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unknown. Long-range PCR, using an exon 3 forward/"exon 4" reverse primer pair 

designed from BRCA1 genomic sequence (gb L78833), reveals a 1039 bp genomic 

deletion involving part of exon 3 and part of intron 3. The mutant genomic sequence is: 

wt bpl-22 of exon 3; insert inverted bp 22-13 of exon 3; deletion of 1039 bp; wt bp 

14015 ff intron 3. Despite wt 5' and 3' splice sites for intron 2, exon 3 is completely 

skipped. This mutation indicates that at least in some regions of BRCA1, splicing 

follows the exon definition model. Next, we will determine whether intermediate length 

deletions occur as somatic mutations in sporadic breast and ovarian tumors. 
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North Carolina. New results for BRCA2 and recently discovered large genomic 

alterations complete our previously published results on BRCA1 in the same cohort 

(Newman et al., JAMA 279: 915-921, 1998). BRCA2 was analyzed for germline 

variants in the coding sequence, splicing junctions and neighboring intronic regions using 

multiplex single-strand conformation analysis, heteroduplex analysis, and DNA 

sequencing of 203 cases. In addition, 373 cases were screened for the large genomic 

mutations. After adjustment for sampling probabilities, the weighted prevalences (%) of 

breast cancer attributable to BRCA1 or BRCA2 were 7.4 (95% CI, 1.3-12.1) for 

Caucasian women, 1.0 (95% CI, 0-3.0) for African-American women, and 6.1 (95% CI, 

1.2-9.8) overall. Among probands with at least three affected relatives, 13% carried a 

BRCA1 or BRCA2 mutation. Among breast cancer probands with any relative with 

ovarian cancer, 22% carried a mutation. Among American breast cancer patients 

generally, those from these high risk families can most benefit from full genotyping of 

BRCAlandBRCA2. 
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In inherited breast cancer, BRCA1 acts as a classic tumor suppressor in that both 

normal copies of BRCA1 are lost, one in the germline and one somatically. In sporadic 

tumors, large somatic deletions including BRCA1, as reflected by loss of heterozygosity 

(LOH), occur frequently, while somatic point mutations are rare. One argument for the 

role of BRCA1 in sporadic breast cancer has been the high rate of allelic loss observed 

for the BRCA1 locus. Sporadic invasive breast tumors were evaluated for protein 

expression and genomic loss at BRCA1. Protein expression was evaluated by 

immunohistochemistry using the N-terminal monoclonal antibody MSI 10. Genomic loss 

was evaluated by LOH using multiple markers within and flanking BRCA1, by Long 

PCR (7-12kb fragments) of the entire BRCA1 genomic region and by Southern analysis. 

BRCA1 protein expression was significantly decreased in 72% (49/68) of invasive ductal 

carcinomas and correlated significantly with tumor grade, as previously observed 

(Wilson et al, 1999 Nat Genet 21:236, Lee et al, 1999 Histopath 34; 106). No large 

genomic rearrangements of somatic origin were detected, although one germline 

rearrangement was detected by Southern analysis. Although allelic loss at all intragenic 

markers is not associated with BRCA1 protein reduction, allelic loss at the marker nearest 

the transcription start site (D17S1323) is associated with reduction of BRCA1 protein. 
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BRCA1 exon 11 for loss. The function of BRCA1 that is involved in maintenance of 
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Germline mutations in BRCA1 predispose to breast and ovarian cancer. Most 

germline BRCA1 mutations are small insertions, deletions or single base pair (bp) 

substitutions. These mutation classes are rarely found as somatic mutations in BRCA1. 

Conversely, somatic deletions of multiple megabase pairs (Mb) including BRCA1, as 

reflected by loss of heterozygosity, occur frequently in both inherited and sporadic breast 

and ovarian cancer. In order to determine whether deletions or rearrangements of 

hundreds to thousands of bp might contribute to inherited mutation in BRCA1, we 

developed a Long PCR strategy for screening the entire genomic BRCA1 locus in high- 

risk families. We evaluated genomic DNA from one high-risk family of Western 

European ancestry with BRCA1 -linked cancer in which no genomic mutations had been 

detected using conventional methods. Long PCR revealed a complex mutation, g. 12977 

inslO del 1039 (based on GenBank L78833) comprising an inverted duplication and 

deletion in BRCA1 that removes portions of exon 3 and intron 3, including the 5' splice 

site for intron 3. As a result of the deletion, exon 3 is skipped, leading to a truncated 

protein and disease predisposition. Unlike previously reported large germline deletions in 
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University of Washington 

Abstract 

Analysis of BRCA1 Genomic Structure: 

Novel germline mutations and somatic alterations in breast cancer 

by Shannon Renee Payne 

Chairperson of the Supervisory Committee 

Professor Mary-Claire King 

Department of Genetics and Division of Medical Genetics 

Germline mutations in BRCA1 lead to an increased risk of breast and ovarian 

cancer, with loss of the second, normal allele critical to tumorigenesis. The relative 

lack of somatic mutations in BRCA1, however, has argued against its involvement in 

non-inherited (sporadic) breast cancer. One explanation for this contradiction is that 

BRCA1 mutations exist in sporadic breast carcinomas, but are not identified by current 

mutation screening procedures. My research specifically addressed the types and 

frequencies of large genomic rearrangements responsible for inactivation of BRCA1. I 

characterized the types of large rearrangements that occur within the BRCA1 region and 

investigated the contribution of two large germline rearrangements to breast cancer in a 

population-based series of breast cancer patients. Although the structure of the BRCA1 

genomic region was generally well-conserved, one variant allele containing multiple 

large alterations of the BRCA1 genomic region was identified. The existence of a 

variant with multiple large rearrangements in eis indicates that an investigation of the 



types and frequencies of noncoding variation in the BRCA1 genomic region may yield a 

broader understanding of noncoding variation within the human genome. 

One argument for the role of BRCA1 in sporadic breast cancer has been the high 

rate of allelic loss observed for the BRCA1 locus. In order to determine whether 

BRCA1 is inactivated somatically by large rearrangements of BRCAl, I analyzed 92 

breast carcinomas for genomic loss in the BRCA1 region of chromosome 17q. I 

investigated genomic loss using a combination of loss of heterozygosity (LOH), Long 

PCR, and Southern analysis. Although two large germline rearrangements were 

detected in our series, no large somatic rearrangements were identified. LOH results 

were correlated with BRCA1 protein immunohistochemistry data generated by Rachel 

Gonzalez-Hernandez in order to test whether LOH is a mechanism for inactivating 

BRCA1 in sporadic breast cancer. Reduced BRCA1 protein in sporadic breast 

carcinomas was associated significantly with loss of the most 5' BRCA1 intragenic 

marker, D17S1323. LOH at the more 3' BRCA1 intragenic markers was not associated 

with reduced BRCA1 protein. Interestingly, 8 of 14 breast carcinomas retaining all 

three BRC Al intragenic markers showed reduced BRCA1 protein. Thus, there are 

likely other mechanisms for inactivation of BRCA1 in sporadic breast cancer. 
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CHAPTER ONE 

BRCA1: The Early Years 



Cloning and sequence characterization of BRC'Al 

Breast cancer is the most prevalent malignancy among Western European 

women and is second only to lung cancer in its mortality rate (ACS, 1997). 

Approximately 5-10% of breast cancer is attributable to inherited mutations, although 

the exact number is population-dependent (Newman et al., 1988; Szabo & King, 1997; 

Newman et al., 1998). For other human diseases such as colorectal cancer and 

melanoma, relatively rare cancer susceptibility syndromes have yielded a critical 

foothold into the understanding of these diseases. Thus, it was widely presumed that 

the cloning and characterization of genes involved in hereditary breast and ovarian 

cancer would lead to a better understanding of the more common non-inherited 

(sporadic) forms of breast cancer. 

The breast cancer susceptibility gene, BRCA1, was mapped to chromosome 

17q21 in 1990 and in 1994, BRCA1 was cloned (Hall et al., 1990; Miki et al., 1994). 

The major BRCA1 message encodes a protein of 1863 amino acids, although numerous 

alternatively spliced products that maintain the BRCA1 reading frame have been 

identified (Xu, 1997; Lu et al., 1996). In most cases, the function(s) of the alternatively 

spliced product is unclear. It has been suggested that one alternatively spliced product 

that is missing the majority of exon 11 is localized exclusively to the cytoplasm and 

may have a role distinct from that of full-length BRCA1 in cell growth and 

tumorigenesis (Wilson et al., 1997). 

The amino acid sequence of BRCA1 revealed few clues as to its function. No 

homology with any known protein was identified with the exception of a RING finger 

domain (Figure 1.1). The NH2 terminus of BRCA1 contains a pattern of cysteine and 

histidine residues (aa 24-64) found in members of the RING finger family, a sub-family 

of the zinc finger proteins (Miki et al., 1994; Lovering et al., 1993). The RING finger is 

a Zn2+-binding motif that is found in a diverse group of proteins and often mediates 

either protein-DNA or protein-protein interactions (Freemont,1993; Saurin et al., 1996). 

The RING finger domain of BRCA1 contains the only consensus missense mutations 

leading to breast and ovarian cancer predisposition, C61G and C64G (Castilla et al., 



o 
CC 
CD 

CO \o 
00 
i—i 

i o 

CD 

CD <   § 

03 ^ 

CO 
CN 
i—i 

i 
ON 
O 

r—4 (— 
o 

-t—' 
O 

^ CD !  
V£> CD 
o C >-< 
00 i_n 
IT\ CD r^ < 

az 
_cr 

c: 
-^ c: o 

o — 
»—H . ~ -t—■ 
VO +-■    CO 

CO    r-J 

o . [Ü   >— 

o m  <— 
in F=.= 

■ = ~o 
-o  O 
o   i;- 
ES 

^ o CD 

vo _cz -c: 

^f <T Q 
CN c j> cc: 

DZ <r 
CQ CQ 

T3 -—* 
o rt 
O a 2 

o 3 
OS 1— 

o z 
ID 

c 

e 
-§ 

OS 
(U 



4 
1994; Friedman et al., 1994). The naturally occurring missense mutations in this region 

disrupt BRCA1 homodimerization and heterodimerization with BARD1 (BRCA1- 

Associated RING Domain protein 1) (Brzovic et al., 1998; Meza et al., 1999). 

Although several RING finger proteins interact directly with DNA through the RING 

finger domain, there is no evidence for binding of DNA by either the BRCA1 

homodimer or heterodimer (Meza et al., 1999). 

Other recognizable features of the BRCA1 amino acid sequence include two 

putative nuclear localization signals (aa 500-508 and aa 609-615), a leucine zipper (aa 

1209-1231), and an excess of negatively charged residues in the COOH-terminus. The 

presence of an acidic region in the COOH-terminus correlates with a transactivation 

domain in many eukaryotic transcription activators. Accordingly, the BRCA1 COOH- 

terminus is able to transactivate reporter constructs when fused to a heterologous DNA- 

binding domain (Chapman & Verma, 1996; Monteiro et al., 1996). 

Finally, a novel protein motif, designated the BRCT (BRCA1 COOH-Terminal) 

domain, was identified through analysis of a repeated motif in the BRCA1 protein and 

comparison to other proteins, including p53 binding protein (53BP1) and the yeast 

RAD9 protein (Koonin et al., 1996). The BRCT domain is present in many proteins 

known to be involved in DNA repair including XRCC1, RAD4, REV1, Crb2, RAP1 

and several eukaryotic DNA ligases (Callebaut & Mornon, 1997). 

Functional characterization of BRCA1 

Potential roles for BRCA1 in DNA damage response and in transcription 

activation have been proposed. Several lines of evidence argue BRCA1 is involved in 

the cellular response to DNA damage. The presence of the BRCT motif in the COOH- 

terminus of BRCA1 suggests a role for BRCA1 in DNA damage repair pathways. 

BRCA1 and human RAD51 colocalize in discrete nuclear foci during S phase of the cell 

cycle and relocate to sites of nonduplex DNA structure in response to treatment with 

hydroxyurea or ultraviolet light (Scully et al., 1997a ; Scully et al., 1997b). Deletion 

mapping indicated that amino acids 758-1064, encoded by exon 11 of BRCA1, mediated 



5 
the interaction with RAD51. Additionally, BRCA1 undergoes hyperphosphorylation in 

response to DNA damaging agents (Scully et al., 1997b). 

The most convincing evidence that BRCA1 is involved in the cellular response 

to DNA damage was provided by mouse embryonic stem cells deficient in BRCA1. 

These cells are defective in the ability to carry out transcription-coupled repair of 

oxidative DNA damage and are hypersensitive to ionizing radiation and hydrogen 

peroxide (Gowen et al., 1998). Transcription-coupled repair is a process in which DNA 

damage is repaired more rapidly in transcriptionally active DNA than in the genome as 

a whole (Mellon et al., 1987; Hanawalt, 1994). The accelerated rate of repair is due to 

faster repair of lesions in the transcribed strand than in the non-transcribed strand and 

requires an active RNA polymerase II complex (Leadon & Lawrence, 1992; Christians 

& Hanawalt, 1992). 

BRCA1 is linked to the RNA polymerase II holoenzyme via RNA helicase A 

(Scully et al., 1997c; Anderson et al., 1998). The presence of BRCA1 in the RNA 

polymerase II holoenzyme complex integrates the two primary functions proposed for 

BRCA1: response to DNA damage via transcription-coupled repair and transcription 

activation. In vitro evidence of a transactivating role for BRCA1 was first provided by 

experiments in which the BRCA1 COOH-terminus was fused to the GAL4 DNA- 

binding domain and was able to transactivate a variety of reporter constructs (Chapman 

& Verma, 1996; Monteiro et al., 1996).  In vivo, full-length BRCA1 is able to induce 

transcription from the promoter of the cyclin-dependent kinase inhibitor p21WAFI/CIP1 

when transiently transfected into human cancer cells (SW480 cells) (Somasundaram et 

al., 1997). It is not clear, however, whether the induction of p21 in this model 

represents a direct or indirect response to the presence of BRCA1 protein. 

Other evidence suggests that BRCA1 may have a global role in DNA and RNA 

metabolism through chromatin remodeling. BRCA1 interacts with the HDAC1 and 

HDAC2 complexes through the BRCT domain both in vitro and in vivo (Yarden & 

Brody, 1999). The HDAC1 and HDAC2 complexes are involved in the establishment 

of transcriptionally silenced chromatin by deacetylating the nucleosomal histones. 

Deacetylation appears to facilitate tighter interaction between DNA and nucleosomes by 



6 
unmasking the positively charged lysine residues at the histone NH2-termini. The 

tighter nucleosome interaction hinders access of transcription factors to DNA regulatory 

elements. 

Additionally, the acidic trans-activation domain of BRCA1, when tethered to a 

GAL4 DNA binding domain, alters local chromatin structure and stimulates 

chromsomal DNA replication in vivo in Saccharomyces cerevisiae (Hu et al., 1999). 

Stimulation of eukaryotic DNA replication by transcription factors that bind DNA near 

an origin of replication is well-documented (Van der Vliet, 1996). It has been 

suggested that the chromatin remodeling complex responsible for mediating 

transcription activation may also be involved in activation of DNA replication (Hu et 

al., 1999). Thus, BRCA1 may represent an important link for understanding the 

relationship between chromatin remodeling, cell cycle progression, and tumorigenesis. 

Tumor suppression and BRCA1 

Germline mutations in BRCA1 lead to an increased risk of breast and ovarian 

cancer, with loss of the second, wild-type allele critical to tumorigenesis (Merajver et 

al., 1995). Even before BRCA1 was cloned, it was generally accepted that BRCA1 

functioned as a tumor suppressor because in tumors from BRCA1 -mutation carriers, loss 

of heterozygosity (LOH) was always observed for the unlinked, "normal" chromosome 

(Smith et al., 1992). 

LOH including the BRCA1 region occurs frequently in sporadic breast and 

ovarian cancer (Bieche & Lidereau, 1995; Devilee & Cornelisse, 1994). Anywhere 

from 30-70% of breast tumors show LOH of the BRCA1 region. Thus, it was thought 

that BRCA1 would function as a tumor suppressor in sporadic cancer as well. The role 

of BRCA1 in sporadic breast cancer has been controversial due to the apparent absence 

of somatic mutations (Futreal et al., 1994; Matsushima et al., 1995; Takahashi et al., 

1995; Hosking et al., 1995; Merajver et al., 1995; Berchuck et al., 1998). 

In several ways, BRCA1 fits the classic tumor suppressor model as defined by 

TP53, APC, RBI, CDKN2A, and others. Antisense inhibition of BRCA1 accelerates 
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mammary epithelial cell growth in culture (Thompson et al., 1995). Wild-type BRCA1 

message is frequently decreased in sporadic breast tumors as compared to normal breast 

tissue (Thompson et al., 1995; Rice et al., 1998; Magdinier et al., 1998). Finally, 

evaluation of sporadic breast tumors by immunohistochemistry reveals that expression 

of BRCA1 protein is reduced or lost in most breast tumors of high histologic grade 

(Wilson et al., 1999; Jarvis et al., 1998; Taylor et al., 1998; Lee et al., 1999). 

Germline and somatic alterations in BRCA1 

The BRCA1 gene encodes a 7.8 kilobase pair (kb) mature message that is 

divided among 24 exons located over a more than 80 kb genomic region (Smith et al., 

1996). More than 400 distinct BRCA1 germline mutations have been identified to date 

(BIC, 1999). Although ~30% of distinct BRCA1 mutations have been observed more 

than once, the majority of mutations are unique (Szabo& King, 1995). Mutation 

detection in BRCA1 is complicated further by the ubiquitous distribution of these 

mutations throughout the BRCA1 coding region (BIC, 1999). As sequencing of the 

entire BRCA1 genomic region in each sample potentially harboring a BRCA1 mutation 

is logistically prohibitive, most investigators have chosen to use a combination of 

techniques that rely on amplification of small, ~150-700 bp fragments from the BRCA1 

genomic region. However, mutation detection based on amplification of small 

fragments will not identify large-scale alterations of the BRCA1 genomic region such as 

deletions, duplications, or inversions of hundreds of base pairs (bp). 

This approach has worked relatively well for germline mutation screening of 

BRCA1. Most germline BRCA1 mutations are small insertions, deletions, or single bp 

substitutions that lead to premature protein truncation (BIC, 1999). Based on the 

identification of these "small" mutations, it is thought that mutations in BRCA1 and, to a 

lesser extent BRCA2, account for the majority of hereditary breast and ovarian cancer 

(Rebbeck et al., 1997; Narod et al., 1995). In a study of 48 breast and/or ovarian cancer 

families, Schubert et al. (1997) encountered 9 families with no detectable mutations in 

either BRCA1 or BRCA2. Of these 9 families, 2 demonstrated positive LOD scores with 
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BRCA1. In a similar study of 23 families, Rebbeck et al. (1997) found no detectable 

mutations in 13 families. In at least 2 of these families, linkage of cancer to BRCA1 

yielded positive LOD scores. It is uncertain how many of the unexplained families in 

these studies are due to as yet undetected mutations in BRCA1 or BRCA2, and how 

many are due to mutations in susceptibility genes yet to be identified. 

Of the breast and ovarian tumors screened by several independent groups, only a 

few ovarian tumors with somatic mutation in BRCA1 have been reported (Table 1.1) 

(Hosking et al., 1995; Merajver et al., 1995; Berchuck et al., 1998). Thirteen of the 

fourteen BRCA1 somatic mutations detected in ovarian tumors were nonsense and 

frameshift mutations caused by either point mutation or the insertion or deletion of a 

single bp. The remaining somatic mutation was a single bp substitution in a conserved 

residue of the BRCA1 RING finger domain, a missense mutation that has been seen 

previously as a germline mutation. All fourteen of the tumors harboring these somatic 

mutations exhibited LOH for the BRCA1 region of chromosome 17. 

Thus, BRCA1 somatic mutations detectable by conventional PCR-based 

techniques are extremely rare in breast and ovarian tumors. These conventional 

screening procedures, however, neglect a class of mutations: large genomic 

rearrangements. Several large germline deletions and one large germline duplication in 

BRCA1 have been reported (Puget et al., 1997; Swensen et al., 1997; Petrij-Bosch et al., 

1997; Puget et al., 1999a; Puget et al, 1999b; Montagna et al., 1999; Carson et al., 1999; 

Rohlfs et al., 1999). All of the large germline rearrangements were undetectable by 

conventional genomic DNA (gDNA) screening procedures (Table 1.2). Large germline 

deletions appear to be a relatively common feature of inherited breast cancer in the 

Dutch population, due in large part to founder mutations (Petrij-Bosch et al., 1997). 

Several features of the BRCA1 locus provide clues as to the nature of large 

genomic rearrangements that might occur. BRCA1 has one of the highest densities of 

Alu elements of genes deposited in GenBank  (41.5% of 81 kb) (Smith et al., 1996). 

Large genomic rearrangements in human genes frequently are associated with Alu 

repetitive elements (Purandare & Patel, 1997; Mazzarella & Schlessinger, 1998). 



CU 
SB 

o 

10    9P    »o    99    99    99 
&  8  &  &  8  c$ 
r-H        """' r^H T_l r~'        ,—' 

ir>    v>    .»■>    09 

IMS 
<B CO « 

u 
B 

CM 

> 
o 
13 

Ö 
OQ 

<ü 

u > 

<u <j 4) <u 
A! ^ü M j*! 
o ü o o 
3 3 3 3 x X X X 
CJ o O O 
IH I-. u u. 
V u o U 

PQ OQ OQ OQ 

rt <a « 

rt 13 Si *-) ■4-J U eg w O u u > > (3 3 
o o "5? *5P :.s X 
o o u. l-H 

«1 
«I 

'S ts 

OOOOOOOX 

fr fr £ £ ^ cd cd CO CO 03 > > > > > 
o o o o o 

s 

.9 

I 
s e 
U 

w 
X 

c 
o r*       X       X       _^ O   cs   o 

r-<        'S \£> VO K 
z   §   u   w   to s ^   oo   w   S   >   Pi 

ö * 

t/3 
o 
o 

8 
•j3 w 

CO en 
.5 

U 

X vx 

i 
<*-( 

on 
aj 

X 02 X •ja X 
3 a Xfl 3 t*> oo w 

<u <U u <L> <U (U 
w a CO ö a a e 

CU 
1/) 

■ *■* o 
a ä 4-H 

ca 

u u 
r/i CO 
e e 
<L> <u 
CO CO a C o o 
3 a 

<*H 

X! X 
CO co 
<U Sä a a m cfl 
IH IM 

<+H <+-< 

u 
to 
3 <u 
I» 
Ö 
o 
3 

e r 

CO 

S 
o 

6! 
O 

CN 
co & a s 

.5   o 

a> 

CO 
H 

CU a 
e 
C9 

U -H 
CO 

3 

lO 

+  o 
> 

O    H 
CO     00 o g 

Ü   Ü   < 

a 
OS 

co 
d d 

< H 
rj" ON 

5»    n ift     ^ 

a u o ^ 

H    Ü 

<S     ON 

I 

x H 

Z co 

«t X   Ü T3 



10 

3 
«M o 

a 
B 
WD e 
es 
s* 

a 

O 
WD 

a> 
N 

u 
es 
IM 
es 

ü 

r* 

eg 
H 

& 
o •-c 
es 
N 

•c 
u 
2 
es 

Ü 

13 

5 

d 
O 

'■3 
c 
a, 
OH 

< 
d 
CO 

e 

"03 

-4-» 

DO 

£ 173 
CO 

<L> a. U    OH 
4-> OH o T3    O 
OH 

•8 
CO 00 

4-J 
CO co  co 

"8 
1) 

§ co d co  d 
u- a o d  o 

SB o T3 O  "Ö o X O x  o Ui d <D O <D    Ü 

& s • M 
o 3 d 0 

£C < CO < 
9 J3 d CO J3 -*-» o -«-» 
« 

O X > 
• 1-H 

O 

X> 
ON 

8 

co 
CO 

CO 

> 
O -B 

co 
d 
o 
X 

* 
* 

0\ 
8 
r—I 

*o 
O 
i-H 
co 
d 

DO 

OH 
x> 
co 
r- 

CO 
I-H 

co 
> 

r- 
co 
> 

d 

< 

O 
x> 

OH 
X) 
»—I 

i 
CO 
r—I 

CO 

2 

CO 

> 

CO 

OH 

S3 
CO 

CO 
I-H 

co 
> 
o 

co 
> 

VO T—( V) 
00 

8 S3 
CO 

<u d D 
T3 -o 

00 Os ^) V0 »H 
Q^ CO !Q 

9 5 
oc (50 ÖX 

00 

o 
<1) co 

^t" 
fc 

V) H 
I—< d a o 
o -d 
X o <u o 

d 

< 

o 

I-H 

co 

o 
4H 

i-H 

CO 

> 

d 
HS 
d 

• t-H 

5 

S3    4> 

Ö  & 

8 * 
* * 
* * 



tu 

11 

& 
O 

3 

e 
S 
two 
a 
es 

es 

s 

l 
o 
0) 
WD 
es 

u 
S 
kl 

CM 

8, u. 
u n 

*-* 

o eä 

'S 
ö o 

tiö 

T3 
U 

O      O    <4-l 
X   X   ö 

5» 

< 

.O 

o\ o 
-H    (S 

CO     »3 

>     > 
es 

.2 o o 
4-»     H-» 

V es VO  ON 
r—l  1—I u o tzi   co 

J #> _> 

=3 

< 
X 
O 

«3 

00 

'S M "S " 

i- *- r- -H 
""' a ^  Ö 
CO Ö   o 
o -ö o-o 
X O X   o 
<D O (DU 

i—i 

CO 

> 
o 

10 > 

3 
< 
X! +-» 
O 
X 

CO 

i 
1—I 

GO > 

3 
< 
O 
X 

o es 
> 
O 

4-* 

ON 
r—l 
»3 
> 

B ° 

tS r-H 

« a 
Ö o 
O T3 
X O 
a> o 

w x^ 

a (-1 OH (X OH 
X .w X X X OH 

a> I § ON 

X 
o 
r—1 

CÄ 00 2 co r—l co in 

es 
CN 
co > 

co > 

<S 
G P 

3 

r* 

mm 
ja 
cd 
H 

0 

1 
N 
M 
41 -** 
U a 
a 

co 

00 

8      I 
1) <o 

t3 T3 
00 co 
>*0 "O 

* CO Q 
* i Nt? 
* 00 M 

o 
r—l 

CO «O 
<u a> 

T3 

3 s 
CO l^ 
r—1 ON r~~ r- 
00 00 

* * * * * 



12 
Another predisposing feature of the BRCA1 locus is a tandem duplication 

involving the 5 region of BRCA1 (Brown et al., 1996; Barker et al., 1996). The 

duplication includes the BRCA1 promoter region and a neighboring gene, NBR1 (Figure 

1.2). The result of the duplication was the creation of a new gene, NBR2, with which 

human BRCA1 shares a bi-directional promoter and the creation of a pseudo-copy of 

BRCA1 situated in a similar head to head orientation with the NBR1 gene approximately 

30 kb upstream of the functional BRCA1 locus (Xu, 1997). The pseudo-copy of BRCA1 

contains a nonsense mutation in exon 2. Based on Southern analysis, the pseudo-copy 

of BRCA1 includes exons la, lb, and 2, but not exons 3,4,13, and 21. Other exons 

were not analyzed. The presence of a pseudo-copy of BRCA1 with >90% identity 

located so near on chromosome 17 further predisposes the functional BRCA1 locus to 

inactivation by misaligned homologous recombination or gene conversion. 

Project goals 

Several possible interpretations could explain the paradox presented by the lack 

of somatic mutations in BRCA1. One formal explanation is that BRCA1 is not involved 

in sporadic breast and ovarian cancer. It is possible that the high rate of LOH for the 

BRCA1 region in sporadic tumors actually targets a nearby gene, and not BRCA1. 

A second explanation is an alternative mechanism for loss of the second BRCA1 

allele in sporadic tumors. Aberrant patterns of DNA methylation are among the most 

common genomic alterations seen in cancer (Jones & Laird, 1999, 1996; Baylin et al., 

1998). Abnormal methylation in the promoters of well-characterized tumor suppressor 

genes such as RBI and CDKN2A can contribute to their functional inactivation 

(reviewed in Jones & Laird, 1999). Several groups have reported a decrease in the 

amount of BRCA1 message detected in breast tumor tissue as compared to normal 

breast tissue (Thompson et al., 1995; Rice et al., 1998; Magdinier et al., 1998). 

To date, analyses of methylation within the BRCA1 CpG island have produced 

conflicting results. In one study, the decrease in BRCA1 expression was associated with 

aberrant methylation within the BRCA1 d promoter (Rice et al., 1998). Mancini et al. 
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(1998) also detected aberrant methylation within the BRCA1 d promoter in four of 

eleven breast and ovarian tumors. Their study did not analyze BRCA1 expression. In 

the largest study of methylation within the BRCA1 d promoter published to date, 

Catteau et al. (1999) detected aberrant methylation in 11 of 96 breast tumors. Magdinier 

et al. (1998), however, did not detect aberrant methylation in any of 37 breast tumors 

analyzed. 

A third possibility is that the lack of BRCA1 mutations in sporadic tumors 

actually reflects limitations in current mutation screening procedures. The spectrum of 

somatic mutation in BRCA1 may differ dramatically from the germline mutation 

spectrum. Given the genomic organization of the BRCA1 locus and the methods 

commonly used to screen for BRCA1 mutations, it is conceivable that BRCA1 somatic 

mutations in breast and ovarian cancer exist but have remained undetected by 

conventional mutation detection methods. 

The research detailed in the following chapters further elucidates the role of 

BRCA1 in breast cancer by analyzing the genetic alterations that lead to inactivation of 

BRCA1. Chapter Two describes the characterization of large germline rearrangements 

identified in BRCA1 and their contribution to breast cancer in a population-based series 

of breast cancer patients. Chapter Three details the nature of somatic alterations 

identified from sporadic breast tumors and their relationship to BRCA1 protein 

expression. Chapter Four describes a rare variant allele of BRCA1 and the potential 

significance of noncoding variation in the BRCA1 genomic region. Finally, Chapter 

Five reviews the significant advances in BRCA1 biology that have occurred over the 

time that this research was conducted and how this research has contributed to these 

advances. 



15 

CHAPTER TWO 

Both Homologous and Nonhomologous Mechanisms Generate Large 

Germline Rearrangements oiBRCAl 
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Experimental Logic and Chapter Contributions 

My primary interest has been to understand what role (if any) BRCA1 plays in 

the genesis of sporadic breast cancer. Because of my interest in whether large 

rearrangements of BRCA1 lead to somatic inactivation of BRCA1,1 first wanted to 

survey the types of large rearrangements that can occur in the BRCA1 genomic region. 

I addressed this question by screening for large germline rearrangements in 

families with inherited breast and/or ovarian cancer in which no mutations in either 

BRCA1 or BRCA2 had been detected previously. These included four families with 

positive LOD scores to the BRCA1 region of chromosome 17q21 (Families 41,48, 58 

and 94). Families with multiple cases of breast cancer and with negative LOD scores 

for linkage to BRCA1 might nonetheless harbor mutations in BRCA1 if some cases are 

sporadic (ie. phenocopies). Seven such families were screened (Families 43,46,52,57, 

61,66, and 110).  The characterization of one large germline rearrangement 

predisposing to breast and ovarian cancer is discussed in detail in Appendix One. 

Appendix One represents work that has been published previously. 

Additionally, I screened for large rearrangements of BRCA1 in several cell 

culture lines. If BRCA1 is inactivated somatically by large rearrangements of BRCA1, 

this would be more easily detected in a clonal population (such a cell culture line) than 

in a mixed population such as found in tumor tissue. The cell lines analyzed were 

standard lines used by a number of investigators and available through the American 

Type Culture Collection. The lines represented a range of phenotypes such as estrogen 

receptor negative and estrogen receptor positive. They included one normal human 

mammary epithelial cell line (HMEC2595), one abnormal breast cell line (HBL100), 

ten breast cancer cell lines (BT20, BT483, HTB24, MDA-MB-231, MDA-MB-468, 

Hs578T, T47D), three ovarian cancer cell lines (CaOv3, ES2, PA1), and three prostate 

cancer cell lines (DU 145, PC3, PPC1). 

I screened for large genomic rearrangements oiBRCAl in two ways: Long PCR 

analysis and Southern analysis. Long PCR allows rapid screening of samples using 
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minimal amounts of DNA. Due to the nature of PCR, however, Long PCR will be 

biased strongly toward detection of genomic deletions as opposed to genomic 

duplications. Additionally, very large rearrangements (larger than the size of Long PCR 

products used) will not be detected by Long PCR. The majority of the published large 

rearrangements within the BRCA1 region are in the size range detectable by Long PCR. 

Most of the characterized large rearrangements in this size range would be detectable by 

the Long PCR screen designed (Table 2.1) (Puget et al., 1997; Petrij-Bosch et al., 1997; 

Puget et al., 1999a; Montagna et al., 1999; Carson et al., 1999; Rohlfs et al., 1999). 

Two very large rearrangements of BRCA1, deletions of ~14 kb and ~23.8 kb, 

have been described (Swensen et al., 1997; Puget et al., 1999a). These rearrangements 

were detected by Southern hybridization. Therefore, I also examined family and cell 

line DNA by Southern blot analysis. One caveat to Southern analysis is that 

unambiguous detection of rearrangement requires the probe used for detection to be 

present in the rearranged allele.  Thus, when using a cDNA probe, genomic deletion of 

a single exon will be detected most readily if that exon resides on a restriction fragment 

containing other exons. This presents a technical problem for analysis of the BRCA1 

genomic region in which many small exons (14 exons are <100 bp and 4 are <60 bp) 

are spread over a large genomic region. As a result, some mutations are most easily 

detected by Long PCR analysis (for example, the deletion involving the 54 bp BRCA1 

exon 3 described in Appendix One). 

Finally, in order to begin to ascertain the contribution of large germline 

rearrangements to breast cancer in the American population, I investigated two large 

germline rearrangements (one large deletion and one large duplication) in a population- 

based series of 242 white and 164 African-American breast cancer patients unselected 

for family history. Patients were ascertained previously as part of the Carolina Breast 

Cancer Study (Newman et al., 1995; Newman et al., 1998). 

Materials and Methods 
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Long PCR Analysis 

PCR template was lymphocyte gDNA from members of high-risk breast and/or 

ovarian cancer families with no identified mutations in either BRCA1 or BRCÄ2 and 

representative cell lines. The families were screened using lymphocyte gDNA from one 

linked and one unlinked family member. In the event that linkage was unclear, two 

high risk individuals (when available) were screened. 

Fifteen unique Long PCR primer pairs were designed across the BRCA1 

genomic region (Table 2.2). The pairs amplify overlapping products ranging in size 

from 2.4 to 10.9 kb with an average size of 7.7 kb and a median size of 8.5 kb. The 

primer pairs provided full coverage of the BRCA1 region, from the promoter to 5 kb 

downstream of the final exon with one exception. The region (GenBank L78833 

bp~24,500-28,700) encompassing exon 6, exon 7 and the Alu-dense intron 7 was 

refractory to Long PCR amplification. A primer pair amplifying a smaller 3.8 kb 

product was eventually designed to screen exons 6 and 7. However, a 1187 bp gap in 

intron 7 remained (GenBank L78833 bp 27,666-28,853). This region was screened 

solely by Southern analysis. 

Long PCR was carried out using the Boehringer Mannheim Expand™ Long 

Template PCR System. PCR products were amplified in 25 (xl volumes containing 250 

ng gDNA, lx buffer 3, 500 [iM dNTP's, 300 nM each primer, 0.25 mM MgCl2 (in 

addition to 2.25 mM MgCl2 from buffer 3), and 1.25 units enzyme mix. Amplification 

conditions were 10 cycles of denaturation at 94°C for 10 s, annealing at optimal 

temperature of each primer pair for 30 s, and extension at 68°C for 8 min. This routine 

was followed by 20 cycles in which the extension time was increased by 20 s each cycle 

and a final extension at 68°C for 7 min. The Long PCR products were analyzed further 

by restriction enzyme digestion and examined for variant banding patterns. 

Southern Analysis of the BRCA1 Genomic Region 
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Southern blotting and hybridizations were performed as described previously 

using 10 pig of gDNA (Monnat et al., 1992). Southern hybridizations were performed 

by probing a single blot three times with different regions of the BRCA1 cDNA (exons 

la-7,3-11, and 11-24). Family and cell line gDNA was analyzed using at least two 

different restriction enzymes. Due to limiting quantities of tumor DNA, breast tumor 

gDNA was analyzed using a single restriction enzyme (Hindlll), unless variant bands 

were observed. Case 72, the only breast tumor in which an unexpected restriction 

fragment was observed, was analyzed further using four different restriction enzymes 

(See Chapter Four). Regions involved in variant banding patterns were determined 

using the complete BRCA1 genomic sequence (GenBank L78833) (Smith et al., 1996). 

Population-based Screening for Two Large Germline Rearrangements 

Patients were ascertained previously as part of the Carolina Breast Cancer Study 

(Newman et al., 1995; Newman et al., 1998). A PCR primer pair was designed to 

detect a 514 bp breakpoint junction fragment for the g.12977 inslO dell039 mutation. 

Primers used to amplify the breakpoint junction fragment were: (forward) 5'-TTT-TTC- 

TCC-CCC-CCT-ACC-CTG-3'; (reverse) 5'-GCT-CAG-CAT-TTG-TTA-CTC-AAG- 

CTG-3'. PCR was performed in 25ul volumes containing 100 ng gDNA, lx reaction 

buffer (Boehringer Mannheim), 250 ^M dNTP's, nM each primer, and 1.25 units Taq 

enzyme. Primers used to amplify a 980 bp breakpoint junction fragment for the 

g.43368ins6081 mutation were: (forward) 5'-ATT-ATT-TCC-CCC-CAG-GCT-ACC- 

CAG-3'; (reverse) 5'-GGT-CCA-TTT-CAA-AGA-AGA-GTG-TGC-3'. 

Results and Discussion 

Characterization of a large germline deletion in the BRCA1 region leading to breast 

and ovarian cancer predisposition 
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I identified one large germline rearrangement from Family 58 (Family 5 in 

Hall et al., 1990). The rearrangement consisted of a 1039 bp deletion with a 10 bp 

inverted duplication inserted at the breakpoint junction (g.12977 inslO dell039). The 

research characterizing this deletion is described in Appendix One. Due to the loss of 

32 bp from exon 3 in the g.12977 inslO dell039 mutation, it was detected by Long PCR 

but was not obvious when examined by Southern analysis. 

No other large germline rearrangements were detected in the families or cell 

lines using either Long PCR or Southern analysis. Several polymorphic restriction sites 

were observed. The variant restriction sites identified and their observed frequencies 

are listed in Table 2.3. 

Population-based investigation of two large germline rearrangements predisposing to 

breast and ovarian cancer 

Next I investigated the contribution of two different large germline 

rearrangements to breast cancer in the American population. I analyzed one large 

deletion (the g.12977 ins 10 del 1039 mutation) and one large duplication (the 

g.43368ins6081 mutation) in a population-based series of American breast cancer 

patients unselected for family history (Appendix One; Puget et al., 1999b). The 

g.12977 ins 10 del 1039 mutation was investigated in 242 white and 164 African- 

American breast cancer patients. No mutation carriers were detected in 406 cases. The 

g.43368ins6081 mutation was investigated in 220 white and 153 African-American 

breast cancer patients. One mutation carrier (CBCS 950749) was detected in 373 cases 

(Figure 2.1). 

The g.43368ins6081 mutation was previously identified in four American 

families of mixed European descent with multiple cases of breast and/or ovarian cancer 

and one Portuguese family with three cases of breast cancer (Puget et al., 1999b; 

Heather Mefford, pers. comm.). A founder effect for the g.43368ins6081 mutation was 

postulated based on the observation that four of the families shared the same haplotype 

at nine polymorphic markers within or flanking the BRCA1 locus (Puget et al., 1999b). 
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Figure 2.1 

Figure 2.1     Detection of the g.43368ins6081 mutation in a population-based 
series of American breast cancer patients. The PCR product amplified across 
the breakpoint junction fragment is 980 bp. No product is amplified from wild- 
type BRCAL Mutation carrier 950749 was identified among 373 breast cancer 
cases in the Carolina Breast Cancer Study. Individual 9004 from Family 90 
serves as a positive control. 
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It was determined previously that young age at diagnosis alone did not predict 

BRCA1 carrier status in the CBCS population, but that a family history of breast and 

ovarian cancer or at least four cases of breast cancer was predictive of BRCA1 mutation 

carrier status (Newman et al., 1998). The g.43368ins6081 mutation carrier (CBCS 

950749) was 53 years at diagnosis and did have a family history of breast cancer. 

CBCS 950749 was diagnosed with breast cancer at age 53 and with stomach cancer at 

age 60. The daughter of CBCS 950749 was diagnosed with breast cancer at age 29. 

It is not known what contribution large germline rearrangements make to breast 

cancer in the American population. A growing number of such rearrangements are 

being described (Table 2.1). Detection of these large germline rearrangements, once 

fully characterized, will be a matter of conventional PCR over a breakpoint junction 

fragment using diagnostic primers that can be designed from the known genomic 

sequence of BRCA1. Small insertions, deletions, and point mutations account for 

approximately 3% of breast cancer in the American population when adjusted for 

sampling probabilities (Newman et al., 1998). It will be important to know whether 

large germline rearrangements make a similar contribution to breast cancer. This 

possibility is of particular interest because large rearrangements are the mutation types 

most likely to be missed by conventional mutation detection methods. 
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CHAPTER THREE 

Somatic Alterations of BRCA1 in Breast Cancer: 

Loss of Heterozygosity, but No Large Rearrangements 
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Experimental Logic and Chapter Contributions 

The primary goal of my research was to test whether BRCA1 is inactivated 

somatically by large genomic rearrangements that have not been identified by 

conventional mutation detection methods. I addressed this question by screening for 

large somatic rearrangements using 92 paired normal and tumor breast tissues. I 

examined the tumor gDNA for large somatic rearrangement of BRCA1 in three different 

ways: loss of heterozygosity (LOH) analysis, Long PCR analysis, and Southern 

analysis. The tumors were not analyzed routinely for microsatellite instability as it is 

rare in breast cancer (Krajinovic et al., 1998; Anbazhagan et al., 1999). However, 

tumors that showed multiple alleles for microsatellite markers within the BRCA1 

genomic region were analyzed further with markers diagnostic of microsatellite 

instability (Dietmaier et al., 1997). 

The tumors were not analyzed for small insertion, deletion and single bp somatic 

mutations. Several independent groups have screened breast and ovarian tumors for 

BRCA1 mutations and only a few tumors with somatic mutation have been identified 

(Hosking et al., 1995; Merajver et al., 1995; Berchuck et al., 1998; Khoo et al., 1999). 

Thus, I reasoned that small somatic mutations of BRCA1 were not likely to be present in 

our samples. 

The paired normal and tumor samples were obtained through collaboration with 

two separate groups: the Cooperative Human Tissue Network (CHTN) and the 

Louisiana Women's Hospital in Baton Rouge. CHTN contributed 44 of the 92 samples. 

These samples were diagnosed by at least two independent pathologists prior to 

delivery. The Louisiana Women's Hospital agreed to send samples specifically for 

BRCA1 research. These 48 samples included a pathology report and detailed family 

history for each patient. Samples from both groups were obtained on a prospective 

basis. I was responsible for organization and maintenance of the large collection of 

paired normal and tumor breast tissues. This effort involved coordination with the 

various divisions of CHTN, isolation of DNA from the 92 breast tissue pairs used for 

the study, and the creation of a computer database for the paired breast tissue collection. 
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While I was involved with the Louisiana Women's Hospital as well, Piri Welcsh was 

largely responsible for the coordination of the collaboration. 

The work described in this chapter was part of a collaborative effort. In this 

chapter, I will discuss those aspects of the research in which I was involved directly and 

the major observations from that research. The purpose of our study was to delineate 

the putative role of BRCA1 in sporadic breast cancer. Using a single large set of 92 

breast carcinomas of various histologies, we investigated several potential mechanisms 

for the decrease in Z?/?CAiexpression observed previously by other investigators. I 

screened the tumor set for large deletions and rearrangements as well as for 

conventional LOH. In addition, Tom Walsh analyzed the same tumor set for aberrant 

methylation within the BRCA1 d promoter. Finally, Rachel Gonzalez-Hernandez used 

immunohistochemistry to determine whether BRCA1 protein was present within the 

tumors. By using an integrated approach involving analysis of large somatic 

rearrangements, LOH, methylation, and protein in a large group of breast carcinomas 

unselected for family history, we could determine whether any of these genetic 

alterations correlate with the previously observed reduction of BRCA1 protein (Wilson 

et al., 1999; Jarvis et al., 1998; Taylor et al., 1998; Lee et al., 1999). 

Materials and Methods 

Tissue Samples 

Ninety-two paired normal and tumor breast samples were obtained through the 

Cooperative Human Tissue Network (CHTN), and the Louisiana Women's Hospital in 

Baton Rouge. They comprised 74 invasive ductal carcinomas, 12 invasive lobular 

carcinomas, 4 invasive ductal with invasive lobular carcinoma, 1 mucinous carcinoma, 

and 1 apocrine carcinoma. Patients were not selected for family history or age at 

diagnosis. The samples were diagnosed by at least two independent pathologists, and 

contained at least 60% tumor cells. All tissues were snap frozen in liquid nitrogen 

following surgery. DNA from breast tumor tissue and normal breast tissue was isolated 
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using the Stratagene DNA Extraction kit. Histologie grade on 68 tumors was confirmed 

by an independent pathologist (Allan Gown). 

LOH Analysis 

LOH in the BRCA1 genomic region was analyzed in paired normal and tumor 

gDNA using six microsatellite markers. D17S1323, D17S1322, D17S855 lie in BRCA1 

introns 12, 19, and 20 respectively (Smith et al., 1996). The BRCA1 transcription start 

site is 39kb from D17S1323,66kb from D17S1322, and 73kb from D17S855 (Smith et 

al., 1996). D17S1326 and D17S1325 are approximately 150 and 300kb from the 5' end 

(distal) of BRCA1, and D17S1320 is approximately 500kb from the 3' end (proximal) of 

BRCA1 (Neuhausen et al., 1996). Markers were typed using PCR and electrophoresis 

conditions as described previously (Anderson et al., 1993). All BRCA1 markers were 

evaluated for all normal and tumor breast tissues. An allele was scored as lost if 

intensity was reduced by >50%.   Markers used for typing microsatellite instability were 

BAT26, BAT40, D2S123, D5S346, and Mfdl5 (Dietmaier et al., 1997). 

Long PCR and Southern Analyses 

Long PCR, Southern blotting, and Southern hybridization were as described in 

Chapter Two. 

Statistical analysis 

Proportions of tissues in various categories were compared by x*and Fisher's 

exact test, as appropriate. Dependent variables with ordinal categories were evaluated 

using %2test for trend. Stratification for confounders was addressed as suggested for 

unmatched comparisons by Breslow and Day (1993). All P values represent 2-tailed 

tests. 
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Results 

LOH of the BRCA1 region in sporadic breast carcinoma 

The BRCA1 genomic region investigated is shown in Figure 3.1. Of the paired 

breast normal and tumor samples informative for LOH, 50% (39/78) of invasive ductal 

tumors lost an allele at one or more markers within the BRCA1 region (Table 3.1). 

None of the 12 lobular carcinomas showed any allelic loss. Of the 56 tumors 

informative for the three BRCA1 intragenic markers (D17S1323, D17S1322, D17S855), 

36 tumors (64.3%) had lost at least one intragenic marker. Allelic loss at the three 

BRCA1 intragenic markers as well as at the three flanking markers (D17S1320, 

D17S1326, D17S1325) was associated significantly with tumor grade. LOH was 

detected in 44% (4/9) of grade I tumors, 28% (11/40) of grade II tumors, and 63% 

(26/41) grade III tumors (p<0.005). This association is consistent with previous reports 

of association between somatic LOH at the BRCA1 locus and tumor grade (Beckmann 

et al., 1996; Niederacher et al, 1997; Rio et al., 1998; Silva et al., 1999). Estrogen 

receptor status was independently associated with LOH (p=0.046) as reported 

previously (Rio et al., 1998; Silva et al., 1999). There was no independent association 

between LOH and tumor stage or age at diagnosis. 

Microsatellite instability in an infiltrating ductal carcinoma 

Case 12 was unique in that additional alleles appeared at four markers 

coincident with LOH at the remaining two markers. In order to test whether the 

additional alleles were due to microsatellite instability (MSI), I analyzed markers 

indicative of MSI for Case 12. These markers were shown previously to be diagnostic 

of a mismatch repair defect in tumor cells (Dietmaier et al., 1997). Five of ten 

diagnostic markers were analyzed for Case 12: BAT26, BAT40, D2S123, D5S346, and 

Mfdl5. Case 12 showed instability at four of the five markers tested. Only the BAT26 
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Figure 3.1 

Microsatellite markers in the BRCA1 region 

BRCA1 

CEN -+*- 

D17S1320 D17S855 
D17S1322 

—500 kb 1 |-27kbH 

D17S1323 

+H -+>• TEL 

D17S1326     D17S1325 

f50-200 kH 

-100 kb- 

Figjure 3.1    Microsatellite markers used to test loss of heterozygosity within 
the BRCA1 genomic region. The distances between markers are diagrammed 
below. Arrows indicate the direction of transcription and boxes indicate exons. 
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Table 3.1 Genomic Loss in Primary Breast Carcinomas 
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29 65 III • NI NI 
88 37 I • NI NI • 

42 68 I NI NI • • 

7 35 III NI NI • • 

59 36 III • NI • NI 
81 38 III NI NI NI NI 
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32 72 III O NI • NI NI 
79 69 I • NI NI • NI 
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a. Histologie type is indicated if other than ductal. 
b. Dx indicates age at diagnosis. 
c. Open circles denote retention. Closed circles denote allelic loss. "NI" indicates the 

marker was uninformative. 
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Table 3.1 Genomic Loss in Primary Breast Carcinomas 
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a. Histologie type is indicated if other than ductal. 
b. Dx indicates age at diagnosis. 
c. Open circles denote retention. Closed circles denote allelic loss. "NI" indicates the 

marker was uninformative. 
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Table 3.1 Genomic Loss in Primary Breast Carcinomas 
(cont.) 
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a. Histologie type is indicated if other than ductal. 
b. Dx indicates age at diagnosis. 
c. Open circles denote retention. Closed circles denote allelic loss. "NI" indicates the 

marker was uninformative. 
d. "msi" indicates that multiple alleles were observed with this marker. 
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Table 3.1 Genomic Loss in Primary Breast Carcinomas 
(cont) 
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marker was uninformative. 
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marker was stable in tumor gDNA. Thus, Case 12 showed 80% unstable loci among 

the first five markers. 

Long PCR and Southern analysis of sporadic breast carcinomas 

Of the 92 samples, 84 were amplified successfully for all 15 Long PCR primer 

pairs. However, no large somatic rearrangements were detected. Several variant 

restriction sites were observed in both normal and tumor gDNA from the cases. The 

polymorphic restriction sites are listed in Table 3.2. One large germline deletion in 

intron 15 of BRCA1 was detected in Case 72. This rearrangement will be described in 

detail in Chapter Four. 

In order to detect very large deletions, duplications, and rearrangements that 

would be missed by PCR, I also performed Southern analysis. As tumor DNA was 

limiting and because no large rearrangements were identified using Long PCR, 

Southern analysis was performed with only the 40 tumors that demonstrated LOH 

within the BRCA1 region (Figure 3.2). The eight samples that were not screened fully 

by Long PCR were analyzed by Southern as well. One ~250 bp germline insertion in 

intron 7 of BRCA1 was observed in Case 72. This insertion will be described further in 

Chapter Four. No large somatic rearrangements were detected. 

BRCA1 protein expression and loss of heterozygosity 

Rachel Gonzalez-Hernandez analyzed BRCA1 protein expression in breast 

normal and tumor tissue sections by immunohistochemistry (IHC) using monoclonal 

antibody MS 110. Her data are summarized in this paragraph in order to provide a 

context for my data in the following paragraphs. The relationship between the coding 

regions for the epitope recognized by MSI 10 and the microsatellite markers used for 

LOH analysis is shown in Figure 3.3. Rachel scored the normal and tumor breast 

tissues on a scale of 0 to 4. Normal breast epithelium exhibited staining consistent with 

a score of 3. Rachel observed reduced BRCA1 protein (scores of 0 to 2) as compared to 
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Figure 3.2 

BREAST CANCER CASES SHOWING BRCA1 REGION LOH 
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Figure 3.2    Southern analysis of BRCA1 in primary breast carcinomas. 10 «g 
of Hind Ill-digested genomic DNA was electrophoresed and Southern blotted 
as described in Materials and Methods. The blot was hybridized to a radioactively 
labelled probe made from exons 11 to 24 of the BRCA1 cDNA. Of the 46 
tumors analyzed by Southern, 14 are shown here. All 14 tumors appear wild- 
type. 



to 

CO 

CO 

Q 

CO 
OJ 
CO 

C/D 

CM 
-C5 

W «Ei- 
CD r* ^™- 

!■■ C: 

CD 
iS^Ü 

E o 
C0 
O 
E o 
hm 

o vv 

o 

CO 
Cvl 
CO 

co r— 

CO 
CO 
CD 
i— 
=J 

8) 
CO 

< 
O 
CG 

CM 
CM - 

CO 

I—        to 

Q     CO 

Q 

CNJ 
CO 

o\ 

ßq 

m 

H 

«  3 <u rt -; -o -r 

JQ 

s 1 
*"> 13 rt 

rt 

rt  S 



42 

Table 3.3     Marker D17S1323 LOH 
and BRCA1 Protein Expression 

BRCA1 Protein Score 

Reduced BRCA1 (0-2) Normal BRCA1 (3-4) 

D17S1323 

Loss 11 1 

No loss 12 10 

42 
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Table 3.4 Genomic Loss and BRCA1 Protein Expression 
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a. Histologie type is indicated if other than ductal. 
b. Open circles denote retention. Closed circles denote allelic loss. "NI" indicates the 

marker was uninformative. 
c. "msi" indicates multiple alleles were observed with this marker. 
d. Scores for MS 110 detection of BRCA1 protein. The data in this column were 

generated by Rachel Gonzalez-Hernandez and are presented only to illustrate the 
correlation between low protein scores and LOH at the marker D17S1323. 
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Table 3.4 Genomic Loss and BRCA1 Protein Expression 
(cont.) 

•3 

3 
8 

D
17

S1
32

6 

8 
1-4 

•a 
< 

n 
93 III NI      NI NI l 

OQmixec 'III •        • • 2 
64apo II •        • NI 2 
67 II •       NI NI 2 
72 II •        • NI 2 
94 III •        • NI 2 

46Iob II ( 3       NI O 2 
78 III < 3       NI o 2 
83 II ( 3       O o 2 

96'0b III ( D       O o 2 
54lob I ( 3       O NI 2 
69 II ( D       O NI 2 
85 II ( D       O NI 2 

Qliob I ( D      NI NI 2 
11 II r MI       NI • 2 
38 III i MI      NI • 2 

49|ob 
I i sfl       NI O 2 

51 II r MI       O O 2 
53 II r MI       O o 2 
55? III i MI      NI o 2 
92 II i MI      NI o 2 
97 III i MI      NI o 2 
t 15 II i MI      NI NI 2 

a. Histologie type is indicated if other than ductal. 
b. Open circles denote retention. Closed circles denote allelic loss. "NI" indicates the 

marker was uninformative. 
c. "msi" indicates multiple alleles were observed with this marker. 
d. Scores for MS 110 detection of BRCA1 protein. The data in this column were 

generated by Rachel Gonzalez-Hernandez and are presented only to illustrate the 
correlation between low protein scores and LOH at the marker D17S1323. 
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Table 3.4 Genomic Loss and BRCA1 Protein Expression 
(cont.) 
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a. Histologie type is indicated if other than ductal. 
b. Open circles denote retention. Closed circles denote allelic loss. "NI" indicates the 

marker was uninformative. 
c. "msi" indicates multiple alleles were observed with this marker. 
d. Scores for MS 110 detection of BRCA1 protein. The data in this column were 

generated by Rachel Gonzalez-Hernandez and are presented only to illustrate the 
correlation between low protein scores and LOH at the marker D17S1323. 
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normal breast epithelial tissue in 72% (49/68) of the breast tumors and in the majority 

of tumors (82%, 28/34) with high histologic grade (p<0.001). 

Reduced BRCA1 protein expression was associated with genomic loss at 

D17S1323, the intragenic marker closest to the BRCA1 transcription start site (Table 

3.3). Reduced BRCA1 protein staining (scores of 0 to 2 on a scale of 0 to 4) occurred 

in 92% (11/12) of tumors with genomic loss at D17S1323 but in 55% (12/22) without 

genomic loss at this marker (p<0.02). Genomic loss at marker D17S1325 was 

associated marginally with reduced BRCA1 protein expression (p=0.05), although the 

significance of this association is unclear. Marker D17S1325 is located ~50 to 300 kb 

5' of BRCA1. Although marker D17S1326 lies between D17S1323 and D17S1325, 

LOH at D17S1326 is not associated with reduced BRCA1 protein staining (Table 3.4). 

The marker D17S1326 is only slightly less informative than the marker D17S1325. The 

maximum heterozygosity for marker D17S1326 is 0.8300 whereas the maximum 

heterozygosity for D17S1325 is 0.8858. 

55% (12/22) of tumors in the series had reduced BRCA1 protein staining (scores 

of 0 to 2) despite no detectable genomic loss of the BRCA1 transcription start as 

indicated by marker D17S1323. Reduced BRCA1 protein was observed in a high 

proportion (8/14, 57%) of the tumors that were informative at all three intragenic 

markers and fully retained both alleles of BRCA1. In this subset of tumors, other 

mechanisms are likely responsible for BRCA1 inactivation. 

Discussion 

Microsatellite instability and breast cancer 

According to the criteria of Dietmaier et al. (1997), MSI is defined by at least 

40% unstable loci among the ten diagnostic markers. These authors found that 14 of 15 

tumors with >20% unstable loci had lost either hMSH2 or hMLHl protein expression in 

tumor cells. Of the five MSI markers tested in Case 12, 80% showed instability. 

Therefore, Case 12 exhibits instability for at least 40% of the diagnostic microsatellite 
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markers. Given these criteria, the infiltrating ductal carcinoma from Case 12 likely 

represents a mismatch repair defective breast tumor. MSI is indicative of widespread 

genomic instability and is well-documented in hereditary non-polyposis colorectal 

cancer (HNPCC). The MSI phenotype is observed in many sporadic cancers as well, 

including colorectal, gastric, pancreatic and endometrial cancers (Peltomaki, 1997). 

There have been reports of breast tumors with MSI from affected members of HNPCC 

kindreds (Bergthorsson et al., 1995; Risinger et al., 1996; Boyd et al., 1999). However, 

MSI is rare in sporadic breast cancer (Krajinovic et al., 1998; Anbazhagan et al., 1999). 

In a recent study, 0 of 267 breast tumors exhibited MSI (Anbazhagan et al., 1999). 

Although MSI is rare in sporadic breast cancer, LOH of some DNA mismatch 

repair loci is frequent (Benachenhou et al., 1999). Chromosomal region 3p21, which 

harbors hMLHl, shows LOH in 46% of breast tumors (Benachenhou et al., 1999). 

Benachenhou et al. (1999) proposed that hMLHl could be involved in breast 

tumorigenesis through cellular functions other than replication error correction. It is 

possible that hMLHl plays a tumor suppressing role in sporadic breast cancer through 

functions other than replication error correction and that Case 12 represents a rare 

example in which loss of the breast tumor suppressing function also affects replication 

error correction. 

A more likely possibility is that Case 12 represents an affected member of a 

HNPCC kindred. Case 12 was 42 years at diagnosis (early-onset), but no family history 

is available. It is, therefore difficult to assess the probability that Case 12 is a member 

of a HNPCC kindred. 

Absence of large somatic rearrangements in sporadic breast cancer 

Despite extensive analysis by our group and others, very few somatic mutations 

in BRCA1 have been reported in breast cancer (Hosking et al., 1995; Merajver et al., 

1995; Berchuck et al., 1998; Khoo et al., 1999). Nuclear staining BRCA1 protein, 

nevertheless, is reduced or absent as compared to normal mammary ductal epithelium in 

the great majority of the breast carcinomas analyzed by IHC. The reduction of BRCA1 
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nuclear protein observed in our samples confirms previous observations by numerous 

groups using a variety of BRCA1 antibodies directed against diverse regions of BRCA1 

(Wilson et al., 1999; Jarvis et al., 1998; Taylor et al., 1998; Lee et al., 1999). Thus, 

while somatic mutation of the BRCA1 gene is rare in sporadic breast cancer, reduction 

of BRCA1 protein staining is extremely common. 

Paradoxically, analysis of TP53, one of the first tumor suppressors identified, 

indicated that characterization of genes involved in hereditary breast cancer would 

identify factors involved in the genesis sporadic forms of breast cancer as well. 

Germline mutations in TP53 predispose to Li-Fraumeni syndrome, a cancer 

susceptibility syndrome of which breast cancer is an integral component. In contrast to 

BRCA1, TP53, is mutated somatically in 20-40% of sporadic breast carcinomas 

(Osborne et al., 1991; Coles et al., 1992; Grennblatt et al., 1994). 

BRCA1, however, is not the only gene in which germline mutations predispose 

to breast cancer, but in which somatic mutations in sporadic breast cancer are rare. 

Inherited mutations in BRCA2 also predispose to breast and ovarian cancer with a 

slightly lowered risk of ovarian cancer as compared to BRCA1 (Wooster et al., 1995; 

Stratton et al., 1996). As seen for BRCA1, somatic mutations of BRCA2 in sporadic 

breast cancer are very rare (Lancaster et al., 1996). Mutations in the PTEN and LKB1 

genes lead to inherited predisposition syndromes in which breast {PTEN) or breast and 

ovarian cancer (LKB1) are integral cancers (Li et al., 1997; Steck et al., 1997; 

Hemminki et al, 1998). Although germline mutations in PTEN and LKB1 predispose to 

breast and/or ovarian cancer, somatic mutations of these genes in breast and ovarian 

cancer are rare (Rhei et al., 1997; Bignell et al., 1998). Interestingly, PTEN, like 

BRCA1, shows reduced protein expression in many sporadic breast carcinomas (33%) 

despite the absence of detectable somatic mutations (Perren et al., 1999). 

Investigators have interpreted the lack of somatic mutations in these genes 

(BRCA1, BRCA2, PTEN, and LKB1) as a general indication that these genes are not 

involved in sporadic breast cancer. It is possible, however, that pathways involving 

these tumor suppressor genes are targets of inactivation in sporadic breast cancer by 

somatic mutation of another pathway component. The RBI gene product, a classic 
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tumor suppressor identified by analysis of families with inherited predisposition to 

retinoblastoma, shares a common pathway with pl6 (CDKN2A) and cyclin Dl (Dl). 

The pRb pathway is targeted for inactivation in a number of sporadic cancer types. 

Inactivation of any one component of the pRb pathway in a tumor greatly decreases the 

probability of identifiable damage to other components (reviewed in Sherr, 1996). 

The absence of DNA mutations affecting the coding and/or splicing of a gene 

does not necessarily imply that the gene itself is not targeted for inactivation (Jones & 

Laird, 1999). As described in the introduction to this chapter, Tom Walsh has tested 

whether BRCA1 is subject to epigenetic regulation via methylation in sporadic breast 

cancer using methylation-specific PCR (MSP). MSP of the BRCA1 d promoter 

indicated that the 3 promoter was aberrantly methylated in a number of breast tumors. 

Magdinier et al. (1998), however, did not observe methylation of the BRCA1 d promoter 

in any of 37 sporadic breast carcinomas while Catteau et al. (1999) detected aberrant 

methylation in only 11 of 96 sporadic breast carcinomas. The discrepancy is most 

likely explained by differential sensitivity of the techniques used. Whereas Magdinier 

et al. and Catteau et al. employed Southern hybridization using methylation sensitive 

restriction enzymes, our study and those of Mancini et al. (1998) and Rice et al. (1998) 

employed sodium bisulfite treatment followed by PCR-based assays. 

The loss of a necessary transcription factor upstream of BRCA1 might also be 

responsible for loss of BRCA1 protein in tumors without either a heavily methylated 

BRCA1 d promoter or genomic loss of the critical region near the transcription start site 

(as indicated by LOH at D17S1323). Very little is known about the trans-acting factors 

required for BRCA1 expression. A 31 bp minimal c/s-acting region within the BRCA1 

promoter has been defined (Thakur & Croce, 1999). Alterations in the regulatory 

factors that bind this region may lead to suppression of BRCA1 expression. 

Correlation of LOH at marker D17S1323 with loss ofBRCAl protein 

The association of reduced BRCA1 protein with BRCA1 LOH in tumors is 

specific to LOH at marker D17S1323, the intragenic marker closest to the 5' end of 



50 

CHAPTER FOUR 

Characterization of a Variant BRCA1 Allele 
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Experimental Logic and Chapter Contributions 

In the course of analyzing BRCA1 for large rearrangement, two large germline 

rearrangements of unknown significance were identified from a single allele in normal 

and tumor gDNA from Case 72. In addition, several small alterations were identified in 

the same allele from Case 72 containing the two large germline rearrangements. 

One large rearrangement identified from Case 72 involves germline deletion of 

977 bp from BRCA1 intron 15. The second large rearrangement involves germline 

expansion of a compound microsatellite sequence in BRCA1 intron 7. While neither of 

the rearrangements alter coding regions of BRC'Al, they are of interest because the 

allele that harbors both of these rearrangements is retained in an infiltrating ductal 

carcinoma from Case 72 while the more "common" allele of BRC Al is lost. 

There is a 50% probability that the Case 72 variant allele of BRCA1 is retained 

in the tumor randomly. In order to test whether the large rearrangements might affect 

processing of the BRCA1 transcript from the rare allele, we analyzed splicing of exons 

flanking the intronic rearrangements. Additionally, I tested the variant allele for loss of 

transcript using a single nucleotide polymorphism (SNP) that was identified in exon 16. 

The difficulty in classifying the status of the large germline rearrangements 

identified from Case 72 highlights an area of increasing interest: noncoding variation in 

the human genome. The determination of the amount and the degree to which 

individual genomes vary will be critical to determining both the relevance to human 

disease for variant alleles such as the rare allele described from Case 72 and the use of 

genetic variation to infer the evolutionary history of human populations. 

Materials and Methods 

Long PCR and Southern Analyses 

Long PCR, Southern blotting, and Southern hybridization were as described in 

Chapter Two. 
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Conventional PCR, sequencing, and nested PCR analysis 

PCR products were cloned using the Original TA Cloning® kit by Invitrogen. 

Following the manufacturer's instructions, cloned PCR products were sequenced using 

the Big Dye Terminator Cycle Sequencing Ready Reaction DNA Sequencing Kit 

(Perkin Elmer) and reactions were read on an ABI Model 377 DNA Sequencer (Applied 

Biosystems). Primers used to sequence cloned PCR products were exonl6 gDNA 

SSCP reverse: 5'-AAT-TCT-TAA-CAG-AGA-CCA-GAA-C-3' and a primer designated 

L78833:57322-57303:5*-GGC-ATT-ATG-TAG-CAA-ACA-CC-3'. 

The ivs 7b primers were: (forward) 5«-GAG-TGC-TGG-GGT-TTT-ATT-GTC- 

ATC-3' and (reverse) 5'-ATG-ATG-CCT-GGA-AAA-AAT-GCC-3'. Amplification 

conditions were initial denaturation at 94° for 2 minutes, 35 cycles of denaturation at 

94° for 45 sec, annealing at 56° for 45 sec, and extension at 72° for 45 sec, followed by a 

7 minute final extension at 72°. PCR products amplified using the ivs 7b primer pair 

were separated in 0.8% agarose and gel-extracted using the Qiagen Qiaex Extraction 

kit. 50 ng of gel-extracted DNA was used in a sequencing reaction with the primer 

ivs7bR3: (forward) 5'-ACA-AGC-GTG-TGC-AAC-TAT-G-3* and Big Dye terminator 

chemistry. 

In order to estimate the size of the intron 7 compound microsatellite more 

accurately, nested PCR primers were designed: (forward) 5'-GGA-GAA-TCA-ACT- 

GAA-CCA-GGG-AG-3' and (reverse) 5-ACA-AGC-GTG-TGC-AAC-TAT-GCC-3'. 

Nested PCR was performed on 1:100 dilutions of the ivs 7b product using d32P-dCTP. 

The radioactively labeled products were separated on a 5% polyacrylamide gel for 4 hrs 

at80W. 

RT-PCR Analysis 

RNA was obtained from 75 mg of tissue taken from an infiltrating ductal 

carcinoma occurring in Case 72 using the Qiagen RNeasy® Midi kit. Reverse 
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transcription (RT) was performed with 1 pig of RNA using random decamers and the 

Ambion Retroscript™ kit. PCR on cDNA was performed using 1-2 pi\ of the RT 

reaction in a 50 pA volume containing lx reaction buffer (Boehringer Mannheim), 250 

[AM dNTP's, 500 nM each primer, andl.25 units Taq enzyme. 

Amplification conditions and primer pairs were as previously described 

(Friedman et al., 1994). Briefly, amplification conditions were initial denaturation at 

94° for 2 minutes, 35 cycles of denaturation at 94° for 1 minute, annealing at 58° forl 

minute, and extension at 72° for 1 minute, followed by a 7 minute final extension at 72°. 

The C3 forward primer (exon 6) was paired with either C3 reverse (exon 8) or C4 

reverse (exon 11) to analyze splicing of exons 6 and 7. Splicing of exons 15 and 16 was 

analyzed using either the C7 forward primer (exon 13) or the C8 forward primer (exon 

15) paired with either the C9 reverse primer (exon 17) or the CIO reverse primer (exon 

20). The C8 forward primer was also paired with the C8 reverse primer (exon 16) to 

test whether portions of intron 15 might be spliced into the BRCA1 message 

inappropriately as a result of the g.56024 del977 deletion. 

Results 

Characterization of a large germline deletion of unknown significance from Case 72. 

A large germline deletion of BRCA1 was identified from a sporadic breast 

cancer patient (Case 72). Using primer pair 10, designed to amplify a 10.6 kb product 

encompassing exons IS 18, variant restriction fragments were detected using four 

different restriction enzymes (data not shown). The variant restriction fragments were 

present in equal intensity in gDNA from normal breast epithelial tissue of Case 72, but 

the variant bands were preferentially retained in gDNA prepared from an infiltrating 

ductal carcinoma of Case 72. 

Based on the restriction digests, a minimal region of ~3800 bp (GenBank 

L78833 bp 54885-58706) containing a deletion of ~1000 bp was identified near BRCA1 

exon 16. Wild-type and variant PCR products encompassing the deletion were cloned 
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and sequenced. All clones from the variant PCR products contained an intact exon 16, 

indicating that the breakpoint occurred in intron 15. Sequence of all variant clones 

revealed the simple deletion shown in Figure 4.1. Based on BRCA1 genomic sequence 

L78833, the deletion is a 977 bp deletion of GenBank L78833 bp 56025-57001 from 

BRCA1 intron 15. The notation for the deletion (Antonarakis et al., 1998) is g.56024 

del977 based on GenBank L78833. The 5' breakpoint for g.56024 del977 occurs in the 

3' tail of an Alu-Sp element and the 3' breakpoint occurs 9 bp into the 5' head of an 

oppositely oriented Alu-Y element. Southern analysis using a probe to BRCA1 exons 

11-24 confirmed the deletion and indicated that the deleted allele was retained in Case 

72 tumor DNA. 

It is unclear what effect, if any, the g.56024 del977 deletion has on the 

transcription and translation of BRCA1.  The deletion does not affect splicing in the 

region as determined by RT-PCR using a variety of primer pairs located in exons 13, 

15, 16,17, and 20 (Figure 4.2). The 977 bp deletion in intron 15 of Case 72 was not the 

only large germline rearrangement detected in the allele preferentially retained in the 

infiltrating ductal carcinoma of Case 72. 

Characterization of a large expansion of a compound microsatellite sequence in 

BRCA1 intron 7 

Southern analysis of Hind Ill-digested Case 72 tumor gDNA revealed an extra 

band of -4.3 kb. Further Southern analysis of Case 72 normal and tumor gDNA using 

multiple restriction enzymes indicated that a minimal region of ~3500 bp (GB L78833 

bp 26,911-30394) including BRCA1 exon 8 contained an insertion of ~250 bp that was 

preferentially retained in tumor DNA (Figure 4.3 and data not shown). Overlapping 

PCR primer pairs were designed to span the region and tumor DNA from Case 72 was 

amplified. The exon 8 containing PCR product was of expected size, but a primer pair 

(ivs7b) amplifying a region just upstream of exon 8 (GenBank L78833 bp 27,656- 

28,733) yielded a product ~250 bp larger than expected from Case 72 tumor gDNA 

(Figure 4.4). 
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Figure 4.1 

Wild-type BRCA1 Sequence: 977 bp Germline Deletion: 

3' 5' y 5' 

Intron 15 AluY 

GGGC  C G A G C A C GGTGGC   TC/ 

L_ 57001 

Intron 15 Alu Y .jJntron 15 Alu Sp 

QGGCCQAQCATAAQCCACC/ 

57002- 56024 

Figure 4.1    977 bp germline deletion (g.56024del977) On the left is sequence 
from the unretained Case 72 BRCA1 allele. The sequence from the unretained 
allele matches GenBank L78833 bp 57,010-56,991, near the 3' breakpoint of 
the g.56024del977 allele. On the right is sequence from the 977 bp germline 
deletion breakpoint junction of Case 72. The red arrow indicates the breakpoint 
junction. The 3' and 5' symbols represent sequence orientation with respect 
to BRCA1 transcription. 
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Figure 4.2 
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Figure 4.2 Analysis of RT-PCR products from Case 72. RT-PCR primer pairs 
were as follows: C8/C9 (lanes 1-5) amplifies a 499 bp product from BRCA1 
exons 15-17, C8/C10 (lanes 6-11) amplifies a 737 bp product from exons 15- 
20, C7/C10 amplifies a 1059 bp product from exons 13-20, and C8/C8 amplifies 
a 266 bp products from exons 15-16. Lanes 1,6, 12, 17: control cDNA from 
an individual without BRCA1 mutation (9104). Lanes 2, 7, 13, 18: cDNA 
from the Case 72 breast tumor. Lanes 4, 9, 15, 20: cDNA from another breast 
tumor (Case 265). Lanes 3, 8, 14, 19 (Case 72) and lanes 5, 10, 16, 21 (Case 
265): control reverse transcription reactions without reverse transcriptase. Lanes 
11 and 22: negative water controls. 
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Figure 4.3 
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Figure 4.3    Southern analysis of a large germline rearrangement involving the 
BRCA1 exon 8 genomic region. 10 «g of restriction enzyme-digested genomic 
DNA was electrophoresed and Southern blotted as described in Materials and 
Methods. The blot was hybridized to a radioactively labelled probe made from 
exons 3 to 11 of the BRCA1 cDNA. ** indicates the rearrangement junction 
fragment. Control individuals are from Family 48. 
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Figure 4.4 

PCR Analysis of Minimal Genomic Region for Case 72 Insertion 
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Figure 4.4    PCR analysis of the minimal genomic region for the 250 bp 
insertion in the retained allele from Case 72. Overlapping PCR primer pairs 
were designed to cover the region. The minimal genomic region containing 
BRCA1 exon 8 is indicated as are the overlapping PCR products used to analyze 
the region. All amplified products were of the expected size except the product 
amplified with the primer pair ivs7b (indicated by red arrows). Lanes 1, 3, 5, 
7: control individual (4310). Lanes 2, 4, 6, 8: Case 72 tumor gDNA. Lane 9: 
water. 
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The ivs 7b primer pair amplifies a number of minor bands in addition to the 

intended product. These minor bands represent internal products as gel extraction of the 

largest band and subsequent amplification of the specific product yields the same minor 

bands. The variant ivs 7b product for Case 72 was gel-extracted and sequenced using 

internal primers. Multiple independent sequencing reactions revealed an expansion of a 

compound microsatellite located at GenBank L78833 bp ~28,087 to 28,174 (Figure 

4.5). In the published genomic sequence the imperfect compound microsatellite GTN 

(AT)4.8 is ~87 bp in size. In the variant allele from Case 72, the compound 

microsatellite is ~333 bp in size. 

The compound microsatellite appears to be polymorphic in the population. 

Nested PCR analysis of 40 affected and 55 unaffected individuals from multigeneration 

breast cancer families indicated that allele size ranges from ~300 bp to ~460 bp, with 

the ~350bp allele (the size predicted from the published genomic sequence) being the 

most common allele among those surveyed (data not shown). Nested PCR of the allele 

from Case 72 yielded a 600 bp product. The -600 bp allele from Case 72 is the largest 

allele observed to date. 

As with the g.56024 del977 deletion, the effect, if any, of the expanded 

compound microsatellite in BRCAJ intron 7 on the transcription and translation of 

BRCA1 is unclear.  The expanded repeat does not affect splicing in the region as 

determined by RT-PCR using a variety of primer pairs located in exons 6, 8, 9, and 11 

(data not shown). 

Other sequence alterations observed in the variant allele from Case 72 

Several other alterations were observed in the variant allele from Case 72 

(Figure 4.6). Two single bp substitutions in eis to the g.56024 del977 deletion were 

observed in exon 16. One is a C to T transition at nucleotide (nt) 4801 of HSU14680. 

The substitution does not affect translation of the BRCA1 message. This SNP has been 

observed before, although at a very low frequency. It was identified in one African- 

American patient in the Carolina Breast Cancer Study and is present in about 1% of the 
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Figure 4.5 

Wild-type BRCA1: 
3' 5' 

S.TATA TA A CATATA TA TA TA TA TANA TA A TA TA TA TA TA TA TA TA TA TAT GTHATC CCAGNAC TGNGGGA1 

AluY 

repeat unit 

Case 72 Germline Insertion: 

Figure 4.5    BRCA1 intron 7 compound microsatellite. Sequence from a control 
individual (4310) is shown in the top panel. The sequence from the control 
allele matches the GenBank L78833 sequence. Sequence from the BRCA1 
intron 7 insertion   of -250 bp identified in the retained allele from Case 72 is 
shown in the bottom panel. The insertion consists of an expansion of the 
compound microsatellite repeat unit (AT)n AAC. Both sequences begin at 
approximately bp 28,084 of the GenBank L78833 sequence. The 3' and 5' 
symbols represent sequence orientation with respect to BRCA1 transcription. 
BRCA1 exon 8 is located at bp 28,853 to 28,957of GenBank L78833. The 
compound microsatellite repeat unit is indicated by a red bar. The 3' tail of an 
Alu Y element is indicated in the control sequence. In the retained allele from 
Case 72, the Alu Y element lies -250 bp downstream of the sequence shown. 
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Wild-type Allele: C4801T in Case 72: 

Wild-type Allele: A4956G in Case 72: 

Figure 4.6    Single nucleotide polymorphisms identified in the variant allele 
from Case 72. The panels on the left represent wild-type sequence in the wild- 
type allele from Case 72. The panels on the right represent sequence of single 
nucleotide polymorphisms in BRCA1 exon 16 of the variant allele from Case 
72. In the top panels, sequence flanking a C to T transition at nt 4801 of 
HSU 14680 is shown. In the bottom panels, sequence flanking an A to G 
transition at nt 4956 of HSU 14680 is shown. The red arrows indicate the 
location of the transition substitutions. 



62 
population (BIC, 1999). The second substitution is an A to G transition at nt 4956. The 

substitution results in a missense polymorphism at codon 1613 (S1613G). This 

missense polymorphism has been observed before as well and is present in 32% of the 

population (Dunning et al., 1997). Finally, a 24 bp insertion at GenBank L78833 bp 

57,211 was identified in the variant allele (Figure 4.7). The origin of the 24 bp insertion 

is unknown, but it contains a region of 13-20 bp identity with sequence from human 

chromosome 17 clone hRPK.268_F_2, human chromosome 6 PAC 271G9, and an 

unassigned human BAC RG191D16. 

Given the high percentage of rare variant sites within the retained allele from 

Case 72, tumor gDNA was tested for microsatellite instability using diagnostic markers 

as described previously (Dietmaier et al., 1998). No microsatellite instability was 

observed in the tumor DNA from Case 72. 

Analysis of transcript loss in Case 72 

As splicing of the variant allele was not affected around either of the large 

rearrangements, we tested whether the variant allele might produce an unstable 

transcript. Two SNP's in BRCA1 were identifed from cloned PCR products containing 

the g.56024 del977 breakpoint junction fragment. One of these, the A4956G missense 

substitution in exon 16 creates an Ava II site. The Avail site was used to test the 

stability of the transcript from the variant allele. I tested this hypothesis by determining 

whether BRCA1 message obtained from the Case 72 breast tumor contained transcripts 

from the variant allele (Ava II site at position 4956). In Case 72 breast tumor gDNA, 

only the variant allele is present. If only the wild-type allele (no Ava II site at position 

4956) is present in cDNA from the tumor, then the message from the variant allele is 

likely to be unstable. The amplified cDNA with no Ava II site at position 4956 

(A4956) would represent transcription from the wild-type allele in contaminating 

normal cells within the tumor. 

RT-PCR was performed on cDNA prepared from Case 72 tumor tissue using a 

forward primer in exon 15 and reverse primers in either exon 17 or exon 20. Results are 
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Figure 4.7 

Wild-type: 24 bp Germline Insertion in Case 72: 

Figure 4.7    24 bp insertion in BRCA1 intron 15. Sequence from the unretained 
Case 72 BRCA1 allele is shown in the left panel. The sequence from the 
unretained allele matches the GenBank L78833 sequence. Sequence from the 
junction fragment of the 24 bp insertion identified from the variant allele of 
Case 72 is shown in the right panel. The red bar indicates the inserted nucleotides 
and the red arrow indicates the site of insertion. 
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shown in Figure 4.8. The majority of the cDNA amplified from the Case 72 tumor 

contained an Ava II site at position 4956 (G49556) and represented the variant, retained 

allele. Thus, the transcript from the variant allele is stable. 

Discussion 

Do any of the germline alterations from Case 72 represent disease-associated 

mutation? 

It is possible that the large germline rearrangements identified in Case 72 merely 

represent a rare variant allele of BRCA1. Although the coding regions of BRCA1 have 

been studied extensively by many groups and several coding polymorphisms have been 

identified, the extent of polymorphism within the noncoding regions of BRCA1 has not 

yet been studied systematically. It is interesting that the allele containing g.56024 

del977 also contains several other sequence variants, including an expanded repeat in 

intron 7, two SNP's in exon 16, and a 24 bp insertion of unknown origin in intron 15. 

The novelty of the allele combined with the observation that it is retained in an 

infiltrating ductal carcinoma from Case 72 is intriguing. Further, Case 72 was 

diagnosed with a primary colon carcinoma concurrent with the primary infiltrating 

ductal carcinoma. The rarity of two concurrent primary tumors hints at a potential 

genetic component that may reside in the BRCA1 genomic region or elsewhere in the 

genome. 

Most disease-associated BRCA1 mutations identified from high-risk breast and 

ovarian cancer families result in premature protein truncation. Only two consensus 

missense mutations have been identified. Because the tumor-suppressing function of 

BRCA1 is not yet understood, the nature of what constitutes a disease-predisposing 

mutation in BRCA1 is not easily defined. If any one (or combination) of the alterations 

in the variant allele from Case 72 led to obvious effects on transcript processing or 

stability, then we would be able to detect these effects in RNA from the Case 72 breast 

tumor. Despite analysis of several RT-PCR products amplified from exons flanking 
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Figure 4.8 
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Figure 4.8    Loss of transcript analysis in cDNA from Case 72. Primer pair 
C8/C9 amplifies a 499 bp product from BRCA1 exon 15 to 17 and primer pair 
C8/C10 amplifies a 737 bp product from BRCA1 exons 15 to 20. RT-PCR 
Eroducts from control individuals (either heterozygous at position 4956 or 

omozygous for A4956) and Case 72 were digested with Avail. The A4956G 
transition creates an Ava II restriction site. RT-PCR products with an adenine 
at position 4956 of HSU 14680 (eg. control individual A/A) are not cleaved. 
RT-PCR products with a guanine at position 4956 (control individual A/G and 
Case 72) are cleaved. 
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both large rearrangements, no RT-PCR product length or stability differences were 

observed. 

The alterations in the variant allele from Case 72 might also lead to subtle 

regulatory effects on transcription or alternative splicing of the BRCA1 message, a 

process that is not yet fully understood. These possibilities are difficult to test. A more 

directed approach is to ascertain whether the variant allele from Case 72 is more 

common in breast cancer cases than in controls. Large sample sizes for both cases and 

controls are required, however, in order to be informative for rare alleles. 

It is also possible that the variants described from the rare allele are in eis to a 

previously uncharacterized small insertion/deletion or point mutation within the BRCA1 

coding sequence. If so, the retention of the variant allele would indicate the presence of 

the germline mutation and the numerous noncoding region variations would indicate the 

evolutionary history of the mutated allele. It will be important to screen the coding 

region of the variant allele to rule out the presence of mutations in eis to the noncoding 

region variants. 

The variant allele from Case 72 (as defined by the large expansion of the intron 

7 compound microsatellite and the g.56024 del977 deletion) was not observed in 216 

other chromosomes from either breast cancer families or breast cancer patients 

unselected for family history. It is possible that in some populations the variant allele 

identified in Case 72 is common. At the least, individuals carrying the Case 72 variant 

allele are represented only once in our series. Samples from the DNA Polymorphism 

Discovery Resource, which consists of samples from many populations around the 

world, could help to determine whether the Case 72 variant allele is represented in other 

populations (Collins et al., 1998). Although this resource would not identify the 

population(s) in which the variant allele is present, it would help to determine the 

frequency of the variant allele worldwide. 

Characterization of noncoding variation in the BRCA1 genomic region 
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The variant allele from Case 72 may have implications for the types and 

frequencies of genomic diversity within the BRCA1 region. BRCA1 lies within a large 

region (-300-500 kb) of recombination suppression on chromosome 17q. A minimal 

region of nearly complete linkage disequilibrium extends from microsatellite marker 

D17S1328 (-225 kb proximal to BRCA1) to the microsatellite marker D17S1325 (-50- 

300 kb distal to BRCA1) (Liu & Barker, 1999). Multiple studies have shown that two 

major haplotypes within the BRCA1 region account for >90% of chromosomes 

(Dunning et al, 1997; Liu & Barker, 1999). There are at least two separate reports of 

multiple large rearangements within a single allele of BRCAl (Rohlfs et al., 1999 and 

this study). It is possible that in the absence of recombination, other mechanisms exist 

for generating diversity within the BRCA1 region. 

Most of the variation in the BRCA1 region is expected to be located in 

noncoding regions. In a study of the human lipoprotein lipase gene (LPL) in which a 

9.7 kb region was sequenced from 71 individuals from three different populations, 88 

polymorphic sites were identified (Nickerson et al., 1998). Of these sites, 79 were 

SNP's and only 9 involved insertion/deletion variants. Of the 9 insertion/deletion 

variants, 8 involved copy number changes in regions known to be polymorphic such as 

mononucleotide, dinucleotide, and tetranucleotide repeat sequences. 

By contrast, the variant allele from Case 72 alone contains two large 

insertion/deletion alterations involving 100's of bp. Additionally, an insertion of 24 bp 

of sequence of unknown origin was observed in intron 15. Only exons 8, 15, and 16 

and introns 7, 8, and 15 were examined by sequence analysis. Given the high degree of 

variability in these regions, other small alterations in unsequenced regions of BRCA1 

are likely to exist in the variant allele from Case 72. Either the variant allele from Case 

72 represents an evolutionary exception or variability within the BRCA1 region is much 

higher than that observed for LPL. 

The degree of variability within the BRCA1 region has important implications 

for assessing the age of founder mutations and the history of human populations. An 

elevated mutation rate within the BRCA1 region could implicate BRCA1 as a target of 

genomic instability. It will be important to assess the degree and nature of noncoding 
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variation within the BRCA1 region in order to determine the effect of rare alleles such 

as the variant allele retained in the infiltrating ductal carcinoma of Case 72. 
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CHAPTER FIVE 

Summary and Future Directions 
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My work has contributed to BRCA1 biology by expanding the germline mutation 

spectrum in BRCA1 and by helping to characterize the role of BRCA1 in sporadic breast 

cancer. Finally, I have contributed a knowledge base for approaching the study of 

noncoding variation in the BRCA1 genomic region. Each of these contributions will be 

discussed in detail below. 

Large germline rearrangements of BRC'Al 

At the inception of the research described in this dissertation, the BRCA1 

complete genomic sequence had been published only recently (Smith et al., 1996). The 

BRCA1 genomic region contains a high density of Alu sequence, one of the highest Alu 

densities observed for genes deposited in GenBank (41.5% of 81 kb). At the same time, 

it was becoming clear that not all high-risk breast and/or ovarian cancer families, even 

among those with breast cancer linked to the BRC Al region of chromosome 17q21, 

were explained by small insertion, deletion, or point mutations within BRC AL Large 

genomic rearrangements in human genes frequently are associated with Alu repetitive 

elements (Purandare & Patel, 1997; Mazzarella & Schlessinger, 1998). We therefore 

designed a Long PCR screen to identify the large rearrangements of BRCA1 that 

conventional PCR does not detect. 

Eleven large germline deletions and one large germline duplication of BRCA1 

have been characterized since that time (Puget et al., 1997; Swensen et al., 1997; Petrij- 

Bosch et al., 1997; Puget et al., 1999a; Puget et al, 1999b; Montagna et al., 1999, 

Carson et al, 1999; Rohlfs et al., 1999; and this study). Of the 24 breakpoints involved, 

20 occurred in Alu sequence. Even given that Alu sequence comprises almost half of 

the BRCA1 genomic region, there is an excess of breakpoints in Alu sequence. The 

complex germline rearrangement we identified using Long PCR is the only 

characterized large germline deletion or duplication in which a nonhomologous 

mechanism is implicated in the generation of the rearrangement. 

The minor contribution of small germline mutations in BRCA1 to breast cancer 

in a population-based series of women has been established (Newman et al, 1998). An 
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important goal for the near future will be to determine the contribution of large germline 

rearrangements of BRCA1 to breast cancer in a similar population-based series of 

women. This is particularly important because large rearrangements are the mutation 

types most likely to be missed by conventional mutation detection methods. Based on 

my data from g. 12977 inslO del 1039 and g.43368ins6081 frequency in the CBCS 

population, it is unlikely that these two large germline rearrangements make a large 

contribution to breast cancer in the American population. 

Somatic inactivation of BRC Al 

At the start of our research, the prevailing view was that somatic inactivation of 

BRCA1 was not common in sporadic tumorigenesis (Futreal et al., 1995; Hosking et al, 

1995; Merajver et al., 1995). We reasoned that BRCA1 might be inactivated by somatic 

mutations that were undetectable by conventional mutation screening procedures. 

I attempted to determine the nature and frequency of large somatic 

rearrangement of BRCA1 by analyzing breast tumor gDNA using Long PCR and 

Southern analysis. Despite Long PCR analysis in 84 tumors and Southern analysis in 

46 tumors (including all tumors with genomic loss at any BRCA1 region marker), no 

large somatic rearrangement of BRCA1 was detected. Our research was a critical link in 

establishing that BRCA1 is not inactivated somatically by either small or large mutation 

in the majority of sporadic breast tumors. 

Over the course of our research an initial observation by a single group 

documenting reduced BRCA1 message in sporadic breast tumors was substantiated by 

several independent researchers (Thompson et al., 1995; Rice et al., 1998; Magdinier et 

al., 1998). Recently, evaluation of sporadic breast tumors by immunohistochernistry 

has revealed that expression of BRCA1 protein is reduced or lost in most breast tumors 

of high histologic grade (Wilson et al., 1999; Jarvis et al., 1998; Taylor et al., 1998; Lee 

et al., 1999). Using a single large set of 92 breast carcinomas of various histologies, I 

investigated potential mechanisms for the observed decrease in BRCA1 expression. 
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My results indicated that genomic loss at the intragenic marker D17S1323 were 

associated independently with reduced BRCA1 protein in sporadic breast tumors. This 

is, to our knowledge, the first description of a mechanism for reduced BRCA1 protein 

in sporadic breast tumors. 

Several potential explanations for the lack of BRCA1 somatic mutations exist. A 

trivial explanation is supplied by the difficulty of obtaining pure tumor samples from 

breast carcinomas. Unlike ovarian or colon carcinomas, breast tumors are more 

heterogeneous. Breast tumor samples tend to contain a certain percentage of normal 

stromal cells in addition to tumor cells. In our samples, the percentage of contaminating 

normal cells ranged from 10 to 40%. If BRCA1 somatic mutation were a late event in 

breast tumorigenesis, then any somatic mutations would occur in a small percentage of 

cells in a given tumor sample and would be more difficult to detect. Two observations 

argue against this explanation. First, small BRCA1 somatic mutations are rare in 

ovarian tumors, a tumor type in which pure tumor samples are more easily obtained. 

Second, Long PCR detection of large rearrangement favors detection of deletions. 

From mixing experiments using cloned Long PCR products (primer pair no. 3), 

deletions of even 1000 bp were significantly favored. Using the g. 12977 ins 10 del 1039 

PCR product (4552 bp) and the wild-type PCR product (5581 bp), the g. 12977 inslO 

del 1039 product could be detected in as few as 10% of the cells in a population (data 

not shown). 

A second possibility is that BRCA1 is haploinsufficient. Although BRCA1 

somatic mutations in breast cancer are rare, genomic loss within the BRCA1 region, as 

defined by LOH, is common. Further, genomic loss at an intragenic marker nearest the 

BRCA1 transcription start site is associated significantly with reduced BRCA1 protein 

in breast tumors. Under the hypothesis of haploinsufficiency, BRCA1 has multiple roles 

in breast tumorigenesis, including roles in initiation and progression. Individuals 

carrying germline mutation oiBRCAl are apparently wild-type with the exception of 

early-onset breast and/or ovarian cancer. In germline mutation-carriers, loss of the 

second, wild-type allele leads to tumor initiation. Thus, BRCA1, by definition, is not 

haploinsufficient for tumor initiation. However, BRCA1 may be haploinsufficient for 
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tumor progression. This would explain the high rate of genomic loss in sporadic breast 

cancer without accompanying somatic mutation. KIP1, another tumor suppressor gene 

in which somatic mutations are rare, is haploinsufficent for the suppression of radiation- 

induced tumors in mice (Fero et al., 1998). In favor of this idea is the observation that 

BRCA1 -mutation carriers have the same risk of developing colon cancer as the general 

population, but the age of onset in BRCA1 -mutation carriers is earlier than in the 

general population (Lin et al., 1999). 

A third possibility is that BRCA1 protein stability is modified in sporadic breast 

cancer. Because our research used protein staining as a measure of BRCA1 expression, 

we cannot exclude the possibility that BRCA1 message is translated, but the protein is 

targetted for degradation. It will be important in the future to determine whether 

BRCA1 message levels correlate with BRCA1 protein staining in the breast tumor 

samples from our collection. 

Noncoding variation within the BRCA1 genomic region 

The research described in this dissertation was begun less than 3 years from the 

initial cloning of BRCA1. It was increasingly evident that coding region variation in 

BRCA1, particularly disease-associated mutations, were capable of reflecting the 

histories of the people in which these variants arose. At the time, the complete genomic 

sequence of BRCA1 had been published, but it was not yet clear how variable that 

sequence was in the general population. Numerous coding and splice site region 

variants have been identified. There are at least 48 polymorphisms, 43 unclassified 

variants, and more than 400 distinct mutations (BIC, 1999). The extent of noncoding 

region variation has not yet been investigated systematically. 

The Long PCR screen for large rearrangements was designed using the 

published genomic sequence (GenBank L78833). In most of the 217 alleles 

investigated, the general organization of the BRCA1 region was consistent with the 

published sequence. More than 48 restriction sites over a region of more than 85 kb 

were analyzed in high-risk breast and/or ovarian cancer family members and sporadic 



74 
breast cancer patients unselected for family history. Only seven variant restriction sites 

were observed, most of these were seen more than once (Tables 2.3 and 3.2). Another 

useful measure of noncoding variation was Southern analysis using restriction enzyme- 

digested gDNA. Using three different enzymes for Southern analysis, no further 

restriction site variants were revealed. 

Despite the general conservation of the BRCA1 region, at least at the level 

investigated, a single allele of BRCA1 contained two large germline rearrangements of 

unknown significance. Additionally, one rare SNP and a novel 24 bp insertion in 

BRCA1 intron 15 were identified in eis to the two large germline rearrangements. 

Interestingly, this allele was retained in an infiltrating ductal carcinoma from Case 72. 

While no obviously deleterious effects of the allele on BRCA1 expression were 

identified, the novelty of the allele, combined with its retention in a ductal carcinoma, is 

intriguing as the presence of two concurrent primary carcinomas in a single individual 

is rare. 

The difficulty in classifying the status of the Case 72 large germline 

rearrangements highlights an area of increasing interest: noncoding variation in the 

human genome. The determination of the amount and the degree to which individual 

genomes vary will be critical to determining the relevance to human disease for variant 

alleles such as the rare allele described from Case 72. 

Sequence comparisons of large contiguous genomic regions (>30 kb) between 

humans and rodents have revealed that coding regions are relatively well-conserved 

(Koop, 1995; Hardison et al., 1997). However, noncoding and intergenic regions 

demonstrate considerable variation in the degree of sequence conservation. Sequences 

upstream of the first exon and in the first intron are among the most highly conserved 

noncoding regions. Numerous studies have suggested the relevance of cross-species 

sequence comparisons for the identification of regulatory elements (Koop & Hood, 

1994; Oeltjen et al., 1997; Ansari-Lari et al., 1998). Regulatory elements identified by 

such an approach would be potential targets of noncoding variants such as the rare 

variant allele of BRCA1 identified in Case 72. 
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In summary, my research specifically addressed the types and frequencies of 

large genomic rearrangements responsible for inactivation of BRCA1. I characterized 

the types of large germline rearrangements that occur within the BRCA1 region and 

investigated the contribution of two large germline rearrangements to breast cancer in a 

population-based series of breast cancer patients. Although the structure of the BRCA1 

genomic region was generally well-conserved, one variant allele containing multiple 

large scale alterations of the BRCA1 genomic region was identified. The existence of a 

variant with multiple large rearrangements in eis indicates that an investigation of the 

types and frequencies of noncoding variation in the BRCA1 genomic region may yield 

a broader understanding of noncoding variation within the human genome. 

In order to determine whether BRCA1 is inactivated somatically by large 

rearrangement of BRCAl, I analyzed 92 breast carcinomas for genomic loss in the 

BRCA1 region of chromosome 17q. I investigated genomic loss using a combination of 

loss of heterozygosity (LOH), Long PCR, and Southern analysis. Although two large 

germline rearrangements were detected in our breast tumor series using Long PCR and 

Southern analysis, no large somatic rearrangements were identified. The results of 

LOH analysis were correlated with BRCA1 protein immunohistochemistry data 

generated by Rachel Gonzalez-Hernandez in order to test whether LOH is a mechanism 

for inactivating BRCA1 in sporadic breast cancer. Reduced BRCA1 protein in sporadic 

breast carcinomas was significantly associated with loss of the most 5' BRCA1 

intragenic marker. LOH at the remaining, more 3' BRCA1 intragenic markers was not 

associated with reduced BRCA1 protein. Interestingly, 57% breast carcinomas 

retaining all three BRCA1 intragenic markers showed reduced BRCA1 protein. Thus, 

there are likely other mechanisms for inactivation of BRCA1 in sporadic breast cancer. 
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ABSTRACT 

Germline mutations in BRCA1 predispose to breast and ovarian cancer. Most 

germline BRCA1 mutations are small insertions, deletions or single base pair (bp) 

substitutions. These mutation classes are rarely found as somatic mutations in BRCA1. 

Conversely, somatic deletions of multiple megabase pairs (Mb) including BRCA1, as 

reflected by loss of heterozygosity, occur frequently in both inherited and sporadic 

breast and ovarian cancer. In order to determine whether deletions or rearrangements of 

hundreds to thousands of bp might contribute to inherited mutation in BRCA1, we 

developed a Long PCR strategy for screening the entire genomic BRCA1 locus in high- 

risk families. We evaluated genomic DNA from one high-risk family of Western 

European ancestry with BRCA1 -linked cancer in which no genomic mutations had been 

detected using conventional methods. Long PCR revealed a complex mutation, g. 12977 

inslO del 1039 (based on GenBank L78833) comprising an inverted duplication and 

deletion in BRCA1 that removes portions of exon 3 and intron 3, including the 5' splice 

site for intron 3. As a result of the deletion, exon 3 is skipped, leading to a truncated 

protein and disease predisposition. Unlike previously reported large germline deletions 

in BRCA1, neither breakpoint resides within an Alu element. The g. 12977 ins 10 

dell039 mutation was not detected among eleven other breast cancer families, nor 

among 406 breast cancer patients unselected for family history. 

Keywords: BRCA1, large deletion, RNA splicing, exon skipping 
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Germline protein-truncating mutations in BRCA1 cause hereditary 

predisposition to breast and ovarian cancer (Hall et al., 1990; Ford et al., 1994). BRCA1 

mutations detectable by commonly employed PCR-based techniques are small 

insertions, deletions or single base pair (bp) substitutions which comprise most germline 

mutations in high-risk families (Breast Cancer Information Core. 1999), but rarely 

occur as somatic mutations (Futreal et al., 1994; Hosking et al., 1995; Matsushima et 

al., 1995; Merajver et al., 1995; Takahashi et al., 1995; Berchuck et al., 1998). 

Conversely, megabasepair (Mb) somatic deletions including BRCA1, as reflected by 

loss of heterozygosity (LOH), occur frequently in both inherited and sporadic breast and 

ovarian cancer (Devilee et al., 1994; Bieche et al., 1995). We have developed a protocol 

to screen for an intermediate class of mutations, involving deletions or rearrangements 

of hundreds to thousands of bp. Several large deletions and one large duplication 

involving Alu repetitive elements have been reported previously as germline mutations 

in BRCA1 (Puget et al., 1997; Swensen et al., 1997; Petrij-Bosch et al., 1997; Puget et 

al., 1999a; Puget et al., 1999b). 

We report here the identification and characterization of a large genomic 

deletion in a family with inherited breast and ovarian cancer. The mutation results in 

skipping of exon 3 in the mature BRCA1 message. Although the genomic mutation was 

not detectable using conventional PCR-based BRCA1 screening procedures, it was 

identified using a Long PCR strategy designed to detect intermediate length genomic 

deletions and rearrangements. 

Previous analysis of lymphoblast cDNA from Family 5 revealed a transcript 

lacking exon 3 in several BRCA1 -linked family members (Friedman et al., 1994; Fig.l). 

Deletion of exon 3 maintains the reading frame, but creates a stop at codon 27. Splice 

junctions of exons 2,3, and 5 (the exon joined to the 3' splice site of exon 3) were 

sequenced from PCR products using primers immediately flanking the exons, yielding 

only wild-type sequence (Friedman et al., 1994). The genomic basis of the variant 

remained unknown. 

For the analysis described here, gDNA from family members was amplified 

using the fifteen PCR primer pairs indicated in Table 1. Primers were designed from 
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BRCA1 genomic sequence (GenBank L78833). Primer pairs were designed to amplify 3 

to 11 kb genomic fragments with at least 1 kb of overlap. PCR products were evaluated 

for differences from predicted size before and after digestion with appropriate 

restriction enzymes. 

Using primer pair 3 designed to amplify a 5531 bp product encompassing exon 

3, a variant Long PCR product co-segregated with the &RCA7-linked haplotype of 

Family 5 (Fig.l, 2). All family members heterozygous for transcripts lacking exon 3 

were also heterozygous for the variant PCR product. 

Wild-type and variant Long PCR products were cloned and sequenced from 

multiple family members. Sequence of all variant clones revealed the complex mutation 

shown in Figure 3. Based on BRCA1 genomic sequence L78833, the mutation is a lObp 

inverted duplication of 12965-12974 from BRCA1 exon 3 (bp 210-219 of BRCA1 

cDNA, HSU 14680) and deletion of 1039bp. The notation for the mutation (Antonarakis 

et al., 1998) is g. 12977 ins 10 del 1039 based on GenBank L78833. The net deletion is 

1029 bp, yielding an amplified product of 4502 bp which is consistent with the 

electrophoretic mobility of the variant PCR product. The 1039 bp genomic deletion in 

Family 5 results in skipping of BRCA1 exon 3 in the mRNA and premature protein 

truncation at codon 27. 

Three other families with breast cancer linked to BRCA1 were tested for the 

g. 12977 inslO del 1039 mutation. None of the families contained the g. 12977 ins 10 

del 1039 mutation. Families with multiple cases of breast and or ovarian cancer and with 

negative LOD scores for linkage to BRCA1 might nonetheless harbor mutations in one 

of these genes if some cases are sporadic (ie. phenocopies). Seven such families were 

screened for g.12977 inslO dell039. All were wild-type at this site. Finally, we 

investigated the contribution of the g.12977 inslO dell039 mutation to breast cancer in 

a population-based series of 242 white and 164 African-American breast cancer patients 

unselected for family history. Patients were ascertained previously as part of the 

Carolina Breast Cancer Study (Newman et al., 1995; Newman et al., 1998). A PCR 

primer pair was designed to detect a 514 bp breakpoint junction fragment for the 

g.12977 inslO dell039 mutation. Primers used to amplify the breakpoint junction 
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fragment were: (forward) 5'-TTT-TTC-TCC-CCC-CCT-ACC-CTG-3'; (reverse) 5'- 

GCT-CAG-CAT-TTG-TTA-CTC-AAG-CTG-3'. No mutation carriers were detected in 

406 cases. 

The mutation in Family 5 differs from previously reported large germline 

deletions in BRCA1. Many large BRCA1 mutations involve Alu sequences (Puget et al., 

1997; Swensen et al., 1997; Petrij-Bosch et al., 1997; Puget et al., 1999a; Puget et al., 

1999b). For two of these, both the 5' and 3' breakpoints reside in Alu sequence. In one 

of these families, a 1 kb deletion of exon 17 is mediated by oppositely oriented Alu 

elements, removing most parts of both Alu elements from the mutant allele (Puget et al., 

1997). In another family, a 14 kb deletion involving the BRCA1 promoter region creates 

a new Alu element (Swensen et al., 1997). In contrast, the 5' breakpoint for the Family 5 

mutation occurs within BRCA1 exon 3 and the 3' breakpoint occurs in intron 3 at 

position +1008. Neither of these breakpoints occurs in an Alu element. Further, there is 

no more than 4 bp identity between sequence near the 5' breakpoint and sequence near 

the 3' breakpoint, suggesting that this mutation is the result of a nonhomologous event. 

Combinations of inversions and deletions have been seen in both somatic and 

germline mutations of several genes including TP53 (Greenblatt et al., 1996) and Factor 

IX (Ketterling et al., 1994; Sommer, 1995). Studies of somatic mutations in HPRT 

reveal alterations with interesting similarity to the naturally occurring BRCA1 germline 

mutation of Family 5. Somatic deletions in HPRT often include inserted bases at the 

breakpoint junctions that are inverted complements of sequences found at the 

breakpoints (Rainville et al., 1995). In HPRT, topoisomerase I and topoisomerase II 

have been implicated in generating the free DNA ends that may result in these 

nonhomologous recombination events (Rainville et al., 1995; Monnat et al., 1992). 

Topoisomerase II sites also occur near rearrangement breakpoints in the Dystrophin 

gene (Hu et al., 1991) and ring chromosome 21 (Wong et al., 1989). In vitro and in vivo 

evidence for the role of topoisomerase II in nonhomologous recombination is well 

established in prokaryotes (O'Connor et al., 1985; Ikeda, 1986) and a role for vertebrate 

topoisomerase II in nonhomologous recombination has been demonstrated in vitro (Bae 

et al., 1988). Topoisomerase II boxes are in close proximity to the 3' deletion breakpoint 
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of the complex mutation in Family 5. Sequences matching 13 of 15 bp of the 

topoisomerase II d box, GTN(AAr)A(T/C)ATTNATNN(A/G), occur in BRCA1 intron 3 

(Sander and Hsieh, 1985). Either the sequence tTAAgTATTTATGTA at position +948 

or the sequence aTGTACATTTtTCTG at +1225 might serve as a recognition site for 

cleaving the double stranded DNA at +1008 of BRCA1 intron 3. 

Mutations in BRCA1 and BRCA2 account for at least 80% of hereditary breast and 

ovarian cancer (Narod et al., 1995; Rebbeck et al., 1997). Complex BRCA1 and 

BRCA2 mutations such as that in Family 5 account for a still unknown fraction of 

unexplained families with inherited breast and ovarian cancer (Narod et al., 1995; 

Rebbeck et al., 1997; Schubert et al., 1997). Additionally, there may be other as yet 

uncharacterized genes that predispose to hereditary breast cancer (Rebbeck et al., 1997; 

Schubert et al., 1997). 

The mutation in Family 5 adds to a growing class of mutations not detectable by 

conventional screening methods. Amplification followed by genomic SSCP analysis 

would invariably amplify the wild-type allele in Family 5. Direct sequencing of splice 

junctions would not identify the genomic mutation because the primer routinely used to 

analyze the 5' splice site for intron 3 was deleted in the variant allele. Reports of 

genomic deletions of BRCA1 that were undetected by conventional methods further 

illustrate the limitations in standard BRCA1 and BRCA2 screening procedures. 

As more large genomic deletions and rearrangements are characterized in the 

BRCA1 region, several questions remain to be addressed. Are Alu-Alu recombination 

events prominent in the BRCA1 region, as seen for deletions in the ß-globin gene cluster 

(Henthorn et al., 1990), or no more likely to be involved than random sequences in the 

region? Likewise, which is more representative of large deletions and rearrangements in 

the BRCA1 region: the complex inverted duplication with deletion observed in Family 5 

in this study or the simple deletions reported previously? Of primary importance is 

whether such mutations occur somatically as well as in the germline. If such mutations 

do exist somatically, it will be interesting to determine whether they are similar in Alu- 

dependence and complexity to those observed in the germline. 
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Legends to Figures 

Figure 1. Pedigree for Family 5. Three generation pedigree for Family 5 indicating 

markers used to establish linkage. Below the linkage markers are displayed the results 

of both SSCP analysis of cDNA and Long PCR analysis of genomic DNA using primer 

pair no. 3 designed to amplify a genomic region including BRCA1 exon 3. Some 

unaffected family members are not included. 

Figure 2. Variant allele reflecting BRCA1 g.12977 inslO dell039 in Family 5 detected 

by Long PCR of genomic DNA. Numbers above lanes are identification numbers from 

the pedigree. The wild-type genomic product extends from BRCA1 intron 2 to intron 3 

and is 5531 bp. Amplification from the mutant allele yields a 4502 bp product. The 

variant band is present in all individuals with the BRCA1 -linked haplotype and who are 

heterozygous for deletion of exon 3 in BRCA1 mRNA. 

Figure 3. Exon skipping resulting in a truncated BRCA1 protein in Family 5. 

(A) Wild-type BRCA1 sequence and splicing of exon 3. nt 210-240 of HSU14680 

shown. (B) Breakpoint sequence of the 1039 bp deletion and effects on splicing in 

Family 5. nt 210-221 of HSU14680 and 10 bp inverted duplication, followed by intron 

3 sequence. 
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Figure 3 

A. Wild-type BRCA1 Sequence: 
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VITA 

Shannon Renee Payne was the first child born to Ruth Ann Payne and Jerry 

Oliver Payne in Mt. Carmel, Illinois on September 13,1970. To Shannon's great 

delight, her little sister joined her in this world on August 24, 1974. Shortly thereafter, 

Shannon's parents returned to Kentucky and settled in the southwest edge of the "Big 

City", Louisville, Kentucky. Shannon spent most of her childhood playing fantastic 

imagination games with anyone she could convince to join her. In 1979, she began 

classical study of the violin, a pursuit that was to give her both a leveling perspective on 

the world of academics and some of her closest lifelong friendships. At the age of 14 

years, she and her sister became heads of the household in the care of their beloved 

Aunt Brenda and her three young children. It was a trying time, but gave her resources 

upon which she could fall back time and time again. 

The absurdity of the high school education system led Shannon to choose an 

undergraduate education with an emphasis on learning and synthesis as opposed to 

grade point average. Her experiences at New College of the University of South 

Florida were among the most liberating to date. It was there that she met her husband, 

Roddy Grant, who shared her perspective on education and her love of new 

experiences. A required genetics course with Professor Sandra Gilchrist changed the 

course of Shannon's life. In genetics, she found a logic that was strong and pure. 

Although Shannon considered leaving the study of science for the Teacher's College of 

Columbia University, she could not abandon her love of genetics. 

In the fall of 1993, Shannon entered a Ph.D. program in the Department of 

Botany in Seattle, Washington. Through a series of unexpected events, Shannon 

transferred to the Department of Genetics in the fall of 1995 where she found a 

sympathetic community of curious souls. Her positive experience with model systems 

via interactions with fellow genetics department researchers led her to give the mouse 

world "a go" after the completion of her Ph.D. in the Department of Genetics at the 

University of Washington. Stay tuned... 


