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Final Program

THE THIRD COMPOSITES DURABILITY WORKSHOP

CDW 2000

August 22-23, 2000

Tokyo Office, Kanazawa Institute of Technology
Tokyo, Japan

Composite materials and structures have served many industries well over the last 25
years. Light weight, corrosion resistance and flexible manufacturing processes have
been well established. Cost of fibers has dropped. Design tools are emerging rapidly. In
applications in sporting goods and satellites composites have assumed dominant
positions.

Durability over the anticipated life of composite materials and structures is a critical
issue that brings uncertainties and may be a deterrent for the future of composite
materials. Having organic materials as matrices their intrinsic time and temperature
dependent properties deserve accurate characterization and rational use in design. The
purpose of this workshop is to examine the most advanced methods of determining such
properties and seek means for industrial acceptance.

This workshop will bring together people representing the science, engineering and
practices needed to bring composites durability in focus. Leaders from government,
industry and universities will present their views and recommendations in an informal,
intimate atmosphere.

Encouragement and support of this workshop have come from the US National
Science Foundation, US Air Force Office of Scientific Research, industrial concerns
and Kanazawa Institute of Technology. The co-chairs are Prof. Stephen W. Tsai of
Stanford University and Prof. Yasushi Miyano of Kanazawa Institute of Technology.




Technical and Social Program

August 22, Tuesday at International House of Japan

Welcoming Reception 19:00 ~ 21:00

August 23, Wednesday at Tokyo Office, Kanazawa Institute of Technology

Opening Ceremony 9:00 ~9:15
. Technical Program 9:15 ~ 10:05
Coffee Break 10:05 ~ 10:35
Technical Program | 10:35 ~ 11:50
Lunch | 11:50 ~12:50
Technical Program 12:50 ~14:05
Coffee Break 14.05 ~14:35
. Technical Program ‘ 14:35 ~15:50
Coffee Break 15:50 ~16:20
Technical Program , 16:20 ~17:35
Closing Ceremony 17:35 ~17:45
Workshop Banquet 18:00 ~20:00

The invited speakers will present all papers in the téchnical programs.




Presentations by Invited Speakers

August23, Wednesday

Session A (9:15 ~ 10:05)  Chair: Isao Kimpara

1. “Design and Testing of Interlocked Grid Panels”
Stephen W. Tsai, Dongyup Han, Julie Q. Wang and Akira Kuraishi, Stanford
University

2. “Fatigue Life Prediction of CFRP/GFRP Bolted Joint Systems”
Yasushi Miyano, Masayuki Nakada and Naoyuki Sekine, Kanazawa Institute of
Technology '

Session B (10:35 ~ 11:50)  Chair: Stephen W. Tsai
3. “Thermo-Mechanical Response of Composites at Cryogenic”
Ran Y. Kim, University of Dayton Research Institute

4. “Durability Assessment of Polymer Matrix Composite Materials for Use on the
Next-Generation SST at National Aerospace Laboratory”
Tosiyuki Shimokawa and Hisaya Katoh, National Aerospace Laboratory

5. “Status of Project on Advanced Composite Materials for Transportation in Japan”
Yasuhiro Yamaguchi, Akira Sakamoto and Minoru Noda, R&D Institute of
Metal and Composites for Future Industries

Session C (12:50 ~ 14:05) Chair: Ran Y. Kim
6. “Recent Advances in Pitch-based Carbon Fibers and Their Composites”
Yoshio Sohda and Tetsuji Watanabe, Nippon Mitsubishi Oil Corporation

7. “Advanced Composite Materials for Satellite Structures in MELCO”
Tuyoshi Ozaki, Mitsubishi Electric Corporation

8. “Spacecraft Structures in the Early 21% Century”
Steven Huybrechts and Troy Meink, Air Force Research Laboratory




Session D (14:35 ~ 15:50)  Chair: Yasushi Miyano

9. “On the Tensile Strength of Carbon Fiber-Unsaturated Polyester Strand Specimens”
Jyunichi Matsui, Venturelabo Co. Ltd. and Zenichiro Maekawa, Kyoto
Institute of Technology

10. “Modeling Post-Buckled Delaminations in Composites”
Tong Earn Tay, National University of Singapore

11. “Characterization of Damage Progression in Multidirectional Symmetric FRP
Laminates”

Isao Kimpara and Kazuro Kageyama, The University of Tokyo

Session E (16:20 ~ 17:35)  Chair; Jyunichi Matsui
12. “An Information System for Composites Durability”
H. Thomas Hahn, University of California, Los Angeles

13. “Development of Truss System and Monocoque Panel with CFRP for Long-Span
Structures ”

Kenichi Sugizaki, Shimizu Corporation

14. “The Application of Fiber Reinforced Plastics (FRP) in the Construction Field of
Japan”
Kozo Kimura and Hiroya Hagio, Obayashi Technical Research Institute

Registration

Workshop registration can be made through the following email address.

miyano@neptune kanazawa-it.ac.jp (Professor Yasushi Miyano)

Registration fee of 30,000 Yen is payable at registration desk at Tokyo Office of KIT.
This fee includes attendance of all technical sessions, a copy of all viewgraphs used by
the speakers, lunch, welcoming reception and banquet.




Workshop Location

International House of Japan for Welcoming Reception on August 22, Tuesday
11-16, Roppongi 5-chome, Minatoku, Tokyo 106-0032

- Japan

Phone: 81-3-3470-4611

Fax: 81-3-3479-1738

Tokyo Office, Kanazawa Institute of Technology for Technical Program and Banquet on
August 23, Wednesday

17-14, Akasaka 2-chome, Minatoku, Tokyo 107-0052

Japan

Phone: 81-3-3589-2821

Fax: 81-3-3589-2823

Co-chair

Stephen W. Tsai

Department of Aeronautics and Astronautics
Stanford University

Stanford, CA 94305-4035

USA

Phone: 1-650-725-3305

Fax: 1-650-725-3377

e-mail: stsai@leland.stanford.edu

Yasushi Miyano

Materials System Research Laboratory
Kanazawa Institute of Technology

3-1 Yatsukaho Matto

Ishikawa 924

Japan

Phone: 81-76-274-9263

Fax: 81-76-274-9251

e-mail: miyano@neptune kanazawa-it.ac.jp
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Design and Testing of Interlocked Grid Panels
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Design and Testing of Interlocked Grid Panels

Stephen W. Tsai, Dongyup Han, Julie Q. Wang and Akira Kuraishi
Department of Aeronautics and Astronautics
Stanford University, Stanford, CA 94305-4035

Composite grids made from pultruded glass or carbon ribs provide unmatched
performance/cost combination of any composite panels. Ribs are unidirectional and have
fiber volume fractions of 72 percent for glass and 66 percent for carbon ribs. The
respective Young's moduli are 52 and 154 GPa (7.5 and 22 msi.) Grids made from these

ribs are competitive in performance with stiffened and sandwich panels.

One of the simplest methods of grid assembly is to cut equally spaced slots into the ribs.
Then a square grid is formed by inserting matching slots into on another. Slot cutting
can be done on-line, and slotted joint grids can be assembled without fixturing and done
on-site.

While slotted joint grids have been used in carpentry for centuries, slots in the ribs
reduce the stiffness and strength of the ribs and subsequently those of the grid. Our
solution to this problem is to bond rib caps to the grid so the caps can bridge the open
slots. The loss of properties of the interlocked grid can then be fully recovered, and more,
by the size of the rib caps. Thus ribs contribute directly to the grid properties as if the
slots were not there.

These grids are cost effective because ribs are made directly from dry fibers
impregnated and cured in a die. The pulling speed is 1 m/min or 1.44 km/day. Multiple
ribs can be pulled simultaneously. There is no requirement for tooling, lamination,
debalking, bagging, preform, infiltration, autoclaving, clean up, cold storage, and clean

rooms. There is practically zero scrap and no consumables.

Grid failure initiates from the root of the slot. The intrinsic weakness of in shear of
unidirectional ribs is a limiting design issue. We have tested various configurations of
ribs and grids under static and fatigue loading in order to understand the initiation and
propagation of the cracks. Understanding of material and processing variables of
pultruded ribs can lead to iinproved grid performance.




Composite grid as a reinforcement of concrete offers many opportunities not readily
available for rebar-reinforced concrete. Carbon grids are needed for this application
because glass lacks akaline resistance. The mechanism of concrete reinforcement by
grids is fundamentally different in that load transfer is done through interlocking
rather than friction between rebars and concrete. There is synergy between grid and
concrete: grid strengthens concrete and concrete stabilizes grid. Grid can be designed to
carry wet concrete leading to self-supporting forms that can be lifted in place and
immediately ready for pouring and curing. Speed of contruction and worker's safety can
be improved. Carbon grid has a negative thermal expansion. It can lock concrete and
eliminate the need for expansion joints. A continuous deck is now feasible. Ubiquitous
cracks and potholes in concrete can be things of the past. Soaring structures dreamed by
architects can now be designed and built.

Large and small grids made from glass and carbon ribs will be presented. Their
load-carrying capabilities with and without concrete will be shown. The toughness of
the grid is of particular importance for civil and aerospace applications. One project
under consideration is to build grid panels of 4 m x 16 m for a military application.
Another project is a wharf that is 100 m long. Field assembly is planned for both

projects. Grids must pass the test of mass production and sizes 10 m or larger.

Automation is undoubtedly critical. Pultrusion and slot cutting are already automated.
Assembly of slotted joint grid can be done semi-automatically. The most challenging
task is the bonding of the rib caps. We have learned from auto industry to use its
bonding process. There is a dispenser for adhesive and an x-y robotic frame for laying
down the adhesive bead. The curing can then be in seconds. Thus the cycle time of our
grids can be very low, in minutes if not seconds.

We are therefore very confident that the interlocked grid will in time find many
applications.




Design and Testing of
Interlocked Grid Panels

Stephen W. Tsai

Department of Aeronautics and Astronautics

Stanford University

e-mail: stsai@stanford.edu

The information contained herein is Stanford University proprietary.
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Unidirectional Comp031te VS
- Laminates and Fabrics
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Superior uni-ply glass composites over other fiber architecture
Data from Vetrotex
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Simple rule-of-mixtures relations for grid and rib stiffness can be found in:
S. Tsai, et al, “Manufacturing and Design of Composite Grids” 3-D Textile

Reinforcements in Composite Materials, ed A. Miravete, CRC Press (1999), pp
151-179.
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Rib Fraction

RIB AREAL OR VOLUME FRACTIONS
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Pultrusion

One of the most cost-effective and reliable processes for
composite structural members. Composite grids can take
full advantage of this pultrusion process.
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Filament Winding

p o =
-

Filament winding of a 20 foot diameter by Dura-Wound. Even
larger tanks have been wound in horizontal or vertical position.

Low Cost

502 529 518

354

226

7

Cost per Part ($)

93

/.
Auto. Robotic Tape Robotic

Cutting Transfer  Layup Layup Pultrusion  Winding

I Equipment [] Labor ] Tooling Material

Manual

* Timothy G. Gutowski, “Cost, automation, and design”, Advanced
Composites Manufacturing, p. 525, Wiley Inter-Science, 1997
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Grid Joints

SLOTTED JOINT STACKED JOINT TRIG JOINT
(in carpentry) (a bird cage)  bonded orinterlaced
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Joints can be the weak link of a grid. They are the
most challenging tasks in design and manufacturing.
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Rib caps and slotted ribs

.

Grid with top rib caps Grid with bottom rib caps

Completed Grid (10° x 10’ x 6)

Field assembly of large grid is feasible and cost-effective.
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‘Static Test

9000 ~ - -

y = 18745x - 1148.9/
R? = 0.9997
6000 \/A \«.

Load (Ib)

3000

0 0.5 1 1.5
Center Displacement (in)
Four edges simply support and a concentrated load at center.
Loading and unloading shows no permanent deformation before
ultimate load. Multiple, progressive failures after the ultimate.

Fatigue Test

1500

1000 ‘“""“‘-\.__1\‘

g
S soo -
O

0
1E+3 1E+4 1E+5 1E+0 1E+7

Cycles to Failure

A specimen for fatigue and static tests. Most failures initiated
at the root of slots. Crack growth, however, is stable. Fatigue
strength of the grid is outstanding.
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Interlocked Composite Grid Cylinder

C C lete cylind
*Slotted joint ribs *Inner caps are bonded omplete cyhinder

) with block inserts
are assembled. and blocks are mserted.

and rib caps.

Interstage Adapter

Diameter = 61 inches, Height = 24 inches
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An Interlocked Rectangular Grid

An interlocked rectangular cage A filament wound loop

Interlocked Composite Grid Cone

Foam or ceramic inserts can be placed in cell openings to
stabilize the ribs, and to provide shear stiffness and to complete
closure for flat, cylindrical and conical shells.
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[0/90] Interlaced Gird

Square tools positioned onto a

mandrel to provide grooves for

[0/90] interlace

‘ Interlace placed in grooves

by wet filament winding

[£45] Interlaced Grid

Tooling rotate 45 degree

to form a helical grid.

Top is glass composites
grid with tooling shown
in yellow. Bottom is
same interlaced grid using

carbon composites.




Unmatched Opportuhities | ,‘

Composite grids offer revolutionary opportunities:
High structural performance derived from uni-plies
Low cost pultrusion and filament winding available
Flexible assembly eliminates size limitation
Inserts into open qells can be multi-functional

Modular design offers easy inspection and repair

Challenges

Composite grids must overcome many challenges:

Carbon pultrusion is still in research

Low shear and transverse tensile strengths of
uni-ply is intrinsic

Inefficiency of rib intersections or joints
Confidence in bonded structure (rib caps)

Quality production in a rugged environment

1-14




Conclusions

Composite grids offer revolutionary opportunities.
Prior examples: Wellington, A-340, Russian missiles
Low risk: use current, though not optimized, materials
Short time: prototype can be built and tested in one year
' Payoff is phenomenal: a new way of thinking composites

Large volume applications can finally be here!

1-15




Interlocked Grid Airframe

Stephen W. Tsai
Akira Kuraishi

Department of Aeronautics and Astronautics

Stanford University

June 28, 2000

Grid Airframe

(1) High performance
- Efficient unidirectional composites
(2) Low cost
- Cost effective pultrusion and filament winding

(3) Easy to manufacture
- Slmple manufacturmg process

/\ /\h

/Y //

assemble pre-slotted ribs . )
made by PU1t1’LISiOn E> filament wind skin




Interlocked Grid

Slots and caps improve the grid performance

Precut Slots
(1) Provide accurate assembly
(2) Create stress concentration

high stress concentration

Bonded Caps

(1) Provide load path Interlocking
(2) Recover stiffness and strength
| T =

Airframe Comparison

type of airframe conventional| aluminum [grid airframe | grid airframe
airfframe sandwich w/inserts | wi stiffeners
totai weight (Ib) 4600 3200 3100 2000
specific stifiness |inplane normal 1 1.1 1.5 23
inplane shear 1 1.1 0.9 1.3
bending 1 1.0 3.5 5.6
twisting 1 0.7 0.9 1.3
out-of-plane shear 1 0.9 2.6 1.8
specific strength |axial compression 1 N/A N/A 0.9
axial tension 1 1.2 1.0 1.3
torsion 1 1.1 N/A 0.5
| g axial out-of-plane
———1J H shear
g %\ compression ﬂ ﬁ inplane
f A) I>C /ﬂ normal
torsion\ E ,L axial tension /7 1
200” 20” isti
L_—.! 2, twisting

inplane —
shear ‘/
2




Conventional Airframe (baseline)

frame
stringer ;
longeron \%f / / 3{
“V—F %
R D
> —»

2" 17 | .
—p — 2 '
Y v X 47

] Rk
All aluminum alloy Stringer Frame, longeron
Sandwich Airframe
I |
i
2 ‘/
facesheet v.17

x
1n

honeycomb

All aluminum alloy] Sandwich skin




Grid Airframe with Inserts
R

e i Lﬂ
ring l /94”

2 Interlocking
' 25 g;.
i = /'y » el A2 2577
filament wound skin / L. 1 72: T—
[60/-60] )
Al tes | 3 o 257
composites Ring and ring cap Rib and nb cap

Grid Airframe with Stiffeners

rib cap
st1ffenerv | | 7 .
>
. ST
- i 1
ring cap 3
filament .17
]

wound skin 4 507 >
[60/-60] 2
2 t13 'zvs” 11”' |
A TP
.5” {D ’ 2” 277 !
Stiffener TI PRk 25” e 257

All composites—l Ring and ring cap Rib and rib cap




Strength Analysis

Strength of the grid airframe is controlled by
(1) Buckling of the thin skin (shown below)
(2) Stress concentration at the slots

compressive
buckling

Grid Structurc Compressive Buckling 6/18/00 Grid Structure shear Buckling 6718/00

Grid Airframe Assembly

Simple and low cost manufacturing process

1 (D assemble rings and ribs

add mserts or stltfeners
® () filament wind

k k ® cure (oven, E-beam)

@ bond ring caps




Inserts
Inserts add flexibility to the design
Inserts can provide /_Q (\
(1) Shear rigidity \/
(2) Internal/external pressure membrane DN\ 2 M
(3) Acoustic/thermal insulation . |

(4) Smooth surface for filament winding ﬁ

Modular design enables easy design and manufacturing

B )3 )

for shear rigidity for acoustic for pressure
insulation membrane

Typical Airframe Dimensions

Grid airframe can be used for wide selection of dimensions
Diameter Length

>300 passengers

Boeing 777-200 19ft (5.9m)  209ft (64m)
Boeing 747-400 20ft (6.1m) 232t (71m)
Airbus 3xx-200 24ft (7.1m)  260ft (78m)

<50 passengers (Regional Jets)

Bombardier CRJ200 9ft (2.7m) 871t (27m)
Embraer ERJ145 7ft (2.1m)  98ft (30m)

All examples are semi-monocoque structures made of
aluminum alloy.




New Filament Winding Concept

New concept enables winding large airframes

prary rollers

Conventional New concept

winding cure product

- Large length and
M (_f( (j)—_«f diameter possible

Conclusion

Interlocked Grid Airframe is

(1) High performance
(2) Low cost
(3) Easy to manufacture

and has potential for wide range of applications
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Fatigue Life Prediction of CFRP/GFRP Bolted Joint Systems

Yasushi Miyano, Masayuki Nakada and Naoyuki Sekine
Materials System Research Laboratory, Kanazawa Institute of Technology, Japan

Abstract
Developing a testing procedure to establish the lifetimes of polymer composites and structures in extreme service
environments is becoming a high priority. With service lifetimes measured in years, it is almost unthinkable to do real

time testing under a variety of condifions. An accelerated testing methodology is vitally needed for polymer
composites. '

The most important scientific basis to be used in the accelerated testing of polymer composites and structures is the
time-temperature superposition principle. In this method, developed mainly for polymeric based materials, elevated
temperature states are used to accelerate the mechanisms of mechanical and chemical degradation which occur under
loads over very long times. The method has been widely employed to characterize non-destructive properties, and
recently it has been shown remarkable success in characterizing failure properties. The degree of acceleration per
increment of elevated temperature is found through the use of the time-temperature superposition hypothesis, along
with a sophisticated menu of properties testing procedures.

We proposed a prediction method for long-term fatigue strength of polymer composites under an arbitrary stress ratio,
frequency and temperature from the data, for various temperatures, of constant strain rate (CSR) tests for several
constant strain-rates and of fatigue test at a single frequency based on the above mentioned hypothesis. The method
rests on the four hypotheses for polymer composites:

(A)  Same failure mechanism for CSR, creep and fatigue failure

(B)  Same time-temperature superposition principle for all strengths

(C)  The linear cumulative damage law for monotonic loading

(D)  Linear dependence of fatigue strength upon stress ratio.

When these hypotheses are met, the fatigue strength under an arbitrary combination of stress ratio, frequency and
temperature can be determined based on the following test results: (a) Master curve of CSR strength and (b) Master
curve of fatigue strength for zero stress ratio. The master curve of CSR strength is constructed from the test results at
several constant strain-rates for various temperatures. On the other hand, the master curve of fatigue strength for zero
stress ratio at an arbitrary combination of frequency and temperature can be constructed from tests at a single
frequency for various temperatures using the time-temperature superposition principle for CSR strength,

In this paper, the proposed method is introduced and the master curves of fatigue strength of CFRP measured by strand
tension, longitudinal bending and transverse bending tests based on the proposed method are shown. The master
curves of tensile fatigue load for various GFRP/metal joints are also shown. We can understand clearly by using
these master curves that the dependence of the fatigue strength on time, temperature and number of cycles to failure is
very different from each other.

Additionally, the range of validity of the proposed method for various FRPs and Joint structures is cleared. For CFRP
consisting PAN based fiber and epoxy resin, the four hypotheses and thus the proposed method holds for all fiber
arrangement and loading directions; uniaxial, longitudinal, transverse and satin-woven. The long-term fatigue
strengths for this CFRP can be predicted by using the proposed method.  However, some of the hypotheses do not
hold for composites with PEEK matrix and for composites with Pitch based carbon fibers and Glass fibers. Therefore
the prediction method is not applicable for these FRPs. Here, PEEK resin is not thermorheologically simple and Pitch
based carbon fiber and glass fibers show time dependent failure behavior themselves. We also carried out axial tests
for various joints consisted from GFRP and metal. For these joints, the four hypotheses hold.  Thus, the prediction

t
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methodology is applicable for these joints.

Furthermore, the characteristics of tensile fatigue behavior for GFRP /metal and CFRP/metal bolted joints are cleared
by comparing the master curves of fatigue failure load for these bolted joints.
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THERMO-MECHANICAL RESPONSE OF COMPOSITES AT CRYOGENIC
TEMPERATURES

Ran Y. Kim
University of Dayton Research Institute
Dayton, Ohio 45469-0168

ABSTRACT

Advanced composites are being explored for structural applications at extremely
low temperatures, for example in large cryogenic fuel tanks on NASA’s Reusable Launch
Vehicle and on the Air Force’s Space Operations Vehicle. Exposure to these cryogenic
temperatures can cause transverse microcracks in the composites due to thermal residual
stresses brought on by the anisotropy in the composite ply coefficient of thermal
expansion (CTE). Transverse cracking often results in a reduction in laminate stiffness
and strength and changes in laminate CTE, and provides a pathway for the ingress of
moisture or corrosive chemicals; in cryotanks, transverse cracking can cause leakage of
the pressurized liquid fuel. The objective of this work was to develop a predictive
capability for the onset of transverse cracking in composite laminates subjected to
isolated or combined thermal and mechanical loads. The material system investigated
was a carbon fiber-reinforced toughened epoxy composite, IM7/977-3.  The
thermomechanical properties required for the analysis were obtained from tests on [O]sr,
[901sr, and [£45],5 laminates. These laminates were tested at a number of temperatures
ranging from ambient down to -191°C, using a custom-built cryogenic chamber installed
on a mechanical test machine.

Cross-ply laminate, with [05/90,]s was used to experimentally determine the onset
of transverse cracking under isolated or combined mechanical and thermal loads.
Transverse cracking was detected from acoustic emission and the response of bonded
strain gages, and confirmed from microscopic examination of polished specimen edges.
Ply stresses were calculated for the corresponding conditions from laminated plate theory,
using the appropriate experimentally generated thermomechanical properties and the
applied load. The maximum stress failure theory was applied to predict failure. The
analytical predictions were then compared with experimental results at temperatures of
23, —129, and -191°C, and the results are reported here.




THERMO-MECHANICAL RESPONSE OF
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OBJECTIVES

* To study the thermomechanical behavior of composites at
cryogenic temperatures

* To examine a predictive capability for the onset of microcracking
in composite laminates subjected to combined thermal and
mechanical loadings




EXPERIMENT

Material Systems: IM7/977-3, IM7/5250-4, IM7/PETI5

Laminates:
-Unidirectional: thermomechanical characterization
-Multidirectional: onset of microcracking

Temperature range: -269 (-452) to 149°C (300°F)

Designed and built test fixture and cryostat for cryogenic tests
CTE measured using strain gages

Material properties were determined at cryogenic temperatures

Onset of microcracking determined under ambient test conditions
from acoustic emission and at cryogenic temperatures from
incremental step loading and unloading

Microcracking confirmed in an optical microscope

The onset of microcracking was predicted using lamination theory
and failure theory

THERMAL STRAIN FOR MEASUREMENT

Thermal Strain,10°
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Transverse sensitivity correction required for
obtaining true thermal strain in axial direction:
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Prediction was made using the measured unidirectional CTEs

THERMAL STRAIN FOR [0,/90,] LAMINATE

400
™M7/977-3
200 s /——
S .
g /V CTE With respect to surface ply
£ 200 1hs0e L: parallel to fiber
< 4/’{ —e—L1 178 T: perpendicular to fiber
g -0 v ——12 173 ]
é 600 i ~—e—Ti 224 _ |
v ——T2 219
-800 1 ]
300 200 -100 0 100 200
Temperature,°C

Calculated CTE: 1.99 x10/°C using unidirectional CTE values
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MTS TEST FRAME FOR TESTING AT
CRYOGENIC TEMPERATURES

This simple device was
initially used for testing
at LN temperature.

A custom built cryostat
capable of testing down
to LHe temperatures
is being installed.

STRESS-STRAIN CURVES
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SHEAR STRESS-STRAIN CURVES
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VARIATION OF LONGITUDINAL
STRENGTH AND MODULUS
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VARIATION OF TRANSVERSE STRENGTH
AND MODULUS
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PHOTOGRAPHS of FAILED [90]¢,
SPECIMENS

23C

Multiple fracture at low temperatures

PHOTOGRAPHS OF OF FAILED [+45]
SPECIMENS

23C(73F)

Brittle failure
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VARIATION OF STRENGTH AND MODULUS

1

Laminate | Temperature - Strength | Coefficient o,fj‘, Modulus

{ 3' C ' MPa | Variation, % | GPa '
Longitudinal 23 2,599 42 180
- [0I18T - =129 2,425 10.1 ;183
: -196 X x x

;;Trans_verse ’ 23 745 6.7 98

. [o018T | -129 83.4 21 . 132

L -196 97.2 5.6 L1340
' Shear | 23 1133 56 . 61
[£45]2S | -129 130.5 3.1 i 8.1
-196 132.1 54 9.2

ACOUSTIC EMISSION RECORD FOR [0,/90,]
LAMINATE AT 23 C

Acoustlc emission count

200§

150§

-
o
2

2
o

T
4 8 12
Load, KN

T

16 20

The acoustic emission event indicates the
occurrence of the first trasnverse crack
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PHOTOMICROGRAPHS OF INITIAL

MICROCRACKS
[0,/90,]5

23C (73 F) -196 C (321 F)

90° PLY STRESS AT ONSET OF

MICROCRACKING FOR [0,/90,]; LAMINATE

.. Temperature . *Curing residual :**Mechanical stress in! Total stress w

0 ply

? , . stressin90ply = 90plyatcracking | in90ply | strength

°C ; MPa ‘ MPa | MPa | MPa |
L3 0 118 , 60.4 182 . 745
o129 456 523 919 83.4
-196 60.3 ; 51.8 112.1 97.3

I*Stress free temperaturé=163°C and moisture content=0.15_'%_
**Average of 4 specimens at -129C and 8 specimens at 23 and -196C
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SUMMARY

Specimen alignment for transverse loading is critical at cryogenic
temperatures

Transverse strength and in-plane shear increased at low
temperatures while strain to failure decreased; brittleness
increased as the test temperature decreased

The nonlinearity of the shear stress-strain curve decreased
significantly at cryogenic temperatures

Strain gages allow easy and accurate measurement of composite
CTE:s at cryogenic temperatures

CTE decreased at cryogenic temperatures

The stress level at the onset of transverse cracking decreased
significantly at low temperature, due primarily to an increase in
thermal residual stresses

Further work needs to clarify the discrepancy between observed
and calculate stress at onset of microcracking at cryogenic
temperatures.
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Durability Assessment of Polymer Matrix Composite Materials for Use on
the Next-Generation SST at National Aerospace Laboratory

Toshiyuki Shimokawa and Hisaya Katoh
National Aerospace Laboratory
Ohsawa, Mitaka, Tokyo 181-0015, Japan

Introduction

The structures of the next-generation supersonic transport (SST) require the long-term
durability of structural materials under a variety of conditions involving temperature, loads,
and fluids, not only in constant states but also with cyclic fluctuations. Structural weight
moreover must be drastically reduced to achieve commercial success requiring extensive use
of high-temperature polymer-matrix composite materials.

The National Aerospace Laboratory (NAL) is carrying out joint research programs with five
organizations to evaluate the long-term durability of high-temperature polymer-matrix
composite materials nominated for use on the next-generation SST. The five organizations are
the National Institute of Materials and Chemical Research, three major aircraft manufacturing
companies, i.e., Fuji Heavy Industries, Ltd., Kawasaki Heavy Industries, Ltd., and Mitsubishi
Heavy Industries, Ltd., and the Japan Aircraft Development Corporation.

The authors briefly introduce the test results obtained in our joint research programs in order
to evaluate the effects of isothermal aging and thermal cycling on the strength degradation,
and the bearing creep behavior of carbon/high-temperature polymer-matrix composite
materials, referring to the three papers [1-3] published.

Effect of Isothermal Aging on Strength Degradation (1]

This study evaluated the effect of isothermal aging on the ultimate strength of G40-800/5260
and MR50K/MR2000N carbon/bismaleimide composite materials and a TSOOH/PI-SP carbon/
amorphous thermoplastic-polyimide composite material. The hole-notched and unnotched
panels, before being machined to specimens, were isothermally aged at 120°C and 180°C for
up to 15,000 hours. Static tests at room and elevated temperaturés before and after thermal
aging provided the open-hole tensile, open-hole compressive, and short beam shear strengths.

In the case of the G40-800/5260 bismaleimide composite material, the degradation of
open-hole tensile strength by isothermal aging at 120°C was not clear. Although the
open-hole compressive strength at room temperature was not reduced by isothermal aging at
120°C, this strength at 120°C slightly decreased after isothermal aging of 15,000 hours. The
latter fact was identical for the MRS0K/ MR2000N bismaleimide composite material also. No
degradation of open-hole compressive and SBS strengths was observed for the T800H/PI-SP
thermoplastic-polyimide composite material after thermal aging at 120°C and 180°C up to
15,000 hours.

Effect of Thermal Cycling on Open-Hole Compressive Strength [2]

This study investigated the effect of thermal cycles encountered by an SST in service on the
degradation of high-temperature polymer matrix composite materials. One cycle of thermal

4-2 1




cycling was designated as the sequence from room temperature (RT) to -54°C, up to +177°C,
and back to RT. The retention time was 15 minutes each at the minimum and maximum
temperatures. Different kinds of specimens were prepared for microcrack observation and
static mechanical tests. Thermal cycling tests were conducted up to 10,000 cycles on
IM7/PIXA carbon/thermoplastic-polyimide and IM7/K3B carbon/polyimide composite
materials and up to 1,000 cycles on a G40-800/5260 carbon/bismaleimide composite material.
At scheduled thermal cycles, transverse microcracks initiated on the sectional surface of the
laminates were observed by using an optical microscope. Static mechanical tests provided the
open-hole compressive strength before and after thermal cycles.

The open-hole compressive strength before and after thermal cycles did not change during the
course of this study, though a lot of microcracks were found. Therefore, thermal cycles and
the initiation of transverse microcracks did not affect the open-hole compressive strength.

Bearing Creep Behavior [3]

This study investigated the bearing creep behavior of a G40-800/5260 carbon/bismaleimide
composite material. Bearing creep tests were carried out at 120°C, 150°C, and 180°C. Load
levels for creep tests corresponded to 0.3, 0.4, 0.5 and 0.6 of the 4%-yield bearing strength.
The torque of the bolt in bearing creep tests was adjusted to 3.5 kgf:-cm (3 in-Ib) using a
torque wrench. The residual hole-deformation was used as an index of creep damage. The
hole deformation was measured at scheduled creep hours after detaching the specimen from
the test fixture. The creep test was then continued using a new set of a nut and a bolt. The
tests provided the bearing tensile strength as a function of temperature, the hole deformation
by creep up to 10,000 hours as a function of the load level and temperature, and the damage in
longitudinal sections at the loaded-hole edges by bearing creep and bearing tensile tests.

The large deformation of the bolt hole was observed at high load levels and elevated
temperatures, though the deformation was small under the condition of the low load level at
120°C. As the temperature rose, the hole deformation increased even at the low load level.
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Status of Project on Advanced Composite Materials for

Transportation in Japan

Y.Yamaguchi , A.Sakamoto and M.Noda

R&D Institute of Metals and Composites for Future Industries (RIMCOF),
3-25-2, Minato-ku, Tokyo 105-0001, Japan

Abstract

The research and development project on advanced composite materials for

transportation has been performed since September, 1998 as a 5-year project, being
sponsored by the Ministry of International Trade and Industry.
This project aims to develop innovative design and manufacturing
technologies simultaneously cost reduction and reliability improvement of
polymer matrix composite structures for transportation. This paper
introduces briefly the purpose and contents, and current activities of the
program.
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Introduction

* To reduce fuel consumptions of transportation-vehicles ,
weight savings of their structures required

+ Polymer-matrix-composites
the most promising materials to be applied for

* However their applications limited

because of high costs and poor design-basis

RIMCOF




Introduction

To develop

low-cost manufacturing and innovative design technologies
for future transportation systems

The S years/33M$ R&D project on
Advanced Composite Materials for Transportations
started in 1998 under MITI contract

RIMCOF

Themes

1. Aerospace Transportation Systems

Application Technologies of High-Temperature
Polymer Composites (ACDMT by JADC)

2. Advanced High-Speed Train

High-Productive Technologies of Large-Scale
- Composite Structures (by TORAY)

3. Joining Technologies and Improvements of Flame-
Retardation of Polymer Composites (by HITACHI)

4. F.R. on Damage-Tolerant Design
(by U.T.&0.U.) RIMCOF
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Functional Organization
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o (ACDMT by JADC) Design Technology >
Prqt Structy
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Advanced High- Speed Train Fldme-Retardan{ Structures
(Hitachi)
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Acrospace Transportation Systems

Application Technologies of
High-Temperature Composites
A.C.D.M.T.(by JADC)

(1) Material Development

(2) Low-cost Fabrication Technology
(3) Design Technology

(4) Prototype Structures

(5) Typical Results up to 1999

RIMCOF

Advanced High-Speed Train

High-Productive Technologies of
Large-Scale Composite Structures

(by Toray)

(1) Material Development
(2) Fabrication Process
(3) Evaluation

(4) Typical Results up to 1999

RIMCOF
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Joining Technologies and Flame-
Retardation of Composite Structures

(by Hitachi)
(1) Joining Techniques
(2) Durability Characterization
(3) Flame-Retarded Structure
(4) Typical result up to 1999

RIMCOF

Conclusion

Current Status of the National Project

“A.C.M.T.”

*For Aerospace Transportation Systems,
Application Technologies of High-
Temperature Polymer Composite

“For Advanced High-Speed Train,
High-Productive Fabrication,
Joining&Flame-Retardation Technologies

RIMCOF

5-7




CDOW "00

Status of Project on Advanced Composite
Materials for Transportations in Japan

Y.Yamaguchi, A.Sakamoto, M.Noda,
R&D Institute of Metals and Composites for Future Industries (RIMCOF)

RIMCOF

Outline

1. Introduction
2. Themes and Organization
3. For future Aerospace Transportation Systems
High-Temperature Polymer Composites
4. For Advanced High-Speed Train
(1) High-Productive Technologies of
Large-Scale Composite Structures

(2) Joining Technologies and Flame-Retardatlon of
Composite Structures

5. Conclusion

RIMCOF




Introduction

* To reduce fuel consumptions of transportatioﬁﬁehicies ,
weight savings of their structures required

« Polymer-matrix-composites
the most promising materials to be applied for

« However their applications limited
because of high costs and poor design-basis
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Themes

1. Aerospace Transportation Systems

Application Technologies of High-Temperature
Polymer Composites (ACDMT by JADC)

2. Advanced High-Speed Train

High-Productive Technologies of Large-Scale
Composite Structures (by TORAY)

3. Joining Technologies and Improvements of Flame-
Retardation of Polymer Composites (by HITACHI)

4. F.R. on Damage-Tolerant Design
(by U.T.&0.U.) - RIMCOF
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“A.C.ML.T. Program Schedule
| 1998 | 19997 2000 | 2001 | 2002

1. Application Technologies of Mhterial ’
H.T.- PMCs for - abatiibdal >
Low Cost [Fabrication Tpchnology '»

Aerospace Systems ‘
(ACDMT by JADC) Design Technology- -

g
Prdtotype Structures
>
2. High-Productive Fabrication Material Dev.
of Large-Scale Structures for Fabrigation Process|
Advanced High-Speed Train Evaluation
(Toray) : . —>
3. Joining & Flame- Retardation Joihing Technolpgy ' '
Structures for Durability
Advanced High- Speed Train ' Flgme-Retardant Structures
’ (Hitachi)
4. DT-Design Fundamental studies
(U.T.&0.U.) >

Aerospace T ransportation Systems
Application Technologies of

High-Temperature Composites
A.C.D.M.T.(by JADC)

(1) Material Development
(2) Low-cost Fabrication Technology
(3) Design Technology
(4) Prototype Structures
(5) Typical Results up to 1999
RIMCOF




Japanese Supersonic Research Program

Program Schedule

1994 1995 1996~ 1997 - 1998 7| 11999 |- 2000 |-~ 2001.-"-2002 |~ 2003"1 2004 - 2005
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ACDMT Program Overview

Aft Fuselage Panel (MHI) Outboard Wing Cover Panel (KHI)
+PETI-5 (Thermoset Polyimide) +5260 (Bismaleimide)
+ Automated Fiber/Tow Placement

» Automated Fiber/Tow Placement

*Tooling Concept for Minimum Distortion

» Automated Assembly

Lightning Strike Protect <

Damage Toleraxce Design

inboard Wing Box (FHD)
*PIXA Family (Thermoplastic Polyimide)

Qutboard Wing Spar/Rib
+ 5250-4-RTM (Bismaleimide)
+Resin Transfer Molding / Resin Film Infusion

o] =2

K ; 1m - ! 2m
Test Fixture : Rib:RFI(Cloth Preform) Spar: RTM (FW Preform)
Extension Box (NIPPI) (SMIC)

+ Automated Fiber/Tow Placement




ACDMT Program Logic

(Advanced Composite Design and Manufacturing Technology)

Affordable High Temperature Composite Technology Basis

for 1) 20 percent Process Cost Reduction* and
2) 30 percent Weigh Reduction**

* 1998 High Temperature Composite Technology Base
“** 1970 Copéordluminum Structure Base

LOW Cost Process - | Preliminary Design Criteria
@ @ Design Data
' *PIXA Family - Automated Fiber/Tow Placement » Damage Tolerance Design
*PETI-5 -RTM/RFI _ *Post Buckling Design
+Tooling Concept for *Honeycomb Panel Joints
*5260 _ Minimum Distortion * Lightning Strike Protection
«5250-4-RTM

* Automated Assembly

Material Development

«  Thermoplastic Polyimide

IM600/PIXA

. Thermosetting Polyimide

MRSOK/PETI-S

RIMCOF




Low-Cost Fabrication Technology

« Tow-Place/Direct Consolidation
IM600/PIXA T.P.Polyimide

* Fiber/Tow Placement
MRS50K/PETI-5 Polyimide
IM600/5260 BMI

® ~ + RTM/RFI -

| IM600/5250-4 BMI |
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Hand laid up.

Inter laminar shear strength(ILSS) was nearly
equal compared with hand laid composites.




MITSUBISHI HEAVY INDUSTRIES LTD.
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MR50K/PETI-5 has excellent toughness

Automated Fiber/Tow Placement

Cylinder of
IM600/PIXA-M

“ Triangle Pole of
Epoxy Composite

Typical Machine Introduced Typical Trial Products




Low Cost Approach for Composite Wing Structure

Automated Fiber/Tow Placement
" for Structural Details
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Advanced High-Speed Train

High-Productive Technologies of
Large-Scale Composite Structures

(by Toray)

(1) Material Development
(2) Fabrication Process
(3) Evaluation

(4) Typical Results up to 1999
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High-Productive Technologies of Large-Scale Composite Structures

| High-Speed Fabrication
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High-Speed Resin Transfer-Impregnation
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Advanced Matrix-Resin ]

[Property]
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Inspection & Evaluation ]

{ Design & Analysis |

Features
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* Work Not in Water
* High Speed &
Large Area Scanning
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Research on matrix resins for large-scale VARTM

- 1. Requirements
(1) Fire safe properties (Ignition time, Heat Release Rate, Smoke density)
(2) Fabrication friendly properties ( Viscosity, Void free, Curing conditions)
(3) Mechanical properties ( Elastic modulus, Toughness, Void free)

resin

Mechanical T g
property Fabrication friendly property Less-flammability
' ight i Total
Elastic Weight | viscosity | Reactivity Material ofa
modulus(MPz) decrease <100°C combustion test for | point
during cure (@RT) | (<1007) railroad (JAPAN)
Epoxy resin 34 0.0 O Oo. X X
3.3 254 O
Benzoxazine 5.4 7.7 x A A
resin :
3.0 O A O
Bismaleimide 41 45 N N Ob <

—> Candidates : Phenolic resin & Cyanate ester resin

After Cure

Resim Transfer




NDT for Large Scale Composite Structures

; (’” Features

=y - Ultrasound

' g » Work Not in Water
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o __Advanced High-Speed Train
Joining Technologies and Flame-
Retardation of Composite Structures |

(by Hitachi)

(1) Joining Techniques

(2) Durability Characterization
3) Flame-Retarded Structure
(4) Typical result up to 1999
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LApplication Technology of FRP on High Speed Train Car Body] |
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Evaluation Method

of Thermal Degradation
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Conclusion

Current Status of the NatiOnal'Project
“A.C.M.T.”

*For Aerospace Transportation Systems,
Application Technologies of High-
Temperature Polymer Composite

"For Advanced High-Speed Train,
High-Productive Fabrication,
Joining&Flame-Retardation Technologies

RIMCOF




- THIS
PAGE
IS
MISSING
IN
ORIGINAL
DOCUMENT

/



( Organization

CMee‘ting of Councilors}—( Chairman }—( Board of Directors >——f Auditors )

|

I

( Vice Chairman >
C Executive Director)

I
|
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General Manager, Secretariat’s Office

] !
l j

@ ' ‘
General Affairs Division Metals Division Composites Division R&D Center of Smart
: Materials and Structures

System

C Assets, accounts and amount of operations

RIMCOF i1s an incorporated foundation and its constitutional assets amount to ¥71,750,000
as of April 1999. RIMCOF’s major operatioris are from commissioned research and deve-
lopment projects, based on the Scientific Technology Develoment for Industries that Cre-
ates New Industries planned by AIST. Including other operations, RIMCOF’s total opera-

tions amount to ¥2.8 billion (fiscal year 1999).

Owajor operations (Fiscal 1999)

1. New Energy and Industrial Technology Devélopment Organization(NEDO)
(1) Super Metal Technology(Technology for creating nanostructured bulky materials
and amorphous bulky materials)
{2) Smart Materials and Structural Systems
(3) Ultra-low Core Loss Materials for Pole-Mounted Transformers
2. Ministry of International Trade and Industry(MITI)
(1) Advanced Composite Materials for Transportation System
(2) Materials Database of High Temperature Structural Composite Materials
3. Japan Standards Association(JSA) .
Evaluation Methodology for Long Term Durability of High Temperature Composite
Materials
4. The Japan Machinery Federation

Joining Technologies of Advanced Composite Materials for Aerospace Systems
2




THIS
PAGE
IS
MISSING
IN
ORIGINAL
DOCUMENT

5



THIS
PAGE
IS
MISSING
IN
ORIGINAL
DOCUMENT

2



Orsganization of R&D

Our Institute has beén earnestly carrying this project proposed during 5 years from April 1998 to March 2004 as the
first theme for the “Academic Institutions Centered Program” under the “Industrial Science and Technology Frontier
Program” enacted in 1998. It stands on the basic knowledge and the ideas rich in originality of the universities to create
innovative technologies and develop new advanced fields for industry. The implementing qrganization has been
sstablished to form the network linking universities, private enterprises and national research institutes, as shown

below.
Corresponding to this. RIMCOF has installed “R&D Center of Smart Materials and Structural System” to manage the

project as a whole for promoting tight collaboration of the related agencies and members.

Research Funds
MITI AIST
Research Funds |Min, Edu. Sci. I Financing Support
Spo. & Cul. NEDO Promoting Committee
. i Entrustment

General Investigation and Research(Investigations on Research and Industrial Trend, Demonstration Test)
{PL Teruo KISHI Prof., Univ. Tokyo)

® | ' |
Joint Research Joint Research Joint Research Joint Research
The University of Tokyo Osaka City University Nagoya ‘University Tohoku University
| [ | |
lNat. Inst. of Mat. & Chem. Res. i [ Mech. Eng. Lab. l { Nat. Ind. Res. Inst. of Nagoya
]

| | I
Organizational System for Smart Materials and Structural Systems Project.

Ml Necessity for R&D

Composites provide a number of potentials and degrees of freedom for materials design aiming at high strength,
creation of new functions and their various combinations and so on. Smart Materials and Structural Systems, whose
mother structures consist of composites, indicate exactly the direction of development of materials engineering for the
future, as it represents a big change in function from only“support” up to “act”, which will open an innovative
materials application technology by integrating structural, functionai and information properties as a whole. Such a
new paradigm of technology will contribute much to human and society through the creation of new industries related
to human frontier to space, high-speed transportation, earthquake-resistant and disaster-preventing construction, etc.

[




Target of R&D

- The project intends to develop basic technologies of advanced materials and structure systems with smart and
intellectual functions by integrating structural materials (likened to bone), sensor materials and devices (nerve) in the
form of fiber, foil and film, actuator materials and devices (muscie), and the data processing and conrtrol ability (brain).
* To attain this objective, the research centers of university carry out researches concerning four elemental fields of
technology such as health monitoring, smart manufacturing, active adaptive construction, and acruator materials and
devices. On the basis of R&D results, demonstration experiments will be performed to verify the possibility of industrial
application and commercialization.

Expected Effects of R&D

The project will bring us a drastic change of paradigm in materials utilization from only “material structure support”
to a “positive comprehensive materials system”, that is, a system to “support, perceive, judge and act”.

It is expected to provide diverse and extensive contributions, as shown below in such industrial areas as aircraft,
space, high speed trains, automobiles, highways, energy-saving process. It also realizes the higher quality of life by
developing a new frontier of human activity, architecture and construction technologies with disaster-preventing
capability, fail-safe applications of technology, as well as extended applications to the medical treatment and the
environmental problems.

L Health Monitoring System L~,

i
Technology 10 perceive, judge and con-
ol in real time and on site in composiie
materials

f ;
l Smart Manufacturing }——»

Processing technology to integrate
actuators and sensors into the host
structure

Active Adaptive Structures j——»

Technoiogy 1o provide the structure
with a highef adaptability to the envi-
ronment by itself and its optimalization

Y

Demonstration Test’

—

4

l From Materials only to “Support” to Structureal
Materials and Devices for Actuators ! System 10 “Support, Perceive, Judge and Act”

Technology 1 apply piezo-electric
ceramics and shape memory alioys
actuators for the smart system

“Micro: machine. )
Four Main Fields of Research and Development for =
Smart Materials and Structural Systems and Appli-

cations of Their Results
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R&D in Structural Health Monitoring System

The structural health monitoring group is aiming to develop &
nealth monitoring system which allows a real-time damage
detection and self-diagnosis as weli as control in lightweight
composite structures. Such a system is expected to reduce
life—cycle costs ranging from design and fabrication to
maintenance and repair. The main research themes are:
1) Deveiopment of high—performance sensor system

technology
2) Development of self-detection and diagnosis system

technology for structural integrity
3)Development of application technology for a model and
actual mechanical structures.

The following technologies are being deveioped : small
diameter optical fiber sensors, composite iaminates which can
suppress damage by embedding shape—memory alloy films. and
maximumn strain “smart patches” which memorize the electrical
conductivity in a composite.

Such technoiogies will be applicable to such fields as aircraft.

satellites, high—speed trains and large—scaie civil infrastructure.
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“Recent Advances in Pitch-based Carbon Fibers and Their Composites”

Yoshio Sohda and Tetsuji Watanabe

Central Technical Research Laboratory
Nippon Mitsubishi Oil Corporation
8, Chidori-cho, Naka-ku, Yokohama

231-0815, Japan
yoshio.sohda@nmoc.co.jp

Pitch-based carbon fiber covers a wide range of Young’s moduli. High thermal conductivity fibers and
high impact resistance carbon fibers have been developed by the Nippon Graphite Fiber Corporation
(NGF, http://plaza6.mbn.or jp/~NGF/) from mesophase pitch and from isotropic pitch. The properties of
these fibers and their composites are discussed.

1. High thermal conductivity fibers from mesophase pitch [1], [2], and [3]

The pitch-based carbon fibers show higher Young’s modulus and higher thermal conductivity than
PAN-based carbon fibers due to their highly developed graphite structures. This is the reason pitch-based
carbon fibers are suitable for space applications, which require high stiffness, light weight and high
thermal conductivity. It is also important that these high modulus/high thermal conductivity fibers have
excellent handleability and excellent cost performance for making fabric for an expanding range of
practical applications. The developed fibers, Granoc YS-90A and YS-95A have thermal conductivity of
500 and 600 W/m"K, a tensile modulus of 880 and 920 GPa, a diameter of 7 microns and good
handleability. The handleability of the developed carbon fibers was evaluated by the clip test to reveal
that fibers can be applied to thin spread fabric for satellite parts.

The mechanical properties of CFRP using 4-harness satin fabric and unidirectional prepreg were
measured, and both laminates presented almost the same values, which were about 90% of the rule of
mixture. The thermal conductivity in-plane direction of both laminates corresponded to the calculated
values of the fiber performance. In regard to out-of-plane direction, the thermal conductivity of the 1-ply
fabric laminates was higher than that of the 2-ply 0 /90" unidirectional laminates for all fiber volume
fractions.

As a result, it was found that the developed fibers were quite suitable for high thermal application
fields.

2. High impact resistance carbon fibers from isotropic pitch (4], [5], and [6]
The developed fiber, Granoc XN-05 has a Young’s modulus of 55 GPa, and a compressive strain of

1.8 % which is higher than that of PAN-based carbon fiber. The mechanical properties of CFRP
reinforced with XN-05 have been studied, and these fibers allows much more deformation against
compressive stress.

CFRP with the toughened epoxy resin system has been used in the aircraft field, and the resin system
helps improve the impact properties. However, in case of CFRP made with carbon fiber with a high
compressive strain, it is expected that the carbon fiber itself helps improve the impact properties.
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By applying a thin layer of this fiber on the surface of PAN-based carbon fiber laminates, the energy
absorption of the hybrid laminates in the impact test was largely increased. The static flexural properties
of these laminates were evaluated in the three point bending mode. Then, the impact resistance was
evaluated with drop impact test in 3 point bending. The hybrid laminates showed excellent impact
resistance under the velocity of up to 20 nvs. It was found that XN-05 prevented the compressive fracture
of the PAN-based carbon fiber.

Finally the impact test in ballistic mode were carried out. QI laminates were tested in CAI
(Compression after impact) by Dr. Ishikawa at National Aerospace Laboratory, and 0°/90° laminates
were evaluated in ultra high-speed impact tests(600-1300m/s) using steel impactor of 2mm diameter by
Dr. Tanabe at Tokyo Institute of Technology. XIN-05 helps decrease the damage area of CFRP in these
impact tests.

In conclusion, it is expected that the XN-05 should contribute to the improvement of the impact
properties of CFRP with PAN-CF by preventing the compressive fracture. Therefore, the high impact
resistance carbon fiber has the potential to be used in industrial fields in addition to sporting goods.
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Advanced Composite Materials for Satellite Structures in MELCO

Tsuyoshi Ozaki
Advanced Technology R & D Center
Mitsubishi Electric Co.

Abstract

Requirements for space satellite structures are lightweight, high
strength, and high stiffness not to vibrate sympathetically during launch.
Carbon fiber reinforced plastics (CFRP) which have much more strength to
weight and stiffness to weight than metals are widely applied to satellite
structures and components such as bus structures and solar array panels.

Another feature of this material is its excellent dimensional stability in
severe thermal environment. In space, a satellite is put in vacuum and
much heat is generated by electrical components, which causes excess heat
of the satellite system. In addition, large thermal gradient in the structure
may happen due to the exposure to the sun. A satellite has to secure enough
pointing accuracy to supply communication, broadcast, and observation
services in such severe thermal condition. High thermal stability in
dimension of the satellite structures, therefore, is very important as well as
heat-resistance. Especially in some special components such as antenna
reflectors, application of CFRP whose thermal deformation is much less
than metal is essential.

Recently, pitch-based carbon fibers made of petroleum and coal tar
pitch have been put to practical use. Some pitch-based carbon fibers have
been found to have excellent thermal performance as well as ultra high
stiffness. By using the new fibers, we have been developing new composites
and applying to satellites.

In the bus structure, we have applied pitch-based CFRP to the earth
facing panel. The panel is required to be dimensionally stable and have high
thermal conductivity. In addition, aluminum heat pipes should be embedded
in order to thermally connect the north and the south panel. Due to the
mismatch of thermal expansion between CFRP and aluminum, large
thermal stress may causes fracture of the CFRP faceskins. Therefore, we
introduced anisotropic laminate design to relieve thermal stress.




Pitch-based CFRP has changed structural design concept of space
antenna reflectors. Formerly, antenna reflectors have been made of
honeycomb sandwich panels. The CTE of the panels was at best 0.5ppm/K,
which caused slight thermal deformation. To restrain such deformation, a
rib type structure was introduced as a support structure. When we use
pitch-based tri-axial fabric CFRP as a reflector surface, thermal deformation
is small enough (<0.2 ppm/K). It requires no support structures to restrain
thermal deformation. Therefore we can fabricate space antenna reflectors
with a sheet of tri-axial CFRP and thin I-shaped beams to support the
reflector.

Another application of the newly developed CFRP is space optics. In
the optics, requirements for dimensional stability are much more severe.
CFRP pipes for optical structures whose thermal deformation is less than
0.1ppm/K are also to be presented.
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Requirements for space materials

Lightweight

*Stiffness

=Strength

High thermal stability (dimensional)
=High thermal conductivity

Pitch based graphite composite is desirable for
= Structural panel (Heat pipe embedded)
=Antenna reflectors

=Optical sensors




Newly developed bus technologies in ETS—VIII project

( for future high power satellite system)
*Heat pipe embedded earth—facing panel
*Deployable thermal radiator & flexible loop heat pipe system
*Gimbaled ion engines for i‘ior\th—s uth station keeping

G raph ite taceskin heat pipe em bedded panel

Graphite faceskin heat pipe embedded panel concept

Features of graphite faceskin

=High stiffness with low density

*High thermal conductivity

-Optimal laminate design for mechanical and thermal performance
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Advantages of graghite‘face_skin panels

*Weight saving with high stiffness to weight skins
«Fabrication of thin panel to reduce stowed panel: space
*High thermal conductivity for heat transfer !
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Graphite fibers for fac‘:eskins‘
*Pitch-based high modulus fiber, K13C (Mitsqbishi bhemical)
*PAN-based high strength fiber, T800 (Toray)

K13C TgOO
Tensile Young's 0’ 535 152~
Modulus (GPa) 90° 5.0 8.9
Shear Modulus (GPa) 3.9 3.5

Tensile Stress (MPa) 0° 1700 2565
90° 16.2 66.9

Compressional 0’ 326 1313
Strength (MPa) 90° 90 110
CTE (ppm/K) 0’ -1.3 -1.1
90° 33 30

7-6




Thermal stress analysis by non-linear FEM

Graphite faceskin (Upper skin)

Aluminum heat pipe (Upper half)

Earth panel for ETS-VIII (Qualification model)
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Insert strength of graphite panel (Experimental)

Evaluated both analytically and experimentally !
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Deployable radiator panel

To increase heat rejection capability
Stowed during launch/ Deployed in orbit

to obtain additional heat rejection area
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—Two kinds of graphite
materials were applied
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Fabrication of full sized panel

*490mm x 1800mm
*With channel interface

«Cooled down to 188K (No visible damage)

Ultra light weight antenna reflector

Simple structure free from thermal distortion
Light weight (13.1—6.2Kg: ¢ 2.6m)
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Dual Gridded Antenna Reflector
Small pointinng error .
Low electrical loss due to high thermal stability
—>Suitable for shaped reflector "

Space optical mirror

= Anisotropic composite desi
and thermal demand
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M CFRP buck structare
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direction '

No insulniion at
the boundary

*High thermal stability ( CTE< 0.1.ppm/K )
gn to optimize mechanical

Surface error < 16nmRMS
(1/2 Scal model)
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Conclusions

Newly developed pitch-based graphite compos:tes have been applied to
space satellites such as;

1) Structural panels for thermal management of satellites :
2) Deployable radiator panels \
3) Antenna reflectors

4) Optical components

Anisotropic laminate design and fabrication techniques have been
developed in several projects.
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Spacecraft Structures In the Early 21% Century

Dr. Steven Huybrechts and Dr Troy Meink

Space Vehicles Directorate
Air Force Research Laboratory
Kirtland AFB, New Mexico USA

Introduction

Space structures will see dramatic changes over the next several decades. These changes are
driven not by new materials but by a dramatic shift in the way the world conceives of
spacecraft and an expansion in the types of missions being performed from space. Many of
these new missions will be military in origin, but the large majority will be commercial as
commercial interests take the dominant role in space. The biggest change in spacecraft
structures will come about due to a change in the way we conceive of them. The traditional
model of one spacecraft bus, launched on an expendable vehicle and supporting one or more
payloads, will be superseded through a variety of new architectures including distributed
architectures, collaborating constellations, deployable spacecraft, inflatable spacecraft, and
reusable vehicles. Additionally, a need for very large apertures in space will lead to a whole
class of very large, deployable spacecraft with very strict structural tolerances. Structures will
play a key, if not the key, role in making these new space architectures a reality.

The changes to future space architectures can be compartmentalized into two distinct
categories: changes to launch systems and changes to spacecraft architectures. These two
areas are detailed in the following sections

Future Launch System Structures

Upcoming changes to space structures & materials due to changing launch vehicle

architectures can be grouped into three areas:

+ Lower Cost Expendable Launchers: Expendable launchers will remain the main way to
get payloads to orbit. These systems will become increasingly cheaper, particularly due to
the introduction of foreign and private systems. The traditional structure development
goals of lower cost manufacturing and lighter weight dominate the needs in this area.

- Reusable Launch Systems: Despite the dominance of expendable launchers,
development of reusable systems must continue if space is to become commonly
accessible. The development of an unmanned reusable system is critical to the goal of
greatly decreased launch costs. Structural issues commonly found in the aircraft industry,
such as durability and operability, dominate the needs in this area. Durable high
temperature structure is also of primary importance to this area.

+ Novel Launch Systems: Several novel launch systems have been proposed in recent
years including the use of rail guns, nanoSat launchers on high performance jet fighters,
and pulsed lasers. While early in the development phase, these systems have great
potential for virtually free launch of the smaller spacecraft concepts. The structures for
these systems will need to be able to withstand severe environments, particularly high heat
and shock loading, while being very lightweight and stiff




Future Spacecraft Structures

Upcoming changes to space structures & materials due to changing spacecraft architectures
can be grouped into five areas:

Maneuvering Space Vehicles: Maneuvering space vehicles, while challenging from an
operational sense, are not as structurally difficult to achieve. Of greatest importance in
this area is the need for lightweight hot structure for those vehicles that must be able to re-
enter, yet be reusable.

Much Smaller Spacecraft (microSats & nanoSats): Increasingly, microSats (10-100kg)
and nanoSats (1-10kg) are becoming highly capable and able to perform large satellite
missions. The ‘breaking up’ of large single satellites into collaborating microSat
constellations will become increasingly prevalent as these systems prove to be cheaper,
more adaptable, and more defendable. Key structures technologies in this area include
structure multifunctionality, produciblity, and intelligence.

Much Larger Spacecraft (MonsterSats): Despite highly capable microSats and
nanoSats, future sensing systems will require larger spacecraft due to aperture
requirements. The key technology for these systems is the development of very large,
highly precise, extremely stiff structures that meet current launch vehicle packaging and
weight requirements.

High Power Spacecraft: Modern spacecraft are power starved. For example, a standard
GPS spacecraft uses less power than a household hairdryer. For many applications,
spacecraft capability is directly related to available power. A host of new technologies,
such as thin film photovoltaics and thermal to electric conversion, provide a window of
opportunity for structures engineers to redesign the traditional solar cell ‘wing’ typical to
most spacecraft.
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Overview

ChamberCore Structures
Durable Composite Structures for Reusable Vehicles

Shape Memory Resin Structures
Deployable Structure for the the PowerSail Concept

Structures for Deplovable Optics
Highly Stiff, Stable Structures for Optical Systems

Future Architecture:
M_WReusabIe Space Vehiclw‘e«;ﬁw“ -

Reusable
Launch
Systems
Characteristics Maneuvering
Reusgble ‘ Space
Routine

Vehicles

Rapid Turnaround Time
“Aircraft-Like” Operations

Key Issues:
Durability

Light Weight
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Very Promising Structure Type
For Future Space Vehicles

Integrates:

Very Simple Construction
Low Cost Manufacturing
Flexibility and Configurability
High Structural Efficiency
High Damage Tolerance

Upper Facesheet

—m*
(T =l T 1]
| | S | ——

Lower Facesheet

{?i\//s} ChamberCore Structures

Acoustics Critical To Acceptance of Composites

Fairing Acoustic Problem Worsens As Weight Decreases

« Boeing (Delta)

- Delta 2 Composite & Aluminum Fairing Weights Equal,
Due to Acoustic Problem

« Boeing (Sealaunch)
- Load-Bearing Fairing Structure: 1.07 lb/ft"2
- Acoustic Treatment: 1.02 lb/ft"2

« Lockheed-Martin (LMLV)

- Not Interested In Composite Fairings Because of
Acoustic Issues

Problem is Extremely Severe in Reusables (X-33, SMV)




ChamberCore Structures

Integrated Helmholtz Resonators

Chambers Can Function as Natural Helmholtz Resonators
5-10 dB Acoustic Noise Reduction With No Weight Penalty

sound in sound out sound in sound out
T T

M

Frequency Froguency

Overview

ChamberCore Structures
Durable Composite Structures for Reusable Vehicles

Shape Memory Resin Structures
Deployable Structure for the the PowerSail Concept

Structures for Depioyable Optics
Highly Stiff. Stable Structures for Optical Systems
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"}y Shape Memory Resin Structures

el

Today, Most Spacecraft Have Less Power Than A Common Hair Dryer...

GPS Satellite Hairdryer ' N\
1000 Watts 1200 Watts W “_&

Future Large Spacecraft Will
Require Much Greater Power

Example: Space Based Radar: 25kW - 100kW

Shape Memory Resin Structures

PowerSail Program
Develop High Performance Generic Power System for Next
Generation DoD and Commercial Satellites

Cost  $1,000/W $300/W ... . $200/Wi
Packaging 8 kw/m® 25 kWime. .. 30 kWimd
Specific Power 85 Wikg 300 Wrkg .. 600:Wikg:i
Available Power  j5kxw 50 kW
Present PowerSail PowerSail
Demonstration Operational
2005 2010
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ation Keeping

ropuision

Deployable Structure
-0 tkg'm” Areal Mass

Thin Film Cells

—12% Efficient Cells
~50 ym Polyimide Substrate

Overview

ChamberCore Structures
Durable Composite Structures for Reusable Vehicles

Shape Memory Resin Structures
Deployable Structure for the the PowerSail Concept

Structures for Deployable Optics
Highly Stiff, Stable Structures for Optical Systems
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Driver is Deployable Tolerance Requirement
~10 nm Accuracy

Highly Advanced Actuators

- Very High Precision

- While Retaining Large Stroke
Extremely Stiff Structure

- Well Characterized
- Precision

Predictable Repeatable Deployment
- Minimize MicroLurch, Creep

Ultra-Lightweight Mirrors
Highly Advanced Non-Linear Control Solution
Adaptive optics
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Summary

Past:
Focus on Payloads

Future:
Focus on Spacecraft Technologies
Leading to Radical New Architectures
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On the tensile strength of carbon fiber ~ unsaturated polyester resin strand specimens
Junichi Matsui
VentureLabo Co.
1-5-9 Nishishinbashi, Minatoku, Tokyo 105-0003
Zenichiro Maekawa
Kyoto Institute of Technology
Matsugasaki-Kaidohcho, Sakyoku, Kyoto 606-8585

CFRP is a useful material to reduce the energy consumption of automobiles, rapid
trains, machinery, etc, and to substantiate long span bridges such as a suspension
bridge across the Strait of Gibraltar, very tall buildings, very deep off shore oil rigs, etc.
In order to achieve this task low cost and reliability are unavoidable conditions.
Epoxy resin has been used dominantly as the matrix of composite materials since BFRP
and CFRP developed in 1960s to 1970s. Unsaturated polyester and vinyl ester resin has
been used also for boats, ships, yachts, and other marine application by empirical
knowledge with GFRP. According to tradition the epoxy composites perform better than
the unsaturated polyester or vinyl ester composites as for mechanical properties; it is
presumed that the difference is attributable to poor resin-to-fiber bonding and
brittleness of the cured resin. On thermoplastic resins PEEK, PEI, PPS, etc have been
evaluated and good to fair tensile strength of composite materials were reported, but PE,
PP, ABS, and other cheap resins are not well studied.
In this experiment tensile strength of CFRP made of the said three thermoset resins is
tested. Test specimen is 3000 filaments single end strand which is impregnated with the
resin then cured fully. Since unsaturated polyester and vinyl ester resin contain about
40% of styrene and evaporation of styrene can cause the strength of the cured resin,
carbon fiber strand is impregnated, squeezed, and sandwiched with two narrow PP
tapes then wound up on a square frame.
Carbon fiber Toray Industries TORAYCA T300B-3000-40B
Unsaturated polyester 1A Mitsui Chemicals ESTER P825

1B Takeda Chemicals POLYMAR 6339

1C Dainihon Ink POLYLITE FW231C
Vinyl ester 2D Nippon Shokubai EPOLAC RF701

2E Showa Highpolymer RIPOXY R802

2F Japan U.PICA NEOPOL 8411L

Hardener MEKPO/Co Naphthenate




Probability

Probability

Epoxy 3G Shell Chemicals EPIKOTES827/DICY/DCMU/PVF

3H Union Carbide BAKELITE ERL4221/BFSMEA
Cure conditions UP & VE : RT(10C~25C)*12h~24h + 60C~80C*1~2h + 100C*3h
Epoxy 3G 120C*2h 3H: 125C*1h
Fiber content 40~55% by mass

As shown in Figure 1 to Figure 3, it is evident that the distribution of tensile loads at
failure for eight samples with three different resin types is same. This is encouraging
result and hence effect of fiber content, multiplication of the number of strands and its
configuration, thermoplastic resin matrix, etc will be studied in terms of cost and
reliability on the tensile strength of CFRP .

oy
1A v =
0.5 N 3 § 3 05
il 3N £
1C ~_ v
v
v
FL:
Lo ©
0 = 0 .
200 300 400 200 300 400
Tensile failure load (N) Tensile failure load (N)
Figure 1 Unsaturated polyester resin Figure 3 Epoxy resin
1 A ap
40
A 2w}
A
AL
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0N
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2D a5
03 N A48
2E £L2R
~ 4 28
2F {4
\\M 3 %)
[~ Y]
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0 DA
200 300 400

Tensile failure load (N)

Figure 2 Vinylester resin




On the Tensile Strength of
Carbon Fiber — Unsaturated Polyester Resin Strand Specimens

Junichi Matsui, VentureLabo

Zenichiro Maekawa, Kyoto Institute of Technology

Mt.Fuji
3776

Shimizu’s

243

Tl

AN JAYAVAY
AvggAVAVAVAVAVA ,

Tokyo Yokohama

Plan for a Very Tall CFRP Building by Shimizu Co. in Japan (1991)

9-4




ol ~—

| 300m | 8400 m | 4700 m

Plan for a CFRP Bridge across the Strait of Gibraltar by Meier in Swiss(1986)

CFRP Strand Specimens with Different Resins

1:Unsaturated Polyester Resin 1A:Mitsui Chemicals ESTER P825
1B:Takeda Chemical POLYMAR 6339
1C:Dainihon Ink POLYLITE FW231C

2: Vinylester Resin 2D:Nippon Shokubai EPOLAC RF701
2E:Showa Highpolymer RIPOXY R802
2F:Japan UPICA ~ NEOPOL 8411

3: Epoxy Resin 3G:Shell EPIKOTES27/CICY/DCMU
3H:UCC BAKELITE ERLA221/BF3MEA
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Modeling Post-Buckled Delaminations in Composites

Tay T.E.
Dept. of Mechanical & Production Engineering
National University of Singapore
10 Kent Ridge Crescent
Singapore 119260

Abstract:

This paper deals with the computational modeling of delamination and the prediction of
delamination growth in laminated composites. In the analysis of post-buckled delaminations, an
important parameter is the distribution of the local strain energy release rate along the
delamination front. A study using virtual crack closure technique is made for three-dimensional
finite element models of circular delaminations embedded in woven and non-woven composite
laminates. The delamination is embedded at different depths along the thickness direction of the
laminates. The issue of symmetry boundary conditions is discussed. It is found that fibre
orientation of the plies in the delaminated part play an important roie in the distribution of the
local strain energy release rate. This implies that the popular use of quarter models in order to
save computational effort is unjustified and will lead to erroneous results. Comparison is made
with experimental results and growth of the delaminatiqn front with fatigue cycling is predicted.
A methodology for the prediction of delamination areas and directions using evolution criteria
derived from test coupon data is also described. It is found that evolution criteria based on
components of the strain energy release rate predict the rate of delamination growth much better

than evolution criteria based on the total strain energy release rate.

Keywords: Delamination, Finite element analysis, Strain energy release rate, Fatigue, Modeling.
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CDW '00, August 23, 2000, Tokyo, Japan

CHARACTERIZATION OF DAMAGE PROGRESSION
IN MULTIDIRECTIONAL SYMMETRIC FRP LAMINATES

Isao KIMPARA and Kazuro KAGEYAMA

Department of Environmental and Ocean Engineering, Graduate School of Engineering,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

It is well known that two kinds of damage, namely intralaminar (transverse) cracking and
interlaminar delamination occur at a fairly early stage well before the ultimate failure in case
of tensile loading of multidirectional symmetric FRP laminates [1]. This damage progression
often results in some reduction in stiffness and is also likely to influence the ultimate failure
strength. Therefore the prediction of such an early damage progression in laminated
composite members is very important from the viewpoint of “Damage Tolerance Design
(DTD)” of composite structures. As the initial damage such as intralaminar cracking is
generally observed to progress in a stable manner, it is possible to set the allowable stress
level at a higher value than the conventional "First Ply Failure (FPF)" level, if the damage
progression mechanism is thoroughly understood. This would give us a theoretical basis for
establishing a more advanced “Predictable Damage Growth Design (PDGD)” methodology
for composite structures resulting in a further significant weight reduction .

To clarify the damage mechanisms of laminates, a large number of damage models have been
proposed and various analytical and experimental characterizations on damage progression
have been performed mostly for relatively simple laminated structures such as cross-ply
laminates [2] but very few for general-purpose multidirectional laminated comp051tes such as
quasi-isotropic laminates. For this reason, this paper aims at proposing a general method to
predict intralaminar crack density of each ply and stress-strain relation under multi-axial
inplane tensile loading for multidirectional laminates. The method is based on an energy
approach equating the released energy by transverse crack growth to the decrease in potential
energy stored in a laminate [3]. Both can be estimated from the stiffness reduction of
laminates due to intralaminar crack growth, which is obtained by numerical calculation of the

stress and strain field in a damaged zone. The influence of ply thickness and stacking
sequence on the damage behavior is analyzed by numerical simulations.
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. Acoustic emission characteristics and internal damage progression of multidirectioan] CFRP
symmetric laminates are investigated experimentally by applying tensile tests of coupon
specimens which are composed of 0-, 45- and 90-degree layers. The initiation of
intralaminar crack in 90- and 45-degree layers and the onset of edge delamination in the
interlainar region are monitored by acoustic emission. The internal cracks are observed by
micrography and the interlaminar delamination is detected by using ultrasonic C-scan
technique. Predicted damage state of quasi-isotropic laminates and stress-strain equation are
compared with the experimental results. Predicted stress of crack initiation by the proposed
theory agrees well with critical stress observed by acoustic emission. It is shown that the
intralaminar cracking damage behavior of multidirectional symmetric laminates is predictable
by the proposed method and the prediction generally agrees well with the simulated results in
terms of crack initiation and crack density.

This work has been carried out and still continuing as a part of fundamental research on the
damage tolerance design of composite structures in the 5 -year project on advanced composite
materials for transportation starting from 1998 in R & D Institute of Metals and Composites
for Future Industries (RIMCOF) sponsored by the Ministry of International Trade and
Industry. It is shown that the proposed prediction method is successful as far as intralaminar
crack is concerned. However the actual more complicated damage mode should have to be
modeled by including interlaminar delamination and extension of crack to the adjacent layer
which requires a further extension and modification of the proposed method.
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Materials (AECM-4) (1992), 55-64.
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CHARACTERIZATION OF
DAMAGE PROGRESSION IN
MULTIDIRECTIONAL
SYMMETRIC FRP LAMINATES
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Damage Progression in Composite
Laminates

+ Stress-Strain Relation

1 Elastic Range

11 Intralaminar Cracking

I Intralaminar Cracking
Interlaminar Delamination

Fiber Breakage

-
>
€

Problems in Damage Prediction

e

» Damage in Multidirectional Laminates
depends on Laminate Constitution (Ply
thickness, Ply angle)

» Many Parameters, Difficulty in Modeling
» Mostly on Cross Ply Laminates (Togoh,
McCartney)

+ Very Few on Quasi-Isotropic Laminates
(Shahid)

——
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Failure Modes in Composite Laminates

* Intralamina ;’ieﬁ‘gi_ .
(Transverse) e £(| Transverse
Cracking | Cracking

* Interlaminar (Free
Edge/Local)

Delamination
* Fiber Breakage 7 Local
Delamination

Transverse Cracking

Damage in Composite Structures
* Intralaminar Cracking
+ + < Thermal Residual Stresses
+ + * Secondary Machining
+ + + Loading

* Tolerance of Stable Growth Damage

« Importance of Initial /ntralaminar Cracking

Present Design Criteria

——

+ Based on Stress Criterion of Failure

+ The Effects of Ply Thickness and Stacking
Sequence is not considered

* Even Stable Growth Damage is Intolerable
+ Difficulty in Damage Modeling

Limited Allowable Stress Level
(Conservative Design)




Motivation of Research

¢ Prediction of Initial Damage Progression
Behavior in General Multidirectioanl
Laminates

» Failure Criterion Considering Ply Thickness
and Stacking Sequence

* Predictable Damage Growth Design (PDGD)
Methodology

Damage Prediction
based on Energy Release Rate

+ Energy Balance

Gefv4ac

Divided Elements of Laminate

+ Coordinate Transformation from [8 ,/ 6 ,]s
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Failure Criterion

——

¢ Stress Criterion

+ Failure at Critical
Stress of a Certain %

—== Encrgy Criterion
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* Failure at Critical oo | 22 Py Thickness
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|

| Inen

Energy to formaNew 4 | Lo
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[0,/90,,]s Laminate

Modeling of Laminate

+ Divided at Center of Ply Thickness
+ + * Inplane Stress Continuity
* + + Simple Symmetric Laminate Elements

Model

Stiffness Reduction in Laminate

——m

* Rigidity of [ 8 /90]s Element

g° Ply




Reduction in Tensile Rigidity

* Discretization of Stress Distribution
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Example of Analysis ---(1)
[45,/0, /-45,/90,]s Laminate
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11-6

Reduction in Shear Rigidity

* Discretization of x-direction Displacement

M

1

. .| Finite Difference
L} ’ : = Approximation

N

N Pl g

“o°Py i% 90 Py
Assembly of Elements

* Superposition of
Elements
¢ Lamination Theory
¢+ Damaged Layer
¢ Averaging of Divided
Elements

Element

Laminate

Example of Analysis ---(2)
Effect of Ply Thickness

* Damage Initiation Stress
500 -

T Py 03 mm ;

400 ;- e B S i
b A 90", Bly Failure

i Ply 0.6 mm . ) |

» Vol

0 200300 400

0 :
| Tensile Stress(MPa) !




Laminate Constitution of Test
Specimens

[45,/-45,/0,/90,1s
(Ply 0.3mm)_

116
< {14 E

: I

Exp. X 408

/1 (907 ply) 1 06

. T 0.4

: ‘ 0.2

L} 0

PO SR

0 4000 ._R000_ 12000 16000
i Strain (um) |

Stiffness Reduction in
[45,/-45,/0,/90,]s Laminate

——— e Attt SEE SRR

Ply 0.3 mm

Expel

Experiment :

10000 12000 14000
! Strain (um) !
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Diagram of AE Output of
[45./-45./0./904] s Laminates.
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[45,/-45,/0,/90,]s

(Ply 0.6mm)

1000 s Eperimental . . : 14
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800 Crack Density of 90°ply | . 12 B
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600 ; CEXp T 087

w00 Ca‘-** 7 x| 0S8

. (90° piy)y 0.4

0

0 4000 8000. . 12000 16000
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Summary of
[45,/-45,/0,/90,1s

—m— ¥

« Effect of Ply Thickness

+ Good Agreement between Prediction and
Experiment for Damage Initiation Stress

* Damage Density

+ Predicted Damage Density does not agree well
with Edge Observation after Unloading

« Stiffness Reduction

¢ Effects of Interlaminar Delamination and Fiber
Breakage have to be considered

Note : Similar Tendency in_[45,/-45,/0,/90,]s




[45,/0,/-45,/90,]s
(Ply 0.3mm)

Experimental

Predicted T ‘ 2
Crack Density of 90°ply L
* Crack Density of 45°ply " § - 2o
* L
Exp. 1
RPN 40
0 ' L ( 0

0 4000 8000 12000 16000 20000
 Strain (pm) !

Stiffness Reduction in
[45,/0,/-45,/90,]s Laminate

Ply 0.3 mm Ply 6.3 mm
105 Experimem‘ k Prediction
Ply 0.6 mmf .

Hoo Prediction e iber =
Ply 0.6 mm Breakage 1
Experiment

3 Delamination ¢

08 e
5000 7000 . 9000 11000 13000
| Strain (um)
Conclusions

——

* Intralaminar Cracking Damage Behavior of
Multidirectional Symmetric Laminates is
shown to be predictable by the Proposed
Method

* Prediction and Experiment agree well for
Damage Initiation Stress
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[45,/0,/-45,/90,1s

(Ply 0.6mm)
N e
800 rrgdit;ted :I . 12
- rack Density of 90°ply
- rack Density of 45°ply =
= 3 x
%400 ; .
& !
w0 ¢ oty 8
0k g
0 4000 .8000 . 12000 16000
 Strain (um}‘i
Summary of

[45 /0./-45_/ 90 ]s

* Effect of Ply Thickness
+ Good Agreement between Preiction and
Experiment for Different Stacking Sequence
* Mutual Interaction of Cracks

+ Interaction Effect of Cracks has to be
considered in Stacking Sequence where Crack
Extends to Adjacent Layer

Note : Similar Tendency in [45,/0,/ -45,/ 90,]s

Future Problems

—--= —t-

* More Sophisticated Modeling Comsidering
Interlaminar Delamination and Fiber
Breakage

» Formulation of Mutual Interaction Effect of
Cracks

* Continuous Damage Detection by
Experiment
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Development of Space Frame and Monocoque Panel with CFRP
For Large-span Structures

Kenichi SUGIZAKI, Institute of Technology, SHIMIZU Corporation, Tokyo, Japan

ABSTACT

-We are engaged in the development and application of large-span structural
systems for the twenty-first century using a new material, CFRP. In this
report, I will outline the Double-Layer Space Frame and the Monocoque Panel using
CFRP (Carbon Fiber Reinforced Plastics) as a structural material.

CFRP is lighter than Steel that is most common structural material. And it
has superior specific strength (material strength Ispecific gravity) as well as specific
rigidity (Young’s modulus /specific gravity). Therefore, we believe that we can
construct lighter roof buildings using CFRP than Steel and the others.

In Japan, seismic load make structural properties heavy influence. If
roof structures of buildings are lighter than usual ones, seismic load of the buildings
are commonly decreased. So, we believe that the durability of buildings will
become increased.

Structures with CFRP perform well from the point of view of strength,
specific stiffness, heat insulation, corrosion resistance, etc. I will focus on the
durability of buildings using the Truss system and Monocoque Panel with CFRP.
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Kenichi SUGIZAKI
Shimizu Corporation

Development of Space Frame and Monocoque Panel With CFRP
For Large-span Structures

< The Realization of the new created space using new materials >

The realization of the new created space using new materials

Introduction

< CFRP has excelent characteristics for structurc material.

>

< CFRP products perform well from the point of view of strength, specific stiffness, >
< heat insulation, corrosion resistance, ctc.

Fig. I Specific Gravity of
Common Structure Materials
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Specific Rigidty (GPa)

Fig. 2 Specific Strength and Specific Rigidity
of Common Structure Materials

OHP-1: Introduction
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The realization of the new created space using new materials Concept

< A free form / The light space / Long life life-space >
< The space changes with the new material, CFRP. >

[0 Concept Short term's execution
The big space of freely curved surface

QO where realization was difficult so far can be realized.
o The long life life-space of the free maintenance
can be provided.
O The seismic horizontal load decreases due to light weight-ization,
and the resistance to earthquake of the building increase.

. The resistance characteristics to earthquake of existent buildings
O can be improved by replacing existent roofs. |
Use of a building can start in a short time
by short term's execution.

S
Freely curved surface space

o W 3-‘
Use of an early stage
can start.”

A
An existent roof
exchange

Reinforcement reduction
Fig.3 Concepts and Aims in resistance to earthquake

of the Development to earthquake

5. Development of Space Frame and Monocoque Panel with CFRP
OHP-2: Concept For Large-span Structures by Kenichi SUGIZAKI

ey . -t : - Outline of the Structural
The realization of the new created space using new materials | g . ° .’ CFRP

< Line-up of the Realization technologies. >

< The line-up of the new structure space where new material was used is completed, >

< and the most suitable structure space is provided. >

( CFRP Double-layer Space Frame ) (" CFRP Monoco%ue Panel Roof )

O Double-layer Space Frame composed O The freely curved surface Shell structure
of CFRP pipes using the CFRP Monocoque Panels

O Because members are light weight, O Large curved surface structure can be
assembled easily, made in the construction place.

and short term's execution is easy.

/ Coating

: Structure member

E i e
) e e e J

Development of Space Frame and Monocoque Panel with CFRP
For Large-span Structures by Kenichi SUGIZAKI

Skin (CFRP+GFRP)

J

OHP-3: Outline of the Structural Systems with CFRP 13-4




The CFRP Space Frame General Technologies

- JS‘"tni'ctllmage /
of Flat Roof |

Fig. 6 Units of CFRP
Space Frame

[T T RSTIN
Photo 1 Internal view of the refreshment room in Toray-Ehime

Design form c.xample

Fig. 4 Detail of The CFRP Space Frame member Fig.7 Design Type of CFRP Space Frame

. X . i bcvelopment of Space Frame and Monocoque Panel with CFRP
OHP-4: General Technologies of The CFRP Space Frame For Large-span Structures by Kenichi SUGIZAKT

. Photo 1:
T Wy < The Refreshment Room of
5 Toray Industries Factory in Ehime >

i
1 The CFRP Space Frame Applied Buildings

e Roof Area: 350 m2
b Total Construction Terms:
™ March 1997 ~ September 1997

‘ e e e e
i DS B = e
Photo 2: ; [1[HE=== 3
| < The City Pool of Mishima > -
| Roof Area: 1700 m2
Roof Construction Terms:
July 1998 ~ August 1998 :
Finished: March 1999 4
OHP-5: The applicd Buiidings of The CFRP Spacc Frame 13-5 » ?g::}:r:::;:fsstfﬁz::?m;ymlgergl;f?ll};l;?;l!{“?m CFRP




| The CFRP Space Frame Eagy Construction

CFRP Space Frame was used as a roof structure.

R,

AVAVAVAVAVAVAY

T ]
CFRP || Refreshment

Space || Room
Frame 1l

-

Phpto 7 Easy lifting of a

Fig. 8 Section &b&‘sf Phpto 3 External view CFRP pipe member
whose weight is
only 7 kg

Photo 5 Finiéhed the éssembling work

CFRP Space Frame of about the total weight 8.5 tons
which was assembled on the ground are installed

by two of the fifty tons cranes on the steel frame
columns of the height 6 meters.

8 9

7 . . . .
Phptos4  Assembling work on the ground - Photo 6  Lift-up of the CFRP Space Frame Roof

Development of Space Frame and Monocoque Panel with CFRP

OHP-6: Easy Construction of The CFRP Space Frame For Large-span Structures by Kemichi SUGIZAKI

The CFRP Space Frame Construction -2

T W gy

Photo 8  Lift-up the CFRP Space Frame of the Mishima city pool

Development of Space Frame and Monocoque Panel with CFRP

OHP-7: Construction 2 of The CFRP Space Frame 13-6 For Large-span Structures by Kenichi SUGIZAKT




The CFRP Space Frame Accumulation Cost

120,000L : o— : :
. | —@— CFRP Space Frame
100 000'__" —|— Steel gpdu, Frame
’ e et IR PETRR TR T Y . [

80,000

60,0004

accumulation cost (Yen /m2)

Material fee Coating fee 4th 6th 8th 10th 12th 14th 16h [8th 20th -
Execution fee | 2nd

Initials cost i‘é——-~—|Maintenance cdstl

—

IFig. 9 The comparison of the accumulation cost of the Space Frames

Development of Space Frame and Monocoque Panel with CFRP

OHP-8: Accumulation cost of The CFRP Spacc Frame For Large-span Structures by Kenichi SUGIZAKI

The CFRP Monocoque Pané] N General Technologies

Vacuum pump

\ﬁ\\‘h V‘acuTIim‘ ‘ W‘

Passenger car body
molded with VaRTM

\ Suppomng hase

Fig. 10 Image Computer Grafic Fig. 12 Molding Method Example

A Plastic tank

/ Coating

Skin (CFRP+GFRP)

Core
Lib

Slclrcmcn)r S

////// YA

M

l
lllllwwwwm
So L 10~24m A

Fig. 11 Design Form Example Fig. 13  Section Detail

Skin (CFRP+GFRP)

Development of Space Frame and Monocoque Panel with CFRP

OHP-9: Genceral Technologies of The CFRP Monocoque Pancl 13-7 For Large-span Structures by Kenichi SUGIZAKI




~ The CFRP Monocoque Panel

Improving the Resistance to
Earthquake by Replacing roofs

o]

.
R HE
ERE
-

L1

FFH |8

i

I The removal of the existent PCa panel I

L’I‘he replace of the CFRP panel ]

OFRPEL
28w

Wi LX) R4y

I The finished of the pancel joints I

P

HH

et o]

Fig. 15 The replacing existent roof panels to CFRP new ones

a) removal of existent PCa panels

b) replace of CFRP new panels

LAWY - (Y
Fig.16 Construction Steps

OHP-10: Improving the Resistance to Earthquake by replacing roofs

Development of Space Frame and Monocoque Panel with CFRP
For Large-span Structures by Kenichi SUGIZAKI

‘The CFRP Monocoque Panel

Improving the Resitance to Earthquake
and Eagy Construction

®Super-light weight

If CFRP monocoque panels are us;
The earthquake force from the roo

CFRP monocoque roof
( about 40kg/m?)

—-1.0

ed, the super-light weight roof of about 40kg/m?2 is realized . .
f added to the lower structure was compared with other systems of construction.

ATA

Steel girder roof

@Short term's excution

Because execution is easy, construction can be completed in the period such as a summer vacation.
It was compared with other systems of construction.

( about 80kg/m?)

PCa roof
(about 250kg/m?)

| The plan of the CFRP monocoque panel |
Y] 78 EE]
10]20]30][10]20[30{10]20]30]10]20]30
Htkar
{RERT R n |
Removal PCa N
Replace CFRP 7
ERMTR L
T ]
MEiaE ]

The plan of the Steel girder
68

78 } 8A | 8B ! 08
GBI - .2
PCa S TH
EREARE [ s ]
HAATE
HITH
[T 1 l [=]

The plan of the existence PCa panels
68 | 7B | s8R | 9B l| 108
ERIW

PCa lEmik T L =

BWATE [
RANTR
HETH

LT3 =

OHP-11: Improving the Resitance to Earthquake and Eagy Construction
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— Tbe ,~,,CFRP,M0nbcoqué P&He] ) — Construction

Photo 9 Lift-up a CFRP Monocoque Roof Panel of a elementary school gymnasium

_19- et N = . ’ Development of Space Frame and Monocoque Panel with CFRP
OHP-12: Construction of The CFRP Monocoque Pancl For Large.span Structures by Kenichi SUGIZAKT

The realization of the new created space using new materials| Conclusion and Challenge

< Conclusion and Challenge >
CFRP structural systems, we have been developing, have many excellent characteristics,
such as well specific strength, light-weight, long-life, etc. With regard to both CFRP
Space Frame and Monocoque Panel, although several facilities were completed, technical
challenges remain unsolved, such as joint structures and further development is necessary.
These large-span structures with new materials show great promise for the twenty-first
century. Their continued advanced development and challenging are in our plan.

i . ] Development of Space Frame and Monocoque Panel with CFRP
OHP-13: Conclusion and Challenge 13-9 For Large-span Structures by Kenichi SUGIZAKI
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The Application of Fiber Reinforced Plastics (FRP)
in the Construction Field of Japan

Kohzo KIMURA and Hiroya HAGIO
OBAYASHI Corporation Technical Research Institute

INTRODUCTION

Research and development of the concrete structures using the reinforcements
consist of high-strength fibers have been underway since the early of 1980’s in Japan.
In 1986, the concrete curtain wall (Pre-cast concrete outer panel) mixed carbon fiber -
(chopped fiber) was installed, and a pre-stressed concrete bridge using carbon fiber
reinforced plastic (CFRP) for the pre-stressed strand was constructed in Ishikawa
prefecture in 1988.

In the civil engineering of Japan, the FRP reinforcements are mainly used for
three objects. The first is on behalf of the conventional reinforcement bar and the
strand. The second is the retrofit material for existing concrete structures. The
demand of the carbon and the aramid fiber sheets for this use has been increased year
by year since 1995, after the Hansin-Awaji earthquake. The last is on behalf of the
steel members such as the steel pipe and the shape steel.

APPLICATIONS OF FRP REINFORCEMENT
The summary of some applications using FRP reinforcement for the structural
materials and “Carbon fiber Retrofitting System (CRS)” we developed, are described.

(1) Reinforcement and Tendon of Concrete member
Pretensioning bridge girder (1988)
Pretensioning footing beam (1989)

(2) Pre-cast Concrete panels
The advanced fibers such as the carbon fiber and the aramid fiber have some

superior merits, light weight and non-corrosion ete, compared with steel. The
reinforced concrete panel using FRP reinforcement makes the cover concrete decrease
and the concrete panel lighter than the conventional one using the reinforcing bar.
Further the pre-stressed concrete panel using FRP tendon leads the panel strong
against bending force and brings about the thin thickness.

Electromagnetic wave shield Curtain wall using the FRP reinforcement (1993)

Electromagnetically TV signal permeable curtain wall (1995)

Thin Step board of the indoor stair (1995)

Light-weight Roof panel (1998)

(3) FRP pedestrian bridge (1996)
(4) Wooden beam reinforced CFRP laminates (1997)

(5) Retrofitting of the existing structure (1988)
Since the Hansin-Awaji earthquake, seismic retrofit of columns with FRP

14-2




becomes popular. The top reason is easy application works without special
craftsmanships. As it is possible not to get required performance when quite a °
nonprofessional are worked. The associate is organized to learn right works and the
knowledge about FRP and evaluated the skill. This FRP technique is also
successfully applied for beams. Since a beam always has a slab, the slab obstructs to
form closed type transverse reinforcement only with carbon fiber sheets. So the
authors developed a technique of fixing the carbon fiber sheets with plates and bolts to
the both sides of the beam. Judging from the experiments, it is confirmed that the
beam retrofitted with FRP is more ductile than unretrofitted the beam. These design
methods of the retrofitted beams are researched. CRS-BM method of them is
integrated at the design method and the works, and has the evaluation from the Japan
Building Disaster Prevention Association. Additionally, retrofit of walls is tried
applying the method of the anchorage of the retrofit of beam. The method is not more
effective in comparison with the retrofit of beams. It is charming that the thickness
of the wall do not increase, as if retrofitted, when the width of a corridor is regulated
by lows. In Japan there are many buildings that the retrofit is necessitated. More
and more the demand will increase. -

(6) Anchorage of FRP Pre-stressing Tendons

In order to make good use of FRP tendons the anchorage system is needed. PC
strands has useful anchorage system developed by many studies. Almost FRP
tendons have the shortcoming that they don’t resist against the shear force.
Therefore the corners must be chamfered on the occasion of wrapping columns and
beams with FRP. It is difficult to gripe with the same method. In a general way, the
pipes infilled with swelling agent are used as the anchorage. But it takes one day at
the least to give full strength. And the pipes must be thrown away per one usage.
The method of dry-anchorage system as a wedge is desired. In particular when
members pre-stressed with FRP tendons are produced, the wet-anchorage system is
hardly used at the reason of the cost and labor time. So the dry-anchorage systems
are introduced. And the behavior of FRP tendons with the dry-anchorages is
reported.

IN CONCLUSION

The Applications of Fiber Reinforced Plastics are described in the construction
field of Japan. These new materials just begin and have many possibilities. For the
future it is important to gather in data for years.

14-3




TSI peodojutay 1eqL] snonanuo) ‘WaA) 101

Jusurireds 93aIoUCO PEOIOFUTaL A1038-¢ JO SIapUlq Sweaq 3urjooy 1eddn Ut pasn
PO 13q1 PIUFETY "UOHOTISUG) JO ARSIUTH 343 £q UOTBZLI0YINE SULMOIO]
‘Sutpymq © JO JOqUISW [BINJONIS I0{8T B UI WYAD © JO woneordds 381y 3y,

syreway

2661 | pagerdwon

LV AUGWa0I0juTed T6oYS STV JUsWadiojuTal UGN ‘¢ Tvy -0opual | odd} dud

Sureaq JUT300] PaOIOFUTAX passarysard
Sutnoisuajal JO JUAWAOIOFUTAI IBIYS PUE JUSWISOIONUISI UTBW ‘UOPTa] uoysonddy

am3oopalg eqray A BATsey |  uoneoo]
vmIeey] SH O SuTEN
BMSEY SIY3H DN

3
o
g
= =
23
@

E o lal23 |a
a8 18|88 |2
Sial a3 5 |3
] ci|lw= 8
mm - o - K]

- ~ 8 @ =
ol = X|.2 Q
I Rl R S,
EHEEREERE

5 @
ElFEI2 2 5818

[ .NB Frmg
g |@l2léloa 23] s
3 2
-3 @
jae] m m
o o 3
= Slol3 35
S|+ ad & S
g | EEHE |2
= -] - =% X3
= g af Rt © als
@ IR
Z AFM n\“
-

Section of PS Girder

Elevation of Bridge

(WM 0§ IR AMIG A ado3iond A BoRINIEUO)
aopuss Sresodway, A QETUY GILM TR JO ITRWAAICTUTIY A 4ezoduma],
ANV A0S VoG A iig’ 'nﬂ.ngé
aprd afpug Juronunard A amjonns
aspug awvweped LU A afpux] padeis-arqe) A amPnns Junew [FUoIR A Bupzsendus (UL
amd a2pLg SeMyg JO 3gonsy A
Eoq TSPOOA [WOLIOISTY JO JGOINY A T Jo areday A 1goney 3 Tedey
Te PaTYS JO JTAICIMUTAT J2INA0T A
L afw3oa qdrg jo onepunof A 0UITE PUNCID) A uonEpEmog
and 3utesnu3ay A dare 10 A3AINOYS O JUIWARIOTUTIY A
T ST I(q [oudm 1, At o o4 QORRI] A
A manoypdeng A POedI0I VO A quIen | S
[[9M PIOTYS 3A¥M TRUINTOIISNT A 23qtg paddods) paxTT [[UA CTELNG HIITK) A (qng)Arepucoeg
[eusd jooyf JuTUOTIURNIAY A A MmN sengg jooy
WG TIPOO PIsIISAL] A laqmam
nne 300puY 10 pIeoq dang JuTOWUNI] A arveq 3unooy Jurcowuneld A eanysnase arey
000z | 6661 | 8661 | L66T | 9661 | 9661 | ¥66T | 6661 | 5661 | 66T | 0661 | 6861 | 8861 | L86T | 986T | 986T |  uonwogmew(y
(z89y)
TOMONIITUCD Ut JUSWIAIOTUTAX T JOo suorgeoridds [eorjoexd ay,,
—_— - — —— - <
<
—

3jnIMSUY YOIBasTY [EITUYDA],
wogeIodIo]) THSVAVEO

OIDVH Bdoaryg
VAN 02403

usds £ JO PI9T UOTPONIISUO)) 9Y3 Ul
(&4.9) 9o1SB[J padIoFuIay Iaqyy Jo wonsanddy oY,

@




Electromagneticall TV signal permeable Curtain Wall

Name

Denki Building

Location
_Application

Heiwa-odori Avenue in Hiroshima, Hiroshima Prefecture

Reinforcement of Curtain Wall

FRP type

3mm and Tmm Aramid FRP rod (total 21,400m)

Completed

1996

MC Heights Kashiwa

View of Denki Building

Detail of Beam section

Elevation

Arrangement of FRP reinforcement

ERFBRS—F V4N

Shinagawa Inter-City —Skyway—

Name Shinagawa Inter City
Location | Minato-ku, Tokyo metropolitan area

Application { Reinforcement of Roof panel (total 156 pieces)
FRP type |CFRP laminate: 4.6mm X 50mm and 26mm
(total length of CFRP: about 5,000m)

Completed {1998

Bird’s-eye view

CFRP laminate

B \ \.J \

Section.

Pedestrian deck

Elevation

“Penetration
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Outside View of Wooden Structure

CFRP laminate: 4.6mm X 50mm _

Pout-tensioning Prestressed Wooden beam
Material Laboratory Center

Location | Kiyose City, Tokyo metropolitan area

Application | Post-tensioning tendon

FRP type
Completed | June 1997

Name

Anchorage of CFRP tendon

Prestressed Wuoden beam (inside of the building)
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CDW 2001

August 23(Thu) and 24(Fri), 2001
® Albuquerque, New Mexico, USA

Organizer: Steven Huybrechts
Stephen W. Tsai
Yasushi Miyano
Advantage:
- Before the AIAA Conference on August 27 to 30, 2001

- - Lab Tours of Air Force Research Laboratory and
® o
Sandia National Laboratory




CDW 2000

‘ The Third Composites Durability Workshop
August 22-23, 2000, Tokyo, Japan

Workshop Secretariat

Masayuki Nakada (Director, Kanazawa Inst. of Tech.)
Nobumasa Iwashita (Kanazawa Inst. of Tech.)
Akihiro Kakimoto (Kanazawa Inst. of Tech.)

Naoyuki Sekine (Kanazawa Inst. of Tech.)

Kyoko Mizunuma (Kanazawa Inst. of Tech.)

Hiroko Nakatani (Kanazawa Inst. of Tech.)

Akira Kuraishi (Stanford Univ.)

Office of Research Development

Kanazawa Institute of Technology

7-1 Ohgigaoka Nonoichi Ishikawa 921-8501, Japan
Tel: +81-76-294-6719

Fax: +81-76-294-6721




