRONTEND =

sig

structure Lexer : sig
type token

val lex : string -> token list

end

structure Parser : sig

type token

type ast

val parse : token list -> ast

end

sharing type Lexer.token = Parser.token

end

signature FRONTEND =

sig

structure Lexer : sig

type token

val lex : string -> token list

end

structure Parser : sig
type token = Lexer.token

type ast

val parse : token list -> ast

end
end

Figure 1.1: Constraints via Type Sharing or Type Definitions

lexer implementation (which takes a string of characters and splits it up into a list of tokens, which
presumably would be things like identifiers or language keywords) and a parser implementation
(which takes a list of tokens and translates these into an abstract syntax tree, making the program
structure apparent). The Lexer and Parser sub-structures each have their own notion of tokens;
only the final line of this signature specifies that these two notions are compatible. As a consequence,
it is allowable to compose the two functions Lexer.lex and Parser.parse together.

Such sharing type constraints do not add expressiveness to the language because they can
always be viewed as syntactic sugar for the definitions of type components [HSOO]. The second
definition in Figure 1.1 defines an equal signature using a type definition.

Modules may be given less-specific signatures using subsumption — the signature of a module
may be weakened to a "larger" signature in the sub-signature ordering. The important part of this
ordering is that omitting constraints on types makes structure sharing less precise1. For example,
a structure satisfying the signature

'in SML, the subsignature relation also lets structure components be forgotten or reordered; this coercion is
definable and hence does not add essential expressiveness [HSOO].

12

structure Set sig
type item = int

type set = int list

type setpair = (int list) * (int list)

val empty

val insert

val member

val union

val intersect

set

set * item -> set

set * item -> bool

setpair -> set

setpair -> set

end

(which exposes the implementation of sets as lists of integers) would also satisfy the previous
specification, while an implementation satisfying either of these specifications would further satisfy
the less-demanding specification

structure Set : sig

type item

type set

type setpair

val empty

val insert

val member

val union

val intersect

end.

set
set * item -> set
set * item -> bool
setpair -> set
setpair -> set

The Standard ML module system also permits formation of parameterized modules called func-
tors; functors are simply a form of function mapping modules to modules. In the official SML
module system there is no way to express the interface of a functor; such an interface would
specify the signature of the result in terms of the functor argument. However certain compilers
like SML/NJ [MT94, CM94] extend the SML language with higher-order functors and functor
signatures. The sub-signature relation is then extended to functor signatures in the usual way:
contravariantly in the domain and covariantly in the codomain. In any case, an SML compiler
must have an internal notion of functor signature in order to do typechecking in the presence of
functor applications.

1.2.3 Phase-Splitting in TILT

The primary intermediate language of the TIL compiler was based on Fw, the higher-order poly-
morphic lambda calculus [Gir72]. One goal of the TILT redesign was to minimize changes to
the internal languages, in the hope that this would minimize the work needed to port the TIL
optimization and code generation phases.

Fu contains the type and kind structures alluded to above, but no module system. However,
modules and signatures can still be faithfully represented using ideas of Harper, Mitchell, and
Moggi [HMM90, Sha98]. Their key insight was that every module can be uniformly transformed
away via a process called phase-splitting into two pieces: a type part and a value part. For example

13

structures, which are aggregates of both types and values, become two collections: one of types and
one of values. The more interesting observation is that that functors can be split in the same way.
Functors map types and values in one structure to types and values in another structure. However,
types in the result can only depend on types (not values!) in the argument. This means that
a functors can be split into its behavior on types (which can be expressed as a function mapping
records of types to records of types) and its behavior on values (expressed as a polymorphic function
in Fu).

Signatures then split in a parallel fashion. Structure signatures, for example, split into a kind
describing collection of types and a type describing a collection of values. For example, the structure

struct

type t = int

val n = 3

val succ = fn (n:int) => n+1

end

splits into two parts: a collection of types (in this case, a one-element collection)

{t = int}

and a collection of two values

{n = 3, succ = fn (n:int) => n+1}.

The signature

sig
type t
val n : int
val succ : int -> int

end

correspondingly splits into two parts: the kind of a single-element collection of types

{t :: TYPE}

and the type of a collection of two values

{n : int, succ : int -> int}.

Fw suffices for these and many other examples. However, a difficulty arises in the specification
for sets:

structure Set : sig

type item = int

type set

type setpair = set * set

val empty

val insert

val member

val union

val intersect

end

set

set * item -> set

set * item -> bool

setpair -> set

setpair -> set

14

This should split into a specification for a collection Set_types of three types and a collection
Set_values of five values, but what kind should Set_types have? It is clear translating the above
SML code into the specifications

Set_types :: {item :: TYPE, set :: TYPE, setpair :: TYPE}
Set_values : {empty : Set_types.set, ...}

(where I have elided the types for the remaining components of Set ..values) loses important in-
formation about the definitions of item and setpair. If Set_types.item is no longer recorded as
equal to int, then code may suddenly fail to typecheck.

One possibility is to substitute away all such type definitions. Because of the subsignature rela-
tion this is not so trivial an operation as it might appear, but there is no essential difficulty [Sha98].
However, in the TILT compiler types correspond to run-time values, and the effect of such a sub-
stitution is to duplicate run-time computations. Our goal was to avoid such duplication.

1.3 Dependent and Singleton Kinds

The choice made in TILT was to extend the kind structure with dependent and singleton kinds.
The singleton kind S(A :: K) is the kind of "all type constructors of kind K which are equal to
A. That is, the defining property is that the type constructor A has kind S(B :: K) if and only if
A and B are equal type constructors of kind K. Since the type constructors form a small lambda
calculus, I consider equality of types to be based on the usual ^-equivalence of lambda terms2.
Note that in the presence of singletons assumptions about the kinds of type variables can affect the
provable equalities, and the equational theory of types affects what types can be shown to have
which kinds.

The kinds in TILT were further extended with dependencies. First, in kinds of collections of
types, the kind of each component may depend upon the contents of earlier components. With this
extension, it becomes easy to phase-split the Set specification:

Set.types :: {item :: S(int :: TYPE), set :: TYPE, setpair :: S(set*set :: TYPE)}
Set_values : {empty : Set_types.set, ...}

Singleton kinds are used here to expose the definitions of item and setpair. Further, the definition
of setpair involves a dependency: its kind depends on the contents of the set component.

Similarly, in the kinds of functions mapping type constructors to type constructors, the kind of
the result is allowed to depend on the argument given to the function. This is used to express the
dependencies of types returned from a functor on the functor's argument.

The final extension in the TILT kind structure is a subkinding relation, a preorder K\ < K2
which holds when K\ is a more-precise (less general) kind than K2. This relationship is induced
by the relation S(A :: K) < K; that is, all "types of kind K equivalent to A" are also "types of
kind Kn. Subkinding is used to model the SML sub-signature relation.

1.4 Dependent and Singleton Types

The extensions to the kind level can be applied at the level of types as well. This leads to singleton
types of the form S(e : r), the type of "all values of type r equal to e", as well as dependent

2The simpler /3-equivalence might suffice in practice, but having both ß and 77 leads to a more expressive and more
interesting language. It is also not clear that using this stronger equivalence relation would substantially simplify the
metatheoretic results I study in this thesis. (See the proofs for decidability of term equivalence.)

15

Slg

structure BinaryTree : sig

structure Key : sig

type t

val lesseq : t * t -> bool
end

type value
type tree
val insert : Key.t * value * tree -> tree
... other binary tree operations ...

end

structure PriorityQueue : sig

structure Key : sig

type t
val lesseq : t * t -> bool

end

type value
type pqueue
val insert : Key.t * value * pqueue -> pqueue
... other priority queue operations ...

end

sharing BinaryTree.Key = PriorityQueue.Key

end

Figure 1.2: Structure Sharing

function and record types, and subtyping
The designer of a system of singleton types must choose a reasonable notion of equality; in the

presence of side-effecting program terms this is not obvious. Ideally equality would be observable
equivalence: two expressions would be equal if and only if they are indistinguishable in any program
context. However, for any interesting term language this relation is not decidablo. (For example,
checking contextual equivalence with a non-terminating expression in this language is equivalent to
the halting problem.) Because typechecking in the presence of singleton types requires determining
equivalence of terms, this would immediately lead to a system where there is no algorithm to check

the well-formedness of programs.
I choose to study a simple equivalence: a congruence based on projection rules for pairs, ex-

tended by singleton types. To avoid problems with side effects, I restrict singleton types to contain
only values, and I extend the congruence with the principle that a value v\ has type S(t>2 : r) if
and only if v\ and V2 are equivalent and of type r. (In the presence of recursion there is a non-
terminating expression of type r for any well-formed T. Hence there is a non-terminating expression
e of type S(3 : int). But since 3 and e are clearly not observably equivalent, they should not be
provably equal; hence the restriction to values.)

What use are such singletons? Consider the SML code in Figure 1.2. The interface shown here

16

Slg

structure T : sig

val n : int

end

structure U : sig

val m : int

end

sharing T = U

end

Figure 1.3: Pointless Structure Sharing

specifies two sub-modules BinaryTree and Priority-Queue that implement abstract data types
for binary trees and priority queues respectively. Each sub-module has its own notion of how
keys are represented (the type Key.t) and ordered (the relation Key.lesseq). In current versions
of Standard ML, sharing constraints are simply an abbreviation for sharing type constraints
between the opaque type components common to both structures. Since there is only one such
component, the constraint is exactly equal to the constraint

sharing type BinaryTree.Key.t = PriorityQueue.Key.t.

This then allows the same key value to be used in a binary tree and in a priority queue. (Note
however, that the values stored in binary trees and the values stored in priority queues need not
be of the same type; there is no constraint requiring BinaryTree.value to be the same type
as PriorityQueue.value.) This constraint can be modeled as before with singleton kinds by
specifying

PriorityQueue.Key.t :: S(BinaryTree.Key.t :: TYPE).

In the original 1990 definition of Standard ML [MTH90], however, the sharing constraint in
Figure 1.2 actually requires the structures BinaryTree.Key and PriorityQueue.Key be the same
structure. As a consequence, not only must the representation type for keys be equal, but the two
lesseq orderings will be equal. In SML '90 then, whether a given module satisfies this interface or
not (a question of typechecking) depends on the values of the Key substructures.

To model the spirit of this sharing constraint, I can use singleton types. Let t stand for the type
PriorityQueue.Key.t. Then I can model the constraint by using singleton kinds as previously
mentioned and further requiring

BinaryTree.Key.lesseq : S(PriorityQueue.Key.lesseq:t * t -> bool).

This does not require that the two Key structures be exactly the same structure, but does require
that corresponding components of the two structures are equal. Because one cannot do assignment
directly to components of a structure, however, there is no run-time behavior that can distin-
guish two componentwise-equal structures; this leads to a more permissive type system while not
permitting any changes in run-time behavior.

Not all instances of SML '90 structure sharing can be modeled with singleton types. For
example, the signature in Figure 1.3 requires that the T and U substructures be different views of
the same underlying structure. It makes no sense to model this with a dependent record type such
as

17

{T : {n : int}, U : S(T : {m : int})}

because this would be ill-formed: T does not have type {m : int}. However, since the sharing con-
straint in Figure 1.3 does not actually place any restriction on the values of the n and m components,
the practical utility of such a specification seems extremely minimal.

1.5 Other Uses for Singletons

1.5.1 Closed-Scope Definitions

In many A-calculi "let-bindings" or "closed-scope definitions" are treated as syntactic sugar. For
example,

let x:int = 3 in (x+1)

would be encoded as the function application

(Ax:int. x+l)(3).

However, this sort of transformation is not always legal. In F^, for example, one cannot generally
equate

let t::TYPE = int*int in e

where e is some expression with
(At::TYPE. e)(int*int)

because in the former case we know that t = int*int while typechecking e, while in the latter case
e must be typecheckable knowing only that t is som,e type.

The alternative definition
[int*int/t]e

(that is, the result of replacing t with int*int everywhere in e) will preserve meaning and well-
typedness, but involves arbitrary duplication of types.

Some authors have therefore considered let-bindings (and generally, the notion of variables-with-
definitions) appears as a primitive. For example, the pure type system of Severi and Poll [SP94]
adds a new let-binding primitive written x=a:A in b, and the definitions of variables are maintained
during typechecking.

In a language with singleton kinds, however, let-bindings of types become definable via functions:

let t::TYPE = int*int in e

becomes
(At::S(int*int :: TYPE). e)(int*int).

This time the typechecker knows while typechecking e that t = int*int because this is apparent
from the kind oft.

1.5.2 TILT Program Transformations

The encoding of let in the previous section is primarily a theoretic curiosity. However, similar
transformations do come up in practice; there are several places in the TILT compiler where it
could be beneficial to take types computed within a function body and turn these into new type
arguments to be passed into the function at run-time. This comes up in loop invariant removal, in
uncurrying, and in closure conversion [MMH96]. An example will make this clearer; consider the
following code, written in an approximation of the compiler's internal representation:

18

let
function F(a::TYPE, y:a) = G(ax«, (y,y))

in
... F(int, 3) ... F(int, 4) ... F(int, 5) ...

end

This code presupposes a polymorphic function G taking a type and an argument of this type. The
polymorphic function F also takes a type a and a value y of this type; it creates the pair (y,y)
and its type axa, and then passes these to G. Elsewhere in the code, F is called several times.

Now on each call, F constructs the type ax a in order to be passed this G. In a type-passing
implementation like TILT, this corresponds to actual instructions executed at run-time. Since F is
repeatedly being given the same type argument int, it would be preferable to compute intxint
just once; this could be performed by having the caller pass intxint as a new function argument.
Such a transformation leads to the following code:

let
function F(a: :TYPE, ß: :TYPE, y:a) = G(/3, (y,y))
type t = intxint

in
... F(int, t, 3) ... F(int, t, 4) ... F(int, t, 5) ...

end

Operationally, this new code is correct. Unfortunately, it no longer typechecks; in a standard
typed lambda calculus there is no way to perform this particular transformation while preserving
well-typedness.

The problem with the above code is that according to the specification of the arguments, F
could be called with any two types. Therefore, there is no reason why the pair (x,x) should have
type ß. The intent is that every call to F should pass a type a and the type axa, but if this is not
a constraint being checked by the type system it is unsafe to assume this will always be true.

The TILT compiler is based on the principle of type-preserving transformations; we forbid
transformations leading to ill-typed programs. What is needed is a way to constrain the new
type variable so that the compiler knows it will be given the type axa. Equally importantly, the
compiler should be able to check that every application of F obeys this constraint.

Singleton kinds provide exactly the mechanism required to transform type expressions into
function arguments while preserving well-typedness. The code becomes

let
function F(a: :TYPE, ß::S(axa :: TYPE), y:a) = G(/3, (y,y))
type t = intxint

in
... F(int, t, 3) ... F(int, t, 4) ... F(int, t, 5) ...

end

This typechecks because we have introduced the appropriate constraint into the type system; the
body of the function F will typecheck if we can show that the type constructor ß is equivalent to the
type of (y,y), namely axa. But ß::S(axa :: TYPE) implies that ß = axa :: TYPE, as required.

Note that an apparently simpler solution to this problem would be to compile F in curried
fashion:

19

let

function F(a::TYPE) =

let

type ß = axa.
function F'(x:a) = G(ß, (y,y))

in

F'

end
Fint = F<int>

in

... Fint(3) ... Fint(4) ... Fint(5) ...

end

Here F now just takes a single argument, a type a. It computes axa. and returns a function which
expects an argument x of type a. The caller can apply F to int once (computing int x int once)
and then apply the resulting function repeatedly. This does typecheck without singletons, and
might seem to solve the problem. However, this transformation introduces higher-order functions,
which are implemented via a transformation called closure conversion. The closure-conversion
transformation involves taking every function and turning its free variables into arguments; in
particular, ß will become an argument of the function F', and we have exactly the same typechecking
problem as we started out with [MMH96].

1.5.3 Cross-Module Inlining

While language features such as abstraction, modularity, polymorphism and higher-order functions
have important software engineering benefits, they often impose a run-time cost. Using abstract
types or polymorphism can mean that data layouts are not known until run-time. Uses of modu-
larity and higher-order functions can substantially increase the number of function calls, which can
be particularly costly on modern processors.

If pieces of a program are compiled and optimized completely separately ("true" separate com-
pilation) it is hard to avoid the costs of abstraction. At the other end of the spectrum, a compiler
can do whole-program optimization and generate substantially better code. Unfortunately, the
analysis required is usually unusably slow for large inputs and requires source code for the entire
program (including libraries). However, in many cases it suffices to do incremental compilation,
in which each file is compiled after all of its imports. This allows the compiler to use information
gathered while compiling the imports in order to do a better job of compiling the current file. The
compiler writer must then decide what information the compiler should collect and store and how
to represent it.

For separate compilation in a statically typed framework, a minimal requirement is that the
compiler must know the type of all external references. This leads to such mechanisms as header
files in C, where the interface of a compilation unit gives the types of its exported components. This
also leaves open the possibility of checking that a compilation unit matches the claimed interface.

An elegant and systematic method of handling incremental compilation is to use the same
mechanism — where the interface of each unit contains typing information for all exports — but
to have the compiler generate the interface directly from the code. This combines cleanly with
separate compilation; the programmer can write interfaces for some pieces of the program and have
the compiler generate the remainder.

Of course the compiler can determine more information than just simple types when given the

20

source code. A very important optimization for incremental compilation is cross-module inlining.
This transformation replaces references to imported values, types, and functions with their actual
implementations. In order to achieve this, the interface must express this information, namely
to include the implementations of abstract types, values of variables, definitions of functions, and
so on. Thus interfaces change from specifying that "x is an integer constant" to "x is an integer
constant equal to 3" and from "succ is a function mapping floats to floats" to "succ is equal
to the function which maps a float / into /+1.0". In order to maintain the elegance of interfaces
containing only type information, this optimization requires a more expressive type system in which
such information can be expressed.

Inlining is the process of replacing a reference to a value with the value itself. In my system of
singleton types, if v : S(v' : r) then the compiler may replace any use of v (in a context expecting
a value of type r) with v'. Singletons can be directly applied to traditional cross-module inlining.
Suppose we want to be able to take a definition such as the following (for the successor function
on integers)

succ = Aa;:int.2:+1

and allow other modules to replace succ by this function (if it seems locally beneficial). This can
be achieved by specializing the type of succ in the interface; instead of saying

succ : int—^int

it can instead say
succ : S(Aa;:int.2;+l : int^int).

Conversely if the compiler sees that an import such as succ has a singleton type, it is justified in
replacing this reference with the actual definition.

The restriction that well-formed singletons can contain only values suffices for most inlining
purposes because the most important case is inlining of function definitions, and functions are
values. It is possible that a less conservative approximation might be useful so that we can inline,
for example, polymorphic instantiations and partial applications of curried functions. This should
be possible by replacing this restriction to values with a restriction to a set of "valuable terms",
terms whose evaluation is guaranteed to terminate without side-effects or reference to mutable
storage [HSOO].

Values in singletons need not be closed, but they must be well-formed and hence cannot refer
to items not exported in the interface. In practice, this may require extending interfaces with extra
components.

Note that the approach to inlining using singletons is subtly different from C++ inline func-
tions in header files, or of the lambda-splitting of Blume and Appel [BA97]. There the functions
to be inlined are essentially definitions prepended to the program unit being compiled. Whenever
the compiler decides not to inline uses of these functions, it must compile a new local version of the
code to call. In contrast, singleton types and kinds used for inlining purposes are specifications of
an imported piece of code, which may be referred to if inlining does not appear useful. (Of course,
since the compiler has the definition it could also choose to create a local copy of the code to call,
as yet another alternative to inlining the function's code.)

A more interesting problem is the case where the compiler wants to inline an import which
may not have been written yet. This can only occur, of course, if the compiler has some reason to
believe it can correctly "predict" what the import's eventual implementation will be. An example
of this arises in TILT due to Standard ML datatypes.

21

The datatype mechanism is one of the most successful features of Standard ML. Datatypes
combine notions of enumerations, tagged unions, and recursive types into a common framework. A
single datatype definition such as

datatype tree = Leaf of int I Node of tree*tree

automatically generates

• An abstract type tree.

• The functions Leaf of type int->tree and Node of type tree*tree -> tree for creating
new trees;

• Support for discrimination and decomposition for values of type tree via pattern-matching;

• A structural equality for trees.

This can be easily modeled as a structure containing one (abstract) type component and several
value components. Similarly, a datatype specification signature would correspond to the signature
of the appropriate structure [HSOO, HS97].

The disadvantage of this elegant encoding is efficiency. Datatype constructors and pattern-
matching are used heavily in SML code; making every such use into a function call is unacceptably
inefficient. Similarly, although datatypes are officially abstract and must be typechecked as such
in the source code, it is often possible to determine from a datatype's description the underlying
implementation type for this datatype3. Taking advantage of this knowledge woidd enable more
efficient code generation.

Blume [Blu97] suggests that this problem can be overcome by aggressive cross-module inlining.
As the functions corresponding to datatype constructors and pattern-matching are generally small
pieces of code, they will automatically be exported by the defining compilation unit and inlined into
client compilation units. This approach seems logical and should work quite well — but only where
it applies. A deficiency is that it does not help when doing separate compilation or compiling SML
functors (parameterized modules) which take datatypes as arguments. In these cases no datatype
implementation has been specified yet, so there is nothing to inline.

However, if the compiler can predict which types and code will be later supplied as the functor
argument, then we are justified in inlining these types and code into the functor body and ignoring
the actual argument when it is later applied. There is no typechecking problem involved in this
transformation, but for correctness purposes it might be convenient to have a way of formalizing
this prediction and a way of checking that the prediction was correct. Singleton types and kinds
provide a natural way to record such a prediction: the functor's arguments can be annotated with
singleton types and kinds for the datatype components, and inlining can then proceed as discussed
above.

Note that because specializing the functor argument to require a particular datatype implemen-
tation gives the functor a strictly less-general type, functor applications which were previously valid
may no longer typecheck. This is actually an advantage because a typechecking failure occurs when
the predicted code does not match the actual implementation; since both parts are automatically
generated by the compiler, a typechecking failure here must mean that the compiler is in error.

There is nothing original about inlining datatypes, separately compiled or not. Any reason-
able ML compiler must do this for efficiency. However, this often occurs in an ad-hoc fashion.
With singleton types and kinds a compiler can systematically maintain the datatypes-as-structures
encoding throughout the entire compiler, without any loss of efficiency.

3In general this may require a non-trivial eqiiational theory for recursive types, however [CHC+98].

22

1.6 Dissertation Summary

In Chapter 2, I introduce the MILo calculus, a formalization of the key features of the TILT
intermediate representation. This language is an predicative variant of the familiar lambda-calculus
Fw, extended with pairs, recursion, and singleton types and kinds. I show that the addition of
singletons leads to a calculus with very interesting equational properties; most notably, whether
two type constructors are provably equivalent depends strongly on both the typing context and on
the kind at which the type constructors are compared.

Chapter 3 contains proofs for many standard properties of the MILo calculus, such as preserva-
tion of well-typedness under substitutions and the admissibility of useful typing rules. In particular,
although the definition of MILo includes only a very restricted form of singleton kind, general sin-
gleton kinds are definable.

Chapter 4 gives algorithms for deciding the kind and constructor-level judgments (e.g., given
a well-formed context and a type constructor A, determine whether there is a kind K such that
A is well-formed with kind K). This includes an algorithm for constructor equivalence inspired by
Coquand's approach to /^-equivalence for a type theory with II types and one universe [Coq91].
Coquand worked with an algorithm which directly decides equivalence, rather than defining a
confluent and strongly-normalizing reduction relation. In contrast to Coquand's system, MILo
type constructors cannot be compared by shape alone; equivalence depends on both the typing
context and the classifier. Where Coquand maintains a set of bound variables, my algorithm
maintains a full typing context. Similarly, he uses shapes of the items being compared to guide the
algorithm where my algorithm uses the classifying kind. (For example, where Coquand would check
whether either constructor is a lambda-abstraction, this algorithm checks whether the constructors
are being compared at a function kind.) I show the algorithms are sound with respect to the
language definition.

In Chapter 5 I prove the completeness and termination of the algorithms in the previous chap-
ter. This reduces to proving the completeness and termination of the constructor equivalence
algorithm. Unfortunately I cannot analyze the correctness of this algorithm directly; asymmetries
in the formulation preclude a direct proof of such simple properties as symmetry and transitivity.
(Both are immediately evident in Coquand's case.) Instead, I analyze a related but less efficient
algorithm which restores symmetry and transitivity by maintaining redundant information. The
proof that this revised algorithm is complete and terminating for all well-formed inputs was inspired
by Coquand's use of Kripke logical relations, but the details differ substantially. My proof uses a
novel form of Kripke logical relation employing two worlds, rather than one. The correctness of
the revised algorithm can then be used to show the correctness of the original, simpler constructor
equivalence algorithm. This yields the implementation used by the TILT compiler.

I then repeat the development for types and terms. Chapter 6 gives algorithms for deciding
the type and term-level judgments; I show these algorithms are also sound with respect to the
corresponding judgments in the MILo definition. The proof of Chapter 7 for the completeness and
termination of the term and type algorithms proceeds essentially along the same lines as the proofs
in Chapter 5. The simpler notion of equivalence for term-level functions makes some parts of these
proofs easier, but others are complicated by the fact that type equivalence is less trivial than kind
equivalence.

Chapter 8 shows the MILo type system to be sound with respect to its operational semantics.
The proof is very straightforward, but depends critically on using the soundness and completeness
of the constructor equivalence algorithm to show consistency properties of constructor equivalence.

23

In Chapter 9 I show how to extend these proofs when the MIL language is extended with
intensional polymorphism (i.e., with run-time constructor analysis constructs) [HM95, Mor95].
This involves surprisingly little change to the previous development.

Finally, Chapter 10 surveys the related literature and concludes with a collection of conjectures
and possibilities for future work.

24

Chapter 2

The MILQ calculus

2.1 Overview

The TILT compiler uses as its main internal representation of programs a typed language called
the "Mid-level Intermediate Language", or MIL. This is a relatively high-level language; it includes
first-class functions, assignment, and exception handling, with no explicit reference to memory
layout or allocation/deallocation. However, it contains no notion of a module system.

More formally MIL is a variant of Fw, the higher-order polymorphic lambda calculus [Gir72].
The language has four levels:

• The terms or expressions of the language. These include constants, recursive functions,
applications, pairs, records, assignments, exceptions, etc.

• The types, which classify terms. A term is well-formed if and only if it has a type.

• The type constructors, or simply constructors.1 This level contains items corresponding to
certain types (these constructors might be considered "the names of types" or "types as
data") as well as functions and pairs, forming a small A-calculus in itself.

• The kinds, which serve as types for the language of constructors.

The distinction between types and the corresponding type constructors is made because MIL
is a predicative language. In an impredicative language, polymorphic types involve quantification
over all types, including the polymorphic types themselves. Although one can make sense of this
circularity [Gir72], it substantially complicates the metatheory of the language and hence has been
avoided here.

In this chapter, I formally define MILo, a simplified calculus which captures most of the essential
features of the full MIL. The primary differences are:

• The term language has been substantially pared down to contain only recursive functions,
pairs, and polymorphism. Assignment and exceptions have been omitted, so that the only
remaining side-effect is nontermination. In the full MIL, functions can take any fixed number
of constructor and term arguments, and polymorphic recursion is allowed. (When compiling
a source language like SML which does not allow polymorphic recursion [Myc84], however,
the utility of this last feature is limited.) For simplicity, MILo separates term abstractions
and polymorphic abstractions, and disallows polymorphic recursion.

^his terminology conflicts with the common usage of "constructor" in ML to refer to the term constructors
defined by datatypes. However, context will always make clear which sense of constructor is meant.

25

• MIL function types have been similarly split into universally-quantified types for polymorphic
expressions and ordinary (dependent) function types for term-level functions. MIL contains
several varieties of function type (the types of potentially open functions, closed functions, or
closures, each of which may be partial or total). Only potentially open, partial functions are
modeled here.

• Constructor functions in MIL are multiargument, while MILo constructor functions must be
curried to get the same effect.

• For clarity, all constructor analysis constructs used by TILT (e.g., typecase or typerec [HM95])
have been omitted from MILo- Such features are essentially orthogonal to my main topic,
the effects of adding singletons to the calculus. However, the methods of this dissertation
can be applied even in the presence of constructor analysis. In chapter 9 I sketch the (minor)
changes to the development required.

• The MIL as actually implemented uses a relatively strong equivalence for recursive type
constructors. (Specifically, two recursive type constructors are considered equivalent if their
unrollings are equivalent [CHC+98].) This extension is omitted from MILo-

For the most part, extending the theory of this chapter to handle the full MIL should not present
any fundamental difficulty. The proofs do become more technically involved (for example, when
going from pairs to n-ary labeled records) but the essential arguments do not change. Note that
since this is an explicitly-typed framework, adding polymorphic recursion creates no challenges.

The one case where the methods do not extend is when considering an interesting equational
theory for recursive types. (I see no way to create an obviously symmetric and transitive algorithm
in the presence of recursive types.) There is an obvious extension of my algorithms that appears
to work in practice; the FLINT compiler uses a very similar algorithm.

This is not simply an issue of adding singletons; in the literature there appears to be little
study of algorithms for equating recursive types when there are interesting equations beyond those
induced by recursive types. (The only instance I have found is the work of Palsberg and Zhao on
type isomorphisms in the presence of recursive types [PZOO].) For example, no one has looked at
the decidability of typechecking for F^ (where there is /^-equivalence at the type level) extended
with recursive types.

As an alternative to extending the theory to the full MIL, the language itself could be simplified.
An alternative MIL could use use a much simpler equational theory for recursive types, at the cost of
requiring explicit type coercions (i.e., isorecursive types rather than equirecursive types [CHC+98]).
There are no problems in extending the theory of MILo in this fashion.

This chapter contains a definition of MILo split into two parts: compile-time and run-time
aspects. §2.2 contains the context-free syntax of the language and the context-sensitive rules
for determining whether phrases in the language are well-formed, and §2.3 contains a number of
admissible rules which follow from this definition. Then §2.4 explains the meanings of complete
programs by defining a notion of evaluation.

2.2 Syntax and Static Semantics of MILo

The abstract syntax of MILo is shown in Figure 2.1. As usual, I work modulo renaming of bound
variables (i.e., modulo a-equivalence). The meaning of each construct is explained in tandem with
the static semantics.

26

Typing Contexts

Kinds

r,A::=

K:L::=

Empty context

Base Constructors b

Constructor Constants c

Type Constructors A, B ::=

Types T,<x :: =

Values v.w

Terms e,d ::=

| T,a::K
T,X:T

= T Kind of names of types
1 S(A) Singleton kind
| Uav.K'.K" Dependent function kind
| Ha::K'.K" Dependent pair kind

- Int | Boxedfloat | ... Names of base types

= b
X Pair-type constructor

—*• Function-type constructor

= c
1 a,ß, ■■■ Variables
| \a::K'.A Function

A A' Application
1 (A', A") Pair of constructors
I KiA Projection

~- Ty(A) Inclusion of type constructors
| S{v : r) Singleton type
| Va::Kr Polymorphic type
| (a;:r')^r" Dependent function type
| (X:T')XT" Dependent pair type

= n Integer constants
1 x,f,... Variables
| fun/(a;:T'):T" is e Recursive function
| A(a::K):r.e Polymorphic abstraction
| 7Tit> Projection

1 (vi,v2) Pair

= u
| w' Application
| vA Polymorphic instantiation
| let x-.r'—e' in e : r end Local variable definition

Figure 2.1: Syntax of the MILQ Calculus

27

r h ok Well-formed context
\~ T] = T2 Context equivalence

r h K Well-formed kind
r h KA < K2 Subkinding
r I- Ky = K'i Kind equivalence

F h A :: K Well-formed constructor
T \- A] = A2 :: K Constructor equivalence

T h r Well-formed type
r \- T\ < T-2 Subtyping
r h T\ = T-2 Type equivalence

T h e : r Well-formed term
r h ei = e2 : r Term equivalence

Figure 2.2: Judgment Forms in the Static Semantics

The static semantics (type system) for MIL0 is given as a collection of inductively-defined
judgments. Figure 2.2 lists all the different judgment forms. The purpose of this section is to
explain and motivate the choice of judgments.

The definition of the static semantics requires a few preliminary comments. First, the notation
FV(phrase) refers to the set of free variables in phrase. This is defined Figure 2.3 by induction on
syntax.

Secondly, the static semantics uses the notion of capture-avoiding substitution: I use the
metavariable 7 to stand for an arbitrary mapping from constructor variables to arbitrary con-
structors and from term variables to term values. The notation ~f (phrase) is used to represent the
result of applying 7 to all free variables in the phrase phrase. The substitution which sends a to A
and leaves all other variables unchanged is written [A/a], and [v/x] is define analogously. If 7 is a
substitution, then 7[aH>,4] stands for the mapping which sends a to A and behaves like 7 for all
other variables; the notation 7[:ri->-?;] is defined analogously.

2.2.1 Typing Contexts

A typing context T (or simply context when this is unambiguous) represents assumptions for the
types of free term variables and for the kinds of free constructor variables. It is represented as a finite
sequence of variable/classifier associations. Typing contexts in MIL0 are intrinsically sequences
because of dependencies introduced by singletons: both types and kinds can refer to constructor
variables appearing earlier in the context, while types can additionally refer to term variables
appearing earlier in the context.

The context validity judgment determines when a context is well-formed: every type or term
appearing in the context must be well-formed with respect to the preceding segment of the context.

28

FV(T) = 0
FV(S(A)) = FV(A)
FV{Ila::K'.K") = FV(iT) U (FV(iT') \ {a})
F\\^a::K'.K") = FV(iT) U (FV(iT') \ {a})

FV(A) = 0
FV(a) = w
FV(\a::K.A) = FV(üf) U (FV(A) \ {a})
FV(AA') = FV(A) U FV(A')
FV((A',A")) = FV(A') U FV(,4")
FVfaA) = FV(A)

FV(Ty(A)) = FV(A)
FV(S(v : r)) = FV(v) U FV(T)

FV(Va::Ä".T) = FV(ÜT) U (FV(r) \ {a})
FV((I:T')V) = FV(T') U (FV(r") \ {x})
FV((X:T')XT") = FV(T') U (FV(T") \ {x})

FV(n) = 0
FV(x) = {*}
FV(fun/(s:r'):r" is e) = FV(r') U (FV(r") \ {x}) U (FV(e) \ {s, /})
FV(A(a::K):r.e) = FV(K) U (FV(r) \ {a}) U (FV(e) \ {a})
FVfov) = FV(«)
FV««',«")) = FV(u') U FV(«")

FV(W) = FV(u) U FV(v')
FV(vA) = FV(u) U FV(A)
FV(let x:T'=e' in e : T end) = FV(r') U FV(e') U (FV(e) \ {x}) U FV(r)

Figure 2.3: Free Variable Sets

29

r VhJl , (rv^dom(r)) (2.2)
r, a::K \- ok

r
rh

u
T , (^dom(r)) (2.3)

1 , X:T r ok

The side-condition in Rules 2.2 and 2.3 ensures that variables are not bound in a context more
than once. It follows that well-formed typing contexts can also be viewed as finite functions: T(a)
represents the kind associated with a. in T, while T(x) represents the type associated with x in I\
Similarly, the notation dom(r) is used to represent the set of all constructor and term variables
bound by I\ The free variables of a context. FV(T), can then be defined inductively as follows:

FV(«) := 0
FV(I\ <*::#) := FV(r) U (FV(tf) \ dom(r))
FV(r, X:T) := FV{T) U (FV(r) \ dom(r))

Because contexts are finite sequences, there is an obvious definition for appending any two contexts.
The result of appending T\ and I^ is written I^i, IV

A similar set of inference rules gives a notion of definitional equivalence for two contexts.

(2.4)

h Ti = r2 ri h Ki = K2

r-ri,a::Ä"i = T2,a::K2
(«gdom(ri)) (2. o

(x^dom(r,)) (2.6)
h ri,.x:ri = T2,X:T2

It is obvious that any two equivalent contexts bind the same variables in the same order. I show
later that if two contexts are equivalent then they are both well-formed and they are interchangeable
in any declarative judgment.

2.2.2 Kinds

The kind validity judgment specifies when a kind is well-formed with respect to a given typing
context. The kind T is the kind of all "ordinary" type constructors; that is, the kind of type
constructors corresponding to some type.

Thok
(2.7)

ThT

The premise of Rule 2.7 ensures that in any proof of T \- K there is strict subderivation proving
r h ok. A similar property holds for all of the judgments defined in this chapter; I show this in
§3.1.

Well-formed MILo singleton kinds are restricted: they may only contain constructors of kind
T. The kind annotation is therefore omitted from the syntax, as it would always be T.

ThAr.T

-mar (28)

30

However, general singleton kinds S(^4 :: K) as described in the introduction are definable (see
§2.3).

The rules for II and £ kinds (dependent function kinds and dependent pair kinds) are essentially
standard.

T,a::K'bK"
(2.9)

T h Ua::K'.K"

T,a::K'Y- K"

r h Ear.K'.K"
(2.10)

Uar.K'.K" is the kind of all functions which map an argument a of kind K' to a result of kind
K", where K" may depend on a. Similarly, Y,a::K'.K" is the kind of all pairs of constructors whose
first component a has kind K' and whose second component has kind K", where K" may refer to
a. Both Har.K'.K" and T,a::K'.K" bind the constructor variable a in K". I use the usual notation
K'xK" for T,a::K'.K" and K'-±K" for Ua::K'.K" in those cases where a does not appear free in
K".

Frequently one might see an additional premise r h K' in these two rules, but as MILo is defined
this is already implied by the existing premise.

The subkinding judgment T h K\ < K2 defines a preorder on kinds, which may be intuitively
understood to say that K\ is more precise (exposes more information about a type constructor)
than K2. It will follow that any constructor of kind K\ will be acceptable in a context requiring a
constructor of kind K2 ■

Intuitively, since S (A) represents "the kind of all constructors of kind T equivalent to A", any
constructor of this kind should be acceptable where a constructor of kind T is expected. Thus the
key subkinding rule is:

rhi::T
r h s(A) < T ^'n^

The premise of this rule ensures that S(A) is well-formed.
Subkinding between two singleton kinds coincides with equivalence

rhiiEi2"T
(2.12)

rhS(4i) <S(A2)

because a constructor of kind T equivalent to A\ can be equivalent to A2 if and only if A\ and Ai
are equivalent to each other.

The following rule is required for subkinding to be reflexive.

Thok
(2.13)

rf-T <T

The remaining subkinding rules lift the relation to II and S kinds, following the usual co-
and contravariance properties. (The first premise in each of the following two rules ensures that
r H Ki < K2 implies r I- Kx and Y h K2.)

r h Yia::K[.K'{

2-1 , 2 1 - 2_ ^2_14j

T h Ua::K[.K'{ < Ua::K'2.K2'

31

r h Za::K2.K2'

1-2 l x - 2- (2.15)
T h Vn::K[.K'{ < Za::K!2.K!2'

Kind equivalence, denoted r h K\ = K?- is essentially a symmetrized version of subkinding.
I show later that T \- K\ = K% 'ti and only if T h K\ < K2 and T \- K2 < K\. and a reasonable
alternative presentation of the system would make this the definition of kind equivalence.

Thok

THT = T

T\- A{= A-2 :: T

rhS(^) = s(^2)

r h Iin::K'2.K'2'
T\- K[=K2 T, a::Ä"{ h #{' = K2'

r h üaiiÄ'J.Ä'I' = Ua::K!2.K2'

r h Za::K2.K'2'
T\~ K[=K2 r, a::Ä"{ h #{' = K2'

rr-S«::X|.^' = E«::^.^'

(2.16)

(2.17)

(2.18)

(2.19)

2.2.3 Type Constructors

The constructors include names for base types, all with kind T

Thok

Th6::T

and constants for creating product types and function types:

Thok

b e {Int, Boxedfioat, Char,...} (2.20)

rhx ::T-*(T-yT)

rhok

ri- ->■ :: T-KT-»T)

(2.21)

(2.22)

Applications of these constants to two arguments will be written in the usual infix manner, A\ XA2
and A\-^A2-

As constructors form a A-calculus, there are variables, functions mapping constructors to con-
structors, and applications of such functions.

Thok
(a G dom(r)) (2.23)

rho::r(a)

T,a::K'\-A:: K"

r h Xa::K'.A :: Ylar.K'.K"

32

(2.24)

r h A :: K'-^K" rhi':: K'
 (2.25)

ThAA'r.K"

Since the constructors form a dependently-typed A-calculus, the formulation of Rule 2.25 (which
permits only applications of functions with non-dependent types) may appear surprisingly restric-
tive. However, a consequence of having singleton kinds is that this rule implies the more traditional
formulation allowing dependencies, which becomes admissible (see §2.3).

Similarly one can form pairs of constructors, and perform projections from such pairs.

T\- Ä ::K' T h A" :: K"

T\-{A',A") ::K'xK"

T\-A:: Xa::K'.K"

r h niA :: K'

T\-A:: Xa::K'.K"

T h TT2A :: [inA/a\K"

Next, there is an obvious introduction rule for singletons.

rhi::T

rhi::S(4)

(2.26)

(2.27)

(2.28)

(2.29)

The following two rules are somewhat unusual; they can be considered as reflexive instances of
extensionality (see Rules 2.41 and 2.42 below).

T h TTiA ::K' T \- TT2A :: K"
 (2.30)

T\- A-.-.K'xK"

T,a::K'hAa::K"
r h A :: Ua::L'.L" V h K' = V

 (2.31)
r h A :: Ua::K'.K"

Intuitively, Rules 2.30 and 2.31 say that "a constructor has every kind that its eta-expansion
does". In most dependently-typed calculi such rules would be admissible and not part of the
system's definition. However, here they allow constructors to be given strictly more precise kinds.
(They also ensure that kinds are preserved under r\-reduction.) For example, assume that a::TxT.
In the absence of Rule 2.30, the most precise kind for a which can be shown is:

a::TxTha::TxT

However, using Rule 2.30 one can conclude

a::TxT ha:: S(7r1a)xS(7r2a).

This says that a has "the kind of pairs whose first component is equal to the first component of a
and whose second component is equal to the second component of a". This is a much more precise
and informative kind than TxT. In fact, by extensionality the only pair with this kind is a itself,
so that this kind can be considered an encoding of S(a :: TxT). These rules are therefore critical
for encoding singletons of arbitrary constructors (in §2.3).

33

I believe that last two premises in Rule 2.31 could be replaced by the much simpler side-
condition a $ FV(.A), but I then become unable to show the existence of principal kinds in §4.2.
The formulation here makes explicit that Rule 2.31 yields more-precise II kinds for constructors only
by making the codomain more precise, rather than by weakening the domain kind. For the purposes
of principal types this could be expressed more directly with the single premise T \- A :: Jlar.K'.L",
but the two-premise form here is more convenient in Chapter 3.

Rules analogous to 2.30 and 2.31 have frequently appeared in literature studying Standard ML
modules, including the non-standard structure-typing rule of Harper, Mitchell, and Moggi [HMM90],
the VALUE rules of Harper and Lillibridge's translucent sums [HL94], the strengthening operation
of Leroy's manifest type system [Ler94], the "self" rule of Leroy's applicative functors [Ler95], and
the REFL rule of Aspinall [AspOO].

Subkinding is used by the subsumption rule:

r h A :: Kx T h K: < K2
^-=- (2.32)

r h A :: K2

Constructor equivalence defines a notion of equality (interchangeability) for type constructors.
The judgment r h A\ = A2 :: K expresses the fact that A\ and A2 are equivalent constructors
of kind K under context V. Whether Y \- A\ = A2 :: K is provable depends not only on A\ and
A2l but also on the kinds of their free variables (given by T) and the kind K at which the two
constructors are being compared. Equivalence is highly context-sensitive.

Equivalence is first defined to be a reflexive, symmetric, and transitive relation:

TV- A::K

TV- A = A::K

T\-A2 = Ai :: K

Th Ai=A2::K

r t- Ai = A2 :: K T h A2 = A3 :: K

r h Ai = A3 :: K

(2.33)

(2.34)

(2.35)

Next, the relation is specified to be a congruence: replacing subparts of a constructor with
equivalent parts yields an equivalent constructor.

T\-K[=K'2 r, a::K[h Ax = A2 :: K"

T h Xa::K[.Ai = Xa::K'2.A2 :: Ua::K[.K"

r h Ai = A2 :: K'->K" V h A\ = A'2 :: K'

rh^ A\ = A2 A'2 :: K"

r I- Ai = A2 :: Zar.K'.K"

T h niAi = niA2 :: K'

F\- Ai=A2:: Zay.K'.K"

r h TT2Ai = 7r2^2 :: [iriAi/a]K"

34

(2.36)

(2.37)

(2.38)

(2.39)

r h A[= A'2 :: K'
T H A7 = M :: if" 1 2 (2.40)

There are two extensionality rules: if two functions or two pairs cannot be distinguished by
their uses then they are considered equivalent. In particular, two pairs are equivalent if they have
equivalent first and second components

T h rciAi = TTIA2 :: K'
T h ir2Ai = n2A2 :: K"

(2.41)
Th Aj = A2::K'xK"

and two functions are equivalent if they return equivalent results for all arguments:

T,a::K' \- Aia = A2a :: K"
rhii:: Ua::L'vL'{ T h K' = L[

22 - (2.42)
r h Ai = A2 :: Uar.K'.K"

The last four premises in Rule 2.42 ensure that both A\ and A2 actually have kind Ua::K'.K". If
Rule 2.31 were simplified as discussed above then this rule could be simplified in analogous fashion
with the side condition a <£ (FV(Ai) U YV{A2)).

As in the well-formedness rules, there is a subsumption rule:

r h Ai = A2 :: Kx V h Kx < K2
-—=- (2.43)

T h Ax = A2 :: K2

Interestingly, an easy inductive argument shows that the rules given so far merely define con-
structor equivalence to be syntactic identity (up to renaming of bound variables). All the rules
except for Rule 2.33 would then appear redundant. Adding one more rule makes this equivalence
non-trivial, and justifies the presence of each of the above rules:

T\-A::S(B) V ' (2.44)
T \-A = B :: S(B)

This completes the definition of constructor equivalence. It may be initially surprising that
there are no equivalence rules for reducing function applications or projections from pairs (i.e., ß-
like rules). It turns out that these are admissible in the presence of singleton kinds and Rule 2.44.
The details are in §2.3 and §3.3, but I sketch one example here. It is clear that

h (Int, Boxedfloat) :: S(lnt)xS(Boxedfloat)

Therefore by Rule 2.27 it follows

h 7Ti(lnt, Boxedfloat) :: S(lnt)

and by Rule 2.44 and subsumption we have

h 7ri(lnt, Boxedfloat) = Int:: T

35

This same argument can be generalized to projections from arbitrary pairs, and in an analogous
fashion to applications of A-abstractions.

Given the /3-rules, then, the extensionality rules 2.42 and 2.41 imply that the usual r/-rules are
admissible as well. It is well-known that 77-reduction is not confluent in the presence of terminal
(unit) types. As singletons are a generalized form of unit, the same behavior appears here as well.
For example:

a : T^S(lnt) h a = (A/?::T.lnt) :: T-^T

holds, as does
a : S(lntHT h a = (A/?::S(lnt).(o Int)) :: S(lnt)-»T

All the constructors in these judgments are normal with respect to /fry-reduction; compare the
right-hand constructor in the last judgment with A/?::S(lnt).(o/3), the ^-expansion of a.

A more obvious consequence of having singletons — and their original motivation — is that
they can be used to express definitions for variables. For example, in the following two judgments
the context effectively defines n to be Int.

a: S(lnt)r-a = lnt:: T
a : S(lnt) h (a, Int) = (Int, a) :: TxT

But the system is not restricted merely to giving definitions to variables. In the provable judgment

a : TxS(lnt) h 7r2rt = Int:: T

the context partially defines a; it is known to be a pair and its second component is (equivalent
to) Int, but this does not give a definition for a as a whole. Alternatively, this could be thought of
as giving 7^« the definition Int without giving one to 7ri«.

Similarly, in the provable judgments

a : E/8::T.S(/9) r- TH« = 7r2« :: T
a : S/8::T.S(/3) I- a = (TTI«,^«) :: TxT.

the assumption governing a requires that it be a pair whose first component ß has kind T and
whose second component is equal to the first; that is, a pair with two equal components of kind
T. This gives a definition to 7^0:, namely 7Ti«, without further specifying the contents of these two
equal components.

Now because of subkinding and subsumption, constructors do not have unique kinds. The
equational system presented here has the relatively unusual property (for a system expected to be
decidable) that equivalence of two constructors depends on the kind at which they are compared.
Two constructors may be equivalent at one kind but not at another; for example, one cannot prove

h Xar.T.a = A«::T.lnt::T->T.

This is fortunate, as the identity function for constructors of kind T and the function constantly
returning Int do have distinct behaviors and ought not be equivalent in a consistent equational
theory. However, by subsumption these two functions both have kind S(lnt)->T and the judgment

h Aof::T.a = Aa::T.lnt :: S(lnt)-»T

36

is provable. The proof uses extensionality and the fact that the two functions provably agree when
restricted to an argument of kind S(lnt), i.e., when applied to the argument Int.

The classifying kind at which constructors are compared may depend on the context of their
occurrence. For example, it follows from the previous equation and Rule 2.37 that

ß : (S(lnt)-»T)-»T h ß (Aa::T.a) = ß (Aa::T.lnt) :: T

is provable. The kind of ß guarantees that it will only apply its argument to the constructor Int,
so it cannot matter whether ß is given Xar.T.a or Aa::T.lnt.

In contrast, the following judgment is not provable:

ß : (T->T)-»T h ß (Xav.T.a) = ß (Aa::T.lnt) :: T

because the context makes a weaker assumption about ß.

2.2.4 Types

The constructors of kind T correspond to types; there is an explicit inclusion Ty(-) mapping each
such constructor to the corresponding type.

T\-A::T

r h Ty(A)
(2.45)

I will use int as an abbreviation for the type Ty(\r\t), boxedfloat to abbreviate Ty(Boxedfloat),
and similarly for the other primitive constructors.

As discussed in the introduction, singleton types are restricted to contain only syntactic values.
The representation of labeled singletons via encodings, as is done for kinds in §2.3 below, does not
work for terms due to the lack of extensionality principles. Because for inlining purposes I need
singletons at non-base type, labeled singletons types are made primitive:

F h v : T
 — (T not a singleton) (2.46)
r h S(v : T)

Rule 2.46 prohibits the type label in a singleton from being yet another singleton type. So, for
example,

S((Ax:int.3) : int-^S(3 : int))

is well-formed, but the following type is not:

S((Az:int.3) : S((Arr:int.3) : int-»-S(3 : int))).

The property of a type not being a singleton is preserved under the important operations of substi-
tution and head-normalization. Also, because of predicativity it is clear from the rules below that
singleton types are equivalent only to other singleton types; see Theorem 6.2.2. This restriction
could be formalized syntactically by defining a grammatical class of non-singleton types, but in this
case I have opted for syntactic simplicity.

This restriction is reasonable because a well-formed type S(v\ : S(«2 : T)) contains no more
information than is already contained in S(t>i : r) or S(«2 : r). At first it might appear that a
typing assumption x:S(«i : S(«2 : r)) would be equivalent to assuming that V\ and V2 are equivalent.
However, in order to make such an assumption it must be possible to show that S(ui : S(ü2 : T)) is

37

well-formed, and in particular that without the new assumption one has v\ : S(?>2 : T), i.e., that V[
and Vi are equivalent at type r. Thus nested singletons impart no useful information.

Allowing directly nested singletons would have the further consequence that the constant 3
would naturally have the types S(3 : int) and S(3 : S(3 : int)) and S(3 : S(3 : S(3 : int))), and so on.
By the "obvious" subtyping rules these would form an infinite strictly decreasing chain of subtypes,
even though none of these types are really more informative than any of the others. (These types
all classify exactly the same set of values, namely the set {3}.) Furthermore there would be no
lower bound to this sequence of types: the system would fail to have principal (most specific) types
for all terms.

Aspinall [Asp95] addresses this problem by defining all the types in such a chain to be equivalent:
S(v : r) = S(v : S(v : r)). By disallowing directly nested singletons, I avoid a need for this rule.
This has the advantage of allowing a much simpler inversion principle for equivalence of singleton
types: if two singleton types are equivalent then their type labels are equivalent. (This principle is
clearly false in Aspinall's system. It also fails for the encoding of labeled singleton kinds, but the

proofs use inversion only for the kinds of the official MILQ language.)

Because of singleton types, the types classifying functions and binary products are extended to

dependent forms:
T.X:T'\-T" , v

(2.47)
T h {X:T')^T"

T,X:T'\-T"

Th (X:T')XT"
(2.48)

Such types are written T'—^-T" and T'XT" when there is no actual dependency.
Finally, MILo contains the types for polymorphic terms, functions whose argument is a con-

structor.
T.ay.KhT

—: 2.49
T h Var.K.T

Note that in this predicative system there are no type constructors corresponding to singleton
types, truly dependent function or pair types, or to polymorphic types.

Type equivalence is, like constructor equivalence, reflexive, symmetric, transitive, and a congru-
ence.

ri-T
(2.50)

(2.51)

(2.52)

(2.53)
T\-Ty(Al)=Ty(A2)

r h V\ = V2 : T\ r h T] = T-2
 (ri, T2 not, a singleton) (2-54)

T h S(ui : Ti) = S(?;2 : r2)

38

rh T

rhr = r

rhr' = T

T\-T = T'

rh T = T' r\- r' = r"

Thr: = T"

rhAi = A2" T

n-r{ = r^ r,s:T{h^=^'

T h (X:T{)- -r{' = (xiri)-^

rhr{=r^ r, a;:r{ h T{' = r£
T h (x:r{) xr{' = {X:T^)XT2'

r h üf i = K2 T, a::iCi h ri = r2

T h Ma::K\.Ti = yay.K2.T2

(2.55)

(2.56)

(2.57)

Finally certain constructors correspond to (non-dependent) pair types and (non-dependent,
non-polymorphic) function types.

r h A1 :: T T \- A2 :: T
(2.58)

T h Ty(A1xA2) = Ty(A1)xTy(A2)

rhAi::T r h 42 " T

T h 7V(Ai^A2) = Ty(A1)^Ty(A2)
(2.59)

These rules are necessary for polymorphism to be useful in this predicative type system. For
example, consider the polymorphic identity function

id : \/a::T.Ty(a)-±Ty(a).

To apply this function to a pair of integers requires polymorphic instantiation (i.e., an application
of id to a constructor argument). The only reasonable argument here is Intxlnt, so we have

id(lntxlnt) : Ty(lntxlnt)^T?/(lntxlnt).

But by the typing rules below, a pair of integers does not have type Ty(Intxlnt) but instead has
type Ty (Int) x Ity(lnt), i.e., the type of a pair whose elements are of type Ty (\nt). Rule 2.58 is then
necessary to permit an application like (id(Intxlnt)) (3,4) to typecheck.

Subtyping is reflexive and transitive, and is a strictly weaker relation than equivalence.

T h r = r'

T h r < r'

T <T' TY-T' <T"

r H r < r"

(2.60)

(2.61)

One can obtain a supertype of a singleton type by either dropping the singleton (as at the kind
level), or by weakening the type label.

rhrr
(r not a singleton) (2.62)

r h S(v : T) < T

T h S(üI : n)
r \~ V\ = V2 : T2 r h T\ < T2

- (ri, T2 not a singleton) (2.63)
r h S(«i : n) < S(v2 : r2)

39

Subtyping is lifted to functions, pairs, and polymorphic types in the usual co- and contravariant
manner.

T\-(X:T[)XT['

T\-{X:T[)^T'{<{X:T!2)^T!{

Th(x:r.^xr2'

1 - 2 { - 2 (2.65
rh(x:T[)xT['<(x:T!2)x^

C T..
(2.66)

rr-V«::Ä"i.Ti
ThK2<Ki T,a::K2\-Ti<T2

rhVrt::if].Ti < Va::K2.T2

Because the system is predicative, there is no difficulty arising from the contravariant subkinding
for the domains of universally quantified types as can sometimes arise when polymorphism and
subtyping are combined [Pie91].

2.2.5 Terms

The well-formedness rules for the term language are mostly standard. The language has been
restricted to a "named" form where intermediate quantities are bound to variables [FSDF93]. Note
that projections from values are considered to be values: for the system to be useful it is necessary
that projections from variables be values so that they may appear in singletons, and we wish terms
to remain well-formed under substitutions of values for variables.

T h ok ,
(2.67)

T h n : int

Thok
(2.68)

r h x : T(x) V ;

Function values are potentially recursive. Within the body e of the function fun/(.7;:T):T' is e
the variable x refers to the function argument and / refers to the function itself; the result type r'
may also depend on x.

J v ' (2.69)
rhfun/(.T:r'):r" is e : {X:T')^T"

When the function fun/(x:T'):r" is e is non-recursive (i.e., / ^ FV(e)) then it can be written as
X(X:T'):T".e, or even Xx-.r'.e when the return-type is obvious or irrelevant.

Type abstractions are also annotated with a return-type. This accurately models the full MIL
(where the notions of type and term abstractions are merged) and simplifies the correctness proof
for my typechecking algorithm.

T,a::K[-e:r
(2.70)

T h A{a::K):T.e : Va::K.T

40

r h vi: n r h v2 ■. r2

(2.72)

(2.73)

(2.74)

(2.75)
rh«A: [A/a]r

Every let-expression be annotated with two types: the type of the locally-defined variable, and
the type of the entire let-expression.

rhe':r' T,x:T'he:r Thr ,
(2.76)

T\-{vu V2) TlXT2

Th«: (X:T ')xr"
rh KlV r'

Thw: (X:T ')xr"

T h 7T2« : [TTIV/X]T"

Th v : T'^T" Th«': r'

rh vv' : r"

Thv: Va::K .T Th A :K

T h (let x:r'=e' in e : r end) : r

The former annotation is used to simplify the typecheeking algorithm; it would be preferable
if this were not needed. The latter type is used to ensure easy calculation of principal types for
let-expressions. In the TILT compiler, let is used only in specific positions (i.e., the body of a
function or the arms of a conditional expression) which for other reasons are already annotated
with their types, so the presence of the body annotation in the MILo is reasonable.

Values are given singleton types via the following singleton introduction rule.

rht):r x ,
(r not a singleton) (2.77)

T h v. S(v: T)

Finally, subtyping is used by the subsumption rule.

T h e : Ti T h rx < r2

T h e : T2

(2.78)

The following definition of term equivalence is the strongest equivalence relation (relating fewest
terms) that seems useful for the purposes described in the introductory chapter.

(2.79)

(2.80)

(2-81) r h e = e" : r K '

Again, equivalence is a congruence:

41

Th e : T

The = e : T

The' = e : T

The = e':r

TheE Be':r The' = e" T

r h T[= r'2 r, x:r[h r{' = T!{ T, f :(x:r[)^rl ^ H ei = e2 : rf

T h fun /(arrTDirj" is ex = fun/(x:^):^' is e2 : (X:T[)^T['

V \- KI= K'2 F, «::Ki h Ti = r2 T, a::Ki h ei = R2 : T\

T h A(a::A"i):Ti.ei = A(a::K2)-.T2.e2 : Va::K\.T\

T\-v\= v!2 : r' Th v'[= v"2 : r"

rM«'i,«'i > = (' 4, t4'> : T'XT"

rhu] = V-2 (* :T')XT"

rhTi \V] = I"! V2 : r'

ri-u! = v2 : (* :T')XT"

r h 7^] = 7T2V2 : [TT]VI/X]T"

rh Wi = «2 : r' -V' T\-v' = v!2 : r'

ri-U] «i = W2 ,;2 : r"

rhui = ?;2
: Va: if.r r i- A, = i42 ::#

T h «i J4I = v2A2 : [yli/aJTi

T h r{= r2 T\-e\= e'2 : r[
F \- T\ = T2 r, X:T[\- e\ = e2 : T\

T h (let x:r[=e[in ei : T\ end) = (let .r:r2=e2 in e2 : r2 end) : T\

As at the constructor level, there is a singleton elimination rule for equivalence.

rh«i: S(v2 : r)

r h vi = u2 : S(v2 ■ T)

Finally there is a subsumption rule.

r h e\ = e,2 : T\ Y h T\ < r2

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)
r H ei = e2 : r2

2.3 Admissible Rules

This section lists a number of interesting or useful rules which become admissible in the presence
of singletons. The proofs of admissibility are deferred until §3.3.

In MILo, the kind S(A) is well-formed if and only if A is of the base kind T. This initially
seems restrictive, especially when compared with singleton types which can contain values of any
(non-singleton) type. One might expect to find singleton kinds of the form S(^4 :: K) representing
the kind of all constructors equivalent to A when compared at kind K, for example to encode
definitions of constructor-level functions. However, these labeled singletons are definable in MIL0;
Figure 2.4 defines these by induction on the size of the kind label.

For example, if ß has kind T->T, then S{ß :: T->T) is defined to be Ua::T.S{ß a). This can
be interpreted as "the kind of all functions which, when applied, yield the same answer as ß does",
or "the kind of all functions which agree pointwise with /3". By extensionality, any such function

42

S(A: :T) = S(A)
S(A: : S(A')) = S(A)
S(A: : Uay.Ki.K2) = Ila::Ki.{S{Aa :: K2))
S(A: : Va::Ki.K2) = (S(mA :: XI))X(S(TT2A :: [Tr^/a]*^))

Figure 2.4: Encodings of Labeled Singleton Kinds

is provably equivalent to ß, and indeed the non-standard kinding rules mentioned in §2.1 are vital
in proving that ß has this kind.

Since kinds only matter up to equivalence, the definitions in Figure 2.4 are not unique. One
could, for example, define S(A :: S(A')) to be S{A'), or define S(A :: Y,a::Ki.K2) to be ECX::S(TTIA ::
Kj.SfaA :: K2).

The following rules are admissible, showing that the defined singleton kinds do behave appro-
priately.

Yh A::K

YhS{A::K)

Yh A::K

Y h A :: S{A :: K)

Yh A::K

YhS{A::K) <K

r h Ai = A2 :: Kx Y h Kx < K2

r h S{Ai :: Ki) < S{A2 :: K2)

rh Ai = A2::K

Y \- Ai = A2 :: S(Ai :: K)

Yh A2::K Y h Ai :: S(A2 " ÜQ

r H Ai = ^2 :: S(,42 :: K)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

Note that Y h S(^4 :: K) need not imply Y h A :: K. (For example, according to Figure 2.4 we
have S(Boxedfloat :: S(lnt)) = S(Boxedfloat), and therefore h S(Boxedfloat :: S(lnt)) even though
Boxedfloat cannot be shown to have kind S(lnt). This explains the premise Y h A2 :: K in Rule 2.97.

Next, we have versions of existing rules allowing dependencies where the primitive rules require
non-dependent types or kinds. (For example, compare Rules 2.25 and 2.98, or Rules 2.26 and 2.100.)

YhA:: Uar.K'.K" rhi':: K'
Y\-AA':: [A'/a]K"

Y h Ai = A2 :: Ylar.K'.K" Y h A\ = A'2 :: K'

Y h Ai A[= A2 A'2 :: \A\ja\K"

(2.98)

(2.99)

43

r h Xav.K'.K"
Tl- Ä ::K' T \- A" :: [A'/a]K"

rh (A', A") v.T.n::K'.K"

r h X«::A'.K"
rhyl'i= A2 :: A'

n-^'s^'::^',/«]^"
T h (A'l5 A'/) = (^,4') :: Za::K'.K"

T h Erv-if'.Ä'"
ThTTi^! =7Ti42 :: A"'

n-7r2Ai =7T2^2 - [niAi/a]K"

(2.100)

(2.101)

rh A\ =A2 : :: Ea::K'.K"

Thv: : (,::r')- T" rh«': T'

rh« v' : b'/,:]r"

rh V\ = V2 : (,;:r'H ■T" r h- v\ = t£: :T'

T\-vxv[= v2v'2 : [V\/X]T"

rh-(x:r')xr"
T\-V':T' T h v" : [V'/X]T"

rh (v':v") :: (I:T')XT"

(2.102)

(2.103)

(2.104)

(2.105)

rh(j::r')xT"
r h v\ = v!2 : T

Thv'; = v^:[v[/a]T"

rh(?/l7<)^(^,<):(x:r')xT"
(2.106)

Next, a remarkable observation of Aspinall [Asp95] is that the /3-rule for function applications
can be admissible in the presence of singletons. In MILo, which contains pairs, the projection rules
become admissible as well.

T,a::K'\-A::K" T h A' :: K' ,
(2.107)

r h {Xay.K'.A) A' = [A'/a]A :: [A'/a]K"

T\-Ai::Ki T h A2 :: K2

r\-v1(AuA2) = Al::K1

r h Ai :: K\ rhi2 :: K2

(2.108)

(2.109)
r^n2(AuA2) = A2::K2

/3-equivalence for functions is admissible at the constructor level, but not at the term level; this
is a consequence of term applications being non-values. (It is easy to prove that /^„-equivalence
for terms is not admissible. The defining rules of term equivalence only equate values to values
or non-values to non-values; in contrast, /3-equivalence can equate applications with values.) The
projection rules for term-level pairs remain, however.

44

r h v\ : T\ r h «2 : T2

T h -K\(vi,V2) =vi :TI

T \- v\ : T\ T h V2 : T2

T h 7r2(vi,t;2) = v2 : r2

It is occasionally convenient to have "parallel" versions of these equivalences:

2.111)

2.112)

2.113)

2.114)

2.115)

T,i ii v2-116) T h TT2{VI,V2) =V2:T2

In the presence of both /3-equivalence and extensionality, 77-rules for functions and pairs become

T,a: K'\-Ai = = A2r. üf" r h A[= A'2 r. if'

rh (\ar.:K'.Ai)A'1 = [^2/a]^2 :: [4/a]tf''
T\-Ai = E A[r. if 1 r h A2 r.K2

rh TTi^i A2) = A'i :: #i

rhii" #1 rhi2E A'2 r.K2

rh ^2(^1 42) = A'2 :: K2

rh^i = «i T\ n-«2: T2

r h -Ki(vi,v2) =v[: Ti

rhvi : n r h v2 = v'2 : T2

admissible as well.

T\~ Ar. Uar.K'.K"

T\-A = Xa::K'.(Aa) r. Uar.K'.K"

F\-Ar. Uar.K'.K"

T\-A= {iriA,n2A) r. Uar.K'.K"

Finally, I give variants of the introduction and elimination rules for singleton kinds and

rhA = B::T

T\-Ar. S(B)

T\-A = B::T

r h A = B r. S{A)

ThAr.S(B)

Th A = Br.T

T h v = w : r

rh»:S(w:T)

T h V\ = v2 : T

r h v\ = v2 : S(ui : T)

r h Ui : S(v2 : T

T h v\ = u2 : r

45

(r not a singleton)

2.110)

2.117)

2.118)

types:

2.119)

2.120)

2.121)

2.122)

2.123)

2.124)

2.4 Dynamic Semantics

I give the operational meaning of a program in terms of a small-step contextual semantics: the
dynamic semantics defines the possible execution steps c\ ~» e-i for programs (closed terms), and
evaluation of a program corresponds to taking an execution step until no more steps apply repeat-
edly.

The evaluation strategy used by MILo for both constructors and terms is left-to-right call-by-
value. Furthermore, constructors are evaluated as well as ordinary terms. (For MILo as presented
this is not actually necessary; this choice was made in preparation for adding constructor analysis
constructs such as typecase to the language; type and kind annotations on terms, however, never
require evaluation.) This requires a notion of fully-evaluated constructors and terms, denoted A
and v respectively

A::= cAi-'Ar, (n > 0)
I (ÄUA2)
| Xa::K'.A

v ::— n
| fun/(.r:r'):T" is e
| K(a::K)\T.e
I (vi,v2)

Since evaluation concerns only closed terms and types, variables and projections are need not be
included here.

The operational semantics uses Felleisen's evaluation context formulation [Fel88] of Plotkin's
structured operational semantics (SOS) [PI08I]. This involves the definition of a collection of
primitive "instructions" (denoted /) and their one-step reducts (denoted R). The relation between
instructions and reducts, written I ~^> R, is shown in Figure 2.5.

Evaluation is extended to one-step reduction for arbitrary terms and constructors though the
use of constructor-level and term-level evaluation contexts, denoted by U and C respectively. These
are a restricted form of constructor or term containing a single "hole" o:

U :: = 0 c ■ ::= 0

UA | Ce
AU | vC
KXU 1 K\C
■K2U 1 K2C
(U,A) | CA

(AM) | vU
1 let X:T'=C in e : T end

The notations U[A], C[A] and C[e] denote the result of replacing the hole in the evaluation context
with the specified constructor or term. (Since the hole never occurs within the scope of bound
variables in the evaluation context, there is no possibility of variable capture.) The evaluation
contexts represent a "stack" or "continuation" for the expression being currently evaluated; the
specific choice of evaluations contexts enforces the call-by-value nature of the language.

Then the full one-step reduction relation is defined as follows:

A^A' ^^ A = U[I] and / ^ R and A' = U[R)
e ~> e' <{=» e = C[I] and I ^ R and e' = C[R]

46

{Xa^K'^B)A ~» [A/a]B
iri(Ai,A.2) ^ Ai
^2(^1,^2) ~» M

(fun /(X:T'):T" is e) v ~> [fun f(x:T')\T" is e/f][v/x]e
(A(a::K):T.e)A ~> [Z/a]e
7Tl(Vl,V2) ~> «i

7T2(V1,F2) ~> ü2

let X:T'=V in e : T end ~> [v/a;]e

Figure 2.5: Reductions of Instructions

For example, consider the term

({A{a::T):Ty(a)^Ty{a)Aunf(x:Ty(a)):Ty{a) is x) ((Ae*::T.a) Int)) 3.

For the remainder of this example I elide the return-type annotations, yielding

((A(a::T).fun f(x: Ty(a)) is x) ((\a::T.a) Int)) 3.

This program evaluates to 3 because

((A(a::T).fun f(x: Ty{a)) is x) ({Xar.T.a) Int)) 3

= (((A(a::T).fun/(a::7V(a)) is x)o)3)[((Aa::T.a) Int]

~» (((A(a::T).fun/(a::7V(a)) is x) o) 3)[Int]

= (((A(a::T).fun f{x: Ty(a)) is a:) Int) 3)

= (o3)[(A(a::T).fun/(ar:7V(a)) is x) Int]

~> (o3)[fun/(x:7V('nt)) is x]

= ((fun/(s:2ty(lnt)) is x) 3

= o[(fun/(x:T?/(lnt)) is re) 3]

~>o[3]

= 3

The proofs of important properties of evaluation, including type soundness (that "well-typed
programs don't go wrong"), are delayed until Chapter 8. The soundness proof is completely straight-
forward and standard except for one key point: one must know that constructor and type equiv-
alence are sufficiently consistent. For example, the term-level application 3 (4) makes no sense
dynamically. However, if int = int^int were provable then one could prove the application well-
typed:

int = int—Hnt
3 : int

int < int—Mnt

3 : int—^int

3(4) : int

47

4 : int

It is not immediately obvious that int = int-Aint is not provable, perhaps using transitivity and
introducing and eliminating constructor definitions. The consistency of equivalence will follow
directly from the correctness of the decision algorithm for equivalence, which immediately rejects
such all type equations.

48

Chapter 3

Declarative Properties

In this chapter I study several basic properties of the MILo calculus. The most important of these
are validity and functionality. From these I derive the definability of general singleton kinds, the
admissibility of the rules given in §2.3, and a strengthening property for constructor variables.

3.1 Preliminaries

Figure 3.1 defines typing-context-free judgment forms J. Given a context Y one can construct a
MILo judgment Y h J. The substitution jj is defined by applying the substitution to the kinds,
constructors, types and terms making up J, while the free variable computation FV(J") is similarly
defined as the union of the free variables of the phrases comprising J.

Proposition 3.1.1 (Subderivations)
1. Every proof ofY\-J contains a subderivation Y \- ok.

2. Every proof ofYi,a::K,Y2 H J contains a strict subderivation Ti h K.

3. Every proof ofYi,x:r,Y2 r- J contains a strict subderivation Fi h r.

Proof: By induction on derivations. I

Proposition 3.1.2
IfThJ then FV(J) C dom(r).

Proof: By induction on derivations. I

Proposition 3.1.3 (Reflexivity)
1. If r h ok then h r = r.
2. IfT\-K then T\-K = K.

3. If TV- K thenFhK <K.

I IfThA-.-.K then T h A = A :: K.

5. IfY\-T thenThr <T.

6. IfTY-T then Y h r = r.

7. If T h e : r then Y h e = e : r.

49

J:: = -- ok
1 T] = r2
1 K
1 Ki <K2

1 Kx = K2

1 A: :K
1 ^i = A2::

T

1 Tl <T2

1 Tl = T2

1 e :
T

1 ßl = C.2:T

K

Figure 3.1: Context-Free Judgment Forms

Proof: By induction on derivations. I

Definition 3.1.4
The relation Yx C T2 on contexts is defined to hold if neither Yx nor T2 binds types or kinds to the
sam,e variable twice, and if the contexts viewed as partial functions give the same result for every
constructor or term, variable in dom(ri).

Thus if T] C T2 then dom(Ti) C dom^) and Ti appears as a (not necessarily consecutive)
subsequence of F2. I will also write T2 D T\ to mean T\ C T2.

Proposition 3.1.5 (Weakening)
1. IfTihJ and YY C Y2 and Y2 h ok, then T2 h J.

2. IfTua::K2,T2 h J and Ti h Kx < K2 and Tx h Kx then ri,a::Ä"i,r2 r- J.

3. //Ti,a:r2,r2 h J and Tx h TX < T2 and Tx h n then r1,a:r1,r2 h J.

Later I show that the assumption Fx \- K\ is already implied by T\\~ K\ < K2, and similarly that
Ti h T\ is implied by V\\- T\ <T2.

Definition 3.1.6 (Sizes of Kinds)
The size of a kind or a type is a strictly positive integer; it is defined inductively on the structure
of kinds:

= 1
= 2
= size(K') + size(K") + 2
= size(K') + size(K") + 2

size(T)
size(S{A))
size(na::K'.K")
size(Za::K'.K")

The size of a kind depends only on its "shape" and is thus invariant under substitutions. The key
properties of this measure are that size(S(A)) > size(T) and that the size of a Ü or E is strictly
greater than the sizes of (all substitution instances of) its constituent kinds.

Proposition 3.1.7 (Antisymmetry of Subkinding)
TV- Kx<K2 and Y \- K2 < Kx if and only if TV- Kx = K2.

50

Proof:

By induction on size(Ki) + size(K2), and cases on the possible last steps in the proofs of
T\-Ki< K2 and Y h K2 < Kx.

- Case: K\ = K2 = T. Trivial, since by Proposition 3.1.1 we have Y h ok.

- Case: K\ = S(Ai) and K2 = S(A2). By inversion of Y \- K\ < K2 we have
r h Ax = A2 :: T, so V h S(Ai) = S(A2).

- Case:

rhna::ÜT{.Xf rhlla::^
rhif^ifj YhK[<K2

T, a::ü:2 h ÜTJ' < K2' Y,a::K[h Ä# < K'{
and

T h Iia::K[.K'{ < Ua::K2.K2' Y h Iia::K2.K2' < Ua::K[.K'{

1. By the inductive hypothesis, rhKj = K2.

2. By Proposition 3.1.1, there is a strict subderivation Y \~ K[.

3. By Proposition 3.1.5, Y,a::K[h Ä? < Ä#.

4. By the inductive hypothesis, T, a::K{ h K{' = K'{.

5. Thus r h Yia::K[.K'{ = Ua::K2.K^.

- The case for E-kinds is analogous.

By induction on the proof of r h K\ = K2, using Proposition 3.1.5.

The subtyping relation is similarly antisymmetric, but the proof is more complex in the presence
of the transitivity rule (Rule 2.61). I return to this point in §7.3.

Proposition 3.1.8 (Symmetry and Transitivity of Kind Equivalence)
1. IfT\-Ki= K2 then YY-K2 = KX

2. IjT\-Kx= K2 and YY- K2 = KZ then Y h Kx = K3.

Proof: By induction on derivations. I

Proposition 3.1.9 (Transitivity of Subkinding)
7/r h Kx < K2 and Y h K2 < K3 then Y h Kx < Ks.

Proof: By induction on derivations. I

Definition 3.1.10
The judgment A h 7 : Y holds if and only if the following conditions all hold:

1. Ah ok

2. Va G dom(r). A h y{T(a))

3. Va € dom(r). A h 7a :: 7(r(a))

4. Vx G dom(r). A h j(Y(x))

5. Vz G dom(r). A h jx : i(T(x))

51

Proposition 3.1.11 (Substitution)
1. IfFh-JandAt-j-.r then A h 7(J).

2. IfFi,a::K,r2 V- ok and T} h A :: Ä" «Aen rl5 p4/«]r2 H ofc.

5. IfTi,x:T,T2 \~ ok and Tx h w : T «/»en Tj, [u/.7:]r2 h ojfc.

|. //ri,a::ür,r2 H J end I1] h A :: A" fÄen H, [4/a]r2 H [A/a]J.

5. 7/ri,.T:r,r2 h J and r, h « : r «Aen T1; [v/.x]r2 h [w/^J.

Proof:

1. By induction on the proof of T h J.

2-5. By simultaneous induction on the context in the first assumption and by part 1.

3.2 Validity and Functionality

I next show two important features of the calculus. Validity is the property that any phrase
appearing within a judgment is well-formed (e.g., if T \- A\ = A2 :: K then T h ok and V \- K
and r \~ Ai :: K and T h yl2 :: K). Functionality states that applying equivalent substitutions to
related phrases yields related phrases.

The rules have been structured to assume validity for premises and guarantee and preserve
validity for conclusions. A simple proof, however, is hindered by the presence of dependencies in
types and kinds. The direct approach by induction on derivations fails because of cases such as
Rule 2.39:

r h Ax = A2 :: Zar.K'.K"

T h 7T2Ax = ir2A2 :: [iriAi/a]K"

Here we need T I- -K2A2 :: [7rxAx/a]K" but from the inductive hypothesis we get only T h 7r2^42 ::
[7TiA2/a]K". The desired result would follow, however, if we knew that F h [nxA2/a]K" < [niA]/a]K".
Since T h nxA2 = TTXAX :: K\ the subkinding judgment required follows from functionality.

This suggests one should first prove functionality. The most general form of functionality also
cannot be easily proved directly, but the proof does go through for the restricted case of equivalent
substitutions being applied to a single phrase. This suffices to show validity, and together these
allow a simple proof of general functionality

Definition 3.2.1
The judgment A h 71 = y2 : V holds if and only if the following conditions all hold:

1. A h 71 : T and A h 72 : T

2. Va G dom(r). A h 7i(r(a)) = 72(1»)

3. Va G dom(r). A h 71a = 72a :: 7i(r(a))

4. Vrc e dom(r). A h 71(1») = 72(1»)

5. Vx € dom(r). A h jxx = j2x : 7i(r(a:))

52

Lemma 3.2.2 (Substitution Extension)
1. If A h 7i = 72 : r, a g dom(A), A h 7iif, A h y2K, and A h 71 if = 72if, tfien

A, a::7iif h 71 [an-»«] = 72 [aH-cu] : (F,a::K) and
A,a::72-K' h 71 [aH'-a] = 72 [Qü-»-«] : (T,a::K).

2. If A h 71 = 72 : I\ x <£ dom(A), and A h 71T, A h 72T, and A h 71 r = 72T £/jerc
A,s:7ir h 7i[ai->a] = 72[ai->a] : (r,a;:r) and A,a;:72T h 71 [ai-»«] = 72[ai->Q;] : (T,X:T).

Proof: By the definition A h 71 = 72 : T, Proposition 3.1.5, and the subsumption rules.

Proposition 3.2.3 (Simple Functionality)
1. If T h K and A h -yt = 72 : T then A h 71 if = 72if.

2. 7/ r h A :: if and A h 71 = 72 : V then A h 71 .A = j2A :: 71 if.

5. 7/ T h r and A h 71 = 72 : T then A h 71 r = 72T.

^. 7/ T h e : T and A h 71 = 72 : T £/ien A h 71 e = 72e : 7ir.

Proof: [By induction on the proof of the first premise]

1. • Case: Rule 2.7
rhok
ThT

Since A h ok we have A h T = T.

Case: Rule 2.8
Thi::T
T h S{A)

(a) By the inductive hypothesis, A h 71 .A = 72A :: T.

(b) By Rule 2.17 then, A h SfriA) = S(^2A).

• Case: Rule 2.9
r,a::if'hif"

r h na::if'.if"

(a) Without loss of generality, a £ dom(A).
(b) By Proposition 3.1.1, there are strict subderivations r,a::if' h ok and Y h if'.

(c) By inversion and Proposition 3.1.2, a $ FV(if').

(d) By the inductive hypothesis, A H 71 if' = 72if'
(e) and by Proposition 3.1.11, A h 71 if' and A h 72if'.

(f) Using Lemma 3.2.2, we have A, 01:71 if' h 71 [aü-^a] = 72 [ai-»«] : (r,a::if').
(g) By the inductive hypothesis then, we have

A,a::7iif' h {ji[a^a])K" = (72[a^a])if"

(h) By substitution, A h 7i(IIa::if'.if")

(i) Therefore A h ^{Ua-.-.K'.K") = 72(na::if'.if").

Case: Rule 2.10
r,a::if'hif"
r h £a::if'.if"

Analogous to the previous case.

53

Case: Rule 2.20
Thok

rh6::T

Then A h b = b :: T because A h ok.

Case: Rule 2.21
Thok

rh x :: T-*T->T

Then A h x = x :: T->T-»T because A h ok.

Case: Rule 2.22
Thok

rh -» ::T^T->T

Then Ah-> = 4:: T->T->T because A h ok.

• Case: Rule 2.23
Thok

rh«:: I»
Follows directly from the requirements for 71 and 72.

Case: Rule 2.24
r,a::K'\-A::K"

T h Xa::K'.A :: Unr.K'.K"

(a) Without loss of generality, a # dom(A).

(b) As in the case for Rule 2.9, we have A h 71 if' = 72-ft''
(c) and A, ccr^iÄ"' h 71[«>->-«] = 72[o!i->a:] : r, a::K'.

(d) Thus by the inductive hypothesis,
A, a::7lif' h (7i [«>->■ CY])T4 = (72[«i->a])yl :: (-yi[a>-^a])K".

(e) By Rule 2.36 we have A h ^(Xa-.-.K'.A) = y2(Xa::K'.A) :: 71 (n«::if'.if").

• Case: Rule 2.25
ThA:: K'^K" T h A' :: X'

rhA4'::/("

(a) By the inductive hypothesis, A h 71^ = 72.4 :: (71 if')-» (71 if")
(b) and A h 7lA' = 72A' :: 7lif'.

(c) Thus by Rule 2.37, A h 7l (A 4') = 72(A .4') :: 71 if".

• Case: Rule 2.26
T\-A'"K' ft- A" :: if"

Th (A',i4") v.K'xK"

(a) By the inductive hypothesis, A h ^\A' = y2A' :: 71 if'

(b) and A h 7lA" = 72^" :: 7iif".

(c) Thus A h (7!A',7ii4") = (72^',72^") :: 7iif'xTlif" by Rule 2.40.

• Case: Rule 2.27
Th A:: E«::if'.if"

T \-iriA :: K'

(a) By the inductive hypothesis, A h 71^4 = y2A :: 7i(So::if'.if").

54

(b) By Rule 2.38, A h 71 fa A) = 72faA) :: 71 if'.

• Case: Rule 2.28
rhi:: Ea::if'.if"

T h TT2A :: [iriA/a]K"

(a) By the inductive hypothesis, A h 71A = 72A :: 7i(Ea;::if'.if").

(b) By Rule 2.39, A h 7^(71 A) = 7r2(72A) :: [iri('yiA)/a]('yi[a^a])K".

(c) That is, A h 7^(714) = ^2(72^) :: 7i([7TiA/a]if").

Case: Rule 2.29
ThA::T

ThA:: S(A)

(a) By the inductive hypothesis, A 1- 71A = 72A :: T.

(b) By substitution, A h 71A :: T.

(c) Thus Ah7lA::S(7iA),

(d) but A h SfaA) < SfaA)

(e) so A ^71^ :: SfaA).

(f) By Rule 2.44, A h 71A = 72A :: SfaA)

(g) and by subsumption and symmetry, A h 72A = 71A :: T.

(h) Thus A HSfaA) < SfaA)

(i) and so A h 71 A. = 72A :: SfaA).

Case: Rule 2.30
T H TTJA :: if' T h TT2A :: if"

T\- A-.-.K'xK"

(a) By the inductive hypothesis, A h TTifaA) = 711(72A) :: 71 if'

(b) and A I- 712(71A) = 7^(72 A) :: 71 if".

(c) By Rule 2.41, A h 71A = 72A :: faif^xfaif").

Case: Rule 2.31
r,a::if'hAa::if"

THA:: Ua::L'.L" T h if' = L'

(a

(b

(c

(d

(e

(f

(6
(h

(i

ThA:: Ua::K'.K"

Without loss of generality, a $ dom(A) and a $ FV(A).

As in the case for Rule 2.9, A h 7iif' = 72if'
and A,a::7iif' h 71 [an-»-«] = 72[CKI->Q!] : T, a::if'.

Thus by the inductive hypothesis,
A,a"7iif' h (n[a>-*a])(Aa) = (72[a4a])(^a) :: (ji[ai-Hx])K".

That is, A,a::7iif' h faA)« = faA)« :: yi[an->a]K".

By Proposition 3.1.11, we have A h 71A :: ji(Iia::L'.L") and
A h 72A :: 72(na::L'.L").

Similarly we have A h 71 if' = 71L' and A I- 72 if' = 721»'.

so by Proposition 3.1.8, we have A h 71 if' = 72L'.
Therefore by Rule 2.42, A h 71A = 72A :: ji(Ua::K'.K").

55

Case: Rule 2.32
r h A :: Kx T \- KX<K2

rhi:: K2

(a) By the inductive hypothesis. A h 71A = 72 A :: 71X1.

(b) By Proposition 3.1.11, A h 71^ < ^{K2.

(c) By Rule 2.43, A h j{A = j2A :: 7lür2.

• Case: Rule 2.45
rh A::T

T h Ty(A)

(a) By the inductive hypothesis, A h 71.4 = y2A :: T.

(b) Thus A h Tyi^A) = Ty(l2A).

• Rule 2.46
V \~ v : T T not a singleton

T V- S{v : r)

(a) By the inductive hypothesis. Ah^vE 72?; : 7ir

(b) and A I- 71 r = 72T.

(c) Since neither 71 r nor 72T can be a singleton (because r isn't), we have
A h S(7iv : 7ir) = S(72v : 72T).

Case: Rule 2.47
r,.7;:r'hr"

Same argument as for Rule 2.9.

• Case: Rule 2.48

Same argument as for Rule 2.10.

Case: Rule 2.49

r h {X:T')-±T"

r,.T:r'hr"

Th (X:T')XT"

T,a::Khr

r h Wa::K.T

Similar argument to that for Rule 2.9.

4. • Case: Rules 2.67-2.78. Essentially the same proofs as for the corresponding
constructor forms.

Proposition 3.2.4 (Validity)
1. If T h Kx < K2 then T h Kx and T h K2.

2. If T h Kx = K2 then T h Kx andTh- K2.

3. IfT\-A::K then T h K.

4. If r'h ^1 = A2 " K then T \- Ax :: K, T \- A2 :: if, and Fh K.

5. If T h Ti < r2 iAen T H n and T h T2.

56

6. If T h n = T2 i/ien r h Ti and F h r2.

7. 7/rhe:r thenFhr.

8. If F h ei = e2 : r i/ien r h ei : r, T h e2 : r, and T h r.

Proof: There are only two interesting cases.

• Case: Rule 2.39.
r h Ai = A2 :: Zar.K'.K"

F h 7T2yli = ir2A2 :: [7n^i/a]K"

1. By the inductive hypothesis, r H Ai :: Ea::K'.K",

2. rhi2 :: Zar.K'.K",

3. and T h £a::if'.if".

4. By inversion, T, a::if' h K".

5. Then T h TX2AX :: [Tr^/c^if" by Rule 2.28.

6. By Proposition 3.1.11, we have T h [inAi/a]K".

7. Since F \- TtxA2 :: K' and T h TtxAx :: K' and T h TTIA2 = TTI^ :: K',

8. we have T h [7TiA2/a] = [7riAi/a] : r, a::if'.

9. By Propositions 3.2.3 and 3.1.7 we have T h [7riA2/a]X" < [n-iAi/a]!«:".

10. Thus by subsumption and F \- ir2A2 :: \n\A2jo\K"

11. we have F h ir2A2 :: [iriAi/a]K".

• Case: Rule 2.86. The proof is analogous.

Corollary 3.2.5 (Full Functionality)
1. IfF \- Ai = A2 :: K and A H 71 = 72 : F then A h 71 Ai = 72^42 :: ^XK.

2. If F h Ki = K2 and A h 7l = 72 : T then A h 7^1 = 72if2-

3. If F h Ki < K2 and! A h 71 = 72 : T then A h 7^1 < 72if2.

4- IfF\~Ti = T2 and A h 71 = 72 : F then A h 71 TI = 72T2.

5. // T h TJ < r2 and A I- 71 = 72 : F £/ien A h 71 TI < 72T2.

6. IfFhei = e2-.T and A h 71 = 72 : F then A H 7iei = 72e2 : 71T.

Proof:

1. Assume r h A4 = A2 :: if and A h 71 = 72 : T. By substitution, A h 71A1 = 7iA2 :: 7iif.
By validity (Proposition 3.2.4) we have F \- A2 :: K, and so by Proposition 3.2.3,
A h 71A2 = 72A.2 :: 71 if. By transitivity, A h j\A\ = 72A2 :: 71 if.

2-6. The remaining cases are similar.

57

Lemma 3.2.6
1. IfT',a::K,T"\- ok andV h Ax = A2 :: K thenT',[AX/a]T" \- [Ai/a] = [A2/a] : (Y',a::K,Y")

and r', [A2/a]T" h [.Ai/a] = [A2/a] : (r7, <*::#, T").

£ IfT',x:T,T" \- ok and Y' h «i = w2 : r */»e»i r',[vi/a:]r" h [wi/z] = [42/a] : (T',X:T,F") and
T',[v2/x]T" h [üi/x] = [u2/x] : (r',.x:r,r").

Proof: By induction on the proof of typing context well-formedness and Proposition 3.2.3. I

Corollary 3.2.7
1. IfT',a::L,T" V KX=K2 and Y' h Bx = B2 :: L then T, [Bi/a]T" h [Bi/a]Kx = [B2/n]K2.

2. IfT',a::L,T" h Kx < K2 and Y'h B{ = B2 :: L then T', [Bi/n]T" h [Bi/a]K{ < [B2/a)K2.

3. IfT',a::L,Y" h n = r2 and Y'\- B{ = B2 :: L iAen T, [5i/«]r" h [£]/«h = [B2/a]r2.

4. IfT',a::L,T" h n < T2 and r' h Bj = 52 - £ Men T, [i?i/«]r" h [2?J/«]TI < [B2/a]r2.

5. IfT',a::L,T" h Wl = v2 : r and r' h #i = 52 " L then T',[Bi/a]T" h [5]/«]vi = [52/«K =
[ßi/a]r.

6. IfY',y:o,Y" \~ n = T2 and Y' h Wi = w;2 : a then Y', [wx/y]Y" h [«>I/J/]TI = [n>2/y]r2.

7. IfT',y:a,T" h n < r2 and T h wj = w2 : a Men T', [wi/i/]r" h [WI/J/]TI < [w2/y]T2.

8. 7/r',y:cr, T" h t>i = v2 : r and Y' h n;i = w;2 : a then Y',[wi/y]Y" h [wi/y]wi = [^/y]''^ :

[wi/y]r.

The proof of Proposition 3.2.3 depends heavily on the exact formulation of the rules defining
MILo- In particular, although dependent kinds and types force the rules to be asymmetric, they
are all "asymmetric in the same way". For example, if Rule 2.39 were written instead as

r h Ai = A2 :: Xn-.-.K'.K"

Y h -K2AX = n2A2 :: [irlA2/a}K"

(where the substitution involves rn\A2 instead <äTS\A{) then the above case for Rule 2.39 would not
go through. A more robust but more technically involved method would be to prove validity and
general functionality simultaneously. This requires a logical relations argument because inductively
one needs to know, for example, that not only are IT and S kinds functional in their free variables,
but also that their codomains are functional with respect to the domain variable. Stone and
Harper [SH99] use this method for proving validity and functionality for the kind and constructors
levels.

Alternatively, functionality could be built into the system. Harper and Pfenning [HP99] take
the approach of making functionality into an axiom. However, it appears that the same proof
method used here would show their axiom admissible [HarOO]. Martin-Löf goes further and makes
functionality the defining property of what it means to be a valid judgment-in-context [ML84].

Corollary 3.2.8 (Weakening 2)
1. IfYua::K2,Y2 \- J andYx h Kx < K2 then Yua::KuY2\- J.

2. IfYi,x-.T2,Y2 h J and Yx h TX < r2 then Yux:ThY2 \- J.

3. If Y h J and h Y = Y' then Y' \- J.

58

3.3 Proofs of Admissibility

I now have enough technical machinery to prove the admissibility of Rules 2.92-2.124.

Proposition 3.3.1
Rules 2.119 and 2.122 are admissible.

Proof: I show the proof for Rule 2.119 only; the other proof is analogous.

1. Assume r r- Ax = A2 :: T.

2. By validity r h Ax :: T,

3. so T h Ai :: S(Ai) by Rule 2.29.

4. But r h S(Ai) < S(A2),

5. so by subsumption we have Y h A\ :: S(J42).

Lemma 3.3.2
J(S(A::K)) = S(JA::JK).

Proof: By induction on the size of K, and by cases on the form of K. I

Proposition 3.3.3
1. Rule 2.96 is admissible. That is, ifT h Ax = A2 :: K then T\- Ai=A2:\ S(A2 :: K).

2. Rules 2.92 and 2.93 are admissible.
That is, i/rh A::K then Y h S(A :: K) and Y h A :: S(4 :: K).

3. Rule 2.97 is admissible.
That is, ifV\-Ax :: S(A2 :: K) and V \- A2 :: K then T h Ax = A2 :: S(A2 :: K).

4. Rule 2.94 ^ admissible. That is, ifTh A:: K then Y h S{A :: K) < K.

5. Rules 2.98 and 2.99 are admissible.
That is, ifT h A :: Uay.K'.K" and T h A' :: K' then T h AÄ :: [A'/a]K". Similarly, if
T\-A1=A2:: Uar.K'.K" and T \- A[= A'2 :: K' then Y h Ax A\ = A2 A'2 :: [A'JalK".

6. Rule 2.102 is admissible.
That is, i/Th Ear.K'.K", Y h mAi = TTXA2 :: K', and Y h ir2Ax = TT2A2 :: [^Ax/o^K"
then rh^E^:: Zav.K'.K".

7. Rule 2.95 is admissible.
That is, ifYY- AX=A2 :: Kx and Y \- Kx < K2 then Y h S(Ai :: Kx) < S{A2 :: K2).

Proof: By simultaneous induction on the size of kinds. (The size of K for parts 1-4, the size of
K' for part 5 and part 6, and the size of K\ for part 7.)

1. • Case K = T and S(A2 :: K) = S(A2).

(a) r h Ai :: S(A2) by Rule 2.119.
(b) Then Y h Ax = A2 :: S(A2) by Rule 2.44

• Case K = S(B) and S(^2 :: K) = S(A2).

(a) Y\- B ::T by validity and inversion, so Y \- S(B) < T.

59

(b) Then T h A\ = A2 :: T by subsumption,
(c) andrh Ai :: S(A2).
(d) Thus r h Ai = A2 :: S(A2) by Rule 2.44.

• Case Ä" = Uay.K'.K" and S(A2 :: Ä") = Un::K'.S{A2 n :: Ä"").

(a) Inductively by part 5, T, a::K' h A] o- = A2 « :: K".

(b) By the inductive hypothesis, T, a::K' 'r A\ a = A2 n v. S(A2 « :: K").

(c) By validity (Proposition 3.2.4) we have V \~ A\ :: Uay.K'.K" and
r I- A2 :: na-K'.K".

(d) Therefore by Rule 2.42, T h Aj = A2 :: n«::K'.S(A2 a :: üf").

• ÜT = Uay.K'.K" and S(A2 :: ÜT) = (S{TT1A2 :: K'))x(S(n2A2 :: [TTJA2/rv]iT')).

(a) Then T h TTIAJ = TTIA2 :: Ä7

(b) and T h TT2A, = TT2A2 :: [iriAi/a]K".

(c) By functionality and subsumption, T h 7r2Ai = 7r2A2 :: [ir\A2/a]K".

(d) By the inductive hypothesis, T h 7i"iAi = 7TiA2 :: S(7TiA2 :: if')

(e) and T h TI^AJ = TT2A2 :: S(TT2A2 :: [ixyA2/a\K"). (Note that
size([7riA2/a]X") = size{K") < sizc.{K).)

(f) Therefore by Rule 2.41 we have
T h A! = A2 :: (S(TTIA2 :: if'))x(S(7r2A2 :: [^A2/«]^")).

2. (a) Assume Th A:: K.

(b) By Rule 2.33, r h A = A :: K.

(c) By the previous part, T h A = A :: S(A :: A").

(d) By validity, T h S(A :: X) and T h A :: S(A :: Ä-).

3. • Case K = T and S(A2 :: Ä") = S(A2). By Rule 2.44, T h A] = A2 :: S(A2).

• Case K = S(B) and S(A2 :: K) = S(A2). By Rule 2.44, T h Aj = A2 :: S(A2).

• Case X = Uay.K'.K" and S(A2 :: if) = Ila::K'.S(A2 a :: üf").

(a) Inductively by part 5 we have T, «::K' h A] a :: S(A2 « :: K").

(b) andr,a::iC'h A2a::if".

(c) By the inductive hypothesis, T, a::K' H Ai a = A2 a :: S(A2 « :: K").

(d) Therefore by Rule 2.42 we have T h A] = A2 :: Uay.K'.S{A2 a :: ÜT").

• K = ^a::K'.K2 and S(A2 :: K) = {S{TTXA2 :: K'))x(S(ir2A2 :: [TTJA;,/«]*:")).

(a) Then T \- TTJAJ :: S(TTIA2 :: K') and

(b) r h TT2AI :: S(7r2A2 :: [TnAj/a]^").
(c) r h 7TiA2 :: K' and T h TT2A2 :: [■KlA2la)K',

(d) so by the inductive hypothesis, V h 7T]Ai = 7TiA2 :: S(iT\A2 :: K') and

(e) r h 7r2Ai = TT2A2 :: S(TT2A2 :: [TTJAI/«]#")•

(f) By Rule 2.41 we have Y h A] = A2 :: (S(TT1A2 :: K'))X(S(TT2A2 :: [iriA2/n]K")).

4. • Case Ä" = T and S(A :: K) = S(A). By Rule 2.11 we have V h S(A :: T) < T.

• Case K = S{B) and S(A :: Ä") = S(A).

(a) Then T h A = 5 :: T so

(b) ThS(A) <S(B).

60

• Case K = Ua::Ki.K2 and S{A :: if) = Ua::Ki.S{Aa :: if2).

(a) Then rhifi and T, a::Kx h Aa:: K2.

(b) By the inductive hypothesis, T,a::K\ h S(^4a :: K2) < K2.

(c) Therefore, T h IIa::üfi.S(.Aa :: if2) < Ua::Ki.K2.

• Case K = Ea::if'.if" and S(A :: if) = (S(nA :: if'))x(S(7r2A :: [iriA/a]K")).

(a) Then T h TTIA :: if'

(b) so by the inductive hypothesis, T h S(7Ti.4 :: if') < if'.

(c) Furthermore, T h 7r2^4 :: [71-iA/ajif".

(d) By the inductive hypothesis, T h S(TT2^ :: [7Ti,4/a]if") < [niA/a]K".

(e) Also, by Proposition 3.1.1 and weakening, r,a::S(7n^ :: if') \- if" < if".

(f) By part 3 we have T, a::S(7riA :: if') h a = TT^A :: S(TTIA :: X')

(g) so by functionality we have T, cn::S(7riA :: if') h [TTi^/aJif" < if".

(h) Therefore, T h (S(TTIA :: if'))x(S(7r2,4 :: [vM/c^if")) < £a::if'.if".

5. (a) Assume rhi:: ria::if'.if" and T \- Ä :: if'.

(b) Then by part 4, T h S(4' :: if') < if'.

(c) By validity and reflexivity we have T, a::K' h if" < if".

(d) By weakening, T,a::S(Ä :: if') h if" < if".

(e) Since by part 3 we have T, a::S{A' :: K') \-a = A' :: S(A' :: if'),

(f) by functionality it follows that T,a::S(A' :: if') h if" < [A'/a]K".

(g) Thus T t- Ua::K'.K" < S(A' :: if')^([A'/a]if").

(h) By subsumption T h A :: S(Ä :: K'j->([A'/a]K"),

(i) so by Rule 2.25 we have ThAA':: [A'/a]K".

The proof for Rule 2.99 is exactly analogous.

6. (a) Assume T h Ea::if'.if", T h TTIAI = TTIA2 :: if', and T h TT2^I = 7r2A2 :: [7^/a] if".

(b) Then by symmetry and part 1, Fh Tf\A\ = "K\A2 :: S(7Tiv4i :: if'),

(c) soThi:: S(TTIAI :: K')x[Ai/a]K".

(d) Now T h S(TTIAI :: if') < if'.

(e) Since T, a::K' h if" by inversion,

(f) by weakening and reflexivity we have Y,a::S{^iA\ :: if') h if" < if".

(g) By functionality, r,a::S(7riAi :: if') h [TnAi/a]K" < if",

(h) Thus r h S(TTIAI :: K')x[inAi/a]K" < Ha::K'.K".

(i) By subsumption, T h Ax = A2 :: Sa::if'.if".

7. • Case ifi = T or S{Ai) and if2 = T or S(A2).

(a) S(AX :: Kx) = S(Ai),

(b) S(^2 := #2) = S(A2),
(c) and the desired conclusion follows by Rule 2.12.

• Case ifi = ILa::K[.K? and if2 = ria::if2.if2'.

(a) S{Ai :: K-) = Ha::K[.S{Ai a :: iff).

61

(b) By inversion r h K2 < K[and r, a::K!2 h K'{ < K'J,.

(c) Now T, a::K2 hi|«Ei2«:: K'{.

(d) By the inductive hypothesis, T, a::K'2 h S(,41 a :: üf{') < S(J42 a :: K")•
(e) The conclusion follows by Rule 2.14.

• Case Kx = T,a::K[.K'{ and K2 = Ea::K!2.K!J.

(a) S(Ai ::Ki) = Era-S^Ai :: i^J).S(TT2AI :: [TT,A I/«]#{')
(b) and S(A2 " K2) = £«::S(TTI^2 " #2).S(TT2,42 :: [TTJA2/a]K!J).

(c) Now r I- TTiAi = 7TIJ42 :: Ä"{
(d) and T h 7r2yli = 7r2A2 :: [TTI^/O]^'.

(e) By the inductive hypothesis, T h S^yl, :: K[) < S{<KXA2 :: if2)-

(f) Since T h fa Ai/«]#{' < faj42/«]tf£,
(g) the inductive hypothesis applies, yielding

T h S(?r2yl1 :: fa^j/ajK") < S(ir2A2 :: faA?/«]!^')- (Here it is important that
the induction is on the size of K\ and not by induction on the proof T \- K\ < K2.

(h) The desired result follows by weakening and Ride 2.15.

Proposition 3.3.4
The rem,aining rules from, §2.3 are all admissible

Proof: By cases.

• Case: Rule 2.100.
T h Ear.K'.K"

T\-A'::K' T \- A" :: [A'/a]K"

T\-{A',A") ::Xa::K'.K"

1. Assume T h Ear.K'.K", T h A' :: K', and T H A" :: [A'/a]K".

2. Then T \-A':: S(Ä :: K%

3. so r h (A', A") :: S{A' :: K')x[A'/a]K".

4. Now r h S(A' :: Ä7) < Ä"'.

5. Since r,a::K' h K" by inversion,

6. by weakening and reflexivity we have T,a::S(A' :: K') \- K" < K".

7. By functionality, r,o::S(J4' :: K') h [A'/a]K" < K".

8. Thus T h S(A' :: iC')x[y47«]/T" < Ear.K'.K".

9. By subsumption, T h (A', A") :: Zar.K'.K".

• Case: Rule 2.101. Analogous to the proof for Rule 2.100.

• Case: Rules 2.103 and 2.104. Analogous to the proof for Rule 2.98.

• Case: Rules 2.105 and 2.106. Analogous to the proof for Rule 2.100.

• Case: Rule 2.107
T,a::K'\- A :: K" V h A' :: K'

T h (Xa-.-.K'.A) A' = [A'/a]A :: [A'/a]K"

62

1. Assume Y, a::K2 h A :: K and r h A2 :: #2-

2. Thenr,a::X2h A::S(A::i<:),

3. so r h Aa::#2-4 :: na::Ä2-S(A :: Ä").

4. By Rule 2.98 we have Y \- (\a::K2.A) A2 :: S([42/a]A :: [A2/a]if).

5. By substitution, T h [A2/a]A :: [A2/a]K.

6. Thus r h (Aa::X2.A) A2 = [A2/a]A :: [A2/a]# by Rule 2.97.

Case: Rule 2.108
r h Ai :: Ki T h A2 :: K2

T\-itl(A1,A2)=Al::Kl

1. Assume T h Ai :: K\ and T h yl2 :: K2.

2. Then T \- Ai :: S(Ai :: iCi),

3. sorh<A1,A2)::S(^i :: Kx)xK2.

4. Thusn-7ri(i4i,A2)::S(Ai::Ä'i)

5. andn-7ri(Ai,A2) = Ax :: Kx.

• Case: Rules 2J09-2.Ul. Analogous proof to Rule 2.108.

• Case: Rule 2.112. By Rule 2.107 and functionality.

• Case: Rules 2.113-2.116. By Rules 2.108-2.111 and subsumption.

• Case: Rules 2.117-2.118. By the /3-rules and extensionality.

• Case: Rules 2.120-2.121. By validity and subsumption.

• Case: Rules 2.123-2.124. By validity and subsumption.

3.4 Kind Strengthening

One can drop those constructor variables in the context which are not referred to (directly or
indirectly) in a judgment. This follows from the fact that every kind classifies some constructor:

Proposition 3.4.1 (Inhabitation of Kinds)
IfY\~K then there exists a constructor A such that Y h A :: K.

Proof: By induction on the size of K, and cases on the form of K.

• Case: K = T. Pick A = Int.

• Case: K = S{A). Then Y \-A :: S(A).

• Case: K = Ila::K'.K". Then Y,a::K' h K" by inversion, so by the inductive hypothesis
there exists A" such that T, a::K' h A" :: K". Choose A = Xar.K'.A".

• Case: K = Ha::K'.K". Then r h K' and Y, a::K' \- K" by inversion. By the inductive
hypothesis we may choose Y \- A' :: K'. By substitution, Y h [A'/a]K", so inductively we
may choose Y h A" :: [A'/a]K". (It is important here that induction proceeds by the size of
the kind, and that size is invariant under substitutions.) By the admissible Rule 2.100,
T\-(A',A")::Jla::Kt.K".

63

Corollary 3.4.2 (Kind Strengthening)
IfVuß::L,T2 h J and ß $ FV(F2) U FV(J) then TUT2 h J.

Proof:

1. There exists a strict subderivation r\.ß::L.T2 H ok. which itself contains a snbderivation
Fi\-L.

2. By Proposition 3.4.1 there exists T] h B :: L.

3. By Proposition 3.1.11 we have Tu [B/ß]T2 h [5//3]J

4. But since ß is not free in I^ or J, this judgment is exactly Ti, T2 I- J.

This proof strategy is not applicable; for dropping unused term variables in the context; in
general one does not expect every type to be inhabited by values. Therefore the corresponding-
proof of strengthening for term variables is delayed until §7.4.

64

Chapter 4

Algorithms for Kind and Constructor
Judgments

4.1 Introduction

In this chapter I present algorithms for checking instances of the kind and constructor-level judg-
ments. For each such algorithm, proving correctness requires showing that three properties hold.

• Soundness: if the algorithm verifies the judgment then the corresponding MILo judgment is
provable.

• Completeness: if a MILo judgment is provable then the algorithm will verify the judgment.

• Termination: the algorithm always either verifies or rejects a judgment. (That is, the
judgment is decidable.)

In this chapter I show soundness for all of the algorithms, but most completeness and termina-
tion results are postponed until the next chapter.

4.2 Principal Kinds

Checking the validity of type constructors is simplified by the existence of principal kinds. A
principal kind of a constructor (with respect to a given typing context) is a most-specific kind of

T>biitS(bi)
Tt>atS{a::T{a))
r> x ftS(x ::T-*T-yr)
r> -»■ ft S(-»:: T^T->T)
T > Xa-.-.K'.A ft Ua::K'.K" if r, a : K' > A ft K"
T>AA' it[Ä/a]K" if T > A ft Uay.K'.K"
T>(A', A") ft K' x K" if r > A' ft K' and Y > A" ft K".
F>TT1Ai[K' ifr>A1[Za::K'.K"
r > n2A ft [mA/a]K" if T t> A ft Xa::K'.K"

Figure 4.1: Algorithm for Principal Kind Synthesis

65

that constructor. Formally, K is principal for A in V if and only if Y h A :: K and whenever
F h A :: L we, have r h K < L. When they exist, principal kinds are unique up to provable
equivalence.

I show that every well-kinded constructor has a principal kind by giving a correct algorithm for
explicitly calculating it; see Figure 4.1. This algorithm, like all of the algorithms I will present, is
organized as a collection of "algorithmic" inference rules. The rules have been carefully designed
so that a derivation r > A ft K corresponds exactly to a run of the principal kind computation
algorithm which takes V and A as inputs and produces the principal kind K as the result. To this
end, the inference rules are deterministic: given V and A. there is at most one kind K such that
r o A ft K. Furthermore, there is at most one rule which could possibly be used to produce such
a K — there is exactly one inference rule for each syntactic form that A might have. Thus given
T and A, a "proof search" for K such that r t> A ft K corresponds to a direct calculation of the
principal kind.

For example, in the empty typing context the principal kind of Ao::T.A/3::T.(o:, ß) is computed
as follows:

>Art::T.A/?::T.(rt,0) ft IIrt::T.n/3::T.S(<v)xS(/3)
because a::T> Xß::T.(a,ß) ft n/?::T.S(«)xS(/?)

because a::T,ß::T> (a,ß) ftS(o:)xS(ß)
because a::T, ß::T t> a ft S(«) and a::T, ß::T t> ß ft S{ß)

The principal type synthesis algorithm is correct, as shown by the following theorem; note that
K is independent of L and hence is principal.

Theorem 4.2.1 (Principal Kinds)
If r h A :: L then there exists K such that V > A ft K and T h A :: K and T h K < S(A :: L), so
that r h K <L.

Proof: By induction on the proof of the assumption and cases on the last rule used.

• Case: Rule 2.20.
Thok

rh6::T

1. r>6ftS(fc) andrhfc:: S(b).

2. S(6 :: T) = S(6).

3. Thb = b::T, so T \- S(6) < S(6).

Case: Rule 2.23.
Thok

T\-a::T{a)

1. r>aftS(a::r(o)).
2. By Rules 2.92 and 2.93, T h S(o :: T{a)) and r h a :: S(a :: T(a)).

3. By reflexivity, F \- S(o :: T(a)) < S{a :: T(a)).

Case: Rule 2.24.
r,a::K'h A:: L"

r h Xa::K'.A :: Ua::K'.L"

66

1. By the inductive hypothesis T, a::K' > A ff K",

2. r,a::K'h^::K",

3. and T, a::K' h ÜT" < S(A :: L").

4. Then T > Aa::iT.A ft na-üCff"

5. and T h (Aa::iT.A) :: (Ua::K'.K").

6. Now r, a::K' h (Aa::iT.A) a = A :: L" by weakening and Rule 2.107,

7. so T, a::Ä"' h S(A :: I") < S((Aa::K'.A) a :: L") by Rule 2.95.

8. Since S{\a::K'.A :: Uay.K'.L") = Ua::K'.S({Xa::K'.A) a :: L")

9. and T \-K' < K',

10. we have T I- Uav.K'.K" < S{\a::K'.A :: na::iT.L").

• Case: Rule 2.25.
r h A :: L'->L" T h A' :: L'

rh AA'::L"

1. By the inductive hypothesis F > A jf -^

2. Th A::K

3. and T h K < S(A :: L'->L").

4. Now S(A :: L'->£") = Ua::L'.S(Aa :: L") where a # FV(A) U FV(L").

5. By inversion of sübkinding, K = Ha::K'.K",

6. r h L' < iT,

7. and I\a::Z/ h if" < S(Aa :: L").

8. Then T>AA'ft [A'/a]l<:".

9. By subsumption, T h A' :: K', so

10. ThAA':: [A'/a]K".

11. Finally, by Lemma 3.3.2 and Proposition 3.1.11 applied to line 7 we have
T\-[A'/a]K"<S(AA'::L").

Case: Rule 2.27
r h A :: Ear.L'.L"

T h TTiA :: L'

1. By the inductive hypothesis, r > A ff K,

2..Yk-A"K,

3. and T h X < S(A :: Ea::Z/.L").

4. Now S(A :: Ea::L'.i") = S^A :: L')xS(7r2A :: [TTiA/ajL").

5. By inversion of subkinding, K = Y,a::K'.K",

6. and T h X' < S^A :: I')-

7. Finally, r > 7rxA fr K'

8. and T h 7rxA :: Ä7.

67

Case: Rule 2.28
rhi:: Y,a::L'.L"

T\-ir-2A:: [niA/a]L"

1. By the inductive hypothesis. T > Aft K,

2. T\- A ::K,

3. and r h K < S{A :: Sa::L'.L").

4. Now S(A :: Ear.L'.L") = SfaA :: L')xS(7r2yl :: [TT^A/^L").

5. By inversion of subkinding, K = T,a::K'.K",

6. rhi^'< S(TTIA::L'),

7. and r,a::iT h ÜT" < S(TT2A :: [TTJ A/«]L").

8. Then Th 7^,4 :: IT.

9. so by Proposition 3.1.11 applied to line 7, T h [TTJA/O^" < S(7r2A :: [TTI^/OJL").

10. Finally, r > TT2A ft [wiA/a]K"

11. and T h n2A :: [TTIA/«^".

Case: Rule 2.26
T\-A'::L' T h .4" :: L"

Fh{A',A") ::L'xL"

1. By the inductive hypothesis, r > A' ft K',

2. r h i4' :: K',

3. r h K' < S(A' :: Z/),

4. r>A"ftiT',

5. T 1- A" :: Ä7',

6. and T \- K" < S(A" :: L").

7. Thenr>(A',A")ftK'xK",

8. andTh (A', A") v.K'xK".

9. Now S((A', A") :: L'xL") = S{ni{A',A") :: L')xS(7r2(yl', A") :: L").

10. By Rule 2.95, T h S(A' :: L') < S^A', A") :: I/)

11. and T I- S(A" :: L") < S{ir2(A',A") :: L").

12. Therefore, T h K'xif" < S{(A',A") :: L'xL").

Case: Rule 2.29
T\- A::T

Th A:: S(A)

By the inductive hypothesis, noting that S(A :: S(A)) = S(A).

Case: Rule 2.31
T,a::K'h Aar.K"

r h A :: Uay.L'.L" T \-K'= L'

r h A :: üa::Ä',.Ä'"

1. By the inductive hypothesis, F > A f|- if,

2. T\- A::K,

3. and T h if < S{A :: Ua::L[.L'{).

4. Now S(A :: Ua::L'vL'() = Ua::L'.S(Aa :: L'{)

5. so by inversion X = Ila::K'.K"

6. and T h L'2 < if'.

7. Since r h V = L[, we have T \- L' < L\ and hence r h L' < if'.

8. Also by the inductive hypothesis, T, a::L' > Act-ft if2',

9. ?,oc.:L'\- ACLV.K'I,

10. and r,a::L' h- if2' < S{Aa :: L").

11. But since the principal kind synthesis algorithm is deterministic and clearly obeys
weakening, we have if2' = [a/a]K" = if".

12. Now S(A :: Ua::L'.L") = Ua::L'.S{Aa :: L").

13. Therefore T h Uav.K'.K" < S(A :: ILor.-.L'.L").

• Case: Rule 2.30.
r H TTXA ::L' Th n2A :: L"

T\-A::L'xL"

1. There is a subderivation r h ^4 :: K\ for some kind K\ (see Proposition 4.4.1 below).

2. By the inductive hypothesis, T > 7TiA -ft if',

3. T h TTiA :: if',

4. andrhif'<S(7ri^::L').

5. Also, r > ir2A t if",

6. T 1- TT2^ :: if",

7. and r H if" < S(TT2J4 :: [iriA/a]L").

8. Principal kind synthesis never returns a dependent £ type, so for kind synthesis for
-K\A and -K2A to have succeeded it must be that T > A -ft if'xif".

9. By the inductive hypothesis, rhi:: if'xif".

10. Since S(A :: Sa::L'.L") = S(TTIA :: L')XS(TT2J4 :: [TT^/^L"),

11. r h if'xif" < S(A :: Ea::L'.L").

12. so by the inductive hypothesis T h A :: K.

• Rule 2.32
r h A :: L2 T H L2 < L

rhi::L

The desired result follows from the inductive hypothesis and by Rule 2.95 to get
rhS(A::L2) <S(A::L).

69

Kind validity
r>T
Yt>S(A) iiT>At=T
Y > Uar.K'.K" if T t> Ä"' and T, a::K' > K".
Y > EauK'.K" if T > Ä7 and r, a::K' > K".

Subkinding
T c> T < T always
r>S(A)<T always

r>S(^i)<S(y42) \{Tt>Al^A2::T.
r > Iia::K[.K'{ < Yla::K!2.K!2' if Y > ÜT/, < A'J and T, «::#£ t> Kf < i^'.
r > £<*::#{ .K'{ < T,a::K!2.K2' if T o K[< K'2 and I\ a::K\ > #{' < ä£.

Kind equivalence
r > T «- T always
r>S(i,)§S(42) ifr>Ai ^^2::T
r>na::Ä"i.Li <^> Ila::^.^ tiT>K\<&K2 and r,«::/^ t> Lj «■ L2

r>E«::üfi.ii <^>£a::K2.L2 if T > Ä"i «• X2 and T,«::^ > Li « L2

Figure 4.2: Algorithms for Kinds

4.3 Algorithms for Kind and Constructor Judgments

Figure 4.2 gives algorithms for determining kind validity, subkinding, and kind equivalence. Each
is specified as a deterministic set of inference rules. The symbol > is used instead of h to distinguish
these as algorithmic judgments.

The kind validity judgment
Yt>K

models the declarative kind validity judgment Y \- K. Viewed as an algorithm this takes a well-
formed context T and a kind K and determines whether there is a proof of Y h K. For any
conclusion, at most one rule could apply; there is one rule for each syntactic form that K might
have.

The subkinding judgment
r > Ki <K2

models the declarative subkinding judgment Y \- Kx < K2. As an algorithm, given kinds satisfying
T \- Ki and Y \- K2 it determines whether there is a proof Y h Ky < K2.

Similarly, the kind equivalence judgment

T > Ki e> K2

models declarative equivalence; given two kinds satisfying V \- K\ and Y h K2 it determines whether
there is a proof Y \- K\ = K2.

Figure 4.3 shows the algorithms for determining the well-formedness of constructors. The kind
synthesis judgment

Yt>A^K

70

Kind synthesis
r>lnt^ S(lnt)
To x z4 S(x :: T-^T->T)
r> -»• =4 S(->:: T-^TH>T)

T->a=tS{a::T(a))
T>\a::K'.A=iUa::K'.K"
T>AA'=i[A'/a]K"
T>(A',A")=lK'xK"
T>iriA=lK'
r>7T2^^ [iriA/a]K"

Kind checking
T>AH=K

if a € dom(r).
if T > Ä"' and T, a::Ä"' > A =t K".
if r > A =t Ua::K'.K" and T > A t
ifT>A'=tK' and T > A" =} K".
ifT>A=iZa::K'.K"
HT>A=t Ear.K'.K"

if T > A =1 L and T > L < if.

ÜT'.

Figure 4.3: Algorithms for Constructor Validity

combines constructor validity checking with principal kind synthesis. As an algorithm, given a
well-formed context V and a constructor A it returns a principal kind K of ^4 if A is well-formed
(i.e., if it can be given any kind at all) and fails otherwise.

Because all well-formed constructors have principal kinds, it is easy to define a kind checking
judgment

r > A t= K.

which directly models the constructor validity checking. Given a context and kind satisfying T \~ K
and constructor A, this algorithm determines whether T h A :: K holds.

The judgments involved in constructor equivalence are shown in Figure 4.4. Following Co-
quand [Coq91] equivalence is determined in a direct fashion rather than by independently normal-
izing the two constructors and comparing normal forms (but see §5.5).

My algorithm is more involved than Coquand's because of the context and kind-dependence
of equivalence. The algorithmic constructor equivalence rules are divided into a kind-directed
part and a structure-directed part, while Coquand needs only structural comparison. Weak head
normalization is extended to include looking for definitions in the context. I have also extended
the algorithm in a natural fashion to handle S kinds, pairing, and projection.

The algorithm uses the notion of an elimination context; this is a series of applications to and
projections from "o", which is called the context's hole, If £ is such a context, then S[A] represents
the constructor resulting by replacing the hole in £ with A. If a constructor is either of the form
£[a] or of the form £[c] then this will be called a path and denoted by p. (Recall that c ranges over
constant type constructors.)

£::=

The kind extraction relation is written

o
£A
1Tl£

7T2£

T\>p^K.

71

Kind Extraction
r> 6|T
r> x t T-»(T -> T
r> -^t T->(T -> T)
r>otr(«)
r> 7T1P t K'
r> K2P t kip//3]Ä-"
r> pAt[A/ß]K"

if r>pts/9:
if Top t S/9:
if r>ptn/?:

Weak head reduction
T > £ [(Aa::Ä".4) A'] ~> £[[/4'/a]/4]
r>5[7ri(Ai,^2)]^f[A1]
r>£[7r2<4i,/42>]~>£[/42]
r>f[a!]'^B

Weak head normalization
r>A^B
r>ßp

if r>£[a] tS(B)

if T > yl ~> 4' and r > yl' J| £
otherwise

Algorithmic constructor equivalence
r > Ai <$ A2

r>Ai <& A2

r> A1 o A2

Y\> Ai <$ A2

T
S(B)
Uar.K'.K"
Ea::K'.K"

ifr>Aitypi,T>A2typ2, and T>p{ <-> /;2 | T
always
if r,a::Ä"'>/4i«Oi42«:: K"
ifTt>TTiAi <=> 7TIT42 " K'

and r > 7r2y4i «=> 7r2A2 :: [7ri/4i/a]iT'

Algorithmic path equivalence

r> x <-» x t T->(T -> T)
r> -^•H—'-t T->(T -+ T)
r>öHat T(a)
T>PlAi ++p2A2t[Ai/a]K"
T > TTlPi -f* 7Tlp2 t K'
T > 7T2J9l <->• 7T2p2 t [TTlPl/a]-^"

if r o pi <-► p2 t Uay.K'.K" and r > Ax <^> A2

if T>pi «j)2tS«::K'.^"
if T>pi ^ p2 t Za::K'.K"

K'

Figure 4.4: Kind and Constructor Equivalence Algorithms

72

Given a well-formed context T and p which is well-formed in this context, kind extraction attempts
to determine a kind for a path by taking the kind of the head variable or constant and doing
appropriate substitutions and projections. A path is said to have a definition if its extracted kind
is a singleton kind S(J5); in this case B is said to be the definition of the path.

The extracted kind is not always the most precise kind. For example, a::T >a|T but the
principal kind of a in this context would be S(a). Intuitively the extracted kind is the most precise
kind which can be assigned without the singleton introduction rule, or Rules 2.30 and 2.31 which
can be viewed as extending singleton introduction to higher kinds. This suffices to make S(p :: K)
principal for p if K is its extracted kind.

The weak head reduction relation
T>A^B

takes T and A and returns the result of applying one step of head /3-reduction if A has such a redex.
If the head of A is a path with a definition reduction then the definition is returned. Otherwise,
there is no weak head reduct.

The weak head normalization relation

T>Aij,B

takes T and A and repeatedly applies weak head reduction to A until a weak head normal form is
found. Weak head reduction and weak head normalization are deterministic, since the head /3-redex
is always unique if one exists, and a path can have at most one prefix with a definition.

The algorithmic constructor equivalence relation

T>Ai&A2::K

models the declarative judgment T h A\ = Ai :: K on well-formed constructors. As an algorithm
this is defined by induction/recursion on the kind at which the two constructors are being compared.
At II and E kinds the algorithm uses extensionality to reduce the problem to comparisons of
constructors at kinds whose size is strictly smaller. When comparing two constructors at a singleton
kind the algorithm can immediately report success because we only care about inputs where T h
A\ :: K and T h A2 :: K; if K = S(B) then A\ = B = A2 automatically. Finally, if we are
comparing two constructors of kind T then the algorithm must do some real work. This consists of
head-normalizing the two constructors, which (if the process terminates) yields two paths without
definitions. Then the paths are compared component-wise.

This component-wise comparison is specified by the algorithmic path equivalence relation

r > pi <r> p2 t K.

Given two well-formed head-normal paths V H p\ :: K\ and V V P2 •■ K2, this should succeed
yielding K if and only if Y h p\ = P2 ■■ K and K is the extracted kind of p\ with respect to
T. The only question that arises when writing down these rules is in the case for comparing two
applications. If the two function parts are recursively found to be equal, the two arguments must
then be compared. Since the two arguments need not be in normal form, they must be compared
using the ■&■ judgment; in this case we must decide at which kind the two arguments should be
compared.

The right answer is the domain kind of the extracted kind of the function parts, which (by
Lemma 4.4.2) below is the same as the domain kind of the principal kind of the function parts.
Assume we want to compare p\ A\ and P2 A2 using the typing context T, and that the principal

73

kind of pi (and p-2, since they have been verified equivalent) is Uar.K'.K". Then this is the least
kind at which the two paths are provably equal, and hence by contravariance the domain kind is
greatest. By comparing A\ and A2 at kind K\ then, we have the best chance of proving them
equal. (Two constructors equivalent at a subtype will be equivalent at a supertype, but not vice
versa.) Thus to find as many equivalences as possible K' is intuitively the correct kind for the
algorithm to compare function arguments. Since the extracted kind agrees with the principal kind
in negative positions, and it suffices to look at the domain of the extracted function kind rather
than computing the full principal kind.

As an example, let F = /3::(S(lnt)-s>T)-s>T. Then:

r > ß (\a::T.a) & ß (Ao::T.lnt) :: T
because F > ß (\a::T.a) ty. ß {\a::T.a)
and r>/3(A«::T.lntH)S(Att::T.lnt)
and r > ß (Xa-.-.T.a) +» ß (A«::T.lnt) f T

because r > ß <-> ß t (S(lnt)-»T)-»T
and r> (Ao::T.o) <* (A«::T.lnt) :: S(lnt)->T

because F, «::S(lnt) > (Xar.T.a) a <£> (Ao::T.lnt) a :: T
because T, o::S(lnt) > (\a::T.a) a J| Int
and T, a::S(lnt) > (A«::T.lnt) a ty Int
and r,a::S(lnt)t>lnt <->• Intt T.

4.4 Soundness of the Algorithmic Judgments

In order to show soundness of the constructor equivalence algorithm I first show that given a well-
formed path, kind extraction succeeds and returns a valid kind for this path using induction on
the well-formedness proof for the path. (Compare the statement of Theorem 4.2.1 above and of
Lemma 4.4.2 below.)

Proposition 4.4.1
If T \- £[A] :: L then there is a subderivation of the form, F h A :: K.

Proof: By induction on the kinding derivation. If £ = o then the result follows trivially; otherwise,
the result follows by the inductive hypothesis. I

Lemma 4.4.2
IfF\-p::K then there exists L such thai F 0 p f L, F h p :: L, and F h S(p :: L) < K.

Proof: By induction on the proof of the hypothesis.

• Case: Rule 2.20. p = b.

1. Then r > b t T and S(6 :: T) = S(6).

2. By Rule 2.20, r h b :: T

3. and by Rule 2.11, F h S(6) < T.

• Case: Rules 2.21 and 2.22. Similar to previous case, using admissible rule 2.94.

• Case: Rule 2.23. p = a.

74

1. Thenr>atr(a).

2. By Rule 2.23 r h a :: T(a),

3. and by Rule 2.94, T h S(a :: r(a)) < r(a).

• Case: Rule 2.25.
r h p :: üf'-»/:" r h A; ;: if

rhf)i'::ür"

1. By the inductive hypothesis, r t>p f Har.L'.L",

2. r h p :: Ua::L'.L", and

3. T h S(p :: na::L'.L") < K'->K".

4. Thenrop^'t[^'/a]L".

5. Since S(p :: Ila::L'.L") = Ua::L'.S(pa :: L"),

6. we have by inversion of Rule 2.14 that T \-K' < L' and T, a::K' h S(pa :: L") < K"
where a g FV{K") and a g dom(r).

7. By subsumption, r H A' :: L'

8. and hence r h p A' :: [A'/a]L" by Rule 2.98.

9. Finally, by substitution we have T h S(pÄ :: [A'/a]L") < K".

• Case: Rule 2.27.
T\-p::Ea"K'.K"

r h Trip :: üf'

1. By the inductive hypothesis, r >p f L,

2. rhp::L, and

3. T h S(p :: L) < Ear.K'.K'.

4. By inversion S(p :: L) must be a E kind, and so L' — T.a::L'.L" for some V and L".

5. Then T t> Trip 11/,

6. and by Rule 2.27, T h 7rxp :: L'.

7. Since S(p :: Sa::L'.L") = S(TTIP :: L')xS(7r2p :: [7rip/a]L"),

8. by inversion of rule 2.15 we have T h S(7rip :: L') < K'.

• Case: Rule 2.28.
rhp-.-.Xar.K'.K"

T h 7T2P :: [TTip/aj-K7

1. As in the previous case, T \>p f Ea::Z/.L",

2. rhp::Ea::L'.L", and

3. T h S(p :: Ea::L'.L") < Ea::iT.lT'.

4. Then T > 7r2p t [7rip/a]L",

5. and V h 7r2p :: [7np/a]L" by Rule 2.28.

6. Since S(p :: Sa::L'.L") = S(TTIP :: L')XS{TT2P :: [7Tip/a]L"),

7. by inversion of Rule 2.15 r,a::S(7Tip :: L') h S(TT2P :: [7Tip/a]L") < if".

8. Then r h mp :: S(TTIP' :: L')

75

9. so by Proposition 3.1.11 we have V h S(7r2p '■'■ [^iP/aW) < [ix\p/a\K".

Case: Rule 2.29
T\-p::T

T\-p::S(p)

1. By the inductive hypothesis, T >p t L.

2. Thpy.L,

3. and T h S(p :: L) < T.

4. Thus L is either T or a singleton, and S(p :: L) = S(p).

5. and by reflexivity, T h S(p) < S(p).

• Case: Rule 2.30.
T h Trip :: Ä7 T h 7T2P :: Ä""

Thpr.K'xK"

1. By Proposition 4.4.1 and the inductive hypothesis, r t> p f £«::L'.L",

2. T h p :: £«::L'.L",

3. r>7ripti',
4. T h TTJP :: V,

5. T h Sfrip :: Z/) < A"',

6. rp>7r2pt[7riP/a]£",

7. T 1- n2p " [7Tip/a]i",

8. and r h S(TT2P :: [^p/a]!/) < #".

9. Thus T h S(p :: Ea::L'.L") < K'xÄ""

• Case: Rule 2.31.
T,a::K'hpa::K"

T\-p::Ua::L'.L" T \-K'= L'

Thp::Ua::K'.K"

1. By the inductive hypothesis, T t>p | Ha::L'.L",

2. rhp::Ha::L'.L",

3. and r h (n«::L'.S(pa :: L")) < Ila-A7./^'.

4. By inversion, T \- K' < V.

5. By the inductive hypothesis, and determinacy and weakening of the kind extraction
algorithm, T, a::K' >pa; | L"

6. and T,a::K' h S(pa :: L") < X".

7. Therefore, T h na::L'.S(pa :: L") < Uay.K'.K".

Case: Rule 2.32.
r h p :: Ä1! r h Kx < K2

r\-p::K2

1. By the inductive hypothesis, T \>p f L,

2. rhp::L,

76

3. and T \- S(p :: L) < Kx.

4. By transitivity, F \- S(p :: L) < K2.

Corollary 4.4.3
IfV\-£\p] ::K and T>ptS{A) thenFh£\p] = £[A] ::K.

Proof:

1. By Lemma 4.4.2, r > £\p] f L,

2. T h £[p] :: L,

3. and T h S(£[p] :: i) < K.

4. By the determinacy of kind extraction, this can be reconciled with r >p t S(^4) only if £ = o
and L = S{A).

5. Thusrhp = ^::T.

6. and S(£\p] :: L) = S(p).

7. By inversion of subkinding, either if = T or K = S(A') with T \- p = A' :: T.

8. In either case, T \- p = A :: K.

9. That is, T h £\p] = £[A] :: K as desired.

Proposition 4.4.4
If TV- Xay.K'.A :: L iAen T, a::K' \-A :: K" for some kind K".

Proof: By induction on derivations. For proofs ending with Rule 2.24 the desired result is given
directly; for Rules 2.31 and 2.32, the result follows directly by the inductive hypothesis. I

Proposition 4.4.5
// T h £[(Xa::L.A) A'} :: K then Y \- £[(Xa::L.A) A'] = £[[A'/a]A] :: K

Proof: By induction on the given derivation.

• Case:
T h Xar.L'.A :: Uar.K'.K" T h A' :: K'

r h {Xa::L'.A) A' :: [A'/a]K"

where £ = o.

1. Using Proposition 4.4.4 and the correctness of principal kind synthesis we have
T,a::L't>Ai[L",

2. r,a::L'h A::L",

3. r t> Xav.L'.A ft Ha-.-.L'.L",

4. T h Xav.L'.A :: Ua::L'.L",

5. and T h Ua::L'.L" < Uar.K'.K".

77

6. By inversion, T V- K1 < L'

7. <mdT,a::K'V- L" < K".

8. By subsumption, T \- A' :: U.

9. Thus T h (\a::L.A) A' = [A'/a]A :: [A'/a]L" by Rule 2.107.

10. By substitution T h [A'/a]L" < [A'/a]K".

11. Therefore by subsumption we have T h (Xa::L.A) A' = [A'/a]A :: [A'/a]K"

All other cases follow by structural rules and refloxivity of declarative equivalence.

Proposition 4.4.6
1. IfT\-S[i:M\A")]

2. IfTV-£[x2(A\A")]

3. If TV- {A1, A") ::Sa

Proof:

1. • Case:

: K then T V- £[ir} (A', A")} = £[A'\ :: K.

: K then T h E[TX2{A', A")) = £[A"] :: K.

:K'.K" then T h A' :: K' and T h A" :: [A'/a]K".

TV- (A', A") :: Zar.K'.K"

r\-n!{A',A") ::K'

where £ = o.

(a) Inductively by Part 3, T h A' :: ÜT'

(b) and T h ^" :: [A'/a)K".

(c) The desired result follows by Rule 2.108.

• The remaining cases follow by structural rules and refloxivity.

2. • Case:
TV- (A',A") :: Ear.K'.K"

T V- ir2(A',A") :: [iri(A',A")/a]K"

where £ = o.

(a) Inductively by Part 3, T h A' :: X'

(b) and T h A" :: [A'/a]K".

(c) By Rule 2.109, T h 7r2(>l',^") = y4" :: [A'/a]K".

(d) As in Part I, TV- £[iri{A',A")] = £[A'} :: K.

(e) By validity and inversion, T,a::K' V- K"

(f) so by functionality, T V- [iri{A',A")/a]K" = [A'/a]K".

(g) Thus by subsumption we have T V- ^(A'^A") :: {K^Ä,A")/a]K".

• The remaining cases follow by structural rules and refloxivity.

3. • Case:
TV- Ax-.-.K' TV- A2 :: K"

Y\-(AUA2) :: K'xK"

Obvious.

78

Case:
r V Xar.K'.K"

n-7ri(A',A")::üf'
n-7r2(i4',A">::[7ri(A',A")/a]ür"

T\-{A',A") :: Ear.K'.K"

(a) Inductively by part 1, T h 7Ti(A',i4") = A' :: X'.

(b) Inductively by part 2,Th 7r2(A', A") = A" :: [TT^A', A")/a]K".

(c) By inversion and functionality, T V [iri(A',A")/a]K" = [A'/a]K".

(d) Thus by validity, subsumption and Proposition 3.1.1, T V A' :: K'

(e) and T V A" :: [A'/a]K".

Case:
rh(i',i") »if!

rhifi< Y,a::K'.K"

T\-(A',A") ::T.a::K'.K"

(a) By inversion, K\ = T,a::K[.K",

(b) TV K[< K',

(c) andr,a::K{ H K'{ < K".

(d) By the inductive hypothesis, V \- A' :: K[

(e) and Y V A" :: [A'la\K'{.

(f) By substitution, T V [A'/a]Kf < [A'/a]^".

(g) Then the desired results follow by subsumption.

Corollary 4.4.7
IfTVA::KandT>A^B then TV A = B::K.

Proof: By transitivity and refiexivity of declarative equivalence, it suffices to show that if V V
A :: K and r > A ~> B then T V A = B :: K. But all possibilities for the reduction step are covered
by Corollary 4.4.3, Proposition 4.4.5, and Proposition 4.4.6. I

Proposition 4.4.8
IfT V £[AA'] :: L then there exists a kind K'^K" such that TV-A v. K'-*K" and T V A' :: K'.

Proof: By induction on typing derivations. If £ = o and the proof concludes with a use of the
application rule 2.25 then the result follows by inversion; in all other cases, the result follows by
the inductive hypothesis. I

Theorem 4.4.9 (Soundness)
1. If TV Ai ::K,TV A2 :: K, and T > Ai <=> A2 :: K then T V Ax = A2 :: K.

2. IfTV-pi ::Ki, T V p2 :: K2, andT^pi ^p2^K thenTVpx = p2 ::K.

3. If TV Ki, T V K2, and T > Kx < K2 then T V Kx < K2.

4. If TV Ki, T h K2, and T^KX^K2 then TV KX = K2.

5. If TV ok andT>K then TV K.

79

6. If Th ok andT>A=iK then T h A :: K and T > A fr K.

7. IfT\-K and T > A t= K then V h A :: K.

Proof: By (simultaneous) induction on proofs of the algorithmic judgments (i.e., by induction on
the execution of the algorithms). I

80

Chapter 5

Completeness and Decidability for
Constructors and Kinds

5.1 Introduction

Correctness of the algorithms for constructor and kind judgment can easily be seen to reduce
to correctness of the algorithm for constructor equivalence. Since the algorithms of the previous
chapter are sound, it suffices to prove completeness of the constructor equivalence algorithm (i.e.,
if T h Ai = A2 :: K then r t> A\ <£> A2 :: K) and that this algorithm will terminate with an answer
for all well-formed inputs.

It is instructive to see why the direct approach of proving completeness by induction on the
derivation of Y h A\ = Ai :: K fails. We immediately run into trouble with such rules as Rule 2.37:

T\-A = A':: K'^K" fhAi = A\ :: K'

r h Ax A[= A2 A'2 :: K"

Here we would have by the induction hypothesis that Vt> A <£> A' :: K'^K" and V>Ax<3- A\ :: K'.
However, there appears to be no way to show directly that these imply T > Ax A[<^> A2A2 :: K"
because the algorithm proceeds via head-normalization rather than comparing the applications
component-wise.

Similarly, in Rule 2.44
T^A::S(B)

r h A = B :: S(B)

there is no way to apply the induction hypothesis and hence no way to show the conclusion.
Coquand [Coq91] proves the completeness of an equivalence algorithm for a lambda calculus with

n types using a form of Kripke logical relations. The key idea is to prove completeness by defining
a relation (here called logical equivalence) which not only implies algorithmic equivalence, but also
satisfies stronger properties. For example, if two functions are logically related then their application
to logically-related arguments yields logically-related applications. By proving inductively that
declarative equivalence implies logical equivalence, we have strengthened the induction hypothesis
enough to allow cases such as Rule 2.37 and 2.44 to go through.

I have substantially extended this approach to handle singleton kinds, as well as pairs and
subkinding. However, one essential obstacle remains: declarative equivalence is transitive and
symmetric, which requires showing that logical equivalence is transitive and symmetric. Since

81

logical equivalence is defined in terms of the equivalence algorithm, this requires showing that
algorithmic equivalence is both symmetric and transitive. Surprisingly, this is not at all obvious.

The difficulty is that the presentation of the algorithm is inherently asymmetric. Because of
dependencies in the kinds, at various points one must make a choice between one of two provably
equal kinds. For example, verifying

requires checking that

and either

or

T>Ai ^ A2 ::-Ea-.-.K'.K"

r>7T]7li <!4> iriA2 :: K'

T > n2Ai «• ir2A2 :: [K\A]la\K"

(Similar alternatives also appear in the definitions of path equivalence and kind equivalence as
well.) Although the kinds [TX\A\IO\K" and [ft\A2/a]K" will be provably equivalent, each choice
leads to different definitions in the context and may cause head-normalization to take an entirely
different path. If the algorithm is correct then it should end up with the same answer in either
case, but I am unable to give a direct proof that this is true.

The algorithm could be forced to be more symmetric by adding conditions, e.g., by specifying
that

T>Ai <* A2 ::T1a::K'.K"

requires
r> TTIAI <£> TT\A2 :: K'

and
T o -K2A] 4$ ir2A2 '■: [it\A\ /a]K"

and
T\>TT2A] «=> 1T2A2 :: [niA2/a]K",

but the problem of showing transitivity remains.

In §5.2 I give a revised form for the constructor and kind equivalence algorithms, designed
specifically to make both transitivity and symmetry obvious. This leads to a nonstandard form of
Kripke-style logical relation, described in §5.3; using this I show the revised equivalence algorithms
are terminating and complete with respect to MILo equivalence. Finally, since the revised algorithm
requires redundant bookkeeping, I show in §5.4 that the correctness of the revised algorithm implies
the completeness and termination of the equivalence algorithm presented in the previous chapter,
which forms the basis of the TILT implementation. It follows that all kind and constructor-level
judgments are decidable.

5.2 A Symmetric and Transitive Algorithm

5.2.1 Definition

The way to build transitivity into constructor and kind equivalence is to maintain two provably
equal typing contexts and two (provably equal) classifying kinds. Then the form of algorithmic

82

constructor equivalence becomes

Ti > Ai :: Kx <£> T2 > A2 :: K2.

Although the expectation is that the algorithm will only be applied when Ti h Ai :: Ki and
r2 \- A2 " K2, this is not a comparison of judgments but merely suggestive notation for a 6-place
relation. The algorithm takes these 6 inputs and returns success or failure (or fails to terminate).

The advantage of this formulation is that arbitrary choices disappear. For example, the com-
parison

ri 0 Ai :: Y,a::K[.K2' <S> Y2 > A2 :: Xa::K'2.K2

between two pairs of constructors checks

Ti > iriAi :: K[<=> T2 > TXXA2 :: K2

and
Ti > ir2Ai :: [iriAi/a]K" <4> T2 > n2A2 :: [nA2/a]K2 .

Both of the possible substitutions are used, in a symmetric fashion.
Similarly the algorithmic path equivalence relation takes the form

ri>pi tKi <->r2>p2-\K2,

and algorithmic kind equivalence becomes

ri>Ä"i &Y2>K2.

The full definitions of the revised algorithm are shown in Figure 5.1. (The kind extraction,
weak head reduction, and weak head normalization judgments are unchanged.) It is simple to show
that these definitions have the required behavior:

Lemma 5.2.1 (Algorithmic Symmetry and Transitivity)
1. If Yi > Ai :: Ki <^ Y2 > A2 :: K2 then Y2 > A2 :: K2 <& Yx t> Ax :: Kx.

2. If Fi > Ai :: K\ <=> Y2 > A2 :: K2 and Y2 D> A2 :: K2 <£> Y3 > A3 :: K3 then
Fi > Ai :: Ki <£> T3 > A3 :: K3.

3. IfYi t>pi t Ki «-» T2 t>p2 t -K"2 *Aen T2 >p2 t #2 ** Ti >pi f #i-

^. 7/Ti >pi t -K"i ^ T2 >p2 f ^2 and r2 \>p2 -\ K2^Y3 >p3 t -K3 then
ri>pi t^i ^r3>p3t-^3-

5. 7/ rx > Ä-! <s> T2 t> K2 then Y2> K2^YX> Kx.

6. If Yi >Ki&Y2>K2 and Y2>K2&Y3> K3 then Yi > Kx & Y3 > if3.

Proof: By induction on derivations of the algorithmic judgments (i.e., by induction on the exe-
cution of the algorithms). I

I have made two changes to the constructor equivalence algorithm beyond those necessary to
maintain symmetry and transitivity.

• When comparing two constructors with singleton kinds, the algorithm compares the two
constructors at kind T rather than short-circuiting with immediate success.

83

• When comparing two constructors with II kinds, the algorithm also compares the domain
kinds of the two II kinds.

Intuitively these additions are redundant, but they are useful when proving the existence of normal
forms of constructors (see §5.5). If this algorithm is sound, complete, and terminating, then it will
remain so when these redundant extensions are omitted. However, the converse is less obvious;
a priori these extra tests might cause the algorithm to become nonterminating on some inputs.
Hence proving the correctness of the algorithm as shown in Figure 5.1 is a stronger result.

5.2.2 Soundness

As before, path equivalence computes extracted kinds of paths, but here it extracts the kinds of
both paths:

Lemma 5.2.2
If ri > Ai f Kx <->■ T2 > A-2 f K2 then TX>AX

J[Kx and T2 > A2 t K2.

Then proof of soundness for the revised algorithms is very similar to the proof for the original
algorithmic equivalence:

Theorem 5.2.3 (Soundness)
1. 7/r-rj =r2,ri 1-^1=^2, rih^i ::Kx,T2hA2::K2, and,rxt>Ax :: Kx ^T2t> A2 :: K2

then Ti h A} = A2 ::KX.

2. If\-Ti= r2, Tx\-px ::LX,T2\- p2 :: L2, and Tx >px | Kx ^ T2 t>p2 t K2 then
Tx h K\ = K2 and Tx h px = p2 :: K\.

3. If\-Ti= r2, ri h Kl; T2 \- K2, and Tx > Kx O V2 > K2 then Tx\- Kx= K2.

Proof: Parts 1 and 2 follow by simultaneous induction on the algorithmic judgments and by
cases on the last step in the algorithmic derivation. I omit the proof of part 3, which follows from
part 1 and induction.

1. • Case: Tx> Ax :: T O T2 t> A2 :: T because Fi t> Ax JJ. px, T2 t> A2 J| p2, and
ri>p1tT«r2>p2tT.

(a) By Corollary 4.4.7, Fx \- Ax = px :: T

(b) and r2 I- A2 = p2 :: T.

(c) By Corollary 3.2.8 ra h A2 = p2 :: T.
(d) By Validity, Fx h Pl :: T

(e) and T2\-p2::T.

(f) By the inductive hypothesis, Fi h px = p2 :: T.

(g) By symmetry and transitivity of equivalence therefore, Fx\- Ax = A2 :: T.

• Case: Fi \> Ax :: S(£?i) 4=> T2t> A2 :: S(B2) because Txt>Ax Jj.pi, T2\>A2]}. p2, and
r1>p1tT«r2>p2tT.
(a) As in the previous case, Tx \- Ax = A2 :: T.

(b) ThenTi \- Ax = A2 :: S{AX)

(c) but Tx \- Ax = Bx :: T by inversion of kind equivalence,

(d) so Tx\~ Ax= A2 :: S(BX) by subsumption.

84

Algorithmic constructor equivalence
I\ > Ai :: T <& T2 > A2 :: T if Ti > Ax J| pi and Y2 > A2 JJ- P2

and Ti opi t T ^ T2 >p2 t T
ri>A1::S(ßi)"»r2>A2::S(ß2) if Ti > A: ^. pi and T2 > A2 ty p2

and Ti >^i t T o T2 t>j?2 t T
Ti > Ai :: ![<*::#{ .#{' «r2>i2 ::. Ua::K2.K'2' if I\, a-fCj > Al a :: K'{ & T2, a::K2 >A2a:: K2'

and ri > K[& T2 > K2

ri > Ai :: Za::K[.K2' & T2 > A2 :: Xa::K2.K2' if Tx c> TMI :: i^ <S> T2 > TTIA2 :: ä£, and
Ti > 7T2Ai :: [iriAi/a]K'{ & T2 0 TT2A2 :: [KiA2/a}K2'

Algorithmic path equivalence
Ti>btT -H-r2>b^T always
rx > x t T-^T->T -H- T2 > x f T-s-T-*T always
Tio -> t T->T-^T HT2> -S> t T-*-T->T always
ri > a t Ti (a) -H- T2 > a t T2 (a) always
rihPlAit[Ai/a]^'o * ifr^pitna::^.^' ^ T2>p2^ Ua-.-.K^K'^

T2 h p2 A2 t [A2/a]K2' and i\ > Ax :: K{ <* T2 > A2 :: K2.
Ti 0 TTipi f Ä"i ^ T2 > 7T1P2 t #2 if ri >Pi t £<*::#{ .Ä? <-> T2 >p2 t ^a::K'2.K'2'.
Ti 1- Trap! t {nipi/a}^ <* if Ti >pi t T.a::K[.K'{ <* T2 >p2 f Va::K'2.K'2'

T2 h 7T2P2 t [TriJ^/a]^'

Algorithmic kind equivalence
Ti > T o T2 > T always
ri > S(Ai) & T2 > S(A2) if Ti > Ai :: T <*■ T2 > A2 :: T
Ti > Ua::K[.K'^ &T2> Ua::K^.K2' if Ti>Ki^T2> K2 and Tua::K[> K'{ «• T2, a::X2 > X£
Ti > Ha::K[.K'{ <& T2 > Y>a::K'2.K'2' if rx > K{ ^ T2 > -fiT2 and Tua::K[t> iff o T2,a::K2 > K2'

Figure 5.1: Revised Equivalence Algorithm

85

• Case: Tj > AY :: Ua::K[.K'1' «• T2 > A2 :: Ua::K2.K2' because
T], a::X| > Ax a :: Ä"|' «■ T2, «::#£ > M a :: if2' and T, > Ä"{ 4=> T2 > #2.

(a) Since h ri,a::Ä"{ = r2,a::Ä£,
(b) Tua::K[\- Ax a :: K'{,

(c) r2)a::^hi2«::^,

(d) and Tua::K[VK'{ = K'.[,

(e) the inductive hypothesis applies, yielding Y\, a::K[\- A\ a = A2 n ■■ K".

(f) Thus by Rule 2.42, T\\- Ax= A2 :: Ua::K[.K'{.

• T1>Ai :: T.a::K[.K'{ ^F2t>A2 :: Ea::K!J.K!2' because
Ti > 7rii4i :: if{ O T2 > 7Ti^l2 :: K2, and

T] > Tr2Ai :: fa 4i/«]#{' ^ T2 > n2A2 :: fa^/ra]/^'.

(a) Since T! h TT^J :: if{

(b) ral-Tn^::^,

(c) and by inversion I1! h K\ = K2,

(d) by the inductive hypothesis we have T\ h K\A\ = niA2 :: K\.

(e) By functionality, VA \- fa >li/«]#{' = [iT]A2/a)K^.

(f) Then Ti h ^2AX :: fa 4i/«]#{'

(g) and T2 h 7T2^2 :: faA2/a]Ä£.
(h) By the inductive hypothesis, Y\ V n2A\ = ir2A2 :: [-K]A\ /a]K'{.

(i) By Corollary 3.2.8 and Rule 2.41, T^ Ax= A2 " T,a::K[.K'{.

2. • Case: ri > b{ t T <-> T2 > bz | T.
By Proposition 3.1.1, Ti h ok. Thus by Rule 2.33, T] h 6,- = &,- :: T.

• Case: r\ > a t T] (a) <->■ T2 > a f r2(n;).
By Validity and Rule 2.33, Tj h a = ft :: Ti(a).

• Case: Y\ >p\A\ t [Ai/a]Z// <-> T2 >p2yl2 | [A2/a]L2' because
ri >pi t na-L'j.L'/ <-> T2 >p2 t ria::L2.L2' and T} > A] :: L'j o T2 > 42 :: L'2.

(a) By Proposition 4.4.8, Tj hpi :: Ä"{-►#{',
(b) T^Ar-.-.Ki,
(c) r2hp2::i^X2',

(d) and T2 h A2 :: K2.

(e) By the inductive hypothesis, ri h n«::!^.!// = Ua::L'2.L'^.

(f) and Ti h pi = p2 :: na-L'j.L'/.

(g) By Lemma 4.4.2, Tj h S(pi :: ua-L'j.L'/) < K[-+K'{

(h) and T2 h S(p2 :: Iia::L'2.L'2
r) < K2^K^.

(i) Tims ri h Ä"{ < L;

(j) and T2 h ^ < L2.

(k) By subsumption then, T\ \- A\ :: L'j
(1) and T2 h ,42 " L'2.

(m) The induction hypothesis applies, and so Y\\- A\ = A2 :: L[.

(n) Thus T] h p! A] = p2 A2 :: [^i/a]^'/
(o) and by functionality Ti h [^i/a]L'/ = [A2/a]L2'.

86

Case: I1! > it\pi t K\ ** ^2 > niP2 t K2 because
ri >pi t Sa::Ä"i.Li «-» T2 t>p2 t ^a::K2.L2

(a) By Proposition 4.4.1 the inductive hypothesis applies,

(b) so Ti h ^a::Kx.Li = Y,a::K2.L2

(c) and T\ \- p\ = p2 :: Har.Ki.Li.

(d) Thus Fi h TTiPi = 7TlP2 - -f^i
(e) and by inversion, T\ \- K\ = K2.

Case: Ti > 7r2pi t bnPi/a]£i -^ T2 > 7r2p2 t [7TiP2/a]-^2 because
ri >pi t SaxKi.Li «-» T2 >p2 t Sa::i^2-i2-

(a) By Proposition 4.4.1 the inductive hypothesis applies,

(b) so Ti h T,a::Kx.Li = Za::K2.L2

(c) and Ti \- p\ = p2 :: YtCtv.Ki.Li.

(d) Thus Ti h ir2pi = n2p2 :: [7Tipi/a]Li.

(e) rx h TTipi = 7Tip2 " -K"i
(f) So by functionality, Ti h [7Tipi/o;]Li = [7riP2/"]-^2

5.3 Completeness of the Revised Algorithms

To show the completeness and termination for the algorithm I use a modified Kripke-style logical
relations argument. The strategy for proving completeness of the algorithm is

1. Define the logical relations;

2. Show that logically-related constructors are related by the algorithm;

3. Show that provably-equivalent constructors are logically related.

From completeness it follows that the algorithm terminates for all well-formed inputs.

I use A to denote a Kripke world. Worlds are contexts containing no duplicate bound variables;
the partial order C on worlds is simply the weakening ordering given in Definition 3.1.4. The logical
relations I use are shown in Figures 5.2, 5.3, and 5.4.

The logical kind validity relation (A; K) valid is indexed by the world A and is well-defined by
induction on the size of kinds. Similarly, the logical constructor validity relation (A; A; K) valid is
indexed by a A and defined by induction on the size of K, which must itself be logically valid.

In addition to validity relations, I have logically-defined binary equivalence relations between
(logically valid) types and terms. The unusual part of these relations is that rather than being
a binary relation indexed by a world, they are relations between two kinds or constructors which
have been determined to be logically valid under two possibly different worlds. Thus the form of
the equivalence of kinds is (Ai; K\) is (A2; K2) and the form of the equivalence on constructors is
(Ai; A\\ K\) is (A2; A2; K2). With this modification, the logical relations are otherwise defined in a
reasonably familiar manner. At the base and singleton kinds I impose the algorithmic equivalence
as the definition of the logical relation. At higher kinds I use a Kripke-style logical relations
interpretation of II and S: functions are related if in all pairs of future worlds related arguments
yield related results, and pairs are related if their first and second components are related.

87

• (A; K) valid iff

1. - K = T

- Or, K = S(A) and (A: A; T) valid

- Or, K = Ua::K'.K" and (A: K') valid and VA' D A, A" D A if
(A';Ai;K') is (A";A2; Ä") then (A'; [Ai/a]K") is (A"; [A2/o]K")

- Or, K = Zar.K'.K" and (A: K') valid and VA' D A, A" D A if

{A';Ay,K') is (A"M2;Ä'/)then(A';[Ai/«]A'") is (A";[A2/a]K")

. (AijÄ-x) is (A2;tf2)iff

1. (Ai-Ki) valid and (A2;^2) valid.

2. And,

- Kx = T and K2 = T

- Or, Kx = S{A]) and #2 = S(A2) and (A,;Ai;T) is (A2;A2;T)

- Or, Kx = Ua::K[.K'{ and K2 = Yla::K'2.K!{ and (A,;^) is (A2;K!2) and
VA'j D A],A'2 D A2 if (A\; Ai; K[) is (A'2:A2:if2) then
(A^Ai/a]*?) is (A'2;[A2/a]KZ)

- Or, Ki = Ea::K[.K[' and if2 = Za::K!2.K2' and (Aij/Tj) is (A2;X2) and
VA; D AI,A'2 D A2 if (A^A^A'J) is (A2:A2;i^2) then
(A[-:[Ai/a}K'{) is (A^;[A2/«]X£)

• (Aüif, <Li) is (A2;A2<L2)iff

1. VA'1DAi,A'2DA2if(A'1;^i;Ä-1) is (A2; A2; K2) then (A'i; Ai; L,) is (A^;A2;L2).

Figure 5.2: Logical Relations for Kinds

With these definitions in hand I construct derived relations. The relation (Ai;Ä"i < L-\) is
(A2;Ä"2 < L2) is defined to satisfy the following "subsumption-like" behavior:

{AuA^Kt) is {A2;A2-K2)
(AuK! <Lj) is (A2;tf2<L2)

(Ai^uLj) is (A2;A2;L2)

Finally, validity and equivalence relations for substitutions are defined pointwise.

The first property to be checked is that the logical relations are monotone (preserved when
passing to future worlds), which corresponds to the weakening property for the algorithmic relations.

Lemma 5.3.1 (Algorithmic Weakening)
1. IfT>A^ B and V D T then V>A^B

2. If T > A $ p and V D T then T' > A ty p.

3. IfT>At K andT' D T then Y'\>A^K.

4. If Tj > Ai :: Kx «• T2 > A2 :: K2, T\ D Tu and T'2 D T2, then T[» Aj :: Kx <* T'2 > A2 :: K2.

5. If Yx > Ay t Ki o T2 > A2 t K2, ri D Ti, and T'2 D T2, then r'} >41|if1H T'2 > A2 t K2.

• (A; A; K) valid iff

1. (A; if) valid

2. And,

- K = T and A > A :: T <s> A > A :: T.

- Or, K = S(B) and (A; A; T) is (A; B; T).
- Or, K = Ua::K'.K", and VA' D A, A" D A if (A';Bi;K') is (A";ß2;-K'/) then

(A';Aßi;[ßi/a]ÜT") is (A";AB2; [ß2/a]Ä"')-
- Or, if = Ea-.-.K'.K", (AJTTIA; if') valid and (A; 7r2A; [TTI A/a] if") valid

• (Ai;Ai;Ä-i) is (A2;A2;if2)iff

1. (Ai;ifi) is (A2;if2)

2. And, (Ai;^i;ifi) valid and (A2; A2;K2) valid

3. And,

- üfi = if2 = T and Ai > Ax :: T <S> A2 > A2 :: T.
- Or, Kx = S{B!), K2 = S(B2), and (Ai;Ai;T) is (A2;A2;T)
- Or, Kx = Ha::K[.K'{, K2 = na::if2.if2', and VA'X D Ai, A'2 D A2 if

(A'i;JBi;iq) is (A2;JB2;if2)then
(A'i; Ai ßi; [Si/a]*?) is (A'2; A2 52; [S2/a]^).

- Or, Kx = Y,a"K[.K'{, K2 = Ea::if2.if2', (A^TTI^; ifj) is (A2; TTIA2; if2) and
(Ai;^;^/«]*?) is (A2;7r2A2;[7riA2/a]X2')

Figure 5.3: Logical Relations for Constructors

• (A; 7; T) valid iff

1. VaGdom(r). (A;7a;7(r(a))) valid.

• (Ai^ijrO is (A2;72;r2)iff

1. (Ai;7i;Ti) valid and (A2;72; T2) valid

2. And, Va G dom(ri) = dom(r2). (Ai;7ia;7i(ri(a))) is (A2;72a;72(r2(a))).

Figure 5.4: Logical Relations for Substitutions

89

6. If Ti>K1<$r2>K2, r[D Ti, and T'2DT2. then T[>Kl^T'2>K2.

Proof: By induction on algorithmic derivations. I

Lemma 5.3.2 (Monotonicity)
1. If(Al;Kl) valid and A\ D Al then (A\;Ki) valid.

2. If {Ai;Ki) is (A2;K2), A[D Au and A'2 D A2 then {A\;Ki) is {A'2;K2).

3. If (Ai;Ä"i < Li) is {A2:K2 < L2), A[D Au and A'2 D A2 then
(A'^KiKLj) is (A'2;K2<L2).

4. //(Ai; Au üfi) valid and A\ DA] i/ten (A[:Ai;K}) valid.

5. 7/(A];Ai;ifi) is (A2;42;ür2), A', D Al7 and A'2 D A2 «fee» (A'3; Ai; if]) is (Af2; ,42; tf2).

6. // (A; 7; T) valid and A'DA Men (A'; 7; T) valid.

7. //-(Ai^ri) is (A2;72;r2), A't D A1; and A'2 D A2 then (A'j^T,) is (A2;72;r2)

Proof:

1-5. By induction on the size of kinds.

6-7. By the previous parts.

The logical relations obey reflexivity, symmetry, and transitivity properties. The logical rela-
tions were carefully defined so that the following property holds:

Lemma 5.3.3 (Reflexivity)
1. (A; if) valid if and only if (A: K) is (A:K).

2. (A; A; K) valid«/ and only if (A: A: K) is (A; A;K).

3. (A; 7; T) valid if and only if (A; y;T) is (A;7;T).

Proof: The "if" direction is immediate from the definitions of the logical relations, so we only
show the "only if" direction.

1. By induction on the size of K. Assume (A; K) valid.

• Case: K = T. Follows by definition of (A: T) is (A; T).

• Case: K = S(B).

(a) (A; B; T) valid.
(b) A>5::T«A>ß::T.

(c) Then (A;JB;T)valid
(d) and (A;B;T) is (A;5;T).
(e) Therefore (A; S(B)) is (A; S(B)).

• Case: K = Uar.K'.K".

(a) By (A;Ua::K'.K") valid we have (A; K') valid.
(b) By the inductive hypothesis, (A; K') is (A;K').

(c) Let (A', A") D (A, A)

(d) and assume {A';Ai;K') is {A";A2:K').

90

(e) By (A;IIa::ir.ir')validwehave {A';[Ai/a]K") is (A";[A2/a]K").

(f) Therefore (A;Ua::K'.K") is (A;TLa::K'.K").

• Case: K = Ea::K'.K".

Same proof as for II case.

2. By induction on the size of A. Assume (A; A; K) valid. Then (A; K) valid so that by
part 1, (A;üQ is (A;üQ.

• Case: K = T.

(a) (A; A; T) valid implies A > A :: T <£> A > A :: T.
(b) Therefore, (A;A;T) is (A;A;T).

• Case: K = S(B).

(a) (A; A; S(B)) valid implies A > A :: T «» A > B :: T.
(b) By Lemma 5.2.1, A > A :: T O A > A :: T,
(c) so (A; A; T) valid

(d) and (A;A;T) is (A;A;T).
(e) Therefore (A; A; S(B)) is (A;4;S(B)).

• Case: K = Uar.K'.K".

(a) Let A', A" D A and assume {A'IB^K') is (A";B2;lT).

(b) Then (A';ASi;[Bi/a]A-") is (A";A£2; [£2/«]#")■
(c) Therefore (A; A; naxuf'-uf") is (A; A;na::iT.iT').

• Case: K = Zar.K'.K".

(a) Then (A; mA; K') valid
(b) and (A;7r2^;[7ri^/a]K")valid.
(c) By the inductive hypothesis, (A;TTIA;K') is (A;iriA; K')

(d) and(A;7r2A;[7riA/a]ür") is {A;TT2A; [inA/a]K").

(e) Therefore (A; A; EaxiT.X") is (A; A; £a::iT.lT').

3. (a) Assume (A; 7; Y) valid.

(b) Let x G dom(F) be given.

(c) Then (A; 72:; -y{Yx)) valid.

(d) By part 2, (A;7a:;7(ra:)) is {A^x-^Yx)).

(e) Therefore (A;7;T) is (A; 7;]?).

I next give a technical lemma which relates logical equivalence of kinds to logical subkinding.
An easy corollary of this lemma is the following rule:

(Ai;^;^) is (A2;A2;K2)

(Ai;üTi) is (A2;K2)
is is

(Ai;Li) is (A2;L2)

(Ai;Ai;Li) is (A2;A2;L2)

91

Lemma 5.3.4
If (A^Lr) is (A2;L2), (AnÄ-j) is (Ai;L,), anrf (A2; tf2) is (A2;L2) i/,,en
(Aüüfx^Li) is (A2;X2<L2).

Proof: By induction on the sizes of kinds.
Assume (A] ;Li) is (A2; L2), (Aj; K}) is (Ai; Lx). and (A2; K2) is (A2;L2).
Let (A'j,A2) D (Ai, A2) and assume (A'^A^K^) is (A2;.42; £T2). Then (&\;KX) is (A2;K2).

• Case Ki= K2 = Li = L2 = T. (A',;,4i;T) is (A'2: A2;T) by assumption.

• Case Kx = S(Bi), K2 = S{B2), Lj = S(d), and L2 = S(C2).

1. By weakening, A[> B\ :: T & A\ t> Ci :: T

2. and A2 > #2 " T O A2 > C2 :: T

3. and A'x > Ci :: T ^ A2 > C2 :: T.

4. Similarly, A'j > A\ :: T o A'j > 5] :: T,

5. A'2 > A2 :: T «■ A2 > B2 :: T, and

6. and A'j > ^i :: T & A2 t> A2 :: T.

7. Thus by transitivity, A\ > 4i :: T <£> A\ > Cx :: T

8. and A2 o A2 :: T <& A2 > C2 :: T.

9. Therefore (A'l5 ^i; S(d)) valid,

10. (A'2;A2-S{C2)) valid,

11. and (Ai;i4i;S(Ci)) is (A2;^2; S(C2)).

• Case: i^ = Ha::K[.K'{, K2 = Ua::K2.K^ Lx = Tla::L\.L'{, and L2 = n«::L2.L2'.

1. Let (A'/,A2') D (A'l7A2) and assume (A'/; Bi; L'J is (A2'; B2; L'2).

2. By monotonicity, (A'/;^) is (A'2';K2),

3. (A'/;^) is (A'2';L'2),

4. (A'{;K[) is (Ai';Li), and

5. (A2';^2) is (A2';L2).

6. By reflexivity and the inductive hypothesis, (A";L\ < K[) is (A'2';L'2 < K2),
{k'[;L'x<K[) is (A';;L[<L[), and (A'2'; L'2 < tf2) is (A2'; Z/2 < L2).

7. Thus (A'/; Bj; #{) is (A'2'; 52; K'2).

8. Since (A'/; Bi; L[) is (A'/; 5i; L'j) and (A%;B2;L'2) is (A'2'; B2; L2),

9. we have (A'{;BuK[) is (A'/;ßi;L[),

10. and (A'^B2;K2) is (A2'; ß2; L'2).

11. So, (A'{;A1B1;[Bl/a]K») is (A'2'; A2 52; [B2/a]K^,

12. (A'/;^/«]^') is (Ai';[Bi/a]Li'),

13. {b!l;[Bxla]L'() is (A'2'; [ß2/«]L'2'),

14. and (A'2'; [B2/a]K2') is (A2'; [B2/a}L'2').

15. By the inductive hypothesis.
{^[Blla]K'{<[Blla]L'{) is (A2'; [B2/«]^ < [B2/a]L%).

92

16. Thus (A'/;;!! #!;[#!/«]£'/) is (A%;A2 B2; [B2/a]L%).

17. Similar arguments show that (A[;Ai; U.a::L'vL") valid and (A2;A2;ria::L2.L2) valid.

18. Therefore (Ai;Ai;na::Ii.lY) is (A2;^2; ILx:L2.L2').

• Case: Kx = Yla::K[.K'-l, K2 = Ha::K'2.K'2\ Lx = Za::L[.L'{, and L2 = Y,a::L'2.L%.

1. (A'i;7riAi;ür{) is (A'2; TT^;^).

2. Also, (A'i;K[) is (A2;K2),

3. (A'^Li) is (A2;L'2),

4. (A'i;^) is (A'I;L;),

5. and(A2;i<:2) is (A2;L2).

6. By the inductive hypothesis, {A\;K[< L[) is (A'2;K2 < L2),

7. so (Ai;7riAi;Li) is (A2;TTIA2;L2).

8. By similar considerations, (A[; [iriAi/a]K") is (A^; [iriAi/a]L'{),

9. (A2;[7T2^2/a]X2') is (A'2; [^A2la]V[),

10. and(Ai;[7rii4i/a]Li') is (A2; [Tr^/a]!^').

11. By the inductive hypothesis,
(A'^tTnAi/a^'^tTn^HL'/) is (A^;[7rii42/a]^<[7riA2/a]L^).

12. Since (Ai;7r2j4i;[7rij4i/a]ür{') is (A2;TT2,42; [Tn^/a]!^'),

13. we have (Ai;7r24i; [Tr^i/ajL'/) is (A'2;7r2,42; [^^/a]^').

14. Therefore (Ai;Ai;Ea::Li.Li') is (A'2;^2; Sa::L'2.L2').

I

Symmetry is straightforward and exactly analogous to the symmetry properties of the algorith-
mic relations.

Lemma 5.3.5 (Symmetry)
1. //(AIJüCX) is (A2;K2)then(A2;K2) is (Ai;#i)

2. 7/(AI;AI;ü:I) is (As;^;/^) *Aen (A2;^2;X2) is (Ai;^;^).

3. If {Ar^^Yr) is (A2;72;r2) then (A2;72;r2) is (Ai^uTi).

Proof: Parts 1 and 2 are proved simultaneously by induction on the size of kinds. Part 3 then
follows directly.

1. Assume (Ai;K{) is {A2;K2). Then (Ai;Ä"i) valid and (A2; K2) valid.

• Case: Kx = K2 = T. Trivial.

• Case: Kx = S(^i), K2 = S(A2).

(a) (Ai;Ai;T) is (A2;A2;T).
(b) Inductively by part 2, (A2;A2;T) is (Ai;Ax;T).

(c) Therefore (A2;S(A2)) is (AI;S(J4I)).

• Case: Kx = Ua::K[.K'{ and K2 = Ua::K2.K2\

(a) (Ai;#Q is (A2;K2)by(A1;K1) is (A2;K2),

93

(b) Inductively, (A2;#2) is (Ai;Ä"{).
(c) Let A\ D A] and A2 D A2 and assume {A'2:A2\K'2) is (A'i; Ax\ K[).

(d) Inductively by part 2, (A^i; KJ) is (A'2;A2;K!2).

(e) By(Ai;Ä-i) is (A2; K2) again, (A'i; [4 j/«]#{') is (A'2;[A2/a]K%)

(f) By the inductive hypothesis again, (A'2; [A2/a]K![) is {A\;[Ax/a]K[').

(g) Therefore, (A2; n«::^.^') is (A]; II«::^.^").

• Case: Xj = Y.a::K'vK'{ and X2 = ^a::K'2.K'2\ Same proof as for Ü types.

2. Assume (Ai;i4i;Ä"i) is (A2M2;tf2). Then (AHA"]) is {A2;K2), (A^A^Ki) valid, and
(A2; ^2; if2) valid.

Bypartl, (A2;K2) is (A,;^).

• Case Kx = K2 = T.

(a) Ai > Ai :: K\ O A2 > ^2 " #2

(b) By Lemma 5.2.1, A2 > A2 :: K2 & Ax > ^ :: i^.

(c) Therefore (A2;A2;T) is (Ai;Ai;T).

• Case Ki = S{Bi) and K2 = S{B2).

(a) (Ai;^i;T) is (A2;A2;T).

(b) By the inductive hypothesis, (A2;,42;T) is (Ai;Ai;T).

(c) Therefore (A2;A2;S{Bi)) is (Ai; Ay, S(B2)).

• Case Kx = U.a::K[.K'{ and K2 = Iia::K'2.K'2\

(a) Let A2 2 A2 and A'x D Aj and assume (A^;B2;^) is (A\;Bi;K[).

(b) By the inductive hypothesis, {A\\BX;K[) is (A'2;B2-K!2).

(c) Thus(A'];^iß1;[i?i/a]X;') is (A£;A2B2; [B2/a]tf£).

(d) By the inductive hypothesis, (A2; 42 B2; [B2/a]K%) is (A',;ylißi;[ßi/ß]X5').
(e) Therefore {A2; A2;Tia::K'2.K'{) is (Aj; A]; Tla::K[.K'{).

• Case Ki = Y,a::K[.K'{ and ÜT2 = Y,a::K'2.K'2\

(a) Then(Ai;7n^i;K0 is (A2; TT^; #2)

(b) and (AiiTTa^i^TriAi/ajÄ-n is (A2;7r2^2; [TTI^/O^').

(c) By the inductive hypothesis, (A2; 7TiA2; K2) is (Ai; 7ri,4i; if})

(d) and(A2;7r2A2;[7ri^2/a]^') is (Ai; v2Ax- [TTJ Ai/a]^').

(e) Therefore (A2;A2;Za::K2.K%) is (Ai;4i; £<*::#{ .#{').

In contrast, the logical relation cannot be easily shown to obey the same transitivity property
as the algorithmic relations; it does hold at the base kind but does not lift to function kinds. I
therefore prove a slightly weaker property, which is nevertheless what we need for the remainder
of the proof. The key difference is that the transitivity property for the algorithm involves three
contexts/worlds whereas the following lemma only involves two.

Lemma 5.3.6 (Transitivity)
1. i/(Ai;X!) is (Ai;Li) anrf(Ai;Li) is {A2;K2) then {Ax-Kx) is {A2-K2).

94

2. If{Ax;Ax;Kx) is (Ai;ßi;Li) ond (Ai;5i;Li) is (A2;A2;K2) then
(AX;AX;KX) is (A2;A2;if2).

Proof:

1. Assume (Ai;ifi) is (A^Li) and (Ai;Zq) is (A2;K2). First, (Ai;Xi) valid and
(A2; invalid.

• Case: Kx = Lx = K2 = T.
(Ai;T) is (A2;T) always.

• Case: Kx = S(Ai), Lx = S(Bi), and ÜT2 = S(A2).

(a) Then Ai > Ax :: T <S> Ai > ßi :: T
(b) and Ai t> Bx :: T <^> A2 t> A2 :: T.

(c) By Lemma 5.2.1, Ai > Ax :: T <£> A2 > A2 :: T.

(d) Therefore (Ai;S(Ai)) is (A2;S(A2)).

• Case: Kx = Ua::K[.K?, Lx = Ua::L'vL'{, and K2 = Ua::K2.K!{.

(a) (AX;K[) is (Ai;^) and (Ai; L[) is (A2;K2).

(b) By induction, (Ai;ÜT{) is (A2;K2).

(c) Let(A;,A2)D(Ai,A2)

(d) and assume (A[; Ax; K[) is (A'2;A2; K'2).

(e) By Lemma 5.3.3, (AX;K[) is (Ai;ÜT{).

(f) By monotonicity and Lemma 5.3.4, (A[;K[< K[) is (Ai;Ä"(< Z/J.

(g) Since (A'i; Ai;ÜT0 is (A'i; Ai;#I),
(h) we have {A\-Ax-K[). is (A'i; Ai;Li).

(i) Thus(A'1;[A1/o]^') is (A'^AiML'i).

(j) Similarly, {A[;K[< L[) is (A'2;K2 < K2).

(k) Then (A'I;AI;L;) is (A2;A2;if2).

(1) So, (A'^AiML'i) is (A2;[A2/a]*:2').
(m) By induction, (A'x; [Ax/a]K'{) is (A2; [A2/a]K2').

(n) Therefore (Auna-Üfi-ÜTn is (A2; Jla::K'2.K^).

• Case: #i = Ea::K[.K'{, Lx = Xa::L'vL'(, and K2 = Xa::K2.K%.

Same proof as for II types.

2. Assume (AX;AX;KX) is (Ai;I?i;Li) and (Ai;J5i;Li) is (A2;A2;K2). Then
(Ai; AX;KX) valid, {A2;A2;K2) valid, (Ai;Ä"i) is (Ai;Li), and (Ai;Lx) is (A2;K2). By
part 1, (Ai;Ki) is (A2-K2).

• Case: Kx = Lx = K2 = T.

(a) Ai o Ax :: T <£> Ax > #i :: T

(b) and Ai > Bx :: T «4> A2 > Ax :: T.

(c) By Lemma 5.2.1, Ai > Ax :: T & A2 > A2 :: T.

(d) Therefore (Ai;Ai;T) is (A2;A2;T).

• Case: Kx = S(A'1), Lx = S(B[), and K2 = S(A2).

95

(a) (Ai;Ai;T) is (Ai;£i;T)
(b) and (Ai;£i;T) is (A2;A2:T).
(c) By the inductive hypothesis. (A^.A^.T) is {A2:A2;T).

(d) Therefore (Ai^nS^',)) is (A2; A2; S(,42)).

Case: K] = Ua::K[.K'{, Lx = Ua::L\.L'{, and K2 = Ua::K2.K!J.

(a) Let(A'1,A2)D(A1,A2)

(b) and assume (Aii^iÄ-!) is (A'.2;A'2:K!2).

(c) Then by monotonicity (A\;K[) is (A'i; L\) and (A'j; L'j) is (A'2;ä£).

(d) By Lemma 5.3.4, (A\;K[< K[) is {A\-K[< L\).

(e) By Lemma 5.3.3, {A\; A\; K[) is (A'j.; A'j;^),

(f) SO(A'1M'];K:{) is (A;:^;^).

(g) TlmsiA^AyA'^iA'JajK'i) is (A\-B{A\:[A'Ja]L'{).

(h) Similarly, (A'^üfJ < L'j) is (A2;K2 < #2).

(i) so{A\:A\;L\) is (A2; ,42; K>2).

(j) Thus, (Ai;^!^;^/«]^') is {A'2-A2A'2,{A'2la]K^).

(k) By the inductive hypothesis, (A'i; Aj A\: [A[/a]K[') is (A2; 42 A'2; {A2/a]K!^).

(1) Therefore, (Ai; Ax; Ila::K[.K'{) is (A2; A2\ Yla::K!2.K'2').

Case: Kx = Ea^A'^', Lx = iZa::L\.L'[, and A2 = Ea::K!2.K!J.

(a) (AuTn^nÄ-J) is (AuTnßjiL'j)
(b) and (AijTr^ijLj) is (A2; TTI^-K^).

(c) By the inductive hypothesis. (Ai; 7TiAi; K[) is (A2; 7ri^42; A2).

(d) Similarly, (Ai ;Tr2A1-[n1A, /a]K'{) is (A,: n-.B,; [TTXB, /a]L'()

(e) and (A^Tr^;^/«]£'/) is (A2;T^2: [TT, A2/«]A2').
(f) By the inductive hypothesis, (Ai; 7T2J4I ; [niA]/a]K") is (A2; 7r2yl2; [-K\A2la}K").

(g) Therefore, (Au^; £«::#{.A?) is (A2; A2: T.a::K'2.K'^).

Because of this restricted formulation, I cannot use symmetry and transitivity to derive prop-
erties such as "if (Ai;Ä"i) is (A2;X2) then (Ai;A'i) is (Ai;Ä"i)". An important purpose of
the validity predicates is to make sure that this property does in fact hold (by building it into the
definition of the equivalence logical relations).

Definition 5.3.7
The judgment Y > A\ ~ A2 holds if and only if A\ and A2 have a common weak head reduc.t under
typing context T; that is, if and only if there exists B such that T o A\ ~->* B and F t> A2 ~->* B.

Note that this definition does not require that either constructor have a weak head normal form,
though if either constructor has one then they share the same one. The following lemma then shows
that logical term equivalence and validity are preserved under weak head expansion and reduction.

Lemma 5.3.8 (Weak Head Closure)
1. IfT>A^ B then T t> £[A] ~> £[B]

2. If V > Ax ~ A2 then T > £{Ax] ~ £[A2]

96

3. If (A; A; K) valid and A > A' ~ A, then (A; A'; K) valid.

^. //(AijAijÄ-!) is (A2;A2;.K2), Ax >A'1 ~ Ai, and A2 > A2 ~ A2 then
(A^A^Id) is (A2;A'2;K2).

Proof:

1. Obvious by definition of T > A ~» 5.

2. By repeated application of part 1.

3. Proved simultaneously with the following part by induction on the size of K. Assume
(A; A; K) valid and A > A' ~ A. Note that (A; K) valid.

• Case: K = T.

(a) A>A:: T <£> At>A:: T.

(b) By the definition of the algorithm and determinacy of weak head reduction,
A>i'::T^>Ac>A'::T.

(c) Therefore (A; A'; T) valid.

• Case: K = S(B)

(a) Then A > A ::T <£> A > B :: T
(b) so by the definition of the algorithm and determinacy of weak head reduction

A>Ä ::T<S> A>B :: T

(c) which yields (A; A'; S(B)) valid

• Case: K = Uar.K'.K".

(a) Let A', A" D A and assume that (A';Bi;K') is (A";B2;K').

(b) Then(A';ABi;[Bi/a]lH is (A"; AB2; [B2/a]K"),
(c) By part 2 and an obvious context weakening property, A' t> A B\ ~ A' i?i

(d) and A">4ß2- A'52.
(e) By the inductive hypothesis, (A'; A'B^, [Bi/a]K") is (A"; A'B2; [B2/a]K").
(f) Therefore, (A; A'; Uar.K'.K") valid.

• Case: K = Ear.K'.K".

(a) Then (A;7TiA;iT)valid

(b) and by part 2, A > ix\A' ~ 7TiA.

(c) By the inductive hypothesis, (Ay, iriA^; K[) valid.
(d) Byreflexivity(A1;7r1Ai;K0 is (A^TnA'^)-
(e) and inductively by part 4, (A; 7TiA; K') is (A;iriA';K').

(f) Similarly, (AI;TT2A; [TTIA/«]^") valid,
(g) and A > -K2A' ~ 7r2A,

(h) so by the inductive hypothesis again, (A;7r2A'; \K\AJ a\K") valid.
(i) But (A; [mA/alK") is {A;[iriA'/a]K"),

(j) so by reflexivity and Lemma 5.3.4,
(A; [iriA/a]K" < [iriA'/a]K") is (A; [inA/a\K" < [niA'/a]K").

(k) so (A; 7r2A'; [iriA'/a]K") valid.
(1) Therefore, (A; A'; Ea::K'.K") valid.

97

4. Assume (Ai;Ai;Ki) is (A2;A2;K2): A] > A\ ~ Au and A2 o yl'2 ~ A2. First, note that
(Ax; 4i; Invalid, (A2; A2; K2) valid, and (Ai;#i) is (A2;K2). By the argument in
part 3, (Ai; A[; K\) valid and (A2; A'2\K2) valid.

• Case: Ä"i = K2 = T.

(a) A] o Ai :: T & A2 > A2 :: T.

(b) By the definition of the algorithm. Ai > A\ :: T O A2 > .A2 :: T.

(c) Therefore (Ai;^'i;T) is (A2;,42;T).

• Case: Kx = S(#i) and K2 = S(52).

(a) Then Ai > Ax :: T O A2 > 42 " T

(b) so Ai > A\ ::T«A2t>^::T

(c) which yields (Ai;^;S(i?i)) is (A2;A2:S(B2)).

• Case: Kx = Ua::K[.K'{ and K2 = Ha::K2.K!J.

(a) Let A; D AI and A'2 D A2 and assume that (A',;BX;K[) is (A'2;B2;K'2).

(b) Then (A'^^;[£?,/«]#;') is (A2: A2 B2; [B2/a]K!J),

(c) By part 2 and an obvious weakening property, A'j c> A\ B\ ~ .4'j Z?i

(d) and A2 > A2 -B2 ^ 42 £2-

(e) By the inductive hypothesis {A\;A\ Bi; [ßj/«]#!') is (A2; 4'2 B2; [#2/a:]K2').

(f) Therefore, (A]; A\; Iia::K[.K'{) is (A2; A'2;Ua::K2.K^).

• Case: Kj = Ea::K'vK[' and X2 = Va::K2.K'2'.

(a) Then(Ai;7ri,4i;Ä"{) is (A2; wiA2; K'2),

(b) (Ai;7Ti^i;^) is (AnTr^Ä-J),

(c) (A2;7n^2;jft:2) is (A2; TT^; K2),

(d) and by part 2, A] > it\A\ ~ TTIAI,

(e) and A2 o 7ri^4'2 ~ 7Ti^42.

(f) By the inductive hypothesis, (A\;-niA\;K[) is (A2; iriA'2; K2),

(g) (AijTr^i;^) is (AUTTI^;^),

(h) and (A2;7riyl2;X2) is (A2; TTI.42; i^).

(i) Similarly, (Ai;7r2^i; [TTI^/a]K'() is (A2; TT2A2; [TTJ 42/«]tf£),

(j) A^TM; ~7T2AI,

(k) and A2 > 7r2^42 ~ 7r2^42.

(1) By the inductive hypothesis again,
(A1;n2A'i;[TT1A1/a]K[') is (A2; TT2A'2; [TTI^/O^').

(m) But (Aiiifi) is (Ai;üTi)and (A2;X2) is (A2;K2),

(n) so(Ai;[7r1^1/a]Ä'n is (A^faA'MK?),
(o) (A2;[7ri^2/a]X2') is (A2; {-KXA2/a}K'>),

(p) and(Ai;[7riA'1/a]^') is (A2; [^A'2/a]K![).

(q) By Lemma 5.3.4,
(Ai;[7n^i/a]Ä-{' < [nA/aW) is (A2; [n.AJa]^ < [mA'Ja]^).

(r) so(Ai;7r2^'1;[7nJ4'1/a]^r) is (A2; 7r2^2; [7r^2/a]K2').
(s) Therefore, (Ai;^/

1;Ea::Ä'{.Ä'{') is (A2; A'2; Xa::K!2.K!2').

98

Following all this preliminary work, I can now show that equivalence under the logical relations
implies equivalence under the algorithm. This requires a strengthened induction hypothesis: that
under suitable conditions variables (and more generally paths) are logically valid/equivalent.

Lemma 5.3.9
1. //(AIJüTI) is (A2;K2)thenAit>Kl&A2>K2.

2. //(AijAxjüd) is {A2;A2;K2)thenAl>Al::Kl^A2>A2::K2.

3. If (A; K) valid, A > p t K <-> A > p tK, then (A; p; K) valid.

I If(Ai;Ki) is {A2;K2) and A1 >Pl t Kx & A2 >p2 f K2 then (Ax;Pl:Kx) is (A2; p2; K2).

Proof: By simultaneous induction on the size of the kinds involved.

For part 4, note that in all cases Ai >pi | K\ <-> Ai > p\ f K\ and A2 > p2 t K2 ■<->■ A2 > p2 t -^2 by
symmetry and transitivity of the algorithm, (Ai; K\) valid, and (A2; K2) valid. Hence by part 3,
(Ai;pi;Ä"i) valid and (A2;p2;K2) valid.

• Case: K = KX = K2 = T.

1. Ai > T <=> A2 > T by the definition of the algorithm.

Assume (Ai;yli;T) is (A2;A2;T).

By the definition of this relation, Ai > A\ :: T <£> A2 > ^42 - T.

Assume (A; T) valid and

At>pt T +* A>pt T.

By Lemma 5.2.2, A >p | T.

Then A > p JJ. p because p is a path without a definition,

so A>p:: T <£> A>p:: T.

Therefore (A;p;T) valid.

Assume Ai > pi f T <H- A2 > p2 | T

and (Ai;T) is (A2;T).

By Lemma 5.2.2, Ai >pi t T and A2 >p2 t T.

Thus Ai >pi JJ.pi and A2 >p2 -IJ-P2-

so Ai >pi :: T <(=> A2 >p2 :: T.

Therefore (Ai;pi;T) is (A2;p2;T).

= S{B), Kx = S(ßi), and K2 = S{B2).

Assume (Ai;Ki) is (A2;K2).

Then by definition (Ai;#i;T) is (A2;£2;T),

so Ai > Bi :: T & A2 t> B2 :: T.

Therefore, Ai > S(Bi) <^ A2 0 S(52)-

Then(Ai;Ai;T) is (A2;A2;T).

Thus Ai t> Ai :: T <s> A2 > A2 :: T.

By the definition of the algorithm then, Ai > A\ :: S(£i) «=> A2 > A2 :: S(B2)

2. (a)

(b)

3. (a)

(b)

(c)

(d)
(e)

(f)
4. (a)

(b)

(c)
(d)

(e)

(f)

Case: K

1. (a)

(b)

(c)

(d)

2. (a)

(b)

(c)

99

3. (a

(b

(c.
(d

(e

(f

(g:
4. (a

(b
(c

(d

(e

Case: K = Uay.K'.K", Kx = Iia::K[.K'{, and K2 = Yla::K!2.K!J.

1. (a

(b

(c
(d

(e

(f

(g
(h

2. (a

(b

(c
(d

(e

(f
3. (a

(b

(c
(d

(e.

(f

(g
(h

(i
4. (a

(b

Assume (A; S(B)) valid,

and A>p^S{B) <-> A>j> | S(5).

By Lemma 5.2.2, A >p t S(5).
Then A > /> -^ Z? so A c> p ~ 5.

By (A; S(2?)) valid, A>B::T«A^::T.
By the definition of the algorithm, A>p :: T ■& A> B :: T.

Therefore (A;p; S(5)) valid.

Assume (Ai;S(ßi)) is (A2;S(£2)),

and Ai >pi tS(ßj) <-> A2 t>p2 T S(#i).
By definition of the logical relations, Ai > B\ :: T <!=> A2 o B2 :: T.

By Lemma 5.2.2, A] >pi f S(Bi) and A2 >p2 t S{B2).
That is, A] t>;;i ~> B\ and A2 t> p2 ~> B\.

Hence A] >pi :: T <=> A2>p2 :: T.

Therefore (Ai;p!;S(i?i)) is (A2;p2;S(#i)).

Assume (Ai;na::Ä"{.^r{') is (A2; n«::^.^')-
Then (Aj;^) is (A2:K!2).

By the inductive hypothesis we have Ai t> K\ <*=> A2 t> K2.

Now Ai,a::K[>a^K[^A2,a::K!2 >«t K2.
Inductively by part 4, (Aua::K[;a;K[) is (A2, a::K!2; a; K2).

Thus(Ai,a::Ä'J;Ä'{') is (A2,a::K!2; K^)
By the inductive hypothesis, Ai, a::K[> K'{ ■& A2, a::K2 > K".

Therefore Ai > Ua::K[.K'{ <* A2 > n«::^.^'.

Assume (Ai; Ai;n«::X{.A7) is (A2; A2; Iia::K'2.K^).

Then(Ai;na::Ä"{.Ä"{') is (A2; Iia::K'2.K'{)
so as above, inductively by part 4 we have (Ai,a::K[;a: K[) is (A2, a::K2, a; K2).

Then {Au a::K[;Al a; K'^) is (A2, a::K2; A2 a; K'{).

By the inductive hypothesis again, A\.a::K[& Aj a :: K" <^> A2, a::K2 t> A2 a :: K2.

Therefore Ai > Ax :: Tia::K[.K'{ «■ A2 > A2 :: ndiiÄ'J.Ä'j'.

Assume (A; K) valid

and A>p|-^'H'At>pt-^-
Let A',A"D A

and assume (A'; £';#') is (A";5";Ä"')-
Inductively by part 2, A' c> £' :: K' <=> A" > 5" :: K'.

Thus using Weakening, A' >pB' t [B'/ajÄ"" O A" >pß" | [ß"/a]X".

By (A; X) valid, (A';[B'/a]K") is (A"; [B"/a]A"").
Inductively by part 4, (A';pB';[B'/a]K") is {A";pB"- [B"/a}K").

Therefore (A;p; IlaxX'.if") valid.

Assume (Ai;na::Ä'{.Ä'{/) is (A2; na::^.K2'),

and Ai >pi t na::üT{.Ä'J' <-> A2 op2 t Uay.K^.K^.

100

(c) Let A'x D Ai and A'2 D A2 and assume that (A[; By K[) is (A2;B2;K2).

(d) Then(A'i;[Si/a]ürn is (A2; [B2/a]K!l).
(e) Inductively by part 2, A': > #i :: K[& A'2 > B2 :: K2,

(f) and by Weakening, Ai >px \ Iia::K[.K'{ <-> A2 >p2 t Ua::K2.K^,

(g) so we have A': >pi #i t [#i/aR" <-» A'2 >p2 B2 t [B2/a]^'.
(h) By the inductive hypothesis, (A'ypiBy^Bi/o^K'l) is (A'2;p2 £2; [B2/a]Ä"2).

(i) Therefore {AypyIia::K[.K'{) is (A2;p2; Ila::!^.^')-

• Case: K = Za::K'.K", Kx = Y,a::K[.K'{ and K2 = Y,a::K'2.K'2\

1. The corresponding argument for the II case also applies here.

2. (a) Assume (Ai;Ai;Ea::üf{.ür{') is (A2; A2; ^a::K2.K!^).

(b) Then(Ai;7rii4i;Ä'l) is (A2;7riA2;Ä'^).

(c) and(Ai;7r2Ai;[7rii4i/a]Jfi') is (A2;7r2A2; [Tri^/a]^')-
(d) By the inductive hypothesis, Ai > itiAi :: K[& A2 > 'K\A2 " K'2

(e) and Ai > n2Ai :: [iriAi/a]K" 4$ A2 > 7r2^2 :: {KiA2/a\K2
1.

(f) Therefore Ai > Al :: Y.a"K[.K'{ & A2> A2 :: Za::K2.K%.

3. (a) Assume (A; K) valid,
(b) and At>p\K^At>p\K.

(c) By definition of the algorithm, A > nip f K' -B- A > 7Tip f iT

(d) and A > 7r2p f [nip/a]K" -B- A > 7r2p f [n\p/a]K".

(e) By the induction hypothesis, (A; nip; K') valid.

(f) By Lemma 5.3.3, (A; nip; K') is (A;irip;K').

(g) By (A; i^) valid, (A;[irlP/a]K") is (A; [irlP/a]K").

(h) Thus (A; [irlP/a]K") valid.
(i) By the induction hypothesis again, (A; ir2p; [irip/a]K") valid.
(j) Therefore, (A;p; Ea::K'.K") valid.

4. (a) Assume (Ay^a::K[.K'{) is (A2; Ea::K'2.K^),

(b) and Ai >pi f £<*::#(.ÜT? ^ A2 »p2 t Xa::K2.K%.

(c) Then Ai > 7ripi t K[-H- A2 > 7rip2 t -^2
(d) and Ai > 7r2pi f [7ripi/a]iCf «->• A2 > 7r2p2 | [7rip2/a]JfC2'.

(e) The inductive hypothesis applies, yielding (Ai;7Tipi; K[) is (A2; 7rip2;K2)
(f) and (Ai;TT2Pi;[^iPi/a]K1) is {A2;Tr2p2;[itip2/a]K!{).

(g) Therefore (A1;pi;Sa::üT{.Ä'{/) is [A2;p2;^a::K2.K^).

Finally we come to the Fundamental Theorem of Logical Relations, which relates provable equiv-
alence of two constructors to the logical relations. The statement of the theorem is strengthened
to allow related substitutions, in order for the induction to go through.

Theorem 5.3.10 (Fundamental Theorem)
1. IfY\-K and(AyjyT) is (A2;72;r) then (Ay ^K) is (A2;72.f0.

101

2. IfT\-Ki<K2 and (A];7i;T) is (A2;72;r) then
(Ai;71X1 < 71 if2) is (A2;72ifi < 72^2), (Ai^iifi) is (A2;72^1), and
(Ai;71^2) is (A2;72Ä2).

3. IfT\-Ki=K2 and(Ai;7,;r) is (A2;72;r) Men (A,;^*",) is (A2;72if2),
(Ai;7iÄ"i) is (A2;72K1), and (A];7lif2) is (A2;72if2).

4. IfT\-A::K and (Ai; 7l; T) is (A2;72;r) Men (A,; 7^;^ if) is (A2;72.4;72if).

5. 7/ri-^ = A2 ::K and (Ai;7i;r) is (A2;72;r) to (Aj; 7^!; 7l if) is (A2;72A, ;72if),
(Ai;7iAi;7!if) is (A2;72,42;72if); and (Ai;yiA2: 7i^f) is (A2;72,42;72if).

Proof: By simultaneous induction on the hypothesized derivation.
Note that in all cases, (Ai;7i;T) is (A^uT) and (A2;72;T) is (A2;72;T).

Kind Well-formedness Rules: r h if.

• Case: Rule 2.7.

1. 7iT = 72T = T.

2. (Ai;T) is (A2;T).

• Case: Rule 2.8.

1. By the inductive hypothesis, (Ai;7i^4;T) is (A2;72A;T).

2. Therefore (Ai;S(7i,4)) is (A2;S(y2A)).

• Case: Rule 2.9.

1. By Proposition 3.1.1, there is a strict subderivation r,o::if' h ok

2. and by inversion a strict subderivation F h if'.

3. By the inductive hypothesis, (Aj ;7i if) is (A2;72if').

4. Let Aj D Ai and A'2 D A2 and assume that (A'i;^i;7iif') is (A2; ,42;72if').

5. Then by monotonicity (Ai;7i[ai->Ai];r, o::if') is (A'2;72[o'H>J42]; T, o::if').

6. By the inductive hypothesis, (A^; (71 [a^A\])K") is (A2; (72[o-H->J42])if").

7. That is, (A'i;[>li/a]((7i[a^a])if")) is (A'2;[A2/a]((l2[a^a])K")).

8. Therefore, (Aj; 71 (na::if'.if")) is (A2;72(no:::if'.if")).

• Case: Rule 2.10. Just like previous case.

Subkinding Rules: T h if 1 < if2. In all cases, the proofs that (Ai;7iifi) is (A2;72ifi) and
(Ai;71X2) is (A2;72if2) follow essentially as in the proofs for the well-formedness rules.
Let Aj D Ai and A2 D A2 and assume {A'^By.^Ki) is (A2; £2;72ifi).

• Case: Rule 2.11. ifi = S(A) and if2 = T. By monotonicity and the definitions of the logical
relations.

• Case: Rule 2.12. Kx = S{AX) and if2 = S{A2), with r h Ai = A2 :: T.

1. By the inductive hypothesis we have (A'1;jiA2;T) is (A'2; 72^42; T),

102

2. (A'i;7iAi;T) is (A'i;7lA2;T),

3. and(A,
2;72A1;T) is (A2;72A2;T).

4. Thus(Ai;S(7iA2)) is (A'2; S(72,42)),

5. (A'i;S(7l^)) is (A'i;S(7iA2)),

6. and(A2;S(72A1)) is (A2; S(72,42)).

7. so by Lemma 5.3.4, (A'1;S(7lA1) < S(7i^2)) is (A2;S(72.4i) < S(72^2)).

8. Therefore (A'i; Si; S(7iA2)) is (A2;£2; S(72,42)).

• Case: Rule 2.13. KX = K2 = T.

Trivial, since 71T = 72T = T and (A:; T) is (A2; T).

• Case: Rule 2.14. Kx = Ii.a::K[.K'{ and K2 = Ua::K^.K'2' with T h K2 < K[and
r,a::K2^K>;<K>>.

1. Let A'/ D Ai and A2' D A2 and assume (A'{; B'x\^iK'2) is (A2';S2;72JFC2).

2. By the inductive hypothesis, (A'x571^2 < 7i-K"{) is (A'2;72iC2 < ^2K[).

3. so (A'/;B[-7iKT{) is (A2';S2;72^)

4. andtA'/;^;^«^])^') is (A^B2B2;(l2[a^B'2])K^).

5. By monotonicity, (A'/^ifaf-)-^]; r,a::Ä"^) is (A'2
,;j2[oi^B'2];T,a::K2).

6. By the inductive hypothesis again,
(A'/;(7i[a^])K{' < (7i[o^])K2') is (A'2'; (l2[a^B'2])K'i < (72[o^B'2])K^),

7. so(A'1';JBißi;(7i[a^^])X^) is (A2';S2B'2; (-y2[a^B2})K^.

8. Thus(A'1;51;7l(na::^.^)) is (A2; ^^(Ila::^.^)).

• Case: Rule 2.15. Kx = Ea-i^.i^' and K2 = Y,a::K'2.K2' with T h Kj < X2 and
T,a::K[^ K'{ < K'2\

1. By the definitions of the logical relations, (A':; 7TiSi; 7iK{) is (A2;7riS2;72üf{).

2. By the inductive hypothesis, (A'x;7iKi < 71 K'2) is (A2;72if{ < ^2K'2).

3. Thus (Ai;7riSi;7iX2) is (A2;7r1S2;72K2).

4. Now (Ai;7i[ai->7riBi];r,<*::#{) is (A^72[ai->7r1.B2];r, <*::#{)

5. so by the inductive hypothesis, (A^; ('y\[a^t'KiBi})K,{ < (7i[ai-^7riSi])i;C2
/) is

(A/
2;(72[a->7riB2])ir{' < (72[a->7riß2])^).

6. Since (A'1;7r2Si;(7i[a^7r1Si])i<:f) is (A2;TT2B2; (-Y2[a^ir1B2])K'{),

7. (A'1;7r2Si;(71[a^7riSi])iT2') is (A'2;7r2S2; (72[«^7nS2])K2').

8. Therefore, (b!x;Bi\ii{Vct"K'2.K![)) is (A'2;B2;j2(^a::K2.K^)).

Kind Equivalence Rules: Y \- K\ = K2.
It suffices to prove that \iY\- K\ = K2 and (Ai;7i;T) is (A2;72;T) then
(Ai;7iKi) is (A2;72^2), because we can apply this to get (A2;72Ki) is (A2;72K2), so
(Ai;7ii^i) is (A2;72JFCI) follows by symmetry and transitivity. A similar argument yields
(Ai^i^) is (A2;72K2).
In all cases, the proofs that (Ai;7iXi) is (A2; 72-K1) and (Ai;71K2) is (A2;72if2) follow
essentially as in the proofs for the well-formedness rules.

103

• Case: Rule 2.16. K\ = K2 = T. (Aj; T) is (A2; T) by the definition of the logical relation.

• Case: Rule 2.17. Kx = S{Ai) and K2 = S{A2) with r h Ay = A2 " T.

1. By the inductive hypothesis, (Ai;7i^i;T) is (A2; 72^2; T).

2. Therefore, (A1;S(7l^1)) is (A2;S(72A2)).

• Case: Rule 2.18. Ä"i = n«::^.^;' and K2 = Ua-.-.K^KH with r h tf2 < K\ and
r,a::^r-üf{' < Ä#.

1. By the inductive hypothesis, (Ai;71 K[) is (A2;72-^2)-

2. Let A'j D Ai and A2 D A2

3. and assume (A'3; A\; J]K[) is (A2;^2;72i^2).

4. By the inductive hypothesis, (Aj; 7!^') is (A^^i^)

5. and (A'2:l2K[) is (A2:72K2).

6. By symmetry, (A2;72X2) is (A^^),

7. and by reflexivity (A\;-yyK[) is (A\;71 #,').

8. By Lemma 5.3.4, (A'i;7lX; < ^K[) is (A2;72#2 < j2K[),

9. so(A'];A1;7lÄ-{) is (A2: ^2;72^)-

10. By monotonicity, then, (A^JO-H-)-^]]; T,a::K[) is (A'2;72[m->,42]; T, «"iff).

11. By the inductive hypothesis again, (Aj; (7! [a*-+A{\)K'{) is (A2; (72[rv^^])^').

12. Therefore (Ai;71 {Yla::K[.K'{)) is (A2;72(n«::^.Ä'^))-

• Case: Rule 2.19. Same proof as for previous case.

Constructor Validity Rules: T \- A:: K.

• Case: Rule 2.20.

1. (Ai;T) is (A2;T)

2. Ai t> bi t T -H> A2 > bi f T.

3. Thus by Lemma 5.3.9 we have (Ai;6;;T) is (A2;6t;T).

• Case: Rule 2.21. Analogous to the previous case.

• Case: Rule 2.22. Analogous to the previous case.

• Case: Rule 2.23.

By the assumptions for ^\ and 72, we have (Ai;7i«;7i(r(a))) is (A2;72«;72(r(a))).

• Case: Rule 2.24.

1. By Proposition 3.1.1 there is a strict subderivation F h K'.

2. By the inductive hypothesis, (Ai;7ii^') is (A2;72-K"')-

3. Let Ai D Ai and A2 D A2 and assume {A\;By^yK') is {A'2]B2\j2K').

4. Using monotonicity, (A\;-{y[a^By\;Y,a::K') is {A'2;-y2[a<-^ B2); I\ a::K').

5. By the inductive hypothesis,
(A'i; (7i[a^JB1])^;'(7l[a^JBi])X") is (A2; (l2[a^B2])A: {j2[a^B2])K").

104

6. Now Ai > (-yi[a^Bi])A ~ {'ji(Xa::K'.A))Bi

7. and A2 > (72[aH>.B2])A ~ (-y2(\a::K'.A))B2.

8. By Lemma 5.3.8,
(A'l5 (Jl(\a::K'.A))B1; (7l[a^51])ff") is (A2; (72(Aa::iT.A))I?2; (l2[a^B2])K").

9. Similar arguments analogous to lines 3-8 (and reflexivity) show that
(Ai;7i(Aa::üT'.A);7i(na::Ä'/.Ä'"))valid

10. and (A2;72(Aa::lT.^);72(ria::ir.ir')) valid.

11. Therefore (Ai;7i(Aa::Ä"/.A);71(na::üT/.Ä'")) is (A2;72(Aa::ir.A);72(na::iT.ir')).

Case: Rule 2.25

1. By the inductive hypothesis (Ai; 71 A; 71 (K'->K")) is (A2;72A;72(iT-h£s:"))

2. and (Ai;^^';^^') is (A2;72A';72iT).

3. Therefore, (Ai;7l(AA');7i(iT')) is (A2;72(AA');72(#"))-

Case: Rule 2.26.

1. By the inductive hypothesis and reflexivity, (Ai; 71A1 ;7iif') valid

2. and (Ai;7iA2;7iif") valid.

3. Now Ai >7i^i ~ 7ri(7iAi,7iA2)

4. and Ai >7IT42 ~ 7T2(7I^4I,7I^42)-

5. By Lemma 5.3.8 we have (Ai;7ri(7iAi,7iA2);7iK') valid,

6. (Ai;7T2(7Ui, 71-42); 71-K"") valid

7. Therefore, (Ax; (7iAi,7iA2);7l(iT'x.fs:")) valid

8. A very similar argument shows that (A2; (72^4i,72^42);72(i
;f'xÄ'")) valid

9. and an analogous argument shows that
(Ai;<7141,71A2};7i(Ä''xÄ-")) is (A2; (j2A1:l2A2);j2(K'xK")).

Case: Rule 2.27.

1. By the inductive hypothesis, (Aj; 71 A; 71 {Za::K'.K")) is {A2\"f2A;~i2(Y,a::K'.K")).

2. Therefore (AI;TTI71 A;71K') is (A2;'K1J2A;J2K').

Case: Rule 2.28.

1. By the inductive hypothesis, (Ai;7iA;7i(£a::if'.ü:")) is (A2;72A;72(£a::ir.iT')).

2. Therefore (Ai;TC2^A;^([iTiA/a]K")) is (A2;TT272A;72([7r1A/a]Ä'")).

Case: Rule 2.29

1. By the inductive hypothesis, (Ai;7iA;T) is (A2;72A;T).

2. As in the case for Rule 2.8, (A^S^A)) is (A2;S(72A)).

3. Thus (Ai;7iA;S(7iA))valid,

105

4. (A2; 72-4; S(72^4)) valid,

5.'and(A1;7l^;S(71J4)) is (A2;l2A: S(l2A)).

• Case: Rule 2.30.

1. By the inductive hypothesis, (Aj; itiijiA):^[K') is (A2; ni(/y2A);'y2K'),

2. and (Av,^^A);7iK") is {A2;*2{y2A)-l2K").

3. Thus (Ai;7iA; 71 (ICXA"")) valid,

4. (A2;l2A-l2{K'xK"))valid.

5. and therefore (A];71A;7i(Ä''xÄ'")) is (A2;72,4:72(lf'xlf")),

• Case: Rule 2.31

1. {Ami{Ua::K'.K")) is (A2;72(n«::X'.ü:")) as in the case for Rule 2.9.

2. Let A; D AI and A2 D A2

3. and assume (A'j; 0^7!K') is (A2: B2;-y2K').

4. By monotonicity, (Aj^JftH-^]: r,«::lf') is (A2;72[«H>i?2]; I\ a::K').

5. By the inductive hypothesis,
(A^i-nla^ByDiAa^i-nloi^B^K") is (Af2; (72[«^B2])(^«); (j2{(y^B2))K").

6. That is, (A'1;(7i>l)51;(71[a.->£1])Ä'") is (A'2;(l2A)B2;(l2[a^B2])K").

7. and (Ai;7iA;7i(na::lf'.lf")) is (A2; j2M y2(J\a::K'.K")).

• Case: Rule 2.32

1. By the inductive hypothesis, {A\-^\A\^\K\) is (Ai;72A;72lfi)

2. and (Ai;7lÄ-i < 71^2) is (A2;72^i < 72^2)-

3. Therefore, (Ai;71 A;71/^2) is (Ai;72A;72lf2)

Constructor Equivalence Rules: T \- A\ = A2 :: K.
It suffices to prove that \iY\- A\= A2 :: if and (Ai;7i;T) is (A2;72;T) then
(Ai;7iAi;7iÄ") is (A2;72A2; 72-K"), because it follows that (A2\y2A]]j2K) is (A2; JiA2;y2K),
so (AI;7IJ4I;7IÄ") is (A2;72j42;72if) by symmetry and transitivity. A similar argument yields
(Ai; 714217110 is (A2; 72/12; 72-F0-

• Case: Rule 2.33. By the inductive hypothesis.

• Case: Rule 2.34.

By the inductive hypothesis and Lemma 5.3.5.

• Case: Rule 2.35.

1. By the inductive hypothesis, (Ai;71^1571 K) is (Ai;7iA2;7ilf)

2. and (Ai; 71A2;71 if) is (A2;72A3;72if).

3. By Lemma 5.3.6, {Ay^iAwyxK) is (A2;72A3;72if).

• Case: Rule 2.36.

Analogous to the proof for rule 2.24.

106

• Case: Rule 2.37.

Analogous to the proof for Rule 2.25.

• Case: Rule 2.38.

Analogous to the proof for Rule 2.27.

• Case: Rule 2.39.

Analogous to proof for Rule 2.28.

• Case: Rule 2.40.

Analogous to proof for Rule 2.26.

• Case: Rule 2.41.

Analogous to the proof for Rule 2.30.

• Case: Rule 2.42.

Analogous to the proof of Rule 2.31.

• Case: Rule 2.43.

By the inductive hypothesis and the definition of the logical relations.

• Case: Rule 2.44. By the inductive hypothesis.

A straightforward proof by induction on well-formed contexts shows that the identity substitu-
tion is related to itself:

Lemma 5.3.11
7/r h ok then for all ß e dom(r) we have (T;ß;T(ß)) is (T;ß;T{ß)). That is,
(r; id; T) is (T; id; T) where id is the identity function.

Proof: By induction on the proof of T h ok.

• Case: Empty context. Vacuous.

• Case: T,a::K.

1. By Proposition 3.1.1, T h K, and T h ok.

2. Also, a <£ dom(r).

3. By the inductive hypothesis, (T;ß;T(ß)) is (T;ß;T{ß)) for all ß G dom(r).

4. By monotonicity, (T,a::K;ß;({T,a::K)(ß))) is {T,a::K;ß;((T,a::K){ß))) for all
ß € dom(r).

5. By Theorem 5.3.10, {T;K) is (T;K)

6. and by monotonicity (F,a::K;K) is (T,a::K;K)

7. Now T, a::K t> a f K «-» T, a::K > a t K,

8. so by Lemma 5.3.9, (T,a::K;a;K) is (T,a::K;a;K).

I

This yields the completeness result for the equivalence algorithms:

107

Corollary 5.3.12 (Completeness)
1. IfrhKi=K2then(T;Ki) is (T;K2).
2. //n-'Ai=A2::Ä'</ien(r;Ai;Ä-) is (T\A2;K).
3. If TV- KX=K2 then T>Ki<*T>K2.

4. IfT\-Ai= A2 :: K then Y > Ax :: K O T > A2 :: Ä".

Proof:

1,2 By Lemma 5.3.11, wo can apply Theorem 5.3.10 with 71 and j2 being identity substitutions.
3,4 Follows directly from parts 1 and 2 and Lemma 5.3.9.

I
Intuitively, the algorithmic constructor equivalence relation can be viewed as simultaneously

and independently normalizing the two constructors and comparing the results as it goes along (see
§5.5). Thus termination for both terms individually implies their simultaneous comparison will also
terminate. This can be proved by induction on the algorithmic judgments (i.e., by induction on
the steps of the algorithm).

Lemma 5.3.13
1. If Tx > Ai f Äi <-> T] t> Ai t K\ and T2 > A2 t K2 <H- V2 > A2 | K2 then

T] t> Ai t K\ -H- T2 c> A2 t K2 is decidable.

2. If Vi > Ai :: Kx & Tj > Aj :: ^ and T2 0 A2 :: K2<&T2> A2 :: iC2 i/ten
Ti 0 Ai :: Ki o T2 > A2 :: K2 is decidable.

3. // Ti > Ä"i o Ti > üfi and r2 > ÜT2 ^ T2 > K2 «Aen ri > Kx <& T2 > X2 t's decidable.

Proof: By induction on algorithmic derivations. I

Then completeness yields the following corollary.

Corollary 5.3.14 (Algorithmic Decidability)
1. If TV- Ai :: K and Y V- A2 :: K then T> Ax:: K &T* A2:: K is decidable.

2. If TV- Ki and Y h K2 then T>Ki&Yz>K2 is decidable.

Proof: By reflexivity, Corollary 5.3.12, and by Lemma 5.3.13. I

I conclude this section with an application of completeness.

Proposition 5.3.15 (Consistency)
Assum,e c\ and c2 are distinct type constructor constants. Then the judgment

TV-Si[ci\=£2[c2)::K

is not provable.

Proof: The MIL0 constructor constants have either kind T or T->(T->T), so any path with a
constant at its head cannot have its extracted kind be a singleton kind, and hence must be head-
normal. Also, two paths with distinct constants at their heads will not be equivalent according to the
algorithmic weak constructor equivalence. Therefore the paths will be algorithmically inequivalent
at kind K, which by completeness implies inequivalence in the declarative system. I

In proving soundness of the TILT compiler's intermediate language, these sorts of consistency
properties are essential. The argument that, for example, every closed value of type int is an integer
constant would fail if the type int were provably equivalent to a function type, a product type, or
another base type.

108

5.4 Completeness and Termination

Finally, I transfer the soundness and completeness results of the previous section back to the
original algorithm for constructor equivalence. I use a "size" metric for derivations in the six-
place equivalence system. This metric measures the size of the derivation ignoring head reduction,
head normalization, and kind equivalence steps; that is, the metric is the number of term or path
equivalence rules used directly in the derivation. Since every provable algorithmic judgment has at
most one derivation, I can refer unambiguously to the size of a judgment.

The important properties of this metric are summarized in the following two lemmas.

Lemma 5.4.1
1. If Y\ o Ai :: K\ <£> T2 > A2 :: K2 and Y\> A\ :: K\ <£> T3 > A3 :: K3 then the two derivations

have equal sizes.

2. If Y\ > Ai f K\ <-» Y2 o A2 t K2 and Y\ > A\ t K\ o T3 > A3 t Kz then the two derivations
have equal sizes.

Proof: [By induction on the hypothesized derivations]

• Assume r1^i::T«r2> A2 :: T and r: > Ax :: T <£> Y3 > A3 :: T. Then ri > Ax Jj pu

Y2 > A2 ^p2, r3 > A3 ^P3, ri >pi t T *+ T2 >p2 t T, and r^fttToTa >p3 | T. By the
inductive hypothesis, these last two algorithmic judgments have equal sizes, so the original
equivalences have equal sizes (greater by one).

• Assume Ti > Ax :: S(J3i) <F> Y2 > A2 :: S{B2) and Yx > Ax :: S(Bt) <* T3 > A3 :: S(53)- Then
the derivations both have a size of one.

• Assume ri > Ax :: Ylav.A^.A'l <£> Y2 > A2 :: Ua::A'2.A'2' and
Ti > Ai :: Ua::A[.A'{ o T3 t> A3 :: na::A3.A3'. Then
ri, a::K[> Ax a :: K'{ «*■ T2, a::K2 >A2a:: K2' and
ri, a::K[> Ai a :: if" <£> T3, a::^ > A3 a :: Ä"3. By the inductive hypothesis these
derivations have equal sizes and hence the original equivalence judgments have equal sizes
(greater by one).

• Assume Ti > A\ :: Y,a::ÄvA'[•£> Y2 > A2 :: T,a::A'2.A2 and
ri > At :: T.a::A\.A'{ & Y3 > A3 :: Ea::A3.A3'. Then Ti > i^Ai :: K[«=> Y2 > TTIA2 :: K2,
Ti > TTIAI :: K[<S> T3 > TTIA3 :: if3, Ti > ir2Ai :: [^Ai/alK" &Y2> itiA2 :: [■K1A2/a]K'2, and
Ti > n2Ai :: [niAi/a]K" 4$ Y3 > 7TiA3 :: [7riA3/a]K3'. Using the inductive hypothesis twice,
the judgments have equal sizes.

• Assume I\ t> 6j f T •(->• T2 > 6? t T and ri > hi f T «->■ T3 > bi f T. Both derivations have size
one.

• Assume r\ >a f Ti(a) -H- r2 > a t Y2(a) and ri>at IM«) f>r3>atr3(c[). Both
derivations have size one.

• The remaining three cases follow directly by the inductive hypothesis.

Lemma 5.4.2
1. If Ti 0 Ai :: K\ «=> T2 > A2 :: K2 then the derivation Y2 > A2 :: K2 <=>Yi> A\ :: K\ has the

same size.

109

2. If Yx > Ai t Ki «r2>A2t K2 then the derivation Y2> A2 t K2 o fi t>,4] t #] Äa.s i/tß .- same
size.

Proof: The two derivations are mirror-images of each other, and hence use the same number of
rules of each kind. I

I can then show the completeness of the four-place algorithm with respect to the six-place
algorithm.

Lemma 5.4.3
1. If h ri = r2, ri h Kx = K2, TI h Ax :: KX,Y2Y- A2 :: K2, and T] > Ax :: Kx o Y2 > A2 :: K2

then Ti> Ai 44- A2 :: K\.

2. If\-Tx= Y2, ri h Xi = #2, ri I- ^ :: tfj, T2 h 42 :: K2, and T^Ai^Ki^ Y2 > A2 t ^2
iÄen rj > Ai «-> A2 f i^.

Proof: [By induction on the size of the hypothesized algorithmic derivation.]
Assume h Tx = T2, I\ h i^ = if2, Tx h A] :: A"i, and T2 h 42 :: K2.

• Case: ri > Ax :: T o T2 > ^42 :: T because Yi i> Ax ty pi, Y2> A2 JJ. ;>2, and
ri>Pl tT*+r2>P2tT.

Now by the completeness of the six-place algorithm we have Y\ > Ax :: T <=> Yx t> A2 :: T,
where I^ > A2 fy ^ and ri t> pi | T <-> Tj > p2 t T.

By Lemma 5.4.1, the sizes of the two proofs of algorithmic path equivalence have equal
sizes. Since this size is less than the size of the original algorithmic judgment (by one), we
may apply the inductive hypothesis to the second derivation to get Y\ >pi -H- p'2 t T.
Therefore, Tx > Ax & A2 :: T.

• The remaining cases are all either trivial or follow easily from the inductive hypothesis.

Theorem 5.4.4 (Completeness for Constructors and Kinds)
1. IfYh Ax = A2 :: K then Y > Ax o A2 :: K.

2. IfY\- K then,Y>K.

3. IfYh Ki< K2 then Yt>Kx< K2.

4. IfY\-Ki= K2 then Y>KX^K2.

5. If Y h A :: K then Y > A =4 L and Y > A ft L.

6. 7/rhi:: K then Y>At=K.

Proof:

1. Assume r h A\ = A2 :: K. By the completeness of the six-place algorithm,
r > Ai :: K & Y t> A2 :: K. Then r > Ax o A2 :: K by Lemma 5.4.3.

2-6. By part 1 and induction on derivations

Lemma 5.4.5
IfYt>pi <-> p2 t Kx, Y h pi :: Ki, and Y h p2 :: L then Y > p2 | K2 for some kind K2, and
YhKi= K2.

110

Lemma 5.4.6
1. IfY >pi -B- pi t Ki, Y h pi :: K\, and Y \- p2 :: L then it is decidable whether

Y > pi -f> p2 t -K"i *s provable.

2. IJY>Ai^ A\ :: K, Y h yli :: if and F h A2 :: K then it is decidable whether
Y > Ai <=> A2 :: if is provable.

3. If Y > K\ <& K\, Y \- K\ and Y h if2 i^en «i «s decidable whether Y > Ki ^ K2 is provable.

Proof:

1-2. By induction on algorithmic derivations.

The sequence of constructor and path comparisons is driven by Y and either p\ or A\ and
K. In particular, this is independent of A2 or p2- Thus the only possible problem would be
for head normalization to fail to terminate, which can be seen to be impossible by
completeness of the revised algorithm.

3. By induction on kinds, using part 2.

I

Theorem 5.4.7 (Decidability for Constructors and Kinds)
1. IfY\- Ai :: K and Y \- A2 :: K then Y > Ai <£> A2 :: K is decidable.

2. If TV- Ki and Y h K2 then T>Ki'-& K2 is decidable.

3. If Y h Ki and Y \- K2 then Y t> Kx < K2 is decidable.

4. If Y h Ki, Y h K2 then Y > K\ & K2 is decidable.

5. IfY\- ok then Yt> K is decidable.

6. IfY\- ok then it is decidable whether Y > A^=$ K holds for some K.

7. IfY\- K then Y > A t=z K is decidable.

Proof:

1-2. Follows from reflexivity of constructor and kind equivalence, Completeness, and
Lemma 5.4.6.

3-7. By Parts 1 and 2 and by induction on the sizes of constructors and kinds.

5.5 Normalization

The revised equivalence algorithms in Figure 5.1 are effectively doing the work of normalizing
the two constructors or two kinds being compared. However, because the algorithm interleaves
this process with comparisons, the normalized constructors and kinds need not be explicitly con-
structed. This is a beneficial for implementations, but it is still interesting and useful to consider
the normalization process in isolation. The corresponding algorithms are shown in Figure 5.5.

Lemma 5.5.1 (Determinacy of Normalization)
1. IfY>A::K => Bi andY>A::K =^ B2 then Bi=B2.

2. IfY>p —> p'x t K\ and Y>p —> p'2 t K2 then p\ = p'2 and Ki = K2.

Ill

Constructor Normalization
r > A :: T => A" if T > A $ A' and r > A' —>• 4" | T
r > 4 :: S(B) =4- 4" if T't> A i\. A' and r > A' —> A" | T
r > A :: Har.K'.K" => Xar.L'.B if T > #' => 1/ and T, «-A"' > (4«) :: Ä"" ==> £
r > A :: Ear.K'.K" =}► <£', 5") if T > 7^,4 :: if => 2?' and T > TT2,4 :: [TT, ,4/«]*"" =* £".

Path Normalization
T>b—>b^T
To x —> x |T->T^T
T> ->■ —5- -^ t T-^T-^T

To a —> atr(«)
T>pA—>p'A,Jt [A/a]K" if r > p —> ;/ | IIa::Ä'\.K'" and r > A :: Ä"' => A'
r > Trip —» Trip't Ä"' if T > p —>• p' t £«::#'.#"
r > 7T2P —> 7T2p' t kip/alÄ"' ifT > p —>• // t Za::K'.K"

Kind Normalization
r>T=> T
r>S(A)=>S(yl') ifr>y4::T=» A'
T > Uar.K'.K" ==> n«::L.L" if T > X' => 1/ and I\ «::#' t> K" =* L"
T > Eav.K'.K" => T.a-.-.L.L" if T > X' => L' and T, »::#' > X" =» L"

Figure 5.5: Constructor and Kind Normalization

3. If T > K =» Lj and T > Ä" =*> L2 töen L] = L2.

Proof: By induction on algorithmic derivations. I

Lemma 5.5.2 (Soundness of Normalization)
1. If TV- A::K andT>A::K =$■ B then V h A = B :: K.

2. IfT\-p::K andF>p-^pfjL then T \- p = p' :: L.

3. // T h K andV>K => L then T h K = L.

Proof: By induction on algorithmic derivations. I

Theorem 5.5.3
Assume h Ti = T2 and I\ h K\ = K2.

1. T\ t> Ai :: K\ ■& T2 > A2 :: K2 if and only if T\ > A\ :: i^i => i? and T2 t> A2 :: ÜT2 => Z? for
som,e B.

2. Y\>p\-\ K\ «->■ T2 > j92 t -K"2 «/ ß«d on/y i/ T\ t> px —>• p' f iCj and Ti > pi —> p' t K2 for
some p', K\, and K2.

3. T\ > K\ <&■ T2 t> K2 if and only if T\ > Xi =4> L and T2 > K2 => L /or some L.

Proof:

=> By induction on algorithmic derivations.

112

By soundness of normalization, transitivity and symmetry, and completeness of the revised
equivalence algorithm.

Corollary 5.5.4 (Normalization of Constructors and Kinds)
1. If\-Tx= T2, Ti h Ai :: K and Y2 h A2 :: K then Yx h Ax = A2 :: K if and only if

Ti>Ai::K=>B and T2\> A2 :: K => B. '

2. If\-T1 = r2, ri h Kx and Tx h K2 then T\\- Kx = K2 if and only ifTx>Kx => L and
T2>K2^ L.

113

114

Chapter 6

Algorithms for Type and Term
Judgments

6.1 Introduction

I now turn to the term and type levels of MILo; the development parallels that for constructors and
kinds. In this chapter I consider algorithms corresponding to the term and type judgments, proving
soundness, and partial completeness and termination results depending on term equivalence. Term
equivalence is then studied in detail in the following chapter.

6.2 Type Head-Normalization

The kind-equivalence and subkinding relations are very simple and structural, and inversion imme-
diately yields various useful properties such as "if two II kinds are equivalent then their domain kinds
are equivalent and their codomain kinds are equivalent". It is clear from inspection of type equiv-
alence that a universally-quantified type can only be equivalent to another universally-quantified
type (and that in this case the domain kinds are equivalent as are the codomain types), and similar
properties hold for singleton types. However, the fact that there is no chain of equivalences

Ty{A1)xTy{A2) = Ty(AlxA2) = Ty(B1-+B2) = Ty(B1)--Ty(B2)

equating a function type with a product type (or a chain equating a product type and Ty(Int),
etc.) is a consequence of the consistency properties of constructor equivalence, which were proved
in the previous chapter.

It is convenient to extend the head-normalization algorithm for constructors to the head-
normalization of types; this algorithm is shown in Figure 6.1. The head-normalization algorithm
attempts to turn any type of the form Ty (A) into an equivalent function type or product type, and
leaves all other types unchanged. Viewed as an algorithm the judgment V > r -(J. a takes inputs T
and T with T h T and produces the type a. It depends upon a typing context because it uses the
constructor head-normalization, which is context-dependent.

Lemma 6.2.1 (Type Head-Normalization)
IfV\~T then there exists a unique a such that V > r JJ- a. Furthermore, T h r = a.

Proof: By induction on the derivation of type well-formedness, using the soundness of weak
head-reduction for constructors. I

115

Type head normalization
T> Ty{A) JJ Ty(Ai)xTy(A2) iiT>A^A}xA2

T>Ty(A)H. Ty{A^Ty{A2) \iT>A$A^A2

F > r JJ r otherwise

Figure 6.1: Head Normalization Algorithm for Types

Use of head-normalization allows a sufficiently strong induction hypothesis to prove useful in-
version properties for type equivalence and for subtyping.

Theorem 6.2.2 (Inversion of Type Equivalence)
Assume F h T\ = T2.

1. F t> T\ JJ {X:T[)-^T" if and only if F t> T2 JJ (X:T2)^T2. Furthermore, in this case F h r[= T2

andY,x:T[\-T{' = T^.

2. r > Ti 4 (X:T[)XT'{ if and only if F t> T2 JJ (JT^XT". Furthermore, in this case. T \~ T[= T2

andF,x:r[VT'{ = T'2'.

3. T o T! |L Ty{b) if and only if F > r2 JJ Ty(b).

4. T\ = Va::K[.T[' if and only if' r2 = \/a::K'2-T2. Furthermore, in this case F \~ K\ = K2 and
r,a::K[\-T? = T!!.

5. T\ = S(^i : T[) if and only if T2 = S{v2 : T2). Furthermore, in this case F h V[= v2 : T\ and
r h r{ EE r2.

Proof: By induction on the proof oiF \- T\ = T2. I

Theorem 6.2.3 (Subtyping Inversion)
Assume F h T\ <T2.

1. If F 0 T\ JJ {X:T[)^T" then F t> r2 JJ (XT^T^'. Furthermore, in this case F \- T2 < T[and
I>:T2I-T{'<T2'.

2. If F > T2 JJ (a::^)—5"^' iaen TI IS a singleton type, or else F \> T\ JJ (.T:T|)-^TJ" and r H T2 < T{

andr,z:r2 h if < T'2'.

3. If F t> T\ JJ- (ETJ)XTJ' £aen r > T2 JJ (X:T2)XT2. Furthermore, in this case F h r{ < r2 and

^. 7/ T t> T2 JJ- (X:T2)XT2 then T\ is a singleton type or else F 0 T\ JJ (X:T{)XTJ" and r h T{ < r2

andr,a;:T^ hr," < T£.

5. 7/ T > n JJ 7ty(6) then F > r2 JJ 2ty(6).

6. 7/ T t> T2 JJ 7^/(6) iäen TI is a singleton type or else F > r2 JJ Ty(b).

7. If n = Va::Xj.rf iaen T2 = V«::7C2.T2' and F h K'2 < K\ and F, a::K'2 h rf < T£.

8. If T2 — "ia::K'2.T2 then T\ is a singleton type or else T\ = Va::K[.T[' and F h K2 < K[and
F,Q.::K'2\-T'{ <T%.

9. If Ti = S(v\ : in) iaen either T2 = S(v2 : a2), F \- o\ = 02, arcrf r h i>i = «2 : <7i, or e/se T2 is
not a singleton and F h <7i < T2.

iO. 7/T2 = S(t>2 : «72) iÄen T\ — S(ui : CTI), T h <7I = (72, and r h v\ =v2:o\.

Proof: By induction on the proof of F \- T\ < T2. I

116

Singleton stripping
(S(v:r)f:=r
T^ := T if r is not a singleton

Principal type synthesis
r>n-f|- S(n : int)
r>xitS(x:T(xf)
r>fun/(a;:r'):r" is e fr

S((fun/(x:r'):r" is e) : (X:T')^T")

T o A(a::K):T.e ft S(A(a::K)-.T.e : \/CI::K.T)

T> (vi,v2) 1t S((ui,W2) : Tixr2) if r>ui f|-Ti and T > v2 t ?"2-
r t> 7riv fr S(TTIü : r'$) if T > v fr r and T > r$ Jj. (J:T')XT".

r>7T2?;frS(7r2?;: ([TTI?;/:Z]T")
$
) ifToufrr and T t> T$

 ^ (XT')XT".

r 0 vv' fr [u'/^r" if r 0 w fr r and r t> T$
 Jj. (X:T')-^T"

Tt>vAi[[A/a}r" if r> « fT r and r$ = Va::K.T"
T > let x-.r'—e' in e : r end fr r

Figure 6.2: Principal Type Synthesis Algorithm

6.3 Principal Types

Just as every well-formed constructor has a most-specific kind, every well-formed term has a most-
specific type (up to equivalence). The algorithmic judgment Ti>e fT r determines the principal type
r of the term e under context Y. This algorithm uses the auxiliary notion of a stripped type; for
any type T, the stripped type r$ is the type label of r if r is a singleton type, and is r otherwise.
Note that because nested singletons are disallowed, r$ can never be a singleton type.

Lemma 6.3.1 (Singleton Stripping)
1. IfT\-r thenY\-T < r$.

2. IfT\-Ti = T2 then T h n$ = r2
$.

3. IfT\-Ti< T2 then T h TI
$
 < r2

$.

4- IfT h Ti < T2 £/ien eii/ier T2 is a singleton type or T h TI
$
 < T2.

5. IfT\-T then r is £/ie minimal non-singleton supertype of T.

6. IfTV-v.T then T h S(« : r$) < r.

Proof: Part 1 follows by reflexivity or by Theorem 6.2.3 and Rule 2.62, depending on whether r
is a singleton type or not. Parts 2-3 are shown by induction on derivations. Part 4 is a restatement
of part 3. Finally, parts 5 and 6 follow by case analysis on the form of r. I

Theorem 6.3.2 (Principal Types)
1. IfT\-v:a then T > vf[r and T h v : r and T h r < S(v : u%), so that T h T < a.

2. If T h e : a then T t> e fr T and Their and T h r < a.

Proof: By simultaneous induction on the proof of the first premise, and cases on the last typing
rule used.

117

1. • Case: Rule 2.67.
Thok

T\-n: int

Then r o n ft S(n : int) and T \-n : S(n : int). By reflexivity, T h S(n : int) < S(n : int).

• Case: Rule 2.68.
THok

r h x : I»

(a) rt>o;ftS(a;:r(.x-)S).

(b) Since Y h Y{x), by Lemma 6.3.1 we have Y h r(.r) < r(:/:)

(c) and hence Y \- x : Y(x.y.

(d) By Rule 2.77, Y h x : S(x : Y{xf).

(e) Finally by reflexivity, Y h S(x : r(.x)$) < S(ai : r(^)$).

Case: Rule 2.69.
r,/:(rr:r')^r",rr:r'he:r"

T h fun /(.r:r):r' is e : (.T:T)-
A
T'

(a) First, r>fun/(x:r):r' is e ft S(fun/(x:r):r' is e : (X:T)-
A
T').

(b) By Rule 2.77, Y h fun/(.T:T):T' is e : S(fun J{X:T):T' is e : (.X':T)--T').

(c) Finally, by reflexivity we have
r h S(fun/(a::T):T' is e : (s:r)^r') < S(fun /(S:T):T' is e : (.T:T)^T').

Case: Rule 2.70.
r,a::Ä"'r-e:a"

T h A(a::K'):CT"-e : Va::Ä"'.<r"

(a) r > A(a::X')^"-e ft S(A(a::K'):cr".e : Vav.K'.o").

(b) By Rule 2.77, Y h A(a::Ä"V"-e : S(A(a::KV".e : \/a"K'.a").
(c) Finally, T h Va::X'.a" < Va::K'.o" by reflexivity,

(d) so T h S(A(«::iT):CT".e : Va::K'.<r") < S(A(a::K'):a".e : Vav.K'.o").

Case: Rule 2.71.
r I- V\ : o\ Y \- v2 : o2

Y \~ (wi,«2) : o"i x<72

(a) By the inductive hypothesis r c> v\ ft T\ and r h i>i : T] and T H T] < S(uj : ay

(b) and r > v2 ft r2 and F h u2 : r2 and T h r2 < S(?;2 : a2
%).

(c) Thus r>(«i,u2) ftS((«i,t>2) : TIXT2).

(d) Also, T h (t>i,T;2) : TiXr2,

(e) so by Rule 2.77, Y \- (vuv2) ■ S((«i,u2) : T1XT2).

(f) Finally, Y \- rixr2 < S(«i : CTI
$
)XS(V2 : a2

$)

(g) and T h S(«i : cri$)xS(u2 : <72
$) < <TiX(72,

(h) sorhS((w1,u2) :TIXT2) < S((ui,u2) :CTIXCT2).

Case: Rule 2.72.
Yhv: (x:cj')xa"

Y h -KiV : a1

118

(a) By the inductive hypothesis, r > v ft r and Y h v : T and T h r < S(u : (x:a')xa")

(b) By Lemma 6.3.1, Y h r$ < (x:cr')xa"

(c) and hence by Theorem 6.2.3 r > r$ JJ. (I:T')XT" with T h r' < CT'.

(d) Thus r > 7T!U ft S(TTIU : r'$).

(e) By Lemmas 6.3.1 and 6.2.1 and subsumption, Y \- TT\V : r' ,

(f) so by Rule 2.77 we have T h TTIU : S(7rn> : r'$).

(g) Finally, T h T'
$
 < a'% by Lemma 6.3.1,

(h) so T h S(7TiD : r'$) < S(TTI« : al%).

Case: Rule 2.73. Analogous to previous case.

Case: Rule 2.77.
Yhv.a

(a not a singleton)
rh«:S(D:fr)

(a) By the inductive hypothesis, r > v ft r and F h v : T and F h T < S(u : <7S).

(b) It suffices to observe that S(v : (S{v : CT
$
))

$
) = S{v : CT

$
).

Case: Rule 2.78.
F h e : o"! TV- oi<a2

T h e : (72

(a) By the inductive hypothesis, Y > v ft r and r h v : r and F h T < S(w : ff]$).

(b) By Lemma 6.3.1, Y \- ox
% < a2

s,

(c) so by transitivity, Y \- T < S(v : 02$).

• Case: e is a value. Follows by Part 1, Lemma 6.3.1, and transitivity.

• Case: Rule 2.74.
Yhv: a'^a" Y h v' : a'

i . ~n Y h v v' : a'

(a) By the inductive hypothesis, T > u ft r and Y \- v : T and T h r < a'-^a".
(b) Similarly, r > v' ft n and F h u' : n and T h n < a'.

(c) By Lemma 6.3.1, T h r$ < CTW.

(d) By Theorem 6.2.3, F > r$ ^ (x:r')^r" with Y h a' < T' and r,a;:<7' h r" < a".
(e) Thusr>Wft [v'/^r".
(f) By Lemmas 6.3.1 and 6.2.1, Y h v: (Z:T')-V.

(g) Also by transitivity, T h ri < r'.

(h) Hence Yhvv' : [V'/X}T".

(i) Finally, by substitution we have Y h [v'/X]T" < [v'/x]a".

Case: Rule 2.75
Yhv: Vav.K'.o" T \-A :: K'

Y\-vA:[A/a]a"

(a) By the inductive hypothesis, Y t> v ft r and T h u : r and T h T < Vav.K1.a".

(b) By Lemma 6.3.1 Fhr$< Va"K'.o",

(c) so by Theorem 6.2.3 T
$
 = Va::L'.T" with r h K' < V and T, a::K' h r" < a".

(d) Thusr>u4ft[A/a]T".

119

(e) Then F h v: Va::L'.r" and T h A :: L\

(f) soThui: [A/O\T".

(g) Finally, by substitution we have T b [A/a]r" < [A/a]a".

Case: Rule 2.76.
The': a' F.x:a'he:a F b a

F b (let x:a'=e' in e : c end) : cr

(a) It is immediate that T > (let x:a'=e' in e : cr end) f|- cr,

(b) and T b (let x:a'=c' in e : <r end) : cr by assumption.

(c) Finally, T h cr < cr by reflexivity.

Case: Rule 2.78. As in Part 1.

6.4 Algorithms

The term equivalence again makes use of term-level elimination contexts, again denoted by £. In
contrast to the elimination contexts for type constructors, applications are not included; the only
paths [£[v] where v is a constant or variable) of interest are those which are values:

£::= o
I A" i£
I 7T2£

6.5 Soundness

Proposition 6.5.1 (Inversion of Term Validity)
1. 7/ T b v v' : T then F b v : (X:T')^T" and F b v' : r' with F b [?//.T;]T" < r.

2. IfTl-vA-.T then F h v: Va-K'.r" and F \- A :: K' with F b [A/«]r" < r.

5. 7/ r b 7Tiu : r £/?,en T h ?; : ri XT2 and F h TI < T.

^. 7/ T b 7T2f : r then T \- v : T\ xr2 and T b T2 < T.

Proof: By inversion u must be well-formed, so (the stripped, head-normal version of) its principal
type satisfies the desired properties. I

Proposition 6.5.2
7/r b (vi,v2) : T then F t> r$ J| (I:T')XT" and F b vi : r and T b u2 : [ui/a;]r".

Proof: By induction on typing derivations, and cases on the last rule used.

• Case: Rule 2.71.
r b Vl : T' F b v2 : T"

F\-(VI,V2):T'XT"

Trivial.

120

Type validity
V>Ty(A)
T>S(v :T)

T>(X:T')^T"

T>(X:T')XT"

r>Va::K.T

Algorithmic subtyping
r > Ti < T2

if r > A t= T
if T > r and r>»tT.
if T > T' and T, x:r' C> r".
if T > T' and T, sir' > r".
if T > ÜT and T, a::K > r.

if r > Ti JJ- (Ti, r > T2 JJ- 0"2) and T > 0\ Q (J2

Weak algorithmic subtyping
r> Ty{Ai) E Ty(A2) iiT>A1^A2::T.
T > S(ui : TI) C S(t»2 : T2) if T > TI < r2 and r > v\ ■& v2.
F > S(v\ : TI) C T2 if T2 not a singleton and r > Ti < T2.

T > (SITO-^TC C {X:T'2)^T'2' if T > r^ < r{ and T, zrr^ > r{' < r£
r > (S;:TO xrf C (X:T'2) XT2' if T > r{ < r2 and T, X:T[> T'(< T'2'

T > \/a::Ki.Ti C Va::K2.r2 if T i> X2 < if 1 and T, a::#2 > n < T2.

Algorithmic type equivalence
r t> T\ &■ T2 if r > ri JJ- ai, r o T2 JJ- CT2, and r > o\ <->■ a2.

Weak algorithmic type equivalence
r> Ty{Ai) <->• Ty(A2) if T t> AY <=> A2 :: T
T > S(ui : ri) «-» S(^2 : T2) if T > T\ <£> T2 and T\ > v\ <£> i>2
r > {X:T[)-+T'{ <-> (a::-^)-^' if]?i > r{ <£> r^ and ri, x:r[> rf <£> r2'
T t> (X:T[)XT" i-> (X:T2)XT" if Ti c- r{ <S> r2 and T\,X:T[> rf <^> r2'
r>Va::Ä'i.Ti <-» Va::K2.T2 ifTt>Ki<&K2 and ri,a;::Ki t> n <^> T2

Figure 6.3: Algorithms for Types

121

Type synthesis
T>n=t S(n : int)

T>x^ S(x:T{xf)
T o fun f{x:T');.T" is e =3 if T > T', I\ X:T' > r",

S((fun /(J;:T'):T" is e) : (.7"r')^r") and T, /:(.7-:r')^r", .7::r' >et r"
T > A(a::Ä"):r.e =1 S{A(a::K):T.e : Vo::K.r) if F > Ä" and T, «::# > r and T, «::# >et=T.

T > («i,W2) ^ S((«i,«2) : T1XT2) if r t> ?;i =4 Ti and F > v2 =4 T2.
T > -K\v =|T' if F t> v =t T and T

$
 = (X:T')XT".

T > 7T2?; =4 [7TI?;/.7;]T" if T 0 v =} r and T
$
 = (X:T')XT".

r 0 v v' =$ [V'/X]T" if T 0 v =} T, T* = (.7::T')-V, and r 0 ?/ t= r'.

r > v A =t [yl/of]T if T t> v =i T. r$ = MawK.T. and r > A t= K.

T ■> let x/.r'—e' in e : r end =3 T if T > r', T > e' 1= r', T > r, and T, .T:T' >e(=r.

Typechecking
Fi>e t T if T 0 e => cr and r > <r < r.

Figure 6.4: Algorithms for Term Validity

Case: Rule 2.77.
r h (^1,^2): r

(T not a singleton)
T h (^1,^2) : S(u : T)

By the inductive hypothesis.

Case: Rule 2.78
T h (?;i,U2) : 7"i T h n < r2

Tt- (vi,v2) : r2

1. By the inductive hypothesis, r o TI
$
 Jj. (X:T[)XT['

2. and r h «1 : T[and rh»2: [VI/O\T['.

3. Then by Lemma 6.3.1, T h n$ < T2
$
,

4. so by Theorem 6.2.3 we have T > T2
$
 JJ. (X-.T^XT^

5. and T \-T[< r2 and T,X:T[h if < if.

6. Thus by substitution and subsumption, T f- vi : T!2 and Y \- v2 : [V\/X]T".

Lemma 6.5.3
IfT\~vi : T and Y h v2 : r and r h vi = U2 : r £/ien r h v\ = «2 : r.

Proof:

• Case: T = S(w : a).

1. Then r = cr and Y \- vy = v2 : a.

2. By Rule 2.120, Y \-Vi = v2 : S(vx : a).

122

Type extraction
Ton f int

r>7riptTi if T>p t (2/:TI)XT2

r > ir2p t V\VIV\T2 if r > p t (y :n) X T2

Term weak head reduction
T>£[ni(Vi,V2)]"^ £[vi]
r > £[n2(vi, v2)} ~> £[v2]
T>£\p]-^€[v] ifr>ptS(u:r)

Term weak head normalization
r > e J| d if T > e ~> e' and T > e' JJ. d
r>e|e otherwise

Algorithmic term equivalence
T> ei <^ e2 if T > ei 4 di, T > e2 JJ- ^2, and r > d\ ^ d2

Algorithmic weak term equivalence
r > n -H- n always
r i> x -o- x always
T > fun f (X:T[):T" is e\ o if T > T{ <=> r^ and T, x:r{ > r" <£> T2

iun f(x:r2):T2 is e2 and T,/:(a::r{)-^r",a;:r{ > ei & e2.
T> A(a::i^i):Ti.ei <-> A(a::K2):T2.e2 if T>Ki o- K2 and T, a::Ä'1>ri ^> r2 and T,a::Ki>ei <&

e2-
T>(v[, v'{) O {v'2, v%) if r > v[& v'2 and Y > v'{ & v'J,.
r 0 7TiUl -f> 7TjÜ2 if T > V\ <-> V2

T>v\ v[*-> v2v2 if T > v\ <=> «2 and T > t^ <^> v'2.
T > vi Ai ^ v2 A2 if r > v\ <=> v2, r > v\ JJ. wi, T > w\ fr <r, er$ = Va::L'.o",

and Ti>i4i 4» ^42 - £'•
T > (let a;:r{=e'x in ei : T\ end) «-» if V > T[«=> T'2, T t> e[■&■ e2,

(let £:T2=e2 in e2 : T2 end) r,a;:r{ > ei <S=> e2, and r > T\ -4=> T2.

Figure 6.5: Algorithms for Term Equivalence

123

3. But V \- vi : S(VJ : a), so T \- vi = V! : er

4. and hence T h S(«i : a) = S(w : a).

5. By subsumption then. T \- v\ = v2 : S(w : cr)

6. That is, r h t>i = v2 : r.

• Case: r* = r. Ti'ivial.

Lemma 6.5.4 (Term Weak Head-Normalization)
IfThe-.T then there exists at most one, e' such that T > e -Ij. e!. Furthermore, T h e' : r and

T h e = e' : r.

Lemma 6.5.5 (Soundness for Path Weak Equivalence)

//r h pi : ri and r h p2 : T2 ar?,d r t> pi <-» P2 ^"''» F >p\ ff cri, r t> P2 ff <72; r h o\ = a2, and
T h pi = p2 : cri.

Proof: By induction on T >p\ •(-)• p2, and cases on the last step.

• Case: r > n -f-> n. Direct.

• Case: T>x<r^x. Direct.

• Case: F > nyp^ <-> 7rip'2 because T i>p[*-> p2.

1. By inversion, p[and p2
are well-formed.

2. By the inductive hypothesis, T t> p\ ff c^, TO ;/2 ft °2, T h CTI = 02, and F h p'j = p2 : o\.

3. Since itip'i and 7Tip'2 are well-formed, o\ = S(p' : (a^cr'^xa") and
a2 = S(p'2:(x:a!2)xa!j),

4. and T D> irip[ff S(7rip'1 : a[) and T t> 7r!p2 ff S(7Tip2 : CT2).

5. By Theorem 6.2.2, r h ffj = o'2.

6. By subsumption and Rule 2.85, V h irip[= irip2 : a\.

7. Hence T h TT^ = Txxp'2 : S(TT1P'1 : a[) and T h S(7ripi : cr;) = S^ip^ : tr2).

• Case: T c> -n2p\ <-> T2P2 because F >p'j «-»• p2. Analogous to previous case.

Theorem 6.5.6 (Soundness of Equivalence)
1. Ij' T h e\ : T and V h e2 : r and T > e\ <4> e2 then T \- e\ = e2 : T.

2. If V \- e\ : T, V \~ e2 : T, V > e\ ^ e2, and e\ and e2 are head-normal then. V \- e\ = e2 : T.

3. IfT\- n and T h r2 and r > n «=> T2 i/?.en r h T\ =T2.

4- IfT\- T\ and r h T2 and Y > T\ <-> T2 £/ien r (- n = T2.

124

Proof: By simultaneous induction on algorithmic judgments (i.e., on the execution of the
algorithms).

1. By the inductive hypothesis and Lemma 6.5.4.

2. • Case: F > n -H- n. Follows by reflexivity.

• Case: F t> x -H- x. Follows by reflexivity.

• Case: F > fun f(x:oi):a" is e\ -f> fun f (x:a'2):a2 is e2-

(a) Then by inversion T h a[, T h a'2, T,x:a[h er", T,x:a'2 \- a2, T,x:a[h ei : er", and
T, x:a'2 l~ e2 : o"2'•

(b) By inversion of the algorithm, T >a[■& a'2 and T, x:a[t> a" <$■ a2.

(c) By the inductive hypothesis, T h a[= a'2.

(d) Thus F,x:a[h c" and so by the inductive hypothesis T,x:a[\- a" = a2.

(e) This yields V, x:a[h e2 : a", so by the inductive hypothesis T, x:a\ \- e\ = e2 : a".

(f) Thus T h fun/(x:ffi):ai' is ex = fun f {x:a2):a2' is e2 : (rc^i)-^'.
(g) Finally, by Theorem 6.3.2 and Lemma 6.2.1 we have Y \- (x-.o^-^o" < r$ and so

r h fun f(x:a[):a'{ is e\ = fun f(x:a'2):(J2 is e2 : T
$
.

(h) By Lemma 6.5.3, we have T \- fun f(x:a[):ai is ei = fun f (x:a'2):a2 is e2 : r.

• Case: T t> A(a::Ä"i):Ti.ei -H- A(a::.£f2):T2.e2 because Tt> Ki <5 K2 and T, cu::.?^ > T\ <£> T2
and T, a::K\ > e\ <3> e2.

(a) By inversion of typing, T h K\ and T, a::i^i h ri and T, axi^i h ei : T\.

(b) Similarly, F h K2 and T, a::X2 h T2 and T, a::if2 I- &2 '• T"2-
(c) By the inductive hypothesis, rhifi = K-i-

(d) Then r, a::K\ \- T2, SO by the inductive hypothesis T,a::K\ \- T\ = TI-

(e) Then T, a::K\ h ß2 : n, so by the inductive hypothesis T, a::K\ \- e\ = e2 '■ T\.

(f) Thus, F h A(a::üTi):Ti.ei = A(a::K2):T2.e2 : Va::#i.Ti.
(g) By Theorem 6.3.2 and Lemma 6.3.1, T h Va::ÜTi.Ti < T

$
.

(h) By subsumption, V h- A(a::Ä"i):ri.ei = A(a::Ä2):72.e2 : r$.

(i) Therefore by Lemma 6.5.3, V h K{a::K\):T\.e\ = A(a::K2):T2.e2 : r.

• Case: T > {v[,v") <-» (v'2, v2) because T>v[<£> v'2 and r > v" 44> u2'.

(a) By Proposition 6.5.2, T > r$ JJ- (X:T')XT",

(b) and r h «i : r' and T H v'2 : r'
(c) and rh<: K/z]r" and r h v2' : [ua/a;]r".

(d) By the inductive hypothesis, T \~ v[= v'2 : r'.
(e) Thus by functionality and subsumption and Y \- v2 : [v[/x]r".

(f) By the inductive hypothesis, V \- v" = v2 : [V[/X]T".

(g) By Rule 2.106, T h (v[,v'{) = {v'2,v2') : (X:T')XT".

(h) By Lemma 6.2.1 and subsumption, T h (v[,v'{) = (v'2,v2) : r$.
(i) Therefore by Lemma 6.5.3, V h {v[,v") = (v'2,v2) : T.

• Case: T > ir\Vi -H- TTIV2 because r t> v\ -H- vi- Since -K\V\ and 7riU2 are head-normal and
well-formed they must be paths; the result follows by Lemma 6.5.5.

• Case: T t> 7^1 •<-» 7r2W2 because V >vi <r+ V2. Since TT2VI and ^2^2 are head-normal and
well-formed they must be paths; the result follows by Lemma 6.5.5.

125

• Case: V > vi v[<-» ?;2 v'2 because r > vi <£=> v2 and T > v\ ■& v2.

(a) Then r > v\ J| w\ and r > t>2 JJ- «'2 and T > wi <->• w2

(b) By Proposition 6.5.1, rhw,: {X:T[)^T[' and T h uj : T[and T h [V\/X]T[' < r.

(c) Similarly, T h v2 : {X:T!2)^T!{ and rh«J: T2 and T I- [V£/:K]T£ < T.

(d) By Lemma 6.5.4, w\ and u;2 have these function types. Thus w\ and w2 are not
type abstractions, pairs, or (because they are head-normal) projections from pairs.
The only remaining possibilities are that either w\ and w2 are both paths, or else
they are both term abstractions.

- SUBCASE: vi] = p\ and w2 = p2. By Lemma 6.5.5, there exist o\ and a2 such
that T t> w\ ff o\ and T t> iv2 ff a 2 and T \- <j\ = <J2 and r h «ii E W;2 : o\ .

- SUBCASE: t^ = fun f {x:a[):o'{ is ei and w2 = fun f {x:o2):o2' is e2.

* Put <7] = S(«7] : (x:a[)^a'{) and a2 = S(?w2 : {x:a!2)^a!j).

* Then T>w\ ff <TI and T t> w;2 ff <72.

* By declarative and algorithmic inversion and the inductive hypothesis,
r h a\ = a'2 and T,x:a[\- a'[= o2.

* By the inductive hypothesis, Y \- w\ = w2 : o\$,

* so F \~ o\ = cr2 and T h wj = w2 : o\ ■

- Since rhmi: {X:T[)-^T'{, by Theorem 6.3.2 we have r h CTI < (.T:T{)->-T1".

- Thus in either of the two cases above, criS is of the form {x:a\)—^o".

- By Theorem 6.2.3, T \-r[< o\ and T,X:T[h < < if.

- Thus Fhv[: a[.

- Similarly, cr2
$ = (x:a'2)^a2 and T \- v2 : o'2.

- By subsumption, Y \- v'2: a\.

- By the inductive hypothesis, F h v\ = u2 : cr'j.

- Thus rhwi v[= w2 v'2 : [v[/x]a'{.

- By substitution, T h [v[/x]a'{ < [V[/X\T[',

- so r h [wi/a;]cr'1' < r and T h t«] u'j = «;2 ^2 : T-

- Then T \- v\ v[= w\ v\ : r and V \- v2 v2 = w2 v2 : r.

- So by symmetry and transitivity, V \- v\ v[= w2 v^ : r.

• Case: T t> v\ A\ -H- v2 A2 because r>uj <4> w2, T [> uj JJ. w\, T > w;i ff <r, a* = Va::L'.cr",
and T> Ai <=> ^42 :: L'.

Analogous to the previous case; this time the head normal forms of v\ and ?;2 must
either be paths or type abstractions. The return-type annotations on type abstractions
are vital here (as they are for term abstractions in proof of the previous case) so that
the induction hypothesis can be applied; they supply a common type for comparing the
functions' bodies.

• Case: T > let x:T[=e[in e\ : T\ end -<->■ let x\T2=e'2 in e2 : r2 end because T > T[■& T2 and
T > e[<& e2 and T, X:T[> T\ O T2 and T, X:T[>.ei «=> e2.

Essentially analogous to the proof for equivalence of two term-level functions.

3. By the inductive hypothesis and Lemma 6.2.1.

4. • Case: T > Ty^i) <-»• Ty(A2) because r > Ai <^ A2 :: T.

(a) By inversion of typing, T\~ Aiv.T and T h A2 :: T,

126

(b) By soundness of constructor equivalence then, r h A\ = A2 :: T.

(c) By Rule 2.53, Y h Ty(A{) = Ty(A2).

• Case: Y > S(«i : ri) -O- S(«2 : T2) because r > T\ <=> T2 and Ti > ^i <^> ^2-

(a) By inversion of typing and the inductive hypothesis, Y \- T\ = T2.

(b) Thus T\- v\ : T\ and Y \- v2 '■ T\.

(c) By the inductive hypothesis, Y \- v\ = v2 : T\.

(d) By Rule 2.54, Y h S(vi : n) = S(v2 : r2).

• Case: T t> (X:T[)-^T" O (X:T2)^T2 because I^ t> T[O r^ and FI,2::T{ > r" O r".
By inversion of typing and the inductive hypothesis.

• T 0 {X:T[)xr{' -H- (X:T2)XT" because Ti 0 r{ <^ T'2 and Y\,X:T[> r" <^> r^'.
By inversion of typing and the inductive hypothesis.

• T > Va::Ki.Ti -H- \la\:K2.r2 because Y > K1 <=> K2 and Ti, x::ifi > TI O T2.

By inversion of typing, soundness of kind equivalence, and the inductive hypothesis.

I

The soundness proofs for the remaining algorithmic judgments are then straightforward.

Theorem 6.5.7 (Soundness of Subtyping)
1. IfY\- T\ and Y h r2 and Y > T\ < T2 then Y \- T\ < T2.

2. IfY\- TI and Y \- r2 and Y > T\ C T2 then Y H T\ < T2.

Proof: By induction on algorithmic derivations. I

Theorem 6.5.8 (Soundness of Typechecking)
1. If Y h ok andY>r then Y h r.

2. IfY\- ok and Y > e =t r then Y h e : r and r > e ft T.

5. // T h r and T > e 1= r «Äen T h e : r.

Proof: By induction on algorithmic derivations. I

127

128

Chapter 7

Completeness and Decidability for
Types and Terms

7.1 Type and Term Equivalence

The approach for studying type and term equivalence is very similar to that for constructor and
kind equivalence. Figures 7.1 and 7.2 show a symmetrized version of the type and term equivalence
algorithms. By construction the algorithm is symmetric and transitive:

Lemma 7.1.1 (Algorithmic PER Properties)
1. If Ai \> v\ •£> A2 > V2 then A2 > V2 <$■ Ai > V\.

2. If Ai > v\ ■&■ A2 > V2 and A2 > «2 ^ A3 > v% then A\ > v\ <=> A3 > V3.

3. If Ai > v\ «->• A2 > v2 then A2 c> v2 -B- Ai > v\.

4- If Ai > v\ <->• A2 > «2 «^^ A2 > ^2 *■* A3 > U3 i/ien Ai > v\ 4-> A3 t> U3.

5. 7/ Ai > TI <S=> A2 > T2 i/ien A2 > T2 <=> Ai > ri.

6. If Ai > ri <£4> A2 > T2 and A2 > T^ <^> A3 > T3 i/ien Ai > T\ -O- A3 > T3.

The proof of completeness for term equivalence is essentially the same as the completeness
proof for constructor equivalence. Although the algorithm is not type-directed, the fact that it
must maintain two contexts requires the more complex two-world form of logical relation: see
Figures 7.3, 7.4, and 7.5. The main differences from the constructor- and kind-level relations are:

1. Since type equivalence is not purely structural (e.g., Ify(lntxlnt) = Ty(\nt)x Ty(\nt)) the
logical relations are defined using head normalization of types.

2. The term-level logical relations are defined only for values, not all expressions.

3. The n cases of the term-level relations have been simplified, since applications are not values.

4. These logical relations also require that h Ai = A2 as well as declarative well-formedness
or equivalences, as appropriate. This allows the invocation of the correctness results for the
constructor algorithms.

It is not immediately obvious that these logical relations are well-defined, because they are not
defined simply by induction on types.

129

Algorithmic type equivalence
ri > T\ «=> Y2 > T2 if ri > T\ JJ- (7j, T2 > T2 JJ- (72, and T] > o\ o F2 o (72.

Weak algorithmic type equivalence
Yl>Ty(A1)^Y2»Ty{A2) ifY^A, ::Tl &T2> A-2 ::T2

Ti > S(«i : TI) <-» T2 > S(t>2 : T2) if Ft > n <!=> T2 > T2 and T] > «i -^ F2 > w2

Ti t> (X:TI)-^(TI -H- T2 > (a;:r2)^(72 if Tj > ri O T2 > T2 and T], .T:TI > 0{ o T2, ,T:T2 t> CT2

TI > (.T:TI)XCTI -H- T2 t> (x-.T2)xa2 if TJ I> TJ «=> T2 > r2 and Fi,.r:T] > o\ <=> Y2,X:T2 >a2

Ti > Ma::K\ .T\ o T2 > \JO::K2.T2 if Ti o i^i «=> F2 > if2 and T], a::K\ o TJ <4> F2, «::X2 o r2

Figure 7.1: Revised Type Equivalence Algorithm

Algorithmic term equivalence
Y\ > ej ^ T2 > e2 if I1] > e\ JJ- di, r2 > e2 JJ ^2, and Ti o di «-> T2 o d2

Algorithmic weak term equivalence
ri > n <r$ T2 > n always
Y\t> x ^Y2> x always
Ti > fun f {X:T[):T'{ is e-y «->• if Y\ o Tj <=$• T2 > r^ and T, x:r,' t> r" «=> Y2, X:T'2 > T" and

r2ofun/(:r:r2):T2' is e2 r,/:^)-^",.^ o ex & Y2, /:(^)-T^.7;:r^> e2.
Yi > \x:T[.e\ <-> T2 > A.T:r2.e2 if Ti > T{ «=> T2 > T2 and T^ .x:^ > ei <^> T2, X:T2 C> e2.
I\ > A(a::Ä"i):ri.ei <-> T2 > A(a::K2):r2.e2 ifT^Ä"] <^ r2c>lf2 and Ti, «::#! >ri <S> T2, «xi^c^

and T], a::ivTi t> ej 44> r2,«::if2 i> e2.
Ti > («i, <) HT2> (?;2,4) if ri > «i «r2i>«2 and r2 > v'{ &Y2\> v'.[.
Y\ > 7TjUi -B- T2 > -KiV2 if Ti o V] -H- T2 t> v2

Ti o v\ v[<-> Y2>v2 v2 if Ti > U] «=> T2 > v2 and Ti o v[<=> T2 t> u2.
Ti > vi ^4i -H- T2 > w2 ^42 if Yi > U) 44> T2 t> «2, r^ > v; JJ. wi, Yj > ?/;,; ft Oi, o^ =

Va-L'i.o'!, and Tj > A] :: L'j «r2>A2 :: 4-
Ti h (let x:T[-e[in ei : n end) O if T] > r[«• T2 > r2, Ti > e^ o Y2 > e2,

T2 h (let .7;:r2=e2 in e2 : T2 end) Ti, ,X:TJ > ei ■«• ri,x:T2 > e2, and Ti > TJ §F2I> T2.

Figure 7.2: Revised Term Equivalence Algorithm

130

(A; r) valid iff

1. Ahr

2. and

- r = Ty(A) and A > r 4 r

- Or, r = S(u : a) and (A;v;a) valid

- Or, A > r U (S:T')-V, and (A; r') valid, and for all A'DA and A" D A if
(A';V';T') is (A"; w';r') then (A'; [V'/X]T") is (A"; [W'/X]T").

- Or A > T JJ. (Z:T')XT", and (A; r') valid, and for all A'DA and A" D A if
(A'-V'-T

1
) is (A";w;/;T')then(A';K/a;]T") is (A"; [W'/X]T").

- Or r = Va::K.r", and for all A'DA and A" D A if h A' = A" and
A'\-Ai = A2 :: K then (A'; [Ai/a]r") is (A"; [A2/O\T").

(AI;TI) is(A2;T2) iff

1. h Ai E A2 and Ai h TI = r2

2. (Ai;ri) valid and (A2;r2) valid.

3. - Ti = Ty(Ai) and Aj > r, ^j. n

- Or, Ti = S(vi : Oi) and (AI;VI;CTI) is (A2;u2;<r2)

- Or, Ai t> n JJ- (X:T!)-±TI', and (Ai; T{) is (A2; r2), and for all A[D Ax and A2 D A2

if (A'i;«'i;r') is (A^T
1
) then (A'^/xtf) is (A2; [^/s]r£).

- Or, Aj > n JJ- (X:T-)XT-': and (A:; T{) is (A2; T^), and for all A': D Ai and A2 D A2

if(A'1;t;'1;r') is (A2; V'2;T>) then (A'l5 K/x]r{') is (A2; K/^K).

- Or TJ = Va-Ki.-r!', and for all A[D Ax and A'2 D A2 if r- A[= A'2 and
A'x \-AX = A2 :: ^ then (A'l5 [A./a]^) is (A2; [A2/«K).

Figure 7.3: Logical Relations for Types

131

• (A; v;r) valid iff

1. (A;r) valid

2. Ah« :T

3. A>»oAi>i)

4. - T = 7fy(,4) and A > T JJ. T

- Or, T = S(w : T') and (A: v; r') is (A; w; r')

- Or, A > T 4 (.T:T')--T"

- Or, At>T Jj. (X:T')XT", (A; 7Tit;; T') valid, and (A: TT2V; \TXIV/X\T") valid.

- Or, r = Ma::K.T'.

• (Ai;«i;ri) is (A2;v2;r2) iff

1. (Ai;n) is(A2;r2)

2. (AI;DI;TI) valid and (Aj; w2; TI) valid

3. Ai h wj = V2 : T\

4. Ai > V\ 44> A2 t> w2

5. — Ti = Ty(Ai) and A, > r,; JJ- T,;

- Or, n = S{wi : ai) and (Ai;^;^) is (A2;?;2;<T2)

- Or, A, > n $ (X:T^T?,

- Or, Ai>Ti 4 (X:T!)XT!', (Ai;7riUi; T{) is (A2; TTI?;2; T£), and
(Ai;7r2ui;[7riWi/.T]rf) is (A2; 7r2w2; [TT^/X]^).

- Or, ^ = Va::üfi.T/.

Figure 7.4: Logical Relations for Values

132

• (Ai;n < ax) is (A2;r2 < a2) iff

1. VA; D AI and A'2 D A2, if (A'^VUTI) is (A2;v2;r2) then (Ai;«i;<ri) is (A'2;u2;a2)

• (A; 7; T) valid iff

1. Ah ok

2. Va e dom(r). A h 7a :: 7(r(a))

3. Vzedom(r). (A; 72:; 7^(2:))) valid

• (Ai;7i;ri) is (A2;72;r2) iff

1. h Ai = A2

2. dom(ri) = dom(r2)

3. (Ai; 71; Ti) valid and (A2;72;T2) valid

4. Va G dom(r). Ai H 71a = 72a :: 7^1 (a))

5. Vzedom(r). (A^J^J^F^X))) is (A2;72^72(r2(x)))

Figure 7.5: Derived Logical Relations

size(F;Va::K.T) = (1,0) + 8ize{T, a::K;r)
size(F;S{v: T)) = (1,0). + size(F;r)
size(F; (X:T')-^T") = (0,1) + size(F;T') + size{F,x:T';r")
size{F;{x:T')xT") = (0,1) + size(F;T') + 8ize(T, X-.T

1
 ;T")

size(F; Ty(A)) = (0, Number of of x's and -^'s in B where r > A :: T =» B)

Figure 7.6: Size Metric for Types

133

I therefore define the size of a type r relative to a context T to be pair of integers, (If T
is apparent from context, I will just refer to the size of r.) The formal definition is given in
Figure 7.6; the definition here uses componentwise addition:

(mi, m2) + (ni, n2) = (mi + nj, m2 + n2).

The first component of the size is the number of V's and S's in the type. The second component is
the number of x and —*-'s in the type after all the constructors within Ty(-) 's have been normalized.
These sizes are ordered lexicographically:

(mi,m2) < (ni,n2) «=> (mi < nj) V ((mi = n}) A (m2 < n2)).

The relevant properties of sizes are summarized in the following lemma:

Lemma 7.1.2 (Sizes of Types)
1. IfY h T\ = r2 then size(Y;T\) — sz2e(r;r2).

2. IfT\- T\ and Y i> T\ Jj. r2 then T\ and r2 have equal sizes.

3. IfYh S(v : T) then the size of S(v : r) is strictly greater than the size of r.

4- IfT\- {X:T')-^T" then the size of (X:T')—^T" is strictly greater than both the size of r' and the
size of \V/X]T" for any value satisfying T \- v : T'.

5. IfT\- (X:T')XT" then the size of (X:T')XT" is strictly greater than both the size of r' and the
size of [V/X]T" for any value satisfying T h v : T'.

6. If r h Var.K.T then the size of V«::Ä".r is strictly greater than the size of [A/O\T for any
constructor satisfying T h A : K.

Proof:

1. By induction on equivalence derivations and the properties of constructor normalization.

2. By part 1 and Lemma 6.2.1.

3-6. By definition of sizes.

I

Lemma 7.1.3 (Logical Reflexivity)
1. //(A;r) valid then (A;r) is (A;r).

2. 7/(A;v;r)valid then (A;u;r) is (A;w;r).

3. If (A;7; Y) valid then (A;7;r) is (A;7;T).

Proof: By induction on the size of types

1. In all cases, h A = A and and A h T = r by declarative reflexivity.

• Case: r = Ty{A) and A > r J| r. Trivially (A; Ty(A)) is (A: Ty{A)).

• Case: r = S(v : cr). By the inductive hypothesis (A; v; o) valid implies
(A;U;CT) is (A;u;a). Thus (A; S(v : a)) is (A; S{v : a)).

• Case: A > r JJ- {X:T')-*T". Then (A;r') valid. By the inductive hypothesis,
(A;r') is (A;r'). Let A': D A and A2 D A and assume (A'^u'^r') is (A'2;?;2;r
Then (A'i;K/x]r") is (A2; K/a;]r"). Thus (A;r) is (A;r).

134

• Case: A > r JJ. (X:T')XT". Same proof as in previous case.

• Case: T = VCX::K.T". Assume A': D Ai, A'2 D A2, h A'x = A'2, and Ai h Ai = ,42 " -&i-
Then(A'i;[yli/a]r") is (A2; [A2/O\T"). Thus (A;Va::7f.r") is (A;Va::Kr").

2. In all cases, (A; r) is (A; r) by the argument of the previous part, A \~ v = v : r by
Rule 2.79, and Aou^Aovby assumption.

• Case: T = Ty(A) and A o r JJ. T. Trivial.

• Case: T = S(w : T'). Then (A;w;r') is (A;w;r') so (A;u;r') valid. By the inductive
hypothesis {A;V;T') is (A;u;r'). Therefore (A;v;S{w : r')) is {A;v;S{w : r')).

• Case: A > r JJ. (X:T')-±T". Trivial.

• Case: A > r JJ- (X:T')XT". Then (A; 7Tiv; T') valid, so by the inductive hypothesis we have
(A;7TI?;;T') is (A;TTIV;T') and (A;7r2u; [TTIV/X]T") is (A; 7r2t>; [-KIV/X]T"). Thus

(A;«;T) is (A;«;r).

• Case: T% = Va::7Q.T4'. Trivial.

3. By declarative reflexivity we have h A = A. By reflexivity of constructor equivalence, for all
a € dom(r) we have A \- 7a = 7a :: 7(r(a)). By part 2, for all x £ dom(r) we have
(A;7a;;7(r(x))) is (A;7r;7(r(;r))). Thus (A;7;r) is (A;7;r).

Lemma 7.1.4 (Logical Symmetry)
1. 7/(AI;TI) is (A2;r2) then (A2;r2) is (Ai;n).

2. //(Ai;ri<ai) is (A2;r2 < CT2) iÄen (A2;r2 < a2) is (Ai;n<<n).

5. 7/(AI;«I;TI) is (A2;U2;T2) then (A2;u2;r2) is (Aijuun).

I 7/(Ai;7l;r!) is (A2;72;r2) then (A2;72;r2) is (Ai^i;^).

Proof: By induction on the size of types, using context replacement, declarative symmetry, and
algorithmic symmetry. I

The following two lemmas must be proved simultaneously by induction on the size of types. I
have separated their statements for clarity.

Lemma 7.1.5
1. If (A; V;T) valid and (A;T) is (A; a) then (A; v;a) valid.

2. 7/(AI;U1;TI) is (A2;v2;r2), (Ann) is (AIJCTI), and (A2;r2) is (A2;cr2) then
(AI;UI;<TI) is (A2;U2;CT2).

Proof: In all cases, by subsumption we have A h v : cr.

1. • Case: T = Ty(A) and A > T 4 T. Then a = Ty{B) and A > cr JJ. cr.

• Case: T = S(w : r'). Then a = S(w' : a') where (A;W;T') is (A;w';a'). Since
(A;V;T') is (A;W;T'), inductively by Logical Transitivity we have
(A;V;T') is (A;w';a>).

• Case: A t> T JJ, {X:T')^T". Then A > a JJ- (XICT')-^'.

135

• Case: A > r JJ. (X:T')XT". Then A > a JJ. (x:a')xa". Now (A: 7Ti?;; T') valid and
(A;r') is (A;cr'), SO by the inductive hypothesis we have (A; 7Ti?;; CT') valid. By
reflexivity and the inductive hypothesis, (A-.-K\V;T') is (A;7TIW;CT'), SO

(A; [TT]V/X]T") is (A; [ITIV/X]O"). Since (A; TT2V; [IT\V/X]T") valid, by the inductive
hypothesis we have (A; -K2V. [K\VIX]O") valid.

• Case: r = \/(X::K.T'. Then a = \/a::L.a'.

2. By subsumption, in all cases A] h v\ = v2 : o\. By the argument in part 1, (A\\v\\o\) valid
and (A2;?;2;er2) valid. Recall that that (AI;TI) is (A2;T2).

• Case: r^ = Ty(Ai) and A,- o r,; JJ- r,. Then cr, = Ty(B{) and A,- i> a\ JJ. a.;.

• Case: n = S(^ : r-). Then o\ = S('iii, : o'A, (Ai;ui;rj) is (A2;V2;T2),

(Ai;ui;r{) is (Ai; un;a[), and (A2; v2; T£) is (A2;w2:a!2). T1IUS(A1;T1') is (A,;^)
and (A2;T2) is (A2;a!2). By the inductive hypothesis, (A]-,V\;a[) is (A2;v2;a2).

• Case: A? > n JJ (X:T[)-±T? . Then A,- 0 CT, 4 (2::^)-^'.

• Case: A7; > r, J| (X:T')XT''. Then A,; t> er2; JJ. (.T:<T-) xof. Now (A]; r{) is (A]; a[),
(A2;T2) is (A2; cr2), and (Ai:7riWi;Tj') is (A2; 7Ti?;2; T2). By the inductive hypothesis,

(AI;7TIVI;<T{) is (A2;7riV2;o"2). Also by Reflexivity we have
(Ai;7riUi;rj) is (A\;-n\V\\T[) and (AI;T[) is (Ai;^), so by the inductive hypothesis
we have (AI;7TI?;I;TJ) is (Ai;iriVi;a[). Similarly, (A2; it\v2\ T2) is (A2; TT [V2; a2). Thus
(AI;TT2VI;[KIVI/X]T") is (A2; 7r2v2; [it \v21 X]T!{) , (Ai; [TTI?^/.^^") is (Ai; [ir^Jxja"),
and (A2; [TT\V2/X]T2) is (A2; [^\v2/x]a2), so by the inductive hypothesis we have
(A1;7T2?;i;[7r1'Ui/.T]cri') is (A2;7r2U2; [niv2/x]a").

• Case: TJ = Va::Ki.r'. Then cr, = Vay.Li.a'j.

Lemma 7.1.6 (Logical Transitivity)
i. //(AI;TI) is (A2;r2) and (A2;r2) is (A2;cr2) fften (Ai;n) is (A2;CT2).

2. 7/(Ai;wi;ri) is (A2;U2;T2) and (A2;V2;T2) is (A2;w2;a2) then (Ay,vy,^) is (A2;u/2;cr2).

Proof: By induction on the size of types.

1. By context replacement and declarative transitivity, Ai h x\ = a2.

• Case: r?; = Ty(Ai), a2 = Ty(B2), Aj > r\ JJ. T;, and A2 t> o2 JJ. cr2. Trivial.

• Case: T; = S(UJ : r-) and cr2 = S('«;2 : a'2). (AyvyT[) is (A2;?;2;T2) an<^
(A2;W2;T2) is (A2; w2; <r2). By the inductive hypothesis, (A\\vyyr[) is (A2;w2;cr2).

• Case: A; > r; JJ. (xir/)-5-^' and A2 > CT2 JJ- (a;:^)-^'. Then (Ai; r{) is (A2; T2) and
(A2;T2) is (A2;cr2), so by the inductive hypothesis we have (AI;TJ) is (A2;CT2). Let
A[D Ai and A2 2 A2 and assume that (A[;V\;T[) is (A2; ts2; a2). By reflexivity and

inductively by Lemma 7.1.5, (A[;V[;T[) is (A2; u2; T2)i
so

(A'^K/xlrf) islA^^/rr]^'). Now by reflexivity, (A'2;v'2; a'2) is (A'2; v'2; a'2), so by
reflexivity and inductively by Lemma 7.1.5, (At,;^;-^) is (A'2;t>2; CT2). Thus

(A2; [w2/x]r2) is (A2; [^/^cr")- BY tlie inductive hypothesis,
(AijK/xK) is(A2;b2/tfK).

• Case: A, > r, JJ- (X:T/)XT" and A2 t> er2 JJ. (.x^^xcr"- Same as previous case.

136

• Case: TJ = VGJ-ÄJ.TJ' and a2 = V' a::L2.o'2. Assume A[D A\ and A'2 D A2, r- A[= A'2,
and A[h Ax = A2 :: Ki. Since A[\- KX=K2 by Theorem 6.2.2, we have
(A[; [AI/O\T[) is (A2; [,42/a]T2). Also h A2 = A'2, A2 h K2 = L2, and by context
replacement, declarative reflexivity, and subsumption we have A'2 \- A2 = A2 :: K2, so

(A'2; [A2/Q\T2) is (A2; [^/ajer^)- By the inductive hypothesis,
(A'^^iHrO is(A2;[A2/a]a2).

2. Inductively using context replacement, declarative and algorithmic transitivity, and part 1.

I

Definition 7.1.7
The judgment Y t> v\ ~ v2 holds if and only if v\ and v2 have a common weak head reduct under
typing context T; that is, if and only if there exists w such that T > v\ -^>* w and T \> v2 ~~»* w.

Lemma 7.1.8 (Weak Head Closure)
1. If Ai > v\ <£> A2 > v2, Ai > v\ —W\, and A2>v2 — w2, then A\ 0 w\ <£> A2 > w2.

2. If (A; V;T) valid, A > v ~ w, and A h w : r then (A; w;r) valid.

3. If (AI;UI;TI) is {A2\V2;T2), A\ > i>i ~ toi, A2 > V2 — w2, and A\ h w\ = w2 : T\ then

(AI;WI;TI) is (A2;W2;T2).

Proof:

1. By definition of the algorithm.

2-3. By simultaneous induction on the sizes of types.

Lemma 7.1.9
1. If A opt T, A>p o A>p, and A \- p : T, then (A;p;r) valid.

2. If Ai >pi fn, A2r>p2 tT2, Aiopi <-> A2op2, Ai \-p1 = p2 :TX, and (AI;TI) is (A2;T2)

then (Ai;pi;ri) is (A2;p2;T2).

Proof: By induction on algorithmic derivations and weak head closure. I

Corollary 7.1.10
7/(Ai;(Ai(a;))) is (A2; (A2{x))) then (A^x; (A^x))) is (A2; x; (A2(x))).

Proof: By part 2 of Lemma 7.1.9 with pi = p2 = x, T\ = Ai(rc), and T2 = A2{x). ■

Lemma 7.1.11
1. If AY- Ty{A) then (A; Ty{A)) valid.

2. IfY- Ai = A2 and A1 h Ty(Ai) = Ty(A2) then (Ai; Ty(Ai)) is (A2; Ty(A2)).

Proof: By induction on the size of types. Note that Ty(A) cannot head-normalize to a truly
dependent product or function type, or to a polymorphic or singleton type. I

Lemma 7.1.12
If (Ai; TI) is (A2; r2) then Ax > n <^> A2 > r2.

137

Proof: By induction on the sizes of types. I

In the following theorem, not that part 6 uses algorithm equivalence because logical equivalence
is defined only for values.

Theorem 7.1.13
1. 7/(Ai;7i;r) is (A2;72;r) andT^r then (AI;7IT) is (A2;72r)

2. 7/(Ai;7i;r) is (A2;72;r) and T \- TX = r2 then (Ai;7ln) is (A2;72r2)

3- 7/(Ai;7i;r) is (A2;72;T) andT\~ri < T2 then (Ai;7lTj <7)r2) is (A2;72T! < 72r2)

4- ^/(^i;7i;r) is (A2;72;T) andThv.T then (A^-yi^-yjr) is (A2;72?;; 72r)

5- //(A:;7l;r) is (A2;72;T) and T h «i = v2 : r MOT (Ai;7iVi;7iTi) is (A2;72?;2;72T2)

6. 7/(Ai;7i;r) is (A2;72;T) and r h e\ = e2 : r then A] >7iei «=> A2i>72e2.

Proof: By induction on derivations.

Type Well-formedness Rules: T h r. In all cases, by Substitution we have Aj H 7]r and
A2 h 72r and by Functionality we have Ai h 7jr = 72r.

• Case: Rule 2.45
Th,4::T

T h T</(A)

By Functionality, Ai h 7lyli = y2A2 ■■ T. By Lemma 7.1.11,
(Ai;2H7i4i)) is (A2; 7V(72^2)).

• Case: Rule 2.46
r h v : r T not a singleton

T h S(u : r)

By the inductive hypothesis, (AI;7]V;7IT) is (A2;72?;;72r). Thus (Ai;S(7i?; : 7ir)) valid,
(A2; S(72u : 72r)) valid, and (Ai; S(7iu : 7ir)) is (A2; S(72w : 72r)).

Case: Rule 2.47
r,.T:r'hr"

T h {X:T')^T"

Same argument as for II kinds in Theorem 5.3.10.

Case: Rule 2.48
T. X:T' h T"

T \-(X:T')XT"

Same argument as for £ kinds in Theorem 5.3.10.

Case: Rule 2.49
r,a::K\-T

T h Vay.K.T

There is a strict subderivation, r h if, so by substitution and functionality we have
Ai h jiK, A2 h j2K, and A] h 7l7sT = j2K. Assume A[D Ax and A'/ D A! and
A'j V- AX=A2 :: 71Ä". Then (A'i;7i[aH>.4i]; T, o::A") is (A'/;7i[a^yl2]; T, a::Ä"). By the
inductive hypothesis, (A[; (ji[a<-^Ai])r) is (A'/; (7l[at-^-^2])r). That is,
(A'1;[^1/a](7i[ai->a]r)) is (A'/; [A2/a](7l[a^«]r)). Thus (A'1;7i(V«::Kr)) valid. Similar
arguments show that (A2;72(Va::Kr)) valid and (A'^-y^Vof-TiT.T)) is (A2;72(Va::Kr)).

138

Type Equivalence: r h T\ = T2. In all cases, by validity and substitution we have Ai h 71 TI and
A2 l~ 72^2 and by functionality we have Ai h 7iri = 72T2.

Thr

Thr = r

Thr' = T

rhr = T'

Case: Rule 2.50.

By the inductive hypothesis.

• Case: Rule 2.51.

By symmetry, (A2;72;T) is (Ai;7i;T). By the inductive hypothesis, (A2;72T') is (Ai;7ir)
By Symmetry again, (A^IT) is (A2;72T')-

Case: Rule 2.52.
r h T\ = r2 F h T2 = r3

r h n = r3

Same proof as for transitive rule for constructor equivalence in Theorem 5.3.10.

Case: Rule 2.53.
T h A1 = A2 :: T

r h T^Ai) = 2V(A2)

By functionality, Ai h 71 .A 1 = 72^.2 :: T, so by Lemma 7.1.11,
(Ai; TylnAi)) is (A2; Ty{l2A2)).

Case: Rule 2.58.
rhAi::T T \-A2 :: T

T^Ty(A1xA2)= Ty(A1)xTy(A2)

First, Ai >-n{Ty(AixA2)) 4 Ty^A^xTy^A^ and
A2>i2(Ty{A1)xTy(A2)) 4 ^(72^1) x Ty{l2A2). By functionality, Ai h 71^1 = 72^1 :: T
and Ai h 7lA2 = 72^2 :: T. By Lemma 7.1.11, (Ax; ZtyfriAi)) is (A2! 2MT2^I)) and
(Ai; 2V(7i-A2)) is (A2; Ty{l2A2)).

• Case: Rule 2.59.
TV- Ai-.-.T V h A2 :: T

r h 1MA1-A2) = 3V(^i)^2V(A2)

Analogous to the proof for Rule 2.58.

• Case: Rule 2.54.

r h Ti = r2 r H «i = ■u2 : TI TI , r2 not a singleton

T h S(Wl : TI) = S(v2 : r2)

By the inductive hypothesis, (An71^1;7m) is (A2;72U2;72TI) and (A2;72Ti) is (A2;72T2).
By Lemma 7.1.5, (Ai;72^2;72^2) valid and (AI;7IUI;7ITI) is (A2;72^2;72^2)-

Case: Rule 2.55.
rhr{=r^ Y,x:r[^T'{ = T'2'

r h (x:r{)-rC = (z:^)-^

As in the proof for LT kinds.

139

• Case: Rule 2.56.
r h T[= T'2 r, X-.TI h Tj" = T!{

T^{X:T[)XT'{ = {X:T!2)XT!{

As in the proof for S kinds.

Case: Rule 2.57.
ThK}=K2 I\ <*::#] hTi=T2

n-Va::Ä"i.Ti = V«::K2.T2

Analogous to the proofs for the previous two rules, also using functionality to show
Ai h 7i#i = j2K2.

Subtyping: F \- T\ < T2. In all cases, by validity and substitution we have Aj h 71 rj, A2 r- 72r2,

Ai h 71T] < 7IT2, and A2 h 72rj < 72r2. By functionality we have A] h 71 TJ < 72r2.

• Case: Rule 2.60
F h T\ = r2

r t- Ti < r2

Let A[D Ai and A2 5 A2 and assume (Aj: v\; 71 T\) is (A2;?;2;72TI). By the inductive
hypothesis, (Ai;7iTt) is (Ai;7iT2) and (A'2;72TI) is (A'2;72r2). By Lemma 7.1.5,
(A'I;VI;7IT2) is (A'2;w2;72r2).

• Case: Rule 2.61
r h TI < r2 r V- T2 < T3 ————

Obvious by inductive hypothesis that (Aj;vi;7iTi) is (A'2;«2;72TI) implies
(A'i;vi;7ir2) is (A2;w2;72r2) which implies (A'j;^; 7^3) is (A2; u2;72r3).

• Case: Rule 2.62.
r h w : T T not a singleton

T V- S(«; :T)<T

Let Aj D AI and A2 D A2 and assume (Aj;vi; S(7i«; : 7IT)) is (A'2;u2; S(72"W7 : 72T)).

Then by definition of the logical relation, (A'^vi^yr) is (A2;u2;72r).

• Case: Rule 2.63

ri-S(u>i :ri)
r h wi = w2 : r2 r h T] < r2

-(TI,T2 not a singleton)
fh S(wi : TI) < S(w;2 : r2)

Let A\ D A] and A'2 D A2 be given, and assume
(A'1;wi;S(71'w;i : 71T1)) is (A2;u2; S(72«>i :j2Ti)). Then (A'^vi; 7^1) is (A'^^w^yiTi)
and (A2;v2;72ri) is (A2;72«'I;72TI) and (Ai;i>i;7iTi) is (A2;I>2;72TI). Using the inductive
hypothesis we have (A/

1;u1;71r2) is (A1;71«;I;7IT2), and (A2;?;2;72r2) is (A2;72WJ;72T2),

and (A'1;UI;7IT2) is (A2; I>2;72T2). Again by the inductive hypothesis,
(Ai;7iwi;7ir2) is (Ai;jiw2;71 T2) and (A'2;72WI;72T2) is (A2;72W2;72T2). By transitivity,
(Ai;ui;7ir2) is (Ai;7iw2;7iT2) and (A2;w2;72r2) is (A2;72w2;72r2). Therefore
(A'1;ui;S(71'u;2 : 71 r2)) is (A2; v2; S{j2w2 : ym)).

140

• Case: Rule 2.64.
rh {X:T[)XT'{

rhr^TJ r,ar:r^l- T'{<T2'

T h {x:r[)^r'{ < {x:r2)^

Same proof as for subkinding of II kinds.

Case: Rule 2.65.
rh(^)x^

r h T[< T'2 T, x:n h if < T£

rK(x:rOxr{'<(^)xr^

Same proof as for subkinding of S kinds.

Case: Rule 2.66.
n-Va-ÜTi.Ti

T^K2<K1 r,a::K2\-n<T2

T t- Va::i^i.Ti < Way.K2.T2

Analogous to the proof for function types.

Term Validity: Their. In all cases, by validity and Substitution we have Ai h 71 e : 71 T\ and
A2 \~ 72e : 72T. By functionality we have Ai h 71 e = 72c : 7ir.

• Case: Rule 2.67
Thok

T\-n: int

Recall that int = Ty(lnt). Now Aj > int J| int, and Aj > n <£> A* > n, and Ai t> n <3> A2 > n.
Since (Ai;int) is (A2;int), we have (AJ; n; irit) valid and (Ai;n;int) is (A2;n;int).

Case: Rule 2.68
Thok

r h x: r(x)

By the assumptions for 71 and 72.

Case: Rule 2.69
r,/:(x:r')^r",a;:r'he:r"

r h fun /(S:T'):T" is e : (:E:T,)-1-T"

There are strict subderivations F h (X:T')-±T" and by inversion, T h r' and r,x:r' h T". By
the inductive hypothesis, (AI;7IT') is (A2;72T') and
(A1;7l((a;:T,)^T")) is (A2;12((X:T')^T")). Then
(A1,/:7l((a::r')-r"),a;:7ir';7i[/^/][^a:];r,/:(a;:r')--r",x:T') is
(A2,/:72((x:r')-^r"),2;:72T';72i/i-^/j[a;i-^a;];r,/:(a::T')-s-T",a;:T/). By the inductive
hypothesis, A1,f:ji((x:T,)-^r"),x:'yiT'i>{j1[f^f][x^-x])e <{=>
A2, /:72((a;:r/)^T"), x:72r' > (72[/i-)-/][a;i->a;])e. Similarly, by the inductive hypothesis
(Ai, a;:7iT'; (71 [Q;H^Q;])T") is (A2,Z:72T'; (72[a^a])T"), so
AI,:E:7IT'> (ji[a>-^a})T" 4$ A2,X:'}2T' > (72[ai->0!])T". Therefore
Ai > 71 (fun/(a;:r'):T" is e) <£> A2 t>72(fun J(X:T'):T" is e), so
(Ai;7i(fun/0r:r'):T" is e);7i((a;:r')^r")) is (A2;72(fun /(Z:T'):T" is e);72((x:r')--r")).

141

• Case: Rule 2.70.
T, a::K h e : r

rhA(o::/f):T.c:Vn::Jf.T

Analogous to previous case, using

(Ai,a::'yiK;ryi[ai->a\;r,a::K) is (A2,«::72Ä"; 72 [«i-»«]: F, o::K).

• Case: Rule 2.71.
r h ?;j : T] r h ?;2 : T2

F h (vi,?;2) : T\XT-2

By the inductive hypothesis. (Ai;7i?7;7iTi) is (A2;72 ?7;72^1) and

(Ai571^2; 71T2) is (A2;72"2;72''"2)- By Lemma 7.1.8, we have
(Ai;7Ti(7ivi,7i?;2);7iTi) is (A2;^1(72^1,72^2);72n). and

(A1;7T2(7iWi,7i';2);7iT2) is (A2;7^(72^1,72^2);72T2).

• Case: Rule 2.72.
Thv: (X:T')XT"

T h 1T\V : T'

By the inductive hypothesis, (AI;7IW;7I((.T:T')XT")) is (A2;72?>: 72(C''"T')XT")). Thus
(Ai; 717(71?;); 7IT') is (A2; 7ri(72t;);72r').

Case: Rule 2.73
T h v : {X:T')XT"

r h ir2v : [TTIV/X]T"

By the inductive hypothesis, (AI;7IV;7I((.T:T')XT")) is (A2; 72^572((•'"T')Xr"))- Thus
(Ai;7r2(7iv);7i([7riu/a:]T")) is (A2; 7^(72«); 72{[^IV/X]T")).

Case: Rule 2.74.
r h t; : T'-V r\-v': r'

r h v v' : T"

By the inductive hypothesis and definition of the logical relations, A] t> ^\v <4> A2 0 72v and
Ai >7iw' <£> A2 > 72?/- Thus Ax >7i(i>?/) «=> A2 0 72(^7/).

• Case: Rule 2.75
r h v : Var.K.T T h A :: K

Tl-vA: [A/n}r

By the inductive hypothesis and the definition of the logical relations, A] t> 71?; o A2 > 72?'-
That is, Ai > 71?; Jj. «7 and A2 > y2v -U- w2 and Ai i> «7 «->■ A2«'2- By substitution,
Ai h 71U : 7i(Va::i;f.T), so by soundness of weak head reduction we have
Ai h wj : 7I(V«::ä'.T). Let A] h «7 : Lx. Then Ax h Li$ < 7i(V«::Kr) by Lemma 6.3.1.
By Theorem 6.2.3, LiS = Va::L\.o'{ with Ai h 71Ä" < L't. Similarly, A2 > w2 it Va::L2.tr2'
with A2 h 72X < L'2. Now either both «7 and w2 are paths or they are are both
polymorphic abstractions. In either case, Aj h Va::L\.a" = Var.L^.a". By Theorem 6.2.2,
Ai h Lj = L2. Then Ai h 71^ = 72^ :: 71 if by functionality, so Ai h 7^ = 72^ :: 71 Lj by
subsumption. Then Ai 0 71 >1 :: 71K <3> A2 > 72^4 :: 72K by the completeness of constructor
equivalence, and therefore Ai > 71 (v A) ■& A2 > 72(w -A).

142

Case: Rule 2.76
Tl-e'-.T' T,x:T'^e:T T

T h (let x-.r'—e' in e : r end) : r

By the inductive hypothesis and the definition of the logical relations, Ai >7ie' 4$ A2 >72e'.
There is a strict subderivation T \- r'. By the inductive hypothesis (AI;7IT') is (A2;72T'),

so by Lemma 7.1.12 we have Ai > 71 r' O A2 > 72 T'. Similarly, Ai > 71 T <£> A2 > 72T. Finally,
using Corollary 7.1.10 we have (Ai,x:7ir';7i[ai-^o;];r,a;:r') is (A2,a;:72r';72[tti-)-a]; T,X:T'),

so by the inductive hypothesis AI,X:JIT' t> (ji[a*-Hx])e ■& A2,x:j2T' > (72[ai->-a<])e.
Therefore Ai > 71 (let x:T'=e' in e : T end) 4$ A2 > 72(let x:r'=e' in e : r end).

Term Equivalence: r h e\ = e2 : r. All these cases are straightforward, similar to cases already
proved. I

Lemma 7.1.14
1. ijf r (- oÄ then (F; id; T) valid where id is the identity function.

2. IfT\- ok (F; id; T) is (r; id; T) where id is the identity function.

Proof:

1. By induction on the proof of T h ok.

• Case: Empty context. Vacuous.

• Case: V, a::K h ok because T h K.

By the inductive hypothesis and monotonicity.

• Case: T, x:r h ok because T h r.

(a) By Proposition 3.1.1, V h r, and V \- ok.

(b) Also, x & dom(r).
(c) By the inductive hypothesis, (T;y;T(y))valid for all y G dom(r) and

(F; a; T(a)) valid for all a G dom(r).
(d) By monotonicity, (T,x:T;y; ((T,x:r)y)) valid for all y G dom(r). and

(r, X:T; a; ((F, x:r)a)) valid for all a G dom(r).

(e) By Theorem 7.1.13, (T;T) valid

(f) and by monotonicity (r, X:T; T) valid

(g) Now by Corollary 7.1.10, (r,X:T;X;T)valid,

(h) Hence (T,X:T; id; T, x:r) valid.

2. By part 1 and reflexivity.

This yields a completeness result for the symmetrized algorithm:

Corollary 7.1.15
1. IfY h n = r2 f/»en {T;n) is (r;r2).

2. //rhei = e2 :r then (r;ei;r) is (r;e2;r).

5. // r h TI = T2 i/ien r > TI «=> r > T2.

143

4- If r h ei = e2 : r <Äen F o ej •£$• T > e2.

Proof:

1,2 By Lemma 7.1.14, wc can apply the Theorem 7.1.13 with 71 and 72 being identity
substitutions.

3,4 Follows directly from parts 1 and 2 and the definition of the logical relations.

Again, use of a size function for algorithmic equivalence (number of non head-normalization
rules used) allows the proof to be transferred to the original equivalence algorithm.

Theorem 7.1.16
1. If \~ T] = T2, T\ h e\ : T, r2 r- e2 : T, and Y\ > e\ <5 r2 > e2 then Y\ > e\ 44- e2.

2. If\~T\ = T2, Ti h e\ : r, r2 r- 62 : r, a?;.rf T] !> ei O T2 > e2 then Y] > e.\ f-» e2.

3. If\-Yi= T2, Ti h ri, T2 f- T2: and Ti 0 T\ <=> T2 t> T2 then Y^ > TX O r2.

^. 7/ r- Ti = r2, Y\ h T\, T2 r- r2. and Ti > TI f)T2i> T2 i/ter?. F] > TI <-> T2.

Corollary 7.1.17 (Completeness for Type and Term Equivalence)
1. If T (- ei = e2 : r £/&en Toe] <4> e2.

2. 7/ T h TI = r2 £/?en r c> TI O r2.

Theorem 7.1.18
i. If r > TI <£4> T] and r > r2 44> T2 £/ien «Y i.s decidable whether Y t> T\ «=> T2.

j?. 7/ r i> ei <=^ ei and r i> e2 <^ e2 £/»en ii z,s decidable whether Y t> ei -£4- e2.

Corollary 7.1.19 (Decidability of Type and Term Equivalence)
1. If Y h T\ and Y h r2 i^en «i i.s decidable whether Y h n = T2.

£. 7f T h ei : r and T h e2 : r £/«en ii is decidable whether Y \- e\ = e2 : T.

Proof: Follows from Theorem 7.1.18 and by soundness and completeness of the equivalence algo-
rithms. I

7.2 Completeness and Decidability for Subtyping and Validity

Given completeness for term equivalence, proving completeness of the subtyping algorithm would
be straightforward if it were not for transitivity (Rule 2.61). Proving transitivity of the algorithm
requires some care because of polymorphic types, and the fact that changes to kinds in the typing
context affect type head-normalization.

Reflexivity, in contrast, is direct

Lemma 7.2.1
If Y h r then Y > r JJ. a and Y > a C a (i.e., Y > r < T).

Proof: By induction on the proof of F h r, using correctness of the term, kind, and constructor
equivalence algorithms. I

Proving transitivity requires showing that the algorithm obeys a weakening property: types in
the context can be replaced by subtypes, and kinds in the context can be replaced by subkinds.
Half of this is straightforward:

144

Lemma 7.2.2 (Algorithmic Weakening for Term Variables)
Assume Y1 \- o2 < o\.

1. IfT',x:auT"\-vi :r and Y',x:ai,Y" h v2 :T andr',a;:ai,r">«i <S> w2 £/ien r',a;:CT2,r"c>ui O

5. 7/r',x:ai,r"l-Ti andT',x:ai,T"\-T2 and Y1\x:auY"> n «*• r2 faf.r^.r'^T! «T2.

5. 7/r',x:o-i,r"hr1 and IV^T" h r2 and r',x:ai,r" > n C r2 thenY',x:a2,Y'' >n C r2.

^. //r',a::(7i,r"l-Ti and r',x:ai,r" h r2 and r',x:ai,r" > n < T2 thenY',x:a2,Y">n<T2.

5. IfV,x:ai,r"^okandT',x:ai,T''>T thenT',x:<T2,T">T.

6. 7/r',x:ai,r"l- oÄ and r',x:ai,r" > e =* r i/ien r',x:cJ2,r" > e =* r.

7. //r',rffi,r"hT andr',a::CTi,r">e}=T thenY',x:o2,Y" \> e^ T.

Proof:

1,2. By soundness and completeness for type/term equivalence, and Corollary 3.2.8.

3,4. By induction on algorithmic derivations and part 1. (For part 4, note that
head-normalization of types is completely unaffected by the type of x.)

5-7. By induction on algorithmic derivations and part 4.

However, modifying kinds in the context affects head-normalization of types, and hence it is
harder to show that algorithmic subtyping is preserved when kinds in the context are made more
specific.

I solve this problem with a two-step process. First I prove soundness and completeness for the
algorithm applied to the subset of types not containing the universal quantifier. I then use this to
show the required weakening property, which then allows a proof of full transitivity. The success
of this method depends critically on the predicativity of MILo.

First, any two related types either both contain a universal quantifier, or neither do.

Proposition 7.2.3
1. IfY h T\ = T2 then T\ contains a V if and only if T2 contains a V.

2. If T h T\ < T2 then T\ contains a V if and only if T2 contains a V.

Proof: By induction on derivations. I

Lemma 7.2.4 (Pre-transitivity of Algorithmic Subtyping)
Assume T\, T2, and T3 contain no V's, and that Y h T\, Y \- r2, and Y h T3.

1. If T > T\ U. T2 and r > T2 n. T3 then Y > T\ C T3.

2. IfY>T\< T2 and Y \> T2 < T3 then Y > T\ < T3.

Proof: By simultaneous induction on size{Y\ n) + size(Y; r2) + size(Y; T3).

1. • Case: T > Ty(A\) C Ty(A2) C Ty(A$). By transitivity of the constructor equivalence
algorithm.

• Case: Y > S(v\ : T[) C S(^3 : T'2) Q S(V$: 73). By the inductive hypothesis, Y>T[< 7-3.
By the correctness of algorithmic term equivalence, Y t>v\ 4=> V3.

145

• Case: Y t> S(wi : T[) C. S(U3 : T'2) C T3, where r3 is not a singleton. By the inductive
hypothesis, T > r[< r3.

• Case: T > S(wi : r{) C T2 E T-A, where r2 and r3 are not singletons. By the inductive
hypothesis, T > T[< r3.

• Case: Y t> (X:T[)-^T" Q {X:T'2)^T" C (X-.T^T^. By the inductive hypothesis,
r > T!A < T[. By Lemma 7.2.2, V, X:T!A > T" < r". so by the inductive hypothesis we have

• Case: T D> (X:T[)XT[' C (r^)xr" C (r^)x^'. Analogous to previous case.

2. By part 1.

Lemma 7.2.5
Assume T\ and T2 contain no Vs.

1. Ifn = Ty(Ai), T2 = Ty{A2), and Y h A} = A2 :: T then Y > n < T2.

£. 7/T h T] = r2 Men r > Tx JJ. OX, Y t> r2 JJ cr2, r><7i E cr2, and Y>a2 E ""l (i.e., Torj < r2 and
r > r2 < n).

3. IfY h T\ < T2 Men r > TI JJ- ai, T > r2 JJ. a2, and TXJI C. o2 (i.e., Y > TI < r2/).

Proof:

1. By induction on the common normal form of A] and A2.

2-3. By induction on derivations, and part 1. Note that for the case of transitivity, by
Proposition 7.2.3 the mediating term will contain no V's and so the inductive hypothesis
applies.

Lemma 7.2.6 (Algorithmic Weakening for Constructor Variables)
Assume Y' \- K2 < Kx.

1. IfY',a::Kl,Y"^vl :T, T',a::KuT" h V2 : T, and Y',a::KuY" >Vi & v2 then Y',a::K2,Y" >
V\ O v2.

2. IfY',a::Ki,Y"Y-Tl, Y'\a::KuY" h r2, andY1\a::K1,r">T1 <* r2 then Y', a::K2, Y"»Tl O r2.

3. 7/r',a::üri,r"r-Ti, T',a::Ku Y" h r2, andY',a::KuY">n Cr2 thenY',a::K2,Y" t>n CT2.

^. //r',a::Ä-i,r"l-ri, r', a::KuT" \- r2, and I", «"J^T"» n < r2 Men Y',a::K2, Y"> n < r2.

5. If T, a::/^, T" h ofc and T, a::^, T" > r then V, a::K2, Y" > r.

6. 7/ T, a-Ä-!, Y" h oA and T', a::Kx, T" > e =} r Men T, a::tf2, T" t> e z4 r.

7. 7/r',a::X1,r"hr and P\ a-J^P" > e tr r Men P, a::X2, P' > e t= r.

Proof:

1,2. By soundness and completeness for type/term equivalence, and Corollary 3.2.8.

3. Proved simultaneously with part 4, by induction on algorithmic derivations.

146

• Case: r", a::Ki,F" t> Ty(Ai) C. Ty(A2). By correctness of the constructor equivalence
algorithm and Corollary 3.2.8.

• Case: F',a::Ki,F" > S(v\ : r{) C S(v2 : Tj). By the inductive hypothesis
IT", a::K2, r" > T{ < T^. By correctness of term equivalence algorithm and
Corollary 3.2.8, V,a::K2,F" >«i» v2.

• Case: F',a::Ki,F" > S(v\ : T[) C. T2 where T2 is not a singleton. By the inductive
hypothesis V, a::K2, T" > r{ < r2.

• Case: F',a::Ki,F" > (X:T()^T" C (X:T2)-^T2. By the inductive hypothesis,
T, a::K2, V" > T'2 < T[and T, a::ür2, T", X:T2 > T'{ < T2\

• Case: F',a::Ki,F" > (x:r{)xr{' C (i^jx^'. Analogous to previous case.

• Case: F',a::Ki,F" t> ~ia::K[.T" C Ma::K'2.T2. By correctness of algorithm subkinding
and Corollary 3.2.8, I", a::K2, F" \> K2 < K[and by the inductive hypothesis,
F',a::K2,F",a"K2>T,i' <T!!.

4. • Case: T\ and T2 contain V.

(a) Then neither type is of the form Ty (A),
(b) so r',a::Ki,r" > n ty TU V,a::KuT" > r2 ty r2, r',a::is:2,r" > n ^ n, and

r',a::K2,r"0T2^T2.
(c) By part 3 we have F', a::K2, F" > T\ C T2,

(d) sor>::if2,r">Ti < r2.

• Case: neither ri nor r2 contains V.

(a) By assumption F', a::Ki,F" t> n -JJ- a\, F', a::Ki,F" >T2 ty cr2, and
r',a::ÜTi,r">ffi C er2.

(b) By part 3, T, a::K2, F" t> CTI C CT2.

(c) By Lemma 6.2.1, F',a::KuF" h n = CTI and r',a::#i,r" h r2 = CT2.

(d) By Corollary 3.2.8 and completeness of the type equivalence algorithm
F',a::K2,F" > n ty a'v F',a::K2,F" > r2 ty a'2, F',a::K2,F" \-n = a[, and
F',a::K2,F

n\-r2 = a2.

(e) By Corollary 3.2.8 and transitivity, F',a::K2,F" h o\ = a[and

r',a::K2,T"\-a2 = 02-
(f) By Lemma 7.2.5, T,a::K2,F" > a[< ax and F',a::K2,F" > <?2 < o'2.
(g) Since F', a::K2, F" > o\ < <r2, by Lemma 7.2.4 applied twice we have

F',a::K2,F">v[< a'2.
(h) But a[and a'2 are head-normal, so T', a::K2,F" > a[C CT2.

(i) Therefore T, a::X2, T" > TX < T2.

5-7. By induction on algorithmic derivations and part 4.

Given this weakening property, I can now show the full transitivity result for algorithmic sub-
typing. I show only one case of the proof, because all the others are exactly the same as in the
proof of Lemma 7.2.4.

Lemma 7.2.7 (Transitivity of Algorithmic Subtyping)
Assume F h T\, F \- T2, and F h T3.

147

1. If Y o T\ C. T2 and Y t> r2 C T3 Men r t> T\ C. T3.

2. // T > Ti < r2 and F > r2 < r3 Merc F o TI < r3.

Proof: By induction on size(Y; T\) + size(Y; r2) + size\Y\ r3).

• Case: r>Va::K'vT
,

1' C Va::K'2.T'2' C \/a::K'3.T^. By the transitivity of the subkinding
algorithm, F > i^ < K[. By Lemma 7.2.6 have we T, «::/^ > T" < T". By the inductive
hypothesis, T, «::i^ > r" < T£.

At this point I have shown that the subtyping and kind equivalence algorithms are transitive
on well-formed types. At this point, completeness of the remaining typo and term algorithms is
straightforward.

Theorem 7.2.8 (Completeness for Subtyping and Validity)
1. IfT\-T thenT>T.

2- // T h TI < r2 then T>TI<T-2.

3. If T h n < T2 and TI and T2 are head-normal then Y t> T\ C T2.

^. // T h e : r Men r > e =3 a and Y t> e ff a.

5. IfT\-e\T then Y > e t= T.

Proof: By simultaneous induction on the hypothesized derivations, using the completeness of the
type and term equivalence algorithms, and transitivity of algorithmic subtyping. I

Theorem 7.2.9

1. IfT\- T] and T b T2 then it is decidable whether Y t> T\ C r2

2. IfYh T\ and Y b r2 Men it is decidable whether Y > TI < T2

5. IfY\- ok then it is decidable whether Y t> r is provable.

4- IfYh ok then it is decidable whether Y > e =Z r Ao/ds /or some r.

5. IfY\-r and e is given then it is decidable whether Y > e £z r z's provable-

Proof:

1,2. By induction on size(r; n) + s?;ze(r; r2), invoking the decidability of term equivalence and of
type head-normalization.

3-5. By simultaneous induction on the textual size of r, e, and e respectively.

Corollary 7.2.10 (Decidability of Subtyping and Validity)
1- IfY\- ok then it is decidable whether Y b r is provable.

2. IfY\~ T\ and Y b r2 then it is decidable whether Y b T\ < T2

3. If TV- ok then it is decidable whether Y b e : r Äo/d.s /or some r.

^. // T b T and e is <?i?;erc Men it is decidable whether Y \- e : T is provable.

148

7.3 Antisymmetry of Subtyping

By taking advantage of the algorithmic form of subtyping — which contains no transitivity rule —
subtyping can be shown to be antisymmetric.

Lemma 7.3.1
Assume Y h n and Y \- r2.

1. IfT>T\< T2 and Y > T2 < T\ then Y > T\ ■& T2.

2. IfT>TiQ T2 and Y > r2 C T\ then Y > T\ OT2.

Proof: By simultaneous induction on the size of the hypothesized derivations.
Note that by soundness, r h T\ < T2 and V \- T2 <T\.

1. (a) By inversion, r > T\ JJ- O\ , Y > T2 J| CT2 , Y > a\ C <j2 and r > er2 C CTI.

(b) By the inductive hypothesis, Y > o\ 44> er2.

(c) Thus r>ri «=> r2.

2. • Case: T > T?/(,4i) E Ty(A2) and T > Ity(A2) E iM^i) because r > A1 o A2 " T and
r > A2 ^ Ai :: T. Then T > Ty(Ai) <-> Ty(A2).

• Case: Y > S(i>i : n) C S(w2 : r2) and Y > S(«2 : T2) C S(ui : TI) because T 0 ri < T2,
r 0 vi <^> v2, r > T2 < TI, and F t> V2 ■£> «i.

By the inductive hypothesis, r t> T\ 44> r2, so T > S(ui : TI) 44> S(i>2 : T2).

• Case: Y > (a::^)-^' C (x:^)-^^' and F t> (a::-^)-^' C {X:T[)^T'{ because Y > T{ <T'2

and T, x-.T2 > r" < T2 and r t> r2 < r{ and T, X:T[0 r2 < r".

(a) By the inductive hypothesis, Y > r{ <£> T2.

(b) By completeness, T, x:r{ > r" < r".
(c) By the inductive hypothesis, Y,X:T[> T" <£?■ T2 .
(d) Thus T > (X:T[)^T'{ <* {X-.T^T^.

• The remaining two cases are similar.

I

Proposition 7.3.2 (Antisymmetry of Subtyping)
If Y h n < r2 anc? Y \~ T2 < TI then Y \- T\ = T2.

Proof: By soundness and completeness of the subtyping algorithms and by Lemma 7.3.1. I

7.4 Strengthening for Term Variables

Prom the correctness of the algorithmic judgments I now derive a strengthening property for term
variables. I show that all of the judgments in the definition of MILo are preserved under dropping
of apparently-unused typing hypotheses for term variables.

However, recall that in the presence of transitivity rules strengthening cannot be proved directly
by induction on derivations. For example, consider an instance of Rule 2.81:

ri,y:a,r2 H e = e' : r r1,y:a,r2 h e' = e" : T

Yi,y:a,Y2\-e = e":T

149

And assume that y is not used in the conclusion (formally, that y $. (FV^) U FV(e) U FV(e") U
FV(r))) It does not follow, however, that y $ FV(e'); a priori, it might be that the equivalence of
e and e" is provable only by equating both to a term involving y. Thus the inductive hypothesis
cannot be applied to the premises.

Also, the trick used for eliminating unused kind variables in §3.4 is not applicable here, because
although every kind may be inhabited by a constructor, we cannot expect in general that every
type is likewise inhabited by a value.1

However, the definitions of the algorithmic relations involve no transitivity rules, so here
strengthening can be proved directly:

Lemma 7.4.1
IfTuy:a,T2 > J holds and y $ (FV(T2) U FV(J)) then Fi.r2 t> J holds as well.

Proof: By induction on the derivation Ti,y:a, V2 > J■ I

By soundness and completeness of the algorithmic relations, the strengthening property can
be transferred to the official MILo- This is easy, but not quite immediate. For example, suppose
ri,y:er,r2 V rv < T2 where y $ (dom(r2)UFV(ri) UFV(T2)). By Completeness we have Ti,y:a,T2>
T\ < T2) and by Lemma 7.4.1 we have Fi^ > T\ < T2. However, we cannot simply conclude that
ri,T2 H T\ < T2; the statement of soundness requires that we previously know F],r2 \~ T\ and
ri,r2r-T2.

Lemma 7.4.2
//ri,y:<r,r2 I- ok and y # FV(T2) then Tl,T2\- ok.

Proof: By induction on r2.
First, note that if Ti,y:a, T2 H ok then y $ FV(Fi). Then there are three cases for the form of the
proof Ti,y:a, T2 h ok:

Case: T2 = •.
Ti ha

T\,y:a h ok

Then by Proposition 3.1.1, Ti h ok.

• Case: T2 = T'2,a::K.

Yuy:a.Y'2\-K

y $ dom(F]

Fuij:a,F'2,a::K\-ok
(a$dom{ruy:(T,r'2))

1. By Completeness, Ti, y.a, T2 t> K.

2. By Lemma 7.4.1, ri,r2>X.

3. By Proposition 3.1.1 and the inductive hypothesis, ri,r'2 \- ok.

4. By Soundness, r^Tf, h K.

5. Therefore Yu T2, av.K h ok.

'Actually, since all the base types mentioned are inhabited, every type in MILo in inhabited by a value. Because
this property is not preserved when recursive types are added, I choose not take advantage of it.

150

• Case: r2 = T'2,X:T.

Ti,y:a,T'2\-T
— — —— x £ dom(Tuy:cr,T2)
Ti,y:a,l2,x:T h ok

1. By Completeness, Ti,y:a, Y'2 > T.

2. By Lemma 7.4.1, ri,r'2>r.

3. By Proposition 3.1.1 and the inductive hypothesis, Ti,T2 h ok.

4. By Soundness, Fi,r2 h r.

5. Therefore ri,r'2,a;:rh ok.

Theorem 7.4.3 (Strengthening for Term Variables)
IfTi,y:<r,T2 \~ J holds and y & (FV(T2) U FV(J)) then T1,T2 h J holds as well.

Proof: By Lemmas 7.4.1 and 7.4.2, and soundness and completeness of the algorithmic
judgments with respect to the MILo definition. I show two representative cases:

• Case: Ti,y:a,T2 \~ r.

1. By Completeness, ri,y:cj,r2 > r.

2. By Lemma 7.4.1, Ti, T2 > r.

3. By Proposition 3.1.1 and Lemma 7.4.2, Ti,r2 h ok.

4. By Soundness, ri,r2 H r.

• Case: Ti,y:a,T2 \- n < T2.

1. By Completeness, Ti,y:a, T2 >T\ < r2.

2. By Lemma 7.4.1, Ti, T2 > TX < r2.

3. As in the previous case Ti, T2 I- ok and Ti, T2 r- r\ and Ti,T2 V r2.

4. By Soundness, Ti,r2 h ri < r2.

151

152

Chapter 8

Properties of Evaluation

8.1 Determinacy of Evaluation

It is straightforward to show that evaluation in MILo is deterministic.

Proposition 8.1.1
1. Given A, there is at most one U and one instruction I such that A = U[I\.

2. Given e, there is at most one C and one instruction I such that e = C[I].

Proof: By induction on A and e respectively. I

Corollary 8.1.2 (Determinacy of Evaluation)
// e ~» ei and e ~> e2 then ej = e2-

8.2 Type Soundness

Type soundness is informally the property that "well-typed programs don't go wrong". In a small-
step operational semantics, soundness can be expressed as the combination of two principles:

1. Type Preservation: If e is well-typed and e can take a step to e', then e' is well-typed.

2. Progress: If e is well-typed then either e is a fully-evaluated value and execution is done, or
else e can take a step to some e'.

Put together, these guarantee that, when starting with a well-formed program, execution either
terminates (yielding a fully-evaluated value) or execution goes on forever. Evaluation of well-typed
programs cannot get "stuck" — reach a situation where no execution step applies but evaluation
has not terminated. Examples of stuck programs would be 3(4) or 7Ti(fun/(a;:int):int is x).

Lemma 8.2.1
1. IfT\- I::K and I ^ R then T\-R::K.

2. IfT\- I :r andl^R then T \- R:T.

Lemma 8.2.2 (Decomposition and Replacement)
1. If \- C[e] : T then for some a, h e : a, and h e' : a implies h C[e'] : r.

2. If h C[A] : T then for some L, \- A :: L, and h A' :: L implies h C[A'] : r.

153

3. If h U[A) :: K then for some L, \- A :: L, and h A' :: L implies h U[Ä) :: X.

Proof: By induction on derivations.

Corollary 8.2.3 (Type Preservation)
IfT \~ e :: r and e ~> e' then The':: r.

Lemma 8.2.4 (Canonical Forms for Constructors)

1. If \-A :: Ea-K'.K" then A = (A',A").

2. If hi:: Uar.K'.K" then either A = Xa::L.A or else Ä = cA~Y ■ ■ ■ A„ with n > 0.

Proof: By induction on the kinding derivation.

Lemma 8.2.5 (Canonical Forms for Terms)
Assume h v : r.

1. If > T J| int then v = n for some integer n.

2. If > T
$
 4 (X:T')XT" then v = {v',v") for some v' and v".

3. If > r$ JJ. (X:T')-+T" then v = fun f(x:a'):a" is e for some a', a", and e.

4- If > r$ -IJ. Va::K.T then v = A(a::L'):L".e for some. L', L", and e.

Proof: By induction on typing derivations, using Theorem 6.2.3 and Lemma 6.3.1.

Theorem 8.2.6 (Progress)
1. If h A :: K then A = A or A^A' for some A'.

2. If \~ e : T then e = v or eHe' for som,e e'.

Proof: By simultaneous induction on typing and kinding derivations, and cases on the last
inference rule used. I show one representative case:

• Case: Rule 2.25
r h 4] :: K'^K" T h A2 :: K'

r h Ai A2 :: K"

If A\ is not a constructor value, then by the inductive hypothesis A\ ~> A\, so
Ai A2 ~> A[A2. Alternatively, if A\ is a value but A2 is not, then A2 ~> A'2 and
A\ A2 ~> A\ A'2. Finally, assume A\ and A2 are both values. Then by Lemma 8.2.4,
Ai = cv[... v'n and so Ai A2 is a value, or else A\ = Xa::K.A so that A\ A2 ~» \A2l0i\A.

154

Chapter 9

Intensional Polymorphism

9.1 Introduction

As discussed earlier, the TIL and TILT compilers use the intensional type analysis framework
of Harper and Morrisett [HM95, TMC+96, Mor95]. Type constructors correspond to run-time
values, and the language includes constructs which permit primitive recursion over constructors
of kind T. I model these by adding two new constructs to the language: Typerec and typerec.
The former is a constructor which does run-time analysis of constructors, while the latter is a
term which does a similar run-time analysis. There are several applications for such constructs,
both in implementing Standard ML (by, for example, using different array representations for
values of different types) and elsewhere (e.g., implementing generic pretty-printing or marshaling
routines) [HM95, TMC+96, Mor95].

9.2 Language Changes

9.2.1 Grammar

Intensional type analysis adds two constructs to the language: Typerec allows primitive recursion
over constructors to compute a type constructor, while typerec allows primitive recursion over
constructors to compute a term value.

Type Constructors A, B ::=
| Typerec[a.K](^;^^;^ow)

Terms e, d ::= ■ • •
| typerec[a.T](4;e-l;eow)

For simplicity, the type analysis constructs considered here make only the distinction between
those constructors which are (equivalent to) function type constructors, and the rest (the "other-
wise" case). That is, I have restricted Typerec to allow the definitions for a function F :: Uay.T.K
of the form

F(ai^a2) = G(al)(a2)(F(al))(F(a2))
F(a) = H(a) if a is not equivalent to a function type constructor

where G and H are arbitrary constructor-level functions of the right kind; this function F would
be defined in the official syntax as

A/3::T.Typerec[a.if]()9; G; H).

155

A similar restriction is made for the term-level typerec.
The most interesting aspects of constructs for intensional polymorphism are distinctions made

between different constructors, primitive recursion, and the possibility of a default case. Extending
Typerec and typerec to test for specific base type constructors or the product typo constructor
would not substantially affect the results of this chapter.

9.2.2 Static Semantics

The following rules must be added:

Well-Formedness

ThA::T T,o:::ThK
rh^:: n«i::T.n«2::T.[«,/«]^[«2/a]^^[(fti^«2)/fv]iC

T \- Amy :: Uay.T.K

r h Typerec[a.K}{A:A^;Amv) :: [A/a]K

r h i :: T r,o::Thr
rhe^ : Vai::T.Vo'2"T.[«i/o']r^[«2/«]7"-i[(«]~i<T'2)/''^]'ir

T h eow : Vrv::T.r

(9.1)

(9.2)

(9.3)

r h typerec[a.r](^;e'A;eow) : [A/a]r

Equivalence

T\- Ai= A2 :: T r, a::T h Kx = K2

T\-A^=A^:: Iiax::T.Ha2::T\a{/a]K]-^[n2/a]KA-^[{<yl^a2)/o/]K\
T h Af = AY :: na-T.Ä"]

T h Typerec[a.X1](^1; ,4^;^') = Twerec[Q.K2]{A2;A?;Af) :: [A,/a]Kl

rhi4i::T T \-A2 :: T T,a::ThK
rh^:: Uaiy.T.na2y.T.[ai/a]K-^[a2/a]K^[{ai-^a2)/a]K

T h Aow :: Uay.T.K

r h Typerec[«.Ä"](A] -^A2: A^; Aow) =
^(A0(^2)(Typerec[a.K](^1;^;^'))(Typerec[a.X](A2;^;J4ow))::p]-A2)HK

(9.4)

T h £[c] :: T c is not ->> I\ a::T h K
T h yl^ :: Uaiy.T.Ua2::T.[ai/a]K^[a2/a]K^[(ai-^a2)/a]K

T h ,40W :: Uay.T.K

r h Typerec[a.K](£[c];A^; A0K) = Aow (A) :: [A/a]K
(9.5)

r h Ai = A2 : T T, a::T h n = r2

r h ef1 E e^ : Vai"T.Vo'2::T.[ai/a]ri^[o'2/o:]Ti—4(«i-icv2)/«]'n
T h efv = etf : Va::T.ri

T h typerec[a.Ti](i4i;e^;efv) = typerec[a.r2](>l2; R2] ef) : [J4I/«]TI
(9.6)

156

9.2.3 Dynamic Semantics

The constructor-level and term-level evaluation contexts are each extended with one case:

W::= •••
| Typerec[a.K]{U;A^;Aow)

C::= ■■■

| typerec[a.r](W;e"^;eow)

and there are four new instruction reduction steps:

Typerec[a.K]{Al-^A2;A^;Aow) ^ A^ (Ai) {A2) (Typerec[a.K](Ax; A^; Aow))
_(Typerec[a.K}(A2;A-;A™))

Jyperec[a.K]{A;A^;Aow) ~> A™ {A), if A not of the form Ax-vl2

typerec[a.r](Ai^A2;e-i;eow) ~> e^ {Ay) {A2) (typerec[a.Ä'](i4i;e-";eow))
_ _ _ (tyPerec[a.Ä"](A2;e^;eow))

typerec[a.T](A;e^;eow) ~» eow (A), if A not of the form Ai-^A2

9.3 Declarative Properties

The proofs of Chapter 3 go through without any problems. Those proofs needing modifications
merely require extra cases to be added for each of the new static semantic rules; these are straight-
forward uses of the inductive hypotheses. Preserved properties include substitution, validity, and
functionality.

The reduction rule for Typerec is not admissible. However, it is interesting to note that the
system comes very close to having an admissible extensionality rule for Typerec. Suppose this
construct contained no kind annotation, as in the formulation of Harper and Morrisett [HL94].
The well-formedness rule would be little changed:

rhi::T F,a::T\-K
rhi":: Iiai::T.Yia2::T.[aila\K^[a2la\K^[{ai-^a2)la]K

T H Aow :: Uar.T.K

r h Typerec(A; A~*; A0VJ) :: [A/a]K

But assume now that T h / :: T-KL for some kind L, and T\- A::T. By taking.K = S(/(a) :: L)
in the above rule we can derive

T h Typerec(A; \a1::T.\a2::T._::L.\j.:L.f(al^a2)- Aai::T./(ai)) :: S(f(A) :: L),

where I have used _ to denote function arguments which are not used in their body. It follows,
then, that

T h f{A) = Typerec(A; Aa1::T.Aa2::T.A_::L.A_::L./(a1^a2); Aai::T./(a1)) :: L.

This is exactly analogous to the standard extensionality rule for sum types [Mit96]:

f(z) = (case z of inl x =>• /(inl x) | inra; =>■ /(inr x)).

157

9.4 Algorithms for Constructors and Kinds

To make the following algorithms readable, for any kind K I will use Ka to stand for the kind

nai::T.na2::T.[ai/a]K->[a2/a]K->[(ai-±a-2)/a]K.

This is the kind of the function-type constructor arm of a Typerec whose kind annotation is [a.if].

The principal kind for a well-formed Typerec is easily computed from the kind annotation:

T>Jyperec[a.K](A:A^;Amy) ft S(Jyperec[a.K}{A: A^;Amv) :: [A/a]K),

but actually checking that a Typerec is well-formed requires more work:

T > Typerec[«.if](^; A~*; Amv) =t [A/a]K if I\ a::T t>K,T»A^T,
T>A^ t=Ka, and T > Amy {= Ua::T.K.

I extend the notion of a constructor-level path to allow Typerec's:

£::= ■■■
| Typerec[a.ü:](£;,4^;.4ow)

Then the equivalence algorithm is extended with the following cases:

Kind extraction
T > Typerec[a.Ä"](i4; A^; Amv) t [A/a]K

Weak head reduction
T > £[Typerec[a..K'](j4i-^42; A^;A0W)} ~>

£[A^ (Ax) (A2) (Typerec[a.if](^i; A^; A™))(Typerec{a.K}(A2: A^; A™))}

T > £[Typerec[«:K](Ä; A^; Amv)] ~> _
£[A™ (A)[A/a]K] if A not of the form Ax -±A2

Algorithmic path equivalence
r>Typerec[a.Ä"i](pi;i4f;Afv) ^

Typerec[a.X2](p2; A^;Af) t [pi/«]#i if I\ a::T > Kx & K2, T >Pl o p2 t T,
Tt>A^ & A^::KQ

and r t> Afv <* Af :: n«::T.Ä".

It is straightforward to show that soundness is preserved by the above modifications.

9.5 Completeness and Decidability for Constructors and Kinds

The revised version of path equivalence is extended in the obvious fashion:

ri >Typerec[a.tfi](pi;4r;4r) t [pi/«]Ä"i <*
T2 > Typerec[«.if2](p2; A?; A?') t \j>2MK2

if ri,a::T>Ä"i ^r2,a::T>Üf2,
r1t>PltT^r2>P2tT,
Ti > A? :: K2

Q & T2 > A^ :: K2
a,

and
Ti > Afv :: Uay.T.Kx §r2> Ag" :: n«::T.tf2.

158

The logical relations, however, need not change. One point to be aware of, however, is that a
path £[c] is no longer guaranteed to be head-normal, because of cases like

Typerec[a.T](lnt;^-i;^ow).

Thus, for example, parts 3 and 4 of Lemma 5.3.9 must be restricted to the case where either p\
and p2 and of the form £i[a] or else of the form £i[c] and head-normal. In all cases in which this
lemma has been invoked, one of these two cases holds. (For the same reason, Proposition 5.3.15
must be restricted to the case in which £i[c\] and £2[c2] are both head-normal.)

With the addition of new kinding and equivalence rules for Typerec, two new cases must be
added to the proof of the logical relations theorem (Theorem 5.3.10). These cases follow from the
following lemma:

Lemma 9.5.1
IfA1t>A1::T^A2>A2::T, (Ai;A^;K2

a) is (A2; A2~ K2
a), and

(A1;Afr;Ua::T.Ki) is {A2;A^;Ua::T.K2)-then
(Ai;Typerec[a.üfi](Ai;V;^r);[^i/a]^i) is (A2;Jyperec[a.K2}(A2;A^;A^); [A2/a]K2).

Proof: By induction on Ai > A\ :: T <& A2 > A2 :: T.

• Ai c> Ai $ £i[ß] and A2 > A2 4 £2[ß], with Ai > £i[ß] f T ^ A2 > £2[ß] t T.

1. Then Typerec[a.Xi](£i[/3]; A^- A™) and Typerec[a.Ki](£2[/3]; A^; A™) are
head-normal.

2. The last assumption in the statement of the lemma implies
(Ai;na::T.Ä-i) is' (A2;na::T.ür2).

3. By Lemma 5.3.9 parts 1 and 2, we have Ai >Typ'erec[a.Ä'i](£i[/S]; A^;Af) t
[SifflMK <* A2»Typerec[a.K2](£2[ß];A^;Af<) t [£2[ß]/a]K2.

4. By the same lemma we have (Ai;£i[0];T) is (A2-£2[ß}; T),

5. (A1;[£1[ß]/a]K1) is (A2; [£2[ß]/a]K2).

6. By Lemma 5.3.9 part 4, it then follows that
(A1;Typerec[a.K1](£1[ß];A--Ar); [£1 [£]/<*]#!) is
(A2; Typerec[a.K2](£2[/?]; A?; Af); [£2[ß]/a]K2).

7. Using Lemma 5.3.8 and Lemma 5.3.4 it follows that
(A1;Typerec[a.K1\(A1;A?;AY*y,[Ai/a]K1) is
(A2; Typerec[a.K2](A2;A?; Af); [A2/a]K2).

• Case: Ai > Ax fy £iH and A2 > A2 JJ. ^HAi ^iH|Tf>A2> £2[-+] t T.

1. Since Ai > £i[-^} t T, it follows that Ai > A\ JJ- A[-^A", and similarly that
A2>A2i^A'2^Al

2. and that Ai > A\ :: T <£> A2 t> A'2 :: T and Ai > A'{ :: T & A2 > A'2' :: T.

3. By the inductive hypothesis, then (Ai;Typerec[a.Ä'i](A'1; A^; A°w); [A[/a]Ki) is

■(A2;TyPerec[a.ür2](A'2;Ar;Ar);[^/a]ür2).
4. and (A1;Typerec[a.ü:1](A'1';A^;A°w);[A'17a]Xi) is

(A2; Typerec[a.K2](A2'; A2- Af>); {A'>/a}K2).

159

5. Therefore,
(A1;Ar(4)(40(Typerec[«.tf1](^;^ is
(A2;^(^2)(AfJ)(TyPerec[«.X2](^

6. By Lemma 5.3.8 and Lemma 5.3.4, (Al;Typerec[a.Kl]{Ai\A-[';Afv);[Ai/a]Kl) is
(A2; Typerec[«.X2](^2: A?; A™); [A2/a]K2).

• A] > A\ JJ. £i[c] and A2 > J42 4 £2^] where c is not, —*■. Analogous to previous ease, although
there is no need to appeal to the inductive hypothesis for the "otherwise" case.

I

Then the remaining decidability results for the constructor and kind algorithms go through
unchanged. Finally, the normalization algorithm must be extended with a new case:

r > TypereckxKK/;; A^;Amv) —>■ Jyperec[a.K'}(p': A^'\ Amv') | \p/a]K

if T,a::T>K=>K', T>p::T=>p',
T>A^ ::Ka => A^',
and r > A™ :: Un::T.K =» A™".

9.6 Algorithms for Type and Term Judgments

In analogy with the notation for kinds, for any type r I write rQ to represent the type

Vai::T.Va2::T.[«i/o']T^[o2/«]''"^[(«i—iO'2)/o,]r.

This is the type of the function type-constructor case of a term-level typerec annotated with [a.r].

Head-normalization and other properties of types are unaffected by the addition of Typerec and
typerec. A new cases must be added to the algorithm for computing principal types

T o Typerec[«.T](yl; e~"; eow) ft [A/a]r,

to weak term equivalence

T > Typerec[tt.T1](J42; ej"; efv) <-> Typerec[«.T2](A2; e^; e!f)

if r,a::T>T! «=> r2, r > Ax & A2 :: T,
r> e^ o e^, and To e?w O ef,

and to type synthesis

rt>Typerec[a.r](yl;e^;eow) =t [^/«]r

if r,a::Tt>T, F>At=T,
r>e"t T°, and T > eow t= V«::KT.

9.7 Completeness and Decidability for Types and Terms

The symmetrized weak term equivalence algorithm gets a new case:

Ti > Typerec[«.r1](^2; e^; ef) <-> T2 > Typerec[a.r2](^2; e^; elf)

if ri,a::T>ri <=> T2, a::T > r2, Tj > A(:: T «• T2 t> 42 :: T,
TiCe^ <S>r2oe2", and r1>ejff«r2>ef,

160

Again, the logical relations are unchanged. The new case for the proof that declarative equiva-
lence implies algorithmic equivalence follows directly from the inductive hypothesis. The complete-
ness and decidability results then hold unchanged, as does strengthening for term variables.

9.8 Properties of Evaluation

Even if Proposition 5.3.15 is restricted to head-normal paths as suggested above, one can still prove
the Canonical Forms lemmas. Thus it is easy to see that evaluation of well-typed terms never gets
"stuck".

161

162

Chapter 10

Conclusion

10.1 Summary of Contributions

In this dissertation I have presented the MILo calculus, which models the internal language used
by the TILT compiler. The language contains two variants of singletons: singletons with ßrj-
equivalence (instantiated as singleton kinds) and labeled singletons with a weak term equivalence
(instantiated as singleton types). The former is particularly simple and elegant, but is unusually
context-sensitive.

I have thoroughly studied the equational and proof-theoretic properties of the MILo calculus,
and have shown that typechecking is decidable. I have presented algorithms for implementing
typechecking; those for constructors and kinds form the basis of the typechecker implementation
in the TILT compiler [PetOO].

The equivalence algorithm for type constructors employs an apparently novel kind-directed
framework. This is extremely well-suited for cases in which equivalence is dependent upon the
classifier. Examples of other such languages include those with terminal types (where all terms of
this type are equal), or calculi with records and width subtyping (where equivalence of two records
depends only on the equivalence of the subset of fields mentioned in the classifying record type).
This approach can even be used in the absence of subtyping, subkinding, or singletons [HP99].

The correctness proofs for my equivalence algorithms employ an unusual variant of Kripke
logical relation, in which the relations are indexed by two kinds or types and by two worlds. This
permits a very straightforward proof of correctness for the equivalence algorithms. I have found the
logical relations approach to proving completeness to be remarkably robust under minor changes
to the equational theory; even the addition of type analysis constructs requires few changes.

Crary has used the results of Chapter 5 to show that a language with singleton kinds can be
translated into a language without, in a fashion which preserves well-typedness [CraOO]. Intuitively,
one can certainly "substitute in" all of the definitions induced by singletons. However, the correct-
ness of afterwards erasing all of singleton kinds is a form of strengthening property. Crary proves
this by working with the algorithmic form of constructor equivalence.

10.2 Related Work

10.2.1 Singletons and Definitions in Type Systems

The main previous study of singleton types in the literature is due to Aspinall [Asp95, Asp97]. He
studied a calculus A<{} containing singleton types, dependent function types, and /3-equivalence.

163

Labeled singletons are primitive notions in this system: in the absence of 77-equivalence the encoding
of §2.3 does not work. He conjectured that term equivalence in A<n was decidable, but gave no
algorithm.

Crary has also used singleton types and singleton kinds. His thesis [Cra98] includes a system
whose kind system extends the one presented here with subtyping and power kinds. He also
conjectured that both type equivalence and typechecking were decidable.

Crary has also used an extremely simple form of singleton type (with no elimination rule or
subtyping) in order to prove parametricity results [Cra99]. As one example, he shows that any
function / of type Va.a—>a must act as a the identity because

/(SO; : T))(V) : S(v : r)

so by soundness of the type system any value returned by this application must be equal to v.
Furthermore, evaluation in his system obviously docs not depend upon type arguments to functions,
so / must act as an identity1 for every argument of any type. (This argument does not apply to
MILo because here singleton types are not type constructors.)

There are other ways to support equational information in a type system besides singleton
types. Severi and Poll [SP94] study confluence and normalization of /M-reduction for a pure type
system with definitions (let bindings), where 5 is the replacement of an occurrence of a variable
with its definition. In this system, the typing context contains both the type for each variable, and
an optional definition. This calculus contains no notion of partial definition, no subtyping, and
cannot express constraints on function arguments. This approach may be sufficient to represent
information needed for cross-module inlining (particularly when based upon the lambda-splitting
work of Blume and Appel [BA97, Blu97]), but this cannot model sharing constraints or definitions
in a modular framework (where only some parts of a module have known definition).

Type theoretic studies of the SML module system have been studied by Harper and Lillibridge
under the name of translucent sum,s [HL94, Lil97] in which modules are first-class values, and
by Leroy under the name of manifest types [Ler94] in which modules are second-class. These
two systems are essentially similar: the calculus includes module constructs, and corresponding
signatures; as in Standard ML the type components of signatures may optionally specify definitions.
The key difference from MILo is that type definitions are specified at the type level, rather than
at the kind level. Because of this, type equivalence does depend on the typing context but not
on the (unique) classifying kind. Typechecking for translucent sums is undecidable (although type
equivalence is decidable). No analogous result is known for manifest types; modules may lack
most-specific signatures, prohibiting standard methods for typechecking.

A very powerful construct is the /-type of Martin-Löfs extensional type theory [ML84, Hof95].
A term of type 7(ei,e-2) represents a proof that e\ and e2 are equivalent. This can lead to unde-
cidable typechecking very quickly, as one can use this to add arbitrary equations as assumptions
in the typing context.

The language Dylan [Sha96] contains a notion of "singleton type", but these are checked only
at run-time (essentially pointer-equality) to resolve dynamic overloading.

10.2.2 Decidability of Equivalence and Typechecking

My approach to implementing and studying constructor equivalence was inspired by work by Co-
quand for a dependently-typed lambda calculus [Coq91]. However, because his the equivalence
was not context-sensitive in any way, both our algorithm and proof are substantially different from

'Up to type annotations, which as just stated do not affect evaluation behavior

164

Coquand's. Because of issues such as the form of the validity logical relations and the particular
symmetry and transitivity properties of the 6-place algorithm, our initial attempts to use more
traditional Kripke logical relations (with a pair of contexts being a single world) were unsuccessful.

Systems in which equivalence depends upon the typing context were mentioned in §10.2.1. How-
ever, there appear to be relatively few decidability results for lambda calculi with typing-context-
sensitive or classifier-sensitive equivalences, perhaps because standard techniques of rewriting to
normal form are difficult to apply. Many calculi include subtyping but not subkinding; in such
cases either only type equivalence is considered (which is independent of subtyping) or else term
equivalence is not affected by subtyping and hence can be computed in a context-free manner.

One exception is the work of Curien and Ghelli [CG94], who proved the decidability of term
equivalence in F< with /3?y-reduction and a Top type. Because their Top type is both terminal
and maximal, equivalence depends on both the typing context and the type at which terms are
compared. They eliminate context-sensitivity by inserting explicit coercions to mark uses of sub-
sumption and then give a rewriting strategy for the calculus with coercions. Their proof uses
translations between three different typed A-calculi.

It would be interesting to see if the approach used for MIL0 could be applied to their source
language, avoiding the use of translations. Although adapting my equivalence algorithm seems
easy, the fact that they study an impredicative calculus would require an extension of the theory
in order to prove the completeness of this algorithm.

Compagnoni and Goguen [CG97] also use a normalization algorithm and Kripke logical rela-
tions argument for proving properties (including decidability of subtyping) for the language J7^, a
variant of F£. with higher-order subtyping and the kernel Fun rule [CW85] for quantifier subtyping.
However, adapting these methods to include subkinding and 77-expansion seems nontrivial.

10.3 Open Questions and Conjectures

I conclude with an overview of several remaining issues which could be the subject of future work
in the study of singleton types and kinds.

10.3.1 Removing Type Annotations from let

The primary practical defect of the MIL0 term language appears to be the required type labels in
let-bindings — in particular, the type annotation on the bound variable. Because a local binding is
required for every sub-computation, these type annotations can substantially increase the total size
of a program. This exacts not only a penalty in the space consumed by the program's representation,
but also costs time in manipulating the representation: the typechecker must verify the correctness
of these annotations, transformations such as substitutions or optimizations must be applied to
all of the annotations, and so on. Furthermore, if one wishes to bind x to the pair (3,4), one
must choose whether to annotate this binding with the simple type intxint, or one of its larger but
more-precise types: S(3 : int)xS(4 : int) orS((3,4) : intxint) or even S((3,4) : S(3 : int)xS(4 : int)).

This is easy to change in the MIL0 definition; the mediating type of the bound variable is simply
chosen nondeterministically. In this fashion Rule 2.76 becomes

rhe':T' r,ar:r'he:r T h T

T h (let x=e' in e : r end) : r

165

and Rule 2.89 becomes

r h e\ = e'2 : r'
F h Ti = T2 T, X:T[h e\ = e2 : T\

T h (let .T=e'j in e\ : T\ end) = (let x=e2 in e2 : r2 end) : TJ

Adapting the algorithm for checking the well-formedness of a let-binding is easy: just replace
uses of the annotation with uses of the principal type of the bound expression, which is already
being calculated. As the type annotation need no longer be validated, this requires doing strictly
less work.

Unfortunately, computing equivalence of two let-bindings without this type annotation is more
difRcult. It should look something like the following:

T t> (let x=e[in e\ : T\ end) •(->• if T > e\ «=> e2 and T, j;:| ??? | > e\ «=> e2, and r > T\ <£> T2.

(let x=e'2 in e2 : T2 end).

But what type x should be given while comparing e,\ and e2? A problem arises; is entirely possible
for e\ and e'2 to be well-formed and for T t> e\ <=> e2 but for e' and e'2 to have different principal
types. (For example, assume y:S((3,4) : intxint) and compare y with (3,4).) If I attempt to avoid
this asymmetry by maintaining two contexts and using both principal types, then the contexts
maintained by the algorithm no longer remain provably equivalent and properties like soundness
become more difficult to show.

However, any two equivalent terms in weak head-normal form have equivalent principal types.
More generally, any two well-formed terms equivalent under the weak term equivalence relation -H-
have provably equivalent principal types. This suggests the strategy of using the principal type of
the head-normal form of either let-bound expression:

T > (let x=e[in ex : TX end) <-> if T o e\ «■ ef>, T > e\ ty d\, V > d[ft r',
(let x—e'2 in e2 : r2 end) T, x:r' > e\ <^> e2, and r > T\ 4=> r2.

or using both equivalent types in the symmetric form of the algorithm.
It is not too hard to show this modified algorithm is sound. The key insight is that if d\ is the

head-normal form for e\ (for i G {1,2}) then

T h (let x=e'i in e, : T, end) = (let x=d'i in e, : TX end) : Tj

so that while comparing the bodies the algorithm can assume it was given d\ and d!2 instead of e\
and e2, taking advantage of the equal principal types.

Unfortunately, I cannot prove this algorithm complete. Everything goes through except the
final step, proving that declarative equivalence implies logical equivalence. The difficulty is that
the type r' computed by the algorithm need not have a counterpart in the declarative proof of
equivalence, so that the inductive hypothesis cannot be applied to r'.

Conjecture 10.3.1
The algorithm, as modified as suggested here is not only sound, but complete and terminating for
the language where the type annotations are omitted from, local variable bindings.

166

10.3.2 Unlabeled Singleton Types

Principal types in MILo can be quite large. For example, the principal type of the pair ((2,3), (4,5))
is

S(((2,3),(4,5)) : S«2,3> : S(2 : int)xS(3 : int))xS((4,5) : S(4 : int)xS(5 : int))).

Despite the fact that this type classifies exactly the same values as the simpler type

S(((2,3),(4,5)} : (intxint)x(intxint))

these two types are not provably equivalent. The former is a strict subtype of the latter, and is
hence the one which must be synthesized by the typechecking algorithms. Even if type equivalence
were strengthened to equate these two types, experience in the TILT compiler with labeled singleton
kinds has demonstrated that it is difficult to avoid generating singletons with redundant information
in the labels.

Furthermore, term equivalence is weak enough that it does not depend upon the classifying
type. In a sense, then, the classifier in a singleton type is not adding useful information. An
obvious alternative is the "unlabeled singleton" S(v) briefly considered by Aspinall. Declaratively
one might have such rules as

YY-v.T

rh»: S(v)

and
rh»:r

r h s(v) < T

Finding a plausible typechecking algorithm for such a language has proven surprisingly difficult,
however. Principal type synthesis becomes trivial (the principal type for any value v is just S(v))
and useless for the purposes of type-checking. What is needed is the "most-precise type that is
not a singleton", which for values is the "second-most-precise type"2. I do not yet have a plausible
algorithm for when both projections and pairs are values3.

Leaf Petersen has studied a variant of the MILo kind system which allows unlabeled singleton
kinds [PetOO] to decrease the size of program representations. This has been implemented in TILT.
His approach is to treat unlabeled singletons as an abbreviation mechanism, and he shows how to
translate away all uses of unlabeled singletons.

It is possible that a similar approach may work for singleton types. There are additional
difficulties, however. In particular, mixing labeled and unlabeled singletons can cause problems.
Assume we have a program context in which x has type intxint. Then under the natural translation
approach one would expect S(x) to be equivalent to the labeled singleton type S(x : intxint). How-
ever, upon substituting the pair (2,3) the types become S((2, 3)) and S((2,3) : intxint). However,
the labeled singleton corresponding to the former of these two types is now the more precise type
S((2,3) :S(2:int)xS(3:int)).

Thus two equivalent types become inequivalent after substitution of a value for a variable. This
means that substitution (and hence inlining) is no longer guaranteed to preserve well-formedness
of programs. This is not a good property for a compiler representation to have.

2Leaf Petersen has suggested this be called the "vice-principal type".
3There are some hints, however, that computing types of values by looking at their head-normal forms may be

possible.

167

Conjecture 10.3.2
If labeled singleton types are replaced completely with unlabeled singleton types, then there is still a
reasonable algorithm for deciding well-formedness of programs.

The current TILT implementation includes only singleton kinds. I intend to implement singleton
types for cross-module inlining, based on the algorithm sketched here.

10.3.3 Recursive Types ^

Several authors from Amadio and Cardelli on [AC93, Bra97] have studied algorithms for deciding
type equivalence for recursive types, which are viewed as representing infinite trees. This can he
most simply formalized with two rules: the roll-unroll rule

T,cr.:T\- A

T h p,a::T.A = [fia::T.A/a]A :: T

and a coinductive principle. Together these rules allow such equivalences as

h (/y,«::T.int^tt) = (/m::T.int^(int-^cv)) :: T.

For the case of simple types where type equivalence is the congruence induced by these two
rules, the standard simple algorithm combines structural comparison of the two types with un-
rolling whenever a recursive type is reached. To prevent infinite unrolling, a trail of the previously
compared types is maintained; by coinductive nature of equivalence, any comparison previously
seen can simply be reported successful.

The requirements for the TILT compiler appear to be much simpler; we need only the one rule

T h [/Lta::T.i4i/a]i4i = [ßa::T.A2/a}A2 :: T

T h fj,a::T.Ai = p,a::T.A2 :: T

That is, two recursive types are equal if their unrollings are equal. This is equivalent to the rule

r.a::Tr-.4

T h pay.T.A = n<t::T.\pia::T.A/a]A :: T

called "Shao's Rule" in [CHC+98]. This is a much weaker equational theory; In contrast to the
roll-unroll rule above, it equates recursive types only to other recursive types.

There has been no study of algorithms for recursive types where there are other interesting
type equations such as /3-equivalence (e.g., Fw extended with recursive types). However there is a
seemingly natural extension of the simple algorithm above, which has been implemented in TILT.

1. TILT keeps a trail of the pairs of recursive types previously compared;

2. Whenever weak path equivalence is about to compare two recursive types, it adds them to
the trail, unrolls the two types, and runs the general constructor equivalence algorithm on
the two results.

3. If a loop is detected, comparison fails. (Recall that we are not requiring equivalence to be
coinductive.)

Conjecture 10.3.3
The above algorithm, is sound, complete, and terminating for MILQ extended with recursive types
and Shao's rule.

168

The difficulty in proving completeness and termination is that because of the trail I see no way
to make this algorithm obviously transitive. This is a key step in my theoretical development, and
so the approach I use in this dissertation does not appear to extend in any nice fashion.

169

170

Bibliography

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions
on Programming Languages and Systems, 15(4):575—631, 1993.

[Asp95] David Aspinall. Subtyping with Singleton Types. In Proc. Computer Science Logic
(CSL '94), 1995. In Springer LNCS 933.

[Asp97] David Aspinall. Type Systems for Modular Programs and Specifications. PhD thesis,
Department of Computer Science, University of Edinburgh, 1997.

[AspOO] David Aspinall. Subtyping with Power Types. In Proc. Computer Science Logic (CSL
2000), 2000. To Appear.

[BA97] Matthias Blume and Andrew W. Appel. Lambda-Splitting: A Higher-Order Approach
to Cross-Module Optimizations. In Proc. 1997 ACM International Conference on
Functional Programming (ICFP '97), pages 112-124, 1997.

[Blu97] Matthias Blume. Hierarchical Modularity and Intermodule Optimization. PhD thesis,
Princeton University, 1997.

[Bra97] Michael Brandt. Recursive subtyping: Axiomatizations and computational interpre-
tations. Master's thesis, DIKU, University of Copenhagen, August 1997.

[CG94] Pierre-Louis Curien and Giorgio Ghelli. Decidability and Confluence of ßrjtop< Re-
duction in F<. Information and Computation, 1/2:57-114, 1994.

[CG97] Adriana Compagnoni and Healfdene Goguen. Typed Operational Semantics for Higher
Order Subtyping. Technical Report ECS-LFCS-97-361, University of Edinburgh, 1997.

[CHC+98] Karl Crary, Robert Harper, Perry Cheng, Leaf Petersen, and Chris Stone. Trans-
parent and Opaque Interpretations of Datatypes. Technical Report CMU-CS-98-177,
Department of Computer Science, Carnegie Mellon University, 1998.

[CM94] Pierre Cregut and David B. MacQueen. An implementation of higher-order functors,
June 1994.

[Coq91] Thierry Coquand. An Algorithm for Testing Conversion in Type Theory. In Gerard
Huet and G. Plotkin, editors, Logical frameworks, pages 255-277. Cambridge Univer-
sity Press, 1991.

[Cra98] Karl F. Crary. Type-Theoretic Methodology for Practical Programming Languages.
PhD thesis, Department of Computer Science, Cornell University, 1998.

[Cra99] Karl Crary. A simple proof technique for certain parametricity results. In Proc. 1999
ACM International Conference on Functional Programming (ICFP '99), pages 82-89,
1999.

[CraOO] Karl Crary. Sound and complete elimination of singleton kinds. Technical Report
CMU-CS-00-104, School of Computer Science, Carnegie Mellon University, 2000.

171

[CW85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction and
Polymorphism. ACM Computing Surveys. 17(4):471-522, 1985.

[Fel88] Matthias Felleisen. The theory and practice of first-class prompts. In Proc. 15th ACM
Symposium on Principles of Programming Languages (POPL '88), pages 180 190,

1988.

[FSDF93] C. Flanagan, A. Sabry, B. Dnba, and M. Felleisen. The Essence of Compiling with
Continuations. In Proc. ACM 1993 Conference on Programming Language Design and

Implementation (PLDI '93), pages 237-247, 1993.

[Gir72] J. Girard. Interpretation fonctionnelle et elimination des coupures de Varithmetique
d'ordre superieur. PhD thesis, Universite Paris 7, 1972.

[HarOO] Robert Harper, 2000. Private communication.

[HL94] Robert Harper and Mark Lillibridge. A Type-Theoretic Approach to Higher-Order
Modules with Sharing. In Proc. 21st ACM Symposium on Principles of Programming

Languages (POPL '94), pages 123-137, 1994.

[HM95] Robert Harper and Greg Morrisett. Compiling Polymorphism using Intensional Type
Analysis. In Proc. 22nd ACM Symposium, on Principles of Programming Languages

(POPL '95), pages 130-141, 1995.

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order Modules and
the Phase Distinction. In Proc. 17th ACM Symposium on Principles of Programming

Languages (POPL '90), pages 341-354, 1990.

[Hof95] Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis, Edin-
burgh LFCS, 1995. Available as Edinburgh LFCS Technical Report ECS-LFCS-95-327.

[HP99] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF
type theory. In Proc. Workshop on Logical Frameworks and Meta-Languages, 1999.
Extended version available as CMU Technical Report CMU-CS-99-159.

[HS97] Robert Harper and Christopher Stone. An interpretation of Standard ML in type
theory. Technical Report CMU-CS-97-147, School of Computer Science, Carnegie
Mellon University, 1997.

[HS00] Robert Harper and Christopher Stone. A Type-Theoretic Interpretation of Standard
ML. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and

Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Second

Edition. Prentice Hall, 1988.

[Ler94] Xavier Leroy. Manifest types, modules, and separate compilation. In Proc. 21st ACM
Symposium, on Principles of Programming Languages (POPL '94), pages 109-122,

1994.

[Ler95] Xavier Leroy. Applicative Functors and Fully Transparent Higher-Order Modules. In
Proc. 22nd ACM Symposium, on Principles of Programming Languages (POPL '95),

pages 142-153, 1995.

[Lil97] Mark Lillibridge. Translucent Sum,s: A Foundation for Higher-Order Module Systems.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1997. Available
as CMU Technical Report CMU-CS-97-122.

[Mit96] John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

172

[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis-Napoli, 1984.

[MMH96] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed Closure Conversion.
In Proc. 23rd ACM Symposium on Principles of Programming Languages (POPL '96),
pages 271-283, 1996.

[Mor95] Greg Morrisett. Compiling with Types. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1995. Available as CMU Technical Report CMU-CS-95-
226.

[MT91] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press, 1991.

[MT94] David B. MacQueen and Mads Tofte. A Semantics for Higher-order Functors. In Proc.
5th European Symposium on Programming, number 788 in LNCS, pages 409-423, 1994.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1990.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and Dave MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[MWCG97] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed
Assembly Language. Technical Report TR97-1651, Department of Computer Science,
Cornell University, 1997.

[Myc84] A. Mycroft. Polymorphic Type Schemes and Recursive Definitions. In Proc. 6th Int.
Conf. on Programming, number 167 in LNCS, pages 217-239, 1984.

[Nec97] George C. Necula. Proof-Carrying Code. In Proc. 24th ACM Symposium on Principles
of Programming Languages (POPL '97), pages 106-119, 1997.

[Nec98] George Ciprian Necula. Compiling with Proofs. PhD thesis, School of Computer
Science, Carnegie Mellon University, 1998. Available as CMU Technical Report CMU-
CS-98-154.

[PetOO] Leaf Petersen, 2000. Unpublished manuscript.

[Pie91] Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymor-
phism. PhD thesis, School of Computer Science, Carnegie Mellon University, 1991.
Available as CMU Technical Report CMU-CS-91-205.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus Univ., Computer Science Dept., Denmark, 1981.

[PZ00] Jens Palsberg and Tian Zhao. Efficient and Flexible Matching of Recursive Types. In
Proc. 15th Annual IEEE Symposium on Logic in Computer Science (LICS '00), pages
388-400, 2000.

[SH99] Christopher A. Stone and Robert Harper. Deciding Type Equivalence in a Language
with Singleton Kinds. Technical Report CMU-CS-99-155, Department of Computer
Science, Carnegie Mellon University, 1999.

[Sha96] Andrew Shalit. The Dylan Reference Manual: The Definitive Guide to the New Object-
Oriented Dynamic Language. Addison-Wesley, 1996.

[Sha98] Zhong Shao. Typed Cross-Module Compilation. In Proc. 1998 ACM International
Conference on Functional Programming (ICFP '98), pages 141-152, 1998.

[SP94] Paula Severi and Eric Poll. Pure Type Systems with definitions. In Logical Foundations
of Computer Science '94, number 813 in LNCS, 1994.

173

[Tar96] David Tarditi. Design and Implementation of Code Optimizations for a Type-Directed
Compiler for Standard ML. PhD thesis. School of Computer Science, Carnegie Mellon
University, 1996. Available as CMU Technical Report CMU-CS-97-108.

[TMC+96] David Tarditi, Greg Morrisett, Perry Cheng. Chris Stone. Robert Harper, and Pe-
ter Lee. TIL: A Type-Directed Optimizing Compiler for ML. In Proc. ACM 1996

Conference on Programming Language Design and Implementation (PLDI '96), pages
181-192, 1996.

174

