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Preface 

This book is part of a 3-volume set with the written versions of all invited talks, papers and 
posters presented at VECPAR'2000 - 4th International Meeting on Vector and Parallel 

Processing. 

The Preface and the Table of Contents are identical in all 3 volumes (one for each day of the 
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were presented. 

The conference programme added up to a total of 6 plenary and 20 parallel sessions, comprising 
6 invited talks, 66 papers and 11 posters. 
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preparation of this event. The expertise provided by the Scientific Committee was crucial in the 
selection of more than 100 abstracts submitted for possible presentation. 
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following people, whose collaboration went well beyond the call of duty. Fernando Jorge and 
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and Alberto Mota, for authoring the procedure for abstract submission via web. 

Porto, June 2000 The Organising and Scientific Committee Chairs 

VECPAR'2000 was held at Fundacäo Dr. Antonio Cupertino de Miranda, in Porto (Portugal), 
from 21 to 23 June, 2000. 

VECPAR is a series of conferences, on vector and parallel computing organised by the Faculty 
of Engineering of the University of Porto (FEUP) since 1993. 
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Solving the Quadratic 0-1 Problem 

Schütz, G.1, Pires, F. M.2, Ruano, A. E.2'3 

'Escola Superior de Tecnologia, Universidade do Algarve 
2Unidade de Ciencias Exactas e Humanas, Universidade do Algarve 

Institute of Systems & Robotics 

Abstract. The quadratic 0-1 programming is a discrete optimization problem, with 
many important applications. Difficult graph problems can be formulated and 
solved as a quadratic 0-1 programming problem. 
This is a NP-hard combinatorial problem very difficult to solve, even if the 
dimension is small. The branch-and-bound algorithms are the most used for solving 
exactly this sort of problems. 
In this paper, based on an efficient sequential branch-and-bound algorithm for the 
unconstrained quadratic 0-1 programming, we study the behaviour of its parallel 
implementation using transputers and present some computational results. We also 
analyse the workload distribution among processors. 

Keywords: Quadratic 0-1 programming, Branch and Bound Algorithms, Parallel 
Numerical Algorithms 

1    Introduction 

In this paper we are dealing with the unconstrained quadratic 0-1 program: 

minf(x) = qTx+'/2XTMx (1) 
xe{0,l}" 

with q e VP and M e RnXn . 
The quadratic 0-1 program has many interesting applications, for instance, is applied 
to financial analysis problems [6], CAD problems [4], circuit layout design, 
distributed computer networks and telecommunication networks [1]. Some difficult 
graph problems (like the maximum clique problem) can also be formulated and solved 
as a quadratic 0-1 programming problem. 
As problem (1) has so many applications, it is worthwhile investing some effort in 
solving it. One way of solving this problem is to use a branch-and-bound algorithm. 
Using a branch-and-bound algorithm means to split the original problem into 
subproblems building a search binary tree. Each of the new subproblems must be 
either solved, or pruned if we can prove that it doesn't yield to a better solution. The 
search for good pruning techniques has been a matter of research for the last years [3], 
[11]. 
Another crucial aspect, when solving this kind of problems, is the need to produce a 
"good" initial solution. Some heuristics have been proposed in the last years [3], but 
further investigation is needed in this field, namely on how to use parallel processing 
to obtain a good initial guess. 

-293- 
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Finally the search strategy is very important. The depth-first, the breadth-search and 
heuristic search strategies have been proposed in the context of sequential algorithms. 
When dealing with parallel algorithms, the search strategy must be designed 
accordingly to the topology and the number of processors in order to obtain a more 
efficient method. 
The main purpose of this work is to parallelize, on transputers, a branch-and-bound 
algorithm for the quadratic 0-1 problem, and study its behaviour. In section 2 we 
summarise the branch-and-bound algorithm and the heuristic for finding the initial 
solution. Section 3 presents the main ideas behind the parallelization of the described 
algorithm. In section 4 we present some computational results using 1, 2, 4 and 8 
transputers. 

2   A Sequential Algorithm 

The solution y* of the continuous quadratic problem constrained to the hypercube 
given in (1) is also a solution of the linear program [9]: 

min (Vf(y*)) y (2) 

This implies that variables whose partial derivatives have fixed sign in the unitary 
hypercube can be fixed either to 0 or 1 according to that sign. 
In order to make calculations easier, problem (1) can be formulated equivalently [9] as 

minf(y)= yTAy (3) 
ye { 0, 1 }n 

where a^Cj+q^,, and for i*j   a.. = qij/2 , i,j=l,.. 
ij    ?y' 

,n. 
Without any loss of generality the matrix A can be considered to be symmetric. 
It is possible to show [8] that for problem (3) we obtain the minimum range of 
the partial derivatives 

af(y) 
m.<—^-<M.for   i = l,...,n 

ayi 

v-< n 

where     m; = 2 ]T a: + aH    andM; = 2 ^a^ + aa 

j=i j-i 
.!*> j*i 

with  aj = max { 0, a^ } and   ajj = min { 0, a;. } . 

This provides an easy way of forcing variables: 

a) mj>0=>yi = 0; 

b) M;<0=* y*=l. 

Hence, the gradient of the objective function characterises the difficulty of the 
problem, enabling to obtain smaller trees when it is possible to force more variables in 
the solution on the initial node. As it can be seen, from the formulas to evaluate m 
and Mj, special characteristics of the matrix A will be determinant on the number of 
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forced variables, namely matrices with a great number of diagonal dominant elements 
will provide shorter trees. 
This process of forcing variables will be repeated in any node of the tree, leading to a 
smaller range of the partial derivatives of the non-fixed variables. 
When working with branch-and-bound algorithms the main concern is to reduce _the 
potential length of the search tree, which, at first glance, might have as much as 2n - 
1 nodes. Besides using efficient techniques to fix variables, it is also crucial to use 
good pruning rules. We chose to use a lower bound to the objective function as a 
pruning rule. If in a node the lower bound function has a value that is worse than the 
incumbent minimum, then that branch must be pruned, as that subproblem can never 
lead to a better solution. We used a lower bound function that gives a close bound to 
the optimum value and is very easy to evaluate and to update. To obtain this lower 
bound to the function f, we used the fact that its best possible value corresponds to add 
the rows with negative contribution to the objective function. This lower bound is 
easily computed from the limits of the gradient interval. Let 

F = {/: yt is fixed} and   F = {/: yt is free}, we computed the lower bound of 

the gradient interval for variable v„ lbh as: 

Ibi = 

*Laijxj +    X_aij  + Tö» 
jeF jeF 

j*i 

1 

Xj   ,   i e F 

€ F 

(4) 

'ZayXj +   X_aij + -Zaii 
jeF JEF Z 

. j*i J*> 

and then the lower bound of the objective function given in (3) is easily computed, as 
it is equal to: 

x («,.+ i <,.,*,. 1 + x_ Ut +iaw 

(5) 

The update of (4) and (5) is easily and quickly done. 
Another important aspect, in a branch and bound algorithm, is the order in which new 
subproblems are generated, that is, to choose the variable to branch in each node. Like 
in [9] we chose to select the variable which is most unlikely to be forced in subsequent 
levels of the tree. This leads to the rule of choosing the branching variable 
corresponding to the maximum of the values min{-mk, MjJ for all the variables not 
yet fixed. This rule has the additional advantage of reducing the gradient range of the 
remaining free variables, which is favourable for fixing more variables. The value (0 
or 1) assigned to that selected variable is the one that decreases lower bound function 
the most. 
The starting point is also very important in order to obtain small trees. As a matter of 
fact, if the initial solution is near the optimum there is a high possibility of pruning 
branches earlier. There are good heuristics that allow discovering an initial solution. 
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Most of the times the solution obtained is close to the optimal one, if not the optimal 
solution itself. In this paper we used a heuristic [3] based on finding a point which is 
better than all its adjacent points. This point is called a local star minimum point. 

3    Parallel Algorithm 

Different implementations of branch-and-bound algorithms in different parallel 
architectures (shared memory multiprocessor, distributed memory multiprocessor and 
vector processors) are mentioned in the literature [2], [4], [11]. There are also 
references [4], [6] to the most common anomalies in parallel branch and bound 
algorithms, as the behaviour of such algorithms is unpredictable. 
A branch and bound tree implicitly enumerates all possible solutions. Branches of the 
search tree are independent subproblems, so they can be evaluated in parallel. A 
parallel branch and bound algorithm generally splits the tree into exactly as many 
subproblems as there are processors. Then, each subproblem is executed in each 
processor, for a specified number of nodes (Maxn) of the branch-and-bound tree. 
When one of the processors completes its search on the tree, then an unsolved 
subproblem of another processor is split and assigned to that free processor. 
Processors also change information about new incumbents. 
In this work, initially the entire problem is assigned to the root processor and the range 
of the gradient is used to fix all possible variables, as described above. Then the initial 
problem is split among all the processors. We choose the most unlikely variable x, to 
be fixed in subsequent levels (as in the sequential algorithm) and split the tree into two 
subproblems. In the 4 transputers case, we repeated this splitting part in processor 1 
and in processor 2 in order to send subproblems to processors 3 and 4, respectively. 
And in the 8 transputers case, processors 1, 2, 3 and 4 also repeat the splitting part in 
order to send subproblems to the other processors. 
After a specified number of nodes, the processors communicate with its neighbours, 
change the incumbents solutions and send subproblems to the free processors in the 
same way. The algorithm stops when all processors are free, that is, when the search 
on the branch-and-bound tree is completed. 
In this work we used two, four and eight 25 MHz INMOS transputers, on a TMB16 
platform, PC hosted, with the speed of links set at 20 Mbits/sec. The programming 
language was AINSI C. 
The topologies employed with 4 and 8 transputers are shown in figs. 1 and 2. 
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P0     * ►     Pi 

T— f 

±   i. 
P2 

P3 

Pi = Processor i, i = 0, 1,2,3 
Fig. 1. Topology for a 4 transputers network 

P4     4 ►     P0     * ►      P1      « ►     P5 

                  j 

I ▼                       

P6 ►       P2 
P3       « ►       P7 

Pi = Processor i, i = 0,...,7 
Fig. 2. Topology for a 8 transputers network 

In the sequential branch and bound algorithm we used a depth-first strategy. In the 
parallel one, with these topologies, subtrees are searched in depth, one in each 
processor, but simultaneously, the processors, all together, perform a breadth-search 
in the tree because right and left branches are being searched at the same time, as 
shown in fig. 3 for the 8 processors case. 
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\ 
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-\ 
Po p4 P2 p6 Pi P5 P3 P7 

Fig. 3. Search tree for a 8 transputers network 

5    Computational Results 

To test the efficiency of the discrete algorithm, we have studied its behaviour when 
attempting to solve some problems whose matrices were taken from the 
Harwell-Boeing Collection (available in http://gams.nist.gov/MatrixMarket) from 
different sets (Structural Engineering, Partial differential equations, Power Systems 
Networks). These matrices are symmetric, real and not diagonal dominant. The 
number of variables (n) and the number of non-zero elements of the off diagonal 
triangular matrix (m) are described in Table 1. 
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Matrix name n m 

bcsstk02 66 2145 

bcsstk03 112 264 

bcsstm07 420 3416 

gr3030 900 3422 

nosl 237 390 

nos6 675 1290 

nos7 729 1944 

494bus 494 586 

Table 1. Matrices dimensions 

For each matrix problem, we randomly generated several different cT vectors (the 
independent term of (3)). The optimal solution was obtained in the initial node, 
without any search tree, in problems: gr3030, nos6, nos7, for all the generated c 
vectors. For each one of the other problems we obtained 10 different instances. The 
characteristics of these test problems are described in table 2. 

PraW. 
Set 

matrix 
name 

variables 
number 

elements(1) 

>0    <0 > 
diagonal(2) 

0             < 0 
total<3> 

number 
fixed<4) 

variables 

1 bcsstk02 66 987   1158 

min. max. min. max. mm.  max. mm.  max. 

46 49 17 20 2211  2211 12     16 

2 bcsstk03 112 115    149 59 89 23 53 376   376 83     89 

3 nosl 237 156    234 132 141 81 83 606   614 170    185 

4 bcsstmTX 420 2146 1270 256 257 163 164 3836 3836 382    394 

5 494bus 494 0     586 286 310 184 208 1080 1080 438   463 

(1 ) = number of nan zero elements of the off diagonal triangiiar matrix 

(2) = number of non zero elements of the diagonal plus the independent term 

(3) = number of nan zero elements of the triangular matrix 

(4) = nurrber of variables fixed at the initial node 

Table 2. Characteristics of the test problems 

As it was mentioned before, to improve the efficiency of the branch-and-bound 
algorithm is necessary to start with a "good" guess. The heuristic that we described 
before performs this task with good results. Most of the times the initial guess 
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obtained by the heuristic is actually the optimal solution and the branch-and-bound 
algorithm only is needed to confirm this optimality. The time spent with the heuristic 
was not included in our results because it has always been less than 0.1 seconds and is 
executed sequentially. 
We performed some preliminary tests to determine how granularity affects speedup. In 
what concerns the number of nodes of the search tree, the smaller Maxn is, the better 
the results are. On the other hand, on what concerns speedup, the bigger the tree is, the 
greater Maxn should be used, and vice-versa. Nevertheless the speedup values did not 
vary meaningfully with Maxn. Actually, although a frequent change of information 
between processors reduces the search tree size, this is more time consuming and for 
bigger trees speedup becomes worst, as the shortness of the tree does not balance the 
extra increase in communication time. So, since we have an estimate, from the 
sequential branch and bound algorithm, of the tree dimension we decided to use 
accordingly values for Maxn, as shown in table 3. 

Number of 

nodes'1' 

<1000 

>1000 

Processors 

4 8 

50 

100 

25 

50 

15 

25 

(1) = Performed by the sequential branch and bound algorithm 

Table 3. Values of Maxn 

We began our computational study by solving the test problems sequentially. 
Afterwards we applied the parallel version of the algorithm with 2, 4 and 8 
transputers. Table 4 summarises the obtained results. 
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Rooeseas 

Rdj. 1 2 4 8 

Sä Nxfes Tire Nxfes lime  S?  Bf Nxfes Time  S?  Bf Nxfes Tirre  S?  Bf 

B@ 310   3Q4C 306   17,51 1,74 Q87 306   1Q02 304 Q7E 290 11,87 503 QG 

1      A 821   77/« 815   5521 1,51 0,76 807   34,62 243 Q61 794 2Q03 422 CV5E 

W 18» 14R3C 1590 11449 1,30 Q6E 443   2Q72 2C4 Q51 1334 42,83 343 Q4 

B0 239   11,46 764   27,67 1,95 Q9E 764   1474 367 Q9E 758 7,73 7,00 Q8E 

2     A 689   4QS 690   2MB 13 Q8C 634   14,75 2,72 Q6E 671 93 466 QBE 

m 1023   63,3: 250    9,91 1,16 Q5E 247    614 1,86 Q47 233 378 303 Q3E 

B 337 1748/ 3192 33989 1,65 Q8E 533   54,07 323 Q81 1642 3311 7,70 Q9E 

3     A 1457 34585 1914 247,46 1,33 QBE 1815 125,13 287 0,75 1638 6511 533 067 

W 2701 6557? 3055 358,17 1,21 Q61 3852 257,35 233 Q6 1631 61,74 379 Q4/ 

Bft 135 135,« 265 16803 327 l& 2B0   91,73 593 1,3 248 6330 867 1,a 

4     A 335 331/« 434 2433 1,62 Q81 330 1403 353 0,3 378 101,11 550 QBE 

W(£j 737 71551 2B5 16806 1,06 QS 245   95,19 1,43 Q3E 319 39,85 227 Q2E 

B® 67   60,77 267 13333 1,43 Q721 357   97,84 1,95 Q4Ö 336 83,49 216 Q2/ 

5     A 254 237.7S 415 2073 1,16 Q53 478 159,79 1,47 Q37 10B2 15522 13 Q2C 

Wfe 377 333,76 118   59,80 1,02 Q51 199   33,53 1,03 Q27 325 43,33 13 Q1q 

S£>=speg±p Bf=dficiety 

B=tetieJt A=asaee W=voSreaJt 

TrB=eeafoitirrein99oarEfc 
(£|=*BiBülsfa?4aTl8pa3eBsascnre^irtk)*ESEtrEpttl0ti 

Table 4. Summary of the results with 1,2,4 and 8 transputers 

In this table the "best" and the "worst" results refer in the sequential case to the best 
and worst execution time and in the parallel case to the best and worst speedup for 2, 
4 or 8 processors, so we are not always talking about the same problem. That's why 
we are going to focus our attention in the average line. We observe that the first three 
sets of problems have a similar behaviour with good values of speedup and efficiency. 
Set problems 4 and 5 behave in opposite directions. Set problem 4 has very good 
values of speedup and efficiency, reaching in some cases superlinear speedup (1,3 
and 2 cases with 2, 4 and 8 processors, respectively). Set problem 5 has poor results 
obtaining detrimental speedups through all cases. These results confirm the 
unpredictable behaviour of the branch and bound algorithms. The non-common 
behaviour of the problems set 4 and 5 is due to the different ways of searching the 
tree, in sequential and in parallel. Actually, in the sequential version, with a depth first 
strategy, the right branch of the tree is explored after the left one is over, while in the 
parallel version, with the used topology, both branches are explored simultaneously. 
The good behaviour of parallel algorithm, in problem set 4, can be explained by the 
fact that the number of nodes of the branch-and-bound tree in the parallel version was 
significantly smaller than in the sequential version. As the value of the incumbent 
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solution is updated frequently, this allows to prune the tree earlier, mainly the left 
branch. So, the parallel algorithm usually needs to search fewer nodes than the 
sequential one, providing very good or superlinear speedups, in the cases where the 
sequential algorithm stops only in the middle or in the end of the right branch search. 
Otherwise, in set 5, it happens that the sequential algorithm obtains the optimum in the 
end of the left branch search and consequently prunes the right branch of the tree, in 
its first iterations, while the parallel algorithm slowly decreases and updates the 
incumbent value, and consequently searches, in this set of problems, much more 
nodes, mainly in the right branch. 
A reason for this behaviour may have to due with the number of positive and negative 
elements of the off diagonal triangular matrix of these two sets. The number of 
bcsstm07 matrix positive elements is almost twice the negative ones, while 494bus 
matrix has no positive elements (table 2). 
Figs. 4 to 8 show the mean speedup obtained, for each problem set. In these graphics 
the dashed lines represent linear speedup. 

N = 66  m =2211 

12 4 8 
Num ber of processors 

Fig. 4. Speedup for set l 

N = 112  m = 376 

12 4« 
Num ber of processors 

Fig. 5. Speedup for set 2 

N = 237  m =627 

12 4 6 
Num ber of processors 

Fig. 6. Speedup for set 3 

N = 420  m = 3836 

i 2 4 e 
Num ber of processors 

Fig. 7. Speedup for set 4 

N = 494 m = 1080 

1        -"2 4 8 
Num ber of processors 
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Fig. 8. Speedup for set 5 

It is clear that the speedup curves are similar in figs. 4, 5 and 6. In fig. 7 speedup is 
almost linear. In fig. 8 speedup never gets too far from 1. 
The parallel algorithm, as it can be seen in the efficiency columns and in figs. 4 to 8, 
performs better for 2 processors and gets worse for 8 processors. This happens 
because, with more processors, the communications increasing time does not balance 
the decrease of search nodes. 
We can separate the problems with the same behaviour, with any number of 
processors, into two sets. One contains 16 problems which achieved good efficiencies 
(greater or equal than 0.6) and the other with 12 problems achieved bad efficiencies 
(less than 0.6). For these two groups we plotted, in fig.9, the average number of nodes 
searched in sequential and in parallel with 2, 4 and 8 processors. This graph confirms 
what was explained above about the reasons for superlinear and detrimental speedups. 

j El good eff. 

i ■ bad eff. 

Number of processors 

Fig. 9. Efficiency versus number of searched nodes 

We also can use these two groups to study the workload distribution among 
processors. The average number of nodes searched by each processor is plotted in 
figs. 10 and 11, respectively. In fig. 12 we show the average values when considering 
all the problems. 
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Balance (good efficiencies) 

Po   Po Pi  Po  P,   P,   Pa   Po   P,   P2 P3 P,   P6   P, P7 

12 4 8 

Number of processors 

Fig. 10. Average number of nodes searched in each processor for 
problems with good efficiencies 

Balance (bad efficiencies) 
1500 

N 
0 1000 
d 
e 
s 

500 

Po  Po Pi   Po   P,   P2   P3 
Po   P,   P. P, P4   P,   Pe P^ 

2 4 I 

Number of processors 

Fig. 11. Average number of nodes searched in each processor for 
problems with bad efficiencies 

Balance 
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Fig. 12. Average number of nodes searched in each processor for all the 
Problems 

It is clear from these graphics that the workload is well balanced among processors, in 
almost all cases. In spite of a slight irregularity denoted in fig. 11, there are no 
significant differences between them. 

6   Conclusion 

In this paper we present a study of the behaviour of a parallel algorithm for branch- 
and-bound search trees, implemented on a transputer network.  The results obtained 
show that, generally, the use of parallel processing, for these kind of algorithms, is 
worthwhile, as significant savings in execution time can be obtained. Nevertheless, we 
must be aware that parallel branch and bound can also produce poor as well as 
superlinear speedups. 
The used topology appeared quite matched for this kind of algorithms as it enables a 
concurrently depth and breadth tree search and achieved a well-balanced workload 
among processors. 
We are aware of the fact that tranputers are out of date, nevertheless, we think that this 
study remains valid in other architectures with the same ratio between the processing 
capacity and communication speed. 
In future, we should consider the use of different topologies, a larger number of 
processors, and different parallel machines, in order to solve large-scale problems in a 
reasonable time. 
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Abstract. This paper presents a genetic algorithm that addresses the real-time 
static allocation problem. In real-time systems, each task has its own timing 
constraints. A correct allocation is defined by schedulable tasks (no deadline 
is missed) on each processor. Our algorithm considers both scheduling and 
allocation and one major contribution of this work is that it relies on a direct 
problem representation and on advanced operators. Here, the problem 
representation clearly expresses tasks' schedules and allows to directly 
manipulate them. We define new genetic operators helping making choice 
between tasks that miss their deadlines and deciding where to move them in 
order to get better allocations. A parallel implementation of the algorithm is 
presented also a comparison with the simulated annealing algorithm. Results 
obtained by this algorithm are promising and presented at the end of this 
paper. 

Keywords: real-time systems, task scheduling, static allocation, parallel 
genetic algorithm. 

1     Introduction 

Real-time scheduling is a topic where tasks have to be scheduled in order to 
respect timing constraints, precedence relations and resources constraints. Usually 
each task is described by a start time, a computing time and a deadline that must be 
met. Tasks can be either periodic or aperiodic, and may communicate and use 
resources. Most people use the term scheduling for both monoprocessor and 
multiprocessor. In our work, scheduling is the way to arrange a set of tasks on a 
single processor. We use the term of allocation to describe the way in which tasks 
are assigned to processors. 

Task allocation, processor scheduling and communications scheduling are all NP- 
hard problems [4]. Thus leads to a view that they should be considered separately 

-307- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

and many researches handled each of these concepts independently of the others. 
Most related work on task allocation has mainly concentrated on maximizing the 
system throughput or reducing the application response time [5], [9], [8], [17], [13], 
[22]. These algorithms cannot be applied to real-time tasks because they rely on 
randomness. For each allocation obtained, these algorithms apply a post-allocation 
phase to determine the tasks' schedules - a task schedule is the order of tasks' 
execution - on the processors and to check the respect of the constraints. 

Among approaches that address real-time static allocation problem, we can 
distinguish constructive approaches (building correct allocations) and iterative ones 
(modifying the current allocation in order to get a better one). Peng and Shin [18] 
solve the problem using two Branch&Bound algorithms (one for task allocation and 
another for task scheduling) for a set of communicating tasks. Hou and Shin [12] 
extend this work to duplicated tasks. Because of the intractability of the problem 
and the high cost of optimal approaches, heuristic algorithms have been developed 
(see the work of Ramamritham in [19], Davari and Dhall in [10] Burns and all in 
[21], [2] and Cheng and Agrawala in [6]) 

Holland developed genetic algorithms (GA) in 1975, GA are stochastic and 
iterative search algorithms based on the adaptive process of natural systems. They 
rely on the selection and the survival of the more adapted species. GA are 
characterized by individuals representing different allocations, a set of genetic 
operators used to create new individuals and a cost function to evaluate the 
individuals. GA have been successfully applied to a wide range of optimization 
problems, but only few approaches have tried to apply them to real-time task 
allocation problem. In [15], Kidwell presents a GA to schedule communicating tasks 
that can be extended to real-time scheduling. However the problem representation 
used does not include any consideration for scheduling. In [14], the GA is applied to 
tasks with precedence constraints, in [11] a GA is proposed for the job-shop 
scheduling problem and in [3], a GA is applied to production scheduling problems. 
All these works are close to our, but no algorithm from those described above can be 
applied or adapted to the considered model. In summary, this problem has to be 
adequately addressed. 

In our work we develop a genetic algorithm which addresses both allocation and 
scheduling. We adopt a representation that reflects the nature of the problem to 
solve. Indeed, our representation clearly shows the tasks schedules on each 
processor. Besides, we develop new genetic operators specifically adapted to this 
new representation. When standard operators are applied randomly, tasks' 
scheduling is not considered in the allocation algorithm, the next step can lead to an 
allocation with more unschedulable tasks indeed nothing guides the way tasks are 
moved between processors. 

The remainder of this paper is organized as follows. In section 2, we introduce 
the task model addressed by our algorithm. Section 3 presents the representation 
adopted for this problem and a method for generating initial population. Sections 4 
and 5 describe the main characteristics of our genetic algorithm: the cost function 
that evaluates the allocations and the proposed operators.  Section 6 presents 
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implementation results of the parallel genetic algorithm and a comparison with the 

simulated annealing algorithm. 

2     The System and Task Model 

In our model tasks have timing constraints, fault-tolerance constraints and are 

communicating. 
Timing constraints: Each task 7/ is described using 3 parameters Rh Eh Dt where 

Ri is the time at which 7/ is ready and can begin its execution1 , Ej its computing 

time, Dj the deadline. 
Tasks allocated to a processor must be schedulable. This can be verified with the 

feasibility test of EDF the Earliest Deadline First approach (EDF)2 [7]. In this 
problem the feasibility test is insufficient, the algorithm must schedule tasks in order 
to calculate the start time S,- at which the task is scheduled - which depends on the 
communications with 7> and C/ its completion time. Q = 5/ + E[. 

Fault-tolerance constraints: In order to face fault-tolerance requirements, some 
tasks are duplicated. When a task needs some replicas, each instance must be 
allocated to a different processor. This way, if the processor falls down, the task 
execution is guaranteed on another processor. 

Communications: We suppose that the communications take place after that tasks 
finish their computations. When calculating the start time of a task Tt, the algorithm 
first evaluates the delay due to communications with J/. Indeed, the earliest date at 
which Tt can be scheduled depends on the reception date of all messages sent to it 
(which themselves depend on the completion time of sending tasks). 

3     The Problem Representation in the Genetic Algorithm 

A genetic algorithm consists of four steps. The generation step randomly creates 
a population of individuals. Each one is a potential allocation. A cost function is 
then applied to evaluate them. The values obtained will determine which individuals 
will be selected for the reproduction step. Applying genetic operators generates new 
individuals. The most famous are mutation and crossover. The evaluation, selection 
and reproduction steps are repeated until the algorithm converges. 

The GA are known to have a good convergence when the following conditions 
are respected: (1) the coding of the individuals correctly reflects the problem to 
solve, (2) the individuals are in a one-to-one correspondence with search nodes (i.e. 
each individual corresponds to a legal search node or an allocation. Usually each 

1 We assume that tasks have no precedence constraints, but a programmer can express such 
constraints through Rj. 

2 EDF is a dynamic scheduling algorithm that can be applied to either periodic or aperiodic 
tasks. The feasibility test of £DFfor a set of tasks is that the sum of the utilization factors 
of the tasks be less than or equal to one. 
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individual is composed of genes each one corresponding to a task and the value of 
the gene indicates the processor number on which it is placed. The representation 
used in this paper is based on the list schedules of tasks on each processor. An 
individual reflects for each task, on which processor it is placed, and at which 
position. Hence, an individual is composed of strings corresponding to the different 
processors and each string shows the order in which tasks will be executed on the 
processor. We define a correct individual as one where all tasks are represented 
(completeness) and only once (uniqueness). A correct individual is presented in the 
following figure. On processor Pi, 4 tasks are allocated and scheduled {Ti, T2, T3, 
T5}. On processor P2, tasks Tg is scheduled before T4. 

Pi Tj | T3 | T5 | T2 | 
Pi T6|T4| 

Fig. 1. A problem representation with scheduling considerations 

3.1     Generating the Initial Population 

To generate individuals with correct schedules, we have at least to generate 
strings where tasks are ordered in an ascending order of deadlines. For this purpose, 
the set T of the N tasks to allocate is divided in classes according to deadline values. 

The class 0 contains all tasks that have their deadlines in the interval [0,1] where 1 
is the smallest deadline in T. Class 1 contains tasks whose deadlines are between ]1, 
1+1'], class 2 contains tasks whose deadlines are between ]1+1', 1+21'] 1' is function 
of the deadline dispersion. The algorithm used to generate the initial population is 
described in the following: 

Algorithm Generate-Population 

GP1. [Initialize] determine 1 and choose a value for 1' 

GP2. [Form Classes] separate the tasks according to 
their deadlines and form the classes 

GP3. [Repeat GP4 for each Pj  fj  varies from 1   to M-l] 

GP4. [Allocate Tasks] Repeat for each class clk: 
randomly generate a number nb_tasks3 of tasks to pick 
from class(clk)   and allocate them to Pj. 

GP5. [Allocate the remaining tasks] assign the 
remaining tasks in each class to the last processor PM 

Nb_tasks must be less than cardinal (clk)/M + 1 in order to allow that all the processors be 
served. 
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Ri Ei Di 
Tl 0 1 3 
T2 0 2 4 
T3 0 3 4 
T4 1 2 11 
T5 1 1 5 
T6 1 4 7 
11 4 3 8 
T8 6 2 10 

Individual II   {1,2,2,1} 
PI T,|T2|T3|T6|T7|T8 

P2 T5|T4| 

Individual 12   {1,1,1,1} 

PI T,lT2|T6|T8 

P2 T3|T5|T7|T4| 

Individual 13   {0,1,2,1} 

PI T3|T6|T7|T8| 

P2 T,|T2|T5|T4| 

Class(O) = { T,} Class(l) = {T2, T„ T5} Class(2) = { T6, T7} Class(3) = { T„ T4} 

Fig. 2. An example of population generation of 8 tasks to place on 2 processors. Here are 
3 examples of individuals. The notation Individual II {1, 2, 2, 1} means that nbjasks is 
respectively 1 for class 0, 2 for class 1 ....and 1 for class 3.1 and 1' are both equal to 3. 

4     The Cost Function 

The cost function of such problem is complex and has to respect the following 
characteristics of an allocation: 

(1) Tasks meet their deadlines 
(2) Replicas are allocated to different processors 
These are hard constraints, besides two other criteria are to be considered: 
(3) Minimize the communication costs 
(4) Minimize the response time of the application 

f(A) = penalty_sched(A) + penalty_replica(A) + com_cost(A) + schedule_length(A) 

An allocation is correct if the characteristics (1) and (2) are respected. We define 
Penalty_f(A) as the sum of the first two parameters. It is equal to zero when a 
correct allocation is reached. Our purpose is to find a good correct solution so we try 
to reduce communication costs, which are the major handicap of the target machines 
(parallel and distributed machines with distributed memories), and the length of the 
allocation. The characteristics (3) and (4) help choosing between correct allocations 
hence they are considered only once Penalty_f(A) is equal to zero. 
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Calculating the penalty due to replicas: Duplicated tasks are indicated in a matrix 
where each row gives the index of a task and its replica. This component calculates 
the sum of replicas on the M processors, nb_T(P) is the number of tasks on a 
processor. 

M nb_T(Pk)nb_T(Pk) 

penalty_replica(A) = 2_,    zl,       j\rePlica(iJ) 
k=\ ;=1 y=,+l 

Replica(ij) returns 1 if 7) is a replica of Tj and 0 otherwise. 

Calculating the costs' communications: these costs depend on the amount of 
information to exchange between two tasks and on the distance separating the 
associated processors. 

- q(Tfr Tj) is the amount of information exchanged between T; and Ty. 
- dfPp Pß the distance between Pi and Pj defined as the number of processors 
in a path from Pf to P; minus 1. 
- com_cost(TitTj) is the cost of the communications between 7) and Tj. 
com^cost^, Tj) = q(Tt, Tj) *d(Pp Pj) when Tj is placed on Pj and 7) on Pt. 
- com_cost(Pj, Pj) is the sum of all the com_cost(l),IV for all communicating 
tasks placed on the two processors. 

M     M 

com_cost(A) = ^ 2^ com_ cost^, P-) 

Reducing these costs is equivalent to reducing the distance separating Pj and Pj. 
In that case, the network of processors used to calculate the distances is a logical 
one. Several algorithms exist for the projection of a logical network processor on a 
physical one. A state of the art is presented in [20]. 

When computing start and completion times, the algorithm takes communication 
delays into account in the compute of start times of receiver tasks. Let comfTk) be 
the set of tasks sending a message to 7>- To calculate the start time of 7^, we 
compute for each task Tj in com(T]^ the delay necessary for the transmission of its 
message. 7> cannot be scheduled before its ready time is reached or before it has 
received all the messages. 

Sk = max {Rk; max{ Q + com_cost(Tk Tj)} V Tj e com(T0}. 

Calculating the penalty due to unschedulable tasks: given start and completion 
times, to determine Pen(Tj) the penalty of a task the algorithm computes Ct - D7-. 

We then calculate Pen(Pj). We make the assumption that if a task Tj misses its 
deadline, and makes all tasks scheduled immediately after it, miss their deadlines 
too, it is sufficient to discard 7) to avoid their penalties. For this reason, we do not 
consider the sum of the Pen(Tj) but their maximum. We are conscious that this 
situation occurs especially when tasks have small times between their completion 
times and their deadlines. Hence, 

M 

penalty_sched(A) = ^max(C,- -Di)yTienb_T(Pj)} 
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Calculating the schedule lemth: scheduleJength(A) is obtained after that all 
tasks have been allocated and scheduled on each processor : 

scheduleJength(A) = max { end(Pj), for j=l, „M where end(P) = max{CfVTi 

innb_T(P)} 
If there exist an allocation with a smaller schedule length than another, surely 

tasks are arranged differently, and not just started earlier. Indeed the algorithm 
schedules tasks at the earliest date they can start. 

Pi      T1|1T3|4T7|7T8|9T4|„ P,       T! |, T2 |3 T5 |4 T7 |7 T8 |9 

P2      T2|,T5|3T6|6 P2      T3|,T6|7T4|9 

Individuali! Individual^ 

Fig. 3. A comparison of the schedule lengths of two individuals. The numbers at the 
right of the tasks are the tasks' completion times. 

5     Design of New Genetic Operators 

The main function of the genetic operators is to create new allocations, based on 
the current generated allocations. A new individual is created by combining or 
rearranging the best part of two individuals. This part can be a string or a sequence 

oftasksinastring. 
For real-time task allocation, the genetic operators must enforce the ascending 

order of tasks' deadlines within a string, and respect the notions of uniqueness and 
completeness. The operators selected for the reproduction are the mutation and 
crossover. Standard mutation exchanges the value of two genes (positions) in an 
individual. When the representation adopted is binary, the mutation inverses the 
value of the gene chosen. The crossover selects split points in two individuals and 
exchanges the parts at the right of the split points. 

Split Points 

Parent 
Individuals m 
Individuals fc 
obtained 

^wwww    \\SSV 
fe ■SNNW v,\NW //A 

Individual before 
mutation 

Individual obtained 

WA 

m 

Applying Crossover Operator Applying Mutation Operator 

Fig.   4.   Examples  of standard  mutation  and   crossover  applied  to   a  binary 

representation 
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5.1     The Crossover Operator 

In our representation, we cannot randomly select split points, indeed this can lead 
to illegal individuals. These points must be selected according to deadlines and 
classes. In figure 5 crossover is applied randomly. 

Individual Ij Individual I2 

Crossover points I 

PI Xj I.X2UT3UX4U PI T3 |3 T5 |4 T6 [8 T4 |I0 

P2 T5|2T6|6T7|,T8|„ P2 T! I, T2 |3 T7 |6 T8 U 

Individual generated I j' Individual generated I2' 

PI TJT2ITJT4I PI T3 IT5 J T3 ] T4 I 

P2 T5|T6|T7|T8| P2 Tj I T2 IT7 IT8 I 

Fig. 5. Crossover creating illegal individuals. T3 is duplicated in I2' and absent in l{. 

Undoubtedly, the legality of new created individuals is related to the selection of 
the crossover points. If tasks at the right and the left of each crossover point are of 
different classes, we guarantee that the generated individuals will not have tasks of 
the same class at both sides of the crossover point, and no duplication can be made. 
A similar condition was applied to tasks with precedence constraints in [14]. 

Theorem 1 : Let Stringk be the string corresponding to the k'" processor on two 

individuals I, and I2. If the crossover points between tasks i, j and i', j' satisfy the 
following conditions, the created individuals will be legal: 

(l)cl(Ti) < cl(Tj), (2) cl(Ti') < cl(Tj'), (3) cl(Ti) = cl(Tj') 

String, on I,      TjlTjlTjlTH StringkonI2    Tp | Tj. | Tj. | Tp. | 

The two inequality (1) and (2) enforce the notion of uniqueness. Since the task on 
the right of the crossover point in 12 (Tß is different from the one at the left on II 
(7)) because of different classes, we assure that neither 7) nor Tj will be duplicated 
and tasks in String, will respect the ascending order of the classes. The equality (3) 
assures the completeness of the individuals. Indeed if tasks' classes could have been 
different, a task Tq in I2 that satisfies class^) < class(7') < classCfy) will not be 
represented in the schedule. 

To apply the crossover, we need to determine a crossover point that satisfies 
Theorem 1 on each string of the individuals. As the position of the crossover points 
can be anywhere on the string (not necessarily at the same position as in the first 
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individual), the individual can have strings with various numbers of tasks and with 
different schedule lengths. Figure 6 illustrates a correct application of the crossover. 

Individual II Individual 12 

i     Crossover points on the first   I 
string ^ 

PI T1|,T2L,T3|6T4|8 PI T3|3T5l4T6!8T4|10 

P2 T5|2T6|6T7|9T8|n P2 TX |, T213 T716 T818 

x Crossover points on the second      T 
I string | 

Individual obtained I', Individual obtained I'2 

PI T1|1T2|3T3|6T6|l0T4|12        PI J3 |3 T5 |4 T4 |6 
P2 T5|2T7|5T8|7 P2 T1|1T2|3T6|7T7|I0T8|12 

Fig. 6. A correct application of the crossover 

5.2 The Mutation Operator 

The standard mutation operator usually applies on two genes in an individual. 
Our proposed mutation operator is applied on two tasks belonging to different 
strings in a given individual. We not need apply mutation to the same string, indeed 
the scheduling algorithm determines the earliest completion time on the processor. 

The proposed adaptation of the mutation operator is based on the reduction of the 
number of unschedulable tasks. Maybe applying the standard mutation can lead to 
interesting results: a randomly picked task in a schedule can reduce the schedule 
length on that processor and can be guaranteed in the schedule of another processor. 
In this way we cannot preserve the correct parts of a schedule - where all tasks meet 
their deadlines - but just rely on random behaviour. 

Thus the GA needs to know on each processor, the number of unschedulable 
tasks nb_Pen(Pk) and the first task missing its deadline T_Pen(Pk). We first search 
for the processor that have the highest penalty Php and the one having the smallest 
penalty Pfp. The first task missing its deadline is transferred from Php to Pfp or 
exchange? with a task having a higher deadline, depending on the value of a 
parameter min_pen (the minimum penalty to proceed to transfer). When exchange is 
done, we forbid the case where the task is just exchanged with a task as penalizing 
as the first. 

A variant of this algorithm is to take the most penalizing task instead of the tirst 
task missing its deadline. More details are presented in [1]. 

Let us take the individuals obtained in figure 6. The created individuals Ij' and 
I2' have higher penalties than their parents. On Ir there are 3 penalties for tasks T3, 
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T6 and T4. T_pen{Pj) which is T3 is transferred to P2. On the second individual, 
nbj>en{P2) is 2 with tasks T7 and Tg. nb_pen(P2) is not superior to min_pen so the 
first penalizing task T7 is exchanged with T4 which has a higher deadline. Both 
obtained allocations are correct and Ij" has the optimal schedule_length. 

If    PI      Tj |, T2 |3 T6 |7 T4 |9   I2"        PI T3|3T5|4T7|7 

P2      T3|3T5|4T7|7T8|9 P2 T1|IT2UT6|7T8|9T4|„ 

Fig. 7. Examples of mutation applied after crossover 

5.3 Parallel Execution of the Genetic Algorithm 

The excessive cost of GA is the main handicap for their implementation on 
distributed or parallel systems. In order to take advantage of the benefits of parallel 
systems, three parallel models for the execution of the GA were designed: 

(1) First, we have the centralized model where a master processor generates the 
initial population and distributes the individuals on a farm of processors. Each 
processor (slave) executes the reproduction and selection steps and sends the best 
individual to the master processor. This latter proceeds to the replacement of bad 
individuals. One advantage is that at any moment, the best individual of a 
population can be known and even put in the next population. However, 
communication costs, which are the main handicap of these systems grow 
exponentially with the population size. 

(2) In the second model, the population is divided in equal size subpopulations of 
individuals, each subpopulation being placed on a processor. Individuals are 
reproduced within a processor and exchanged between. This approach is interesting 
when the population size is greater then the number of processors. However, the 
parallelism internal to a subpopulation is not exploited. 

(3) In the parallel model, each individual is placed on a processor. Hence, all 
phases from selection to replacement are done in parallel. The processors exchange 
their individuals with their physical neighbours. This choice reduces communication 
costs and fully uses the parallelism of the GA steps. For these reasons, we adopt it. 

Algorithm Parallel-Genetic-Algorithm 

PGA1. [Initialize] generate initial population and 
place one individual on each processor 

PGA2. [Compute penalty_f function] schedule tasks 
within the local individual and calculate the 
scheduling and replication penalties 

PGA3. [Repeat until convergence] while a maximum number 
ot iterations is not reached do steps PGA3 to PGA7 on 
each processor 
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PGA4. [Communication step] send the local individual to 
neighbours and wait for theirs. 

PGA5. [Selection step] select the individual among the 
4 received ones that has the less value of penalty_f 

PGA6. [Reproduction step] 

- apply crossover (to the local individual and the 
selected one), 
- schedule tasks within each individual and 
evaluate the penalties due to unschedulable tasks, 
- apply mutation to the individuals obtained 
- reschedule tasks and evaluate all the cost 
function in case of penalty_f equal to zero. 

PGA7. [Replacement step] the local individual is 
replaced if one of the generated individuals that have 
a fewer cost function. 

6 Performance Evaluation 

The PGA was implemented on the supernode, a 120 transputer based machine 
with no shared memory. Evaluation presented was done with tasks' sets of eight and 
thirty to show that the algorithm has good results either with few tasks. Four 
benchmarks are presented: 

• Bl : a graph composed of 8 tasks with no replication 
• B2 : the same graph with 3 tasks replicated 
• B3 : a graph of 30 tasks with no replication 
• B4 : the same graph with 5 tasks replicated 

For each benchmark, the PGA was run 20 times. NI is the number of iterations 
necessary to obtain a correct allocation and ET is the execution time given in 
seconds. AV is the average. Table 1 shows that the algorithm rapidly converges 
when no task is replicated. It is obvious that searching for the first penalizing task is 
less expensive than searching for the replicated tasks. 

Table 1. Performance evaluation of the PGA 

Nl ET 

Min Max AV Min Max AV 

Bl 1 2 1 0.05 0.08 0.075 

B2 1 20 9 0.060 0.090 0.085 

B3 2 33 13 0.8 3.025 1.25 

B4 4 100 40 0.7 14.75 6.035 
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The genetic operators are usually applied with a probability. The crossover 
operator we developed is applied only when split points can be found so no 
probability can affect the algorithm convergence with crossover. However we 
conceived the mutation operator to reduce the scheduling penalty and we remark 
when it is applied that since the first iterations the scheduling penalty is 
considerably reduced. 

1 „140- 
I §120- 
1 S100- xT A 

H   80- 
§°   60- < 

40- S^ ■4 
^ 

20- □—  B— -^ —*-" 
0 \ i ■ 1 i—*— i—*—i I * 1 

B1 

B2 

B3 

B4 

1       0,9     0,7 0,5     0,3     0,1 
Mutation Probability 

Figure 8 depicts the observed number of iterations with different mutation 
probabilities. A reasonable value for the mutation probability is 0.9. 

Fig. 8. Observed numbers of iterations with different mutation probabilities 

6.1 Comparison With the Simulated Annealing Algorithm 

We applied the simulated annealing algorithm SAA to the same set of tasks, in 
order to show how fast our algorithm is. The SAA has been applied to solve static 
allocation of real-time tasks in the following works [21], [2] and [6]. 

The SAA uses a population of different energy states each of them corresponding 
to an allocation. To each state is associated a temperature which is reduced at each 
iteration in order to obtain the lower energy point which represents the best 
allocation. Neighbouring allocations are obtained by choosing a task and moving it 
to a randomly selected processor. The SAA cannot help in building correct 
allocations, as does the PGA, it can just estimate a solution using a cost function. 

We had to develop a sequential version of the algorithm because the SAA cannot 
be paralellized easily. The SAA was applied with an initial temperature of 10 and a 
minimal one of 0.1. 
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Abstract. The growing market of embedded systems and applications has led to 
the making of more general embedded processors, with some features 
traditionally associated with general-purpose microprocessors. Following this 
trend, recent research has tried to incorporate into embedded processors the 
newest techniques to break down ILP limits. Value speculation is a recent 
technique not yet considered in the context of embedded processors, and the 
goal of the present work is to analyse the performance potential of this 
technique within this scope. 

1    Introduction 

Over the last few years, the increasing number of communication and multimedia 
applications has brought about a growing demand for high performance in embedded 
computing systems [1], [2], and many of the techniques for extracting Instruction- 
Level Parallelism (ILP), traditionally used in high performance general-purpose 
systems, are being applied to embedded processors [3]. The limits on the amount of 
extractable ILP are due to the program dependencies, and data dependencies present a 
particularly major hurdle. Through value speculation, it is possible to counteract data 
dependencies and thus increase the program's degree of parallelism. 

The value prediction technique, like branch prediction, allows temporal violation 
of the program constraints without affecting its semantics. Based on the previous 
history of program execution, the hardware predicts at run-time the outcome of an 
instruction, which is used by the consumer instructions when the real data is not yet 
ready. When the true data becomes available, it is compared with the predicted value, 
and in the case of a mismatch, the instructions are re-executed with the correct value. 

In the context of general-purpose microprocessors, the performance potential of 
this relatively recent technique has been shown to be significant in a number of 
studies [4] [5]. Our intuition is that multimedia and communication programs present a 
more highly predictable (value) behavior than normal programs, due to the nature of 
both the algorithms and the input data. The objective of this work is the application of 
value prediction techniques in the ambit of embedded processors and the 
demonstration of a better efficiency within this scope. 

To achieve this comparative analysis we have collected results for the integer 
SPEC95 and MediaBench [6] benchmarks. We used integer SPEC'95 as an evaluation 
benchmark in the context of general-purpose systems and MediaBench (composed of 
applications culled from image processing, communications and DSP applications) as 
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a representative benchmark set for embedded computing systems. First, we perform a 
predictability analysis, and we prove that the output values of the MediaBench 
programs are, on average, more predictable than the SPEC95 programs, using several 
low-cost configurations of different predictor models. However, predictability results 
are not enough to justify the use of extra hardware to predict values, but it is essential 
to prove that processor performance is also improved. So in addition, we perform 
detailed timing simulations in order to compare the speedup achievable by using 
value prediction in two typical architectures ~ a high-performance embedded 
processor architecture and a high-performance general-purpose processor architecture 
--, and we prove that, using a low-cost value predictor, an embedded processor 
running the MediaBench programs can profit much more from value prediction than a 
general-purpose processor running the SPEC programs. 

The paper is organised as follows. Section 2 summarises the previous work on data 
value prediction. Section 3 describes the experimental framework. Section 4 presents 
a comparative analysis of value predictability for different predictor models. Section 5 
describes the two machine models used in the timing simulations and the speedup 
results. Finally, section 6 presents the conclusions and future work. 

2    Related Work 

Early work on value prediction [7] showed that instructions exhibit a new kind of 
locality, called value locality, which means that the values generated by a given static 
instruction tend to be repeated for a large fraction of the execution time. This property 
allows the data to be predictable. In a later work, Sazeides et al. [4] state that the 
predictability of a value sequence is a function of the sequence itself and the predictor 
used. In this way, we can find some kinds of predictable sequences, like for example 
the stride sequences, that do not exhibit value locality. 

Most of the value predictors proposed in the literature fit into one of the following 
types: Last-value predictors (LVP), which make a prediction based on the last 
outcome of the same static instruction, and can correctly predict constant sequences of 
data. [7], [8]. Stride predictors (SP), which make a prediction based on the last 
outcome plus a constant stride, and can correctly predict arithmetic sequences of data 
(even constant sequences, whose stride is 0), [8], [9]. Context-based predictors 
(CBP), which learn the values that follow a particular context and make a prediction 
based on the last values generated by the same instruction. They can correctly predict 
repetitive sequences of data [4], [8]. Hybrid predictors (HP), which combine some of 
the previous predictors and include a selection mechanism, which is either hardware 
[8], [10], [ii], or software [12]. To date, most of the implementations of these 
predictors have been simulated in the context of general-purpose superscalar 
processors using SPEC'95 as the evaluation benchmark suite. The results obtained 
are very promising: on average we can correctly predict about 50% of the output 
values of a program and obtain about a 20% improvement in speedup [10], [11], [4]. 
But to obtain these results, sophisticated and expensive predictors are needed, which 
nowadays are difficult to implement due to the current technology. 

In the context of embedded processors, we can find several studies which try to 
improve performance by applying techniques traditionally used in the ambit of 
general-purpose processors. However, value prediction is a recent technique not yet 
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applied to these kind of processors. The reason for this lies in area restriction, a major 
challenge in embedded systems, which makes unfeasible the inclusion of very 
expensive hardware to predict values in the processor. Nevertheless, this is not the 
case here, since a very small predictor table is needed for this particular kind of 
applications as we will show later. 

3    Experimental Framework 

This section describes the framework employed in our research to obtain the 
experimental results. We performed our experiments on simulators derived from the 
SimpleScalar 3.0 toolset (PISA version) [13], a suite of functional and timing 
simulation tools. 

As we mentioned above, we collected results from the integer SPEC95 and 
MediaBench (MB) [6] benchmarks, whose characteristics are shown in Tables 1 and 2 
respectively. 

Table 1. SPEC95 integer benchmark statistics. 

BENCH.      DESCRIPTION INPUT SET # IN ST.    %LOAD   %INT 

Compress95 
Ccl 
Go 

Ijpeg 
M88ksim 

Perl 
Li 

Vortex 

Data compression 
Compiler 

Game 
Jpeg encoder 

M88000 Simulator 
PERL interpreter 

LISP emulator 
Data base  

30000e2231 95 M 21.35 46.03 
Ref. Input (gcc.i) 203 M 26.05 39.95 

99 132 M 20.66 57.16 
Train Input (specmum.ppm) 553 M 17.63 65.21 

Train Input 120 M 18.98 49.82 
Train Input (scrabbl.in) 40 M 27.83 34.97 

Train Input 183 M 25.90 34.74 
 Train Input 2520 M 30.67 30.82 

Table 2. MediaBench suite characteristics. 

BENCH. DESCRIPTION INPUT SET     #INST.    %LOAD 
Jpeg JPEG image comp / decomp Testimg.ppm 
Mpeg MPEG-2 video encod / decod Rec*.YUV 
Gsm GSM speech encod / decod Clinton.pcm 

G.721 Voice comp / decomp Clinton.pcm 
Pegwit Public key encr/ deer Pgptest.plain 

Pgp Public key encr / deer Pgptest.plain 
Ghostscript PostScript interpreter Tiger.ps 

Mesa 3-D graphics library N/A 
Rasta Speech recognition Ex5_cl.wav 
Epic Image comp / decomp Test_image.pgm 

Adpcm Audio encod / decod Clinton.pcm 

20 M 22.73 
1300 M 25.41 
306 M 14.88 
546 M 13.50 
50 M 20.98 
153 M 17.31 

1300 M 14.31 
8M 23.22 

39 M 21.60 
59 M 12.87 
12M 6.79 

%INT 
55.75 
51.69 
72.47 
59.13 
61.28 
67.57 
56.21 
46.10 
45.14 
53.87 
62.99 

The ijpeg program belongs to both benchmark suites, but despite the name they are 
quite different, since not only are the library versions different but so too are the ways 
they used. The input files and the program parameters of the test programs are 
different as well. The SPEC95 version of JPEG was modified because the cjped and 
djpeg routines, for compression and decompression, required too much acceptable I/O 
traffic to conform to SPEC CPU guidelines; this was overcome by reading the image 
into a memory buffer, and processing it repeatedly with different compression 
settings. 

-323- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

The majority of the MediaBench programs are composed of two applications; 
compression/decompression or coding/decoding. We have combined the results for 
the two applications by first executing the compression or coding program and then 
the decompression or decoding, putting the data obtained together. The programs 
were compiled with the gcc compiler included in the tool set, using the optimization 
level 03. Due to time constraints, we have only simulated 100 million instructions. 

4    Predictability analysis 

In this section we analyze and compare value predictability for the MediaBench 
and SPEC95 benchmark suites. This analysis is based on the percentage of program 
values that can be correctly predicted. Our main purpose is to demonstrate that typical 
embedded applications exhibit a more predictable value behavior than normal 
application, especially for low-cost predictors. 

As mentioned before, the predictability of a value sequence is a function of both 
the sequence itself and the predictor employed. Therefore, in order to accurately 
compare several program sets, it is necessary to carry out experiments for all the 
existing predictor models. Furthermore, we must consider that using idealized 
predictors (infinite tables) it is possible to evaluate the theoretical value predictability 
of programs [4], although this is not our goal. On the contrary, we want to empirically 
assess the program predictability by using realistic and low-cost implementations of 
the predictor models (limited table size). From this pragmatic analysis we should be 
in a position to foresee some of the performance results presented later, and we should 
also be able to select the most suitable value predictor for embedded processors. 

4.1     Predictor models 

We should first introduce the particular low-cost implementations of the predictor 
models which are employed in this work. In view of the fact that the last value 
predictions are special stride predictions (with zero stride), only stride, context-based 
and hybrid prediction schemes are considered. An initial analysis of each benchmark 
value behavior is also presented below. 

Stride predictor implementation. The SP is implemented by means of a direct 
mapped table. The table is indexed using the least significant bits of the instruction 
PC. Each table entry stores the following information: the last-value produced by the 
instruction (32 bits), the stride between the two last outputs of the instruction (8 bits), 
and the confidence bits. The percentages of values correctly predicted (also called 
predictor efficacy) for both program suites, MediaBench (MB) and SPEC95, are 
shown in figure 1. 

Looking at the results presented above, the first remark that should be made is that, 
apart from gsm andpegwit, a considerably high percentage of the MB program values 
could be correctly predicted by the SP (40%-50%) and very small tables are needed to 
achieve these results. Furthermore, except for three of the eleven programs that make 
up the MB suite, almost the same percentage of correct values could be obtained by 
using a 256-entry table or by using a 4K-entry table. On the other hand, looking at the 
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results for the SPEC95 benchmarks we can observe an appreciably different behavior. 
For most of the programs the predictor table size has a significant influence on 
efficacy and the results are not particularly outstanding. Nevertheless, the m88ksim 
program exhibits a particularly high value predictability, and thus appreciably raising 
the average results. 

'D256 D512 »1024 «2048 »4096 ID256B512 ■ 1024 «2048 «4096 

§70  " "    '    " 

ill.llUiii 
a) MediaBench b) SPEC95 

Fig 1. SP efficacy for 256, 512, IK, 2K and 4K-entry tables. 

Context-based predictor implementation. The CBP is derived from the work of 
Sazeides et al. [14] and it uses a 2-level table. The first level table, called the Value 
History Table (VHT) is direct mapped and it is indexed using the least significant bits 
of the instruction PC. This table stores an order-3 context composed by the last-value 
produced by the instruction (32 bits), and two strides between the 3 last outcomes 
produced by the instruction (8 bits each). The second level table, called the Value 
Prediction Table (VPT) is indexed by a hash function, which uses context information 
from the VHT. The VPT is responsible for storing the value prediction (32 bits) and 
the confidence estimation for each context. The hash function shift-xor-fold (also used 
for indexing the 2"" level table in the hybrid predictor), shown in figure 2, differs from 
the original one proposed by Sazeides, and significantly reduces the aliasing in the 
VPT (especially for small tables). 

Order -3 Context 

Strlit 
nu 

Fig 2. CBP hash function. 

Figure 3 presents the efficacy results for several different CBP configurations 
(described in table 3). In contrast to the SP, we now remark on the significant 
influence of table size on predictor efficacy for both sets of benchmarks - increasing 
the size of the prediction table from 256 up to 4K entries doubles the CBP efficacy for 
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most of the programs --. It is also important to highlight that, although for the 
SPEC95 suite the results of the CBP seem slightly worst than for the SP, for the MB 
set we appreciate a significant improvement on value predictability, especially for 
gsm, which now exhibits good predictability. 

D256 D512 B1024 B204B B4096 D256D512 111024 »2048 «4096 

g 70 
«60 
J50 
I 40 
g30 

10 rill I h 
a) MediaBench b) SPEC95 

Fig 3. CBP efficacy for 256,512, IK, 2K and 4K-entry VPTs. 

Hybrid predictor implementation. The traditional approach of implementing hybrid 
predictors is based on dissociated predictors and a selection mechanism. Each 
individual predictor produces its own prediction, and the selection logic is responsible 
for choosing the more suitable for the current instruction. However, when the 
predictable instruction sets of the predictors are highly overlapped, the hardware 
efficiency of this approach is low because it uses duplicated hardware for predicting 
the same instructions. The hybrid predictor employed in this paper is based on a 
previous work presented in [11]. Instead of using dissociated predictors schemes, it 
uses overlapped ones and a finite state machine based on value sequence 
classification, which decides when it is necessary to use each part of the predictor. 
The key idea behind this approach is to use the extra hardware only when it necessary 
for predicting a particular value sequence. This way for constant sequences it only 
uses the last-value table, for stride sequences (not constant) it uses both the last-value 
and stride tables, and for non-stride sequences it uses in addition the second level 
table. Notice that this hybrid predictor only produces a prediction at one time. The 
block and state diagrams of this predictor are shown in figure 4, for more details 
please see [11]. 

Several different configurations are possible for this kind of predictor, since each 
of the tables can be of a different size. In this work we have elected HP configurations 
with the same cost as the CBP. The configurations employed are described in table 3 
and the HP efficacy results are shown in figure 5. 

Table 3. Predictor configuration. 

Predictor Configuration 

A B C D E 
Stride E 256 512 1024 2048 

1024 
2048 
1024 
2048 

4096 
Context EvHT 

EypT 

128 
256 

256 
512 

512 
1024 
512 
1024 

1024 
4096 

Hybrid ELAST 
= 

EVPT 

= EsTRJDE 128 
256 

256 
512 

1024 
4096 
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Fig 4. Hybrid predictor. 
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Fig 5. Hybrid predictor efficacy for 256, 512, IK, 2K and 4K-entry VPTs. 

From the results presented above we can comment that, in general, program 
predictability is higher for the hybrid predictor than for other predictors. Nevertheless, 
variations can be observed depending on the suite under consideration. For the MB 
suite, a remarkable increase in predictability can be noticed for all the programs, 
while for the SPEC95 set the previous remark is only true for a few benchmarks. In 
all other aspects, the behavior of the HP is similar to that of the previous predictors. 
With respect to the predictability of pegwit, although significantly better than for the 
SP or CBP, we observe once more that it is particularly poor compared to the other 
programs of the MB set (this is not true if compared to SPEC95 programs). The 
reason lies in the nature of the program itself. Pegwit is a program for public key 
encryption and its structure has been chosen specifically to avoid redundancy and so 
be resistant to cryptanalysis methods [15]. 

4.2     Comparative results 

For the sake of highlighting the differences between both benchmark suites, we 
compare the average efficacy results as a function of the predictor cost. Furthermore, 
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these comparison also helps us to select the best predictor (i.e. best balance between 
efficacy and cost). 

The most complex structures of the predictor are the prediction tables, and 
therefore we propose using the global table size as a measure of the predictor cost. 
Table 4 describes the formulae used to calculate the overall size of the predictors (E 
represents the number of table entries and N represents the number of entry field bits). 

Table 4. Cost formulae. 

Predictor Global Table Size 
Stride 

Context 
Hybrid 

E  *  (NvALUE + NSTHIDE) 

EvHT *  (NVALUE + 2  *  NSTRIDE) +   EvPT *  NvALUE 

ELAST * NVALUE + EVPT * NVALUE + 2 * ESTRIDE * NSTRIDE 

Figure 6 shows the average results for both sets of programs as a function of the 
cost. We have computed two different means in order to evaluate the uniformity of 
the program suite behavior: the normal average and the so called realistic mean, 
calculated as the arithmetic mean of all programs except those with the best and worst 
behaviors. In general, we observe that in the case of the MediaBench suite, both 
means are practically equal, but for the SPEC95 benchmarks the average is about 5% 
above the realistic mean. This indicates a more homogeneous behavior, in terms of 
value predictability, in the MediaBench set than in the SPEC95 set ( which is more 
sensitive to the outstanding behavior of the m88ksim program). 

55 

S« 
> 40 

I35 

*25 

B 
c  . D 

^*>^  TTTT^x-- 

1 -»-MBAvarig*   ""' 
i -» -MBRitlitirc 

'-+*-SPECAvinge 
i - W- 'SPEC RMIISIIC 

Predictor Cost (Kbytes) 

a)SP 

Predictor Cost (Kbytes) 

b)CBP 

Predictor Cost (Kbytes] 

c)HP 

Fig 6. Comparative results for MB and SPEC benchmarks. 

These results also show that predictability is higher for the MediaBench suite in all 
circumstances, and that the difference between both benchmark sets is more 
prominent for small predictor costs, decreasing as cost grows. This comparatively 
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high predictability of the MediaBench programs may lie in the following reasons. 
First, they have, on average, much more integer and less load instructions than the 
SPEC95 programs (see tables 2 and 3) - in fact these instructions are the most 
predictable instructions, as shown in [4] --. Second, MediaBench applications exhibit 
more loop intensive structures and more redundancy in the input data (images, voice, 
video...) than SPEC95 programs. .   . 

Comparing the different predictors in the case of embedded-processors, it is 
obvious that the hybrid predictor exhibits the best balance between efficacy and cost 
and hence it represents the most suitable choice. Otherwise, in the case of general- 
purpose processors, the HP achieves similar results to the SP. 

5    Performance analysis 

From the previous section we can conclude that the MediaBench suite exhibits a 
higher value predictability than SPEC'95. However, to justify the use of the extra 
value prediction hardware, it is essential to prove that the processor performance is 
significantly improved. ... 

In this section we evaluate the achievable speedup from using value prediction in 
two typical processor architectures: a high-performance embedded processor, and a 
high-performance general purpose processor. 

5.1     Machine model 

A detailed description of all the hardware mechanisms involved in the value 
speculation technique is beyond the scope of the present work. We just want to briefly 
introduce the architecture employed in the timing simulations, which is explained m 
more detail in the Technical Report [16]. 

F.lcn Ou.u.tFO) 

 E 

DECODE/ 
DISPATCH 

TTT1- ni it i,i I-  

Decode & Rename 

I« w mum    ▼  
-■mil llVl I Hi HI I 

Scheduling & Bypass logic 

 T UnO/Stor« QMV* (ISO) ■mj'n t IT  

r^r^ 
tops« Updti» UM [HUU> 1 .  

 ^!imTnmrTTTn-mteXD 
LMd/SIC!» OJ»UB (LSO) 

Fig. 7. Architecture Block Diagram. 

Our baseline architecture, shown in figure 2, is derived from the architecture used 
by the SimpleScalar Out-of-Order simulator [13]. This architecture is based on the 
Register Update Unit (RUU) [17], which is a scheme that unifies the instruction 
window, the rename logic, and the reorder buffer under the same structure. 
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Predictor Lookup. The value predictor is accessed in parallel with the instruction 
fetch using the addresses of the instructions fetched in each cycle, and it provides the 
predicted output values (if available) of these instructions. 

Scheduling policy. The scheduling policy firstly issues the instructions with actual 
operands, and thus instructions with predicted or speculative operands are issued later. 
Within each group, an oldest-instruction-first policy is used. Using this policy, 
speculative instructions are not issued while there are enough non-speculative 
instructions ready to execute, even if these non-speculative instructions are newer 
than the speculative ones. 

Validation and misprediction recovery. The process of validation/invalidation of 
speculative instructions is performed during write-back. This process is performed in 
parallel, i.e. all the instructions within a dependence chain can be 
validated/invalidated in a single cycle. The instructions whose operands have been 
validated can commit in the next stage. On the other hand, those instructions whose 
operands have been invalidated must be re-executed. In view of the fact that it is not 
possible to check the validity and re-schedule the invalidated instructions in the same 
cycle, it is obvious that these instructions cannot be re-executed in the next cycle. 
Consequently, they are delayed one cycle in relation to normal execution. 

Baseline architectures. Table 3 shows the main parameters of the two selected 
architectures: a 4-width embedded processor architecture and a 6-width general 
purpose architecture. Most of the parameters of these architectures (fetch/decode 
width, issue width, instruction window and LI-cache size) have been taken from two 
highly evolved representative commercial processors: the AMD K6-2E embedded 
processor core [18], and the AMD Athlon general-purpose processor core [19] (notice 
that fetch/decode width refers to RISC instructions). Other parameters, like functional 
units, have been adapted to Simplescalar Simulator, which does not support special 
instructions (like MMX or 3DNow). Furthermore, since value prediction significantly 
increases the pressure on execution units, the number of functional units and memory 
ports has been slightly increased in order to avoid the bottleneck in the execution 
stage. 

Table 5. Architectural Parameters. 

Configuration parameters Embedded Processor General-purpose Processor 
Fetch/decode width 4 6 
Issue width 6 9 
Instruction window 24 72 
Load Store Queue 12 36 
# Integer ALU 4 6 
# Integer Multiplier 1 2 
# Floating Point ALU 4 6 
# Floating Point Multiplier 1 2 
# Memory Ports 2 3 
LI I Cache / LI D Cache 32KB / 32KB 64KB / 64KB 
LI Latency 1 1 
L2 Cache Size No 4MB 
L2 Latency 6 
Memory Latency 10 10 
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5.2    Comparative results 

In the previous section we concluded that the hybrid predictor exhibits the best 
cost/efficacy trade-off. This observation, along with the fact that detailed timing 
simulations take a long time to execute, led us to use only the hybrid predictor to 
show performance results. 

Figure 8 shows the percentage of speedup achievable for both architectures 
(embedded and general purpose) and both benchmark suites (MediaBench and SPEC) 
using the hybrid predictor with various cost configurations (under 16 KBytes), and 
using a 2-bit saturating counter for confidence estimation with a confidence threshold 
equal to 3. Both the average and the realistic mean (eliminating the best and the worst 
cases) are displayed in this figure. 

Two main conclusions can be drawn from this figure. First, the predictability 
results shown in the previous section have a direct equivalence in the performance 
results, since the speedup obtained for the MediaBench suite, for both architectures 
and all the predictor configurations, is higher than the speedup reached for the SPEC 
suite. Second, the difference between the average and the realistic mean curves for the 
SPEC benchmarks is much more prominent than the difference between the 
predictability curves shown in the previous section. Therefore, the sensitivity of the 
SPEC suite in the extreme cases has an even higher impact on speedup. This behavior 
is mainly due to the irregular results obtained for the m88ksim benchmark, which 
achieves a much higher speedup than the other benchmarks. On the other hand, 
MediaBench benchmarks exhibit a much more regular behavior, since the difference 
between the average and the realistic mean curves is of little significance. 

'-if—MB Average        - - •■ -  MB Realistic 
-M SPEC Average     --■»<--   SPEC Realistic 
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Predictor Cost (Kbytes) 

a) Embedded Processor b) General Purpose Processor 

Fig. 8. % Speedup achieved with the hybrid value predictor 

Figure 9 highlights the differences in the speedup achieved by using value 
prediction in the two habitual working situations: the embedded processor running 
MediaBench-like applications, and the general-purpose processor running SPEC-like 
applications. 

Despite the general-purpose processor having wider fetch and issue, together with 
a larger window, the embedded processor obtains a significantly higher speedup 
through value prediction. These results reveal two important facts. First, as we have 
proved throughout this paper, typical applications of embedded systems, like 
MediaBench benchmarks, exhibit a higher value predictability than general-purpose 
applications. Second, as shown in [16], the value prediction technique gets better 
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speedup results when the processor uses a small to medium size instruction window. 
The explanation of this effect is simple. With a small to medium window size, the 
number of independent instructions kept in the window are not enough to cover the 
available issue bandwidth, hence value prediction can be efficiently exploited because 
it allows data dependencies to be broken, and a good number of dependent instruction 
to be issued in parallel. However, as the window enlarges, the number of independent 
instructions kept in the window also increases, and hence value prediction becomes 
less useful, since it is easier to find enough independent instructions in the window to 
feed the issue bandwidth. In view of this fact, embedded processors can benefit more 
from value prediction than general purpose processors, because they usually employ 
smaller windows due to area restrictions (24 and 72, respectively in our architectures). 

;    DEmbedded processor running MediaBenchs 

<    ■ General-purpose processor running SPECs 

Predictor Cost (Kbytes) 

Fig. 9. Speedup achievable in habitual working situations (realistic mean) 

A common question many times asked about the use of value prediction is if the 
extra prediction hardware spent could be better employed in other parts of the 
processor, which could yield a higher benefit in the overall performance -- for 
example increasing the LI-cache size --. With this idea in mind we performed some 
experiments whose results are displayed in Figure 10. This figure shows the speedup 
obtained by doubling the Ll-cache (both the instruction and data caches) in the 
embedded processor and the general purpose processor (both processors running the 
MediaBench benchmarks), and it is compared to the speedup obtained by using a 14 
Kbyte hybrid value predictor. 

a) Embedded processor b) General-purpose processor 

Fig. 10. Speedup obtained by doubling the LI -cache and by using value prediction 
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We can observe that, for both processors, the speedup achievable using the value 
prediction is much higher than increasing the cache size. This difference is more 
prominent in the general purpose processor (when executing MediaBench), since 
increasing the cache scarcely affects performance. Furthermore, the cost of the 
prediction hardware (14 Kbytes) is much lower than the cost of doubling the Ll-cache 
(64 Kbytes in the embedded processor and, 128 Kbytes in the general purpose 
processor). So, we can conclude that value prediction is a profitable hardware 
investment for processor performance. 

6    Conclusions and Future Work 

The objective of this work is to apply value prediction techniques in the ambit of 
embedded processors and to demonstrate their higher efficiency within this scope. 
The main conclusions that can be drawn from this study are the following: 
• Our initial intuition was verified and we have demonstrated that multimedia and 

communication programs present a more highly predictable value behavior than 
normal programs. Furthermore, a high degree of predictability can be obtained 
using low-cost value predictors, and therefore employing value prediction seems 
reasonable for this particular kind of applications. 

• By means of detailed timing simulations, and using two generic high-performance 
architectures, one for an embedded processor and another for a general purpose 
processor, we have shown that the higher predictability of multimedia and 
communication programs has a direct impact on the performance results, since the 
speedup obtained for the MediaBench suite, for both architectures and all the 
predictor configurations is higher than the speedup attained for the SPEC suite. 

• In spite of the general-purpose processor having a wider fetch and issue, as well as 
a larger window, the speedup achievable using value prediction in a embedded 
environment is significantly higher. This is due to both the higher value 
predictability of multimedia and communication applications and the lower 
instruction window used in embedded processors, which allows more efficient 
exploitation of value prediction. 

• Finally, we have shown that the speedup obtained by using a hybrid value 
predictor is appreciably higher than the speedup obtained by doubling the Ll- 
cache. These results prove that the hardware invested on value prediction is a 
beneficial expense for the processor performance. 

Nevertheless, this work must be interpreted as a first step towards integrating value 
speculation into embedded processor architecture. We believe that there is 
considerable work to be carried out, especially in relation to performance/cost 
analysis, power-consumption considerations, and confidence estimation. Our future 
research will cover these issues, and also deepen the analysis of the hardware 
mechanisms involved in value speculation. 

-333- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

7    References 

1. M.Schalett, "Trends in Embedded-Microprocessors Design", IEEE Computer, pp. 44-49, 
Aug. 1998. 

2. J. Choquette, M. Gupta, D. McCarthy and J. Veenstra, "High-Performance RISC 
Microprocessors", IEEE Micro, Vol. 19, Num. 4, pp. 48-55, Jul./Aug. 99. 

3. D. Connors, J. Puiatti, D. August, K. Crozier and W. Hwu, "An Architecture Framework for 
Introducing Predicated Execution into Embedded Microprocessors", Proc. of the 5th 
International       Euro-par Conference, Aug. 1999. 

4. Y. Sazeides, J.E. Smith, "The Predictability of Data Values," Proc. of 30th Int. Symp. on 
Microarchitecture (MICRO-30), pp. 248-258, Dec. 1997. 

5. B. Calder, G. Reinman and D.M. Tullsen, "Selective Value Prediction", Proc. of the 26th 
Int. Symp. on Computer Architecture, May. 1999. 

6. C. Lee and W. Mangione-Smith, "MediaBench: A Tool for Evaluating and Synthesizing 
Multimedia and Communications Systems", Proc. of the 30th Int. Symp. on 
Microarchitecture (MICRO-30), pp. 330-335, Dec. 1997. 

7. M.H. Lipasti and J.P. Shen, "Exceeding the Dataflow Limit via Value Prediction," Proc. of 
the 29th Int. Symp. on Microarchitecture (MICRO-29), pp. 226-237, Dec. 1996. 

8. K. Wang and M. Franklin, "Highly Accurate Data Value Prediction using Hybrid 
Predictors," Proc. of 30th Int. Symp. on Microarchitecture (MICRO-30), pp. 281-290, Dec 
1997. 

9. T. Nakra, R. Gupta, M.L. Soffa, "Global Context-Based Value Prediction", Proc. of the 5th 
Int. Symp. On High Performance Computer Architecture (HPCA-5), Jan. 1999 

10. B. Rychlik, J. Faisty, B. Krug, J.P. Shen, "Efficacy and Performance Impact of Value 
Prediction", PACT-98 

11. L. Pinuel, R.A. Moreno and F.Tirado, "Implementation of hybrid context-based value 
predictors using value sequence classification". Proc. of the 5th International Euro-par 
Conference, Aug. 1999. 

12. F. Gabbay and A. Mendelson, "Improving Achievable ILP Trough Value Prediction and 
Program Profiling", Microprocessores and Microsystems, Vol 22, n.3, Sept. 1998. 

18. D. Burger and T.M. Austin. "The SimpleScalar Tool Set, Version 2.0". Technical Report 
CS#1342, University of Wisconsin-Madison, 1997. 

19. Y. Sazeides, J.E. Smith, "Implementations of Context Based Value Predictors". Technical 
Report #ECE-TR-97-8, University of Wisconsin-Madison, 1997. 

20. J. Daemen, L.Knudsen and V. Rijmen, "The Block Cipher SQUARE", Workshop for Fast 
Software Encryption, 1997 

21. R. Moreno, "Using value prediction as a complexity-effective solution to improve 
performance", Technical Report 5/98, Dep. de Arquitectura de Computadores, Universidad 
Complutense de Madrid, Dec. 1998. 

22. G.S. Sohi, "Instruction Issue Logic for High-Performance, Interrumpible, Multiple 
Functional Unit, Pipelined Computers", IEEE Trans, on Computer, 39(3), pp. 349-359,1990 

23. AMD, AMD-K6-2E Processor Data Sheet, Jan. 2000. 
24. AMD, AMD Athlon Processor Data Sheet, March. 2000. 

-334- 



VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing 

Parallel Pole Assignment of 
Single-Input Systems* 

Maribel Castillo1, Enrique S. Quintana-Orti1, Gregorio Quintana-Orti1, and 

Vicente Hernandez2 

1 Depto de Informätica, Universidad Jaume I, 12080-Castellön, Spain; 
{castillo,quintana,gquintan}8inf .uji.es. Tel.: +34-964-728000. Fax: 
+34-964-728435. 

2 Depto. de Sistemas Informaticos y Computation, Universidad Politecmca de 
Valencia, 46071-Valencia, Spain; vhernandadsic.upv.es. Tel.: +34-96-3877350. 
Fax: +34-96-3877359. 

Abstract. We present a parallelization of Petkov, Christov, and Konstantinov's 
algorithm for the pole assignment problem of single-input systems. Our new im- 
plementation is specially appropriate for current high performance processors and 
shared memory multiprocessors and obtains a high performance by reordering the 
access pattern, while maintaining the same numerical properties. 

The experimental results on two different platforms (SGI PowerChallenge and 
SUN Enterprise) report a higher performance of the new implementation over tra- 
ditional algorithms. 
Topics: Numerical methods, parallel and distributed algorithms. 

1    Introduction 

Consider the continuous, time-invariant linear system defined by 

x(t) = Ax(t) + Bu(t),    x(0) = x0, 

with n states, in vector x(t), and m inputs, in vector y(t). Here, A is the 
nxn state matrix, and B is the n x m input matrix. 

In the design of linear control systems, u(t) is used to control the be- 
haviour of the system. Specifically, the control 

u{t) = -Fx(t), 

where F is an m x n feedback matrix, is used to modify the properties of the 
closed-loop system 

x{t) = (A-BF)x{t). 

The problem of finding an appropriate feedback F is referred to as the 
problem of synthesis of a state regulator [11]. In some applications, e.g., for 

* Supported by the Conselleria de Cultura, Education y Ciencia de la Generalidad 
Valenciana GV99-59-1-14 and the Fundaciö Caixa-Castello Bancaixa. 
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asymptotic stability [4,11], F can be chosen so that the eigenvalues of the 
closed-loop matrix are in the open left-half complex plane. 

In this paper we are interested in the pole assignment problem of single- 
input systems (m = 1 and B = b is a vector), or PAPSIS, which consists in the 
determination of a feedback vector F - f, such that the poles of the closed- 
loop system are allocated to a pre-specified set A = {Ai, A2,..., An} [4]. 
This problem has a solution (unique in the single-input case) if and only if 
the system is controllable [15]. We assume hereafter that this condition is 
satisfied. 

A survey of existing algorithms for the pole assignment problem can be 
found, e.g., in [4-6,11,14]. Among these, methods based on the Schur form of 
the closed-loop state matrix [6,9,10] are numerically stable [3,7]. 

In [2] we apply block-partitioned techniques to obtain efficient implemen- 
tations of Miminis and Paige's algorithm for PAPSIS [6]. In this paper we 
apply similar techniques to obtain LAPACK-like [1] block-partitioned vari- 
ants and parallel implementations of Petkov, Christov, and Konstantinov's 
algorithm (hereafter, PCK) [10] for PAPSIS. 

We assume the system to be initially in unreduced controller Hessenberg 
form [13]. This reduction can be carried out by means of efficient blocked 
algorithms based on (rank-revealing) orthogonal factorizations [12]. 

Our algorithms are specially designed to provide a better use of the cache 
memory, while maintaining the same numerical properties. The experimental 
results on SGI PowerChallenge and SUN Enterprise multiprocessors report 
the performance of our block-partitioned serial and parallel algorithms. 

2    The sequential PCK algorithm 

Consider the controllable single-input system in controller Hessenberg form 
defined by (A, b), with real entries, 

(b\A) = 

ßi an ■■■ ai,„_i ain 
<*21 • • ■ OL2,n-l   C*2n 

(1) 

Qn,n-1 &nn _ 

As the system is controllable, it can be shown that ßi,a2i,...,ann-i # 
0 [13]. 

The PCK algorithm is based on orthogonal transformations of the eigen- 
vectors and proceeds as follows. (For simplicity we only describe the algorithm 
for pole assignment of real eigenvalues.) Let A € R and v € Mn be, respec- 
tively, an eigenvalue and its corresponding eigenvector of the closed-loop ma- 
trix A - bf. Let Q be an orthogonal matrix such that Qv = («i, 0,..., 0)T. 
This matrix can be constructed so that QTAQ and QT{A - bf)Q are in 
Hessenberg form. Furthermore, 

QT(A-bf)Qei = (\,0,...,0f, (2) 
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where ei is the first column of the identity matrix, and solving (2) we find 
the first element of the transformed feedback f = fQ from the correspond- 
ing elements of QTAQ and QTb. After this stage, the procedure is repeated 
with the lower trailing blocks of order n - 1 of the transformed matrices to 
assign a new pole. By proceeding recursively we obtain /, and / = fQ . The 
procedure for assigning A = {Xi, A2,..., An} can be roughly stated as follows. 

for i = l,...,n - 1 
Set vn = 1 and compute vn-i 
for j = n- l,n-2, ...,i 

Compute Vj-i 
Construct a Givens rotation Rij+i G R"xn such that 

(v1,...,vj,vj+1A---,0)Ri,j+i = {vi,y,vj,0,---^) 
Apply the transformation A = Rij+iARitj+1 

end for 
Apply the transformation b — Riti+ib 
Compute fi = cii+ij/bi+i 

end for 
Compute /„ = (a„,„ - An)/6„ 

At each iteration of the outer loop a new pole is assigned. In the inner loop, 
at each iteration we compute a component of eigenvector v (j - 1), obtain a 
transformation to introduce a zero in a component of the eigenvector (j +1), 
and finally apply this transformation on the system matrix. 

3    Parallelization of the PCK algorithm 

In traditional implementations of this algorithm each transformation matrix 
Ri,j+i is applied immediately after it is computed. Thus, at each iteration of 
loop j, two rows and columns (j'-th and j + 1-th) of the matrix are referenced. 

Our block-partitioned algorithms reduce the number of data references 
by delaying the update of some entries the matrix. Thus, we work on the 
transformed lower Hessenberg matrix AT, partition this matrix by blocks of 
columns (see figure 1), and delay the application of transformations from 
the left until the proper block is referenced. Although the parameters of the 
delayed transformations need to be stored, the dimension of this work space 

is small. 
Specifically, consider the assignment of the first pole in the block-partition- 

ed algorithm: 

- A set of transformations are computed to shift up the pole, until it dis- 
sapears on the top left corner of block Bl, and the transformations are 
only applied to Bl. The application of this update from the left to blocks 
B2, ..., B6 is delayed. 
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B5 

B4 

B3 

B2 
Bl 

Fig. 1. Partition of the matrix by blocks of columns. 

The procedure continues with block B2. First, the delayed update is ap- 
plied from the left to B2. Then, a new set of transformations are computed 
to shift up the pole, and these transformations are only applied to B2. 
(The application of this update from the left to blocks B3, ..., B6 is 
delayed.) 
The procedure is repeated with blocks B3, B4, B5, and B6, until the pole 
is assigned and the problem is deflacted. 

In the parallel algorithm we are interested in an algorithm with a higher (and 
coarser) degree of parallelism than that achieved with the application of a 
single tranformation. Notice that in each iteration of the inner loop j two 
rows and two columns of the matrix are modified. Thus, as soon as j = n - 4, 
it would be possible to start the assignment of a different pole. 
This is a pipelined algorithm. Specifically, the assignment of a new pole can 
be started as soon as the transformations related to the previous pole do not 
affect to the last block of columns. Thus, it is possible to assign in parallel 
as many poles as blocks in the partition of AT. 
In our algorithm, the maximum number of pipelined stages is 2^, where n 
and nb are the problem size and block size respectively. Figure 2 shows the 
evolution of the different stages in our pipelined algorithm. As the problem 
is deflacted, the number of blocks of columns (and therefore the number 
of pipelined stages) decreases. In practice, nb must be larger than three; 
otherwise, the stages can not be correctly pipelined. 

4    Experimental Results 

In this section we report the results of our numerical experiments on a SGI 
PowerChallenge (SGI MIPS R10000) and a SUN Entreprise 4000 (SUN Ul- 
traSPARC) multiprocessors. All our experiments were performed using IEEE 
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Stage 1 Stage 2 

Step 4        :    Step 2 

(d) Stage 1, step 4- 
Stage 2, step 2. 
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Fig. 2. Evolution of the pipelined algorithm. 
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double-precision arithmetic and Fortran-77 (e ss 2,2 x 10~16). We have em- 
ployed in our implementations orthogonal transformations based on Givens 
rotations. The system pair (A, b) was generated so that the computation of 
the feedback matrix was well-conditioned. 

We have developed the following pole-assignment algorithms: 

- BPAPSIS: Block-partitioned algorithm. 
- PPAPSIS: Parallel version of the block-partitioned algorithm. 

Figure 3 shows the speed-up of our block-partitioned algorithm for dif- 
ferent block dimensions and problem sizes, nb and n respectively. We test 
system of moderate size from 100 to 1000, using block sizes of {nb =)1 (non- 
blocked algorithm), 32, 64 and 100 for the SGI MIPS R10000 processor, and 
nb= 1, 16, 32 and 64 for the SUN UltraSPARC processor. The results are av- 
eraged for 5 executions on different random matrices. In all the experiments 
the blocked implementations clearly outperform the sequential code {nb = 1), 
except on SGI MIPS R10000 when the problem size is reduced (n < 200). 

nb=1 -4-    ' 
1 1 

—i  

iteit -X- 
nb.32 ■•*•■ 

.*=#= :* =*=«*= -.*=*      ■ 

r 
/ 

/ 

-S---B- ~3- ~B—B-- -B—D 

 1 1                       1 

Problem size(n) 

Fig. 3. Speed-up of the block-partitioned algorithm on the SGI MIPS R10000 (left) 
and the SUN UltraSPARC (right) processors. 

Figure 4 shows the efficiency of our parallel algorithm compared with the 
non-blocked and blocked algorithms using np = 2,4,..., 12 processors. These 
figures report the efficiency versus problem size on the SGI PowerChallenge 
and SUN Enterprise platforms. The blocked and parallel algorithm employ 
the optimal block size determined in the previous experiment, i.e., nb - 
100 and nb = 32 for SGI and SUN, respectively. As these figures show if 

■340- 



VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing 

we compare our parallel algorithms with the serial algorithm (non-blocked) 
efficiencies higher than 1 are obtained. On the other hand if the paralell 
algorithm is compared with blocked algorithm, the maximum efficiency is 
80% and decrease as the number of processors of the system is increased, 
since the problem size is moderate. 

SUNEmerprcettflO 

ProD!emstfe(ri) 

SGIPwefCnäftnge 

np=2 —+— 
—1— 1 

np=4 —x— 
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..--*'" ..-""*"               ,--° 

/ 
./   r' 
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' ,*' ■ 

X     .■'    0^ '   0' 
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Fig. 4. Efficiency of the parallel algorithm compared with the non-blocked algo- 
rithm (top) and the blocked algorithm (bottom) on the SGI PowerChallenge (left) 
and the SUN Enterprise 4000 (right) multiprocessors. 
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5    Conclusions 

We have presented block-partitioned and parallel versions of Petkov, Chris- 
tov, and Konstantinov's algorithm for the pole assignment problem of single- 
input systems. Our block-partitioned algorithms achieve a high speed-up on 
SGI and SUN processors, while maintaining the same numerical properties. 

The experimental results of the parallel algorithms also show an impor- 
tant increase in performance on an SGI PowerChallenge and SUN Enterprise 
platforms. 
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Abstract. Parallel algorithms for solving nonlinear systems are stud- 
ied. Non-stationary parallel algorithms based on the Newton method are 
considered. Convergence properties of these methods are studied when 
the matrix in question is either monotone or an H-matrix. In order to il- 
lustrate the behavior of these methods, we implemented these algorithms 
on two distributed memory multiprocessors. The first platform is an Eth- 
ernet network of five 120 MHz Pentiums. The second platform is an IBM 
RS/6000 with 8 nodes. Several versions of these algorithms are tested. 
Experiments show that these algorithms can solve the nonlinear system 
in substantially less time that the current (stationary or non-stationary) 
parallel nonlinear algorithms based on the multisplitting technique. 

Topics. Numerical methods, parallel and distributed algorithms. 

1    Introduction 

Let F : H" -» 1" be a nonlinear function. We are interested in the parallel 

solution of the system of nonlinear equations 

F{x) = 0, (1) 

where it is assumed that a solution .r* exists. We suppose that there exists an 

7*0 > 0 such that 
(i) F is differentiablo on S0 = {x € IT   :   ||.r - .r*|| < r0}, 
(ii) the Jacobian matrix at x*, F'{x*), is nonsingular, 
(iii) there exists an L > 0 such that for x £ So, \\F'(x)-F'(x*)\\ < L||.T-.T*||. 

Under assumptions (i) (iii), a well-known method for solving the nonlinear 
system (1) is the classical Newton method (cf. [11]). Given an initial vector xS°>, 

this method produces the following sequence of vectors 

x(t+i) = x(t) _ r(t+h,    £ = 0,1,..., (2) 

* This research was supported by Spanish DGESIC grant number PB98-0977. 
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where xSe+^ is the solution of the linear system 

F'(x^)z = F(xW). (3) 

On the other hand, if we use an iterative method to approximate the solution 
of (3) we are in the presence of a Newton iterative method; see e.g., [11] and 
[12]. In order to generate efficient algorithms to solve nonlinear system (1) on 
a parallel computer, White [14] defines the parallel Newton-SOR method, that 
generalizes a particular Newton iterative method, the Newton-SOR method. 
In [14], White also introduces a parallel nonlinear Gauss-Seidel algorithm for 
approximating the solution of an almost linear system, that is, to solve (1) when 
F(x) = AT+$(X) -b, where A = (a^) is a real nxn matrix, x and b are n-vectors 
and <? : El" -> IRn is a nonlinear diagonal mapping (i.e., the ith component #,; of 
<P is a function only of .r,:). Bai [2], has generalized the parallel nonlinear Gauss- 
Seidel algorithm in the context of relaxed methods. Both methods are based 
on the use of the multisplitting technique (sec [10]). On the other hand, Bru, 
Eisner and Neumann [4] studied two non-stationary methods (synchronous and 
asynchronous) based on the multisplitting method for solving linear systems in 
parallel. As it can be seen e.g., in [G] and [9], non-stationary algorithms behave 
better than the multisplitting method. Recently, in [1] we have extended the 
idea of the non-stationary methods to the problem of solving an almost linear 
system. These methods are a generalization of the parallel nonlinear Gauss-Seidel 
algorithm [14] and the parallel nonlinear AOR method [2]. 

In this paper we construct a parallel Newton iterative algorithm to solve the 
general nonlinear system (1) that uses non-stationary multisplitting models to 
approximate linear system (3). For this purpose, let us consider for each x, a 
multisplitting of F'{x), {Mk(x),Nk(x), Ek}

p
k=v that is, a collection of splittings 

F'(x) = Mk{x)-Nk(x),    l<k<p, (4) 

and diagonal nonnegative weighting matrices Ek which add to the identity. 
Let us further consider a sequence of integers q{f.,n,k), £ = 0,1,2,..., .s = 
1,2, ...,m,t, 1 < k < p, called non-stationary parameters. Following [4] or [9] 
the linear system (3) can be approximated by .7^+2) as follows 

x((+i) = z(mc)^ 

zM = H,M())z(s-l) + B,M())F{x^),   , = 1,2,.. .,rnf, 

HeAx) = '£,Ek(M?{x)Nk(x))«t'a'k), (5) 
fc=i 

p q{f,s,k) — \ 

BeM) = J2Ek     Y,     {Mk\x)Nk{x))j M~\x) (C) 
fc=i 3=0 

v 

k=i 

Y,Ek(l- {Mk-\x)Nk{x))^^A {F'{x))-\ (7) 
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and 2<°> = 0. Thus 

'mi—\    me 
rW\      Fir«)} *(<+4)=     E   II  HlJ(xM)Bt,i{x

W) + Bt,mt{x
w)\F(xl 

where ]T=,+i ^,j(xW) denotes the Product of the matrices Hej{x^) in the 

order ffW^'lff^,-.^'^.-^«!1"')' Therefore, from (2) the non-sta- 
tionary parallel Newton iterative method can be written as follows. 

x«+»=G,,mi(x
W), (8) 

Gt,mt{x) = x-Ae,mt(x)F(x) 
where 

and 
(mi—l    me \ 

£    JI  Hld(x)Bt,i(x) + Bl<mt(x)    . (9) 
»=i j=i+i / 

We note that the formulation of this method allows us to use different number 
of local iterations q(t, s, k) not only in each processor k and at each nonlinear 
iteration £ but at each linear iteration s. Moreover, this method extends the 
parallel Newton method introduced by White [14]. 

In the following section we analyze the convergence properties of this algo- 
rithm when the Jacobian matrix is monotone or an if-matrix. Section 3 contains 
some numerical experiments, which illustrate the performance of the algorithms 
studied, on an Ethernet network of five 120 MHz Pentiums and on an IBM 
RS/6000 SP. In the rest of this section we present some notation, definitions and 
preliminary results used in the paper. 

A matrix A is said to be a nonsingular M-matrix if A has all nonpositive 
off-diagonal entries and it is monotone, i.e., A'1 > O. For any matrix A = 
(dij) € Hnxn, we define its comparison matrix (A) = (ay) by Q« = |aü|, atj = 
-\dij\, i ± j. The matrix A is said to be an if-matrix if (A) is a nonsingular M- 
matrix. The splitting A = M - N is called a weak regular splitting if M-1 > O 
and M~YN > O; the splitting is an if-compatible splitting if (A) = (M) - \N\; 
see e.g., Berman and Plemmons [3] or Varga [13]. 

A sequence {i^} converges Q-qnadratically to x* if there exists c < 1 such 

that 
||.T('+1)_.T*||<C||.TW_.T*||2. 

L(Hn) denotes the linear space of linear operators from HI" to El". 

Lemma 1. 5uppo.se that the mapping A : D C Hm -» L(IRn) « continuous at 
a point x° € D for which A{x°) is nonsingular. Then there is a 6 > 0 and a 
ß > 0 so that, for any x € D H {x : \\x - x°\\ < 6}, A{x) is nonsingular and 
H^4C.Tr)—a 1| < ft. Moreover, A(.T)

-1
 is continuous in x at x°. 

Proof. See Ortega and Rheinboldt [11]. 
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Theorem 1. Suppose F : D C M" —► Hm is G-differentiable at each point of a 
convex set Do C D, then for any x, y, z G Do, 

\\F(y) - F(z) - F'(x)(y - z)\\ < \\y - z\\  sup  \\F\z + t{y - z)) - F'(x)\\. 
0<t<l 

Proof. See Ortega and Rheinboldt [11]. 

2    Convergence 

In this section we study the convergence of the iterative scheme (8). For this 
purpose we need to make the following additional assumptions on the splittings 
(4). 

(iv) There exist tk > 0, 1 < k < p, such that for x G S0, \\Mk{x) - Mk{x*)\\ < 
tk\\x — x*\\. 

(v) Mk(x*), 1 < k < p, arc nonsingular. 
(vi) There exits 0 < a < 1, such that, for each positive integer s and I - 0,1,..., 

||ff/,,(.-r*)||<a, 

where Ht.s{x*) is defined in (5). 

From assumptions (i)-(iii) of Section 1 and using Lemma 1, it follows that 
there exists 0 < rx < r0 such that F' is continuous and nonsingular in Si — 
{x G HT : ||.T-.T*|| < 7"i}. On the other hand, it can be shown (sec e.g., Ortega 
and Rheinboldt [11]) that Newton method (2) converges Q-quadratically to x* 
in a neighborhood of x*. In order to simplify the notation we also denote this 
neighborhood by Si. From assumptions (iv)-(v) and Lemma 1, it follows that 
Mfc, 1 < k < p, is continuous and nonsingular in a neighborhood of x*, say 
again Si. Therefore Mfc(.-r)-1JVfe(:r), 1 < k < p, is well denned and moreover 
continuous in 5j. Then, H(tS(x) is also continuous in Si. Now, from assumption 
(vi) it obtains that ||^,S(.T)|| < a, f = 0,l,..., s = 1,2,..., m.e, in a neighbor- 
hood of x*, denoted again by Si. Moreover, since Mk{x)~lNk{x), 1 < k < p, 
are continuous in Si, there exists a positive integer K such that 

\\Mk{xYlNk{x)\\ <K,     l<k<p, (10) 

for all x in a neighborhood of x*, that we denote again by Si. 

Lemma 2. Let A : It" -► Z,(IT) be a mapping such that \\A{x)\\ < 8, in a 
neighborhood S of x*. Then for any x G S arid for any positive integer rn 

\\A(x)m - A(x*)m\\ < rn«"'-111,4(3:) - A(x*)\\. 

Proof. We proceed by induction. For m = 1, the result follows obviously. Suppose 
that the result is true for rn = k. Then 

|| A(x)k+l - A(x*)k+1\\ = \\A(x)h+1 - A(x)kA(x*) + A(x)kA(x*) - A(x*)k+1\\ 

< \\A(x)k(A(x) - A(x*))\\ + \\(A(x)k - A(x*)h)A(x*)\\. 

< 6k\\A(x) - A(r*)\\ + A:«*"1 ^(a;) - A(x*)\\6 = (k + l)Sk\\A(x) - A(x*)\\, 

and the proof is complete. 
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Lemma 3. Let x € Si and let rn be a positive integer, then 

rn 

I - II H*>*W = A^{x)F'{x)     I = 0,1,.... 

Proof. Let x £ Si, then from (7) 

Be,s{x)F'{x) = I-Hi,a(x),   s = 1,2,... ,m, I = 0,1,..., (11) 

where J?/,8(x) and Bt,a{x) are defined in (5) and (6) respectively. Then from (9) 
and (11) we obtain 

m—l     m 

^,m(.r)F'(*)=E    I!   Ht,i{T){I-HtAx)) + V-Hl,rn{x)) 
»=1 j=t+l 

m-1   /    m ™ \ 
= E      II  Htd(x)-Y[Htlj(x)\ +(I-H{,m(x)) 

i=i  \j=?.+i J'='
; / 

m 
= I-l[H(,j(x), 

and the proof is done. 

Lemma 4. Lef. x € Si and let rn be a positive integer, then 

m m rn 

ii n H*<>w - n H*A**)\\ < or-1 Y. \\H'<iW - H*^*)i <=o,i,.... 
j=i      J=I J

=I 

Proo/. In order to show this result, we proceed by induction. Obviously, the 
result follows for m = 1. Suppose that the result is true for m = k. Then taking 
into account that \\He,s(x)\\ < a, we can write 

fc+i *+i fc+i JL 

wiiHtjix) - n ^(^)ii=II n ff'jw - ^.*+iw n ^^ 
j=i     J=I        J=I J

=I 

+ Ht.k+i{x)f[Htd(x*)-f[HtA**)\\ 
j = l .7 = 1 

fc fc 

< iiif/,fc+i(a:)iiii n Ht A*) - n *M**)II 
j=l j=l 

fc 
+ \\HLk+i{x) - H/,fc+i(x*)|||| I] Hij(x*)\\ 

J=I 
fc fc 

< «IIII H(A*) - IT ^'(•r*)H + \\Hi,k+i(x) - He,k+i(x*)\\ak 

j=i i=i 
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< aa"-1 J2 \\HiA*) ~ HtA**)\\ + "' \:H,.k+i(x) - Ht,k+1(x*)\\ 
3 = 1 

fc+1 

= ak'£\\H{.J(x)-H(.j(x*)\\, 

and the proof is complete. 

Lemma 5. Suppose assumptions (i)-(v) are satisfied. Assume further that the 
sequence of number of local iterations q(£, s, k), f = 0,1,..., s = 1,2,..., m.(, 
1 < k < p, rem.ains bounded by q > 0. Then, there exists L* > 0 such that, for 
any x G S\ and for any positive integer s, it follows 

\\Ht,a(x) - Ht,B(x*)\\ < L*\\x - x*l    t. = 0,1,.... 

Proof. Let x £ Si, from (iii), (iv) y (v) it is known (see e.g., [12]) that there 
exists rk > 0, 1 < k < p, such that 

\\M^(x)Nk{x) - M^\x*)Nk{x*)\\ < rk\\x - x*\\. (12) 

On the other hand, if we denote Rk(x) = M^1{x)Nk{x), using Lemma 2 and 
(10), it obtains 

\\Rk(x)iW - Rk{xyW\\ < q&sWW-'WR^x) -Rk(x*)l    (13) 

Therefore from (10), (12) and (13), we have 

\\He,s(r) ~ Ht,a(x*)\\ < £ \\Ek\\\\I$'-a'k)(x) - 7#/''"'V)|| 
fc=i 

< J2 \\Ek\\q{e.,s,k)K^k)-lrk\\x - .r*|| < ]T \\Ek\\ {qK'"-lrk)\\ x - .T*||,(14) 
fc=i fc=i 

with K' = mscx{l,K}. Then \\He<a{x) - Ht.a{x*)\\ < L*\\x - x*\\, with L* = 

J2\\EknqK'^rk). 
k=i 

Lemma 6. Let assumptions (i)-(vi) hold and suppose that the sequence of num- 
ber of local iterations q{f.,.i,k), £ = 0,1,..., s = l,2,...,m*, 1 < k < p, 
remains bounded by q > 0, then there exists ci < +oo, such that for any x e Si, 

\\G,,m(x) - .T*|| < (:i\\x - .r*||2 + am\\x - a:*H,     t. = 0,1,..., 

Proof. From Lemma 3 it follows 

II Gt.m(x) - x*\\ = ||.r - Afim(x)F(x) - x*|| 
rn m 

< || - A(,m(x)F(x) + (/ - IJ Htd(x*))(x - x*)\\ + || J[ HtJ(x*)(x - x*)\\ 
3 = 1 3 = 1 

m 

= || - At,m{x)F{x) + Af,m(x*)F'{x*)(x - x*)\\ + || JJ H(J(x*)(x - x*)\\. 
.7 = 1 
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Then by assumption (vi), for i = 0,1,..., it obtains 

||G,,m(.r) - *1 < || - At,MF{x) + Ai,m(x*)F'(x*)(x - x*)\\ + am\\x - x*\\. 

Now, since F(x*) = 0, we have the following inequalities 

||G,.m(.r) - *1 < || - A,.m{x) (F{x) - F(x*) - F'(x*)(x - x*)) II 

+ \\Ae,m(*)(F'(x)-F'(x*))(x-x*)\\ 

+ || (Ae,m(x)F'(x) - Af,m(x*)F'(x*)) (x - x*)\\ 

+am||.r-.T*||. (15) 

On the other hand from (9), and using assumption (vi) we have 

\\At,m(x)\\ = 
m — 1     m 

E   II   Htd(x)Bt,i(x) + Bt,m(x) 
t=l j=i+l 

... — 1        m 

<Y,\\  II  HfAx)\\\\Bf.,i(x)\\ + \\B{.Mx) 
7.=l     j=i+l 

77?. —1 

<   ^0
m-'||^,i(x)|| + ||^,m(.T)||. (10) 

»=1 

By the definition of Bf.,s{x), given by (6), and using (10), it obtains 

p q(f-,s,k)-l 

\\Bt,B(x)\\ < E ™     E     \m^{x)Nk(x))h(x)\\\\M^)\\ 
fc=l /i=0 

p <?(0,fc)-l 

<£||sfc||   E   ^IIII^G^II. 
fe=l h=0 

That is, since the sequence q{t.,H,k), i = 0,1,..., a = 1,2,....m,, 1 < fc < p, 
remains bounded by <j > 0, we have 

||^,(.T)||<EII^IIE^III|M,-
1
(^) (17) 

Let /* = max{ft,A,...,/W, where ßk = sup^M^)"1!!    :    a: € Si}. The 
existence oi ßk, l<k <p, follows from Lemma 1. Then, from (17) it obtains 

9-1 

Thus, 

PM.r)||<Ell^HEK/V1 

\\Be>s(x)\\ < K\    £=0,1,...,   s= 1,2,...,mi, (18) 
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v 9-1 
for all x £ Si, where K* = ^ ||£fc|| ]T Khß > 0. 

fc=l h=0 

Now, by (16) and (18), for any x £ Si and for any positive integer m, we have 

(19) 

m_1 -        -        /I \ 
\\Af,m(x)\\ < Y, am_i/T + K* < I ^— + 1J K* = K* 

i=l ^ ' 

Now, using (19) we bound (15). From Theorem 1, it follows 

|| - At,m(x)(F(x) - F(x*) - F'(x*)(x - .T*))|| < 

< II - A,,m{x)\\\\{x - x*)\\  sup  || (F(x* + t(x - x*)) - F'(x*)) || 
0<*<1 

<H-^,m(x)||||(x-.r*)||   sup  L\\t(x-X*)\\<K*L\\(x-X*)\\2. 
0<*<1 

On the other hand, by condition (iii) we have 

\\Afm{x) (F'(x) - F'(x*)) (x-x*)\\ < \\Ae,m(x)\\\\F'(x) - F'(x*)\\\\(x - x*)\\ 

<K*L\\{x-x*)f. 

Using Lemmata 3, 4 and 5 it obtains 

|| (A(,m(*)F'(x) - Af,m(x*)F'(x*))(x - x*)\\ = 

' m m. \ 

\j=i 3 = 1 

< a™'1 £ \\Hej(x) - HfJ(x*)\\\\x - x*\\ < rnam-1L*\\x - x*f. 
3 = 1 

Since a < 1, {run"1-1} is upper bounded. Let c2 (dependent of a) an upper 
bound of this set, then setting cj - 2K*L + c2L*, the proof is complete. 

Remark 1. We want to point out that since we know nothing about the bound 
K in (10), we need, in lemmata 5 and 6, the sequence q{?,s,k) to be bounded 
by q > 0. If we have K < 1, then we do not need that upper bound for the 
non-stationary parameters q(f.,s,k) (sec (14) and (17)). 

Theorem 2. Let assumptions (i) (vi) hold and F(x*) = 0. Let {m*}£i0 be a 
sequence of positive integers, and define 

m = max {m0}U lm(-J2m  :  ^=1,2,.. 
»;=o 

(20) 

Suppose that m  <  +oo  and that the sequence of non-stationary parameters 
q{£, s, k), (. = 0,1,..., ,s = 1,2,..., m(,  1 < k < p, is bounded by q > 0.  Then, 
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there exist r > 0 and c < 1 such that, for i<0> G S = {x £ DT : \\x - x*\\ < r}, 
the sequence of iterates defined by (8) converges to x* and satisfies 

\\xV+i)-x*\\ <c™qxW -x*\\. 

Proof. Let d be as in Lemma 6. Let c > 0 be such that al'm < c < 1. Since 
a < cm, there exists 0 < r < n, such that 

Clr + (y<cm, 

and then, 
(cir + a)l/r" < c < 1. 

Now, we proceed by induction. For f. = 1, using Lemma 6, we have 

\\xW-x*\\ = ||G0,mo(*
(0)) -si ^ c1\\x^-x*\\2 + a^\\x^-x*\\ 

<(Clr + amo)||a:(0)-3:*||. 

Since Clr + <*m° < Clr + a < cm < cm°, then \\x^ - .r*|| < cm°\\x^ - x*\\. 
Therefore the result follows for (. = 1. Suppose that the result is true for 0 < £ < 

j. Then 

\\XU) _ j* || < c^-iHo:«-1) - .r*|| < J] cm-|k(0) - **||. 
s=0 

Now, for £ = j + 1, from Lemma C it follows 

||^+1> - .r*|| = WGwixW) -x*\\ < fa ||Z«>.-.T*|| +<**"')ll*ü) - *1 

< (aC[[ «m*)lk(0) - *1 + amj')ll*ü) - **ll 
s=0 

< (cir(ncm")+öm')ii*ü) - *i ^ (^i^mj_m+«mj)ii^(i) - ** 
=o 

< ((c™ _ a)cm^-m + om')||*w) - i*ll 

= c">*(fa" - a)c-m + amic-mi)\\xW> - x*\\ 

= (r'{\ - atrm + <xm'c-mi)\\xM - x*\\ 

= r"»j(i + ac-m{am>-lcm-n> - l))||.r^ - i*||. 

Since 0 < a < cm < 1, then ac~m < 1. On the other hand, 0 < a
m^lcm-mJ < 

cm[mj-l)(jn-mj  = ^(m-1)   <  j  and thcll)  _1  < OT;-"i(a
TOJ-1C,n-mJ - 1)  < 0. 

Therefore, ||.r('+1) -x*\\< cmi \\x^ - x*\\, and the proof is complete. 

Theorem 3. Let assumptions (i) ■ (iv) hold and F(x*) = 0. Let {m/>}?i0, be a 
sequence of positive integers, and define rn as in (20). Suppose that m < +oo. 
If any of the following two conditions is satisfied 
1. F'{x*) is a monotone matrix and F'{x*) = Mk(x*) - Nk{x*), l<k<p, are 
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weak regular splittings, 
2. F'{x*) is an H-matrix, F'(x*) = Mk{x*) - Nk{x*),  1 < k < p, are H- 
compatible splittings, 
then, there exist r > 0 and c < 1 such that, forx^ e S = {x € El"  :  ||.r-x*|| < 
r}, the sequence of iterates defined by (8) converges to x* and satisfies 

\\x<-(+V-x*\\<cm<\\xW-x*\\. 

Proof. Under conditions 1 and 2 and taking into account respectively, the proofs 
of Theorem 2.1 of [4] and Theorem 3.1 of [9] we obtain that assumptions (v), 
(vi) and (10) with K < 1 are satisfied. Then, the proofs follow from Theorem 2 
and Remark 1. 

3    Numerical Experiments 

We have implemented the above method on two distributed multiprocessors. 
The first platform is an IBM RS/G000 SP with 8 nodes. The second platform is 
an Ethernet network of five 120 MHz Pentiums. In order to manage the parallel 
environment we have used the PVMe library of parallel routines for the IBM 
RS/6000 SP and the PVM library for the cluster of Pentiums [7], [8]. 

In order to illustrate the behavior of the above algorithms, we have considered 
the following scmilinear elliptic partial differential equation (see e.g., [51, [121 
[14]) 

~{Klux)x - {K2uy)v = -geu (x, y) 6 Q, 
u = x2 + y2     (x, y) £ du, (21) 

where 

K1 = K1(x,y) = l + x2 + y2, 

K2 = K2(x,y) = l + ex + e\ 

9 = g(x,y) = 2(2 + 3.T
2
 + y2 + ex + (1 + y)ev)e-x'-»\ 

ß=(0,l)x(0,l). 

It is well known that this problem has the unique solution u(x,y) = x2 + y2. 
To solve equation (21) using the finite difference method, we consider a grid 
in Q of d2 nodes equally spaced by h = Ax = Ay = ^. This discretization 
yields a nonlinear system of the form Ax + <£(.r) = b, where # : IT -> IR" is 
a nonlinear diagonal mapping and A is a block tridiagonal symmetric matrix 
•^ = (A-i,Tj, A)f=1, where Tt are tridiagonal matrices of size d x d, i = 
1,2,..., d, and Dt are d x d diagonal matrices, i = 1,..., d - 1; see e.g., [5]. Let 

p 

S = {1,2,..., n} and let Sk, k = 1,2,... ,p, be subsets of S such that S = \JSk. 
k—l 

Let us further consider a multisplitting of F'(x), where F(x) = Ax + $(x) - b, 
of the form 

{D(x)-Lk,Uk,Ek}l=1,   where  Lk = { ~a^ ^<imd^65*- 
[       0, otherwise, 
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with 
fc v 

Sfc = {H-$>i,...,$>i},   l<fc<P-   5>fc = n'nfc>0' 
i<k fc=l 

D(a:) = diag(>4) + diag^O^),.. .,$'n(xn)), 

and the nxn nomiegative diagonal matrices Ek, 1 < fc < p, are defined such that 
their tth diagonal entry is null if* $ Sk. Note that this multisplitting is a Gauss- 
Seidel type multisplitting. The stopping criterion used was \\xM> - v\\2 < h , 
where || • ||2 is the Euclidean norm and v is the vector which entries are the 
values of the exact solution of (21) on the nodes (ih,jh), i,j = 1,... ,d and the 
initial vector was x™ = (1,..., 1)T. All times are reported in seconds. 

We have run our codes with matrices of various sizes and different multi- 
splittings depending on the number of processors used (p) and the choice of 
the values nk, 1 < k < p, but to focus our discussion, we present here results 
obtained with' d = 64, that originates a nonlinear system of size 4096. The con- 
clusions we present here can be considered as representative of the larger set of 

experiments performed. 

30 

Time 
20 

10 i 

0     : l    i . i m I   ■.'".'..':... m 
m,- =1 •mr=2 rri( = f m, =2 

q=i; 27.59 15.91 4.73 7.73 

q=4 i 8.08 5.11 2.35 4.11 

q=9 4.93 3.43 2.27 1.86 

Fig. 1. Non-stationary parallel Newton Gauss-Seidel methods 

Figure 1 shows the behavior of some non-stationary parallel Newton iterative 
methods on an IBM RS/6000 SP multiprocessor using four processors and nk = 
1024, 1 < fc < 4. This figure illustrates the influence of the non-stationary 
parameters q(k) = q, 1 < fc < 4, in relation to mt - 1, 2, l, 2e. We want 
to note that, for a fixed number of processors, the computational time starts to 
decrease as the non-stationary parameters increases until some optimal value of q 
(q = 9, in Figure 1) after which time starts to increase. This behavior is typical of 
non-stationary methods; see e.g. [6] and[9]. In general, this optimal value is hard 
to predict but if the decrease in the iterations balances the realization of more 
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local updates then less execution time is observed. This situation is independent 
of the choice of mt.. On the other hand, in this figure it can also be observed 
that the best non-stationary parallel methods were obtained setting me = t and 
mi = 2e. 

30 

20 ■: 
Time !'   • 

10 ;■ ["''   K 
0 :" Jfcr ,   [    Wfrm    :   . 

Cluster m,- = ( IBMSP TM,. = f 

:C5q=l 28.33 5.36 

■ q=2 : 18.99 3.93 

■ q=10 14.01 3.01 

■~q=16 14.54 3.16 

Fig. 2. Cluster of Pentiums versus IBM RS/6000 SP (2 processors) 

Figure 2 shows the behavior of some non-stationary parallel Newton iterative 
methods in relation to the parallel computer system used. In this figure we have 
used two processors, nk = 2048, k = 1,2, and mf. = (.. The conclusions were 
similar on both multiprocessors, however, the computing platform has obviously 
an influence in the performance of a parallel implementation. Note that when 
<7 = 1, the method reduces to the well-known parallel Newton Gauss-Seidel 
method (see [14]) and as it can be appreciated this method is always worse 
than the non-stationary parallel methods. Moreover, we have compared these 
methods with the algorithms presented in [1]. We have observed that the methods 
discussed here behave better than those algorithms. For example, for the matrix 
of size 4096, the best time we have obtained with the IBM RS/6000 SP using 
four processors (see Figure 1) is 1.86 seconds, however the best times obtained 
with the other methods (see Table 1 and 2 of [1]) were about 6 seconds. 

On the other hand in Figure 3 we have compared the algorithms of this pa- 
per, setting 7 = 9, with the well-known sequential Newton Gauss-Seidel method 
[11] versus the number of processors in the IBM RS/6000 SP. The best CPU 
time performed by this sequential method was obtained with m.e = t. So, if we 
calculate the speed-up setting such sequential method as reference algorithm 
(ie CPU time of sequential Newton-Gauss Seidel algorithm. (m,=t), ■ 
K ' '' REAL time of parallel algorithm ' )'lt can be 

obtained an efficiency ( pro(:essSs nuniber ^ about 90% with two processors 
and about 60% with four processors. Similar efficiencies were obtained for the 
cluster of Pentiums. However it does not happen the same with the parallel New- 
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Time; 

p=2 

mf = (                3.1 

V— 4 

2.27 

— New-GS "',—f:    5.52 

1.86 

5.52 

Fig . 3. Non-stationary methods (q = 9) and sequential Newton Gauss-Seidel method 

ton Gauss-Seidel method ([14]). That is, if q = 1, we have obtained efficiencies 
only about 0 - 30% in both multiprocessors. 

4   : «       --, *  

o    ;   •      K '..   

0 • «; i  

' »-..^ *     i     B 
1 .; 

o   -• 
0.9      1.1      1.3      1.5      1.7      1.9 

New-SOR 
it      (\—l 

-•■       q=3 

Fig. 4. Non-stationary Newton-SOR methods 

Finally, Figure 4 illustrates the influence of the relaxation parameter u when 
non-stationary parallel Newton-SOR methods are used. In this figure we have 
considered some non-stationary parallel Newton-SOR methods using four proces- 
sors, nk = 1024, 1 < k < 4, and me = f., and for each one we recorded the REAL 
time in seconds on the IBM RS/G000 SP. Moreover, these results were compared 
to the corresponding parallel Newton-SOR method ([14]). As it can be appreci- 
ated the conclusions were similar to those described along this section. 
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Abstract. In this work the fan-in and fan-out algorithms for Cholesky 
factorization of sparse matrices on distributed memory systems are adap- 
ted for modified Cholesky factorization and improved to reduce idle 
times. The behavior of the new algorithms has been evaluated on two 
machines with significantly different ratios between processor speed and 
communications speed, the Fujitsu AP1000 and the Cray T3E. 

Keywords: modified Cholesky factorization, sparse matrices, distributed 

systems 

1    Introduction 

The modified Cholesky factorization of a symmetric matrix A € Rnxn (not nec- 
essarily positive definite) is a Cholesky factorization of A' = A + E - LDL , 
where E is a non-negative diagonal matrix such that A' is positive definite [6]. 
This technique is appropriate when the modification of a linear system is justi- 
fied, as in Newton methods used in nonlinear optimization problems. 

The standard Cholesky factorization may be computed in parallel using sev- 
eral methods depending on the access and updating order of the matrices. The 
main proposals may be classified into three basic types: the fan-out [5], fan-in [1] 
and multifrontal [7] methods. We present the fan-in and fan-out algorithms for 
the modified Cholesky factorization on distributed memory systems, together 
with modified versions reducing processor idle time. Fan-in and fan-out versions 
for the modified Cholesky factorization on NUMA shared memory systems can 
be found in [10] and [11]. 

Recently great efforts have been made to find efficient block oriented im- 
plementations of sparse codes on distributed memory systems, examples be- 
ing the block fan-out method proposed by Rothberg [13], and the block fan-in 
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method proposed by Dumitrescu et al. [3]. Compared to the column-oriented ap- 
proaches, block-oriented distributed-memory sparse Cholesky factorization ben- 
efits from a reduction in interprocessors communication volume. Unfortunately, 
block-oriented approaches suffer from poor balance of the computational load 
and they do not fit for all the matrices, for example, they can not be efficiently 
applied to random matrices. In any case, the communication pattern generated 
by a block algorithm is the same as its column counterpart, and therefore, the 
strategies here presented can be generalized to the block-oriented approaches. 

This paper is organized as follows. In Sect. 2 the sequential modified Cholesky 
factorization algorithm is introduced. In Sect. 3 and 4 the well-known fan-out and 
fan-in algorithms for parallel modified Cholesky factorization of sparse matrices 
are briefly looked at and the modifications that reduce idle times are presented. 
In Sect. 5 the results of trials carried out with a number of sparse matrices 
on two distributed memory machines with significantly different ratios between 
processor speed and communications speed, the Fujitsu AP1000 and the Cray 
T3E, are presented and discussed; and in Sect. 6 our conclusions are summarized. 

2    Modified Cholesky Factorization: Sequential Algorithm 

Because of the way in which it imposes positive definiteness by addition of a di- 
agonal matrix E, generalized Cholesky factorization is most conveniently treated 
as a modification of the factorization A = LDLT, where D is a diagonal matrix 
and L is a lower triangular matrix with ones on the diagonal, rather than as a 
modification of the standard Cholesky factorization A = LLT (where there is 
no constraint on the diagonal of L). E is not calculated separately and added 
to A before factorization of an explicit matrix A' = A + E; instead, it is added 
implicitly by computing D and L directly from A in such a way that LDLT is 
positive definite and the factors are all bounded. This is achieved by ensuring 
that the elements of D and L satisfy the conditions 

dk > S (i) 

\\kk>/<h\\<ß       i>k (2) 

where 6 is a small positive quantity and ß is calculated from the largest absolute 
values of the diagonal and off-diagonal elements of A in such a way as to minimize 
an upper bound on ||£7j|oo while ensuring that E = 0 if A is "sufficiently" positive 
definite [6]. In the usual in-place algorithm, L is built up row by row. Sparse 
matrices are stored using the CSS format, that is a column-wise storage [12]. A 
sequential algorithm to which sparse matrix techniques are more easily applied, 
and which is more closely related to the fan-in and fan-out parallel algorithms 
for Cholesky factorization of sparse matrices, is the following, in which L is built 
up column by column: 
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for j=l to n do 
calculate^ = maxs€{j+i „}{K.?|} (3| 
compute dj = max{6, \a,jj\, 8]/ß2} '4' 

update the diagonal of A for s > j: 
ass = ass-a2

sj/dj        s = j+1, ...,n (5) 
update off-diagonal elements of A while computing column j of L: 
for s = j + 1 to n 

ltj=a.jldj (6) 
for k = s + 1 to n 

CLks = a,ks - Ljdkj *■ i 
endfor 

endfor 
endfor 

Implementations of modified Cholesky factorization that are intended for the 
factorization of sparse matrices stored by columns naturally make use of the fact 
that column s only needs to be updated by column j if lsj ^ 0 and there exists 
some non-zero akj {k > s). The elimination tree of the matrix provides precise 
information about dependences among columns [9]. Such implementations will 
also precede the code shown above with a stage in which, to reduce the fill-in of 
L, A is reordered (for example, by means of the widely used minimum degree [4] 
scheme), and by a symbolic factorization stage that determines the pattern of L 
for the purposes of memory assignment. However, in this paper we concentrate 
on the actual numerical calculations, which are the most time-consuming. 

3    Fan-out Methods 

In fan-out methods, computation is data-driven: as a processor receives the data 
it needs, it progressively computes the diagonal element (dj) and Ltj (the j-th 
column of L), and as soon as it has completed this task it sends the diagonal 
and the column to all the processors that require this column to perform modi- 
fications. The necessary operations to update columns s (s > j) depending on j 
are computed on the receiving processors. The algorithm, in a simplified way, is 
shown in Fig. 1, where mycols(P) is the set of indices of the columns for which 
processor P is responsible, ncol(P) is initially the cardinality of mycols{P), 
nmod(s) is initially the number of columns j < s that really need to be used in 
computing column s, and users{j) is the set of indices of the columns that need 
column j for their computation; nmod{j) and users{j) can be calculated, before 
execution of the numerical factorization algorithm, by using the elimination tree 

of A. 
We propose a modification to this algorithm, the fan-out method with pre- 

multiplication, in which the computations on each column are performed on the 
sending processor. If this is done, the number of interprocessor communications 
is greater than in FO, but the overlap between calculations and communications 
is increased, and processor idle time is reduced. We propose the algorithm in 
Fig. 2, where the vector < js > is defined by < js >= {lsjhjdj}ke{s+i,...,n}- 
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for all j 6 mycols(P) such that nmod{j) = 0 do 

compute dj (Eq. 3 and 4) 

compute L,j (Eq. 6) 

ncol(P) = ncol(P) - 1 

send dj and L,j to the processors responsible for the 

columns with indices in users(j) 
endfor 

while ncol(P) > 0 do 

wait for reception of a column j 

for s 6 mycols(P) n users(j) 

update column s (see below, Eq. 8) 

nmod(s) = nmod(s) — 1 

if nmod(s) = 0 then 

compute da (Eq. 3 and 4) 

compute L.j (Eq. 6) 

ncol(P) = ncol(P) - 1 

send d3 and L», to the processors responsible for 

the columns with indices in users(s) 
endif 

endfor 
endwhile 

Fig. 1. The fan-out method (FO) for processor P 

Vectors < js > for which s $ mycols(P) are referred to as non-local products, 
self-messaging has also been suppressed, and in consequence a certain amount 
of internal traffic control is necessary: if the updating of column s by column 
j e mycols{P(s)) completes the updating of column s (so making it (almost) 
ready to be used to update other columns) before column j has finished updating 
all columns s* e mycols{P(j)) Dusers{j), then column s is added to a queue of 
columns waiting to be used for updating. 

4    Fan-in Methods 

The main weakness of the fan-out algorithm is the large interprocessor commu- 
nications volume it involves. The number of interprocessor communications can 
be reduced if the contributions to column s by all columns j belonging to a sin- 
gle processor P(j) are summed before being sent from P(j) to P(s); this is the 
idea of the fan-in strategy. The algorithm, in a simplified way, is shown in Fig. 3, 
where suppliers(s) is the set of column indices j such that s € users(j), u(P, s) is 
the vector accumulating updates to column s involving columns j e mycols(P), 
and pmods(s) is the number of processors P providing updates to column s. 

In FI, columns are computed in order, with the result that high-index columns 
are not updated at all until all lower-index columns have been computed. To 
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for all j 6 mycols(P) such that nmod(j) = 0 do 

compute dj (Eq. 3 and 4) 

compute L»j (Eq. 6) 

ncol(P) = ncol(P) - 1 

compute and send non-local products 

for s e mycols(P) n users(j) do 

compute < js > and update column s 

nmod(s) = nmod(s) - 1 

endfor 

endfor 
while ncol(P) > 0 do 

wait for reception of an update to some column j € mycols{P) 

update column j 

nmod(j) = nmod(j) - 1 

if nmod(j) = 0 then 

compute dj 

compute Lmj 

ncol(P) = ncol(P) - 1 
compute and send non-local products 

for s € mycols(P) n users(j) 

compute < js > and update column s 

nmod(s) = nmod(s) — 1 

if nmod(s) = 0 then 
add column s to the queue 

endif 
endfor 

endif 
while queue not empty do 

get next column from queue (column j, say) 

compute dj 

compute L,j 

ncol(P) = ncol(P) - 1 

compute and send non-local products 

for s € mycols{P) n users(j) 

compute < js > and update column s 

nmod(s) = nmod(s) — 1 

if nmod(s) = 0 then 
add column s to the queue 

endif 
endfor 

endwhile 

endwhile 

Fig. 2. The fan-out method with pre-multiplication (PMFO) for processor P 
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for s = 1 to n do 

if s € mycols(P) or 3 j € mycols(P) n suppliers(s) then 
u(P, s) = 0 

for j € mycols(P) n suppliers(s) do 

u(P,s) = u(P,s)+/5J((,j,...,/„;,)
T 

endfor 

if s € mycols(P) then 

('•I 'nil      = (o»«i -1«tu)T - »1 (P,») 
while pmods(s) ^ 0 do 

wait for reception of a vector u(P* s) from some other processor P* 

(ha, ■■■, ins)      = \tss, •••,lna)      ~ u(P*,s 

pmods(s) = pmods(s) — 1 

endwhile 

compute da 

L„ = L../d. 
else 

send u(P,s) to P(s) 

endif 
endif 

endfor 

Fig. 3. The fan-in method (FI) for processor P 

remedy this, the data-driven fan-in method is proposed, (Fig. 4). This algo- 
rithm combines the low message count of the fan-in method with the data- 
driven character of the fan-out method. This can be achieved by updating 
columns at the earliest possible moment. The variable nlmod{s) is initialized 
as \suppliers(s) n mycols(P)\. DDFI has the same number and volume of inter- 
processor communications as FI, but the overlap of communications and com- 
putations reduces idle times. 

5    Experimental Results 

The algorithms described above have been implemented on two distributed mem- 
ory parallel computers, the Fujitsu AP1000 [8] and the Cray T3E [14], some 
characteristics of which are listed in Table 1. The API000 was programmed us- 
ing its native message-passing routines, and the T3E using the standard MPI 
library. Double precision floating point arithmetic was used throughout. 

For the purpose of evaluating the algorithms, the salient difference between 
the two computers concerns the ratio between processor speed and interproces- 
sor communications speed: 1.25 FLOPs/byte for the T3E as against only 0.22 
FLOPs/byte for double-precision calculations on the AP1000. This difference in 
the relative capacities of the processing and communications systems means that 
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while ncol(P) ^Odo 

while queue not empty do 
get next column from queue (column j, say) 

compute dj 

compute L»j 

ncol(P) = ncol(P) - 1 

for s € users(j) do 

nlmod(s) = nlmod(s) — 1 

if nlmod(s) = 0 then 

u(P, s) = 0 
for I e mycols(P) n suppliers(s) do 

u{P,s) = u(P,s) + l,,(ls,,..;lni)T 

endfor 
if s € mycols(P) then 

(/. ,ln,)T = {as,,...,ans)
T -u(P,s) 

pmods(s) = pmods(s) — 1 

if pmods(s) = 0 then 
add column s to the queue 

endif 

else 
send u(P, s) to P(s) 

endif 

endif 

endfor 
endwhile 
wait for reception of a vector u(P*, j) (j € mycols(P) ) 

from some other processor P* 

(ljj,...,lnj)
T  =  (lji,...,lnj)

T-u(P*J) 

praods(j) = pmods(j) — 1 

if pmods(j) = 0 then 

add column j to the queue 

endif 
endwhile 

Fig. 4. The data-driven fan-in method (DDFI) for processor P 

the attractiveness of the fan-in algorithm relative to the fan-out algorithm is in 
principle greater for the T3E than for the AP1000. 

The performance of the algorithms was evaluated using five benchmark matri- 
ces: three belonging to the Harwell-Boeing collection [2] (BCSSTM07, ERIS1176 
and ZENIOS) and two randomly generated matrices (RANDOM and RAN- 
DOM1). Their characteristics are listed in Table 2, where nz is is the number of 

non-zero entries. 
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Table 1. AP1000 and T3E characteristics 

AP1000 T3E 

Number of processors 4 to 1024 1C to 2048 
Interprocessor 
networks 

Broadcast(50MB/s) 
2D torus (25MB/s) 
Synchronization 

3D torus (480 MB/s) 

Processor SPARC DEC Alpha 21164 
Cache memory 128KB 1st level: 8KB inst./data 

2nd level: 96 KB 
Local memory 16MB 64 MB to 2 GB 
MFLOPs 8.3 (single precision) 

5.6 (double precision) 
600 

Table 2. Benchmark matrices 

MATRIX n nz in A nz in L FLOPs 
BCSSTM07 420 3836 14282 579984 
ERIS1176 1176 9864 49639 3151680 
ZENIOS 2873 15032 62105 4865300 

RANDOM 1250 1153 32784 3698402 
RANDOM1 2000 1475 106546 23703166 

Figure 5 plots, as functions of the number of processors, the number of inter- 
processor communications involved in the factorization of the matrices by each 
algorithm. 

Figures 6 and 7 show, for the AP1000 and T3E respectively, the total idle time 
consumed by the last processor in terminating its task during the factorization 
of the matrices. The idle time for PMFO remains constant or decreases for JV 
greater than about 4; when N is large enough the idle time always seems to be 
smaller than for FO, as was expected. Similarly, DDFI generally has a slightly 
smaller idle time than FI (the major exception concerns the factorization of 
ZENIOS on the AP1000). 

Figures 8 and 9 show, for the AP1000 and T3E respectively, the speed-up 
achieved for the benchmark matrices by each algorithm and for different number 
of processors. For N greater than a given threshold, PMFO always has better 
speed-up than FO on the AP1000. On the T3E its extra communications burden 
outweighs the reduction in processor idle time, at least for N < 16; in fact, 
PMFO generally has the best speed-up of all the algorithms on the AP1000 and 
the worst of all on the T3E. With regard to the fan-in algorithms, the DDFI 
algorithm improves slightly on FI on both computers. 
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Fig. 5. Number of messages required by the various algorithms 
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Fig. 6. Idle times, in seconds, on the Fujitsu AP1000 
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Fig. 7. Idle times, in seconds, on the Cray T3E 
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Fig. 8. Speed up on the Fujitsu AP1000 
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Fig. 9. Speed up on the Cray T3E 

6    Conclusions 

In this work the fan-in and fan-out algorithms have been adapted for modified 
Cholesky factorization and improved to reduce idle times. The modified versions 
generally obtain better results than the unmodified algorithms, except for the 
case of the modified fan-out algorithm on the T3E. Due to its extra communi- 
cations burden, this algorithm performs worse than the unmodified algorithm in 
communications-intensive situations. 

The behavior of these algorithms depends on the features of the systems used 
to execute the codes. The main benefit of the PMFO algorithm is the reduction of 
idle times at the expenses of an increase in the number of communications. That 
is why the modification proposed for the FO algorithm (PMFO) is appropriate in 
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systems where the difference between computation and communication speed is 
not very high. In those systems in which the communications are a critical factor 
it would be more convenient to use the algorithms that generate a lower number 
of communications, that is, the fan-in algorithms. Within the fan-in algorithms, 
the DDFI algorithm is the one that offers the best performance. 

Bearing in mind that the number of floating point operations involved in 
these calculations is relatively small, the speed-up achieved by these algorithms 
is quite considerable, even on the T3E. 

References 

1. C. Ashcraft, S.C. Eisenstat and J.W.H. Liu, A fan-in algorithm for distributed 
sparse numerical factorization, SIAM J. Sei. Stat. Comput.   11 (1990) 593-599. 

2. I.S.Duff, R.G.Grimes and J.G.Lewis, User's guide for the harwell-boeing sparse 
matrix collection, Technical Report TR-PA-92-96, CERFACS, 1992. 

3. B. Dumitrescu, M. Doreille, J.-L. Roch and D. Trystram, Two-dimensional block 
partitionings for the parallel sparse Cholesky factorization, Numerical Algorithms 
16(1) (1997) 17-38. 

4. J.A. George and J.W.H. Liu, The evolution of the minimum degree ordering algo- 
rithm, Technical Report ORNL/TM10452, Oak Ridge National Laboratory, Oak 
Ridge, Tenn., 1987. 

5. A. George, M. Heath, J.W.H. Liu and E. Ng, Sparse Cholesky factorization on a 
local-memory multiprocessor, SIAM J. Sei. Statist. Comput.   9 (1988) 327-340. 

6. RE. Gill, W. Murray and M.H. Wright, Practical optimization (Academic Press, 
London, 1981). 

7. A. Gupta and V. Kumar, A scalable parallel algorithm for sparse Cholesky factor- 
ization, in: Proc. Supercomputing'94 , (IEEE Computer Society Press, Washington 
DC, 1994) 793-802. 

8. H. Ishihata, T. Horie and T. Shimizu, Architecture for the AP1000 highly parallel 
computer, FUJITSU Scientific & Technical Journal 29 (1993) 6-14. 

9. J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM Journal on 
Matrix Anal. Appl.   11 (1990) 134-172. 

10. M.J. Martin, I. Pardines and F.F. Rivera, iScheduling for algorithms based on 
elimination trees on NUMA systems, Euro-Par'99, Toulouse (France), pp. 1068- 
1072, September 1999. 

11. M.J. Martin I. Pardines and F.F. Rivera, Left-looking strategy for the modi- 
fied Cholesky factorization on NUMA multiprocessors, Parallel Computing 99 
(ParCo99), Delft (The Netherlands), August 1999. 

12. S. Pissanetzky, Sparse matrix technology   (Academic Press, 1984). 
13. Edward Rothberg and Anoop Gupta, An efficient block-oriented approach to par- 

allel sparse Cholesky factorization, SIAM Journal on Scientific Computing, 15(6) 
(1994) 1413-1439. 

14. S.L. Scott, Synchronization and communication in the T3E multiprocessor, ACM 
SIGPLAN Notices  31 (1996) 26-36. 

•370- 



VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing 

An Index Domain for Adaptive 
Multi-grid Methods* 

Andreas Schramm 

RWCP Parallel and Distributed Systems GMD Laboratory 
Kekulestr. 7, 12489 Berlin, Germany 

schrammQfirst.gmd.de 

Abstract. It has been known for some time that groups as index do- 
mains of indexable container types provide a unified view for "geometric" 
(grids) and "hierarchic" (trees) spatial structures. This conceptual uni- 
fication is the starting point of further generalizations. 
In this paper we present a new kind of index domains that combine 
both kinds of structure in a single index domain. Together with the 
"structured-universe approach", these new index domains constitute a 
framework for an expressive description of adaptive multi-grid discretiza- 
tions and algorithms. 
Keywords: Programming models, data parallelism, container types, 
structured-universe approach, multi-grid, indexable types, groups. 

1    Introduction: Infinite Index Domains and the 
"Structured-Universe Approach" 

As well known, virtual memory allows for a dynamic extensibility of data struc- 
tures like stacks and heaps under preservation of their logical contiguity in the 
address space. The memory-management unit (MMU) inserts an abstraction 
layer which maps a finite number of finite substructures (the "pages") of a con- 
ceptually infinite address domain (1N0) onto some physical representation. 

The structured-universe approach is a high-level container type concept with 
a similar kind of abstraction as virtual memory [12]. Its data types, called "power 
types", are indexable types with infinite index domains and a distinguished de- 
fault "zero value" for the element type (0.0 for REAL, etc.). 

By appropriate operands and data parallel operations, arbitrary elements of 
power-type variables can be overwritten, finitely many at a time. Thus, power- 
type variables always have finitely many non-zero elements (the black "•" in 
Fig. 1); this property .is somewhat reminiscent of infinite-dimensional vector 
spaces. The state-changing operations can alter finite substructures indexed by 
chunks of any shape and size and at any location in the index domain (in contrast 
to the allocation of fixed pages). This allows for a convenient modeling of dy- 
namic and irregular data structures under preservation of their logical contiguity 

* This work was supported by the Real  World Computing Partnership  (RWCP), 
Japan. 
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element type A with zero value "0" 

A     A     A    A A     A 
0      0      0 

A       1 
. , . 0      0 

A        A 
. 0      0 

(...^ 

... structured infinite index domain ... 
black »'s: arbitrary (finite) support 

Fig. 1. The "structured-universe approach": Indexable types with infinite index do- 
mains and a default "zero" value for the element type. For variables, the supports are 
restricted to be finite 

and neighbourhood structure in their global problem-specific index domain, and 
leads to compact programs that are close to the problem's underlying mathe- 
matical formulae. 

Both burden and freedom of setting up the internal technical representa- 
tion for this "shape-and-granularity polymorphism" are then transferred to the 
underlying abstract machine, which has to act as something like an "Index Do- 
main Management Unit" (in analogy to the MMU). The structural information 
necessary to do so efficiently on a distributed-memory machine (especially lo- 
cality information) is contained—partially statically and partially dynamically, 
depending on the nature of the application—in the index domains, the data and 
communication patterns, and the operations with them. 

An approach of preserving problem-specific structure of index domains is 
worth as much as the latter indeed have something in them that is worth to 
be preserved. Therefore the structured-universe approach is equipped with a 
variety of problem-specific index domains, which are infinite and more general 
than usual also in other ways to be seen later. A non-obvious example of these 
index domains is the topic of this paper. 

Overview: In Sect. 2 and 3, we analyze the formal properties of index do- 
mains in general and for multi-grid data in particular. In Sect. 4 through 6, we 
sketch a small sample problem, an algorithm, and program text, and summa- 
rize the relations between the respective abstract properties of the application 
and the programming model employed. In Sect. 7 and 8, we make comparisons, 
summarize, and draw conclusions. 

2    What Accounts for the "Right" Index Domain, 
and Why? 

The index domains effect a problem-specific geometrization of container data. 
As for the "right" index domains, for instance we intuitively feel that a two- 
dimensional grid should be modeled by a two-dimensional array, and that its 
mapping onto a one-dimensional address space should be done by the compiler. 
Analogous considerations hold for higher dimensions and, as we shall see, can also 
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be applied to structures that are usually not perceived as indexable ones, such as 
trees. A formalization of this intuition leads to following criteria of "naturalness" 
of index domains: 

1. Nearest-neighbour relations must correspond to index-arithmetically small 
distances. Simultaneous nearest-neighbour communications must be "paral- 
lel shifts" of data within an index domain. 

2. Multiple non-elemental substructures of a power-type entity must be index- 
able meaningfully by multiple congruent subsets of the index domain (e.g., 
the rows in a matrix). 
(Multiple non-elemental substructures occur for instance in routine liftings 
that express nested parallelism. Multiple substructures of congruent shapes 
correspond to what other container-type concepts express by multiple sub- 
structures of the same type [10].) 

If the structured-universe approach is used with the right index domains, irreg- 
ularity and dynamicity of spatial structures typically go into the supports of the 
data (the black "•" in Fig. 1), while the communication patterns and data decom- 
position schemes retain their regularity in the infinite index domains. Pointers 
and indirect indexing—which are the structureless "spaghetti" implementation 
techniques in this field—need to be employed less frequently. 

Groups as index domains. It has been known for some time that finitely 
generated groups constitute a unified index domain concept for grids and trees 
in the sense explained above [5,10]. The following correspondences hold between 
spatial structures and the (infinite) groups into which they are embedded as 
substructures: 

grids C free Abelian groups    + 
: degree of commutativity (1) 

trees C free groups 

Now with groups as index domains, the parlance changes a bit: 

1. The role of describing "small distances", formerly played by (tuples of) small 
integers, is now played by (sums of few of) the generators of the group. 

2. "Parallel shifts" within an index domain, and congruence of subsets, are de- 
fined in terms of the respective group operation, here generically written "©". 

For integer grids, these terms still coincide with the intuitive understanding. 
Analogously for trees, the neighbourhoods characterized by the generators of 
the group are those between parent and child, and communications between 
parents and their respective childs are described by parallel shifts of data within 
the index domain by a small index-arithmetic distance. The non-commutativity 
of the corresponding groups reflects the special geometry of trees, which after 
all is different from that of grids. 

In short, groups as index domains constitute a unification of container struc- 
tures that are commonly regarded as quite different. And even better, this 
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d = down, e = east 

Fig. 2. Section of an example group that models the geometry of multi-grid discretiza- 
tions. Observe the close interaction of the grid-like and the tree-like spatial structures, 
as formalized by relation (2) 

unification is the starting point for a further generalization, which we now begin 
to introduce. 

Degree of commutativity. We begin with a remark about commutativity of 
groups. There are several ways to attribute a gradated "degree of commutativity" 
to groups, as opposed to a mere Abelian-or-not classification. In all of these ways, 
Abelian groups and free groups mark the opposite extreme cases. So it appears 
to be natural to investigate whether "intermediate" groups between the extremes 
serve some purpose. This is indeed the case, and one of the possibilities to fill in 
the ellipsis in (1) is the kind of groups we are going to present in the next section. 
It is not much of a surprise that this kind of groups exhibits an amalgamation 
of both grid-like and tree-like spatial structures in the same index domain. 

3    The Index Domain for Multi-grid Data 

Multi-level methods (methods that employ multi-level discretizations) occur in 
various fields. They are renowned for their efficiency and, in the case of the dy- 
namically adaptive variant on distributed-memory machines, notorious for their 
difficulty of programming. They are treated in more depth e.g. in [2,6]; here we 
just mention that their characteristic property is the combined use of discretiza- 
tions of the same physical space at different levels of resolution. The algorithms 
typically employ both intra-level and inter-level communications. Here we con- 
fine ourselves to geometric multi-grid methods. 

Our starting point is the observation that the spatial resolution of the dis- 
cretization (usually) doubles in the transition from one level to the next one. For 
an illustration we assume a two-dimensional integer grid (index domain ZZ1) and 
use the term "one level down" for the transition to the next level with doubled 
resolution. Then, in order to cover a certain distance x at one level farther down, 
we have to go twice as many steps. (E.g., first going east one step and then going 
down is the same as going down first and then going east two steps; see Fig. 2). 
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This observation can very well be formalized as a relation within a non- 
Abelian group: 

x © down - down ®x®x       for all x e 2Z   . (2) 

So we construct the index domain for a multi-level discretization of a two- 
dimensional domain as follows: The group 2Z1 is extended by an additional 
generator, called "down", and made subject to the relation (2). Figure 2 shows 
a section of the resulting index domain, which clearly exhibits the desired multi- 
level nature. 

We compare the above-mentioned communication relations in multi-level 
methods with the geometry represented by this group1: Intra-level nearest- 
neighbour communications (e.g., in the computation of point-wise residuals) 
work just as in integer grids. Inter-level communications (e.g., in the compu- 
tation of prolongation and restriction operators) can be expressed in the same 
way by data shifts by small distances, using down or its inverse, respectively. 

In summary, the presented index domain is capable of formalizing both kinds 
of locality of originally different nature. Hence, both kinds of (translation-invari- 
ant) communication can be expressed as convolutions by appropriate stencils. 
The only difference is that the convolution takes place in the new kind of index 
domain and is defined by means of the group operation "©". 

Groups that model the geometry of anisotropic (nonstandard) coarsenings 
can be constructed similarly, but this is not carried out here. 

4    A Sample Problem and its Numerical Method 

4.1    The Problem 

The motivations for multi-level approaches are (i) faster convergence, and (ii) adap- 
tive refinements, for a reconciliation of computational effort and accuracy. 

As example for both the structured-universe approach and the new kind of 
index domains, we present an adaptive multi-grid application. We consider a 
simple boundary-value problem. We assume as given 

a domain   Q = (a, b) x (a, b) C 1R 

a function    / :    fi —► 1R 

a boundary function    F :   60 -> Ht 

and seek as solution 

with   Lu = -Au = f       on Q (3) 

and   u\sn = F . 
1 Recall that the purpose of the index domains in the structured-universe approach 

is to express the "natural" problem-specific neighbourhoods and congruences within 
container data, as explained in Section 2. 
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We assume that the right-hand side / possesses a singularity somewhere on the 
boundary 5Ü, so that the problem calls for adaptive refinement. 

4.2    The Numerical Method 

Data fields and basic operations. For an initial coarse level 0 and for a 
finite number of successively finer levels, the following infinite-grid quantities 
with finite supports are maintained: "interpolated solution", "solution correc- 
tor" , "residual", and "right-hand-side perturbation"; these names may appear 
abbreviated in equations and program text. Figure 3 sketches the data structure 
and the data flows therein. 

The residual follows the other quantities so that the following variant of (3) is 
fulfilled (in its respective discretized form): 

L(interpol.solution + soln..corrector) = f + RHS.perturbation + residual (4) 

The solution algorithm will be constructed from the following four basic 
operations (larger level numbers correspond to finer resolutions): 

1. Initialization at level 0: At the coarsest level, the (small) system of equations 
is solved, and the solution is stored into the field interpolatedsolution. 

2. Interpolation from level k to k+1: A suitable interpolation operator is applied 
to the sum interpolatedsolution+solution .corrector of level k, and the result 
is stored into the field interpolated.solution of level k + 1. 

3. Smoothing at a level k: A smoothing method is applied to the residual at 
level k, and the resulting correction values are added to the already existing 
solution-corrector. (The residual decreases accordingly.) 

4. Restriction (residual coarsening) from level k +1 to k: A restriction operator 
is applied to the residual at level k+1, and the result is stored into the field 
RHS-perturbation of level k. 

Organization of the basic operations. In the multi-grid terminology, the 
method presented here is & full multi-grid (FMG) scheme with V(l,l)-cycles. It 
is organized as follows: After the initialization at level 0, the process descends 
(i.e., interpolation followed by smoothing) to a certain maximal depth and then 
ascends (i.e., restriction followed by smoothing) back to level 0. These descents 
and ascents are continued with a successively increasing maximal depth until no 
further refinement is necessary. 

For simplicity of presentation, the algorithm presented here deviates some- 
what from the conventional ones by the following modifications: We neglect the 
fact that usually different interpolation operators are employed in the FMG 
refinements and the multi-grid cycles. Second, the coarse-grid corrections are 
calculated for the perturbed original equation (this is the full approximation 
scheme used for non-linear equations), and not from the pure defect equation. 
Third, the coarse-grid corrections of refined subgrids nevertheless take place in 
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Coarse-grid initial solution 

\ / 
smoothing 

level 0:11   interpolated solution   | soln.corrector ]   RHS perturbation""]—>]residuäT 

interpolation 

restriction 

smoothing 

S 
level 1:|1   interpolated solution  | soln.corrector |   RHS perturbation""]—>|residuä 

interpolation " 

restriction 

smoothing 

/ 
I level 2:11   interpolated solution  | soln. corrector |   RHS perturbation   (—^residual 

Fig. 3. Data fields and dependences for the modified full multi-grid (FMG) scheme. 
Larger level numbers refer to finer grids. With spatial adaptivity, some finer levels may 
represent only subsets of the problem domain 

the larger subregions pertaining to the coarser grids. This appears to be more 
intuitive, as even a residual with a limited support may very well lead to a global 
correction of the solution. 

Spatial adaptivity consists in the technique that increasingly finer resolutions 
(with larger computational effort) are applied only to increasingly smaller subre- 
gions of the problem domain, under control of some refinement criterion (a local 
discretization-error estimator). These subregions turn out to be the neighbour- 
hoods of the singularity of the right-hand side / of (3). (We assume that / 
possesses only one singularity, so that the latter can be enclosed at each level by 
a single rectangular subdomain.) 

FMG, if used with a sufficiently good interpolation operator, has the property 
that for each level of refinement, an accuracy up to the corresponding discretiza- 
tion error of that level is achieved already after a single multi-grid cycle. We 
exploit this property and consider convergence to have occurred too when no 
further local refinement is required. 

5    The Program 

5.1    Prerequisites and Basic Program Patterns 

The program will be presented in an experimental linguistic concretization of 
UNIVERSE [11] on the top of Oberon-2 [9]. Keywords and the predefined iden- 
tifiers of the host language are in all-caps. For space considerations, only very 
brief explanations are given here. 

An operation pattern that will occur frequently in the program text is the 

following one 

power .type-variable[subdomain] : = power -type.value $$ power-type „value;   (5) 
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typically such that one operand of the infix operator "$$" (convolution) identifies 
a static communication pattern (a stencil). 

By such statements, some elements of a power-type variable are overwritten, 
viz. those elements that are indexed by the subdomain on index position, the 
"selection mask". In a writing access like here, masking of a power-type variable 
means that only the selected elements are overwritten; masking of a power-type 
value means that the non-selected elements are replaced by zero in the result. 

The subdomain expressions in the program text to follow might appear quite 
complicated at first sight, but they resemble the conventional mathematical no- 
tations of intervals, element-wise sums of sets, Cartesian products, etc. 

The infix expression on the right-hand side of the assignment is a (discrete) 
convolution product (a shortcut for "$* REDUCE BY+ $" if the element types of 
the operands are numbers). It yields a result with the same index domain as 
the operands, and for all non-zero elements xt of the first operand and y, of the 
second operand, the products xt * y, are accumulated into the element ziSjj of 
the result z. 

Convolutions are the method of choice for the (non-redundant) expression 
of translation-invariant communications (data movements) within an index do- 
main. In all usages here, one of the operands is a static pattern (a stencil), which 
represents the discretization of the underlying linear operator. 

A sensible implementation will compute only those elements of the right- 
hand side that are actually used (e.g., not masked out). In order to facilitate 
this, power-type products (e.g., the convolution) and also implicit liftings of 
scalar pure functions and operators have lazy semantics in UNIVERSE. 

5.2    Global Declarations 

First, two index domain are declared, viz. the two-dimensional infinite integer 
grid and the index domain of Sect. 3. 

The INDEXCOUNTER declaration declares two symbolic power-type constants 
Xcoord and Ycoord with index domain ZZ x ZZ and element type ZZ. These 
constants provide the "canonic" x and y coordinates of the integer grid; after a 
multiplication by the appropriate mesh size they will be used to parametrize the 
parallel invocations of the right-hand side / and of the boundary condition F. 
For every index point that can be written as sum of (1,0) and (0,1) and their 
inverses, the respective associated symbolic counter indicates how many of the 
generators are used to express that index point. 

The variable values holds the data structure depicted in Fig. 3; for each level, 
regions [level] holds the integral corner coordinates of the finite rectangular 
subgrids that correspond to Ü or its refining subregions, respectively. 

INDEXDOMAIN 
PlaneGrid = ZZ x ZZ; 
MultiGrid = EXT(PlaneGrid, Down, 2);  (* see Sect.   3  *) 

INDEXCOUNTER Xcoord OF (1,0), Ycoord OF (0,1); 
TYPE 

Point: RECORD sol, corr, resid, perturb: REAL END; 
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RectRegion:  RECORD xa,  xz,  ya, yz, num:  INTEGER END; 

VAR 
values:   [MultiGrid]<Point>; 
regions:   [^]<RectRegion>; 

5.3    The Basic Operations 

The solution of the small system of equations at the coarsest level (Step 1 in 
Sect. 4.2) is often done with a direct solver, and is not shown here. 

Residual evaluation. The residual is evaluated according to (4). Besides of 
point-wise real additions and subtractions, the computation consists of the eval- 
uation of the discretized form of L and of the right-hand side /. The former is 
done by convolution by the stencil Lstencil, which is a power-type constant 
with index domain ZZ x ZZ, given below as a cascaded conditional expression. 
The (scalar) function / is invoked multiple times ("lifted") with an explicitly 
specified replication space appearing before it, and each invocation accesses the 
corresponding elements of the power-type arguments, which are obtained from 
the symbolic integer coordinates Xcoord and Ycoord scaled by the mesh size h. 

CONST   Lstencil = -1 
-1   4    -1 

-1 
*) {(0,0)}  => 4.0   : <* 

{(0,1),(1,0),(0,-1),(-1,0)}  => -1.0; 

PROCEDURE   compResidual(level, xa,  xz, ya, yz:  INTEGER); 

VAR h:   REAL; 
BEGIN 

h  :=  1.0 /   (2**level); 
(* evaluation of residual  according  to   (4):  *) 
values[{level*down}e{xa+l. .xz-l}x{ya+l. .yz-l}] .resid : = 

(values.sol+values.corr) $$ Lstencil/(h*h) 

- values.perturb 
- {level*down} $$ [{xa+1..xz-l}x{ya+l..yz-l}].f(Xcoord*h,Ycoord*h) 

END compResidual; 

Smoothing. Smoothing is done by red-black relaxation, which combines good 
smoothing properties with good parallelism properties [16]. The term refers to 
the colouring of a grid in a chequerboard pattern: First, all "red" points are 
relaxed, which can be done in parallel, and then all "black" points, again in 
parallel (observe the two subdomains RedGrid and BlackGrid in the following 
program fragment). As usual, "relaxing a grid point" refers to the point-wise 
error smoothing by averaging that grid point with its neighbours, as determined 
by the stencil involved, with taking into account the right-hand side at the same 
coordinates. 
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SUBDOMAIN 
RedGrid = {  * OF  (2,0), (1,1)};     (*  spans all  even-parity points   *) 
BlackGrid = {(0,1)} © RedGrid;     (*  coset of RedGrid  *) 

PROCEDURE   smooth (level:  INTEGER); 
VAR xa,  xz,  ya,  yz:   INTEGER;  h:  REAL; 
BEGIN 

xa := regions[level].xa;  xz  := regions[level].xz; 
ya := regions[level].ya;  yz  := regions[level].yz; 
h  := 1.0 /  (2**level); 
compResidual(level,   xa,  xz,  ya,  yz); 
values [{level*dovn}©RedGrid] . corr   : = 

values.corr + values.resid*h*h/4.0; 
compResidual(level,  xa,  xz, ya,  yz); 
values [{level*down}©BlackGrid] . corr   : = 

values.corr + values.resid*h*h/4.0 
END smooth; 

Restriction. A customary and robust method for restriction (coarsening) of 
residuals is "full weighting" [2,6]. Every point of the coarser grid gets assigned a 
weighted sum of several nearby points of the finer grid, and the weights are set 
up in such a way that all points in the finer grid—also the interleaving ones- 
have the same total sum of weights, i.e., the same "influence" on the coarser 
grid. 

CONST   Restrictor = 
{-down}    => 4.0/16.0   : 
{(0,1), (1,0), (0,-1),   (-1.0)}©{-down}  => 2.0/16.0   : 
{(l,l),(-l,l),(l,-l),(-l,-l)}©{-down}  => 1.0/16.0; 

PROCEDURE    restrictResid (level: INTEGER); 
BEGIN 

values [{level*down}©PlaneGrid] .perturb   : = 
values.resid $$ Restrictor; 

END restrictResid; 

The remaining steps. The remaining steps are explained only in passing. 
The interpolation is in principle a linear operator just like the restriction, 

expressed by convolution by a stencil. However, two details have to be taken 
into account: (i) on the boundary SQ, the solution candidate should be computed 
directly from the given boundary function F, and not by interpolation, (ii) Cubic 
interpolation—which is advisable in FMG for numerical reasons—requires "four 
points in a row", but near boundaries and corners, these four points are not 
available in a symmetric distribution, i.e., two at either side. Therefore, different 
interpolation patterns have to be used near boundaries and corners. Both of 
these detail case discriminations can be expressed combining several assignments 
like (5) with different subdomains. 
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The procedure SetupRectangle (level) determines the corner coordinates 
of the domain rectangle ofthat level and stores them into the fields of the variable 
regions [level]. This is done either in accordance to J? = (a, b)2 at those levels 
where the entire domain Ü is to be considered, or according to a local error 
estimator at those levels where adaptive refinement is to be employed. The field 
regions [level] .num is set to 0 iff the refinement area is empty. 

5.4    The Main Program 

The main program implements the algorithm sketched in Subsect. 4.2. The algo- 
rithm begins at the coarsest level 0 and terminates at some fine level, viz. when 
the refinement criterion states that no further refinement is necessary. 

VAR level, depth, maxdepth, i: INTEGER; 

SetupRectangle(0); 
(* initial solution at  level 0  (basic operation 91).   *) 
(* FMG multi-grid iteration:   *) 
maxdepth := 1; 

LOOP 
(* descend down to  level maxdepth:   *) 
level := 0; 
REPEAT INC(level); 

interpolate(level); smooth(level) 

UNTIL level = maxdepth; 
interpolate(level+1); 
SetupRectangle(level+l); 
IF regions [level+1] .num = 0 THEN EXIT (* from LOOP *) END; 

INC(maxdepth);  (* for the next round   *) 
(* ascend back to  level  0:   *) 
REPEAT DEC(level); 

restrictResid(level); smooth(level) 

UNTIL level = 0; 
FOR i:= 1 TO ... DO smooth(O) END; (*few more smoothings  at  lev. 0*) 

END (* LOOP *); 

6    Observations 

We summarize and generalize the key observations about the relations between 

numeric applications and high-level programming models: 

- Spatial discretizations with arbitrary refinements are modeled naturally 
by countably infinite-dimensional vector spaces. Problem-specific operators 

(e.g., differential, prolongation, and interpolation operators) often are linear 

operators on these vector spaces. 
A programming model that models such applications in terms of vector 
spaces and linear operators can be expected to lead to compact programs. 
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- The phenomenon of irregularity and dynamicity of spatial structures is 
banned from the semantics—there are no "irregular" vector spaces—and 
delegated to the system. 

- If the canonic bases for these vector spaces are chosen adequately, then 
the problem-specific linear operators correspond to "simple" (e.g., nearest- 
neighbour and/or translation-invariant) communication patterns. 
A programming model that provides index domains that reflect the local- 
ity properties of the application can be expected to lead to efficiency on 
distributed-memory parallel machines. 

- In the case of geometric multi-grid discretizations, the interaction of grid- 
like and tree-like geometries in the same index domain can be modeled by a 
group with appropriate equality relations. 

7    Comparisons 

Here we confine ourselves to a few other programming models that are related to 
the modeling of spatial structure of parallel applications. For a broader survey, 
see for instance [15]. 

Other models with indexable types. A now "classic" programming model 
that elaborates on indexable types is Crystal [3]. Crystal is a higher-order func- 
tional language with data fields over generalized index domains, such as grids, 
trees, and hypercubes, and data-field and index-domain morphisms. The seman- 
tic complexity of Crystal is considerably higher than that of UNIVERSE. 

Groups as index domains have also been proposed for the programming model 
8y2 [5]. %^2 does identify the correspondence between generators of groups and 
basic neighbourhood structures (Cayley graphs), but does not further pursue the 
issue of non-Abelian groups and the identification of useful ones, and proposes 
their representation by libraries. 

More general type systems. There are other parallel programming models 
that employ inductive types or even more general settings for the modeling of 
spatial structure. As examples we mention the Bird-Meertens formalism [13] and 
NESL [1] for (join-) lists and Categorical Data Types [14] for polymorphic trees. 
A typical property of the category-theoretic approach is the inference of the 
container decompositions from the type constructors. There also is a category- 
theoretic understanding of shapes [8] (by which UNIVERSE simply understands 
patterns in structured infinite index domains). 

An abstract generic concept of capturing parallelism is that of algorith- 
mic skeletons [15]. Programs are composed from as few as possible predefined 
parametrizable building blocks (typically a small set of second-order functions), 
aiming at implementing parallelism as composition of pre-implemented internally 
parallel algorithmic fragments. Formally, also the power-type products and pro- 
cedure liftings of UNIVERSE constitute such a small set of second-order functions 
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that systematizes parallel access patterns for indexable container types. But in 
contrast to "plain" skeleton concepts, UNIVERSE encodes the knowledge about 
the problem geometry a/so—if not primarily—into index domains and shapes 
of subdomains and operands—perhaps a sort of "geometry skeletons". The free 
combination and interaction of these two concepts makes an implementation of 
UNIVERSE a demanding task and weakens its simplicity as a skeleton concept. 

More technical approaches. There are numerous approaches whose philos- 
ophy differs from the author's in that they consist in implementation direc- 
tives for some abstract machine, as opposed to expressing structural informa- 
tion about the applications in the semantics. To this class belong data par- 
titioning/distribution algebras, languages, and systems, also High-Performance 
Fortran [7]. Another approach, a template concept for the modeling of irregular 
spatial structures, is given in [4]. 

8    Summary and Conclusion 

We have mentioned the structured-universe approach, a container-type concept 
based on structured infinite index domains. We have mentioned the known fact 
that groups as index domains are general enough to host grids as well as trees, 
and to formalize their different geometries under a unified scheme. We have ex- 
ploited this generality of groups as index domains further and have introduced a 
new kind of groups to host multi-grid algorithms. These groups reflect the multi- 
level nature in that grid-like and tree-like neighbourhoods interact in the same 
index domain. We have related this phenomenon to commutativity properties. 

This result sheds some more light on the little recognized versatility of (possi- 
bly non-Abelian) groups as spatial domains. Originally conceived as a unification 
of two different kinds of spatial structure, they generalize further to an "inter- 
polation" between these two. Together with the "structured-universe approach" 
—an abstraction scheme reminiscent of infinite-dimensional vector spaces over 
geometrically structured index domains—this new kind of index domains pro- 
vides an expressive formalization framework for adaptive multi-grid algorithms. 
Such formalizations are a prerequisite for the high-level programming of dis- 
tributed-memory machines by compact programs, and may constitute the input 
for an efficient automatic mapping onto such machines. 
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Abstract. In this paper we will present the main basis of PARADEIS 

which extends the features of the STL library to deal with data-parallelism 

and sparse matrix computation. 
topics:   Languages and Tools, Numerical methods 

1    Introduction 

Sparse matrix computation is recognized to be ubiquitous in computa- 
tional science but the parallel programs are error-prone, hard to debug, 
and difficult to maintain. Consequently, the simplification of these par- 
allel programs represents an emerging trend. 
In this context, several issues can be considered. The first issue puts 
the emphasis to a compilation based approach. Sparse compiler auto- 
matically restructures a dense program dealing with arrays to a sparse 
program dealing with sparse arrays [3], [5]. 
The second issue is to consider a run-time support based on a numerical 
library which offers a set of numerical programs in order to cover the 
main features of sparse matrix algorithms. 
At the cross-roads of this two issues, we propose a run-time support which 
provides a set of basic operations to deal with sparse matrix structure. 
The goal is to define an abstract data structure which eases the parallel 
programming of sparse matrices. It aims at extending the STL library 
according to this scope. One of the goal of PARADEIS is to be used as a 
user-library as well as a back-end of parallel sparse compiler. The exten- 
sions are mainly focused on two topics : data-parallelism and sparsity 

management. 
The extended abstract is organized as follows : the Section 2 describes 
the main features of PARADEIS. The Section 3 briefly outlines the descrip- 
tion of the parallel sparse structure. The Section 4 shows experiment on 
efficiency of running PARADEIS programs. Finally, the Section 5 will con- 

clude this paper by a discussion. 

2    STL Extension 
The Standard Template Library provides a set of well structured generic 
C++ components that work together in a seamless way. The library con- 
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tains three main components : container which manages set of memory 
location, iterator which provides a means for an algorithm to traverse 
through a container and algorithms which are computational procedures. 
The extensions concern the two first components, namely container and 
iterators. They cover the parallelism and the sparsity management. In 
addition, we define a collective communication primitive. 

2.1     Sparse Computation Extension 

This section will concern the extensions for sparse computation, they 
aim at hiding the sparsity to users to provide a simple programming 
framework. The sparsity management is dealt by methods which operate 
on a dedicated container named SparseArray. Throughout this paper, 
we will examplified the features with the algorithm of vector addition 
R = Vi + V2 where the vectors Vx and V2 are sparse and R is dense. 
The SparseArray container provides an homogeneous framework for 
dense and sparse array without loss of performances for dense array 
computation. So, the declaration will be 
SparseArray Vl(lOO),  V2Ü00),  R(100); 
Numerous storage formats have been proposed in sparse-matrix litera- 
ture, for our work, we have generalized the Block storage format to a 
Distributed Block storage format. But, this representation is hidden to 
programmers so the program is generic. Thus, the internal storage format 
can be changed without any modification of the user-program. 

Iterators Iterators are a generalization of pointers that allow a pro- 
grammer to work with different data structures in a uniform manner. 
The iterators are divided into several classes. Each class corresponds to 
the capabilities of an iterator. The class of forward iterators scans all the 
structure. In PARADEIS, the sparse forward iterator will scan only the 
non-zero value. A general scheme of an assignment restricted to entries- 
structure follows a dense programming style : 

Iterator  i(R); 
for(i.begin();   i.endO;   i.nextO) 

R[i] = ...; 
Another mechanism is added to complete the requirement of sparse com- 
putation. This mechanism synchronizes the iterators to a selected struc- 
ture of entries of a sparse data-structure. For example, if we consider, 
an addition of two sparse vectors R= V1 + V2; the ith components of 
R will be the result of the addition of the ith components of Vx and 
V2. But, in the sparse representation, the ith component of each vector 
are not located in the same place. Moreover, one of the component may 
not exist at all. The synchronized iterators will have the same behavior 
as the dense computation in vectors addition. Assuming that the entries 
structure of R is properly declared as the union of the two entries struc- 
tures Vi and V2, the iterators scanning Vi and V2 are synchronized to 
the space of the entries of R. A comparison is performed to determine if 
the current pointed value of Vi and V2 represent the same entries. If it 
is the case then the addition is performed. If one of the entries is missing 
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the corresponding value is 0. Except for the declaration of the iterators, 
first the management of these rules is hidden to the programmer and 
second the program is close to the dense program : 

Iterator  i(R),   il(Vl.i),   i2(V2,i); 
for(i.beginC) ,   il.beginQ,   i2.begin();   i.endO; 

i.nextO,   il.nextO,   i2.next()) 
R[i]  = VI [il]  + V2[i2]; 

Entries Set Operations In conjunction with synchronized iterators, a 
set of primitives is provided to operate on the structure and not on the 
values. It will offer the capabilities to symbolically determine the shape 
of the expected structure at the end of the numerical computation. 
It has been shown in [1] that a correspondence can be achieved between 
arithmetic operators and set/logical operators. For the vectors addition, 
the sparse structure of the entries of R is defined as the union of the 
entries of Vi and V2- Then, this structure is used as a reference pattern 
for synchronizations of the iterators. 

SparseArray R(union(Vl,  V2));   // R is  assumed sparse here 

More complex algorithms can be used to determine the structure of the 
entries as the symbolic factorization in the sparse Cholesky factorization. 
But these algorithms can be expressed by set and logical operations. In 
this context, PARADEIS provides basic functions to symbolically compute 
the fill-in introduced during the computation. 

2.2     Data-parallel Extension 

In this section, we describe the extension of iterators for parallel sparse- 
matrix computation. Before explaining its semantic, we will introduce 
the context of the execution. Programs are written in a SPMD style. 
The target architecture is a distributed memory architecture or a cluster 
of workstations. The sparse matrix is folded to processors. And in each 
processor, the computation is applied to the local part of the data. 

Sparse Parallel Iterators The parallel execution will be expressed by 
an iterator named DoAllIterator. Its semantic will guarantee that every 
elements in the sparse matrix will be scanned, but in any order. Its 
semantics is derived from the standard conditions of parallelization which 
aims at relaxing constraints on the sequential execution order. 
Pragmatically, the iterator scans only the local part of the data on each 
processor. The conversion from a global to local address is handled by an 
iterator's method. Under the assumption that vectors are appropriately 
distributed, the parallel sparse program of vectors addition is : 

SparseArray Vl(lOO),  V2(100),  R(100);   // R is dense 
//  Initialization of VI and V2 
DoAllIterator  i(R),   il(Vl,i),   i2(V2,i); 
for(i.begin(),   il.beginQ,   i2.begin();   i.endO; 

i.nextO,   il.nextO,   i2.next()) 
R[i]   = VI [il]   + V2[i2]; 
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Communication Primitives The communication primitives are neces- 
sary to exchange values between processors. Since PARADEIS is based 
on a run-time process, no compiler automatically transforms accesses to 
global memory to communication. So communications are explicit. 
In [4], which is focussed on the communication support of the exchange, 
we provide more details about the communication scheme. 
The design of the program follows the rules of the BSP model [6] : The 
communication phases are separated from the execution phases. 
But, in order to simplify the programmer task, the communications prim- 
itives correspond to a global communication. So the program is the same 
for the emitter and the receiver and communications denned according 
to a global address space. In some extend, it may correspond to an align- 
ment of values. 

For instance, given the following assignment in Fortran 90, X(l:100) 
= Y(2:101), if we assume that the array X and the array Y have the 
same distribution, a communication must be achieved. In PARADEIS, this 
communication is denned by the exchange primitive as follows : 

Y.exchanged,   Section(l.lOO),   Section(2,101)); 

The communication primitive manages the sparsity as well as the dis- 
tribution. For sparse arrays, every values of Y contained in the interval 
2 : 101 are exchanged. The exchange is "aligned" to the sparse structure 
of X. The exchange primitive also broadcasts values. For instance, given 
Fortran 90 statements X(l: 100,1:100) = Y(l: 100), the communication 
will be expressed as follows : 

Y.exchanged,   Block(Section(l,100),   Section(l,100)), 
Block(Section(1,100),   EXTEND))); 

The EXTEND keyword specifies that Y must be extended in dimension 
before the exchange is performed . The extension in dimension is virtual 
and it does not waste memory space. 
The exchange has been performed by an inspector-executor scheme. 
Then, the vector addition with an inappropriate distribution is : 

SparseArray VI(100),   V2(100),  R(100);   // R is dense 
DoAllIterator  i(R),   il(Vl,i),   i2(V2,i); 
VI.exchange(R,   Section(l.lOO),   Section(l,100)); 
V2.exchange(R,   Section(l,100),   Section(l,100)); 

for(i.begin(),   il.beginQ,   i2.begin();   i.endO; 
i.nextQ,   il.nextO,   i2.next()) 

R[i]   = VI [il]   + V2[i2]; 

Distribution The distribution that we consider is called a user-defined 
partitioning since it lets the users define their own distribution. Given 
a two-dimensional array A, the distribution will correspond to a 3-tuple 
{i,j,p). It means that X(i,j) is different from zero and it is distributed 
to the processor p. This description is considered as an interface between 
the distribution and its internal representation. 
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3    Descriptor 

In PARADEIS, the description of the distribution is based on a conservative 
approximation because the information usually can't be replicated in 
each processor due to the amount of information which cannot be held 
in a processor memory. Hence, the approximation reduces the amount of 
information. A valid approximation is such that, given a non-zero value 
located at the coordinates (i,j), if the value at {i, j) is distributed to 
p then the approximation also gives this information. This description 
will guarantee that a communication requires only one message [4]. No 
supplementary message is necessary to find the location of a data. A 
sparse tree descriptor describes this approximation. According to this 
scheme, the mapping is described by a set of 3-tuples {[lx : ux], [ly : uy], p) 
signifying that the data items contained in this block are mapped to 
the processor p. Logically, the descriptor can be viewed as a tree. The 
descriptor shares some of its motivation (the approximation scheme for 
example) with the R-trees data structure frequently used in geographical 
database. 

PO; uiiam:|°] 

[9:10p:3] 

[9:10][2:3]   [3:7][i:l] [2:4]'[::4] [6:7][3:4] 

[9:10][2:3]   [2:7][l :4]    [8:9]||5:9] [: 

I     2345678\9    10 

[2:4][7:9]    [5:6][6:7] L 

! . .j \! 
I 
|. 

! — 

i 

—i 

\ U-1- —1— v- 

Fig. 1. Example of a descriptor codification 

- The root is the size of the matrix. 
- The first level is the common global knowledge shared by every pro- 

cessor. It provides an approximation of the exact mapping 
- The second level corresponds to local knowledge. It is the exact de- 

scription of the values held by a processor. This information is only 
stored on the processor where the corresponding data are mapped. 

- The leaves contain data if they are resident on the processor. 

Figure 1 describes an example of this codification for a 10 x 10 matrix. 
Filled cells correspond to significant values whereas empty cells corre- 
spond to zeros. 
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Any partitioning can be applied providing it is described by a sparse 
array descriptor. For matrices, some partitioning algorithms such as BRD 
decomposition [2] provide a natural description of partition as a sparse 
tree descriptor. If the result cannot be directly codified by blocks, then 
it is decomposed into several independent blocks. These blocks are not 
necessarily contiguous but they still refer to a single partition. Once 
the mapping is defined the pieces of the sparse matrix are assigned to 
processors. The codification is performed in parallel. The part of the 
global view computed for one processor is broadcast to every processor. 

4    Experiments 

In this section, we present experimental results on PARADEIS. The results 
of execution time are performed on the matrix vector product which is 
the core of numerous numerical algebra algorithms. In this program, the 
matrix is sparse and the two vector are dense. Experiment were running 
on an 8 nodes IBM SP2 (Power PC 66.6 Mhz, 256 Mb/processor). The 
tests have been running on several Harwell Boeing colllection matrices. 
Only the more interesting results are presented here. 
This experiments on PARADEIS are meant to evaluate the overhead in 
computational time and in memory occupancy. The overhead in runtime 
execution is divided into two part, a constant time on each processor and 
a varying time depending on the number of processors. This varying time 
depict the penalty of the parallel execution management. The scalability 
experiment gives the execution time on multiple processors. It allows to 
compute the ratio of computing over idle time thus giving a measure of 
the varying time. The constant time comes from a software layer man- 
aging the iterators. A comparison with an equivalent sequential program 
(here the CRS matrix vector product) gives a measure of this overhead. 
The memory overhead is compared to a sparse data storage (CRS) to 
show the impact of the parallel description and of the density ratio. This 
ratio is used to build the leaves of the data structure by giving the num- 
ber of zero that may be stored with non zero. Reducing this ratio stores 
more zeros but it reduces the descriptor size and vice versa. 
The main properties of some of the N x N tested matrices are shown 
in the Table 2. They are NZ the number of non zero, N the size of the 
matrix and its density (how much spase it is). 

bcsstkl3 cavity09 mcfe bcsstml3 bcsstkl9 
NZ 42943 32747 24382 11973 3835 
N 2003 1182 765 2003 817 

Density 1.07 % 2.34 % 4.16 % 0.3 % 0.57 % 

Fig. 2. Properties of the tested matrices 
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Scalability Figure 3 shows scalability and correpsonding efficiency of 
the matrix vector product with PARADEIS. The minimum efficiency is 
75 %, which shows that the management of the parallel descriptor has 
little impact on execution time. The decreasing of the scalability is cre- 
ated mainly by communications. 

Fig. 3. Scalability and efficiency of the matrix vector product 

Language Overhead In order to obtain the overhead in time induced 
by our iterator access and management, we evaluate the execution time 
of the matrix vector product writing in PARADEIS and the CRS storage 
version. From matrix to matrix, the ratio between execution time r is 
in the range 1.9 < r < 3 on the RS6000 processor in favor of the CRS 
program. The loss compared to this specialized program comes from an 

increase of bound checking. 

Memory Overhead The memory occupancy depends on two param- 
eters: the chosen density ratio and the matrix structure. Figure 4 present 
two measures showing those two sides of the memory part in PARADEIS. 

The first one on the left shows the evolution of memory occupancy in 
bytes when the density ratio evolve. It is compared to a distributed ver- 
sion of the CRS storage (MRD Multiple Recursive Decomposition). This 
first measure show that memory occupancy is always close to the MRD 
and that its evolution with the density ratio depends on matrix struc- 
ture. The second measure on the right present a detailed overview of 
memory occupancy distribution between the descriptor and the data. 
It shows that the global descriptor part is neglibible and that the local 
part depends on the matrix structure, growing faster when the values 

are more scattered. 
This experiment shows that PARADEIS can be compared to a dedicated 
sparse matrix vector program and that it uses a moderated memory 
occupancy in the SparseArray data structure providing powerfull dis- 
tribution and communication scheme, PARADEIS is a trade-off between 
expressiveness and efficiency for sparse linear algebra program. 

5    Discussion and Conclusion 

We consider PARADEIS as a compiler back-end as well as a user library. 
Thus, it provides some features to interact with the higher levels of a 
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Fig. 4. Memory occupancy 

sparse and/or a data-parallel compiler, PARADEIS addresses a class of 
sparse linear algebra problems with user-defined partitioning. 
It is based on a run-time support which offers a scalable and portable 
framework for data-parallel programs which operate on sparse matrix. 
The portability is due to the language which has been installed in a 
large number of platforms since PARADEIS has been written in C++ (9000 
lines) and the communication library is PVM. The scalability relies on 
the primitives. The conversion of global to local address is handled by 
methods and the collective exchange based on a global address space. It 
leads to a scalable framework since the user (or the compiler) has not 
to determine the exact contain of a message according to the amount 
of data folded in a processor. The mapping phase and the inspector- 
executor phase are distinguished. We think that it offers a modularity in 
the development since the both components can be improved or changed 
independently. 
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Abstract. In this paper we study the design of installation routines 
for linear algebra routines on networks of processors. The main idea 
is to develop those installation routines in such a way that they allow 
inexpert users to execute the parallel linear algebra routines with an 
optimum number of processors and distribution of data. The designing 
methodology of these routines has been analyzed for homogeneous and 
heterogeneous networks, and the experimental results obtained with a 
gaussian elimination routine are shown. 

1    Introduction 

In the last years parallel/distributed computing has become widely popular due 
in part to the possibility of using some processors connected by a communication 
network as a parallel system. In that way the use of parallel systems has become 
cheaper and easier, and new users are begining to use parallel programming. In 
particular, users with great computational necessities (scientists and engineers) 
now have the possibility of solving their problems using the machines they have 
access to, connecting them by means of some communication network (ethernet, 
fastethernet, myrinet, ...) and using message-passing parallelism, without high 
additional cost. But the design of message-passing parallel programs is not an 
easy task, specially for inexpert users. The problems these users need to solve 
are in many cases linear algebra problems: solution of linear systems, or eigen- 
problems. This is why we are working on the design of linear algebra routines 
especially for LANs (Local Area Networks) [1]. 

There is other research in which the design of linear algebra routines for 
heterogeneous networks of processors is analysed [2-4]. In some cases the distri- 
bution of data in the system is obtained dynamically [2], and statically in others 
[3]. Our goal is to statically obtain data distributions close to the optimum. 

* Partially supported by Comisiön Interministerial de Ciencia y Tecnologi'a, project 
TIC96-1062-C03-02. 
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Since the users we are thinking of are not experts in parallel programming, one 
possibility is to develop installation routines for the linear algebra routines, in 
such a way that the user can execute a linear algebra routine in a processor. This 
routine consults information generated by the installation routine and decides 
the number of processors to use and the best data distribution to obtain the 
lowest execution time. 

Each linear algebra routine has an associated installation routine which ob- 
tains approximate optimum values of the number of processors and the block size 
in which the matrices are divided. The installation routines are executed during 
the installation of the linear algebra library, but they can be re-executed each 
time the conditions of the system change, i. e. more memory in some machines, 
modifications in the management of the file system or addition or elimination of 
a processor. 

As the system can be formed by processors with different capacities, it may be 
preferable to develop linear algebra routines and the corresponding installation 
routines for heterogeneous systems. 

In this paper we analyse the methodology for the design of these installa- 
tion routines for homogeneous and heterogeneous LANs. Experimental results 
obtained with a gaussian elimination routine and with variations in the hetero- 
geneity of the network are shown. 

2    Installation routines 

A gaussian elimination routine has been used to study the methodology of the 
design of installation routines and the behaviour of these routines in systems 
with different characteristics. 

The matrix is considered as divided in blocks of adjacent rows, and the blocks 
are assigned to the processors using a rowwise block-cyclic-striped mapping [5]. 

If the system is homogeneous the blocks can be all the same size (&). When the 
block size increases the imbalance increases, but the number of communications 
decreases. Thus, for a given matrix size (n), the installation routine must obtain 
the number of processors (p) and the block size, with which the lowest execution 
time is obtained. 

In the case of a heterogeneous system, the block size is not the same for 
the different processors, and the blocks assigned to processors with higher com- 
putational capacity would be larger. The installation routine also obtains the 
optimum number of processors and block size, but in the linear algebra routine 
the size of the blocks in each processor is obtained by the formula: 

bi = T*1 vpb W 

where vt is the speed of processor i (i. e. in Mflops) and bt the size of blocks as- 
signed to processor i. This is the way in which other software for heterogeneous 
computing works [2] when dynamically deciding the data distribution in the sys- 
tem. In our case the assignment is not done dynamically since to dynamically 
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obtain the optimum number of processors and block size would be too costly. 
What could be done in our case is to dynamically obtain the values of vt by 
executing in each processor some basic matrix operation (i. e. a matrix multi- 
plication), but we have preferred to leave this work to the installation routine 
because we consider LAN systems are normally well controlled. In any case, the 
modification to obtain the block sizes bt dinamically is only a small one, and it 
could be done in the linear algebra routine. 

The installation routine could work by obtaining the values of p and b from 
a formula of the theoretical execution time (depending on the linear algebra 
routine) and the values of the cost of an arithmetic operation, of the start- 
up time and word-sending time obtained experimentally for the system. Some 
problems remain: to obtain the theoretical execution time we normally make 
some assumptions which are valid when the matrix size increases, but not with 
small matrices, and it is more difficult to predict the experimental results in 
LANs than in multicomputers, due to the characteristics of the communication 

network. 
Another possibility is to obtain the optimum number of processors and block 

size by performing a number of executions. In that case the system manager de- 
cides "the minimum and maximum matrix size and the increment of the matrix 
size. Experiments are performed for these matrix sizes, but to perform the ex- 
periments for all the possible numbers of processors and block sizes could be too 
expensive, and what the routine does is to obtain the number of processors and 
block size for the smallest matrix and it uses the values obtained for a matrix 
size as initial values for the next matrix size. Since the optimum values of p and 
b vary in a continuous manner with the matrix size, the cost of the installation 
routine thus becomes acceptable. 

In the homogeneous case, a file with the matrix sizes and the associated 
number of processors and block size is generated, and the linear algebra routine 
consults this file for the entry with the matrix size nearest to the actual matrix 
size in order to decide the number of processors and the distribution of the 
matrix in the execution. 

In the heterogeneous case, that file is also generated along with an additional 
file with the proportional speeds of the processors, classified from fastest to 
slowest. The linear algebra routine takes the number of processors from the first 
file, the processors to use in the execution from the second file, and the block 
sizes are obtained using formula 1 with the value b obtained from the first file 
and the values vi from the second file. 

3    Experimental results 

In this section the experimental results obtained using different installation rou- 
tines for a gaussian elimination routine are shown. The entries of the matrices 
have been randomly generated, and a network of SUN Ultra workstations con- 
nected by ethernet ha- l.een used. Three networks are considered: 
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- A network of five SUN Ultra 1 with the same computational capacity, but 
with one of them managing the file system, and consequently this machine 
works more slowly. This is the more homogeneous system of the three, and 
it will be called HOM. 

- A network obtained by adding a SUN Ultra 5 to HOM, which is quicker than 
the other processors. This network will be called HIB. 

- A network with three processors: the SUN Ultra 1 which manages the file 
system, another SUN Ultra 1, and the SUN Ultra 5. Since this network can 
be considered the more heterogeneous, it will be called HET. 

In figures 1, 2 and 3 the results obtained with the different installation rou- 
tines are compared with those obtained experimentally. The figures show the 
quotients of the execution time obtained with the optimum number of processors 
and block size given by the different installation routines and the optimum execu- 
tion time obtained experimentally. Figure 1 shows the quotient for HOM, figure 2 
for HIB, and figure 3 for HET. The installation routines used are: HOMEXP, the 
homogeneous-experimental routine; HETEXP, the heterogeneous-experimental; 
and THEOR, the theoretical routine. THEOR is used in HOM to obtain the 
theoretical optimum number of processors and block size to use in each proces- 
sor and in HIB and HET the same number of processors is used, but the block 
sizes are different in the different processors. 

THEOR —+- 
HOMEXP + 
HETEXP —*■ 

500    1000   1500   2000   2500   3000 

Fig. 1. Comparison between the different installation routines in HOM. Quotient of 
the execution time obtained with the values of p and b provided by the installation 
routines and the best execution time. 

Some considerations can be made: 

- The theoretical routine does not predict the number of processors and matrix 
distribution well for small matrices but when the matrix size increases the 
prediction is better. In some cases (HET) the theoretical prediction is as good 
as the experimental prediction. Theoretical prediction could be performed 
for big matrix sizes, since in that case the experimental routines are too 
expensive. 
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- The homogeneous-experimental routine works well when the network is close 
to a homogeneous network, but the heterogeneous-experimental routine is 
preferable when the heterogeneity increases. 

- The heterogeneus-experimental routine works well in all the systems, so this 
type of routine is the best as installation routine. 

THEOR 
HOMEXP 
HETEXP 

500    1000   1500   2000   2500   3000 

Fig. 2. Comparison between the different installation routines in HIB. Quotient of the 
execution time obtained with the values of p and 6 provided by the installation routines 
and the best execution time. 

THEOR 
HOMEXP 
HETEXP 

500    1000   1500   2000   2500   3000 

Fig. 3. Comparison between the different installation routines in HET. Quotient of the 
execution time obtained with the values of p and 6 provided by the installation routines 
and the best execution time. 

4    Conclusions 

We have shown a methodology to design installation routines for linear algebra 
libraries for non parallel programmers in LANs. These routines can be used to 
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provide the users with the number of processors and the block sizes for solving 
the problems in a time close to the optimum time. 

The experiments performed show satisfactory outcomes. 
Our idea is to design a linear algebra library using installation routines of 

the type analysed in this paper. 
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Abstract. The considered task is building a cellular automaton, such 
that an array from automata of this type with arbitrary unilateral biva- 
lent connection graph can solve the same problem as a bilateral linear 
cellular automata array. It is presumed that the complexity of the cellular 
automaton does not depend on the number of the automata in the array 
and, maybe, depends in some regular way on the rank of the respective 

graph vertex. 

1    Introduction 

First of all. we will try to give a more or less precise definition of functional 
equivalence as we treat it in this paper.1 Of course, this definition directly de- 
pends on the way we treat function realized by the array, problem solved by the 
array and behavior of the array. Different treatment of these terms will lead to 
different results and different interpretation of them. When speaking of problem 
solved by the array, we will follow the classical examples from the works by Hen- 
nie [1], Fisher [2], Myhill [3], etc. We are going to deal with problems for which 
the formulation is invariant to the array size (number of automata), i.e. the au- 
tomaton complexity (number of internal states) does not depend on the array 
size. The typical examples of such problems for one-dimensional arrays (chains 
of automata) are calculation of symmetrical Boolean function[4, 5], multi-valued 
voting problem[5-8] and firing squad synchronization problem[5, 7-15], that are 

formulated as follows2. 
Calculation of symmetrical Boolean functions [4, 5]. There is a bilateral linear 

automata array of n + 1 identical automata (Fig.l.a). Every automaton has two 
external inputs fed by Boolean function variables Xj and variables n determining 

1 It is strange, but this definition turned out to be the most complicated thing for us, 
already after successfully solving the problem of building an equivalent array. 

2 Solving these problems is beyond our scope. Our goal is showing by examples what 

sort of problems can an array solve. 
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Fig. 1. Automata arrays calculating symmetrical Boolean functions (a), solving the 
multi-valued voting problem (b), and solving firing squad synchronization problem (c). 

the working numbers of a symmetrical Boolean function (if n = 1, then the 
function contains the i-th working number). The lateral inputs (outputs) are 
fed by the states of the right and left neighbors (the automaton proper current 
state)3. The input of the Z junction is fed by the initiation signal. After some 
time the automaton ^0 must go to the state respective to the function value. 

Multi-valued voting problem [5-8]. The problem itself is the following. There 
are N ^-valued variables X{ = {0,1,2,..., k - 1}, and m_, is the number of 
variables that take the value j. The multi-valued voting function is 

F(X0,Xi, ...,Xn-i) = a if ma = max(mj). (1) 

From (1) the problem formulation comes for a bilateral linear-homogeneous au- 
tomata array. The external inputs of the automata (Fig.l,b) are fed with ft-valued 
external variables. Some time after the initiation signal arrives at Z junction, 
Ao automaton must hit to the state respective to the value of the multi-valued 
voting function. 

Firing squad synchronization problem [5, 7-15]. In this problem, the automata 
do not have the external informational inputs (Fig.l.c). After the input Z is fed 
by the external signal, all the automata have to simultaneously go to a final 
state after some delay under the condition that non of them does not hit to this 
state before the moment of common synchronization.4 

Other problems also can be formulated. However, these three examples are 
enough for the goals of our article. They cover three classes of linear arrays: arrays 

For arrays from Moore automata. 
This problem has been also formulated and solved for the case of initiating an arbi- 
trary automaton in the chain [5,7,8,14]. 
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with homogeneous external inputs (the enumeration of the external inputs is 
not related to the automata enumeration — multi-valued voting -problem), arrays 
with non-homogeneous external inputs (the enumeration of variables r3- is related 
to the automata enumeration — calculation of symmetrical Boolean functions) 
and arrays without external inputs {firing squad synchronization problem). 

We deliberately do not consider here solving these problems for minimum 
time or by automata with minimum number of states; we are interested only 
in solution existence. In the same way, when discussing the functional equiv- 
alence problem, we will be interested only in principal possibility of building 
an automaton for arbitrary unilateral array from a known automaton for linear 
bilateral array, providing the solution of a similar problem. 

2    Modeling the behavior of linear bilateral arrays by 
unilateral rings [5] 

Let us consider a bilateral chain of Moore automata without external inputs. 
The lateral output of automaton A3 at the moment t + 1 is its internal state 
a3{t + 1) which depends on the states of its neighbors at the moment t: 

aj{t + l) = f(aj-i(t),aj(t),aj+i{t)),    0<j<n (2) 

where a_i and an are the boundary conditions. First, instead of a bilateral chain 
of Moore automata let us consider a bilateral ring of Moore automata where the 
boundary conditions are replaced by modulo-n adjacent indexes. Let us put in 
correspondence to such ring a unilateral ring of n automata B3 (Fig.2) where the 
j index is counted by mod(n). Every automaton B3 is a composition of two sub- 

Bo                        Bi B„.| 

>   Uo     ■■■->- U| >   ■                >-   U„.| 
v   ■*"                     v    A. 
Do                         Dl D„., 

Fig. 2. Unilateral ring of automata. 

automata U3 and D3. Let us define the transition functions of these automata 
differently in even and odd time moments: 

d3{2t) = u3{2t-l),  Uj(20=«j-i(2t-l). (3) 

d3{2t + 1) = Uj(2t),   u3{2t + 1) = v?(«i-i(2t),tiJ-(2t),dJ-(20). (4) 

By substitution (3) into (4) we obtain 

Uj(2t + 1) = V(uj-2(2t - l),Uj-i(2« - l),«j(2t - !))• (5) 

Let the automaton U have the same set of states as the automaton A has and 
the same transition function at time moments 2t + 1. Then, taking into account 
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the shift of B automaton states by one ring position in every two cycles of its 
functioning, we can finally write: 

uÜ+0.n....„(2* + l)=Oj(0- (6) 

The equation (6) provides the way in which we understand the statement that 
the unilateral ring from automata B simulates the behavior of the bilateral ring 
from automata A° Note that the sub-automaton D3 is just an extra memory- 
register on which at even moments the state of Uj is stored. 

Let us now go back to the bilateral linear array. It differs from a bilateral 
automata ring only by the presence of the boundary conditions that make the 
internal and edge automata different. Since in the unilateral automata ring the 
initial automata enumeration during the functioning is shifting along the ring, 
the information about the boundary conditions also must be shifting along the 
ring with the same speed. This can be provided in several ways. For example, 
by introduction into the automaton Bj the sub-automaton Yj with two states 
(y„_i = 1, yj = 0,j^n-l). Then the equations (3) and (4) look like following: 

dj(2t) = Uj(2t - 1);    u3{2t) = ui_1(2< - 1);    Vj(2t) = J/i_1(2t - 1); 
dJ(2t + l)=dj(2t);    yj(2t + l)=yj(2t): (7) 
uj(2t + l) = V(ui-i(2t),«i(20,dj(20,i/i-i(2i),yj(2t)). 

The value combinations of variables yi_1(2«),j/j(2i) mean: 00 — internal au- 
tomaton; 10 — extreme left automaton; 01 — extreme right automaton. In the 
problems discussed above, the extreme left automaton is fed by the initiating 
signal and the same automaton generates the output signal. 

In the same way, the external variables Xj are incorporated that also must 
be shifting along the ring together with the working indexes of the automata. 
The variables are stored in the registers and Xj(2t) = Xi_1(2i - 1). 

The above is enough to build a unilateral automata ring by an automaton 
that provides bilateral automata chain solution of, at least, problems of the types 
we mentioned in the introduction. 

3    Modeling the behavior of a unilateral ring by an 
automata array with arbitrary connected unilateral 
bivalent graph of connection 

Like in the previous section, we will treat the "possibility of modeling" as the 
existence of an automaton whose number of states and transition function does 
not depend on the number of vertexes and on the connection graph of the mod- 
eling array. Besides, this automaton must regularly depend on the valence of the 
vertexes and can be built by the automaton of the modeled ring. 

In order to reduce the problem to the one we have already solved, let us first 
ask ourselves whether an arbitrary unilateral graph can be re-commutated as a 

5 This result was published in 1973 in a Russian journal [5]; it is practically unknown 
among the specialists. 
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ring. If it can, the problem is principally solved. The base for the positive answer 
to this question can be the existence of Euler cycle in the graph. The conditions 
for the existence of Euler cycle in the graph are the connectness and bivalence 

of the graph [16-18]. 
Let to every vertex of the graph having k incoming and k outcoming arcs 

(property of bivalence) put into accordance a composition of two automata, 
functional and control ones, and a fully accessible commutator k x k (Fig.3). 
The automaton compositions that correspond to vertexes of different degree 
will differ only in the commutator size. Talking about the commutator, we will 

U} Control 

Commutator 
kxk 

Fig. 3. Structure of the automaton, corresponding to to a graph vertex with k incoming 

and k outcoming arcs. 

assume that the arcs are bundles of wires connecting the vertexes (automata). 
Via these wires the automaton sends the information about its state and receives 
the information about the state of some other automaton that is found by the 
commutation algorithm to be the succeeder of this automaton in the ring. Note 
that only one of input arcs is connected to the corresponding commutator input 
through the functional automaton Bk. If the direct connection of the input lik 

and output lkj arcs of the vertex ak is considered as electrical wire connection, 
then the procedure of such commutation6 is equivalent to removing the arcs llk 

and lkj from the graph and creating a new arc l{j. Hence, if we build, as a result of 
the commutation, an Euler cycle from an arbitrary connected bivalent unilateral 
graph with n vertexes. this would be functionally equivalent to a unilateral ring 

of n automata. 
Let us consider the behavior of the composition of controlling automata and 

commutator in solving the problem of building the Euler cycle. First, we should 
base upon some algorithm that would provide finding the Euler cycle for an 
arbitrary unilateral connected bivalent graph. The simplest algorithm of this 
type could seemingly be the following: "when going through an arc, mark it; 
when leaving a vertex, follow the unmarked arc". However, as shown by Ore, 
using this algorithm leads to Euler cycle only for a very limited subclass of 
unilateral connected bivalent graphs [19]. We will use here the algorithm by 
Hoang Tuy [17] as it was formulated by Zykov [18], but with some modification 

discussed below. 
At the initial moment, all the commutators are disconnected, i.e. no one input 

arc is connected to any output arc. All the control automata are in the passive 
state P. The initiating external signal X = 1 arrives at a certain automaton 

6 In case when there is no functional automaton between these arcs. 
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A0 drawing it to the working state Mi.7 The state (token) Mi goes to the first 
output arc (the enumeration is arbitrary). Control automaton Aj receives the 
token Mi via one of its input arcs and goes to the state Mx, producing a signal 
for the commutator. The latter commutates the input arc via which the token 
has come with the first output arc, that means passing this token to the next 
vertex. This procedure will last until the token Mi appears again on one of the 
input arcs of some vertex. In this situation, the automaton keeps its internal 
state Mi, commutating the input arc via which the new signal has come with 
the next free output arc. This process continues until it turns out that the com- 
mutator does not have any free output arc. Since the graph is bivalent8, this 
can occur only in the initial vertex. Indeed, up to this moment we have been 
following the algorithm "when coming to a vertex, go to the first non-passed 
arc." In this case, as Ore [19] showed, no one arc will be passed twice; however, 
in an arbitrary graph non-passed arcs and vertexes may remain. In the next 
phase, we will pass some vertexes for the second time. The commutator of the 
initial vertex commutates the last initiated input arc with the first output arc 
via which the first signal Mi was sent, creating a cycle. The control automaton 
goes to the state M2, injecting the respective signal (token M2) into the cycle. 
Token M2 is passed to the adjacent automaton. This automaton commutator 
can be in one of the following two states: 
- All the input arcs are commutated with all the output arcs. In this case, the 
control automaton goes to the state M2, translating the token M2 to the output. 
- The commutator has at least one output arc. In this case, the control automa- 
ton keeps the state Mi, breaks the commutation of the input arc via which the 
token has come and commutates this arc with the next free output arc, injecting 
there the token Mx (Fig.4). 

MV 

Fig. 4. Commutation in the case of coming the token M2 by one of the input arcs of 
a vertex when it has at least one free output arc. 

Let us assume that the token came to a vertex J via its input arc kj com- 
mutated with output arc ljk. Breaking this connection, we send the token Mi 
via the output arc ljr which had been free. The token Mx gets to a certain 

' This can be either a specially allotted automaton, for example, an automaton that 
models the left lateral automaton in the linear array, or an arbitrary automaton. 
Every vertex has an equal number of input and output arcs. This number can be 
different for different vertexes. 
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connected bivalent subgraph Gj formed by vertex J and some subset of its non- 
passed (non-commutated) arcs. Since this subgraph is connected and bivalent, 
after some time Mx will come back to the vertex J via a certain arc lmj. Like 
in the previous case (subgraph associated with the initial vertex). Mx will come 
back to the vertex J without hitting to already commutated paths until only 
one non-commutated output arc, namely ljk remains in the vertex J. The input 
arc via which Mi has come is commutated with ljk and the control automaton 
passes the respective token (Mi) to the output via ljk- After that the marker 
Mi propagates only within already commutated cycle until it comes back to the 
initial vertex where it turns to M2 according to the rule described above, keeping 
the internal state of the control automaton. 

Thus, every time the markers M2, Mi rotates, another path is added to the 
initial cycle. This continues until M2 comes back to the initial vertex. It means 
that all the commutators on the way of M2 have been really commutated. i.e. 
the Euler cycle has been completely formed.9 Indeed, the fact that M2 has come 
back to the initial vertex indicates that no one vertex it has passed has free 
(non-commutated) output arcs (otherwise, the token M2 would be replaced by 
Mi), i.e. all the arcs of the graph have been passed by A/2 and they form a cycle. 

The appearance of M2 at the input of the initial vertex switches the control 
automaton to the working state W and passes the control to the functional 
automaton that prior to this time has only translated markers to its output. 
If a signal belonging to the set of functional automaton states appears at the 
input of any other vertex different from the initial one, the control automaton 
of this vertex goes to the state W and the control is passed to the functional 

automaton. 

4    Conclusion 

It follows from the above that there is a way of allowing by a bilateral chain 
automaton to construct an automata composition that would solve the same 
problem on a random unilateral bivalent graph. Doing so, we keep the basic 
property of the automata designed for this type of problems: the automaton 
complexity (number of internal states and transition functions) in every vertex 
of the graph does not depend on the number of vertexes and type of the graph. 
We are far from pretending that the suggested solution is optimal, either in 
terms of the algorithm complexity or in terms of the time needed for solving 
the problems. Our goal was just to prove that the solution exists, because this 
fact has been exposed some doubt in private talks and seminar discussions. Fur- 
thermore, because of this goal we did not continue our discussion to automaton 
construction, limiting ourselves by algorithm description. 

On the other hand, it does not mean that any problem of those mentioned 
above can be solved l.y the method we suggest. For example, the problem of 

9 The difference of tlii- ..Uorithm from the Tuy's algorithm is that in the last initial 
cycle and added lo..|- ...-.• enumerated by the sequence of numbers, but in our case 
there is no enumerati-n: it is replaced by switching of two markers. 
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calculating symmetrical Boolean functions requires that the inputs are linked 
to the numbers of the automata in the ring, while the suggested algorithm of 
building the Euler cycle does not allow us to provide such a linkage. 

Finally, let us note that it looks fairly interesting to consider the parallel 
algorithm of building the Euler cycle, when the initiating token is injected into 
the graph via all the output arcs of the initial vertex. 
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Abstract - In this paper we describe a software package corresponding to a 
DMS - Distribution Management System - that is structured in terms of a 
distributed multitask client-server architecture. The system is implemented 
using Object Oriented technology and integrates a number of power system 
application tools that are structured in terms of main coordinator objects 
calling and directing the object models of system components as well as other 
auxiliary interface and calculation objects. These tools can be activated by 
several entities corresponding to clients in terms of a distributed architecture. 

1. Problem Positioning 

For several years electric utilities directed a major percentage of their investments to 
the generation and high voltage transmission systems. This fact explains that 
generation and transmission high voltage systems are now characterized by higher 
levels of automation and performance indices both in terms of economic efficiency 
and reliability levels. The referred trend started to change some years from now with 
the consequence that today much more of the efforts are directed to the distribution 
area. These efforts lead to the development and installation of new automation, 
telemetering and communication facilities at the distribution level in order to have 
tools to monitor the networks, to operate systems in a remote and central way and to 
reduce the number of interruptions as well as the interruption times. The investments 
in the distribution area, together with new technological advances, made it feasible to 
have in real time in Control Centers values for an increasing number of variables as 
well as indications regarding the topology in operation. 

Anyway, distribution networks have some distinctive aspects when compared with 
higher voltage transmission systems that prevent the direct migration of solutions and 
applications common and well established in EMS - Energy Management Systems - 
at the generation/transmission level. Apart from that, the size of distribution networks 
turns it most probable that the investments will be distributed along a large number of 
years until an adequate level of automation and tele-operation is achieved. Finally, the 
presence of large numbers of independent generators and the liberalization of the 
electricity sector is already imposing non negligible impacts in the distribution sector 
as the eligibility levels for accessing the open markets start to decrease. 

All these changes and challenges suggest it is crucial to develop new DMS - 
Distribution Management Systems - according to the requirements of the distribution 
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sector in the advent of the open market. This means we would not be tied to solutions 
already developed in the generation/transmission systems and integrated in EMS 
systems, but we would rather be concerned in developing a new system. This 
motivated our team to work on this area and to present to the PRAXIS program - 
Portuguese state program for financing scientific and development projects - the 
PREORD proposal in order to develop a new DMS system using new technologies 
and more advanced programming facilities. In any case, the development of DMS 
share with EMS some general guidelines (see reference 6. for instance) as flexibility, 
reusability, openness (in terms of their portability, interoperability, interConnectivity 
and scalability), security and accessibility. 

The software package described in this paper can be integrated in the move to an 
increasing level of automation of distribution systems. Apart from that, one witnesses 
an important evolution in several technological aspects regarding databases, 
programming languages and hardware structures themselves and new requirements in 
getting a more intuitive and friendly interface with the user and of supporting more 
complex and involving functions. In this scope, several applications were developed 
in recent years adopting the Object Oriented paradigm. As examples, references 1, 3, 
4, 5, 8, 10 and 11 describe several applications of Object Oriented technology to 
power systems. In this scope, these references describe general power system models, 
graphical user interfaces, topology processor and power flow algorithms. According 
to these references, it is suggested that distributed systems in general, and Object 
Oriented applications in particular, are the most adequate and flexible approaches to 
be adopted to develop new generation DMS systems. 

2. Object Oriented Basic Concepts 

Under the Object Oriented paradigm, the objects correspond to the main units in the 
strategy adopted to solve a particular problem. The adoption of an Object Oriented 
approach mainly aims at catching the concepts of real world that are significant for 
the application being developed. Under this paradigm, real systems are usually 
structured in terms of a number of objects that can be grouped in Classes sharing a 
common set of variables and methods - eventually, calculation methods that 
manipulate the particular values assumed by those variables (see references 3. and 7.). 
The objects sharing the same information, from these two points of view, are included 
in a Class so that a particular object can be seen as an instance ofthat Class. From this 
point of view, variables in a particular object in a Class are assigned particular values 
corresponding to instances defined for those variables. 

It is important to notice that the above Class definition is flexible enough to allow the 
construction of a hierarchical structure in which some Sub-Classes are defined under 
a Class placed at a superior level. In this structure, there is a common set of 
information - core - that is common to all Sub-Classes. This information, both in 
terms of variables and methods, is included in the Class at the superior level and it is 
inherited by all Sub-Classes. This organizational approach requires an higher level of 
abstraction in the sense that we will have to structure the system under analysis 
independently of particular instances of variables and recognizing what is common to 
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several objects - leading to a Class definition - and what is different between them - 
leading to Sub-Classes. Apart from this higher abstraction degree, the modularity is 
also favoured because a change in a private method or function at a certain level of 
the hierarchy does not affect the remaining Classes and Sub-Classes. 

Regarding the DMS under development, we will describe in the next section its 
general architecture, the referred hierarchical structure as well as the Class Models for 
some particular objects corresponding to network devices and application functions. 

3. The PREORD Platform 

The software package has a modular multitask client-server architecture and is 
supported by a commercial Object-Oriented Database Management System - 
ObjectStore. The modules corresponding to specific algorithms and applications of 
the DMS are connected to this platform. The clients correspond to Java applets and 
the modules related to DMS applications or algorithms are developed in Java or C++ 
and are registered in the Java DMS server as services. The server is a Java application 
that uses the Java language facilities to handle concurrency in a transparent manner. 
The reliance on Java gives us platform independence. When a user opens an HTML 
page in the web server - the page contains a reference to the Java applet - the applet 
is downloaded and starts running in the machine of the client. 

In our software package we use an Object Oriented approach as a way to build a 
mathematical model for the physical system to be analysed. The structural unit of this 
model is the object and they represent concepts existing in the real world. Each 
structural unit has a static identity and a dynamic associated to the transformations 
that can affect its state variables. The rules directing the interactions between different 
units of the system are also defined. The objects are grouped in classes so that it is 
possible to study the interdependencies inside the software in order to minimize them. 
We used a CASE tool to support the development process and generate the UML - 
Unified Modelling Language - diagrams (see reference 9.). The source code is under 
version control, and through the use of the CASE tool it is possible to automatically 
generate code from the detailed UML class diagrams. 

In this development phase, special attention is devoted to the object models of the 
components of power system networks as, for instance, lines, cables, transformers and 
generators. These models integrate data corresponding to static and dynamic 
characteristics. Dynamic data are, for instance, voltage magnitude and phases, branch 
currents and generations. The object model of each component also integrates 
information regarding calculations that can be performed with static and dynamic 
information. Apart from that, the 00 model of the system includes a number of 
objects to coordinate the actions of those component objects and other calculation or 
interface objects. From this point of view, each power application function -as for 
instance the power flow application - is structured in terms of a main coordinator 
object that has several sub-coordinator objects depending from it and that gives orders 
to component objects and other auxiliary calculation or interface objects. 
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The Object Oriented model of the system is organized in three levels: 
Electric Level - at this level the system has information about power system 
components. At the higher hierarchical position, there is the Electric Network 
that integrates information regarding Electric Connections, Electric Equipment 
and Ground. The Electric Equipment Object is organized in terms of a number of 
subclasses corresponding to one-terminal, two-terminal and three-terminal 
devices as detailed in Figure 1. The Electric Connection corresponds to a bus but, 
in order to give more flexibility to the software, we also included the sub-class 
OtherNetwork to represent the equivalent circuit of networks to which the 
network under analysis is connected. Finally, the Ground sub-class includes 
information regarding the connections of an electric network to the ground; 
Topologic Level - the available information regarding the models of electric 
devices, the connectivity and status of switching devices has to be analysed in 
order to produce a mathematical model of the system. This is achieved by 
Topology Processor application leading to a Class Diagram organized in terms of 
islands - energized or non-energized - corresponding to sets of electrically 
connected components (nodes and branches); 
Geographic Level - at this level the software will be interconnected with a 
Geographic Information System - GIS - given its ability to represent in different 
layers large amounts of data having a geographic dispersed nature; 

According to Figure 1, the information regarding the components of power systems is 
structured in terms of one, two and three terminal devices. For illustration purposes, 
let us consider the Transformers. The information both for two and three winding 
transformers is structured in terms of the Sub-Classes Winding and Regulation. The 
Sub-Class Winding includes variables and methods designed to represent one winding 
of a transformer while Regulation includes information related to the voltage 
regulation abilities of a transformer. Finally, the Class 2Winding Transformer gathers 
all this information in order to model such a device (Figure 2). 

Electric EauiomeM 

One Terminal 
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£ 
Two Terminals 

Load 

Line 
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 7K  
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-C 3d; 
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Generator 

^ 

SvnchronousGenerator AsvnchronousGenerator 
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3 WindingTranstormer 

V 
i             i 

Winding Regulation 

Fig. 1 - Class diagram for Electric Equipment. 
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2WindingTransformer 

SnumberObjectsClass: int=0 
-id: int 
-wghnnt- Pnmnlr* 

^getld():int 
+getYshunt():Complex 
-rgetYShumPrimary():CompIex 
TgetYShuntSecondary():CompIex 
^getZSeries():Complex 
+getPrimaryWinding():Winding 
+getSecondaryWinding(): Winding 
-newId():void 
-setYShunt(ComplexnewYShunt):void 
-computeYShuntPrimary():Complex 
-coinputeYShuntSecondary():Complex 
-computeZSeries():Complex 
TsetPrimaryWinding(newWinding PrimaryWinding) 
-rsetSecondaryWinding(newWindingSecondaryWinding) 
^2WindingTransformer(int newTerminall. newTerminaO, Complex newYShunt) 

Fig. 2 - Class diagram for 2 Winding Transformer. 

The client interacts with the server in order to request services by activating some 
objects organized in terms of calculation or coordinator objects. As examples, we 
present in the following paragraphs the main structure corresponding to the Topology 
Processor and Single Phase Power Flow. 

The Topology Processor builds a simplified connectivity model of the system taking 
into account the position of switching devices. The Class TopologyProcessor includes 
two subclasses leading to the single phase equivalent and to the positive sequence 
circuits. The single phase circuit is used in the single-phase power flow and state 
estimation and the positive sequence circuit is used in the three phase symmetric short 
circuit analysis. As an example, SinglePhaseTP directs the following objects: 
- Buses - simplifies the network by identifying individual nodes that are connected 

by closed switching devices and joining them; 
- Createlsland - checks, step by step, the connectivity of all nodes remaining in the 

system in order to identify islands and to create data structures for them; 
- ClassifvBuses - classifies the buses in the system as PV and PQ and selects a PV 

bus for reference in each island; 
- TslanriClassification - this object classifies the pre-identified islands in terms ot 

being energized or not energized; 
- TracingFunctions - perform facilities as Single Tracing, Multiple Tracing, 

Tracing Upstream, Tracing Downstream and Tracing to Ground; 

The Single Phase Power Flow is based on the Newton Raphson method and it runs for 
an island of the system identified by the Topology Processor. SinglePhasePF gets the 
id's of the equipments in the selected island and directs calculation objects as: 
- Initialization - initializes voltages and phases for all buses; 
- BuildlnvJacobean - using sparcity techniques builds and inverts the Jacobean 

matrix at an iteration of the algorithm; 
- FvalnatePOMismatches - computes injected powers and evaluates mismatches 

for active and reactive powers; 
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- EvaluateVeincrements - computes increments of voltages and phases using the 
inverted Jacobean and the power mismatches and evaluates the convergence; 

- AdjustTaps - checks if voltage taps have to be adjusted for on line voltage 
regulation transformers; 

- BuildResults - computes the final values for voltages, phases, generated powers, 
power and current flows and losses. 

4. Conclusions 

In this paper we describe the main guidelines of a DMS software package that adopts 
a distributed client-server architecture. The DMS applications are organized in terms 
of services that can be activated by clients when entering in the DMS Web page. The 
distribution network is modelled using Objected Oriented Concepts and is structured 
in three levels - Electric, Topologic and Geographic. The power system applications 
are implemented in terms of calculation or coordinator objects given that they can be 
used to direct the activation of other objects and the flow of information. From the 
experience gained so far we consider that the use of 00 technology corresponds to a 
major decision given the influence it has in all remaining development steps. 
Currently, we are finishing the implementation of the coordinator and calculation 
objects related to some power system applications and addressing issues related to 
real time processing considering that in a system as this one dynamic information is 
received from remote units periodically. At the end of this project we aim at having 
ready a prototype of a DMS system in order to test it in closer to reality environments. 
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Dynamic Page Aggregation Technique for 
Nautilus DSM System - A Case Study 
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Abstract. This paper introduces the dynamic aggregation of pages in 
Nautilus, which main features are: lock-based scope consistency, multi- 
threaded and page-based DSM system. The dynamic aggregation consists 
in considering a larger granularity's unit than a page, in a page-based 
DSM system. For the first time, an introductory evaluation of the influ- 
ence of the dynamic aggregation technique in the speedup of a DSM with 
Nautilus's features is done. The first results show that this technique can 
improve the Nautilus's speedup up to 13.10%. The benchmarks evaluated 
in this study are SOR (from Rice university) and LU (from SPLASH-2). 

1    Introduction 

The evolution and the decreasement of costs of interconnection technologies and 
PCs have made the networks of workstations (NOWs) the most used as a parallel 
computer. Big projects such as Beowulf[ll] can be mentioned to exemplify this. 

The Distributed Shared Memory (DSM) paradigm[8], which has been largely 
discussed for the last 9 years, is an abstraction of shared memory which permits 
to view a network of workstations as a shared memory parallel computer. 

In terms of granularity, DSMs have chosen in most cases page-grained ap- 
proaches instead of fine-grained ones. Also, the study of Iftode[17] showed that 
for several applications from SPLASH-2, page-grain DSMs perform similarly 
to or better than fine-grain, although generally higher bandwith and message 
handling costs favor page-based DSM while lower latency favors fine-grained 

approach[17]. 
Some important DSMs which belong to the second generation like Quark- 

s[7], TreadMarks[3], CVM[10], Brazos[18] and Nautilus[5], are page-based DSM 
systems. And, as it was said in the last paragraph, page-based solutions have 
achieved good speedups for several benchmarks, but there is still available place 

for improvements. 
In page-based DSM systems, shared memory accesses are detected using 

virtual memory protection, thus one page is the unit of access detection and 
can be used as an unit of transfer. Depending on the memory consistency model 
and the situation, also the diffs1 are used as an unit of transfer. For example, 
in homeless lazy release consistency (LRC), as TreadMarks, if the node has a 

* {mario,geraldo}@regulus.pcs.usp.br 
1 diffs: codification of the modifications suffered by a page during a critical section 
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dirty page, diffs are fetched from several nodes, when an invalid page is accessed. 
On the other hand, in JIAJIA, pages are fetched from the home nodes when a 
remote page fault occurs. 

The unit of access detection and the unit of transfer can be increased by using 
a multiple of the hardware page size. In this way, if aggregation is done, false 
sharing is increased. Aggregation reduces the number of messages exchanged. If 
a processor accesses several pages successively, a single page fault request and 
reply can be enough, instead of multiple exchanges, which are usually required. 
A secondary benefit is the reduction of the number of page-faults. On the other 
hand, false sharing can increase the amount of data exchanged and the number 
of messages[16]. 

The main goal of this paper is to evaluate the page aggregation technique[16] 
in Nautilus DSM system. The page aggregation technique is evaluated in Nau- 
tilus with a PC's network, with a free operation system. The speedups of Tread- 
Marks made it the main DSM used by the scientific community, as a reference 
of optimal speedups. The speedups related to TreadMarks performance are used 
only as an allusion of good performance and other study[22] have confronted 
TreadMarks versus Nautilus, thus the main goal is not to compare TreadMarks 
and Nautilus. 

The evaluation comparison is done by applying different benchmarks: LU 
(kernel from SPLASH-2)[15] and SOR (from Rice University). The environment 
of the comparison is a 8PC's network interconnected by a fast-ethernet shared 
media. The operating system used in each PC is Linux (2.x). This study is a 
preliminary evaluation of this technique and only two aggregation sizes are used: 
4kB (default) and 8kB. 

2    Nautilus DSM 

The main motivation of the new software DSM Nautilus is to develop a DSM with 
a simple consistency memory model, in order to provide good speedups, and also 
another one with a simpler user interface, totally compatible with TreadMarks 
and JIAJIA. 

Nautilus is a page-based DSM, as TreadMarks and JIAJIA. In this scheme, 
pages are replicated through the several nodes of the net, allowing multiple 
reads and writes[8], thus improving speedups. By adopting the multiple writer 
protocols proposed by Carter[2], false sharing is reduced and good speedups 
can be achieved. The mechanism of coherence adopted is write invalidation[8], 
because several studies [2] [3] [4] [12] show that this type of mechanism provides 
better speedups for general applications. Nautilus, as JIAJIA does, uses scope 
consistency model, which is implemented through a locked-based protocol[13]. 

The implementation of the lock-based protocol is done in Unix using the 
mprotect() primitive. With this primitive, pages can be in RO, INV or RW 
states, thus pages can have their states changed easily. 

Let's summarize Nautilus features: i) scope consistency; ii) multiple writer 
protocols; iii) multi-threaded DSM: threads to minimize the switch context; iv) 
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no use of SIGIO signals (which notice the arrival of a network message); v) min- 
imization of cliffs creation; vi) primitives compatible with TreadMarks, Quarks 
and JIAJIA. Nautilus follows the lock-based protocol proposed by JIAJIA[12], 
because of its simplicity, thus minimizing the overheads. Based on this proto- 
col, the pages can be in one of three states: Invalid(INV), Read-Only (RO) and 
Read-Write(RW). In addition, the home nodes of the pages always contain a 
valid page, and the diffs corresponding to the remote cached copies of the pages 
are sent to the home nodes. A list with the pages to be invalidated in the node 
is attached to the acquire lock message. 

3    Page Aggregation 

In terms of implementation, following the other DSMs directions, in Nautilus 
there is a handler responsible for request a page from a remote node when a 
segmentation fault occurs. When a page is accessed and it's in the INV state a 
SIGSEVG signal is generated and the respective handler, as it was said before, 
requests the page from the home node. When the page arrives the primitive 
mprotect() changes the state from INV to RO. 

When the page is written, another SIGSEGV signal is generated and the 
primitive mprotect() changes the state of the page from RO to RW. After the 
generation of the diffs, also with the mprotectQ primitive, pages go to RO state 
again. And, when the write-notices, indicating the pages are modified by other 
nodes, arrive, pages go to INV state (again with the use of mprotect() primitive). 

The primitive mprotectQ permits to consider a granularity multiple of a page, 
thus giving the same permission for a region multiple of a page. Thus, this fact 
gives the condition to modify more than one page at the same time, which is 
named page aggregation technique. 

The study [16] savs that if aggregation is done, false sharing is increased and 
aggregation reduces the number of messages exchanged. Also, processor accesses 
several pages successively, a single page fault request and reply can be enough, 
instead of multiple exchanges of requests and replies, which are usually required. 
The study [16] also shows that there is a reduction of the number of page-faults, 
but false sharing can increase the amount of data exchanged and the number of 

messages. 
This study is an original contribution because the study [16] is applied with 

TreadMarks, which is a lazy release consistency homeless system, and this tech- 
nique until the present was not applied in other scope consistency, multi-threaded 
and for Unix DSM, which are Nautilus's features. 

By changing the piw size default (4kB) to, for example, 8kB using mprotectQ 
primitive in Nautilus, it'. possible to evaluate the effects of the incremented size 
in page fault reduction in the speedups. 
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4    Experimental Platform and Result Analysis 

The results reported here are collected on a 8 PC's network. Each node (PC) is 
equipped with a K6 - 233 MHz (AMD)processor, 64 MB of memory and a fast 
ethernet card (100 Mbits/s) . The nodes are interconnected with a hub. In order 
to measure the speedups, the network above was completely isolated from any 
other external networks. Each PC runs Linux Red Hat 6.0. The experiments are 
executed with no other user process. 

In this study, two sizes are considered for page size: 4kB, which is the default 
(memory hardware) and 8kB, which is multiple of 4kB. 

The test suite includes some programs: LU (from SPLASH-2[15]) and SOR 
(from Rice University). The data input size N used in the LU evaluation is 
N=1024. The data input size of red and black matrix used in SOR evaluation 
is 1728x1728; the number of iterations for the SOR benchmark is 10 . 

Before presenting the results and their analysis, it is necessary to emphasize 
that the execution time for number of nodes = 1 in all evaluated benchmarks 
is obtained from the sequential version of the benchmarks without any DSM 
primitive. So, the primitive used to allocate memory to obtain the sequential 
time (number of nodes = 1) is malloc(), default primitive of C programming. 

In order to have an accurate, homogeneous and fair comparison, the same 
programs are executed using TreadMarks (version 1.0.3). There are some con- 
straints with TreadMarks version (1.0.3) used: i) the applications were 
executed and the speedups measured using Nautilus running on up to 8 nodes; 
ii)bigger input sizes: the shared memory size is limited in this version; iii)only 
time and speedups can be obtained from this version, thus it was not possible 
to obtain number of page faults and SIGSEGV signals. 

Table 1 show some features and results of the benchmarks: sequential time 
(t(l)), 8-processor parallel run time(8), speedup (Sp), remote get page request 
counts (gp) and number of local SIGSEGV of Nautilus(SG). The sequential time 
t(l) was obtained from the sequential program without no DSM primitives and 
malloc() primitive. In order to evaluate the adaptive write detection speedup, 
remote get page request counts and the number of local SIGSEGVs of Nautilus 
are taken. For table 1, Tmk means TreadMarks, N4k means Nautilus using 4kB 
page size and N8k means Nautilus using 8kB page size. 

For both benchmarks evaluated in this study, a big reduction of SIGSEGV 
signals can be observed from tablel, by looking at SG rows. Also, it can be 
noticed from this table a reduction of the number of page fault requests. These 
two results were obviously hoped because, as the page size increases, more data 
is included inside a page and as an immediate consequence, less number of page 
faults and requests for pages are necessary. 

For LU, a reduction of 2.2% is observed when the dynamic aggregation tech- 
nique is applied. Although the number of SIGSEGVs and the number of get page 
requests decreases by 36.98% and 19.37% respectively, as can be observed from 
1, the employment of dynamic aggregation technique changes the data distribu- 
tion. This new data distribution change the home nodes, giving a distribution 
not so adequate as the initial (4kB), decreasing the speedups of Nautilus. 
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app LU SOR 
t(l) 350.90 29.10 

t(8).Tmk 54.45 8.66 
t(8).N4k 54.32 7.66 
t(8).N8k 55.52 6.54 
Sp.Tmk 6.44 3.36 
Sp.N4k 6.46 3.80 
Sp.N8k 6.32 4.45 
SG.N4k 7980 12425 
SG.N8k 5029 7912 
gp.N4k 1528 118 
gp.NSk 1232 72 

Table 1. table comparing N4k x N8k 

For SOR, wich has good data distribution, the dynamic aggregation tech- 
nique decreased the number of SIGSEGVS by 36.00%, and also the number of 
pages requested by 38.00%. These reductions justify the increasement of the 

speedups of 13.1%. 
The goal of this paper is not to compare Nautilus with TreadMarks, as it 

was done in the study of Marino[22]. For Matmul, Nautilus outperforms Tread- 
Marks by 18.6%; for SOR Nautilus(4k) outperforms TreadMarks by 13.09% and 
Nautilus(8k) outperforms TreadMarks by 32.44%. 

5    Conclusion 

In this paper the page aggregation technique for a DSM which has similar Nau- 
tilus's features was presented. For reference of optimal speedups, TreadMarks 
was employed to have a fair comparison. 

It was seen that the page aggregation technique has improved Nautilus 
speedups in until 13.10% for SOR benchmark, reducing the number of page 
faults and the number of SIGSEGVs. For LU, the dynamic aggregation tech- 
nique decreased the speedup possibly due to the changing of the home nodes. 

In addition, the speedup of Nautilus was compared to TreadMarks, but not 

as the main goal of the paper. 
In our future works other applications will be tested and other page sizes, 

for example, 16kB and 32kB, also will be evaluated. 
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Abstract. A parallel water quality modelling algorithm is presented for tracking 
dissolved substances in water-distribution networks. The algorithm, based on a 
parallel version of the Discrete Volume Element Method, contains an initial 
stage in which the water network is divided into several parts by means of the 
Multilevel Recursive Bisection graph partitioning method. The algorithm has 
been implemented and tested on a cluster of PCs with the MPI system, 
achieving good performance as shown in the results included. 

1. Introduction 

Computer simulation of water networks by means of mathematical models is 
nowadays common practice in most water companies, being an indispensable tool for 
various purposes. In particular, computer simulation is used, among other objectives, 
to guarantee the supply of the required water flows with the adequate pressures, 
ensure the existence of water stores in case of necessity, comply with water quality 
requirements, reduce energetic costs for the network operation, or reduce leakage. 

The computational tasks related to the analysis of water networks are getting 
increasingly complex, due to various factors. First, the size and level of detail of the 
network models is growing, as a consequence of the incorporation of data from GIS 
(Geographical Information Systems). Second, it is nowadays increasingly frequent to 
be concerned with complex optimization problems. In this context, it has become 
patent the need of more powerful computing resources, and hence the interest in the 
use of parallel computing. 

Consequently, the objective of the HIPERWATER project (http://hiperttn.upv.es/ 
hiperwater) was to introduce High Performance Computing in the simulation and 
optimization of water networks, using the power of computing clusters to speed-up 
those tasks. The project resulted in the development of a software demonstrator, based 

Partly funded by the European Commission through the PST activity HIPERWATER 
(ESPRIT project 24003), and by the Spanish Government through the project C1CYT TIC96- 
1062-C03-01. 

-419- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

on EPANET, a well known water network simulation package [5]. HIPERWATER 
tackles three different problems making use of HPCN solutions [3], [4]: 

• Hydraulic simulation. The problem consists in obtaining the value of flows and 
pressures in the different network components. The equations modelling water 
networks are non-linear and therefore require an iterative solution. 

• Water quality simulation. By solving this problem information is obtained about 
substance concentrations, water age analysis, or percentage of flow from a 
determined source. 

• Leakage minimization. The objective is to minimise leakage by controlling 
pressures with a number of Pressure Reducing Valves (PRV). This is done by 
means of a Sequential Quadratic Programming algorithm. 

This paper is devoted to the second problem presented above. There are various 
methods that can be used for water quality simulation. In particular, we will consider 
here the Discrete Volume Element Method (DVEM) [6], which will be described next. 

2. The Discrete Volume Element Method 

A water distribution network is viewed as a collection of links connected together at 
their endpoints called nodes. Links can be of different types: pipes, pumps or valves. 
The purpose of the water quality simulation is to track the fate of a dissolved 
substance flowing through the network over time. The magnitude and direction of 
water flow throughout the network over time is taken as input data, being the result of 
the hydraulic simulation problem. In particular, we consider the type of hydraulic 
simulation known as extended period simulation, which divides the simulation period 
in a sequence of time steps, and in each of them the flows and velocities in the links 
are assumed to be constant. 

The DVEM is formulated assuming a one-dimensional transport model. Within 
each hydraulic time step, a shorter water quality time step is computed, and each pipe 
is divided into a number of volume segments (elements). Then, advance and reaction 
of the substance is simulated through the following phases (see Fig. 1): 

• Reaction. The reaction of the substance to be measured is simulated in this phase, 
if the substance is reactive. 

• Transport into nodes. The mass of substance and volume of water of the last 
segment of each pipe is accumulated into its connecting node. Then, new 
concentration of the substance on each node is computed. 

• Transport along links. Mass is shifted from volume element k to k+\ of each link. 
• Transport out of nodes. Mass is moved out of each node into the first volume 

element of all outgoing links. 

This sequence of phases is repeated until the start of the next hydraulic time step. 
Then the water quality time step is recomputed, the links are resegmented, and 
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computation continues. The method is fully explicit, in the sense that it does not 
require the solution of equation systems. 

Original Mass 

or DO 
a Reaction 

30 
Transport Into Node 

-ei—i—i   JP> 
Transport Along Link 

m    i—i—=n 
Transport Out of Node 

n^  i—\-=&> 
Fig. 1. DVEM phases for a link and its connecting nodes. 

The water quality time steps used in the method are chosen to be as large as 
possible without causing the volume element size of any pipe to be larger than the 
volume of the pipe itself. Taking into account that the volume element size of a pipe 
is given by Q,t, where Q, is the flow in pipe i and ris the water quality time step, r 

must be chosen as 

V CD 
T = min   ' , 

where Vi is the volume of pipe /. The quotient r'y. is referred to as the travel time of 

pipe i. Then, the number of volume segments in each pipe is 

v & 
r i 

where [_x] represents the largest integer less than or equal to x. 

3. Parallel DVEM algorithm 

Different water quality time steps must be performed sequentially in time, due to the 
fact that the solution of a step requires the results of the previous one. Thus, the 
parallelization of the water quality process must be based on a parallel algorithm for 
each individual step. 

In order to do so, we first divide the water network into several parts, one for each 
processor in our system. This initial network partitioning plays an important role to 
minimise communications and balance the computational load. Two are the desired 
objectives to be accomplished by the partitioning algorithm: a similar number of 
elements (nodes) should be assigned to each processor, and the number of pipes with 
nodes belonging to different processors should be minimum. The network can be 
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considered as a graph where the vertices are given by the nodes and the edges of the 
graph are the pipes and valves of the network. 

In particular, the approach used is known as Multilevel Recursive Bisection 
technique [1], [2]. Since the partition of the network is carried out only once and it is 
not a time-consuming task (in the test networks the time involved is less than a 
quarter of a second), a serial version of this algorithm has been applied. 

This algorithm works in the following way. First, a coarsening phase is performed, 
where the size of the graph to be partitioned is reduced, by collapsing vertices and 
edges. This reduction is repeated until a graph with a few hundred vertices is 
obtained. Then, in Khz partitioning phase a bisection of the small graph is carried out, 
and two subgraphs are obtained, with a minimum number of edges interconnecting 
them, and a similar amount of vertices in each subgraph. Finally, the uncoarsening 
phase takes place, where the objective is to project back the partition to the original 
graph, by means of a successive refining process. 

This complete process leads to a good partition for the graph in a fast way. It must 
be noted that the graph partitioning determines how the nodes are assigned to each 
processor, but nothing is said about the distribution of the pipes. As one would 
expect, a pipe will belong to the processor owning their end nodes. If the two end 
nodes belong to different processors, the pipe will be arbitrarily assigned to any of 
them. Actually, this means that a frontier between network parts crosses nodes and 
not pipes, although the associated frontier in the graph crosses edges and not vertices. 
Whenever a graph frontier crosses an edge, the network frontier is moved to one of 
the two end nodes of the corresponding pipe. We refer to the nodes situated in a 
network frontier as shared nodes. 

With the water network distributed among the processors, the parallel algorithm for 
the basic quality time step is largely given by the sequential one applied in each 
processor to the corresponding local portion of the network. Of course, some extra 
communication operations will have to be carried out, since the different network 
portions are not independent of each other. In particular, in order to perform the phase 
of "transport into nodes" for shared nodes, each processor has a local instance of these 
nodes into which the transport is done, obtaining the local values of mass and volume. 
After this phase, a communication operation is required in which the local 
contributions of the shared nodes are combined to obtain the final mass and water 
volumes, values which are then sent back to the processors sharing the nodes (this 
communication operation is implemented by means of the MPI function 
MPl_Allreduce). The rest of the phases in the sequential DVEM algorithm are not 
altered. 

On the other hand, the process of computing the water quality time step is done by 
computing locally the minimum travel time for each network portion, then obtaining 
the minimum of these values (this involves again an MPl_Allreduce operation). 

4. Results 

The parallel algorithm for the water quality simulation has been tested over a 
platform formed by several Pentium PRO 200 MHz PCs with Windows o.s. 
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connected via a Fast Ethernet network. Two water networks, named Test A and Test 
B, have been used for the testing. Their main characteristics can be seen in Table 1. 

Table 1. Characteristics of the test networks. 

Test A 
TestB 

Pipes Nodes     Tanks    Substance    Simulation duration 

4901 
19801 

2501 
10001 

Chlorine 
Chlorine 

48.00 hrs 
24.00 hrs 

Execution times obtained with these test networks are shown in Fig. 2, which also 
includes the execution times of the original sequential EPANET Lie simulation 
program. 

The resulting speed-up is shown in Fig. 3. Here, the speed-up values are taken with 
respect to the sequential simulation program EPANET, in order to get the real gain in 
execution time that has been achieved. A speed-up of up to 3.1 has been obtained, 
which illustrates the good performance achieved with the parallelization. 

Test 2.3 Test 2.4 

Fig. 2. Parallel algorithm execution times, in seconds. 

DEpanet 

□ 1 proc. 

D2proc. 
E33 proc. 

□ 4 proc. 

01 proc. 

P2 proc. 

□ 3 proc. 

B4 proc. 

Test A TestB 

Fig. 3. Parallel algorithm speed-up. 

Finally, efficiency obtained can be seen in Table 2. In this case the efficiency is 
obtained with respect to the parallel algorithm executed on a single processor. It can 
be seen that Test B presents lower efficiencies than Test A, although Test B 
corresponds to a larger network. This is due to the time spent on reading and 
distributing hydraulic results, and collecting and writing the final results, which is a 
process that must be done at the beginning and the end of each hydraulic time step. 
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Table 2. Parallel algorithm efficiency. 

Eficiency 2 proc.    3 proc.    4 proc. 
Test A 
TestB 

0,82        0,77        0,68 
0,83        0,64        0,54 

5. Conclusions 

A parallel algorithm for the quality simulation of drinking water networks, based on 
the DVEM method implemented in the EPANET package, has been presented. The 
proposed method allows for efficient simulation of the spatial and temporal 
distribution of substances in water networks. 

The algorithm has been developed in the frame of the HIPERWATER project. The 
objective of HIPERWATER has been to meet the need of computational power by 
introducing High Performance Computing techniques. The project considered the 
problems of hydraulic simulation and leakage minimization, as well as the water- 
quality simulation. 

Concerning the water-quality algorithm presented here, results obtained show an 
important reduction in the computation time with respect to the EPANET package. 
The paper shows that High Performance Computing is a valuable tool for the 
reduction of time spent on quality simulations for large drinking water networks. 
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Abstract. An exhaustive library of sparse iterative methods and pre- 
conditioned in HPF was developed, and a tool to predict and visualize 
the performance of these codes is presented. This tool can be used both 
by the users and by the library's developers to optimise the efficiency of 
the codes, as well as to simplify their use. The information offered by 
this tool combines theoretical features of the methods and precondition- 
ed in addition to some practical considerations and predictions about 
performance aspects of their execution. 

1    Introduction 

The complexity of parallel systems makes a priori performance prediction diffi- 
cult. In fact, performance instrumentation and visualization in parallel systems 
was found to be a complex multidimensional problem [9]. A performance data 
collection, analysis and visualization environment is needed to detect the effects 
of architectural and system software variations. 

The reasons for poor performance of codes on distributed memory systems 
can be varied, and users need to be able to understand and correct performance 
problems. This fact is specially relevant when high level libraries and program- 
ming languages are used to implement parallel codes, as in the case of HPF 

[7]. 
Most of the performance tools, both research and commercial, focus on low 

level message-passing platforms like MPI or PVM [4] [5] [1], and the most preva- 
lent approach taken by these tools is to collect performance data during program 
execution and then provide post-mortem display and analysis of performance 
information [10] [11]. Our proposal is different, we present a tool that predicts 
performance data of irregular HPF codes before executing them. 

The efficient implementation of irregular codes in HPF is hard. However, sev- 
eral techniques for handling this problem using intrinsic and library procedures 
as well as data distribution directives can be applied. An exhaustive library of 
iterative methods and | .^conditioners was developed [3], the tool presented in 
this paper analyses tli«' performance of these codes. This tool can be used both by 
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the users of this library to optimize the efficiency and by the library's developers 
to check the inefficiencies in an easy to use interface. 

Several strategies were used to optimize the efficiency of these parallel codes. 
In the literature, many iterative methods have been presented and developed and 
it is impossible to cover them all. We chose the methods below, either because 
they represent the current state of the art for solving large sparse linear systems 
[2] or because they present special programming features. The methods we con- 
sider are: Conjugate Gradient (CG), Biconjugate Gradient (BiCG), Biconjugate 
Gradient Stabilized (BiCGSTAB), Conjugate Gradient Squared (CGS), Gen- 
eralized Minimal Residual (GMRES), Jacobi, Quasi-Minimal Residual (QMR) 
and Gauss-Seidel Successive Over-Relaxation (SOR). Additionally, some pre- 
conditioners were also implemented in HPF, and can be applied to the target 
sparse matrix to transform it into one with a more favourable spectrum. These 
preconditioners are: the Jacobi preconditioner, the Symmetric Successive Over- 
Relaxation (SSOR), the Incomplete LU factorization (ILU(O)), the Incomplete 
LU factorization with threshold (ILUT), the Neumann Polynomial precondi- 
tioner and the Least Squares Polynomial preconditioner. 

The system on which we implemented the parallel codes was the Fujitsu 
AP3000, a distributed memory multiprocessor which consists of 12 UltraSparc 
processors connected by a mesh network [8]. However, both, the parallel codes 
and the performance tool, can be directly used on other parallel and distributed 
platforms with minor changes if any. 

2    The visualization tool 

Some knowledge about the linear system is needed to guarantee convergence of 
these algorithms, and generally the more that is known the more the algorithm 
can be tuned. Thus, we have chosen to present an algorithmic outline, with 
guidelines for choosing a method as part of our tool. 

A method that works efficiently for one problem may not work so good 
for another. This problem increases in complexity if the application of some 
preconditioner is also considered. The tool presented in this report helps to 
find the most effective method for the matrix in hand avoiding the need of an 
exhaustive searching. 

Our proposal combines theoretical features of the methods and precondi- 
tioners in addition to some practical considerations. In this way, relationships 
between data become readily apparent when the data are graphically displayed. 
The tool aids users in understanding, and drawing conclusions from the iterative 
methods and their implementation in HPF for each particular matrix. 

The goals obtained by our prototype are: 

- The tool allows users to select interactively the data to be displayed. 
- The tool is easy to install and its use is fairly self-explanatory. 
- It includes tools for gathering performance information. 
- The individual analysis and visualization components are easy to build for 

many different matrices and preconditioners. 
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- As a standard platform, TCL/TK, was used to implement the tool, new 
components or modifications can be added. 

- The tool is fast because the great amount of data required is filtered. 
- It provides great functionality as it uses a Xwindows platform. 
- It supports multiple analysis levels, including the sparse matrix characteris- 

tics, the methods, and the performance analysis and predictions. 
- It is portable to systems including a TCL/TK library, providing portability 

across a great variety of computers. 
- Although the target platform is the Fujitsu AP3000, the tool can be easily 

adapted to analyse other multiprocessors. 

The number of generated events is potentially enormous. The environment 
includes a set of data filters that process the input data reducing their number. 
Via an environment control, the display can be changed dynamically, allowing 
the user to select the best suited display formats to the data. 

The diversity of the performance data demands an equally rich set of perfor- 
mance displays. The displays include: dials, bar charts, LEDs, Kiviat diagrams, 
matrix views, X-Y plots, 3-dimensional plots and text information. 

The user interface for the prototype visualization system provides compre- 
hensive control. Through menus the user can obtain valuable information about 
the execution of the iterative method and preconditioner to select the best one 
in a friendly environment. 

The main capabilities of this visualization tool are: 

- It loads the sparse matrix in a standard format [6] and determines its es- 
sential characteristics, like, the pattern, the sparsity, the bandwidth, the 
symmetry, etc. 

- Theoretical aspects about the application of the iterative methods and pre- 
conditioners to the matrix. 

- The number of floating point operations required for each iteration of the 
methods and preconditioners for both, the sequential and the HPF codes. 

- The load balance in terms of the computational costs. 
- The number of communications and their lengths. This information can be 

shown for each processor. 
- A prediction about the execution time for each iteration. 
- As the number of iterations required by any method can not be predicted, a 

small number of iterations could be executed in order to analyse changes in 
the residuals, and get a first approach about the convergence of each method 
and preconditioner. 

- Detailed statistical information about a routine can be seen. 
- The use of pull-down menus to select visualization displays, or to change 

options is available. 
- The statistics display shows the cumulative data for the complete parallel 

code or for each process. 
- Finally, the method and the preconditioner can be actually executed. 
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The snapshots in Figure 1 show an example of the tool, in particular it shows 
the main menus, the menu for selecting a sparse matrix from a file, the pattern 
of this matrix, the help window and the window for selecting the number of 
processors to execute the parallel code. 

And, in Figure 2, note the performance consultant window that shows the 
statistics for each process, a Kiviat graph showing the load balance, the his- 
togram of the number and length of the messages to be sent and received by 
each processor, and the window for selecting the iterative method and precon- 
ditioner. 

File Display Select PSet Info 
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Fig. 1. Example of use of the visualization tool. 
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Abstract. We present a systematic and simple methodology to design 
parallel algorithms to solve the Generalized Sylvester Equation and other 
linear matrix equations. The resulting algorithms are well suited to be 
implemented using standard libraries of matrix arithmetic routines. 

1 Introduction. 

The solution of the Generalized Sylvester Equation, AXB + CXD = E, with 
A C £ flmxm, B,D & Rnxn and X, E € Rmxn, has wide application in modern 
Linear Control Theory [7],[8],[13]. When addressing particular problems, simpler 
equations derived from it, as the Sylvester[8],[13],[2], Lyapunov [14] and Stein 
[8], [13] equations are also frecuently used. 

In this paper we introduce a systematic and simple design methodology to 
solve them, deriving algorithms directly expressed in terms of basic operations 
of Linear Algebra [4], so they can be easily implemented using standard sci- 
entific libraries. The methodology is based on the definition of the Kronecker 
Product, presented in section 2, and on the Back Substitution Algorithm. The 
parallelization of this algorithm and the basic operations of Linear Algebra is 
widely studied [4],[1],[15], so the methodology allows to systematically obtain 
parallel implementations of the resulting algorithms. The proposed methodol- 
ogy has been already tested in the design of a library of systolic routines [10], 
using dynamic arrays and applying the DBT transformation [12] on the basic 

operations. 
To simplify the description of the methodology with a practical example in 

section 3, we will assume a triangular or quasi triangular form of the equation. 
Results for the general case are presented in [9],[11]. 

2 The Kronecker Product and the Vector Function. 

Given the A = [o0-]  G Rmxm and B = [M  G Rnxn matrices, the Right 
Kronecker Product of A and B, written A <8> B, is defined as the block 
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matrix, 

(auB ai2B ■■■ aimB \ 

anB a2lB::.a2rB = [0yB] e ä»»*™.      (D 
am\B a-m-iB ■ ■ ■ ammB/ 

Given .4 6 i?mxm, .4 = (A,1;.4:,2,... ,.4:>n) where A:>i € Rm, with i = 1, 
2,..., n, the vector 

/4i 
p pmnxl 

(2) 

is called Vec-function of A and written vec(A). Among the properties of the 
Vec-function, the following two [5] 

1. V .4, B E Rmxn and V a, ß € R, vec{aA + ßB) = avec{A) + ßvec(B) 
2. If .4 e Ämxm, B 6 fl"*" and X e Ämx", then t;ec(.4^5) = (BT ® ^)vec(X), 

will allow to use the Kronecker Product as a tool to solve the studied matrix 
equations and design the corresponding algorithms. 

3    Application of the Kronecker Product and the 
Vec- Function. 

Previous to the application of the methodology, the problem is transformed into 
a condensed form according to the method proposed by Golub, Nash and Van 
Loan [3]. Applying the previous definitions to the Triangular case of equation 
AXB + CXD = E, we obtain the linear equation system (BT ® A + DT ® 
C)vec{X) = vec(E), shown in figure 1. Its block structure suggests the use of 
the Back Substitution Algorithm to solve the problem [6] but this implemen- 
tation has always been discarded due to the huge size of the resulting system. 
Our methodology uses the Kronecker Product in the design phase to study the 
structure of the resulting system, having figure 1 as the starting point for the 
design of the algorithms. Adapting the Back Substitution to the corresponding 
block structure, we obtain the SGT Algorithm shown in figure 2, that uses 
basic operations of the Linear Algebra: Solve a system, Gaxpy and Saxpy. 

For the Quasi-Triangular case, we assume that the pencil A-XC is reduced to 
the Real Schur Form, and the pencil D - XB to the Triangular Form: each block 
m figure 1 is a Schur matrix. The main difference is now that the matrix (Abü + 
Cdü) must be triangularized before solving the value of xt. So adding to the SGT 
Algorithm the new operation Calculate Q : (Abu+Cd^Q is upper triangular, 
whose outputs are the matrices AQ, CQ (with the same zero-structure that 
matnx A) and Q (tridiagonal), we obtain the SGH Algorithm, shown in figure 
3. The election of a column-oriented transformation has been made to optimize 
the data flow for a systolic implementation. 
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Abn-l.n-l + >Abn.n-l + 

o\ o\ 
\ Abn,ii + 

0   \v 

Fig. 1. Linear Equation System obtained by applying the Kronecker Product and the 
Vec-function to the Triangular Generalized Sylvester Equation. 

for  i: =n downto  1  do 
x[i]:=b[i]/a[i,i];   
for  j:=i-l  dovmto  1  do 

b{j]:=b[j]-a[j,i]*x[i] 
endfor 

enfor; 

for  i:=n downto  1  do 
_|^   Solve   (Abii+Cdii)xi=ei; 

|       W:=A*xi; 
J       V:=C*Xi; 

I       for   j:=i-l  downto   1  do 
L Update ej:=ej-wbij-vdij 

endfor 
enfor; 

Fig. 2. Transformation of the Back Substitution Algorithm into the SGT Algorithm. 

for i:=n downto 1 do 
Calculate Q: (Abii+Cdii)Q is upper triangular; 

Solve ((Abii+Cdii)Q)(QTx1)=ei; 

w: = (AQ)"(QTxi) ; 

v: = (CQ)MQTx1) ; 

xi:=QMQ
Txi); 

for j:=i-l downto 1 do 
Update e^ ^e^-wb^-vd^ 

endfor 

Fig. 3. SGH Algorithm. 
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3.1     Obtaining Block Algorithms. 

Starting from figure 1 it is also possible to design algorithms for N x N upper 
triangular blocks of size M x M each, being N = pn and M = qm Each of 
these generic blocks, Abtj +Cdlh with j = l..N and i=j..N, presents the structure 
shown m figure 4: they are built of q x q subblocks of size m x m. Therefore 
each of the columns of X and E is also built of q blocks of size m. We will 
denote the subblock at the r row and s column from the (Abij + Cdij) block 
as {Arsbij + Crsbtj); and the rth subvector from the ith column of X, xi: or E, 
e„ as x\ or e[, respectively. From the described block structure, it is possible to 

Abij + Cdii 

Fig. 4. Structure of each triangular block from the coefficient matrix. 

obtain different algorithmic schemes. After studying several possibilities for the 
Triangular case, we have chosen to rewrite block-oriented versions of the Solve, 
Gaxpy and Update operations. The two obtained algorithms, shown in figure 
5, are called SGTB2.1 (column-oriented) and SGTB2.2 (row-oriented) 

for i:=N downto 1 do for i:=N downto 1 do 
for s:=q downto 1 do for s:=q downto 1 do 

ws:=0; Vs:=0 ws:=0; vs:=0; 
endf or ,- for r:=q downto s +1 do 
for s:=q downto 1 do 

eiS:=eiS-wSbii--Sdii ; 

Solve (Assbii+C
ssdii)xi

s=ei 
s. 

„s:=„s+Asr,Xir. 

vs:=vs+C
sr*xi

r 

endfor; 
for r:=s downto 1 do 

wr:=wr+A
rs-Xi

S; 

vr:=vr+Crs-xi
s 

endf or ; 

ei8i=eiS-wSbii-v
sdii ; 

Solve <ASSbii+C
ssdli)xi

s=ei
s; 

ws:=ws+Ass*x.S; 

for j:=i-l downto 1 do VS:=VS+CSS*X.S; 

for j:=i-l downto 1 do Update e-s:=e-s-wshi ■ 

(a) 

endfor 
endfor 

endfor; 

Update ejS:=ej
s-wsblj-v

sdi;j 

endfor 
endfor                        (b) 

endfor;                                   |  — 1 

Fig. 5. (a) SGTB2.1 Algorithm, (b) SGTB2.2 Algorithm. 
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The main difference between the Triangular and the Quasi- Triangular cases 
resides on the division of each Schur block to obtain a block-oriented version of 
the operation Calculate Q. We must apply the division depicted in figure 6: two 
consecutive blocks in a row, {AT'bu + Crsdu) and (Ar-S+1&;,- + Cr''+1dii), share a 
column, to correctly nullify the subdiagonal elements. The resulting SGHB1.1 
and SGHB1.2 algorithms are shown in figure 7. The blocks affected for this 
special division are marked with bold type. Note that although the real size of 
each submatrix {{Assbu + Cssdu)Qs), in the operation Solve is m x (m + 1), 
the result (Qs)Txs

i must be of size m. Therefore some updates are deferred until 
the corresponding element is calculated. 

Fig. 6. (a) Block division for Solve and Gaxpy operations, (b) Block division for Cal- 
culate Q and Apply Q operations. 

4    Conclusions 

We have presented a methodology that allows the simplification of a complex 
problem to be solved using basic Linear Algebra operations and implementing 
the solution using standard libraries, and that can also be used to obtain block 
algorithms. The methodology itself is a powerful graphical tool that helps the 
design by offering a clear representation of the data flow and dependencies. 
Therefore the data flow is adapted to the processing requirements, eliminating 
the need for intermediate storage resources. The methodology has been applied 
to other equations [9] obtaining a reduced set of basic arrays that form a complete 
Systolic Library [10] for solving a wide variety of problems in the field of matrix 

algebra (see, e.g., [11]). 
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for i:=N downto 1 do 
for s:=q downto 1 do 

wS:=0; v3;=0 
endfor; 
for s:=q downto 1 do 

eiS:=eiS-An-"Sdii ■• 

Calculate Qs: (AsVi+c
SBdii)Q

s Is upper triang; 

Solve ( (»"b^W^^Q3) (oVx^e.3; 

wS:=wS+(A
SSQS)MQS)Tx.S; ASSQS) QS)Tx 

V :=v-+(C'"Q'V(Q°) x^; 
if (s>l) then 

for r:=s-l downto 1 do 

Apply Qs to matrices Ars and CrS; 

wr:=wr.ArSQS.(QS)Txi
S; 

vr:=vr*CrsQs*(QS)Tx.s 

endfor 
endif; 

if (s<q) then obtain wl and vl from [Xj8*1],, endif; 
for j:=i-l downto 1 do 

Update e.s:=e.s-wsb..-vsd.. 

if (s<q) then 

Update [e! 
ll:=[e 

endif 
endfor 

endfor 
endfor; 

]1-wlbij-vldi 

(a) 

for i:=H downto 1 do 
for s:=q downto 1 do 

WS:=0; VS: =0 
if (s<q) then 

for r:=q downto s + 1 do 

Apply Qr to matrices \ST  and c3 
,sr„r, •   - - 

endfor 
endif: 

e.s:=e.s-w
sb..-vsd..; 

Calculate QS:(ASsbil«:
ssdil)Q

s is upper triang; 

solve ((*8V.+c"d.i)Qs)((Qs)Tx.8)=e.
s 

"  "  SSQS) 

CSSQS) 

if (s<q) then Obtain wl and vl from [x1
s',,1l0 endif; 

for j:=i-l downto 1 do 

Update e.S:=e.s-wsb. .-vsd. .,- 

if (s<q) then 

Update [e.3*1] :=[e S+1J -wlb..-vld. 
endif 

endfor 
endfor 

endfor; (b) 

Fig. 7. (a) SGHB1.1 Algorithm, (b) SGHB1.2 Algorithm 
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Abstract This paper describes the design and implementation of dthread, 
a new general purpose user-level threads package, designed to support 
fine-grain parallel applications in a portable and efficient way. We de- 
cided to build this new library because the performance of the Solaris 
threads library is not good enough to support fine-grain parallel appli- 
cations. We include some measurements comparing the performance of 
both libraries. They show our objective has been reached. 

Topics:   Parallel and distributed algorithms, Operating systems. 

Keywords:   Threads, Parallelism, Solaris, Multiprocessors. 

1 Introduction 

This work is part of a large project: VAMOS, "VHDL Advanced Multiprocessor 
Optimized Simulation", developed by the Computer Architecture Department 
(UPM) and the TGI company. The objective of VAMOS was to develop a VHDL 
parallel simulator for shared memory multiprocessors. This parallel simulator 
runs on Solaris multiprocessors and uses fine and very fine-grain parallelism. 

Due to the poor performance we observed in the Solaris threads library with 
this kind of parallelism, we decided to develop our own threads library to improve 
the performance. We have got a small, efficient, portable and standard threads 
library suitable for fine-grain parallelism. 

2 State of the art 

Initially threads were lightweight processes executing in a single address space 
that could run independently and concurrently. They were managed in the op- 
erating system kernel (kernel threads), which made threads expensive. 

Later on user-level threads were introduced ([1,2]). They have performance 
and flexibility advantages over kernel threads because they are managed within 
the user address space. But they have also disadvantages when a user-level thread 
performs blocking system calls or in presence of multiprogramming. These prob- 
lems arise because there are two places where the next running thread can be 
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scheduled, one in the application and another one in the operating system, with 
very little coordination among them. This is called the two-level scheduling prob- 
lem ([3-7]). 

At the moment, the threads are supported by most of the operating systems, 
including Solaris, they are well-known and there is a standard ([8]) that assures 
their portability. 

3 Solaris threads library 

Solaris has two kind of threads: kernel-supported threads so called Light Weight 
Processes (LWP) and user-level threads, simply called threads. User-level threads 
are used to decrease the level of overheads involved in their management (cre- 
ation, destruction, context switch,...). On the other hand, Solaris uses kernel 
threads as virtual processors to execute the user-level threads and to control the 
degree of real concurrency that the application requires. 

Each LWP is independently dispatched by the kernel. They may run in paral- 
lel on a multiprocessor, being scheduled onto the available processors according 
to their scheduling class and priority. Threads are implemented by the library 
and are not known by the kernel. 

We have found several problems in the Solaris user-level threads library that 
encouraged us to develop a new one: 

- Heavy weight. User-level threads are quite heavy, being suitable for coarse- 
grain and middle-grain applications but never for fine-grain applications, 
because context switch involves heavy system calls that make context switch 
time usually longer than the tasks execution time. 

- Degree of concurrency. The library changes dynamically and transpar- 
ently the number of LWPs that give support to an application to solve the 
two level scheduling problem. When all the LWPs in the process are blocked 
in indefinite waits the kernel sends a signal to the threads library that re- 
sponds creating a new LWP. Also the threads library makes LWPs to "ages" 
and, if they are not used for a long time, they are terminated. That means 
the user has a loose control over the actual degree of concurrency that is 
effective only in simple and small applications but has no control in a real, 
big application. 

- Poor locality of reference. The library puts all the runnable threads 
together in a global queue. The LWPs always choose the first one, which 
implies a poor behavior in terms of locality of reference. 

- Bad optimizations. Some library optimizations are very dependent on 
the application and quite often they decrease the performance instead of 
increasing it; For example, when a thread becomes blocked and there are 
no more runnable threads, the LWP that was running the thread must also 
stop running. It does so by waiting on an LWP semaphore associated with 
the thread (the LWP is parked), rather than idling on the global condition 
variable. This practice optimizes the case where the blocked thread becomes 
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runnable quickly, but leaves the application without one LWP for some time. 
Even it is possible to find some runnable threads waiting for a LWP while 
there are some parked LWPs. 

4    Dthreads library 

Once we identified the above mentioned problems, we concluded that the Solaris 
threads library was not appropriate for fine-grain parallelism. The best choice 
was to replace it with a new one, suitable for fine-grain parallelism. The principal 

goals were: 

- Efficiency. This was the main objective. To accomplish it we reduced the 
threads weight to the minimum. 

- Threads management is done exclusively in the user address space, with- 
out system calls. 

- Portability. The dthreads library is POSIX compliant to ensure portabil- 
ity. Both dthreads and Solaris threads libraries can be used by the VHDL 
simulator by linking the chosen one. 

- Degree of concurrency. The dthreads library leaves the control of the 
degree of concurrency that the application needs to the user and the modi- 
fications done are not transparent to the user. 

- Locality of reference. This new library tries to avoid thread migration 
between LWPs, improving the efficiency of caches. To achieve this objective 
it has one local queue by processor and a global queue. 

- Avoid blocking system calls as much as possible. If a user-level thread 
executes a blocking system call, the underlying kernel thread blocks too. In- 
side the application a virtual processor is lost and a physical one can be 
unused even if there are runnable user-level threads. In order to avoid pro- 
cessors being idle (two-level scheduling problem), the library implements a 
buffered input/output monitor. This monitor could also have been imple- 
mented with the Solaris threads library. The idea is to assure that most of 
the times the application threads will not block. The read and write opera- 
tions are done by the monitor. 

The architecture of the system based on dthreads is quite similar to the 
original one. The new user-level threads executes on the LWPs, that are used as 
virtual processors. 

Each thread has a stack, an optional heap and a thread control block. The 
thread control block holds the thread identifier, a pointer to the stack and the 

thread context. 
There is the possibility of assigning a heap to each thread to avoid contention 

in the dynamic memory allocation for high demanding memory applications. 
Threads can share memory dynamically allocated in any heap, but each thread 
must manage his own heap, allocating and freeing memory. If a thread doesn't 
know which one will free a memory block, it must use the global heap, that 
is lock protected to prevent concurrent access. There is no loss of generality 
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because local heaps are only an extension. The global heap is always present 
and his access is protected. 

5 Results 

Now we will show some measurements that justify the advantages of this new 
user-level threads library. The performance of this library is compared with the 
performance of the Solaris library to show the differences. 

These measurements have been taken in a four processor SunSPARCstation20. 
It is based on 50 MHz SuperSparc processors with 128 Mbytes of shared memory. 

Operation Solaris dthread Speedup 
Create/Destroy 2900 ^seg 600 pseg 4.83 
Lock/Unlock 1.7 /zseg 0.68 /xseg 2.5 
GetSpecific 1.1 /iseg 0.53 /useg 2.1 
pthread-self 0.4 /useg 0.58 fiseg 0.69 

Tablel. Performance. 

Table 1 shows the time spent on several important operations both on dthreads 
and Solaris threads. However, these data are not enough to justify the develop- 
ment of a new user-level threads library. Tables 2 and 3 show the time used 
m a context switch with pthread.yield and with conditions. The differences 
between both libraries are very important. 

Context switches between user-level threads can occur very often in a par- 
allel application and can introduce important overheads in the Solaris threads 
library. With a single LWP, that is, without actual concurrency, Solaris threads 
management is done inside the user address space, without using system calls, 
and with reasonable times. However, in a regular situation, with several user- 
level threads over a few LWPs, Solaris introduces a lot of costly system calls with 
high overheads. The threads management is not done in the user address space 
anymore, and a lot of unnecessary system calls can appear (IwpjnutexJock, 
Iwpjnutex.wakeup, lwpjsema.post, lwp_sema-wait). The Dthreads library does 
not use system calls to manage user-level threads in any case, which explains 
the execution time differences. 

There are some other reasons to build the dthreads library: 

- To control the degree of concurrency. This library never changes the number 
of kernel threads that give support to the application unless the user asks 
for it. 

- To improve the locality of references. Solaris uses only one global queue to 
put all the runnable threads. This solution gives an optimal load balance but 
a poor locality of references because a thread does not reuse its state present 
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Concurrency Solaris dthread Speedup 

1 Thread, 1 LWP 16.3 £(seg 10.3 /*seg 1.6 

2 Thread, 1 LWP 24.7 fiseg 10.3 /Ltseg 2.4 

4 Thread, 1 LWP 25.1 /xseg 10.6 ^seg 2.4 

2 Thread, 2 LWP 7.2 ^seg 6.0 /iseg 1.2 

4 Thread, 2 LWP 79.0 jiseg 6.4 /^seg 12.3 

Table2. Context switch with pthread.yield. 

Concurrency Solaris dthread Speedup 

1 Thread, 1 LWP 4.4 ^seg 2.3 /iseg 1.9 

2 Thread, 1 LWP 38.4 fiseg 13.3 /xseg 2.9 

4 Thread, 1 LWP 38.9 /useg 13.4 ^seg 2.9 

2 Thread, 2 LWP 103.8 ^seg 18.0 /iseg 5.8 

4 Thread, 2 LWP 121.4 juseg 15.8 /iseg 7.7 

Table3. Context switch with conditions. 

in the cache memory of the last processor where it ran. On the contrary, 
Dthread library has local queues to put each thread in the local runnable 
queue of the last processor where it ran. 

- To increase the limit on the number of threads. Dthread library implements 
the threads with a small state that reduces the resources used and gives the 
ability to increase the number of threads that can be managed. 

6    Conclusions 

As has been shown, we have reached the starting objectives. We have got a 
general purpose user-level threads library for shared-memory multiprocessors 
that is POSIX compliant. It is efficient, small, portable, has good performance 
and it is suitable for fine-grain parallelism. It is faster than the Solaris user- 
level threads library and it solves the different problems that the Solaris threads 

library has. 
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Abstract. On this paper a parallel algorithm which allows an efficient calcula- 
tion of a simulation of a laser cavity is presented. The optimal implementation 
of the algorithm on a distributed memory multicomputer results in the choice of 
an optimal grain size. This grain size must balance different factors depending 
on the parameters associated with the calculation. A model for the optimal 
choice of the grain size is proposed along with the corresponding experimental 
tests. The theoretical model can be easily extrapolated to a great number of 
similar problems. 

Related topics: Parallel and distributed algorithms. 

1   Purpose and scope of the work 

The parallel algorithm that will be studied here relates to the simulation of the physical 
behaviour of a laser cavity. Laser (Light Amplifier by Stimulated Emission of Radia- 
tion) is a sort of light with certain optical properties such as high spatial and temporal 
coherence. An optical amplifier medium and two mirrors can produce the laser light. 
They make up a laser cavity as the one shown in fig. 1. See [1] for a practical applica- 
tion of this technology and [2] for a reference about the underlying physical problem. 

The physical behaviour of the laser cavity can be simulated with a computer. In a 
semiclassical model, we need five functions to fully describe the state of the cavity on 
a given time /. Three of them are in connection with the matter: p(x), q(x), w(x) and 
the other two, a(x) and da/dt(x), with the radiation. The temporal evolution of the 
cavity state obeys to the partial differential equations (1). 
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Fig. 1. Laser cavity diagram (up) and its discretization (down). 

If a discretization of space and time dimensions is performed, one arrives to five ar- 
rays to describe the state of the cavity (fig. 1, down) and five equations of temporal 
evolution for them (2-6). 

p(Xj+At) = p(Xj)+±(XJ).Al+±ili(j!j).{Alf+]_£z{xt).m 

* 

2! A1 

1 <?2q, 

3! de 

1 d\. q(XJ + At) = q(XJ) + ^(XJ)-At + ^^.(xj).m
2+l;^3.(x,t).{Atf.. 

3w i a2 l a3 

(x,t + At)=w(x,t) + —(x,t)-At + ^^f(x,t)-(At)2
+i-^i(x,t)-(At) dt 2! 3t2 3! 9t3 

a(XJ + An = a(xj) + ^(xj).Al+li^.ixJ).{A,)-+li^.{xJ).(Aty 
<* 2! a.' 3! ötJ 

(2) 

(3) 

(4) 

(5) 
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ck o\ of 2! of 

(6) 

Note that one must also take into account boundary conditions. The value of the arrays 
on either side of the cavity (i.e. where the mirrors lay) is zero for all' /. With these 
relations, it is straightforward to device a sequential algorithm for simulating the cav- 
ity behaviour. 

i-2 i+l      i+2 

p P P P P 

q q q q q 

w w w w w 

alfa alfa alfa alfa alfa 

dalfa dalfa dalfa dalfa dalfa 

t+At 
alfa 

dalfa 

Fig. 2. Spatial dependencies for the calculations of the state of one point in the cavity in the 
next time step. Alfa and dalfa are the names of the arrays used in the program for a and dot/dt. 

When thinking about making a parallel algorithm to simulate the laser cavity physical 
behaviour, one must consider the spatial dependencies for calculating the value of the 
parameters in one point for the next time step in the future. Fig. 2 shows these depend- 
encies for a certain point in the cavity. 

A first approach to the parallel algorithm implementation can be the use of the "di- 
vide-and-conquer" techniques by dividing the cavity points in equal parts among the 
distinct processors that make up the multicomputer. Of course that, due to spatial 
dependencies, this partition must consider the boundary overlapping points necessary 
for calculations to be performed. The overlapping points should be at least two (eq. 2- 
6). The temporal evolution for problem solution forces a synchronization and the cor- 
responding communication for interchanging boundary points between neighbouring 
processors (fig. 3, left). 
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Some initial studies demonstrated that depending on the cavity size and the number 
of processors used, this simple calculation plan could produce a low performance due 
to communication penalty introduced to the parallel algorithm. In other words, the 
grain size is too small for the work environment used. 
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Fig. 3. Evolution diagram of the parallel algorithm with two processors (see text). 

Thus, a first objective consists of designing a new algorithm that will allow the use 
of different sizes for the overlapping zone between processors so that the grain size 
can be increased to allow higher speedups. A working diagram of the new algorithm is 
presented in fig. 3, right. 

A second objective would be thinking about some method for an adequate choice of 
the optimal grain size that can allow the best possible speedup as a function of the 
number of processors and the cavity size of the problem to be solved. 

2    Fundamental Results Already Obtained 

2.1   Hardware/Software Configuration 

To do the parallel calculation, a PC network has been used. Each node has an Intel 
Pentium II Processor @ 266 MHz and 64Mb of RAM. Linux was used as the Operat- 
ing System. Relating to communication, each computer has a Fast-Ethernet card con- 
nected to a switch. The message passing software used is MPI, in its LAM/MPI ver- 
sion 6.3.b2 implementation [3]. 
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Fig. 4. Left: communication time vs. Overlapping for a 128000 point cavity and 16 processors. 
Right: maximum reachable speedup due to the algorithm overhead versus overlapping. 

2.2   Grain Size Behaviour Issues 

The new algorithm presented in 1.2 introduces different factors that will influence the 
final speedup in different ways. In fact, as the size of the overlapping zone increases: 

1. The amount of information to be transmitted increases. An example of time spent in 
communication vs. size of the overlapping zone is presented in fig. 4, left. 

2. The grain size grows, which is positive for the final speedup. 
3. The parallel algorithm overhead increases, that is, some mesh points are calculated 

twice by different processors (fig. 3). This will yield a speedup decrease and a 
maximum reachable speedup as a function of the size of the overlapping zone. This 
speedup can be mathematically deduced and is plotted for an example in fig. 4, left. 

As it was stated before, now we will propose a theoretical model that will allow us 
to predict the best overlapping size for a given cavity size and number of processors. 
Let us define a cycle as the time between successive intercommunications. We can 
define then the speedup as: 

/ (7) 
13        f .(talc) + t {com) 

where ts stands for sequential time, tp means parallel time, tp
c"c'  is time spent in 

calculation for the parallel algorithm and tp
c"m) is time spent in communication. 

Considering a linear dependency of communication time on the overlapping size 
(as it suggests fig. 4, left), one can arrive to the following expression for the speedup: 
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S=- 
T{NP-2)G/ (8) 

2(a + ba) + T 
NP-2 

N 
\ + a/, 

where x is the time spent on calculations of one point in the cavity, NP is the num- 
ber of cavity points, c is the overlapping size, a+ba is the linear dependence of com- 
munication time with o, and N is the number of processors. 

The overlapping size that maximizes (11) can be deduced from it and it is: 

|32a (9) 

2.3   Experimental results 

Several experimental tests have been carried out in order to verify the theoretical 
model previously exposed. There is a good agreement between the calculated optimal 
overlapping and the experimental one in the cases we have analyzed. Some of these 
experimental results are shown in the following table: 

# processors 
16 
16 

Cavity size 
128000 
40000 

37.2 
22.6 

34 
24 

3    Conclusions 

A parallel algorithm for a laser cavity simulation has been developed. This algorithm 
tries to obtain an optimal speedup by adequately selecting a grain size that balances 
the calculation/communication binomial. The optimal selection of the grain size is 
done by means of a very simple theoretical easy-to-calculate prediction which, addi- 
tionally, could be extrapolated to similar algorithms for simulations of space/time 
evolution of physical systems in the future. 
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Abstract. This paper outlines key issues that must be addressed in 
order to allow PVM-based programs to make effective use of resources 
within a wide area network-computing environment. Support mecha- 
nisms that allow unmodified PVM programs to be used within the 
PUNCH network-computing environment are also described. The mech- 
anisms were found to be easy to implement, and preliminary experi- 
ences indicate that the described approach is well-suited for a network- 
computing environment. 

1     Introduction 

Distributed applications are often built on top of message-passing standards such 
as PVM [1] and MPI [2]. These standards were originally designed for relatively- 
structured environments, where users are aware of all available machines and 
have direct access to them. In this context, the emerging wide area network- 
computing environment presents two interesting challenges: 1) the large size 
of the environment makes it difficult for users to keep track of all available 
resources, and 2) the dynamic and inter-institutional nature of the environment 

causes logistical problems when users are required to have actual user-accounts 

on all resources. 
This paper describes how PVM- and MPI-based programs can make effective 

use of resources within a wide area network-computing environment by lever- 
aging the functionality provided by PUNCH, the Purdue University Network- 
Computing Hubs. A unique aspect of the described implementation is that nei- 
ther the PVM/MPI programs nor the PVM/MPI libraries need to be modified. 

PUNCH [3,4] is a distributed network-computing infrastructure that pro- 

vides transparent and universal access to remote programs and resources via the 
World Wide Web. PUNCH users can define simulations, run them, and view 
the text and graphical output — all via their Web browsers. PUNCH currently 
provides access to more than fifty engineering software packages developed by 
thirteen universities and six vendors; a new program can be added in as little as 
thirty minutes. PUNCH can be accessed at www.ece.purdue.edu/punch. 

v 
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The discussion in this paper focuses on PVM-based programs, but the ideas 
are equally applicable to MPI programs. The remaining sections are organized as 
follows. Section 2 outlines the issues that arise in the process of running a PVM 
program. Section 3 describes the support mechanisms provided by PUNCH for 
running PVM programs in a network-computing environment. Section 4 pro- 
vides outlines related work. Finally. Section 5 presents concluding remarks and 
directions for future work. 

2 Issues in Running PVM Programs 

Running a PVM program in an environment where a user has direct access to 
all machines typically involves the following steps. The user must first select the 
machines for the given run and choose a ••master" machine. Next, he/she must 
login to each •'slave" machine and create a .rhost file that will allow PVM to 
start processes on that machine. After this, the user must create a PVM host 
file on the master machine; this file provides PVM with information about the 
available machines. Once this is done, the user must start the PVM daemons 
by invoking the PVM console on the master machine. At this point, the PVM 
system has been initialized and the user can start the PVM program. 

In an environment where users are not aware of all available resources, the 
steps described above must be automated. In situations where users do not have 
user-accounts on all machines, operating system support for "scratch" accounts 
must be provided. The resulting sequence of steps required to start a PVM 
program in a wide area network-computing environment is illustrated in Figure 1. 

3 The PUNCH Approach 

PUNCH users initiate programs via a dynamically-generated Web interface that 
is accessible from standard WWW browsers [4]. For PVM- and MPI-based pro- 
grams, users explicitly specify the number and types of machines required for a 
given run, in addition to other input parameters required by the program. This 
information is typically provided via menus and text-boxes "in HTML forms. 

When a user attempts to initiate a PVM- or MPI-based program, PUNCH 
first allocates the necessary resources using the user-supplied information about 
the number and type of machines. With reference to Figure 1, resource allocation 
(step 1 in the figure) involves two tasks: 1) selecting appropriate machines for 
the given run, and 2) ensuring that a scratch account is available for use on each 
of the selected machines. 

The process of allocating resources is handled by PUNCH'S pipelined resource 
management system, and proceeds as follows (see Figure 2). PUNCH first for- 
wards the user-supplied information about machines to a local query manager. 
The query manager decomposes this information into individual components, 
each of which consists of a set of constraints (e.g., architecture, memorv, need 
for scratch account, etc.) and a quantity (i.e., number of machines of this tvpe) 
For example, a request for three Sun and four HP servers will be decomposed 
into two components, one for the three Suns and one for the four HPs. 
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Wait  for PVM program to 
complete 
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access,   and return allocated 
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to the resource pool 

Fig. 1. The sequence of steps required to run a PVM program in a wide area network- 
computing environment. It is assumed that users are not aware of all available resources, 
and that they do not have user-accounts on all usable machines. 

The individual components are then forwarded to the nearest (in terms of 
network reachability) pool manager(s), where they are processed concurrently. (If 

a pool manager is unable to satisfy a request, the query manager will forward the 
request to the next nearest pool manager.) The pool manager uses the constraints 
contained within a given query component to map it to an appropriate resource 
pool. A resource pool consists of 1) all machines in a specified local domain that 
satisfy a given set of constraints, and 2) scheduling agents that select machines 
from "those within the pool on the basis of performance-related criteria (e.g., 

load balancing). For example, one pool could contain all Sun machines, another 
could contain all HP machines, a third could contain all Sun machines with 
at least 128MB memory, and so on. After a resource manager maps a query 
component to a resource pool, the scheduling agents associated with that pool 
allocate the desired number of machines and forward relevant information to 
another query manager stage (not shown in Figure 2; this stage is only required 
for queries that have to be decomposed into multiple components). The query 
manager reassembles the individual query components and forwards the results 

to PUNCH. 
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Fig. 2. The resource management pipeline utilized by PUNCH. A resource pool consists 
of dynamically aggregated resources that are similar in terms of a specified set of 
constraints and the associated scheduling agents. 

A key feature of the resource management pipeline is that the resource pools 
are created dynamically from site-specific databases. Pool managers create re- 
source pools when they are required and automatically destroy pools that have 
been inactive. This mechanism allows the resource management svstem to dy- 
namically minimize the scheduling overhead for the specific types" of jobs that 
are being initiated at any given time. Another benefit comes from the manner in 
which pool managers are chosen — because "closer" managers are selected first, 
allocated machines tend to be near each other. (In the current implementation, 
the closeness between managers is defined by a static quantity and machines 
controlled by the same manager are assumed to be at zero distance.) 

Once the necessary resources have been allocated, the host environment is 
initialized as follows (step 2 in Figure 1). PUNCH first selects the "master" for 
this run — the first allocated machine is arbitrarily chosen for this role. Next, 
PUNCH uses secure shell (SSH [5]) to login to the allocated scratch account on 
each of the remaining allocated machines and creates the necessary . rhost files. 
If secure shell is not available on a given machine, rsh or rexec can be used 
instead. The key advantage of the PUNCH approach with respect to this step is 
that neither PVM nor the user need to be given access to the passwords for the 
scratch accounts. This allows PUNCH to recycle scratch accounts among users 
in a secure manner. 

The third step involves generating a PVM host file that contains the names 
of the machines allocated for this run and the login names for the corresponding 
scratch accounts. PUNCH uses secure shell to access the scratch account on the 
"master" machine and writes the appropriate information into a new file. 

The fourth step involves starting PVM daemons on all allocated machines 
PUNCH accomplishes this by invoking the PVM console in the scratch account 
on the "master" machine; the daemons on the slave machines are automatically 
started by PVM (via the information in the PVM host file) when the console is 
invoked. 

Once the PVM daemons are running, PUNCH copies the necessary data 
files into the scratch account on the "master" machine (from the user's PUNCH 
account) and initiates the PVM-based program (step 5 in the figure). If the 
program is designed to run in batch mode, it is started in the background: 
otherwise, it is started within a X-session that is accessible by the user via 
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his/her browser [4]. A unique feature of the PUNCH approach is that it is a 
non-intrusive solution — the PVM system and the PVM-based program are 
completely unaware of PUNCH. One advantage of this is that PUNCH can 
support unmodified (i.e.. legacy) PVM-based programs as long as they do not 
use hard-coded machine names. (This limitation can be removed by trapping 
rsh calls from PVM and modifying them; see [6] for details.) Another benefit 
is that PUNCH does not affect the performance of the programs, except to the 
extent that it makes resource allocation decisions. 

At this point, PUNCH simply waits for the PVM-based program to complete 
(step 6 in Figure 1). When this happens, PUNCH will first retrieve output files 
from the scratch accounts and place them in the user's PUNCH account. Then, 
PUNCH will stop the PVM daemons (via the PVM console), terminate any 
active processes within the allocated scratch accounts, and remove the .rhost 
files. Once PUNCH has verified that the scratch accounts are '-clean" (i.e., empty 
and no active processes), they will be returned to the account pool. 

4    Related Work 

MPICH-G [7] is a grid-enabled implementation of MPI that uses services pro- 
vided by the Globus toolkit [8] to allow users to run MPI programs within a wide 
area network-computing environment. This work makes existing MPI-based pro- 
grams usable in a network-computing environment by enhancing the capabilities 
of MPI itself, whereas the PUNCH approach provides support mechanisms that 
work with unmodified implementations of PVM/MPI. Another difference be- 
tween the two approaches is that MPICH-G requires users to have user-accounts 
on all machines that might be used to run the MPI program, whereas PUNCH 
uses scratch accounts to work around this problem. (PUNCH provides admin- 
istrators with a way to specify usage policies so that only authorized users are 
given access to machines.) 

Legion [9] allows PVM programs to run in the Legion network-computing 
environment by emulating the PVM API on top of the Legion run-time system. 
This approach is fairly complex from an implementation standpoint, and does 
not support the complete PVM API [10]. 

Finally, Condor [11] provides support for PVM programs that are based on 
the master-worker paradigm. One issue that arises in Condor's opportunistic 
computing environment is that the '-master" process must be able to handle the 
disappearance of worker nodes; the "master" process can compensate for lost 
nodes by (dynamically) requesting additional machines. 

5     Conclusions 
A prototype version of PUNCH that allows users to run unmodified PVM-based 
programs in a wide area network-computing environment has been implemented 
and°tested. Preliminary results show that the described approach efficiently man- 
ages available resources. Support for MPI-based programs is being added: this 
is a relatively simple extension of the work described here. 
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The implementation described in this paper does not provide support for dy- 
namically increasing or decreasing the number of machines available to a running 
PVM program. Future work will be aimed at adapting the type and number of 

machines available to a PVM program on the basis of observed and predicted 
performance characteristics. 
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Abstract 

Abstract: Topological measures are an obvious choice for investigation 
of cellular systems, and average topological properties of a froth, defined 
to be shell-structured inflatable (SSI), have been shown to obey simple 
relations. However, froth is an intrinsically non-equilibrium system, and 
SSI froths typically become non-SSI as coarsening progresses, so that 
more general probes may provide further insight. Cluster persistence per- 
mits fingerprinting of froth dynamics at different length scales and facili- 
tates comparison with non-cellular structures. There is evidence to show 
that the average persistent area in a froth achieves a stable value, but 
support for power law decay of the average bubble fraction cannot be es- 
tablished for intermediate time scales. We present simulation results for 
both Voronoi and uniform 2-D froths and examine the case for topological 
and non-topological probes of the dynamics. 

1. Introduction 

The soap froth is an ideal model of a cellular network, which is disordered and 
space-filling, [1-7]. It is an intrinsically non-equilibrium system, which evolves 
to a universal stable state, through surface-energy driven diffusion. Evolution or 
coarsening is associated with two separate dynamics, with very different rates 
of occurrence, [8]. The first is due to rapid topological transformations with 
corresponding changes in connectivity, which occur system-wide. The second 
reflects slow, deterministic relaxation over a long time-scale, as a consequence 
of diffusion of gas between the bubbles. The steady-state evolution of the froth 
has been characterised by laws describing the statistics of cell area, [9], the 
growth-rate of n-sided cells, [10] and scaling properties of cells [11]. 

Initially, correlation effects were considered to be restricted to nearest-neighbours 
only, through the Aboav-Weaire Law [12]. The average number of neighbours 
of an n-sided cell is given as m(n) = (6-a) + (6a+ /i2)/n, with /x2 the second 
moment of the side distribution f(n) and a the Aboav-Weaire parameter. More 
detailed topological correlations have recently been derived, however, based on 
analysis of the froth as a system of concentric cells, which can be generated re- 
cursively, [13-15]. The distance j between any two cells is the smallest number 
of edges crossed by paths connecting one to the other. Any cell may be taken 
as the "germ" cell j = 0 and layers or shells of equidistant j = 0,1,2 ...cells are 
such that the jth layer of cells at distance j encloses layers j-1, j-S 0 and 
includes all cells which are themselves neighbours of at least one cell at distance 
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j + 1. Any cell, which does not obey this condition, is said to lie between lay- 
ers j - 1 and j and represents a localised defect inclusion with respect to the 
froth "skeleton". Any froth, without defect inclusions is called shell-structured 
inflatable (SSI), [13]. In the asymptotic steady-state, topological properties are 
invariant, with ß2 achieving a constant value and with the average cell area 
proportional to the square root of the time. Furthermore, //2 is a measure of 
the disorder in the froth, which affects both the evolution and the fraction of 
initial cells remaining [16]. These remainder or survivors are cells which are 
present at a given time tf and which were also present at tt ,t{ < tf, [17]. Most 
evolutionary properties are based on the contribution of survivors at different 
stages, so that it is more reasonable to choose a known survivor as the germ 
cell in a dynamic investigation, although the theory equally applies to any other 
choice. 

Although topological measures are a natural choice for assessing evolution of a 
froth over time, more general measures provide a useful basis for comparison 
with systems which do not have cellular structure, [18]. The local decay of 
persistence towards zero, P{t0t) ~ t~e was first proposed as a new and gen- 
eral probe of non-equilibrium dynamics [19] and has recently been discussed in 
some detail. To date, however, numerical simulation results for the value of the 
exponent 0 are not in good agreement with theory and experiment, although a 
limiting value of d = 1 is indicated by both, ([18] and refs. therein). 

In a froth, the persistent property of interest may be taken to be the fraction of 
the system which has remained within the same bubble from initial time t0 to 
given time t. More generally, [20], the known cellular structure of the froth may 
be exploited for comparison, by definition of a virtual phase, where a given frac- 
tion 0, say, of the bubbles are "coloured" at time t0 and persistent properties of 
this fraction are studied as t -» t«,. The persistent area, is thus bounded above 
and below respectively, by areas of coloured survivors and ancestors at t0, [18]. 
(where ancestors are predecessors of the bubbles remaining at time t). Again, 
selection of known survivors for colouring, facilitates dynamical investigation of 
the froth properties. 

In what follows, we report for both randomly-generated and uniform froths on 
the dynamics of evolution as charted by both topological and persistence probes. 

2. Methodology 

Direct simulation, using the method of Weaire and Kermode, [21], provides 
precise information on independent bubble parameters, with clear distinction 
made between topological and diffusive changes. In 2-d, the former include Tl 
and T2 processes, (side- switching and bubble disappearance respectively), and 
are effectively instantaneous. Conversely, bubble-size, (number of sides n, area 
A) evolves continuously, but only cells with n > 6 will grow, by von Neumann's 
Law, with rate dependent on the initial disorder in the froth. 
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A Voronoi froth is intrinsically disordered and non-SSI, (Fig. 1). 

Fig. 1. Voronoi froth, illustrating topological inclusion in shell stucture; intrinsically 

non-SSI 

A uniform hexagonal froth however is in mechanical equilibrium, so that bubble 
movement must be stimulated initially by seeding the froth with one or more 
topological dislocations or defects. The simplest forms of defect are achieved by 
forcing either a Tl or T2 process to give a pentagon-heptagon pairing or an 
eight-sided single cell respectively. The large cells are obvious survivor choices 
of germ cell for shell-structure analysis. A single defect has been shown to 
grow rapidly until it effectively consumes the whole system, [22], and multiple 
defects expand until impacting with each other, after which changes are slower. 
Ancestors can be backtracked to the time origin, providing not only a more 
natural time scale for determining the existence of a fixed distribution, f(n), 
but a basis to "colour" sensibly the required volume or sampling fraction <j> in 
an examination of persistence in the network. 

Fig. 2. Voronoi froth, with random colouring for volume (sampling) fraction (j>~ 0.2 

The virtual phase for the Voronoi network, (randomly coloured bubbles Fig. 2), 
and for the hexagonal network, (centred on defect choice, Fig. 3), have been 
followed over time for different "volume" or sampling fraction, 0, ranging from 
0.02 to 0.4. This is contrasted, (for the Voronoi), with the behaviour observed if 
survivors at time ti> t0 are taken to be the original sample. This latter choice 
obviously biases the relative area, since bubbles at U will be large compared to 
those at t0, but ensures that survivors are featured at the crucial period and 
provides confirmation that the equilibrium value has been achieved. Systems of 
up to 2500 bubbles were considered. 
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Fig. 3. Hexagonal froth with defect as centrel germ cell choice in shell structure, 
(SSI). Colouring for volume (sampling) fraction 0 in persistence also includes at least 
one such defect. 

For the topological measures, we have chosen the germ cell at random for the 
Voronoi, (as in Fig. 1) and as a defect for the uniform network, (as above). Key 
equations for the topological properties in an SSI froth have been given, [13] to 
be 

Kj+1=8jKj -Kj-t (J>1) (i) 

Qi = 6- Kj+1+Kj (2) 

where K,- is the total number of cells in the layer j and 3j= mJ_4 is a constant, 
(rrij is the average number of sides per cell in the layer j). The logistic map 
starts with K0~ 1 and Ki = n, the no. of sides (or more generally neighbours) 
to the central cell. Equation (2) is a special case of the more general expression 
for topological charge, Qh from the "Gauss" theorem, [23], where the general 
form applies to any froth, whether SSI or not. 

An approximate expression for the Aboav-Weaire law for higher shell number 
has been proposed [25] as 

rrijKj « 6Kj + (2 - a)fx2 (3) 

which is trivial for the second term on the right hand side = 0, but suggests 
that, in the asymptotic limit (for j), a froth can only be free of defects if p2 = 0 
or a = 2 and we have also explored this for the hexagonal network, for controlled 
disorder. 

3. Results 

In the Voronoi froth, the number of survivors in the virtual phase at the early 
time period is large and the distribution of area at t to initial area (A*{t)/A(0)) 
is left-skewed. However, as the froth coarsens and bubbles disappear, this is 
gradually reversed, as few survivors have non-zero persistent area. For 0 very 
small ~ 0.02, this constitutes a small sampling fraction of the finite system size, 
(50 in 2500 bubbles), so that over a large number of time steps, the quantity 
< A*(t)/A{0) > achieves a relatively stable value of just under 0.4 for the biased 
sample and this appears to agree reasonably well with the value indicated for 
the initial random sample, although equilibrium is less clearly established in 
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this case. As <j> is increased, (0.1,0.2 say), decay is slower and it is not evident 
that a time-independent value is finally achieved, although the curves do flatten 
around t = 700-750 time steps for the biased sample in both cases. This occurs 
at a value less than 0.5, and indications are that a similar value is attained for 
the random sample in both cases. Consequently, the qualitative evidence is 
reasonably supportive of a time-independent form for < ,4*(£)/,4(0) > with a 
value between 0.35 and 0.55, (Fig. 4). 

<A';tl/Ai0j: 

L) 100 200        300        400        500 600 

Fig.  4.  Average area of persistent regions within a bubble at time t, normalised by 
area of bubble at time to (persistent area ratio) as a function of time 
A (4>= 0.02,biased), B(0= O.l.biased), C(</>= 0.2,biased), D(</>= 0.02,random), E(</>= 
0.1,random), F (</>= 0.2,random) 

Further, N*(t)/N{t), the fraction of bubbles containing persistent area at time 
t, is clearly expected to decrease with t and plotted against average bubble area 
< A{t) > for t large, we might hope to observe decay. Unfortunately, it seems 
clear that the percentage of initial bubbles which contribute to any decay is 
extremely small (< 5%) and the simulation time-scale is too short to be able to 
view this for the Voronoi, with area growth inevitably limited by the finite size 
of the system. For <j> very small, there is considerable noise, which decreases as 
4> increases but again no decay can be observed for N*{t)/N{t). 

We have also considered, therefore, the persistence of the virtual phase in a 
uniform hexagonal network, since the growth in area of the large cell or cells is 
extremely rapid, so that some contraction of the time-scale may be achieved. 
The evolution for a single defect is a special case, for which usual asymptotic 
relations do not apply [22], but as the defect concentration is increased, the 
evolution of the froth is closer to that of the Voronoi. Again, results for low 0 
are reasonably supportive of a time-independent value for the area ratio, but 
do depend on whether one or more defects or large cells are included as part of 
the virtual phase. No decay of N*{t)/N{t) can be observed for size of systems 
considered so far (900, 1600 bubbles), although larger hexagonal systems with 
low defect concentrations and small </> merit further study. 
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With respect to the topological probes, the topological charge is initially con- 
stant from the second layer for single defects of both Tl- and T2-induced type 
in the hexagonal froth, with the number of cells in a layer increasing linearly 
after the first few layers as Kj+l = Kj + 6 ( j > p, where p depends on centre 
cell choice). However, we showed recently that, for the Tl-formed froth, inclu- 
sions occur very quickly in the first few layers, so that the structure becomes 
non-SSI for the remainder of the evolution. The T2-formed froth, however, re- 
mains dynamically SSI, with ß2 ^ 0 only for the zeroth, first and second layers, 
so that the suggestion that ß2 = 0 is necessary for a defect-free froth is clearly 
incorrect. (The second moment fi2 does not attain a constant value, so Equation 
(3) clearly does not hold, and further, p2 is also slow to stabilise for low con- 
centration of defects). A more formal expression, relating two-cell correlators, 
ai(M), for nearest-neighbours in froth to n.m(n) has been given, [15], and 
generalised for j and we note that the total number of first neighbours is always 
known for seeded disorder in the hexagonal structures, so that two-cell correla- 
tions may be obtained for the dynamic T2-formed froth, but not in general. For 
the case of low defect concentration, for example, the percentage of topological 
inclusions between shell layers is small prior to impact between defects. Nev- 
ertheless, inclusions will occur at some stage, so that topological correlations 
as a function of the layer distance j no longer apply. Although the (single de- 
fect), T2-formed, froth is the only exception we have found to the general rule 
for dynamic froths, a non-SSI froth with a small percentage of inclusions has 
statistical distributions similar to those for SSI froth and topological properties 
may still be exploited to some extent. For large amounts of disorder or ran- 
domness, more general probes of the non-equilibrium dynamics seem indicated, 
although choice is limited by the need to reflect the froth's cellular structure. ' 

4. Conclusions 

Topological probes arise naturally in soap froth dynamics and shell-structure 
analysis provides measures, which relate predominantly to SSI froths. The 
(single-defect) T2-formed hexagonal froth is the only example we have found 
of a dynamic SSI froth, which does not require \x2 = 0 and for which topo- 
logical relations for charge and two-cell correlation apply directly. For small 
percentage of inclusions between cell layers, however, non-SSI and SSI froth 
have similar statistical distributions. Cluster persistence, on the other hand, 
provides a general probe of non-equilibrium dynamics, but time-scales required 
to observe persistence decay are very long. Nevertheless, numerical simulation 
results indicate that time-independent values are achieved for some persistent 
properties in Voronoi and uniform froths, for a range of sampling fractions 4> , 
where persistent area is given roughly to be < A*(t)/A(0) >~ 0.45 for the for- 
mer. This indicates the need for further investigation of persistence properties 
for networks, where the amount of seeded disorder can be controlled. 
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Abstract. Branch-and-prune (BP) and branch-and-bound (BB) tech- 
niques are commonly used for intelligent search in finding all solutions, 
or the optimal solution, within a space of interest. The corresponding 
binary tree structure provides a natural parallelism allowing concurrent 
evaluation of subproblems using parallel computing technology. Of spe- 
cial interest here are techniques derived from interval analysis, in partic- 
ular an interval-Newton/generalized-bisection procedure. In this context, 
we discuss issues of load balancing and work scheduling that arise in the 
implementation of parallel BB and BP, and describe and analyze tech- 
niques for this purpose. These techniques are applied to solve problems 
appearing in chemical process engineering using a distributed parallel 
computing system. Results show that a consistently high efficiency can 
be achieved in solving nonlinear equations, providing excellent scalabil- 
ity. The effectiveness of the approach used is also demonstrated in the 
consistent superlinear speedup observed in performing global optimiza- 
tion. 

1    Introduction 

The continuing success of the chemical and petroleum processing industries de- 
pends on the ability to design and operate complex, highly interconnected plants 
that are profitable and that meet quality, safety, environmental and other stan- 
dards. Towards this goal, process modeling, simulation and optimization tools 
are increasingly being used industrially in every step of the design process and in 
subsequent plant operations. To perform realistic and reliable process simulation 
and optimization for industrial scale processes, however, requires very large scale 
computational resources. Parallel computing technology offers the potential to 
provide the necessary computational power. However, since most currently used 
problem solving techniques in process modeling and optimization were devel- 
oped for use on conventional serial machines, it is often necessary to rethink 
problem solving strategies in order to take full advantage of parallel computing 

technology. 

* Author to whom all correspondence should be addressed. Fax: (219) 631-8366; E- 
mail: markst@nd.edu 
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In this context, we are particularly interested in the use of parallel computing 
technology to address reliability issues that arise in solving process engineering 
problems. The models that must be solved in process simulation problems are 
typically highly nonlinear and may have multiple solutions. The goal is to find 
all solutions, to insure that the solution or solutions of interest are not missed. 
Similarly, in optimization problems, the nonlinear programming problems to 
be solved are typically nonconvex, and there may be several local optima. The 
goal is to find the global optimum, though in some problems finding all of the 
local optima may be of interest as well. The approach we apply involves the 
use of interval analysis, combined with branch-and-prune (BP) or branch-and- 
bound (BB) strategies. Properly implemented, such techniques can find, or more 
precisely enclose, all solutions to a system of nonlinear equations, and can be 
used to enclose the global optimum, or all local optima, in optimization problems. 
This can be done with mathematical and computational certainty. 

Since the subproblems (tree nodes) generated in the tessellation step in BB 
and BP algorithms are independent, these techniques are particularly amenable 
to parallel processing. In this paper, we focus specifically on issues of load balanc- 
ing and scheduling that arise in the implementation of parallel BB and BP, and 
describe and analyze techniques for this purpose. An application to a problem 
arising m chemical process engineering is used to demonstrated the effectiveness 
of the approach used. 

2    Distributed Parallel Computing 

The solution of realistic, industrial-scale simulation and optimization problems 
is computationally very intense, and requires the use of adequate computational 
resources to be done in a timely manner. High performance computing (HPC) 
technology, in particular parallel computing, provides the computational power 
to realistically model, simulate, design and optimize complex chemical manu- 
facturing processes. To better use these leading edge technologies in process 
simulation requires the use of techniques that efficiently exploit parallel compu- 
tational resources. One of major trends in this regard is the use of distributed 
computing systems. Typically, in this sort of system, memory is physically dis- 
tributed, and communication may be done by message passing through some 
interconnection network. 

The use of parallel processing in chemical engineering has attracted signif- 
icant attention over the past decade or so. There are a variety of applications 
for which a distributed approach to parallel computing has proven to be effec- 
tive. In chemical process systems engineering, some examples, that involve either 
actual implementation on distributed systems, or algorithms appropriate for dis- 
tributed computing, can be seen in the field of deterministic global optimization 
and reliable nonlinear equation solving (e.g., [1-9]), nondeterministic global op- 
timization (e.g., [10-12]), BB in process scheduling (e.g., [13-16]), BB in process 
synthesis (e.g., [10,17-19]), and process simulation, analysis and optimization 
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(e.g., [20-39]). There are also a number of important application areas outside 
of process systems engineering (e.g., [40-45]). 

The type of distributed parallel system of particular interest here is a cluster 
of workstations (COW), in which multiple workstations on a network are used 
as a single parallel computing resource. This sort of parallel computing system 
has advantages since it is relatively cheap economically, and is based on widely 
available hardware. Thus, such an approach to parallel computing has become a 
important trend in providing high performance computing resources in science 
and engineering. 

3    Branch-and-Bound 

Branch-and-prune (BP) and branch-and-bound (BB) algorithms are general- 
purpose intelligent search techniques for finding all solutions, or the optimal 
solution, within a space of interest, and have a wide range of applications. These 
techniques employ successive decomposition (tesselation) of the global problem 
into smaller disjoint or independent subproblems that are solved recursively until 
all solutions, or the optimal solution, are found. BB and BP have important 
applications in engineering and science, especially when a global solution to an 
optimization problem, or all solutions to a nonlinear equation solving problem 
are sought. In chemical engineering, these applications include process synthesis 
(e.g., [10,17-19]), process scheduling (e.g., [13-16]), analysis of phase behavior 
(e.g., [46-48]), and molecular modeling (e.g., [49]). 

In BP, a subproblem is typically processed in some way to verify the existence 
of a feasible solution. The subproblem may be examined by a series of tests, and 
is pruned when it fails specified criteria or if a unique solution can be found inside 
this subdomain. If no conclusion is available, and so the subproblem cannot be 
pruned, the problem is bisected into to two additional subproblems (nodes), 
generating a binary tree structure. One of the subproblems is then put in a 
stack and tests are continued on the other. This type of BP procedure is one 
of the basic ideas underlying the application of interval analysis to equation- 
solving problems. More details on interval analysis, in the particular interval- 
Newton/generalized-bisection (IN/GB) method, are presented in next section. 
When solving a system of nonlinear equations, the pruning scheme consists of 
a function range test and the interval-Newton existence and uniqueness test. 
There are three situations in which an interval (node) can be pruned: (1) zero 
is not contained in any component of the function range; (2) a unique solution 
is proven to be enclosed, and (3) it is proven that no solutions exist. With these 
pruning criteria, a scheme can be constructed that searches the entire binary 
tree and finds all solutions of the equation system. 

In BB, the goal is typically to find a globally optimal solution to some prob- 
lem. BB may be built on top of BP schemes by enbedding an additional pruning 
test. In this test, a node is pruned when its optimal (lower bounding) solution is 
guaranteed to be worse (greater) than some known current best value (an upper 
bound on the global minimum). Thus, one avoids visiting subproblems which 
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are known not to contain the globally optimal solution. In this context, various 
heuristic schemes may be of considerable importance in maintaining search effi- 
ciency. For example, when solving global minimization problems using interval 
analysis, the best upper bound value may be generated and updated by some 
heuristic combination of an interval extension of the objective function, a point 
objective function evaluation with interval arithmetic, and a local minimization 
with a verification by interval analysis. In order to enhance bounding and prun- 
ing efficiency, some approaches also apply a priority list scheme in BB. Typically, 
all problems in the stack are rearranged in the order of some importance index.' 
such as a lower bound value. The idea is that the most important subproblems 
stored in the stack are examined with higher priority, in the hope that the global 
optimum be found early in the search process, thus allowing other later subprob- 
lems that do not possess the global optimum to be quickly pruned before they 
generate new nodes. 

In BB or BP search, the shape and size of the search space typicallv changes 
as the search proceeds. Portions that contain a solution might be highly ex- 
panded with many nodes and branches, while portions that have no solutions 
might be discarded immediately, thus resulting in an irregularly structured 
search tree. It is only through actual program execution that it becomes ap- 
parent how much work is associated with individual subproblems and thus what 
the actual structure of the search tree is. Since the subproblems to be solved 
are independent, execution of both BP and BB on parallel computing systems 
can clearly provide improvements in computational efficiency; thus the use of 
parallel computing to implement BP and BB has attracted significant attention 
(e.g., [50-56]). However, because of the irregular structure of the binary tree, 
this implementation on distributed systems is often not straightforward. Details 
concerning the methodology for implementing BP and BB on distributed parallel 
systems will be discussed in later sections. 

4    Interval Analysis 

Of particular interest here are BP and BB schemes based on interval analysis. 
A real interval Z is defined as the set of real numbers lying between (and includ- 
ing) given upper and lower bounds; i.e., Z = [zL,zv] = {z e 5ft | zL < z < zu}. 
A real interval vector Z = {Zx, Z2,..., Zn)T has n real interval components and 
can be interpreted geometrically as an n-dimensional rectangle (box). Note that 
in this section lower case quantities are real numbers and upper case quantities 
are intervals. Several good introductions to interval analysis are available (e.g., 
[57-59]). In this section, interval analysis is described in the context of solving 
nonlinear parameter estimation problems, since that is the primary example used 
in the tests discussed later. However, it should be emphasized that the interval 
methods discussed here are general-purpose and can be used in connection with 
other objective functions in a global optimization problem and other equation 
systems in an equation solving problem. 
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BP and BB techniques can be constructed using the interval-Newton tech- 
nique. Given a nonlinear equation system with a finite number of real roots in 
some initial interval, this technique provides the capability to find (or, more 
precisely, narrowly enclose) all the roots of the system within the given initial 
interval. For the unconstrained minimization of an objective function (or esti- 
mator) 0(0) in parameter estimation, a common approach is to use the gradient 
of 0(0) and seek a solution of g(0) = V0(0) = 0 in order to determine the op- 
timal parameter values 0. The global minimum will be a root of this nonlinear 
equation system, but there may be many other roots as well, representing local 
minima and maxima and saddle points. Thus, for this approach to be reliable, 
the capability to find all the roots of g(0) = 0 is needed, and this is provided 
by the interval-Newton technique. In practice, by using an objective range test, 
as discussed below, the interval-Newton procedure can also be implemented as 
a BB technique, so that roots of g(0) = 0 that cannot be the global minimum 
need not be found. The solution algorithm is applied to a sequence of intervals, 
beginning with some initial interval 0(o) specified by the user. This initial inter- 
val can be chosen to be sufficiently large to enclose all physically feasible values. 
It is assumed here that the global optimum will occur at an interior stationary 
minimum of 0(0) and not at the boundaries of 0(o). Since the estimator 0(0) is 
derived based on a product of Gaussian distribution functions corresponding to 
each data point, only a stationary global minimum is reasonable for statistical 
regression problems such as considered here. 

For an interval 0(fc) in the sequence, the first step in the solution algorithm 
is the function range test. Here an interval extension G(0(fc)) of the function 
g(0) is calculated. An interval extension provides upper and lower bounds on the 
range of values that a function may have in a given interval. It is often computed 
by substituting the given interval into the function and then evaluating the 
function using interval arithmetic. The interval extension so determined is often 
wider than the actual range of function values, but it always includes the actual 
range. If there is any component of the interval extension G(0(fc)) that does 
not contain zero, then we may discard (prune) the current interval (node) @{k), 
since the range of the function does not include zero anywhere in this interval, 
and thus no solution of g(0) = 0 exists in this interval. We may then proceed 
to consider the next interval in the sequence, since the current interval cannot 
contain a stationary point of 0(0). Otherwise, if 0 £ G(0^fc)), then testing of 
©(*) continues. 

The next step is the objective range test. The interval extension #(0(fc)), 
which contains the range of 0(0) over 6^, is computed. If the lower bound of 
$(0(*)) is greater than a known upper bound on the global minimum of 0(0), 
then &{k) cannot contain the global minimum and need not be further tested. 
Otherwise, testing of 0(fc) continues. The upper bound on the objective function 
used for comparison in this step can be determined and updated in a number 
of different ways. Here we use point evaluations of 0(0) done at the midpoint 
of previously tested 0 intervals that may contain stationary points. Using the 
objective range test yields a BB procedure for the global minimization of 0(0), 
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while if this step is skipped, we will have a BP technique for finding all solutions 
of g(0) = 0, i.e., all stationary points of 0(9). 

The next step is the interval-Newton test. Here the linear interval equation 
system 

G/(0(*))(N^-fl<*') = -g(fl(*)) 

is set up and solved for a new interval N<*\ where £'(©(*>) is an interval 
extension of the Jacobian of g(0), i.e., the Hessian of 0(0), over the current 
interval ©(*), and 9(k) is a point in the interior of 0<fc), usually taken to be the 
midpoint. It has been shown (e.g., [57-59]) that any root 0* e ©W of g(0) = 0 
is also contained in the image N<*>, implying that if there is no intersection 
between 0(*> and N *> then no root exists in ©<*>, and suggesting the iteration 
scheme 0(fc+D = 0(*> n N<*>. In addition to this iteration step, which can be 
used to tightly enclose a solution, it has been proven (e.g., [57-59]) that if N(*> is 
contained completely within ©<*>, then there is one and only one root contained 
within the current interval ©(*). This property is quite powerful, as it provides 
a mathematical guarantee of the existence and uniqueness of a root within an 
interval when it is satisfied. 

There are thus three possible outcomes to the interval-Newton test, as shown 
schematically for a two variable problem in Figs. 1- 3. The first possible outcome 
(Fig. 1) is that NW C 0<*>. This represents mathematical proof that there exists 
a unique solution to g(0) = 0 within the current interval ©(*>, and that that 
solution also lies within the image N<*>. This solution can be rigorously enclosed, 
with quadratic convergence, by applying the interval-Newton step to the image 
and repeating a small number of times. Alternatively, convergence to a point 
approximation of the solution can be guaranteed using a routine point-Newton 
method starting from anywhere inside of the current interval. Since a unique 
solution has been identified for this subproblem, it can be pruned, and the next 
interval in the sequence can now be tested, beginning with the function range 
test. 

The second possible outcome (Fig. 2) is that N<*> n ©<*> = 0. This provides 
mathematical proof that no solutions of g(0) = 0 exist within the current in- 
terval. Thus, the current interval can be pruned and testing of next interval can 
begin. 

The final possible outcome (Fig. 3) is that the image N<*> lies partially within 
the current interval ©<*>. In this case, no conclusions can be made about the 
number of solutions in the current interval. However, it is known that any solu- 
tions that do exist must lie in the intersection ©(*) n NW. If the intersection 
is sufficiently smaller than the current interval, one can proceed by reapplying 
the interval Newton test to the intersection. Otherwise, the intersection is bi- 
sected, and the resulting two intervals added to the sequence of intervals to be 
tested. This approach is referred to as an interval-Newton/generalized-bisection 
(IN/GB) method, and depending on whether or not the objective range test is 
employed, can be interpreted as either a BB or BP procedure. 

It should be emphasized that, when machine computations with interval 
arithmetic operations are done, the endpoints of an interval are computed with 
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0. 

e, 

Fig. 1. The computed image N(fc) is a subset of the current interval ®{k) ■ This is 
mathematical proof that there is a unique solution of the equation system in the current 
interval, and furthermore that this unique solution is also in the image. 

e. 

0 .(k) 
N (k) 

Fig. 2. The computed image N(fc) has a null intersection with the current interval 
0(fc). This is mathematical proof that there is no solution of the equation system in 

the current interval. 
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0. 

e, 

Fig 3. The computed image N(*> has a nonnull intersection with the current interval 
© . Any solutions of the equation system must lie in the intersection of the image 
and the current interval. 

a directed outward rounding. That is, the lower endpoint is rounded down to 
the next machine-representable number and the upper endpoint is rounded up to 
the next machine-representable number. In this way, through the use of interval, 
as opposed to floating point arithmetic, any potential rounding error problems 
are eliminated, yielding an approach that can provide a computational, not just 
mathematical, guarantee of reliability. Overall, when properly implemented, the 
IN/GB method described above provides a procedure that is mathematically and 
computationally guaranteed to find the global minimum of 0(0), or, if desired, 
to enclose all of its stationary points (within, of course, the specified initial 
parameter interval 0(o)). 

5    Dynamic Load Balancing and Work Scheduling 

As noted above, since the subproblems to be solved are independent, the execu- 
tion of interval-Newton techniques, whether BP or BB, on distributed parallel 
systems can clearly provide improvements in computational efficiency. And since, 
for practical problems, the binary tree that needs to be searched may be quite 
large, there may in fact be a strong motivation for trying to exploit the oppor- 
tunity for parallel computing. However, because of the irregular structure of the 
binary tree, doing this may not be straightforward. 

While executing a program to assign the unprocessed workload (stack boxes) 
to available processors, the irregularity of the tree could cause a highly uneven 
distribution of work among processors and result in poor utilization of comput- 
ing resources. Newly generated boxes at some tree nodes, due to bisection, could 
cause some processors to become highly loaded while others, if processing tree 
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nodes that can be pruned, could become idle or lightly loaded. In this context, we 
need an effective dynamic load balancing and work scheduling scheme to perform 
the parallel tree search efficiently. To manage the load balancing problem, one 
seeks to apply an optimal work scheduling strategy to transfer workload (boxes 
to be tested) automatically from heavily loaded processors to lightly loaded pro- 
cessors or processors approaching an idle state. The primary goal of dynamic 
load balancing algorithms is to schedule workload among processors during pro- 
gram execution, to prevent the appearance of idle processors, while minimizing 
interprocessor communication cost and thus maximizing the utilization of the 
computing resources. 

A common load balancing strategy is the "manager-worker" scheme (e.g., [3, 
4,7,12,19]), in which a single "manager" processor centrally conducts a group 
of "worker" processors to perform a task concurrently. This scheme has been 
popular in part because it is relatively easy to implement. It amounts to using a 
centralized pool to buffer workloads among processors. However, as the number 
of processors becomes large, such a centralized scheme could result in a signif- 
icant communication overhead expense, as well as contention on the manager 
processor. As a result, in many cases, this scheme does not exhibit particularly 
good scalability. Thus, to avoid bottlenecks and high communication overhead, 
we concentrate here on decentralized schemes (without a global stack manager), 
and consider three types of load balancing algorithms specifically designed for 
network-based parallel computing using message passing. 

These parallel algorithms adopt a distributed strategy that allows each pro- 
cessor to locally make workload placement decisions. This strategy helps a pro- 
cessor maintain for itself a moderate local workload stack, hopefully prevent- 
ing itself from becoming idle, and alleviates bottleneck effects when applied on 
large-scale multicomputers. All distributed parallel algorithms of this type are 
basically composed of five phases: workload measurement, state information ex- 
change, transfer initiation, workload placement, and global termination. Each of 
these phases is now discussed in more detail. 

5.1    Workload Measurement 

As the first stage in a dynamic load balancing operation, workload measurement 
involves evaluation of the current local workload using some "work index". This 
is a criterion that needs to be calculated frequently, and so it must be inexpensive 
to determine. It also needs to be sufficiently precise for purposes of making good 
workload placement decisions later. In the context of interval BP and BB, a good 
approach is to simply use the stack length (number of boxes) as the work index. 
This index is effective in parallel BP and BB scheme because of the following 
characteristics: 

- A long stack represents a heavy workload and vise versa. 
- Exhibiting an empty stack indicates the local processor is approaching an 

idle state. 
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- A precise representation of workload by work index may not be needed, since 
it may not be necessary to maintain an equal workload on all processors, but 
merely to prevent the appearance of idle states. 

Thus, the stack length can serve as a simple, yet effective, workload index. 

5.2    State Information Exchange 

After all processors identify their own workload state, the parallel algorithm 
makes this local information available to all other cooperating processors, through 
interprocessor message passing, to construct a global work index vector.' The co- 
operating processors are a group of processors participating in load balancing 
operations with a local processor, and define the domain of interprocessor com- 
munication, thereby determining a virtual network for cooperation. The range of 
this domain is critical in determining the cost of communication and the perfor- 
mance of load balancing. One possibility is that the cooperating processors could 
include all processors available on the network, and a global all-to-all communi- 
cation scheme could then used to update global state information. This provides 
a very up-to-date global work index vector but might come at the expense of 
high communication overhead. Alternatively, the cooperating processors might 
include only a small subset of the available processors, with this small subset 
defining a local processor's nearest "neighbors" in the virtual network. Now 
one needs only to employ cheap local point-to-point communication operations. 
However, without a well-tailored and nested virtual network, and a good load 
balancing algorithm, these local schemes could result in workload imbalance and 
idle states. 

5.3    Transfer Initiation 

After obtaining an overview of the workload state, at least for the group of 
cooperating ("neighboring") processors, load balancing algorithms now need to 
decide if a workload placement is necessary to maintain balance and prevent an 
idle state. This is done according to an initiation policy which dictates under 
what conditions a workload (box) transfer is initiated, and decides which proces- 
sors will trigger the load balancing operation. Generally, the migration of boxes 
from one processor to another processor is initiated on demand. In this context, 
the load balancing operations are event driven according to different procedures^ 
such as a sender-initiate scheme (e.g., [60-62]), a receiver-initiate scheme (e.g.,' 
[63-65]) and a symmetric scheme (e.g., [2,66,67]). In the sender-initiate scheme, 
when the workload of any processor is too heavy and exceeds an upper threshold, 
the overloaded processor will offload some of its stack boxes to another processor 
through the network. The receiver-initiate approach works in the opposite way 
by having an underloaded processor request boxes from heavily loaded proces- 
sors, when the underloaded processor's workload is less than a lower threshold. 
The symmetric scheme combines the previous two strategies and allows both 
underloaded and overloaded processors to initiate load balancing operations. 
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5.4    Workload Placement 

The next step of load balancing algorithm is to complete a workload placement. 
Here the donor processor splits the local stack into two parts, sending one part 
to the requesting processor and retaining the other. This operation is done ac- 
cording to a transfer policy consisting of two rules: a work-adjusting rule and 
a work-selection rule. The work-adjusting rule determinates how to distribute 
workload among processors and how many stack boxes are to be transferred. 
If the requesting processor receives too little work, it may quickly become idle; 
if the donor processor offloads too much work, it itself could also become idle. 
In either case, the result would eventually intensify the communication needed 
to perform later load balancing operations. Many approaches are available for 
this rule. One simple approach is to transfer a constant number of work units 
(boxes) upon receiving a request, such as in a work stealing strategy (e.g. [68]). 
A more sophisticated approach is to adopt a diffusive propagation strategy (e.g. 
[69-71]), which takes into account the workload states on both sides and adjusts 
the workload dynamically with a mechanism analogous to heat or mass diffusion. 

In addition to the quantity of workload, as measured by the work index, 
the "quality" of transferred boxes is also an important issue. In this context, a 
work-selection rule is applied to select the most suitable boxes to transmit in 
order to supply adequate work to the requesting processor, and thus reduce the 
demands for further load balancing operations later. Although it is difficult to 
precisely estimate the size of the tree (or total work) rooted at an unexamined 
node (box), many heuristic rules have been proposed to select the appropriate 
boxes. One rule-of-thumb is to transmit boxes near the initial root of the overall 
binary tree, because these boxes tend to have more future work associated with 
the subsequent tree rooted at them (e.g., [72]). While this has been demonstrated 
to be a good selection rule in many tree search applications, this and other such 
selection rules will not necessarily have a strong influence on the performance of 
a parallel BP algorithm applied to solve equation-solving problems using interval 
analysis. However, the selection rule used can have a strong impact on a parallel 
BB algorithm when solving global minimization problems, since by affecting the 
evaluation sequence of boxes it in turn affects the time at which good upper 
bounds on the global minimum are identified. In general, the earlier a good 
upper bound on the global minimum can be found, the less work that needs 
to be done to complete the global minimization, since this means it is more 
likely that boxes can be pruned using an objective range test. This issue will be 
addressed in more detail in a later section. 

5.5     Global Termination 

Parallel computation will be terminated when the globally optimal solution for 
BB problems, or all feasible solutions for BP problems, have been found over the 
entire binary tree, making all processors idle. For a synchronous parallel algo- 
rithm, global termination can be easily detected through global communication 
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or periodic state information exchange. However, detecting the global termina- 
tion stage is a more difficult task for an asynchronous distributed algorithm, not 
only because of the lack of global or centralized control, but also because there 
is a need to guarantee that upon termination no unexamined workload remains 
in the communication network due to message passing. One commonly used ap- 
proach that provides a reliable and robust solution to this problem is Dijkstra's 
token termination detection algorithm [53,73,74]. 

6    Implementation of Dynamic Load Balancing 
Algorithms 

In this section, a sequence of three algorithms is described for load balancing in a 
binary tree, with each algorithm in the sequence representing an improvement in 
principle over the previous one. The last method represents a combination of the 
most attractive and effective strategies adapted from previous research studies, 
and also incorporates some novel strategies in this context. Interprocessor com- 
munication is performed using the MPI protocol [75,76], a very powerful and 
popular technique for massage passing operations that provides various commu- 
nication functions as discussed below. In the subsequent section, the performance 
of the three algorithms described will be compared. 

6.1     Synchronous Work Stealing (SWS) 

This first workload balancing algorithm applies a global strategy, and is illus- 
trated in Fig. 4. All processors are synchronized in the interleaving computation 
and communication phases. Synchronous blocking all-to-all communication is 
used to periodically (after some number of tests on boxes) update the global 
workload state information. Then, every idle processor, if there are any, "steals" 
one unit of workload (one box) from the processor with the heaviest workload 
(the largest number of stack boxes), applying a receiver-initiate scheme. As the 
responsibility for the workload placement decision is given to each individual 
processor, rather than in a centrally controlling manager processor, but global 
communication is maintained, SWS can be regarded as a type of distributed 
manager/worker scheme. 

The global, all-to-all communication used in this approach provides for an 
easy determination of workload dynamics, and may lead to a good global load 
balancing. However, like the centralized manager/worker scheme, this conve- 
nience also comes at the expense of increased communication cost when using 
many processors. Such costs may result in intolerable communication overhead 
and degradation of overall performance (speedup). It should also be noted that 
the synchronous and blocking properties of the communication scheme may cause 
idle states in addition to those that might arise due to an out-of-work condition. 
When using the synchronous scheme, a processor (sender) that has reached the 
synchronization point and is ready for communication needs to stay idle and 
wait for another processor (receiver) to reach the same status, and then initiate 
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Fig. 4. The SWS algorithm uses global all-to-all communication to synchronize com- 
putation and communication phases. 

the communication together. Additional waiting states may occur due to the use 
of blocking communication, since a message-passing operation may not complete 
and return control to the sending processor until the data has been moved to 
the receiving processor and a receive posted. Thus, the main difficulties with the 
SWS approach are the communication overhead and the likely occurrence of idle 
states, with together may result in poor scalability. However, one advantage to 
this approach is that the global communication makes it easy to detect global 

termination. 

6.2    Synchronous Diffusive Load Balancing (SDLB) 

This second approach for workload balancing follows a localized strategy, by 
using local, point-to-point communication and a local cooperation strategy in 
which load balancing operations are limited to a local domain of cooperating pro- 
cessors, i.e., a group of "nearest neighbors" on some predefined virtual network. 
A diffusive work-adjusting rule is also applied here to dynamically coordinate 
workload transmission between processors, thereby achieving a workload balance 
with a mechanism analogous to heat or mass diffusion, as illustrated in Fig. 5. 

Instead of using global communication, point-to-point synchronous blocking 
communication is used to exchange workload state information among cooper- 
ating (neighbor) processors. The gathered information allows a given processor 
to construct its own work index vector indicating the workload distribution m 
its neighborhood. Then, the algorithm uses a symmetric initiation scheme to 
cause the workload (boxes) to "diffuse" from processors with relatively heavy 
workloads to processors with relatively light workloads, in order to maintain a 
roughly equivalent workload over all processors. The virtual network used ini- 
tially here is simply a ring, which gives each processor two nearest neighbors. 
Each local processor, i, adjusts its local workload with a neighbor, j, according 
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Fig. 5. SDLB uses a diffusive work-adjusting scheme to share workload among neigh- 
bors in the virtual network. It is synchronous like SWS. 

to the rule 

u{j) = C[workflg(i) - workflg(j)], 

where u(j) is the workload-adjusting index, C is a "diffusion coefficient" and 
workflg is the work index vector. If u(j) is positive and/or greater than a 
threshold, the local processor sends out workload (boxes); if u(j) is negative 
and/or less than a threshold, the local processor receives workload (boxes). The 
diffusion coefficient, C, is a heuristic parameter determining what fraction of 
local work to offload, and is set at 0.5 in our applications. This diffusive scheme 
has two advantages. First, when applied at an appropriate frequency, it pro- 
vides some certainty in preventing the appearance of out-of-work idle states 
Also, compacting multiple units of workload (boxes) together for transmission 
enlarges the virtual grain of the transmitted messages. The use of coarse-grained 
messages to reduce communication frequency tends to minimize the effect of high 
latency in network transmission, especially on Ethernet. For example, less total 
time is wasted in startup time of transmission, thus lowering the average trans- 
mission cost of a work unit (box), as well as the ratio of communication time to 
computation time. It should be noted that in considering message grain there 
may also be maximum message size considerations. 

Though the use of a local communication scheme will reduced communica- 
tion cost to some extent, the use again of synchronous and blocking communi- 
cation operations are still difficulties in achieving good scalability. On the other 
hand, while using local rather than global communication makes the detection of 
global termination less efficient, the synchronous and blocking properties make 
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this relatively straightforward. Since the problem of detecting global termina- 
tion becomes more difficult as the number of processors grows, this is another 
important issue in scalability. 

6.3    Asynchronous Diffusive Load Balancing (ADLB) 

In this third load balancing approach, a local communication strategy and dif- 
fusive work-adjusting scheme are used, as in SDLB. However, a major difference 
here is the use of an asynchronous nonblocking communication scheme, one of 
the key capabilities of MPI. The combination of asynchronous communication 
functionality and nonblocking, persistent communication functionality not only 
provides for cheaper communication operations by eliminating communication 
idle states, but also, by breaking process synchronization, makes the sequence of 
events in the load balancing scheme flexible by allowing overlap of communica- 
tion and computation. As illustrated in Fig. 6., when each processor can perform 
communication arbitrarily at any time, and independently of a cooperating pro- 
cessor, all communication operations can be scattered among computation, with 
less time consumed in massage passing. 

(Flexible sequence) 

Send out state info. 

Receive state info. 

Send out boxes 

Receive boxes 

Comp. 

Comm. 
Comp. 
Comm. 

Comp. 

Comm. 
Comp. 
Comm. 

Comp. 

Fig. 6. ADLB uses an asynchronous, nonblocking communication scheme, providing 
more flexibility to each processor and overlapping communication and computation 
phases. 

In addition to the cheaper and more flexible communication scheme, we in- 
corporate into the ADLB approach two new strategies to try to reduce the 
demand for communication and thereby try to achieve a higher overall perfor- 
mance. First, as noted above, in BP and BB methods, it is not really necessary 
to maintain a completely balanced workload across processors. The actual goal 
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is to prevent the occurrence of idle states by simply maintaining a workload to 
each processor sufficiently large to keep it busy with computation. To achieve 
balanced workloads may require a very large number of workload transmissions, 
resulting in a heavy communication burden. However, in this case, many of the 
workload transmissions may be unnecessary, since in BP and BB each proces- 
sor deals with its stack one work unit (box) at a time sequentially, leaving all 
other workload simply standing by. For a processor to avoid an idle state, and 
thus have a high efficiency in computation, it is not necessary that its workload 
be balanced with other processors, but only that it be able to obtain additional 
workload from another processor through communication as it is approaching an 
out-of-work state. Thus, we use here a receiver-initiate scheme to initiate work 
transfer only when the number of boxes in a processor's stack is lower than some 
threshold, which should be set high enough that the processor is not likely to 
complete the work and become idle during the processing of workload request 
to its neighboring processors. 

As a consequence, we can also implement a second strategy, which eliminates 
the periodic state information exchange and combines the load state information 
of the requesting processor with the workload request message to the donor pro- 
cessor. Upon receiving the request, the donor follows a diffusive work-adjusting 
scheme as described above for the SDLB approach, but with a modification in 
the response to the workload adjusting index. Here, if u{j) is positive and/or 
greater than a threshold, the donor sends out workload (boxes) to the requesting 
processor; otherwise, it responds that there is no extra workload available. Thus, 
when approaching idle, a processor sends out a request for work to all its coop- 
erating neighbors, and waits for any processor's donation of work. In case of no 
work being transferred, it means that the neighbor processors are also starved 
for work and are making work requests to other neighbors. In this case, the pro- 
cessor will keep requesting work from the same neighbors until they eventually 
obtain extra work from remote processors and are able to donate parts of it. 
Through such a diffusive mechanism, heavily loaded processors can propagate 
workload to lightly loaded processors with a small communication expense. 

The last step of this load balancing procedure is to detect global termination. 
Because the ADLB scheme is asynchronous, the detection of global termination 
is a more complex issue than in the synchronous case. As noted above, a popular 
and effective technique for dealing with this issue is Dijkstra's token algorithm 
[53,73, 74]. This is the technique used in the ADLB scheme. 

In the next section, we describe tests of the three approaches outlined above 
for load balancing in parallel BP and BB. 

7    Computational Experiments and Results 

7.1    Test Environment 

The performance of an algorithm on a parallel computing system is not only 
dependent on the problem characteristics and the number of processors but also 
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on how processors interact with each other, as determined both by a physical 
architecture in hardware and a virtual architecture in software. The physical ar- 
chitecture used in these tests, as illustrated in Fig. 7, is a network-based system, 
comprising 16 Sun Ultra l/140e workstations, physically connected by switched 
Ethernet. As noted above, in comparison to mainframe systems, such a cluster 
of workstations (COW) has advantages in its relatively low expense and easy 
availability of hardware. However, depending on the communication bandwidth 
and on the communication demands of the algorithm being executed, network 
contention can have a serious impact on the performance of such a system, par- 
ticularly if the number of processors is large. 

SWITCHED      ETHERNET 

Fig. 7. Physical hardware used is a cluster of workstations connected by switched 
Ethernet. 

Two types of virtual network are used: an all-to-all network (Fig. 8(a)) in 
the case of SWS, and a one-dimensional torus (ring) network (Fig. 8(b)) in the 
cases of SDLB and ADLB. In the SWS algorithm, the all-to-all network is im- 
plemented by the use of global, all-to-all communication. However, in the SDLB 
and ADLB algorithms, in order to reduce communication demands and alleviate 
potential network contention, we only use point-to-point local communication 
functions and implement the ring network. The load balancing algorithms and 
test problems were implemented in FORTRAN-77 using the MPI protocol [75, 
76] for interprocessor communication. 

7.2    Test Problem 

The test problem used is a global nonlinear parameter estimation problem involv- 
ing a vapor-liquid equilibrium (VLE) model (Wilson's equation). Such models, 
and the estimation of parameters in them, are important in chemical process en- 
gineering, since they are the basis for the design, simulation and optimization of 
widely-used separation processes such as distillation [48]. In this particular prob- 
lem, we use as the objective function the maximum likelihood estimator, with 
two' unknown standard deviations, to determine two model parameters giving 
the globally optimal fit of the data to the model [77]. In addition to the difficult 
nonlinear objective function, the problem data and characteristics were chosen to 
make this a particularly difficult problem. Interval analysis, as described above, 
is used to guarantee the correct global solution. The problem can be solved in 
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Fig. 8. Virtual network in load balancing: (a) all-to-all network using global commu- 
nication; used for SWS; (b) 1-D torus network using local communication; used for 
SDLB and ADLB. 

either of two ways. One approach is to treat it as a nonlinear equation solving 
problem, and use the parallel interval BP algorithm to solve for all stationary 
points of the objective function (there are five stationary points in this problem). 
The alternative approach is to treat it directly as a global optimization problem 
and use the parallel interval BB algorithm. The major difference between the 
two approaches is the use of the objective range test in the BB algorithm. 

7.3    Computational Results 

This parameter estimation problem was solved using the COW system described 
above. During the computational experiments, the COW was dedicated exclu- 
sively to solving this problem; that is, there were no other users either on the 
workstations or on the network. Both the BP scheme solving for all stationary 
points and the BB scheme merely searching for the global optimum were ex- 
ecuted on up to 16 processors using each of the three load balancing schemes 
described above. Both sequential and parallel execution times were measured 
in terms of the MPI wall time function, and the performance of each approach 
evaluated in terms of parallel speedup (ratio of the sequential execution time to 
the parallel execution time) and parallel efficiency (ratio of the parallel speedup 
to the number of processors used). 

For the interval BP problem of finding all stationary points, the speedups 
obtained using the three load balancing algorithms, i.e. SWS, SDLB and ADLB, 
on various number of processors are shown in Fig. 9. All five stationary points 
were found in every experiment. All points in Fig. 9 are based on an average 
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over several runs. Since both the sequential runs and all parallel BP runs ex- 
plored the same binary tree and treated an equivalent amount of total work, 
the computational results are repeatable and consistent with negligible devia- 
tions. As expected, the ADLB approach clearly outperforms SWS and SDLB, 
exhibiting only slightly sublinear speedup. This can also be seen in the parallel 
efficiency curves, as shown in Fig. 10. While efficiency curves tend to decrease as 
the number of processors increases, as a consequence of the Amdahl's law, the 
ADLB procedure maintains a high efficiency of around 95%. Thus, with the only 
slightly sublinear speedup and the very high efficiency on up to 16 processors, it 
seems likely that the ADLB algorithm will be highly scalable to larger numbers 

of processors. 

6 8 10 
Number of Processors 

Fig. 9. Comparison of load balancing algorithms on equation solving problem: speedup 
vs. number of processors. 

SWS exhibits the poorest performance of the three load balancing methods. 
This is partly due to a poor global workload distribution, resulting in a rela- 
tively large number of out-of-work idle states, and also partly due to the com- 
munication overhead from using the global synchronous blocking communication 
scheme. In SDLB, the symmetric diffusive work-adjusting scheme using the local 
communication scheme substantially reduces out-of-work idle states by achiev- 
ing an even load balance and thus improving the speedup and efficiency. How- 
ever, while a local communication scheme is employed, the synchronous blocking 
communication functions used retain a high communication cost and represent a 
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Fig. 10. Comparison of load balancing algorithms on equation solving Problem: effi- 
ciency vs. number of processors. 

scalmg bottleneck. This issue is addressed in ADLB by using asynchronous non- 
blockmg communication functions, allowing the overlap of communication and 
computation. In addition, by working towards a goal of maintaining non-empty 
local work stacks instead of an evenly balanced global workload distribution, 
ADLB provides a large reduction in network communication requirements, thus 
greatly reducing communication bottlenecks. The reduction of such bottlenecks 
m ADLB allows it to achieve a consistently high, nearly linear speedup. 

For solving the parameter estimation problem as a global optimization prob- 
lem with parallel interval BB, only the best load balancing scheme, ADLB, was 
employed. Three different runs using the same problem were made at two, four, 
eight and 16 processors. The resulting speedups are shown in Fig. 11. We first 
observe that all speedups are above the linear speedup line, with a speedup 
over 50 on 16 processors in one case. Superlinear speedup is possible because 
of the broadcast of least upper bounds, which may cause tree nodes (boxes) to 
be discarded earlier than in the sequential case, i.e. there is less work to do in 
the parallel case than in the sequential case. Also, the speedups are not exactly 
repeatable and may vary significantly from run to run. This occurs because of 
slightly different timing in finding and broadcasting improved upper bounds in 
each run. Speedup anomalies, such as the superlinear speedups seen here, are not 
uncommon in parallel BB search, provided the reduction in the work required 
in the parallel case (which usually happens but not always) is not outweighed 
by communication expenses or other overhead in the parallel computation 
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Fig. 11. Speedup anomaly and superlinear speedups are observed in solving the global 
optimization problem using the parallel BB algorithm based on ADLB. 

8    Discussion 

The excellent performance of ADLB on the tests described above provides mo- 
tivation for further improving the ADLB approach for execution on even larger 
numbers of processors and applied to different sizes of problems. One factor we 
have investigated is the effect of the underlying virtual network, which is defined 
to locally coordinate neighbor processors in workload distribution and message 
propagation. Instead of using a 1-D torus (ring) virtual network, a two dimen- 
sional (2-D) torus virtual network, as shown in Fig. 12, has been considered to 
enhance the load balancing performance. When compared to the 1-D torus, a 
2-D torus has a higher communication overhead due to each processor having 
more neighbors, but it also has a smaller network diameter, \y/P/2} vs. [P/2\, 
thus decreasing the message diffusion distance. It is expected that the trade-off 
between communication overhead and message diffusion distance may favor the 
2-D torus for a larger number of processors. 

To evaluate broadly the performance of different parallel algorithms, it is 
useful to carry out a scalability analysis, which examines how well an algorithm 
maintains a constant efficiency as the problem size and the number of processors 
increase. Thus, we carried out an experiment based on the isoefficiency function 
[53], which determines how much problem size needs to increase in proportion 
to the number of processors in order to keep the efficiency at a constant level. 
Small values of the isoefficiency function will correspond to better scalability. 
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Fig. 12. 2-D torus virtual network is implemented in ADLB to achieve high scalabilitv 
when running over larger numbers of processors. 

We have done preliminary experiments, performing isoefficiency analysis with 
up to 64 processors, which demonstrate the better scalability of the 2-D torus 
virtual network on parallel BB and BP problems. 

Another issue of interest in this context is how to improve the search efficiency 
of interval BB for the global optimum. As noted above, there are priority list 
schemes, such as prioritizing the stack based on a lower bound value, that have 
been demonstrated to be useful in a variety of branch and bound problems A 
difficulty with using lower bound values is that these may not be sufficiently tight 
to provide any useful heuristic ordering for the evaluation of stack boxes This 
is particularly true if the lower bound is obtained by simple interval arithmetic 
which often provides only loose bounds when applied to a complicated function.' 

Thus, we have developed another approach aimed at scheduling the stack 
boxes for processing. This is a novel dual stack management scheme in which 
each processor maintains two stacks, a global stack and a local stack. The local 
stack is unprioritized: that is, with workload appearing in the same sequence as 
it is generated in the IN/GB algorithm. The local processor draws its work from 
the local stack as long as it is not empty. This contributes a depth-first pattern 
to the overall tree search process. The global stack is also unprioritized, and 
is created by randomly removing boxes from the local stack. The global stack 
provides boxes for workload transmission to other processors. This contributes 
breadth to the tree search process. This dual stack management scheme has been 
demonstrated to be capable of producing consistently high superlinear speedups 
in BB, reducing the variations from run to run observed previously [78]. 
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9    Concluding Remarks 

We have described how load management strategies can be used for effectively 
solving interval BB and BP problems in parallel on a network-based system. Of 
the dynamic load balancing algorithms considered, the best performance was 
achieved by the asynchronous diffusive load balancing (ADLB) approach. This 
overlaps computation and computation by the use of the asynchronous non- 
blocking communication functions provided by MPI, and uses a type of diffusive 
load-adjusting scheme to prevents out-of-work idle states while keeping commu- 
nication needs small. 

The ADLB algorithm was applied in connection with interval analysis, in 
particular with an interval-Newton/generalized bisection (IN/GB) procedure for 
reliable nonlinear equation solving and deterministic global optimization. IN/GB 
provides the capability to find (enclose) all solutions in a nonlinear equation solv- 
ing problem with mathematical and computational certainty, or the capability 
to solve global optimization problems with complete certainty. The results of 
applying ADLB in the equation solving context have shown that the parallel BP 
algorithm can achieve a nearly linear speedup with a consistently high efficiency 
around 95% on up to 16 processors in a one-dimensional torus virtual network. 
Preliminary indications are that ADLB provides high scalability up to 64 pro- 
cessors, and different sizes of problems, when using a 2-D torus virtual network. 
In the context of global optimization, the parallel BB algorithm achieves signif- 
icantly superlinear speedups, though is somewhat inconsistent in the extent to 
which this occurs. By implementing a new dual stack management scheme in 
connection with ADLB it appears that a consistently high superlinear speedup 
on optimization problems can be obtained. 

Though the test problem here was based on a global parameter estimation 
problem, it should be emphasized that the parallel IN/GB method is general- 
purpose and can be used in connection with a wide variety of global optimization 
problems and nonlinear equation solving problems. Also, the load management 
schemes described can be applied to a wide variety of other tree search prob- 
lems in chemical process engineering, such as in process synthesis and process 

scheduling. 
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Abstract. A parallel implementation of the specialized interior-point 
algorithm for multicommodity network flows introduced in [5] is pre- 
sented. In this algorithm, the positive definite systems of each iteration 
are solved through a scheme that combines direct factorization and a 
preconditioned conjugate gradient (PCG) method. Since the solution of 
at least k independent linear systems is required at each iteration of the 
PCG, k being the number of commodities, a coarse-grained parallelliza- 
tion of the algorithm naturally arises. Also, several other minor steps of 
the algorithm are easily parallelized by commodity. An extensive set of 
computational results on a shared memory machine is presented, using 
problems of up to 2.5 million variables and 260,000 constraints. The re- 
sults show that the approach is especially competitive on large, difficult 
multicommodity flow problems. 

1    Introduction 

Multicommodity flows are among the most challenging linear problems, due 
to the large size of these models in real world applications (e.g., routing in 
telecommunications networks). Indeed, these problems have been used to test 
the efficiency of early interior-point solvers for linear programming [1]. The need 
to solve very large instances has led to the development of both specialized 
algorithms and parallel implementations. 

In this paper, we present a parallel implementation of a specialized interior- 
point algorithm for multicommodity flows [5]. In this approach, the block-angular 
structure of the coefficient matrix is exploited for performing in parallel the solu- 
tion of small linear systems related to the different commodities, unlike general- 
purpose parallel interior-point codes [2,8,17] where the parallelization effort is 
focused on the Cholesky factorization of one large system. This has already been 
proposed [16,9,13]; however, all the previous approaches require to compute and 
factorize the Schur complement. This can become a significant serial bottleneck, 

* This work has been supported by the European Center for Parallelism of Barcelona 
(CEPBA). 

** Author supported by CICYT Project TAP99-1075-C02-02. 
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since this matrix is usually prohibitively dense. Although this bottleneck can 
be partly eluded by using parallel linear algebra routines, our approach takes 
a more radical route by avoiding to form the Schur complement, and using an 
iterative method instead. There have been other proposals along these lines [22. 
14], but limited to the sequential case; also, so far no results have been shown 
for these algorithms. The implementation presented in this paper significantly 
improves on the preliminary one described in [6]. There, only some of the major 
routines were parallelized, and less attention was paid to communication and 
data distribution. Working on these details allowed us to obtain new and better 
computational results. 

From the multicommodity point of view, this approach differentiates itself 
from most other parallel solvers [7,15,19,25,21,12] in that is not based on a de- 
composition approach. The structure of the multicommodity flow problem has 
led to a number of specialized algorithms, most of which share the idea of de- 
composing in some way the problem into a set of smaller independent problems. 
These are all iterative methods, where at each step the subproblems are solved, 
and their results are used in some way to modify the subproblems to be solved 
at the next iteration. Hence, these approaches are naturally suited for coarse- 
grained parallelization. Parallel price-directive decomposition approaches have 
been proposed based on bundle methods [7,19], analytic center methods [12] 
or linear-quadratic penalty functions [21]. Parallel resource-directive approaches 
are described in [15]. Finally, experiences with a parallel interior-point decom- 
position method are presented in [25]. A discussion of these and other parallel 
decomposition approaches can be found in [7]. A general description of the par- 
allelization of mathematical programming algorithms can be found in [3,23]. 

The paper is organized as follows. Section 2 presents the formulation of the 
problem to be solved. Section 3 outlines the specialized interior-point algorithm 
for multicommodity flows proposed in [5], including a brief description of the 
general path-following method. Section 4 deals with the parallelization issues of 
the algorithm. Finally, Section 5 presents and discuss the computational results. 

2    Problem Formulation 

The multicommodity flow problem requires to find the least-cost routing of a 
set of k commodities through a network of m nodes and n arcs, where the arcs 
have an individual capacity for each commodity, and a mutual capacity for all 
the commodities. The node-arc formulation of the problem is 

min J2*=1 cV 
~E 0 ... 0 0 

0 E ... 0 0 
s.t. 

0 0 ...EO 
I I I I 

0<x° <u 

rx1* r&n 
X2 b2 

xk bk 

_XUJ .u 

0 < xl < u* 

(1) 
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Vectors x' £ Mn are the flow arrays for each commodity, while a;0 € Mn are the 
slacks of the mutual capacity constraints. E € 1R,mxn is the node-arc incidence 
matrix of the underlying directed graph, while / denotes the n x n identity- 
matrix. We shall assume that E is a full row-rank matrix: this can always be 
guaranteed by removing any of the redundant node balance constraints. c! £ Et" 
and ul £ It'1 are respectively the flow cost vector and the individual capacity 
vector for commodity i, while u £ Mn is the vector of the mutual capacities. 
Finally, b' £ Etm is the vector of supplies/demands for commodity i at the 
nodes of the network. 

The multicommodity flow problem is a linear program with fh = km + 
n constraints and n = (k + l)n variables. In some real-world models, k can 
be very large: for instance, in many telecommunication problems a commodity 
represents the flow of data/voice between two given nodes of the network, and 
therefore k is 0(m2). Thus, the resulting linear program can be huge even for 
graphs of moderate size. However, the coefficient matrix of the problem is highly 
structured: it has a block-staircase form, each block being a node-arc incidence 
matrix. Several methods have been proposed which exploit this structure; one is 
the specialized interior-point algorithm to be described in the next paragraph. 

3    A Specialized Interior-Point Algorithm 

In [5], a specialized interior-point algorithm for multicommodity flows has been 
presented and tested. This algorithm, and the code that implements it, will be 

referred to as IPM. 
IPM is a specialization of the path-following algorithm for linear program- 

ming [26]. Let us consider the following linear programming problem in primal 

form 
min { ex : Ax = b, x + s = u, x, s > 0 } , (2) 

where x S Es and s 6 Hn are respectively the primal variables and the slacks 
of the box constraints, u € ET, c £ IT and b € H* are respectively the upper 
bounds, the cost vector and the right hand side vector, and .4 £ R.mxn is a full 
row-rank matrix. The dual of (2) is 

min { yb - wu : yA + z - w = c, z, w > 0 } , (3) 

where y £ H™, z £ Kfl and w £ Hn are respectively the dual variables of the 
structural constraints Ax = b, the dual slacks and the dual variables of the box 

constraints x < u. 
Replacing the inequalities in (2) by a logarithmic barrier in the objective 

function, with parameter /*, the KKT optimality conditions of the resulting 

problem are 
vxz = /ze — XZe = 0 
rsw = /xe - SWe = 0 
rb =   b - Ax = 0 (4) 
rc =   c - {yA + z -w) = 0 
r„=   u — x — s = 0 

(x,s,z,w) > 0 , 
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where e is the vector of l's of proper dimension, and each uppercase letter 
corresponds to the diagonal matrix having as diagonal elements the entries of 
the corresponding lowercase vector. In the algorithm we impose ru = 0. i.e. 
s = u- x, thus eliminating n variables. 

The (unique) solutions of (4) for each possible p > 0 describe a continuous 
trajectory, known as the central path, which, as ß tends to 0, converges to the 
optimal solutions of (2) and (3). A path-following algorithm attempts to reach 
close to these optimal solutions by following the central path. This is done by 
performing a damped version of Newton's iteration applied to the nonlinear 
system (4), as shown in (5). A more detailed description of the algorithm can be 
found in many linear programming textbooks, e.g. [26]. 

Procedure PathFollowing(A, b,c, u): 
Initialize x > 0, s > 0, y, z > 0, w > 0; 
while (x,s,y,z,w) is not optimum do 

e = (x-1z + s~1w)-1; 
r = S-1rsw+rc-X-1rx.; 
(A0AT)Ay = rb + A0r; 
Ax=B{ATAy-r)- 
Aw = S-l(rsw + Wäx)- 
Az = rc + Aw- ATAy; 
Compute aP >,aD > 0; 
x «- x + apAx; 
{y,z,w) <- (y,z,w) + aD(Ay,Az,Aw); 

(5) 

The main computational burden of the algorithm is the solution of the system 

{A0AT)Ay = rb + A6r = b. (6) 

Note that A0AT is symmetric and positive definite, as 0 is clearly a posi- 
tive definite diagonal matrix. Usually, interior-point codes solve (6) through a 
Cholesky factorization, preceeded by a permutation of the columns of ,4 aimed at 
minimizing the fill-in effect. Several effective heuristics have been developed for 
computing such a permutation. Unfortunately, when .4 is the constraints matrix 
of (1), the Cholesky factors of A0AT turn out to be rather dense anyway [5]. 

However, the structure of .4 can be used to solve (6) without computing 
the factorization of A0AT. Note that 0 is partitioned into the k blocks <9\ 
i = 1... k, one for each commodity, plus the block 0° corresponding to the 
slack variables x° of the mutual capacity constraints. Hence, 

m4r = ' B c 
[cr 

D 

-E0lET . 0 E0l 

0 . E0kET E0k 

L   0lE   . .   0kE 0° + ELi®i. 

(7) 
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i.e., B is the block diagonal matrix having the m x m matrices Bt = E6'ET', 
i = 1... k, as diagonal elements, and 

CT=[C1
T...Cj] = [GlE...ekE] . 

Exploiting (7), and partitioning the vectors Ay and b accordingly, the solution 

of (6) is reduced to 

(D-J2 C?B-'C) Ay0 = 6° - E CjB-'b1 = ß° (8) 

BiAy^iV-dAy^^ß1, i = l...k. (9) 

The matrix 

H = D- CTB~lC = D - £ CfB^d (10) 
i=l 

is known as the Schur complement. 
Thus, (6) can be solved by means of (8), involving the Schur complement H, 

followed by the k subsystems (9) involving the matrices Bt. The latter step can 
be easily parallelized. However, solving (8) with a direct method, as advocated in 
[16,9], requires forming and factorizing H. As shown in [5], this matrix typically 
becomes rather dense, hence such a direct approach may become computation- 
ally too expensive. Furthermore, it represents a formidable serial bottleneck for 
a parallel implementation of the code. As suggested in [16], this bottleneck can 
be reduced by using parallel linear algebra routines [2,8,17]. However, it is also 
possible to avoid forming H at all, solving (9) by means of an iterative algorithm. 

Since H is symmetric and positive definite, a preconditioned conjugate gra- 
dient (PCG) method can be used. In [5], a family of preconditioners is proposed, 
based on the following characterization of the inverse of H: 

H-1 = (X^-'QVW
1
     

where     Q = J2cfBr1Ci    (ii) 
\i=0 / i=l 

A preconditioner for (9) can be obtained by truncating the above power series at 
the /i-th term. Clearly, the higher h, the better the preconditioning will be, and 
the fewer PCG iterations will be required. However, preconditioning one vector 
requires solving fcx h linear systems involving the matrices Bu thereby increasing 
the cost of each PCG iteration. The best trade-off between the reduction of the 
iterations count and the cost of each iteration is h = 0, corresponding to the 
diagonal preconditioner D_1 [5]. 

The IPM code, implementing this algorithm, has shown to be competitive 
with a number of other sequential approaches [5]. It is written mainly in C, 
with only the Cholesky factorization routines (devised by E. Ng and B. Peyton 
[20]) coded in Fortran. Both the sequential and parallel versions can be freely 
obtained for academic purposes from 

http://www-eio.upc.es/ j castro/software.html. 
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4    Parallelization of the Algorithm 

The solution of (6) is by far the most expensive procedure in the interior-point 
algorithm, consuming up to 97% of the total execution time for large problems. 
With the above approach, this can be accomplished by means of the following- 
steps: ° 

- Factorization of the k matrices B{; note that the current implementation 
uses sequential Cholesky solvers, but parallel Cholesky solvers could be used 
for increasing the degree of parallelism of the approach. 

- Computation of ß° = b° - £*=i Cj B^l\ which requires k backsolves on 
the factorizations of B{ and matrix-vector products of the form Cjv1. 

- For each iteration of the PCG, computation of (£-£■=! CjBrlc\)v, which 
requires backsolves on the factorizations of Bt and matrix-vector products 
of the form dv' and C?v\ 

- Computation of ßi = bi- CiAy0, which requires matrix-vector products of 
the form Ctv'. 

- Solution of the systems BiAy1 = ß\ 

Hence, most of the parallelization effort boils down to performing in parallel 
the factorization of the BiS, backward and forward substitution with these fac- 
torizations and matrix-vector products involving d or Cj. Thus, there is no 
need for sophisticated implementations of parallel linear algebra routines. Note 
that higher-order preconditioners (h > 0) would complicate somehow the above 
scheme, but the basic blocks would remain the same. 

Although the above procedures are by far the most important, a number 
of other minor steps can be easily parallelized, such as the computation of the 
other primal and dual directions {Ax\ Az\ Aw'), the computation of the primal 
and dual steplenghts aP and aD, the updating of the current primal and dual 
solution, the computation of the primal and dual objective function values and so 
on. It is easy to see that all the data concerning one given commodity i (x\ c\ u\ 
y\wl...) can be stored in the local memory of the one processor that is in charge 
of that commodity, and it is never required by other processors. This ensures a 
good "locality" of data, and a low need for inter-processor communication. It 
should also be noted that the number of operations required for each commodity 
is the same, which guarantees the load balancing between processors, at least as 
long as the number of commodities assigned to each processor is the same. 

4.1    Parallel Programming Environment 

The parallel version of the IPM code, pIPM, has been developed on the Sili- 
con Graphics Origin2000 (SGI O2000) server located at the European Center 
for Parallelism of Barcelona (CEPBA), running an IRIX64 6.5 Unix operating 
system. Like most of the current parallel architectures, the SGI O2000 offers 
both message-passing and shared-memory programming paradigms, although 
the mam memory is physically distributed among the processors. The server has 
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64 MIPS R10000 processors running at 250Mhz, each of them with 32+32Kb LI 
cache and 4Mb L2 cache and credited of 14.7 SPECint95 and 24.5 SPECfp95. 
A total of 8Gb of memory is distributed among these processing elements. This 
computer appeared at position 275 of the TOP500 November 1998 supercom- 
puter sites list [10]. 

The default programming style supported by the SGI O2000 is a custom 
shared-memory version of C [24], with parallel constructs specified by means of 
compiler directives (»pragmas). Placement of the memory on the processors and 
communication is hidden to the programmer and automatically performed by 
the system. The main advantage of this choice is ease of portability: existing 
codes can be parallelized with a limited effort. It is even possible to avoiding 
maintaining two different versions (sequential and parallel) of the same code, 
which is important to optimize the development efforts. 

However, this programming style also has a number of drawbacks, mainly a 
limited control over memory ownership and limited support for vector-broadcast 
and vector-reduce operations. Placement of the data structures in the local mem- 
ory of the processors can be only partly (and indirectly) influenced by the pro- 
grammer. Also, the granularity of memory placement is that of the virtual mem- 
ory pages (16K) rather than that of the individual data structures. All this can 
result in cache misses and page faults from the local memory of each processor, 
decreasing the performance of the parallel codes. Although advanced directives 
allow a more detailed control over these features, the use of those directives re- 
quires a more extensive rewriting of the code, thus loosing part of the benefits in 
terms of portability and ease of maintenance. Because ofthat, the computational 
results presented in Section 5 were obtained with the default data distribution 
provided by the system (the same used in [2]). However, the assignment of com- 
modities to processors was optimized for this distribution, hopefully limiting the 
possible negative effects. The limited support for broadcast/reduce operations 
is understandable in a shared-memory oriented language; however, it may result 
in poorer performances for codes, like pIPM, where these operations amount at 
almost the totality of the communication time. 

5    Computational Results 

5.1    The Instances 

Three sets of multicommodity instances were used for the computational experi- 
ments. The first is made up of 18 problems obtained with an improved version of 
Ali and Kennington's Mnetgen generator [11]. These instances are very large (up 
to about 2.5 millions of variables and 260,000 constraints), with the number of 
commodities which varies from very few (8) to quite many (512). This is useful 
for characterizing the trends in the performances of the code as the number of 

commodities varies [7,11]. 
The second set consists of ten of the PDS (Patient Distribution System) 

problems. These problems arise from a logistic model for evacuating patients 
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from a place of military conflict. The different instances arise from the same 
basic scenario by varying the time horizon, i.e., the number of days covered by 
the model. The PDS problems has been considered, until recently, essentially 
impossible to solve with a high degree of accuracy. Although this has changed, 
they are still quite challenging multicommodity instances. 

The third set of problems is made of the four Tripart problems and of the 
Gridgenl problem. These instances were obtained with the Tripartite generator 
and with a variation for multicommodity flows of the Gridgen generator [4]. 
These are very difficult multicommodity flow instances, as shown in Section 5.3. 

The dimensions of each problem are reported in Tables 1, 2 and 3. Columns 
"m", "n", and "k" show the number of nodes, arcs, and commodities. Columns 
un" and "m" give the number of variables and constraints of the linear problem. 
All the instances can be downloaded from 

http://www.di.unipi.it/di/groups/optimize/Data. 

5.2    Performance Measures 

The following well-known performance measures [3] will be considered for assess- 
ing the performances of pIPM. Denoting by Tp the execution time obtained with 
p processors, the speedup Sp with p processors can be defined as Sp = TJT . 
The fraction of the sequential execution time consumed in the parallel region of 
the code will be denoted by /; values of / close to 1 are necessary in order to 
obtain good speedups, as demonstrated by Amdahl's law 

Jp S "3p = T~,—:—~ — < 
f/p+(l-f) - (1-/) ' 

The efficiency with p processors is 

Ep = $L < Wp = ^ . 
P  ~ p 

Ep represents the fraction of the time that a particular processor (of the p 
available) is usefully employed during the execution of the algorithm. Sp~ and E~p 

are respectively the ideal speedup and efficiency, the maximum ones that can be 
obtained due to the inherent serial bottlenecks in the algorithm. 

Another interesting performance measure is the absolute speedup, obtained 
by replacing 7\ with the execution time of the best serial algorithm known. This 
is usually difficult to obtain, and it will be discussed separately. 

5.3    The Results 

Tables 1, 2 and 3 show the computational results obtained. Columns "IP" and 
"PCG" report the total number of interior-point and PCG iterations, respec- 
tively. Column "/" gives the fraction of the total sequential time consumed in 
the parallel region of the code. Column "p" gives the number of processors used 
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Table 1. Dimensions and results for the Mnetgen problems. 

m   n      k              n           fh / IP PCG P lp          Jp          Jp Ep     Ep 

128-8 128 1089  8   9801  2113 92.2 42 831 1 
8 

3.2 1.0 1.0 
2.1 1.5 5.2 

1.0 1.0 
0.2 0.6 

128-16 128 1114 16  18938  3162 95.1 48 2530 1 
8 

16 

14.3 1.0 1.0 
7.7 1.9 6.0 
8.0 1.8 9.2 

1.0 1.0 
0.2 0.7 
0.1 0.6 

128-32 128 1141 32  37653  5237 95.4 56 2355 1 
8 

16 
32 

32.1 1.0 1.0 
12.9 2.5 6.1 
13.8 2.3 9.5 
19.6 1.6 13.2 

1.0 1.0 
0.3 0.8 
0.1 0.6 
0.1  0.4 

128-64 128 1171 64  76115  9363 97.1 72 5480 1 
8 

16 
32 
64 

139.2 1.0 1.0 
39.7 3.5 6.7 
34.7 4.0 11.1 
28.6 4.9 16.9 
40.3 3.5 22.6 

1.0 1.0 
0.4 0.8 
0.3 0.7 
0.2 0.5 
0.1 0.4 

128-128 128 1204 128 155316 17588 96.6 85 5033 1 
8 

16 
32 
64 

409.2 1.0 1.0 
74.4 5.5 6.5 

122.8 3.3 10.6 
122.7 3.3 15.6 
73.3 5.6 20.4 

1.0 1.0 
0.7 0.8 
0.2 0.7 
0.1 0.5 
0.1 0.3 

256-8 256 2165  8  19485  4213 95.6 57 2713 1 
8 

20.7 1.0 1.0 
8.3 2.5 6.1 

1.0 1.0 
0.3 0.8 

256-16 256 2308 16  39236  6404 96.5 59 3465 1 
8 

16 

58.0 1.0 1.0 
21.0 2.8 6.4 
21.3 2.7 10.5 

1.0 1.0 
0.3 0.8 
0.2 0.7 

256-32 256 2314 32  76362 10506 97.3 67 5438 1 
8 

16 
32 

252.2 1.0 1.0 
52.6 4.8 6.7 
44.2 5.7 11.4 
54.6 4.6 17.4 

1.0 1.0 
0.6 0.8 
0.4 0.7 
0.1 0.5 

256-64 256 2320 64 150800 18704 98.0 80 7644 1 
8 

16 
32 
64 

757.3 1.0 1.0 
128.5 5.9 7.0 
93.7 8.1 12.3 
99.1 7.6 19.8 

169.3 4.5 28.3 

1.0 1.0 
0.7 0.9 
0.5 0.8 
0.2 0.6 
0.1 0.4 

256-128 256 2358 128 304182 35126 98.8 98 12535 1 
8 

16 
32 
64 

2672.1 1.0 1.0 
351.3 7.6 7.4 
298.7 8.9 13.6 
257.0 10.4 23.3 
263.5 10.1 36.4 

1.0 1.0 
1.0 0.9 
0.6 0.8 
0.3 0.7 
0.2 0.6 

256-256 256 2204 256 566428 67740 98.9 107 16901 1 
8 

16 
32 
64 

6725.1 1.0 1.0 
1219.7 5.5 7.4 
763.4 8.8 13.7 
502.0 13.4 23.9 
477.9 14.1 37.8 

1.0 1.0 
0.7 0.9 
0.6 0.9 
0.4 0.7 
0.2 0.6 

512-8 512 4373  8  39357  8469 96.4 66 3870 1 
8 

90.5 1.0 1.0 
22.9 4.0 6.4 

1.0 1.0 
0.5 0.8 

512-16 512 4620 16  78540 12812 97.6 73 5364 1 
8 

16 

322.3 1.0 1.0 
72.0 4.5 6.8 
63.1 5.1 11.8 

1.0 1.0 
0.6 0.9 
0.3 0.7 

512-32 512 4646 32 153318 21030 98.8 103 22460 1 
8 

16 
32 

2721.4 1.0 1.0 
454.7 6.0 7.4 
299.3 9.1 13.6 
289.3 9.4 23.3 

1.0 1.0 
0.7 0.9 
0.6 0.8 
0.3 0.7 

512-64 512 4768 64 309920 37536 99.2 95 27004 1 
8 

16 
32 
64 

9244.5 1.0 1.0 
1271.5 7.3 7.6 
702.8 13.2 14.3 
507.9 18.2 25.6 
563.8 16.4 42.6 

1.0 1.0 
0.9 0.9 
0.8 0.9 
0.6 0.8 
0.3 0.7 

512-128 512 4786 128 617394 70322 99.3 112 28631 1 
8 

19385.9 1.0 1.0 
3237.0 6.0 7.6 

1.0 1.0 
0.7 1.0 

16 1780.6 10.9 14.5 0.7 0.9 

32 1271.5 15.2 26.3 0.5 0.8 

64 848.5 22.8 44.4 0.4 0.7 

512-256 512 4810 256 1236170 135882 99.5 130 32676 1 
8 

43251.2 1.0 1.0 
7401.6 5.8 ' 7.7 

1.0 1.0 
0.7 1.0 

16 5306.7 8.2 14.9 0.5 0.9 

32 2783.7 15.5 27.7 0.5 0.9 

64 2205.9 19.6 48.7 0.3 0.8 

512-512 512 4786 512 2455218 266930 99.6 194 48229 1 
8 

16 
32 
64 

135753.7 1.0 1.0 
25257.7 5.4 7.8 
14198.4 9.6 15.1 
8325.3 16.3 28.5 
5226.0 26.0 51.1 

1.0  1.0 
0.7 1.0 
0.6 0.9 
0.5 0.9 
0.4 0.8 
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Table 2. Dimensions and results for the PDS problems. 

m n    k h m 
PDS1 I 126 372 11 4464 f75„ 

PDS10 1399 4792 11 57504 20181 

PDS20 2857 10858 11 130296 42285 

PDS30 4223 16148 11 193776 62601 

PDS40 5652 22059 11 264708 84231 

PDS50 7031 27668 11 332016 105009 

PDS60 8423 33388 11 400656 126041 

PDS70 9750 38396 11 460752 145646 

PDS80 10989 42472 11 509664 163351 

PDS90 12186 46161 11 553932 180207 

/ IP PCG 
83.3 30  169 

94.7 66 1107 

96.6 69 1911 

97.9 92 3835 

97.9 73 1872 

98.8 100 4711 

99.0 106 5215 

99.2 116 7015 

99.2 107 3768 

99.4 135 9357 

11 

0.7 
0.5 
0.7 

44.8 
25.3 
24.6 

254.1 
70.9 
62.6 

1  777.1 
6  206.4 

189.2 
1 1288.1 
6  258.4 

11  194.1 
1 3486.4 
6  727.3 

11  530.1 
1 6262.0 
6 1252.4 

11  745.4 
1 10873.8 
6 2112.2 

11 1268.5 
1 8855.0 
6 1726.3 

11 1093.8 
1 20784.3 
6 3950.5 

11 2447.8 

1.0 
1.3 
0.9 
1.0 
1.8 
1.8 
1.0 
3.6 
4.1 
1.0 
3.8 
4.1 
1.0 
5.0 
6.6 
1.0 
4.8 
6.6 
1.0 
5.0 

sp Ep E? 

1.0 1.0 1.0 
3.3 0.2 0.5 
4.1 0.1 0.4 
1.0 1.0 1.0 
4.7 0.3 0.8 
7.2 0.2 0.7 
1.0 1.0 1.0 
5.1 0.6 0.9 

1.0 
5.4 
9.1 
1.0 
5.4 
9.1 
1.0 
5.7 
9.8 
1.0 
5.7 

8.4 10.0 
1.0 1.0 
5.1 5.8 
8.6 10.2 
1.0 1.0 
5.1 5.8 
8.1 10.2 
1.0 1.0 
5.3 5.8 
8.5 10.4 

0.4 
1.0 
0.6 
0.4 
1.0 
0.8 
0.6 
1.0 
0.8 
0.6 
1.0 
0.8 
0.8 
1.0 
0.9 
0.8 
1.0 
0.9 
0.7 
1.0 
0.9 
0.8 

0.7 
1.0 
0.9 
0.8 
1.0 
0.9 
0 
1.0 
0.9 
0.9 
1.0 
1.0 
0.9 
1.0 
1.0 
0.9 
1.0 
1.0 
0.9 
1.0 
1.0 
0.9 

Table 3. Dimensions and results for the Tripart and Gridgen problems. 

Tripartl 

Tripart2 

Tripart3 

Tripart4 

Gridgenl 

rn n     k 
192 2096 16 35632  5168 

768 8432 16 143344 20720 

1200 16380 20 343980 40380 

1050 24815 35 893340 6156; 

1025 3072 320 986112 331072 

/ IP PCG 
93.6 65 3733 

91.8 63 2652 

94.9 84 9343 

95.6 96 8498 

99.5 173 49981 

34.9 1.0 1.0 1.0 1.0 
21.3 1.6 3.4 0.4 0.8 
17.9 1.9 5.5 0.2 0.7 
19.6 1.8 8.2 0.1 0.5 

156.6 1.0 1.0 1.0 1.0 
71.6 2.2 3.2 0.5 0.8 
55.4 2.8 5.1 0.4 0.6 
60.3 2.6 7.2 0.2 0.4 

1140.7 1.0 1.0 1.0 1.0 
408.4 2.8 3.5 0.7 0.9 
300.5 3.8 6.9 0.4 0.7 
304.8 3.7 10.2 0.2 0.5 

3273.2 1.0 1.0 1.0 1.0 
893.7 3.7 4.3 0.7 0.9 
721.5 4.5 5.5 0.6 0.8 
601.1 5.4 14.0 0.2 0.4 

37234.9 1.0 1.0 1.0 1.0 
10533.2 3.5 7.7 0.4 1.0 
7678.7 4.8 14.9 0.3 0.9 
4426.5 8.4 27.7 0.3 0.9 
3248.6 11.5 48.7 0.2 0.8 
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in the execution. "Tp" denotes the execution (wall-clock) time, excluding initial- 
izations. Columns "Sp" andJ\Ep" giverespectively the observed speedups and 
efficiencies, while columns "Sp" and "Ep" report their ideal values. 

Analyzing the results, the following trends emerge: 

- / is always fairly large, and increases with the problem size; the largest 
problems attain very high ideal efficiencies. This indicates that the approach 
has a good potential for scalablility, at least in theory, for very large scale 
problems. 

- For fixed p and k, Ep almost always increases with the size of the underlying 
network, in all three groups of instances. This is reasonable: the computa- 
tional burden of the PCG iteration grows quadratically with the number 
of nodes, while the communication cost grows only linearly. This seems to 
indicate that the approach is especially suited for problems where the size 
of the network is large w.r.t. the number of commodities. Remarkably, IPM 
has been shown to be particularly efficient, at least w.r.t. decomposition 
approaches, exactly for this kind of instances [11]. 

- Keeping p and the size of the network fixed, Ep initially increases with k; 
however for "large" values of k Ep stalls, and may even decrease. This phe- 
nomenon, clearly visible in the Mnetgen results, is difficult to explain. For 
fixed p, increasing k can, in theory, only increase the fraction of time that is 
spent in the parallel part of the algorithm, while the sequential bottleneck 
and the communication requirements should remain the same. Indeed, Ep 

is monotonically nondecreasing with k. This decrease in efficiency is most 
likely an effect of the page-based memory placement, which may cause data 
logically pertaining to one processor to be phisically located on another. 

- For any fixed instance, Ep obviously decreases as p increase; unfortunately, 
the decrease is much faster than that predicted by Ep, so that the gap 
between Ep and E~p increases with p. However, for fixed p the gap decreases 
when the size of the network increase, and a similar—although less clear- 
trend seems to exist w.r.t. k. Thus, whatever mechanism be responsible for 
this discrepancy between Ep and Ep, its effects seem to lessen as the instances 
grow larger. 

Since, except for PDS problems with p = 6, each processor is assigned the 
same number of commodities, there can be no load imbalance between the pro- 
cessors. Thus, the gap between Ep and Ep can only be explained as being due 
to communication time. Indeed, pIPM requires more communication than most 
other parallel codes for multicommodity flows. Most of communication occurs 

during the computation of (D - £-=1 CjB~lC%} v, where v is the current esti- 

mate of the solution of (8), at each PCG iteration. This requires first the broad- 
cast of v from the "master" processor (the one executing the serial-only part 
of the code) to all the other processors, followed by a vector-reduce operation 
to accumulate all the partial results CjB~lv back to the "master" processor. 
The amount of communication is essentially the same as in the decomposition 
approaches [7,12,21], and substantially lower than that of the other specialized 
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parallel interior-point codes [16,9], which need to share the (dense) matrices 
CjBi 

ld in order to form the Schur complement H. However, in pIPM com- 
munication occurs at every PCG iteration, i.e., much more often than in decom- 
position codes. The other specialized parallel interior-point codes have a much 
smaller number of communication "rounds", one for each interior-point iteration, 
although each round is more expensive. 

Thus, pIPM may be inherently more vulnerable to slowdowns induced by 
communication costs. Indeed, the efficiency of pIPM seems to be, on average, 
somehow worse than that of the approach in [16], even though direct comparison 
is difficult due to the different sets of test problems. The instances used in [16] 
are much smaller, and the cost of forming and factorizing H grows rapidly with 
the size of the problem. 

Furthermore, the current implementation of pIPM, using the parallel con- 
structs available in the SGI O2000 C compiler [24], is not aggressively optimized 
particularly in the two critical operations, i.e., broadcasts and vector-reduces. 
Both are currently obtained by means of read/write operations to shared vec- 
tors, which are presumably less efficient than the typical system-provided imple- 
mentation which exploits information about the topology of the interconnection 
network and the available communication hardware. Also, a part of the commu- 
nication overhead could be due to a non-optimal placement of the data structures 
in the local memory of the processors, especially at the boundaries of the virtual 
memory pages. Thus, we believe that there is still room for (potentially large) re- 
ductions of the gap between the observed and the theoretical speedup/efficiency 
of the code. However, pIPM already attains quite satisfactory efficiencies in some 
instances, most notably the largest PDS problems. 

Table 4. Comparing Cplex 6.5 and IPM on the Tripart and Gridgen problems. 

Problem IPM Cplex 6.5 
Tripart 1 40              74 
Tripart 2 249           627 
Tripart3 1584         2851 
Tripart4 4983       33235 

Gridgenl 126008 > 2.8e+6 

As far as the absolute speedup is concerned, IPM is known not to be the 
fastest sequential code for some of the test instances. In [11], a bundle-based 
decomposition approach has been shown to outperform IPM on the Mnetgen 
instances, while IPM was competitive on the PDS problems. Furthermore, re- 
cent developments in the field of simplex methods [18] have lead to impressive 
performance improvements for these algorithms on multicommodity flow prob- 
lems. Nowadays, even the largest PDS problems can be solved in less than an 
hour of CPU with the state-of-the-art simplex code Cplex 6.5. However, the 
simplex method is not easily parallelized. Furthermore, other multicommodity 
problems, like the Tripart and the Gridgen, are much more difficult to solve: 
e-approximation algorithms can approximatively solve them in a relatively short 
time [4], but only if the required accuracy is not high. On these instances, the 
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interior-point algorithm in Cplex 6.5 is far more efficient than the dual simplex, 
but it is in turn largely outperformed by IPM, as shown in Table 4. Columns 
"IPM" and "Cplex 6.5" represents the running time required for the solution 
of the problem by IPM and Cplex 6.5, respectively, on a Sun Ultra2 2200/200 
workstation (credited of 7.8 SPECint95 and 14.7 SPECfp95) with 1Gb of main 
memory. Thus, for the largest and more difficult instances of the set, pIPM 
provides a competitive approach. 

6    Conclusions and Future Research 

The parallel code pIPM presented in this work can be an efficient tool for the 
solution of certain types of large and difficult multicommodity problems. Quite 
good speedups are achieved in some instances, such as the large PDS problems. In 
other cases, a gap between the ideal efficiency and the observed one exists. How- 
ever, we are confident that a more efficient implementation of reduce/broadcast 
operations and a better placement of data structures—which could mean using 
MPI or PVM as parallel environments—can make pIPM even more competitive 
on a widest range of multicommodity instances. 
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Abstract. Simulation of the dynamic behaviour of liquid-liquid systems is of 
prominent importance in many industrial fields. Algorithms for fast and reliable 
simulation of single stirred vessels and extraction columns have already been 
published by some of the present authors. In this work, we propose a 
methodology to develop a parallel version of a previously validated sequential 
algorithm, for the simulation of a liquid-liquid Kiihni column. We also discuss 
the algorithm implementation in a distributed memory parallel-computing 
environment, using MPI. Despite the difficulties encountered to preserve 
efficiency in the case of a heterogeneous cluster, the results demonstrate 
performance improvements that clearly indicate that the approach followed may 
be successfully extended to allow real-time plant control applications. 

Key words: Distributed Memory Parallel Systems; MPI; Simulation of Liquid-Liquid 
Systems. 

1. Introduction 

The mass transfer efficiency of liquid-liquid agitated systems is highly dependent 
on the hydrodynamics of the dispersed phase, namely of the drop break-up and 
coalescence frequencies that result from the turbulence induced by agitation. In 
reacting systems, this behaviour is also of fundamental importance to the overall rate 
and selectivity of the process. A comprehensive and synthetic discussion about the 
behaviour of liquid-liquid systems is found in Ramkrishna's work [1]. 

Knowledge of the dynamic behaviour of liquid-liquid systems is still limited, in 
particular when it comes to its implementation as physically accurate, fast and reliable 
algorithms, with effective predictive power and suitable for real-time plant control 
applications [2]. Potential fields of practical use of this knowledge base encompass 
very broad segments of chemical technology, including the recovery of important 
non-renewable resources or the removal of dangerous substances. 

Ribeiro L. M. [3] and Ribeiro L. M. et al. [4] published innovative algorithms for 
directly (numerically) solving the population balance equation for the simulation of 

Candidate to the Best Student Paper Award 
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the full trivariate (drop volume, v, solute concentration, c, and age, •) unsteady-state 
behaviour of interacting liquid-liquid dispersions, in single continuous (or batch) 
stirred vessels. Not only the start-up period towards the steady-state was simulated but 
also the system's response to disturbances in the main operating variables (mean 
residence time, dispersed phase hold-up, agitation power input density, feed drop 
volume distribution and dispersed and continuous phase solute concentrations). The 
methodology used was later applied to a simplified version of the algorithm, that 
calculates the drop size distribution and the mean and standard deviation of solute 
concentration within each volume class [5]. This methodology was further extended 
to simulate the behaviour of a liquid-liquid extraction column [6]. 

The aim of this paper is to show that, using low cost high performance computing 
environments and the above referred methodology, it is possible to simulate in detail 
the dynamics of stirred liquid-liquid extraction columns, with execution times suitable 
for prediction of the behaviour of these systems and for control purposes. 

2. The sequential algorithm 

Following the experimental work carried out by Gomes [7] in a Kiihni pilot plant 
column of the Technical University of Munich, a sequential algorithm was developed 
to trace its dynamics [6]. This column has 150mm of internal diameter and 36 stages 
each 70 mm high. ' 

A Kiihni column may be adequately described as a sequence of agitated vessels 
with back mixing and forward mixing effects on the movement of the dispersed phase 
along the column. The hydrodynamic phenomena of break-up and coalescence of the 
individual drops of the dispersed phase was modeled using the population balance 
formulation of Coulaloglou and Tavlarides [8]. 

Besides the interaction phenomena, the transport of the drops from one stage to the 
next must also be modeled. The transport model used was based on the one described 
by Cruz-Pinto [9], taking into account the constriction factor calculated by Goldman 
[10] and the dispersion equation developed by Regueiras [11]. The mathematical 
model equations used are presented elsewhere [11]. 

From the mathematical model, the drop birth and death rates due to break-up 
coalescence and drop movement along the column are calculated. Representing by 
B(n,t) and £>(n,f)these source and sink terms, at time t and location [n ,n +dn ] of 

the drop phase space, the dynamics of the drop number density function X(n,t) is 
described by: 

±-X{7T,n+J- = B(n J) - D{WJ) (1) 

To numerically solve the above population balance equation, a phase space-time 
discretization is used and drops are assumed to reside on cell sites. Drops move from 
cell to cell in the discretized phase-space at each time step. The numerical integration 
scheme involves the explicit calculation of time derivatives, with a first-order 
backward finite-difference method [4]. 
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The sequential algorithm developed for the counter-current Kiihni column 
simulation is able to predict the local drop size distributions and the local hold-up 
profiles of the column. The algorithm was implemented in C++ and the corresponding 
program is presently available for Windows 9x and Windows NT environments [6]. 

The program consists of two parts: the initialization of the system and the column 
simulation. The corresponding flowchart is presented in Fig. 1. 

The main program starts reading all data needed to perform the simulation. This 
data includes the physical characteristics of the column, like the number of stages, 
stirrer diameter, height and diameter of each stage, the drop breakage, coalescence 
and transport model parameters, the physical properties of both phases, such as 
density, viscosity and interfacial tension, the operating conditions of the column, 
namely the flow rates of each phase and the stirrer rotational speed, the total 
simulated time, max, and the time interval, At, at which the program writes to a file 
the values of the column and system state variables. 

At time f=0, the column variables are initialized to a standard initial state, 
corresponding to a column filled with continuous phase and no dispersed phase. 

The program goes then into a loop where it writes the values of the column 
variables on a file, tests if the time reached the total simulated time value and, if not, 
calls the TimeStep routine to calculate the column status at time t+At. Then, it 
updates the value off, and returns to the beginning of the loop. When tmax is reached 
the program exits the loop, writes global results to a file and terminates execution. 

The routine TimeStep executes the simulation of the column for a period of time, 
At, between two consecutive WriteData calls. In order to accomplish this 
objective, the routine calls the dxdt routine for each column stage and, based on the 
death frequencies obtained, calculates a suitable step value for the integration. This 
value, dt, is then used to calculate the new values of the variables describing the state 
of the column. When the accumulated time reaches At, this routine is exited, returning 
control to the main program loop. 

The routine dXdt calculates the drop birth and death frequencies inside a single 
column stage, as well as the number of drops per unit time exchanged with the 
contiguous stage. It also calculates the continuous phase flow rate between the same 
two stages. To perform these calculations, this routine needs the values of the statue 
variables at both stages. Only the auxiliary variables of the current stage are modified. 
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Fig. 1. Sequential algorithm and TimeStep routine 
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The hierarchy of the called routines and the routine tasks are outlined in Fig. 2 and 
Table 1, respectively. 

The routine LLExtrColumns corresponds to the 'Initialization of the Column' 
box and to the 'Initialization of the variables' box. TimeStep and dxdt routines are 
designated on the flowchart for their own names. 

Main 

~~T~ 

ReadData WriteFinalData LLColMain 

r JL 

LLExtrColumns TimeStep 

ClearDerivatives dXdt 

2. 
WriteData 

Fig. 2. The hierarchy of the called routines 

ClearDerivatives 
dXdt 
LLColMain 
LLExtrColmuns 

TimeStep 
WriteData 
WriteFinalData 

Prepares the variables for the calculations in dXdt.  
Calculates the drop birth and death frequencies of one stage. 
Main part of the program; calls the routines 
Prepares each stage for the beginning of the simulation and 
calculates the inlet drop distributions. 
Executes the simulation for a given period of time 
Outputs to a file the results at the end of each time-step.  
Outputs to a file the final results 

Table 1. Routine tasks 

We have already shown that the results obtained with the sequential program for 
the hold-ups and the drop size distributions at different stages of the column are in 
good agreement with the experimental data, for several operating conditions of the 
column [7]. 

So far, the program doesn't include mass transfer calculations. With mass transfer, 
it is generally necessary to solve the population balance equation (1) in a tri- 
dimensional phase-space. In the present case, using a monovariate drop property 
(volume) distribution, the execution time achieved with a 120 MHz Pentium for one 
second of simulation time was four times longer than the real process, with a drop 
volume disctretization of 20 classes. Although already fast, in comparison to other 
resolution approaches [2], this algorithm needs to be further accelerated in order to be 
suitable for future control applications to liquid-liquid extraction columns, in mass 
transfer conditions. The introduction of excessive algorithm simplifications, other 
than those of the underlying mathematical model, are not desirable, as they would 
hide most of the information on the temporal behaviour of the dispersed phase 
properties distribution. This need to speedup the calculations was the motivation for 
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the development of a parallel version of the sequential program. This parallel version, 
implemented for a distributed memory parallel computing environment, is nowadays 
the only published promising approach to the future realistic simulation of various 
contactors, including extraction columns, and their control. 

3. The parallelization approach 

3.1 Initial considerations 

A sequential C code was written for the algorithm to ensure that the calculations in 
each time step only need the results from the previous iteration. 

The analysis of the logical units of this sequential code pointed out the 
methodology used to develop a parallel version of the algorithm. Table 2 clearly 
shows that the most time consuming routine is the one responsible for calculating the 
drop birth and death frequencies (due to drop breakage, coalescence, and transport) in 
each time step and for each column stage (dXdt routine). The time taken by the 
execution of the other routines is relatively insignificant and is not shown in Table 2 
The parallel version of the algorithm is thus based on the partition of the calculation 
of these frequencies, for each time step, among the several processors available. The 
synchronization is made at the end of each iteration. 

Name Time 
(%) 

Sees Calls Calls 
(ms/call) 

Total 
(ms/call) 

dXdt 87.40 2.29 5040 0.45 0.49 
TimeStep 4.20 0.11 20 5.50 131.00 

Table 2. The most time consuming routines 

3.2 The MPI implementation 

The parallel program was implemented in C for a distributed memory parallel- 
computing environment using MPI (MPICH, 1.1.2.). 

The flowchart below shows that all of the processes call the TimeStep routine. In 
this routine, the master sends a sequence of stages for each one of the other processes 
keeping the first group for itself. Each process also receives the last stage of the 
previous process, since this information is needed for the calculations. All the 
processes, including the master, contribute to the calculation, calling the dXdt 
routine. The master receives all the results sent by the other processes at the end of 
each time step and performs the control calculations, such as the overall hold-up and 
the verification of an eventual column flooding situation. 
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Fig. 3. The parallel algorithm 

-511 



FEUP - Faculdade de Engenharia da Universidade do Porto 

Master (process pO) 
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Fig. 4. The TimeStep routine 

f   End J 

In order to minimize the overload due to information exchange, presently about 
4KB for each stage (13,3 KB when mass transfer is included), every information was 
sent once (MPIJSend), taking advantage of the count and derived types MPI 
parameters. ' 

The program was first tested both on a heterogeneous cluster and on a 
homogeneous one. On the heterogeneous cluster, from the Engineering Faculty of the 
University of Porto, five Alpha processors were used, with different clock rates 150 
MHz (2 nodes), 175 MHz (2 nodes) and 266 MHz (1 node). A 100 Mbps FDDI 
crossbar switch (Digital Equipment Coorporation/Compaq GIGAswitch) connects 
these nodes. The operating system is True64 Unix v4.0E. On the homogeneous 
cluster, from the Dolphin [12] project of the Science Faculty of the University of 
Porto, four dual Pentium II, 300 MHz processors, interconnected by a Myrinet 
network, were used. The operating system was Linux Redhat 6.0. 

Besides validation of the results, the possibility of using these different 
computation environments enabled us to identify problems in preserving efficiency 
for heterogeneous clusters [13]. The comparison of Fig.5 and Fig.6, that show the 
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monitor results of the jumpshot public domain utility, already discloses these 
problems. These figures show the inter-process communications for the 
heterogeneous cluster, with five processors, and for the homogeneous cluster, with six 
processors, both for a drop volume discretization of 20 classes. The black blocks 
represent the time consumed by the dxdt routine, and gray blocks refer to the 
TimeStep routine. The white arrows represent the stage exchanges between the 
processes. 
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Fig. 6 Jumpshot result for the homogeneous cluster 

On the homogeneous cluster, with a drop volume discretization of 100 classes, the 
results obtained with six processors showed speedups exceeding a factor of four 
(Fig.7). This result, for a realistic problem dimension, points out that parallelization 
pays off for the intended application [13]. 
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Fig. 7. Speedup for 100 classes, with the cluster of project Dolphin 

4. Results and discussion 

To envisage the future application of such parallel program in industry, a 
homogeneous dedicated cluster was selected. It is important to stress, at this point, 
that MPI doesn't respond dynamically to the potential inefficiencies caused by non- 
uniform computing speeds of the cluster nodes and the variability of shared resources 

[14]. 
The program was executed on the Beowulf Cluster of the Engmeenng Faculty of 

the University of Porto. The present configuration of this cluster of commodity PCs is 
one front-end node and twenty-two computing nodes. The front-end is a dual 
Pentium III 550 MHz processor, with 512 MB of memory and 18 GB of disk. Each 
computing node is a single 450 MHz Pentium III, with 128 MB of memory and 6 GB 
of disk. The nodes are connected using a Fast Ethernet BayNetworks 450-24 port 
switch. The operating system is Linux Slackware 7.0 [15]. The results obtained are 
presented in Fig. 8 and Fig. 9. 

These results show speedups exceeding a factor of six, with eighteen processors, 
for a drop volume discretization of 100 classes. It can be observed that speedup, 
although increasing, shows some plateaus. For instance, between nine and eleven 
processors, speedup stabilizes and goes up again for twelve processors. Notice that 
nine and twelve divide thirty-six, which is the number of stages of the column. From 
twelve to seventeen processors we again have a plateau, and another at a higher level, 
from eighteen to twenty two processors. Eighteen also divides thirty-six. These 
performance leaps are related to the way in which we distribute the work for the 
various processors. First, when the number of processors divides the number of 
stages, the workload is equally distributed. Second, granularity decreases as 
communication time increases, and the calculation time per processor decreases. 
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Fig. 8. Elapsed time for 100 classes 

The speedup results for different discretizations of the drop phase-space, 50 and 
100 drop volume classes, are shown in Fig. 9. For twenty-two processors and 300 
time-steps, the results show a speedup increase from 3.71 to 5.97, being higher for the 
finer distribution. With 100 drop volume discretization classes and four processors, 
simulation is already faster than the real process. 

Speedup 

6- 

5- 

4- —I— 50 Classes 

X    100Classes 

2- 

1 i 

\ <*      A      N0     ,">     Nfc     &     #• 

ns of processors 

Fig. 9. Speedup for 50 and 100 classes 

5. Conclusions and future work 

The application that motivated this work was the simulation of the dynamic 
behaviour of liquid-liquid agitated columns. Execution times associated with 
sequential algorithms previously published by some of the authors need to be 
improved, in order to consider their application to real-time plant control applications. 
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Clustered systems, using commodity processors and standard Ethernet networks 
are increasingly popular, in face of their low price/performance ratio 

We have shown that PC clusters are well suited for the intended application The 
results presented in section 4 lead to the conclusion that parallelization pays off for 
the numerical technique used, based upon a space-time discretization and a stepping 
procedure, with explicit calculation of time derivatives. The fact that the speedup 
increases with the problem size is an important result for the future work, because 
mass transfer simulations involve much heavier calculations than the hydrodynamics 

Extensions of the algorithm to include mass transfer are presently under 
development, as well as studies concerning the optimization of the drop interaction 
constants and transport parameters. 

On this version of the parallel program, the master is responsible for all global 
calculations, besides its own stage calculations, as a separate process. With this 
approach, all the communications are made only between the master and the other 
processes. Work is in progress to test another methodology, where all processes take 
part or the global calculations, implying communication between the i process and the 
1-7 process, instead of all process communications being with the master This 
solution takes work from the master but increments communication between the 
processes. The analysis of the results will show whether, with this other 
communication and work distribution scheme, speedup can be further improved 
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Abstract. Heterogeneous networks of workstations and/or personal 
computers (NOW) are increasingly used as a powerful platform for the 
execution of parallel applications. 
Sometimes applications are developed having in mind this type of het- 
erogeneous environment, but in most cases applications already devel- 
oped for traditional parallel machines (homogeneous and dedicated) are 
ported to NOVVs, resulting in performance degradation due in part to 
less efficient communications but more often to unbalancing. 
In this work we propose a simple model able to analyze and predict 
performance on heterogeneous NOWs of regular data-parallel applica- 
tions originally developed for ring or 2-D mesh topologies. To improve 
performance, the computation time on the various nodes must be as bal- 
anced as possible. This can be obtained in two ways: by heterogeneous 
data partitioning or by assigning to each node a number of processes 
proportionally to its relative power. 
A test case based on matrix multiplication is analyzed and the results 
predicted by the model are compared with the ones collected experimen- 

tally. 
Our analysis shows that an efficient porting of homogeneous data-parallel 
applications on heterogeneous NOWs is possible and can be achieved in 
most cases in a quite straightforward and effective way. 

1    Introduction 

In recent years networks of workstations and/or personal computers are increas- 
ingly used for the execution of parallel applications [7, 11]. Indeed technological 
advances make available nodes with high computing power and interconnecting 

networks with sufficiently high communication speed. 
These systems constitute a viable alternative to classical parallel machines 

(which are homogeneous and dedicated) and have the advantages of a wide 

availability and a good price/performance ratio. 
Main features of NOWs are: heterogeneity, since in most cases the various 

nodes are different, making a good balancing among nodes a critical aspect; 
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communication latency that is normally higher that the one in the "true" parallel 
machines, imposing limits on fine grain computation. 

A simple and effective way to achieve good efficiency on such platforms is the 
use of the master-worker programming model with the pool of tasks paradigm, 
which is self-balancing [10]. However, this approach is only feasible if tasks°are 
independent. Moreover, it cannot be adopted if we are interested in the efficient 
and straightforward porting on NOWs of parallel applications which have been 
developed with different programming models for homogeneous and dedicated 
parallel systems. 

Particularly, a number of data-parallel applications have been implemented 
on homogeneous systems with regular topologies such as ring and mesh using 
the SPMD model, obtaining loosely synchronous applications, well balanced and 
therefore providing a good efficiency. 

If we execute applications belonging to this class on heterogeneous NOWs 
the various nodes have in general different speeds, thus the fastest ones exibit 
a high idle time, resulting in a overall performance degradation. In order to 
minimize idle time, the computational work in each node must be as close as 
possible proportional to the computing power of the node. 

Similar problems have been recently addressed by other authors In [1] the 
problem arising with the use of grid algorithms on heterogeneous workstation 
networks is addressed, and solution based on sophisticated data allocation meth- 
ods are proposed. 

In this work we consider two possible strategies to obtain a good load bal- 
ancing: a single process per node with heterogeneous data partitioning; homoge- 
neous data partitioning assigning a different number of processes to each node, 
according to its computing power. 

We propose a simple model able to evaluate performance in the various cases 
taking into account the involved parameters at the application level (e.g. com- 
putational work and communication amount), at the architectural level (eg 
interconnection network speed) and at both levels (e.g. relative speed of nodes). 

A test case based on matrix multiplication is analyzed and the results ob- 
tained with the model are compared with the ones collected experimentally. 

2    Regular SPMD applications 

Many applications are suitable for the parallelization on regular topologies (e.g 
ring or 2-D mesh) with a even distribution of data among processors. 

The code in each node consists normally of an initialization phase, a loop 
and a termination phase (Fig. 1). In each loop iteration there are a computation 
phase and a communication phase with neighbouring nodes, i.e. nodes connected 
by direct links on the considered topology. 

For the generic /-th loop iteration (/ = 1,..., L), the elapsed time Tt on the 
f-th node can be expressed as 

Ti = Tt
comp + Tromm + Tidle 11) 
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?:: 

initialization phase 

loop 
compute 
send data to neighbouring nodes 
receive data from neighbouring nodes 

end loop 
termination phase 

Fig. 1. Process structure on each node 

Usually, the send is asynchronous and the receive is blocking, resulting in a 
loosely synchronization among processes. Since we have a regular partitioning 
on a homogeneous parallel system, the application is self-balancing (T}dle ~ 0). 

Sometimes, depending on the particular application, we can achieve a more 
efficient implementation slightly modifying the loop structure, for example mov- 
ing the data sending before the computation. 

Communications can be carried out using proprietary primitives, optimized 
for the different architectures, but more often standard libraries such as PVM 
or MPI are used, ensuring code portability among different platforms. 

This computational scheme occurs in various applications [6]. Among the 
others we mention matrix multiplication, long-range interactions [5], finite dif- 
ference methods for the solution of Laplace equations. Other types of applica- 
tions, such as finite element methods, particle dynamics and some kind of image 
processing [9] have a similar scheme but may require in addition the use of global 
communications and/or collective operations. 

3    The heterogeneous computing environment 

Let us consider an heterogeneous network of workstations or personal computers 
(generically denoted by NOW) consisting of p machines, in general with different 
features, connected by a switched communication network (e.g. Ethernet, Fast- 
Ethernet or ATM), with all links providing the same communication speed. 

For a given application A, let us assume that the heterogeneity of nodes can 
be expresses by a single parameter, namely the relative speed s,- of node i with 
respect to a fixed reference machine, not necessarily belonging to the network 
[3]. Si depends mainly on the clock speed ratio of nodes but also on the kind of 
application, cache and memory size and organization. 

It is beyond the scope of this paper to provide a precise characterization of 
the node speed [14]. We suppose that speeds can be measured executing the 
application under investigation on the various nodes, or benchmarks belonging 
to the same class. We assume that the speed of each node does not vary, at least 
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as a first approximation, if we measure it using the whole application or anv 
portion of it [8]. 

The total relative speed of the p node NOW is 

-E- 
and the average relative speed is 

_     5 
(3) P 

Since in the present work we are mainly interested in discussing the impact 
of heterogeneity, we suppose that the NOW is dedicated. Otherwise we can use 
an equivalent relative speed given by 

o-i being the load factor of node i. 

Let us assume that transmission time along the network can be expressed as 

ttrans — Cn + ß ■ M (5) 

where a is the latency (average value over the NOW), 0 is the communication 
time per byte and M is the message length in bytes. 

We refer to message passing library such as PVM or MPI [12]. In this case 
the communication time for a message is the sum of three contributions [10] 

tcomm  = tpk + ttrans +tupk (6) 

where tpk is the time to prepare the message on the sending node, and tupk is 
the time to unpack the message on the receiving node. 

The time for packing/unpacking is greater if the encoding of data in a ma- 
chine independent format is required; if all machines involved in communication 
support the same data format no encoding is needed, and tpk and tupk are greatlv 
reduced. 

To be exact, tpk and tupk depend on the speed of the node. However since 
these terms are normally much smaller than ttran, and tcomp, we can. at least 
as a first approximation, neglect them or otherwise consider their average value 
over the nodes and add up it to ttrans. In both cases we assume communication 
speed constant for all nodes. 

4    Performance analysis of SPMD applications on NOWs 

Let W be the total computational work involved with the application .4 under 
consideration, and let r be an atomic computing time (e.g. the time per element 
or per operation) on the reference node. 
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The application A is decomposed by data parallelization into p processes, 
each requiring a computational work IF,-, and the process i-th is executed on 

node /-th. 
The computation time for one out of L loop iterations on a generic node i-th 

is therefore 

Tcomp = — -,    i=l,....p (7) 
' i   Si' 

and Tcomm = Tcomm is the corresponding communication time, which under the 
assumptions of the previous section is the same for all nodes. 

Dealing with heterogeneous computing systems, we are mainly interested in 
evaluating the idle time on each node, since this is the main factor that can lower 

the overall performance. 
Let us consider an application with processes connected on a logical ring. Let 

us define 

TT/ XA^ •     T 
.rpcomp _ rpcomp _ rycom-p _ /j2_i _ _i")_,      i = 1        .,D (8) 

i ~    i ' Sj Si     L 

where j denotes the node with the highest computation time. 
From our analysis it turns out that we can have two different behaviours, 

depending on computation and communication times and on the degree of het- 
erogeneity of the network. More precisely, it exists a threshold value for Tcomm 

(9) 
EA/jicomp 

            i i  
±th     "       p 

which allows to distinguish the two following situations. 

a^ ff jcomm <• jcomm ^ after a transient phase of p iterations, a steady state 

is reached, characterized by the fact that the idle time of each node does not 
vary from an iteration to another, and it is given by 

j,idle _  /^rpcomp ^      i=lt p (10) 

The duration of the transient phase does not depend on the mapping of processes 

to nodes. 

b) If rpcomm > Tf°mm, the situation is slightly more involved since after the 
transient phase we get a periodic behaviour (with period p) where the average 
idle time over the set of nodes for each loop iteration is equal to Tcomm. 

Similar considerations apply for mesh based applications, but the duration 
of the transient phase can depend on the mapping. 

In the following we will deal with case a), since in practice performance 
is limited by unbalancing. Of course, improving load balancing we move from 
case a) to case b); however, in the b) situation, performance cannot further be 
improved, unless we modify the algorithm. 
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To obta n a first approximation of the impact of heterogeneity on efficiency 
we can neglect the communication overhead {T?°mm = 0) Following ffl anH 
using eqs. (10,8) the node-level efficiency is rouowm«, [6\. and 

j^comp j-comp 

and the global efficiency is 

1'       rpcomp _^_ jidte   — jcomp ■.      ' = 1 p (11) 

J 

Of course, the efficiency above is an upper bound of the actual efficiency 

level IT Ar ne§ f thtCOmmunication -'«head. * and rj are at the step 
eve , but they coinc.de with the efficienc.es of the whole computation, since all 

the loop iterations are equal. 

4.1    Evaluating unbalancing for naive porting 

In the case of a straightforward porting by homogeneous data partitioning of a 
regular application on a heterogeneous NOW we have 

W 

P (13) 

Therefore eq. (8) becomes 

1        1 , W Arpcomp I  J- 1 .  VV   T 

«,-Vl'    Z = X"--'P (14) 

and eq. (9) particularizes to 

rcomm        /  *■        —    v VV  T Tcomm        i  L        _    > VV   T Tth       _(--,„)__ (15) 

where sff denotes the harmonic mean over s,-. 

n ,AS fXP'fed' t
u
here is no idle ti™ on the slowest node (in this case the 

node with the highest computation time is the slowest one), and the idle time 
increases w.th the node speed. Since the fastest nodes are poorlv exploited the 
global efficiency is low, "      ^luucu- lIle 

Using eqs. (7,13) we obtain 

Si 

and 

TJi=—,      1=1,. :m 

11 = ~ s (17) 

where s is the average relative speed over the nodes composing the NOW. 
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4.2     Strategies to improve efficiency 

Eqs. (10.8) show that the computational work carried out by each node should 
be as proportional as possible to its relative speed in order to keep unbalancing 

low, i.e. 

Wi~%W,    i = l,...,p (18) 

This can be achieved in two ways. 

1) By using an heterogeneous partitioning of data among processors. With 
this approach some changes in the code are required, thus making the port- 
ing more costly. It may be useful to employ semi-automatic tools such as that 

proposed in [2]. 

2) By splitting homogeneously the application in a number of processes q 
greater than the number of nodes p, and assigning to each node a number of 
processes qt as proportional as possible to its relative speed, i.e. 

<?,-§<?,    » = l....,p (19) 

Of course, to maximize performance it is convenient to put logically neigh- 
bouring processes on the same physical node [4]. 

In the remaining part of this section we address in more detail the second 
approach. In this case, the computational work for each node is 

Wi = %-W,    i=l p (20) 

The node-level and global efficiencies become 

Vi = 

and 

qi_Sj_ 

1j si 

- LSj 

.,P (21) 

(22) 
1j s 

We see that local efficiencies increase if the ratios qt/qj are close to the cor- 
responding ratios st/sj. Moreover, for a fixed q, t) is maximum if qj/sj = 
maxj (9,7s,-) is minimum. 

The number of processes required to achieve a good balancing increases with 
the degree of heterogeneity of the network, and correspondingly the process 
granularity must decrease. 

To show an example of application, let us consider a NOW of six nodes, with 
constant total power S = 6, and therefore s = 1. We choose the four different 
configurations with increasing heterogeneity (expressed by h = l-smm/s, where 
smin denotes the lowest relative speed in the NOW) reported in Table 1, and we 
vary the number of total processes from 6 up to 75. For each configuration and 
each value of q we find the optimal <?,- using the criterion of minimizing qj/sj. 
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Table 1. Configurations with increasing heterogeneity used in Fig. 2; p = 6; S ■. 

s, h 
0.6 0.8 1.0 1.0 1.2 1.4 0.40 
0.4 0.6 0.8 1.2 1.4 1.6 0.60 
0.2 0.2 0.6 0.6 2.2 \> ■■> 0.80 
0.1 0.4 0.7 1.3 1.6 1.9 0.90 

Fig. 2 shows the global efficiency, computed from eq. (22), versus the degree 
of heterogeneity of the system. We see that, as expected, for a fixed q efficiency 
decreases as h increases, and the effect is stronger when q is smaller However a 
reasonable number of processes (e.g. q ~ 50) is sufficient to achieve an efficiency 
of about 0.8, also with a highly heterogeneous network. 

1.0 

0.8 

o 
Ö  0.6 

O 
0.4 

QJ 

0.2  - 

0.0 

r   .-' 

/ 
/     / 

i    / 
y 

0.0 
1    I—I 

20.0 

LEGEND 
h = 0.40    ■ 
h = 0.6ÖV 
h = 0.8Ö A 
h = 0.90^ "< 

i      |      i      i 1 1 1 

40.0 60.0 80.0 

Fig. 2. Efficiency vs. the total number of 
5 = 6. 

processes q, for various values of h; p = 6: 

ow Of course, a trade-off exists between balancing and the need of keeping .„„ 
other overheads, in particular the time lost due to context switching, which is 
not considered in the present analysis. 

The approach based on the use of multiple processes per node permits 
complete reuse of code developed for homogeneous platforms. 
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5     Simulation and experimental results 

We set up a simple model able to simulate the execution of regular applications 
on N'OWs. with the three different approaches outlined in the previous section. 
The model uses some parameters at the hardware level (i.e. the number of pro- 
cessors p and the network speed, expressed by a and ,3), and some parameters 
which also depend on the selected application (i.e. the atomic time r on the ref- 
erence node and the relative node speeds s*). The third approach also requires 
the total number of processes q. From such low level parameters, the model com- 
putes for the given application the computation, communication and idle times 
at the loop iteration level for each processor. In this way the model yields the 
figures of speed-up and efficiency of the whole application. 

The model is tested using the matrix multiplication algorithm that computes 
C = A x B, with .4, B and C n x n matrices, on a logical ring of processes, as 

described in [13]. 
In the original SPMD implementation with homogeneous data partitioning 

each processor i stores a slice of matrix .4 and a slice of matrix B, each comprising 
rows from (i- l)n/p to i■ n/p. Slices of ,4 remain local to the various processors, 
whereas slices of B circulate along the ring. The whole computation requires p 
loop iterations and at the end processor i has computed n/p rows of C, from 
row (i - l)n/p to row i ■ n/p. 

So, the computation time of node i during the /-th iteration is 

T<omp =A-,    i=l,...,p (23) 
Pl Sj 

and in each iteration n2/p elements of B are moved between neighbouring nodes. 
Using the heterogeneous data partitioning approach means in this case to 

assign slices of matrix A to each node with a number of rows proportional to its 
relative speed, whereas matrix B is still evenly partitioned among nodes. 

The third approach is exactly the same as the first, with the exception that 
q processes (with q > p) are generated and the optimal qt are given by eq. (19). 

The various versions of this test program are implemented using C language 
and PVM v. 3.4 and executed on a variable number of nodes belonging to a 
NOW of six workstations connected by a switched Ethernet. Table 2 shows 
the characteristics of the various nodes and the total power of the different 

configurations. 
The trials are executed on dedicated nodes and with a low traffic on the 

network. The measured value of the time per element on the reference node is 
T = 0.56 psec. We measure on the network the values a = 1 msec and ß ~ 

1 psec. 
Experimental data has been collected using 1000 x 1000 floating point matri- 

ces. Table 3 reports the measured and simulated speed-up for the three different 
approaches. As expected, the speed-up of the straightforward homogeneous par- 
titioning is well below the ideal one, while the two proposed strategies to reduce 
unbalancing yield considerably better speed-up figures. 
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Table 2. The first column identifies the configuration, that includes nodes up to the 
current row; for each configuration the type and the relative speed of the nodes, the 
total computing power and the degree of heterogeneity h are reported 

Config. Id. Workstation Relative speeds Available computing power h 

- Sparc-20 1.00 1.00 . 
Cl SGI-02 1.87 2.87 0.31 
C2 SGI-02 1.90 4.77 0.37 
C3 Sparc-Ultra 5 1.87 6.64 0.40 
C4 Sparc-Ultra 5 1.85 8.49 0.41 
C5 Indigo 2 5.87 14.36 0.58 

Table 3. The first column gives the configuration identifier; the SPMD columns pro- 
vide speed-up for homogeneous SPMD application measured (M) and simulated(S); 
HD columns summarize speed-up for heterogeneous data partitioning; the VP colums 
provide speed-up for homogeneous data partitioning but with a number of processes on 
each node proportional to its relative speed (the total number of processes q is reported 
in the last column) 

Config. Id. SPMD-M SPMD-S HD-M HD-S VP-M VP-S 1 
Cl 2.06 1.99 2.89 2.86 2.71 2.80 3 
C2 3.09 3.00 4.69 4.76 4.68 4.66 5 
C3 4.62 4.00 6.62 6.62 6.14 6.51 7 
C4 5.80 5.00 8.36 8.48 8.18 8.35 9 
C5 6.54 5.95 13.23 14.24 12.67 13.6 15 

Measured and experimental data are in most cases in good agreement, thus 
confirming that the proposed model is quite reliable. The maximum errors occur 
in the case of SPMD homogeneous implementation, and it is due to an under- 
estimation of the relative speed of the slowest nodes. In fact we assume that 
the relative speed of each node does not vary with the data size handled by 

the node. Indeed, we can sometimes observe a gain in processor speed when the 
amount of local data decreases, for example due to better use of the hierarchy 
of memories. This is more relevant in the homogeneous data partitioning case 
where the relative weight of the slowest nodes is greater. 
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6    Conclusions 

We analized the problem of porting data-parallel applications originally devel- 

oped for homogeneous parallel systems with regular topologies (e.g. ring or mesh) 

to network of workstations and/or personal computers. 

For this kind of computing resources, maintaining the even partitioning of 

data among processors yields poor performance, since efficiency is limited by 

unbalancing, that increases with the degree of heterogeneity of the network. 

Two strategies are considered to overcome this problem: heterogeneous data 

partitioning or allocation to each node of a number of processes proportionally 

to its relative power. 
A simple model is proposed to analyze and predict performance of the con- 

sidered class of applications using the various approaches. 
The model is tested using a matrix multiplication algorithm with processes 

arranged in a ring topology. A good agreement is obtained between simulated 

and experimental figures of performance both for the naive unbalanced imple- 

mentation and for the two improved implementations. 
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Abstract. This work presents a parallelization of a recursive decoupling 
method for solving tridiagonal linear system on distributed memory com- 
puter. We study the fill-in in the algorithm to optimize the execution of 
the scalar algorithm and to perform the communications. Finally, we 
evaluate the algorithm through specific test on the Fujitsu AP3000. 

1    Introduction 

In recent years considerable effort has been devoted to solve tridiagonal systems 
(TS), a very important class of linear systems which appear when the finite dif- 
ferential method is used to solve differential equations in partial derivates such 
as simple harmonic motion, Helmhotz, Poisson, Laplace and diffusion equations. 
The finite differential method involves the discretization of the differential equa- 
tion and subsequently the solution of the tridiagonal systems thus generated. 

There are many algorithms for solving TS, such as Gaussian elimination or 
LU elimination, that have proved to be the most effective sequential algorithms 
on serial computers. However, these algorithms cannot be directly adopted to 
parallel computers. Much research has been undertaken on parallel algorithms for 
solving TS. Hockney proposed the cyclic (odd-even) reduction (CR) algorithm in 
1965. Although originally proposed as sequential, this algorithm can be adapted 
to run on a wide range of parallel architectures [8,5]. In addition, new methods 
for increasing the parallelism of CR algorithm, such as PARACR [9] or radix-p 
CR algorithm [8], have been proposed. On the other hand, other well known 
strategies have been adapted to get new TS parallel algorithms, such as the 
proposed by Egecioglu et al. [6] (recursive doubling strategy), Lin and Cheng 
[12](prefix), and Wang and Mou [17] and, Spaletta and Evans [16], which exploit 
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the parallelism of the divide-and-conquer strategy. Finally, a group of hybrid 
algorithms have been proposed that are based on partitioning the system into 
blocks of equations, using a local algorithm to reduce the subsystem in each block 
and a global algorithm to solve the reduced system. In this group we include the 
algorithms by Krechel, Plum and Stuben [10], Cox and Knisley [4], Müller and 
Scheerer [15], Matton, Williams and Hewett [14] and Amodio and Brugnano [2] 
In [1] we have classified the above TS algorithms in terms of their data flows 
and presented a unified parallelization on computers with mesh topology and 
distributed memory. 

In this paper, we consider the parallelization of the recursive decoupling al- 
gorithm by Spaletta and Evans [16] on a distributed memory multiprocessor. 
This algorithm has a very good behavior in terms of accuracy as the problem 
size increases and the partitioning process leads to independent systems. As sta- 
bhshed in previous works, the memory allocation requirement is demanding [16] 
and the execution times are not competitive with other partitioning methods [1] 
In this paper we propose a technique to reduce the execution time of the scalar 
algorithm, minimize the memory requirements and to optimize the communica- 
tions in the parallel implementation. This technique is based in the sparsity of 
the matrix obtained in the recursive fill-in process of this algorithm. 

The rest of the work is organized as follows: in Section 2 we present the 
recursive decoupling algorithm by Spaletta-Evans. The parallel algorithm is pre- 
sented in Section 3. Experimental results on the Fujitsu AP3000 multiprocessor 
are shown in Section 4. Finally, in Section 5 we present the conclusions 

2    The Recursive Decoupling Algorithm 

We consider a set of N linear equations with N unknowns 

An = d, (1) 

where A is a tridiagonal matrix TV x TV of the form 

A = 

fb0 c0 \ 
ai &i a 

a.2 b2 c2 

O-N-2 bpj-2 Cyv-2 

V ajv-i &JV-I/ 

,with |6i| >H + |c;|, Vi = 0,l,...,TV-l. 

With no loss of generality we will assume that the number of equations is a 
power of two. We will denote m = TV/2 = 2n_1. 

The recursive decoupling algorithm is based in the recursive calculation of 
the inverse of matrix A by means of the Sherman-Morrison formula [7]. To this 
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goal, we decompose the matrix A (2) as follows: 

where 

and 
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(3) 

e2;-i = hj-i - a2j 
ß2j        = &2j - C2j-1 

when j = 1,... ,m - 1. 

(4) 

(5) 

In expression (3), all the elements in the vector columns x^> and yw have only 
two non-zero elements at the positions 2j - 1 and 2j, that is 

= ((),•••,0,l,l,0,---,0)' (6) 

yu' = (0,--,0,O2j,C2j-i,0,---,0)T 

In matrix notation, the partitioning of A given in equation (3) is denoted as 

771 — 1 

J=I 

J)T (7) 

where J is the 2 x 2 block diagonal matrix on the left in equation (3). 
The basic idea, underlying the choice of this particular partitioning, is given 

by the Sherman-Morrison method. Sherman-Morrison proved that, given two 
N x N matrices A and J such that A = J + x ■ yT, the inverse of matrix A can 

be obtained by the formula 

-1   _    7-1 ■ Q(J-1x)(yTJ- . a = l+yTJ-'x- (8) 

To directly compute the inverse of matrix A would cost 0{N3) arithmetic opera- 
tions, while the use of formula (8) only implies 0{N2) operations. When applied 
to solve a linear system of equations Au = d, the solution will be 

u = A-M = (I - aJ-'xy7) J^d. (9) 

This process avoids the explicit computation of the inverse matrix. 
The Recursive Decoupling method, described in [16], derives the solution of 

system (1) by considering that A= J+ Y,7=\
2 *(J)YU)T + x^-^m^T, then 
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applying the Sherman-Morrison formula (7) to matrices A and J+TmJ2 x(»y°')T 

The recursive procedure is as follows J  l 

-l 

Mh   =W + 'E x<;)yWT        = (/ - aft-iM^xO-V-UT) Mh_2 (10) 

ah-i = 1/ (1 + y</l-1>TM/l_1x</*-1>) 

Index h goes from 1 to m - 1, M0 being the matrix J"1 and the last matrix 
Mm_! will be A i. Let us denote as g(h^=Mh^xh. Observe that these vectors 
are needed to obtain the recursive formula (10) and can be computed using a 
similar recursive method 

g(h> = (/-aft_1gC-i)yC-i)T)Mh_2XA 

/l-l 
(11) 

In order to obtain the final solution u = A^d, from (10) follows a recursive 
formula similar to (11) 

u = A_1d = 
m—1 

Then we need to carry out the following steps, 

J-M. (12) 

step 1 In this step the matrix J-1 is calculated, as well as the product J^d the 
initial value of u. Given the shape of matrix J, its inverse may be obtained 
by calculating the inverse of each 2x2 block Jh 

/-1 - _L_ 
e2j-l  -C2U-1) 

A< = 
\-a2j-i    e2(;_1} 

so, the value of J_1d becomes 

/ 

J-M = 

j - e2(j~i)e2j-i - a2j-ic2{j-i).    (13) 

(eid0 - c0di)/Ai 
-aido +e0di)/A1 

(e2j-id2(j_i) - c2(j-1)d2j-1)/Aj 

(-a2j-id2U_1) + e2{j-l)d2j-.i)/Aj 

(e2m-\d2m-2 -c2m^2d2m_i)/Am 

V {-a2m-id2m-2 + e2m-.2d2m_i) / Am ) 

(14) 
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Step 2 Compute the initial vectors g{j) = J^x*^ for indices j = l,---,m-l. 
Because the pattern of the vector x(j), the vector g<j) has only non-zero 
elements from 2j - 1 to 2j + 2 positions, 

/ 0 \ 

,U)  - 

0 

e2{j-i)/Ä2j-i 
e2j-i/Ä2j 

-a2j-i/Ä2j 

0 

V 

(15) 

/ 

Step 3 In this last stage, vectors u y g(j) are updated by using the equations (11) 
and (12). This rank-one updating procedure, which also make use of the 
particular shape of vectors x^ and yU), can be described as follows: 

for k - l,2,---,n 
for j = 2 k — 1     on—1    o fc-1 

ai = l/(l+yO>V)) 
u= (l-ajS

U)yu)T)u 
fori = 2fc, 2n~1-2fc, 2k 

s^ = {i-ajS
ij)yu>T) 

end 

,(«) 

end 
end 

3    The Parallel recursive decoupling algorithm 

In this section we propose some modifications to the above sequential algorithm 
in order to reduce storage and execution time. Then, we propose a parallelization 

of the algorithm. 
Note that in step 2, when we calculate gW, (0 < j < m- l),the initial vectors 

x(j) only contain 2 non-zero elements. Therefore, at the 1st iteration the vectors 
are composed of 4 non-zero elements and, in general, at iteration k, g U) is 

2k to a vector with 2k+l non-zero elements, namely components from 2j + 1 

2? + 2k. 
Observe at the example in Fig. 1 that to compute vector g(i) we do not need 

all the g(j) vectors in each iteration k. In fact, only are needed those vectors g(J) 

which have elements different from 0 just at row i, where column i of matrix 

(i - ajg
lj)2yiJ)T) has also elements different from 0. It can be easily proved 

that this happens if 2k+l L^J < i < j + 2k~l. Then, the internal loop i in the 
step 3 of the recursive procedure can be simplify as follows 
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begin=2fc+1[5ÄTj 

if( begin == 0 ) then begin = 2k 

for i = begin; j + 2k~l, 2k 

g(0 = (/-ajgü)yO)T)gW 
end 

On the other hand, the fill-in process only occurs at several points of the 
algorithm, where the values associated to specifics gW are computed These 
values are calculated using the recursive tree procedure described in step 3 For 
example, in Fig. 2 at the iteration 1, j has the values {1,3,5,7}, at the iteration 
2 has the values {2,6} and at the iteration 3 has the value {4}. In addition, the 
vectors gU>, gO), g(5) and g<7) are uged Qnly &t ^ ^ .^.^ and d - 

the execution of the algorithm keep at most 4 non-zero elements. Similarly 
vectors g<2> and g<6> are used until the 2nd iteration and the number of non- 
zero elements is less than 8, and so on. As a consequence, not all the vectors g<<> 
perform the fill-in procedure in the same way. We take advantage of this fact to 
gather the non-zero elements, then saving memory. Instead of arrays g\ If 1 of 
size N/2 xN/2, we have arrays of size („ - 1) x N/2. At the stage 2 in Fig 1 
we ca^see how the vectors g(» are stored for the case N = 16. Memory savings 

Concerning the parallelization of the algorithm, Fig. 1 summarizes their 
stages by means of an example (N = 16 equations on 4 PEs). In this algorithm 
the responsibility to perform the computation of the initial steps is divide among 
all the processors. Therefore, the process of partitioning matrix A, given in (7) 
as well as the distribution of vectors u and d is refered as preliminary stage 
At this stage, communications of the c(iV.i)/p_1 occur from processor i to pro- 
cessor i + 1 and, for the a(N.i)/P, from processor * + 1 to processor i, where 
i -1,---,P -1, P being the number of processors (see Fig. 1). 

After preliminary stage, the steps 1 to 3 are computed. Having in mind the 
block diagonal structure of matrix J, step 1 may be computed concurrently in 
all the processors without any communication, since the m subsystems in (13) 
can be solved in parallel. The same happens at stage 2, but in this case the 
m - 1 subsystems in (15) are to be solved. Some vectors g«> are distributed 
among two processors. But this does not imply any comunication since each 
processor calculates the components of the vector g(» using local data. As an 
example, in Fig.l, the components {2,3} of vector g(2> are in processor 0 and 
the elements {4,5} in processor 1. This distribution of vector g«> provides a 
better load balance. 

At the stage 3 no communications are required during the first n - p - 1 
iterations. However, the last p iterations require communications since the i - th 
element of vector u must be transfered to all the processors containing elements 
of the i - th column of the matrix (/ - ajg(%(^) which are different from Q 

In addition, the k - th element of vector gl» must be transfered to processors 
which contain elements of column A of (/ - ajg^y^T) differents from 0 
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Fig. 1. Scheme of the parallel algorithm for N = 16 equations and 4 processors. We 
denote as x the elements differents from 0 either in vectors and matrices. Circles 
indicate data to be transfered and arrows point out destination processors. At stage 2, 
computation of g(1) from x(1) and g is summarized. At stage 3, the Figure shows how 
g(2) for k = 1 and g{4) k = 2 are calculated. 
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Fig. 2. the vectors g(j) axe calculated at each iteration of step 3 for N = 16 equations. 

4    Evaluation 

The recursive decoupling algorithm has been implemented on the Fujitsu AP3000 
distributed memory computer [13] using the message passing programming model. 
We have used the MPI programming environment. To verify the performance 
of the parallel algorithm, we used a test diagonal system (with know solu- 
tion), whose coefficients matrices satisfy the condition, \bi\ > \a,i\ + \a\, \fi = 
0,1,..., N — 1. This test is described below, 

/   2-1 
-1   2 -1 

-1    2 -1 
Ui 

«2 

V 
-1    2 -1 

-1   2/ 

whose exact solution is an TV-dimensional vector u with components: 

«N-2 

\UN-l/ 

0 
0 

0 

(16) 

TV + 1 
U; = 

TV + 1 
-, Vi = l,---,N. (17) 

The experiments were performed on matrices of size ranging from 16384 (214) 
to 1048576 (220) for the test (16). As we can see in Table 1, the increasing number 
of processors produces a reduction in the execution time of the algorithm. We 
observe that this method presents a high efficiency for all the sizes of equations. 

Fig. 3 depicts the experimental results. So, in Fig. 3.a we show the efficiency 
of the modified sequential algorithm we propose related to the initial algorithm 
efficiency. Thus, Observe than performance increases more than 91% for any 
value of TV. On the other hand, in Fig. 3.b we show the efficiency for the par- 
allel algorihtm for some values of parameter N. Efficiency was calculated using 
the execution time of the sequential code. The parallel algorithm exceeds the 
ideal speedup due to an efficient use of local memories and the communication 
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Table 1. Execution times in seconds measured on the AP3000 for differents number 
of processors. The size of matrices are from 16384 (214) to 1048576 (220). 

p 215 216 217 218 219 220 

1 0.4231 0.9098 1.9969 4.3576 9.2092 19.3657 
2 0.1830 0.3561 0.7990 1.7162 3.9248 7.7731 
4 0.0848 0.1866 0.3813 0.8379 1.9117 3.9418 
8 0.0427 0.0897 0.1897 0.3988 0.9471 1.9001 

optimization. Therefore, these results prove that the techniques employed to 
parallelize the algorithm permit to obtain a good performance on distributed 
memory computers. A last observation is that our parallel program is scalable. 
That is, in order to maintain a constant efficiency, N grow at the same rate as 
P, which we just observed in Fig. 3.b. 

w 

n Number of processors 

Fig. 3. (a) Efficiency of the modified sequential algorithm we propose related to the 
initial algorithm efficiency, (b) Efficiency of the parallel algorithm on the AP3000 for 
N = 215 and N = 220rad data. 

It is difficult to make a comparison with other implementations of the Re- 
cursive Decoupling Method for Solving Tridiagonal on other machines, but the 
speedup may be compared with the presented in [16,3]. Their numerical results 
are obtained in the Balance 8000 multiprocessor system. The maximum speedup 
is 2.1075 with N = 512 and P = 8. Climent et al. [3] present theoretical predicted 
times for their algorithm on a Cray T3D. According to the efficiency results we 
can conclude that our algorithm presents a significant better performance. 

5    Conclusions 

In this paper, we have propose a parallelization of the recursive decoupling 
method for solving tridiagonal linear system on distributed memory computer. 
The method showed an optimization of the memory requirements, a superlinear 
speedup and scalability. The memory savings come from a compressed storage 
policy which eliminates the null elements. On the other hand, we study the fill-in 
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in the algorithm to optimize the execution of the scalar algorithm. This way, the 
performance increases more than 91% for any value of N, 

References 

1. Amor, M., Lopez, J., Argüello, F., Zapata, E. L.: Mapping Tridiagonal System 
Algorithms onto Mesh Connected Computers. International Journal of High Speed 
Computing 9 (1997) 101-126 

2. Amodio, P., Brugnano, L.: The Parallel QR Factorization Algorithm for Tridiagonal 
Linear System. Parallel Computing 21 (1995) 1097-1110 

3. Climent, J.-J, Tortosa, L., Zamora, A.: "A Recursive Decoupling Method for solving 
Tridiagonal Linear System in a BSP Computer". Proceedings in X Jornadas de 
Paralelismo (1999) 73-78 

4. Cox, C. L., Knisley, J. A.: A Tridiagonal System Solver for Distributed Memory Par- 
allel Processors with Vector Nodes. Journal of Parallel and Distributed Computing 
13 (1991) 325-331 F      8 

5. Dodson, D. S., Levin, S. A.: A Tricyclic Tridiagonal Equation Solver. SIAM J 
Matrix Anal. Appl. 13 (1992) 1246-1254 

6. Egecioglu, Ö., Koc, Q. K., Laub, A.J.: A Recursive Doubling Algorithm for Solu- 
tion of Tridiagonal System on Hypercube Multiprocessor. J. of Computational and 
Applied Mathematics 27 (1985) 95-108 

7. Golub, G. H., Van Loan, C. F.: Matrix Computations. The Johns Hopkins University 
Press (1989) y 

8. Groen, P. P. N. de: Base-p-Cyclic Reduction for Tridiagonal System of Equations. 
Applied Numerical Mathematics 8 (1991) 117-125 

9. Hockney, R. W., Jesshope, C. R.: Parallel Computers. Adam Hilger (1988) 
10. Krechel, A., Plum, H.-J., Stuben, K.: Parallelization and Vectorization Aspects of 

the Solution of Tridiagonal Linear System. Parallel Computing 14 (1990) 31-49 
11. Lin, F. C, Chung, K. L.: A Cost-Optimal Parallel Tridiagonal solver". Parallel 

Computing 15 (1990) 189-199. 

12. Lin, W.-Y., Chen, C.-L.: A Parallel Algorithm for Solving Tridiagonal Linear Sys- 
tems on Distributed-Memory Multiprocessors. International Journal of High Speed 
Computing, 6 (1994) 375-386 

13. Ishihata, H., Takahashi, M., Sato, H.: Hardware of AP3000 Scalar Parallel Server 
FUJITSU Sei. Tech. J. 33(1) (1997) 24-30 

14. Mattor, N, Williams, T. J, Hewett, D. W.: Algorithm for Solving Tridiagonal 
Matrix Problems in Parallel. Parallel Computing 21 (1995) 1769-1782 

15. Müller, S. M, Scheerer, D.: A Method to Parallelixe Tridiagonal Solvers. Parallel 
Computing, 17 (1991) 181-188 

16. Spaletta, G, Evans, D. J.: The Parallel Recursive Decoupling Algorithm for Solving 
Tridiagonal Linear Systems. Parallel Computing. 19 (1993) 563-576 

17. Wang, X„ Mou, Z. G.: The Parallel Recursive Decoupling Algorithm for Solving 
Tridiagonal Linear Systems. Proceedings of the third IEEE Symposium of Parallel 
and Distributed Processing (1991) 810-817 

■540- 



VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing 

Fully Vectorized Solver for Linear Recurrence 
Systems with Constant Coefficients 

Przemyslaw Stpiczyriski1 and Marcin Paprzycki2 

1  Department of Computer Science, Marie Curie-Sklodowska University, Plac Marii 
Curie-Sklodowskiej 1, 20-031 Lublin, Poland, phone: +4881 5376102, fax: +4881 

5333669, e-mail: przem@golem.umcs.lublin.pl 
Scientific Computing Program, University of Southern Mississippi, Hattiesburg, MS 

39406-5106, USA, phone: 601-266-6639, fax: 601-266-6452, e-mail: 
marcin@orca.st.usm.edu 

Abstract. We describe the use of BLAS kernels as a key to efficient 
vectorization of m-th order linear recurrence systems with constant co- 
efficients. Applying the Hockney-Jesshope model of vector computation, 
we present the performance analysis of the algorithm which considers 
also the influence of memory bank conflicts. The theoretical analysis is 
supported by experimental data collected on two Cray vector computers. 
Keywords, m-th order linear recurrence systems, BLAS, LAPACK, vec- 
torization, memory bank conflicts, speedup. 
Conference topics. Numerical methods, Parallel and distributed algo- 

rithms. 

1    Introduction 

The critical part of several numerical algorithms reduces to the solution of a 
linear recurrence system of order m for n equations with constant coefficients 

[13, 16]: 
(0 forft<0 

Xk=\h+t^k-^oTl<k<n. (1) 

The efficient solution to this problem is of particular interest in case of vector 
computers as optimizing compilers are not able to generate machine code that 
would fullv utilize the underlying hardware. As our experiments show, even 
Cray's Fortran compiler, usually recognized as the best vectorizing compiler on 
the market, is in this category (see Section 5). In addition, numerical libraries 
(like LAPACK [1], implemented in the Cray's scilib library) instead of problem 

(1) provide a solution to a more general problem: 

{0 for k < 0 
fc-i (2) 

fk+    £    akjXj for 1 < ft < n. 
j-k-m 

Solution to this problem requires more memory and, in the case of LAPACK 
routines, the computational efficiency is obtained primarily by solving it for 
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multiple right hand sides. In case when the original problem (1) is solved a 
simple application of a LAPACK routine does not result in achieving maximum 
performance (see Section 5). The aim of our work is thus to find the performance- 
optimal solver for the original problem (1). Based on our earlier work [9. 10 
11. 14] we have decided to approach the problem by augmenting the divide- 
and-conquer approach proposed there by application of BLAS kernels. We then 
proceeded to establish the optimal parameters to obtain maximum efficiency and 
to eliminate memory bank conflicts. 

We proceed as follows. In the next section we introduce the algorithmic frame- 
work used in our work. We follow with the description of implementation details 
of the proposed algorithm. We then sketch the theoretical analysis of computa- 
tional complexity. We complete our report by describing and analyzing results 
of our experiments performed on Grays C-90 and SV-1. 

2    Algorithm description 

In our considerations we will assume that n » m, i.e. the order of a recurrence 
system is rather small. The idea of the algorithm is to rewrite (1) as the following 
block system of linear equations ö 

U L 

V U L) 

\   /xA        /fl\ 
x2 f2 

\XPJ   \ 
(3) 

where for q = n/p > m we have 

/    1 

L = 

—a„ 

\ —Clr. -ail/ 

I 
U = 

\o 

-ax \ 

—a 
es ><?x<? (4) 

Note that L is a Toeplitz matrix, what means that entries are constant alon^ 
each diagonal. The system (3) corresponds to the following recurrence system ° 

x1=L-% 
: L  lfj - L-iUxj-i for j = 2.... .p. 

To solve this system let us consider the structure of the matrix 

m     m 

k=l l=k 

(5) 

(6) 
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where ek denotes fc-th unit vector of X9. Obviously, equation (5) reduces to the 

form 

in 

Xj = L~% + Yl «jYfc for j = 2,...,p 
fc=i 

where Lyk = ek and a) = Y.T=kam^k-iX{]-Y)q^m^i- Note that to compute 
vectors yk we need to find only the solution of the system Lyi = ei, namely 
yl — (l,y2, yq)

T- We can now form vectors yfc as follows 

yfc = (0,...,0,l,3/2,--.,l/,-fc+i)T- (8) 

fc-i 

This yields that the number of subsystems we must solve does not depend on 
the order of the system. To find vectors z;- and yi we must solve p +1 recurrence 
systems of order m for q equations. 

3    Implementation details 

Now let us consider the possible implementations of the proposed algorithm. We 
can omit the assumption that n = pq because after we choose integers p and q 
we can apply (7) to find xu... ,xpq and (1) to find xpq+1, ...,xn. First we have 
to find vectors Zj and yi. We can do it efficiently by using a sequence of JVXPY 
operations y <- y 4-QX. Note that -AXPY consists of 2N floating point operations 
and it can be computed in a simple loop of length N. So let us define matrices 

Z = (zll...,zp,y1)1 F=~(fi,...!fP,e1)GR«x<p+1> 

and denote Zk,* as a fc-th row of Z. Now we can find the solution of the system 
LZ = F using the formula 

(0 for k < 0 

Zh'* = \ Fki, + £ ajZ*-j,. for 1 < fe < ?■ (9) 

Initially columns of the matrix F can be stored in a one-dimensional array x, so 
Z can be computed using the following code 

do k=l,q 
do j=l,min(m,k-l) 

call saxpy(p+l,a(j),x(k-j),q,x(k),q) 
end do 

end do 

It can be easily calculated that the number of JVXPY operations is equal to 
m(g _ m±l) and thus the total number of operations needed to find vectors z;- 

and y can be expressed as 

C1=2(p + l)m(9-^). (10) 
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As soon as the matrix Z is calculated its last column ought to be copied to a 
new array y such that y(-m:0)=0.0. 

call scopy(q,x(p*q+l),l,y(l),i) 
do j=-m,0 

y(j)=o.o 
end do 

Now vectors Xj, j = 2,... ,p, can be computed. For each vector we should 
compute coefficients af using the following code 

do k=l,m 

call saxpy(m+l-k,a(m+l-k),x(q*(j-l)-m+k),l,alpha, 1) 
end do 

and then find Xj using a sequence of _AXPY calls 

do k=l,m 

call saxpy(q,alpha(k),y(2-k),l,x(q*(j-l)+l)>l) 
end do 

The total number of floating-point operations in this part of the algorithm is 

C2 = 2(p-1) I J2(m + l-k)+mq) . (n) 

Now let us consider possible modifications of the proposed algorithm. First, 
observe that the last step of the algorithm can be implemented in terms of level 
2 BLAS using one call of _GEMV. More precisely, when we form 

w = (yi,--.,ym)eK«xm (12) 

then instead of the last loop above, we can use 

call sgemv('N\q,m,l,w,ldv, alpha, l,l,x(q*(j-l)+l),l) 

Note that the use of _GEMV requires additional space for qm entries of W. 
Let us now observe that for finding Z we can consider the use of the routine 

-TBTRS from the LAPACK library [1] which solves a svstem AX = B where A 
is a triangular banded matrix. Thus instead of the sequence of _AXPY calls based 
on (9) we would have the following LAPACK call 

call stbtrs(>LVN\'U>,q,m,p+l,ab,ldab,x,q,info) 

We have to recall that this routine does not take into account the Toeplitz 
structure of the matrix L and requires additional space for m + 1 diagonals of 
L, i.e. for (m+ l)q additional values. 

In the table below we summarize algorithms that can be used to solve the 
original problem (1): 
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Algorithm 
Scalar Scalar code based on a direct implementation of (1) 

Algorithm 1A 
Algorithm IB 

Algorithm 2 

Algorithm 3 

Description 

The main algorithm based on calls to the -AXPY routine 
As Algorithm 1A but the last step is calculated by one 
call of the level 2 BLAS routine _GEMV  
The system LZ = F  solved by a call to the LAPACK routine 
JTBTRS and the last step calculated by the call to _GEMV 

LAPACK _TBTRS routine called for one RHS 

4    Performance analysis 

To study the performance of the algorithm let us consider the theoretical model 
of vector computations introduced by Hockney and Jesshope [6, 2]. 

The performance rN of a loop of length N can be expressed in terms of 
two parameters rx and n1/2 which are specific for a kind of loop and vector 
computer. The first parameter represents the performance in Mflops for a very 
long loop, while the second the loop length for which a performance of about 

roc/2 is achieved. Then 

Mflops. (13) rx n1/2/N + 1 

This yields that the execution time of _AXPY is 

9/V         2   10-^ 
TAXPY(N) = -z— = — (m/2 + N) seconds. (14) 

1U   / jv / oo 

From (10), (11) and (14) we get that the total execution time of our algorithm 
can be estimated as follows 

T(p; q) = '— m (2pq + 2n1/2p + n1/2q - 2.5nl/2 - 0.5n1/2rn - m - l) , 
roo 

where n = pq. It can be easily verified that T(p, q) reaches its minimum at the 

P°int ;       ;  ,1rt (p,q) = (yfi/2,\/2n). (15) 

Thus the optimal choice of p and q depends only on the problem size n and 
because these numbers should be integers we choose q = [y/2~n\ and p = [n/q\. 
Here, the last n - pq elements of the solution x can be computed by a scalar 

algorithm based on (1). 
Sometimes these chosen parameters have to be adjusted to avoid memory 

bank conflicts. Vector computers usually store data so that contiguous words 
(e.g. elements of arrays) are in separate memory banks. Usually the number of 
banks in the memory system is a power of two. Memory bank conflicts may 
occur when an arrav's stride (the difference in the index between two successive 
iterations) is a multiple of a power of two. Then the memory cannot be efficiently 
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used because CPU must wait until a former memory request to the same bank 
is completed. Thus to avoid memory bank conflicts the parameter q should be 
chosen as follows 

1 = [\/2n 
1  if [v^n]  even, 

otherwise. (16) 

Finally let us calculate the number of floating point operations performed by 
the algorithm. Adding C\ and C2 defined by (10) and (11), and the number of 
flops required for finding the last n - pq entries of the solution we get 

cn,m (p, <?) = Ci + C2 + m(n 
■m+l 5 

. pq ) _ 3mp(? _    m(m + i) + mn_ (17; 

5    Results of experiments 

The method has been implemented in FORTRAN and tested on a single proces- 
sor of the Cray C-90 and SV-1 vector computers. We have used the optimized 
versions of BLAS and LAPACK available in the scilib library. Each algorithm 
was tested varying the problem sizes n and m and values of parameter q CPU 
time was measured using the second function and the presented results represent 
the best values from multiple runs. 

Figures 1 and 2 illustrate the dependency between the performance of Algo- 
rithm 1A and the value of parameter q for m = 1 and n = 64000 and n = 1024000 
respectively. Results for both Cray's are reported in Mflops. 

Algorithm 1A for n=64000, m =1 

-Cray SV-1 Cray C-90 

Fig. 1. Performance of Algorithm 1A for various values of ( 
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Algorithm 1A for n = 1024000, m =1 

piramaur q 

-Cray SV-1  -   -   -   •   Cray C-90 

Fig. 2. Performance of Algorithm 1A for various values of q 

It was shown above (see Section 4) that the optimal value of the parameter q 
depends only on the size of the problem n. Our experiments support this claim 
and show that this result holds for both machines (the optimal value is the 
same on both Crays) even though they have different characteristic parameters 
roc and n1/2. The experimental optimal value of q has been found to be in 
close proximity of the theoretically predicted one (excluding values which are 
powers of 2 for which the memory bank conflicts affect performance). Thus, in 
computational practice, the theoretically predicted optimal value of q can be 
used to implement the code. 

Figures 3 and 4 depict the relationship between the performance (in Mflops) 
and the size of the problem n and the order of the recurrence m (for these 
experiments the theoretically predicted optimal value of q was used). In Figure 
3 we report the results for n = 64000 and m = 1,2,..., 6 for both Crays and all 
five algorithms. In Figure 4 we present similar results for n = 1024000. 

First, let us observe that the qualitative behavior of the five algorithms is 
the same for both machines and is independent of the problem size n. 

For TO = 1 the Algorithm 1A is the most efficient. For Algorithms 2 and 
3 a performance dip manifests itself for m = 2. Starting from m = 2 further 
increase in m results in the performance increase. Interestingly, for all values 
of m, Algorithms 2 and 3 which utilize LAPACK library routine .TBTRS are 
substantially less efficient than Algorithms 1A and IB and only barely more 
efficient than the Scalar code. 

As m increases, Algorithm IB outperforms Algorithm 1A. This can be ex- 
plained as an effect of the application level 2 BLAS matrix-vector multiplication 

_GEMV. 
Finally, note that the performance of the two Crays depends on the problem 
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3.0E+02 

2.5E+02 
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5.0E+01 

0.0E+00 

Cray SV-1, n=64000 Cray C-90, n=64000 

^ 

1 

—0—Scalar 
—□—Algorithm 1A 
—&—Algorithm 3 
—X— Algorithm 1B 

-Algorithm 2 

Fig. 3. Performance of the algorithms for various m 

Cray SV-1, n=1024000 Cray C-90, n=1024000 

^3,0E+02 £ 

2.0E+02 

1,0E+02 

0.0E+00 

-Scalar 
—Q—Algorithm 1A 
—&—Algorithm 3 
—X—Algorithm 1B 
—$—Algorithm 2 

ir-iiK »■—y-~-ff—ft^A 

Fig. 4. Performance of the algorithms for various m 

size (n). For small n Cray C-90 matches the performance of the newer SV-1 
(for m = 6 it even outperforms it slightly). The situation changes radically for 
n - 1024Ä". Here, the Cray SV-1 is almost twice as fast as the Cray C-90. 

We believe that from the point of view of the user one of the more interest- 
ing parameters is the speedup of the "fancy" algorithms over the basic Scalar 
approach. We illustrate this aspect of the problem in Figures 5 and 6. Here we 
report the speedup as the function of the problem size n for both machines for 
m - 1 and TO = 4 respectively. As previously, the optimal theoretical value a 
was used for algorithms 1A, IB and 2. 
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Cray SV-1 for m=1 

6.40E+04 1,06E+06 2.06E+06 

Cray C-90 for m=1 

Q-  15 
en 

10 

5 

0 

«*=*= 

Algorithm 1A 
Algorithm 3 

 X_Algorithm 1B 
 $ Algorithm 2 

6.40E+04 1,06E+06 2.06E+06 

Fig. 5. Speedup of the algorithms for various n 

Cray SV-1 for m=4 
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Algorithm 1A 
_ orithm 3 

 X — Algorithm 1B 
 £ Algorithm 2 

6.40E+04 1,06E+06 2.06E+06 

25 

20 

§■  15 
ai 

8. io 
w 

5 

Cray C-90 for m=4 

&==*= 
6.40E+04 

—Q—Algorithm 1A 
 £—Algorithm 3 
 X_ Algorithm 1B 
 £—Algorithm 2 

1.06E+06 2.06E+06 

Fig. 6. Speedup of the algorithms for various n 

As previously, the results are qualitatively similar for both machines. In all 
cases (independently of n) Algorithms 2 and 3 do not result in a significant 
speedup over the Scalar approach. Interestingly, while as n increases (for a fixed 
m, speedup of Algorithms 1A and IB over Scalar increases, as m increases (for 
a given m) the speedup decreases. This indicates that the code generated by 
the compiler from the Scalar algorithm for increasing m results in improved 

efficiency. 
Finally let us summarize the results of experiments 

- Algorithms 1A and IB achieve the best performance for values of the param- 
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eter q close to the theoretical optimal value. The optimal choice of q depends 
only on the problem size (and memory bank conflicts). 

- The use of Algorithm IB instead of 1A is profitable when m > 2. This is 
caused by the use of the level 2 BLAS routine .GEMV. However, use of _GEMV 
requires additional space for qm entries of W. 

- The speedup of Algorithms 1A and IB over the Scalar code increases when 
the problem size n increases and decreases when the order of the system m 
increases. 

- The MFlop performance increases when the problem size n increases as well 
as when the order of the system m increases. 

- When q = a2k (for integer a. k), performance rapidly decreases. Increase in 
the value of * results in further substantial performance degradation. This 
is the effect of memory bank conflicts. 

- The performance of Algorithm 2 and 3 is rather poor and the algorithms 
require additional space. This is a result of the fact that the .TBTRS routine 
from LAPACK solves more general problem (2) and does not utilize the 
special Toeplitz structure of the matrix L. 

- For first order linear recurrences (m = 1) Algorithm 1A is approximately 
six times faster then the Algorithms 2 and 3 which use .TBTRS routine 
from LAPACK and for large n achieves speedup up to 60 against the Scalar 
algorithm based on (1). 
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Abstract. This paper analyzes the parallel performance of a numerical solver for 
discrete-time periodic Riccati equations. The approach performs a sequence of or- 
thogonal reordering transformations of the monodromy matrices associated with 
the equations, and then employs the so-called matrix disk function to solve a series 
of discrete-time algebraic Riccati equations. The experimental results report the 
performance of the parallel algorithms on a cluster of Intel Pentium-II processors. 

1    Introduction 

Consider the discrete-time linear systems 

xk+i = Akxk+Bkuk,    x0 = i, ,-jx 

Vk — CkXk, 

k = 0,1,..., where Ak € IT*", Bk € Mnxm, and Ck e B,rxn. Discrete-time 
periodic systems satisfy Ak+P = Ak, Bk+P = Bk, Ck+V = Ck, for some integer 
period p. The analysis and design of these systems has received considerable 
attention in recent years (see, e.g.,   [7,9,19,20,23]). 

An important application in control theory is the linear-quadratic opti- 
mal control problem. The solution of this problem is intrinsically related to 
the unique periodic symmetric positive semidefinite solution, Xk = Xk+P £ 
JRnxri, of the discrete-time periodic Riccati equation (DPRE) 

0 = ClQkCk -Xk + AjXk+1 Ak (2) 

- AT
kXk+lBk{Rk + BjXk+1Bkr

lBjXk+iAk. 

Here, Qk = Qk+P £ Hrxr is a positive semidefinite matrix of weights for the 
outputs, and Rk = Rk+P £ Rmxm is a positive definite matrix of weights for 
the inputs (see [7] for details). In case p = 1, the DPRE in (2) reduces to the 

* Supported by the Consellerfa de Cultura, Education y Ciencia de la Generalidad 
Valenciana GV99-59-1-14 and the Fundaciö Caixa-Castellö Bancaixa. 
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well-known discrete-time algebraic Riccati equation (DARE) [15]. Traditional 
DARE solvers are described, e.g., in [14-16,18]. 

Consider now the periodic symplectic matrix pencil, associated with the 
DPRE (2), 

Lk - XMk = Ak 0 
—Ck QkCk In 

In BkR-'Bj 

0 Al 
= L 'k+p ■ AM, fc+pi 

(3) 
where In denotes the identity matrix of order n. In case Ak is invertible, it 
is possible to construct the periodic monodromy matrix [9], 

nk = Mk+p-iLk+P-i ■ ■ ■ M^Lk,    nk = nk+p, (4) 

and the solution of the DPRE can then be obtained by a spectral division 
techmque [10,13,17]. Unfortunately, this is not a practical approach as a con- 
siderable loss of accuracy can be expected in case any of the inverses in (4) 
is ill-conditioned [11]. 

The Schur vectors method [2,12,15] was successfully extended in [9 11] 
for solving DPRE, without explicitly forming the corresponding monodromy 
matrices. In this method, a periodic Schur form of the monodromy matrix 
is computed with a special ordering of the eigenvalues. However, the parallel 
implementation of this type of algorithms (e.g., the QR/QZ algorithms) ren- 
ders a poor scalability and an efficiency far from those of traditional matrix 
factorizations such as, e.g., LU decomposition [8]. 

In this paper we follow a different approach, described in [5], for the 
solution of DPRE. The algorithm employs a reliable swapping of the matrix 
products in (4) to transform the DPRE to p DAREs. We then employ the 
matrix disk function to obtain the corresponding solutions [4]. 

In sections 2 and 3 we briefly review, respectively, the "swapping" method 
for solving DPRE and the matrix disk function for solving DARE. In section 4 
we describe the parallel implementations of the algorithms. Our medium- 
grain parallel approach requires efficient parallel implementations of two nu- 
merical kernels provided, e.g., in ScaLAPACK [8]. In section 5 we report the 
performance of the parallel implementations on a cluster of Intel Pentium-II 
processors, connected via a Myrinet switch crossbar network. Our concluding 
remarks are presented in section 6. 

2    The Swapping Method for the DPRE 

In [5] an algorithm is described for solving of DPRE without explicitly form- 
ing the monodromy matrices. The approach relies on the use of the following 
lemma. 

Lemma. Consider the matrix pair (Z,Y), Z,Y 6 Knxn. IfY is invertible 
and 

Qn Qi2 
Q2\ Q22 

Y~ 
-z = 

'R 
0 (5) 
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is a QR factorization of [YT,-ZT]T, then Q22Q21   =  ZY~l. 
This lemma is applied in [5] to reorder the matrix products in (4). The 

goal is to obtain a matrix product of the form 

nk = M^Lk, (6) 

without computing the inverses. The solutions of the DPRE are then com- 
puted by solving the corresponding DAREs. 

Specifically, the method proceeds as follows. Consider p - 3, the mon- 

odromy matrix 
il0 = M21L2Mi1LlMö1L0, (7) 

and apply the swapping to matrix pairs 

(L2,Afi),(Li,M0),    and    {L0,M2). (8) 

(Notice that the same matrix pairs also arise in i7i and iT2.) Then, we obtain 

(41,,M{1))>(4
1UJ1)).    and    (41),M<1)) (9) 

which satisfy 
L2Mrl = (M[1]riL2

l), 

LlM^ = (Ml1')-1^1-     ««I (10) 

L0Aff1 = (M^1))-141). 
Therefore 

n0 = M^MJVM
1
 W,)-141)£o. <n> 

and similar reorderings are obtained for 77i and 772. By repeating the swap- 
ping procedure with the matrix pair {L^], M^]) we obtain (L2

2\ M^2)) such 

that L^HM^)-
1
 = (M^)ylL{2) and the required reordering for iT0 is ob- 

tained _. 
iTo = (M^Mll)M-2y   (LWLo) = Mo-^o. (12) 

Similar reorderings are obtained for 77i and 772- 
The algorithm can be stated as follows [5]. 
for k = 0,1,. ..,p- 1 

Set Lk = Lk,  M(k+i) mod p = Mk 

end 
for t = l,2,...,p-l 

for fc = 0, l,...,p- 1 
(L(k+t) mod p, M/b) <- swap(L(fc+t) mod p, Mfc) 

ifc *~ ■£/(fc+t) mod pLk 

M(k+t+l) mod p <~ MkM(k+t+l) mod p 

end 
end 

The matrix products Uk can still be formed in a formal way and reveal the 
monodromy relation if (some of) the Ak's are singular; see [6,22] for details. 
The computational cost of the reordering algorithm is 34p(p - l)n3/3 flops 
(floating-point arithemtic operations) and 0(pn2) for workspace. 
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3    The Matrix Disk Function for the DARE 

In [13], Malyshev introduced an "inverse free iteration" for computing the 
right deflating subspace of a matrix pair. The method was refined and made 
truly inverse free in [3], and was further improved in [21]. 

Given a regular matrix pair {A0,B0) = (A,B), with ,4, B € Hnxn, the 
inverse-free iteration generates the sequence of matrix pairs 

Ak+i = Q2iAk, 
Bk+i = Q-nBk, 

with 

Qn Qi2 

Q21 Q22 

' Bk ■ 

-Ak_ = Rk 
0 

(13) 

(14) 

a QR factorization of [Bj, -Ajf. 

In case this iterative scheme is applied with the initial 2n x 2n matrix 
pair (Ao,B0) = (Lk,Mk), the solution X* of the associated DARE can be 
obtained from the converged matrix L^ = lim^M Ak as follows. Let 

Lea   — 
L-2\ L-22 [15) 

be an n x n partition of L^. Then, X* is the solution of the full-rank linear 
least-squares problem 

L\2 
L22 

X* = 
1*21 (16) 

see [5] for details. 

The cost of solving a DARE using the inverse free iteration for the matrix 
disk function is 13n3 flops per iteration of (13)-(14), 13n3/3 for the LLS 
problem in (16), and 0(n2) for workspace. 

4    Parallel Algorithms 

Two approaches are possible for parallelizing the previous DPRE solver on a 
parallel distributed-memory system. First, in case p is large compared to the 
number of nodes, a coarse-grain strategy can be employed. In this case each 
swapping of a pair of matrices (i.e., each QR factorization) is performed on a 
different node of the system, and each DARE is finally solved on a different 
node. The communications can be arranged so that a ring topology is suf- 
ficient (see [5] for details). This algorithm only requires tuned send/receive 
communication routines, an efficient numerical kernel for the QR factoriza- 
tion, like that, e.g., in [1], and a serial implementation of the inverse free 
iteration for the matrix disk function. 
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Nevertheless, in case the number of nodes, np, is larger than the period 
of the system (as can be expected in large multicomputers), in a coarse- 
grain algorithm part of the nodes of the system would be idle. Thus, in such 
case it is more efficient to perform each swapping in parallel. This medium- 
grain approach benefits from the existence of parallel linear algebra libraries, 
as ScaLAPACK [8], which implements, among others, a parallel kernel for 
the QR factorization. By sometimes performing the swapping algorithm on 
slightly larger matrices, of the form [AT, 0^xA., BT]T', we avoid the redis- 
tribution of the matrices that would be necessary to combine different pairs 
of matrices. After the swapping stage, the DARE are solved using a parallel 
ScaLAPACK-like implementation of the matrix disk function. 

5    Experimental Results 

All the experiments were performed on a cluster of Intel Pentium-II processors 
connected via a Myrinet switch, using IEEE double precision floating-point 
arithmetic (e « 2.2 x 1(T16). A BLAS implementation specially tuned for 
this architecture was employed. Performance experiments with routine DGEMM 
achieved 200 Mflops (millions of flops per second) on one processor. 

Our first experiment reports the execution time the parallel DPRE solver, 
using np=4, 9, and 16 nodes. Specifically, in Figure l(a)-(c) we show the ex- 
ecution time of the parallel implementation of the swapping method (routine 
PDGGSWP) for DPRE with periods p=2, 4, and 10. In Figure 1(d), we report 
the execution time of the DARE solver based on the inverse free iteration for 
the matrix disk function (routine PDGGDSK), required in the final stage of the 
algorithm. 

Figure 2 analyzes the scalability of the parallel routines. For this purpose, 
we report the Mflops rate per node for PDGGSWP and PDGGDSK with n/^ 
fixed at 450 and 750, respectively. The constant performance of the Mflops 
rate shows the high scalability of both algorithms. 

6    Concluding Remarks 

We have investigated the performance of a parallel numerical solver for discrete- 
time periodic Riccati equations. The algorithm performs a sequence of or- 
thogonal reordering transformations of the monodromy matrices associated 
with the equations, and transforms the problem to a series of discrete-time 
algebraic Riccati equations, which are then solved by using the matrix disk 
function. Experimental results on a cluster of Intel Pentium-II processors 
report a high performance and scalability of our parallel algorithms. 
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Abstract The history of the development of parallel computation 
methodology is closely linked with the development of techniques for the 
computer processing of images. In the early 60s, research in high energy 
particle physics began to generate extremely large numbers of particle track 
photographs to be analysed and attempts were made to devise automatic or 
semiautomatic systems to carry out the analysis. This stimulated the search for 
ways to build computers of increasingly higher performance since the size of 
the image data sets exceeded any which had previously been processed. At the 
same time, interest was growing in exploring the structure of the human visual 
system and it was felt intuitively that image processing computation should bear 
at least some resemblance to its human analogue. 

This review paper traces the simultaneous progress in these two related lines of 
research and discusses how their interaction influenced the design of many 
parallel processing computers and their associated algorithms. 

1.   Thirty years ago 

Image Processing was originally regarded as a subset of the wider field of Pattern 
Recognition which dealt with the analysis and processing of patterns in sound and 
other signal sources such as ECG and EEG as well as images. In all these areas, the 
research was mainly application driven. A three-day meeting in London in 1968, 
organised by the Institution of Electrical Engineers and entitled 'Conference on 
Pattern Recognition', comprised 37 papers. Of these, approximately one third were 
devoted to Optical Character Recognition (OCR) and a quarter to the physiology or 
psychology of human vision; the remainder was distributed more or less equally 
between studies of learning algorithms, speech recognition and general problems in 
pattern recognition. At this early stage, although it was realised that the principal 
application, OCR would eventually demand much higher processing power than was 
currently available, the lack of effective algorithms meant that research was directed 
towards how to recognise images rather than to doing so at economic speeds. 

Even so, what was not realised was how difficult the task would be. There was a 
quite unjustifiable optimism amongst researchers which could probably be excused by 
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the fact that eveiyone could observe in action (and, in fact, owned) a very effective 
image processing system which was portable, low power, high resolution and able to 
work in an unconstramed environment. Colour analysis, stereoscopy, time sequence 
analysis automatic compensation for high or low light conditions, rotation invariance 
2,!Fragme

t
nt ignition, learning capability: the system coped with all these 

difficult aspects. Unfortunately, ,t was considered that a combination of intuition and 
lZ°ZCTr ? f meh°M reuVeal h°W the human Visi0n system was constructed and that this knowledge could then be translated into an appropriate combination of 
hardware and software. This would amount to more than a PhD project but certainly 
should not take as long as ten years to complete. Y 

In this optimistic atmosphere, there were two factors which stimulated an interest in 
faster computation. First, it seemed likely that useful algorithms would soon be 
developed and that computers would then need to be made much more powerful in 
order to achieve acceptable processing rates. Second, the progress being made in 
designing algorithms was poor, at least in part due to the inefficient computing 
services currently available. For example, at University College London in the early 
60s, a large mainframe machine (IBM 360) provided the central computing service 
Programs and even test images were entered via punched cards and then batch 
processed. Typically, a print-out of the results, using overprinted characters to 
represent image intensities, would be obtained on the following day any small 
programming error (such as an unwanted comma) added a further day's delay to the 
program development time. In this virtually non-interactive environment, thinking 
constructively about algorithm design was almost painful. 

Optimistic or not, almost all who were engaged in image processing research agreed 
that faster computers would, sooner or later, need to be developed and that there 
would be an immediate advantage if computing speeds could be improved The 
important question was: how could a speed gain be achieved? 

2. Faster computing 

From the outset, it was clear that there were only three ways to speed up computing 
They were (and still are): B' 

a) More efficient programming; 
b) Use of faster components; 
c) Improved system hardware architecture. 

With large data sets to be processed, it is extremely important to optimise the pieces 
ot code in the so-called inner loops. For example, if the intensity of every pixel in an 
image is to be averaged with its neighbours, then the code performing the averaging 
may be executed a million times in a typical size image. Any wasted operations in 
that section of code will severely affect the overall efficiency of the program It goes 
without saying that experienced programmers would not be expected to make this sort 
ot error. In general, it would be hoped that most of the gains which could be obtained 
by efficient programming would normally already have been made. 
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Speeding up computers by using faster components is a continuous process of 
technological development which is largely under the control of computer 
manufacturers. In the period we are discussing, computing component technology 
moved from thermionic valves, through transistors to integrated circuits, having 
already progressed from mechanical (gear wheels) and electromechanical (relay) 
computation. In the last phase, integrated circuits have also undergone massive 
improvements in level of integration (numbers of components per unit area) and 
semiconductor technology, both of which have produced enormous speed gains. For 
the typical researcher, access to the best available circuit components has usually been 
a matter of cost since all new devices tend to be prohibitively expensive when first 
introduced. 

The third approach is to redesign the computer architecture. The underlying structure 
of all computers was once much the same: there was a store for instructions, a store 
for data and a processor which was controlled by instructions extracted from the 
program store. These acted on data from the data store, producing a result which was 
returned to the data store. There were also units which input and output data and 
programs. A master controller ensured that all these operations were correctly 
sequenced. This extreme oversimplification hides all the ingenuity which went into 
making these basic operations efficient and transparent to the programmer. 

Starting with this fundamentally simple architecture, the challenge was to make 
changes which would improve performance not marginally but substantially, ideally 
by many orders of magnitude. This was the impetus behind the introduction of 
Parallel Processing. 

3. The Concept of Parallel Processing 

Many hands make light work is a well known saying, but then so is Too many cooks 
spoil the broth. The fact is that increasing the size of the work force does not 
necessarily reduce the time (or cost) for completing a task. The introduction of 
additional labour implies a degree of organisation and co-ordination and may also 
require the task to be split up into manageable portions. The overhead for 
organisation can be more than the time saved and the task may not respond well to 
division. How often does one hear the comment: "I don't think you can help me; it 
will be quicker if I do it myself!"? 

The central challenge in the design of parallel computers is to assemble many 
computers (or processors) into a system which will then share the execution of a 
program in such a way that the time between the start and end of the whole process is 
reduced. Ideally, if N computers are used to execute a program then the execution 
time TN should be (1/N)T„ where T, is the time taken by a single computer to execute 
the same program (suitably rewritten for a single computer). In practice, this ideal is 
seldom achieved, the exception being in computers designed for specific algorithms. 
A crude measure of efficiency of a parallel architecture is T,/(NTN), but, as will be 
discussed in more detail later, this measure will depend on the program being 
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executed, both in relation to the task being performed and to the skill of the 
programmer. 

4. Classifying Parallel Architectures 

In general, a parallel computer will consist of an assembly of simple computers 
usually referred to as processing elements (PEs). Each PE may be extremely simple' 
perhaps only capable of processing single bit data, but might alternatively be 
complex, such as a PC. There will usually be memory assigned to each PE and an 
interconnection network, both for transmitting data between PEs and for supplyina 
instructions to the PEs. Some systems operate under the control of one master 
computer whereas others assign partial or even total autonomy to each PE. 

In the past three decades, much has been written about the many different 
architectures of parallel processing computers and many attempts have been made to 
devise a taxonomy for classifying the architectures (e.g., see [9]). The best known 
attempt was by M J Flynn [8] whose classification was based on whether the data 
stream was single or multiple and on whether the instruction stream was single or 
multiple. Of the four possible classes, the one that most aptly fitted a representative 
group of parallel processing computers (several of which were actually constructed) 
was the SIMD class: an array of simple PEs all simultaneously executing the same 
instruction (Single Instruction stream), but each operating on its own part of the data 
(Multiple Data stream). However, despite the fact that the paper describing this 
taxonomy has been quoted in the literature more than has any other on this topic this 
division of parallel processors into four classes is so crude as to be virtually useless 
Many para lei systems either do not fall convincingly into any of the classes or else 
equally well fall into more than one. Furthermore, the first class (Single Instruction 
stream, Single Data stream) refers to serial computing so can hardly be treated as part 
or the taxonomy. K 

It is therefore not unreasonable to ask why researchers persist in attempting to devise 
classification schemes. There are probably two main reasons: 

Divide and conquer Computer scientists (and others) have experienced great 
difficulty m understanding the underlying principles of parallel processing systems 
and it can be a help if the structure of each system is compared with one of several 
archetypes: a form of learning by analogy; 

Establishing design objectives Parallel computer designers need to be clear what 
their strategy will be when designing a new system. It can be a useful design 
discipline to encapsulate a strategy by naming and defining the broad principles 
governing each particular design. 

For the remainder of this review, classification schemes will not be considered, 
especially as there is now little or no agreement as to which scheme should be 
adopted. 
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5.   Parallel Processing Fundamentals 

5.1   Three Level Processing 

It is easy to state in imprecise terms what is required of any parallel processing 
system. It is a system which, by employing more than one processor, completes a 
data processing task faster than could be achieved by a single processor. In order to 
investigate parallel architectures, the following discussion will concentrate on the 
particular problems associated with image processing. Examining the problems in 
detail, certain significant factors begin to emerge: 

Data type Image data usually consist of large regular arrays of square picture 
elements (pixels), each of which represents the local brightness and, possibly, colour 
of the image. Typically, each pixel is assigned a 1-bit integer (black and white so- 
called binary images), an 8-bit integer (grey-level images) or a 24-bit integer (colour 
images). An image of approximately domestic television resolution (512 x 512 
pixels) comprises rather more than one quarter of a million pixels. Very many image 
processing operations involve replacing each pixel by a new pixel whose intensity is a 
function of the intensities in a defined neighbourhood, for example, the 3 x 3 pixel 
region surrounding each pixel. This implies that an image processing operation can 
involve over 2.5 million basic operations (each requiring fetching data from memory, 
computing a sum or product and then storing the result in memory). The need for fast 
processing is self evident. 

Computation type It is clear that the highly repetitive nature of the elements 
of the image processing computation might offer potential for structuring a computer 
architecture so as to take advantage of the repetitiveness. 

Unfortunately, this brief analysis of image processing greatly oversimplifies the 
situation. Conventionally, the complex task of image processing is divided into three 
stages or levels [23]: 

a) Low level processing which is characterised by taking in one or more 
images, processing them and outputting one or more result images. In general, the 
dimensions of the input and output data arrays will be identical; 

b) Intermediate level processing in which the input data will be one or more 
images (input from the low level processing stage) and the output data will be one or 
more dimensionally smaller data sets, such as lists of detected object features and 
global properties of the image (e.g. average intensity, histograms, contrast range). 

c) High level processing which attempts to extract meaning from the 
intermediate level data with a view to describing and analysing the input image. The 
output data might be as small as a single word or sentence. 
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5.2 Processor Arrays 

As was discussed earlier, many low level image processing tasks can be broken down 
into identical short sequences of basic operations, each centred on every pixel in the 
image. An image architecture closely matching the apparent requirements of this 
leve would therefore be an array of very simple processors, each associated with a 
single pixel and each accessing data only from its own local memory or from the 
neighbouring set of pixels. The repetitive nature of the processes to be performed 
would permit broadcasting a sequence of instructions to each simple processor (PE) 
cT^Stmutl0nS ng then CXeCUted simu'fcneously by every PE. This is the classic 
MMD architecture. 

1 Master Controller 1 
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Fig 1 A 4x4 PE array, showing the interconnections between PEs and the bus distributing 
instructions in parallel to each PE s 

Apart from the paths taken by the instructions, all communication paths in the 
array are short (i.e. to nearest neighbours), provided that local memory is associated 
with every PE. One further set of longer paths is needed to input or output data to the 
memory array but these could be routed along the instruction highway Fig 1 
illustrates the main features of a 4 x 4 PE array 

Architectures of this type would appear to be ideal for low level processing but 
present many difficult problems in software design.   Nevertheless, it can be shown 
that arrays of very simple PEs are theoretically capable of performing all image 
processing operations (even including those classified as intermediate or high level 
although these might not be executed very efficiently). 
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One or more loosely coupled conventional processors can efficiently handle high 
level processing. There is no general pattern to the type of operations to be performed 
nor to the various types of input data set and the fastest available high speed 
workstation or even PC would usually offer the best solution. The same computer 
would probably be used to control the other two levels of the composite system. 

The most difficult stage to implement is the intermediate level. By definition, the 
input data impose requirements similar to those for the low level but the need to 
abstract information derived from all parts of the image (or images) implies the need 
for efficient connection paths across the whole of the image array. It would also seem 
likely that an array of simple PEs would not represent an ideal structure for 
computing histograms and other results contained in comparatively small data sets. 
Optimisation is therefore difficult and likely to be specific task dependent. 

A further problem resulting from the splitting of the low and intermediate levels is the 
difficulty in transferring the multiple image data between the two levels. Unless this 
can be achieved using many parallel paths, ideally one for each pixel, then this 
process might prove to be the bottleneck for the whole system. 

Taking these two factors into consideration, there would seem to be good arguments 
for recombining the low and intermediate levels, enhancing the low level structure by 
adding good communication paths between all parts of the array of PEs. 

In summary, the final assembly would comprise just two levels: the low/intermediate 
level would be an array of PEs, one per pixel for the size of image to be processed, 
and the high level/controller would be a conventional workstation or high 
performance PC. 

5.3 Pipeline Processors 

In the discussion in the previous section it was tacitly assumed that the task presented 
was to process a single image. Parallelism was achieved by assigning PEs to each 
part of the image data (i.e. to each pixel). An alternative approach can be adopted 
when many images are to be processed in a sequence. Under these circumstances, 
each processor is given a particular operation to perform and the sequence of images 
is fed through a string of processors, the output for the one providing the input for the 
next. The processors thus constitute a pipeline and the parallelism is now function 
parallelism rather than data parallelism (as was employed in the processor array). 
Sternberg has built and marketed several pipeline processors (named Cytocomputers) 
and developed complex software to program them [22]. 

Processed 
Image 

Function 1 Function 2 Function 3 Function 4 
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Fig. 2. A short pipeline processor with 4 PEs and a master controller 

In passing, it is interesting to note that this type of computer might also be classified 
as MMD in that each PE executes a single instruction on multiple data, although in 
this case the data is multiple in time rather than position. In that the Flynn system of 
classification appears not to distinguish between these two very different 
architectures, it would seem to be of little practical use. 

Because the operations each PE performs on the image as it passes through it can be 
quite complex, a pipeline PE will usually be much more powerful than those utilised 
in processor arrays. A further consideration is that cost and program structure 
combine to make it unprofitable to construct very long pipelines; instead, it is more 
efficient to cycle each stream of images several times through the pipeline 
reprogramming the PEs to perform new operations after each pass. Whether or not 
this is done, there is always the disadvantage that the so-called latency of the pipeline 
the time delay between an image entering the first PE in the chain and the time it 

leaves the last PE) may be inconveniently long. For example, although a 100 PE 
pipeline might output fully processed images at a rate of 10 per second, the latency in 
the chain would be 10 seconds, thus ruling out such a system for real-time processing 
as might be required in a 'visually' controlled machine. 

Other disadvantages are the difficulty in feeding forward partially processed images 
(to be used in combination later in the chain) and the virtual impossibility of handling 
feedback (when the parameters of the early stages of processing have to be adapted to 
the results of later stages). 

5.4 MIMD Arrays 

A third approach to parallel image processing makes use of a relatively small set of 
loosely coupled, powerful PEs, each capable of independent operation. A typical 
number would be 64 or less and the PE might be a microprocessor or even a PC In 
principle, the image processing task is shared between all the PEs which then 
communicate over a high speed bus or some more complicated network Each PE 
will have its own program store and substantial local memory whereas the system as a 
whole will usually be arranged so that one PE acts as a master controller and a major 
block of memory can be accessed by all the PEs. The classification Multiple 
Instruction stream, Multiple Data stream is clearly applicable since each PE executes 
its own program on its own part of the data. 

Data Bus 
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Fig. 3. Simple MIMD system with three PEs (each with local memory) and a master 
controller, together with a common memory block 

MIMD systems have not made much impact on image processing. Just as employing 
more staff will not necessarily get a job done more quickly, so it has been found that 

pF i 7 more PEs to an MIMD system does not always result in faster processing 
Indeed, the additional overhead resulting both from subdividing the task and 

from communicating between the PEs can even result in a reduction of performance 
as more PEs are incorporated. The most serious objection to MIMD systems is that 
they are very difficult to program. Compilers which will efficiently segment the 
processing task into blocks, "^ --" — '-"- DT^ idle for much of the time, rarely 
exist and,  in any case,  :      Instruction Bus :y over a  range  of different 
applications. It is therefore lert to the programmer to decide how to employ the 
parallelism and this will imply that the programmer must know much more about the 
structure of the hardware system than is normal for software designers. 

5.5 Special purpose devices 

Faced with apparently insuperable difficulties in producing fast, efficient, general 
purpose image processing computers, some designers have tackled the more 
achievable challenge to design special purpose circuits which perform a very limited 
range of operations. For example, in some applications, an image transformed so that 
only the edges of objects are displayed (as white lines on a black background) can be 
useful. Another application needs to isolate only those parts of an image which are 
changing, perhaps because an object in the scene is moving. 

Some of these devices combine a retina-like array of optical detectors with a matching 
array of hard-wired logic elements; other use a sequence of hard-wired processing 
units in a pipeline configuration. In today's jargon, systems such as these could be 
called smart cameras but their smartness is strictly limited and, somehow, 
disappointing. 

5.6 Summary 

There have been many approaches to parallelism in computers designed principally 
for image processing. The precise form of parallel architecture chosen is likely to 
depend on the range of tasks to be tackled. Thus, systems to be used for real-time 
control based on television cameras will almost certainly not be applicable to batch 
processing of large numbers of images collected by astronomers.  Again, devices for 
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sna°rnanaiesis°n ^^ ^ "° P'a°e '" * pathoIogy Iab°ratory dedicated to cervical 

Parallel processing systems cannot be neatly categorised and it is doubtful whether 
there would be any value in doing so at this stage in their development. For those of 
us who have spent much of our working lives studying and designing such systems it 
is discouraging to have to admit that the need for parallel systems in image processing 
has fallen to a low priority. The current obstacle to progress is the lack of effective 
algorithms; workstations and the latest generations of PC are usually quite fast 
enough for anything that needs to be done. 

6.   Historical Background 

6.1   Pioneer research 

Blindness is a terrible affliction. Most of the human environment is designed or has 
been adapted on the assumption that we can see and the vast majority of tasks 
performed by humans rely on human vision to provide the necessary feedback to 
control performance. Without the gift of vision, humans are greatly restricted in what 
they can do. 

In the same way, the development of sophisticated automation, especially in the 
manufacturing industry, has been retarded by the lack of competent computer vision 
systems This is particularly serious with respect to inspection of manufactured parts 
and similar problems occur in medicine in the areas of mass screening; the subject of 
optical character recognition has already been mentioned in this review. Pure science 
would also benefit if it were possible to automate the analysis of photographic images 
produced in many research areas, high energy particle physics and astronomy being 
the earliest of these to generate this requirement. 

Tnfnin?deLqUate Performance of even the fastest available computers in the early 
1960s (when the demand for computer vision was beginning to become apparent) 
stimulated computer scientists to turn their attention to the research that was then in 
progress investigating the mechanisms underlying biological vision. Two seminal 
papers in this area were the study of frog vision by Lettvin et al [14] and a slightly 
later paper by Hubel and Wiesel on cat vision [13]. Herscher and Kelley embodied 
the ideas behind the first paper in a hardware demonstration [12]. 

In the studies of both the frog and the cat, the anatomy of the visual system was seen 
to embody an array of photodetectors (rods and/or cones) forming the retina with the 
electrical outputs of the photodetectors being cross-connected effecting both 
summation and lateral inhibition (i.e., a strong output from one photodetector reduces 
the strength of the output from its neighbours).  The modified outputs are fed via a 
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bundle of nerve fibres (the optic nerve) through to the visual cortex of the brain where 
layer upon layer of densely interconnected neurons carry out parallel logic operations 
on the retinal outputs. In the case of the frog, only a very small number of image 
properties can be extracted from the optical data, such as detection of an object 
moving into the field of view. However, the cat's visual system is very similar to the 
human's and is therefore capable of greatly sophisticated scene analysis. In all these 
studies, the anatomical investigation was supplemented by physiological 
measurements and much was learnt about how the systems effected their processing. 

At approximately the same time as this work was started, Unger published the first of 
his two papers [24],[25] proposing a processor array, although he did not build an 
array himself; in fact, these papers seem to be his last contact with the subject of 
computer architecture. His papers described a theoretical, square array of simple 
logic elements, each of which could receive data from or send data to any of its four 
neighbours. He demonstrated that his array could execute simple but useful functions 
on arrays of data of the same dimensions as the logic array but he did not suggest how 
these logic elements could be implemented in hardware. Fortunately, the Unger 
papers served to inspire others who then did construct hardware based on the ideas he 
had expressed. Another pioneer was Golay [10, 11] whose processor proposals, 
although conceived as a serial device, were turned into hardware by Preston [16] who 
was well aware that a more parallel version could have been constructed. 

Computers whose designs were based loosely on Unger's ideas were, in order of 
construction, Solomon [19], ILLIAC III [17], ILLIAC IV [1],[21] and DAP [7]. It is 
not clear whether Solomon was actually constructed and made to operate but ILLIAC 
III caught fire before it could be completed and only 'worked' in simulation. ILLIAC 
IV was only partially completed but sufficient was built to enable it to carry out many 
large-scale computations. DAP started being developed in 1973, was prototyped in 
1976 and put into commercial production in 1980. The last machines in this sequence 
were MPP [2] which first appeared in 1983 and the Connection Machine [13] which 
later evolved into the commercial CM series of massively parallel processor systems. 

Parallel processing research in the Image Processing Group in the Department of 
Physics at University College London (UCL) was initially influenced by the 
biological papers listed above. The research into parallel processing followed some 
seven years of development of semi-automatic microscopes and other image analysis 
equipment (1958-1965), constructed for the three High Energy Particle Physics 
groups in the same department. Unger's paper was not seen by the UCL group until 
many years later and it was surprising to see how the two disconnected lines of 
research had by then converged. At this time, another field of research was also 
coming into being: Neural Networks. The pioneer work here was carried out by 
Rosenblatt [20] who devised the Perceptron. This circuit loosely simulated a neuron 
and introduced the idea of constructing circuits which could be trained to make 
decisions by adjusting the values of certain circuit elements (usually variable 
resistors) in response to a set of training patterns. The strengths of selected pattern 
features were translated into voltages which were then summed through the variable 
resistors (one for each feature). The resulting summed voltage was then compared 
with a threshold voltage and the pattern classified as class A (sum at or above the 
threshold) or class B (sum below the threshold).  If necessary, the automatic trainer 
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then adjusted the variable resistors appropriately to correct the decision and a new 
pattern was presented. It could be shown that the process would converge so that 
ultimately all the circuit's decisions were correct for the training set and would 
generally be correct for similar but previously unseen patterns. This work was also 
influential on the UCL programme. 

6.2   Research at UCL 

UCPR1 

A research grant application written in 1965 to request support for the UCL research 
programme is of interest. It could be submitted even today with very little 
modification since it addresses problems which are relevant to the design of parallel 
processing systems and are still unsolved: 

'One of the main limitations on the design of neuron-like networks 
has been the prohibitive cost of constructing circuits which involve 
very large numbers of circuit elements together with a high degree 
of interconnection between the elements. If these limitations were 
to be removed by exploiting some of the relatively new techniques 
for the production of microminiature circuits, then it might prove 
possible to develop networks which would embody some of the 
considerable analytical facilities of neural nets. In addition the 
increased component density would permit a measure of 
redundancy, and local failure would not impair efficiency of the net 
This, in its turn, would allow the use of circuit construction 
techniques which do not produce component values within close 
tolerances. 

 — The last part of the proposed programme which has been 
envisaged would comprise: 

a) The construction of transistor models of neural elements with a 
view to producing a critical survey of their properties and to 
designing improved elements; 

b) Assembly of such elements into various arrays, exploring the 
numerous modes of interconnection; 

c) Simulation of such networks by means of computer programs, and 
developing appropriate mathematical methods to handle the logical 
circuit analysis; 

d) Translation of the circuitry into microminiature components, and 
utilisation of circuit replication techniques 

e)  
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Application to the UK Department of Scientific and Industrial 
Research for support for a research programme entitled 'Pattern 
Recognition Matrices', dated March 1965' 

This programme resulted in the construction and demonstration in September 1967 of 
UCPR1 [4] Integrated circuits were not generally available at this time so the active 
components in UCPR1 were diodes and transistors. Regions of interest in 
photographs of the tracks of high energy charged particles (in nuclear emulsions and 
from cloud chambers and bubble chambers) are characterised by either a sharp change 
in direction or by a branching of the track into two or more components. Automated 
scanning equipment had been built which needed manual centring on these regions so 
UCPR1 was designed to show the possibility of making a retina-like device which 
would detect the regions automatically. 

Fin 4 A working demonstration of the parallel processor UCPR1, as demonstrated at the 
Physical Society Exhibition in London in 1967. The lamp at the top illuminates a track 
chamber photograph placed over an array of photodiodes. The electric lamp array to the nght 
shows the location of vertices in the photograph. 
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The input to the system was a square array of 256 photodiodes onto which the track 
photograph was projected. Hard-wired circuits were layered under the photodiodes 
and performed the following functions: 

1. 
2. 
3. 

4. 

5. 

6. 

Amplification; 
Summation over a 3 x 3 window surrounding each photodiode; 
Non-linear amplification of the summed output, saturated by at least two out of 
the nine possible inputs 
Summation over the outer edge of the 5 x 5 window centred on each amplifier 
output 
Comparison of the final output with a variable threshold, scanned from a high 
value downwards and designed to locate the maximum summed output. 
The threshold scanner stopped scanning as soon as a maximum was detected and 
the final layer outputs were fed to a 256 x 256 array of light bulbs. The bulb or 
bulbs which lit indicated the position of the detected region of interest (referred 
to as a vertex). The variable threshold scanned at 50 Hz so vertices could be 
detected in real-time, i.e., once every 20msec. 

The Diode Array 

UCPR1 achieved what it set out to do: it successfully detected and located vertices in 
charged particle track photographs. A small piece of extra hardware showed that it 
could also be used to detect ends of lines and a further extension enabled UCPR1 to 
recognise carefully drawn alphanumerics (but not the complete alphabet) by analysing 
the locations of ends and vertices. The obvious weakness of the UCPR1 concept was 
that each layer of processors could only execute a single logic function. In effect, 
UCPR1 was unprogrammable. 
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Fig 5 A single PE of the Diode Array, showing a neon indicator (ON or OFF for one or zero 
outputs) and a double-pole, double-throw switch to allow zero or one to be entered 

The Diode Array project [5] was the first attempt to determine what was the simplest 
specification for a processing element (PE) that would enable it to be programmed to 
perform all possible functions on arrays of data. Consideration of the experience 
gained in studying UCPR1 and also taking into account what was then known about 
the construction of the mammalian retina, led to the proposal that each PE should be 
able to input, store and output single-bit data, should be capable of inverting data and, 
finally, should be connected to neighbours in such a way that data from neighbours 
could be input as a logical OR of all four inputs. 

The basic PE is shown in figure 5. It includes a neon bulb which glowed to show a 1 
output (dark for a 0 output) and the points labelled A to J and + were initially left 
unconnected. The double pole switch was used to input a 1 or a zero (corresponding 
to its ON and OFF positions). A small 5x5 array was constructed and additional 
electromechanical relay circuits added to enable the user to systematically connect 
together various combinations of the labelled circuit points, the same combination in 
each PE. Treating the switch state as representing black and white image data, it 
could be demonstrated that functions such as image inversion, object edge extraction 
and object expansion and shrinking could be effected. 

A computer simulation of the array was written together with a Monte Carlo program. 
This applied a wide range of random intra-processor connections (between the 
labelled points) with a view to discovering all differing image processing operations 
which could be implemented by the array. The otherwise exhaustive search was 
narrowed by eliminating obviously useless connections, such as connecting the 
positive voltage supply (+) to Earth. Rerunning the program many times established 
the existence of more than 70 processing functions. For reasons that are not clear, 
those functions which had been built into the hardware array were discovered by the 
Monte Carlo program earliest in its operation. 

Because the connections between PEs were combined by OR-gates to provide a single 
input into neighbouring PEs, the array had no 'sense of direction'. For example, it 
would never be able to detect that one object lay above another in an image. Also, the 
obsolescent hardware components used to construct the array imposed undesirable 
constraints on the implementation of the logic functions. The next stage m the 
research programme utilised first small scale, next medium scale and finally large 
scale integration. 

The CLIP Project 

Continuing the search for the optimum PE design, a series of array processors was 
constructed. These so-called Cellular Logic Image Processors (CLIP1 to CLIP4) 
were gradually increased in complexity thus allowing each to be thoroughly 
understood before additional sophistication was permitted. CLIP1 and CLIP2 will not 
be described here as all their important features were included in CLIP3. CLIP3 will 
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also no be discussed in detail since its main purpose was to provide a design studv 
for a fully integrated version which could be manufactured and marketed In fact for 
reasons of cost, CLIP4 was slightly less complex than CLIP3. The higher level of 

ToTo," tCUu4 (8 PES PCr integrated Circuit) made h economic to build an array 
of 96 x 96 PEs whereas CLIP3 had only 16 x 12 PEs and was not of practical value 
for applied image processing. 

The logic functions of CLIP4 are shown in outline in Figure 6. At the heart of the PE 
are two identical minterm generators. Each has two binary data inputs (A, the value 
of the local pixel, and a composite value derived from another pixel value stored in B 
and from data from neighbours), one binary output and four binary control inputs By 
applying any of the sixteen possible 4-bit binary control words to a generator any of 
the sixteen possible Boolean combinations of the two inputs can be produced at the 
output. The output from the lower generator is distributed to neighbouring PEs and 
the upper output is stored as a result. Each PE, on receiving inputs from neighbours 
selects a subset by means of a programmable gate and ORs the subset with a single bit 
StAA 'A ^Ca' mem0iy (B 'n the figUre)- Further Sates allow the PE to act as a full 
adder. Additional connections are used to input and output data to and from the array 
The detailed operation of the PE is too complex to describe in the space available for 
this review but a full description of the CLIP3/CLIP4 systems can be found in [3] [6] 

Fig. 6.Schematic logic diagram of the CLIP4 processing element 

Three classes of operation can be performed by these CLIP processors.   Thev 
those in which: are 

• Each output pixel is a function only of the corresponding input pixel; 
• Each output pixel is a function of the corresponding input pixel and of the eight 

pixels surrounding it; 
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•     Each output pixel is a function of the corresponding input pixel and of any other 
connected to it by propagation through chains of neighbouring pixels. 

One further feature of the array is an OR-gate (not shown in the figure) with inputs 
from every PE, used to determine whether a binary image stored in the PEs has at 
least one pixel which is non-zero. In general, the PE processes single bit binary data 
in each operation; multiple bit data is processed one bit at a time, i.e., bit-senally. 
Although beyond the scope of this review, it can easily be shown that an array of PEs 
with the features listed here can be programmed to perform all image operations and, 
indeed, all mathematical calculations. In short, CLIP3 and CLIP4 are universal 
computing systems. 

The development of CLIP4 extended from 1974 to 1980. At that time, the CLIP4 
integrated circuit was the largest ever to be manufactured in the UK under contract to 
the universities and the technical difficulties experienced were immense. After this 
worrying development period, CLIP4 was applied to many image processing projects 
and was in constant use for the next 10 years. It was certainly, at the start, the largest 
working parallel processor array in the world and achieved the fastest real-time image 
processing at that time. 

7.   Limitations of Image Processors 

Every dedicated image processing system has its limitations. Most embody as much 
parallel structure as is practicable but every design falls short in some way or another. 
Special purpose circuits providing a very restricted range of functions can only be of 
similarly restricted applicability, although some attempts have been made to build 
computers combining several special purpose circuits into one composite system. 
Their performance is not impressive since most of the units are idle for most of the 
time and the effective parallelism is low. 

The latency effect in pipeline processors together with the difficulty experienced in 
programming them in many applications has resulted in such systems falling into 
disuse. Processor arrays are also not easy to program although this is a skill which 
can be learned; there are no insurmountable difficulties in writing parallel forms of 
most image processing operations. 

A more serious problem is that processor arrays suffer from two related inefficiencies. 
The first is that, in general, moving images in and out of the array is a serial process 
and therefore slow. Secondly, moving data between extremes of the array (as, for 
example, is necessary when performing Fourier Transforms) involves stepping 
through chains of neighbouring PEs and is also very slow. Both these inefficiencies 
can be lessened by adding more connection paths and this has been done in later 
systems, such as the Connection Machine [13]. A further problem is cost. Processor 
arrays are much less efficient when the size of the image array is larger than that of 
the processor array. Unless the level of integration can be made very high, the cost of 
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constructing and assembling enough PEs to match images of television quality is too 
great tor the majority of potential users. 

Research into parallel processing architectures for image processing has slowed down 
noticeably m recent years On the one hand, the high cost of building these machines 
has made it difficult to obtain funding from the organisations which used to support 
this research Equally, the long lead time for the production of new systems, taken 
together with the limited and uncertain market for the systems once they are 
produced, has discouraged manufacturing industry from continuing to be involved. 

However possibly the major factor which slowed the pace of this field of research 
was the lessening of demand from the image processing community. The wide- 
spread availability of high-powered workstations and the ever increasing 
performance/cost ratio of PCs have meant that the priority for development of 
systems with higher speed has been displaced by a need for more effective algorithms 
in the majority of active areas in applied image processing. It is also the experience 
of many in the field that the image processing software packages which can be 
purchased tend to be disappointingly inflexible, especially when there is a need to 
incorporate new functions not contained in the original package. Consequently 
development effort has been switched from hardware to software. 

A cynical comment on the state-of-the-art in image processing (or, perhaps more 
accurately, image analysis) would be that the computers now commercially available 
enable us to run bad programs adequately quickly and the use of even the best parallel 
processing methods would do nothing more than allow us to get poor results even 
taster. The same cannot be said about image generation, a wide-ranging subject 
embracing important and socially useful applications in the medical field as well as 
commercially profitable activities in computer games. In this area, there is always a 
demand for higher performance. 

8.   Predictions for the Future 

Although the study of computer vision seems to be very unstructured and not 
progressing as well as had been optimistically expected three decades ago, there is 
still enough optimism amongst researchers to merit laying plans for the future when 
it is believed, successful algorithms will have been developed and, once again the 
need will be for faster processors. Enough is now understood about computer 
architecture to make it certain that adequately fast processing will only be achieved by 
the use of parallelism. At the same time, every attempt will have to be made to 
employ the fastest possible components. 

There are physical limitations to the extent to which integrated circuit devices can be 
made faster. Current research is exploring these limitations by investigating 
nanotechnology where circuit components are defined with a precision approaching 
one nanometre (10"' metre).   If devices can be made to work with such dimensions, 
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then it would be conceivable that a CLIP4 array of size 512 x 512, together with 
adequate amounts of memory local to each PE, could be formed on one integrated 
circuit slice. Furthermore, images could be input to the slice by projecting them onto 
photosensitive components located with each PE. The power of such a system would 
far exceed anything now in use and the cost, assuming the technology had been given 
time to 'mature', would be a mere fraction ofthat of today's supercomputers. 

Undoubtedly, there will be many major technical problems to solve. At this scale, 
long connections between parts of the array are difficult to fabricate. In particular, the 
distribution of control instructions synchronously across the array will be hard to 
achieve. Potential failure of devices embedded in the array will have to be combated 
by the liberal use of redundancy. 

There are some indications that it may be hard to define and control the characteristics 
of the millions of devices in these giant arrays. If this is true, then a new style of 
programming might be necessary in which variability is not only accepted but also 
exploited. A Monte Carlo program running on a conventional computer gains its 
power to solve problems by introducing random numbers into what would otherwise 
be a completely predictable performance; could it be that a similar broadening of 
capability might be obtained by randomising the values of some of the device 
parameters in the processor arrays? 

There is a philosophical point to be made here. We have always looked to human 
vision as a sort of role model for computer vision system designers but this may have 
been unwise. Human vision is there to enable humans to survive in their 
environment, not to equip humans with a precise optical measuring system. In 
everyday life, a broad, comprehensive view of the world is all that is needed and the 
speed at which this must be obtained is only of the order of human reaction time, i.e., 
an analysis in a few tens of milliseconds. 

On the other hand, computer vision has generally been used to make fast and accurate 
measurements in a very constrained environment. This may imply that at least two 
very different types of image processing computer will be need: one in which speed 
and/or accuracy are the dominating goals and the other in which speed need not be of 
the highest but robustness in an unconstrained environment will be of fundamental 
importance. 

Nevertheless, the ideas behind parallel processing computing are justified by the 
physiological example from which they sprang and that they were found to be 
effective when applied to computer architecture. It is difficult to conclude that 
tomorrow's computers will revert to a serial architecture. Parallelism is definitely 
here to stay. 
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Abstract. This work presents an efficient implementation of a hierar- 
chical radiosity algorithm on a distributed-memory multiprocessor. The 
parallel algorithm is based on a coarse-grain approach that avoids load 
imbalance by means of a dynamic scheduling strategy. Experimental re- 
sults on the Fujitsu AP3000 multiprocessor using MPI show that this 
kind of architectures are appropriate to implement hierarchical radiosity 
methods as a stage of a image synthesis environment. 

1    Introduction 

Digital image synthesis is a field of computer graphics whose aim is the genera- 
tion of realistic 2D digital images that emulate 3D objects. In order to achieve the 
desirable degree of realism, it is important to use global illumination algorithms 
that take into account the influence of each object located at the environment. 

The radiosity method is a global illumination model widely used. The main 
advantage of this method lies in the fact that the obtained illumination results 
are independent of the viewpoint. Nevertheless, its drawback is the high com- 
putational cost, both in CPU time and memory requirements. For this reason, 
several approaches of the method have been proposed: progressive radiosity [2], 
hierarchical radiosity [6] and, more recently, wavelet radiosity algorithms [9]. 
This work is focussed on the parallelisation and scheduling of the hierarchical 
method. Although this method drastically reduces the complexity of the classical 
radiosity algorithm, it still has a significant computational cost, which justifies 
the use of parallel computing techniques. 

In the literature, good results have been reported on shared-memory multi- 
processors [10], where all processors have access to the whole scene, and the only 
bottleneck is the necessary control of R/W operations to avoid critical section 
problems and deadlocks. However, the results on distributed-memory multipro- 
cessors are not so encouraging, mainly due to the communications overhead. 
Zareski et al. [11] applied fine-grain parallelism using a master-slave paradigm, 
where each slave performed the ray-polygon intersection computations on the 
corresponding subset of patches of the scene. In this case, the speedup of the 
algorithm is restrained by the bottleneck of having a master processor and the 
large number of communications required. Other implementations also follow a 
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master-slave model, but using a coarse-grain parallelism. In that case, each slave 
performs the whole computation of the radiosity on a group of patches of the 
scene, and the master takes charge of the dynamic patch distribution, as well 
as the convergence analysis. Among these implementations, one approach is to 
store the complete scene in the local memory of each processor [1], [3] in order 
to minimize communications, although large scenes cannot be processed due to 
memory requirements. Another approach is to distribute the scene among the 
processors [4], which allows to work with large scenes, although communications 
increase to a great extent. 

In this work, we propose a parallel implementation of a hierarchical radiosity 
method on a distnbuted-memory multiprocessor. The scene is replicated in all 
the processors, and the load is dynamically balanced to avoid idle processors 
We have used an SPMD (Simple Program Multiple Data) paradigm, that is we 
do not waste one processor (master or scheduler) on load distribution tasks Our 
scheduling is, therefore, distributed. 

This work is organized as follows: next section describes the sequential algo- 
rithm of the hierarchical radiosity method; the parallel versions, both for a static 
load distribution and for a dynamic scheduling are presented in Section 3 Ex- 
perimental results on the Fujitsu AP3000 multiprocessor are shown in Section 4 
Finally, conclusions and future work are discussed in Section 5. 

2    The Hierarchical Radiosity Algorithm 

The radiosity method is based on applying to image synthesis the concepts of 
thermodynamics that rule the balance of energy in a closed environment. In fact 
the radiosity method solves a global illumination problem expressed by Kajiya's 
equation [8], simplified by considering only ideal diffuse surfaces. The resultant 
equation system is: 

n 

Bi = Ei + PiJ2BjFij, (i) 
J=I 

where Bi is the radiosity of patch i, Et is the emittance and Pi the diffuse 
reflectance. The summation represents the contributions of the other patches 
of the scene, where F{j is the form factor between patches i and j. This factor 
represents the fraction of energy that leaves from a polygon and reachs directly 
another one. It is an adimensional constant that only depends on the geometry 
of the scene. The number of form factors between all pairs of n patches is 0{n2), 
which makes traditional radiosity methods very expensive. 

The complexity of the radiosity computation is dramatically reduced by using 
the hierarchical method. It subdivides the scene adaptively, applying the fact 
that small details are not significant at long distances; besides, the hierarchical 
method avoids computing some interactions if their form factors are zero, because 
it means that the patches cannot see each other. The scene is divided into patches 
(much larger than the ones used in the classical radiosity methods) that make 
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Fig. 1. Interactions in an element hierarchy 
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Fig. 2. Example of a BSP tree (insertion order: 4, 2, 5, 1, 6, 3) 

up the coarsest level of the hierarchy. These patches are successively subdivided 
into elements through an iterative process, until the desirable precision in the 
illumination of the scene is achieved (see Fig. 1). 

The sequential algorithm of the hierarchical method based on [6] can be 

described as follows: 

1. A BSP (Binary Space Partition) tree is built with the input polygons or 
patches (Fig. 2 shows an example). This tree will be useful later to determine 
the visibility between two patches in an efficient way. 

2. For each patch inserted in the BSP tree, a list of initial interactions (or 
links) is computed. Each entry of this list has as destination other patch 
of the scene, potentially visible from the current patch. At this stage we 
consider that two patches are potentially visible if their positive sides are 
face to face. The form factor between the two patches involved is computed 
for each interaction. Once the initial interactions for all the patches have 
been computed, the iterative process that gathers the radiosity of each patch 

begins in the next step. 
3. For each patch, the radiosity obtained from all its visible interactions is cal- 

culated. If the radiosity emitted by a certain link exceeds a given threshold, 
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the interaction must be refined (in this work, we use a BF refinement [5]). 
To perform this task, either the source element or the destination element 
of the interaction (depending on which of them has the largest area) is sub- 
divided into a quadtree, where the children inherit the current radiosity of 
the father. The refinement is as follows: 
(a) If the element to be subdivided is the source element of the interaction, 

four new interactions with each one of the children of the subdivided 
element are established in the destination element. 

(b) If the element to be subdivided is the destination element, each one of 
its children inherits the interaction with the source element. 

In both cases, the old interaction is discarded. For each patch, the radiosity of 
its current hierarchy of elements is computed through a post-order traversing 
of the quadtree. 

4. Once all interactions between the elements of the scene have been processed 
the complete radiosity of the scene is summed up and the convergence is 
checked by comparing this value with the result obtained in the previous ite- 
ration. If the convergence criterion is fulfilled, the algorithm finishes; other- 
wise, a new iteration begins in step 3. 

3    The Parallel Algorithm 

Two parallel versions of the hierarchical algorithm have been implemented, using 
the message-passing library MPI. Both versions are based on a coarse-grain 
approach, that is, each processor performs the whole computation of the radiosity 
for a set of patches of the scene. In the first approach, a static assignment of the 
patches to the processors, without applying any kind of scheduling, is carried 
out. Using this implementation, good results could be obtained for images that 
give rise to a regular load distribution among the processors. Nevertheless in 
most cases the execution of the algorithm causes load imbalance due to the 
unpredictable behaviour of the refinement, which results in poor speedups; this 
fact is more significant as the number of processors increases. Thus, we have 
developed a second version of the parallel algorithm to balance the computations 
through a distributed dynamic scheduling. The following subsections describe 
both approaches. 

3.1     Static Load Distribution 

The first parallel algorithm we have developed distributes the workload among 
the processors so that, assuming n patches and p processors, each processor 
computes the radiosity for a fixed set of n/p patches. Next, the changes with 
respect to the sequential algorithm are detailed: 

1. It is not worth parallelizing the BSP tree construction and the computation 
of the initial interactions because their execution times are negligible as 
compared with the whole radiosity algorithm. Thus, each processor generates 
its own local copy of the whole BSP tree. As new feature, once the patches 
are inserted in the BSP tree, they are sorted in decreasing area order 
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2. Before beginning the iterative process, the sorted patches are cyclically assig- 
ned to the processors, in order to balance the load among the processors. 
That is, the patches whose order in the list is t, such that t mod i = 0 are 
assigned to processor i. 

3. During the iterative process in which radiosity is computed, each processor 
only takes charge of its assigned patches. Besides, in each iteration, the 
processor keeps a record of those destination elements that correspond to 
patches assigned to a different processor. 

4. Once the local calculation of radiosity in one iteration is completed, the pro- 
cessors start a global communication phase in which radiosity values and 
tree structures are updated. In this phase, each processor sends and re- 
ceives data from the other processors, following an all-to-all communication 
pattern implemented by MPI total exchange routines (MPI_Alltoall and 
MPIJVlltoallv). 
After the communication stage of each iteration, convergence is checked in 
parallel by means of a reduction operation (MPIJU-lreduce). Each processor 
contributes the partial radiosity of its set of assigned patches to the reduc- 
tion and, this way, the whole radiosity of the scene is obtained. Next, each 
processor compares this value with the radiosity in the previous iteration. 
As in the sequential code, if the difference is less than a fixed threshold, the 
iterative algorithm ends. 

3.2    Distributed Dynamic Scheduling 

The irregular and unpredictable behaviour in the execution of the hierarchical 
method makes the parallelisation using a static load distribution inappropria- 
te, due to the appearance of load imbalance. Although we tried to overcome 
this problem by assigning cyclically a list of patches in order of area, it is not 
enough. A further approach could be a patch reassignment at the end of the first 
iteration based on the number of interactions of each patch. But this approach 
would not be very useful because we have experimentally checked that the first 
iteration is the most time-consuming and, therefore, it is necessary to solve the 
load imbalance from the beginning of the algorithm (specifically during the first 
iterarion). With this aim in view, we have developed a second parallel algorithm 
that implements a dynamic load distribution. The parallel algorithm (see Fig. 3) 

is summarized as follows: 

1. Each processor builds its own BSP tree with all the patches of the scene, 
and sorts them in decreasing order of area. 

2. The patches are cyclically distributed. 
3. Each processor computes the radiosity of the assigned patches. 
4. In the first iteration, if a processor finishes its corresponding computations, 

the next step is to check the presence of non-processed patches in the ordered 
global list. If so, the processor takes a set of k patches from the list, being k a 
parameter that is predefined experimentally depending on the problem size 
and the communication cost. We must take into account that high values 
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INPUT POLYGONS 

Fig. 3. Diagram of the algorithm using a distributed dynamic scheduling 

of k reduce the communications overhead of the scheduling at the expense 
of a worse load balance, and vice versa. Step 4 is repeated until the list of 
non-processed patches is empty. 

5. Once the radiosity of all the patches of the scene is computed, the commu- 
nication phase takes place. 

6. The convergence of the algorithm is tested in parallel and, in case of success 
the algorithm finishes. 

7. For the next iterations, each processor uses the same patches as in the first 
iteration (both the patches assigned statically and the ones taken from the 
list). At the end of each iteration, it returns to step 5. 

As can be observed, the only significant difference between the static and 
dynamic implementations lies in the first iteration of the algorithm, specifically 
in the fourth step of the dynamic version. In this step, seemingly simple, the 
scheduling is carried out. The main drawback of this scheduling lies in the fact 
that two or more processors could compete for the same patch. Next, we describe 
in detail the protocol we have developed to overcome this problem. 

Scheduling Protocol. In order to carry out a dynamic patch allocation, each 
processor must keep updated information about those patches that have not 
been still processed. This information is stored in the ordered list of patches and 
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Static allocation :   0    1 2_ 

Ordered list - 25 13: 17 20 12! 8 21 35 29 23 41 

PROC0 PROC1 PROC2 PROC3 

Processing 
patch 12 

■ H 

Processing 
patch 29 
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patch 23 

Searching for 
free patches Reqmsl 

—»-patch 41 
T H   ""     ÄCK 

Processing 
patch 41 

Processing 
patch 21 

Request 

NACK 

Processing 
patch 11 

Searching for 
free patches 
—»-patch 41 

i (Wait) 

Message from Proc 1: 
processing patch 41 

Searching for free patches 
NO free patches 

13 : Send message to the rest of processors 
to indicate the patch to be processed 

Fig. 4. Practical example of the protocol (assuming that fc=l): processors 1 and 3 
compete for patch 41, but only processor 1 gets the patch 

must be available in all processors. As we are working in a distributed-memory 
environment, this availability is achieved by means of message-passing. Thus, 
before processing a set of patches, each processor communicates this state to 
the rest of processors. A drawback arises when two or more processors compete 
for the same patch. To avoid the assignment of the same patch to different 
processors, we have implemented a protocol based on making requests about the 
state of the patch that causes the conflict. 

In the fourth step of the parallel algorithm described in this subsection, a 
processor, before taking a "free" patch (a patch that has not been still processed), 
sends a request message to the owner of that patch, that is, the processor that 
has the patch by means of the static assignment of step 2 (which is known by all 
the processors). If the owner of the patch is not still processing it, the ownership 
of the patch is transferred to the requesting processor (ACK) provided that the 
patch had not been still given to other processor. Otherwise, the patch request is 
refused (NACK). Note that, in this case, explicit messages are not used because 
the processor that is taking charge of the patch communicates this situation to 

the rest of processors. 
Using this protocol, any kind of incoherence arising from the multiple assign- 

ment of one patch to two or more processors is avoided. For example, in Fig. 4 
it can be observed that, once processors 1 and 3 have finished the computations 
associated with their assigned patches, they search for free patches in the or- 
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Processors 

Fig. 5. Speedups for the test scene (650 polygons) 

dered list of patches, beginning from the last patch of that list. Both processors 
try to get patch 41 (initially assigned to processor 2), but only processor 1 will 
finally get it; processor 3 carries on with the search of free patches in the list. 

During this scheduling stage, nonblocking communications (both send and 
receive primitives) are used to overlap communication and computation. Besides 
as the messages to be sent in this stage have the same format and size, as well as 
the same destinations, we have used persistent communications by means of MPI 
routines: MPI_Send_init, MPIJlecv.init, MPI_Start and MPIJtequestJree 
Therefore, the tasks involved in setting up the communication are accomplished 
only once. 

4    Experimental Results 

We have tested the parallel algorithms on the Fujitsu AP3000 multicomputer [7] 
whose nodes (UltraSparc-II processors at 300 Mhz) are connected via a high- 
speed communicacion network (AP-Net) in a 2D torus topology. The test scene 
is composed of 650 input triangles and is depicted in Figs. 6 and 7. 

The results in terms of speedups are shown in Fig. 5, both for a static patch 
assignment and for the dynamic scheduling approach (using jfe=l and fc=64 
and up to 12 processors). The execution time of the sequential algorithm is 374 
seconds, and it is 42.68 using the dynamic scheduling on 8 processors. As can be 
observed, the speedup for the static case tends to be constant from 8 processors 
upwards due to the effect of load imbalance. The speedups are greatlv improved 
using the dynamic scheduling that balances the load. This improvement is not so 
good for high values of k in relation to the whole scene size (for instance £=64 
in our example) because, although the number of communications decreases 
the load imbalance becomes more noticeable and, therefore, the speedup results 
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come close to the static approach. For k <64, we have experimentally checked 
that the results are very similar to the ones obtained for k=l. 

As can be observed, although better speedups are achieved by using the 
dynamic scheduling (for fc=l), from a certain number of processors (10 in our 
example scene) the speedup does not rise accordingly. This is because the local 
computations assigned to each processor are not significant and it is not worth 
balancing small loads due to the communications overhead. Better speedups are 
expected for larger scenes because they involve more computations and, thus, the 
associated execution times are very high in relation to the communication factor. 
According to the speedup results we can conclude that the algorithm presents 
a reasonable scalability and the larger the scenes are, the more appropriate the 
dynamic scheduling is. 

Regarding the correctness of the algorithm results (see the illuminated scene 
in Fig. 6 and the scene divided into elements in Fig. 7), we have used the residual 
error of the radiosity as error metric. We have experimental!}' confirmed that the 
error measured in the parallel implementations does not vary in comparison with 
the sequential version. 

5    Conclusions 

In this paper we have described a parallel implementation of the hierarchical ra- 
diosity method on distributed-memory architectures. The parallel method gene- 
rates an irregular load distribution, which can be balanced following two strate- 
gies: on the one hand, the patches are initially distributed by area, trying to 
assign the same number of computations to each processor; on the other hand, a 
distributed scheduling performs a finer tuning to balance the load dynamically, 
by reassigning the smallest non-processed patches to the processors that finish 
their work. Good speedups, load balance and an acceptable scalability have been 
achieved through this approach. 

We conclude that distributed-memory architectures can be efficiently used 
to implement the hierarchical radiosity method, although the main drawback is 
the memory overhead derived from the replication of the BSP tree, as well as 
part of the hierarchical structures of the elements, in each processor. 

As future work, we intend to study alternative representations of the input 
3D scene to avoid data redundance. We also expect to improve the iterative pro- 
cess for the radiosity computation, both to reduce execution times and memory 
requirements. Specifically, we will focus on the process to determine visibility, 
which is currently implemented by means of the ray-casting algorithm [5]. Our 
goal is to decrease the amount of time spent testing rays against the environment. 
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Fig. 6. a) Scene before applying the hierarchical radiosity algorithm, b) Illuminated 
scene after applying the parallel algorithm 

a) b) 

Fig. 7. a) Patch division of the input scene, b) Final division of the scene into elements 
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Abstract. This paper describes efficient parallel algorithms for low and inter- 
mediate level vision for a Linear Array of Processors with Multi-mode Access 
Memory (LAPMAM). Its special memory and its singular SIMD/restricted 
MIMD mode, combined with the parallel search and multiple update operation 
of the memory modules make LAPMAM very efficient in real time image proc- 
essing. We have developed fast parallel algorithms to determine labeling, area 
and perimeter determination, histogram and median filter, we have taken 
advantage of LAPMAM characteristics for developer this efficient algorithms. 
The architecture and the algorithms were tested in language C and in a hard- 
ware simulator. The performance obtained are compared with that of different 
architectures. 

1     Introduction 

The computational demands of computer vision, which requires to process an enor- 
mous amount of information have incited a large number of research work and led to 
numerous architectures and algorithms [1] [2] [3]. The Sequential machines require 
an excessive amount of time. Hence this problem generally lies well beyond the ca- 
pacity of existing sequential processors. Consequently, the possibility of the parallel- 

ism has been highly exploited. , , , • u 
In view of the number of processors and their topologies, parallel architecture may be 
classified into three-dimensional arrays (Pyramid, Hypercube, etc.), two-dimensional 
arrays (CLIP Mesh with Reconfigurable Mesh, etc.), and one-dimensional array 
processors. The Electronic Instrumentation Laboratory of Nancy France is developing 
a linear array processor architecture for low an intermediate level vision that enhance 
its parallelism using a Multi-mode Access Memory (MAM) and a tree mterconMC- 
tion network Also, its SIMD/restricted MIMD operating mode allows to LAPMAM 
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to switch between SIMD and MIMD mode automatically with a simple initial 
programming. In this architecture, a new concept of SIMD/restricted MIMD 
processors is also proposed. The processor has the SIMD structure with its typical 
advantages (simple implementation, high performance and no memory access 
conflicts), but also can work like a MIMD processor, taking a limited conditional 
decision with a simple control logic. 

This article shows some fast parallel algorithms developed to take advantage of the 
LAPMAM characteristics [4]. We are obtained a quasi-optimal processor x time 
complexity [5] to the intermediate level vision algorithms. Concerning to the median 
filtering low level algorithm, the typical complexity of O(n) to the 1-d architectures is 
obtained, but we show how the LAPMAM enhances the parallelism using the 
interprocessor communication to reduce the pixel computing operations In the 
following section we present the organization of the LAPMAM. Then we describe 
the algorithms developed. Finally we follow up with a discussion of the simulation 
results and a comparison of different architectures before concluding. 

Controller 

T 1 
Processing Elements Multi-Mode Access Memories 

MO   I—I   Ml 

Figure 1: The LAPMAM architecture 

2     LAPMAM architecture 

The LAPMAM is a linear array of RISC SIMD/restricted MIMD processors with a 
Mulu-mode Acces Memory. The LAPMAM has four memory planes that are de- 
pendent tanks to the bi-directional heteroassositive CAM property. A controller gives 

Candidate to the best student paper award 

-594- 



VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing 

the instructions word to each PE. The PE-PE and PE-MAM communications are 
carry out by a tree interconnection network and by a local bus (Memory bus) between 
the PEs and its corresponding row of memory modules. 
The LAPMAM architecture for a 512 x 512 image (n=512) is shown on Figure 1. It 
features n processors organized in a linear array. Each of them is connected to a row 
of n memory modules. A special interconnection network allows every processor to 
reach any of the other processors and their associated memory rows. This network 
presents a tree structure and ensures global communication in 0(log n) units of propa- 

gation time. , r- i \x r i 
LAPMAM has four identical memory planes of log 512 bits denoted MA1[ijJ, MA2[ijJ, 
M [i,j] and MB,[i,j] (0 < i,j < 511). Each plane consists of 512 rows, each containing 
5P memory modules. The four planes can be turned into two planes MA[i,j] and 
MB[i,j] of 2 log 512 bits. On Figure 1 the planes MAI, MA2, MB1, MB2 are represented by 

the memory modules (M). 

2.1      The Multi-mode Access Memory (MAM) 

Our MAM module is basically a modified CAM. The CAM is a memory with ad- 
dressing based on its content. This is an excellent solution in some applications where 
the RAM, with addressing based on its location, shows limited performance. The 
main advantage of the CAM is its capability to write/read a data to/from multiple 
locations in only one clock cycle or 0(1) time. Despite its relatively high cost, CAM 
has found since then enormous importance in various applications like data base 

management and image processing [6]. 
The CAM enhances the parallelism of an architecture because this memory works 
inherently in parallel. However, its utilization reduces the processing flexibility since 
the CAM can not be addressed by its position and the CAM reading is difficult. We 
have designed a CAM based memory with the possibility RAM and FIFO to solve the 
limitation of the CAM pure, it was called Multi-Mode Access Memory. The MAM 
modules constitute either four log n bits wide or two 2 log n bits wide memory 
planes. The four planes enable the architecture to work with algorithms that need to 
store intermediate results. The image loading procedure is also made simpler thanks 
to this possibility: an image frame may be stored in one memory plane while the 
previous is still under processing. The size of the memory words depends on the algo- 
rithms being run (2 log n bits for labeling and log n bits for median filtering for ex- 
ample) The CAM and RAM operation can be carried out in a whole plane, in a row 
(PE-MAMs) or in several rows of a plane. The FIFO operation is only carried out m 

the couples PE-MAMs. 
Writing in normal CAM mode consists of simultaneously updating all the memory 
plane elements (M) with a New_Data where its content is equal to a TargetJData. The 
following algorithm describes the normal CAM mode: 

forall M[address] (0 < address < n-1) do_in_parallel 
if ( M[address] = = Target_Data) 

M[address] = New_Data; 

Candidate to the best student paper award 

-595- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

endif 
endforall 

Siting in interactive CAM mode consists of updating elements of a memory plane 
witha New Data if the content of the elements of a different plane is equal to a Tar- 
get_Data. The interactive CAM mode is of highest interest as, in this mode, two 
planes can be dependent on one another. On Figure 2 a PE addresses plane A with a 
target Data=l (corresponding to "objet 1") to update the corresponding memories in 
plane B with a "blue" data in 0(1) time. 

Target_Data=I 

n rows 

ÖO)"me The CaPabiHty °f a PE f°r Writing t0 mUltiP'e r°WS jn the interactive CAM mode, in 

The FIFO mode is used to perform a circular left/right data movement in a MAM-PE 
row Two clock cycles are required to transfer the four planes. This mode allows the 

A 
g n^lg umg information between the memory modules which is absent in 

ordinary CAM cells. Furthermore, the PE being part of the FIFO, it can read a new 
memory data at the same time that it writes in its memory row the data processed. The 
HFO mode thus allows dividing the number of data access by two 
The RAM mode is obtained using the interactive CAM mode. A different address 
must be stored in one plane of each memory module. A subsequent interactive CAM 
operation with the desired location will only activate one memory module The MAM 
planes not used to store the address may then be either read or written using the inter- 
active CAM mode. 

2.2      The processing element (PE) 

The processing element is a RISC SIMD processor with the possibility of take some 
decisions. Each PE can be activated or deactivated independently. The PE is able to 
compute a basic logical or arithmetic operation in 0(1) time. It can communicate in 
0(1) units; of propagation time with its adjacent PEs or with its associated memory 
modules. Furthermore, it can communicate in 0(log n) units of propagation time 
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either with its non-adjacent PEs or its non-adjacent memory modules through the 

interconnection network. 
When the processor is connected directly to its memory row, the access to the data 
contained in this line is accomplished by means of the FIFO, RAM and CAM modes. 
In the FIFO mode the data of the PE are transferred to the last MAM module of the 

row 1 w w. 

Using the tree interconnection network, a processor can be connected to several mem- 
ory rows or even to all memory rows. This depends on the interconnection network 
programming. To enable the communication between PEs, each PE has a data output 
toward its adjacent PEs (upper PE, lower PE). 

2.3 Restricted MIMD mode 

A SIMD PE is characterized by its reduced size. But, because it does not have a unit 
control, these types of PEs can not take internal decisions. Then, to execute different 
operations on different data, an architecture SIMD has to connect and disconnect the 
processor as many times as the number of different operations. On the other hand, the 
MIMD processor, that has a unit control, can take internal decision, but they are very 
much complex. It limits the number of PEs in an integrated circuit. The LAPMAM 
architecture has a SIMD processor that can take some internal decisions, this possibil- 
ity increment the flexibility of this architecture avoiding the connection and discon- 
nection of PEs pour perform different instructions, reducing the computing time. This 
particular characteristic is called by us restricted MIMD mode because the processor 

can only take a few decisions. 

2.4 The interconnection network 

The LAPMAM interconnection network performs the communications PE-PE or PE- 
MAMs in 0(log n), but in some case it can be executed in 0(1), possibility that we 
are exploited in our algorithms. Moreover, this network has the characteristics of 
modularity and extensibility that allow to the network to be constructed from a small 
set of basic modules and to be extended to a larger size. These possibilities are very 

interesting for a VLSI implementation. 
The interconnection network is reconfigurable by n+(3n/4)-l switch modules denoted 
S . Each switch S contains (4 log 512 + 2) three states buffers. The PE-PE and PE- 
MAMs connections can be carried out in regions. Some PEs can be connected to a 
region of 2, 4, 8 etc. elements (PEs or rows of MAMs). This connection allows cer- 
tain PEs to do a regional or global communication in 0(1) with a propagation delay 
of O(log n). But, in general, a global communication time of 0(log n) is obtained 
with this type of network. A tree interconnection network for an architecture with 

eight PE is presented on Figure 3. 
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Tree structure mterconecnon network Processing 

Protection I 

Figure 3: Tree structure interconnection   network for LAPMAM architecture with 8 PE and 
8x8 MAMs. 

3      Algorithms 

This section present the efficient parallel algorithms used to evaluate the LAPMAM 
architecture. The algorithms developed are connected components labeling, area and 
perimeter of a region, histogramming and median filtering. A description of these 
algorithms for an image n x n is done in the following paragraphs. 

3.1      The connected components labeling 

Labeling consists in assigning a unique label to the connected components in the 
image. It is a fundamental task in image processing and a lot of architectures and 
algorithms have been created to solve this problem [5], Our algorithm, which is based 
on a divide and conquer technique, leads to a complexity of 0(n log n) We remark 
that this complexity is independent of the shape of object and the type of image it 
could be black and white or level of gray, a 4-connectivity image is assumed We 
suppose that an initial image is available in MA[ij] while the MB[ij] plane is initial- 
ized at 0. This algorithm is comprised of two stages as follows 
Row processing: The values of MJij] and MA[i+l j] of a given row, starting with 
i-O, are tested. If both are identical, the MB[i+lj] is assigned by the MJij] value 
Otherwise, the MB[i+l j] is assigned by its row+1 value. This operation is done in 
parallel for each row and is repeated by first incrementing the index i. At the end of 
row processing (i=n), each objet is labeled according to its smallest value The value 
m each rowN1Bj represents a label of pixel in row^ . The complexity for this stage is 
C(n). 
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Figure 4: Labeling example 

Merging: The values of MA[i,j] and MA[ij+l] of two given rows, starting with i=0, 
are tested. If they are equal, the largest value addresses row^ and row^,, in normal 
CAM mode to update all CAMs in the 2 rows with the smallest value. This is called 
the broadcast mode and takes 0(1) time. Otherwise, there is no operation. The opera- 
tion is carried out for each row in parallel and is repeated by incrementing i until the 2 
rows are merged (i=n). The 2 merged rows are henceforth called region. The merging 
is repeated by activating the following stage of the tree structure to form 2 larger 
regions. Two adjacent boundaries of both regions are then scanned and compared. 
The same procedure as that of above processing is undertaken. The largest and small- 
est values are then transferred in the broadcast mode but this time in order to merge 
the 2 regions instead of the 2 rows. The merging is repeated until the last stage of the 
tree structure. The total number of stages reaches log n and each merge takes n itera- 
tions, it so follows that the total merging takes 0(n log n) time. At the end of the 
procedure, the background is defined, with a simple CAM operation all the objects 
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with the value chosen become the background, they will be labeled 0. The Figure 4 
shows a labeling example, it considers only an object for clear demonstration The 
initial image is shown in the first frame, the following two frames (left to right) pre- 
sent the row processing. In this part there is a circular data in each row that is'exe- 
cuted by the FIFO instruction. Each data pass by the PE for be treated until all the 
data get their original organization. The Merging stage is executing using also the 
function FIFO to provide the data memory to the each PE. The data actualization is 
done by the CAM function as is shown in all the merging frames. The three stages 
log 8) of merging are essentials for processing an 8x8 image. The final result (image 

labeled) is presented in the last frame. 

The algorithmic description of our labeling method is presented in the following 
paragraphs. The used terminology is: 

M[ij]: memory module in column i and row j. 
M[*j]: memory module in all columns and row j. 

'      M((AM,[i.j]: CAM mode. 
•      In the interactive CAM mode, writing MA[*, j] with a New_Data if M J* j] is addressed by 

a Target_Data is shown as follows: 
forall CAMs MB((AM)[*, j], ( 0 <j < n-1 ) do_in_parallel 
,f (M.WAM,[*. J] = = Target_Data, ) 

MA«-AM,[*J] = New_DataL; 
endif 

enforall 

Algorithm: Region Labeling 

Input: Initial image in MA[i j]. 
Output: Labeled image in Ma[ij]. 

Initialization of memory: 
forall Memory MB[ij], (0 < i < n-1, 0 < j < n-1) do_in_parallel 

MB[i j]=0; 

Row processing: 
forall Processors P., ( 0 < j < n-1 ) do_in_parallel 

for(i=0; i < n-1 ; i++) 
if (MA[ij] = = MA[i-l j]) MJij] = M„[i-I j]; 
else 
MB[io'] = i+nxj+l; 

// i+nxj+1: row major initialization (1, 2, 3,.., n) 
endif 

endfor 
endforall 

Merging: 
for(f=l;f<logn;f++) 

for(i=0; i<n-l; i++) 
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forall Processors P,, (L=2f"'(2k-1)-1, 1 < k < n/2') do_in_parallel 

if(MJi,L] = = M,[i,L+l]) 
if(M„[i,L]<M„[i,L+l]) 

Target_Data, = M„[i,L+l]; 
New_Data, = M„[i,L]; 

else 
Target_Data, = MB[i,L]; 
New_Data, =Mn[i,L+l]; 

endif 
forall CAMs MB(CAM)[*, r+2'(k-l)], 

( 0 < r < 2'-l, 1 < k < n/2') do_in_parallel 

if ( M„,CA,J*. r+2'(k-l)] = = Target_Data, ) 
MB(rAM)[*,i+2'(k-l)] = NewJDatal; 

endif 
endforail 

endif 
enforall 

endfor 
endfor 

Background definition: 
forall CAMs MWCAM)[*, j], ( 0 < j < n-1) do_in_parallel 

if(MB(fAM)[*J] = = 0) 

endif 
endforail 

3.2 Area or perimeter determination 

These two algorithms are very similar to the precedent one. They also use the divide- 
and-conquer technique and are carried out in the same two phases. The only differ- 
ence is the type of processing which affects the pixels. For the area determination, all 
the pixels with a given label are counted while only those situated on the boundary of 
the connected components are taken into account in the case of perimeter determina- 
tion. Here again, these algorithms have a complexity of 0( n log n). 

3.3 Histogramming 

The histogram of an image is defined as the total number of pixels belonging to each 
gray-level value. For the histogram determination we use the organization technique 
of results proposed by Alnuweri [7]. In this algorithm, an initial image is supposed to 
be available in the Al plane. The Bl plane that is initialized at 0 is used to store the 
result of histogramming in which its columns correspond to the gray-level values 
while its rows correspond to the number of pixels. 
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Row processing: Here, at each iteration i, each PE reads a gray-level value P in the i"' 
column of the Al plane. The value Q, in the A'" column of the Bl plane, is then in- 
cremented. Since each incrementing operation takes 0(1) time and there are n itera- 
tions, therefore this phase takes 0(n) time. 

Sum-on-tree: Here, at each iteration i, each PE reads the value of the i'" column in the 
Bl plane. The sum-on-tree operation is employed to add all values stored in the PEs 
Since each sum-on-tree operation takes 0(log n) time and there are 0(n) iterations 
this phase takes 0(n log n) time. 

Hence, the complexity of our histogramming is 0(n log n) which is optimal for 
G<n, where G is the number of the gray-level value. 

3.4      Median filtering 

Median filtering consists of replacing each pixel of a given image by the median of 
the pixels contamed in a window centered around that pixel [8], This filtering opera- 
tion is useful in removing isolated lines or pixels while preserving spatial resolution 
1 he classic method consists of sorting the elements from the smallest to the largest in 
a value table. The 5' element, in the case of 9 elements, will be the median value To 
sort them, comparisons of two by two elements are done executing a permutation to 
change their place m the table. In this method, all the window pixels are accumulated 
m the PE registers. The PE uses others registers to execute the sorting operations and 
to store the results. We propose a fast filter median 3x3 algorithm that uses only some 
PE registers thanks to the interprocessor communication. This algorithm can be ex- 
tended to larger windows. The pixels of the window are distributed as is shown on 
Figure 5. 

The algorithm consists of three steps: first, sorting in parallel the 3 data groups stored 
- in the PEs from the smallest to the largest. In the second step, the largest pixel be- 
tween the smallest group of each row is found. In the same way, the smallest pixel 
among the largest ones of each row is found and the median of the medians group is 
detected too. The final stage consists of detecting the median value of the diagonal 
integrated by the elements found in the second part, it will be the final median value 
or this group of pixels. Figure 5 shows the pixel array and the three stage of the 
method. 

The relevant characteristics of this method are that the classification of the three ele- 
ments obtained by a PE, in the first step, is used by its two immediate PE neighbors 
Then, the median filter operations of this part are divided by three. The second step 
consists only m a few operations because it is not necessary to sort the whole column 
It is enough to find the smallest, largest and median value in the corresponding col- 
umns. It is the same case for the third step: the final median value is detected with 4 
comparisons. In conclusion, the LAPCAM system realizes the 3x3 median filtering in 
0(n) steps, as many other linear architectures, but our algorithm permits to process 
each pixel in only sixteen operations. 
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Figure 5: Pixel classification window used to find the 3x3 median value. 

4     Performance 

To validate these algorithms we have done a hardware simulation using VLSI tools of 
a LAPMAM prototype with 8 PE. All the algorithms mentioned above were imple- 
mented on this prototype. The architecture simulation was done at 50 MHz fre- 
quency. All the algorithms were simulated at this frequency, the results were ex- 
tended to an 512 PE architecture, they are showed in Table 1. LAPMAM computes 
these low and intermediate-level image processing algorithms much faster than the 
video rate. The best performance results of the DARPA II image understanding 
benchmark [9] for the algorithms evaluated are compared in the first part of the Table 
2. The architectures included are the Connection Machine (CM) with 64 K of PE, the 
Associative String Processor (ASP) that has 262,144 processors and the Image Un- 
derstanding Architecture (IUA) that consists of three difference processors: low level 
SIMD PEs (processor-per-pixel), 4096 intermediate level SIMD/MIMD 16 bits proc- 
essors, and one high level multiprocessor. For the tasks compared, our architecture is 
among the best ones while being the least complex. On this benchmark, only IUA has 
better results for labeling. However, it features for many more processors than our 
architecture. Otherwise, LAPMAM has the best computation times. This does not 
necessary mean that our architecture is much better than the others, since these archi- 
tectures are very different and the technology evolution is not considered. Neverthe- 
less, it gives a good idea of the LAPMAM's potential in low and intermediate level 

tasks. 
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Table 1: LAPMAM estimated performance for a 512x512 image 

Agorithm Complexity Steps time (us) 
Labeling 0(n log n) 30737 614.74 
Area of a region 0(n log n) 43548 870.96 
Perimeter of a region 0(n log n) 46091 921.82 
Histogram 0(n log n) 21015 420.3 
Median filter O(n) 10241 204.82 

In the second part of the Table 2, the LAPMAM estimated performance is compared 
with architectures that are more similar to LAPMAM: VIP [10], SliM-II [10] and 
IMAP VISION [11]. In this comparison, our architecture has the best results for these 
algorithms. Its enhanced parallelism allows the reduction of the algorithms complexi- 
ties. The use of CAM and the tree structure of switches in interconnection network 
make the LAPMAM extremely efficient in terms of connected component analysis 
and median filtering tasks. However, because of the MAM modules, the architecture 
is more complex than the ones that use RAM. LAPMAM thus necessitates a full cus- 
tom approach for its hardware implementation 

Table 2: The LAPMAM estimated time results compared with others architectures 
(time in ms) 

Algorithm 

DAPvPA II Bench- 
mark results 

LAPMAM similar architec- 
tures 

LAPMAM 

50 MHz, 

512 PEs, 
512x512 

image 

for a 512x512 image VIP 

1024 
PEs, 50 
MHz 

SliM-II 

512 
PEs, 
40 
MHz 

IMAP- 
VISION 

512 PEs, 
40 MHz, 
256x240 
image 

CM 
64 K 

ASP IUA 

Labeling 100 22.8 0.0596 - _ 19.5* 0.614 
Median filter 15 0.72 0.5625 3.672 2.525 1.07 0.204 
Histogram - - - - 3.313 1.33 0.420 
* Worst-case e? cample 

1     Conclusion 

Fast parallel algorithms for labeling, area, perimeter, histogramming and 3x3 median 
faltering have been developed in a new parallel architecture dedicated to image proc- 
essing. The quasi-optimal processor x time complexity of these algorithms and the 
efficient utilization of the MAM had demonstrated the interest of this architecture for 
low and intermediate level vision, particularly for connected component analysis and 
median filtering. The use of a tree structure of switches has proved to be an excellent 
solution to decrease the reduction of data propagation time in interconnection net- 
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work. Considering the algorithms results, the system presents very good performance 
for real time image processing. This will be confirmed with the development of other 
algorithms and the system hardware implementation. Another algorithms and a 
LAPMAM prototype VLSI are under development at the moment. 
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Abstract. The most demanding image processing applications require 
real time processing, often using special purpose hardware. The work 
herein presented refers to the application of cluster computing for off 
line image processing, where the end user benefits from the operation 
of otherwise idle processors in the local LAN. The virtual parallel com- 
puter is composed by off-the-shelf personal computers connected by a 
low cost network, such as a 10 Mbits/s Ethernet. The aim is to minimise 
the processing time of a high level image processing package. The system 
developed to manage the parallel execution is described and results ob- 
tained for the parallelisation of high level image processing algorithms are 
discussed, namely for active contour and modal analysis methods which 
require the computation of the eigenvectors of a symmetric matrix. 

1    Introduction 

Image processing applications are computationally demanding due to the amount 
of data to be processed, to the response time required, or due to the complexity 
of the image processing algorithms. A wide range of hardware has been used for 
image processing. For low level image analysis, where each processor performs 
a uniform set of operations based on the image data matrix in a fixed amount 
of time, SIMD computers using data parallelism may be used; in [28] a special 
purpose SIMD computer with 1024 processors was presented. Systolic Arrays 
[11] which can exploit the regular and constant-time operations of an algorithm 

are also a possible option. 
For high level image processing, e.g. pattern recognition, where each pro- 

cessor is assigned an independent operation, MIMD supercomputers commonly- 
used in simulation have been used [3]. For real time vision applications special 
MIMD computers were developed, e.g. ASSET-2 based on PowerPC processors 
for computation and on Transputers for communication [29]. MIMD supercom- 
puters were characterised by allowing a diversity of structures, however, tech- 
nological factors have been forcing a convergence towards systems formed by 
a collection of essentially complete computers connected by a communication 
network [9]. The processors of these computers become the same ones used in 
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workstations. Therefore, the idea of forming a parallel computer from a collection 
of off-the-shelf computers comes naturally, and fast communication techniques 
were also developed for that purpose [25]. Several cluster computing systems 
have been developed, e.g. the NOW project [2]. 

Our aim is not to build a cluster of personal computers for parallel process- 
ing but to perform parallel processing on already existing group clusters, where 
each node is a desktop computer running the Windows operating system. These 
clusters are characterised by having a low cost interconnection network, such as 
a 10 Mbits/s Ethernet, connecting different types of processors,-of variable pro- 
cessing capacity and amount of memory, thus forming a heterogeneous parallel 
virtual computer. Due to network restrictions, which do not allow simultaneous 
communication among several nodes, the application domain is restricted to one 
or two dozens of processors. 

The motivation for a parallel implementation of image algorithms comes from 
image and image sequence analysis needs posed by various application domains 
which are becoming increasingly more demanding in terms of the detail and 
variety of the expected analytic results, requiring the use of more sophisticated 
image and object models (e.g., physically-based deformable models), and of more 
complex algorithms, while the timing constraints are kept very stringent. 

A promising approach to deal with the above requirements consists in devel- 
oping parallel software to be executed, in a distributed manner, by the machines 
available in an existing computer network, taking advantage of the well-known 
fact that many of the computers are often idle for long periods of time [20] 
It is quite common in many organisations that a standard network connects 
several general purpose workstations and personal computers, accumulating a 
very substantial computing power that, through the use of appropriate manag- 
ing software, could be put at the service of the more computationally demanding 
applications. 

Existing software, such as the Windows Parallel Virtual Machine (WPVM) 
[1], allows building parallel virtual computers by integrating in a common pro- 
cessing environment a set of distinct machines (nodes) connected to the network 
Although the parallel virtual computer nodes and the underlying communication 
network were not designed for optimised parallel operation, very significant per- 
formance gams can be attained if the parallel application software is conceived 
for that specific environment. 

2    Image Algorithms and Systems 

The image algorithms that have been parallelised consist of a set of low level 
image processing operations namely edge detection [27,6], distance transform 
convolution mask, histogramming and thresholding, whose suitability to the clus- 
ter architecture was analysed in [4]. A set of linear algebra algorithms required 
for high level image processing was also implemented. The algorithms are the 
matrix product [14], LU factorisation [7], tridiagonal reduction [8], symmetric 
QR iteration [15], matrix inversion [23] and matrix correlation. 
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In this paper, results focus on high level image processing algorithms, namely 
active contours [19] and modal analysis [26]. 

Some image processing systems have been proposed to run on a cluster of 
personal computers. In [17] two highly demanding vision algorithms were tested 
giving superlinear speedup, due to memory pagination on one workstation. The 
machines formed an homogeneous computer. In [18] a high level interface parallel 
image processing library is presented and results for low level image operations 
on an Ethernet network of HP9000/715 workstations and an ATM network of 
SGI workstations are reported. In [21] a machine independent methodology was 
proposed for homogeneous computers; results were presented separately for two 
SMP workstations with two and eight processors, not requiring communication 

between machines. 
Our implementation differs from the ones mentioned above due to the con- 

sideration of a general bus type heterogeneous cluster where data is distributed 
in order to obtain a correct load balancing and the number of processors that 
participate in a distributed algorithm vary dynamically in order to minimise the 
processing time of each operation [5]. 

3    The System Architecture 

The computers that belong to the virtual machine run a process to monitor 
the percentage of processor time spent with the local user. Conceptually, local 
users have priority over the distributed application and the computer will not 
be available if the mean local user time is above a minimum threshold during a 
specified period of time, e.g. 5 seconds. 

Each algorithm or task is decomposed until indivisible operations are ob- 
tained to which parallel code exists. When a parallel algorithm is launched the 
master process schedules work to the processors of the virtual machine according 
to their availability and choosing a number of processors that minimise the pro- 
cessing time of individual operations, allowing data redistribution if the optimal 
grid [4] of processors changes from operation to operation. 

As an example, the algorithm to extract the contour of an object can be de- 
composed into edge enhancement, thresholding and contour tracking operations. 

3.1    Hardware Organisation and Computational Model 

The hardware organisation is shown in figure 1. Each node of the virtual ma- 
chine is a personal computer under the Windows NT operating system, running 
WPVM software to communicate. The interconnection network is an Ethernet 

at 10/100 Mbits/s. 
Several computational models [9,30,16] were proposed in order to estimate 

the processing time of a parallel program in a distributed memory machine. 
Although they could be adapted for the cluster of personal computers, a specific 
and simplified model is presented below. 
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| Master | | Slave | | Slave | | Slave [ 
|   Slave   ] 

1 1 1 1   Bus 

Fig. 1. Hardware organisation 

Each node of the machine is characterised by the processor capacity 5, 
measured in Mflop. The network is characterised by allowing only one message 
to be broadcast at a given time, the latency time (TL) and the bandwidth (LB) 
The time to send a message (TComm) composed by nb bytes is given by 

= TLK + 
nb 

LB' 
K = 

nb 

packetsize (1) 

The value K multiplies TL due to the partition of each message into packets of 
length 46 to 1500 bytes {packetsize), existing a latency time for each packet- 
1024 is a typical packet size. 

The parallel component TP of the computational model, equation 2 repre- 
sents the operations that can be divided over a set of p processors obtaining a 
speedup of p, i.e. operations without any sequential part. 

Tp(n,p) = Vp   ' (2) 

The numerator tf (n) is the cost function of the algorithm measured in floating 
point operations {flop) as a function of the problem size n. For example, to 
multiply square matrices of size n, the cost is ^(n) = 2n3 [10]. 

3.2    Software Organisation 

Each operation is represented by an object containing the parallel and serial 
implementation of the code, since the system can schedule a sequential execu- 
tion remotely if it is advantageous. The object associated to the operation also 
contains the computational complexity and the amount of data required to ex- 
change in order to complete the operation. Based on these parameters the system 

timer[4imeS the nUmber and WhiCh prOCesSOrs minimise the operation processing 

Each data instance to be processed, an image or a matrix, is represented by 
an object responsible for accessing data items correctly according to the data 
distribution information. 

Data distribution is represented by independent objects with functions to 
k>cate any item of data and to translate global to local indexes and vice-versa 
Each object can be shared by more than one data instance. Figure 2 shows the 
software organisation. 
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Operations to 
be executed 

Data instances 
Data Distribution 

Objects 

Fig. 2. Software organisation 

The user describes a macro of sequential operations to be executed referring 
the data instances to be processed. The system executes each operation in par- 
allel determining for each one the number of processors to be used in order to 
minimise the processing time. The data distribution suitable for each operation 
is codified in the operation code. 

Input il imagel.bmp 
Shencastan il i2 i3 0 
Histogram i2 outfile.txt i4 
Output i2 
Output i4 

Fig. 3. Macro describing the operations to be executed 

Figure 3 shows an example of a macro. To the input file il an edge detector 
[27] is applied, the operator output, the magnitude and direction, being stored 
in %2 and %3 respectively. The histogram is then computed and displayed as an 
image, being also saved in a text file. 

3.3     Data Distribution and Load Balancing 

Different strategies are applied to images and matrices. Images are partitioned 
in blocks of contiguous rows or columns and the blocks are assigned to each 
process [4]. This distribution is suitable for data independent image operators. 
The matrices are organised in square blocks of data and a heterogeneous adapted 
version [5] of the block cyclic domain distribution [13] is used to assign them to 

the processor grid. 
A balanced distribution is achieved by a static load distribution made prior to 

the execution of the parallel operation. To achieve a balanced distribution in the 
heterogeneous machine the relative amount of data assigned to each processor, 
lu is a function of its processing capacity compared to the entire machine: 

'.■ = s'/ELSt (3) 
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For matrices, due to block indivisibility it is not always possible to ensure an 
optimal load balancing, however, the scheduler computes the optimal solution 
for a given network [5]. The processor placement on the grid is also done in order 
to achieve a balanced distribution. 

4    Parallel Implementation of the Active Contour 
Algorithm 

An active contour is defined as an energy minimising curve subjected to the 
action of internal forces and influenced by image forces which move the contour 
to the relevant features in the image such as lines and edges [19]. 

Active contours can be used in a diversity of feature extraction operations 
in images, such as detection of lines and edges, detection of subjective contours, 
track analysis in a sequence of images or correspondence analysis in stereo im- 
ages. 

Detected edges Distance Transform Contour detection 

Fig. 4. Application of the active contour algorithm in an angiocardiographic image 

Figure 4 (rightmost image) shows the contour detection over the original 
image of 64 KB. From an initial position (arbitrary or interactively defined), 
using an iterative process, the contour moves in order to minimise its energy. The 
final position corresponds to a local minimum of the defined energy function. In 
this position, the forces applied to the contour are mutually cancelled, such that 
the contour does not move. The energy function was computed based on the edge 
detection map (leftmost image) and the distance transform map (middle image). 
The quality of the detection depends on these two images. Different energy 
functions can be used [24], however, not all are suitable for every application. 

The contour points distant from the edges are pushed in their direction by 
the distance transform. The points near edges are influenced by the edge map 
energy which locally refines the detection. 

Figure 5 shows the tasks required to apply the active contour algorithm. 
The computation methodology is to sequentially execute each parallelised task, 
choosing the processors grid that minimises the individual processing time and 
consequently the overall time. 
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Low Pass 
Fitter 

Edge 
Detection 

Threshold  1 
1 

Distance 
Transform 

LU 
Decomp. 

Minimisation 

Fig. 5. Active contour algorithm decomposed in indivisible tasks 

The image operators have been discussed in another paper [4]. Therefore, 
only the parallelisation of the LU factorisation routine is considered here. 

4.1    LU Factorisation Algorithm 

The LU factorisation algorithm is applied in order to solve directly the sys- 
tem of equations resulting from the active contour internal forces: elasticity and 
flexibility. The implementation follows the right-looking variant of the algorithm 
proposed in [12]. However, adaptations where made at the load distribution level 
in order to obtain a balanced load for heterogeneous machines. Figure 6 (left) 
shows the load distribution obtained in a heterogeneous virtual machine. 

LU algorithm QR algorithm 

Fig. 6. LU and QR load distribution for a matrix size of 1800 and 1600 respectively 
for the machine M={244, 244, 161, 161, 60, 50, 49} Mflops processors 

For processor grids (1,4) and (1,5) a very good load balancing is achieved. 
For the other grids the three slower processors took approximately 15% less 
time than the other ones, due to the block indivisibility. The algorithm requires 
a significant number of communication points which results in a not very scalable 
algorithm as shown in figure 7 (left). 

The scalability analysis was made in a homogeneous machine in order to 
reduce the influence of load imbalances. 
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Fig. 7. Isogranularity curves for a 6 processor homogeneous machine connected by a 
10 Mbit/s Ethernet; 160 K elements for TRD, LU and QR and 250K for LU2 

5    Parallel Implementation of the Modal Matching 
Algorithm 

This high level image processing algorithm [26] is applied for the tracking of 
deformable objects over a sequence of images. Figure 8 shows the application of 
the algorithm. It is based on finite element analysis requiring the computation 
of eigenvectors of symmetric matrices. The aim is to obtain correspondences be- 
tween object points of image % and i+n. The algorithm is divided into eigenvector 
computation and matrix correlation. The eigenvector computation is subdivided 
into three operations: tridiagonalisation, correspondent orthogonal matrix and 
QR iteration. The parallelisation is then realised by the individual parallelisation 
of each operation. Data is redistributed if the processor grid changes between 
operations. 

Instant i Instant i + 2 Matching 

Fig. 8. Application of the modal analysis algorithm to a sequence of the heart beaten 

5.1    Tridiagonal Reduction and Orthogonal Matrix Computation 

Tridiagonal reduction is the first algorithm applied to the symmetric matrix in 
order to obtain the eigenvectors. The algorithm output is a tridiagonal matrix 
1 so that: 

QTTQ 
(4) 
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The matrix T replaces A in memory. As shown in figure 9 the best grid is a 
row of processors. Details of the algorithm can be found in [8]. 

The matrix elements of T, apart from the tridiagonal positions, store the data 
required for the second step of the eigenvector algorithm, i.e. the computation 

of Q. 
If the order of computation of the tridiagonal reduction was followed, an 

0{n4) algorithm would be obtained, corresponding to a matrix by matrix prod- 
uct in each step; n-2 steps for a matrix of size (n.n). However, the computation 
can be efficiently organised as described in [22] for a sequential algorithm, ob- 
taining a scalable operation for the virtual machine. Figure 9 shows that the 

best grid is a row of processors. 

5.2    The Symmetric QR Iteration 

The QR iteration is the last operation for the eigenvector computation. The aim 
is to obtain from the tridiagonal matrix T one diagonal A where the elements 

are the eigenvalues of A: 

T = GTAG (5) 

The matrix G is then used to compute the eigenvectors Q' of A: 

Q' = QGT (6) 

Matrix GT is obtained by iterating and updating it with the Givens rotations 
[15]. To obtain Q' a matrix by matrix product would be required. However, the 
operations can be organised in order to update Q' in each iteration avoiding the 
last matrix product. In the update only two columns of Q' are updated. Based 
on this fact a scalable operation was implemented by allowing the redistribution 
of data. The optimal data distribution is blocks of rows so that any given row 
is completely allocated to a given processor, avoiding communications between 
processors for the update of Q'. The parallelisation implemented keeps the 0(n2) 
chase operation in one processor which computes all rotations for an iteration, 
and distributes them over a column of processors. Then all processors update 
their rows, the 0{n3) part, in parallel without communications. This strategy has 
a huge impact in the scalability of the QR iteration as shown by the isogranularity 
curve in figure 7. A good load balancing is also achieved for a heterogeneous 

machine as shown in figure 6. 
The ideal grid for QR iteration is the opposite (column vs. row) of the ones 

for tridiagonal and orthogonal matrix computation. This is the reason for con- 
sidering indivisible operations and allowing redistribution of data between them 
to adapt the parallel machine to each operation. 

5.3    Matrix Correlation 

After QR iteration has been computed for the objects in both images the eigen- 
vectors are ordered in decreasing order of magnitude of the correspondent eigen- 
value. The correlation operation measures the similarity between the eigenvectors 
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of both objects. The behaviour of the processing time function shown in Figure 
9 is different from the other operations. The best grid is either a row or a column 
of processors. The parallel algorithm is scalable as shown in figure 7. 

Tridiagonal reduction        Orthogonal matrix Matrix correlation 

Fig. 9  Estimated processing time for a 6 processor homogeneous machine connected 
by a 10 Mbit/s Ethernet 

6    Results 

R??^\T presented for machine M1 composed by 6 homogeneous processors 
of 141 Mfiop each, M2={244, 244, 161, 161, 60, 50, 49} Mflop and M3={161 

l*o 11
J
2^o7 Mfl0P Processors- M1 is connected by 10 Mbit/s Ethernet, and 

M2 and M3 by a 100 Mbit/s one. The performance metrics used to evaluate the 
parallel application is, first, the runtime, and second the speedup achieved To 
have a fair comparison in terms of speedup, one defines the Equivalent Machine 
Mimber (EMN(p)) which considers the power available instead of the number 
of machines that, for a heterogeneous environment, is an ambiguous information. 
Equation 7 defines EMN(p) and heterogeneous efficiency EH. for p processors 
used where Si is the computational capacity of the processor that executed the 
serial code, also called the master processor. 

EMN{p) = 2^»=i St 
Si     ' 

E„ = _ Speedup 
EMN(p) (7) 

For the machine M3 EMN(4) = 3.19, i.e. using 4 processors of the heteroge- 
neous machine is equivalent to 3.19 processors identical to the master processor 
if it is the 161 Mfiop one. 

The right table of figure 10 presents results for the parallel active contour 
algorithm in the M3 machine for an image of 64 KB (figure 4) and for a 256 KB 
one (the left picture in figure 10). The time 7\ represents the processing time 
of he serial code in the master processor and TP the parallel processing time 
in the virtual machine. The number of processors selected in each step of the 
algorithm changes in order to minimise the processing time 
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Stage Number of processors 

Image 64KB 256KB 

Low passt. 

Edge detect. 

Thresh. 

Distance transf. 

LUdecomp. 

4 

4 

1 

1 

1 

4 

4 

4 

2 

4 

T1/Tp(s) 13.4/5.4 82.4/37.6 

Speedup 2.51 2.19 

EMN 3.19 3.19 

Eh 0.79 0.69 

Skin tumor detection Active contour results 

Fig. 10. Application results of the active contour algorithm 
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EMN 3.6 3.8 3.8 3.8 4.0 4.0 4.0 

Eh 0.28 0.45 0.61 0.68 0.73 0.76 0.78 

Computation time Processing results 

Fig. 11. Eigenvector computation in the M2 machine 

Results for of the eigenvector computation are presented in figure 11 for 
machine M2 due to the wide application of the algorithm. As shown, the het- 
erogeneous efficiency is near 80% for matrices with more than 14002 elements. 
However, the first metric is processing time which is reduced for matrices larger 

than 4002 elements. 
To show the importance of the parallel processing system, results for the 

modal analysis algorithm are presented for the homogeneous machine Ml, figure 
12. The left chart compares the computation time of the virtual machine VM 
when the optimal number of processors is selected, as indicated in the processing 
results table, against the processing time when the same number of processors 
are used for all stages of the algorithm. The minimum time is obtained with 4 
processors, however, it is higher than the time obtained for VM. 

7    Conclusions 

A operation based parallel image processing system for a cluster of personal com- 
puters was presented. The main objective is that the user of a computationally 
demanding application may benefit from the computational power distributed 
over the network, while keeping other active users undisturbed. 

This goal can be achieved in a transparent manner for the user, once the 
modules of his/her application are correctly parallelised for the target network 
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Fig. 12. Modal analysis in the homogeneous machine Ml 

and the performance of the machines in the network is known. The applica- 
tion, before initiating a parallel module, determines the best available computer 
composition for a parallel virtual computer to execute it, and then launches the 
module, achieving the best response time possible in the actual network condi- 
tions. 

Practical tests were conducted both on homogeneous and heterogeneous net- 
works. In both cases the theoretically optimal computer grid was confirmed bv 
the measured performance. A balanced load was achieved in both machines The 
machine scalability depends essentially on the communication requirements of 
the operations. For QR iteration and matrix correlation the system is scalable 
however, it is not for the tridiagonal reduction. 

Other generic modules will be parallelised and tested, so that an ever increas- 
ing number of image analysis methods may be assembled from them. Application 
domains other than image analysis may also benefit from the proposed method- 
ology. 
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Abstract 

This paper analyzes the impact of hardware multithreading support on the per- 
formance of distributed shared-memory (DSM) multiprocessors built out of het- 
erogeneous, single-chip computing nodes. Area-efficiency arguments motivate a 
heterogeneous, hierarchical organization (HDSM) consisting of few processors 
with extensive support for instruction-level parallelism, and large caches, and a 
larger number of simpler processors with smaller caches for efficient execution of 
thread-parallel code. Such heterogeneous machine relies on the execution of multi- 
ple threads per processor to deliver high performance for unmodified applications. 
This paper quantitatively studies the performance of HDSMs for software-based 
and hardware-multithreaded scenarios. The simulation-based experiments in this 
paper consider a 16-node multiprocessor, six homogeneous shared-memory bench- 
marks from the SPLASH-2 suite, and a decision-support application (C4.5). Sim- 
ulation results show that a hardware-based, block-multithreaded HDSM configu- 
ration outperforms a software-multithreaded counterpart, on average, by 13%. 

1     Introduction 

Continuing technological advances in VLSI manufacturing are predicted to bring 
about billion-transistor chips in the next decade [15]. Such large transistor bud- 
get allows for the implementation of high-performance uniprocessors [12] that ag- 
gressively exploit instruction-level parallelism (ILP), as well as chip-multiprocessors [8] 

that can efficiently execute explicitly parallel tasks. 
Large multiprocessor configurations of the future will be able to use such 

high-performance components as commodity building blocks in their design. Pre- 
vious work [6] has shown that combining nodes of different processor and memory 

characteristics into a heterogeneous distributed shared-memory (HDSM) mul- 

tiprocessor leads to area-efficient designs. 

" This work was partially funded by the National Science Foundation under grants 
CCR-9970728 and EIA-9975275. Renato Figueiredo is also supported by a CAPES 
scholarship. Candidate to the best student paper. 
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An HDSM combines few high-performance processors and memories with a 
larger number of simpler processors and smaller memories to form a hierarchi- 
cal, heterogeneous system [1] capable of fast execution of both sequential and 
parallel codes. Figure 1 depicts the organization of an HDSM. 

Level 1 

Level 2 

®    ®     ® 

[M]  [M|  |~M] 

© 
Level 3 

Fig. 1. HDSM: processor-and-memory hierarchical organization. Processors and mem- 
ones are drawn such that processor performance and memory capacity are proportional 
to their area in the figure. 

The proposed heterogeneous DSM machines rely on the execution of multiple 
threads per processor to deliver high performance for unmodified, homogeneous 
applications. Previous work has studied the performance of HDSMs assuming a 
software multi-tasking model based on voluntary context switches. This model is 
valid for current commodity microprocessors that do not provide hardware mech- 
anisms to implement fine-grain multithreading. However, hardware multithread- 
ed microarchitectures are currently being used in commercial processors [16] and 
considered m the implementation of future-generation high-performance micro- 
processors [4j. 

This paper extends the performance studies of HDSMs reported in [61 bv 
quantitatively analyzing the impact of hardware multithreading on their perfor- 
mance This paper also complements previous work by employing a simulation 
model that explicitly accounts for heterogeneity of processor performance due 

frn JH Tpf I cteoanalyS|S 1 Performed via simulation of parallel benchmarks 
from the SPLASH-2 suite [18] and of a hand-paralellized deasion-support ap- 
plication (C4o [13]). Benchmarks are simulated individually to studv sinde- 
program parallel speedup. All benchmarks are programmed with single-program 
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multiple-data (SPMD) extensions to the C language. 
A modified version of the RSIM [10] multiprocessor simulator is used in the 

experiments. The original RSIM simulator models DSM machines built out of 
homogeneous ILP processors, with no hardware support for multithreading. It 
has been modified for the performance analysis shown in this paper to model 
heterogeneity of ILP processors and caches, and to model hardware support for 

multithreading. 
This paper is organized as follows. Section 3 describes the heterogeneous 

DSM machine model studied in this paper. Section 3 presents the experimental 
methodology used in the performance study. Section 4 presents experimental 
results and data analyses. Section 5 concludes this paper. 

2    Machine model 

2.1    Heterogeneous DSMs 

HDSM machines differ from conventional distributed shared-memory multipro- 
cessors in that processors, memories and networks of HDSMs may be heteroge- 
neous. In this paper, processor heterogeneity is modeled in terms of degree of 
support for ILP. Heterogeneity in the memory subsystem is modeled in terms of 
LI and L2 cache sizes and access times. Heterogeneity of the network subsystem 

is not modeled in this paper. 
The heterogeneity of processors and caches is motivated by area/parallelism 

tradeoffs in the design of future-generation microprocessors: the system consists 
of a combination of few, aggressive uniprocessors with large caches and many 
simpler processors with smaller individual caches. The former processors devote 
large numbers of transistors to deliver high performance for sequential codes, 
while the latter processors have smaller silicon area requirements and deliver 
high performance for parallel codes. 

The area/parallelism argument that motivates the design of HDSMs is based 
on the use of area-efficient simple processors for execution of parallel codes, and 
aggressive uniprocessors for execution of sequential codes. For highly parallel 
tasks, the high-performance uniprocessors can also be assigned to parallel com- 

putation. 
Previous work has shown that a software-based assignment of multiple thread- 

s to the high-performance ILP uniprocessors of an HDSM yields performance 
improvements for memory- and cpu-intensive programs [6]. Context switches in 
software multi-tasking occur infrequently, and have large execution time over- 
heads. Such coarse-grain model limits the potential for overlapping high-latency 

shared-memory DSM operations. 
Research on multi-threaded processors has shown that aggressive ILP u- 

niprocessors can be enhanced to support multiple threads with small increases 
in chip area requirements [4], The implementation of hardware multi-threading 
extensions into the aggressive ILP processors of an HDSM can increase over- 
all system performance by increasing the potential for overlapping of shared- 
memory accesses. To investigate the performance of such enhanced system, the 
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high-performance processors of the HDSM machine modeled in this paper have 
hardware support for block-multithreading. 

2.2    HDSM multiprocessor configuration 

The HDSM multiprocessor under study consists of sixteen nodes Each node 
contains a single processor, LI and L2 data caches, main memory and a remote 
access device (RAD) with network interface and coherence controller The node, 
are interconnected by a 2-D mesh. Cache coherence is maintained via a directory 
controller that implements the MESI [11] protocol. The release consistency [7] 
memory model is assumed in this study. Figure 2 depicts the machine model 

o-CH>a \ 
m  Level 1 G Level 3 

H  Level 2 

, i u 

p '' M 
i Ll|L2 RAI 

1 I 
1 

MEM 

Fig. 2. HDSM model: each heterogeneous node has a Single processor (P). two levels of 
data cache fLl,L2A main memory ßAEM) and a remote access device /RAD) all 
connected by a memory bus. Nodes are interconnected via a mesh network 

♦ u ^6™enClty 1S PreSent 'n b°th the Processor and memory subsystems of 
the HDSM machine. Processor heterogeneity is modeled in terms of the size 
of hardware structures dedicated to ILP exploitation. The heterogeneous UP 
parameters investigated in this paper are issue rate, instruction window size 
number of arithmetic (ALU), floating-point (FPU) and address units, and max- 
imum number of outstanding cache misses (MSHRs [9]). Heterogeneity in the 
memory subsystem is modeled in terms of the size and speed of caches" 

The HDSMs under study have three levels, with 2. 4 and 10 nodes in levels 
1, 2 and 3 respectively. The machine is configured as a processor-and-memorv 
hierarchy [1J; the number of processing elements increases from top to bottom 
levels of the hierarchy, while cache sizes and the performance of processors and 
cache memories decrease from top to bottom levels. Table 1 shows the processor 
and memory configurations assumed for each machine level 

The inter-processor network is assumed to be homogeneous. This assump- 
tion is conservative in accounting for inter-processor communication latencies 
Given the predicted integration level of next-generation microprocessors, it is 
conceivable that HDSM levels built out of simple processors be integrated into 
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level i=l level i=2 level i=3 

number of processors(i) 
issue witdh(i) 
instruction window size(i) 
number of ALU/FPU/address units (i) 
number of MSHRs(i) 
Ll cache size(i) 
L2 cache size(i) 
L2 cache miss detection latency(i) 
L2 cache hit latency(i) 

8 
128 

4 
12 

32KB 
1MB 

10 
25 

4 
4 

64 
2 
8 

16KB 
256KB 

5 
13 

10 
1 
8 
1 
4 

8KB 
64KB 

3 

Table  1.  3-level, 16-processor heterogeneous machine configuration. L2 cache miss 
detection and hit latencies are shown in terms of clock cycles. 

single-chip multiprocessors [8,6]. Such configuration would allow smaller intra- 
level latencies than those assumed in the machine model. 

2.3     Heterogeneous node configurations 

The configuration of the level-3 processor is based on a simple out-of-order micro- 
processor pipeline that issues one instruction per cycle. The level-2 configuration 
is based on current high-performance, out-of-order microprocessor designs [5]. 
The high-performance level-1 processor is based on predicted configurations of 
future-generation ILP microprocessors [3,14]. 

The cache sizes of the level-1 processor are dimensioned so that the Ll and 
L2 data caches are large enough to hold the primary and secondary working 
sets, respectively, of the SPLASH-2 benchmarks [18]. Cache sizes of lower-level 
processors are scaled down (with respect to the adjacent upper level) by factors 

of 2 (Ll cache) and 4 (L2 cache). 
The Ll cache access times are assumed to be a single processor cycle for 

all processor configurations: it is assumed that clock cycles are the same for all 
processors and that the level-1 caches are designed to match the pipeline clock. 
The L2 cache tag and data access times are modeled after the analytical cache 
access time model described in [17], assuming a 0.18//m technology [14]. 

The remaining processor and memory simulation parameters are homoge- 
neous across HDSM nodes and are set to the default values of the original RSIM 

simulator. 

2.4     Programming model 

This paper considers the execution of homogeneous parallel applications on 
HDSMs. These programs are written in the single-program, multiple data (SP- 
MD) model. The homogeneous programs are mapped onto heterogeneous re- 
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sources without source code modifications via static thread-to-processor assign- 
ment schemes. The next subsection details the two assignment schemes studied 
in this paper. 

2.5    Multi-threading model 

In this paper, two policies are considered in the assignment of threads to hetero- 
geneous processors. In the virtual-processor policy, both software and hardware 
support for multithreading are studied. 

1. Single-thread: one thread is assigned to each processor in the system 
2. Virtual-processor: in this scheme, a processor Pt is assigned VP(i) threads 

where V P(i) is the ratio between Pt's performance and the slowest processor 
in the system. This ratio is obtained from the uniprocessor simulation results 
summarized in Figure 3 (benchmarks that require power-of-two number of 
processors are assigned 5, 3, and 1 threads to processors in levels 1 2 and 3 
respectively). There are two different multithreading scenarios studied under 
this assignment policy: 

(a) Software multithreading: in this scenario, thread context switches are 
triggered only by failed synchronizations on locks and barriers To imple- 
ment this switching criterion, the RSIM synchronization librarv has been 
modified to include a voluntary context-switch call in the spin-waiting 
loop of the synchronization operations. The software context-switching 
overhead is modeled in the simulator by forcing the switching proces- 
sors to be idle for a configurable number of clock cvcles. The context 
switching overhead in this scenario is 800 processor cycles 

(b) Hardware multithreading: in this scenario, hardware support for block- 
multithreading [2] is available in the HDSM level-1 and level-2 proces- 
sors. Thread context switches are triggered by the following criteria (in 
addition to failed synchronization): when L2 cache misses occur when 
the number of cycles without any instruction graduation exceeds the 
threshold Tgrad, and when the total number of cycles without any thread 
context switch exceeds the threshold T.witch. In this paper, Tgrad and 
1,witch are set to 20 and 10000 processor cycles, respectively. The context 
switching overhead is this scenario is set to 4 processor cvcles In addi- 
tion threads are guaranteed not to be context-switched for a minimum 
run length of 4 cycles. 

3    Experimental methodology 

3.1     Benchmarks 

The set of benchmarks used in this paper includes six programs from the SPLASH- 

C4 5 [13] 3 ParalldlZed Version of the decision-support database program 
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The programs (and respective data sets) studied in this paper are C4.5 (adult 
dataset with unknowns removed and a minimum node size of 100), FFT (16K 
points), FMM (4096 particles), LU (256x256 matrix), Ocean (258x258 ocean). 
Radix (512K integers) and Water (512 molecules). All benchmarks are compiled 
with Sun Microsystem's Workshop C compiler version 4.2 and optimization level 

-x04. 

3.2    Simulation environment 

The simulation environment is based on a modified version of the RSIM simula- 
tor [10] that models a release-consistent DSM machine connected by a 2-D mesh, 
with uniprocessor heterogeneous nodes with support for block-multithreading. 

4    Experimental results 

In this section, the performance of HDSMs is analyzed for the thread assign- 
ment schemes described in Section 3. Initially, the relative performance of the 
individual heterogeneous processors is discussed. Subsequently, the impact of 
multithreading on HDSM performance is analyzed. 

4.1     Impact of ILP heterogeneity on single-node performance 

Figure 3 shows the performances of the heterogeneous processors and caches in 
terms of speedups with respect to a base (level-3) processor. The level-2 and 
level-1 processors outperform the single-issue level-3 processor, on average, by 
277% and 396%, respectively. Since clock speeds are assumed to be the same for 
all processors, the performance differences between the heterogeneous processors 
are due to instruction-level parallelism and cache sizes only. 

Figure 3 shows that an eight-fold increase in issue rate and a sixteen-fold 
increase in L2 cache yield an average four-fold performance improvement of the 
level-1 processor over the simple level-3 processor. This result is consistent with 
the area-efficiency analysis based on a case study of Alpha microprocessors pre- 
sented in [6]. The increase in chip area necessary to implement larger caches and 
structures devoted to the extraction of ILP yields sub-linear gains in performance 
under the assumption of same fabrication technology (and clock cycle). 

4.2     Parallel speedup analysis 

Figure 4 shows the speedups of the 16-node HDSM with respect to the base 
(level-3) processor for the three different assignment scenarios described in Sec- 
tion 3. In the virtual-processor assignment, 4, 2 and 1 threads are assigned to 
level-1. level-2 and level-3 processors, respectively (except for benchmarks that 
require power-of-two processors, where 5. 3 and 1 threads are assigned to proces- 
sors of levels 1. 2 and 3). The simulation results show that the virtual-processor 
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Uniprocessor speedup 

D Level 3 
■ Level 2 
■ Level 1 

C4.5    FFT    FMM     LU    Ocean Radix Water  Mean 

Fig. 3. Simulated uniprocessor speedups (with respect to level-3 processor) of the het- 
erogeneous configurations, shown in Table 1. 

assignment significantly outperforms the single-thread assignment under both 

A !fc J",Ultlthreadin8 models- The average virtual-processor speedups are 28% 
and 45% for the software and hardware multithreaded schemes, respectively. 

The hardware multithreading model outperforms the software model for al- 

r^'Z L™C^l Radm the largeSt Perfo"nan<* improvement is observed 
In f£   ( 0)'        W6d by Cl5 (19'6%)' FMM (16'5%)' 0cean (15-4%). LU 
(9.4%) and Water (7.0%). For Radix, the hardware multithreading model per- 
forms as well as the hardware model. These results can be explained with a 
closer analysis of the execution time in the level-1 processor. 

Figures 5, 6 and 7 show a breakdown of the execution time in one of the 
Jevel-1 processors into three components: busy, stalled on memory accesses and 
stalled on synchronization (locks and barriers) for the three assignment scenarios 
of figure 4. 

In the single-thread case (Figure 5), the high-performance level-1 processor 
spends most of its execution in synchronization points. Since this assignment 
does not account for heterogeneity in processor performance, the level-1 proces- 
sor is often waiting to synchronize with lower-level (slower) processors to proceed 
with computation. 

In the software multithread case (Figure 6), the level-1 processor spends less 
time in synchronization relative to actual computation. The load-balancing prop- 
erty of the virtual-processor scheme allows the level-1 processor to perform more 
computation before attempting to synchronize with lower-level processors   and 
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0.00 

HDSM speedup 

DST 
B MT-SW 
■ MT-HW 

C4.5    FFT    FMM     LU    Ocean Radix Water Mean 

Fig. 4. Simulated HDSM speedup* (with respect to level-3 processor) for single-thread 
and virtual-processor assignments (software and hardware multithreading models). 

Execution time components, single-thread 

Sync 
Mem 

DBusy 

C4.5       FFT      FMM Ocean    Radix    Water 

Fig. 5. Relative contributions of busy, memory and synchronization to total execution 
time of a level-1 processor under the single-thread assignment. 
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Execution time components, MT-SW 

C4.5      FFT      FMM       LU      Ocean    Radix Water 

Fig. 6 .Relative contributions of busy, memory and synchronization to total execution 
time of a level-1 processor under the virtual-processor, software multithreading assign- 
merit. " 

hence the synchronization component is reduced significantly. Since the proces- 
sor spends less tame in synchronization points, the (relative) busv and memory 
components increase. 

A comparison of the multithread cases (Figures 6 and 7, respectively) shows 
that, for all benchmarks (in particular, CIS and FFT), the relative memory ac- 
cess component, gets reduced when hardware support is present. This is explamed 
by the ability of hardware multithreading to hide memory latencies by overlap- 
ping memory accesses from distinct threads. The improved memory behavior 
is reflected in increased processor usage (busy component) and, ultimately in 
better performance over the software scheme as shown in Figure 4 

For Radix, the hardware scheme fails to deliver better performance for the 
iollowmg reason. In Radix, the increased frequency of context switches causes 
interference ni the level-1 cache, increasing the worst-case LI miss rate in pro- 
cessor 0 (HDSM level 1) from 9.7% to 15.1%. 

5     Conclusions 

A heterogeneous, hierarchical organization of processor and memory resources 
of a DSM allows efficient execution of codes with various degrees of parallelism 
This organization also delivers high-performance for unmodified, homogeneous 
shared-memory parallel programs that exhibit a single degree of parallelism 
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Execution time components, MT-HW 

C4.5       FFT      FMM Ocean   Radix    Water 

Fig. 7. Relative contributions of busy, memory and synchronization to total execution 
time of a level-1 processor under the virtual-processor, hardware multithreading assign- 

ment. 

Support for the execution of multiple threads in the high-performance pro- 
cessors of a heterogeneous DSM is key to delivering high performance for such 
homogenous parallel applications. This paper shows that the virtual-processor 
assignment of threads to nodes that are heterogeneous only with respect to ILP 
hardware and cache sizes improves the average performance of HDSMs by up to 
45%. when compared to a single-thread assignment policy. 

This paper also shows that hardware support for hardware block multithread- 
ing in the high-performance upper-level processors is desirable for an HDSM or- 
ganization. A simulation analysis shows that hardware multi-threading improves 
the performance of virtually-assigned homogeneous applications in HDSMs by as 
much as 21% (13% on average) over a software-based context-switching scheme. 

A detailed analysis of the execution in the multithreaded upper-level proces- 
sors shows that, while the virtual-processor thread assignment mechanism is able 
to improve load balancing, the hardware multithreading solution is particularly 
effective in overlapping high-latency shared-memory accesses and reducing the 
memory component of the execution time. 
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Abstract. The study of the solution of the Generalized Sylvester Equa- 
tion and other related equations is a good example of the role played by- 
matrix arithmetic in the field of Modern Control Theory. We describe the 
work performed to develop systolic algorithms for solving this equation, 
in a fast and effective way. The presented results show that the design 
methodology used allowed us to propose the use of Systolic Libraries, 
that is, reusable systolic arrays that can be implemented taking profit of 
the use of FPGA technology. In this paper we show how it is feasible to 
solve the Generalized Sylvester Equation using basic modules of Linear 
Algebra that can be implemented on versatile systolic arrays. 

1    Introduction. 

The Generalized Sylvester Equation, AXB + CXD = E, with A,C G jRmxm, 
B D e i?nxn and X,E G Rmxn, and some simpler derived equations such as 
the Sylvester[7],[15],[3] Lyapunov [13],[17] and Stein [7],[15] have multiple and 
important applications in the field of Control Theory [9],[7],[15]. 

Obtaining the solution of these equations is a suitable problem for the ef- 
ficient use of parallel algorithms, due to the regular structure of the matrices. 
However, when real-time constraints apply to the system, the use of dedicated 
processors, usually implementing systolic algorithms in VLSI is required. We 
have recently presented several works [10],[12] showing that a modular approach 
to systolic algorithms is a suitable way of building fast, reconfigurable solutions 
to be implemented in FPGA devices to obtain cost-effective custom processors 

to solve different problems. 
The starting point is a new design methodology [10] based on the Kronecker 

Product and Vec-Function operators. Algorithms obtained this way are easy to 
parallelize because they consist of combinations of basic, widely studied opera- 
tions (Solve a triangular equation system, Gaxpy, Saxpy, QR decomposition of 
a Hessenberg matrix, ...), and the required data flow is well structured to pass 
from one functional block to another without intermediate storage. 
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Extending these results, we have compiled in a Systolic Library for Linear 
Algebra all the basic modules, following the same principle of modular program- 
ming that generated other sequential and parallel environments [1] [18] For the 
modules of this library [11] to be useful to solve anv problem in their application 
field two restrictions hold: (1) all the systolic arrays must share a compatible 
data flow, to allow results from one of them be forwarded to another, and (2) the 
arrays must be designed to process problems of anv size. These two restrictions 
have been satisfied using dynamic arrays and applying the DBT transformation 
[14J on the basic operations of the linear algebra. 

The application described in this paper is a good example of the use of 
the Systolic Library. The first step to solve the Generalized Sylvester Equation 
following the method proposed by Golub, Nash and Van Loan [4]. is transforming 
the original problem A'X'B' + C'X'D' = E', into AXB + CXD = E using 
orthogonal similarity transformations on the pencils A' - XC and D' - \B' to 
obtain their Generalized Schur Forms (that is, P[(A - AC)P2

T = A' - XC and 
<2i {D - XB)Ql = D' - XB1). The coefficient matrices of the resulting equation 
are m a condensed form. We have worked on the solution for three cases [101- 
hrst^ when all of them are triangular (Triangular Case). Second, when A is Schur 
or Hessenberg and the others triangular (Hessenberg Case). Third, when both 
matrices A and D are Schur (General Case). The study of the two first cases 
has made possible the development of the basic arrays; the study of the general 
case allowed us to prove how the collection of routines obtained were efficient 
(and sufficient) to solve more general and complex problems 

Section 2 presents the basis of the methodology for developing the algorithms- 
the definition of Kronecker Product and Vector Function of a matrix. Section 
6 describes; the main operations to be solved when studying the solution of the 
Generalized Sylvester Equation in the General Case. Then section 4 shows how 
to use the library to implement this operation. Finally section 5 concludes and 
presents the ongoing work. 

2    Applying the Methodology of Design. 

The methodology used to solve the Generalized Sylvester Equation, described 
in [10], is based on the definition of the Kronecker Product and Vec-Function 
ot a matrix. The properties of both operators [6] can be applied to simplify 

AxSTrTn     ^ Tblem- Concretel>< b>' aPP^S them to the equation 
fLZ =    ' near ec3uation system (BT ® A + DT ® C)vec( X) = 

vec(E), shown in figure 1, is obtained1. The resulting system, too huge to be of 
practical implementation, offers a clear representation of the data dependencies 
and a simple expression of the basic steps required to solve the problem 

ticnnuZTTs tf" t0 a? UPPer triangUkr SyStem< Su^ests the aPP1^- tion of the Back Substitution Algorithm to solve the problem. For example, an 
intuitive and simple method would be to obtain the value of xn and then update 

1 iTS^S the
f
PenCi] D ~ XB h3S l0WCT ^-triangular structure: this affects 

onlv to the order of resolution and helps to visualize the problem. 
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Fig. 1. Linear Equation System obtained by applying the Kronecker Product and the 
Vec-function to the Triangular Generalized Sylvester Equation. 

the values of e„_i, ..., el as is done for the solution of a triangular system. The 
resulting procedure is shown in figure 2. 

Calculate Q: (Abii+Cdii)Q is upper triangular; 

Solve ((Abii+Cdii)Q)(QTxi)=ei; 

w:=(AQ)*(QTxi); 

v:=(CQ)*(QTxi); 

xi:=Q*(Q
Txi); 

for j:=i-l downto 1 do 
Update ej:=ej-wbij-vdij 

endfor; 

Fig. 2. SGH Step: Procedure to obtain x,, assuming that d,--i.» = 0. 

But figure 1 also shows that for certain elements (for example x3). that simple 
procedure cannot be applied because there are subdiagonal elements of matrix 
D (d23) that produce subdiagonal blocks in the transformed matrix. It is then 
necessary to solve at once two columns of matrix X (x3 and x2). We will call 
this new-operation Solve-2. Figure 3 shows the complete procedure to solve the 

equation. 
In the resulting SGG Algorithm all the operations but Solve_2 are basic 

operations of Linear Algebra and they can be directly performed on the arrays 
designed in the systolic library described in [11]. In fact, the SGH step is the 
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i : =n ; 
while (i>0) do 

if (di-l,l=0) then 
SGH step; 
i:=i-l 

elBe    Ab 
Solve_2 ( 1 

'Mi-i 

K-l.i-l^i-l.i-l^i.i-l^Cdi^.X/Xi.A /e^-A 
V MW§± Abli+Cdii    )[  xj   =  \ e±)    ; 

vl:=C*x. 

w2:=A*x, 

v2:=C*x 
1' 

i-l; 

i-1 downto 1 do 
(wlb 

for j 
Update e■:=e 

endfor; 
1J+vldij+w2bi_li ;+v2d 

i-l.j' 

= i-2 
endif 

endwhile; 

Fig. 3. The resulting SGG Algorithm. 

basic stage of the Algorithm for solving the Hessenberg case [101. Therefore to 
continue with the study of the solution of the General case it is necessary to 
study this new operation. 

3    The SOLVE_2 Operation. 

For the efficient implementation of the Solved operation we start by analyzing 

iÄar"1 matrix'M; a possibie exampie'assuming m=4 

/ 

M 
-46i_i,i_i +Cd{ 

Cdi-ij 
-i,i-i 

an an a13 au bu 6i2 613 614 \ 
0   ö22 a23 a24   0   622 623 624 

0       0    O33  Ü34     0       0     633   634 

Ab^i+Cd,^!^ 0    0   043a«   0     0   643644 

Abt, + Cd«     J en C12 C13 C14 dn di2 d13 d14 

0     C22   C23   C24     0    d22 ^23  d24 

0    0   C33 C34   0    0   d33 dM 

\ 0    0    0   C44   0    0  rf43 d44 / 

(1) 

We have followed the proposal of Golub: Nash and Van Loan [41 to reduce 

peTmutttlrS ariZingfSmatriX (0(m3) fl0ps2)" APP^ to tie problem a permutation matnx such that it transforms 1,2,...,mn into l,n + l,2n + 

^■■■Am-l)n + l,2,n + 2,2n+2,...,(m-l)n + 2,...,n.2n.3n,...,(m-l)nmn 
the result is an equivalent problem in which the coefficient matrix is an up^er 

2 ;tCOrding,t0,th,e °Id
1
definition of fl°Ps [5]- «W = a[i\ + b[i] * c[i\, to better compare 

the sequential algorithm with the systolic implementation. 
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triangular matrix with two non-zero subdiagonals. Using that transformation in 
the example, the result is 

/an 012 ai3 ai4 bn 612 013 bi4^ 

0 d22 G23 324     0     622   023  b24 

0 0    Ü33 »34     0       0     ?)33 b34 

0 0    Ü43 »44     0       0     &43  b44 

Cll C12   Cl3   C14 du  d\2 d\3 dl4 

0 C22   C23   C24     0    d22 ^23 d24 

0 0     C33   C34     0       0    d33 d34 

V 0    0    0   C44   0    0   d43 d44 / 

/an 611 an 612 an 613 ai4 bi4\ 

Cll du C12 dl2 C13 dl3 C14 dl4 

0 0 Ü22 ^22 023 023 »24 b24 

0 0 C22 <^22 C23 d23 C24 d24 

0       0       0       0    Ü33  633  334 b34 

0    0    0    0   C33 d33 C34 d34 
0       0       0       0    Ü43  643  344 b44 

V 0     0     0     0     0   d43 C44 d44 / 

(2) 

Different possibilities were considered when designing the corresponding al- 
gorithm to avoid the construction of the auxiliary matrix PTMP. Two were 
deeply studied due to their feasibility: 

1. To process M as matrix {Abu + Cdu) in the SGH step. The basic idea in the 
procedure described in figure 2 is to look for a compatible data flow among 
the operations to allow a systolic implementation. Then the transformation 
to triangularize the coefficient matrix of Solve is applied by columns. In 
the systolic implementation the resulting data flow allows to obtain a good 
chaining between Calculate Q and Solve operations, that stands also for 
Solve and Gaxpy; and, moreover, there is no need to form an auxiliary 
matrix, working in terms of the original one. Our aim was also to keep the 
original matrices in the Solve_2 operation, following for the triangularization 
the reduction order imposed by the permutation of M in eq. 2. The result 
was the design of a sequential algorithm, SGG1 [10], of 0(5m2n+mn2) flops. 

2. To process M in a similar way to the Back Substitution Algorithm, obtaining 
the values of columns xt and xi-i by groups of two elements (corresponding 
to zero subdiagonal elements of matrix A) or four elements (corresponding 
to non-zero subdiagonals entries of matrix A). That must be done due to 
the structure of M in eq. 1. For non-zero entries of the original matrix A 
(for example elements a43, bi3 and d43)a4x4 system has to be solved, 
obtaining four values of ith and i - Ith columns of X. For entries whose 
value is zero, solving a 2 x 2 system two values of ith and i - Ith columns 
of X. The corresponding sequential algorithm [10] has a temporal cost of 

0{m2n + mn2) flops. 

(5SSS)(H)-(H)-(3a)(%-)-(^') 
\    0     d43   c44   d44 /     ^    i4 ;     I y     e4|i     y 

3.1     Obtaining Systolic Algorithms for the Solve_2 Operation. 

The previous resolution schemes present two major drawbacks for their systolic 

implementation: 

1. For the first approach, the rotations involve columns in different blocks of 
the original matrices (marked in bold in eq. 2); therefore it is necessary to 
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explicitly form all the linear combinations of all the blocks involved in the 
Update of other columns of matrix E. It is impossible to form the auxiliary 
vectors wl, w2, vl and v2 to reduce the cost of Update. 

2. For the second approach data dependencies are so strong that we could not 
find an efficient systolic algorithm for it. 

Therefore, to design an efficient systolic algorithm for the Solve 2 operation 
we studied the reuse of those obtained for simpler cases. When solving the Trian- 
gular and the Hessenberg case, two basic systolic arrays were designed [111 The 
first one, called Module QR, has the capability of performing the operation 

Calculate Q : (aA + ßB)Q is upper triangular 

obtaining AQ, BQ and Q, and working with matrices of any size. The description 
is presented in figure 4. If a = 1, A = A, ß = 0 and B = I, the outputs of this 
operation are AQ and Q. 

-Jill 

CALCULATE_R: 

if Control then 

ifN4=f)thon !R(J> 
E.v=l . l-4.=f) 

else 

d:=sqn(sqr(NJ'N2)45qr(i;i'Ni+K:' 
IM:=(ITI*Nl+n:*N2)/(l 
t4:=(N4*N2)/d 

endif 
Ol:=NI ;04=N2; 
S!-=N.1»]-;4+EI*ia 
S2'=N4'H4+E2'Kn>, 
0!:=Nl*i;i.FI*E4. 

else  (Control = 0} 
l;> :=NI ;H:= 
Ol^N.TNl-l:]' 
02=N4*NI-E2' 

) S1:=N.-*K2+I:1' 
S2:=N4'N2+i;2' 

APPLY_R: 

()l'=NM*0-i.HI*<)4. 

02 < 
0.1- 
04- 

si   s 

"—►El 
—*E4 

02:=N2'O>!;2'04. 
Sl-=N]'04*I-:i*U.l. 
S2:=K2,()4*r2'().*, 
B:=()?:l:4={]4 

Fig. 4. Module QR. 

The second one, called Module Solve/GAXPY, has the capability of si- 
multaneously performing the operations 

Solve (aA + ßB)x = e and w := A* x, v := B * x 

also workingjv-ith matrices of any size. The description is presented in figure 5. 
it Q _ i, A _ AQ, ß = 0 and B = Q, among the outputs of this operation we 
have v = x, obtained from x := Q(QTx). 

It is then possible to solve the General case of the Generalized Sylvester 
Equation using the SGH step when a subdiagonal entry of the matrix D is zero 
and using the following procedure when a subdiagonal element is non-zero: 

1. Construct the 2m x 2m matrix PTMP. 
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i^W 
^rfnri 

SOLVE: 
if Control then 

El -(0WE2*N2+EJ*N1))' 
(N4*N2+N3*N1); 

03:=E2 + N4"E1; 
04:=E3 + N3'E1; 
SI :=N3:S2:-N4;02:=E1 

■E2 + N4*E1; 
= EJ + N3*E1; 
= N1;04:-N: 

Nl   N2 

+ 4 GAXPY: 

01-» 
02«- 
03*- □ -»El       El-01; 

E2      02:-E2 + N2-OI; 
«^E3      03 :=E3 + N!*0I; 

SI    S2 
SI :-N!;S2:=N2 

Fig. 5. Module Solve/GAXPY. 

2. Construct the corresponding version of Identity matrix: starting from 

1 = 
Imxm -irnxm 

Imxm  -Lrnxm 

P
T
IP = (3) 

apply on it the same permutation (assuming again m=4), 

/l 1000000X 
11000000 
00 110000 
00 110000 
0000 1100 
0000 1100 
000000 11 

Vooooooi \) 

3. Using the Module QR (Q = 1, A = PTMP, ß = 0 and B = PT1P) nullify 
the two subdiagonals of matrix PTMP, (PTMP)Q and obtain (P IP)Q, 

4. Using the Module Solve/GAXPY (a = 1, A = (PTMP)Q, ß = 0 and 
B _ (pT2P)Q) solve the triangular system and obtain xt and Xi^ from 

the solution of the system, 
5. Using the Module Solve/GAXPY (A = A, B = C and any value for a and 

ß) calculate wl, w2, vl and v2 and Update the matrix E. 

This procedure can be entirely implemented with the proposed systolic arrays 
independently of the size of the coefficient matrices of equation AXB + CXD = 

E. 

4    Systolic Implementations for the General Case. 

The basic stage of the systolic computation will be the obtaining of a column of 
matrix X, xu when <U-U = 0 (SGH step) or the obtaining of two columns of 
matrix X, z,- and XJ_I, when dj_i,,- ^ 0 (SGG step). 

Figure 6 shows how to combine the two basic modules to solve the SGH 
step In addition to the Module QR and the Module Solve/GAXPY it is needed 
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a special cell, called GAXPY.2 to complete the calculus of w and v. accumulating 
on them the corresponding products with the subdiagonal elements of AQ and 
CQ (with the same zero-structure that matrix A); it is also necessary an array 
formed by SAXP\ cells with capability of performing a Saxpy operation to 
update each column of matrix E. This update is made up with the value of 
vector g Xi The figure does not show the calculation of *,- from this value, but 
it can been performed on the same array, introducing only the Identity matrix 
the corresponding rotations and the vector QT

Xi. 

GAXPY_2: 
El   01 :=E2+N2*E[; 

E2   02:-EJ + Nl>El 

■N3-EI-N2-E2-M 
~E1 ;02~E2 

Fig. 6. Obtaining xt {di-Ui = 0). 

m,T7ienf0Tfi0nof the SGG «? iS formed by the SUCcessive transformation 
i   car i£   At™ \      TTif P MP- T° nullify the Second subdiagonal, it 
is cons dered the matrix Aux, formed only by the (2m - 1) first columns of the 
original matrix; that is, it is a Hessenberg matrix of size 2m x (2m - 1)  When 
he subdiagonal has been nullified, the matrix Ami, also of size 2m x (2m - 1) 

he inS t?"   T     6 mfiX AUX2' h iS neCeSSar^ t0 add the last ^Inran of 
afte   tt 1X-    gamu " HeSSenberS matrix> of size 2rn x 2m, is obtained and 
after the process, it is obtained AuxS, that is upper triangular 

Figure 8 shows the complete process and the order in which each one of 
hese auxiliary matrices is processed. Note that the modules are of size m  so 

the process supposes the application of the DBT [14] on these matrices. The 

4 1  bu   noteTf10n«     CUlf\Q WiD be m°re Widdy discussed in subse^ion 
™ nfl   t "   g^ • ' ^ matlioes are CUt in blocks of the size of the arravs m a special way, making two blocks share a column. 

4.1     Size-Independent Systolic Implementation. 

Let us suppose that the blocks system of figure 1 is made up by N x A' upper 
Schur blocks Abij + Cd,, of size M x M, and each block is built of q x9 block" 
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(a) Initial matrix    (b) Matrix Aux    (c) Matrix Auxl    (d) Matrix Aux2   (e) Matrix Aux3 

Fig. 7. Successive transformation of the matrix P MP- 

of dimension m x m, being N = pn and M = qm. Let us also suppose that 
each of the columns of X and E will be built of q blocks of size m. According 
to this block structure, we will identify the subblock at the r row and s column 
from the (Abu + Cdij) block with the notation (A"&„ + Cr%); and the r 
subvector from the ith column of X, xu or E, e<, will be written x\ or e[. This 
block division will be used to develop a block oriented process to solve the 
Generalized Sylvester Equation; the described situation allows the decomposition 
of operations Solve, Gaxpy and Update to process blocks of size m x m. To 
decompose the operation Calculate Q (and Apply Q) it is necessary to realize 
that there can exist subdiagonal elements in the matrix (Abu + Cdu) that do 
not belong to any block. In order to nullify them, the block division for this 
operation is similar to the one depicted in figure 9: two consecutive blocks in a 
row, {Ar'bu + Crsdu) and (Ar's+1bu + Cr't+1du), share a column, in such a way 
that we can calculate and apply the corresponding rotations. 

Also, to perform the Update operation, the following block division for the 
matrix E and the ith row of matrices B and D must be considered: 

E = 

{En El2--Eip\ 
E21 E22 ■■■ E2p I    6;,i:i = (6<i bi2 ■■• biK bi,K+\) 

         '   d,,l:l  =   ( d,l  di2  ■ ■ ■ diK di,K+l ) 

\Eq\  Eq2  ■ ■ ■ Eqp / 

Let us assume K=((i-1) DIV n) and L=((i-1) MOD n). Each block E{j is of 
size (m + 1) x n. and shares a row with the corresponding block Ei+ij. Each 
subblock of the iih row of B and D has n elements, except for the subblocks 

bi K+i and dj,K+\ which have L+l. 
To solve the problem in the size-independent case, the Dense-to-banded 

Transformation, DBT [14], has to be applied to the non-triangular submatri- 
ces involved in the process. The DBT obtains, from a matrix of size m x m, 
another one of size m x 2m or 2m x m, but with bandwidth m, by the adequate 
juxtaposition of the upper and lower triangles of the matrix. In the present prob- 
lem it is necessary to find a common DBT to all the operations, so the second 

possibility must be chosen. 
As in the size-dependent algorithm, the basic stage will differ depending 

whether it is found that d,-_M is zero or not. When d,-_M = 0, the basic stage is 
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Outputs: Auxl andQ] 
odule Solve/Gaxpy 

t 

Saxpy cells & GAXPY_2|^Module Solve/Gaxpy 

Outputs: wl, vl, w2 and v2 

Outputs: x; and x. i-1 

FIN V    P f P u     ^ Calculation of * ^ *■■-! and the Update of matrix 
E. (Note: References to blocks of the Identity and Q matrices really refer to blocks of 
matrices PT1P and {PT1P)Q respectively). 
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Assb„ ♦ e 

Fig. 9. (a) Block division for the Solve and Gaxpy operations, (b) Block division for 
Calculate Q and Apply Q operations. 

the calculation of x\, shown in figure 10. This process is divided into two steps. 
First the obtaining of (Qs)Txf. Then, two different operations on different data 
are required: the Apply Q and Gaxpy operations to preprocess the w and v 
vectors for later stages, and the update of E with regard to the calculated value. 
It is supposed that when obtaining {Qs)Tx\ the control signal is kept high m the 
QR and Solve/GAXPY modules; afterwards it goes low to start the preprocess, 
which is developed simultaneously with the updating on the n SAXPY cells 
array In the Update operation they will be involved the first L subcolumns 
of the ESK+I block and the K first blocks (from EsK to Esl). During this 
operation,' the O(n) array has to receive as inputs the required K copies of ws 

and vs to complete the calculation. To do that, we can use the GAXPY.2 cell: 
depending of the value of a control signal (independent from the signal managing 
CALCULATE-Q and SOLVE cell) it selects inputs to the GAXPY array from 

the SOLVE cell or from memory. 
When di-u ^ 0 and the SolveJ2 operation must be block oriented, the matrix 

M must be also divided into blocks; the notation to be used will be: 

M" = 
Arsbi -l,t-l   + Cr   "!■ 

Cr"di-i,i 
-l.j-i ArsbUi-i + Crsdi 

Arshi +rs Cdi 
(4) 

In this case the basic stage will obtain x\_x and if. Blocks are introduced 
in the order suggested by figure 10, but taking into account that each diagonal 
block is processed as shown in figure 8 and each dense block as shown in figure 11. 
Once Xi y x,-i have been obtained, blocks of matrices A and C are introduced 
into the array in the order shown by figure 10 to complete the update of blocks 

ESK,---:Esi while obtaining wls, w2s, vls and v2s. 
This theoretical scheme could be optimized in the systolic implementation by 

overlapping stages, taking profit of the 2 - slow data flow as well of the existence 
of operations without data dependencies (for instance, in Solve_2 during the 
update of matrix E or, if two consecutive Solve.2 have to be applied, the Update 
part of the first can be delayed until the beginning of the second, increasing the 

efficiency of the SAXPY cells). 

■ 643- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

m copies of    : 
blocks bi.K-iand 

diK-: 

Fig. 10. Data flow for solving x*, m=4,n=3. 

5    Conclusions and Future Work 

We have shown how the Generalized Sylvester Equation and its derived equations 
can be systematically solved, using systolic blocks that perform basic operations 
of the linear algebra, and that form a complete Systolic Library. This method of 
solving these equations has been obtained by means of a new design methodology 
Its mam advantage is the modularity of the obtained solution, that allows to 
apply the same design principles used in software development. The methodologv 
has been applied to other equations derived from that, in the shown cases and in 
the case of A being a Hessenberg matrix [10], and all of them can be solved with 
the basic arrays described in this paper. These results have been used to design 
a complete Systolic Library [11] with the capability of solving a wide variety of 
problems in the field of matrix algebra. 

The work is being further extended in three different directions: the identifi- 
cation of others fields to apply the same design methodology, the implementation 
of the Systolic Library in FPGA devices and the automation of the process to 

pJoblem.   tam        FPGA C°nfigUrati0n fr0m the hiSh level specification of the 
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wxtf*In
n 

**\2M\ln 

O Knx22
ri^ 

?s)TXj.i, 

I      Module QR 

Outputs: Auxlrs 

(andQls+1ifr=s+l) 

O 

Vu 

Vux>^rs, Ql 

x^5, Ql 

Vux2,ytQl 

Vux2r)
>V01 

I       Module QR        | 

Outputs^ux3rs 

(andOs+1ifr=s+l) 
l^Module Solve/uaxpy I ^ T 

Outputs: esj and e5!.] 

Fig. 11. Detail of the process of each block of submatrix MTS,r # s, when applying 

the previous rotations. 
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Abstract. The 2D packing problem is a NP-hard problem with ap- 
plications in various industries, from apparel to ship building. Current 
computer based approaches still rely on interactive software and pick- 
and-drag procedures performed by experienced people. Semi-automatic 
commercial systems already exist, but to obtain a final good solution 
it is still necessary refinements of the solutions obtained automatically. 
Searching autonomously for good solutions in reasonable execution times 
requires optimization approaches that rely on the generation and eval- 
uation of a large number of solutions. To accelerate this process, a re- 
configurable and parallel computing subsystem was built that works as 
an auxiliary processor for low-cost desktop PC computers. This paper 
presents briefly the architecture of the auxiliary processor and the exper- 
imental results obtained by different approaches to parallelize the target 
problem into this parallel architecture. 

1    Introduction 

The 2D packing problem is a NP-hard problem, consisting in finding a distri- 
bution of a given set of irregular shapes over a limited space. Good solutions, 
although normally sub-optimal, are the ones that lead to minimum waste of the 
area available for placing the shapes. The particular instance of this problem ad- 
dressed in this work applies to the textile industry, where the placement area is a 
width limited rectangular sheet of fabric, and the global objective is to minimize 
the length of the region used by a particular solution. 

Fully automatic approaches targeted to industrial environments must achieve 
at least the same results as the traditional solutions built by hand, using inter- 
active software applications based on pick-and-drag procedures. Because the 
NP-hard nature of the problem, it is impossible to guarantee the optimality of 
one solution. However, good solutions may be found by using meta heuristic 
search procedures, like local search, tabu search or simulated annealing. These 
techniques rely on the construction and evaluation of a large number of complete 

* This work was partially funded by the Portuguese government under the PRAXIS 
XXI Program (Project nr. PO17-P3.1b-09/97 - AUTOMARC)). 
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solutions, in order to guide the search algorithm.- General approaches for these 
techniques start from an initial but feasible solution, and search for better solu- 
tions in its vicinity, according to the different criteria used bv these procedures 
Usually, neighbor solutions are generated by doing elementary modifications in 
parameters that characterize that solution. 

In the 2D packing (or nesting) problem, one solution can be represented by 
the set of coordinates occupied by the polygons that form the problem data 
One neighbor solution may be generated by simply moving one piece a small 
distance m a certain direction, and re-arranging the others to keep the solution 
feasible (i.e. avoid overlaps among the polygons). Although this is relatively 
easy to do by hand with hard paper molds or interactive computer applications 
the amount of computation required to perform this operation automatically is 
too high. In this problem, the critical time consuming tasks are the low level 
geometric operations that analyze the relative positions between polygons and 
detect possible overlaps that may turn a solution unfeasible. 

To accelerate existing optimization approaches for this problem based on 
meta-heunstics [1], a custom auxiliary processor for PC computers has been 
built based on an array of dedicated processing nodes (PPK-Polygon Position- 
ing Kernet) and a programmable processor (FCP-FAPNER Control Processor. 
irie PPK nodes are custom digital circuits that perform efficiently the detection 
of intersections among polygons, thus providing support to handle efficiently 
the polygon datatype. The FCP processor executes a stored program that im- 
plements a nesting heuristic to build a complete solution, making use of that 
parallel infrastructure to verify the feasibility of solutions. This custom comput- 
ing machine is called FAFNER (Flexible Architecture For NEsting pRoblems) [2 
6\, and interfaces with the higher-level optimization software running in the PC. 

This auxiliary processor is built on a reconfigurable digital system based on 
tPGA circuits (Field Programmable Gate Array). The flexibility afforded with 
such implementation platform allowed several design iterations on the hardware 
domain, to experiment with and evaluate different strategies that enabled the 
efficient exploitation of the computing power available in this system. 

This paper presents the results obtained with two heuristic approaches to 
build so utions for the 2D packing problem, and the different strategies used 
to parallelize them in the array of PPK nodes. The remainder of this paper is 
organized as follows. Section 2 detail the core geometric operations involved in 
this class of problem, and the common procedures that are normally used for 
the type of application addressed in this work. Section 3 presents the hardware 
organization of FAFNER , and describes the overall operation of the system. In 
section 4, different approaches to the parallelization of this problem on the target 
custom computer and the corresponding results are presented and discussed 
Finally, m section 5 the final conclusions are drawn, as well as suggestions for 
future works. 
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2    Geometric operations 

Although there are various techniques to build solutions for the nesting prob- 
lem [1,4,6,7,5], the approach used in this work places polygons on a discrete 
grid with acceptable size (for example, 1 x 1 mm is far enough for textile in- 
dustries), and moves one polygon (the working polygon) one grid unit at a time, 
checking the solution for feasibility for each new position occupied by it. The 
way polygons are moved and placed into a final and non-overlapping position is 

denned by a nesting heuristic. 

initial polygon list 

swap two polygons^xT 

modified polygon list 

Nesting 
heuristic 

 . •» 
LI 

^j 
L2 

two solutions with different costs 

Fig. 1. Different solutions by changing the order of the polygon list. 

In this work, one solution is completely specified by an ordered list of poly- 
gons (the polygon list) and the nesting heuristic that is followed to arrange them 
(figure 1). Polygons are picked in-order from that list and moved in the place- 
ment area, following rules determined by the heuristic. Using the same nesting 
heuristic, different solutions may be created by doing local modifications in the 
order of the polygon list. A simple procedure to create neighbor solutions con- 
sists in selecting randomly two different polygons in the polygon list and swap 
their positions. More sophisticated neighbor generation procedures can exploit 
relationships among different polygons such as area or shape, to favor certain 

types of solutions. 
In what concerns the FAFNER system configured with a given heuristic, one 

solution is only represented by the polygon list. The FAFNER processor receives 
this list from the optimization software running in the PC, computes one com- 
plete solution and returns the cost of that solution. In the present implementa- 
tion, the polygon list is represented by a 128 byte vector and the result is one 16 
bit integer that measures the length of the rectangular placement area used by 
that solution. This small amount of data transferred between the host computer 
and the auxiliary processor for each solution, represents a negligible processing 
time overhead that is used for data transfer. 

The main task of the FCP processor is to move polygons on the placement 
area, thus implementing the nesting heuristic. To check for feasibility, FCP calls 
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in parallel the array of PPK nodoe. Earh PPK node stores locally a list of poly- 
gons already placed into their final positions, and verifies the overlap condition 
between the workmg polygon sad its own list of polygons. 

Ike «ore opera^s performed by each PFK node is to verify if the working 
polygon, overlaps each one of its stored polygons. This verification is performed 
sequentially tov .all polygons. or> until one overlap is found. This verification is 

cZlTr i°ZSmST FkSl' th€ reiative P0siti°nS 0f their boundinS boxes are 
neZ^H  T   f

eyi° °      &P' & mOTe detailed ^by«^ comparison must be 
performed To further speedup this process, edges are grouped into second-level 
boundmg boXes~SLBB that are checked first, before comparing pairs of edge 
of the two polygons. To verify if two edges intersect, their bounding boxes are 

üZ^rÄ      * a
+T

e,CTPleX and time consuming procedure based on 
^-functions [8] is started only if it is necessary. 

d„ JM? hierarchical Procedure saves large amounts of computation. For an in- 

nahs o   notr ^"^l ™f * ^ ^ pr°Cedure' near 6>°°0 ^ns pairs of polygons are analyzed, but only 7.3% are required for the edge-bv- 

neare
8TorfnS1%r ^ T* T^ P°lyg°n ^ checked for intersection  s near 81,000 millions but only 0.6% of this number require the more complex D- 

function analysis. This problem has 48 polygons, 10 different shapes anT total 
o    60 edges and has been adopted as the main benchmark used to evaluate th 
various implementations created in this work. 

As a result of this hierarchical procedure, the time spent in each processing 
ep is very afferent: a bounding box comparison takes only one cL       d 

no!  h ZZT' SeC°nd leVd °r 6dgeS)' ^ t0 C°nClude if ^° «*« i^se or not   it may be necessary up to 11 clock cycles. Because of this, the time 
required to evaluate the overlap condition of two polygons varies from 1 clo"k 

nd^dlTxTx H  7? Pefrm ?B eXWtiVe edge'b^e ana^ and exceeds NxMxU clock cycles, where N and M represent the number 
of edges of each polygon. The actual processing time required for this operation 
is thus dependent on various factors: the relative position of the polygons theT 
shape and the number of edges that are associated into SLBBs. 

3    Fafner architecture 

arid" ZTvKCCdeTT SyStow 1S ™mP0Sed by tW° processinS units: the FCP 
a custom swPdrray ( ^ 2) M~ ^ FCP (FAFNER CmM lessor) is 
nestinlTuri ic ^T™ F*"*0* ^ aseCates & pr°gram -Panting he nest ng heuristic. This architecture uses an instruction set and a memorv La- 

ne™ uioarrtbrdsrcifically designed for this appiicati°n< -KSe 
ZuctioLTZZ ,r " COnVement POlm0n datatype- Custom low-^vel in- structions implement the communication with the array of PPK nodes through 
a reduced set of commands accepted bv them. * g 

„atiln'nf"? °f PPK Td6S constitute a Parallel engine dedicated to the eval- 

throU,h rerSeCtrS 'fWeen P°lyg0nS- This arra>- communicates with FCP 
through a common bus, plus an additional circuit that works as a concentrator of 
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Fig. 2. The FAFNER system architecture. 

the responses of each processing node. Each node interprets commands issued by 
FCP that define processing options, load polygon data into PPK nodes, assign 
a position for the working polygon and execute the check for overlap procedure 
against the set of placed polygons stored into the local memory of each PPK 
node. The addressing mechanism allows commands and data being sent to only 
one PPK node or broadcast for all PPK nodes present in the array. Present 
implementation includes 4 processing nodes, although the current version may 
be extended up to 12 nodes without requiring any modification in the physical 

hardware system. 
The concentrator circuit manages the responses of all the PPK nodes con- 

nected to it. When the PPK array is called to check for overlap, each PPK 
node works in parallel with different sets of data. A direct consequence of this 
is that, in the general case, each PPK node will terminate its processing within 
different times, depending on the geometric relationships between the working 
polygon and the set of polygons it is checked with. Moreover, the results of that 
processing (either overlap detected or overlap not detected) may be different for 
each node. The concentrator implements a custom circuit that manages all the 
status signals output by the PPK nodes, and feed appropriate responses to the 
FCP processor. The complexity of this function depends on the nesting heuristic 
and the way it is implemented. This varies from a three 4-input logic gates to a 
much more complex control circuit that compares the positions of the working 
polygon in all the PPK nodes to determine which one has found the best feasible 

position. 
The FAFNER system has been implemented in a reconfigurable system built 

with XILINX FPGA devices [9] and additional memory chips. A library of in- 
terface routines has also been created to support the development of application 

■651 



FEUP - Faculdade de Engenharia da Universidade do Porto 

programs that use this infrastructure. The fast reconfiguration of this familv 
of programmable chips enabled easy and fast design iterations of the hardware 
system. During this development, this has been crucial to tune up and improve 
the efficiency of the hardware architecture of both the FCP and PPK without 
requiring any modification in the physical hardware platform. Besides various 
implementations of the whole system with specific optimizations for different 
heuristics have been developed and can be programmed in a matter of seconds 
figure 3 shows a picture of the FAFNER system with 4 PPK nodes. 

I 
Fig. 3. The FAFNER system with 4 PPK nod es. 

4    Parallel approaches to nesting problems 

Because the critical time consuming task is the check for overlap operation 
one important issue is how to dispatch and schedule these operations by the 
PPK nodes, in order to exploit efficiently the computing power available in the 
system. The technique used to build one solution and the strategy adopted to 
distribute the polygons by the PPK nodes are important factors'that largely 
influence the effective gain in speed by using various PPK processors working 
in parallel. The various approaches that are being experimented in the scope of 
this work, and the results obtained are presented in the next subsections. All 
the techniques implemented represent a solution by an ordered list of polygons 
as referred above in section 2. ^"&> 

The benchmark adopted in this work is an industrial problem taken from a 

£n eLm   rf-     1S °rmed by 48 P°lyg0nS' 10 different shaPes and * total of 
9b0 edges. These results were obtained with an implementation of the FAFNER 

system running at 10 MHz, for a sequence of 20 different solutions generated 
randomly, creating neighbor solutions by swapping two polygons in the polygon 
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4.1    The right-to-left algorithm 

A first nesting heuristic implemented in FCP and described in [1] consists in 
pushing polygons from right to left, seeking for a leftmost feasible position for 
each polygon. A new polygon is first positioned into a leftmost position that do 
not overlap any of the other polygons already placed. Then, it is moved to the 
left one unit at a time, while checking for overlap with the other placed polygons. 
If an overlap is found, the previous position is restored and additional up and 
down moves are tried until a final position is defined for that polygon. Figure 4 
illustrates the path followed by one polygon until its final position is reached. 

Fig. 4. The right-toleft nesting heuristic. 

To parallelize the evaluation of intersections by the PPK nodes, the set of 
polygons already placed is distributed evenly by all the nodes. When the algo- 
rithm run by FCP needs to verify the intersection of a new polygon against all 
the placed polygons, the check for overlap command is broadcast for all the PPK 
nodes. This operation terminates as soon as one node detects an intersection, 
or when all the nodes conclude the processing without finding any overlap with 
their own set of polygons. When a final position is established for the working 
polygon, it is stored in the local memory of a PPK node selected by the nesting 
heuristic. In this approach, this is done in a cyclic fashion to distribute them 

evenly by all the PPK nodes. 
With this strategy, the complex operation that checks one polygon for overlap 

against a set of polygons is well distributed by all the PPK nodes, each one 
working in parallel with disjoint sets of polygons. As shown in the example 
of figure 5, when the 16 check for overlap operations have to be performed, 
this strategy divides the number of check for overlap operations by the number 
of PPK nodes. If these operations require approximate processing times, this 
procedure will also divide the global processing time by the number of processing 
nodes available in the system. 

However, practical results have shown little improvements in the overall per- 
formance when using four instead of one PPK node. Further analysis of these 
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The list of placed polygons 

O 

polygons in PPK2 polygons in PPK4 

overlap detected in PPK 2 working polygon 

Fig. 5. The parallelization strategy in the right-to-left nesting heuristic. 

results have shown that this is due to the disparity of processing times required 
tor the evaluation of intersections, as it was referred above While the 4 PPK 
nodes actually start their computation in parallel, in the majority of cases only 
one node requires the complex edge by edge analysis, and all the other PPKs ter- 
minate their processing based only on the analysis of bounding boxes, within a 
few number of clock cycles. In this situation, the overall processing time is clearly 
dominated by the work of a single node that performs the complex edge-by-edge 
analysis, or even by the code run in FCP when all nodes conclude their processing 
by analyzing only bounding boxes, either of polygons, SLBBs or edges. 

Table 1 presents the average execution times required by the combined hard- 
ware/software system to build one complete solution. The slight 6.8% reduction 
in the execution time achieved by using 4 PPK nodes instead of a single node 
does not justify the investment of the additional processing nodes. This improve- 
ment is even reduced to almost zero for simpler benchmarks, where the software 
run m the PC and in FCP far dominates the global processing time. 

This procedure creates solutions of the nesting problem with short execu- 
tion times because most cases of the critical check for overlap operations are 
determined by analysis of bounding box. However, because backtracking and 
unfeasible solutions are not allowed during the positioning of polygons there 
are severe limitations that constrain the quality of the solutions generated For 
example, smaller polygons cannot travel over larger polygons to be placed in 
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Table 1. Execution times for the right-to-left algorithm 

Number of PPK nodes 4 3 2 1 

Execution time (sec) 
Improvement (%) 

0.463 
6.8% 

0.472 
5.1% 

0.478 
3.8% 

0.497 

blank areas that could be left between the larger polygons. Because of these 
limitations and the bad utilization of the parallel array of PPK nodes, other 
nesting heuristics were implemented that achieved much better results. 

4.2    The raster algorithm 

Another approach is based on the algorithm referred in [5]. This nesting heuristic 
also places one polygon at a time, but searches exhaustively the placement area 
to find the leftmost position were the moving polygon may be placed. This 
technique solves the problems referred above and yields much better results in 
terms of quality, exploiting better the parallelism of the PPK array. 

A new polygon is placed first in the upper left corner of the placement area, 
and a top to bottom, left to right raster is performed one unit at a time, until 
a feasible position is found. To avoid unnecessary steps and speedup the overall 
processing, the starting position of a new polygon may be set to the final position 
found for the last polygon with the same shape. This technique follows the 
same procedure to distribute the evaluation of intersections by the processing 
nodes. The FCP processor manages the movement of the working polygon on 
the placement area, and calls the array of PPK nodes to determine if there is 
any overlap. However, because the path followed by a polygon requires more 
frequently the more complex edge analysis against polygons stored into different 
PPK nodes, the average improvement in the execution time achieved with 4 
PPK nodes is increased to 12%, using a cyclic distribution of the polygons by 
the PPK nodes. The operation of this nesting heuristic is illustrated in figure 6, 
and the results obtained are presented in table 2. 

Table 2. Execution times for the raster algorithm. 

Number of PPK nodes 4 3 2 1 

Execution time (sec) 
Improvement (%) 

53.3 
12.0% 

56.0 
7.6% 

58.0 
4.2% 

60.6 

Although the processing times required by this heuristic to build solutions 
are more than 115 times worst than the previous approach, the quality achieved 
by these solutions is much better. In most situations, the first solution found 
by this technique is already better than the best solution encountered with the 
previous approach after a large number of iterations, typically never below 1000. 
With this heuristic embedded in a simulated annealing search procedure, a new 
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working polygon 

end 

Fig. 6. The raster nesting heuristic. 

optimal was found for a synthetic benchmark first proposed in [1] and commonly 
used to evaluate 2D packing algorithms. 

4.3    Refinements to the raster algorithm 

In order to speedup the previous approach, the FAFNER architecture was re- 
designed to move into the PPK nodes functionalities previously accomplished 
by software run in FCP. The increment of the coordinates that define the posi- 
tion of the working polygon to perform the raster movement was implement in 
the PPK nodes as dedicated logic circuits based on binary counters and com- 
parators, ihis added a very small complexity to the PPK nodes, but enabled 
a significant reduction in the number of instructions executed bv FCP in the 
cycle that searches for the final position of one polygon. With this move into the 
hardware domain, the main cycle executed by FCP just need to issue a sequence 
of check for overlap instructions to the PPK array and analyze the results. Each 
fFK node automatically increments the current position of the working polygon 
m a single system clock cycle. 

As the heuristic procedure is the same, the improvements in the execution 
times obtained with this refinement are due only to the reduction of the number 
ol instruction in the main loop executed by FCP. 

Table 3 presents the results obtained with this implementation. The overall 
execution times were reduced to approximately 50% of the previous implemen- 
tation, and the execution time with 4 PPK nodes is reduced by more than 28% 
when compared to a single PPK node. 

4.4    A new approach to the parallelization of the raster algorithm 

In spite of the improvement achieved with the previous implementation, the 
utilization of the PPK processing node is far away from the ideal. In that im- 
plementation, the lack of efficiency with the number of processing nodes is also 
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Table 3. Execution times for the improved raster algorithm 

Number of PPK nodes 4 3 2 1 
Execution time (sec) 
Improvement (%) 

24.0 
28.8% 

25.1 
25.6% 

27.1 
19.6% 

33.7 

related to the disparity of execution times each PPK takes to detect the overlap 
condition. Contrary to the method used in the first heuristic (see section 4.1). 
the raster heuristic moves polygons over unfeasible positions, thus requiring in 
most cases the lower level and time consuming edge-by-edge analysis. Because 
all PPK nodes are started at the same time to compute the overlap condition 
with the working polygon in the same position, the final result can only be deter- 
mined when all nodes conclude their processing. If one or more nodes terminate 
in a short time because they didn't found any overlap, they must be kept in a 
idle state to wait for the completion of the slowest node. After that, a new check 
for overlap may be initiated in the next position. 

To further improve the utilization of the PPK array, the complete loop that 
issues the check for overlap operations to the PPK array was also moved into 
hardware and implemented in the PPK nodes. This way, each PPK node can 
search autonomously a final position for the working polygon, terminating only 
when that position' is found or when an external interrupt signal aborts its 

operation. 
To make use of this functionality, the strategy to distribute the list of placed 

polygons disjointly by the PPK nodes cannot be used. In this implementation, 
each PPK node holds the complete list of placed polygons, and each node checks 
the feasibility for disjoint sets of discrete coordinates. The scheme implemented 
currently for a FAFNER system with N PPK nodes, places initially the working 
polygon in positions (X, Y) for node 1, {X, Y +1) for node 2 and {X, Y + N) for 
node AT, and each PPK increments automatically its Y coordinate N units at a 
time. Within this increment, the Y coordinate is compared with the maximum 
width defined for the placement area to adjust the X coordinate accordingly. 

With this implementation, the FCP processor defines only the initial position 
for the working polygon, issues the check for overlap operation to the PPK array 
and polls a status port from the PPK array to wait for the end of computation. 
When one PPK node finds a feasible position, that position can only be accepted 
by FCP if all the other nodes are beyond that position. In this case, the PPK 
nodes still working are interrupted to abort their operations, and the working 
polygon is frozen in that position and stored into a PPK node determined by 
FCP. If one PPK node encounters one position but there is at least one of the 
other nodes behind that position, the array must keep the normal processing 
until that position is overtaken. This is necessary because a better position may 
be found by the PPKs that are still working. The management of the responses 
from the PPK nodes is done by the concentrator circuit. This includes a cus- 
tom controller that keeps track of the {X, Y) coordinates currently present in 
each node and decides whether a feasible solution found by one node may be 

657- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

accepted or not. Whenever a final position is accepted, the concentrator sends 
an interrupt signal to all PPK nodes and informs the FCP which one has found 
that position. This is necessary to retrieve from that PPK the actual (X Y) 
coordinates occupied by the working polygon. 

Table 4. Execution times for the new raster algorithm 

Number of PPK nodes 4 3 2 1 
Execution time (sec) 
Improvement (%) 

12.8     16.9 
74.7% 66.7% 

25.3 
50.1% 

50.6 

As the results presented in table 4 show, this implementation of the raster 
algorithm enabled an optimal balance of the computation load by all the process- 
ing nodes. The variation of processing times for different numbers of processing 
nodes shows a linear increase of performance, measured as number of solutions 
per unit of time. 

5    Conclusions and future work 

^JT7ieSTt ™ firSt r6SUltS °btained With different approaches for the 
parahelization of the 2D packing problem into a custom computing machine. 
The best implementation obtained so far (section 4.4) has achieved, for a real 
industrial benchmark, a linear performance with the number of processing nodes 

with^Sn^TV^T astern only has 4 processing nodes and runs 
with a slow 10 MHz clock, it performs more than 10 times faster then a present 
dav Pentium processor, running a equivalent software implementation. A new 
version of his architecture based on last generation FPGAs chips could easily 
reach a system clock of 20 MHz. Using a FAFNER system populated with 16 PPK 
nodes the processing times would be reduced to 1/8. Moving this architecture to 
a custom integrated circuit technology would further increase the system clock 

Är^bT £r °l ,oostag the —M*te 

Future developments will now be focused on the development and evaluation 

rame7er<HT 
t0 T^ **#**" S°luti°^ and t0 tune UP ^ control pa 

harbee   "nl b/;PtimiZatl0n ^heuristics. Once the hardware architecture 
has been settled down, a new version of the FAFNER system will be developed 
either based on last generation FPGA chips or custom integrated cLuits TS 

IS necessary to make this auxiliary processor an effective tool in acS* £ 

tZlZnlul       I" th,6 2DuPaCklng Pr°blem< and t0 enable the complete automation of the cutting plan phase in textile industries. 
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Fig. 2. the vectors g«> are calculated at each iteration of step 3 for N = 16 equations. 

4    Evaluation 

The recursive decoupling algorithm has been implemented on the Fujitsu AP3000 
distributed memory computer [13] using the message passing programming model. 
We have used the MPI programming environment. To verify the performance 
of the parallel algorithm, we used a test diagonal system (with know solu- 
tion), whose coefficients matrices satisfy the condition, \bt\ > \ai\ + \a\, Vz = 
0,1,..., TV - 1. This test is described below, 

/   2-1 
-1    2 -1 

-1    2 -1 

V 

\ 

u2 

-1     2  -1 UN-2 
-1   2/  W-i/ 

/1\ 
0 
0 

0 

W 

(16) 

whose exact solution is an iV-dimensional vector u with components: 

N + l- 
Ui = 

N + l 
-, Vz = l,-..,JV. (17) 

The experiments were performed on matrices of size ranging from 16384 (214) 
to 1048576 (220) for the test (16). As we can see in Table 1, the increasing number 
of processors produces a reduction in the execution time of the algorithm We 
observe that this method presents a high efficiency for all the sizes of equations. 

Fig. 3 depicts the experimental results. So, in Fig. 3.a we show the efficiency 
of the modified sequential algorithm we propose related to the initial algorithm 
efficiency. Thus, Observe than performance increases more than 91% for any 
value of N. On the other hand, in Fig. 3.b we show the efficiency for the par- 
allel algorihtm for some values of parameter N. Efficiency was calculated using 
the execution time of the sequential code. The parallel algorithm exceeds the 
ideal speedup due to an efficient use of local memories and the communication 
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